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ABSTRACT 

Lin, Zhiqiang Ph.D., Purdue University, August 2011. Reverse Engineering of Data Struc­
tures from Binary. Major Professor: Dongyan Xu, Xiangyu Zhang. 

Reversing engineering of data structures involves two aspects: (1) given an application 

binary, infers the data structure definitions; and (2) given a memory dump, infers the 

data structure instances. These two capabilities have a number of security and forensics 

applications that include vulnerability discovery, kernel rootkit detection, and memory 

forensics. 

In this dissertation, we present an integrated framework for reverse engineering of data 

structures from binary. There are three key components in our framework: REWARDS, 

SigGraph and DIMSUM. REWARDS is a data structure definition reverse engineering 

component that can automatically uncover both the syntax and semantics of data structures. 

SigGraph and DIMSUM are two data structure instance reverse engineering components 

that can recognize the data structure instances in a memory dump. In particular, SigGraph 

can systematically generate non-isomorphic signatures for data structures in an OS kernel 

and enable the brute force scanning of kernel memory to find the data structure instances. 

SigGraph relies on memory mapping information, but DIMSUM, which leverages proba­

bilistic inference techniques, can directly scan memory without memory mapping informa­

tion. 

We have developed a number of enabling techniques in our framework that include (1) 

bi-directional (i.e., backward and forward) data flow analysis, (2) signature graph gen­

eration and comparison, and (3) belief propagation based probabilistic inference. We 

demonstrate how we integrate these techniques into our reverse engineering framework 

in this dissertation. 
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We have obtained the following preliminary experimental results. REWARDS achieved 

over 80% accuracy in revealing data structure definitions accessed during an execution. 

SigGraph recognized Linux kernel data structure instances with zero false negative and 

close-to-zero false positives, and had strong robustness in the presence of malicious pointer 

manipulations. DIMSUM achieved over 20% accuracy improvement than previous non-

probabilistic approaches without memory mapping information. 
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1. INTRODUCTION 

1.1 Dissertation Statement 

In computer science, a data structure is a particular way of storing (e.g., using array, 

tree, or graph) and accessing (e.g., sequential, pre-order, or depth-first) data in a computer 

so that it can be used efficiently [1]. Typically, a data structure is composed of a number 

of fields, and each field has a specific type. The organization of the data structure fields 

forms a layout (i.e., the syntax of the data structure). The types, which tell the computer 

and the programmer information about the values and operations that a specific data type 

can handle, concern the semantics of the data structure. Almost all programs use data 

structures, namely, software development is essentially “Algorithms + Data Structures = 

Programs” [2]. 

A data structure usually has two representations. One is the abstract representation, 

which is the definition of the data structure and this definition is determined by the pro­

grammers and used during software development. The other is the concrete representation, 

which is the instance of the data structure and this instance is created at run-time during 

program execution. 

A data structure is started from a programmer’s definitions and is eventually translated 

into a binary form when the software is compiled. In the reverse direction, “can we reverse 

engineer the data structure definitions (i.e., the abstract representation of data structure) 

from binary code?” Also, the data structure is instantiated as data structure instances in 

memory at run-time. The instances are just the raw bits and bytes. Thus, “can we recognize 

the specific data structure instances from raw memory images?” 

Both compiled code and raw memory images are in binary forms. That is why we call 

this process reverse engineering of data structures. In general, “Reverse engineering is the 

process of analyzing a subject system to create representations of the system at a higher 
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level of abstraction” [3]. More specifically, we aim to reverse engineer the data structure 

definitions from binary code, and recognize data structure instances from a memory image. 

These two capabilities have many computer security and forensics applications. 

1.2 Why Data Structure Reverse Engineering is Important 

Knowledge of data structure is valuable in many applications. During software devel­

opment, compilers use data structure semantics to detect meaningless or probably invalid 

code [4]. For example, a compiler can identify an expression like an integer divided by a 

string as invalid because, in the usual sense, one cannot divide an integer by a string. Also, 

a compiler may use the static type of a value to optimize the storage it needs as well as 

the operations on the value. For example, according to the IEEE specification for single-

precision floating point numbers (the static types) [5], many C compilers represent the float 

data type in 32 bits though theoretically it should be (−∞, +∞), and uses floating-point­

specific operations on those values. 

In the context of software debugging, programmers often need to know both the seman­

tics and the syntax of the data structure to examine a specific memory cell. For example, 

if a programmer wants to examine a stack variable, he or she must know in advance the 

types (e.g., integer, string, or pointer), and then use the specific format needed to display 

the value. 

In addition to traditional applications in software development, data structure knowl­

edge has a wide impact in computer security and forensics, such as in the following exam­

ples. 

•	 Vulnerability Discovery – Knowledge about data structure layout is often used by 

attackers. For example, a buffer overflow attack relies on the attacker knowing that a 

buffer is close to a function pointer or return address [6]. Such a data structure layout 

pattern can actually guide the vulnerability discovery. For example, if a penetration 

tester or an attacker knows the layout of a stack frame or network message, he or 
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she can reduce the fuzz [7–11] space and speed up the vulnerability discovery as 

demonstrated in Packet Vaccine [12] and ShieldGen [13]. 

•	 Exploit Generation – An exploit is a particular input that can trigger a vulnerabil­

ity [14–16]. To compromise a remote machine, attackers often construct exploits 

based on the program data structures, because what the attacker can manipulate is 

always the input data of the program. For example, from the data structure syntax 

(e.g., the size of a buffer), an attacker could directly know the exact distance between 

an exploitable buffer and a return address or a function pointer, and thereby easily 

manipulate his input to hijack the control flow. 

•	 Protocol Format Reverse Engineering – Protocol format reverse engineering aims 

to reveal the format of incoming and outgoing network messages [17, 18]. Such 

messages are usually composed of a number of program-defined data structures. If 

we can reverse engineer the data structures of a program, then we can correlate the 

incoming and outgoing messages with the reverse engineered data types. A number 

of recent protocol reverse engineering techniques (e.g., [19–22]) have followed such 

methodology. 

•	 Memory Forensics – Memory forensics is to identify, extract, and analyze meaning­

ful information from a piece of memory dump in a forensically sound manner [23– 

25]. Samples of such information are IP addresses to which the application under 

investigation is talking and files that are being accessed. Data structure definitions 

play a critical role in the extraction process. For instance, without data structure 

information, it is challenging to decide if four consecutive bytes represent an IP 

address or are only a regular integer. As such, if there is a technique that can 

automatically extract the data structure with both the syntax and semantics, then such 

a technique can directly help construct a meaningful view of the in-memory data and 

benefit the memory forensics process. 

•	 Virtual Machine Introspection (VMI) – VMI is a technique that observes the state 

of an entire OS from the virtual machine level [26]. There is often a semantic gap 
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between the guest OS and the host OS [27]. In VMI, the layout and semantics of the 

guest kernel data structure directly control the external interpretation of kernel events 

[28, 29]. For example, without knowing the data structure of a process descriptor, it 

is impossible to interpret the guest kernel memory with the right semantics at host 

side. 

•	 Kernel Rootkit Detection – A kernel rootkit is kernel level malware that hides 

important kernel objects such as process descriptors or kernel modules. To hide the 

kernel objects, a rootkit attacker usually has knowledge of the corresponding kernel 

data structure definitions. For example, to hide a malicious process, the attacker 

could manipulate the previous and next pointer of the running process list, and then 

hide it. As a result, a rootkit detector could use the signature of the corresponding 

data structure and scan the memory in order to recognize the hidden object [30–32]. 

•	 Malware Classification – To classify malware, anti-virus software primarily relies 

on the signatures in the malware code. As data structure is one of the important 

aspects of a program, if the data structure has some unique patterns to a particular 

program, it is thus possible to use the data structures as malware signatures. In 

particular, as demonstrated in Laika [33], we can automatically derive the syntax 

of the data structure from malware code through machine learning techniques and 

use such syntax as malware signatures. 

•	 OS Kernel Fingerprinting – Similar to malware classification using data structures, 

we could also use the kernel data structures to fingerprint an OS kernel, which is 

particularly desirable in cloud computing. For example, a public cloud computing 

platform usually hosts virtual machines (VMs) with various OS kernels. In order 

to perform VMI [26, 28, 34] on these guest VMs, a prerequisite is to know the 

specific version of a guest’s OS kernel [35–37]. However, such information is not 

always available to the cloud provider. As will be shown in our dissertation, the 

unique signatures of kernel data structures can sometimes serve as the fingerprint of 

a specific OS. 
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1.3 Why Data Structure Reverse Engineering is Challenging 

There are a number of new challenges in (1) reverse engineering data structure def­

initions from an application binary, and (2) recognizing data structure instances from a 

memory image. 

First, to reverse engineer the data structure syntax and semantics, we have to first 

disassemble [38] and then analyze the binary code. 

•	 Static analysis to reveal the data structure is difficult because of the lack of symbolic 

information. Also, alias analysis is particularly hard while it is essential to deciding 

data flow and hence variable semantics. For example, variable discovery [39] is a 

static analysis technique that recovers the syntactic characteristics of variables, such 

as a variable’s offset in its activation record, size, and hierarchical structure. This 

technique requires alias analysis and abstract interpretation at binary level, and it 

does not recover any semantic information about data structures. 

•	 Dynamic analysis is challenging as well because many variables are dynamically 

created and de-allocated at runtime, making it complicated to track and resolve the 

variable types based on memory locations, which may be re-used during runtime. 

The dynamic variable lifetime may also affect the coverage of data structures as some 

may be de-allocated before their types are resolved. 

Second, to recognize the data structure instances, the state-of-the-art solution is to de­

rive the value-invariant data structure signatures, and use them to scan memory. However, 

the following are new challenges. 

•	 The value-invariant is not always available. Many existing solutions rely on the 

field value invariant exhibited by a data structure (i.e., a field with either a constant 

value or a value in a fixed range) as its signature [32, 40–43]. Unfortunately, many 

kernel data structures cannot be covered by the value-invariant scheme. For example, 

some data structures do not have fields with invariant values or value ranges espe­
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cially for pointers. It is also possible that an invariant-value field may be corrupted, 

thereby making the corresponding data structure instance un-recognizable. 

•	 Avoiding signature isomorphism when leveraging points-to relation. Comple­

mentary to the value-invariant, we could explore the structural invariant (i.e., the 

points-to shape of the data structure) as signatures. However, it is possible that 

two distinct data structures may lead to isomorphic signatures that cannot be used 

to distinguish instances of the two data structures. Hence there is a new challenge 

to identify the sufficient and necessary conditions to avoid signature isomorphism 

between data structures. 

Third, to scan memory and traverse the points-to relation between data structures, we 

have to resolve memory mapping [30, 31], namely, given a virtual address, we need to 

resolve its destination’s physical address. However, existing techniques to do so are only 

suitable for live data instances. As such, we have to recognize the dead data instances 

(i.e., the data instances that has been deallocated or belong to a dead process). The new 

challenges include the following in particular. 

•	 Absence of memory mapping information. Given a set of memory pages, very 

little information is available about which pages belong to which process, let alone 

the sequencing of the physical pages in the virtual address space of a process. Even 

if we can identify some pointers in a page, it is very hard to follow those pointers 

without the address mapping information. 

•	 Absence of type/symbolic information for dead memory. To map the raw bits 

and bytes of a memory page to meaningful data structure instances, type information 

is necessary. For example, if the content at a memory location is 0, its type could 

be integer, floating point, or even pointer. If these bits and bytes belong to the live 

memory and the symbolic information is available, then they can be typed through 

the reference path (as in [30]). However, such information is not available. 
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Fig. 1.1.: A framework for reverse engineering of data structure from binary 

1.4 Contributions 

Our dissertation will address these challenges, develop new techniques to automatically 

reverse engineer data structure definitions, and recognize data structure instances from not 

only live memory, but also dead memory. 

Our contributions can be summarized as follows. 

•	 We present a systematic framework for reverse engineering of data structures from a 

binary. As illustrated in Figure 1.1, this framework includes three key components: 

REWARDS1 (reverse engineering data structure definitions), SigGraph2, and DIM­

SUM3 (reverse engineering data structure instances), which will provide a complete 

solution for data structure and data instance reverse engineering. 

•	 REWARDS is a first-step, dynamic analysis based data structure reverse engineering 

technique. Not only can it reveal the syntax (i.e., the layout) of the data structure, but 

the semantics (i.e., the meaningful use) of the data structures as well. 

1REWARDS is the acronym for Reverse Engineering Work for Automatic Revelation of Data Structures.
 
2SigGraph stands for Graph based Signatures.
 
3DIMSUM is the acronym for Discovering InforMation with Semantics from Un-mappable Memory.
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•	 SigGraph proposes that points-to relations between data structures can be leveraged 

to generate graph-based structural invariant signatures. SigGraph is a technique that 

can systematically generate non-isomorphic signatures for data structures in an OS 

kernel and enable the brute-force scanning. 

•	 DIMSUM is the first technique that can uncover semantic data of interest in memory 

pages without memory mapping information. It is a probabilistic inference-based 

approach, and is able to automatically build graphical models based on boolean 

constraints generated from the data structure and the memory page contents. 

•	 We have implemented our reverse engineering framework, and our experimental 

results show that this framework is highly efficient and practical. In particular, 

REWARDS achieves high accuracy in revealing the data structures accessed during 

an execution; SigGraph can recognize Linux kernel data structure instances with 

zero false negative and close-to-zero false positives; and DIMSUM achieves higher 

effectiveness than previous non-probabilistic approaches without memory mapping 

information. 

1.5 Scope of this Dissertation 

This dissertation presents a suite of new techniques for reverse engineering of data 

structures from a binary, and there are a number of assumptions. 

•	 Architecture – We tested our techniques on X86 platform. There are some modifica­

tions when applying our techniques to other platforms. For instance, when examining 

memory content, as X86 is little endian but PowerPC is big endian, we have to 

accordingly adjust this difference when scanning memory. 

•	 Operating System – We also assume the operating system is UNIX/Linux. These 

are the testing operating system (OS) we used during our prototype development. 

•	 Programming Languages – We assume the program is written in C/C++ (the system 

programming language). For other programs written in such as Java (byte code), or 



9 

Python, or Perl, they are out of scope of this dissertation, as they have different run­

time mechanisms than that of the native binary code compiled from C/C++. 

•	 Compilers – Correspondingly we assume the programs are compiled by standard 

compilers such as gcc. This is because different compilers will have slightly differ­

ent ways in organizing data structure layout and passing the function parameters. 

•	 Binary Code – We also assume no obfuscation [44] against the binary code, and no 

layout randomization [45] against the data structure. 

•	 Memory Mapping – Our technique relies on pointer navigation. We assume the 

virtual address translation mechanism (e.g., the page mapping) still exists for our 

SigGraph approach. 

•	 Unencryped Memory Pages – Though the input to our DIMSUM is a set of pages, 

from which we can identify the data instances of interest with confidence, we assume 

such pages are not encrypted. 

1.6 Dissertation Overview 

This dissertation presents a data reverse engineering framework that contains a number 

of new techniques (i.e., REWARDS, SigGraph, and DIMSUM). Each technique has its 

own distinct goals, challenges, and input, but all are geared towards uncovering the data 

structures and are naturally integrated into our framework. In particular, as illustrated in 

Figure 1.1, REWARDS lays the foundation of this framework as SigGraph and DIMSUM 

both rely on the data structure definitions. SigGraph and DIMSUM complement each 

other as SigGraph focuses on mappable memory while DIMSUM focuses on unmappable 

memory. 

An outline of this dissertation is as follows. 

•	 Chapter 1 explains the need for our reverse engineering framework based on a 

number of security and forensics applications, for which it would be highly useful. 
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We also examine a number of challenges we have to address in order to realize our 

framework. 

•	 Chapter 2 provides an overview of the component of our data structure reverse 

engineering framework. For each component, we present the fundamental principles 

behind our techniques and identify the capabilities from the user perspective. 

•	 Chapter 3 presents the design of our first component, REWARDS, a reverse en­

gineering technique that can automatically reveal program data structures from a 

binary, based on dynamic analysis. REWARDS leverages the data flow and type 

revealing execution point to resolve data structure types. We give greater details on 

how we designed and evaluated REWARDS in this chapter. 

•	 Chapter 4 presents the design of our second component, SigGraph, a brute-force 

scanning technique to identify data structure instances through graph-based signa­

tures. We show in this chapter that the points-to relations between data structures 

can be leveraged to generate graph-based structural invariant signatures. Our exper­

iments with a range of Linux kernels show that SigGraph-based signatures achieve 

high accuracy in recognizing kernel data structure instances via brute force scan­

ning. We further show that SigGraph achieves better robustness against pointer value 

anomalies and corruptions, without requiring global memory mapping and object 

reachability. 

•	 Chapter 5 describes the design of our third component, DIMSUM, a probabilistic 

inference-based approach to uncovering semantic data of interest in memory pages 

without memory mapping information. Given a set of memory pages and the specifi­

cation of a target data structure, DIMSUM can identify instances of the data structure 

in those pages with quantifiable confidence. Our experiments with the applications 

on Linux platform show that DIMSUM achieves higher effectiveness than previous 

non-probabilistic approaches without memory mapping information. 



11 

•	 Chapter 6 demonstrates the applications of our framework, specifically, in memory 

forensics, vulnerability discovery, kernel rootkit detection, and kernel version infer­

ence. 

•	 Chapter 7 examines the limitations of our framework and outlines our future work. 

•	 Chapter 8 reviews and compares our techniques with related work. 

•	 Chapter 9 concludes this dissertation. We end with a discussion of a number of open 

research problems in this area. 
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2. A DATA STRUCTURE REVERSE ENGINEERING 

FRAMEWORK 

Motivated by the needs from security applications and the limitations of existing solutions, 

we present a new framework for data structure reverse engineering. The goal of our 

framework is to provide a higher level of abstractions of data structures instead of bits 

and bytes only from either an application binary code or a memory image. 

As shown in Figure 2.1, there are three key components in our framework: (1) RE­

WARDS, (2) SigGraph, and (3) DIMSUM. The input to our framework is either an appli­

cation binary code or a memory image, and the output is either the data structure definitions 

or the data structure instances. 

In this chapter, we provide an overview of each component of our framework. We first 

present REWARDS in Section 2.1, then SigGraph in Section 2.2, and finally DIMSUM in 

Section 2.3. 

Fig. 2.1.: An overview of our data structure reverse engineering framework 
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2.1 REWARDS 

A desirable capability in many security and forensics applications is automatic reverse 

engineering of data structures given only a binary. Such capability is expected to identify 

a program’s data structures and reveal their syntax (e.g., size, structure, offset, and layout) 

and semantics (e.g., “this integer variable represents a process ID”). Such knowledge about 

program data structures is highly valuable. For example, in memory-based forensics, this 

knowledge will help locate specific information of interest (e.g., IP addresses) in a mem­

ory core dump without symbolic information; and in binary vulnerability discovery, this 

knowledge will help construct a meaningful view of the in-memory data structure layout 

and identify those semantically associated with external input for guided fuzz testing. 

Despite the usefulness of automatic data structure reverse engineering, existing solu­

tions that suit our targeted application scenarios fall short. First, many works on type 

inference [46–51] require program source code. Second, in the binary-only scenario, the 

variables are mapped to low-level entities such as registers and memory locations with no 

syntactic information, which makes static analysis difficult. In particular, alias analysis 

is difficult at the binary level while it is essential to type inference – especially semantics 

inference – because precise data flow cannot be decided without accurate alias information. 

Variable discovery [39] is a static, binary level technique that recovers the syntactic charac­

teristics of variables, such as a variable’s offset in its activation record, size, and hierarchical 

structure. This technique relies on alias analysis and abstract interpretation at binary level. 

Moreover, due to the conservative nature of binary alias analysis, the technique does not 

infer variable semantics. More recently, Laika [33] aims at dynamically discovering the 

syntax of observable data structures through unsupervised machine learning on program 

execution. The accuracy of this technique, however, may fall below the expectation of our 

applications. It also does not consider data structure semantics. 

We thus developed the first technique in our framework, an automatic data structure 

definition reverse engineering system, REWARDS. Given a binary executable file, RE­

WARDS executes the binary, monitors the execution, aggregates and analyzes runtime 
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information, and finally recovers both the syntax and semantics of data structures observed 

in the execution at a high level. 

More specifically, each memory location accessed by the program is tagged with a 

timestamped type attribute. Following the program’s runtime data flows, this attribute will 

be propagated to other memory addresses and registers that share the same type. During 

the propagation, a variable’s type can be resolved if it is involved in a type-revealing 

execution point or “type sink” (e.g., a system call, a standard library call, or a type-revealing 

instruction). 

REWARDS infers both the syntax and the semantics of data structures from binary 

execution. More precisely, we aim at reverse engineering the following information: 

•	 Data types. We first aim to infer the primitive data types of variables, such as char, 

short, float, and int. In a binary, the variables are located in various seg­

ments of the virtual address space, such as .stack, .heap, .data, .bss, .got, 

.rodata, .ctors, and .dtors sections. Although we focus on ELF binary on 

Linux platform, REWARDS can be easily ported to handle PE binary on Windows. 

Hence, our goal is essentially to annotate memory locations in these data sections 

with types and sizes, following program execution. For our targeted applications, 

REWARDS also infers composite types such as socket address structures and FILE 

structures. 

•	 Semantic meanings. Moreover, we aim to infer the semantic meanings of program 

variables, which is critical to applications such as computer forensics. For example, 

an IP address is represented by 4 bytes memory at the binary level, and it may be 

classified as an integer. In a memory dump, we want to decide if a 4-byte integer 

denotes an IP address. 

•	 Abstract representation. Although we type memory locations, it is undesirable 

to simply present typed memory locations to the user. During program execution, 

a memory location may be used by multiple variables at different times; and a 

variable may have multiple instances. Hence, we derive an abstract representation 
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for a variable by aggregating the type information at multiple memory locations 

instantiated based on the same variable. For example, we use the offset of a local 

variable in its activation record as its abstract representation. Type information 

collected in all activation records of the same function is aggregated to derive the 

type of the variable. 

Given only the binary, we can observe the following at runtime from each instruction: 

(1) the addresses accessed and the width of the accesses, (2) the semantics of the instruction, 

and (3) the execution context such as the program counter and the call stack. In some 

cases, data types can be partially inferred from the instructions. For example, a floating 

point instruction (e.g., FADD) implies that the accessed locations must have floating point 

numbers. We also observe that the parameters and return values of standard library calls 

and system calls often have their syntax and semantics well defined and publicly known. 

We define the type revealing instructions, system calls, and library calls as type sinks. 

Furthermore, the execution of an instruction creates a dependency between the variables 

involved. For instance, if a variable with a resolved type (from a type sink) is copied 

to another variable, the destination variable should have a compatible type. As such, we 

model our problem as a type information flow problem. 

We have developed a prototype of REWARDS and have used it to analyze a number of 

binaries. Our evaluation results show that REWARDS is able to correctly reveal the types of 

the variables observed during a program’s execution. Furthermore, we have demonstrated 

the unique benefits of REWARDS to a variety of application scenarios. In memory image 

forensics, REWARDS helps recovering semantic information from the memory dump of 

a binary program. In binary fuzzing for vulnerability discovery, REWARDS helps in the 

identification of vulnerability “suspects” in a binary for guided fuzzing and confirmation. 

2.2 SigGraph 

Given a data structure definition (which can be acquired by REWARDS), identifying 

instances of that data structure in a memory image is an important capability in memory im­
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age forensics [25,52–55], kernel integrity checking [30,32,43,56,57], and virtual machine 

introspection [26, 28, 34]. Many state-of-the-art solutions rely on the field value-invariant 

exhibited by a data structure (i.e., a field with either a constant value or a value in a fixed 

range) as its signature [32, 40–43]. Unfortunately, many data structures cannot be covered 

by the value-invariant scheme. 

We thus present a complementary scheme for data structure signatures, and instantiate 

this problem to Linux kernel data structures. Different from the value-invariant-based 

signatures, our approach, called SigGraph, uses a graph structure rooted at a data structure 

as its signature. More specifically, for a data structure with pointer field(s), each pointer 

field – identified by its offset from the start of the data structure – points to another data 

structure. Transitively, such points-to relations entail a graph structure rooted at the original 

data structure. We observe that data structures with pointer fields widely exist in OS 

kernels. For example, when compiling the whole package of Linux kernel 2.6.18-1, we 

found that over 40% of all data structures have pointer field(s). Compared with the field 

values of data structures, the “topology” of kernel data structures (formed by “points-to” 

relations) is more stable. As such, SigGraph can uniquely identify kernel data structures 

with pointers. 

The basic idea behind SigGraph is to explore the inter-data structure points-to relations 

to generate non-isomorphic data structure signatures. A salient feature of SigGraph-based 

signatures is that they can be used for brute force scanning: Given an arbitrary kernel 

memory address x, a signature (more precisely, a memory scanner based on it) can decide 

if an instance of the corresponding data structure exists in the memory region starting at x. 

As such, SigGraph is different from the global “top-down” scanning employed by 

many memory mapping techniques (e.g., those for software debugging [58] and kernel 

integrity checking [30, 56]). Global “top-down” scanning is enabled by building a global 

points-to graph for a subject program – rooted at its global variables and expanding to its 

entire address space. Instances of the program’s data structures can then be identified by 

traversing the global graph starting from the root. On the other hand, brute force scanning 

is based on multiple, context-free points-to graphs – each rooted at a distinct data structure. 
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Unlike global scanning, brute force scanning does not require that a data structure instance 

be “reachable” from a global variable in order to be recognized; therefore achieving a 

higher level of robustness against attacks that tamper with such global reachability. 

To enable brute force scanning, SigGraph faces the new issues of data structure iso­

morphism: the signatures of different data structures, if not judiciously determined, may 

be isomorphic, leading to false positives in data structure instance recognition. To address 

this problem, we formally define data structure isomorphism and develop an algorithm to 

compute unique, non-isomorphic signatures for kernel data structures. From the signatures, 

data structure-specific kernel memory scanners are automatically generated using context-

free grammars. To improve the practicality of our solution, we propose a number of 

heuristics to handle practical issues (e.g., some pointers being null). 

Meanwhile, we obtain two important observations when developing SigGraph: (1) The 

wealth of points-to relations between kernel data structures allows us to generate multiple 

signatures for the same data structure. This is particularly powerful when operating under 

malicious pointer mutation attacks, thus raising the bar to evade SigGraph. (2) The rich 

points-to relations also allow us to avoid complex, expensive points-to analysis of kernel 

source code for void pointer handling (e.g., as proposed in [30]). Distinct data structure 

signatures can be generated without involving the generic pointers. 

SigGraph has the following key features: 

•	 It models the topological invariants between a subject data structure and those di­

rectly or transitively reachable via points-to relations, and is able to generate multiple 

signatures for the same data structure. This is particularly powerful when operating 

under malicious pointer mutation attacks, and significantly raises the bar to avoid 

detection. 

•	 It recognizes and formulates the challenge that different data structures may share 

isomorphic structural patterns such that false positives are induced if the invariants 

are not properly chosen; proposes a theoretically sound solution identifying signa­

tures that are guaranteed not to cause false positives in ideal scenarios (e.g. pointers 
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are always not null); and develops a number of practical extensions to adapt the 

algorithm to real-world scenarios (e.g. some pointers may be null). 

•	 It avoids complex, expensive points-to analysis for void pointer handling (e.g., in 

KOP [30]) as it can generate distinct signatures without involving those pointers. The 

graph-based signatures can often be described by context-free-grammars such that 

the scanners can be automatically generated to recognize data structure instances. 

•	 The graph-based signatures can often be applied at any memory address x, and end 

users only need to perform pattern matching starting at x using the scanner for data 

structure T . This brute force scanning avoids the construction of (and dependence 

on) a global memory graph starting from the global variables and stack variables 

of a program/OS which is different from memory graph-based approaches such as 

KOP [30]. 

2.3 DIMSUM 

As we have discussed, there are dead data structure instances in the memory such as 

the deallocated objects or those belonging to a dead process. It is necessary to have tech­

niques to identify these data structure instances. However, the existing solutions critically 

depend on memory mapping information. For example, KOP [30], REWARDS [59] and 

SigGraph [31] all require that the pointers between data structures be resolvable (and thus 

trackable) in the memory image. KOP and REWARDS further require that each target data 

structure instance be reachable (via pointers) from global variables or variables on stack 

frames. 

Unfortunately, such memory mapping information is not always available. Yet it is 

desirable for a computer forensics investigator to have the capability of uncovering mean­

ingful forensics information from a set of memory pages without memory mapping infor­

mation. For instance, imagine a cyber crime suspect runs and then terminates an application 

(e.g., a web browser), and even cleans up the privacy/history data in the disk in order not 

to leave any evidence. At that moment, however, some of the memory pages previously 
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belonging to the terminated application process may still exist for a non-trivial period of 

time – with intact content but without the corresponding page table or system symbol 

table. While these “dead” memory pages may contain data of forensic interest, existing 

memory mapping-based forensics techniques (e.g., [30,31,59]) will not be able to uncover 

them because, without memory mapping information, they will not be able to resolve and 

navigate through pointers in the dead pages. 

In addition to the above scenario of “dead pages left by a terminated process,” there 

are other computer forensics scenarios that require analyzing a partial memory image 

without memory mapping information. For example, after a sudden power-off, a subset 

of the memory pages belonging to a running process may still exist in the disk due to 

page swapping. But the memory mapping information maintained by the OS kernel for 

that process is lost. As another possibility, due to the fact that most existing memory 

forensics techniques depend on memory mapping information and on the completeness of 

a process’ memory image, counter-measures may be taken by adversaries to inflict digital 

or even physical damages to the memory image of a computer. For example, it has been 

shown that advanced kernel-level attacks can be launched to disable the recovery of critical 

kernel objects from a memory image [31]. And some of those kernel objects contain 

memory mapping information for application processes. We envision that similar attacks 

can destroy the mapping information for application processes, disabling most existing 

techniques. 

Therefore, we developed a new system, called DIMSUM, which is capable of uncov­

ering semantic data instances of forensics interest from a set of memory pages without 

memory mapping information. In particular, DIMSUM remains effective even with an 

incomplete subset of memory pages of an application process. As such, DIMSUM differs 

from, and complements most existing approaches to memory forensics (e.g., [25, 30–32, 

41, 42, 52, 53, 55, 59, 60]), where the primary focus is on extracting semantic information 

from live memory (either on-line or off-line). Many of these efforts (e.g., [25,30,31,41,53, 

55, 59, 60]) rely on certain memory mapping information – such as the system symbol and 

page table – to search for variables and data structure instances in the memory that can be 
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reached directly or indirectly (e.g., by following the pointers between variables such as in 

KOP [30] and SigGraph [31]). 

We also note that some of the existing approaches (e.g., [25, 32, 41, 42]) also leverage 

value-invariant signatures of data structures (e.g., “data structure field x having a special 

value or value range”). These techniques are effective if unique signatures can be generated 

for the subject data structures. Unfortunately, such a signature may not always exist for a 

data structure. 

DIMSUM is based on probabilistic inference, which is widely used in computer vi­

sion (e.g., [61]), specification extraction (e.g., [62–64]), and software debugging (e.g., 

[62, 63, 65–68]). Given a set of memory pages and the definitions of the data structures 

of interest, DIMSUM is able to identify instances of the data structures in those pages. 

More specifically, by leveraging a probabilistic inference engine, our system automatically 

builds graphical models from the data structure specification and input page contents, and 

translates them into factor graphs [67], on which probabilistic inference will be carried out 

to extract target data structure instances quantified with probabilities. 

The salient features of DIMSUM are as follows: (1) It recognizes data structure in­

stances of interest with high confidence. Compared to brute force pattern matching meth­

ods, it consistently achieves a lower false positive rate. (2) It is robust in highly hostile 

memory forensics scenarios, where there is no memory mapping information and only 

an incomplete subset of memory pages are available. We evaluated DIMSUM using a 

number of real-world applications on Linux platform, and consistently demonstrated its 

effectiveness. 
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3. REWARDS: AUTOMATIC REVERSE ENGINEERING OF DATA 

STRUCTURE DEFINITIONS 

In this chapter, we present the detailed design of the first component of our framework, 

REWARDS, which is a dynamic analysis based scheme to automatically reveal program 

data structures from binaries. 

3.1 Overview 

REWARDS aims to infer the data structure definitions defined in the binary code. It 

is an information flow based approach. Basically, for each memory location accessed by 

the program, it is tagged with a timestamped type attribute. At runtime, this attribute is 

propagated to other memory addresses and registers that share the same type in a forward 

fashion by following the program’s runtime data flow. During the propagation, a variable’s 

type gets resolved if it is involved in a type-revealing execution point. 

3.1.1 Key Techniques 

Besides leveraging the forward type propagation technique, to expand the coverage of 

program data structures, REWARDS involves the following key techniques. 

•	 An on-line backward type resolution procedure where the types of some previously 

accessed variables are recursively resolved starting from a type sink. Since many 

variables are dynamically created and de-allocated at runtime, and the same mem­

ory location may be re-used by different variables, it is complicated to track and 

resolve variable types based on memory locations alone. Therefore, we constrain 

the resolution process by the timestamps of relevant memory locations such that 
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variables sharing the same memory location in different execution phases can be 

disambiguated. 

•	 An off-line resolution procedure that complements the on-line procedure. Some 

variables cannot be resolved during their lifetime by our on-line algorithm. However, 

they may be resolved later when other variables having the same type are resolved. 

Hence, we propose an off-line backward resolution procedure to resolve the types of 

some “dead” variables. 

•	 A method for typed variable abstraction that maps multiple typed variable instances 

to the same static abstraction. For example, all N nodes in a linked list actually share 

the same type, instead of having N distinct types. 

•	 A method that reconstructs the structural and semantic view of in-memory data, 

driven by the derived type definitions. Once a program’s data structures are identified, 

it is still not clear exactly how the data structures would be laid out in memory, which 

would be a useful piece of knowledge in many application scenarios such as memory 

forensics. Our method creates an “organization chart” that illustrates the hierarchical 

layout of those data structures. 

3.1.2 A Working Example 

To illustrate how REWARDS works, we use a simple program compiled from the source 

code shown in Figure 3.1(a). According to the code snippet, the program has a global 

variable test (line 1-4) that consists of an int and a char array. It contains a function 

foo (line 6-10) that calls my getpid and strcpy to initialize the global variable. The 

full disassembled code of the example is shown in Figure 3.1(b) (a dotted line indicates a 

“NOP” instruction). The address mapping of code and data is shown in Figure 3.1(c). 

When foo is called during execution, it first saves ebp and then allocates 0x18 

bytes of memory for the local variables (line 8 in Figure 3.1(b)), and then initializes 

one local variable (at address 0xfffffffc(%ebp)=ebp-4) with an immediate value 
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1 struct {
 1 extern foo
 

2 unsigned int pid;
 2 section .text
 

3 char data[16];
 3 global _start
 

4 }test;
 4
 

5
 5 _start:
 

6 void foo(){
 6 call foo
 

7 char *p="hello world";
 7 mov eax,1
 

8 test.pid=my_getpid();
 8 mov ebx,0
 

9 strcpy(test.data,p);
 9 int 80h
 

10 }
 

1 80480a0: e8 0f 00 00 00 call 0x80480b4
 

2 80480a5: b8 01 00 00 00 mov $0x1,%eax
 

3 80480aa: bb 00 00 00 00 mov $0x0,%ebx
 

4 80480af: cd 80 int $0x80
 

5 ...
 

6 80480b4: 55 push %ebp
 

7 80480b5: 89 e5 mov %esp,%ebp
 

8 80480b7: 83 ec 18 sub $0x18,%esp
 

9 80480ba: c7 45 fc 18 81 04 08 movl $0x8048118,0xfffffffc(%ebp)
 

10 80480c1: e8 4a 00 00 00 call 0x8048110
 

11 80480c6: a3 24 91 04 08 mov %eax,0x8049124
 

(a) Source code of function foo and the _start assembly code 12 80480cb: 8b 45 fc mov 0xfffffffc(%ebp),%eax 

13 80480ce: 89 44 24 04 mov %eax,0x4(%esp) 

14 80480d2: c7 04 24 28 91 04 08 movl $0x8049128,(%esp) 

[Nr] Name Type Addr Off Size 15 80480d9: e8 02 00 00 00 call 0x80480e0
 

... 16 80480de: c9 leave
 

[ 1] .text PROGBITS 080480a0 0000a0 000078	 17 80480df: c3 ret
 

[ 2] .rodata PROGBITS 08048118 000118 00000c	 18 80480e0: 55 push %ebp
 

[ 3] .bss NOBITS 08049124 000124 000014	 19 80480e1: 89 e5 mov %esp,%ebp
 

...	 20 80480e3: 53 push %ebx
 

21 80480e4: 8b 5d 08 mov 0x8(%ebp),%ebx
 

22 80480e7: 8b 55 0c mov 0xc(%ebp),%edx
 

23 80480ea: 89 d8 mov %ebx,%eax
 
(c) Section map of the example binary 

rodata_0x08048118{ fun_0x08048110{ 
+00: char[12] +00: ret_addr_t 
} } 
bss_0x08049124{ 

+00: pid_t, fun_0x080480e0{ 
+04: char[12], -08: unused[4], 
+16: unused[4] -04: stack_frame_t, 
} +00: ret_addr_t, 
fun_0x080480b4{ +04: char*, 
-28: unused[20], +08: char* 
-08: char *, } 
-04: stack_frame_t, 

+00: ret_addr_t 

} 

24 80480ec: 29 d0 sub %edx,%eax
 

25 80480ee: 8d 48 ff lea 0xffffffff(%eax),%ecx
 

26 80480f1: 0f b6 02 movzbl (%edx),%eax
 

27 80480f4: 83 c2 01 add $0x1,%edx
 

28 80480f7: 84 c0 test %al,%al
 

29 80480f9: 88 04 0a mov %al,(%edx,%ecx,1)
 

30 80480fc: 75 f3 jne 0x80480f1
 

31 80480fe: 89 d8 mov %ebx,%eax
 

32 8048100: 5b pop %ebx
 

33 8048101: 5d pop %ebp
 

34 8048102: c3 ret
 

35 ...
 

36 8048110: b8 14 00 00 00 mov $0x14,%eax
 

37 8048115: cd 80 int $0x80
 

38 8048117: c3 ret
 

(d) Output of REWARDS	 (b) Disassembly code of the example binary 

Fig. 3.1.: An example showing how REWARDS works 

0x8048118 (line 9). Since 0x8048118 is in the address range of the .rodata section 

(it is actually the starting address of string “hello world”), ebp-4 can be typed as a 

pointer, based on the heuristics that instruction executions using similar immediate values 

within a code or data section are considered type sinks. Note that the type of the pointer 

is not yet known. At line 10, foo calls 0x8048110. Inside the body of the function 

invocation (lines 36-38), our algorithm detects a getpid system call (a type sink) with 

eax being 0x14 at line 36. The return value of the function call is resolved as pid t type 

(i.e., register eax at line 11 is typed pid t). When eax is copied to address 0x8049124 

(a global variable in .bss section as shown in Figure 3.1(c)), the algorithm further resolves 

0x8049124 as pid t. Before the function call 0x80480e0 at line 15 (strcpy), the 

parameters are initialized in lines 12-14. As ebp-4 has been typed as a pointer at line 9, 

the data flow in lines 12 and 13 dictates that location esp+4 at line 13 is a pointer as well. 

At line 14, as 0x8049128 is in the global variable section and of a known type, location 

esp has an unknown pointer type. At line 15, upon the call to strcpy (a type sink), 
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both esp and esp+4 are resolved to char*. Through a backward transitive resolution, 

0x8049128 is resolved as char, ebp-4 as char*, and 0x8048118 as char. Also at 

line 26, inside the function body of strcpy, the instruction “movzbl (%edx),%eax” 

can be used as another type sink as it moves between the char variables. 

When the program finishes, we resolve all data types (including function arguments, 

and those implicit variables such as return address and stack frame pointer) as shown 

in Figure 3.1(d). The derived types for variables in .rodata, .bss and functions are 

presented in the figure. Each function is denoted by its entry address. fun 0x080480b4, 

fun 0x08048110, and fun 0x080480e0 denote foo, my getpid, and strcpy, 

respectively. The number before each derived type denotes the offset. The variables are 

listed in increasing order of their addresses. Type stack frame t indicates a frame 

pointer stored at that location. Type ret addr t means that the location holds a return 

address. Such semantic information is useful in applications such as vulnerability fuzz. 

Locations that are not accessed during execution are annotated with the unused type. 

In fun 0x080480e0, the two char* below the ret addr t represent the two actual 

arguments of strcpy. 

3.2 Detailed Design 

Now we describe the design of REWARDS. We first identify the type sinks used in 

REWARDS and then present the on-line type propagation and resolution algorithm, which 

will be enhanced by an off-line procedure that recovers more variable types not reported by 

the on-line algorithm. Finally, we present a method to construct a typed hierarchical view 

of memory layout. 

3.2.1 Type Sinks 

A type sink is an execution point of a program where the types (including semantics) of 

one or more variables can be directly resolved. In REWARDS, we identify three categories 

of type sinks: (1) system calls, (2) standard library calls, and (3) type-revealing instructions. 
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System calls. Most programs request OS services via system calls. Since system call 

conventions and semantics are well-defined, the types of arguments of a system call are 

known from the system call’s specification. By monitoring system call invocations and 

returns, REWARDS can determine the types of parameters and return value of each system 

call at runtime. For example, in Linux, based on the system call number in register eax, 

REWARDS will be able to type the parameter-passing registers (i.e., ebx, ecx, edx, 

esi, edi, and ebp, if they are used for passing the parameters). From this type sink, 

REWARDS will further type those variables that are determined to have the same type 

as the parameter passing registers. Similarly, when a system call returns, REWARDS 

will type register eax and, from there, those having the same type as eax. In our type 

propagation and resolution algorithm (Section 3.2.2), a type sink will lead to the recursive 

type resolution of relevant variables accessed before and after the type sink. 

Standard library calls. With well-defined API, standard library calls are another category 

of type sink. For example, the two arguments of strcpy must both be of the char* type. 

By intercepting library function calls and returns, REWARDS will type the registers and 

memory variables involved. Standard library calls tend to provide richer type information 

than system calls. For example, Linux-2.6.15 has 289 system calls, whereas libc.so.6 

contains 2,016 functions (note some library calls wrap system calls). 

Type-revealing instructions. A number of machine instructions that require operands 

of specific types can serve as type sinks. Examples in x86 are as follows: (1) String 

instructions perform byte-string operations, such as moving and storing (MOVS/B/D/W, 

STOS/B/D/W), loading (LOADS/B/D/W), comparison (CMPS/B/D/W), and scanning 

(SCAS/B/D/W). Note that MOVZBL is also used in string movement. (2) Floating-point 

instructions operate on floating-point, integer, and binary coded decimal operands (e.g. 

FADD, FABS, and FST). (3) Pointer-related instructions reveal pointers. For a MOV in­

struction with an indirect memory access operand (e.g., MOV (%edx), %ebx or MOV 

[mem], %eax), the value held in the source operand must be a pointer. Meanwhile, if 

the target address is within the range of data sections, such as .stack, .heap, .data, 

.bss or .rodata, the pointer must be a data pointer. If it is in the range of .text 

http:Linux-2.6.15
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(including library code), the pointer must be a function pointer. Note that the concrete type 

of such a pointer will be resolved through other constraints. 

3.2.2 Online Type Propagation and Resolution Algorithm 

Given a binary program, our algorithm reveals variable types, including both syntactic 

types (e.g., int and char) and semantics (e.g., return address), by propagating and 

resolving the type information along the data flow during program execution. Each type 

sink encountered leads to both direct and transitive type resolution of variables. More 

specifically, at the binary level, variables exist in either memory locations or registers 

without their symbolic names. Hence, the goal of our algorithm is to type these memory 

addresses and registers. We attach three shadow variables – as the type attribute – to each 

memory address at the byte granularity (registers are treated similarly): (1) constraint set is 

a set of other memory addresses that should have the same type as this address; (2) type set 

stores the set of resolved types of the address1, including both syntactic and semantic types; 

(3) timestamp records the birth time of the variable currently in this address. For example, 

the timestamp of a stack variable is the time when the stack frame is allocated. Timestamps 

are needed because the same memory address may be reused by multiple variables (e.g., 

the same stack memory being reused by stack frames of different method invocations). 

More precisely, a variable instance should be uniquely identified by a tuple <address, 

timestamp>. These shadow variables are updated during program execution, depending 

on the semantics of executed instructions. 

The on-line type propagation and resolution algorithm, Algorithm 1 on the previous 

page, takes appropriate actions to resolve types on the fly according to the instruction being 

executed. For a memory address or a register v, its constraint set is denoted as Sv, which is 

a set of <address, timestamp> tuples, and each representing a variable instance that should 

have the same type as v; its type set Tv represents the resolved types for v; and the birth 

time of the current variable instance is denoted as tsv. 

1We need a set to store the resolved types because one variable may have multiple compatible types. 
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Algorithm 1 On-line Type Propagation and Resolution 
1: /* Sv : constraint set for memory cell (or register) v; Tv : type set of v; tsv : time stamp of v; MOV(v,w): moving v to w; 

BIN OP(v,w,d): a binary operation that computes d from v and w; Get Sink Type(v,i): retrieving the type of argument/operand v 

from sink i; ALLOC(v,n): allocating a memory region starting from v with size n – the memory region may be a stack frame or a 
heap struct; FREE(v,n): freeing a memory region – this may be caused by eliminating a stack frame or de-allocating a heap struct*/ 

2: Instrument(i){ 
3: case i is a Type Sink: 
4: for each operand v 

5: T ← Get Sink Type(v, i) 
6: Backward Resolve (v, T ) 
7: case i has indirect memory access operand o 

8: To ← To ∪ {pointer type t} 
9: case i is MOV(v, w): 
10: if w is a register 
11: Sw ← Sv 

12: Tw ← Tv 

13: else 
14: Unify(v , w) 
15: case i is BIN OP(v, w, d): 
16: if pointer type t ∈ Tv 

17: Unify(d, v ) 
18: Backward Resolve (w, {int, pointer index t}) 
19: else 
20: Unify3(d, v , w) 
21: case i is ALLOC(v, n): 
22: for t=0 to n − 1 
23: tsv+t ← current timestamp 
24: Sv+t ← φ 

25: Tv+t ← φ 

26: case i is FREE(v, n): 
27: for t=0 to n − 1 
28: a ← v+t 

29: if (Ta) log (a, tsa, Ta) 
30: log (a, tsa, Sa) 
31: } 
32: Backward Resolve(v,T ){ 
33: for < w, t > ∈ Sv 

34: if (T �⊂ Tw and t ≡ tsw ) Backward Resolve(w,T -Tw ) 
35: Tv ← Tv ∪ T 

36: } 
37: Unify(v ,w){ 
38: Backward Resolve(v, Tw -Tv ) 
39: Backward Resolve(w, Tv -Tw) 
40: Sv ← Sv ∪ {< w, tsw >}; Sw ← Sw ∪ {< v, tsv >} 
41: } 
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1.	 If the current execution point i is a type sink (line 3). The arguments/operands/return 

values of the sink will be directly typed according to the sink’s definition (Get Sink 

Type() on line 5)2. Type resolution is then triggered by calling the recursive method 

Backward Resolve(). The method recursively types all variables that should have 

the same type (lines 32-36): It tests if each variable w in the constraint set of v has 

been resolved as type T of v. If not, it recursively calls itself to type all the variables 

that should have the same type as w. Note that at line 34, it checks if the current birth 

timestamp of w is equal to the one stored in the constraint set to ensure the memory 

has not been re-used by a different variable. If w is re-used (t � tsw= ), the algorithm 

does not resolve the current w. Instead, the resolution is done by a different off-line 

procedure (Section 3.2.3). Since variable types are resolved according to constraints 

derived from data flows in the past, we call this step backward type resolution. 

2.	 If i contains an indirect memory access operand o (line 7), either through registers 

(e.g., using (%eax) to access the address designated by eax) or memory (e.g., using 

[mem] to indirectly access the memory pointed to by mem), then the corresponding 

operand will have a pointer type tag (pointer type t) as a new element in To. 

3.	 If i is a move instruction (line 9), there are two cases to consider. In particular, if the 

destination operand w is a register, then we just move the properties (i.e., the Sv and 

Tv) of the source operand to the destination (i.e., the register); otherwise, we need 

to unify the types of the source and destination operands because the destination is 

now a memory location that may have already contained some resolved types. The 

intuition is that the source operand v should have the same type as the destination 

operand w if the destination is a memory address. Hence, the algorithm calls method 

Unify() to unify the types of the two. In Unify() (lines 37-41), the algorithm first 

unions the two type sets by performing backward resolution at lines 38 and 39. 

Intuitively, the call at line 38 means that if there are any new types in Tw that are 

not in Tv (i.e. Tw -Tv), those new types need to be propagated to v and transitively 

2The sink’s definition also reveals the semantics of some arguments/operands, e.g., a PID. 
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to all variables that share the same type as v, mandated by v’s constraint set. Such 

unification is not performed if the w is a register to avoid over-aggregation. 

4.	 If i is a binary operation, the algorithm first tests if an operand has been identified as 

a pointer. If so, it must be a pointer arithmetic operation, the destination must have 

the same type as the pointer operand and the other operand must be a pointer index 

– denoted by a semantic type pointer index t (line 18). The semantic type is 

useful in vulnerability fuzz to overflow buffers. If i is not related to pointers, the three 

operands shall have the same type. The method Unify3() unifies three variables. It 

is very similar to Unify() and hence not shown. Note that in cases where the binary 

operation implicitly casts the type of some operand (e.g., an addition of a float and an 

integer), the unification induces over-approximation (e.g., associating the float point 

type with the integer variable). In practice, we consider such cases reasonable and 

allow multiple types for one variable as long as they are compatible. 

5.	 If i allocates a memory region (line 21), either a stack frame or a heap struct, the 

algorithm updates the birth time stamps of all the bytes in the region and resets the 

memory constraint set (Sv) and type set (Tv) to empty. By doing so, we prevent the 

type information of the old variable instance from interfering with that of the new 

instance at the same address. 

6.	 If i frees a memory region (line 26), the algorithm traverses each byte in the region 

and prints out the type information. In particular, if the type set is not empty, it is 

emitted. Otherwise, the constraint set is emitted. Later, the emitted constraints will 

be used in the off-line procedure (Section 3.2.3) to resolve more variables. 

Example. Table 3.1 presents an example of executing our algorithm. The first column 

shows the instruction trace with the numbers denoting timestamps. The other columns 

show the type sets and the constraint sets after each instruction execution for three sample 

variables, namely, the global variable g1 and two local variables l1 and l2. For brevity, 

we abstract the calling sequence of strcpy to a strcpy instruction. After the execution 
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enters method M at timestamp 10, the local variables are allocated and hence both l1 and l2 

have the birth time of 10. The global variable g1 has the birth time of 0. After the first mov 

instruction, the type sets of g1 and l1 are unified. Since neither was typed, the unified type 

set remains empty. Moreover, l1, together with its birth time 10, is added to the constraint 

set of g1 and vice versa, denoting they should have the same type. Similar actions are taken 

after the second mov instruction. Here, the constraint set of l1 has both g1 and l2. The 

strcpy invocation is a type sink and g1 must be of type char*, the algorithm performs 

the backward resolution by calling Backward Resolve(). In particular, the variable in Sg1, 

i.e. l1, is typed to char*. Note that the timestamp 10 matches tsl1, indicating the same 

variable is still alive. Transitively, the variables in Sl1, i.e. g1 and l2, are resolved to the 

same type. Note that if the backward resolution was not conducted, we would not be able 

to resolve the type of l2 because when the move from l1 to l2 (timestamp 12) occurred, l1 

was not typed and hence l2 was not typed. 

Table 3.1: An example of running the online algorithm. Variable g1 is a global, l1 and l2 
are locals. 

Instruction Tg1 Sg1 tsg1 Tl1 Sl1 tsl1 Tl2 Sl2 tsl2 

10 enter M φ φ 0 φ φ 10 φ φ 10 
11 mov g1, l1 φ {<l1,10>} 0 φ {<g1,0>} 10 φ φ 10 
12 mov l1, l2 φ {<l1,10>} 0 φ {<g1,0>,<l2,10>} 10 φ {<l1,10>} 10 

... ... ... ... ... ... ... ... ... ... 
100 strcpy(g1,) {char*} {<l1,10>} 0 {char*} {<g1,0>,<l2,10>} 10 {char*} {<l1,10>} 10 

Table 3.2: An example of running the off-line type resolution procedure. The execution 
before timestamp 12 is the same as Table 3.1. Method N reuses l1 and l2 

Instruction Tg1 Sg1 tsg1 Tl1 Sl1 tsl1 Tl2 Sl2 tsl2 

... ... ... ... ... ... ... ... ... ... 
12 mov l1, l2 φ {<l1,10>} 0 φ {<g1,0>,<l2,10>} 10 φ {<l1,10>} 10 

13 Exit M φ {<l1,10>} 0 φ {<g1,0>,<l2,10>} 10 φ {<l1,10>} 10 
... ... ... ... ... ... ... ... ... ... 

99 Enter N φ {<l1,10>} 0 φ φ 99 φ φ 99 
100 strcpy(g1,..) {char*} {<l1,10>} 0 φ φ 99 φ φ 99 
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3.2.3 Off-line Type Resolution 

Most variables accessed during the binary’s execution can be resolved by our online 

algorithm. However, there are still some cases in which, when a memory variable gets 

freed (and its information gets emitted to the log file), its type is still unresolved. We realize 

that there may be enough information from later phases of the execution to resolve those 

variables. We propose an off-line procedure to be performed after the program execution 

terminates. It is essentially an off-line version of the Backward Resolve() method in 

Algorithm 1. The difference is that it has to traverse the log file to perform the recursive 

resolution. 

Consider the example in Table 3.2. It shares the same execution as the example in 

Table 3.1 before timestamp 13. At time instance 13, the execution returns from M , de-

allocating the local variables l1 and l2. According to the online algorithm, their constraint 

sets are emitted to a log file since neither is typed at that point. Later at timestamp 99, 

another method N is called. Assume it reuses l1 and l2, namely, N allocates its local 

variables at the locations of l1 and l2. The birth time of l1 and l2 becomes 99. Their type 

sets and constraint sets are reset. When the sink is encountered at 100, l1 and l2 are not 

typed as their current birth timestamp is 99, not 10 as in Sg1, indicating they are re-used by 

other variables. Fortunately, the variable represented by < l1, 10 > can be found in the log 

and hence resolved. Transitively, < l2, 10 > can be resolved as well. 

3.2.4 Typed Variable Abstraction 

Our algorithm is able to annotate memory locations with syntax and semantics. How­

ever, multiple variables may occupy the same memory location at different times and a 

static variable may have multiple instances at runtime3. Hence it is important to organize 

the inferred type information according to abstract, location-independent variables other 

than specific memory locations. In particular, primitive global variables are represented by 

3A local variable has the same life time of a method invocation, and a method can be invoked multiple times, 
giving rise to multiple instances. 
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their offsets to the base of the global sections (e.g., .data and .bss sections). Stack 

variables are abstracted by the offsets from their residence activation record, which is 

represented by the function name (as shown in Figure 3.1). 

For heap variables, we use the execution context, i.e., the PC (instruction address) of 

the allocation point of a heap structure plus the call stack at that point, as the abstraction of 

the structure. The intuition is that the heap structure instances allocated from the same PC 

in the same call stack should have the same type. The fields of the structure are represented 

by the allocation site and field offsets. As an allocated heap region may be an array of 

a data structure, we use the recursion detection heuristics in [19] to detect the array size. 

Specifically, the array size is approximated by the maximum number of accesses by the 

same PC to unique memory locations in the allocated region. The intuition is that array 

elements are often accessed through a loop in the source code and the same instruction 

inside the loop body often accesses the same field across all array elements. Finally, if 

heap structures allocated from different sites have the same field types, we will heuristically 

cluster these heap structures into one abstraction. 

3.2.5 Constructing Hierarchical View of In-Memory Data 

An important feature of REWARDS is to construct a hierarchical view of a memory 

snapshot, in which the primitive syntax of individual memory locations, as well as their 

semantics and the integrated hierarchical structure are visually represented. This is highly 

desirable in applications like memory forensics as interesting queries (e.g., “find all 

IP addresses”), can be easily answered by traversing the view. So far, REWARDS is 

able to reverse engineer the syntax and semantics of data structures, represented by their 

abstractions. Next, we present how we leverage such information to construct a hierarchical 

view. 

Our method works as follows. It first types the top level global variables. In partic­

ular, a root node is created to represent a global section. Individual global variables are 

represented as children of the root. The edges are annotated with offset, size, primitive 
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type, and semantics of the corresponding children. If a variable is a pointer, the algorithm 

further recursively constructs the sub-view of the data structure being pointed to, leveraging 

the derived type of the pointer. For instance, assume a global pointer p is of type T*, our 

method creates a node representing the region pointed to by p. The region is typed based on 

the reverse engineered definition of T. The recursive process terminates when none of the 

fields of a data structure is a pointer. The stack is similarly handled: a root node is created 

to represent each activation record. Local variables of the record are denoted as children 

nodes. Recursive construction is performed until all memory locations through pointers 

are traversed. Note that all live heap structures can be reached (transitively) through a 

global pointer or a stack pointer. Hence, the above two steps essentially also construct the 

structural views of live heap data. 

Our method can also type some of the unreachable memory regions, which represent 

“dead” data structures (e.g., activation records of previous method invocations whose space 

has been freed but not reused.) Such dead data is as important as live data as they disclose 

what had happened in the past. In particular, our method scans the stack beyond the current 

activation record to identify any pointers to the code section, which often denote return 

addresses of method invocations. With a return address, the function invocation can be 

identified and we can follow the aforementioned steps to type the activation record. 

3.3 Implementation 

We implemented REWARDS using PIN-2.6 [69], with 12.1K lines (LOC) of C code 

and 1.2K LOC of Python code. REWARDS is able to reveal variable semantics. In 

our implementation, variable semantics are represented as special semantic tags comple­

mentary to regular type tags such as int and char. Both semantic tags and regular 

tags are stored in the variable’s type set. Tags are enumerated to save space. The vast 

diversity of program semantics makes it infeasible to consider them all. Since we are 

mainly interested in forensics and security applications, we focus on the following semantic 

tags: (1) file system related (e.g., FILE pointer, file descriptor, file name, file status); (2) 
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network communication related (e.g., socket descriptor, IP address, port, receiving and 

sending buffer, host info, msghdr); and (3) operating systems related (e.g., PID, TID, UID, 

system time, system name, and device info). 

Meanwhile, we introduce some of our own semantic tags, such as ret addr t indi­

cating that a memory location is holding a return address, stack frame t indicating that 

a memory location is holding a stack frame pointer, format string t indicating that 

a string is used in format string argument, and malloc arg t indicating an argument 

of malloc function (similarly, calloc arg t for calloc function, etc.). Note that 

these tags reflect the properties of variables at those specific locations and hence do not 

participate in the type information propagation. They can bring important benefits to our 

targeted applications. 

REWARDS needs to know the program’s address space mapping, which will be used to 

locate the addresses of global variables and detect pointer types. In particular, REWARDS 

checks the target address range when determining if a pointer is a function pointer or a data 

pointer. Thus, when a binary starts executing with REWARDS, we first extract the coarse-

grained address mapping from the /proc/pid/maps file, which defines the ranges of 

code and data sections including those from libraries, and the ranges of stack and heap (at 

that time). Then for each detailed address mapping such as .data, .bss and .rodata 

for all loaded files (including libraries), we extract the mapping using the API provided by 

PIN when the corresponding image file is loaded. 

3.4 Evaluation 

We have performed two sets of experiments to evaluate REWARDS: one is to evaluate 

its correctness, and the other is to evaluate its time and space efficiency. All the experi­

ments were conducted on a machine with two 2.13Ghz Pentium processors and 2GB RAM 

running Linux kernel 2.6.15. 

We select 10 widely used utility programs from the following packages: procps-3.2.6 

(with 19.1K LOC and containing command ps), iputils-20020927 (with 10.8K LOC and 
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containing command ping), net-tools-1.60 (with 16.8K LOC and containing netstat), 

and coreutils-5.93 (with 117.5K LOC and containing the remaining test commands such as 

ls, pwd, and date). The reason for selecting these programs is that they contain many 

data structures related to the operating system and network communications. We run these 

utilities without command line option except ping, which is run with a localhost and a 

packet count 4 option. 

3.4.1 Effectiveness 

To evaluate the reverse engineering accuracy of REWARDS, we compare the derived 

data structure types with those declared in the program source code. To acquire the or­

acle information, we recompile the programs with debugging information, and then use 

libdwarf [70] to extract type information from the binaries. The libdwarf library 

is capable of presenting the stack and global variable mappings after compilation. For in­

stance, global variables scattering in various places in the source code will be organized into 

a few data sections. The library allows us see the organization. In particular, libdwarf 

extracts stack variables by presenting the mapping from their offsets in the stack frame and 

the corresponding types. For global variables, the output by libdwarf is program virtual 

addresses and their types. Such information allows us to conduct direct and automated 

comparison. Note that we only verify the types in .data, .bss, and .rodata sections, 

other global data in sections such as .got, .ctors are not verified. For heap variables, 

since we use the execution context at allocation sites as the abstract representation, given 

an allocation context, we can locate it in the disassembled binary, and then correlate it with 

program source code to identify the heap data structure definition, and finally compare 

it with REWARDS’s output. Although REWARDS extracts variable types for the entire 

program address space (including libraries), we only compare the results for user-level 

code. 

The result for stack variables is presented in Figure 3.2(a). The figure presents the 

percentage of (1) functions that are actually executed, (2) data structures that are used in the 

http:coreutils-5.93
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executed functions (over all structures declared in those functions), and (3) data structures 

whose types are accurately recovered by REWARDS (over those in (2)). At runtime, it is 

often the case that even though a buffer is defined in the source code with size n, only part 

of the n bytes are used. Consequently, only those used are typed (the others are considered 

unused). We consider the buffer is correctly typed if its bytes are either correctly typed or 

unused. From the figure, we can observe that, due to the nature of dynamic analysis, 

not all functions or data structures in a function are exercised and hence amenable to 

REWARDS. More importantly, REWARDS achieves an average of 97% accuracy (among 

these benchmarks) for the data structures that get exercised. For heap variables, the result 

is presented in Figure 3.2(b), the bars are similarly defined. REWARDS’s output perfectly 

matches the types in the original definitions when they are exercised. Note some of the 

benchmarks are missing in Figure 3.2(b) (e.g., date) because their executions do not 

allocate any user-level heap structures. The result for global variables is presented in Figure 

3.2(c), and REWARDS achieves over 85% accuracy. 

To explain why REWARDS cannot achieve 100% accuracy, we carefully examined the 

benchmarks and identified the following three reasons: 

•	 Hierarchy loss. If a hierarchical structure becomes flat after compilation, we are not 

able to identify its hierarchy. This happens to structures declared as global variables 

or stack variables. And the binary never accesses such a variable using the base 

address plus a local offset. Instead, it directly uses a global offset (starting from the 

base address of the global data section or a stack frame). In other words, multiple 

composite structures are flattened into one large structure. In contrast, such flattening 

does not happen to heap structures. 

•	 Path-sensitive memory reuse. This often happens to stack variables. In particular, 

the compiler might assign different local variables declared in different program 

paths to the same memory address. As a result, the types of these variables are 

undesirably unified in our current design. A more thorough design would use a path-

sensitive local offset to denote a stack variable. 
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•	 Type cast. It is possible that a variable type is casted to another one. For example, 

a float type variable could be casted to an integer type. As such, we will observe 

different semantic use of one variable, and if this variable is propagated to others, 

we will over propagate the types. Currently, we do not have a sound solution to this 

problem, and we just conservatively propagate the types. 

Despite the imperfect accuracy, REWARDS still suits our targeted application scenar­

ios, i.e., memory forensics and vulnerability fuzzing. For example, although REWARDS 

outputs a flat layout for all global and stack variables, we can still conduct vulnerability 

fuzzing because the absolute offsets of these variables are sufficient; and we can still 

construct hierarchical views of memory images as pointer types can be obtained. 

3.4.2 Performance Overhead 

We also measured the time and space overhead of REWARDS. We compared it with (1) 

a standard memory trace tool, MemTrace (shipped along with PIN-2.6) and (2) the normal 

execution of the program, to evaluate the performance overhead. The result is shown in 

Figure 4.8. Note the normal execution data is nearly not visible in this figure because 

they are very small (roughly at the 0.01 second level). We can observe that REWARDS 

causes slow-down in the order of ten times compared with MemTrace, and in the order of 

thousands (or tens of thousands) times compared with the normal execution. 

For space overhead, we are interested in the space consumption by shadow type sets 

and constraint sets. Hence, we track the peak value of the shadow memory consumption. 

The result is shown in Figure 3.2(e). We can observe that the shadow memory consumption 

is around 10 Mbytes for these benchmarks. A special case is ping, which uses much less 

memory. The reason is that it has fewer function calls and memory allocations, which is 

also why it runs much faster than the other programs shown in Figure 4.8. 
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3.5 Summary 

In this chapter, we have presented REWARDS, a reverse engineering system that au­

tomatically reveals data structures in a binary based on dynamic execution. REWARDS 

involves an algorithm that performs data flow-based type attribute forward propagation 

and backward resolution. Driven by the type information derived, REWARDS is also 

capable of reconstructing the structural and semantic view of in-memory data layout. Our 

evaluation using a number of real-world programs indicates that REWARDS achieves over 

80% accuracy in revealing data structures accessed during an execution. 
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4. SIGGRAPH: DISCOVERING DATA STRUCTURE INSTANCES 

USING GRAPH-BASED SIGNATURES 

In this chapter, we present the design of SigGraph, the second component in our framework, 

which aims to discovering data structure instances by scanning memory with the corre­

sponding data structure signatures. To this end, it explores the points-to relation between 

data structures as signatures and enables the brute force scanning of memory. Brute force 

scanning requires effective, robust signatures of kernel data structures. Existing approaches 

often use the value invariants of certain fields as data structure signatures. However, they 

do not fully exploit the rich points-to relations between data structures. In our technique, a 

signature is a graph rooted at the subject data structure with edges reflecting the points-to 

relations with other data structures. 

We first formally define our problem in Section 4.1, then present the detailed techniques 

on how we generate such graph based signatures from Section 4.2 to Section 4.5, followed 

we present the evaluation result in Section 4.7. Finally we conclude in Section 4.8. 

Fig. 4.1.: A working example of kernel data structures and a graph-based data structure 
signature. The triangles indicate recursive definitions 
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4.1 Problem Statement 

As described in Chapter 2, the goal of SigGraph is to infer the relevant data structure 

instances given a memory dump. Basically, it exploits the inter-data structure points-to 

relations to generate non-isomorphic data structure signatures. To better understand the 

key idea behind SigGraph, let consider seven simplified Linux kernel data structures, four 

of which are shown in Figure 4.1(a)-(d). In particular, task struct(TS) contains 

four pointers to thread info(TI), mm struct(MS), linux binfmt(LB), and 

TS, respectively. TI has a pointer to TS whereas MS has two pointers: One points to 

vm area struct(VA) (not shown in the figure) and the other is a function pointer. LB 

has one pointer to module(MD). 

At runtime, if a pointer is not null, its target object should have the type of the pointer. 

Let ST (x) denote a boolean function that decides if the memory region starting at x is an 

instance of type T and let ∗x denote the value stored at x. Take task struct data 

structure as an example, we have the following rule, assuming all pointers are not null. 

STS(x) → STI(∗(x + 0)) ∧ SMS(∗(x + 4)) ∧ 
(4.1) 

SLB(∗(x + 8)) ∧ STS(∗(x + 12)) 

It means that if STS(x) is true, then the four pointer fields must point to regions with the 

corresponding types and hence the boolean functions regarding these fields must be true. 

Similarly, we have the following 

STI(x) → STS(∗(x + 0)) (4.2) 

SMS(x) → SVA(∗(x + 0)) ∧ SFP(∗(x + 4)) (4.3) 

SLB(x) → SMD(∗(x + 0)) (4.4) 

for thread info, mm struct, and linux binfmt, respectively. Substituting sym­

bols in rule (4.1) using rules (4.2), (4.3) and (4.4), we further have 

STS(x) → STS(∗(∗(x + 0) + 0)) ∧ SVA(∗(∗(x + 4) + 0))∧ 

SFP(∗(∗(x + 4) + 4)) ∧ SMD(∗(∗(x + 8) + 0))) (4.5) 

∧STS(∗(x + 12)) 
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The rule corresponds to the graph shown in Figure 4.1(e), where the nodes represent 

pointer fields with their shapes denoting pointer types; the edges represent the points-to 

relations with their weights indicating the pointers’ offsets; and the triangles represent 

recursive occurrences of the same pattern. It means that if the memory region starting 

at x is an instance of task struct, the layout of the region must follow the graph’s 

definition. Note that the inference of rule (4.5) is from left to right. However, we observe 

that the graph is so unique that the reverse inference (“bottom-up”) tends to be true. In other 

words, we can use the graph as the signature of task struct and perform the reverse 

inference as follows. 

STS(x) ← STS(∗(∗(x + 0) + 0)) ∧ SVA(∗(∗(x + 4) + 0))∧ 

SFP(∗(∗(x + 4) + 4)) ∧ SMD(∗(∗(x + 8) + 0))) (4.6) 

∧STS(∗(x + 12)) 

Different from the global memory mapping techniques (e.g., [25,30,52,53,55,56,58]) 

SigGraph aims at deriving unique signatures for individual data structures for brute force 

kernel memory scanning. Hence we face the following new challenges: 

•	 Avoiding signature isomorphism Given a static data structure definition, we aim to 

construct its points-to graph as shown in the task struct example. However, it is 

possible that two distinct data structures may lead to isomorphic graphs that cannot 

be used to distinguish instances of the two data structures. Hence our new challenge 

is to identify the sufficient and necessary conditions to avoid signature isomorphism 

between data structures. 

•	 Generating signatures Meanwhile it is possible that one data structure may have 

multiple unique signatures, depending on how (especially, how deep) the points-

to edges are traversed when generating a signature. In particular, among the valid 

signatures of a data structure, finding the minimal signature that has the smallest 

size while retaining uniqueness (relative to other data structures) is a combinatorial 

optimization problem. Finally, it is desirable to automatically generate a scanner for 

each signature that will perform the corresponding data structure instance recognition 

on a memory image. 
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Fig. 4.2.: SigGraph system overview 

•	 Improving recognition accuracy Although statically a data structure may have a 

unique signature graph, at runtime, pointers may be nullwhereas non-pointer fields 

may have pointer-like values. As a result the data structure instances in a memory 

image may not fully match the signature. We need to handle such issues to improve 

recognition accuracy. 

An overview of the SigGraph is shown in Figure 4.2. It consists of four key compo­

nents: (1) data structure definition extractor, (2) dynamic profiler, (3) signature generator, 

and (4) scanner generator. To generate signatures, SigGraph first extracts data structure 

definitions from the OS source code. This is done automatically through a compiler pass 

(Section 4.2). To handle practical issues such as null pointers and void* pointers, 

the profiler identifies problematic pointer fields via dynamic analysis (Section 4.5). The 

signature generator checks if non-isomorphic signatures exist for the data structures and 

if so, generates such signatures (Section 4.3). The generated signatures are then automati­

cally converted to the corresponding kernel memory scanners (Section 4.4), which are the 

“product” shipped to users. A user will simply run these scanners to perform brute-force 

scanning over a kernel memory image (either memory dump or live memory), with the 

output being the instances of the data structures in the image. 

4.2 Data Structure Definition Extraction 

SigGraph’s data structure definition extractor adopts a compiler-based approach, where 

the compiler pass is devised to walk through the source code and extract data structure 
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definitions. It is robust as it is based on a full-fledged language front-end. In particular, our 

development is in gcc-4.2.4. The compiler pass takes abstract syntax trees (ASTs) as 

input as they retain substantial symbolic information [71]. The compiler-based approach 

also allows us to handle data structure in-lining, which occurs when a data structure has 

a field that is of the type of another structure; After compilation, the fields in the inner 

structure become fields in the outer structure. Furthermore, we can easily see through type 

aliases introduced by typedef via ASTs. 

The output of the compiler pass is the data structure definitions – with offset and type 

for each field – extracted in a canonical form. The pass is inserted into the compilation 

work-flow right after data structure layout is finished (in stor-layout.c). During the 

pass, the AST of each data structure is traversed. If the data structure type is struct or 

union, its field type, offset, and size information is dumped to a file. To precisely reflect 

the field layout after in-lining, we flatten the nested definitions and adjust offsets. 

We note that source code availability is not a fundamental requirement of SigGraph. 

For a close-source OS (e.g., Windows), if debugging information is provided along with 

the binary, SigGraph can simply leverage the debugging information to extract the data 

structure definitions. Otherwise, data structure reverse engineering techniques (e.g., RE­

WARDS [59], TIE [72], or HOWARD [73]) can be leveraged to extract data structure 

definitions from binaries. 

4.3 Signature Generation 

Suppose a data structure T has n pointer fields with offsets f1, f2, ..., fn and types t1, 

t2, ..., tn. A predicate St(x) determines if the region starting at address x is an instance of 

t. The following production rule can be generated for T : 

ST (x) → St1 (∗(x + f1)) ∧ St2 (∗(x + f2)) ∧ ... 
(4.7) 

∧Stn (∗(x + fn)) 

Brute force memory scanning is based on the reverse of the above rule: Given a kernel 

memory image, we hope to identify instances of a data structure by trying to match the 
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struct A { struct X { 

[0] struct B * a1; ... 

... [8] struct Y * x1; 

[12] struct C * a2; ... 

... [36] struct BB * x2; 

[18] struct D * a3; ... 

} [48] struct CC * x3; 

... 

[54] struct DD * x4; 

} 

c80b20e0: 00 00 00 00 01 20 00 32 0a 00 00 00 00 ae ff 00 

c80b20f0: c8 40 30 b0 00 00 00 00 

c80b2100: 00 00 c8 41 00 22 00 00 

00 10 00 00 c8 40 42 30 

00 10 00 00 00 00 00 00
 

(a) Insufficiency of pointer layout uniqueness 

B/BB
 
struct B { struct BB { struct D {
 

[0] E * b1; [0] EE * bb1; ...
 

[4] B * b2; [4] BB * bb2; [4] I * d1;
 

} } }
 

struct E { struct EE { struct DD {
 

... ...
 ...
 

[12] G * e1;	 [12] GG * ee1; [8] II * dd1;
 

... ... }
 

[24] H * e3; [24] HH * ee3;
 

} }
 

0 +4 

+12 +24 

B/BB E/EE 

G/GG H/HH 

(a) definitions	 (b) structures of B and BB 

(b) Data structure isomorphism 

Fig. 4.3.: Examples illustrating the signature isomorphism problem 

right-hand side of the rule (as a signature) with memory content starting at any location. 

Although it is generally difficult to infer the types of memory at individual locations based 

on the memory content, it is more feasible to infer if a memory location contains a pointer 

and hence to identify the layout of pointers with high confidence. This can be done 

recursively by following the pointers to the destination data structures. As such, the core 

challenge in signature generation is to find a finite graph induced by points-to relations 

(including pointers, pointer field offsets, and pointer types) that uniquely identifies a target 

data structure, which will be the root of the graph. For convenience of discussion, we 

assume for now that pointers are not null and they each have an explicit type (i.e., not a 

void pointer). We will address the cases where this assumption does not hold in Section 

4.5. 
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As noted earlier, two distinct data structures may have isomorphic structural patterns. 

For example, if two data structures have the same pointer field layout, we need to further 

look into the “next-hop” data structures (we call them lower layer data structures) via 

the points-to edges. Moreover, we observe that even though the pointer field layout of 

a data structure may be unique (different from any other data structure), an instance 

of such layout in memory is not necessary an instance of that data structure. Consider 

Figure 4.3(a), data structures A and X have different layouts for their pointer fields. If the 

program has only these two data structures, it appears that we can use their one level pointer 

structures as their signatures. However, this is not true. Consider the memory segment at 

the bottom of Figure 4.3(a), in which we detect three pointers (the boxed bytes). It appears 

that SA(0xc80b20f0) is true because it fits the one-level structure of struct A. But it 

is possible that the three pointers are instead the instances of fields x2, x3, and x4 in 

struct X and hence the region is part of an instance of struct X. In other words, 

a pattern scanner based on struct A will generate false positives on struct X. The 

reason is that the structure of A coincides with the sub-structure of X. 

To better model the isomorphism issue, we introduce the concept of immediate pointer 

pattern (IPP) that describes the one-level pointer structure as a string such that the afore­

mentioned problem can be detected by deciding if an IPP is the substring of another IPP. 

Definition 4.3.1 Given a data structure T , let its pointer field offsets be f1, f2, ..., and fn, 

pointing to types t1, t2, ..., and tn, respectively. Its immediate pointer pattern, denoted as 

IPP (T ), is defined as follows. IPP (T ) = f1 ·t1 ·(f2 −f1)·t2 ·(f3−f2)·t3 ·...·(fn−fn−1)·tn. 

We say an IPP (T ) is a sub-pattern of IPP (R) if g1 · r1 · (f2 − f1) · r2 · (f3 − f2) · ... · 

(fn − fn−1) · rn is a substring of IPP (R), with g1 >= f1 and r1, ..., rn being any pointer 

type. 

Intuitively, an IPP describes the types of the pointer fields and their intervals. An 

IPP (T ) is a sub-pattern of IPP (R) if the pattern of pointer field intervals of T is a 

sub-pattern of R’s, disregarding the types of the pointers. It also means that we cannot 

distinguish an instance of T from an instance of R in memory if we do not look into the 
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lower layer structures. For instance in Figure 4.3(a), IPP (A) = 0 · B · 12 · C · 6 · D and 

IPP (X) = 8 · Y · 28 · BB · 12 · CC · 6 · DD. IPP (A) is a sub-pattern of IPP (X). 

Definition 4.3.2 Replacing a type t in a pointer pattern with “(IPP (t))” is called one 

pointer expansion, denoted as −
t

A pointer pattern of a data structure T is a string →. 

generated by a sequence of pointer expansions from IPP (T ). 

For example, assume the definitions of B and D can be found in Figure 4.3(b). 

IPP (A) = 0 · B · 12 · C · 6 · D 
(1) B (4.8) −→ 0 · (0 · E · 4 · B) · 12 · C · 6 · D 

(2) D
−→ 0 · (0 · E · 4 · B) · 12 · C · 6 · (4 · I) 

Strings (1) and (2) above are both pointer patterns of A. The pointer patterns of a data 

structure are candidates for its signature. As one data structure may have many pointer 

patterns, the challenge becomes to algorithmically identify the unique pointer patterns of a 

given data structure so that instances of the data structure can be identified from memory 

by looking for satisfactions of the pattern without causing false positives. If efficiency is a 

concern, the minimal pattern should be identified. 

Existence of Signature. The first question we need to answer is whether a unique pointer 

pattern exists for a given data structure. According to the previous discussion, given a data 

structure T , if its IPP is a sub-pattern of another data structure’s IPP (including the case 

in which they are identical), we cannot use the one-layer structure as the signature of T . 

We have to further use the lower-layer data structures to distinguish it from the other data 

structure. However, it is possible that T is not distinguishable from another data structure 

R if their structures are isomorphic. 

Definition 4.3.3 Given two data structures T and R, let the pointer field offsets of T be f1, 

f2, ..., and fn, pointing to types t1, t2, ..., and tn, respectively.; the pointer field offsets of R 

be g1, g2, ..., and gm, pointing to types r1, r2, ..., and rm, respectively. 

T and R are isomorphic, denoted as T ⊲⊳ R, if and only if 

(1) n ≡ m; 
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(2.1) (2.2) 
(2) ∀1 ≤ i ≤ n ∧ ( ti ⊲⊳ rifi ≡ gi 

(2.3)
∨ a cycle is formed when deciding ti ⊲⊳ ri ). 

Intuitively, two data structures are isomorphic, if they have the same number of pointer 

fields (Condition (1)) at the same offsets (2.1) and the types of the corresponding pointer 

fields are also isomorphic (2.2) or the recursive definition runs into cycles (2.3), e.g., when 

ti ≡ T ∧ ri ≡ R. 

Figure 4.3(b) (i) shows the definitions of some data structures in Figure 4.3(a). The 

data structures whose definitions are missing from the two figures do not have pointer 

fields. According to Definition 4.3.3, B ⊲⊳ BB because they both have two pointers at the 

same offsets; and the types of the pointer fields are isomorphic either by the substructures 

(E ⊲⊳ EE) or by the cycles (B ⊲⊳ BB). 

Given a data structure, we can now decide if it has a unique signature. As mentioned 

earlier, we assume that pointers are not null and are not of the void* type. 

Theorem 4.3.1 Given a data structure T , if there does not exist a data structure R such 

that 

<1>IPP (T ) is a sub-pattern of IPP (R), and 

<2> Assume the sub-pattern in IPP (R) is g1 ·r1 ·(f2 −f1)·r2 ·(f3 −f2)·...·(fn−fn−1)·rn, 

t1 ⊲⊳ r1, t2 ⊲⊳ r2, ... and tn ⊲⊳ rn. 

T must have a unique pointer pattern, that is, the pattern cannot be generated from any 

other individual data structure through expansions. 

Proof For each data structure R different from T , either condition <1> or <2> is not 

satisfied according to the preconditions of the theorem. 

If <1> is not satisfied, IPP (T ) can be used to distinguish T from R. 

If <2> is not satisfied, there must be an i such that ti is not isomorphic to ri. There 

must be a minimal k, after k level of expansions, the pointer pattern of ti is different from 

ri’s, disregard the type symbols. We say one level of expansion is to expand along all type 
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symbols for one step. IPP (T ) can be considered as the pointer pattern of T with k = 0 

level of expansion. 

Since there are finite number of data structures, we can always identify the maximal 

among all the k values. Lets denote it as kmax. Hence, the pointer pattern of T after kmax 

levels of expansions can distinguish T from any other individual data structure. 

The proof of Theorem 4.3.1 is shown above. Intuitively, the theorem specifies that T 

must have a unique pointer pattern (i.e., a signature) as long as there is not an R such that 

IPP (T ) is a sub-pattern of IPP (R) and the corresponding types are isomorphic. 

If there is an R satisfying conditions <1> and <2> in the theorem, no matter how 

many layers we inspect, the structure of T remains identical to part of the structure of R, 

which makes them indistinguishable. In Linux kernels, we have found a few hundred such 

cases (about 12% of all data structures). Fortunately, most of those are data structures that 

are rarely used or not widely targeted according to OS security and forensics literature. 

Note that two isomorphic data structures may have different concrete pointer field types. 

But given a memory image, it is unlikely for us to know the concrete types of memory 

cells. Hence, such information cannot be used to distinguish the two data structures. In 

fact, concrete type information is not part of a pointer pattern. Their presence is only for 

readability. 

Consider the data structures in Figure 4.3(a) and Figure 4.3(b). Note all the data 

structures whose definitions are not shown do not have pointer fields. IPP (A) is a sub-

pattern of IPP (X), B ⊲⊳ BB and C ⊲⊳ CC. But D is not isomorphic to DD because 

of their different immediate pointer patterns. According to Theorem 4.3.1, there must be a 

unique signature for A. In this example, pointer pattern (2) in Equation (4.8) is a unique 

signature. If we find pointers that have such structure in memory, they must indicate an 

instance of A. 

Finding the Minimal Signature. Even though we can decide if a data structure T has a 

unique signature using Theorem 4.3.1, there may be multiple pointer patterns of T that can 

distinguish T from other data structures. Ideally, we want to find the minimal pattern as it 

incurs the minimal parsing overhead during brute force scanning. For example, if the offset 
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Fig. 4.4.: If the offset of field e1 (of type struct G) in E is changed to 16, struct A 
will have two possible signatures (detailed data structure definitions in Figure 4.3) 

of field e1 (of type struct G) in E is 16, struct A will have two possible signatures 

as shown in Figure 4.4. They correspond to the following pointer patterns: 

0 · (0 · (16 · G · 8 · H) · 4 · B) · 12 · C · 6 · D 

and 

0 · B · 12 · C · 6 · (4 · I) 

The first one is generated by expanding B and then E, and the second one is generated by 

expanding D. Either one can serve as a unique signature of A. 

In general, finding the minimal unique signature is a combinatorial optimization prob­

lem: Given a data structure T , find the minimal pointer pattern of T that cannot be a sub-

pattern of any other data structure R, that is, cannot be generated by pointer expansions 

from a sub-pattern of IPP (R). The complexity of a general solution is likely in the NP 

category. In this paper, we propose an approximate algorithm (Algorithm 1) that guarantees 

to find a unique signature if one exists, though the generated signature may not be the 

minimal one. It is a breadth-first search algorithm that performs expansions for all pointer 

symbols at the same layer at one step until the pattern becomes unique. 

The algorithm first identifies the set of data structures that may have IPP (T ) as their 

sub-patterns (lines 3-5). Such sub-patterns are stored in set distinct. Next, it performs 

breadth-first expansions on the pointer pattern of T , stored in s, and the patterns in distinct, 
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Algorithm 2 An approximate algorithm for signature generation 
Input: Data structure T and set K of all kernel data structures considered 
Output: The pointer pattern that serves as the signature of T . 
1: s= IPP (T ) 
2: let IPP(T ) be f1 · t1 · (f2 − f1) · t2 · ... · (fn − fn−1) · tn 

3: for each sub-pattern p=g1 · r1 · (f2 − f1) · r2 · (f3 − f2) · ... · (fn − fn−1) · rn in IPP (R) of each structure R ∈ (K − {T}) 
with f1 <= g1 do 

4: distinct=distinct ∪ {p} 
5: end for 
6: while distinct �= φ do 
7: s=expand(s) 
8: for each p ∈ distinct do 
9: p=expand(p) 
10: if p is different from s disregarding type symbols then 
11: distinct= distinct− p 

12: end if 
13: end for 
14: end while 
15: return s 
expand(s) 
1: for each type symbol t ∈ s do 
2: s= replace t with “(IPP (t))” 
3: end for 
4: return s 

until all patterns can be distinguished. It is easy to infer that the algorithm will eventually 

find a unique pattern if one exists. 

For the data structures in Figures 4.3(a) and 4.3(b), the pattern generated for A by the 

algorithm is 

0 · (0 · E · 4 · B) · 12 · C · 6 · (4 · I) (4.9) 

It is produced by expanding B and D in IPP (A). 

Generating Multiple Signatures. In some use scenarios, it is highly desirable to generate 

multiple signatures for the same data structure. A common scenario is that some pointer 

fields in a signature may not be dependable. For example, certain kernel malware may 

corrupt the values of some pointer fields and, as a result, the corresponding data structure 

instance will not be recognized by a signature that involves those pointers. 

SigGraph mitigates such a problem by generating multiple unique signatures for the 

same data structure. In particular, if certain pointer fields in a data structure are potential 

targets of malicious manipulation, SigGraph will avoid using such fields during signature 

generation in Algorithm 1. For example, if field e1’s offset in struct E is 16 and field 
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a3 (of type struct D) in struct A is not dependable, Algorithm 2 will adapt (not 

shown in the pseudo-code) by pruning the sub-graph rooted at field a3 in Figure 4.4(a). 

4.4 Scanner Generation 

Given a data structure signature (i.e., a pointer pattern), SigGraph will automatically 

generate the corresponding memory scanner, which will be shipped to end users for brute 

force kernel memory scanning. To automatically generate scanners, we describe all sig­

natures using a context-free grammar (CFG). Then we leverage yacc to generate the 

scanners. The CFG is described as follows. 

Signature := number · Pointer · Signature | ǫ 
(4.10) 

Pointer := type | (Signature) 

In the above grammar, number and type are terminals that represent numbers and type 

symbols, respectively. A Signature is a sequence of number · Pointer, in which Pointer 

describes either the type or the Signature of the data structure being pointed to. It is 

easy to see that the grammar describes all the pointer patterns in Section 4.3, such as the 

signature of A generated by Algorithm 1 (Equation (4.9)). 

Scanners can be generated based on the grammar rules. Intuitively, when a number 

symbol is encountered, the field offset should be incremented by number. If a type 

is encountered, the scanner asserts that the corresponding memory contain a pointer. If 

a ‘(’ symbol is encountered, a pointer dereference is performed and the scanner starts 

to parse the next-level memory region until the matching ‘)’ is encountered. A sample 

scanner generated for the signature in Equation (4.9) can be found in Figure 4.5. Function 

isInstanceOf A decides if a given address is an instance of A; assertPointer 

asserts that the given address must contain a pointer value, otherwise an exception will 

be thrown and function isInstranceOf A will return 0. The yacc rules to generate 

scanners are elided for brevity. 
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1 int isInstanceOf_A(void *x){
 
2 x=x+0;
 
3 {
 
4 y=*x;
 
5 y=y+0’
 
6 assertPointer(*y);
 
7 y=y+4;
 
8 assertPointer(*y);
 
9 }
 
10 x=x+12;
 

11 assertPointer(*x); 
12 x=x+6; 
13 { 
14 y=*x; 
15 y=y+4; 
16 assertPointer(*y); 
17 } 
18 return 1; 
19 }
 

Fig. 4.5.: The generated scanner for struct A’s signature in Equation (4.9) 

Considering Non-pointer Fields. So far, a scanner considers only the positive information 

from the signature, which indicates the fields that are supposed to be pointers. But it does 

not consider the implicit negative information, which indicates the fields that are supposed 

to be non-pointers. In many cases, such negative information is needed to construct robust 

scanners. 

For example, assume that a data structure T has a unique signature 0 · A · 8 · B · 4 · C. 

If there is a pointer array that stores a consecutive sequence of pointers, even though T ’s 

signature is unique and has no structural conflict with any other data structures, the scanner 

of T will mistakenly identify part of the array as an instance of T . 

To handle such cases, the scanner should also assert that the non-pointer fields must 

not contain pointers. Hence the scanner for T ’s signature becomes the following. Method 

assertNonPointer asserts that the given address does not contain a pointer. As such, 

the final scanner code for identify data structure T will be: 

1 int isInstanceOf_T(void *x){
 

2 x=x+0;
 

3 assertPointer(*x); // field of type "A *"
 

4 x=x+4;
 

5 assertNonPointer(*x); // field of non-pointer
 

6 x=x+4;
 

7 assertPointer(*x); // field of type "B *"
 

8 x=x+4;
 

9 assertPointer(*x); // field of type "C *"
 

10 }
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4.5 Handling Practical Issues 

We have so far assumed the ideal case for SigGraph. However, when applied to large 

system software such as the Linux kernel, SigGraph faces a number of practical challenges, 

in particular, 

1.	 Null pointers: It is possible that a pointer field have a null value, which cannot 

be distinguished from other non-pointer fields, such as integer or floating point fields 

with value 0. If 0 is considered a pointer value, a memory region with all 0s would 

satisfy any immediate pointer patterns, which is clearly undesirable. 

2.	 Void pointers: Some of the pointer fields may have a void* type and they will be 

resolved to different types at runtime. Obviously, our signature generation algorithm 

cannot handle such case. 

3.	 User-level pointers: It is also possible that a kernel pointer point to the user space, 

e.g., the field set child tid and clear child tid in task struct, and 

the vdso field in mm struct all point to user space. The difficulty is that user 

space pointers have a very dynamic value range due to the larger user space, which 

makes it hard to distinguish them from non-pointer fields. 

4.	 Special pointers: A pointer field may have non-traditional pointer value. For ex­

ample, for the list head data structure, Linux kernel uses LIST POISON1 with 

value 0x00100100 and LIST POISON2 with value 0x00200200 as two special 

pointers to verify that no one uses un-initialized list entries. Another special value 

SPINLOCK MAGIC (0xdead4ead) also widely exists in some pointer fields such 

as in data structure radix tree. 

5.	 Pointer-like values: Some of the non-pointer fields may have values that resemble 

pointers. For example, it is not an uncommon coding style to cast a pointer to an 

integer field and later cast it back to a pointer. 
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6.	 Undecided pointers: Union types allow multiple fields with different types to share 

the same memory location. This creates problems when pointer fields are involved. 

7.	 Rarely accessed data structures: Algorithm 1 in Section 4.3 treats all data struc­

tures equally and tries to find unique signatures for all kernel data structures. How­

ever, some of the data structures are rarely used and hence the conflicts caused by 

them may not be so important. 

We find that most of the problems above boil down to the difficulty in deciding if a 

field is a pointer or non-pointer. Interestingly, the following observation leads to a simple 

solution: pruning a few noisy pointer fields does not degenerate the uniqueness of the 

graph-based signatures. Even though a signature after pruning may conflict with some other 

data structure signatures, we can often perform a few more refinement steps to redeem the 

uniqueness. As such, we devise a dynamic profiling phase to eliminate the undependable 

pointer/non-pointer fields. 

Our profiler (Figure 5.2) relies on LiveDM [74], a dynamic kernel memory mapping 

system, to keep track of dynamic kernel data structures at runtime. Based on QEMU [75], 

LiveDM tracks kernel memory allocation and deallocation events. More specifically, we 

focus on slab objects by hooking the allocation and deallocation functions such as kmem 

cache alloc and kmem cache free at the VMM level. The function arguments and 

return values are retrieved to obtain memory ranges of these objects. Their types are 

acquired by mapping allocation call sites to kernel data types via static analysis. We then 

track the life time of these objects and monitor their values. 

We monitor the values of a kernel data structure’s fields to collect the following infor­

mation: (1) How often a pointer field takes on a value different from a regular non-null 

pointer value; (2) How often a non-pointer field takes on a non-null pointer-like value; (3) 

How often a pointer has a value that points to the user space. In our experiments, we profile 

a number of kernel executions for long periods of time (hours to tens of hours). 

Based on the above profiles, we revise our signature generation algorithm with the 

following refinements: (1) excluding all the data structures that have never been allocated in 
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our profiling runs so that structural conflicts caused by these data structures can be ignored; 

(2) excluding all the pointer fields that have the void* type or fields of union types that 

involve pointers – in other words, these fields are declared undependable (Section 4.3), 

which is done by annotating them with a special symbol. Note that they should not be 

considered as non-pointer fields either and method assertNonPointer discussed in 

Section 4.4 will not be applied to such fields; (3) excluding all the pointer fields that 

have ever had a null value1 or a non-pointer value during profiling; as well as all non-

pointer fields that ever have a pointer value during profiling. Neither assertPointer 

nor assertNonPointer will be applied to these fields; (4) allowing pointers to have 

special value such as 0x00100100 or 0x00200200. 

We point out that dynamic profiling and signature refinement is performed only during 

the production of SigGraph-based signatures/scanners. It is not performed by end-users, 

who will simply run the scanners on memory images. We do note that the SigGraph 

signatures/scanners are kernel-specific, as different OS kernels may have different data 

structure definitions and runtime access characteristics. In fact, Section 6.4 shows that 

different versions of the same OS kernel may have different signatures for the same data 

structure. 

4.6 Implementation 

We implemented SigGraph in C and Python. For the data structure definition extrac­

tion component, we instrumented gcc-4.2.4 for our purpose. Specifically, we walked 

through the AST of each data structure at the moment when gcc finishes the layout 

allocation (stor-layout.c). If the data structure type is struct or union, we 

dumped its field type, offset, and size information in individual files, which are indexed 

by a tuple of <name, file>, that is we used the data structure name, and declaration file 

names stored in the AST to index the struct or union. Also, if the field is an embedded 

1We note that such exclusion will not remove important pointer fields in critical kernel data structures such 
as lists and trees, where non-zero magic values are used to indicate list/tree termination or initialization. 
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data structure, we will eliminate the hierarchy, adjust the offset, and expand them to finally 

get a flattened data structure definition. 

For the signature generation component, we implemented using the mix of python and 

C code, as python provides an easier way to parse data structure definitions extracted from 

gcc, and C is more efficient when doing graph comparison. Our experience showed that 

python code will take a few days to complete the graph comparison of the whole data 

structure but C code just takes less than one hour. Our scanner generator is lex/yacc based, 

and the generated scanners are in C. The entire implementation has around 10K lines of C 

code and 6K lines of Python code. 

4.7 Evaluation 

We have performed four sets of evaluation of SigGraph. The first one is the signature 

uniqueness evaluation that answers the question of whether there exist our graph based 

signatures. The second is signature effectiveness evaluation that answers how effective our 

signature is when used to scan memory images. The third one is to evaluate the diversity 

of our signatures as we could we have multiple signatures for one data structure. Finally 

we evaluate the performance overhead of SigGraph. 

4.7.1 Signature Uniqueness 

Table 4.1: Experimental results of signature uniqueness test 

2.6.31-1 26799 9957 

Signature Statistics 

8683 87.20% 2.73 

Kernel version #Total structs #Pointer structs #Unique Sig. Percent S 

2.6.15-1 8850 3597 3229 89.76% 2.31 
2.6.18-1 11800 4882 4305 88.18% 2.45 

2.6.20-15 14992 6096 5395 88.50% 2.54 
2.6.24-26 15901 6427 5645 87.83% 2.47 

We first test if unique signatures exist for kernel data structures. We test 5 popular 

Linux distributions (from Fedora Core 5 and 6; and Ubuntu 7.04, 8.04 and 9.10), with the 

corresponding kernel version shown in the first column of Table 4.1. We compile these 
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Table 4.2: Detail statistics on our static signatures 

Number of signatures in different steps 
Kernel version 1 2 3 4 5 6 7 8 9 10 11 12 13 

2.6.15-1 1355 823 461 229 76 194 85 4 1 0 1 - -
2.6.18-1 1820 1057 382 410 159 337 121 9 3 5 1 1 -

2.6.20-15 2137 1311 680 236 407 501 106 9 1 5 1 1 -
2.6.24-26 2172 1316 761 475 624 248 37 7 1 0 3 1 -
2.6.31-1 3364 1951 696 319 1492 494 344 19 1 0 1 1 1 

kernels using our instrumented gcc. Observe that there are quite a large number of data 

structures in different kernels, ranged from 8850 to 26799. Overall, we find nearly 40% of 

the data structures have pointer fields, and nearly 88% (shown in the 5th column) of the data 

structures with pointer fields have unique signatures. Because of graph isomorphism, there 

are data structures that do not have any unique signature, and the percentage for these data 

structures is around 12%. For the average steps (S) performed in pointer pattern expansion 

to generate the unique signatures, the numbers are shown in the 6th column. Note that these 

are all static numbers before the dynamic refinement. 

In Table 4.2, we show the number of unique signatures of various depths, obtained 

by taking various number of expansion steps along the points-to relations. For example, 

kernel 2.6.15-1 has 1355 data structures that have unique one-level signatures and 823 data 

structures that have unique two-level signatures. 

4.7.2 Signature Effectiveness 

To test the effectiveness of SigGraph, we take Linux kernel 2.6.18-1 as a working 

system, and show how the generated signatures can detect data structure instances. We 

choose 23 widely used kernel data structures shown in the 2nd column of Table 4.3. We 

choose these data structures because: (1) They are the most commonly examined data 

structures in existing literature [25, 40–42, 52–55]; (2) They are important data structures 

that can represent the status of the system in the aspects of process, memory, network and 

file system; from these data structures, we can reach most other kernel objects; and (3) 
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They contain pointer fields. Note that when scanning for instances of these data structures, 

other data structures – as part of the pointer patterns – are also traversed. 

To ease our presentation, we assign an ID to each data structure, which is shown in the 

3rd column of Table 4.3. We use F to represent the set of fine-grained fields, and P to 

represent the set of pointer fields. A fine-grained field is a field with a primitive type (not 

a composite data type such as a struct or an array). Then, we present the corresponding 

total number of fields |F | and pointers |P | in the 5th and 6th columns, respectively. 

Experiment Setup 

We perform two sets of experiments. We first use our profiler to automatically prune the 

undependable pointer/non-pointer fields, generate refined signatures, and then detect the 

instances. After that we perform a comparison run with value invariant-based signatures 

(Section 4.7.2) to further confirm the effectiveness of SigGraph. 

Memory snapshot collection: The first input of the effectiveness test is the snapshots 

of physical memory, which are acquired by instrumenting QEMU [75] to dump them on 

demand. We set the size of the physical RAM to 256M. 

Ground truth acquisition: The second input is the ground truth data of the kernel objects 

under study. We leverage and modify a kernel dump analysis tool, the RedHat crash 

utility [60], to analyze our physical memory image and collect the ground truth, through 

a data structure instance query interface driven by our Python script. Note that to enable 

crash’s dump analysis, the kernel needs to be rebuilt with debugging information. 

Profiling run: In all our profiling runs, the OS kernel is executed under normal workload 

and monitored for hours, with the goal of achieving good coverage of kernel data access 

patterns. However, it is unlikely that the profiling runs be able to capture the complete 

spectrum of patterns. As our future work, we will leverage existing techniques for software 

test generation to achieve better coverage. 
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Dynamic Refinement 

In this experiment, we carry out the dynamic refinement phase as described in Section 4.5. 

The depth and size of signatures before and after pruning are presented in the “SigGraph 
L

Signature” columns in Table 4.3, with D being the depth and |P | the number of pointer 

fields. Note that the signature generation algorithm has to be run again on the pruned data 

structure definitions to ensure uniqueness. Observe that since pointer fields are pruned 

and hence the graph topology gets changed, our algorithm has to perform a few more 

expansions to redeem uniqueness, and hence the depth of signatures increases after pruning 

for some data structures, such as task struct. 

Value Invariant-based Signatures 

To compare SigGraph-based signatures with value invariant-based signatures [32, 40–42], 

we also implement a basic value-invariant signature generation system. More specifically, 

we generally derive four types of invariants for each field including (1) zero-subset: a field 

is included if it is always zero across all instances during training runs; (2) constant: a field 

is always constant; (3) bitwise-AND: the bitwise AND of all values of a field is not zero, 

that is, they have some non-zero common bits; and (4) alignment: if all instances of a field 

are well-aligned at a power-of-two (other than 1) number. 

To derive such value invariants for the data structures, we perform two types of profil­

ing: one is access frequency profiling (to prune out the fields that are never accessed by 

the kernel) and the other is to sample their values and produce the signatures. The access 

frequency profiling is done by instrumenting QEMU to track memory reads and writes. 

Sampling is similar to the sampling method in our dynamic refinement phase. 

All the data structures under study turn out to have value invariants. The statistics of 

these signatures are shown in the last four column of Table 4.3. The total numbers of 

zero-subset, constant, bitwise-AND, and alignment are denoted as |Z|, |C|, |B|, and |A|, 

respectively. 
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Table 4.3: Summary of data structure signatures for Linux kernel 2.6.18-1 

Static Properties of the Data Structure SigGraph Signature Value Invariant Signature 
Category Statically Derived Dynamically Refined 

Data Structure Name ID Size |F | |P | D 
P 
|P | D 

P 
|P | |Z| |C| |B| |A| 

task struct 1 1408 354 81 1 81 2 233 269 17 55 244 
Processes thread info 2 56 15 4 2 91 2 45 5 2 4 5 

key 3 100 27 9 4 117 4 69 5 2 7 11 

mm struct 4 488 121 23 1 23 2 26 39 41 62 68 
vm area struct 5 84 21 10 4 1444 4 60 15 0 3 17 

Memory shmem inode info 6 544 135 51 1 51 2 147 32 24 51 41 
kmem cache 7 204 51 39 3 295 3 36 8 0 4 9 

files struct 8 384 50 41 3 3810 3 13 38 4 8 9 
fs struct 9 48 12 7 2 121 2 68 2 7 8 7 

file 10 164 40 11 5 17034 5 3699 15 4 12 17 
File dentry 11 144 63 16 5 27270 5 1444 44 4 14 16 

System proc inode 12 452 112 49 1 49 3 455 27 16 33 41 
ext3 inode info 13 612 151 58 1 58 2 166 59 27 50 53 

vfsmount 14 108 27 23 4 6690 4 1884 4 0 20 24 
inode security struct 15 60 16 6 7 277992 7 8426 1 1 3 2 

sysfs dirent 16 44 11 7 4 1134 4 61 3 0 4 8 

socket alloc 17 488 121 54 1 54 2 142 28 8 21 37 
Network socket 18 52 13 7 5 45907 5 2402 1 4 10 6 

sock 19 436 114 48 1 48 2 149 21 42 59 34 

bdev inode 20 568 141 65 1 65 2 166 22 13 31 39 
mb cache entry 21 36 12 8 6 27848 6 6429 2 1 4 6 

Others signal struct 22 412 99 25 2 395 2 90 41 30 38 44 
user struct 23 52 13 4 6 586 6 394 1 0 1 2 
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Table 4.4: Experimental results of SigGraph signatures and value invariant-based 
signatures 

SigGraph Signature Value Invariant Signature 
ID Data Structure Name |I| 

|R| FP ′ FP FN |R| FP ′ FP FN 

1 task struct 88 88 0.00% 0.00% 0.00% 88 0.00% 0.00% 0.00% 
2 thread info 88 88 0.00% 0.00% 0.00% 93 6.45% 6.45% 1.08% 
3 key 22 22 0.00% 0.00% 0.00% 19 0.00% 0.00% 15.79% 

4 mm struct 52 54 3.70% 0.00% 0.00% 55 5.45% 0.00% 0.00% 
5 vm area struct 2174 2233 2.64% 0.40% 0.00% 2405 9.61% 7.52% 0.00% 
6 shmem inode info 232 232 0.00% 0.00% 0.00% 226 0.00% 0.00% 2.65% 
7 kmem cache 127 127 0.00% 0.00% 0.00% 5124 97.52% 97.52% 0.00% 

8 files struct 53 53 0.00% 0.00% 0.00% 50 0.00% 0.00% 6.00% 
9 fs struct 52 60 13.33% 0.00% 0.00% 60 13.33% 0.00% 0.00% 

10 file 791 791 0.00% 0.00% 0.00% 791 0.00% 0.00% 0.00% 
11 dentry 31816 38611 17.60% 0.01% 0.00% 31816 0.00% 0.00% 0.00% 
12 proc inode 885 885 0.00% 0.00% 0.00% 470 0.00% 0.00% 88.30% 
13 ext3 inode info 38153 38153 0.00% 0.00% 0.00% 38153 0.00% 0.00% 0.00% 
14 vfsmount 28 28 0.00% 0.00% 0.00% 28 0.00% 0.00% 0.00% 
15 inode security 40067 40365 0.74% 0.00% 0.00% 142290 71.84% 70.93% 0.00% 
16 sysfs dirent 2105 2116 0.52% 0.52% 0.00% 88823 97.63% 97.63% 0.00% 

17 socket alloc 75 75 0.00% 0.00% 0.00% 75 0.00% 0.00% 0.00% 
18 socket 55 55 0.00% 0.00% 0.00% 49 0.00% 0.00% 12.24% 
19 sock 55 55 0.00% 0.00% 0.00% 43 0.00% 0.00% 27.90% 

20 bdev inode 25 25 0.00% 0.00% 0.00% 24 0.00% 0.00% 4.17% 
21 mb cache entry 520 633 17.85% 0.00% 0.00% 638 18.50% 0.00% 0.00% 
22 signal struct 73 73 0.00% 0.00% 0.00% 72 0.00% 0.00% 1.39% 
23 user struct 10 10 0.00% 0.00% 0.00% 10591 99.91% 99.91% 0.00% 

Results 

The final results for each signature when brute force scanning a test image is shown in 

Table 4.4. The 3rd column shows the total number of true instances of the data structure, 

which is acquired by the modified crash utility [60]. The |R| column shows the number 

of data structure instances detected by the scanning. Due to the limitation of crash, the 

ground-truth instances are live, namely reachable from global or stack variables. On the 

other hand, brute force scanning can further identify freed-but-not-yet-reallocated objects 

that are not reachable from global or stack variables. Such freed objects detected would 

be counted as false positives (FPs) when compared with the ground truth from crash. As 

such, we present two FP numbers: (1) |FP ′ | for those false positives that include the freed 

objects and (2) |FP | for those that do not include the freed objects (hence |FP ′ | ≥ |FP |). 

The false negative FN indicates those missed by scanning but present among the ground 

truth objects from crash. 
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0xc035dc9c <init_task+156>: 0xce8e04e0 0x00000000 0x00000000 0x00000000 

0xc035dcac <init_task+172>: 0x00000000 0x00000000 0x00000000 0x00000000 

struct task_struct{ struct vm_area_struct {
 

[156] struct mm_struct *active_mm; [0] struct mm_struct *vm_mm;
 

[160] struct linux_binfmt *binfmt; [4] long unsigned int vm_start;
 

[164] long int exit_state; [8] long unsigned int vm_end;
 

[168] int exit_code; [12] struct vm_area_struct *vm_next;
 

[172] int exit_signal; [16] pgprot_t vm_page_prot;
 

[176] int pdeath_signal; [20] long unsigned int vm_flags;
 

[180] long unsigned int personalit; ...
 

} }
 

0xc035dcbc <init_task+188>: 0x00000000 0x00000000 0xc035dc00 0xc035dc00
 

0xc035dccc <init_task+204>: 0xc12f1704 0xc12f1704 0xc035dcd4 0xc035dcd4
 

0xc035dcdc <init_task+220>: 0xc035dc00 0x00000000 0x00000000 0x00000000
 

0xc035dcec <init_task+236>: 0x00000000 0x00000000 0x00000000 0x00000000
 

0xc035dcfc <init_task+252>: 0x00000000 0x00000000 0x00000000 0x00000000
 

0xc035dd0c <init_task+268>: 0x00000000 0x00000000 0x00000000 0x00000000
 

0xc035dd1c <init_task+284>: 0x00000000 0x02bf54e4 0x00000000 0x002eff84
 

0xc035dd2c <init_task+300>: 0x00000000 0x00000000 0x00000000 0x00000000
 

0xc035dd3c <init_task+316>: 0x00000000 0x00000000 0x00000000 0x00000000
 

0xc035dd4c <init_task+332>: 0xc035dd4c 0xc035dd4c 0xc035dd54 0xc035dd54
 

Fig. 4.6.: False positive analysis of vm area struct 

Among the 23 data structures, SigGraph perfectly (namely with accuracy and complete­

ness) identifies all instances of 16 of the data structures when freed objects are considered 

FPs (i.e., both FP ′ and FN are zero); whereas value invariant signatures perfectly identify 

only 5 of the data structures. When freed objects are not considered FPs, 20 data struc­

tures can be perfectly identified by SigGraph whereas value invariant signatures perfectly 

identify 9. We also note that, with the exception of dentry, SigGraph signatures achieve 

equal or (much) lower false positive rate than value invariant-based signatures. No FNs are 

observed for SigGraph, while some are observed for the value invariant-based approach. 

False Positive Analysis. Table 4.4 shows that SigGraph results in false positives (|FP |) 

for three of the 23 data structures: vm area struct, dentry, and sysfs dirent. 

We carefully examine the memory snapshot and identify the reasons as follows. 

•	 vm area struct We have 9 false positives (FPs) among the 2233 detected in­

stances. After dynamic refinement, some pointer fields are pruned, such as the 

pointer field at offset 12 (as shown in Figure 4.6). The resultant signature consists 

of a pointer field at offset 0 (mm struct), followed by a sequence of non-pointer 

fields, and so on. However, field task struct starting from offset 156 has the 

same pointer pattern as that of vm area struct except that offset 160 is a pointer. 

Unfortunately, in some rare cases that are not captured by our profiler, the pointer 

field at offset 160 becomes 0, leading to the 9 FPs. 
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struct dentry {
 

[0] atomic_t d_count;
 

[4] unsigned int d_flags;
 

[8] raw_spinlock_t raw_lock;
 

[12] unsigned int magic;
 

[16] unsigned int owner_cpu;
 

[20] void *owner;
 

[24] struct inode *d_inode;
 

[28] struct hlist_node d_hash;
 

[36] struct dentry *d_parent;
 

...
 

[84] long unsigned int d_time;
 

[88] struct dentry_operations *d_op;
 

...
 

}
 

fp1
 

0xc72bdf48: 0x00000000 0x00000010 0x00000001
 

0xc72bdf58: 0xffffffff 0xffffffff 0x00000000 0x00000000
 

0xc72bdf68: 0x00200200 0xc710e1c8 0x57409b84 0x00000009
 

0xc72bdf78: 0xc72bdfb4 0xc72bdf7c 0xc72bdf7c 0xc72bdef4
 

0xc72bdf88: 0xc017b72e 0xc72bdf8c 0xc72bdf8c
 

0xc72bdf98: 0xc72bdf94 0x00000000 0x00000000
 

fp2
 

0xcb1d5088: 0x00000000 0x00000010 0x00000001
 

0xcb1d5098: 0xffffffff 0xffffffff 0x00000000 0x00000000
 

0xcb1d50a8: 0x00200200 0xcb80ebc8 0xe50e3f24 0x0000000a
 

0xcb1d50b8: 0xcb1d50f4 0xcb1d50bc 0xcb1d50bc 0xcb1dcf84
 

0xcb1d50c8: 0xc017b72e 0xcb1d50cc 0xcb1d50cc 0xcb1d50d4
 

0xcb1d50d8: 0xcb1d50d4 0x026a0005 0x00000000
 

0xc72bdf94 

0xcf91fe00 

0xdead4ead 

true
 

0xc001c0a8: 0x00000000 0x00000000 0x00000001
 

0xc001c0b8: 0xffffffff 0xffffffff 0x00000000 0xc67617f4
 

0xc001c0c8: 0xc12a0e7c 0xc727faa8 0xbfbb9195 0x00000009
 

0xc001c0d8: 0xc001c114 0xc001c16c 0xc05b9f5c 0xc001c174
 

0xc001c0e8: 0xc727faec 0xc001c0ec 0xc001c0ec 0xc001c0f4
 

0xc001c0f8: 0xc001c0f4 0x8bfffff9 0x00000000
 

0xcf91fe00 

0xdead4ead 

0xcf91fe00 

(a) False positives of dentry 

struct sysfs_dirent {
 

[0] atomic_t s_count;
 

[4] struct list_head s_sibling;
 

[12] struct list_head s_children;
 

[20] void *s_element;
 

[24] int s_type;
 

[28] umode_t s_mode;
 

[32] struct dentry *s_dentry; [pruned]
 

[36] struct iattr *s_iattr; [pruned]
 

[40] atomic_t s_event; }
 

fp1
 

0xcffaeffc: 0x00000000
 

0xcffaf01c: 0xcfd9bde0
 

fp2
 

0xcffaf7fc: 0x00000000
 

0xcffaf80c: 0xcffc2814 

0xcffaf81c: 0xcfd9be60
 

fp3
 

0xcffa37fc: 0x00000000
 

0xcffa380c: 0xcffaf008 

0xcffa381c: 0xcfd9bd60
 

fp4
 

0xcffa2ffc: 0x00000000
 

0xcffa301c: 0xcfd9bce0
 

0xcffa300c: 0xcffa3808 

fp5
 

0xcffa27fc: 0x00000000
 

0xcffa280c: 0xcffa3008 

0xcffa281c: 0xcfd9bc60
 

fp6
 

0xc037099c: 0x00000000
 

0xc03709ac: 0xcffa2000 

0xc03709bc: 0xc01de4bc
 

0xcffa3800 0xcffaf800 0xcffa3808 

0xcffaf00c: 0xcffaf808 0xcffc2800 0x00000000 0x00000000
 

0x70008086
 0x00000008 

0xcffaf000 0xc03709a8 0xcffaf008 

0xcffc2800 0x00000000 0x00000000
 

0x00000000 0x12378086
 

0x00000000 0x00000000
 

0x70108086
 0x00000009 

0xcffa2800 0xcffa3800 0xcffa2808 

0xcffc2800 0x00000000 0x00000000
 

0x0000000b 0x71138086
 

0x00000000 0x00000000
 

0x00b81013
 

0xcffa3000 0xcffaf000 0xcffa3008 

0xcffc2800 

0xcffa2000 0xcffa3000 0xcffa2008 

0xcffc2800 

0x00000000 0x00000124
 

0x00000000
 

0xcffc2800 0xcffc2800 0xcffaf800 

0xc0327d79 

0x00000010
 

0x00000000
 

(b) False positives of sysfs dirent 

Fig. 4.7.: False positive analysis of dentry and sysfs dirent 

•	 dentry We have 2 FPs of dentry, which are shown in Figure 4.7(a). We consider 

these two instances as FPs because they cannot be found in either the pool of live 

objects or the pool of freed objects. However, if we carefully check each field’s 

value, especially the boxed ones: 0xdead4ead (SPINLOCK MAGIC at offset 12) 

and 0xcf91fe00 (a pointer to dentry operations at offset 88), we cannot 

help but thinking that these are indeed dentry instances instead of FPs. We believe 

that they belong to the case where the slab allocator has freed the memory page of 

the destroyed dentry instances. 

•	 sysfs dirent We have 6 FPs of sysfs dirent among the 2116 detected in­

stances. The detailed memory dumps of the 6 FP cases are shown in Figure 4.7(b). 

After our dynamic refinement, the fields at offsets 32 and 36 are pruned because 

they often contain null pointers. And the final signature entails checking two 

list head data structures followed by a void* pointer (at offsets 4, 8, 12, 16 and 

20, respectively) and checking four non-pointer fields. Note that each list head 
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has only two fields: previous and next pointer. There are 6 memory chunks that match 

our signature in the test memory image. But the chunks are not part of the ground 

truth. We suspect that these chunks are aggregations of multiple data structures and 

the aggregations coincidentally manifest the same pattern. 

Summary: In this experiment, SigGraph achieves zero FN and (much) lower FP rates. In­

tuitively, the reasons are the following: (1) SigGraph-base signatures are structure-oriented 

and thus tend to be more stable than value-oriented approaches. And their uniqueness can 

be algorithmically determined – that is, we can expand a signature along available points-

to edges to achieve uniqueness. (2) SigGraph-based signatures are more “informative” 

as each signature includes information about other data structures; whereas a value-based 

signature only carries information about itself. 

4.7.3 Multiple Signatures 

One powerful feature of SigGraph is that multiple signatures can be generated for 

the same data structure (Section 4.3). We perform the following experiments with the 

task struct data structure to verify that. In each experiment, we exclude one of the 

38 pointer fields of task struct (considering that pointer corrupted) before running 

Algorithm 1. In each of the 38 experiments, the algorithm is still able to compute a 

unique, alternative signature for task struct. Next, we increase the number of cor­
� 

2 � rupted pointer fields from 1 to 2, and conduct C2 = 
38 runs of Algorithm 1 (exhausting 38 

the combinations of the two pointers excluded). The algorithm is still able to generate a 

valid signature for each run. 

The above experiments indicate that SigGraph is robust in the face of corrupted pointer 

fields. However, the robustness does have its limit. At the other extreme, we exclude 37 
�

37 � of the 38 pointer fields of task struct and conduct C37 = = 38 runs of Algorithm 38 38 

1. Among the 38 runs, Algorithm 1 only generates valid signatures in 4 runs, where one 

of the following pointers is retained: fs struct, files struct, namespace, and 

signal struct. 
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4.7.4 Performance Overhead
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Fig. 4.8.: Memory scanning performance 

Since SigGraph may be used for online live memory analysis, we measure the overhead 

of memory scanning using SigGraph signatures. We run both SigGraph-generated scanners 

and the value invariant-based scanners on the testing image (256MB) in a machine with 

3GB RAM and an Intel Core 2 Quad CPU (2.4GHz) running Ubuntu-9.04 (Linux kernel 

2.6.28-17). The final result of the normalized overhead (compared with value-invariant) is 

shown in Figure 4.8. 

As expected, value-invariant scanners always outperform SigGraph scanners. The main 

reason is that: A SigGraph scanner needs to conduct address translation whenever there is 

a memory de-reference, which is not needed by the value invariant scanner. If the depth 

of a SigGraph signature is relatively low (e.g., D = 2), the SigGraph scanner will be 

roughly 10-20 times slower than the corresponding value invariant scanner. Greater depth 

http:Ubuntu-9.04
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often leads to higher overhead because more nodes will need to be examined and more 

address translation needs to be performed. The cases of inode security (D = 7) and 

mb cache entry (D = 6) are such examples. Thus, for data structures with low-depth 

signatures, their SigGraph scanners can be used online. For example, in our experiment, it 

takes only a few seconds to scan fs struct, thread info, and files struct, and 

less than one minute to scan task struct. 

For data structures with a greater depth (due to isomorphism elimination) such as 

inode security and mb cache entry, the scanning time is longer (e.g., about 15 

minutes when we scan a 256MB memory image using the scanner for inode security). 

However, we argue that such cost is acceptable in the context of computer forensics, where 

accuracy and completeness is more important than efficiency. Moreover, the scanning time 

can be reduced by various optimizations such as parallelization or having a pre-scanning 

phase to preclude unlikely cases. 

4.8 Summary 

In this chapter, we have presented SigGraph, a framework that systematically generates 

graph-based, non-isomorphic data structure signatures for brute force scanning of kernel 

memory images. Each signature is a graph rooted at the subject data structure with edges 

reflecting the points-to relations with other data structures. SigGraph-based signatures 

complement value invariant-based signatures for more accurate recognition of kernel data 

structures with pointer fields. Moreover, SigGraph differs from global memory mapping-

based approaches that have to start from global variables and require reachability to all data 

structure instances from them. 
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5. DIMSUM: DISCOVERING DATA STRUCTURE INSTANCES 

USING PROBALISTIC INFERENCE 

In this chapter, we present DIMSUM, the third component in our framework, to enable 

the recognition of data structure instances from un-mappable memory. Such un-mappable 

memory could be (1) the entire free pages of the system, (2) the memory swap file, or (3) 

a corrupted memory dump. Existing memory mapping-guided techniques do not work in 

that scenario as pointers in the un-mappable memory cannot be resolved. To address this 

problem, we thus present our probabilistic inference-based approach DIMSUM. 

5.1 DIMSUM Overview 

Given a set of memory pages and the specification of a target data structure, DIMSUM 

will identify instances of the data structure in those pages with quantifiable confidence. 

More specifically, it automatically builds graphical models based on boolean constraints 

generated from the data structure and the memory page contents. Probabilistic inference is 

performed on the graphical models to generate results ranked with probabilities. DIMSUM 

has the following observations. 

5.1.1 Key Observation 

DIMSUM was first motivated by the “dead memory pages left by terminated processes” 

scenario. More specifically, we notice that, when a process is terminated, neither Windows 

nor Linux operating system clears the content of its memory pages. We believe one of 

the reasons is to avoid memory cleansing overhead. Moreover, Chow et al. [76] found 

that many applications let sensitive data stay in memory after usage instead of “shredding” 

them. Even if an application performs data “shredding”, it is still possible that a crash 
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happens before the shredding operation, leaving some sensitive data in the dead memory 

pages. 

Second, we also observe that dead pages may remain intact for a non-trivial duration, 

which we call their death-span. In fact, we observe that the death-span of the dead pages of 

a Firefox process can last up to 50 minutes after the process terminates, in a machine with 

512 MB RAM, as shown in Figure 5.1. If the machine has a larger RAM or the workload 

after Firefox’s termination is not as memory-intensive, the death-span of dead pages may 

be even longer. A similar study on the age of freed user process data on Windows XP 

(SP2) [77], has shown that large segments of pages can survive for nearly 5 minutes in a 

lightly loaded system; and smaller segments and single pages may be found intact for up 

to 2 hours.
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Fig. 5.1.: Death-span of free frames from a terminated Firefox process 

Finally, we observe that, for a terminated process, the corresponding memory mapping 

information maintained by the OS kernel, such as the process control block and page table, 

are likely to disappear (i.e., be reused) very quickly. The much shorter dead-span of kernel 

objects (typically in a few seconds) – contrary to that of dead application pages – is due 

to the fact that kernel objects are maintained as slab objects by the kernel [78], which uses 

LIFO as the memory recycling policy; whereas memory pages of processes are managed by 
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the buddy system [78] that groups memory frames into lists of blocks having 2k contiguous 

frames, and hence page frames tends to have longer dead-span. 

We point out that the above scenario is not the only one that involves memory pages 

without mapping information. Another interesting scenario is to analyze the Coldboot 

images as demonstrated in [79]: After a machine with modern DRAM is powered off, the 

content of the DRAM will disappear gradually instead of immediately, making it possible 

to obtain partial memory image with no or partial memory mapping information. 

5.1.2 Challenges 

Compared with existing approaches, DIMSUM raises a number of new challenges. The 

first challenge is the absence of memory mapping information. Consequently, given a set 

of memory pages, there is little hint on which pages belong to which process, let alone 

the sequencing of physical pages in the virtual address space of a process. Even if we can 

identify some pointers in a page, we still cannot follow those pointers without the address 

mapping information. 

The second challenge is that DIMSUM may accept an incomplete subset of memory 

pages of a process as input. In this case the application data that reside in the absent 

pages cannot be recovered. However, such data could be useful for the recognition of 

application data that reside in the input pages, especially when a pointer-based memory 

forensics technique is employed. 

The third challenge is the absence of type/symbolic information for dead memory. To 

map the raw bits and bytes of a memory page to meaningful data structure instances, type 

information is necessary. For example, if the content at a memory location is 0, its type 

could be integer, floating point, or even pointer. If these bits and bytes belong to the live 

memory, symbolic information is available and they can be typed through reference path 

(as in [30]). To DIMSUM, however, such information is not available. 
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Fig. 5.2.: Overview of DIMSUM 

5.1.3 Overview 

To address the above challenges, we take a probabilistic inference and constraint solv­

ing approach. Fig. 5.2 shows the key components and operations of DIMSUM. The input 

of the system includes: (1) a subset of memory pages from a computer and (2) the specifi­

cations of data structure(s) of interest. Note that a data structure specification includes field 

offset and type information, which can be obtained from either application documentation, 

debugging information, or reverse engineering [59, 72, 73]. 

A key component of DIMSUM, the constraint generator, transforms the data structure 

specification into constraint templates that are instantiated by the input memory pages. 

These templates describe correlations dictated by data structure field layout, and include 

primitive, pointer, structural, same-page, semantic, and staged constraints (Section 5.3). 

Next, the probabilistic inference component automatically transforms all the constraints 

into a factor graph [67], and efficiently computes the marginal probabilities of all the 

candidate memory locations for the data structure of interest. Finally, it outputs the result 

based on the probability rankings. 

5.2 DIMSUM Design 

The essence of DIMSUM is to formulate the data structure recognition problem as a 

probabilistic constraint solving problem. We first use a working example to demonstrate 

the basic idea, which relies on solving boolean constraints. 
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struct utmplist {
 
00: short int ut_type;
 
04: pid_t ut_pid;
 
08: char ut_line[32];
 
40: char ut_id[4];
 
44: char ut_user[32];
 
76: char ut_host[256];
 
332: long int ut_etermination;
 
336: long int ut_session;
 
340: struct timeval ut_tv;
 
348: int32_t ut_addr_v6[4];
 
364: char __unused[20];
 
384: struct utmplist *next;
 
388: struct utmplist *prev;
 

}
 

Fig. 5.3.: Data structure definition of our working example 

Ideally, our technique takes (1) the data structure specification such as the one defined 

in Fig. 5.3, which is the utmplist data structure showing a list of last logged users in 

a Linux utility program last and (2) a set of memory pages, and then tries to identify 

instances of the data structure in the pages. The idea is to first generate a set of constraints 

from the given data structure. For example, given the predicate definitions presented in 

Table 5.1 and assuming a 32 bit machine, the generated constraint for the utmplist 

structure would be: 

utmplist(a) → Iut type(a) ∧ Iut pid(a + 4)∧ 

Cut line(a + 8)[32] ∧ Cut id(a + 40)[4]∧ 

Cut user(a + 44)[32] ∧ Cut host(a + 76)[256]∧ 

Iut session(a + 336) ∧ Iut etermination(a + 332)∧ 

Iut tv.tv sec((a + 340)) ∧ Iut tv.tv usec((a + 344))∧ . (5.1) 

Iut addr v6((a + 348)[4]) ∧ C unused((a + 364)[20])∧ 

Pnext(a + 384) ∧ utmplist(∗(a + 384))∧ 

Pprev(a + 388) ∧ utmplist(∗(a + 388))∧ 

∗(a + 4)ut pid ≥ 0 

Note that the subscripts are used to denote field names. Intuitively, the above formula 

means that if the location starting at a denotes an instance of utmplist, the location at 

a contains an integer, the location at a + 4 contains an integer as well, a + 8 contains a 

char array with size 32, and so on. The constraint also dictates that the locations pointed-

to by pointers at a + 384 and a + 388 contain instances of utmplist as well. These 
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Table 5.1: Predicate definitions used throughout the paper 

Predicate Definitions 
τ(x) The region starting at x is an instance of a user-defined type τ 
I(x) The location at x is an integer. 
F(x) The location at x is a floating point value. 
D(x) The location at x is a double floating point value. 
S(x) The location at x is a string. 
C(x) The location at x is a char. 
P(x) The location at x is a pointer. 

T (x)[y] The location at x is an array of size y, with each element of type T . 

are called structural constraints as they are derived from the type structure. We may also 

have semantic constraints that predicate on the range of the value at an address. The term 

at the end of the constraint specifies that field ut pid should have a non-negative value. 

Semantic constraints can be provided by the user based on domain knowledge. 

Besides the above constraints, we also extract a set of primitive constraints by scanning 

the pages. These constraints specify what primitive type each location has. We consider 

seven primitive types: int, float, double, char, string, pointer and time. Here, we leverage 

the observation that deciding if a location is an instance of a primitive type, such as a 

pointer, can often be achieved by looking at the value. Suppose that addresses 0, 4, 8, 

12, 16 have been determined to contain integer, integer, non-negative integer, char array 

with size 16, the primitive constraints I(0), I(4), I(8), C(12)[16] (defined in Table 5.1) 

are generated. By conjoining the structural, semantic, and primitive constraints, we can 

use a solver to produce satisfying valuations for utmplist(a), which essentially identifies 

instances of the given type. With the above constraints, a = 0 is not an instance because 

C(a + 8)[32] is not satisfied. In contrast, a = 4 may be one. 

5.2.1 Practical Problems 

However, the basic design faces a number of practical problems in the context of 

DIMSUM. In particular: 
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Uncertainty in Primitive Constraints: While values of primitive types have certain at­

tributes, it is in general hard to make a binary decision for a type predicate by looking at 

the value. In such cases, we expect that our technique is able to reason with probabilities. 

Absence of Page Mappings: As discussed in Section 5.1, a pointer value is essentially 

a virtual address. Without memory mapping information, for constraints like S(∗a), we 

cannot identify the page being pointed to by a and thus cannot decide if a points to a string. 

Incompleteness: We may see only part of a data structure, e.g., some elements in a linked 

list may be missing. Our system should be able to resolve constraints for such cases. 

5.2.2 Probabilistic Inference 

To address the above issues, we formulate the problem as a probabilistic inference prob­

lem [66, 67]. Initial probabilities are associated with individual constraints, representing 

the user’s view of uncertainty. The probabilities are efficiently propagated, aggregated, and 

updated over a graphical representation called factor graph (FG) [67]. After convergence, 

the final updated probabilities of interesting boolean variables can hence be queried from 

the FG. Next we use an example to explain. 

We simplify the case in the Fig. 5.3 by considering only the pointer fields, i.e., fields 

at offsets 384 and 388. For a given address a, let boolean variable x1, x2, and x3 denote 

Tutmplist(a) , Pnext(a + 384), and Pprev(a + 388), respectively. The structural constraint is 

simplified as follows. 

x1 → x2 ∧ x3 (5.2) 

Assume the structural pattern is unique across the entire system, meaning that there are 

no data structures across the system with the same structural pattern. In particular for the 

above pattern, if we observe two consecutive pointers in memory, we can be assured that 

they must be part of an instance of struct utmplist, we have the following constraint. 

x1 ← x2 ∧ x3 (5.3) 
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With this constraint, when we observe x2 = 1 and x3 = 1, we can infer x1 = 1, meaning 

that there is an instance of struct utmplist at the given address a. If x2 = 1 and 

x3 = 0, we infer that x1 = 0. 

In general, assume there are m constraints C1, C2..., and Cm on n boolean variables 

x1, x2, ..., and xn. Functions fC1 fC2 , ..., and fCn describe the valuation of the constraints. 

For instance, let C1 be Equation (5.2), fC1 (x1 = 1, x2 = 1, x3 = 0) = 0. Since all the 

constraints need to be satisfied, the function representing the conjunction of the constraints 

is hence the product of the individual constraint functions, as shown in Equation (5.4). 

f(x1, x2, ..., xn) = fC1 × fC2 × ... × fCm (5.4) 

In DIMSUM, we often cannot assign a boolean value to a variable or a constraint. 

Instead, we can make an observation about the likelihood of a variable being true. For 

instance, from the value stored at offset a + 384, we can only say that it is likely a pointer. 

Moreover, if the structural pattern of Tutmplist is not unique, i.e., other data structures may 

also have such a pattern, we can similarly assign a probability to constraint (5.3) according 

to the number of data structures sharing the same pattern. 

Assume we use a set of boolean variables x1, x2, ..., xn to represent type predicates. 

Probabilities are associated with variables and constraints. In our previous example, assume 

that we are 100% sure that x1 → x2 ∧ x3 (C1); 80% sure that x1 ← x2 ∧ x3 (C3) because 

other data structures manifest a similar structural pattern; 90% sure that x2 is a pointer 

(C2); 90% sure that x3 is a pointer (C4). We have probabilistic functions: 

 

 1 if (x1 → x2 ∧ x3) = 1 
fC1 (x1, x2, x3) = (5.5) 

 0 otherwise 

 

 0.9 if x2 = 1 
fC2 (x2) = (5.6) 

 0.1 otherwise 
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 

 0.8 if (x1 ← x2 ∧ x3) = 1
 
fC3 (x1, x2, x3) = (5.7)
 

 0.2 otherwise 

 

 0.9 if x3 = 1 
fC4 (x3) = (5.8) 

 0.1 otherwise 

With these probabilistic constraints, the joint probability function is defined as fol­

lows [66, 67]. 
fC1 × fC2 × ... × fCm p(x1, x2, ..., xn) = 

Z 
(5.9) 

Z =
 

(fC1 × fC2 × ... × fCm ) (5.10) 
x1,...,xn 

In particular, Z is the normalization factor [66, 67]. 

It is often more desirable to further compute the marginal probability pi(xi) as follows. 

     

pi(xi) = ... ... p(x1, x2, ..., xn) (5.11) 
x1 x2 xi−1 xi+1 xn 

In other words, the marginal probability is the sum over all variables other than xi. 

Variable xi often predicates on a given address having the type we are interested in. Hence, 

in order to discover the instances of the specific type, DIMSUM orders memory addresses 

by their marginal probabilities. 

Table 5.2: Boolean constraints with probabilities 

x1 

0 

x2 

0 

x3 

0 

fC1 (x1, 

x2, x3) 

1 

fC2 (x2) 

0.1 

fC3 (x1, 

x2, x3) 

0.8 

fC4 (x3) 

0.1 
0 0 1 1 0.1 0.8 0.9 
0 1 0 1 0.9 0.8 0.1 
0 1 1 1 0.9 0.2 0.9 
1 0 0 0 0.1 0.8 0.1 
1 0 1 0 0.1 0.8 0.9 
1 1 0 0 0.9 0.8 0.1 
1 1 1 1 0.9 0.8 0.9 
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Consider the previous example. Table 5.2 presents the values of the four probability 

constraint functions for all possible variable valuations. 

L 

(1, x2, x3)× fC2x2,x3 
fC1 (x2) 

p(x1 = 1) = L 
(x1, x2, x3)× fC2 (x2)x1,x2,x3 

fC1 

0× 0.1 + 0× 0.1 + 0× 0.9 + 1× 0.9 (5.12) = 
1× 0.1 + 1× 0.1 + ... + 1 × 0.9 

0.9 
= = 0.31 

2.9 

1× 0.9 + 1× 0.9 + 0× 0.9 + 1× 0.9 
p(x2 = 1) = 

2.9 (5.13) 
= 0.93 

Assume only constraints C1 and C2 are considered, Equation (5.12) describes the com­

putation of the marginal probability of p(x1 = 1), i.e., the probability of the given ad­

dress being an instance of struct utmplist. Equation (5.13) describes the marginal 

probability of p(x2 = 1). Note that it is different from the initial probability 0.9 in 

fC2 . Intuitively, the value assigned in fC2 is essentially an observation, which does not 

necessarily reflect the intrinsic probability. In other words, the initial probability in fC2 is 

what we believe and it reflects only a local view of the constraint, whereas the computed 

probability represents a global view with all initial probabilities over the entire system 

being considered. 

Similarly, when all four constraints are considered, we can compute p(x1 = 1) = 0.71. 

Intuitively, compared to considering only C1 and C2, now we also have high confidence on 

x3 (C4) and we have confidence that as long as we observe x2 and x3 being true, x1 is very 

likely true (C3). Such information raises the intrinsic probability of x1 being true. 

Note that depending on the number of variables and the number of constraints, the com­

putation entitled by Equation (5.11) could be very expensive because it has to enumerate 

the combinations of variable valuations. A Factor graph [63, 66, 67] is a representation for 

a probability function that allow for highly efficient computation. In particular, a factor 

graph is a bipartite graph with two kinds of nodes. A factor node represents a factor in the 

function, e.g., fCi in Equation (5.9). A variable node represents a variable in the function, 
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x1: the location at a contains


 a struct utmplist
 

x2: a+384 contains a pointer 

x3: a+388 contains a pointer 

C1: x1 ĺ x2 x3 C2: 

Fig. 5.4.: Factor graph example 

e.g., xi in Equation (5.9). Edges are introduced from a factor to the variables of the factor 

function. Fig. 5.4 presents the factor graph for the probability function for the previous ex­

ample. The sum-product algorithm [66,67] can leverage factor graphs to compute marginal 

probabilities in a highly efficient way. The algorithm is iterative. In particular, probabilities 

are propagated between adjacent nodes through message passing. The probability of a 

node is updated by integrating the messages it receives. The algorithm terminates when 

the probabilities become stable. At a high level, one can consider initial probabilities as 

energy applied to a mesh such that the mesh transforms to strike a balance and minimize 

free energy. Probabilistic inference has a wide range of successful applications in artificial 

intelligence, information theory and debugging [62, 63]. In this paper, DIMSUM is built 

on a probabilistic inference framework called Infer.NET [65]. 

In order to conduct probabilistic reasoning using FG, we first assign a boolean variable 

to each type predicate, indicating if a specific address holds an instance of a given type. 

We create a variable for each type of interest for each memory location. In other words, if 

there are n data structures of interest and m memory locations, we would generate n ∗ m 

boolean variables. We will introduce a pre-processing phase that can reduce variables 

needed by reducing m. Then constraints are introduced. Constraints are essentially boolean 

formula on the boolean variables. Initial probabilities are assigned to these constraints to 

express uncertainty. Constraints and initial probability assignments are programmed as 

scripts in Infer.NET. FGs are constructed by these scripts. The Infer.NET engine conducts 

inference on the FGs. After that, data structure instances can be identified by querying the 

fC4 

x2 x1 x3 

fC1 fC3fC2 

x2 C3: x1 ĸ x2 x3 C4: x3 

http:Infer.NET
http:Infer.NET
http:Infer.NET
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probabilities of the corresponding boolean variables. We report those within the highest 

probability cluster to the user. 

5.3 Generating Constraints 

We now explain how we model the memory forensics problem with constraints. The 

constraints fall into the following categories: primitive constraints that associate initial 

probabilities to individual boolean variables; structural constraints that describe field struc­

tures; pointer constraints that describe dependencies between a data structure and those be­

ing pointed to by its pointer fields; same-page constraints dictating multiple data structures 

reside in the same physical page; semantic constraints that are derived from the semantics 

of the given data structures. All these constraints are associated with initial probabilities. 

They are conjoined and updated by the inference engine. 

5.3.1 Primitive Constraints 

Primitive constraints allow us to assign initial probabilities to boolean variables. Sam­

ple primitive constraints are fC2 and fC4 in Eq. (5.6) and (5.8) in Section 5.2. A primitive 

constraint is translated to a factor node in FG. It has only one outgoing edge to the boolean 

variable (Fig. 5.4). We consider the following primitive types: int, float, double, 

char, string, pointer and time. 

Pointer: To decide the initial probability of a boolean variable denoting that a memory 

location is a pointer, we check whether the value of 4 contiguous bytes starting at a given 

location is within the virtual address space of a process (e.g., in the .data, .bss, .heap, 

and .stack sections). If true, we assign a HIGH initial probability (0.9) to the primitive 

pointer constraint, representing we believe the given location is likely a pointer. The other 

primitive constraints for the same location would be assigned LOW (0.1) initial probability. 

Note that setting HIGH/LOW initial probabilities is a standard practice in probabilistic 

inference. They do not reflect the intrinsic probabilities of boolean variables but rather 

what we believe. The absolute values of initial probabilities are hence not meaningful. 
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NULL pointers have the special value 0 that could be confused with a char or an integer, 

we will discuss how to handle them later. 

String: To decide the initial probability of a string (a char array), we inspect the bytes 

starting with the given location. Firstly, a string ends with a NULL byte. Secondly, a string 

often contains printable ASCII ([32, 126]) or some special characters such as carriage return 

(CR), new-line (LF), and tab (Tab). If the two conditions are satisfied, the string constraint 

is set to HIGH, and other primitive constraints are set to LOW. It is possible that the bytes 

starting at x look like both a string and an integer. A unique advantage of probabilistic 

inference is that we can assign HIGH probabilities to multiple primitive constraints on 

x. Intuitively, it means we believe it could be multiple types. Assigning multiple HIGH 

probabilities regarding the same memory location allows the location playing different roles 

during inferencing and we do not need to make the decision upfront on if the location 

is a string or an integer. The inference process will eventually make the decision, by 

considering the probabilities from other parts of the FG through their dependencies. 

Char: If a field with a char type is packed with other fields, that is, it is not padded to the 

word boundary, it becomes hard to disambiguate a char value from a byte that is just part 

of an integer or a floating point value. We have to set the probability to HIGH for all these 

primitive constraints. Fortunately, a char field is usually padded. Hence, we can limit our 

test to offsets aligned with the word boundary. More particularly, we only assign a HIGH 

probability to locations whose four bytes values fall into {0, 255}. 

Int: Compared to the above primitive types, integers have fewer attributes to allow disam­

biguation. Theoretically, any four bytes could be a legitimate 32-bits integer value. In some 

cases, we are able to leverage semantic constraints to avoid assigning HIGH probabilities. 

For instance, it is often possible to find out from the data structure specification that 

an integer timeout field must have the value within 0-210 . We could use such semantic 

information to assign LOW probabilities to values outside the range. 

Float/double: According to the standard of floating-point format representation defined in 

IEEE 754 [5], we know the numerical value n for a float variable is: n = (1 − 2s) × 
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(1 + m × 2−23)× 2e−127, where s is a sign bit (zero or one), m is the significand (i.e., the 

fraction part), and e is the exponent. Fig. 5.5 shows this representation. 

Sign (1bit) 

31 030 23 22 

Exponent(8 bits) Significand (fraction, 23bits) 

... 

s e m 

Fig. 5.5.: Float point representation 

Now if we examine the value of a floating point variable, suppose s = 0 and e = 0, 

then the numerical value is very small, and it is within [0, 2−126]. Thus, we could infer 

that most floating point values have their leftmost 9 bits set with at least one bit. If all the 

leftmost 9 bits have been set with 1 (i.e., s = 1, e = 255), then the numerical value for such 

floating point variable is within [−2128 ,−2105], which is a very large negative value. If the 

sign bit is 0 (i.e., s = 0, e = 255), then the numerical value is within [2105 , 2128], which is a 

very large positive value. In practice, we believe floating point values rarely fall into such 

ranges. 

Therefore, we check the hexadecimal value at page offset x, that is the ∗x. If ∗x < 

0x007fffff, 0x7f800000 < ∗x < 0x7f8fffff, or 0xff800000 < ∗x < 

0xffffffff, we set the initial probability of F(x) to LOW, otherwise HIGH. The double 

type is handled similarly. The details are elided. 
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Fig. 5.6.: Common high bits in a time data structure 

Time: Time data structures are often part of many interesting data structures. A time 

data structure maintains the cumulative time units (e.g., seconds or microseconds) since 
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a specific time in the past. Its bit representation has a general property that high bits are 

less frequently updated than lower bits. It allows us to create constraints to infer time data 

structures by using common bit fields for all time values during a given period. 

For example, Fig. 5.6 shows the values of the highest 24 bits of a time data structure 

of 64 bits over a period of time. During the period between mid-2002 and mid-2011, the 

highest 24 bits have the common value, 0x002d. These constraints can be used to infer time 

object instances. Similarly, in 32-bit Unix systems, the time data structure has 32 bits. The 

four highest bits are updated around every 8.5 years. 

Lastly, zeros present an interesting case for us because it could have multiple meanings: 

an integer with the value 0; an empty string; a null pointer; and so on. We assign HIGH 

probabilities to all these types except for cases in which the fields in vicinity are also having 

zero values. The reason is that consecutive zeros often imply unused memory regions. 

In particular, if the number of consecutive zeros exceed the size of the data structure we 

are interested in, the probability is set to LOW. In general, the probability is inversely 

proportional to the length of consecutive zeros. 

5.3.2 Structural Constraints 

DIMSUM takes the specification of a set of data structures as input. The specification 

includes the field offsets and field types of the data structures. For instance, if data structure 

T of interest has a pointer field of Tx type, Tx’s definition is transitively included as well. 

Then we translate each type into a boolean structural constraint describing the dependencies 

between the data structure and its fields. Eventually, the boolean constraints are modeled 

into the factor graph automatically. 

A structural constraint is intended to denote the dependence that as long as a given 

location x is an instance of T , then x’s offsets must be of the fields types described by T ’s 

specification. An example of such constraint was introduced in Eq. (5.1) in the beginning 

of Section 5.2. In particular, for each memory location, we introduce a boolean variable 

to predicate if it is an instance of T . We also introduce a factor node to represent the 
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constraint. Edges are introduced between the factor node and the newly introduced variable 

and the variables describing the corresponding primitive field types. These variables were 

introduced in the previous step when primitive constraints were generated. A sample factor 

graph after such process is the subgraphs rooted at fC1 in Fig. 5.4. Since the constraint 

is always certain, meaning as long as x is of T type, its offsets must follow the structure 

dictated by T ’s definition. The probability of structural constraints are always 1.0, meaning 

that they must hold (see Eq. (5.5) in Section 5.2). 

5.3.3 Pointer Constraints 

If a field a + f is a pointer T∗, in the structural constraint, besides forcing a + f to be 

a pointer, we should also dictate ∗(a + f) be of T type. In particular, we will add boolean 

variables T (∗(a + f)) to the structural constraint. Note that T could belong to primitive 

types, user defined types, or function pointers. Variables utmplist(∗(a + 384)) and 

utmplist(∗(a + 388)) in Equation (5.1) are examples. Ideally, these variables have 

been introduced at the time when we typed the page of the pointer target (e.g., the page 

that ∗(a + 384) points to), we only need to introduce edges from the factor node to such 

variables. However, since we do not have page mapping information, it is impossible to 

identify the physical location of the pointer target and the corresponding boolean variable. 

We observe that the lower 12 bits of a virtual address indicates the offset within a 

physical page. Hence, while we cannot locate the concrete physical page corresponding to 

the given address, we can look through all physical pages and determine if there are some 

pages that have the intended type at the same specified offset. 

From now on, we denote a memory location with symbol ap, with a being the page 

offset and p the physical page ID. Hence, a boolean variable predicating a location ap 

has type T is denoted as T (ap). For pointer constraints, we introduce boolean variables 

predicating merely on offsets. In particular, T (∗((a + f)p)&0x0fff ) represents that there is 

at least one physical page that has a type T instance at the page offset (the least 12 bits) of 
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the pointer target at location (a + f)p. We call such boolean variables the offset variables 

and the previous variables considering both offsets and page IDs the location variables. 

We further introduce pointer constraints that are an implication from an offset variable 

to the disjunction of all the location variables with the same offset, to express the “there 

is at least one” correlation. The probability of the constraint is not 1.0 as it is likely there 

is not such a physical page if the page has been re-allocated and overwritten. Ideally, the 

probability is inversely proportional to the duration between the process termination and the 

analysis. In this paper, we use a fixed value δ to represent that we believe in δ probability 

such a remote page is present. With pointer constraints, we are able to construct an FG 

that connects variables in different physical pages and perform global inference such that 

probabilities derived from various places can be fused together. 

Example. Let’s revisit the example in Section 5.2.2. Regular variables x1, x2, and x3 now 

denote utmplist(ap) for a given page offset a, Pnext((a + 384)p), and Pprev((a + 388)p), 

respectively. Superscript p can be considered as the id of the physical page. Offset variables 

y1 and y2 represent utmplist(∗((a+384)p)&0x0fff ) and utmplist(∗((a+388)p)&0x0fff ). 

Constraint C1 (i.e. Equation (5.2)) is extended to the following. 

x1 → x2 ∧ x3 ∧ y1 ∧ y2 (5.14) 

The probability of fC1 remains 1.0. Assume we have three physical pages p, q, and 

r in DIMSUM’s memory page input. Let b = ∗((a + 384)p)&0x0fff and c = ∗((a + 

388)p)&0x0fff , the page offsets of the pointers stored at (a + 384)p and (a + 388)p. 

Let x4, x5 and x6 denote utmplist(bp), utmplist(bq), and utmplist(br), respectively; 

and x7, x8 and x9 denote utmplist(cp), utmplist(cq), and utmplist(cr). These variables 

are created when typing pages p, q and r. The pointer constraints are thus represented as 

follows. 

(C5) y1 → x4 ∨ x5 ∨ x6 (5.15) 

(C6) y2 → x7 ∨ x8 ∨ x9 (5.16) 
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The factor for C5 is defined as follows. 

 

 δ if (y1 → x4 ∨ x5 ∨ x6) = 1 
fC5 (y1, x4, x5, x6) = (5.17) 

 1− δ otherwise 

Recall δ reflects our overall belief of the completeness of the input memory pages. Fac­

tor fC6 can be similarly defined and hence omitted. Fig. 5.7 presents the FG enhanced with 

the pointer constraint C5. Observe that while many constraints (e.g., primitive constraints) 

are local to a page, the pointer constraint C5 and the enhanced structural constraint C1 

correlate information from multiple pages. For instance, the probability of x5 in page q can 

be propagated through the path x5 ⇒ fC5 ⇒ y1 ⇒ fC1 ⇒ x1 to the goal variable x1. The 

probability of x1, which is the fusion of all the related probabilities, indicates if we have an 

instance utmplist at the given address a. 

Page p 

fC4 

x2 x1 x3 

fC1 fC2 fC5 

x4 y1 x5 

...… 

x6 

... 

Page q Page rgoal 

Fig. 5.7.: The factor graph enhanced with a pointer constraint. Constraints C3 and C6 are 
elided for readability. The modified part is highlighted. Constraints and variables local to 

a page are boxed. 

5.3.4 Same-Page Constraints 

We observe that the values of multiple pointer fields may imply that the points-to targets 

are within the same page. For instance in struct utmplist in Fig. 5.3, if the higher 

20 bits of the addresses stored in fields a + 384 and a + 388 are identical, we know their 

points-to targets must be within the same page. Hence, if we observe field a + 384 in page 

q and a + 388 in page r hold instances of utmplist, they should not be considered as 

support for a in p holds an instance of utmplist. We leverage same-page constraints to 

reduce false positives. 
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If the values of multiple pointer fields are within the same page, these pointers should 

not have individual pointer constraints. Instead, we introduce a joint pointer constraint that 

dictates the objects being pointed to by the pointers must reside in the given offsets of the 

same page. In our running example, the structural constraint in Equation (5.14) is changed 

to the following. 

x1 → x2 ∧ x3 ∧ y1·2 (5.18) 

Variable y1·2 represents a joint offset variable. It represents that there is at least one 

physical page that has utmplist instances at offsets specified by b = ∗((a+384)p)&0x0fff 

and c = ∗((a + 388)p)&0x0fff . The joint constraint is hence the following. 

y1·2 → (x4 ∧ x7) ∨ (x5 ∧ x8) ∨ (x6 ∧ x9) (5.19) 

5.3.5 Semantic Constraints 

Besides the aforementioned constraints, there could exist semantic constraints imposed 

by the data structure definitions. For example, a field pid tends to have value ranges from 

0 to 40000; an unused fields tends to have zero values. Meanwhile, it is also possible that 

a particular data structure field has value invariant. As such, semantic constraints can be 

used to prune unmatched fields. 

5.3.6 Staged Constraints 

The previous discussion implies that we need to create many boolean variables for each 

memory location. In particular, for each offset in every page, we introduce variables to 

predicate on its various primitive types and types of interest. Constraints are introduced 

among these variables, describing any possible dependencies. The order of introducing 

the constraints is irrelevant. The entailed FG is often very large and takes a lot of time to 

resolve. We develop a simple preprocessing phase to reduce the number of variables and 

constraints. In particular, we first scan each input page and construct primitive constraints, 
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describing if each offset is an integer, a char, a pointer, etc. In the second step, we construct 

structural and other constraints. We avoid introducing a variable predicating on if a base 

address a is of type T if any of the corresponding field primitive constraints has a LOW 

probability. We leverage the observation that such inference is simple and does not need 

FG to proceed. 

5.4 Implementation 

1 using System;
 

2 using MicrosoftResearch.Infer.Models;
 

3 using MicrosoftResearch.Infer.Distributions;
 

4 using MicrosoftResearch.Infer;
 

5 public class Simple_DIMSUM_Example
 

6 {
 

7 static void Main()
 

8 {
 

9 //1. Declare Boolean Variables
 

10 Variable<bool> x1 = Variable.Bernoulli(0.5).Named("x1");
 

11 Variable<bool> x2 = Variable.Bernoulli(0.5).Named("x2");
 

12 Variable<bool> x3 = Variable.Bernoulli(0.5).Named("x3");
 

13
 

14 //2. Define Probabilitics Model
 

15 Variable.ConstrainEqualRandom<bool, Bernoulli>
 

16 (!x1 | (x2 & x3), new Bernoulli(1));
 

17 Variable.ConstrainEqualRandom<bool, Bernoulli>
 

18 (x2, new Bernoulli(0.9));
 

19 Variable.ConstrainEqualRandom<bool, Bernoulli>
 

20 (!(x2 & x3) | x1, new Bernoulli(0.8));
 

21 Variable.ConstrainEqualRandom<bool, Bernoulli>
 

22 (x3, new Bernoulli(0.9));
 

23
 

24 //3. Create an Inference Engine
 

25 InferenceEngine ie = new InferenceEngine();
 

26 ie.ShowFactorGraph = true;
 

27
 

28 //4. Compute Marginal Probabilities
 

29 Console.WriteLine("x1: " + ie.Infer(x1));
 

30 }
 

31 }
 

Fig. 5.8.: Sample code on using Infer.NET to model C1 - C4 in our working example and 
compute p(x1). 

The key part of DIMSUM is the probabilistic inference component. We use Infer.NET, 

a framework for belief propagation with factor graphs as its internal model [65]. To use 

such framework, we did the following: (1) declare the boolean variables associated with 

each candidate memory cell, (2) define the corresponding constraints using their modeling 

API in C# code, (3) create an inference engine, and (4) execute the inference query over 

the boolean variables of interest. 

http:Infer.NET
http:Infer.NET
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Fig. 5.9.: Factor graph of the example code from Infer.NET. Note each variable is denoted 
as a circle and each factor or constraint as a square. If a variable participates in the factor 

or the constraint, then an edge is shown between the corresponding circle and square. 

We use our working example (Equation [2-8])) to demonstrate the process. As il­

lustrated in Fig. 5.8, we declared three boolean variables x1, x2, and x3, initially with 

Bernoulli value of 0.5 (meaning they have a 50% possibility of being the instances as we 

have no observations yet). Lines 15-16 model Equation (5.5). Similarly, Equation (5.6), 

Equation (5.7) and Equation (5.8) are modeled from line 17 to line 22. After that, we 

created an inference engine (line 25), and visualized the factor graph (line 26) (for debug 

and understanding purpose). Finally, we computed the marginal probability of x1 (line 

29), and eventually we got p(x1) = 0.71, which corresponds to the probability of the given 

http:Infer.NET
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address being an instance of the type of interest. Also, in this factor graph, there are a total 

of 9 boolean variables (represented as circle), and 13 factors or constraints (represented as 

square). Some variables and factors are generated internally. 

The implementation of our inference component is mainly in C#. When using our 

system, users need to provide the subject data structure specification and memory pages. 

DIMSUM then processes the pages, generates constraints, and compiles the constraints 

to C# code, which will further get compiled and linked with other supporting libraries 

from Infer.NET. Running the compiled binary delivers the final data structure instance(s) 

uncovered. 

5.5 Evaluation 

In our DIMSUM evaluation, we first present our experiment setup in Section 5.5.1, then 

the experimental results of discovering data structure instances without memory mapping 

information in Linux platform in Section 5.5.2. We also evaluate the sensitivity of the 

setting of the HIGH/LOW probabilities in Section 5.5.3. Finally we evaluate the cost of 

DIMSUM in Section 5.5.4. 

5.5.1 Experiment Setup 

Our evaluation scenario involve dead memory pages. Such dead pages come from 

terminated processes, and the virtual memory mapping information is no long available. 

Essentially, DIMSUM takes a set of (dead) physical pages, and identifies data structure 

instances in them. 

To enable the evaluation, we have to first collect the ground truth so that we can compare 

it with the results reported by DIMSUM to measure false positives (FP) and false negatives 

(FN). We extract the ground truth in two steps: The first step is to extract data structure 

instances from the application process’ virtual space via program instrumentation. In 

particular, given a data structure of interest, we instrument the program to log allocations 

and de-allocations of the data structure. Then, upon process termination, we visit the 

http:Infer.NET
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log file to identify the data structure instances that have been deallocated but not yet 

destroyed. These are essentially the ground truth. The second step is to find the physical 

residence pages of these instances using page mapping information. The second step is 

needed as DIMSUM operates directly on physical pages. We implement the ground truth 

extraction component in QEMU [80] and an Android emulator (based on QEMU as well). 

Specifically, we trap the system call sys exit group to perform the extraction. Note 

that, on the Android platform, executables are in the form of byte code and their execution 

is object oriented. We have to tap into the emulator to translate object references to memory 

addresses. 

The input to DIMSUM is all the dead memory in the system 1. To acquire all dead pages 

across the system, we enhance QEMU to traverse kernel data structures such as memory 

zones and page descriptors. 

To emulate the scenario where some dead pages – especially those containing data 

structures of interest or their supporting data (e.g. those data structures that are pointed to 

by pointers in the data structure of interest) – are reused for new processes, we vary the 

number of dead pages provided to DIMSUM. In our experiments, we study three settings: 

33%, 67%, and 100%. For example, 33% means that we randomly select 33% of the dead 

pages as input to DIMSUM. 

Comparison with value-invariant and SigGraph We also compare DIMSUM with other 

techniques that can be adopted for un-mappable memory forensics. The first technique 

to compare with is a value invariant approach similar to the approaches in [32, 41, 42], 

leveraging field value patterns to identify data structure instances. The patterns we use are 

mainly the value patterns for pointers and those derived from domain knowledge. 

The second technique to compare with is a variant of SigGraph [31]. SigGraph is a 

brute force memory scanning technique. It leverages the points-to relations between data 

structures and uses a points-to graph rooted at a data structure as its signature for scanning. 

Note that the original SigGraph relies on page mappings to traverse pointers and thus 

1Live memory forensics is outside the scope of this chapter. It can be achieved by techniques guided by page 
mapping such as SigGraph [31] (presented in Chapter 4 and KOP [30]). 
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cannot be applied to our “un-mappable memory” scenario. We implement a variant of 

SigGraph, called SigGraph+, which tries to aggressively traverse pointers even without 

page mappings. In particular, during scanning, SigGraph+ tries to traverse a pointer without 

mappings, it identifies the page local offset (the lower 12 bits) of the pointer value, say x, 

and then tries to look for a match at offset x among all dead pages. For instance, assume 

the graph signature of a type T is that its field f points to a type T1. Assume the page offset 

of the pointer value at the f field is x. As along as it can find at least one page whose offset 

x is an instance of T1, SigGraph+ considers that an instance of T is identified. 

5.5.2 Effectiveness 

In the following, we present the experimental results of applying DIMSUM to discover 

(1) user login records, (2) browser cookies, (3) email addresses, and (4) messenger contacts 

from applications on Linux. A summary of these experiments is presented in Table 5.3. The 

specific data structures of interest, the applications, and the size of the target data structures 

are reported in the 1st , 2nd, and 3rd column, respectively. The 4th column reports the total 

number of input pages provided to DIMSUM, and the 5th column shows the total number 

of true instances. We compare DIMSUM with value-invariant and SigGraph+ . Columns 

“#R”, “FP%” and “FN%” report the total number of instances identified by the correspond­

ing approaches, the False Positive (FP), and False Negative (FN) rate, respectively. 

From this table, we make the following observations: (1) Value-invariant has high FPs 

and very low FNs, (2) SigGraph+ has high FPs as well, and low FNs, (3) DIMSUM has 

significant less FPs and low FNs. On average, the FPs for value-invariant, SigGraph+, and 

DIMSUM are 65.5%, 38.5%, and 19.0%, respectively; the FNs are 0.4%, 8.3%, and 5.4%. 

Note the real FP rate of DIMSUM may be lower than the reported number because the 

two 100% false positive cases (those with superscripts in Table 5.3) can be easily pruned 

because the absolute value of the probability is very low (below 0.5). More details will be 

discussed in the case study. Precluding these two cases, DIMSUM has only 8.0% FP. 
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Table 5.3: Summary on discovering data instances of interest for user applications in Linux. Note the two ∗ false positives can 
easily be pruned by looking at the absolute value of the probability. 

Data of 
Interest 

Login record 
utmp 

Benchmark 
Program 

last 
2.85 

Size #Input 
Pages 

27266 
392 18186 

8898 

#True 
Inst. 

8 
6 
0 

Value-Invariant 

#R FP% FN% 

48 83.3 0.0 
46 87.0 0.0 
40 100.0 0.0 

#R 

6 
2 
0 

SigGraph+ 

FP% FN% 

0.0 25.0 
0.0 66.7 
0.0 0.0 

DIMSUM 
Factor Graph 

#Var #FC #R FP% 

507 709 8 0.0 
435 609 6 0.0 
405 567 1 100.0∗ 

FN% 

0.0 
0.0 
0.0 

Browser 
Cookies 

w3m 
0.5.1 

31303 
80 20848 

10423 

23 
23 
0 

93 76.3 0.0 
93 76.3 0.0 
70 100.0 0.0 

35 
35 
9 

34.3 0.0 
34.3 0.0 

100.0 0.0 

1874 2613 22 0.0 
1874 2613 22 0.0 
1260 1782 9 100.0∗ 

4.3 
4.3 
0.0 

chromium 
8.0.552.0 

45308 
44 30205 

15103 

25 
19 
9 

89 71.9 0.0 
61 68.9 0.0 
49 81.6 0.0 

82 
56 
43 

69.5 0.0 
66.1 0.0 
79.1 0.0 

1068 1157 45 44.4 
976 1037 38 50.0 
784 833 16 43.8 

0.0 
0.0 
0.0 

Address 
Book 

pine 
4.64 

33186 
144 22123 

11063 

124 
96 
63 

1216 90.3 4.8 
1174 92.2 2.1 
1142 94.5 0.0 

229 
174 
88 

48.5 4.8 
50.1 10.4 
56.8 39.7 

13056 17607 101 0.0 
11468 15594 79 0.0 
8992 11683 42 0.0 

18.5 
17.7 
33.3 

Sylpheed 
3.0.3 

46504 
48 31002 

15502 

309 
204 
92 

412 25.0 0.0 
244 16.4 0.0 
128 28.1 0.0 

412 
244 
128 

25.0 0.0 
16.4 0.0 
28.1 0.0 

12040 16588 323 5.0 
7223 9644 194 0.0 
3537 4710 82 0.0 

0.6 
4.9 

10.9 

Contact 
List 

pidgin 
2.4.1 

58743 
60 39163 

19580 

300 
198 
98 

491 38.9 0.0 
259 23.6 0.0 
130 24.6 0.0 

485 
254 
126 

38.8 1.0 
22.8 1.0 
23.0 1.0 

8874 12543 297 0.0 
5241 7521 196 0.0 
2595 3724 97 0.0 

1.0 
1.0 
1.0 
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A Case Study 

We further zoom in on one case to concretize our discussion. In the study of utility 

program last, we acquired 8 true instances and 27266 input pages, including the 2 pages 

that contain the 8 true instances. 

The detailed result with the three different settings are presented in Fig.s 5.10(a), 5.10(b), 

and 5.10(c), respectively. Note in these figures, the X-axis represents the page offset within 

a physical page. For DIMSUM, Y -axis represents the probability of a match. For value-

invariant and SigGraph+, since there is no probability associated, we just add “V” and “S” 

to the Y -axis to show their results. Also, in these figures, a ground truth is marked with ×. 

A data point marked with both × and the symbol of the technique means the technique 

identifies a true positive (TP). For example, the data point marked with both × and Δ 

as indicated in the top cluster in Fig. 5.10(a) is a TP for DIMSUM. A point with only 

a technique symbol indicates a false positive (FP). For example, the nodes in the right 

bottom of Fig. 5.10(a) are FPs for the value-invariant approach. Note that DIMSUM only 

reports nodes in the top cluster. Hence, those DIMSUM data points that are not in the top 

cluster are not FPs, even though they are not marked with ×. A point with only × indicates 

a FN. For DIMSUM, any single × symbols that are not in the top cluster are FNs. 

When 100% input pages are provided to DIMSUM (as shown in Fig. 5.10(a)), DIM­

SUM successfully identifies all ground truth without any FPs or FNs – in the top cluster 

of points whose probability is greater than 0.95. SigGraph+ identifies 6 instances with 

25% FN, and the value-invariant approach identifies 48 instances with 83.3% FP. Next, we 

randomly select 67% of the input pages. One page containing 2 true instances is precluded 

as the result of the random selection. The result is shown in Fig. 5.10(b). DIMSUM 

identifies all remaining 6 true instances in the top cluster. In contrast, SigGraph+ in this 

case identifies only 2 true instances, because for the other 4 instances, their graph signatures 

are not complete due to the missing pages. In contrast, DIMSUM is able to survive as 

it aggregates sufficiently high confidences from the fields in the remaining 67% pages. 

Finally, when 33% pages are selected, all the true instances are precluded. DIMSUM 
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identifies one instance in its top cluster as shown in Fig. 5.10(c), which is a false positive. 

But we want to point out DIMSUM in the mean time determines that the instance has only 

a probability lower than 0.50. The user can easily discard such results. 

False Positive Comparison 

Below we discuss the FP and FN comparison in more details. 

Value-invariant has high FPs because it only looks at the value patterns of the fields in 

the target data structure. It does not try to collect additional confidence from the child data 

structures (those pointed-to by the pointer fields in the target data structure). The end result 

is that it admits lots of bogus data structure instances. 

SigGraph+ also has high FPs. Recall that as an extension of SigGraph, SigGraph+ also 

uses the points-to graph signature to search for instances of a data structure (Section 5.5.1). 

Given a pointer field “T* f;” of the data structure, it tries to confirm if *(f) holds an 

instance of T. However, since memory mapping is not available, f cannot be resolved, it 

aggressively looks for any instance of T among all pages at the page offset f&0x0fff. 

The consequence is that it may find such an instance that was indeed not pointed-to by 

f. The situation is particularly problematic when T is a popular type (e.g., string) so that 

there are instances of this type at almost any page offset. Another main reason is that it 

cannot propagate probabilities among different data structures like DIMSUM to reduce the 

mis-perception. 

DIMSUM has low FPs. As explained in Section 5.5.2, the only case (utmp and the 

33% setting) with a 100% FP rate indeed has a very low probability, and is hence an 

easy-to-prune FP. The result strongly supports the effectiveness of DIMSUM. Probabilistic 

inference indeed allows global reasoning over all the connected data structures, collecting 

and aggregating confidence from all over the places, eventually distinguishing the true 

positives. The DIMSUM FPs for chromium are mainly caused by the simplicity of the 

cookie data structure. In other words, DIMSUM does not have a lot of sources to collect 

enough confidence to distinguish true positives from others. Interestingly, for the 5% FPs 



95 

 2e+07

 4e+07

 6e+07 

True Data Value-Invariant 
DIMSUM SigGraph+


Top ClusterTop Cluster
 

TP of DTP of D 

FN of SFN of S TP of STP of S 

TP of VTP of V FP of VFP of V 

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y 

P
ro

ba
bi

lit
y

19000

20000

21000

22000

23000

24000

25000

2e+07

4e+07

6e+07

8e+07

1e+08 

1.0

 0.8 

0.6

 0.4

 0.2

 0

S


V
 

Offset in Memory Dump File 

(a) last (100%) 
True Data Value-Invariant 
DIMSUM SigGraph+

1.0

 0.8 

0.6

 0.4

 0.2

 0

S


V
 

142500

143000

143500

144500

145500

146500

144000

145000

146000

147000 

Offset in Memory Dump File 

(b) last (67%) 
True Data Value-Invariant 
DIMSUM SigGraph+

1.0

 0.8 

0.6

 0.4

 0.2

 0


S


V
 

142500

143000

143500

144500

145500

146500

 2e+07

144000

145000

146000

147000 

4e+07 

Offset in Memory Dump File 

(c) last (33%) 

Fig. 5.10.: Effectiveness evaluation of DIMSUM for discovering user login record data 
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96 

Fig. 5.11.: An abstraction of the utmp case. The node in the middle is missing. 

in Sylpheed, they are mainly caused by the fact the some garbage pages happen to have 

some instances that satisfy our constraints, and when the garbage pages are not selected 

(33% and 67% cases), these FPs are gone. 

False Negative Comparison 

Value-invariant has the lowest FNs. This is understandable as it is the least restricting 

method. It admits everything that appears to be an instance of the target data structure 

based on their value patterns. 

Both SigGraph+ and DIMSUM have high FNs for the pine case. The main reason 

is the lack of support due to the missing pages, especially for the settings of 33% and 

67%. In other words, the child data structures are not present in the pages provided 

to these techniques. Another reason for FNs is cross page data structures. There are 

some data structure instances spanning two pages. None of these techniques including 

DIMSUM currently handle cross-page data structures because consecutive virtual pages 

do not correspond to consecutive physical pages. We will leave it to our future work. It 

contributes to the FNs for the 100% setting. 

In some cases, DIMSUM is even superior to the less restricting SigGraph+ in terms of 

FNs, for example, the utmp structure in last-2.85. The main reason is that SigGraph+ 

is doing binary reasoning, and hence a piece of memory is either an instance of interest 

or not. In contrast, DIMSUM does not draw binary conclusions but rather collects little 

pieces to gradually form the right picture. Fig. 5.11 abstracts the case. The whole linked 

list represents the utmp linked list. And it is freed. The node in the middle is missing 

http:last-2.85
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Fig. 5.12.: The threshold impact on the experimental result 

(the page was reused). The graph signature used in SigGraph+ is a node with its preceding 

node and succeeding node, meaning an instance of utmp is recognized if the prev and 

next pointers also point to instances of utmp. In this case, SigGraph+ cannot recognize 

the head or tail due to the null pointers. It cannot recognize the 3rd node as it is missing. 

As a result, it can not recognize the 2nd or 4th nodes either. In contrast, DIMSUM never 

makes binary judgements on individual nodes. Instead, it models them into a network of 

constraints. In this case, two factor graphs, one containing the 1st and 2nd nodes and the 

other the 3rd and 4th are formed and resolved. Aggregating probabilities in the two graphs 

indeed sufficiently identifies the true positives. 
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5.5.3 Sensitivity on the Threshold 

By default, we set the threshold probabilities HIGH=0.90, and LOW =0.10. To study 

the impact of these threshold variables on the final result, we take the second case of dis­

covering utmp instances (Fig. 5.10(b)) as an example, and change the values of HIGH and 

LOW and observe the result. We make four different settings, namely setting HIGH=0.95 

and LOW=0.05, HIGH=0.85 and LOW=0.15, HIGH=0.80 and LOW=0.20, and HIGH=0.75 

and LOW=0.25. The result is illustrated in Fig. 5.12(a)-Fig. 5.12(d). We could see for all 

these settings, the top cluster still contains the true instances. The results for other cases 

are similar. The conclusion is hence that the result is not sensitive to the thresholds. 

5.5.4 Performance Overhead 

In this experiment, we study the cost of DIMSUM. The performance data is collected in 

a Windows Vista system with 2GB memory and a 2.16Ghz CPU. The result is presented in 

Fig. 5.13. All execution times are normalized based on DIMSUM’s time. We find that the 

execution time of DIMSUM is reasonable, in comparison with that of the value-invariant 

approach (44.8% of DIMSUM) and SigGraph+ (45.1% of DIMSUM). Also observe that 

it is much slower in Android platform because there are large amount of strings (in UNI-
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CODE form) in the snapshot; the string searching and constraint resolving takes more time. 

The space overhead is decided by the size of factor graphs. We could not get the precise 

memory consumption as Infer.NET has its own memory management system. We instead 

present the number of variables (#Var) and the number of constraints or factors (#FC) in 

the 12th and 13th columns respectively in Table 5.3. 

5.6 Summary 

Uncovering semantic data of interest in memory pages without memory mapping in­

formation is a desirable capability in computer forensics. Such a capability is realized by 

DIMSUM, a system that extracts the data structure instances – with confidence – from a set 

of memory pages without memory mapping information. In this chapter, we have presented 

the design, implementation, and evaluation of DIMSUM. Our experimental results show 

that DIMSUM achieves higher accuracy than previous non-probabilistic approaches when 

discovering data from unmappable memory. 

http:Infer.NET
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6. APPLICATIONS 

There are many security applications of our framework. In this chapter, we demonstrate 

how our framework can be used for memory forensics, vulnerability discovery, kernel 

rootkit detection, and kernel version inference. 

6.1 Memory Image Forensics 

Memory image forensics is a process to extract meaningful information from a memory 

dump. Examples of such information are the IP addresses to which the application under 

investigation is talking and files being accessed. Data structure definitions play a critical 

role in the extraction process. For instance, without data structure information, it is hard 

to decide if four consecutive bytes represent an IP address or are just a regular value. All 

the components in our framework can support memory forensics, especially SigGraph and 

DIMSUM as forensics is the nature of their design that was demonstrated in Chapter 5. 

For REWARDS, it enables analyzing memory dumps for a binary without symbolic infor­

mation. In the following, we demonstrate how REWARDS can be used to type reachable 

memory as well as some of the unreachable (i.e., dead) memory. 

6.1.1 Typing Reachable Memory 

In this case study, we demonstrate how we use REWARDS to discover IP addresses 

from a memory dump using the hierarchical view (Section 3.2.5). We run a web server 

nullhttpd-0.5.1. A client communicates with this server through wget-1.10.2. 

The client has IP 10.0.0.11 and the server has IP 10.0.0.4. The memory dump is 

obtained from the server at the moment when a system call is invoked to close the client 

connection. Part of the memory dump is shown in Figure 6.1. The IPs are underlined in the 

http:10.0.0.11
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... 

08052170 b0 5b fe b7 b0 5b fe b7 05 00 00 00 02 00 92 7e 080534a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

08052180 0a 00 00 0b 00 00 00 00 00 00 00 00 c7 b0 af 4a * 

08052190 c7 b0 af 4a 00 00 00 00 58 2a 05 08 00 00 00 00 08053910 00 00 00 00 00 00 00 00 57 67 65 74 2f 31 2e 31 

080521a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08053920 30 2e 32 00 00 00 00 00 00 00 00 00 00 00 00 00 

... 08053930 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

08052a50 00 00 00 00 59 31 01 00 4b 65 65 70 2d 41 6c 69 * 

08052a60 76 65 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08053990 00 00 00 00 00 00 00 00 c8 00 00 00 00 00 00 00 

08052a70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 080539a0 00 00 00 00 00 00 00 00 00 00 43 6c 6f 73 65 00 

* 080539b0 00 00 00 00 00 00 00 00 00 00 00 00 52 00 00 00 

08052ee0 00 00 00 00 00 00 00 00 00 00 00 00 31 30 2e 30 080539c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

08052ef0 2 30 2 34 00 00 00 00 00 00 00 00 00 00 00 00 * 

08052f00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08053a90 48 54 54 50 2f 31 2e 30 00 00 00 00 00 00 00 00 

* 08053aa0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

08052fe0 00 00 00 00 00 00 00 00 00 00 00 00 48 54 54 50 * 

08052ff0 2f 31 2e 30 00 00 00 00 00 00 00 00 00 00 00 00 08053b20 74 65 78 74 2f 68 74 6d 6c 00 00 00 00 00 00 00 

08053000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08053b30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

* * 

08053470 00 00 00 00 00 00 00 00 00 00 00 00 31 30 2e 30 08063ba0 01 00 01 00 01 00 00 00 00 00 00 00 00 00 00 00 

08053480 2e 30 2e 31 31 00 00 00 00 00 00 00 00 00 00 00 08063bb0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

08053490 47 45 54 00 00 00 00 00 2f 00 00 00 00 00 00 00 * 

... 

Fig. 6.1.: Part of a memory dump from null-httpd. String and IP address are underscored. 

figure. From the memory dump, it is very hard for human inspectors to identify those IPs 

without a meaningful view of the memory. We use REWARDS to derive the data structure 

definitions for nullhttpd and then construct a hierarchical view of the memory dump 

following the method described in Section 3.2.5. 

The relevant part of the reconstructed view is presented in Figure 6.2(a). The root repre­

sents a pointer variable in the global section. The outgoing edge of the root leads to the data 

structure being pointed to. The edge label “struct 0x0804dd4f *” denotes that this is 

a heap data structure whose allocation PC (also its abstraction) is 0x0804dd4f. Accord­

ing to the view construction method, the memory region being pointed to is typed according 

to the derived definition of the data structure denoted by 0x0804dd4f, resulting in the 

second layer in Figure 6.2(a). The memory region starts at 0x08052170 and is denoted 

by the node with the address label. The individual child nodes represent the different fields 

of the structure (e.g. the first field is a thread id according to the semantic tag pthread t, 

the fourth field (with offset +12) denotes a sockaddr structure). The last field (with offset 

+40) denotes another heap structure whose allocation site is 0x0804ddfb. Transitively, 

our method reconstructs the entire hierarchy. 

The extraction of IP addresses is translated into a traversal over the view to identify 

those with the IP address semantic tags. Along the path 08050260
 → 08052170
 → 

7e9200...0
 → 0x0b0000a , a variable with the sin addr type can be identified, 
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+0�pthread_t 

08050260 08052170 

b7fe5bb0 

b7fe5bb0 

00000005 

7e920002 0b00000a 0...0 

4aafb0c7 

4aafb0c7 

00000000 

08052a58 

0002 

7e92 

0b00000a 

0...0 

Keep−Alive 

0...0 

10.0.0.4 

0...0 

HTTP/1.0 

0...0 

10.0.0.11 

0...0 

GET 

00000000 

/ 

0...0 

Wget/1.10.2 

0...0 

struct _0x0804dd4f * 

+4�int 

+8�socket 

+12�struct sockaddr 

+28�time_t 

+32�time_t 

+36�unused [4] 

+40�struct _0x0804ddfb * 

sin_family 

sin_port 

sin_addr 

sin_zero 

+0�char [11] 

+11�unused [1161] 

+1172�char [9] 

+1181�unused [247] 

+1428�char [9] 

+1437�unused [1159] 

+2596�ip_addr_str_t 

+2606�unused [10] 

+2616�char [4] 

+2620�unused [4] 

+2624�char [2] 

+2626�unused [1150] 

+3776�char [12] 

+3788�unused [116] 

+3904�short int 

180 typedef struct { 

181 th d_t h dl ; 

182 i d l i t id; 

183 h t i t k t; 

184 t t k dd _i Cli tAdd ; 

185 ti _t ti ; // C ti ti 

186 ti _t ti ; // L t A ti 

187 char *PostData; 

188 CONNDATA *d t; 

189 } CONNECTION; 

206 CONNECTION * ; // t h d th t d 

143 typedef struct { 

144 // incoming data 

145 h i _C ti [16]; 

146 int in_ContentLength; 

147 char in_ContentType[128]; 

148 char in_Cookie[1024]; 

149 h i _H t[64]; 

150 char in_IfModifiedSince[64]; 

151 char in_PathInfo[128]; 

154 char in_Referer[128];
 

155 h i _R t Add [16];
 

156 int in_RemotePort;
 

157 h i _R tM th d[8];
 

158 h i _R tURI[1024];
 

159 char in_ScriptName[128];
 

160 h i _U A t[128];
 

161 // outgoing data
 

162 h t i t t_ t t ;
 

163 char out_CacheControl[16];
 

164 h t_C ti [16];
 

165 i t t_C t tL th;
 

166 char out_Date[64];
 

167 char out_Expires[64];
 

168 char out_LastModified[64];
 

169 char out_Pragma[16];
 

170 h t_P t l[16];
 

171 char out_Server[128];
 

172 h t_C t tT [128];
 

173 char out_ReplyData[MAX_REPLYSIZE];
 

174 h t i t t_h dd ;
 

175 h t i t t_b d d ;
 

176 h t i t t_fl h d;
 

177 // user data
 

178 char envbuf[8192];
 

179 } CONNDATA;
 

00c8 

0...0 

Close 

0...0 

00000052 

0...0 

HTTP/1.0 

0...0 

text/html 

0...0 

0001 

0001 

0001 

0...0 

+3906�unused [16] 

+3922�char [6] 

+3928�unused [12] 

+3940�int 

+3944�unused [208] 

+4152�char [9] 

+4161�unused [135] 

+4296�char [10] 

+4306�unused [65654] 

+69960��short int 

+69962��short int 

+69964��short int 

+69966��unused [8192] 

(b) Data structure definition (a) Hierarchical view from REWARDS 

Fig. 6.2.: Comparison between the REWARDS-derived hierarchical view and source code 
definition 

152 h i _P t l[16];
 

153 char in_QueryString[1024];
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which stores the client IP. The same IP can be identified along the path 08050260
 → 

08052170
 → 08052a58
 → 10.0.0.11
 as well, with the field offset +2596. The 

field has the ip addr str t tag, which is resolved at the return of a call to inet ntoa. 

REWARDS can isolate the server IP 10.0.0.4 as a string along the path 08050260
 

→ 08051170
 → 10.0.0.4
 with the field offset +1172. Interestingly, this field does 

not have a semantic tag related to an IP address. The reason is that the field is simply a part 

of the request string (the host field in HTTP Request Message), but it is not used in any 

type sinks that can resolve it as an IP. However, isolating the string also allows a human 

inspector to extract it as an IP. 

To validate our result, we present in Figure 6.2(b) the corresponding symbolic defini­

tions extracted from the source for comparison. Fields that are underlined are used during 

execution. In particular, struct CONNECTION corresponds to the abstraction struct 

0x0804dd4f (node 08052170 ) and struct CONNDATA corresponds to struct 0x08 

04ddfb (node 08052a58 ). Observe that all fields of CONNECTION are precisely 

derived, except the pointer PostData, which is represented as an unused array in the 

inferred definition because the field is not used during execution. For the CONNDATA 

structure, all the exercised fields are extracted and correctly typed. Recall that we consider 

a field is correctly typed if its offset is correctly identified and its composition bytes are 

either correctly typed or unused. 

bfffd140 05 00 00 00 6b 00 00 00 69 00 00 00 00 00 00 00 bfffe5d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
bfffd150 00 00 00 00 38 ea ff bf 00 00 00 00 00 00 00 01 bfffe5e0 00 00 00 00 00 00 00 00 00 00 00 00 e0 f5 ff bf 
bfffd160 2c 00 00 00 67 45 8b 6b 0e 00 00 00 00 00 00 00 bfffe5f0 a0 2d 05 08 e0 f5 ff bf a0 13 05 08 00 00 00 00 
bfffd170 0a 00 00 63 0f 27 00 00 9f 86 01 00 9f 86 01 00 bfffe600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
bfffd180 1c ea ff bf 10 ea ff bf 6a f2 b2 4a 7a 4a 0e 00 * 
bfffd190 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 bfffea00 00 00 00 00 00 00 00 00 00 00 00 00 10 ea ff bf 
bfffd1a0 6a f2 b2 4a 7a 4a 0e 00 f2 f3 8d 8c 00 00 00 00 bfffea10 01 00 00 00 00 00 00 00 e5 de f2 49 46 00 00 00 
bfffd1b0 00 00 00 00 00 00 00 00 01 00 00 00 02 00 00 00 bfffea20 67 45 8b 6b 10 00 00 00 e8 be e6 71 0a 00 00 34 
bfffd1c0 64 6e 73 66 6c 6f 6f 64 00 00 00 00 00 00 00 00 bfffea30 0a 00 01 33 0a 00 00 0b 0a 00 00 04 00 00 00 00 
bfffd1d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 bfffea40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
* * 
bfffd5c0 c0 d1 ff bf 00 00 00 00 02 ca 04 08 00 00 00 00 ... 
bfffd5d0 00 00 00 00 00 00 00 00 02 ca 04 08 02 ca 04 08 bffff5c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
bfffd5e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 bffff5d0 01 00 00 00 80 00 00 00 80 00 00 00 ff f7 ff bf 
bfffd5f0 00 00 00 00 00 00 00 00 00 00 00 00 04 d6 ff bf bffff5e0 00 00 00 00 00 00 00 00 f3 f7 ff bf 67 45 8b 6b 
bfffd600 64 6e 73 66 6c 6f 6f 64 00 00 00 00 00 00 00 00 bffff5f0 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
bfffd610 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 bffff600 01 00 00 00 c0 f6 ff bf 28 f6 ff bf fb c7 04 08 
* bffff610 02 00 00 00 dc 3a 1f b6 d4 df 04 08 dc 3a 1f b6 
bfffe5b0 00 00 00 00 00 00 00 00 0e 00 00 00 00 00 00 00 bffff620 00 00 00 00 dc 3a 1f b6 88 f6 ff bf 2 d 0d b6 

bfffe5c0 00 00 00 00 02 00 4e 34 0a 00 00 0b 00 00 00 00 bffff630 02 00 00 00 b4 f6 ff bf c0 f6 ff bf f6 5b ff b7 

Fig. 6.3.: Memory dump for Slapper worm control program when exiting the control 
interface 

http:10.0.0.11
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6.1.2 Typing Dead Memory 

In this case, we demonstrate how to type dead memory (i.e., memory regions containing 

dead variables) using the slapper worm bot-master program. Slapper worm relies on P2P 

communications. The bot-master uses a program called pudclient to control the P2P 

botnet, such as launching TCP-flood, UDP-flood, and DNS-flood attacks. Our goal is to 

extract evidence from a memory dump of pudclient from the attacker’s machine. 

Our experiment has two scenes: the investigator’s scene and the attacker’s scene. More 

specifically, 

•	 Scene I: In the lab, the investigator runs the bot-master program pudclient to 

communicate with slapper bots to derive the data structures of pudclient. 

•	 Scene II: In the wild, the attacker runs pudclient to control real slapper bots. 

In Scene I, we run a number of slapper worm instances in a contained environment 

(at IP addresses ranging from 10.0.0.1 - 10.0.1.255) using vGround [81], a Vir­

tual Playgrounds for Worm Behavior Investigation. Then we launch pudclient with 

REWARDS and issue a series of commands such as listing the compromised hosts, and 

launching the UDPFlood, TCPFlood, and DNSFlood attacks. REWARDS extracts the data 

structure definitions for pudclient. Then, in Scene II, we run pudclient again with­

out REWARDS. Indeed, the attacker’s machine does not have any forensics tool running. 

Emulating the attacker, we issue some commands and then hibernate the machine. We then 

get the memory image of pudclient and use the data structure information derived in 

Scene I to investigate the image. 

We construct the hierarchical view and try to identify IP addresses from the view. 

However, the hierarchical view can only map the memory locations that are alive, namely 

they are reachable from global and stack (pointer) variables. Here, we take an extra step 

to type the dead (unreachable) data. As described in Section 3.2.5, our technique scans 

the stack space lower than the current (the lowest and live) activation record and looks for 

values that are in the range of the code section, as they are very likely return addresses. 
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Four such values are identified. One example and its memory context is shown in Figure 

6.3. In this memory dump snippet, the return address, as underlined, is located at address 

0xbffff62c. Our technique further identifies that the corresponding function invocation 

is to 0x0804a708. Hence, we use the data structure definition of fun 0x0804a708 

to type the activation record. The definition and the typed values are shown in Table 6.1. 

Observe that a number of IPs (fields with ip addr t) are identified. We also spot the 

bot command “dnsflood” at -9324 and -8236. Note that these two fields have the 

input t tag as part of their derived definition, indicating they hold values from input. 

6.2 Vulnerability Fuzzing 

It is a challenging task to detect and confirm vulnerabilities in a given binary without 

symbolic information. Previously in [82], we proposed a dynamic analysis approach that 

can decide if a vulnerability suspect is true positive by generating a concrete exploit. The 

basic idea is to first use existing static tools to identify vulnerability candidates, which are 

often of large quantity; then benign executions are mutated to generate exploits. Mutations 

are directed by dynamic information called input lineage, which denotes the set of input 

elements that is used to compute a value at a given execution point, usually a vulnerability 

candidate. Vulnerability-specific patterns are followed during mutation. One example 

pattern is to exponentially expand an input string in the lineage of a candidate buffer with 

the goal of generating an overflow exploit. In that project, we had difficulty finding publicly 

available, binary-level vulnerability detectors to use as the front end. REWARDS helps 

address this issue by deriving both variable syntax and semantics from a subject binary. 

Next, we present our experience of using REWARDS to identify vulnerability suspects and 

then using our prior system (a fuzzer) to confirm them. 

For this study, we design a static vulnerability suspect detector that relies on the variable 

type information derived by REWARDS. The result of the detector is passed to our lineage-

based fuzzer to generate exploits. In the following, we present how REWARDS helps 

identify various types of vulnerability suspects. 
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Table 6.1: Result on the unreachable memory type using type fun 0x804a708 

Offset Type Size Mem Addr Content Offset Type Size Mem Addr Content 
-9432 void* 4 bfffd154 38 ea ff bf -9324 char[9],input t 9 bfffd1c0 64 6e..64 
-9428 char* 4 bfffd158 00 00 00 00 -8300 char* 4 bfffd5c0 c0 d1 ff bf 
-9420 int 4 bfffd160 2c 00 00 00 -8236 char[9],input t 9 bfffd600 64 6e..64 
-9416 int 4 bfffd164 67 45 8b 6b -8227 char[28] 28 bfffd609 00 .. 00 
-9412 int 4 bfffd168 0e 00 00 00 -4236 void* 4 bfffe5a0 00 00 00 00 
-9408 int 4 bfffd16c 00 00 00 00 -4156 struct 0x804834e* 4 bfffe5f0 a0 2d 05 08 
-9404 ip addr t 4 bfffd170 0a 00 00 63 -4152 void* 4 bfffe5f4 e0 f5 ff bf 
-9300 port t 4 bfffd174 0f 27 00 00 -3104 char* 4 bfffea0c 10 ea ff bf 
-9396 int 4 bfffd178 9f 86 01 00 -3088 char[16] 16 bfffea1c 46 00 00 00 
-9392 int 4 bfffd17c 9f 86 01 00 -3068 ip addr t 4 bfffea30 0a 00 01 33 
-9388 void* 4 bfffd180 1c ea ff bf -3064 ip addr t 4 bfffea34 0a 00 00 0b 
-9384 void* 4 bfffd184 10 ea ff bf -3058 ip addr t 4 bfffea38 0a 00 00 04 

-9376 
timeval.tv sec 4 bfffd18c 7a 4a 0e 00 -3054 ip addr t 4 bfffea3c 0a 00 00 04 
timeval.tv usec 4 bfffd190 22 00 00 00 -0088 int 4 bffff5d4 80 00 00 00 

-9368 int 4 bfffd194 00 00 00 00 -0084 int 4 bffff5d8 80 00 00 00 
-9352 int 4 bfffd1a4 7a 4a 0e 00 -0080 int 4 bffff5dc ff f7 ff bf 
-9348 int 4 bfffd1a8 f2 f3 8d 8c -0004 stack frame t 4 bffff628 88 f6 ff bf 
-9344 int 4 bfffd1ac 00 00 00 00 +0000 ret addr t 4 bffff62c a2 de 0d b6 
-9332 int 4 bfffd1b8 01 00 00 00 +0004 int 4 bffff630 02 00 00 00 
-9328 int 4 bfffd1bc 02 00 00 00 +0008 char* 4 bffff634 b4 f6 ff bf 
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•	 Buffer overflow vulnerability. Buffer overflows could happen in three different 

places: stack, heap, and global areas. As such, we define three types of buffer 

overflow vulnerability patterns. Specifically, for stack overflow, if a stack layout 

contains a buffer and its content comes from user input, we consider it a suspect. Note 

that this can be easily facilitated by REWARDS’s typing algorithm: A semantics tag 

input t is defined to indicate that a variable receives its value from external input. 

The tag is only susceptible to the forward flow but not the backward flow. In the 

stack layout derived by REWARDS, if a buffer’s type set contains an input t tag, 

it is considered vulnerable. For heap overflow, we consider two cases: one is to 

exploit heap management data structure outside the user-allocated heap chunk; and 

the other is to exploit user-defined function pointers inside the heap chunk. Detecting 

the former case is simply to check if a heap structure contains a buffer field that is 

input-relevant, in a way similar to stack vulnerability detection. For the later case, the 

detector scans the derived layout of a heap structure to check the presence of both an 

input-relevant buffer field and a function pointer field. Vulnerabilities in the global 

memory region are handled similarly. 

•	 Integer overflow vulnerability. Integer overflow occurs when an integer exceeds 

the maximum value that a machine can represent. Integer overflow itself may not 

be harmful (e.g., gcc actually leverages integer overflow to manipulate control flow 

path condition [83]), but if an integer variable is dependent on user input without 

any sanity check and it is used as an argument to malloc-family functions, then 

an integer overflow vulnerability is likely. In particular, overflowed values passed to 

malloc functions usually result in heap buffers being smaller than they are supposed 

to be. Consequently, heap overflows occur. For this type of vulnerabilities, our 

detector checks the actual arguments to the malloc family function invocations: if an 

integer parameter has both malloc arg t and input t tags, an integer overflow 

vulnerability suspect will be reported. 
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•	 Format string vulnerability. The format string vulnerability pattern involves a 

user input flowing into a format string argument. Thus, we introduce a semantics 

tag format string t, which is only resolved at invocations to printf-family 

functions. If a variable’s type set contains both input t and format string t 

tags, a format string vulnerability suspect is reported. 

Besides facilitating vulnerability suspect identification, the information generated by 

REWARDS can also help composing exploits. For instance, it is critical to know the 

distance between a vulnerable stack buffer and a return address (i.e., a variable with the 

ret addr t tag), in order to construct a stack overflow exploit. Similarly, it is important 

to know the distance between a heap buffer and a heap function pointer for composing a 

heap overflow-based code injection attack. Such information is provided by REWARDS. 

Table 6.2: Number of vulnerability suspects reported with help of REWARDS 

Program #Buffer Overflow #Integer Overflow #Format String 

ncompress-4.2.4 1 0 0 
bftpd-1.0.11 3 0 0 
gzip-1.2.4 3 0 0 

nullhttpd-0.5.0 5 2 0 
xzgv-5.8 3 8 0 

gnuPG-1.4.3 0 3 0 
ipgrab-0.9.9 0 5 0 

cfingerd-1.4.3 4 0 1 
ngircd-0.8.2 12 0 1 

We applied our REWARDS-based detector to examine several programs shown in the 

1st column of Table 6.2. The detector reported a number of vulnerable suspects based 

on the aforementioned vulnerability patterns. The total number of vulnerabilities of each 

type is presented in the remaining columns. Observe that our detector does not produce 

many suspects for these programs and therefore can serve as a tractable front end for our 

fuzzer. The fuzzer then tries to generate exploits to convict the suspects. The details of 

each confirmed vulnerable data structure are shown in the 2nd column of Table 6.3. The 

field symbols do not represent their symbolic names, which we do not know, but rather 

the type tags derived for these fields. For instance, format string t denotes that the 

field is essentially a format string; sockaddr in indicates that the field holds a socket 

http:bftpd-1.0.11
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Table 6.3: Result from our vulnerability fuzzer with help of REWARDS 

ncompress-4.2.4 

Benchmark 

fun 0x08048e76 { -1052: char[13], 
-1039: unused[1023],... 
-0008: char*, 
-0004: stack frame t, 

Suspicious Data Structure 

+0000: ret addr t, 

argv[1] 

Input 

{0..11} 

Offset 

Stack overflow 

Vulnerability Type 

bftpd-1.0.11 

fun 0x080494b8 { -0064: char*, 
-0060: char[12], 
-0048: unused [44], 
-0004: stack frame t, 

+0004: char**} 

+0000: ret addr t, 

recv {0..3} Stack overflow 

gzip-1.2.4 

bss 0x08053f80 { ... 
+244128: char[8], 
+244136: unused[1016], 
+245152: char*,...} 

+0004: char*} 

argv[1] {0..6} Global overflow 

nullhttpd-0.5.0 

heap 0x0804f205 { +0000: char[11], 
+0011: unused[5], 
+0016: int,... } 

heap 0x0804c41f { +0000: void[29], 

recv {607,608} Integer overflow 

xzgv-5.8 

gnuPG-1.0.5 

bss 0x0809ac80 { ... 
+91952: int, 
+91956: int,...} 

+0029: unused[1024]} 

fun 0x080673fc { -0176: char[6],unused[2], 
-0168: int,int,...} 

heap 0x080afec1 { +0000:int,..., 
+0036: void[5] } 

fread 

recv 

fread 

{4..11} 

{661..690} 

{2..5} 

Integer overflow 

Heap Overflow 

Integer overflow 

ipgrab-0.9.9 

fun 0x080496b8 { ..., 
-0440: struct sockaddr in, 

fun 0x0804d06b { -0056: int, 
-0052: int, int,...} 

heap 0x0805a976 {+0000: void[60] } 

fread 
fread 

fread 

{6..10} 
{20..23} 

{40..100} 

Heap overflow 
Integer overflow 

Heap overflow 

cfingerd-1.4.3 -0424: format string t[34], 
-0390: unused[174], 
-0216: char[4],,...} 

read {0..3} Format String 

ngircd-0.8.2 

fun 0x0805f9a5 { ..., 
-0284: format string t[76] 
-0208: unused[204], 
-0004: stack frame t, 
+0000: ret addr t,...} 

recv {12..15} Format String 



110 

Table 6.4: Experimental result on kernel rootkit detection 

adore-ng-2.6 
adore-ng-2.6’ 
cleaner-2.6 
enyelkm 1.0 

hp-2.6 
linuxfu-2.6 
modhide-2.6 
override 

Rootkit 
Name 

rmroots 
rmroots’ 

module 
task struct 

module 
module 

task struct 
task struct 

module 
task struct 

Target 
Object 

task struct 
module 

23 
62 
22 
23 
56 
59 
22 
58 

Inside view 
# of obj.s 

56 
23 

23 
63 
22 
23 
57 
60 
22 
59 

crash 
# of obj.s Detected 

N/A ✗ 
N/A ✗ 

✗ 
� 
✗ 
✗ 
� 
� 
✗ 
� 

24 
63 
23 
24 
57 
60 
23 
59 

SigGraph 
# of obj.s Detected 

55 � 
24 � 

� 
� 
� 
� 
� 
� 
� 
� 

address. The 3rd column presents the input category that is relevant to the vulnerable 

data structure. For example, the char[12] buffer in bftpd denotes a packet received 

from outside (the recv category). Note that the input categories are conveniently imple­

mented as semantics tags in REWARDS. The 4th column offset represents the input 

offsets reported by our fuzzer. They represent the places that are mutated to generate the 

real exploits. The REWARDS-based vulnerability detector also emits vulnerability types 

(shown in the 5th column) based on the vulnerability patterns matched. Consider the first 

benchmark ncompress: Its entry in the table indicates that the char[13] buffer inside 

a function starting with PC 0x08048e76 is vulnerable to the stack buffer overflow. The 

buffer receives values from the second command line option (argv[1]). Our data lineage 

fuzzer mutates the lineage of the buffer, which are the first 12 input items (offset 0 to 11) to 

generate the exploit. From the data structure in the 2nd column, the exploit has to contain 

a byte string longer than 1,052 bytes to overwrite the return address at the bottom. Other 

vulnerabilities can be similarly apprehended. 

6.3 Kernel Rootkit Detection 

By uncovering the kernel objects in a kernel memory image, our second component, 

SigGraph, provides the semantic view of kernel memory for kernel rootkit detection. We 

note the convenience of using SigGraph: The user simply runs the data structure-specific 

scanners on a subject memory image to uncover kernel objects of interest. 
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Based on the kernel objects revealed by SigGraph, we then follow the existing “view 

comparison” methodology [30,34,74] for kernel rootkit detection: for a certain type of ker­

nel object (data structure), we compare (1) the number and values of its instances revealed 

by SigGraph with (2) the relevant information returned by a corresponding system utility 

(e.g., lsmod and ps for kernel modules and processes, respectively). If a discrepancy 

between the two views is observed, we know that a certain kernel object(s) is being hidden, 

indicating a kernel rootkit attack. 

Many kernel rootkits engage in kernel data hiding attacks [30,34,74], among which we 

experimented with eight representative real-world kernel rootkits that cover the spectrum 

of data hiding techniques, and the results are presented in the first eight rows in Table 6.4. 

SigGraph enabled the detection of all of them. Specifically, we use the original samples of 

adore-ng-2.6, adore-ng-2.6’, override, enyelkm 1.0 and port those of hp, 

linuxfu, modhide, cleaner from Linux 2.4 to Linux 2.6 on which our experiment 

is based. All of the above rootkits, except adore-ng-2.6’ and override, hide tasks 

or kernel modules by manipulating pointers. For example, adore-ng changes the con­

necting pointers of neighboring modules to hide its own module; and enyelkm calls a list 

function (list del) that separates its own module from the module list. As a result, the 

number of kernel modules counted by lsmod is one less than the number of corresponding 

kernel objects revealed by SigGraph, with the missing one being the rootkit module itself. 

We point out that the success of kernel rootkit detection in these experiments is at­

tributed to SigGraph’s provision of multiple alternative signatures (Section 4.7.3) for the 

same data structure. With the kernel rootkit’s presence, some pointers from/to a kernel 

object may be corrupted and can no longer be used for signature matching. For exam­

ple, kernel modules are connected by list.next and list.prev pointers, which are 

manipulated by rootkits. Fortunately, SigGraph is able to generate alternative signatures 

that do not involve those pointers. With such signatures, SigGraph scanners accurately 

recognize the kernel objects that are being hidden. 

Finally, rootkits adore-ng-2.6’ and override have different attack mechanisms. 

They hide processes by filtering out information about the hidden processes using injected 
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code – without manipulating kernel objects. SigGraph recognizes these objects using the 

default signature of task struct without resorting to the alternative ones, which leads 

to the detection of such attacks via view comparison. 

Comparison with techniques based on global memory mapping. A number of existing 

kernel rootkit detection techniques rely on building a graph that maps the entire live mem­

ory through pointers. The state of the art is KOP [30]. Based on Windows, it builds a global 

memory graph and resolves function pointers through an advanced points-to analysis. Due 

to the lack of its Linux implementation, we implement a basic system based on global 

memory mapping by extending the crash utility. As a core dump analysis infrastructure 

that resolves memory regions based on type information, crash is extendable for cus­

tomized memory analysis. In particular, our extension involves a Python script to build a 

global memory graph by exploring the points-to relations. We consider a rootkit detected if 

the hidden kernel object (module or task) is reachable in the graph. Table 6.4 presents the 

results. The extended crash detects four out of the eight real-world rootkits. It is not a 

surprise that crash detects adore-ng-2.6’ and override as they do not manipulate 

kernel object pointers. For hp-2.6 and linuxfu-2.6, even though the rootkit tasks 

are hidden from the task list, they are still reachable via other data structures in the mem­

ory graph (more specifically via data structures for process scheduling). However, such 

alternative reachability is not available when running adore-ng-2.6, cleaner-2.6, 

enyelkm 1.0, and modhide-2.6 and hence crash misses them. 

We note that global memory graph-based techniques rely on each object’s reachability 

from the root(s) of the graph. In other words, an object cannot be properly typed if it 

is not reachable from the root(s). As a result, it is conceivable that future rootkits may 

try to destroy such reachability. For example, a rootkit may identify a cut of the global 

memory graph and destroy (or obfuscate) the pointers along the cut. Consequently, objects 

not reachable from the original roots become unrecognizable. As an extreme example, we 

construct two such rootkits: rmroots and rmroots’ (the last two rows in Table 6.4). 

They hide task struct and module instances, respectively, and to destroy evidence at 
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the end of the attack, they “wipe out” the static kernel data structures listed in the kernel 

symbol table (system.map) so that the rest of the memory becomes unmappable. 

In comparison, SigGraph shows better robustness against such an attack. In our ex­

periment with the rmroots rootkit, there are 56 running processes right before the static 

kernel object wipe-out. Soon after the wipe-out, the system crashes due to pointer corrup­

tion and a kernel memory snapshot is taken. We run the extended crash on the kernel 

memory image, but it fails to construct the global memory graph due to the absence of 

static kernel objects. On the other hand, SigGraph is able to identify 55 instances of 

task struct, including the one that was hidden before the wipe-out. The missing one 

is actually init task, an instance of task struct that has been cleared. For our 

experiment with rmroots’, the SigGraph scanner successfully identifies all 24 kernel 

modules including the hidden one. 

6.4 Kernel Version Inference 

Another application of our framework is the determination of an OS kernel version 

based on a kernel memory snapshot. Consider the following scenario: a public cloud com­

puting platform hosts virtual machines (VMs) with various OS kernels. In order to perform 

virtual machine introspection [26, 28, 34] on these guest VMs (e.g., for intrusion/malware 

detection and usage auditing), a prerequisite is to know the specific version of a guest’s 

OS kernel [35–37]. The kernel type/version is critical to accurately interpreting the VM’s 

system state and events by the VMM. However, such information is not always available 

to the cloud provider (e.g., the cloud provider only knows that a VM runs Linux but does 

not know which version). 

Currently a guest kernel version can be determined via value-invariants (e.g., as adopted 

in [34]). We instead propose using SigGraph-based data structure signatures as a more 

accurate kernel version indicator. To validate our proposal, we take nine more Linux 

kernels ending with an even version number from 2.6.12 to 2.6.34. We select this range 

because they all work with our gcc-4.2.4-based implementation. If a selected version 
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has multiple sub-versions, we take the latest one. Together with the five Linux kernels 

already tested (marked with *), we have a total of 14 kernel versions, which are listed in 

the 1st column of Table 6.5. 

Table 6.5: Detailed field offsets of task struct for kernel version inference 

Linux mm struct task struct list head 
kernel thread process active real ptrace ptrace R 

version info name mm mm parent parent tasks children list children sibling 

2.6.12-6 4 436 108 112 152 156 84 92 100 160 168 � 
2.6.14-7 4 428 120 124 164 168 96 104 112 172 180 ✗ 

2.6.15-1* 4 428 120 124 164 168 96 104 112 172 180 ✗ 

2.6.16-62 4 432 120 124 164 168 96 104 112 172 180 � 
2.6.18-1* 4 428 152 156 196 200 128 136 144 204 212 � 

2.6.20-15* 4 404 128 132 172 176 104 112 120 180 188 � 
2.6.22-19 4 408 132 136 176 180 108 116 124 184 192 � 

2.6.24-26* 4 461 164 168 208 212 140 148 156 216 224 � 
2.6.26-8 4 505 188 192 232 236 164 172 180 240 248 � 
2.6.28-10 4 508 176 180 220 224 168 248 256 228 236 � 
2.6.30-1 4 496 220 224 268 272 192 296 304 276 284 � 
2.6.31-1* 4 500 220 224 268 272 192 296 304 276 284 � 
2.6.32-17 4 504 228 232 268 272 200 296 304 276 284 � 
2.6.34-2 4 512 220 224 276 280 192 304 312 284 292 � 

Version indicator selection. We first compile these kernels using the default configuration 

to obtain all of their data structure definitions. We then derive SigGraph-based signatures 

for all of the data structures. After that we try to select one data structure whose signatures 

in different kernel versions can be used to differentiate the kernel versions. The main 

requirements for such a data structure D are: (1) it should be commonly present in the 

execution of all kernels; and (2) its signatures should be distinctive across different kernels. 

In other words, for each kernel version i, we shall find a signature Si of D that will 

recognize instances of D in and only in memory images of kernel version i. In the end, we 

are not able to find a single data structure that can differentiate all the 14 kernels due to the 

similarity among them. (In fact, we find that two of the kernels share the same data structure 

definitions.) However, we do find that data structure task struct satisfies the above 

requirements for most of the kernels. The offsets and types of fields in task struct 

involved in the signatures are presented from the 2nd to 12th columns in Table 6.5. We 

can see that there are only two kernels (2.6.14-7 and 2.6.15-1) that cannot be distinguished 

using task struct’s signatures as shown in Column-R. To validate, we take snapshots 
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of these kernels and then scan the snapshots using the 13 distinct signatures. We succeed 

in uniquely identifying 12 of the 14 kernels. The two kernels that we cannot tell apart are 

two consecutive Linux kernels with no significant differences in data structure definitions. 
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7. LIMITATION AND FUTURE WORK 

In this chapter, we discuss the limitations and outline the future work of our framework. 

We first examine the limitation of our data structure definitions reverse engineering, RE­

WARDS, in Section 7.1, and then data structure instances reverse engineering, SigGraph, 

in Section 7.2 and finally DIMSUM in Section 7.3. 

7.1 REWARDS 

As a data structure definition reverse engineering component, REWARDS has a number 

of limitations: 

•	 REWARDS is a dynamic analysis-based approach. Thus it cannot achieve full cover­

age of the data structures defined in a program. Instead, the coverage of REWARDS 

relies on those data structures that are actually created and accessed during a partic­

ular run of the binary. How to increase the coverage will be one of our future efforts. 

Inspired by the recent efforts from static analysis [72], we plan to investigate the 

combination of dynamic and static analysis in reverse engineering. 

•	 REWARDS is not fully on-line as our timestamp-based on-line algorithm may leave 

some variables unresolved by the time they are de-allocated, and an off-line compan­

ion procedure is therefore needed to make the system sound. A fully on-line type 

resolution algorithm is our another future work. 

•	 The current implementation of REWARDS is based on PIN, and it hence does not 

support the reverse engineering of kernel-level data structures. Using other binary 

instrumentation platforms, such as QEMU, could allow us to reverse engineer the 

kernel data structures. To port our REWARDS to a virtual machine monitor will be 

our another future effort. 



117 

•	 Besides the general data structures, REWARDS has yet to support the extraction 

of other data types, such as the format of a specific type of files (e.g., ELF files, 

multimedia files), and browser-related data types (e.g., URL, cookies). Moreover, 

REWARDS does not distinguish between signed and unsigned integers in our current 

design. 

7.2 SigGraph 

While SigGraph-based signatures are capable of identifying kernel data structure in­

stances, it has limitations as well. We believe that there may be more sophisticated attempts 

to evade SigGraph in the future. We discuss below the possible attacks against SigGraph, 

assuming that the attacker has knowledge of SigGraph and has gained control of the kernel. 

Malicious Pointer Value Manipulation. The first type of attacks are to manipulate point­

ers as SigGraph relies on the inter-data structure topology induced by pointers. However, 

compared to non-pointer values, pointers are more sensitive to mutation as changes to a 

pointer value may likely lead to kernel crashes. Note that re-pointing a pointer to another 

data structure instance of the same type may not affect SigGraph in discovering the mutated 

instance. While the attacker may try to manipulate pointer fields that are not used, recall 

that SigGraph has a dynamic refinement phase that gets rid of such unused or undependable 

fields before signature generation. 

The attacker may try harder by destroying a pointer field after a reference and then by 

restoring it before its next reference. As such, it is likely that a memory snapshot may not 

have the true pointer value. However, carrying out such attacks is challenging as there may 

be many code sites in the kernel that access the pointer field. All such sites need to be 

patched to respect the original semantics of the kernel, which would require a complex and 

expensive static analysis on the kernel. To get an (under) estimate of the required efforts, 

we conducted a profiling experiment on task struct. We collected the functions that 

access each field, including both pointers and non-pointers. The results are shown in 

Figure 7.1(a), We observe that most fields are accessed by at least 6 functions. Some fields 



118

K
er

ne
l F

un
ct

io
ns

N
um

be
r 

of
 A

cc
es

si
ng

 F
un

ct
io

ns
 

12000
Pointer Field 

Non-pointer Field 

10000


 8000


 6000


 4000


 2000


 0

 0  20  40  60  80  100  120  140  160  180  200
 

ith Field of Task Structure 

(a) Detailed field access functions
 70


Pointer Field
 
Non-pointer Field
 

60


 50


 40


 30


 20


 10


 0

 0  20  40  60  80  100  120  140  160  180  200
 

ith Field of Task Structure 

(b) Statistics of field access functions 
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are accessed by 70 functions (the statistics are shown in Figure 7.1(b)). Note that these are 

only dynamic profiling numbers, the static counterparts may be even higher. Even if the 

attacker achieves some success, SigGraph can still leverage its multiple signature capability 

to avoid using those pointers that are easily manipulatable. 

Malicious Non-Pointer Value Manipulation. Another possible way to confuse SigGraph 

is to mutate a non-pointer value to resemble that of a pointer. SigGraph has built-in 

protection against such attacks. First of all, the dynamic refinement phase will get rid 

of most fields that are vulnerable to such mutation. Moreover, compared to mutation 

within a domain, such as changing an integer field (with the range from 1 to 100) from 

55 to 56, cross-domain mutation, such as changing the integer field to a pointer, has a 

much greater chance to crash the system. In the future, we plan to use fuzzing, similar 

to [32], to study how many fields allow such cross-domain value mutation. Meanwhile, 

we can effectively integrate SigGraph signatures with the value-invariant signatures (e.g., 

those derived by [32]) for the same data structure, which is likely to achieve even stronger 

robustness against malicious non-pointer manipulation. 

Other Possible Attacks. The attacker may change the data structure layout to evade 

SigGraph. Without knowledge about the new layout, SigGraph will fail. However, such 

attacks are challenging. The attacker needs to intercept the corresponding kernel object 

allocations and de-allocations to change the layout at runtime. Furthermore, all accesses to 

the affected fields need to be patched. 

SigGraph can help detect kernel rootkit attacks by identifying hidden kernel data struc­

ture instances in a given memory image. There are other types of kernel attacks that do not 

involve data hiding (e.g., BluePill [84]). SigGraph, as a kernel object scanner generator, is 

not applicable to the detection of such kernel attacks. 

Also, SigGraph has a number of limitations. We examine each of them below and 

discuss possible future directions to address them. 

First, not all data structures have pointer fields. However, value-invariant signatures 

will be able to handle them if their fields contain value invariants. As such, we believe a 

real-world memory analysis system should combine the value-invariant and graph-based 
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signatures to achieve the maximum coverage of data structures. Also, some data structures 

have neither value-invariant nor graph-based signature. In such cases, we have to explore 

other techniques. For example, it is challenging to identify the small-size data structure 

(e.g., the four bytes IP address) in the memory, but it is still possible to identify some 

instances of them if they are part of other composite data structures that do have graph-

based signatures. 

Second, SigGraph has a dynamic refinement component, and we cannot directly use 

the static signature (largely because of the null pointer issue). We cannot achieve com­

pleteness because of the nature of dynamic analysis. One solution would be to combine the 

semantics of the pointer fields and assign different weights statically, and then use them. 

For example, we could assign a semantic-known pointer field a heavier weight and ignore 

or assign a smaller weight to other pointer fields. 

Third, if an un-initialized pointer exists and we fail to prune, SigGraph will have 

false negatives. Also, for the possible attacks discussed above, SigGraph may have false 

positives or false negatives in some cases. 

Finally, we did not resolve the void pointers. To remedy this, we could take the 

approach proposed in KOP [30] to resolve the void pointers. Also, we could leverage the 

LiveDM [74] to dynamically track all of the kernel objects, and profile and resolve them. 

7.3 DIMSUM 

As a data structure instance reverse engineering component, DIMSUM has several 

limitations too. First, if a program chooses to always zero out its data after they are used 

(e.g., reset all de-allocated memory), it is unlikely that DIMSUM will recover meaningful 

information. This is a common limitation for all forensics techniques. However, we 

consider it to be relatively more tedious to clean up memory than clear up other types 

of evidence, such as screens and files. The user has to instrument memory management 

functions and intercept program exit signals. In the presence of memory swapping, the 
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user has to make sure the pages that get swapped out are destroyed as well. Moreover, if a 

program crashes or gets killed, cleaning up its memory may not be easy. 

Second, DIMSUM currently does not fully make use of value invariant properties, such 

as a fine-grained range of an integer field of a type T is [x,y]. Instead, it can only leverage 

the weaker information that it is an integer field. Value invariant properties are usually 

acquired from profile or domain knowledge. While it is arguable to assume profiling and 

domain experts in memory forensics, the success of DIMSUM without value invariant 

properties illustrates its unique strength. Also, DIMSUM is able to deliver better results 

when value invariants are integrated. 

Third, our current implementation in data structure transformation demands end-users 

to manually write down the specification based on our grammar, in order to automatically 

generate constraints and then the factor graphs. Part of our future work lies in making this 

process more automated. 

Finally, DIMSUM currently does not have a systematic approach to identifying the data 

instances that cross pages. In our experiment, we encountered only six such cases for data 

structure address book in pine (partly because of the small size of the data structures of 

these benchmarks). We leave it as another future effort. 
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8. RELATED WORK 

Our work is related to a large number of techniques, such as type inference, variable recov­

ery, program understanding, vulnerability discovery, malware signature derivation, proto­

col reverse engineering, rootkit detection, kernel version inference, and memory forensics. 

In this chapter, we review and compare our technique with each of them. 

8.1 Type Inference 

Some programming languages, for instance ML, do not explicitly declare types. In­

stead, types are inferred from programs. Typing constraints are derived from program state­

ments statically, and programs are typed by solving these constraints. There is a large body 

of type inference techniques, including the Hindley-Milner algorithm [46], the Cartesian 

Product algorithm [47], iterative type analysis [48], object-oriented type inference [49], 

aggregate structure identification [85], and dynamic heap type inference [58]. 

These techniques, like REWARDS [59], rely on type unification, namely, variables 

connected by operators shall have the same type. However, these techniques assume 

the program source code and they are static (i.e., typing constraints are generated from 

source code at compile time). For REWARDS, we only assumed binaries without symbolic 

information, in which high level language artifacts are all broken down to machine level 

entities, such as registers, memory addresses, and instructions. REWARDS relies on type 

sinks to obtain the initial type and semantics information. Variables are then typed through 

unification with type sinks during execution. 

Abstract type inference [50] is to group typed variables according to their semantics. 

For example, variables that are meant to store money, zip codes, ages, etc., are clustered 

based on their intentions, even though they may have the same integer type. Such an 

intention is called an abstract type. The technique relies on the Hindley-Milner type 
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inference algorithm. Recently, dynamic abstract type inference was proposed [51] to infer 

abstract types from execution. Regarding the goal of performing semantics-aware typing, 

these techniques are similar to our technique. However, they work at the source code level, 

whereas ours works at the binary level. REWARDS [59] further derives syntactic type 

structures. 

Dynamic heap type inference by Polishchuk et al. [58] focuses on typing heap objects in 

memory. REWARDS, SigGraph, and [58] do share some common insights, such as leverag­

ing pointers. However, the latter focuses on type-inference of heap objects (for debugging) 

by assuming known start addresses and sizes for all of the allocated heap blocks; whereas 

REWARDS does not have such constraint, and also SigGraph has a different purpose that 

aims at uncovering all kernel objects (including heap, stack, and global) from a raw memory 

image. To uncover those objects, the user can simply execute the data structure-specific 

scanners on the raw memory image – without any runtime support; the techniques in [58], 

on the other hand, require collecting runtime information. Moreover, the different purpose 

of SigGraph raises the new challenge of avoiding structural isomorphism among the data 

structure signatures. 

8.2 Variable Recovery 

Variable Discovery Recently, Balakrishnan et al. [39, 86, 87] showed that analyzing exe­

cutables alone can largely discover the syntactic structures of variables, such as sizes, field 

offsets, and simple structures. Their algorithm is based on the intuition that the memory 

accessing patterns in a program provide information about the location of data. They 

show that variable-like entities can be recovered by iterating Value-Set Analysis [39], a 

combined numeric-analysis and pointer-analysis algorithm, and Aggregate Structure Iden­

tification [85], an algorithm to identify the structure of aggregates. They have a tool called 

CodeSurfer/x86 [39, 86, 88, 89], a binary analysis platform, which makes use of both IDA 

Pro [90] and the CodeSurfer system [91] for building program-analysis and inspection 

tools. 
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Their technique entails points-to analysis and abstract interpretation at the binary level. 

This tool cannot handle obfuscated binaries and dynamically loaded libraries, and further­

more, the inaccuracy of the binary points-to analysis makes it hard to type heap variables. In 

comparison, our technique is relatively simple, and addresses the major hindrances to static 

analysis (e.g., points-to relations and dynamically loaded libraries) via dynamic analysis. 

Decompilation Decompilation is a process of reconstructing program source code from 

lower-level languages (e.g., assembly or machine code) [92–94]. Tools like HexRay [95], 

offer a variety of techniques to help elevate low-level assembly instructions to higher level 

code. Decompililation usually involves reconstructing the variable types [96,97]. By using 

unification, Mycroft [96] extends the Hindley-Milner algorithm [46] and delays unification 

until all constraints are available. Recently, Dolgova and Chernov [97] present an iterative 

algorithm that uses a lattice over the properties of data types for reconstruction. 

All of these techniques are static and hence share the same limitations of static type in­

ference and only derive simple syntactic structures. Moreover, they aim to find an execution-

equivalent code and do not pay attention to whether the recovered types reflect the original 

declarations and have the same structures. 

Principled Reverse Engineering Inspired by our REWARDS, most recently there have 

been two follow up works: HOWARD [73] and TIE [72]. HOWARD differs from RE­

WARDS by looking at the internal data structures inside the binary. Also, it offers a loop 

detector, which is used to detect array accesses. TIE differs from REWARDS by statically 

analyzing the binary instead of dynamic analysis. As discussed, there are a number of 

challenges in statically analyzing the binary code. TIE addressed these challenges and 

proposed a novel type reconstruction algorithm for binary code based on BAP [98], another 

binary analysis platform. Unlike REWARDS and HOWARD, which are limited to the 

dynamic analysis of a single execution trace, TIE handles control flow and thus is amenable 

to providing complete coverage of the data structures. 
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8.3 Program Understanding 

Our reverse engineering work is also related to program understanding, which aims 

to help programmers maintain and understand the legacy code [99–101]. There are also 

a variety of methods for profiling [102–104], testing [105, 106], slicing [107–109], and 

debugging [110, 111] of program behavior for a given binary or source code, from which 

they can build the cognitive models for program understanding. The basic cognitive models 

include (1) top-down understanding [112], (2) bottom-up understanding [113], (3) iterative 

hypotheses refinement [99], and (4) some combinations of the three [114]. Our tech­

nique can facilitate program understanding particularly for the bottom-up approaches, as 

demonstrated in Lackwit [50], a type inference based program understanding (note Lackwit 

requires program source code access). 

8.4 Malware Signature Derivation 

Data structures are one of the important and intrinsic properties of a program. Recent 

advances have demonstrated that data structure patterns can be used as a program’s signa­

ture. In particular, Laika [33] shows a way of inferring the layout of data structure from 

a snapshot, and uses the layout as the signature. Their inference is based on unsupervised 

Bayesian learning and they assume no prior knowledge about program data structures. 

There are significant differences between Laika and REWARDS as Laika does not provide 

any semantic types of the data structure. Laika also does not aim to recover the correct 

definitions. 

Meanwhile, Laika and SigGraph are substantially different in two ways: (1) Laika 

focuses on deriving a program’s signature from data structure patterns; whereas SigGraph 

focuses on deriving the signatures of the data structures from the points-to relations among 

them. (2) Laika, by its nature, does not assume the availability of data structure defini­

tions. On the contrary, data structure definitions are the input of SigGraph to generate data 

structure signatures. 
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For DIMSUM, the difference compared with Laika [33] is that Laika aims to derive 

the data structure definition inside a binary and uses it as the program signature. It starts 

with no knowledge of the data structure definition, and uses data instances to eventually 

cluster the data structure definitions. DIMSUM solves a completely different problem, 

namely, starts with data structure definitions and tries to find data instances in the memory. 

The modeling techniques are completely different. Furthermore, Laika relies on memory 

mapping when traversing the memory, and DIMSUM does not. 

8.5 Protocol Reverse Engineering 

Recent efforts in protocol reverse engineering involve using dynamic binary analysis, 

input data taint analysis in particular, to reveal the format of protocol messages, facilitated 

by instruction semantics (e.g., Polyglot [19]) or execution context (e.g., AutoFormat [20] 

and [115]). Recently, it has been shown that the BNF structure of a given protocol with 

multiple messages can be derived [21, 22, 116]; and the format of outgoing messages, as 

well as encrypted messages, can be revealed [117, 118]. In particular, REWARDS shares 

the same insight as Dispatcher [117] for type inference and semantics extraction. 

These techniques share the same methodology with our system (i.e. making use of run­

time information). However, most existing protocol format reverse engineering techniques 

focus on using program structure to reflect input syntactic structure. Comparing to these 

techniques, we share the same observation that a binary implementation contains a wealth 

of information on discovering the syntax and semantics of program data. 

The difference among them is that Dispatcher and other protocol reverse engineering 

techniques mainly focus on live input and output messages, whereas our technique strives 

to reveal the general data structures in a program. We also care more about the detailed in-

memory layout of the program data, which is motivated by our different targeted application 

scenarios. 
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8.6 Vulnerability Discovery 

There is a large body of research in vulnerability discovery thorough fuzzing [7, 8], 

automated test case generation, model checking, or taint analysis such as BuzzFuzz [10], 

SNOOZE [11], SmartFuzz [9], Flayer [119], Archer [120], EXE [121], Vigilante [122], 

Bouncer [123], TaintCheck [124], BitScope [125, 126], IntScope [83], TaintScope [127], 

RICH [128], DART [129], CUTE [130], KLEE [131], and SAGE [132, 133]. REWARDS 

complements these techniques by enabling the identification of data structure pattern of 

vulnerability suspects directly from binaries. 

Chevarista [134] is another project for automated vulnerability analysis on SPARC 

binary code. Chevarista demonstrates how to translate binary code to SSA form and model 

variable bounds by interval analysis to detect buffer overflow or integer overflow. 

8.7 Kernel Rootkit Detection 

Kernel-level rootkits pose a significant threat to the integrity of operating systems. 

Earlier research uses a specification-based approach deployed in hardware (e.g., [56]), 

virtual machine introspection (e.g., Livewire [26]), or binary analysis [135] to detect kernel 

integrity violations. Recent advances include the mapping and analysis of kernel memory 

images for control flow integrity checking [136] and kernel data integrity checking [30,57]. 

To facilitate kernel data integrity checking, techniques have been proposed for deriving 

kernel data structure invariants [32, 43]. 

SigGraph is inspired by, and hence closely related to, the above efforts [30, 32, 43, 57]. 

In particular, Petroni et al. [57] proposed examining semantic invariants (such as “a process 

must be on either the wait queue or the run queue”) of kernel data structures to detect kernel 

rootkits. The key observation is that any violations of semantic invariants indicate kernel 

rootkit presence. But the semantic invariants are manually specified. Baliga et al. [43] 

proposed using the dynamic invariant detector Daikon [137] to extract kernel data structure 

constraints. The invariants detected include membership, non-zero, bounds, length, and 

subset relations. Dolan-Gavitt et al. [32] proposed a scheme for generating robust value 
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invariant-based kernel data structure signatures. Complementing these efforts, SigGraph 

leverages the points-to relations between kernel data structures for signature generation. 

As suggested in Section 7.2, SigGraph-based and value invariant-based signatures can be 

integrated to further improve brute force scanning accuracy. 

Carbone et al. proposed KOP [30] which involves building a global points-to graph for 

kernel memory mapping and kernel integrity checking. The global graph is constructed 

via an advanced inter-procedural points-to analysis on OS source code. A few heuristics 

were proposed to better resolve function pointers. KOP is a highly effective system when 

the kernel source code and a powerful static analysis infrastructure are available. The 

main differences between SigGraph and KOP are the following: (1) Unlike KOP, SigGraph 

does not require complex points-to analysis (which often involves source code analysis) 

and instead only requires kernel data structure definitions. (2) KOP requires that data 

structure instances be reachable starting from the root(s) of the global points-to graph; 

whereas SigGraph does not require such global reachability and hence supports brute force 

memory scanning that can start at any kernel memory address. In particular, SigGraph 

may recognize kernel objects that are unreachable from global/stack variables. (3) To 

achieve robustness against pointer corruption, the global points-to graph heavily depends 

on a complete revelation of points-to relations between data structures; whereas SigGraph 

can generate multiple signatures for each data structure by excluding problematic pointers 

(e.g., null and void* pointers). 

8.8 Kernel Version Inference 

The goal of OS kernel version inference is to determine the specific OS of the machine 

on which it is running, which is quite similar to OS fingerprinting mainly launched by 

attackers to discover possible security vulnerabilities. The basic technique in OS finger­

printing is searching for OS-specific differences in the implementation of the TCP stack. 

The widely used tools include Nmap [35, 138] and Xprobe2 [37]. 
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The difference compared with our work is that we directly take a specific kernel data 

structure signature to pinpoint an OS kernel version. Previously, it has been impossible for 

the attacker to probe the data structures of remote OS, but in the cloud computing scenario, 

it is quite possible for cloud providers to examine the guest OS memory. Though value-

invariants have been used to fingerprint OS kernels (e.g., in [34]), our SigGraph-based 

fingerprinting technique has all the benefits of SigGraph over the value-invariant based 

technique, as demonstrated in Chapter 6. 

8.9 Memory Forensics 

Memory forensics is a particular type of digital forensics [139], which focuses on 

analyzing a memory image to interpret the state of the system. It has been evolving 

from basic techniques, such as string matching, to more complex methods, such as object 

traversal (e.g., [25, 30, 52, 53, 55]) and signature-based scanning (e.g., [32, 40–42, 140]). 

Memory traversal approaches (e.g., KOP [30]) attempt to build a road-map of all data 

structures, starting from the global key objects and traversing along the points-to edges. 

However, such an approach has to resolve generic pointers such as void* and also cannot 

traverse further if a pointer is corrupted. SigGraph [31] complements those approaches 

by deriving context-free pointer-based signatures. Yet these techniques mostly work for 

live data because “dead” data cannot be reached by traversal due to missing page tables 

and unresolvable pointers. Signature scanning directly searches memory using signatures. 

A classic approach is to search specific strings in memory. Other notable techniques 

include PTfinder [41] for linear search of Windows memory to discover process and thread 

structures, Volatility [25] and Memparser [42] with more capabilities of searching other 

types of objects. 

Signature-based scanning involves directly parsing the memory image using signatures. 

In particular, Schuster [41] presented PTfinder for linearly searching Windows memory im­

ages to discover process and thread structures, using manually created signatures. Similar 

to PTfinder, GREPEXEC [140], Volatility [40], and Memparser [42] are related systems 
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capable of searching for more types of objects. Dolan-Gavitt et al. [32] further proposed 

an automated technique to derive robust data structure signatures. Sharing the same goal 

of providing robust signatures for brute force memory scanning, SigGraph provides graph-

based, provably non-isomorphic signatures (as well as the corresponding memory scanners) 

for individual kernel data structures. 

Table 8.1: Capability comparison with existing techniques 

Scenario Value Invariant KOP SigGraph DIMSUM 
Live Object 
Dead Object 

w/o Mem Mapping 
Brute-Force Scanning 

� 
� 
� 
� 

� � 

� 

� 
� 
� 
� 

The difference between these techniques including SigGraph and DIMSUM, is summa­

rized in Table 8.1: for live objects such as objects in OS kernel, which usually have memory 

mapping information (or the mapping information is easily recoverable), we could use all 

these techniques including DIMSUM. However, without memory mapping information, 

which is mostly the case for the dead object in free pages as well as the swapped page files, 

we could use value-invariant and DIMSUM. Except KOP which does not support brute 

force scanning, all these techniques can scan memory at arbitrary memory locations. 
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9. CONCLUSION 

Data structure is one of the key aspects of a program. In this dissertation, we show that by 

dynamically analyzing the binary code, we can reverse engineer the syntax and semantics 

of data structures, and we hence develop a tool called REWARDS in Chapter 3 for this 

purpose. By exploiting the points to relations between data structure, we next propose 

SigGraph in Chapter 4, which can derive unique signatures for data structures and use 

them to scan memory and identify data structure instances. Finally, for those data instances 

that do not have memory mapping information, we develop DIMSUM in Chapter 5, which 

leverages Bayesian inference techniques to identify them. 

REWARDS makes a first step in recovering both the syntax and semantic information 

of data structures. Given a binary executable, REWARDS executes the binary, monitors 

the execution, aggregates and analyze runtime information, and ultimately recovers the 

data structures observed in the execution. Besides leveraging the forward type propagation 

technique, for reverse engineering of program data structures, REWARDS involves both 

an on-line and off-line backward type resolution. REWARDS correctly handles the issues 

caused by memory re-use (e.g., a same stack address may be shared by multiple variables) 

by using timestamps. We have developed a prototype of REWARDS and used it to analyze 

a number of binaries. Our evaluation results show that REWARDS is able to reveal the 

types of the variables observed in a program’s execution with over 80% accuracy. Further­

more, we demonstrated the versatility of REWARDS in a variety of application scenarios, 

such as memory image forensic analysis and binary fuzzing for vulnerability discovery. 

After we have derived the data structure definitions from the application binary, the next 

step is how to use these data structures. We observed that the points-to relations between 

the data structures could be exploited by deriving the data structure signatures. We thus 

developed SigGraph, a system to extract the points-to graph and automatically generate the 

signatures for data structures. We have extensively evaluated SigGraph-based signatures 
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with several Linux kernels and verified the uniqueness of the signatures. Our signatures 

achieve close to zero false positives and zero false negatives when applied to data structure 

instance recognition in kernel memory images. Furthermore, our experiments showed that 

SigGraph works without global memory maps and in the face of a range of kernel attacks 

that manipulate pointer fields, demonstrating its applicability to kernel rootkit detection. 

Finally, we showed that SigGraph can be used as well to determine the version of a guest 

OS kernel, a key prerequisite of virtual machine introspection. 

SigGraph can discover the data structure instances that are reachable, namely, the 

pointer addresses can be resolved and mapped. However, for data instances in unmappable 

memory, SigGraph does not work. Such un-mappable memory could be the entire free 

pages of the system, the memory swap file, or a corrupted memory dump. To address 

this problem, we presented a probabilistic inference-based approach called DIMSUM to 

enable the recognition of data structure instances from un-mappable memory. Given a set 

of memory pages and the specification of a target data structure, DIMSUM will identify 

instances of the data structure in those pages with quantifiable confidence. Our experiments 

with real-world applications on the Linux platform show that DIMSUM achieves better 

effectiveness (with over 20% accuracy improvement) than non-probabilistic approaches 

without memory mapping information. 

Together, REWARDS, SigGraph, and DIMSUM present an integrated framework for 

reverse engineering of data structures, including data structure definitions and data structure 

instances. Meanwhile, they also suggest many interesting research problems. Below, we 

briefly conclude this dissertation with a list of a number of open problems in this research 

direction. 

•	 Binary code obfuscation Reverse engineering has to deal with obfuscation [44]. 

There are many code obfuscation techniques to thwart static and dynamic code anal­

ysis, such as dead code insertion, code transposition, register assignment, instruc­

tion substitution [141], and code encryption and packing. These obfuscation tech­

niques will have an impact on our REWARDS, especially when we want to apply 
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REWARDS to analyze malware. However, REWARDS is resilient to static code 

obfuscation by nature as it is a dynamic analysis system. 

•	 Data structure obfuscation It is also possible to obfuscate the data structures, for 

example, shuffle the data structure field [45], or insert a garbage field. Such problems 

are a large threat to data structure reverse engineering and many data structure based 

applications. It is worthwhile to study the problem of data structure obfuscations and 

deobfuscations. 

•	 False data injection issue In forensics scenarios, an attacker could attempt to gen­

erate fake data structure instances to thwart the use of SigGraph and DIMSUM. 

Although exploiting the points-to relation makes such attacks more difficult as the 

attacker would have to fake the multiple data structures involved in a graph signature 

and make sure that all of the points-to relations among these data structures are 

properly set up, and such an attack is totally possible. At this time there is no general 

solution to this problem, and it is also worthwhile to investigate how to remove the 

false injected data in forensics. 
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