
CERIAS Tech Report 2011-05
Reverse Engineering of Data Structures from Binary

 by Zhiqiang Lin
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

Zhiqiang Lin By

Entitled Reverse Engineering of Data Structures from Binary

Doctor of Philosophy For the degree of

Is approved by the final examining committee:

Dr. Dongyan Xu Dr. Xuxian Jiang

 Chair

Dr. Xiangyu Zhang Dr. Eugene Spafford

Dr. David Brumley

Dr. Charles Killian

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Dr. Dongyan Xu Approved by Major Professor(s): ____________________________________

Dr. Xiangyu Zhang ____________________________________

Approved by: Dr. Sunil Prabhakar 07/13/2011
Head of the Graduate Program Date

Choose your degree

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
Reverse Engineering of Data Structures from Binary

For the degree of Doctor of Philosophy

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Zhiqiang Lin

Printed Name and Signature of Candidate

07/13/2011

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

REVERSE ENGINEERING OF DATA STRUCTURES FROM BINARY

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Zhiqiang Lin

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2011

Purdue University

West Lafayette, Indiana

ii

To my parents and my wife.

iii

ACKNOWLEDGMENTS

First and foremost, I owe my deepest gratitude to my advisor, Professor Dongyan Xu.

I would like to thank him for his extraordinary guidance, support, and encouragement

throughout my entire PhD study. In particular, he provided me the plenty of freedom to

do the research I was fascinated, he guided me in evaluating the research for the right

direction, he stayed late in the night for paper deadlines, he polished all of my professional

writing and presentation, and he encouraged me to pursue the academic career. I am so

fortunate of having him as my advisor. I will cherish the time of working with him and

guide my students with the methodology he guided me.

Second, I would like to sincerely thank my co-advisor, Professor Xiangyu Zhang.

He guided me in the research of binary analysis in which I was highly interested. He

was always available, and always had sharp comments, neat insights, and constructive

suggestions for my research ideas. I enjoyed all of the brainstorming discussion with him.

I am also extremely grateful to my committee members, Professor Xuxian Jiang. He

has been a great mentor and friend for the past several years. Not only did he help me build

the necessary technical skills in system research, but also enrich me the mind-set for a good

system security researcher. In addition, he also gave me invaluable advice for the career

development. And I have had a great time of working with him on a number of interesting

research problems.

I would also like to thank my other committee members, Professor David Brumley, Pro­

fessor Charles Killian, and Professor Eugene Spafford. This dissertation greatly benefitted

from their careful reading, insightful comments, and high standards. Also, I have learned

invaluable lessons from interacting with them. A special thank goes to Professor Spafford

for his shepherding of the scientific and rigorous aspect of this dissertation.

I would like to extend my thanks to many other faculty members in the computer

science department, for the courses they offered that help me to lay a foundation for the

iv

work in this dissertation. I also thank Professor Ninghui Li for serving in my prelim

exam committee, Professor Cristina Nita-Rotaru for giving me the invaluable advice on

the academic life in US, and Professor Patrick Eugster for the sharing of his research

experience. Meanwhile, I am deeply indebted to Professor John C.S. Lui for his tremendous

help and advice on my career path, and also indebted to Dr. Vinod Yegneswaran and Dr.

Phillip Porras for their mentoring during my summer internship at SRI International.

Lab FRIENDS is my academic home. I would like to thank all of my lab mates

with whom I had a time intersection, Zhui Deng, Sahan Gamage, Zhongshu Gu, Ardalan

Kangarlou, Junghwan Rhee, Ryan Riley, Paul Ruth, Bo Sang, Dannie Stanley, and Cong

Xu for their valuable collaborations and assistance on my research, as well as for their

intriguing discussions ranging from research problems to real life. Their friendship will be

one of my best fortunes.

My life at West Lafayette would have been much less fun without many of my Chinese

friends. Tiancheng Li has given me tremendous help since my first day at Purdue. Qihua

Wang has always enthusiastically offered his advice and help whenever I asked. I am also

very grateful to Feng Chen, Yang Liu, Ziqing Mao, Wenqi Shen, Ling Tong, Zhuangzhuang

Xi, Rong Zhang, and Wei Zhang for all the joy they have brought to me in these years.

Finally, this dissertation is dedicated to my parents, Changxiang Lin and Guanghuan Li,

and my gorgeous wife, Jing Huang, for their love, continuous support and encouragement.

Without them, I would not be able to reach this point and finish my PhD dissertation.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Dissertation Statement . 1

1.2 Why Data Structure Reverse Engineering is Important 2

1.3 Why Data Structure Reverse Engineering is Challenging 5

1.4 Contributions . 7

1.5 Scope of this Dissertation . 8

1.6 Dissertation Overview . 9

2 A DATA STRUCTURE REVERSE ENGINEERING FRAMEWORK 12

2.1 REWARDS . 13

2.2 SigGraph . 15

2.3 DIMSUM . 18

3	 REWARDS: AUTOMATIC REVERSE ENGINEERING OF DATA STRUCTURE

DEFINITIONS . 21

3.1 Overview . 21

3.1.1 Key Techniques . 21

3.1.2 A Working Example . 22

3.2 Detailed Design . 24

3.2.1 Type Sinks . 24

3.2.2 Online Type Propagation and Resolution Algorithm 26

3.2.3 Off-line Type Resolution . 31

3.2.4 Typed Variable Abstraction 31

vi

Page

3.2.5 Constructing Hierarchical View of In-Memory Data 32

3.3 Implementation . 33

3.4 Evaluation . 34

3.4.1 Effectiveness . 35

3.4.2 Performance Overhead . 38

3.5 Summary . 39

4	 SIGGRAPH: DISCOVERING DATA STRUCTURE INSTANCES USING GRAPH­
BASED SIGNATURES . 40

4.1 Problem Statement . 41

4.2 Data Structure Definition Extraction 43

4.3 Signature Generation . 44

4.4 Scanner Generation . 52

4.5 Handling Practical Issues . 54

4.6 Implementation . 56

4.7 Evaluation . 57

4.7.1 Signature Uniqueness . 57

4.7.2 Signature Effectiveness . 58

4.7.3 Multiple Signatures . 65

4.7.4 Performance Overhead . 66

4.8 Summary . 67

5	 DIMSUM: DISCOVERING DATA STRUCTURE INSTANCES USING PROBAL­
ISTIC INFERENCE . 68

5.1 DIMSUM Overview . 68

5.1.1 Key Observation . 68

5.1.2 Challenges . 70

5.1.3 Overview . 71

5.2 DIMSUM Design . 71

5.2.1 Practical Problems . 73

5.2.2 Probabilistic Inference . 74

vii

Page

5.3 Generating Constraints . 79

5.3.1 Primitive Constraints . 79

5.3.2 Structural Constraints . 82

5.3.3 Pointer Constraints . 83

5.3.4 Same-Page Constraints . 85

5.3.5 Semantic Constraints . 86

5.3.6 Staged Constraints . 86

5.4 Implementation . 87

5.5 Evaluation . 89

5.5.1 Experiment Setup . 89

5.5.2 Effectiveness . 91

5.5.3 Sensitivity on the Threshold 98

5.5.4 Performance Overhead . 98

5.6 Summary . 99

6 APPLICATIONS . 100

6.1 Memory Image Forensics . 100

6.1.1 Typing Reachable Memory 100

6.1.2 Typing Dead Memory . 104

6.2 Vulnerability Fuzzing . 105

6.3 Kernel Rootkit Detection . 110

6.4 Kernel Version Inference . 113

7 LIMITATION AND FUTURE WORK . 116

7.1 REWARDS . 116

7.2 SigGraph . 117

7.3 DIMSUM . 120

8 RELATED WORK . 122

8.1 Type Inference . 122

8.2 Variable Recovery . 123

viii

Page

8.3 Program Understanding . 125

8.4 Malware Signature Derivation . 125

8.5 Protocol Reverse Engineering . 126

8.6 Vulnerability Discovery . 127

8.7 Kernel Rootkit Detection . 127

8.8 Kernel Version Inference . 128

8.9 Memory Forensics . 129

9 CONCLUSION . 131

LIST OF REFERENCES . 134

VITA . 145

ix

LIST OF TABLES

Table	 Page

3.1	 An example of running the online algorithm. Variable g1 is a global, l1 and l2

are locals. 30

3.2	 An example of running the off-line type resolution procedure. The execution

before timestamp 12 is the same as Table 3.1. Method N reuses l1 and l2 . . 30

4.1	 Experimental results of signature uniqueness test 57

4.2	 Detail statistics on our static signatures 58

4.3	 Summary of data structure signatures for Linux kernel 2.6.18-1 61

4.4	 Experimental results of SigGraph signatures and value invariant-based signa­
tures . 62

5.1	 Predicate definitions used throughout the paper 73

5.2	 Boolean constraints with probabilities . 76

5.3	 Summary on discovering data instances of interest for user applications in

Linux. Note the two ∗ false positives can easily be pruned by looking at the

absolute value of the probability. 92

6.1	 Result on the unreachable memory type using type fun 0x804a708 106

6.2	 Number of vulnerability suspects reported with help of REWARDS 108

6.3	 Result from our vulnerability fuzzer with help of REWARDS 109

6.4	 Experimental result on kernel rootkit detection 110

6.5	 Detailed field offsets of task struct for kernel version inference 114

8.1	 Capability comparison with existing techniques 130

x

LIST OF FIGURES

Figure	 Page

1.1	 A framework for reverse engineering of data structure from binary 7

2.1	 An overview of our data structure reverse engineering framework 12

3.1	 An example showing how REWARDS works 23

3.2	 Evaluation results for REWARDS accuracy and efficiency 36

4.1	 A working example of kernel data structures and a graph-based data structure

signature. The triangles indicate recursive definitions 40

4.2	 SigGraph system overview . 43

4.3	 Examples illustrating the signature isomorphism problem 45

4.4	 If the offset of field e1 (of type struct G) in E is changed to 16, struct

A will have two possible signatures (detailed data structure definitions in Fig­
ure 4.3) . 50

4.5	 The generated scanner for struct A’s signature in Equation (4.9) 53

4.6	 False positive analysis of vm area struct 63

4.7	 False positive analysis of dentry and sysfs dirent 64

4.8	 Memory scanning performance . 66

5.1	 Death-span of free frames from a terminated Firefox process 69

5.2	 Overview of DIMSUM . 71

5.3	 Data structure definition of our working example 72

5.4	 Factor graph example . 78

5.5	 Float point representation . 81

5.6	 Common high bits in a time data structure 81

5.7	 The factor graph enhanced with a pointer constraint. Constraints C3 and C6

are elided for readability. The modified part is highlighted. Constraints and

variables local to a page are boxed. 85

5.8	 Sample code on using Infer.NET to model C1 - C4 in our working example and

compute p(x1). 87

http:Infer.NET

xi

Figure	 Page

5.9	 Factor graph of the example code from Infer.NET. Note each variable is de­
noted as a circle and each factor or constraint as a square. If a variable par­
ticipates in the factor or the constraint, then an edge is shown between the

corresponding circle and square. 88

5.10 Effectiveness evaluation of DIMSUM for discovering user login record data

structure utmp. 95

5.11 An abstraction of the utmp case. The node in the middle is missing. 96

5.12 The threshold impact on the experimental result 97

5.13 Comparison of the normalized execution time 98

6.1	 Part of a memory dump from null-httpd. String and IP address are underscored. 101

6.2	 Comparison between the REWARDS-derived hierarchical view and source code

definition . 102

6.3	 Memory dump for Slapper worm control program when exiting the control

interface . 103

7.1	 Profiling accesses to the fields of task struct 118

http:Infer.NET

xii

ABSTRACT

Lin, Zhiqiang Ph.D., Purdue University, August 2011. Reverse Engineering of Data Struc­
tures from Binary. Major Professor: Dongyan Xu, Xiangyu Zhang.

Reversing engineering of data structures involves two aspects: (1) given an application

binary, infers the data structure definitions; and (2) given a memory dump, infers the

data structure instances. These two capabilities have a number of security and forensics

applications that include vulnerability discovery, kernel rootkit detection, and memory

forensics.

In this dissertation, we present an integrated framework for reverse engineering of data

structures from binary. There are three key components in our framework: REWARDS,

SigGraph and DIMSUM. REWARDS is a data structure definition reverse engineering

component that can automatically uncover both the syntax and semantics of data structures.

SigGraph and DIMSUM are two data structure instance reverse engineering components

that can recognize the data structure instances in a memory dump. In particular, SigGraph

can systematically generate non-isomorphic signatures for data structures in an OS kernel

and enable the brute force scanning of kernel memory to find the data structure instances.

SigGraph relies on memory mapping information, but DIMSUM, which leverages proba­

bilistic inference techniques, can directly scan memory without memory mapping informa­

tion.

We have developed a number of enabling techniques in our framework that include (1)

bi-directional (i.e., backward and forward) data flow analysis, (2) signature graph gen­

eration and comparison, and (3) belief propagation based probabilistic inference. We

demonstrate how we integrate these techniques into our reverse engineering framework

in this dissertation.

xiii

We have obtained the following preliminary experimental results. REWARDS achieved

over 80% accuracy in revealing data structure definitions accessed during an execution.

SigGraph recognized Linux kernel data structure instances with zero false negative and

close-to-zero false positives, and had strong robustness in the presence of malicious pointer

manipulations. DIMSUM achieved over 20% accuracy improvement than previous non-

probabilistic approaches without memory mapping information.

1

1. INTRODUCTION

1.1 Dissertation Statement

In computer science, a data structure is a particular way of storing (e.g., using array,

tree, or graph) and accessing (e.g., sequential, pre-order, or depth-first) data in a computer

so that it can be used efficiently [1]. Typically, a data structure is composed of a number

of fields, and each field has a specific type. The organization of the data structure fields

forms a layout (i.e., the syntax of the data structure). The types, which tell the computer

and the programmer information about the values and operations that a specific data type

can handle, concern the semantics of the data structure. Almost all programs use data

structures, namely, software development is essentially “Algorithms + Data Structures =

Programs” [2].

A data structure usually has two representations. One is the abstract representation,

which is the definition of the data structure and this definition is determined by the pro­

grammers and used during software development. The other is the concrete representation,

which is the instance of the data structure and this instance is created at run-time during

program execution.

A data structure is started from a programmer’s definitions and is eventually translated

into a binary form when the software is compiled. In the reverse direction, “can we reverse

engineer the data structure definitions (i.e., the abstract representation of data structure)

from binary code?” Also, the data structure is instantiated as data structure instances in

memory at run-time. The instances are just the raw bits and bytes. Thus, “can we recognize

the specific data structure instances from raw memory images?”

Both compiled code and raw memory images are in binary forms. That is why we call

this process reverse engineering of data structures. In general, “Reverse engineering is the

process of analyzing a subject system to create representations of the system at a higher

2

level of abstraction” [3]. More specifically, we aim to reverse engineer the data structure

definitions from binary code, and recognize data structure instances from a memory image.

These two capabilities have many computer security and forensics applications.

1.2 Why Data Structure Reverse Engineering is Important

Knowledge of data structure is valuable in many applications. During software devel­

opment, compilers use data structure semantics to detect meaningless or probably invalid

code [4]. For example, a compiler can identify an expression like an integer divided by a

string as invalid because, in the usual sense, one cannot divide an integer by a string. Also,

a compiler may use the static type of a value to optimize the storage it needs as well as

the operations on the value. For example, according to the IEEE specification for single-

precision floating point numbers (the static types) [5], many C compilers represent the float

data type in 32 bits though theoretically it should be (−∞, +∞), and uses floating-point­

specific operations on those values.

In the context of software debugging, programmers often need to know both the seman­

tics and the syntax of the data structure to examine a specific memory cell. For example,

if a programmer wants to examine a stack variable, he or she must know in advance the

types (e.g., integer, string, or pointer), and then use the specific format needed to display

the value.

In addition to traditional applications in software development, data structure knowl­

edge has a wide impact in computer security and forensics, such as in the following exam­

ples.

•	 Vulnerability Discovery – Knowledge about data structure layout is often used by

attackers. For example, a buffer overflow attack relies on the attacker knowing that a

buffer is close to a function pointer or return address [6]. Such a data structure layout

pattern can actually guide the vulnerability discovery. For example, if a penetration

tester or an attacker knows the layout of a stack frame or network message, he or

3

she can reduce the fuzz [7–11] space and speed up the vulnerability discovery as

demonstrated in Packet Vaccine [12] and ShieldGen [13].

•	 Exploit Generation – An exploit is a particular input that can trigger a vulnerabil­

ity [14–16]. To compromise a remote machine, attackers often construct exploits

based on the program data structures, because what the attacker can manipulate is

always the input data of the program. For example, from the data structure syntax

(e.g., the size of a buffer), an attacker could directly know the exact distance between

an exploitable buffer and a return address or a function pointer, and thereby easily

manipulate his input to hijack the control flow.

•	 Protocol Format Reverse Engineering – Protocol format reverse engineering aims

to reveal the format of incoming and outgoing network messages [17, 18]. Such

messages are usually composed of a number of program-defined data structures. If

we can reverse engineer the data structures of a program, then we can correlate the

incoming and outgoing messages with the reverse engineered data types. A number

of recent protocol reverse engineering techniques (e.g., [19–22]) have followed such

methodology.

•	 Memory Forensics – Memory forensics is to identify, extract, and analyze meaning­

ful information from a piece of memory dump in a forensically sound manner [23–

25]. Samples of such information are IP addresses to which the application under

investigation is talking and files that are being accessed. Data structure definitions

play a critical role in the extraction process. For instance, without data structure

information, it is challenging to decide if four consecutive bytes represent an IP

address or are only a regular integer. As such, if there is a technique that can

automatically extract the data structure with both the syntax and semantics, then such

a technique can directly help construct a meaningful view of the in-memory data and

benefit the memory forensics process.

•	 Virtual Machine Introspection (VMI) – VMI is a technique that observes the state

of an entire OS from the virtual machine level [26]. There is often a semantic gap

4

between the guest OS and the host OS [27]. In VMI, the layout and semantics of the

guest kernel data structure directly control the external interpretation of kernel events

[28, 29]. For example, without knowing the data structure of a process descriptor, it

is impossible to interpret the guest kernel memory with the right semantics at host

side.

•	 Kernel Rootkit Detection – A kernel rootkit is kernel level malware that hides

important kernel objects such as process descriptors or kernel modules. To hide the

kernel objects, a rootkit attacker usually has knowledge of the corresponding kernel

data structure definitions. For example, to hide a malicious process, the attacker

could manipulate the previous and next pointer of the running process list, and then

hide it. As a result, a rootkit detector could use the signature of the corresponding

data structure and scan the memory in order to recognize the hidden object [30–32].

•	 Malware Classification – To classify malware, anti-virus software primarily relies

on the signatures in the malware code. As data structure is one of the important

aspects of a program, if the data structure has some unique patterns to a particular

program, it is thus possible to use the data structures as malware signatures. In

particular, as demonstrated in Laika [33], we can automatically derive the syntax

of the data structure from malware code through machine learning techniques and

use such syntax as malware signatures.

•	 OS Kernel Fingerprinting – Similar to malware classification using data structures,

we could also use the kernel data structures to fingerprint an OS kernel, which is

particularly desirable in cloud computing. For example, a public cloud computing

platform usually hosts virtual machines (VMs) with various OS kernels. In order

to perform VMI [26, 28, 34] on these guest VMs, a prerequisite is to know the

specific version of a guest’s OS kernel [35–37]. However, such information is not

always available to the cloud provider. As will be shown in our dissertation, the

unique signatures of kernel data structures can sometimes serve as the fingerprint of

a specific OS.

5

1.3 Why Data Structure Reverse Engineering is Challenging

There are a number of new challenges in (1) reverse engineering data structure def­

initions from an application binary, and (2) recognizing data structure instances from a

memory image.

First, to reverse engineer the data structure syntax and semantics, we have to first

disassemble [38] and then analyze the binary code.

•	 Static analysis to reveal the data structure is difficult because of the lack of symbolic

information. Also, alias analysis is particularly hard while it is essential to deciding

data flow and hence variable semantics. For example, variable discovery [39] is a

static analysis technique that recovers the syntactic characteristics of variables, such

as a variable’s offset in its activation record, size, and hierarchical structure. This

technique requires alias analysis and abstract interpretation at binary level, and it

does not recover any semantic information about data structures.

•	 Dynamic analysis is challenging as well because many variables are dynamically

created and de-allocated at runtime, making it complicated to track and resolve the

variable types based on memory locations, which may be re-used during runtime.

The dynamic variable lifetime may also affect the coverage of data structures as some

may be de-allocated before their types are resolved.

Second, to recognize the data structure instances, the state-of-the-art solution is to de­

rive the value-invariant data structure signatures, and use them to scan memory. However,

the following are new challenges.

•	 The value-invariant is not always available. Many existing solutions rely on the

field value invariant exhibited by a data structure (i.e., a field with either a constant

value or a value in a fixed range) as its signature [32, 40–43]. Unfortunately, many

kernel data structures cannot be covered by the value-invariant scheme. For example,

some data structures do not have fields with invariant values or value ranges espe­

6

cially for pointers. It is also possible that an invariant-value field may be corrupted,

thereby making the corresponding data structure instance un-recognizable.

•	 Avoiding signature isomorphism when leveraging points-to relation. Comple­

mentary to the value-invariant, we could explore the structural invariant (i.e., the

points-to shape of the data structure) as signatures. However, it is possible that

two distinct data structures may lead to isomorphic signatures that cannot be used

to distinguish instances of the two data structures. Hence there is a new challenge

to identify the sufficient and necessary conditions to avoid signature isomorphism

between data structures.

Third, to scan memory and traverse the points-to relation between data structures, we

have to resolve memory mapping [30, 31], namely, given a virtual address, we need to

resolve its destination’s physical address. However, existing techniques to do so are only

suitable for live data instances. As such, we have to recognize the dead data instances

(i.e., the data instances that has been deallocated or belong to a dead process). The new

challenges include the following in particular.

•	 Absence of memory mapping information. Given a set of memory pages, very

little information is available about which pages belong to which process, let alone

the sequencing of the physical pages in the virtual address space of a process. Even

if we can identify some pointers in a page, it is very hard to follow those pointers

without the address mapping information.

•	 Absence of type/symbolic information for dead memory. To map the raw bits

and bytes of a memory page to meaningful data structure instances, type information

is necessary. For example, if the content at a memory location is 0, its type could

be integer, floating point, or even pointer. If these bits and bytes belong to the live

memory and the symbolic information is available, then they can be typed through

the reference path (as in [30]). However, such information is not available.

7

Binary

Code

REWARDS
Reverse Engineering of

Data Structure Definitions

Data Structure

Data Structure Definitions

Definitions

Data Structure

Instances
SigGraph

Mappable

Memory

DIMSUM
Un-mappable

Memory

Data Structure

Instances

Reverse Engineering of

Data Structure Instances

Fig. 1.1.: A framework for reverse engineering of data structure from binary

1.4 Contributions

Our dissertation will address these challenges, develop new techniques to automatically

reverse engineer data structure definitions, and recognize data structure instances from not

only live memory, but also dead memory.

Our contributions can be summarized as follows.

•	 We present a systematic framework for reverse engineering of data structures from a

binary. As illustrated in Figure 1.1, this framework includes three key components:

REWARDS1 (reverse engineering data structure definitions), SigGraph2, and DIM­

SUM3 (reverse engineering data structure instances), which will provide a complete

solution for data structure and data instance reverse engineering.

•	 REWARDS is a first-step, dynamic analysis based data structure reverse engineering

technique. Not only can it reveal the syntax (i.e., the layout) of the data structure, but

the semantics (i.e., the meaningful use) of the data structures as well.

1REWARDS is the acronym for Reverse Engineering Work for Automatic Revelation of Data Structures.

2SigGraph stands for Graph based Signatures.

3DIMSUM is the acronym for Discovering InforMation with Semantics from Un-mappable Memory.

8

•	 SigGraph proposes that points-to relations between data structures can be leveraged

to generate graph-based structural invariant signatures. SigGraph is a technique that

can systematically generate non-isomorphic signatures for data structures in an OS

kernel and enable the brute-force scanning.

•	 DIMSUM is the first technique that can uncover semantic data of interest in memory

pages without memory mapping information. It is a probabilistic inference-based

approach, and is able to automatically build graphical models based on boolean

constraints generated from the data structure and the memory page contents.

•	 We have implemented our reverse engineering framework, and our experimental

results show that this framework is highly efficient and practical. In particular,

REWARDS achieves high accuracy in revealing the data structures accessed during

an execution; SigGraph can recognize Linux kernel data structure instances with

zero false negative and close-to-zero false positives; and DIMSUM achieves higher

effectiveness than previous non-probabilistic approaches without memory mapping

information.

1.5 Scope of this Dissertation

This dissertation presents a suite of new techniques for reverse engineering of data

structures from a binary, and there are a number of assumptions.

•	 Architecture – We tested our techniques on X86 platform. There are some modifica­

tions when applying our techniques to other platforms. For instance, when examining

memory content, as X86 is little endian but PowerPC is big endian, we have to

accordingly adjust this difference when scanning memory.

•	 Operating System – We also assume the operating system is UNIX/Linux. These

are the testing operating system (OS) we used during our prototype development.

•	 Programming Languages – We assume the program is written in C/C++ (the system

programming language). For other programs written in such as Java (byte code), or

9

Python, or Perl, they are out of scope of this dissertation, as they have different run­

time mechanisms than that of the native binary code compiled from C/C++.

•	 Compilers – Correspondingly we assume the programs are compiled by standard

compilers such as gcc. This is because different compilers will have slightly differ­

ent ways in organizing data structure layout and passing the function parameters.

•	 Binary Code – We also assume no obfuscation [44] against the binary code, and no

layout randomization [45] against the data structure.

•	 Memory Mapping – Our technique relies on pointer navigation. We assume the

virtual address translation mechanism (e.g., the page mapping) still exists for our

SigGraph approach.

•	 Unencryped Memory Pages – Though the input to our DIMSUM is a set of pages,

from which we can identify the data instances of interest with confidence, we assume

such pages are not encrypted.

1.6 Dissertation Overview

This dissertation presents a data reverse engineering framework that contains a number

of new techniques (i.e., REWARDS, SigGraph, and DIMSUM). Each technique has its

own distinct goals, challenges, and input, but all are geared towards uncovering the data

structures and are naturally integrated into our framework. In particular, as illustrated in

Figure 1.1, REWARDS lays the foundation of this framework as SigGraph and DIMSUM

both rely on the data structure definitions. SigGraph and DIMSUM complement each

other as SigGraph focuses on mappable memory while DIMSUM focuses on unmappable

memory.

An outline of this dissertation is as follows.

•	 Chapter 1 explains the need for our reverse engineering framework based on a

number of security and forensics applications, for which it would be highly useful.

10

We also examine a number of challenges we have to address in order to realize our

framework.

•	 Chapter 2 provides an overview of the component of our data structure reverse

engineering framework. For each component, we present the fundamental principles

behind our techniques and identify the capabilities from the user perspective.

•	 Chapter 3 presents the design of our first component, REWARDS, a reverse en­

gineering technique that can automatically reveal program data structures from a

binary, based on dynamic analysis. REWARDS leverages the data flow and type

revealing execution point to resolve data structure types. We give greater details on

how we designed and evaluated REWARDS in this chapter.

•	 Chapter 4 presents the design of our second component, SigGraph, a brute-force

scanning technique to identify data structure instances through graph-based signa­

tures. We show in this chapter that the points-to relations between data structures

can be leveraged to generate graph-based structural invariant signatures. Our exper­

iments with a range of Linux kernels show that SigGraph-based signatures achieve

high accuracy in recognizing kernel data structure instances via brute force scan­

ning. We further show that SigGraph achieves better robustness against pointer value

anomalies and corruptions, without requiring global memory mapping and object

reachability.

•	 Chapter 5 describes the design of our third component, DIMSUM, a probabilistic

inference-based approach to uncovering semantic data of interest in memory pages

without memory mapping information. Given a set of memory pages and the specifi­

cation of a target data structure, DIMSUM can identify instances of the data structure

in those pages with quantifiable confidence. Our experiments with the applications

on Linux platform show that DIMSUM achieves higher effectiveness than previous

non-probabilistic approaches without memory mapping information.

11

•	 Chapter 6 demonstrates the applications of our framework, specifically, in memory

forensics, vulnerability discovery, kernel rootkit detection, and kernel version infer­

ence.

•	 Chapter 7 examines the limitations of our framework and outlines our future work.

•	 Chapter 8 reviews and compares our techniques with related work.

•	 Chapter 9 concludes this dissertation. We end with a discussion of a number of open

research problems in this area.

12

2. A DATA STRUCTURE REVERSE ENGINEERING

FRAMEWORK

Motivated by the needs from security applications and the limitations of existing solutions,

we present a new framework for data structure reverse engineering. The goal of our

framework is to provide a higher level of abstractions of data structures instead of bits

and bytes only from either an application binary code or a memory image.

As shown in Figure 2.1, there are three key components in our framework: (1) RE­

WARDS, (2) SigGraph, and (3) DIMSUM. The input to our framework is either an appli­

cation binary code or a memory image, and the output is either the data structure definitions

or the data structure instances.

In this chapter, we provide an overview of each component of our framework. We first

present REWARDS in Section 2.1, then SigGraph in Section 2.2, and finally DIMSUM in

Section 2.3.

Fig. 2.1.: An overview of our data structure reverse engineering framework

13

2.1 REWARDS

A desirable capability in many security and forensics applications is automatic reverse

engineering of data structures given only a binary. Such capability is expected to identify

a program’s data structures and reveal their syntax (e.g., size, structure, offset, and layout)

and semantics (e.g., “this integer variable represents a process ID”). Such knowledge about

program data structures is highly valuable. For example, in memory-based forensics, this

knowledge will help locate specific information of interest (e.g., IP addresses) in a mem­

ory core dump without symbolic information; and in binary vulnerability discovery, this

knowledge will help construct a meaningful view of the in-memory data structure layout

and identify those semantically associated with external input for guided fuzz testing.

Despite the usefulness of automatic data structure reverse engineering, existing solu­

tions that suit our targeted application scenarios fall short. First, many works on type

inference [46–51] require program source code. Second, in the binary-only scenario, the

variables are mapped to low-level entities such as registers and memory locations with no

syntactic information, which makes static analysis difficult. In particular, alias analysis

is difficult at the binary level while it is essential to type inference – especially semantics

inference – because precise data flow cannot be decided without accurate alias information.

Variable discovery [39] is a static, binary level technique that recovers the syntactic charac­

teristics of variables, such as a variable’s offset in its activation record, size, and hierarchical

structure. This technique relies on alias analysis and abstract interpretation at binary level.

Moreover, due to the conservative nature of binary alias analysis, the technique does not

infer variable semantics. More recently, Laika [33] aims at dynamically discovering the

syntax of observable data structures through unsupervised machine learning on program

execution. The accuracy of this technique, however, may fall below the expectation of our

applications. It also does not consider data structure semantics.

We thus developed the first technique in our framework, an automatic data structure

definition reverse engineering system, REWARDS. Given a binary executable file, RE­

WARDS executes the binary, monitors the execution, aggregates and analyzes runtime

14

information, and finally recovers both the syntax and semantics of data structures observed

in the execution at a high level.

More specifically, each memory location accessed by the program is tagged with a

timestamped type attribute. Following the program’s runtime data flows, this attribute will

be propagated to other memory addresses and registers that share the same type. During

the propagation, a variable’s type can be resolved if it is involved in a type-revealing

execution point or “type sink” (e.g., a system call, a standard library call, or a type-revealing

instruction).

REWARDS infers both the syntax and the semantics of data structures from binary

execution. More precisely, we aim at reverse engineering the following information:

•	 Data types. We first aim to infer the primitive data types of variables, such as char,

short, float, and int. In a binary, the variables are located in various seg­

ments of the virtual address space, such as .stack, .heap, .data, .bss, .got,

.rodata, .ctors, and .dtors sections. Although we focus on ELF binary on

Linux platform, REWARDS can be easily ported to handle PE binary on Windows.

Hence, our goal is essentially to annotate memory locations in these data sections

with types and sizes, following program execution. For our targeted applications,

REWARDS also infers composite types such as socket address structures and FILE

structures.

•	 Semantic meanings. Moreover, we aim to infer the semantic meanings of program

variables, which is critical to applications such as computer forensics. For example,

an IP address is represented by 4 bytes memory at the binary level, and it may be

classified as an integer. In a memory dump, we want to decide if a 4-byte integer

denotes an IP address.

•	 Abstract representation. Although we type memory locations, it is undesirable

to simply present typed memory locations to the user. During program execution,

a memory location may be used by multiple variables at different times; and a

variable may have multiple instances. Hence, we derive an abstract representation

15

for a variable by aggregating the type information at multiple memory locations

instantiated based on the same variable. For example, we use the offset of a local

variable in its activation record as its abstract representation. Type information

collected in all activation records of the same function is aggregated to derive the

type of the variable.

Given only the binary, we can observe the following at runtime from each instruction:

(1) the addresses accessed and the width of the accesses, (2) the semantics of the instruction,

and (3) the execution context such as the program counter and the call stack. In some

cases, data types can be partially inferred from the instructions. For example, a floating

point instruction (e.g., FADD) implies that the accessed locations must have floating point

numbers. We also observe that the parameters and return values of standard library calls

and system calls often have their syntax and semantics well defined and publicly known.

We define the type revealing instructions, system calls, and library calls as type sinks.

Furthermore, the execution of an instruction creates a dependency between the variables

involved. For instance, if a variable with a resolved type (from a type sink) is copied

to another variable, the destination variable should have a compatible type. As such, we

model our problem as a type information flow problem.

We have developed a prototype of REWARDS and have used it to analyze a number of

binaries. Our evaluation results show that REWARDS is able to correctly reveal the types of

the variables observed during a program’s execution. Furthermore, we have demonstrated

the unique benefits of REWARDS to a variety of application scenarios. In memory image

forensics, REWARDS helps recovering semantic information from the memory dump of

a binary program. In binary fuzzing for vulnerability discovery, REWARDS helps in the

identification of vulnerability “suspects” in a binary for guided fuzzing and confirmation.

2.2 SigGraph

Given a data structure definition (which can be acquired by REWARDS), identifying

instances of that data structure in a memory image is an important capability in memory im­

16

age forensics [25,52–55], kernel integrity checking [30,32,43,56,57], and virtual machine

introspection [26, 28, 34]. Many state-of-the-art solutions rely on the field value-invariant

exhibited by a data structure (i.e., a field with either a constant value or a value in a fixed

range) as its signature [32, 40–43]. Unfortunately, many data structures cannot be covered

by the value-invariant scheme.

We thus present a complementary scheme for data structure signatures, and instantiate

this problem to Linux kernel data structures. Different from the value-invariant-based

signatures, our approach, called SigGraph, uses a graph structure rooted at a data structure

as its signature. More specifically, for a data structure with pointer field(s), each pointer

field – identified by its offset from the start of the data structure – points to another data

structure. Transitively, such points-to relations entail a graph structure rooted at the original

data structure. We observe that data structures with pointer fields widely exist in OS

kernels. For example, when compiling the whole package of Linux kernel 2.6.18-1, we

found that over 40% of all data structures have pointer field(s). Compared with the field

values of data structures, the “topology” of kernel data structures (formed by “points-to”

relations) is more stable. As such, SigGraph can uniquely identify kernel data structures

with pointers.

The basic idea behind SigGraph is to explore the inter-data structure points-to relations

to generate non-isomorphic data structure signatures. A salient feature of SigGraph-based

signatures is that they can be used for brute force scanning: Given an arbitrary kernel

memory address x, a signature (more precisely, a memory scanner based on it) can decide

if an instance of the corresponding data structure exists in the memory region starting at x.

As such, SigGraph is different from the global “top-down” scanning employed by

many memory mapping techniques (e.g., those for software debugging [58] and kernel

integrity checking [30, 56]). Global “top-down” scanning is enabled by building a global

points-to graph for a subject program – rooted at its global variables and expanding to its

entire address space. Instances of the program’s data structures can then be identified by

traversing the global graph starting from the root. On the other hand, brute force scanning

is based on multiple, context-free points-to graphs – each rooted at a distinct data structure.

17

Unlike global scanning, brute force scanning does not require that a data structure instance

be “reachable” from a global variable in order to be recognized; therefore achieving a

higher level of robustness against attacks that tamper with such global reachability.

To enable brute force scanning, SigGraph faces the new issues of data structure iso­

morphism: the signatures of different data structures, if not judiciously determined, may

be isomorphic, leading to false positives in data structure instance recognition. To address

this problem, we formally define data structure isomorphism and develop an algorithm to

compute unique, non-isomorphic signatures for kernel data structures. From the signatures,

data structure-specific kernel memory scanners are automatically generated using context-

free grammars. To improve the practicality of our solution, we propose a number of

heuristics to handle practical issues (e.g., some pointers being null).

Meanwhile, we obtain two important observations when developing SigGraph: (1) The

wealth of points-to relations between kernel data structures allows us to generate multiple

signatures for the same data structure. This is particularly powerful when operating under

malicious pointer mutation attacks, thus raising the bar to evade SigGraph. (2) The rich

points-to relations also allow us to avoid complex, expensive points-to analysis of kernel

source code for void pointer handling (e.g., as proposed in [30]). Distinct data structure

signatures can be generated without involving the generic pointers.

SigGraph has the following key features:

•	 It models the topological invariants between a subject data structure and those di­

rectly or transitively reachable via points-to relations, and is able to generate multiple

signatures for the same data structure. This is particularly powerful when operating

under malicious pointer mutation attacks, and significantly raises the bar to avoid

detection.

•	 It recognizes and formulates the challenge that different data structures may share

isomorphic structural patterns such that false positives are induced if the invariants

are not properly chosen; proposes a theoretically sound solution identifying signa­

tures that are guaranteed not to cause false positives in ideal scenarios (e.g. pointers

18

are always not null); and develops a number of practical extensions to adapt the

algorithm to real-world scenarios (e.g. some pointers may be null).

•	 It avoids complex, expensive points-to analysis for void pointer handling (e.g., in

KOP [30]) as it can generate distinct signatures without involving those pointers. The

graph-based signatures can often be described by context-free-grammars such that

the scanners can be automatically generated to recognize data structure instances.

•	 The graph-based signatures can often be applied at any memory address x, and end

users only need to perform pattern matching starting at x using the scanner for data

structure T . This brute force scanning avoids the construction of (and dependence

on) a global memory graph starting from the global variables and stack variables

of a program/OS which is different from memory graph-based approaches such as

KOP [30].

2.3 DIMSUM

As we have discussed, there are dead data structure instances in the memory such as

the deallocated objects or those belonging to a dead process. It is necessary to have tech­

niques to identify these data structure instances. However, the existing solutions critically

depend on memory mapping information. For example, KOP [30], REWARDS [59] and

SigGraph [31] all require that the pointers between data structures be resolvable (and thus

trackable) in the memory image. KOP and REWARDS further require that each target data

structure instance be reachable (via pointers) from global variables or variables on stack

frames.

Unfortunately, such memory mapping information is not always available. Yet it is

desirable for a computer forensics investigator to have the capability of uncovering mean­

ingful forensics information from a set of memory pages without memory mapping infor­

mation. For instance, imagine a cyber crime suspect runs and then terminates an application

(e.g., a web browser), and even cleans up the privacy/history data in the disk in order not

to leave any evidence. At that moment, however, some of the memory pages previously

19

belonging to the terminated application process may still exist for a non-trivial period of

time – with intact content but without the corresponding page table or system symbol

table. While these “dead” memory pages may contain data of forensic interest, existing

memory mapping-based forensics techniques (e.g., [30,31,59]) will not be able to uncover

them because, without memory mapping information, they will not be able to resolve and

navigate through pointers in the dead pages.

In addition to the above scenario of “dead pages left by a terminated process,” there

are other computer forensics scenarios that require analyzing a partial memory image

without memory mapping information. For example, after a sudden power-off, a subset

of the memory pages belonging to a running process may still exist in the disk due to

page swapping. But the memory mapping information maintained by the OS kernel for

that process is lost. As another possibility, due to the fact that most existing memory

forensics techniques depend on memory mapping information and on the completeness of

a process’ memory image, counter-measures may be taken by adversaries to inflict digital

or even physical damages to the memory image of a computer. For example, it has been

shown that advanced kernel-level attacks can be launched to disable the recovery of critical

kernel objects from a memory image [31]. And some of those kernel objects contain

memory mapping information for application processes. We envision that similar attacks

can destroy the mapping information for application processes, disabling most existing

techniques.

Therefore, we developed a new system, called DIMSUM, which is capable of uncov­

ering semantic data instances of forensics interest from a set of memory pages without

memory mapping information. In particular, DIMSUM remains effective even with an

incomplete subset of memory pages of an application process. As such, DIMSUM differs

from, and complements most existing approaches to memory forensics (e.g., [25, 30–32,

41, 42, 52, 53, 55, 59, 60]), where the primary focus is on extracting semantic information

from live memory (either on-line or off-line). Many of these efforts (e.g., [25,30,31,41,53,

55, 59, 60]) rely on certain memory mapping information – such as the system symbol and

page table – to search for variables and data structure instances in the memory that can be

20

reached directly or indirectly (e.g., by following the pointers between variables such as in

KOP [30] and SigGraph [31]).

We also note that some of the existing approaches (e.g., [25, 32, 41, 42]) also leverage

value-invariant signatures of data structures (e.g., “data structure field x having a special

value or value range”). These techniques are effective if unique signatures can be generated

for the subject data structures. Unfortunately, such a signature may not always exist for a

data structure.

DIMSUM is based on probabilistic inference, which is widely used in computer vi­

sion (e.g., [61]), specification extraction (e.g., [62–64]), and software debugging (e.g.,

[62, 63, 65–68]). Given a set of memory pages and the definitions of the data structures

of interest, DIMSUM is able to identify instances of the data structures in those pages.

More specifically, by leveraging a probabilistic inference engine, our system automatically

builds graphical models from the data structure specification and input page contents, and

translates them into factor graphs [67], on which probabilistic inference will be carried out

to extract target data structure instances quantified with probabilities.

The salient features of DIMSUM are as follows: (1) It recognizes data structure in­

stances of interest with high confidence. Compared to brute force pattern matching meth­

ods, it consistently achieves a lower false positive rate. (2) It is robust in highly hostile

memory forensics scenarios, where there is no memory mapping information and only

an incomplete subset of memory pages are available. We evaluated DIMSUM using a

number of real-world applications on Linux platform, and consistently demonstrated its

effectiveness.

21

3. REWARDS: AUTOMATIC REVERSE ENGINEERING OF DATA

STRUCTURE DEFINITIONS

In this chapter, we present the detailed design of the first component of our framework,

REWARDS, which is a dynamic analysis based scheme to automatically reveal program

data structures from binaries.

3.1 Overview

REWARDS aims to infer the data structure definitions defined in the binary code. It

is an information flow based approach. Basically, for each memory location accessed by

the program, it is tagged with a timestamped type attribute. At runtime, this attribute is

propagated to other memory addresses and registers that share the same type in a forward

fashion by following the program’s runtime data flow. During the propagation, a variable’s

type gets resolved if it is involved in a type-revealing execution point.

3.1.1 Key Techniques

Besides leveraging the forward type propagation technique, to expand the coverage of

program data structures, REWARDS involves the following key techniques.

•	 An on-line backward type resolution procedure where the types of some previously

accessed variables are recursively resolved starting from a type sink. Since many

variables are dynamically created and de-allocated at runtime, and the same mem­

ory location may be re-used by different variables, it is complicated to track and

resolve variable types based on memory locations alone. Therefore, we constrain

the resolution process by the timestamps of relevant memory locations such that

22

variables sharing the same memory location in different execution phases can be

disambiguated.

•	 An off-line resolution procedure that complements the on-line procedure. Some

variables cannot be resolved during their lifetime by our on-line algorithm. However,

they may be resolved later when other variables having the same type are resolved.

Hence, we propose an off-line backward resolution procedure to resolve the types of

some “dead” variables.

•	 A method for typed variable abstraction that maps multiple typed variable instances

to the same static abstraction. For example, all N nodes in a linked list actually share

the same type, instead of having N distinct types.

•	 A method that reconstructs the structural and semantic view of in-memory data,

driven by the derived type definitions. Once a program’s data structures are identified,

it is still not clear exactly how the data structures would be laid out in memory, which

would be a useful piece of knowledge in many application scenarios such as memory

forensics. Our method creates an “organization chart” that illustrates the hierarchical

layout of those data structures.

3.1.2 A Working Example

To illustrate how REWARDS works, we use a simple program compiled from the source

code shown in Figure 3.1(a). According to the code snippet, the program has a global

variable test (line 1-4) that consists of an int and a char array. It contains a function

foo (line 6-10) that calls my getpid and strcpy to initialize the global variable. The

full disassembled code of the example is shown in Figure 3.1(b) (a dotted line indicates a

“NOP” instruction). The address mapping of code and data is shown in Figure 3.1(c).

When foo is called during execution, it first saves ebp and then allocates 0x18

bytes of memory for the local variables (line 8 in Figure 3.1(b)), and then initializes

one local variable (at address 0xfffffffc(%ebp)=ebp-4) with an immediate value

23

1 struct {
 1 extern foo

2 unsigned int pid;
 2 section .text

3 char data[16];
 3 global _start

4 }test;
 4

5
 5 _start:

6 void foo(){
 6 call foo

7 char *p="hello world";
 7 mov eax,1

8 test.pid=my_getpid();
 8 mov ebx,0

9 strcpy(test.data,p);
 9 int 80h

10 }

1 80480a0: e8 0f 00 00 00 call 0x80480b4

2 80480a5: b8 01 00 00 00 mov $0x1,%eax

3 80480aa: bb 00 00 00 00 mov $0x0,%ebx

4 80480af: cd 80 int $0x80

5 ...

6 80480b4: 55 push %ebp

7 80480b5: 89 e5 mov %esp,%ebp

8 80480b7: 83 ec 18 sub $0x18,%esp

9 80480ba: c7 45 fc 18 81 04 08 movl $0x8048118,0xfffffffc(%ebp)

10 80480c1: e8 4a 00 00 00 call 0x8048110

11 80480c6: a3 24 91 04 08 mov %eax,0x8049124

(a) Source code of function foo and the _start assembly code 12 80480cb: 8b 45 fc mov 0xfffffffc(%ebp),%eax

13 80480ce: 89 44 24 04 mov %eax,0x4(%esp)

14 80480d2: c7 04 24 28 91 04 08 movl $0x8049128,(%esp)

[Nr] Name Type Addr Off Size 15 80480d9: e8 02 00 00 00 call 0x80480e0

... 16 80480de: c9 leave

[1] .text PROGBITS 080480a0 0000a0 000078	 17 80480df: c3 ret

[2] .rodata PROGBITS 08048118 000118 00000c	 18 80480e0: 55 push %ebp

[3] .bss NOBITS 08049124 000124 000014	 19 80480e1: 89 e5 mov %esp,%ebp

...	 20 80480e3: 53 push %ebx

21 80480e4: 8b 5d 08 mov 0x8(%ebp),%ebx

22 80480e7: 8b 55 0c mov 0xc(%ebp),%edx

23 80480ea: 89 d8 mov %ebx,%eax

(c) Section map of the example binary

rodata_0x08048118{ fun_0x08048110{
+00: char[12] +00: ret_addr_t
} }
bss_0x08049124{

+00: pid_t, fun_0x080480e0{
+04: char[12], -08: unused[4],
+16: unused[4] -04: stack_frame_t,
} +00: ret_addr_t,
fun_0x080480b4{ +04: char*,
-28: unused[20], +08: char*
-08: char *, }
-04: stack_frame_t,

+00: ret_addr_t

}

24 80480ec: 29 d0 sub %edx,%eax

25 80480ee: 8d 48 ff lea 0xffffffff(%eax),%ecx

26 80480f1: 0f b6 02 movzbl (%edx),%eax

27 80480f4: 83 c2 01 add $0x1,%edx

28 80480f7: 84 c0 test %al,%al

29 80480f9: 88 04 0a mov %al,(%edx,%ecx,1)

30 80480fc: 75 f3 jne 0x80480f1

31 80480fe: 89 d8 mov %ebx,%eax

32 8048100: 5b pop %ebx

33 8048101: 5d pop %ebp

34 8048102: c3 ret

35 ...

36 8048110: b8 14 00 00 00 mov $0x14,%eax

37 8048115: cd 80 int $0x80

38 8048117: c3 ret

(d) Output of REWARDS	 (b) Disassembly code of the example binary

Fig. 3.1.: An example showing how REWARDS works

0x8048118 (line 9). Since 0x8048118 is in the address range of the .rodata section

(it is actually the starting address of string “hello world”), ebp-4 can be typed as a

pointer, based on the heuristics that instruction executions using similar immediate values

within a code or data section are considered type sinks. Note that the type of the pointer

is not yet known. At line 10, foo calls 0x8048110. Inside the body of the function

invocation (lines 36-38), our algorithm detects a getpid system call (a type sink) with

eax being 0x14 at line 36. The return value of the function call is resolved as pid t type

(i.e., register eax at line 11 is typed pid t). When eax is copied to address 0x8049124

(a global variable in .bss section as shown in Figure 3.1(c)), the algorithm further resolves

0x8049124 as pid t. Before the function call 0x80480e0 at line 15 (strcpy), the

parameters are initialized in lines 12-14. As ebp-4 has been typed as a pointer at line 9,

the data flow in lines 12 and 13 dictates that location esp+4 at line 13 is a pointer as well.

At line 14, as 0x8049128 is in the global variable section and of a known type, location

esp has an unknown pointer type. At line 15, upon the call to strcpy (a type sink),

24

both esp and esp+4 are resolved to char*. Through a backward transitive resolution,

0x8049128 is resolved as char, ebp-4 as char*, and 0x8048118 as char. Also at

line 26, inside the function body of strcpy, the instruction “movzbl (%edx),%eax”

can be used as another type sink as it moves between the char variables.

When the program finishes, we resolve all data types (including function arguments,

and those implicit variables such as return address and stack frame pointer) as shown

in Figure 3.1(d). The derived types for variables in .rodata, .bss and functions are

presented in the figure. Each function is denoted by its entry address. fun 0x080480b4,

fun 0x08048110, and fun 0x080480e0 denote foo, my getpid, and strcpy,

respectively. The number before each derived type denotes the offset. The variables are

listed in increasing order of their addresses. Type stack frame t indicates a frame

pointer stored at that location. Type ret addr t means that the location holds a return

address. Such semantic information is useful in applications such as vulnerability fuzz.

Locations that are not accessed during execution are annotated with the unused type.

In fun 0x080480e0, the two char* below the ret addr t represent the two actual

arguments of strcpy.

3.2 Detailed Design

Now we describe the design of REWARDS. We first identify the type sinks used in

REWARDS and then present the on-line type propagation and resolution algorithm, which

will be enhanced by an off-line procedure that recovers more variable types not reported by

the on-line algorithm. Finally, we present a method to construct a typed hierarchical view

of memory layout.

3.2.1 Type Sinks

A type sink is an execution point of a program where the types (including semantics) of

one or more variables can be directly resolved. In REWARDS, we identify three categories

of type sinks: (1) system calls, (2) standard library calls, and (3) type-revealing instructions.

25

System calls. Most programs request OS services via system calls. Since system call

conventions and semantics are well-defined, the types of arguments of a system call are

known from the system call’s specification. By monitoring system call invocations and

returns, REWARDS can determine the types of parameters and return value of each system

call at runtime. For example, in Linux, based on the system call number in register eax,

REWARDS will be able to type the parameter-passing registers (i.e., ebx, ecx, edx,

esi, edi, and ebp, if they are used for passing the parameters). From this type sink,

REWARDS will further type those variables that are determined to have the same type

as the parameter passing registers. Similarly, when a system call returns, REWARDS

will type register eax and, from there, those having the same type as eax. In our type

propagation and resolution algorithm (Section 3.2.2), a type sink will lead to the recursive

type resolution of relevant variables accessed before and after the type sink.

Standard library calls. With well-defined API, standard library calls are another category

of type sink. For example, the two arguments of strcpy must both be of the char* type.

By intercepting library function calls and returns, REWARDS will type the registers and

memory variables involved. Standard library calls tend to provide richer type information

than system calls. For example, Linux-2.6.15 has 289 system calls, whereas libc.so.6

contains 2,016 functions (note some library calls wrap system calls).

Type-revealing instructions. A number of machine instructions that require operands

of specific types can serve as type sinks. Examples in x86 are as follows: (1) String

instructions perform byte-string operations, such as moving and storing (MOVS/B/D/W,

STOS/B/D/W), loading (LOADS/B/D/W), comparison (CMPS/B/D/W), and scanning

(SCAS/B/D/W). Note that MOVZBL is also used in string movement. (2) Floating-point

instructions operate on floating-point, integer, and binary coded decimal operands (e.g.

FADD, FABS, and FST). (3) Pointer-related instructions reveal pointers. For a MOV in­

struction with an indirect memory access operand (e.g., MOV (%edx), %ebx or MOV

[mem], %eax), the value held in the source operand must be a pointer. Meanwhile, if

the target address is within the range of data sections, such as .stack, .heap, .data,

.bss or .rodata, the pointer must be a data pointer. If it is in the range of .text

http:Linux-2.6.15

26

(including library code), the pointer must be a function pointer. Note that the concrete type

of such a pointer will be resolved through other constraints.

3.2.2 Online Type Propagation and Resolution Algorithm

Given a binary program, our algorithm reveals variable types, including both syntactic

types (e.g., int and char) and semantics (e.g., return address), by propagating and

resolving the type information along the data flow during program execution. Each type

sink encountered leads to both direct and transitive type resolution of variables. More

specifically, at the binary level, variables exist in either memory locations or registers

without their symbolic names. Hence, the goal of our algorithm is to type these memory

addresses and registers. We attach three shadow variables – as the type attribute – to each

memory address at the byte granularity (registers are treated similarly): (1) constraint set is

a set of other memory addresses that should have the same type as this address; (2) type set

stores the set of resolved types of the address1, including both syntactic and semantic types;

(3) timestamp records the birth time of the variable currently in this address. For example,

the timestamp of a stack variable is the time when the stack frame is allocated. Timestamps

are needed because the same memory address may be reused by multiple variables (e.g.,

the same stack memory being reused by stack frames of different method invocations).

More precisely, a variable instance should be uniquely identified by a tuple <address,

timestamp>. These shadow variables are updated during program execution, depending

on the semantics of executed instructions.

The on-line type propagation and resolution algorithm, Algorithm 1 on the previous

page, takes appropriate actions to resolve types on the fly according to the instruction being

executed. For a memory address or a register v, its constraint set is denoted as Sv, which is

a set of <address, timestamp> tuples, and each representing a variable instance that should

have the same type as v; its type set Tv represents the resolved types for v; and the birth

time of the current variable instance is denoted as tsv.

1We need a set to store the resolved types because one variable may have multiple compatible types.

27

Algorithm 1 On-line Type Propagation and Resolution
1: /* Sv : constraint set for memory cell (or register) v; Tv : type set of v; tsv : time stamp of v; MOV(v,w): moving v to w;

BIN OP(v,w,d): a binary operation that computes d from v and w; Get Sink Type(v,i): retrieving the type of argument/operand v

from sink i; ALLOC(v,n): allocating a memory region starting from v with size n – the memory region may be a stack frame or a
heap struct; FREE(v,n): freeing a memory region – this may be caused by eliminating a stack frame or de-allocating a heap struct*/

2: Instrument(i){
3: case i is a Type Sink:
4: for each operand v

5: T ← Get Sink Type(v, i)
6: Backward Resolve (v, T)
7: case i has indirect memory access operand o

8: To ← To ∪ {pointer type t}
9: case i is MOV(v, w):
10: if w is a register
11: Sw ← Sv

12: Tw ← Tv

13: else
14: Unify(v , w)
15: case i is BIN OP(v, w, d):
16: if pointer type t ∈ Tv

17: Unify(d, v)
18: Backward Resolve (w, {int, pointer index t})
19: else
20: Unify3(d, v , w)
21: case i is ALLOC(v, n):
22: for t=0 to n − 1
23: tsv+t ← current timestamp
24: Sv+t ← φ

25: Tv+t ← φ

26: case i is FREE(v, n):
27: for t=0 to n − 1
28: a ← v+t

29: if (Ta) log (a, tsa, Ta)
30: log (a, tsa, Sa)
31: }
32: Backward Resolve(v,T){
33: for < w, t > ∈ Sv

34: if (T �⊂ Tw and t ≡ tsw) Backward Resolve(w,T -Tw)
35: Tv ← Tv ∪ T

36: }
37: Unify(v ,w){
38: Backward Resolve(v, Tw -Tv)
39: Backward Resolve(w, Tv -Tw)
40: Sv ← Sv ∪ {< w, tsw >}; Sw ← Sw ∪ {< v, tsv >}
41: }

28

1.	 If the current execution point i is a type sink (line 3). The arguments/operands/return

values of the sink will be directly typed according to the sink’s definition (Get Sink

Type() on line 5)2. Type resolution is then triggered by calling the recursive method

Backward Resolve(). The method recursively types all variables that should have

the same type (lines 32-36): It tests if each variable w in the constraint set of v has

been resolved as type T of v. If not, it recursively calls itself to type all the variables

that should have the same type as w. Note that at line 34, it checks if the current birth

timestamp of w is equal to the one stored in the constraint set to ensure the memory

has not been re-used by a different variable. If w is re-used (t � tsw=), the algorithm

does not resolve the current w. Instead, the resolution is done by a different off-line

procedure (Section 3.2.3). Since variable types are resolved according to constraints

derived from data flows in the past, we call this step backward type resolution.

2.	 If i contains an indirect memory access operand o (line 7), either through registers

(e.g., using (%eax) to access the address designated by eax) or memory (e.g., using

[mem] to indirectly access the memory pointed to by mem), then the corresponding

operand will have a pointer type tag (pointer type t) as a new element in To.

3.	 If i is a move instruction (line 9), there are two cases to consider. In particular, if the

destination operand w is a register, then we just move the properties (i.e., the Sv and

Tv) of the source operand to the destination (i.e., the register); otherwise, we need

to unify the types of the source and destination operands because the destination is

now a memory location that may have already contained some resolved types. The

intuition is that the source operand v should have the same type as the destination

operand w if the destination is a memory address. Hence, the algorithm calls method

Unify() to unify the types of the two. In Unify() (lines 37-41), the algorithm first

unions the two type sets by performing backward resolution at lines 38 and 39.

Intuitively, the call at line 38 means that if there are any new types in Tw that are

not in Tv (i.e. Tw -Tv), those new types need to be propagated to v and transitively

2The sink’s definition also reveals the semantics of some arguments/operands, e.g., a PID.

29

to all variables that share the same type as v, mandated by v’s constraint set. Such

unification is not performed if the w is a register to avoid over-aggregation.

4.	 If i is a binary operation, the algorithm first tests if an operand has been identified as

a pointer. If so, it must be a pointer arithmetic operation, the destination must have

the same type as the pointer operand and the other operand must be a pointer index

– denoted by a semantic type pointer index t (line 18). The semantic type is

useful in vulnerability fuzz to overflow buffers. If i is not related to pointers, the three

operands shall have the same type. The method Unify3() unifies three variables. It

is very similar to Unify() and hence not shown. Note that in cases where the binary

operation implicitly casts the type of some operand (e.g., an addition of a float and an

integer), the unification induces over-approximation (e.g., associating the float point

type with the integer variable). In practice, we consider such cases reasonable and

allow multiple types for one variable as long as they are compatible.

5.	 If i allocates a memory region (line 21), either a stack frame or a heap struct, the

algorithm updates the birth time stamps of all the bytes in the region and resets the

memory constraint set (Sv) and type set (Tv) to empty. By doing so, we prevent the

type information of the old variable instance from interfering with that of the new

instance at the same address.

6.	 If i frees a memory region (line 26), the algorithm traverses each byte in the region

and prints out the type information. In particular, if the type set is not empty, it is

emitted. Otherwise, the constraint set is emitted. Later, the emitted constraints will

be used in the off-line procedure (Section 3.2.3) to resolve more variables.

Example. Table 3.1 presents an example of executing our algorithm. The first column

shows the instruction trace with the numbers denoting timestamps. The other columns

show the type sets and the constraint sets after each instruction execution for three sample

variables, namely, the global variable g1 and two local variables l1 and l2. For brevity,

we abstract the calling sequence of strcpy to a strcpy instruction. After the execution

30

enters method M at timestamp 10, the local variables are allocated and hence both l1 and l2

have the birth time of 10. The global variable g1 has the birth time of 0. After the first mov

instruction, the type sets of g1 and l1 are unified. Since neither was typed, the unified type

set remains empty. Moreover, l1, together with its birth time 10, is added to the constraint

set of g1 and vice versa, denoting they should have the same type. Similar actions are taken

after the second mov instruction. Here, the constraint set of l1 has both g1 and l2. The

strcpy invocation is a type sink and g1 must be of type char*, the algorithm performs

the backward resolution by calling Backward Resolve(). In particular, the variable in Sg1,

i.e. l1, is typed to char*. Note that the timestamp 10 matches tsl1, indicating the same

variable is still alive. Transitively, the variables in Sl1, i.e. g1 and l2, are resolved to the

same type. Note that if the backward resolution was not conducted, we would not be able

to resolve the type of l2 because when the move from l1 to l2 (timestamp 12) occurred, l1

was not typed and hence l2 was not typed.

Table 3.1: An example of running the online algorithm. Variable g1 is a global, l1 and l2
are locals.

Instruction Tg1 Sg1 tsg1 Tl1 Sl1 tsl1 Tl2 Sl2 tsl2

10 enter M φ φ 0 φ φ 10 φ φ 10
11 mov g1, l1 φ {<l1,10>} 0 φ {<g1,0>} 10 φ φ 10
12 mov l1, l2 φ {<l1,10>} 0 φ {<g1,0>,<l2,10>} 10 φ {<l1,10>} 10

...
100 strcpy(g1,) {char*} {<l1,10>} 0 {char*} {<g1,0>,<l2,10>} 10 {char*} {<l1,10>} 10

Table 3.2: An example of running the off-line type resolution procedure. The execution
before timestamp 12 is the same as Table 3.1. Method N reuses l1 and l2

Instruction Tg1 Sg1 tsg1 Tl1 Sl1 tsl1 Tl2 Sl2 tsl2

...
12 mov l1, l2 φ {<l1,10>} 0 φ {<g1,0>,<l2,10>} 10 φ {<l1,10>} 10

13 Exit M φ {<l1,10>} 0 φ {<g1,0>,<l2,10>} 10 φ {<l1,10>} 10
...

99 Enter N φ {<l1,10>} 0 φ φ 99 φ φ 99
100 strcpy(g1,..) {char*} {<l1,10>} 0 φ φ 99 φ φ 99

31

3.2.3 Off-line Type Resolution

Most variables accessed during the binary’s execution can be resolved by our online

algorithm. However, there are still some cases in which, when a memory variable gets

freed (and its information gets emitted to the log file), its type is still unresolved. We realize

that there may be enough information from later phases of the execution to resolve those

variables. We propose an off-line procedure to be performed after the program execution

terminates. It is essentially an off-line version of the Backward Resolve() method in

Algorithm 1. The difference is that it has to traverse the log file to perform the recursive

resolution.

Consider the example in Table 3.2. It shares the same execution as the example in

Table 3.1 before timestamp 13. At time instance 13, the execution returns from M , de-

allocating the local variables l1 and l2. According to the online algorithm, their constraint

sets are emitted to a log file since neither is typed at that point. Later at timestamp 99,

another method N is called. Assume it reuses l1 and l2, namely, N allocates its local

variables at the locations of l1 and l2. The birth time of l1 and l2 becomes 99. Their type

sets and constraint sets are reset. When the sink is encountered at 100, l1 and l2 are not

typed as their current birth timestamp is 99, not 10 as in Sg1, indicating they are re-used by

other variables. Fortunately, the variable represented by < l1, 10 > can be found in the log

and hence resolved. Transitively, < l2, 10 > can be resolved as well.

3.2.4 Typed Variable Abstraction

Our algorithm is able to annotate memory locations with syntax and semantics. How­

ever, multiple variables may occupy the same memory location at different times and a

static variable may have multiple instances at runtime3. Hence it is important to organize

the inferred type information according to abstract, location-independent variables other

than specific memory locations. In particular, primitive global variables are represented by

3A local variable has the same life time of a method invocation, and a method can be invoked multiple times,
giving rise to multiple instances.

32

their offsets to the base of the global sections (e.g., .data and .bss sections). Stack

variables are abstracted by the offsets from their residence activation record, which is

represented by the function name (as shown in Figure 3.1).

For heap variables, we use the execution context, i.e., the PC (instruction address) of

the allocation point of a heap structure plus the call stack at that point, as the abstraction of

the structure. The intuition is that the heap structure instances allocated from the same PC

in the same call stack should have the same type. The fields of the structure are represented

by the allocation site and field offsets. As an allocated heap region may be an array of

a data structure, we use the recursion detection heuristics in [19] to detect the array size.

Specifically, the array size is approximated by the maximum number of accesses by the

same PC to unique memory locations in the allocated region. The intuition is that array

elements are often accessed through a loop in the source code and the same instruction

inside the loop body often accesses the same field across all array elements. Finally, if

heap structures allocated from different sites have the same field types, we will heuristically

cluster these heap structures into one abstraction.

3.2.5 Constructing Hierarchical View of In-Memory Data

An important feature of REWARDS is to construct a hierarchical view of a memory

snapshot, in which the primitive syntax of individual memory locations, as well as their

semantics and the integrated hierarchical structure are visually represented. This is highly

desirable in applications like memory forensics as interesting queries (e.g., “find all

IP addresses”), can be easily answered by traversing the view. So far, REWARDS is

able to reverse engineer the syntax and semantics of data structures, represented by their

abstractions. Next, we present how we leverage such information to construct a hierarchical

view.

Our method works as follows. It first types the top level global variables. In partic­

ular, a root node is created to represent a global section. Individual global variables are

represented as children of the root. The edges are annotated with offset, size, primitive

33

type, and semantics of the corresponding children. If a variable is a pointer, the algorithm

further recursively constructs the sub-view of the data structure being pointed to, leveraging

the derived type of the pointer. For instance, assume a global pointer p is of type T*, our

method creates a node representing the region pointed to by p. The region is typed based on

the reverse engineered definition of T. The recursive process terminates when none of the

fields of a data structure is a pointer. The stack is similarly handled: a root node is created

to represent each activation record. Local variables of the record are denoted as children

nodes. Recursive construction is performed until all memory locations through pointers

are traversed. Note that all live heap structures can be reached (transitively) through a

global pointer or a stack pointer. Hence, the above two steps essentially also construct the

structural views of live heap data.

Our method can also type some of the unreachable memory regions, which represent

“dead” data structures (e.g., activation records of previous method invocations whose space

has been freed but not reused.) Such dead data is as important as live data as they disclose

what had happened in the past. In particular, our method scans the stack beyond the current

activation record to identify any pointers to the code section, which often denote return

addresses of method invocations. With a return address, the function invocation can be

identified and we can follow the aforementioned steps to type the activation record.

3.3 Implementation

We implemented REWARDS using PIN-2.6 [69], with 12.1K lines (LOC) of C code

and 1.2K LOC of Python code. REWARDS is able to reveal variable semantics. In

our implementation, variable semantics are represented as special semantic tags comple­

mentary to regular type tags such as int and char. Both semantic tags and regular

tags are stored in the variable’s type set. Tags are enumerated to save space. The vast

diversity of program semantics makes it infeasible to consider them all. Since we are

mainly interested in forensics and security applications, we focus on the following semantic

tags: (1) file system related (e.g., FILE pointer, file descriptor, file name, file status); (2)

34

network communication related (e.g., socket descriptor, IP address, port, receiving and

sending buffer, host info, msghdr); and (3) operating systems related (e.g., PID, TID, UID,

system time, system name, and device info).

Meanwhile, we introduce some of our own semantic tags, such as ret addr t indi­

cating that a memory location is holding a return address, stack frame t indicating that

a memory location is holding a stack frame pointer, format string t indicating that

a string is used in format string argument, and malloc arg t indicating an argument

of malloc function (similarly, calloc arg t for calloc function, etc.). Note that

these tags reflect the properties of variables at those specific locations and hence do not

participate in the type information propagation. They can bring important benefits to our

targeted applications.

REWARDS needs to know the program’s address space mapping, which will be used to

locate the addresses of global variables and detect pointer types. In particular, REWARDS

checks the target address range when determining if a pointer is a function pointer or a data

pointer. Thus, when a binary starts executing with REWARDS, we first extract the coarse-

grained address mapping from the /proc/pid/maps file, which defines the ranges of

code and data sections including those from libraries, and the ranges of stack and heap (at

that time). Then for each detailed address mapping such as .data, .bss and .rodata

for all loaded files (including libraries), we extract the mapping using the API provided by

PIN when the corresponding image file is loaded.

3.4 Evaluation

We have performed two sets of experiments to evaluate REWARDS: one is to evaluate

its correctness, and the other is to evaluate its time and space efficiency. All the experi­

ments were conducted on a machine with two 2.13Ghz Pentium processors and 2GB RAM

running Linux kernel 2.6.15.

We select 10 widely used utility programs from the following packages: procps-3.2.6

(with 19.1K LOC and containing command ps), iputils-20020927 (with 10.8K LOC and

35

containing command ping), net-tools-1.60 (with 16.8K LOC and containing netstat),

and coreutils-5.93 (with 117.5K LOC and containing the remaining test commands such as

ls, pwd, and date). The reason for selecting these programs is that they contain many

data structures related to the operating system and network communications. We run these

utilities without command line option except ping, which is run with a localhost and a

packet count 4 option.

3.4.1 Effectiveness

To evaluate the reverse engineering accuracy of REWARDS, we compare the derived

data structure types with those declared in the program source code. To acquire the or­

acle information, we recompile the programs with debugging information, and then use

libdwarf [70] to extract type information from the binaries. The libdwarf library

is capable of presenting the stack and global variable mappings after compilation. For in­

stance, global variables scattering in various places in the source code will be organized into

a few data sections. The library allows us see the organization. In particular, libdwarf

extracts stack variables by presenting the mapping from their offsets in the stack frame and

the corresponding types. For global variables, the output by libdwarf is program virtual

addresses and their types. Such information allows us to conduct direct and automated

comparison. Note that we only verify the types in .data, .bss, and .rodata sections,

other global data in sections such as .got, .ctors are not verified. For heap variables,

since we use the execution context at allocation sites as the abstract representation, given

an allocation context, we can locate it in the disassembled binary, and then correlate it with

program source code to identify the heap data structure definition, and finally compare

it with REWARDS’s output. Although REWARDS extracts variable types for the entire

program address space (including libraries), we only compare the results for user-level

code.

The result for stack variables is presented in Figure 3.2(a). The figure presents the

percentage of (1) functions that are actually executed, (2) data structures that are used in the

http:coreutils-5.93
http:net-tools-1.60

 60

 120

 50

 100

 300

hostnam
e

uptim
e

unam
e

users

date
pwd

ls netstat

ps
hostnam

e

uptim
e

unam
e

users

date
pwd

ls netstat

ps

36

 0

 20

 40

 60

 80

 100

 120

hostnam
e

users
unam

e

uptim
e

date
pwd

lsnetstat

ping
ps

P
er

ce
nt

ag
e

Dynamically Executed Funs
Dynamically Exposed Types

REWARDS Accuracy

Benchmark Program

(a) Accuracy on Stack Variables

Dynamically Allocated Types Dynamically Exercised Types
Dynamically Exercised Types REWARDS Accuracy

100REWARDS Accuracy

100

 80

 80
P

er
ce

nt
ag

e
S

ha
do

w
 M

em
or

y
C

on
su

m
pt

io
n

(b
yt

es
)

60

 40
 40

 2020

 0 ps
ping

netstat

ls uptim
e

users

hostnam
e

0 ps
ping

netstat

ls pwd
date

uptim
e

unam
e

users

hostnam
e

Benchmark Program Benchmark Program

(b) Accuracy on Heap Variables (c) Accuracy on Global Variables

 400 6e+07
REWARDS REWARDS
MemTrace

 350
 Normal Execution

5e+07

 250

 200

 150

 4e+07

 3e+07

 2e+07

 1e+07

ping

0 ping

Benchmark Program Benchmark Program

(d) Performance Overhead (e) Space Overhead

Fig. 3.2.: Evaluation results for REWARDS accuracy and efficiency

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
P

er
ce

nt
ag

e

 0

37

executed functions (over all structures declared in those functions), and (3) data structures

whose types are accurately recovered by REWARDS (over those in (2)). At runtime, it is

often the case that even though a buffer is defined in the source code with size n, only part

of the n bytes are used. Consequently, only those used are typed (the others are considered

unused). We consider the buffer is correctly typed if its bytes are either correctly typed or

unused. From the figure, we can observe that, due to the nature of dynamic analysis,

not all functions or data structures in a function are exercised and hence amenable to

REWARDS. More importantly, REWARDS achieves an average of 97% accuracy (among

these benchmarks) for the data structures that get exercised. For heap variables, the result

is presented in Figure 3.2(b), the bars are similarly defined. REWARDS’s output perfectly

matches the types in the original definitions when they are exercised. Note some of the

benchmarks are missing in Figure 3.2(b) (e.g., date) because their executions do not

allocate any user-level heap structures. The result for global variables is presented in Figure

3.2(c), and REWARDS achieves over 85% accuracy.

To explain why REWARDS cannot achieve 100% accuracy, we carefully examined the

benchmarks and identified the following three reasons:

•	 Hierarchy loss. If a hierarchical structure becomes flat after compilation, we are not

able to identify its hierarchy. This happens to structures declared as global variables

or stack variables. And the binary never accesses such a variable using the base

address plus a local offset. Instead, it directly uses a global offset (starting from the

base address of the global data section or a stack frame). In other words, multiple

composite structures are flattened into one large structure. In contrast, such flattening

does not happen to heap structures.

•	 Path-sensitive memory reuse. This often happens to stack variables. In particular,

the compiler might assign different local variables declared in different program

paths to the same memory address. As a result, the types of these variables are

undesirably unified in our current design. A more thorough design would use a path-

sensitive local offset to denote a stack variable.

38

•	 Type cast. It is possible that a variable type is casted to another one. For example,

a float type variable could be casted to an integer type. As such, we will observe

different semantic use of one variable, and if this variable is propagated to others,

we will over propagate the types. Currently, we do not have a sound solution to this

problem, and we just conservatively propagate the types.

Despite the imperfect accuracy, REWARDS still suits our targeted application scenar­

ios, i.e., memory forensics and vulnerability fuzzing. For example, although REWARDS

outputs a flat layout for all global and stack variables, we can still conduct vulnerability

fuzzing because the absolute offsets of these variables are sufficient; and we can still

construct hierarchical views of memory images as pointer types can be obtained.

3.4.2 Performance Overhead

We also measured the time and space overhead of REWARDS. We compared it with (1)

a standard memory trace tool, MemTrace (shipped along with PIN-2.6) and (2) the normal

execution of the program, to evaluate the performance overhead. The result is shown in

Figure 4.8. Note the normal execution data is nearly not visible in this figure because

they are very small (roughly at the 0.01 second level). We can observe that REWARDS

causes slow-down in the order of ten times compared with MemTrace, and in the order of

thousands (or tens of thousands) times compared with the normal execution.

For space overhead, we are interested in the space consumption by shadow type sets

and constraint sets. Hence, we track the peak value of the shadow memory consumption.

The result is shown in Figure 3.2(e). We can observe that the shadow memory consumption

is around 10 Mbytes for these benchmarks. A special case is ping, which uses much less

memory. The reason is that it has fewer function calls and memory allocations, which is

also why it runs much faster than the other programs shown in Figure 4.8.

39

3.5 Summary

In this chapter, we have presented REWARDS, a reverse engineering system that au­

tomatically reveals data structures in a binary based on dynamic execution. REWARDS

involves an algorithm that performs data flow-based type attribute forward propagation

and backward resolution. Driven by the type information derived, REWARDS is also

capable of reconstructing the structural and semantic view of in-memory data layout. Our

evaluation using a number of real-world programs indicates that REWARDS achieves over

80% accuracy in revealing data structures accessed during an execution.

40

4. SIGGRAPH: DISCOVERING DATA STRUCTURE INSTANCES

USING GRAPH-BASED SIGNATURES

In this chapter, we present the design of SigGraph, the second component in our framework,

which aims to discovering data structure instances by scanning memory with the corre­

sponding data structure signatures. To this end, it explores the points-to relation between

data structures as signatures and enables the brute force scanning of memory. Brute force

scanning requires effective, robust signatures of kernel data structures. Existing approaches

often use the value invariants of certain fields as data structure signatures. However, they

do not fully exploit the rich points-to relations between data structures. In our technique, a

signature is a graph rooted at the subject data structure with edges reflecting the points-to

relations with other data structures.

We first formally define our problem in Section 4.1, then present the detailed techniques

on how we generate such graph based signatures from Section 4.2 to Section 4.5, followed

we present the evaluation result in Section 4.7. Finally we conclude in Section 4.8.

Fig. 4.1.: A working example of kernel data structures and a graph-based data structure
signature. The triangles indicate recursive definitions

41

4.1 Problem Statement

As described in Chapter 2, the goal of SigGraph is to infer the relevant data structure

instances given a memory dump. Basically, it exploits the inter-data structure points-to

relations to generate non-isomorphic data structure signatures. To better understand the

key idea behind SigGraph, let consider seven simplified Linux kernel data structures, four

of which are shown in Figure 4.1(a)-(d). In particular, task struct(TS) contains

four pointers to thread info(TI), mm struct(MS), linux binfmt(LB), and

TS, respectively. TI has a pointer to TS whereas MS has two pointers: One points to

vm area struct(VA) (not shown in the figure) and the other is a function pointer. LB

has one pointer to module(MD).

At runtime, if a pointer is not null, its target object should have the type of the pointer.

Let ST (x) denote a boolean function that decides if the memory region starting at x is an

instance of type T and let ∗x denote the value stored at x. Take task struct data

structure as an example, we have the following rule, assuming all pointers are not null.

STS(x) → STI(∗(x + 0)) ∧ SMS(∗(x + 4)) ∧
(4.1)

SLB(∗(x + 8)) ∧ STS(∗(x + 12))

It means that if STS(x) is true, then the four pointer fields must point to regions with the

corresponding types and hence the boolean functions regarding these fields must be true.

Similarly, we have the following

STI(x) → STS(∗(x + 0)) (4.2)

SMS(x) → SVA(∗(x + 0)) ∧ SFP(∗(x + 4)) (4.3)

SLB(x) → SMD(∗(x + 0)) (4.4)

for thread info, mm struct, and linux binfmt, respectively. Substituting sym­

bols in rule (4.1) using rules (4.2), (4.3) and (4.4), we further have

STS(x) → STS(∗(∗(x + 0) + 0)) ∧ SVA(∗(∗(x + 4) + 0))∧

SFP(∗(∗(x + 4) + 4)) ∧ SMD(∗(∗(x + 8) + 0))) (4.5)

∧STS(∗(x + 12))

42

The rule corresponds to the graph shown in Figure 4.1(e), where the nodes represent

pointer fields with their shapes denoting pointer types; the edges represent the points-to

relations with their weights indicating the pointers’ offsets; and the triangles represent

recursive occurrences of the same pattern. It means that if the memory region starting

at x is an instance of task struct, the layout of the region must follow the graph’s

definition. Note that the inference of rule (4.5) is from left to right. However, we observe

that the graph is so unique that the reverse inference (“bottom-up”) tends to be true. In other

words, we can use the graph as the signature of task struct and perform the reverse

inference as follows.

STS(x) ← STS(∗(∗(x + 0) + 0)) ∧ SVA(∗(∗(x + 4) + 0))∧

SFP(∗(∗(x + 4) + 4)) ∧ SMD(∗(∗(x + 8) + 0))) (4.6)

∧STS(∗(x + 12))

Different from the global memory mapping techniques (e.g., [25,30,52,53,55,56,58])

SigGraph aims at deriving unique signatures for individual data structures for brute force

kernel memory scanning. Hence we face the following new challenges:

•	 Avoiding signature isomorphism Given a static data structure definition, we aim to

construct its points-to graph as shown in the task struct example. However, it is

possible that two distinct data structures may lead to isomorphic graphs that cannot

be used to distinguish instances of the two data structures. Hence our new challenge

is to identify the sufficient and necessary conditions to avoid signature isomorphism

between data structures.

•	 Generating signatures Meanwhile it is possible that one data structure may have

multiple unique signatures, depending on how (especially, how deep) the points-

to edges are traversed when generating a signature. In particular, among the valid

signatures of a data structure, finding the minimal signature that has the smallest

size while retaining uniqueness (relative to other data structures) is a combinatorial

optimization problem. Finally, it is desirable to automatically generate a scanner for

each signature that will perform the corresponding data structure instance recognition

on a memory image.

43

Fig. 4.2.: SigGraph system overview

•	 Improving recognition accuracy Although statically a data structure may have a

unique signature graph, at runtime, pointers may be nullwhereas non-pointer fields

may have pointer-like values. As a result the data structure instances in a memory

image may not fully match the signature. We need to handle such issues to improve

recognition accuracy.

An overview of the SigGraph is shown in Figure 4.2. It consists of four key compo­

nents: (1) data structure definition extractor, (2) dynamic profiler, (3) signature generator,

and (4) scanner generator. To generate signatures, SigGraph first extracts data structure

definitions from the OS source code. This is done automatically through a compiler pass

(Section 4.2). To handle practical issues such as null pointers and void* pointers,

the profiler identifies problematic pointer fields via dynamic analysis (Section 4.5). The

signature generator checks if non-isomorphic signatures exist for the data structures and

if so, generates such signatures (Section 4.3). The generated signatures are then automati­

cally converted to the corresponding kernel memory scanners (Section 4.4), which are the

“product” shipped to users. A user will simply run these scanners to perform brute-force

scanning over a kernel memory image (either memory dump or live memory), with the

output being the instances of the data structures in the image.

4.2 Data Structure Definition Extraction

SigGraph’s data structure definition extractor adopts a compiler-based approach, where

the compiler pass is devised to walk through the source code and extract data structure

44

definitions. It is robust as it is based on a full-fledged language front-end. In particular, our

development is in gcc-4.2.4. The compiler pass takes abstract syntax trees (ASTs) as

input as they retain substantial symbolic information [71]. The compiler-based approach

also allows us to handle data structure in-lining, which occurs when a data structure has

a field that is of the type of another structure; After compilation, the fields in the inner

structure become fields in the outer structure. Furthermore, we can easily see through type

aliases introduced by typedef via ASTs.

The output of the compiler pass is the data structure definitions – with offset and type

for each field – extracted in a canonical form. The pass is inserted into the compilation

work-flow right after data structure layout is finished (in stor-layout.c). During the

pass, the AST of each data structure is traversed. If the data structure type is struct or

union, its field type, offset, and size information is dumped to a file. To precisely reflect

the field layout after in-lining, we flatten the nested definitions and adjust offsets.

We note that source code availability is not a fundamental requirement of SigGraph.

For a close-source OS (e.g., Windows), if debugging information is provided along with

the binary, SigGraph can simply leverage the debugging information to extract the data

structure definitions. Otherwise, data structure reverse engineering techniques (e.g., RE­

WARDS [59], TIE [72], or HOWARD [73]) can be leveraged to extract data structure

definitions from binaries.

4.3 Signature Generation

Suppose a data structure T has n pointer fields with offsets f1, f2, ..., fn and types t1,

t2, ..., tn. A predicate St(x) determines if the region starting at address x is an instance of

t. The following production rule can be generated for T :

ST (x) → St1 (∗(x + f1)) ∧ St2 (∗(x + f2)) ∧ ...
(4.7)

∧Stn (∗(x + fn))

Brute force memory scanning is based on the reverse of the above rule: Given a kernel

memory image, we hope to identify instances of a data structure by trying to match the

45

struct A { struct X {

[0] struct B * a1; ...

... [8] struct Y * x1;

[12] struct C * a2; ...

... [36] struct BB * x2;

[18] struct D * a3; ...

} [48] struct CC * x3;

...

[54] struct DD * x4;

}

c80b20e0: 00 00 00 00 01 20 00 32 0a 00 00 00 00 ae ff 00

c80b20f0: c8 40 30 b0 00 00 00 00

c80b2100: 00 00 c8 41 00 22 00 00

00 10 00 00 c8 40 42 30

00 10 00 00 00 00 00 00

(a) Insufficiency of pointer layout uniqueness

B/BB

struct B { struct BB { struct D {

[0] E * b1; [0] EE * bb1; ...

[4] B * b2; [4] BB * bb2; [4] I * d1;

} } }

struct E { struct EE { struct DD {

... ...
 ...

[12] G * e1;	 [12] GG * ee1; [8] II * dd1;

... ... }

[24] H * e3; [24] HH * ee3;

} }

0 +4

+12 +24

B/BB E/EE

G/GG H/HH

(a) definitions	 (b) structures of B and BB

(b) Data structure isomorphism

Fig. 4.3.: Examples illustrating the signature isomorphism problem

right-hand side of the rule (as a signature) with memory content starting at any location.

Although it is generally difficult to infer the types of memory at individual locations based

on the memory content, it is more feasible to infer if a memory location contains a pointer

and hence to identify the layout of pointers with high confidence. This can be done

recursively by following the pointers to the destination data structures. As such, the core

challenge in signature generation is to find a finite graph induced by points-to relations

(including pointers, pointer field offsets, and pointer types) that uniquely identifies a target

data structure, which will be the root of the graph. For convenience of discussion, we

assume for now that pointers are not null and they each have an explicit type (i.e., not a

void pointer). We will address the cases where this assumption does not hold in Section

4.5.

46

As noted earlier, two distinct data structures may have isomorphic structural patterns.

For example, if two data structures have the same pointer field layout, we need to further

look into the “next-hop” data structures (we call them lower layer data structures) via

the points-to edges. Moreover, we observe that even though the pointer field layout of

a data structure may be unique (different from any other data structure), an instance

of such layout in memory is not necessary an instance of that data structure. Consider

Figure 4.3(a), data structures A and X have different layouts for their pointer fields. If the

program has only these two data structures, it appears that we can use their one level pointer

structures as their signatures. However, this is not true. Consider the memory segment at

the bottom of Figure 4.3(a), in which we detect three pointers (the boxed bytes). It appears

that SA(0xc80b20f0) is true because it fits the one-level structure of struct A. But it

is possible that the three pointers are instead the instances of fields x2, x3, and x4 in

struct X and hence the region is part of an instance of struct X. In other words,

a pattern scanner based on struct A will generate false positives on struct X. The

reason is that the structure of A coincides with the sub-structure of X.

To better model the isomorphism issue, we introduce the concept of immediate pointer

pattern (IPP) that describes the one-level pointer structure as a string such that the afore­

mentioned problem can be detected by deciding if an IPP is the substring of another IPP.

Definition 4.3.1 Given a data structure T , let its pointer field offsets be f1, f2, ..., and fn,

pointing to types t1, t2, ..., and tn, respectively. Its immediate pointer pattern, denoted as

IPP (T), is defined as follows. IPP (T) = f1 ·t1 ·(f2 −f1)·t2 ·(f3−f2)·t3 ·...·(fn−fn−1)·tn.

We say an IPP (T) is a sub-pattern of IPP (R) if g1 · r1 · (f2 − f1) · r2 · (f3 − f2) · ... ·

(fn − fn−1) · rn is a substring of IPP (R), with g1 >= f1 and r1, ..., rn being any pointer

type.

Intuitively, an IPP describes the types of the pointer fields and their intervals. An

IPP (T) is a sub-pattern of IPP (R) if the pattern of pointer field intervals of T is a

sub-pattern of R’s, disregarding the types of the pointers. It also means that we cannot

distinguish an instance of T from an instance of R in memory if we do not look into the

47

lower layer structures. For instance in Figure 4.3(a), IPP (A) = 0 · B · 12 · C · 6 · D and

IPP (X) = 8 · Y · 28 · BB · 12 · CC · 6 · DD. IPP (A) is a sub-pattern of IPP (X).

Definition 4.3.2 Replacing a type t in a pointer pattern with “(IPP (t))” is called one

pointer expansion, denoted as −
t

A pointer pattern of a data structure T is a string →.

generated by a sequence of pointer expansions from IPP (T).

For example, assume the definitions of B and D can be found in Figure 4.3(b).

IPP (A) = 0 · B · 12 · C · 6 · D
(1) B (4.8) −→ 0 · (0 · E · 4 · B) · 12 · C · 6 · D

(2) D
−→ 0 · (0 · E · 4 · B) · 12 · C · 6 · (4 · I)

Strings (1) and (2) above are both pointer patterns of A. The pointer patterns of a data

structure are candidates for its signature. As one data structure may have many pointer

patterns, the challenge becomes to algorithmically identify the unique pointer patterns of a

given data structure so that instances of the data structure can be identified from memory

by looking for satisfactions of the pattern without causing false positives. If efficiency is a

concern, the minimal pattern should be identified.

Existence of Signature. The first question we need to answer is whether a unique pointer

pattern exists for a given data structure. According to the previous discussion, given a data

structure T , if its IPP is a sub-pattern of another data structure’s IPP (including the case

in which they are identical), we cannot use the one-layer structure as the signature of T .

We have to further use the lower-layer data structures to distinguish it from the other data

structure. However, it is possible that T is not distinguishable from another data structure

R if their structures are isomorphic.

Definition 4.3.3 Given two data structures T and R, let the pointer field offsets of T be f1,

f2, ..., and fn, pointing to types t1, t2, ..., and tn, respectively.; the pointer field offsets of R

be g1, g2, ..., and gm, pointing to types r1, r2, ..., and rm, respectively.

T and R are isomorphic, denoted as T ⊲⊳ R, if and only if

(1) n ≡ m;

48

(2.1) (2.2)
(2) ∀1 ≤ i ≤ n ∧ (ti ⊲⊳ rifi ≡ gi

(2.3)
∨ a cycle is formed when deciding ti ⊲⊳ ri).

Intuitively, two data structures are isomorphic, if they have the same number of pointer

fields (Condition (1)) at the same offsets (2.1) and the types of the corresponding pointer

fields are also isomorphic (2.2) or the recursive definition runs into cycles (2.3), e.g., when

ti ≡ T ∧ ri ≡ R.

Figure 4.3(b) (i) shows the definitions of some data structures in Figure 4.3(a). The

data structures whose definitions are missing from the two figures do not have pointer

fields. According to Definition 4.3.3, B ⊲⊳ BB because they both have two pointers at the

same offsets; and the types of the pointer fields are isomorphic either by the substructures

(E ⊲⊳ EE) or by the cycles (B ⊲⊳ BB).

Given a data structure, we can now decide if it has a unique signature. As mentioned

earlier, we assume that pointers are not null and are not of the void* type.

Theorem 4.3.1 Given a data structure T , if there does not exist a data structure R such

that

<1>IPP (T) is a sub-pattern of IPP (R), and

<2> Assume the sub-pattern in IPP (R) is g1 ·r1 ·(f2 −f1)·r2 ·(f3 −f2)·...·(fn−fn−1)·rn,

t1 ⊲⊳ r1, t2 ⊲⊳ r2, ... and tn ⊲⊳ rn.

T must have a unique pointer pattern, that is, the pattern cannot be generated from any

other individual data structure through expansions.

Proof For each data structure R different from T , either condition <1> or <2> is not

satisfied according to the preconditions of the theorem.

If <1> is not satisfied, IPP (T) can be used to distinguish T from R.

If <2> is not satisfied, there must be an i such that ti is not isomorphic to ri. There

must be a minimal k, after k level of expansions, the pointer pattern of ti is different from

ri’s, disregard the type symbols. We say one level of expansion is to expand along all type

49

symbols for one step. IPP (T) can be considered as the pointer pattern of T with k = 0

level of expansion.

Since there are finite number of data structures, we can always identify the maximal

among all the k values. Lets denote it as kmax. Hence, the pointer pattern of T after kmax

levels of expansions can distinguish T from any other individual data structure.

The proof of Theorem 4.3.1 is shown above. Intuitively, the theorem specifies that T

must have a unique pointer pattern (i.e., a signature) as long as there is not an R such that

IPP (T) is a sub-pattern of IPP (R) and the corresponding types are isomorphic.

If there is an R satisfying conditions <1> and <2> in the theorem, no matter how

many layers we inspect, the structure of T remains identical to part of the structure of R,

which makes them indistinguishable. In Linux kernels, we have found a few hundred such

cases (about 12% of all data structures). Fortunately, most of those are data structures that

are rarely used or not widely targeted according to OS security and forensics literature.

Note that two isomorphic data structures may have different concrete pointer field types.

But given a memory image, it is unlikely for us to know the concrete types of memory

cells. Hence, such information cannot be used to distinguish the two data structures. In

fact, concrete type information is not part of a pointer pattern. Their presence is only for

readability.

Consider the data structures in Figure 4.3(a) and Figure 4.3(b). Note all the data

structures whose definitions are not shown do not have pointer fields. IPP (A) is a sub-

pattern of IPP (X), B ⊲⊳ BB and C ⊲⊳ CC. But D is not isomorphic to DD because

of their different immediate pointer patterns. According to Theorem 4.3.1, there must be a

unique signature for A. In this example, pointer pattern (2) in Equation (4.8) is a unique

signature. If we find pointers that have such structure in memory, they must indicate an

instance of A.

Finding the Minimal Signature. Even though we can decide if a data structure T has a

unique signature using Theorem 4.3.1, there may be multiple pointer patterns of T that can

distinguish T from other data structures. Ideally, we want to find the minimal pattern as it

incurs the minimal parsing overhead during brute force scanning. For example, if the offset

50

0 +4

+16 +24

B

BE

G H

0
+12

+18

C D

+4

B

0
+12

+18

C D

I

A A

Fig. 4.4.: If the offset of field e1 (of type struct G) in E is changed to 16, struct A
will have two possible signatures (detailed data structure definitions in Figure 4.3)

of field e1 (of type struct G) in E is 16, struct A will have two possible signatures

as shown in Figure 4.4. They correspond to the following pointer patterns:

0 · (0 · (16 · G · 8 · H) · 4 · B) · 12 · C · 6 · D

and

0 · B · 12 · C · 6 · (4 · I)

The first one is generated by expanding B and then E, and the second one is generated by

expanding D. Either one can serve as a unique signature of A.

In general, finding the minimal unique signature is a combinatorial optimization prob­

lem: Given a data structure T , find the minimal pointer pattern of T that cannot be a sub-

pattern of any other data structure R, that is, cannot be generated by pointer expansions

from a sub-pattern of IPP (R). The complexity of a general solution is likely in the NP

category. In this paper, we propose an approximate algorithm (Algorithm 1) that guarantees

to find a unique signature if one exists, though the generated signature may not be the

minimal one. It is a breadth-first search algorithm that performs expansions for all pointer

symbols at the same layer at one step until the pattern becomes unique.

The algorithm first identifies the set of data structures that may have IPP (T) as their

sub-patterns (lines 3-5). Such sub-patterns are stored in set distinct. Next, it performs

breadth-first expansions on the pointer pattern of T , stored in s, and the patterns in distinct,

51

Algorithm 2 An approximate algorithm for signature generation
Input: Data structure T and set K of all kernel data structures considered
Output: The pointer pattern that serves as the signature of T .
1: s= IPP (T)
2: let IPP(T) be f1 · t1 · (f2 − f1) · t2 · ... · (fn − fn−1) · tn

3: for each sub-pattern p=g1 · r1 · (f2 − f1) · r2 · (f3 − f2) · ... · (fn − fn−1) · rn in IPP (R) of each structure R ∈ (K − {T})
with f1 <= g1 do

4: distinct=distinct ∪ {p}
5: end for
6: while distinct �= φ do
7: s=expand(s)
8: for each p ∈ distinct do
9: p=expand(p)
10: if p is different from s disregarding type symbols then
11: distinct= distinct− p

12: end if
13: end for
14: end while
15: return s
expand(s)
1: for each type symbol t ∈ s do
2: s= replace t with “(IPP (t))”
3: end for
4: return s

until all patterns can be distinguished. It is easy to infer that the algorithm will eventually

find a unique pattern if one exists.

For the data structures in Figures 4.3(a) and 4.3(b), the pattern generated for A by the

algorithm is

0 · (0 · E · 4 · B) · 12 · C · 6 · (4 · I) (4.9)

It is produced by expanding B and D in IPP (A).

Generating Multiple Signatures. In some use scenarios, it is highly desirable to generate

multiple signatures for the same data structure. A common scenario is that some pointer

fields in a signature may not be dependable. For example, certain kernel malware may

corrupt the values of some pointer fields and, as a result, the corresponding data structure

instance will not be recognized by a signature that involves those pointers.

SigGraph mitigates such a problem by generating multiple unique signatures for the

same data structure. In particular, if certain pointer fields in a data structure are potential

targets of malicious manipulation, SigGraph will avoid using such fields during signature

generation in Algorithm 1. For example, if field e1’s offset in struct E is 16 and field

52

a3 (of type struct D) in struct A is not dependable, Algorithm 2 will adapt (not

shown in the pseudo-code) by pruning the sub-graph rooted at field a3 in Figure 4.4(a).

4.4 Scanner Generation

Given a data structure signature (i.e., a pointer pattern), SigGraph will automatically

generate the corresponding memory scanner, which will be shipped to end users for brute

force kernel memory scanning. To automatically generate scanners, we describe all sig­

natures using a context-free grammar (CFG). Then we leverage yacc to generate the

scanners. The CFG is described as follows.

Signature := number · Pointer · Signature | ǫ
(4.10)

Pointer := type | (Signature)

In the above grammar, number and type are terminals that represent numbers and type

symbols, respectively. A Signature is a sequence of number · Pointer, in which Pointer

describes either the type or the Signature of the data structure being pointed to. It is

easy to see that the grammar describes all the pointer patterns in Section 4.3, such as the

signature of A generated by Algorithm 1 (Equation (4.9)).

Scanners can be generated based on the grammar rules. Intuitively, when a number

symbol is encountered, the field offset should be incremented by number. If a type

is encountered, the scanner asserts that the corresponding memory contain a pointer. If

a ‘(’ symbol is encountered, a pointer dereference is performed and the scanner starts

to parse the next-level memory region until the matching ‘)’ is encountered. A sample

scanner generated for the signature in Equation (4.9) can be found in Figure 4.5. Function

isInstanceOf A decides if a given address is an instance of A; assertPointer

asserts that the given address must contain a pointer value, otherwise an exception will

be thrown and function isInstranceOf A will return 0. The yacc rules to generate

scanners are elided for brevity.

53

1 int isInstanceOf_A(void *x){

2 x=x+0;

3 {

4 y=*x;

5 y=y+0’

6 assertPointer(*y);

7 y=y+4;

8 assertPointer(*y);

9 }

10 x=x+12;

11 assertPointer(*x);
12 x=x+6;
13 {
14 y=*x;
15 y=y+4;
16 assertPointer(*y);
17 }
18 return 1;
19 }

Fig. 4.5.: The generated scanner for struct A’s signature in Equation (4.9)

Considering Non-pointer Fields. So far, a scanner considers only the positive information

from the signature, which indicates the fields that are supposed to be pointers. But it does

not consider the implicit negative information, which indicates the fields that are supposed

to be non-pointers. In many cases, such negative information is needed to construct robust

scanners.

For example, assume that a data structure T has a unique signature 0 · A · 8 · B · 4 · C.

If there is a pointer array that stores a consecutive sequence of pointers, even though T ’s

signature is unique and has no structural conflict with any other data structures, the scanner

of T will mistakenly identify part of the array as an instance of T .

To handle such cases, the scanner should also assert that the non-pointer fields must

not contain pointers. Hence the scanner for T ’s signature becomes the following. Method

assertNonPointer asserts that the given address does not contain a pointer. As such,

the final scanner code for identify data structure T will be:

1 int isInstanceOf_T(void *x){

2 x=x+0;

3 assertPointer(*x); // field of type "A *"

4 x=x+4;

5 assertNonPointer(*x); // field of non-pointer

6 x=x+4;

7 assertPointer(*x); // field of type "B *"

8 x=x+4;

9 assertPointer(*x); // field of type "C *"

10 }

54

4.5 Handling Practical Issues

We have so far assumed the ideal case for SigGraph. However, when applied to large

system software such as the Linux kernel, SigGraph faces a number of practical challenges,

in particular,

1.	 Null pointers: It is possible that a pointer field have a null value, which cannot

be distinguished from other non-pointer fields, such as integer or floating point fields

with value 0. If 0 is considered a pointer value, a memory region with all 0s would

satisfy any immediate pointer patterns, which is clearly undesirable.

2.	 Void pointers: Some of the pointer fields may have a void* type and they will be

resolved to different types at runtime. Obviously, our signature generation algorithm

cannot handle such case.

3.	 User-level pointers: It is also possible that a kernel pointer point to the user space,

e.g., the field set child tid and clear child tid in task struct, and

the vdso field in mm struct all point to user space. The difficulty is that user

space pointers have a very dynamic value range due to the larger user space, which

makes it hard to distinguish them from non-pointer fields.

4.	 Special pointers: A pointer field may have non-traditional pointer value. For ex­

ample, for the list head data structure, Linux kernel uses LIST POISON1 with

value 0x00100100 and LIST POISON2 with value 0x00200200 as two special

pointers to verify that no one uses un-initialized list entries. Another special value

SPINLOCK MAGIC (0xdead4ead) also widely exists in some pointer fields such

as in data structure radix tree.

5.	 Pointer-like values: Some of the non-pointer fields may have values that resemble

pointers. For example, it is not an uncommon coding style to cast a pointer to an

integer field and later cast it back to a pointer.

55

6.	 Undecided pointers: Union types allow multiple fields with different types to share

the same memory location. This creates problems when pointer fields are involved.

7.	 Rarely accessed data structures: Algorithm 1 in Section 4.3 treats all data struc­

tures equally and tries to find unique signatures for all kernel data structures. How­

ever, some of the data structures are rarely used and hence the conflicts caused by

them may not be so important.

We find that most of the problems above boil down to the difficulty in deciding if a

field is a pointer or non-pointer. Interestingly, the following observation leads to a simple

solution: pruning a few noisy pointer fields does not degenerate the uniqueness of the

graph-based signatures. Even though a signature after pruning may conflict with some other

data structure signatures, we can often perform a few more refinement steps to redeem the

uniqueness. As such, we devise a dynamic profiling phase to eliminate the undependable

pointer/non-pointer fields.

Our profiler (Figure 5.2) relies on LiveDM [74], a dynamic kernel memory mapping

system, to keep track of dynamic kernel data structures at runtime. Based on QEMU [75],

LiveDM tracks kernel memory allocation and deallocation events. More specifically, we

focus on slab objects by hooking the allocation and deallocation functions such as kmem

cache alloc and kmem cache free at the VMM level. The function arguments and

return values are retrieved to obtain memory ranges of these objects. Their types are

acquired by mapping allocation call sites to kernel data types via static analysis. We then

track the life time of these objects and monitor their values.

We monitor the values of a kernel data structure’s fields to collect the following infor­

mation: (1) How often a pointer field takes on a value different from a regular non-null

pointer value; (2) How often a non-pointer field takes on a non-null pointer-like value; (3)

How often a pointer has a value that points to the user space. In our experiments, we profile

a number of kernel executions for long periods of time (hours to tens of hours).

Based on the above profiles, we revise our signature generation algorithm with the

following refinements: (1) excluding all the data structures that have never been allocated in

56

our profiling runs so that structural conflicts caused by these data structures can be ignored;

(2) excluding all the pointer fields that have the void* type or fields of union types that

involve pointers – in other words, these fields are declared undependable (Section 4.3),

which is done by annotating them with a special symbol. Note that they should not be

considered as non-pointer fields either and method assertNonPointer discussed in

Section 4.4 will not be applied to such fields; (3) excluding all the pointer fields that

have ever had a null value1 or a non-pointer value during profiling; as well as all non-

pointer fields that ever have a pointer value during profiling. Neither assertPointer

nor assertNonPointer will be applied to these fields; (4) allowing pointers to have

special value such as 0x00100100 or 0x00200200.

We point out that dynamic profiling and signature refinement is performed only during

the production of SigGraph-based signatures/scanners. It is not performed by end-users,

who will simply run the scanners on memory images. We do note that the SigGraph

signatures/scanners are kernel-specific, as different OS kernels may have different data

structure definitions and runtime access characteristics. In fact, Section 6.4 shows that

different versions of the same OS kernel may have different signatures for the same data

structure.

4.6 Implementation

We implemented SigGraph in C and Python. For the data structure definition extrac­

tion component, we instrumented gcc-4.2.4 for our purpose. Specifically, we walked

through the AST of each data structure at the moment when gcc finishes the layout

allocation (stor-layout.c). If the data structure type is struct or union, we

dumped its field type, offset, and size information in individual files, which are indexed

by a tuple of <name, file>, that is we used the data structure name, and declaration file

names stored in the AST to index the struct or union. Also, if the field is an embedded

1We note that such exclusion will not remove important pointer fields in critical kernel data structures such
as lists and trees, where non-zero magic values are used to indicate list/tree termination or initialization.

57

data structure, we will eliminate the hierarchy, adjust the offset, and expand them to finally

get a flattened data structure definition.

For the signature generation component, we implemented using the mix of python and

C code, as python provides an easier way to parse data structure definitions extracted from

gcc, and C is more efficient when doing graph comparison. Our experience showed that

python code will take a few days to complete the graph comparison of the whole data

structure but C code just takes less than one hour. Our scanner generator is lex/yacc based,

and the generated scanners are in C. The entire implementation has around 10K lines of C

code and 6K lines of Python code.

4.7 Evaluation

We have performed four sets of evaluation of SigGraph. The first one is the signature

uniqueness evaluation that answers the question of whether there exist our graph based

signatures. The second is signature effectiveness evaluation that answers how effective our

signature is when used to scan memory images. The third one is to evaluate the diversity

of our signatures as we could we have multiple signatures for one data structure. Finally

we evaluate the performance overhead of SigGraph.

4.7.1 Signature Uniqueness

Table 4.1: Experimental results of signature uniqueness test

2.6.31-1 26799 9957

Signature Statistics

8683 87.20% 2.73

Kernel version #Total structs #Pointer structs #Unique Sig. Percent S

2.6.15-1 8850 3597 3229 89.76% 2.31
2.6.18-1 11800 4882 4305 88.18% 2.45

2.6.20-15 14992 6096 5395 88.50% 2.54
2.6.24-26 15901 6427 5645 87.83% 2.47

We first test if unique signatures exist for kernel data structures. We test 5 popular

Linux distributions (from Fedora Core 5 and 6; and Ubuntu 7.04, 8.04 and 9.10), with the

corresponding kernel version shown in the first column of Table 4.1. We compile these

58

Table 4.2: Detail statistics on our static signatures

Number of signatures in different steps
Kernel version 1 2 3 4 5 6 7 8 9 10 11 12 13

2.6.15-1 1355 823 461 229 76 194 85 4 1 0 1 - -
2.6.18-1 1820 1057 382 410 159 337 121 9 3 5 1 1 -

2.6.20-15 2137 1311 680 236 407 501 106 9 1 5 1 1 -
2.6.24-26 2172 1316 761 475 624 248 37 7 1 0 3 1 -
2.6.31-1 3364 1951 696 319 1492 494 344 19 1 0 1 1 1

kernels using our instrumented gcc. Observe that there are quite a large number of data

structures in different kernels, ranged from 8850 to 26799. Overall, we find nearly 40% of

the data structures have pointer fields, and nearly 88% (shown in the 5th column) of the data

structures with pointer fields have unique signatures. Because of graph isomorphism, there

are data structures that do not have any unique signature, and the percentage for these data

structures is around 12%. For the average steps (S) performed in pointer pattern expansion

to generate the unique signatures, the numbers are shown in the 6th column. Note that these

are all static numbers before the dynamic refinement.

In Table 4.2, we show the number of unique signatures of various depths, obtained

by taking various number of expansion steps along the points-to relations. For example,

kernel 2.6.15-1 has 1355 data structures that have unique one-level signatures and 823 data

structures that have unique two-level signatures.

4.7.2 Signature Effectiveness

To test the effectiveness of SigGraph, we take Linux kernel 2.6.18-1 as a working

system, and show how the generated signatures can detect data structure instances. We

choose 23 widely used kernel data structures shown in the 2nd column of Table 4.3. We

choose these data structures because: (1) They are the most commonly examined data

structures in existing literature [25, 40–42, 52–55]; (2) They are important data structures

that can represent the status of the system in the aspects of process, memory, network and

file system; from these data structures, we can reach most other kernel objects; and (3)

59

They contain pointer fields. Note that when scanning for instances of these data structures,

other data structures – as part of the pointer patterns – are also traversed.

To ease our presentation, we assign an ID to each data structure, which is shown in the

3rd column of Table 4.3. We use F to represent the set of fine-grained fields, and P to

represent the set of pointer fields. A fine-grained field is a field with a primitive type (not

a composite data type such as a struct or an array). Then, we present the corresponding

total number of fields |F | and pointers |P | in the 5th and 6th columns, respectively.

Experiment Setup

We perform two sets of experiments. We first use our profiler to automatically prune the

undependable pointer/non-pointer fields, generate refined signatures, and then detect the

instances. After that we perform a comparison run with value invariant-based signatures

(Section 4.7.2) to further confirm the effectiveness of SigGraph.

Memory snapshot collection: The first input of the effectiveness test is the snapshots

of physical memory, which are acquired by instrumenting QEMU [75] to dump them on

demand. We set the size of the physical RAM to 256M.

Ground truth acquisition: The second input is the ground truth data of the kernel objects

under study. We leverage and modify a kernel dump analysis tool, the RedHat crash

utility [60], to analyze our physical memory image and collect the ground truth, through

a data structure instance query interface driven by our Python script. Note that to enable

crash’s dump analysis, the kernel needs to be rebuilt with debugging information.

Profiling run: In all our profiling runs, the OS kernel is executed under normal workload

and monitored for hours, with the goal of achieving good coverage of kernel data access

patterns. However, it is unlikely that the profiling runs be able to capture the complete

spectrum of patterns. As our future work, we will leverage existing techniques for software

test generation to achieve better coverage.

60

Dynamic Refinement

In this experiment, we carry out the dynamic refinement phase as described in Section 4.5.

The depth and size of signatures before and after pruning are presented in the “SigGraph
L

Signature” columns in Table 4.3, with D being the depth and |P | the number of pointer

fields. Note that the signature generation algorithm has to be run again on the pruned data

structure definitions to ensure uniqueness. Observe that since pointer fields are pruned

and hence the graph topology gets changed, our algorithm has to perform a few more

expansions to redeem uniqueness, and hence the depth of signatures increases after pruning

for some data structures, such as task struct.

Value Invariant-based Signatures

To compare SigGraph-based signatures with value invariant-based signatures [32, 40–42],

we also implement a basic value-invariant signature generation system. More specifically,

we generally derive four types of invariants for each field including (1) zero-subset: a field

is included if it is always zero across all instances during training runs; (2) constant: a field

is always constant; (3) bitwise-AND: the bitwise AND of all values of a field is not zero,

that is, they have some non-zero common bits; and (4) alignment: if all instances of a field

are well-aligned at a power-of-two (other than 1) number.

To derive such value invariants for the data structures, we perform two types of profil­

ing: one is access frequency profiling (to prune out the fields that are never accessed by

the kernel) and the other is to sample their values and produce the signatures. The access

frequency profiling is done by instrumenting QEMU to track memory reads and writes.

Sampling is similar to the sampling method in our dynamic refinement phase.

All the data structures under study turn out to have value invariants. The statistics of

these signatures are shown in the last four column of Table 4.3. The total numbers of

zero-subset, constant, bitwise-AND, and alignment are denoted as |Z|, |C|, |B|, and |A|,

respectively.

61

Table 4.3: Summary of data structure signatures for Linux kernel 2.6.18-1

Static Properties of the Data Structure SigGraph Signature Value Invariant Signature
Category Statically Derived Dynamically Refined

Data Structure Name ID Size |F | |P | D
P
|P | D

P
|P | |Z| |C| |B| |A|

task struct 1 1408 354 81 1 81 2 233 269 17 55 244
Processes thread info 2 56 15 4 2 91 2 45 5 2 4 5

key 3 100 27 9 4 117 4 69 5 2 7 11

mm struct 4 488 121 23 1 23 2 26 39 41 62 68
vm area struct 5 84 21 10 4 1444 4 60 15 0 3 17

Memory shmem inode info 6 544 135 51 1 51 2 147 32 24 51 41
kmem cache 7 204 51 39 3 295 3 36 8 0 4 9

files struct 8 384 50 41 3 3810 3 13 38 4 8 9
fs struct 9 48 12 7 2 121 2 68 2 7 8 7

file 10 164 40 11 5 17034 5 3699 15 4 12 17
File dentry 11 144 63 16 5 27270 5 1444 44 4 14 16

System proc inode 12 452 112 49 1 49 3 455 27 16 33 41
ext3 inode info 13 612 151 58 1 58 2 166 59 27 50 53

vfsmount 14 108 27 23 4 6690 4 1884 4 0 20 24
inode security struct 15 60 16 6 7 277992 7 8426 1 1 3 2

sysfs dirent 16 44 11 7 4 1134 4 61 3 0 4 8

socket alloc 17 488 121 54 1 54 2 142 28 8 21 37
Network socket 18 52 13 7 5 45907 5 2402 1 4 10 6

sock 19 436 114 48 1 48 2 149 21 42 59 34

bdev inode 20 568 141 65 1 65 2 166 22 13 31 39
mb cache entry 21 36 12 8 6 27848 6 6429 2 1 4 6

Others signal struct 22 412 99 25 2 395 2 90 41 30 38 44
user struct 23 52 13 4 6 586 6 394 1 0 1 2

62

Table 4.4: Experimental results of SigGraph signatures and value invariant-based
signatures

SigGraph Signature Value Invariant Signature
ID Data Structure Name |I|

|R| FP ′ FP FN |R| FP ′ FP FN

1 task struct 88 88 0.00% 0.00% 0.00% 88 0.00% 0.00% 0.00%
2 thread info 88 88 0.00% 0.00% 0.00% 93 6.45% 6.45% 1.08%
3 key 22 22 0.00% 0.00% 0.00% 19 0.00% 0.00% 15.79%

4 mm struct 52 54 3.70% 0.00% 0.00% 55 5.45% 0.00% 0.00%
5 vm area struct 2174 2233 2.64% 0.40% 0.00% 2405 9.61% 7.52% 0.00%
6 shmem inode info 232 232 0.00% 0.00% 0.00% 226 0.00% 0.00% 2.65%
7 kmem cache 127 127 0.00% 0.00% 0.00% 5124 97.52% 97.52% 0.00%

8 files struct 53 53 0.00% 0.00% 0.00% 50 0.00% 0.00% 6.00%
9 fs struct 52 60 13.33% 0.00% 0.00% 60 13.33% 0.00% 0.00%

10 file 791 791 0.00% 0.00% 0.00% 791 0.00% 0.00% 0.00%
11 dentry 31816 38611 17.60% 0.01% 0.00% 31816 0.00% 0.00% 0.00%
12 proc inode 885 885 0.00% 0.00% 0.00% 470 0.00% 0.00% 88.30%
13 ext3 inode info 38153 38153 0.00% 0.00% 0.00% 38153 0.00% 0.00% 0.00%
14 vfsmount 28 28 0.00% 0.00% 0.00% 28 0.00% 0.00% 0.00%
15 inode security 40067 40365 0.74% 0.00% 0.00% 142290 71.84% 70.93% 0.00%
16 sysfs dirent 2105 2116 0.52% 0.52% 0.00% 88823 97.63% 97.63% 0.00%

17 socket alloc 75 75 0.00% 0.00% 0.00% 75 0.00% 0.00% 0.00%
18 socket 55 55 0.00% 0.00% 0.00% 49 0.00% 0.00% 12.24%
19 sock 55 55 0.00% 0.00% 0.00% 43 0.00% 0.00% 27.90%

20 bdev inode 25 25 0.00% 0.00% 0.00% 24 0.00% 0.00% 4.17%
21 mb cache entry 520 633 17.85% 0.00% 0.00% 638 18.50% 0.00% 0.00%
22 signal struct 73 73 0.00% 0.00% 0.00% 72 0.00% 0.00% 1.39%
23 user struct 10 10 0.00% 0.00% 0.00% 10591 99.91% 99.91% 0.00%

Results

The final results for each signature when brute force scanning a test image is shown in

Table 4.4. The 3rd column shows the total number of true instances of the data structure,

which is acquired by the modified crash utility [60]. The |R| column shows the number

of data structure instances detected by the scanning. Due to the limitation of crash, the

ground-truth instances are live, namely reachable from global or stack variables. On the

other hand, brute force scanning can further identify freed-but-not-yet-reallocated objects

that are not reachable from global or stack variables. Such freed objects detected would

be counted as false positives (FPs) when compared with the ground truth from crash. As

such, we present two FP numbers: (1) |FP ′ | for those false positives that include the freed

objects and (2) |FP | for those that do not include the freed objects (hence |FP ′ | ≥ |FP |).

The false negative FN indicates those missed by scanning but present among the ground

truth objects from crash.

63

0xc035dc9c <init_task+156>: 0xce8e04e0 0x00000000 0x00000000 0x00000000

0xc035dcac <init_task+172>: 0x00000000 0x00000000 0x00000000 0x00000000

struct task_struct{ struct vm_area_struct {

[156] struct mm_struct *active_mm; [0] struct mm_struct *vm_mm;

[160] struct linux_binfmt *binfmt; [4] long unsigned int vm_start;

[164] long int exit_state; [8] long unsigned int vm_end;

[168] int exit_code; [12] struct vm_area_struct *vm_next;

[172] int exit_signal; [16] pgprot_t vm_page_prot;

[176] int pdeath_signal; [20] long unsigned int vm_flags;

[180] long unsigned int personalit; ...

} }

0xc035dcbc <init_task+188>: 0x00000000 0x00000000 0xc035dc00 0xc035dc00

0xc035dccc <init_task+204>: 0xc12f1704 0xc12f1704 0xc035dcd4 0xc035dcd4

0xc035dcdc <init_task+220>: 0xc035dc00 0x00000000 0x00000000 0x00000000

0xc035dcec <init_task+236>: 0x00000000 0x00000000 0x00000000 0x00000000

0xc035dcfc <init_task+252>: 0x00000000 0x00000000 0x00000000 0x00000000

0xc035dd0c <init_task+268>: 0x00000000 0x00000000 0x00000000 0x00000000

0xc035dd1c <init_task+284>: 0x00000000 0x02bf54e4 0x00000000 0x002eff84

0xc035dd2c <init_task+300>: 0x00000000 0x00000000 0x00000000 0x00000000

0xc035dd3c <init_task+316>: 0x00000000 0x00000000 0x00000000 0x00000000

0xc035dd4c <init_task+332>: 0xc035dd4c 0xc035dd4c 0xc035dd54 0xc035dd54

Fig. 4.6.: False positive analysis of vm area struct

Among the 23 data structures, SigGraph perfectly (namely with accuracy and complete­

ness) identifies all instances of 16 of the data structures when freed objects are considered

FPs (i.e., both FP ′ and FN are zero); whereas value invariant signatures perfectly identify

only 5 of the data structures. When freed objects are not considered FPs, 20 data struc­

tures can be perfectly identified by SigGraph whereas value invariant signatures perfectly

identify 9. We also note that, with the exception of dentry, SigGraph signatures achieve

equal or (much) lower false positive rate than value invariant-based signatures. No FNs are

observed for SigGraph, while some are observed for the value invariant-based approach.

False Positive Analysis. Table 4.4 shows that SigGraph results in false positives (|FP |)

for three of the 23 data structures: vm area struct, dentry, and sysfs dirent.

We carefully examine the memory snapshot and identify the reasons as follows.

•	 vm area struct We have 9 false positives (FPs) among the 2233 detected in­

stances. After dynamic refinement, some pointer fields are pruned, such as the

pointer field at offset 12 (as shown in Figure 4.6). The resultant signature consists

of a pointer field at offset 0 (mm struct), followed by a sequence of non-pointer

fields, and so on. However, field task struct starting from offset 156 has the

same pointer pattern as that of vm area struct except that offset 160 is a pointer.

Unfortunately, in some rare cases that are not captured by our profiler, the pointer

field at offset 160 becomes 0, leading to the 9 FPs.

 0xdead4ead

64

struct dentry {

[0] atomic_t d_count;

[4] unsigned int d_flags;

[8] raw_spinlock_t raw_lock;

[12] unsigned int magic;

[16] unsigned int owner_cpu;

[20] void *owner;

[24] struct inode *d_inode;

[28] struct hlist_node d_hash;

[36] struct dentry *d_parent;

...

[84] long unsigned int d_time;

[88] struct dentry_operations *d_op;

...

}

fp1

0xc72bdf48: 0x00000000 0x00000010 0x00000001

0xc72bdf58: 0xffffffff 0xffffffff 0x00000000 0x00000000

0xc72bdf68: 0x00200200 0xc710e1c8 0x57409b84 0x00000009

0xc72bdf78: 0xc72bdfb4 0xc72bdf7c 0xc72bdf7c 0xc72bdef4

0xc72bdf88: 0xc017b72e 0xc72bdf8c 0xc72bdf8c

0xc72bdf98: 0xc72bdf94 0x00000000 0x00000000

fp2

0xcb1d5088: 0x00000000 0x00000010 0x00000001

0xcb1d5098: 0xffffffff 0xffffffff 0x00000000 0x00000000

0xcb1d50a8: 0x00200200 0xcb80ebc8 0xe50e3f24 0x0000000a

0xcb1d50b8: 0xcb1d50f4 0xcb1d50bc 0xcb1d50bc 0xcb1dcf84

0xcb1d50c8: 0xc017b72e 0xcb1d50cc 0xcb1d50cc 0xcb1d50d4

0xcb1d50d8: 0xcb1d50d4 0x026a0005 0x00000000

0xc72bdf94

0xcf91fe00

0xdead4ead

true

0xc001c0a8: 0x00000000 0x00000000 0x00000001

0xc001c0b8: 0xffffffff 0xffffffff 0x00000000 0xc67617f4

0xc001c0c8: 0xc12a0e7c 0xc727faa8 0xbfbb9195 0x00000009

0xc001c0d8: 0xc001c114 0xc001c16c 0xc05b9f5c 0xc001c174

0xc001c0e8: 0xc727faec 0xc001c0ec 0xc001c0ec 0xc001c0f4

0xc001c0f8: 0xc001c0f4 0x8bfffff9 0x00000000

0xcf91fe00

0xdead4ead

0xcf91fe00

(a) False positives of dentry

struct sysfs_dirent {

[0] atomic_t s_count;

[4] struct list_head s_sibling;

[12] struct list_head s_children;

[20] void *s_element;

[24] int s_type;

[28] umode_t s_mode;

[32] struct dentry *s_dentry; [pruned]

[36] struct iattr *s_iattr; [pruned]

[40] atomic_t s_event; }

fp1

0xcffaeffc: 0x00000000

0xcffaf01c: 0xcfd9bde0

fp2

0xcffaf7fc: 0x00000000

0xcffaf80c: 0xcffc2814

0xcffaf81c: 0xcfd9be60

fp3

0xcffa37fc: 0x00000000

0xcffa380c: 0xcffaf008

0xcffa381c: 0xcfd9bd60

fp4

0xcffa2ffc: 0x00000000

0xcffa301c: 0xcfd9bce0

0xcffa300c: 0xcffa3808

fp5

0xcffa27fc: 0x00000000

0xcffa280c: 0xcffa3008

0xcffa281c: 0xcfd9bc60

fp6

0xc037099c: 0x00000000

0xc03709ac: 0xcffa2000

0xc03709bc: 0xc01de4bc

0xcffa3800 0xcffaf800 0xcffa3808

0xcffaf00c: 0xcffaf808 0xcffc2800 0x00000000 0x00000000

0x70008086
 0x00000008

0xcffaf000 0xc03709a8 0xcffaf008

0xcffc2800 0x00000000 0x00000000

0x00000000 0x12378086

0x00000000 0x00000000

0x70108086
 0x00000009

0xcffa2800 0xcffa3800 0xcffa2808

0xcffc2800 0x00000000 0x00000000

0x0000000b 0x71138086

0x00000000 0x00000000

0x00b81013

0xcffa3000 0xcffaf000 0xcffa3008

0xcffc2800

0xcffa2000 0xcffa3000 0xcffa2008

0xcffc2800

0x00000000 0x00000124

0x00000000

0xcffc2800 0xcffc2800 0xcffaf800

0xc0327d79

0x00000010

0x00000000

(b) False positives of sysfs dirent

Fig. 4.7.: False positive analysis of dentry and sysfs dirent

•	 dentry We have 2 FPs of dentry, which are shown in Figure 4.7(a). We consider

these two instances as FPs because they cannot be found in either the pool of live

objects or the pool of freed objects. However, if we carefully check each field’s

value, especially the boxed ones: 0xdead4ead (SPINLOCK MAGIC at offset 12)

and 0xcf91fe00 (a pointer to dentry operations at offset 88), we cannot

help but thinking that these are indeed dentry instances instead of FPs. We believe

that they belong to the case where the slab allocator has freed the memory page of

the destroyed dentry instances.

•	 sysfs dirent We have 6 FPs of sysfs dirent among the 2116 detected in­

stances. The detailed memory dumps of the 6 FP cases are shown in Figure 4.7(b).

After our dynamic refinement, the fields at offsets 32 and 36 are pruned because

they often contain null pointers. And the final signature entails checking two

list head data structures followed by a void* pointer (at offsets 4, 8, 12, 16 and

20, respectively) and checking four non-pointer fields. Note that each list head

65

has only two fields: previous and next pointer. There are 6 memory chunks that match

our signature in the test memory image. But the chunks are not part of the ground

truth. We suspect that these chunks are aggregations of multiple data structures and

the aggregations coincidentally manifest the same pattern.

Summary: In this experiment, SigGraph achieves zero FN and (much) lower FP rates. In­

tuitively, the reasons are the following: (1) SigGraph-base signatures are structure-oriented

and thus tend to be more stable than value-oriented approaches. And their uniqueness can

be algorithmically determined – that is, we can expand a signature along available points-

to edges to achieve uniqueness. (2) SigGraph-based signatures are more “informative”

as each signature includes information about other data structures; whereas a value-based

signature only carries information about itself.

4.7.3 Multiple Signatures

One powerful feature of SigGraph is that multiple signatures can be generated for

the same data structure (Section 4.3). We perform the following experiments with the

task struct data structure to verify that. In each experiment, we exclude one of the

38 pointer fields of task struct (considering that pointer corrupted) before running

Algorithm 1. In each of the 38 experiments, the algorithm is still able to compute a

unique, alternative signature for task struct. Next, we increase the number of cor­
�

2 � rupted pointer fields from 1 to 2, and conduct C2 =
38 runs of Algorithm 1 (exhausting 38

the combinations of the two pointers excluded). The algorithm is still able to generate a

valid signature for each run.

The above experiments indicate that SigGraph is robust in the face of corrupted pointer

fields. However, the robustness does have its limit. At the other extreme, we exclude 37
�

37 � of the 38 pointer fields of task struct and conduct C37 = = 38 runs of Algorithm 38 38

1. Among the 38 runs, Algorithm 1 only generates valid signatures in 4 runs, where one

of the following pointers is retained: fs struct, files struct, namespace, and

signal struct.

66

task_struct, D = 2

thread_info, D = 2

key, D = 4

m
m

_struct, D = 2

vm
_area_struct, D = 4

shm
em

_inode_info, D = 2

km
em

_cache, D = 3

files_struct, D = 3

fs_struct, D = 2

file, D = 5

dentry, D = 5

proc_inode, D = 3

ext3_inode_info, D = 2

vfsm
ount, D = 4

inode_security, D = 7

sysfs_dirent, D = 4

socket_alloc, D = 2

socket, D = 5

sock, D = 2

bdev_inode, D = 2

m
b_cache_entry, D = 6

signal_struct, D = 2

user_struct, D = 6

4.7.4 Performance Overhead

 0

 100

 200

 300

 400

 500

 600

 700

 800
Value-Invariant Scanner

 SigGraph Scanner

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Fig. 4.8.: Memory scanning performance

Since SigGraph may be used for online live memory analysis, we measure the overhead

of memory scanning using SigGraph signatures. We run both SigGraph-generated scanners

and the value invariant-based scanners on the testing image (256MB) in a machine with

3GB RAM and an Intel Core 2 Quad CPU (2.4GHz) running Ubuntu-9.04 (Linux kernel

2.6.28-17). The final result of the normalized overhead (compared with value-invariant) is

shown in Figure 4.8.

As expected, value-invariant scanners always outperform SigGraph scanners. The main

reason is that: A SigGraph scanner needs to conduct address translation whenever there is

a memory de-reference, which is not needed by the value invariant scanner. If the depth

of a SigGraph signature is relatively low (e.g., D = 2), the SigGraph scanner will be

roughly 10-20 times slower than the corresponding value invariant scanner. Greater depth

http:Ubuntu-9.04

67

often leads to higher overhead because more nodes will need to be examined and more

address translation needs to be performed. The cases of inode security (D = 7) and

mb cache entry (D = 6) are such examples. Thus, for data structures with low-depth

signatures, their SigGraph scanners can be used online. For example, in our experiment, it

takes only a few seconds to scan fs struct, thread info, and files struct, and

less than one minute to scan task struct.

For data structures with a greater depth (due to isomorphism elimination) such as

inode security and mb cache entry, the scanning time is longer (e.g., about 15

minutes when we scan a 256MB memory image using the scanner for inode security).

However, we argue that such cost is acceptable in the context of computer forensics, where

accuracy and completeness is more important than efficiency. Moreover, the scanning time

can be reduced by various optimizations such as parallelization or having a pre-scanning

phase to preclude unlikely cases.

4.8 Summary

In this chapter, we have presented SigGraph, a framework that systematically generates

graph-based, non-isomorphic data structure signatures for brute force scanning of kernel

memory images. Each signature is a graph rooted at the subject data structure with edges

reflecting the points-to relations with other data structures. SigGraph-based signatures

complement value invariant-based signatures for more accurate recognition of kernel data

structures with pointer fields. Moreover, SigGraph differs from global memory mapping-

based approaches that have to start from global variables and require reachability to all data

structure instances from them.

68

5. DIMSUM: DISCOVERING DATA STRUCTURE INSTANCES

USING PROBALISTIC INFERENCE

In this chapter, we present DIMSUM, the third component in our framework, to enable

the recognition of data structure instances from un-mappable memory. Such un-mappable

memory could be (1) the entire free pages of the system, (2) the memory swap file, or (3)

a corrupted memory dump. Existing memory mapping-guided techniques do not work in

that scenario as pointers in the un-mappable memory cannot be resolved. To address this

problem, we thus present our probabilistic inference-based approach DIMSUM.

5.1 DIMSUM Overview

Given a set of memory pages and the specification of a target data structure, DIMSUM

will identify instances of the data structure in those pages with quantifiable confidence.

More specifically, it automatically builds graphical models based on boolean constraints

generated from the data structure and the memory page contents. Probabilistic inference is

performed on the graphical models to generate results ranked with probabilities. DIMSUM

has the following observations.

5.1.1 Key Observation

DIMSUM was first motivated by the “dead memory pages left by terminated processes”

scenario. More specifically, we notice that, when a process is terminated, neither Windows

nor Linux operating system clears the content of its memory pages. We believe one of

the reasons is to avoid memory cleansing overhead. Moreover, Chow et al. [76] found

that many applications let sensitive data stay in memory after usage instead of “shredding”

them. Even if an application performs data “shredding”, it is still possible that a crash

69

happens before the shredding operation, leaving some sensitive data in the dead memory

pages.

Second, we also observe that dead pages may remain intact for a non-trivial duration,

which we call their death-span. In fact, we observe that the death-span of the dead pages of

a Firefox process can last up to 50 minutes after the process terminates, in a machine with

512 MB RAM, as shown in Figure 5.1. If the machine has a larger RAM or the workload

after Firefox’s termination is not as memory-intensive, the death-span of dead pages may

be even longer. A similar study on the age of freed user process data on Windows XP

(SP2) [77], has shown that large segments of pages can survive for nearly 5 minutes in a

lightly loaded system; and smaller segments and single pages may be found intact for up

to 2 hours.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

D
ea

d
S

pa
n

(M
in

ut
es

)

0 20 40 60 80 100

Percentage of Free Frames (Firefox) Sorted in Dead Span

Fig. 5.1.: Death-span of free frames from a terminated Firefox process

Finally, we observe that, for a terminated process, the corresponding memory mapping

information maintained by the OS kernel, such as the process control block and page table,

are likely to disappear (i.e., be reused) very quickly. The much shorter dead-span of kernel

objects (typically in a few seconds) – contrary to that of dead application pages – is due

to the fact that kernel objects are maintained as slab objects by the kernel [78], which uses

LIFO as the memory recycling policy; whereas memory pages of processes are managed by

70

the buddy system [78] that groups memory frames into lists of blocks having 2k contiguous

frames, and hence page frames tends to have longer dead-span.

We point out that the above scenario is not the only one that involves memory pages

without mapping information. Another interesting scenario is to analyze the Coldboot

images as demonstrated in [79]: After a machine with modern DRAM is powered off, the

content of the DRAM will disappear gradually instead of immediately, making it possible

to obtain partial memory image with no or partial memory mapping information.

5.1.2 Challenges

Compared with existing approaches, DIMSUM raises a number of new challenges. The

first challenge is the absence of memory mapping information. Consequently, given a set

of memory pages, there is little hint on which pages belong to which process, let alone

the sequencing of physical pages in the virtual address space of a process. Even if we can

identify some pointers in a page, we still cannot follow those pointers without the address

mapping information.

The second challenge is that DIMSUM may accept an incomplete subset of memory

pages of a process as input. In this case the application data that reside in the absent

pages cannot be recovered. However, such data could be useful for the recognition of

application data that reside in the input pages, especially when a pointer-based memory

forensics technique is employed.

The third challenge is the absence of type/symbolic information for dead memory. To

map the raw bits and bytes of a memory page to meaningful data structure instances, type

information is necessary. For example, if the content at a memory location is 0, its type

could be integer, floating point, or even pointer. If these bits and bytes belong to the live

memory, symbolic information is available and they can be typed through reference path

(as in [30]). To DIMSUM, however, such information is not available.

S ti St d

71

Probabilistic
Inference Pages w/o

Memory
Mapping Info

Constraint Generator

Semantic Staged
Result

Data Structure
Specification

Primitive Pointer

Structural Same Page

Fig. 5.2.: Overview of DIMSUM

5.1.3 Overview

To address the above challenges, we take a probabilistic inference and constraint solv­

ing approach. Fig. 5.2 shows the key components and operations of DIMSUM. The input

of the system includes: (1) a subset of memory pages from a computer and (2) the specifi­

cations of data structure(s) of interest. Note that a data structure specification includes field

offset and type information, which can be obtained from either application documentation,

debugging information, or reverse engineering [59, 72, 73].

A key component of DIMSUM, the constraint generator, transforms the data structure

specification into constraint templates that are instantiated by the input memory pages.

These templates describe correlations dictated by data structure field layout, and include

primitive, pointer, structural, same-page, semantic, and staged constraints (Section 5.3).

Next, the probabilistic inference component automatically transforms all the constraints

into a factor graph [67], and efficiently computes the marginal probabilities of all the

candidate memory locations for the data structure of interest. Finally, it outputs the result

based on the probability rankings.

5.2 DIMSUM Design

The essence of DIMSUM is to formulate the data structure recognition problem as a

probabilistic constraint solving problem. We first use a working example to demonstrate

the basic idea, which relies on solving boolean constraints.

72

struct utmplist {

00: short int ut_type;

04: pid_t ut_pid;

08: char ut_line[32];

40: char ut_id[4];

44: char ut_user[32];

76: char ut_host[256];

332: long int ut_etermination;

336: long int ut_session;

340: struct timeval ut_tv;

348: int32_t ut_addr_v6[4];

364: char __unused[20];

384: struct utmplist *next;

388: struct utmplist *prev;

}

Fig. 5.3.: Data structure definition of our working example

Ideally, our technique takes (1) the data structure specification such as the one defined

in Fig. 5.3, which is the utmplist data structure showing a list of last logged users in

a Linux utility program last and (2) a set of memory pages, and then tries to identify

instances of the data structure in the pages. The idea is to first generate a set of constraints

from the given data structure. For example, given the predicate definitions presented in

Table 5.1 and assuming a 32 bit machine, the generated constraint for the utmplist

structure would be:

utmplist(a) → Iut type(a) ∧ Iut pid(a + 4)∧

Cut line(a + 8)[32] ∧ Cut id(a + 40)[4]∧

Cut user(a + 44)[32] ∧ Cut host(a + 76)[256]∧

Iut session(a + 336) ∧ Iut etermination(a + 332)∧

Iut tv.tv sec((a + 340)) ∧ Iut tv.tv usec((a + 344))∧ . (5.1)

Iut addr v6((a + 348)[4]) ∧ C unused((a + 364)[20])∧

Pnext(a + 384) ∧ utmplist(∗(a + 384))∧

Pprev(a + 388) ∧ utmplist(∗(a + 388))∧

∗(a + 4)ut pid ≥ 0

Note that the subscripts are used to denote field names. Intuitively, the above formula

means that if the location starting at a denotes an instance of utmplist, the location at

a contains an integer, the location at a + 4 contains an integer as well, a + 8 contains a

char array with size 32, and so on. The constraint also dictates that the locations pointed-

to by pointers at a + 384 and a + 388 contain instances of utmplist as well. These

73

Table 5.1: Predicate definitions used throughout the paper

Predicate Definitions
τ(x) The region starting at x is an instance of a user-defined type τ
I(x) The location at x is an integer.
F(x) The location at x is a floating point value.
D(x) The location at x is a double floating point value.
S(x) The location at x is a string.
C(x) The location at x is a char.
P(x) The location at x is a pointer.

T (x)[y] The location at x is an array of size y, with each element of type T .

are called structural constraints as they are derived from the type structure. We may also

have semantic constraints that predicate on the range of the value at an address. The term

at the end of the constraint specifies that field ut pid should have a non-negative value.

Semantic constraints can be provided by the user based on domain knowledge.

Besides the above constraints, we also extract a set of primitive constraints by scanning

the pages. These constraints specify what primitive type each location has. We consider

seven primitive types: int, float, double, char, string, pointer and time. Here, we leverage

the observation that deciding if a location is an instance of a primitive type, such as a

pointer, can often be achieved by looking at the value. Suppose that addresses 0, 4, 8,

12, 16 have been determined to contain integer, integer, non-negative integer, char array

with size 16, the primitive constraints I(0), I(4), I(8), C(12)[16] (defined in Table 5.1)

are generated. By conjoining the structural, semantic, and primitive constraints, we can

use a solver to produce satisfying valuations for utmplist(a), which essentially identifies

instances of the given type. With the above constraints, a = 0 is not an instance because

C(a + 8)[32] is not satisfied. In contrast, a = 4 may be one.

5.2.1 Practical Problems

However, the basic design faces a number of practical problems in the context of

DIMSUM. In particular:

74

Uncertainty in Primitive Constraints: While values of primitive types have certain at­

tributes, it is in general hard to make a binary decision for a type predicate by looking at

the value. In such cases, we expect that our technique is able to reason with probabilities.

Absence of Page Mappings: As discussed in Section 5.1, a pointer value is essentially

a virtual address. Without memory mapping information, for constraints like S(∗a), we

cannot identify the page being pointed to by a and thus cannot decide if a points to a string.

Incompleteness: We may see only part of a data structure, e.g., some elements in a linked

list may be missing. Our system should be able to resolve constraints for such cases.

5.2.2 Probabilistic Inference

To address the above issues, we formulate the problem as a probabilistic inference prob­

lem [66, 67]. Initial probabilities are associated with individual constraints, representing

the user’s view of uncertainty. The probabilities are efficiently propagated, aggregated, and

updated over a graphical representation called factor graph (FG) [67]. After convergence,

the final updated probabilities of interesting boolean variables can hence be queried from

the FG. Next we use an example to explain.

We simplify the case in the Fig. 5.3 by considering only the pointer fields, i.e., fields

at offsets 384 and 388. For a given address a, let boolean variable x1, x2, and x3 denote

Tutmplist(a) , Pnext(a + 384), and Pprev(a + 388), respectively. The structural constraint is

simplified as follows.

x1 → x2 ∧ x3 (5.2)

Assume the structural pattern is unique across the entire system, meaning that there are

no data structures across the system with the same structural pattern. In particular for the

above pattern, if we observe two consecutive pointers in memory, we can be assured that

they must be part of an instance of struct utmplist, we have the following constraint.

x1 ← x2 ∧ x3 (5.3)

75

With this constraint, when we observe x2 = 1 and x3 = 1, we can infer x1 = 1, meaning

that there is an instance of struct utmplist at the given address a. If x2 = 1 and

x3 = 0, we infer that x1 = 0.

In general, assume there are m constraints C1, C2..., and Cm on n boolean variables

x1, x2, ..., and xn. Functions fC1 fC2 , ..., and fCn describe the valuation of the constraints.

For instance, let C1 be Equation (5.2), fC1 (x1 = 1, x2 = 1, x3 = 0) = 0. Since all the

constraints need to be satisfied, the function representing the conjunction of the constraints

is hence the product of the individual constraint functions, as shown in Equation (5.4).

f(x1, x2, ..., xn) = fC1 × fC2 × ... × fCm (5.4)

In DIMSUM, we often cannot assign a boolean value to a variable or a constraint.

Instead, we can make an observation about the likelihood of a variable being true. For

instance, from the value stored at offset a + 384, we can only say that it is likely a pointer.

Moreover, if the structural pattern of Tutmplist is not unique, i.e., other data structures may

also have such a pattern, we can similarly assign a probability to constraint (5.3) according

to the number of data structures sharing the same pattern.

Assume we use a set of boolean variables x1, x2, ..., xn to represent type predicates.

Probabilities are associated with variables and constraints. In our previous example, assume

that we are 100% sure that x1 → x2 ∧ x3 (C1); 80% sure that x1 ← x2 ∧ x3 (C3) because

other data structures manifest a similar structural pattern; 90% sure that x2 is a pointer

(C2); 90% sure that x3 is a pointer (C4). We have probabilistic functions:



 1 if (x1 → x2 ∧ x3) = 1
fC1 (x1, x2, x3) = (5.5)

 0 otherwise



 0.9 if x2 = 1
fC2 (x2) = (5.6)

 0.1 otherwise

76



 0.8 if (x1 ← x2 ∧ x3) = 1

fC3 (x1, x2, x3) = (5.7)

 0.2 otherwise



 0.9 if x3 = 1
fC4 (x3) = (5.8)

 0.1 otherwise

With these probabilistic constraints, the joint probability function is defined as fol­

lows [66, 67].
fC1 × fC2 × ... × fCm p(x1, x2, ..., xn) =

Z
(5.9)

Z =

(fC1 × fC2 × ... × fCm) (5.10)
x1,...,xn

In particular, Z is the normalization factor [66, 67].

It is often more desirable to further compute the marginal probability pi(xi) as follows.

pi(xi) = p(x1, x2, ..., xn) (5.11)
x1 x2 xi−1 xi+1 xn

In other words, the marginal probability is the sum over all variables other than xi.

Variable xi often predicates on a given address having the type we are interested in. Hence,

in order to discover the instances of the specific type, DIMSUM orders memory addresses

by their marginal probabilities.

Table 5.2: Boolean constraints with probabilities

x1

0

x2

0

x3

0

fC1 (x1,

x2, x3)

1

fC2 (x2)

0.1

fC3 (x1,

x2, x3)

0.8

fC4 (x3)

0.1
0 0 1 1 0.1 0.8 0.9
0 1 0 1 0.9 0.8 0.1
0 1 1 1 0.9 0.2 0.9
1 0 0 0 0.1 0.8 0.1
1 0 1 0 0.1 0.8 0.9
1 1 0 0 0.9 0.8 0.1
1 1 1 1 0.9 0.8 0.9

77

Consider the previous example. Table 5.2 presents the values of the four probability

constraint functions for all possible variable valuations.

L

(1, x2, x3)× fC2x2,x3
fC1 (x2)

p(x1 = 1) = L
(x1, x2, x3)× fC2 (x2)x1,x2,x3

fC1

0× 0.1 + 0× 0.1 + 0× 0.9 + 1× 0.9 (5.12) =
1× 0.1 + 1× 0.1 + ... + 1 × 0.9

0.9
= = 0.31

2.9

1× 0.9 + 1× 0.9 + 0× 0.9 + 1× 0.9
p(x2 = 1) =

2.9 (5.13)
= 0.93

Assume only constraints C1 and C2 are considered, Equation (5.12) describes the com­

putation of the marginal probability of p(x1 = 1), i.e., the probability of the given ad­

dress being an instance of struct utmplist. Equation (5.13) describes the marginal

probability of p(x2 = 1). Note that it is different from the initial probability 0.9 in

fC2 . Intuitively, the value assigned in fC2 is essentially an observation, which does not

necessarily reflect the intrinsic probability. In other words, the initial probability in fC2 is

what we believe and it reflects only a local view of the constraint, whereas the computed

probability represents a global view with all initial probabilities over the entire system

being considered.

Similarly, when all four constraints are considered, we can compute p(x1 = 1) = 0.71.

Intuitively, compared to considering only C1 and C2, now we also have high confidence on

x3 (C4) and we have confidence that as long as we observe x2 and x3 being true, x1 is very

likely true (C3). Such information raises the intrinsic probability of x1 being true.

Note that depending on the number of variables and the number of constraints, the com­

putation entitled by Equation (5.11) could be very expensive because it has to enumerate

the combinations of variable valuations. A Factor graph [63, 66, 67] is a representation for

a probability function that allow for highly efficient computation. In particular, a factor

graph is a bipartite graph with two kinds of nodes. A factor node represents a factor in the

function, e.g., fCi in Equation (5.9). A variable node represents a variable in the function,

78

x1: the location at a contains

 a struct utmplist

x2: a+384 contains a pointer

x3: a+388 contains a pointer

C1: x1 ĺ x2 x3 C2:

Fig. 5.4.: Factor graph example

e.g., xi in Equation (5.9). Edges are introduced from a factor to the variables of the factor

function. Fig. 5.4 presents the factor graph for the probability function for the previous ex­

ample. The sum-product algorithm [66,67] can leverage factor graphs to compute marginal

probabilities in a highly efficient way. The algorithm is iterative. In particular, probabilities

are propagated between adjacent nodes through message passing. The probability of a

node is updated by integrating the messages it receives. The algorithm terminates when

the probabilities become stable. At a high level, one can consider initial probabilities as

energy applied to a mesh such that the mesh transforms to strike a balance and minimize

free energy. Probabilistic inference has a wide range of successful applications in artificial

intelligence, information theory and debugging [62, 63]. In this paper, DIMSUM is built

on a probabilistic inference framework called Infer.NET [65].

In order to conduct probabilistic reasoning using FG, we first assign a boolean variable

to each type predicate, indicating if a specific address holds an instance of a given type.

We create a variable for each type of interest for each memory location. In other words, if

there are n data structures of interest and m memory locations, we would generate n ∗ m

boolean variables. We will introduce a pre-processing phase that can reduce variables

needed by reducing m. Then constraints are introduced. Constraints are essentially boolean

formula on the boolean variables. Initial probabilities are assigned to these constraints to

express uncertainty. Constraints and initial probability assignments are programmed as

scripts in Infer.NET. FGs are constructed by these scripts. The Infer.NET engine conducts

inference on the FGs. After that, data structure instances can be identified by querying the

fC4

x2 x1 x3

fC1 fC3fC2

x2 C3: x1 ĸ x2 x3 C4: x3

http:Infer.NET
http:Infer.NET
http:Infer.NET

79

probabilities of the corresponding boolean variables. We report those within the highest

probability cluster to the user.

5.3 Generating Constraints

We now explain how we model the memory forensics problem with constraints. The

constraints fall into the following categories: primitive constraints that associate initial

probabilities to individual boolean variables; structural constraints that describe field struc­

tures; pointer constraints that describe dependencies between a data structure and those be­

ing pointed to by its pointer fields; same-page constraints dictating multiple data structures

reside in the same physical page; semantic constraints that are derived from the semantics

of the given data structures. All these constraints are associated with initial probabilities.

They are conjoined and updated by the inference engine.

5.3.1 Primitive Constraints

Primitive constraints allow us to assign initial probabilities to boolean variables. Sam­

ple primitive constraints are fC2 and fC4 in Eq. (5.6) and (5.8) in Section 5.2. A primitive

constraint is translated to a factor node in FG. It has only one outgoing edge to the boolean

variable (Fig. 5.4). We consider the following primitive types: int, float, double,

char, string, pointer and time.

Pointer: To decide the initial probability of a boolean variable denoting that a memory

location is a pointer, we check whether the value of 4 contiguous bytes starting at a given

location is within the virtual address space of a process (e.g., in the .data, .bss, .heap,

and .stack sections). If true, we assign a HIGH initial probability (0.9) to the primitive

pointer constraint, representing we believe the given location is likely a pointer. The other

primitive constraints for the same location would be assigned LOW (0.1) initial probability.

Note that setting HIGH/LOW initial probabilities is a standard practice in probabilistic

inference. They do not reflect the intrinsic probabilities of boolean variables but rather

what we believe. The absolute values of initial probabilities are hence not meaningful.

80

NULL pointers have the special value 0 that could be confused with a char or an integer,

we will discuss how to handle them later.

String: To decide the initial probability of a string (a char array), we inspect the bytes

starting with the given location. Firstly, a string ends with a NULL byte. Secondly, a string

often contains printable ASCII ([32, 126]) or some special characters such as carriage return

(CR), new-line (LF), and tab (Tab). If the two conditions are satisfied, the string constraint

is set to HIGH, and other primitive constraints are set to LOW. It is possible that the bytes

starting at x look like both a string and an integer. A unique advantage of probabilistic

inference is that we can assign HIGH probabilities to multiple primitive constraints on

x. Intuitively, it means we believe it could be multiple types. Assigning multiple HIGH

probabilities regarding the same memory location allows the location playing different roles

during inferencing and we do not need to make the decision upfront on if the location

is a string or an integer. The inference process will eventually make the decision, by

considering the probabilities from other parts of the FG through their dependencies.

Char: If a field with a char type is packed with other fields, that is, it is not padded to the

word boundary, it becomes hard to disambiguate a char value from a byte that is just part

of an integer or a floating point value. We have to set the probability to HIGH for all these

primitive constraints. Fortunately, a char field is usually padded. Hence, we can limit our

test to offsets aligned with the word boundary. More particularly, we only assign a HIGH

probability to locations whose four bytes values fall into {0, 255}.

Int: Compared to the above primitive types, integers have fewer attributes to allow disam­

biguation. Theoretically, any four bytes could be a legitimate 32-bits integer value. In some

cases, we are able to leverage semantic constraints to avoid assigning HIGH probabilities.

For instance, it is often possible to find out from the data structure specification that

an integer timeout field must have the value within 0-210 . We could use such semantic

information to assign LOW probabilities to values outside the range.

Float/double: According to the standard of floating-point format representation defined in

IEEE 754 [5], we know the numerical value n for a float variable is: n = (1 − 2s) ×

81

(1 + m × 2−23)× 2e−127, where s is a sign bit (zero or one), m is the significand (i.e., the

fraction part), and e is the exponent. Fig. 5.5 shows this representation.

Sign (1bit)

31 030 23 22

Exponent(8 bits) Significand (fraction, 23bits)

...

s e m

Fig. 5.5.: Float point representation

Now if we examine the value of a floating point variable, suppose s = 0 and e = 0,

then the numerical value is very small, and it is within [0, 2−126]. Thus, we could infer

that most floating point values have their leftmost 9 bits set with at least one bit. If all the

leftmost 9 bits have been set with 1 (i.e., s = 1, e = 255), then the numerical value for such

floating point variable is within [−2128 ,−2105], which is a very large negative value. If the

sign bit is 0 (i.e., s = 0, e = 255), then the numerical value is within [2105 , 2128], which is a

very large positive value. In practice, we believe floating point values rarely fall into such

ranges.

Therefore, we check the hexadecimal value at page offset x, that is the ∗x. If ∗x <

0x007fffff, 0x7f800000 < ∗x < 0x7f8fffff, or 0xff800000 < ∗x <

0xffffffff, we set the initial probability of F(x) to LOW, otherwise HIGH. The double

type is handled similarly. The details are elided.

0x002cba

0x002cec

0x002d1e

0x002d50

0x002d82

0x002db4

0x002de6

0x002e18

H
ig

h
24

 b
its

 o
f 6

4b
it

T
im

e
da

ta
 s

tr
uc

tu
re

0x002dff

0x002d00

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Years

Fig. 5.6.: Common high bits in a time data structure

Time: Time data structures are often part of many interesting data structures. A time

data structure maintains the cumulative time units (e.g., seconds or microseconds) since

82

a specific time in the past. Its bit representation has a general property that high bits are

less frequently updated than lower bits. It allows us to create constraints to infer time data

structures by using common bit fields for all time values during a given period.

For example, Fig. 5.6 shows the values of the highest 24 bits of a time data structure

of 64 bits over a period of time. During the period between mid-2002 and mid-2011, the

highest 24 bits have the common value, 0x002d. These constraints can be used to infer time

object instances. Similarly, in 32-bit Unix systems, the time data structure has 32 bits. The

four highest bits are updated around every 8.5 years.

Lastly, zeros present an interesting case for us because it could have multiple meanings:

an integer with the value 0; an empty string; a null pointer; and so on. We assign HIGH

probabilities to all these types except for cases in which the fields in vicinity are also having

zero values. The reason is that consecutive zeros often imply unused memory regions.

In particular, if the number of consecutive zeros exceed the size of the data structure we

are interested in, the probability is set to LOW. In general, the probability is inversely

proportional to the length of consecutive zeros.

5.3.2 Structural Constraints

DIMSUM takes the specification of a set of data structures as input. The specification

includes the field offsets and field types of the data structures. For instance, if data structure

T of interest has a pointer field of Tx type, Tx’s definition is transitively included as well.

Then we translate each type into a boolean structural constraint describing the dependencies

between the data structure and its fields. Eventually, the boolean constraints are modeled

into the factor graph automatically.

A structural constraint is intended to denote the dependence that as long as a given

location x is an instance of T , then x’s offsets must be of the fields types described by T ’s

specification. An example of such constraint was introduced in Eq. (5.1) in the beginning

of Section 5.2. In particular, for each memory location, we introduce a boolean variable

to predicate if it is an instance of T . We also introduce a factor node to represent the

83

constraint. Edges are introduced between the factor node and the newly introduced variable

and the variables describing the corresponding primitive field types. These variables were

introduced in the previous step when primitive constraints were generated. A sample factor

graph after such process is the subgraphs rooted at fC1 in Fig. 5.4. Since the constraint

is always certain, meaning as long as x is of T type, its offsets must follow the structure

dictated by T ’s definition. The probability of structural constraints are always 1.0, meaning

that they must hold (see Eq. (5.5) in Section 5.2).

5.3.3 Pointer Constraints

If a field a + f is a pointer T∗, in the structural constraint, besides forcing a + f to be

a pointer, we should also dictate ∗(a + f) be of T type. In particular, we will add boolean

variables T (∗(a + f)) to the structural constraint. Note that T could belong to primitive

types, user defined types, or function pointers. Variables utmplist(∗(a + 384)) and

utmplist(∗(a + 388)) in Equation (5.1) are examples. Ideally, these variables have

been introduced at the time when we typed the page of the pointer target (e.g., the page

that ∗(a + 384) points to), we only need to introduce edges from the factor node to such

variables. However, since we do not have page mapping information, it is impossible to

identify the physical location of the pointer target and the corresponding boolean variable.

We observe that the lower 12 bits of a virtual address indicates the offset within a

physical page. Hence, while we cannot locate the concrete physical page corresponding to

the given address, we can look through all physical pages and determine if there are some

pages that have the intended type at the same specified offset.

From now on, we denote a memory location with symbol ap, with a being the page

offset and p the physical page ID. Hence, a boolean variable predicating a location ap

has type T is denoted as T (ap). For pointer constraints, we introduce boolean variables

predicating merely on offsets. In particular, T (∗((a + f)p)&0x0fff) represents that there is

at least one physical page that has a type T instance at the page offset (the least 12 bits) of

84

the pointer target at location (a + f)p. We call such boolean variables the offset variables

and the previous variables considering both offsets and page IDs the location variables.

We further introduce pointer constraints that are an implication from an offset variable

to the disjunction of all the location variables with the same offset, to express the “there

is at least one” correlation. The probability of the constraint is not 1.0 as it is likely there

is not such a physical page if the page has been re-allocated and overwritten. Ideally, the

probability is inversely proportional to the duration between the process termination and the

analysis. In this paper, we use a fixed value δ to represent that we believe in δ probability

such a remote page is present. With pointer constraints, we are able to construct an FG

that connects variables in different physical pages and perform global inference such that

probabilities derived from various places can be fused together.

Example. Let’s revisit the example in Section 5.2.2. Regular variables x1, x2, and x3 now

denote utmplist(ap) for a given page offset a, Pnext((a + 384)p), and Pprev((a + 388)p),

respectively. Superscript p can be considered as the id of the physical page. Offset variables

y1 and y2 represent utmplist(∗((a+384)p)&0x0fff) and utmplist(∗((a+388)p)&0x0fff).

Constraint C1 (i.e. Equation (5.2)) is extended to the following.

x1 → x2 ∧ x3 ∧ y1 ∧ y2 (5.14)

The probability of fC1 remains 1.0. Assume we have three physical pages p, q, and

r in DIMSUM’s memory page input. Let b = ∗((a + 384)p)&0x0fff and c = ∗((a +

388)p)&0x0fff , the page offsets of the pointers stored at (a + 384)p and (a + 388)p.

Let x4, x5 and x6 denote utmplist(bp), utmplist(bq), and utmplist(br), respectively;

and x7, x8 and x9 denote utmplist(cp), utmplist(cq), and utmplist(cr). These variables

are created when typing pages p, q and r. The pointer constraints are thus represented as

follows.

(C5) y1 → x4 ∨ x5 ∨ x6 (5.15)

(C6) y2 → x7 ∨ x8 ∨ x9 (5.16)

85

The factor for C5 is defined as follows.



 δ if (y1 → x4 ∨ x5 ∨ x6) = 1
fC5 (y1, x4, x5, x6) = (5.17)

 1− δ otherwise

Recall δ reflects our overall belief of the completeness of the input memory pages. Fac­

tor fC6 can be similarly defined and hence omitted. Fig. 5.7 presents the FG enhanced with

the pointer constraint C5. Observe that while many constraints (e.g., primitive constraints)

are local to a page, the pointer constraint C5 and the enhanced structural constraint C1

correlate information from multiple pages. For instance, the probability of x5 in page q can

be propagated through the path x5 ⇒ fC5 ⇒ y1 ⇒ fC1 ⇒ x1 to the goal variable x1. The

probability of x1, which is the fusion of all the related probabilities, indicates if we have an

instance utmplist at the given address a.

Page p

fC4

x2 x1 x3

fC1 fC2 fC5

x4 y1 x5

...…

x6

...

Page q Page rgoal

Fig. 5.7.: The factor graph enhanced with a pointer constraint. Constraints C3 and C6 are
elided for readability. The modified part is highlighted. Constraints and variables local to

a page are boxed.

5.3.4 Same-Page Constraints

We observe that the values of multiple pointer fields may imply that the points-to targets

are within the same page. For instance in struct utmplist in Fig. 5.3, if the higher

20 bits of the addresses stored in fields a + 384 and a + 388 are identical, we know their

points-to targets must be within the same page. Hence, if we observe field a + 384 in page

q and a + 388 in page r hold instances of utmplist, they should not be considered as

support for a in p holds an instance of utmplist. We leverage same-page constraints to

reduce false positives.

86

If the values of multiple pointer fields are within the same page, these pointers should

not have individual pointer constraints. Instead, we introduce a joint pointer constraint that

dictates the objects being pointed to by the pointers must reside in the given offsets of the

same page. In our running example, the structural constraint in Equation (5.14) is changed

to the following.

x1 → x2 ∧ x3 ∧ y1·2 (5.18)

Variable y1·2 represents a joint offset variable. It represents that there is at least one

physical page that has utmplist instances at offsets specified by b = ∗((a+384)p)&0x0fff

and c = ∗((a + 388)p)&0x0fff . The joint constraint is hence the following.

y1·2 → (x4 ∧ x7) ∨ (x5 ∧ x8) ∨ (x6 ∧ x9) (5.19)

5.3.5 Semantic Constraints

Besides the aforementioned constraints, there could exist semantic constraints imposed

by the data structure definitions. For example, a field pid tends to have value ranges from

0 to 40000; an unused fields tends to have zero values. Meanwhile, it is also possible that

a particular data structure field has value invariant. As such, semantic constraints can be

used to prune unmatched fields.

5.3.6 Staged Constraints

The previous discussion implies that we need to create many boolean variables for each

memory location. In particular, for each offset in every page, we introduce variables to

predicate on its various primitive types and types of interest. Constraints are introduced

among these variables, describing any possible dependencies. The order of introducing

the constraints is irrelevant. The entailed FG is often very large and takes a lot of time to

resolve. We develop a simple preprocessing phase to reduce the number of variables and

constraints. In particular, we first scan each input page and construct primitive constraints,

87

describing if each offset is an integer, a char, a pointer, etc. In the second step, we construct

structural and other constraints. We avoid introducing a variable predicating on if a base

address a is of type T if any of the corresponding field primitive constraints has a LOW

probability. We leverage the observation that such inference is simple and does not need

FG to proceed.

5.4 Implementation

1 using System;

2 using MicrosoftResearch.Infer.Models;

3 using MicrosoftResearch.Infer.Distributions;

4 using MicrosoftResearch.Infer;

5 public class Simple_DIMSUM_Example

6 {

7 static void Main()

8 {

9 //1. Declare Boolean Variables

10 Variable<bool> x1 = Variable.Bernoulli(0.5).Named("x1");

11 Variable<bool> x2 = Variable.Bernoulli(0.5).Named("x2");

12 Variable<bool> x3 = Variable.Bernoulli(0.5).Named("x3");

13

14 //2. Define Probabilitics Model

15 Variable.ConstrainEqualRandom<bool, Bernoulli>

16 (!x1 | (x2 & x3), new Bernoulli(1));

17 Variable.ConstrainEqualRandom<bool, Bernoulli>

18 (x2, new Bernoulli(0.9));

19 Variable.ConstrainEqualRandom<bool, Bernoulli>

20 (!(x2 & x3) | x1, new Bernoulli(0.8));

21 Variable.ConstrainEqualRandom<bool, Bernoulli>

22 (x3, new Bernoulli(0.9));

23

24 //3. Create an Inference Engine

25 InferenceEngine ie = new InferenceEngine();

26 ie.ShowFactorGraph = true;

27

28 //4. Compute Marginal Probabilities

29 Console.WriteLine("x1: " + ie.Infer(x1));

30 }

31 }

Fig. 5.8.: Sample code on using Infer.NET to model C1 - C4 in our working example and
compute p(x1).

The key part of DIMSUM is the probabilistic inference component. We use Infer.NET,

a framework for belief propagation with factor graphs as its internal model [65]. To use

such framework, we did the following: (1) declare the boolean variables associated with

each candidate memory cell, (2) define the corresponding constraints using their modeling

API in C# code, (3) create an inference engine, and (4) execute the inference query over

the boolean variables of interest.

http:Infer.NET
http:Infer.NET

88

Fig. 5.9.: Factor graph of the example code from Infer.NET. Note each variable is denoted
as a circle and each factor or constraint as a square. If a variable participates in the factor

or the constraint, then an edge is shown between the corresponding circle and square.

We use our working example (Equation [2-8])) to demonstrate the process. As il­

lustrated in Fig. 5.8, we declared three boolean variables x1, x2, and x3, initially with

Bernoulli value of 0.5 (meaning they have a 50% possibility of being the instances as we

have no observations yet). Lines 15-16 model Equation (5.5). Similarly, Equation (5.6),

Equation (5.7) and Equation (5.8) are modeled from line 17 to line 22. After that, we

created an inference engine (line 25), and visualized the factor graph (line 26) (for debug

and understanding purpose). Finally, we computed the marginal probability of x1 (line

29), and eventually we got p(x1) = 0.71, which corresponds to the probability of the given

http:Infer.NET

89

address being an instance of the type of interest. Also, in this factor graph, there are a total

of 9 boolean variables (represented as circle), and 13 factors or constraints (represented as

square). Some variables and factors are generated internally.

The implementation of our inference component is mainly in C#. When using our

system, users need to provide the subject data structure specification and memory pages.

DIMSUM then processes the pages, generates constraints, and compiles the constraints

to C# code, which will further get compiled and linked with other supporting libraries

from Infer.NET. Running the compiled binary delivers the final data structure instance(s)

uncovered.

5.5 Evaluation

In our DIMSUM evaluation, we first present our experiment setup in Section 5.5.1, then

the experimental results of discovering data structure instances without memory mapping

information in Linux platform in Section 5.5.2. We also evaluate the sensitivity of the

setting of the HIGH/LOW probabilities in Section 5.5.3. Finally we evaluate the cost of

DIMSUM in Section 5.5.4.

5.5.1 Experiment Setup

Our evaluation scenario involve dead memory pages. Such dead pages come from

terminated processes, and the virtual memory mapping information is no long available.

Essentially, DIMSUM takes a set of (dead) physical pages, and identifies data structure

instances in them.

To enable the evaluation, we have to first collect the ground truth so that we can compare

it with the results reported by DIMSUM to measure false positives (FP) and false negatives

(FN). We extract the ground truth in two steps: The first step is to extract data structure

instances from the application process’ virtual space via program instrumentation. In

particular, given a data structure of interest, we instrument the program to log allocations

and de-allocations of the data structure. Then, upon process termination, we visit the

http:Infer.NET

90

log file to identify the data structure instances that have been deallocated but not yet

destroyed. These are essentially the ground truth. The second step is to find the physical

residence pages of these instances using page mapping information. The second step is

needed as DIMSUM operates directly on physical pages. We implement the ground truth

extraction component in QEMU [80] and an Android emulator (based on QEMU as well).

Specifically, we trap the system call sys exit group to perform the extraction. Note

that, on the Android platform, executables are in the form of byte code and their execution

is object oriented. We have to tap into the emulator to translate object references to memory

addresses.

The input to DIMSUM is all the dead memory in the system 1. To acquire all dead pages

across the system, we enhance QEMU to traverse kernel data structures such as memory

zones and page descriptors.

To emulate the scenario where some dead pages – especially those containing data

structures of interest or their supporting data (e.g. those data structures that are pointed to

by pointers in the data structure of interest) – are reused for new processes, we vary the

number of dead pages provided to DIMSUM. In our experiments, we study three settings:

33%, 67%, and 100%. For example, 33% means that we randomly select 33% of the dead

pages as input to DIMSUM.

Comparison with value-invariant and SigGraph We also compare DIMSUM with other

techniques that can be adopted for un-mappable memory forensics. The first technique

to compare with is a value invariant approach similar to the approaches in [32, 41, 42],

leveraging field value patterns to identify data structure instances. The patterns we use are

mainly the value patterns for pointers and those derived from domain knowledge.

The second technique to compare with is a variant of SigGraph [31]. SigGraph is a

brute force memory scanning technique. It leverages the points-to relations between data

structures and uses a points-to graph rooted at a data structure as its signature for scanning.

Note that the original SigGraph relies on page mappings to traverse pointers and thus

1Live memory forensics is outside the scope of this chapter. It can be achieved by techniques guided by page
mapping such as SigGraph [31] (presented in Chapter 4 and KOP [30]).

91

cannot be applied to our “un-mappable memory” scenario. We implement a variant of

SigGraph, called SigGraph+, which tries to aggressively traverse pointers even without

page mappings. In particular, during scanning, SigGraph+ tries to traverse a pointer without

mappings, it identifies the page local offset (the lower 12 bits) of the pointer value, say x,

and then tries to look for a match at offset x among all dead pages. For instance, assume

the graph signature of a type T is that its field f points to a type T1. Assume the page offset

of the pointer value at the f field is x. As along as it can find at least one page whose offset

x is an instance of T1, SigGraph+ considers that an instance of T is identified.

5.5.2 Effectiveness

In the following, we present the experimental results of applying DIMSUM to discover

(1) user login records, (2) browser cookies, (3) email addresses, and (4) messenger contacts

from applications on Linux. A summary of these experiments is presented in Table 5.3. The

specific data structures of interest, the applications, and the size of the target data structures

are reported in the 1st , 2nd, and 3rd column, respectively. The 4th column reports the total

number of input pages provided to DIMSUM, and the 5th column shows the total number

of true instances. We compare DIMSUM with value-invariant and SigGraph+ . Columns

“#R”, “FP%” and “FN%” report the total number of instances identified by the correspond­

ing approaches, the False Positive (FP), and False Negative (FN) rate, respectively.

From this table, we make the following observations: (1) Value-invariant has high FPs

and very low FNs, (2) SigGraph+ has high FPs as well, and low FNs, (3) DIMSUM has

significant less FPs and low FNs. On average, the FPs for value-invariant, SigGraph+, and

DIMSUM are 65.5%, 38.5%, and 19.0%, respectively; the FNs are 0.4%, 8.3%, and 5.4%.

Note the real FP rate of DIMSUM may be lower than the reported number because the

two 100% false positive cases (those with superscripts in Table 5.3) can be easily pruned

because the absolute value of the probability is very low (below 0.5). More details will be

discussed in the case study. Precluding these two cases, DIMSUM has only 8.0% FP.

92

Table 5.3: Summary on discovering data instances of interest for user applications in Linux. Note the two ∗ false positives can
easily be pruned by looking at the absolute value of the probability.

Data of
Interest

Login record
utmp

Benchmark
Program

last
2.85

Size #Input
Pages

27266
392 18186

8898

#True
Inst.

8
6
0

Value-Invariant

#R FP% FN%

48 83.3 0.0
46 87.0 0.0
40 100.0 0.0

#R

6
2
0

SigGraph+

FP% FN%

0.0 25.0
0.0 66.7
0.0 0.0

DIMSUM
Factor Graph

#Var #FC #R FP%

507 709 8 0.0
435 609 6 0.0
405 567 1 100.0∗

FN%

0.0
0.0
0.0

Browser
Cookies

w3m
0.5.1

31303
80 20848

10423

23
23
0

93 76.3 0.0
93 76.3 0.0
70 100.0 0.0

35
35
9

34.3 0.0
34.3 0.0

100.0 0.0

1874 2613 22 0.0
1874 2613 22 0.0
1260 1782 9 100.0∗

4.3
4.3
0.0

chromium
8.0.552.0

45308
44 30205

15103

25
19
9

89 71.9 0.0
61 68.9 0.0
49 81.6 0.0

82
56
43

69.5 0.0
66.1 0.0
79.1 0.0

1068 1157 45 44.4
976 1037 38 50.0
784 833 16 43.8

0.0
0.0
0.0

Address
Book

pine
4.64

33186
144 22123

11063

124
96
63

1216 90.3 4.8
1174 92.2 2.1
1142 94.5 0.0

229
174
88

48.5 4.8
50.1 10.4
56.8 39.7

13056 17607 101 0.0
11468 15594 79 0.0
8992 11683 42 0.0

18.5
17.7
33.3

Sylpheed
3.0.3

46504
48 31002

15502

309
204
92

412 25.0 0.0
244 16.4 0.0
128 28.1 0.0

412
244
128

25.0 0.0
16.4 0.0
28.1 0.0

12040 16588 323 5.0
7223 9644 194 0.0
3537 4710 82 0.0

0.6
4.9

10.9

Contact
List

pidgin
2.4.1

58743
60 39163

19580

300
198
98

491 38.9 0.0
259 23.6 0.0
130 24.6 0.0

485
254
126

38.8 1.0
22.8 1.0
23.0 1.0

8874 12543 297 0.0
5241 7521 196 0.0
2595 3724 97 0.0

1.0
1.0
1.0

93

A Case Study

We further zoom in on one case to concretize our discussion. In the study of utility

program last, we acquired 8 true instances and 27266 input pages, including the 2 pages

that contain the 8 true instances.

The detailed result with the three different settings are presented in Fig.s 5.10(a), 5.10(b),

and 5.10(c), respectively. Note in these figures, the X-axis represents the page offset within

a physical page. For DIMSUM, Y -axis represents the probability of a match. For value-

invariant and SigGraph+, since there is no probability associated, we just add “V” and “S”

to the Y -axis to show their results. Also, in these figures, a ground truth is marked with ×.

A data point marked with both × and the symbol of the technique means the technique

identifies a true positive (TP). For example, the data point marked with both × and Δ

as indicated in the top cluster in Fig. 5.10(a) is a TP for DIMSUM. A point with only

a technique symbol indicates a false positive (FP). For example, the nodes in the right

bottom of Fig. 5.10(a) are FPs for the value-invariant approach. Note that DIMSUM only

reports nodes in the top cluster. Hence, those DIMSUM data points that are not in the top

cluster are not FPs, even though they are not marked with ×. A point with only × indicates

a FN. For DIMSUM, any single × symbols that are not in the top cluster are FNs.

When 100% input pages are provided to DIMSUM (as shown in Fig. 5.10(a)), DIM­

SUM successfully identifies all ground truth without any FPs or FNs – in the top cluster

of points whose probability is greater than 0.95. SigGraph+ identifies 6 instances with

25% FN, and the value-invariant approach identifies 48 instances with 83.3% FP. Next, we

randomly select 67% of the input pages. One page containing 2 true instances is precluded

as the result of the random selection. The result is shown in Fig. 5.10(b). DIMSUM

identifies all remaining 6 true instances in the top cluster. In contrast, SigGraph+ in this

case identifies only 2 true instances, because for the other 4 instances, their graph signatures

are not complete due to the missing pages. In contrast, DIMSUM is able to survive as

it aggregates sufficiently high confidences from the fields in the remaining 67% pages.

Finally, when 33% pages are selected, all the true instances are precluded. DIMSUM

94

identifies one instance in its top cluster as shown in Fig. 5.10(c), which is a false positive.

But we want to point out DIMSUM in the mean time determines that the instance has only

a probability lower than 0.50. The user can easily discard such results.

False Positive Comparison

Below we discuss the FP and FN comparison in more details.

Value-invariant has high FPs because it only looks at the value patterns of the fields in

the target data structure. It does not try to collect additional confidence from the child data

structures (those pointed-to by the pointer fields in the target data structure). The end result

is that it admits lots of bogus data structure instances.

SigGraph+ also has high FPs. Recall that as an extension of SigGraph, SigGraph+ also

uses the points-to graph signature to search for instances of a data structure (Section 5.5.1).

Given a pointer field “T* f;” of the data structure, it tries to confirm if *(f) holds an

instance of T. However, since memory mapping is not available, f cannot be resolved, it

aggressively looks for any instance of T among all pages at the page offset f&0x0fff.

The consequence is that it may find such an instance that was indeed not pointed-to by

f. The situation is particularly problematic when T is a popular type (e.g., string) so that

there are instances of this type at almost any page offset. Another main reason is that it

cannot propagate probabilities among different data structures like DIMSUM to reduce the

mis-perception.

DIMSUM has low FPs. As explained in Section 5.5.2, the only case (utmp and the

33% setting) with a 100% FP rate indeed has a very low probability, and is hence an

easy-to-prune FP. The result strongly supports the effectiveness of DIMSUM. Probabilistic

inference indeed allows global reasoning over all the connected data structures, collecting

and aggregating confidence from all over the places, eventually distinguishing the true

positives. The DIMSUM FPs for chromium are mainly caused by the simplicity of the

cookie data structure. In other words, DIMSUM does not have a lot of sources to collect

enough confidence to distinguish true positives from others. Interestingly, for the 5% FPs

95

 2e+07

 4e+07

 6e+07

True Data Value-Invariant
DIMSUM SigGraph+

Top ClusterTop Cluster

TP of DTP of D

FN of SFN of S TP of STP of S

TP of VTP of V FP of VFP of V

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

19000

20000

21000

22000

23000

24000

25000

2e+07

4e+07

6e+07

8e+07

1e+08

1.0

 0.8

0.6

 0.4

 0.2

 0

S

V

Offset in Memory Dump File

(a) last (100%)
True Data Value-Invariant
DIMSUM SigGraph+

1.0

 0.8

0.6

 0.4

 0.2

 0

S

V

142500

143000

143500

144500

145500

146500

144000

145000

146000

147000

Offset in Memory Dump File

(b) last (67%)
True Data Value-Invariant
DIMSUM SigGraph+

1.0

 0.8

0.6

 0.4

 0.2

 0

S

V

142500

143000

143500

144500

145500

146500

 2e+07

144000

145000

146000

147000

4e+07

Offset in Memory Dump File

(c) last (33%)

Fig. 5.10.: Effectiveness evaluation of DIMSUM for discovering user login record data
structure utmp.

96

Fig. 5.11.: An abstraction of the utmp case. The node in the middle is missing.

in Sylpheed, they are mainly caused by the fact the some garbage pages happen to have

some instances that satisfy our constraints, and when the garbage pages are not selected

(33% and 67% cases), these FPs are gone.

False Negative Comparison

Value-invariant has the lowest FNs. This is understandable as it is the least restricting

method. It admits everything that appears to be an instance of the target data structure

based on their value patterns.

Both SigGraph+ and DIMSUM have high FNs for the pine case. The main reason

is the lack of support due to the missing pages, especially for the settings of 33% and

67%. In other words, the child data structures are not present in the pages provided

to these techniques. Another reason for FNs is cross page data structures. There are

some data structure instances spanning two pages. None of these techniques including

DIMSUM currently handle cross-page data structures because consecutive virtual pages

do not correspond to consecutive physical pages. We will leave it to our future work. It

contributes to the FNs for the 100% setting.

In some cases, DIMSUM is even superior to the less restricting SigGraph+ in terms of

FNs, for example, the utmp structure in last-2.85. The main reason is that SigGraph+

is doing binary reasoning, and hence a piece of memory is either an instance of interest

or not. In contrast, DIMSUM does not draw binary conclusions but rather collects little

pieces to gradually form the right picture. Fig. 5.11 abstracts the case. The whole linked

list represents the utmp linked list. And it is freed. The node in the middle is missing

http:last-2.85

97

True Data Value-Invariant True Data Value-Invariant
DIMSUM DIMSUMSigGraph+ SigGraph+

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

142500

143500

144500

145500

146500

 2e+07

 4e+07

 6e+07

143000

144000

145000

146000

147000

1.0

 0.8

0.6

 0.4

 0.2

 0

S

V

1.0

 0.8

0.6

 0.4

 0.2

 0

S

V

142500

143500

144500

145500

146500

 2e+07

 4e+07

 6e+07

143000

144000

145000

146000

147000

Offset in Memory Dump File Offset in Memory Dump File

(a) HIGH=0.95, LOW=0.05 (b) HIGH=0.85, LOW=0.15

True Data Value-Invariant True Data Value-Invariant
DIMSUM DIMSUMSigGraph+ SigGraph+

P
ro

ba
bi

lit
y

1.0

 0.8

0.6

 0.4

 0.2P
ro

ba
bi

lit
y

0

S

V

142500

143500

144500

145500

146500

 2e+07

 4e+07

 6e+07

142500

143500

144500

145500

146500

 2e+07

 4e+07

 6e+07

143000

144000

145000

146000

147000

143000

144000

145000

146000

147000

Offset in Memory Dump File Offset in Memory Dump File

(c) HIGH=0.80, LOW=0.20 (d) HIGH=0.75, LOW=0.25

Fig. 5.12.: The threshold impact on the experimental result

(the page was reused). The graph signature used in SigGraph+ is a node with its preceding

node and succeeding node, meaning an instance of utmp is recognized if the prev and

next pointers also point to instances of utmp. In this case, SigGraph+ cannot recognize

the head or tail due to the null pointers. It cannot recognize the 3rd node as it is missing.

As a result, it can not recognize the 2nd or 4th nodes either. In contrast, DIMSUM never

makes binary judgements on individual nodes. Instead, it models them into a network of

constraints. In this case, two factor graphs, one containing the 1st and 2nd nodes and the

other the 3rd and 4th are formed and resolved. Aggregating probabilities in the two graphs

indeed sufficiently identifies the true positives.

1.0

 0.8

0.6

 0.4

 0.2

 0

S

V

http:LOW=0.25
http:HIGH=0.75
http:LOW=0.20
http:HIGH=0.80
http:LOW=0.15
http:HIGH=0.85
http:LOW=0.05
http:HIGH=0.95

98

 100%

80%

 60%

 40%

 20%

 0%

Benchmark Program

Fig. 5.13.: Comparison of the normalized execution time

5.5.3 Sensitivity on the Threshold

By default, we set the threshold probabilities HIGH=0.90, and LOW =0.10. To study

the impact of these threshold variables on the final result, we take the second case of dis­

covering utmp instances (Fig. 5.10(b)) as an example, and change the values of HIGH and

LOW and observe the result. We make four different settings, namely setting HIGH=0.95

and LOW=0.05, HIGH=0.85 and LOW=0.15, HIGH=0.80 and LOW=0.20, and HIGH=0.75

and LOW=0.25. The result is illustrated in Fig. 5.12(a)-Fig. 5.12(d). We could see for all

these settings, the top cluster still contains the true instances. The results for other cases

are similar. The conclusion is hence that the result is not sensitive to the thresholds.

5.5.4 Performance Overhead

In this experiment, we study the cost of DIMSUM. The performance data is collected in

a Windows Vista system with 2GB memory and a 2.16Ghz CPU. The result is presented in

Fig. 5.13. All execution times are normalized based on DIMSUM’s time. We find that the

execution time of DIMSUM is reasonable, in comparison with that of the value-invariant

approach (44.8% of DIMSUM) and SigGraph+ (45.1% of DIMSUM). Also observe that

it is much slower in Android platform because there are large amount of strings (in UNI-

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 O
ve

rh
ea

d
Value−Invariant
SigGraph
DIMSUM

last w3m chrome pine sylpheed pidgin

http:LOW=0.25
http:HIGH=0.75
http:LOW=0.20
http:HIGH=0.80
http:LOW=0.15
http:HIGH=0.85
http:LOW=0.05
http:HIGH=0.95
http:HIGH=0.90

99

CODE form) in the snapshot; the string searching and constraint resolving takes more time.

The space overhead is decided by the size of factor graphs. We could not get the precise

memory consumption as Infer.NET has its own memory management system. We instead

present the number of variables (#Var) and the number of constraints or factors (#FC) in

the 12th and 13th columns respectively in Table 5.3.

5.6 Summary

Uncovering semantic data of interest in memory pages without memory mapping in­

formation is a desirable capability in computer forensics. Such a capability is realized by

DIMSUM, a system that extracts the data structure instances – with confidence – from a set

of memory pages without memory mapping information. In this chapter, we have presented

the design, implementation, and evaluation of DIMSUM. Our experimental results show

that DIMSUM achieves higher accuracy than previous non-probabilistic approaches when

discovering data from unmappable memory.

http:Infer.NET

100

6. APPLICATIONS

There are many security applications of our framework. In this chapter, we demonstrate

how our framework can be used for memory forensics, vulnerability discovery, kernel

rootkit detection, and kernel version inference.

6.1 Memory Image Forensics

Memory image forensics is a process to extract meaningful information from a memory

dump. Examples of such information are the IP addresses to which the application under

investigation is talking and files being accessed. Data structure definitions play a critical

role in the extraction process. For instance, without data structure information, it is hard

to decide if four consecutive bytes represent an IP address or are just a regular value. All

the components in our framework can support memory forensics, especially SigGraph and

DIMSUM as forensics is the nature of their design that was demonstrated in Chapter 5.

For REWARDS, it enables analyzing memory dumps for a binary without symbolic infor­

mation. In the following, we demonstrate how REWARDS can be used to type reachable

memory as well as some of the unreachable (i.e., dead) memory.

6.1.1 Typing Reachable Memory

In this case study, we demonstrate how we use REWARDS to discover IP addresses

from a memory dump using the hierarchical view (Section 3.2.5). We run a web server

nullhttpd-0.5.1. A client communicates with this server through wget-1.10.2.

The client has IP 10.0.0.11 and the server has IP 10.0.0.4. The memory dump is

obtained from the server at the moment when a system call is invoked to close the client

connection. Part of the memory dump is shown in Figure 6.1. The IPs are underlined in the

http:10.0.0.11

 e e

101

...

08052170 b0 5b fe b7 b0 5b fe b7 05 00 00 00 02 00 92 7e 080534a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

08052180 0a 00 00 0b 00 00 00 00 00 00 00 00 c7 b0 af 4a *

08052190 c7 b0 af 4a 00 00 00 00 58 2a 05 08 00 00 00 00 08053910 00 00 00 00 00 00 00 00 57 67 65 74 2f 31 2e 31

080521a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08053920 30 2e 32 00 00 00 00 00 00 00 00 00 00 00 00 00

... 08053930 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

08052a50 00 00 00 00 59 31 01 00 4b 65 65 70 2d 41 6c 69 *

08052a60 76 65 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08053990 00 00 00 00 00 00 00 00 c8 00 00 00 00 00 00 00

08052a70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 080539a0 00 00 00 00 00 00 00 00 00 00 43 6c 6f 73 65 00

* 080539b0 00 00 00 00 00 00 00 00 00 00 00 00 52 00 00 00

08052ee0 00 00 00 00 00 00 00 00 00 00 00 00 31 30 2e 30 080539c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

08052ef0 2 30 2 34 00 00 00 00 00 00 00 00 00 00 00 00 *

08052f00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08053a90 48 54 54 50 2f 31 2e 30 00 00 00 00 00 00 00 00

* 08053aa0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

08052fe0 00 00 00 00 00 00 00 00 00 00 00 00 48 54 54 50 *

08052ff0 2f 31 2e 30 00 00 00 00 00 00 00 00 00 00 00 00 08053b20 74 65 78 74 2f 68 74 6d 6c 00 00 00 00 00 00 00

08053000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08053b30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

* *

08053470 00 00 00 00 00 00 00 00 00 00 00 00 31 30 2e 30 08063ba0 01 00 01 00 01 00 00 00 00 00 00 00 00 00 00 00

08053480 2e 30 2e 31 31 00 00 00 00 00 00 00 00 00 00 00 08063bb0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

08053490 47 45 54 00 00 00 00 00 2f 00 00 00 00 00 00 00 *

...

Fig. 6.1.: Part of a memory dump from null-httpd. String and IP address are underscored.

figure. From the memory dump, it is very hard for human inspectors to identify those IPs

without a meaningful view of the memory. We use REWARDS to derive the data structure

definitions for nullhttpd and then construct a hierarchical view of the memory dump

following the method described in Section 3.2.5.

The relevant part of the reconstructed view is presented in Figure 6.2(a). The root repre­

sents a pointer variable in the global section. The outgoing edge of the root leads to the data

structure being pointed to. The edge label “struct 0x0804dd4f *” denotes that this is

a heap data structure whose allocation PC (also its abstraction) is 0x0804dd4f. Accord­

ing to the view construction method, the memory region being pointed to is typed according

to the derived definition of the data structure denoted by 0x0804dd4f, resulting in the

second layer in Figure 6.2(a). The memory region starts at 0x08052170 and is denoted

by the node with the address label. The individual child nodes represent the different fields

of the structure (e.g. the first field is a thread id according to the semantic tag pthread t,

the fourth field (with offset +12) denotes a sockaddr structure). The last field (with offset

+40) denotes another heap structure whose allocation site is 0x0804ddfb. Transitively,

our method reconstructs the entire hierarchy.

The extraction of IP addresses is translated into a traversal over the view to identify

those with the IP address semantic tags. Along the path 08050260
 → 08052170
 →

7e9200...0
 → 0x0b0000a , a variable with the sin addr type can be identified,

 p rea an e

 uns gne ong n

 s or n soc e

 s ruc soc a r n en r

 me c me rea on me

 me a me as ccess me

 a

 conn ma c e e roo no e

 c ar n onnec on

 c ar n os

 c ar n ro oco

 c ar n emo e r

 c ar n eques e o

 c ar n eques

 c ar n ser gen

 s or n ou s a us

 c ar ou onnec on

 n ou on en eng

 c ar ou ro oco

 c ar ou on en ype

 s or n ou ea one

 s or n ou o y one

 s or n ou us e

102

+0�pthread_t

08050260 08052170

b7fe5bb0

b7fe5bb0

00000005

7e920002 0b00000a 0...0

4aafb0c7

4aafb0c7

00000000

08052a58

0002

7e92

0b00000a

0...0

Keep−Alive

0...0

10.0.0.4

0...0

HTTP/1.0

0...0

10.0.0.11

0...0

GET

00000000

/

0...0

Wget/1.10.2

0...0

struct _0x0804dd4f *

+4�int

+8�socket

+12�struct sockaddr

+28�time_t

+32�time_t

+36�unused [4]

+40�struct _0x0804ddfb *

sin_family

sin_port

sin_addr

sin_zero

+0�char [11]

+11�unused [1161]

+1172�char [9]

+1181�unused [247]

+1428�char [9]

+1437�unused [1159]

+2596�ip_addr_str_t

+2606�unused [10]

+2616�char [4]

+2620�unused [4]

+2624�char [2]

+2626�unused [1150]

+3776�char [12]

+3788�unused [116]

+3904�short int

180 typedef struct {

181 th d_t h dl ;

182 i d l i t id;

183 h t i t k t;

184 t t k dd _i Cli tAdd ;

185 ti _t ti ; // C ti ti

186 ti _t ti ; // L t A ti

187 char *PostData;

188 CONNDATA *d t;

189 } CONNECTION;

206 CONNECTION * ; // t h d th t d

143 typedef struct {

144 // incoming data

145 h i _C ti [16];

146 int in_ContentLength;

147 char in_ContentType[128];

148 char in_Cookie[1024];

149 h i _H t[64];

150 char in_IfModifiedSince[64];

151 char in_PathInfo[128];

154 char in_Referer[128];

155 h i _R t Add [16];

156 int in_RemotePort;

157 h i _R tM th d[8];

158 h i _R tURI[1024];

159 char in_ScriptName[128];

160 h i _U A t[128];

161 // outgoing data

162 h t i t t_ t t ;

163 char out_CacheControl[16];

164 h t_C ti [16];

165 i t t_C t tL th;

166 char out_Date[64];

167 char out_Expires[64];

168 char out_LastModified[64];

169 char out_Pragma[16];

170 h t_P t l[16];

171 char out_Server[128];

172 h t_C t tT [128];

173 char out_ReplyData[MAX_REPLYSIZE];

174 h t i t t_h dd ;

175 h t i t t_b d d ;

176 h t i t t_fl h d;

177 // user data

178 char envbuf[8192];

179 } CONNDATA;

00c8

0...0

Close

0...0

00000052

0...0

HTTP/1.0

0...0

text/html

0...0

0001

0001

0001

0...0

+3906�unused [16]

+3922�char [6]

+3928�unused [12]

+3940�int

+3944�unused [208]

+4152�char [9]

+4161�unused [135]

+4296�char [10]

+4306�unused [65654]

+69960��short int

+69962��short int

+69964��short int

+69966��unused [8192]

(b) Data structure definition (a) Hierarchical view from REWARDS

Fig. 6.2.: Comparison between the REWARDS-derived hierarchical view and source code
definition

152 h i _P t l[16];

153 char in_QueryString[1024];

 a e

103

which stores the client IP. The same IP can be identified along the path 08050260
 →

08052170
 → 08052a58
 → 10.0.0.11
 as well, with the field offset +2596. The

field has the ip addr str t tag, which is resolved at the return of a call to inet ntoa.

REWARDS can isolate the server IP 10.0.0.4 as a string along the path 08050260

→ 08051170
 → 10.0.0.4
 with the field offset +1172. Interestingly, this field does

not have a semantic tag related to an IP address. The reason is that the field is simply a part

of the request string (the host field in HTTP Request Message), but it is not used in any

type sinks that can resolve it as an IP. However, isolating the string also allows a human

inspector to extract it as an IP.

To validate our result, we present in Figure 6.2(b) the corresponding symbolic defini­

tions extracted from the source for comparison. Fields that are underlined are used during

execution. In particular, struct CONNECTION corresponds to the abstraction struct

0x0804dd4f (node 08052170) and struct CONNDATA corresponds to struct 0x08

04ddfb (node 08052a58). Observe that all fields of CONNECTION are precisely

derived, except the pointer PostData, which is represented as an unused array in the

inferred definition because the field is not used during execution. For the CONNDATA

structure, all the exercised fields are extracted and correctly typed. Recall that we consider

a field is correctly typed if its offset is correctly identified and its composition bytes are

either correctly typed or unused.

bfffd140 05 00 00 00 6b 00 00 00 69 00 00 00 00 00 00 00 bfffe5d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
bfffd150 00 00 00 00 38 ea ff bf 00 00 00 00 00 00 00 01 bfffe5e0 00 00 00 00 00 00 00 00 00 00 00 00 e0 f5 ff bf
bfffd160 2c 00 00 00 67 45 8b 6b 0e 00 00 00 00 00 00 00 bfffe5f0 a0 2d 05 08 e0 f5 ff bf a0 13 05 08 00 00 00 00
bfffd170 0a 00 00 63 0f 27 00 00 9f 86 01 00 9f 86 01 00 bfffe600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
bfffd180 1c ea ff bf 10 ea ff bf 6a f2 b2 4a 7a 4a 0e 00 *
bfffd190 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 bfffea00 00 00 00 00 00 00 00 00 00 00 00 00 10 ea ff bf
bfffd1a0 6a f2 b2 4a 7a 4a 0e 00 f2 f3 8d 8c 00 00 00 00 bfffea10 01 00 00 00 00 00 00 00 e5 de f2 49 46 00 00 00
bfffd1b0 00 00 00 00 00 00 00 00 01 00 00 00 02 00 00 00 bfffea20 67 45 8b 6b 10 00 00 00 e8 be e6 71 0a 00 00 34
bfffd1c0 64 6e 73 66 6c 6f 6f 64 00 00 00 00 00 00 00 00 bfffea30 0a 00 01 33 0a 00 00 0b 0a 00 00 04 00 00 00 00
bfffd1d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 bfffea40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
* *
bfffd5c0 c0 d1 ff bf 00 00 00 00 02 ca 04 08 00 00 00 00 ...
bfffd5d0 00 00 00 00 00 00 00 00 02 ca 04 08 02 ca 04 08 bffff5c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
bfffd5e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 bffff5d0 01 00 00 00 80 00 00 00 80 00 00 00 ff f7 ff bf
bfffd5f0 00 00 00 00 00 00 00 00 00 00 00 00 04 d6 ff bf bffff5e0 00 00 00 00 00 00 00 00 f3 f7 ff bf 67 45 8b 6b
bfffd600 64 6e 73 66 6c 6f 6f 64 00 00 00 00 00 00 00 00 bffff5f0 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
bfffd610 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 bffff600 01 00 00 00 c0 f6 ff bf 28 f6 ff bf fb c7 04 08
* bffff610 02 00 00 00 dc 3a 1f b6 d4 df 04 08 dc 3a 1f b6
bfffe5b0 00 00 00 00 00 00 00 00 0e 00 00 00 00 00 00 00 bffff620 00 00 00 00 dc 3a 1f b6 88 f6 ff bf 2 d 0d b6

bfffe5c0 00 00 00 00 02 00 4e 34 0a 00 00 0b 00 00 00 00 bffff630 02 00 00 00 b4 f6 ff bf c0 f6 ff bf f6 5b ff b7

Fig. 6.3.: Memory dump for Slapper worm control program when exiting the control
interface

http:10.0.0.11

104

6.1.2 Typing Dead Memory

In this case, we demonstrate how to type dead memory (i.e., memory regions containing

dead variables) using the slapper worm bot-master program. Slapper worm relies on P2P

communications. The bot-master uses a program called pudclient to control the P2P

botnet, such as launching TCP-flood, UDP-flood, and DNS-flood attacks. Our goal is to

extract evidence from a memory dump of pudclient from the attacker’s machine.

Our experiment has two scenes: the investigator’s scene and the attacker’s scene. More

specifically,

•	 Scene I: In the lab, the investigator runs the bot-master program pudclient to

communicate with slapper bots to derive the data structures of pudclient.

•	 Scene II: In the wild, the attacker runs pudclient to control real slapper bots.

In Scene I, we run a number of slapper worm instances in a contained environment

(at IP addresses ranging from 10.0.0.1 - 10.0.1.255) using vGround [81], a Vir­

tual Playgrounds for Worm Behavior Investigation. Then we launch pudclient with

REWARDS and issue a series of commands such as listing the compromised hosts, and

launching the UDPFlood, TCPFlood, and DNSFlood attacks. REWARDS extracts the data

structure definitions for pudclient. Then, in Scene II, we run pudclient again with­

out REWARDS. Indeed, the attacker’s machine does not have any forensics tool running.

Emulating the attacker, we issue some commands and then hibernate the machine. We then

get the memory image of pudclient and use the data structure information derived in

Scene I to investigate the image.

We construct the hierarchical view and try to identify IP addresses from the view.

However, the hierarchical view can only map the memory locations that are alive, namely

they are reachable from global and stack (pointer) variables. Here, we take an extra step

to type the dead (unreachable) data. As described in Section 3.2.5, our technique scans

the stack space lower than the current (the lowest and live) activation record and looks for

values that are in the range of the code section, as they are very likely return addresses.

105

Four such values are identified. One example and its memory context is shown in Figure

6.3. In this memory dump snippet, the return address, as underlined, is located at address

0xbffff62c. Our technique further identifies that the corresponding function invocation

is to 0x0804a708. Hence, we use the data structure definition of fun 0x0804a708

to type the activation record. The definition and the typed values are shown in Table 6.1.

Observe that a number of IPs (fields with ip addr t) are identified. We also spot the

bot command “dnsflood” at -9324 and -8236. Note that these two fields have the

input t tag as part of their derived definition, indicating they hold values from input.

6.2 Vulnerability Fuzzing

It is a challenging task to detect and confirm vulnerabilities in a given binary without

symbolic information. Previously in [82], we proposed a dynamic analysis approach that

can decide if a vulnerability suspect is true positive by generating a concrete exploit. The

basic idea is to first use existing static tools to identify vulnerability candidates, which are

often of large quantity; then benign executions are mutated to generate exploits. Mutations

are directed by dynamic information called input lineage, which denotes the set of input

elements that is used to compute a value at a given execution point, usually a vulnerability

candidate. Vulnerability-specific patterns are followed during mutation. One example

pattern is to exponentially expand an input string in the lineage of a candidate buffer with

the goal of generating an overflow exploit. In that project, we had difficulty finding publicly

available, binary-level vulnerability detectors to use as the front end. REWARDS helps

address this issue by deriving both variable syntax and semantics from a subject binary.

Next, we present our experience of using REWARDS to identify vulnerability suspects and

then using our prior system (a fuzzer) to confirm them.

For this study, we design a static vulnerability suspect detector that relies on the variable

type information derived by REWARDS. The result of the detector is passed to our lineage-

based fuzzer to generate exploits. In the following, we present how REWARDS helps

identify various types of vulnerability suspects.

106

Table 6.1: Result on the unreachable memory type using type fun 0x804a708

Offset Type Size Mem Addr Content Offset Type Size Mem Addr Content
-9432 void* 4 bfffd154 38 ea ff bf -9324 char[9],input t 9 bfffd1c0 64 6e..64
-9428 char* 4 bfffd158 00 00 00 00 -8300 char* 4 bfffd5c0 c0 d1 ff bf
-9420 int 4 bfffd160 2c 00 00 00 -8236 char[9],input t 9 bfffd600 64 6e..64
-9416 int 4 bfffd164 67 45 8b 6b -8227 char[28] 28 bfffd609 00 .. 00
-9412 int 4 bfffd168 0e 00 00 00 -4236 void* 4 bfffe5a0 00 00 00 00
-9408 int 4 bfffd16c 00 00 00 00 -4156 struct 0x804834e* 4 bfffe5f0 a0 2d 05 08
-9404 ip addr t 4 bfffd170 0a 00 00 63 -4152 void* 4 bfffe5f4 e0 f5 ff bf
-9300 port t 4 bfffd174 0f 27 00 00 -3104 char* 4 bfffea0c 10 ea ff bf
-9396 int 4 bfffd178 9f 86 01 00 -3088 char[16] 16 bfffea1c 46 00 00 00
-9392 int 4 bfffd17c 9f 86 01 00 -3068 ip addr t 4 bfffea30 0a 00 01 33
-9388 void* 4 bfffd180 1c ea ff bf -3064 ip addr t 4 bfffea34 0a 00 00 0b
-9384 void* 4 bfffd184 10 ea ff bf -3058 ip addr t 4 bfffea38 0a 00 00 04

-9376
timeval.tv sec 4 bfffd18c 7a 4a 0e 00 -3054 ip addr t 4 bfffea3c 0a 00 00 04
timeval.tv usec 4 bfffd190 22 00 00 00 -0088 int 4 bffff5d4 80 00 00 00

-9368 int 4 bfffd194 00 00 00 00 -0084 int 4 bffff5d8 80 00 00 00
-9352 int 4 bfffd1a4 7a 4a 0e 00 -0080 int 4 bffff5dc ff f7 ff bf
-9348 int 4 bfffd1a8 f2 f3 8d 8c -0004 stack frame t 4 bffff628 88 f6 ff bf
-9344 int 4 bfffd1ac 00 00 00 00 +0000 ret addr t 4 bffff62c a2 de 0d b6
-9332 int 4 bfffd1b8 01 00 00 00 +0004 int 4 bffff630 02 00 00 00
-9328 int 4 bfffd1bc 02 00 00 00 +0008 char* 4 bffff634 b4 f6 ff bf

107

•	 Buffer overflow vulnerability. Buffer overflows could happen in three different

places: stack, heap, and global areas. As such, we define three types of buffer

overflow vulnerability patterns. Specifically, for stack overflow, if a stack layout

contains a buffer and its content comes from user input, we consider it a suspect. Note

that this can be easily facilitated by REWARDS’s typing algorithm: A semantics tag

input t is defined to indicate that a variable receives its value from external input.

The tag is only susceptible to the forward flow but not the backward flow. In the

stack layout derived by REWARDS, if a buffer’s type set contains an input t tag,

it is considered vulnerable. For heap overflow, we consider two cases: one is to

exploit heap management data structure outside the user-allocated heap chunk; and

the other is to exploit user-defined function pointers inside the heap chunk. Detecting

the former case is simply to check if a heap structure contains a buffer field that is

input-relevant, in a way similar to stack vulnerability detection. For the later case, the

detector scans the derived layout of a heap structure to check the presence of both an

input-relevant buffer field and a function pointer field. Vulnerabilities in the global

memory region are handled similarly.

•	 Integer overflow vulnerability. Integer overflow occurs when an integer exceeds

the maximum value that a machine can represent. Integer overflow itself may not

be harmful (e.g., gcc actually leverages integer overflow to manipulate control flow

path condition [83]), but if an integer variable is dependent on user input without

any sanity check and it is used as an argument to malloc-family functions, then

an integer overflow vulnerability is likely. In particular, overflowed values passed to

malloc functions usually result in heap buffers being smaller than they are supposed

to be. Consequently, heap overflows occur. For this type of vulnerabilities, our

detector checks the actual arguments to the malloc family function invocations: if an

integer parameter has both malloc arg t and input t tags, an integer overflow

vulnerability suspect will be reported.

108

•	 Format string vulnerability. The format string vulnerability pattern involves a

user input flowing into a format string argument. Thus, we introduce a semantics

tag format string t, which is only resolved at invocations to printf-family

functions. If a variable’s type set contains both input t and format string t

tags, a format string vulnerability suspect is reported.

Besides facilitating vulnerability suspect identification, the information generated by

REWARDS can also help composing exploits. For instance, it is critical to know the

distance between a vulnerable stack buffer and a return address (i.e., a variable with the

ret addr t tag), in order to construct a stack overflow exploit. Similarly, it is important

to know the distance between a heap buffer and a heap function pointer for composing a

heap overflow-based code injection attack. Such information is provided by REWARDS.

Table 6.2: Number of vulnerability suspects reported with help of REWARDS

Program #Buffer Overflow #Integer Overflow #Format String

ncompress-4.2.4 1 0 0
bftpd-1.0.11 3 0 0
gzip-1.2.4 3 0 0

nullhttpd-0.5.0 5 2 0
xzgv-5.8 3 8 0

gnuPG-1.4.3 0 3 0
ipgrab-0.9.9 0 5 0

cfingerd-1.4.3 4 0 1
ngircd-0.8.2 12 0 1

We applied our REWARDS-based detector to examine several programs shown in the

1st column of Table 6.2. The detector reported a number of vulnerable suspects based

on the aforementioned vulnerability patterns. The total number of vulnerabilities of each

type is presented in the remaining columns. Observe that our detector does not produce

many suspects for these programs and therefore can serve as a tractable front end for our

fuzzer. The fuzzer then tries to generate exploits to convict the suspects. The details of

each confirmed vulnerable data structure are shown in the 2nd column of Table 6.3. The

field symbols do not represent their symbolic names, which we do not know, but rather

the type tags derived for these fields. For instance, format string t denotes that the

field is essentially a format string; sockaddr in indicates that the field holds a socket

http:bftpd-1.0.11

109

Table 6.3: Result from our vulnerability fuzzer with help of REWARDS

ncompress-4.2.4

Benchmark

fun 0x08048e76 { -1052: char[13],
-1039: unused[1023],...
-0008: char*,
-0004: stack frame t,

Suspicious Data Structure

+0000: ret addr t,

argv[1]

Input

{0..11}

Offset

Stack overflow

Vulnerability Type

bftpd-1.0.11

fun 0x080494b8 { -0064: char*,
-0060: char[12],
-0048: unused [44],
-0004: stack frame t,

+0004: char**}

+0000: ret addr t,

recv {0..3} Stack overflow

gzip-1.2.4

bss 0x08053f80 { ...
+244128: char[8],
+244136: unused[1016],
+245152: char*,...}

+0004: char*}

argv[1] {0..6} Global overflow

nullhttpd-0.5.0

heap 0x0804f205 { +0000: char[11],
+0011: unused[5],
+0016: int,... }

heap 0x0804c41f { +0000: void[29],

recv {607,608} Integer overflow

xzgv-5.8

gnuPG-1.0.5

bss 0x0809ac80 { ...
+91952: int,
+91956: int,...}

+0029: unused[1024]}

fun 0x080673fc { -0176: char[6],unused[2],
-0168: int,int,...}

heap 0x080afec1 { +0000:int,...,
+0036: void[5] }

fread

recv

fread

{4..11}

{661..690}

{2..5}

Integer overflow

Heap Overflow

Integer overflow

ipgrab-0.9.9

fun 0x080496b8 { ...,
-0440: struct sockaddr in,

fun 0x0804d06b { -0056: int,
-0052: int, int,...}

heap 0x0805a976 {+0000: void[60] }

fread
fread

fread

{6..10}
{20..23}

{40..100}

Heap overflow
Integer overflow

Heap overflow

cfingerd-1.4.3 -0424: format string t[34],
-0390: unused[174],
-0216: char[4],,...}

read {0..3} Format String

ngircd-0.8.2

fun 0x0805f9a5 { ...,
-0284: format string t[76]
-0208: unused[204],
-0004: stack frame t,
+0000: ret addr t,...}

recv {12..15} Format String

110

Table 6.4: Experimental result on kernel rootkit detection

adore-ng-2.6
adore-ng-2.6’
cleaner-2.6
enyelkm 1.0

hp-2.6
linuxfu-2.6
modhide-2.6
override

Rootkit
Name

rmroots
rmroots’

module
task struct

module
module

task struct
task struct

module
task struct

Target
Object

task struct
module

23
62
22
23
56
59
22
58

Inside view
of obj.s

56
23

23
63
22
23
57
60
22
59

crash
of obj.s Detected

N/A ✗
N/A ✗

✗
�
✗
✗
�
�
✗
�

24
63
23
24
57
60
23
59

SigGraph
of obj.s Detected

55 �
24 �

�
�
�
�
�
�
�
�

address. The 3rd column presents the input category that is relevant to the vulnerable

data structure. For example, the char[12] buffer in bftpd denotes a packet received

from outside (the recv category). Note that the input categories are conveniently imple­

mented as semantics tags in REWARDS. The 4th column offset represents the input

offsets reported by our fuzzer. They represent the places that are mutated to generate the

real exploits. The REWARDS-based vulnerability detector also emits vulnerability types

(shown in the 5th column) based on the vulnerability patterns matched. Consider the first

benchmark ncompress: Its entry in the table indicates that the char[13] buffer inside

a function starting with PC 0x08048e76 is vulnerable to the stack buffer overflow. The

buffer receives values from the second command line option (argv[1]). Our data lineage

fuzzer mutates the lineage of the buffer, which are the first 12 input items (offset 0 to 11) to

generate the exploit. From the data structure in the 2nd column, the exploit has to contain

a byte string longer than 1,052 bytes to overwrite the return address at the bottom. Other

vulnerabilities can be similarly apprehended.

6.3 Kernel Rootkit Detection

By uncovering the kernel objects in a kernel memory image, our second component,

SigGraph, provides the semantic view of kernel memory for kernel rootkit detection. We

note the convenience of using SigGraph: The user simply runs the data structure-specific

scanners on a subject memory image to uncover kernel objects of interest.

111

Based on the kernel objects revealed by SigGraph, we then follow the existing “view

comparison” methodology [30,34,74] for kernel rootkit detection: for a certain type of ker­

nel object (data structure), we compare (1) the number and values of its instances revealed

by SigGraph with (2) the relevant information returned by a corresponding system utility

(e.g., lsmod and ps for kernel modules and processes, respectively). If a discrepancy

between the two views is observed, we know that a certain kernel object(s) is being hidden,

indicating a kernel rootkit attack.

Many kernel rootkits engage in kernel data hiding attacks [30,34,74], among which we

experimented with eight representative real-world kernel rootkits that cover the spectrum

of data hiding techniques, and the results are presented in the first eight rows in Table 6.4.

SigGraph enabled the detection of all of them. Specifically, we use the original samples of

adore-ng-2.6, adore-ng-2.6’, override, enyelkm 1.0 and port those of hp,

linuxfu, modhide, cleaner from Linux 2.4 to Linux 2.6 on which our experiment

is based. All of the above rootkits, except adore-ng-2.6’ and override, hide tasks

or kernel modules by manipulating pointers. For example, adore-ng changes the con­

necting pointers of neighboring modules to hide its own module; and enyelkm calls a list

function (list del) that separates its own module from the module list. As a result, the

number of kernel modules counted by lsmod is one less than the number of corresponding

kernel objects revealed by SigGraph, with the missing one being the rootkit module itself.

We point out that the success of kernel rootkit detection in these experiments is at­

tributed to SigGraph’s provision of multiple alternative signatures (Section 4.7.3) for the

same data structure. With the kernel rootkit’s presence, some pointers from/to a kernel

object may be corrupted and can no longer be used for signature matching. For exam­

ple, kernel modules are connected by list.next and list.prev pointers, which are

manipulated by rootkits. Fortunately, SigGraph is able to generate alternative signatures

that do not involve those pointers. With such signatures, SigGraph scanners accurately

recognize the kernel objects that are being hidden.

Finally, rootkits adore-ng-2.6’ and override have different attack mechanisms.

They hide processes by filtering out information about the hidden processes using injected

112

code – without manipulating kernel objects. SigGraph recognizes these objects using the

default signature of task struct without resorting to the alternative ones, which leads

to the detection of such attacks via view comparison.

Comparison with techniques based on global memory mapping. A number of existing

kernel rootkit detection techniques rely on building a graph that maps the entire live mem­

ory through pointers. The state of the art is KOP [30]. Based on Windows, it builds a global

memory graph and resolves function pointers through an advanced points-to analysis. Due

to the lack of its Linux implementation, we implement a basic system based on global

memory mapping by extending the crash utility. As a core dump analysis infrastructure

that resolves memory regions based on type information, crash is extendable for cus­

tomized memory analysis. In particular, our extension involves a Python script to build a

global memory graph by exploring the points-to relations. We consider a rootkit detected if

the hidden kernel object (module or task) is reachable in the graph. Table 6.4 presents the

results. The extended crash detects four out of the eight real-world rootkits. It is not a

surprise that crash detects adore-ng-2.6’ and override as they do not manipulate

kernel object pointers. For hp-2.6 and linuxfu-2.6, even though the rootkit tasks

are hidden from the task list, they are still reachable via other data structures in the mem­

ory graph (more specifically via data structures for process scheduling). However, such

alternative reachability is not available when running adore-ng-2.6, cleaner-2.6,

enyelkm 1.0, and modhide-2.6 and hence crash misses them.

We note that global memory graph-based techniques rely on each object’s reachability

from the root(s) of the graph. In other words, an object cannot be properly typed if it

is not reachable from the root(s). As a result, it is conceivable that future rootkits may

try to destroy such reachability. For example, a rootkit may identify a cut of the global

memory graph and destroy (or obfuscate) the pointers along the cut. Consequently, objects

not reachable from the original roots become unrecognizable. As an extreme example, we

construct two such rootkits: rmroots and rmroots’ (the last two rows in Table 6.4).

They hide task struct and module instances, respectively, and to destroy evidence at

113

the end of the attack, they “wipe out” the static kernel data structures listed in the kernel

symbol table (system.map) so that the rest of the memory becomes unmappable.

In comparison, SigGraph shows better robustness against such an attack. In our ex­

periment with the rmroots rootkit, there are 56 running processes right before the static

kernel object wipe-out. Soon after the wipe-out, the system crashes due to pointer corrup­

tion and a kernel memory snapshot is taken. We run the extended crash on the kernel

memory image, but it fails to construct the global memory graph due to the absence of

static kernel objects. On the other hand, SigGraph is able to identify 55 instances of

task struct, including the one that was hidden before the wipe-out. The missing one

is actually init task, an instance of task struct that has been cleared. For our

experiment with rmroots’, the SigGraph scanner successfully identifies all 24 kernel

modules including the hidden one.

6.4 Kernel Version Inference

Another application of our framework is the determination of an OS kernel version

based on a kernel memory snapshot. Consider the following scenario: a public cloud com­

puting platform hosts virtual machines (VMs) with various OS kernels. In order to perform

virtual machine introspection [26, 28, 34] on these guest VMs (e.g., for intrusion/malware

detection and usage auditing), a prerequisite is to know the specific version of a guest’s

OS kernel [35–37]. The kernel type/version is critical to accurately interpreting the VM’s

system state and events by the VMM. However, such information is not always available

to the cloud provider (e.g., the cloud provider only knows that a VM runs Linux but does

not know which version).

Currently a guest kernel version can be determined via value-invariants (e.g., as adopted

in [34]). We instead propose using SigGraph-based data structure signatures as a more

accurate kernel version indicator. To validate our proposal, we take nine more Linux

kernels ending with an even version number from 2.6.12 to 2.6.34. We select this range

because they all work with our gcc-4.2.4-based implementation. If a selected version

114

has multiple sub-versions, we take the latest one. Together with the five Linux kernels

already tested (marked with *), we have a total of 14 kernel versions, which are listed in

the 1st column of Table 6.5.

Table 6.5: Detailed field offsets of task struct for kernel version inference

Linux mm struct task struct list head
kernel thread process active real ptrace ptrace R

version info name mm mm parent parent tasks children list children sibling

2.6.12-6 4 436 108 112 152 156 84 92 100 160 168 �
2.6.14-7 4 428 120 124 164 168 96 104 112 172 180 ✗

2.6.15-1* 4 428 120 124 164 168 96 104 112 172 180 ✗

2.6.16-62 4 432 120 124 164 168 96 104 112 172 180 �
2.6.18-1* 4 428 152 156 196 200 128 136 144 204 212 �

2.6.20-15* 4 404 128 132 172 176 104 112 120 180 188 �
2.6.22-19 4 408 132 136 176 180 108 116 124 184 192 �

2.6.24-26* 4 461 164 168 208 212 140 148 156 216 224 �
2.6.26-8 4 505 188 192 232 236 164 172 180 240 248 �
2.6.28-10 4 508 176 180 220 224 168 248 256 228 236 �
2.6.30-1 4 496 220 224 268 272 192 296 304 276 284 �
2.6.31-1* 4 500 220 224 268 272 192 296 304 276 284 �
2.6.32-17 4 504 228 232 268 272 200 296 304 276 284 �
2.6.34-2 4 512 220 224 276 280 192 304 312 284 292 �

Version indicator selection. We first compile these kernels using the default configuration

to obtain all of their data structure definitions. We then derive SigGraph-based signatures

for all of the data structures. After that we try to select one data structure whose signatures

in different kernel versions can be used to differentiate the kernel versions. The main

requirements for such a data structure D are: (1) it should be commonly present in the

execution of all kernels; and (2) its signatures should be distinctive across different kernels.

In other words, for each kernel version i, we shall find a signature Si of D that will

recognize instances of D in and only in memory images of kernel version i. In the end, we

are not able to find a single data structure that can differentiate all the 14 kernels due to the

similarity among them. (In fact, we find that two of the kernels share the same data structure

definitions.) However, we do find that data structure task struct satisfies the above

requirements for most of the kernels. The offsets and types of fields in task struct

involved in the signatures are presented from the 2nd to 12th columns in Table 6.5. We

can see that there are only two kernels (2.6.14-7 and 2.6.15-1) that cannot be distinguished

using task struct’s signatures as shown in Column-R. To validate, we take snapshots

115

of these kernels and then scan the snapshots using the 13 distinct signatures. We succeed

in uniquely identifying 12 of the 14 kernels. The two kernels that we cannot tell apart are

two consecutive Linux kernels with no significant differences in data structure definitions.

116

7. LIMITATION AND FUTURE WORK

In this chapter, we discuss the limitations and outline the future work of our framework.

We first examine the limitation of our data structure definitions reverse engineering, RE­

WARDS, in Section 7.1, and then data structure instances reverse engineering, SigGraph,

in Section 7.2 and finally DIMSUM in Section 7.3.

7.1 REWARDS

As a data structure definition reverse engineering component, REWARDS has a number

of limitations:

•	 REWARDS is a dynamic analysis-based approach. Thus it cannot achieve full cover­

age of the data structures defined in a program. Instead, the coverage of REWARDS

relies on those data structures that are actually created and accessed during a partic­

ular run of the binary. How to increase the coverage will be one of our future efforts.

Inspired by the recent efforts from static analysis [72], we plan to investigate the

combination of dynamic and static analysis in reverse engineering.

•	 REWARDS is not fully on-line as our timestamp-based on-line algorithm may leave

some variables unresolved by the time they are de-allocated, and an off-line compan­

ion procedure is therefore needed to make the system sound. A fully on-line type

resolution algorithm is our another future work.

•	 The current implementation of REWARDS is based on PIN, and it hence does not

support the reverse engineering of kernel-level data structures. Using other binary

instrumentation platforms, such as QEMU, could allow us to reverse engineer the

kernel data structures. To port our REWARDS to a virtual machine monitor will be

our another future effort.

117

•	 Besides the general data structures, REWARDS has yet to support the extraction

of other data types, such as the format of a specific type of files (e.g., ELF files,

multimedia files), and browser-related data types (e.g., URL, cookies). Moreover,

REWARDS does not distinguish between signed and unsigned integers in our current

design.

7.2 SigGraph

While SigGraph-based signatures are capable of identifying kernel data structure in­

stances, it has limitations as well. We believe that there may be more sophisticated attempts

to evade SigGraph in the future. We discuss below the possible attacks against SigGraph,

assuming that the attacker has knowledge of SigGraph and has gained control of the kernel.

Malicious Pointer Value Manipulation. The first type of attacks are to manipulate point­

ers as SigGraph relies on the inter-data structure topology induced by pointers. However,

compared to non-pointer values, pointers are more sensitive to mutation as changes to a

pointer value may likely lead to kernel crashes. Note that re-pointing a pointer to another

data structure instance of the same type may not affect SigGraph in discovering the mutated

instance. While the attacker may try to manipulate pointer fields that are not used, recall

that SigGraph has a dynamic refinement phase that gets rid of such unused or undependable

fields before signature generation.

The attacker may try harder by destroying a pointer field after a reference and then by

restoring it before its next reference. As such, it is likely that a memory snapshot may not

have the true pointer value. However, carrying out such attacks is challenging as there may

be many code sites in the kernel that access the pointer field. All such sites need to be

patched to respect the original semantics of the kernel, which would require a complex and

expensive static analysis on the kernel. To get an (under) estimate of the required efforts,

we conducted a profiling experiment on task struct. We collected the functions that

access each field, including both pointers and non-pointers. The results are shown in

Figure 7.1(a), We observe that most fields are accessed by at least 6 functions. Some fields

118

K
er

ne
l F

un
ct

io
ns

N
um

be
r

of
 A

cc
es

si
ng

 F
un

ct
io

ns

12000
Pointer Field

Non-pointer Field

10000

 8000

 6000

 4000

 2000

 0

 0 20 40 60 80 100 120 140 160 180 200

ith Field of Task Structure

(a) Detailed field access functions
 70

Pointer Field

Non-pointer Field

60

 50

 40

 30

 20

 10

 0

 0 20 40 60 80 100 120 140 160 180 200

ith Field of Task Structure

(b) Statistics of field access functions

Fig. 7.1.: Profiling accesses to the fields of task struct

119

are accessed by 70 functions (the statistics are shown in Figure 7.1(b)). Note that these are

only dynamic profiling numbers, the static counterparts may be even higher. Even if the

attacker achieves some success, SigGraph can still leverage its multiple signature capability

to avoid using those pointers that are easily manipulatable.

Malicious Non-Pointer Value Manipulation. Another possible way to confuse SigGraph

is to mutate a non-pointer value to resemble that of a pointer. SigGraph has built-in

protection against such attacks. First of all, the dynamic refinement phase will get rid

of most fields that are vulnerable to such mutation. Moreover, compared to mutation

within a domain, such as changing an integer field (with the range from 1 to 100) from

55 to 56, cross-domain mutation, such as changing the integer field to a pointer, has a

much greater chance to crash the system. In the future, we plan to use fuzzing, similar

to [32], to study how many fields allow such cross-domain value mutation. Meanwhile,

we can effectively integrate SigGraph signatures with the value-invariant signatures (e.g.,

those derived by [32]) for the same data structure, which is likely to achieve even stronger

robustness against malicious non-pointer manipulation.

Other Possible Attacks. The attacker may change the data structure layout to evade

SigGraph. Without knowledge about the new layout, SigGraph will fail. However, such

attacks are challenging. The attacker needs to intercept the corresponding kernel object

allocations and de-allocations to change the layout at runtime. Furthermore, all accesses to

the affected fields need to be patched.

SigGraph can help detect kernel rootkit attacks by identifying hidden kernel data struc­

ture instances in a given memory image. There are other types of kernel attacks that do not

involve data hiding (e.g., BluePill [84]). SigGraph, as a kernel object scanner generator, is

not applicable to the detection of such kernel attacks.

Also, SigGraph has a number of limitations. We examine each of them below and

discuss possible future directions to address them.

First, not all data structures have pointer fields. However, value-invariant signatures

will be able to handle them if their fields contain value invariants. As such, we believe a

real-world memory analysis system should combine the value-invariant and graph-based

120

signatures to achieve the maximum coverage of data structures. Also, some data structures

have neither value-invariant nor graph-based signature. In such cases, we have to explore

other techniques. For example, it is challenging to identify the small-size data structure

(e.g., the four bytes IP address) in the memory, but it is still possible to identify some

instances of them if they are part of other composite data structures that do have graph-

based signatures.

Second, SigGraph has a dynamic refinement component, and we cannot directly use

the static signature (largely because of the null pointer issue). We cannot achieve com­

pleteness because of the nature of dynamic analysis. One solution would be to combine the

semantics of the pointer fields and assign different weights statically, and then use them.

For example, we could assign a semantic-known pointer field a heavier weight and ignore

or assign a smaller weight to other pointer fields.

Third, if an un-initialized pointer exists and we fail to prune, SigGraph will have

false negatives. Also, for the possible attacks discussed above, SigGraph may have false

positives or false negatives in some cases.

Finally, we did not resolve the void pointers. To remedy this, we could take the

approach proposed in KOP [30] to resolve the void pointers. Also, we could leverage the

LiveDM [74] to dynamically track all of the kernel objects, and profile and resolve them.

7.3 DIMSUM

As a data structure instance reverse engineering component, DIMSUM has several

limitations too. First, if a program chooses to always zero out its data after they are used

(e.g., reset all de-allocated memory), it is unlikely that DIMSUM will recover meaningful

information. This is a common limitation for all forensics techniques. However, we

consider it to be relatively more tedious to clean up memory than clear up other types

of evidence, such as screens and files. The user has to instrument memory management

functions and intercept program exit signals. In the presence of memory swapping, the

121

user has to make sure the pages that get swapped out are destroyed as well. Moreover, if a

program crashes or gets killed, cleaning up its memory may not be easy.

Second, DIMSUM currently does not fully make use of value invariant properties, such

as a fine-grained range of an integer field of a type T is [x,y]. Instead, it can only leverage

the weaker information that it is an integer field. Value invariant properties are usually

acquired from profile or domain knowledge. While it is arguable to assume profiling and

domain experts in memory forensics, the success of DIMSUM without value invariant

properties illustrates its unique strength. Also, DIMSUM is able to deliver better results

when value invariants are integrated.

Third, our current implementation in data structure transformation demands end-users

to manually write down the specification based on our grammar, in order to automatically

generate constraints and then the factor graphs. Part of our future work lies in making this

process more automated.

Finally, DIMSUM currently does not have a systematic approach to identifying the data

instances that cross pages. In our experiment, we encountered only six such cases for data

structure address book in pine (partly because of the small size of the data structures of

these benchmarks). We leave it as another future effort.

122

8. RELATED WORK

Our work is related to a large number of techniques, such as type inference, variable recov­

ery, program understanding, vulnerability discovery, malware signature derivation, proto­

col reverse engineering, rootkit detection, kernel version inference, and memory forensics.

In this chapter, we review and compare our technique with each of them.

8.1 Type Inference

Some programming languages, for instance ML, do not explicitly declare types. In­

stead, types are inferred from programs. Typing constraints are derived from program state­

ments statically, and programs are typed by solving these constraints. There is a large body

of type inference techniques, including the Hindley-Milner algorithm [46], the Cartesian

Product algorithm [47], iterative type analysis [48], object-oriented type inference [49],

aggregate structure identification [85], and dynamic heap type inference [58].

These techniques, like REWARDS [59], rely on type unification, namely, variables

connected by operators shall have the same type. However, these techniques assume

the program source code and they are static (i.e., typing constraints are generated from

source code at compile time). For REWARDS, we only assumed binaries without symbolic

information, in which high level language artifacts are all broken down to machine level

entities, such as registers, memory addresses, and instructions. REWARDS relies on type

sinks to obtain the initial type and semantics information. Variables are then typed through

unification with type sinks during execution.

Abstract type inference [50] is to group typed variables according to their semantics.

For example, variables that are meant to store money, zip codes, ages, etc., are clustered

based on their intentions, even though they may have the same integer type. Such an

intention is called an abstract type. The technique relies on the Hindley-Milner type

123

inference algorithm. Recently, dynamic abstract type inference was proposed [51] to infer

abstract types from execution. Regarding the goal of performing semantics-aware typing,

these techniques are similar to our technique. However, they work at the source code level,

whereas ours works at the binary level. REWARDS [59] further derives syntactic type

structures.

Dynamic heap type inference by Polishchuk et al. [58] focuses on typing heap objects in

memory. REWARDS, SigGraph, and [58] do share some common insights, such as leverag­

ing pointers. However, the latter focuses on type-inference of heap objects (for debugging)

by assuming known start addresses and sizes for all of the allocated heap blocks; whereas

REWARDS does not have such constraint, and also SigGraph has a different purpose that

aims at uncovering all kernel objects (including heap, stack, and global) from a raw memory

image. To uncover those objects, the user can simply execute the data structure-specific

scanners on the raw memory image – without any runtime support; the techniques in [58],

on the other hand, require collecting runtime information. Moreover, the different purpose

of SigGraph raises the new challenge of avoiding structural isomorphism among the data

structure signatures.

8.2 Variable Recovery

Variable Discovery Recently, Balakrishnan et al. [39, 86, 87] showed that analyzing exe­

cutables alone can largely discover the syntactic structures of variables, such as sizes, field

offsets, and simple structures. Their algorithm is based on the intuition that the memory

accessing patterns in a program provide information about the location of data. They

show that variable-like entities can be recovered by iterating Value-Set Analysis [39], a

combined numeric-analysis and pointer-analysis algorithm, and Aggregate Structure Iden­

tification [85], an algorithm to identify the structure of aggregates. They have a tool called

CodeSurfer/x86 [39, 86, 88, 89], a binary analysis platform, which makes use of both IDA

Pro [90] and the CodeSurfer system [91] for building program-analysis and inspection

tools.

124

Their technique entails points-to analysis and abstract interpretation at the binary level.

This tool cannot handle obfuscated binaries and dynamically loaded libraries, and further­

more, the inaccuracy of the binary points-to analysis makes it hard to type heap variables. In

comparison, our technique is relatively simple, and addresses the major hindrances to static

analysis (e.g., points-to relations and dynamically loaded libraries) via dynamic analysis.

Decompilation Decompilation is a process of reconstructing program source code from

lower-level languages (e.g., assembly or machine code) [92–94]. Tools like HexRay [95],

offer a variety of techniques to help elevate low-level assembly instructions to higher level

code. Decompililation usually involves reconstructing the variable types [96,97]. By using

unification, Mycroft [96] extends the Hindley-Milner algorithm [46] and delays unification

until all constraints are available. Recently, Dolgova and Chernov [97] present an iterative

algorithm that uses a lattice over the properties of data types for reconstruction.

All of these techniques are static and hence share the same limitations of static type in­

ference and only derive simple syntactic structures. Moreover, they aim to find an execution-

equivalent code and do not pay attention to whether the recovered types reflect the original

declarations and have the same structures.

Principled Reverse Engineering Inspired by our REWARDS, most recently there have

been two follow up works: HOWARD [73] and TIE [72]. HOWARD differs from RE­

WARDS by looking at the internal data structures inside the binary. Also, it offers a loop

detector, which is used to detect array accesses. TIE differs from REWARDS by statically

analyzing the binary instead of dynamic analysis. As discussed, there are a number of

challenges in statically analyzing the binary code. TIE addressed these challenges and

proposed a novel type reconstruction algorithm for binary code based on BAP [98], another

binary analysis platform. Unlike REWARDS and HOWARD, which are limited to the

dynamic analysis of a single execution trace, TIE handles control flow and thus is amenable

to providing complete coverage of the data structures.

125

8.3 Program Understanding

Our reverse engineering work is also related to program understanding, which aims

to help programmers maintain and understand the legacy code [99–101]. There are also

a variety of methods for profiling [102–104], testing [105, 106], slicing [107–109], and

debugging [110, 111] of program behavior for a given binary or source code, from which

they can build the cognitive models for program understanding. The basic cognitive models

include (1) top-down understanding [112], (2) bottom-up understanding [113], (3) iterative

hypotheses refinement [99], and (4) some combinations of the three [114]. Our tech­

nique can facilitate program understanding particularly for the bottom-up approaches, as

demonstrated in Lackwit [50], a type inference based program understanding (note Lackwit

requires program source code access).

8.4 Malware Signature Derivation

Data structures are one of the important and intrinsic properties of a program. Recent

advances have demonstrated that data structure patterns can be used as a program’s signa­

ture. In particular, Laika [33] shows a way of inferring the layout of data structure from

a snapshot, and uses the layout as the signature. Their inference is based on unsupervised

Bayesian learning and they assume no prior knowledge about program data structures.

There are significant differences between Laika and REWARDS as Laika does not provide

any semantic types of the data structure. Laika also does not aim to recover the correct

definitions.

Meanwhile, Laika and SigGraph are substantially different in two ways: (1) Laika

focuses on deriving a program’s signature from data structure patterns; whereas SigGraph

focuses on deriving the signatures of the data structures from the points-to relations among

them. (2) Laika, by its nature, does not assume the availability of data structure defini­

tions. On the contrary, data structure definitions are the input of SigGraph to generate data

structure signatures.

126

For DIMSUM, the difference compared with Laika [33] is that Laika aims to derive

the data structure definition inside a binary and uses it as the program signature. It starts

with no knowledge of the data structure definition, and uses data instances to eventually

cluster the data structure definitions. DIMSUM solves a completely different problem,

namely, starts with data structure definitions and tries to find data instances in the memory.

The modeling techniques are completely different. Furthermore, Laika relies on memory

mapping when traversing the memory, and DIMSUM does not.

8.5 Protocol Reverse Engineering

Recent efforts in protocol reverse engineering involve using dynamic binary analysis,

input data taint analysis in particular, to reveal the format of protocol messages, facilitated

by instruction semantics (e.g., Polyglot [19]) or execution context (e.g., AutoFormat [20]

and [115]). Recently, it has been shown that the BNF structure of a given protocol with

multiple messages can be derived [21, 22, 116]; and the format of outgoing messages, as

well as encrypted messages, can be revealed [117, 118]. In particular, REWARDS shares

the same insight as Dispatcher [117] for type inference and semantics extraction.

These techniques share the same methodology with our system (i.e. making use of run­

time information). However, most existing protocol format reverse engineering techniques

focus on using program structure to reflect input syntactic structure. Comparing to these

techniques, we share the same observation that a binary implementation contains a wealth

of information on discovering the syntax and semantics of program data.

The difference among them is that Dispatcher and other protocol reverse engineering

techniques mainly focus on live input and output messages, whereas our technique strives

to reveal the general data structures in a program. We also care more about the detailed in-

memory layout of the program data, which is motivated by our different targeted application

scenarios.

127

8.6 Vulnerability Discovery

There is a large body of research in vulnerability discovery thorough fuzzing [7, 8],

automated test case generation, model checking, or taint analysis such as BuzzFuzz [10],

SNOOZE [11], SmartFuzz [9], Flayer [119], Archer [120], EXE [121], Vigilante [122],

Bouncer [123], TaintCheck [124], BitScope [125, 126], IntScope [83], TaintScope [127],

RICH [128], DART [129], CUTE [130], KLEE [131], and SAGE [132, 133]. REWARDS

complements these techniques by enabling the identification of data structure pattern of

vulnerability suspects directly from binaries.

Chevarista [134] is another project for automated vulnerability analysis on SPARC

binary code. Chevarista demonstrates how to translate binary code to SSA form and model

variable bounds by interval analysis to detect buffer overflow or integer overflow.

8.7 Kernel Rootkit Detection

Kernel-level rootkits pose a significant threat to the integrity of operating systems.

Earlier research uses a specification-based approach deployed in hardware (e.g., [56]),

virtual machine introspection (e.g., Livewire [26]), or binary analysis [135] to detect kernel

integrity violations. Recent advances include the mapping and analysis of kernel memory

images for control flow integrity checking [136] and kernel data integrity checking [30,57].

To facilitate kernel data integrity checking, techniques have been proposed for deriving

kernel data structure invariants [32, 43].

SigGraph is inspired by, and hence closely related to, the above efforts [30, 32, 43, 57].

In particular, Petroni et al. [57] proposed examining semantic invariants (such as “a process

must be on either the wait queue or the run queue”) of kernel data structures to detect kernel

rootkits. The key observation is that any violations of semantic invariants indicate kernel

rootkit presence. But the semantic invariants are manually specified. Baliga et al. [43]

proposed using the dynamic invariant detector Daikon [137] to extract kernel data structure

constraints. The invariants detected include membership, non-zero, bounds, length, and

subset relations. Dolan-Gavitt et al. [32] proposed a scheme for generating robust value

128

invariant-based kernel data structure signatures. Complementing these efforts, SigGraph

leverages the points-to relations between kernel data structures for signature generation.

As suggested in Section 7.2, SigGraph-based and value invariant-based signatures can be

integrated to further improve brute force scanning accuracy.

Carbone et al. proposed KOP [30] which involves building a global points-to graph for

kernel memory mapping and kernel integrity checking. The global graph is constructed

via an advanced inter-procedural points-to analysis on OS source code. A few heuristics

were proposed to better resolve function pointers. KOP is a highly effective system when

the kernel source code and a powerful static analysis infrastructure are available. The

main differences between SigGraph and KOP are the following: (1) Unlike KOP, SigGraph

does not require complex points-to analysis (which often involves source code analysis)

and instead only requires kernel data structure definitions. (2) KOP requires that data

structure instances be reachable starting from the root(s) of the global points-to graph;

whereas SigGraph does not require such global reachability and hence supports brute force

memory scanning that can start at any kernel memory address. In particular, SigGraph

may recognize kernel objects that are unreachable from global/stack variables. (3) To

achieve robustness against pointer corruption, the global points-to graph heavily depends

on a complete revelation of points-to relations between data structures; whereas SigGraph

can generate multiple signatures for each data structure by excluding problematic pointers

(e.g., null and void* pointers).

8.8 Kernel Version Inference

The goal of OS kernel version inference is to determine the specific OS of the machine

on which it is running, which is quite similar to OS fingerprinting mainly launched by

attackers to discover possible security vulnerabilities. The basic technique in OS finger­

printing is searching for OS-specific differences in the implementation of the TCP stack.

The widely used tools include Nmap [35, 138] and Xprobe2 [37].

129

The difference compared with our work is that we directly take a specific kernel data

structure signature to pinpoint an OS kernel version. Previously, it has been impossible for

the attacker to probe the data structures of remote OS, but in the cloud computing scenario,

it is quite possible for cloud providers to examine the guest OS memory. Though value-

invariants have been used to fingerprint OS kernels (e.g., in [34]), our SigGraph-based

fingerprinting technique has all the benefits of SigGraph over the value-invariant based

technique, as demonstrated in Chapter 6.

8.9 Memory Forensics

Memory forensics is a particular type of digital forensics [139], which focuses on

analyzing a memory image to interpret the state of the system. It has been evolving

from basic techniques, such as string matching, to more complex methods, such as object

traversal (e.g., [25, 30, 52, 53, 55]) and signature-based scanning (e.g., [32, 40–42, 140]).

Memory traversal approaches (e.g., KOP [30]) attempt to build a road-map of all data

structures, starting from the global key objects and traversing along the points-to edges.

However, such an approach has to resolve generic pointers such as void* and also cannot

traverse further if a pointer is corrupted. SigGraph [31] complements those approaches

by deriving context-free pointer-based signatures. Yet these techniques mostly work for

live data because “dead” data cannot be reached by traversal due to missing page tables

and unresolvable pointers. Signature scanning directly searches memory using signatures.

A classic approach is to search specific strings in memory. Other notable techniques

include PTfinder [41] for linear search of Windows memory to discover process and thread

structures, Volatility [25] and Memparser [42] with more capabilities of searching other

types of objects.

Signature-based scanning involves directly parsing the memory image using signatures.

In particular, Schuster [41] presented PTfinder for linearly searching Windows memory im­

ages to discover process and thread structures, using manually created signatures. Similar

to PTfinder, GREPEXEC [140], Volatility [40], and Memparser [42] are related systems

130

capable of searching for more types of objects. Dolan-Gavitt et al. [32] further proposed

an automated technique to derive robust data structure signatures. Sharing the same goal

of providing robust signatures for brute force memory scanning, SigGraph provides graph-

based, provably non-isomorphic signatures (as well as the corresponding memory scanners)

for individual kernel data structures.

Table 8.1: Capability comparison with existing techniques

Scenario Value Invariant KOP SigGraph DIMSUM
Live Object
Dead Object

w/o Mem Mapping
Brute-Force Scanning

�
�
�
�

� �

�

�
�
�
�

The difference between these techniques including SigGraph and DIMSUM, is summa­

rized in Table 8.1: for live objects such as objects in OS kernel, which usually have memory

mapping information (or the mapping information is easily recoverable), we could use all

these techniques including DIMSUM. However, without memory mapping information,

which is mostly the case for the dead object in free pages as well as the swapped page files,

we could use value-invariant and DIMSUM. Except KOP which does not support brute

force scanning, all these techniques can scan memory at arbitrary memory locations.

131

9. CONCLUSION

Data structure is one of the key aspects of a program. In this dissertation, we show that by

dynamically analyzing the binary code, we can reverse engineer the syntax and semantics

of data structures, and we hence develop a tool called REWARDS in Chapter 3 for this

purpose. By exploiting the points to relations between data structure, we next propose

SigGraph in Chapter 4, which can derive unique signatures for data structures and use

them to scan memory and identify data structure instances. Finally, for those data instances

that do not have memory mapping information, we develop DIMSUM in Chapter 5, which

leverages Bayesian inference techniques to identify them.

REWARDS makes a first step in recovering both the syntax and semantic information

of data structures. Given a binary executable, REWARDS executes the binary, monitors

the execution, aggregates and analyze runtime information, and ultimately recovers the

data structures observed in the execution. Besides leveraging the forward type propagation

technique, for reverse engineering of program data structures, REWARDS involves both

an on-line and off-line backward type resolution. REWARDS correctly handles the issues

caused by memory re-use (e.g., a same stack address may be shared by multiple variables)

by using timestamps. We have developed a prototype of REWARDS and used it to analyze

a number of binaries. Our evaluation results show that REWARDS is able to reveal the

types of the variables observed in a program’s execution with over 80% accuracy. Further­

more, we demonstrated the versatility of REWARDS in a variety of application scenarios,

such as memory image forensic analysis and binary fuzzing for vulnerability discovery.

After we have derived the data structure definitions from the application binary, the next

step is how to use these data structures. We observed that the points-to relations between

the data structures could be exploited by deriving the data structure signatures. We thus

developed SigGraph, a system to extract the points-to graph and automatically generate the

signatures for data structures. We have extensively evaluated SigGraph-based signatures

132

with several Linux kernels and verified the uniqueness of the signatures. Our signatures

achieve close to zero false positives and zero false negatives when applied to data structure

instance recognition in kernel memory images. Furthermore, our experiments showed that

SigGraph works without global memory maps and in the face of a range of kernel attacks

that manipulate pointer fields, demonstrating its applicability to kernel rootkit detection.

Finally, we showed that SigGraph can be used as well to determine the version of a guest

OS kernel, a key prerequisite of virtual machine introspection.

SigGraph can discover the data structure instances that are reachable, namely, the

pointer addresses can be resolved and mapped. However, for data instances in unmappable

memory, SigGraph does not work. Such un-mappable memory could be the entire free

pages of the system, the memory swap file, or a corrupted memory dump. To address

this problem, we presented a probabilistic inference-based approach called DIMSUM to

enable the recognition of data structure instances from un-mappable memory. Given a set

of memory pages and the specification of a target data structure, DIMSUM will identify

instances of the data structure in those pages with quantifiable confidence. Our experiments

with real-world applications on the Linux platform show that DIMSUM achieves better

effectiveness (with over 20% accuracy improvement) than non-probabilistic approaches

without memory mapping information.

Together, REWARDS, SigGraph, and DIMSUM present an integrated framework for

reverse engineering of data structures, including data structure definitions and data structure

instances. Meanwhile, they also suggest many interesting research problems. Below, we

briefly conclude this dissertation with a list of a number of open problems in this research

direction.

•	 Binary code obfuscation Reverse engineering has to deal with obfuscation [44].

There are many code obfuscation techniques to thwart static and dynamic code anal­

ysis, such as dead code insertion, code transposition, register assignment, instruc­

tion substitution [141], and code encryption and packing. These obfuscation tech­

niques will have an impact on our REWARDS, especially when we want to apply

133

REWARDS to analyze malware. However, REWARDS is resilient to static code

obfuscation by nature as it is a dynamic analysis system.

•	 Data structure obfuscation It is also possible to obfuscate the data structures, for

example, shuffle the data structure field [45], or insert a garbage field. Such problems

are a large threat to data structure reverse engineering and many data structure based

applications. It is worthwhile to study the problem of data structure obfuscations and

deobfuscations.

•	 False data injection issue In forensics scenarios, an attacker could attempt to gen­

erate fake data structure instances to thwart the use of SigGraph and DIMSUM.

Although exploiting the points-to relation makes such attacks more difficult as the

attacker would have to fake the multiple data structures involved in a graph signature

and make sure that all of the points-to relations among these data structures are

properly set up, and such an attack is totally possible. At this time there is no general

solution to this problem, and it is also worthwhile to investigate how to remove the

false injected data in forensics.

LIST OF REFERENCES

134

LIST OF REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd ed.): Fundamental
Algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 1997.

[2] N. Wirth, Algorithms + Data Structures = Programs. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 1978.

[3] E.	 Chikofsky and I. Cross, J.H., “Reverse engineering and design recovery: A
taxonomy,” Software, IEEE, vol. 7, pp. 13 –17, Jan 1990.

[4] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[5]	 “Single precision floating-point format.” http://en.wikipedia.org/wiki/Single precision
floating-point format.

[6] H. Etoh, “GCC extension for protecting applications from stack-smashing attacks
(ProPolice),” http://www.trl.ibm.com/projects/security/ssp/, 2003.

[7] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX
utilities,” in Proceedings of the Workshop of Parallel and Distributed Debugging,
pp. 9–19,, Academic Medicine, 1990.

[8] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of Windows
NT applications using random testing,” in Proceedings of the 4th Conference on
USENIX Windows Systems Symposium, (Seattle, Washington), pp. 6–6, USENIX
Association, 2000.

[9] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test generation to find integer
bugs in x86 binary Linux programs,” in Proceedings of the 18th Conference on
USENIX security Symposium, SSYM’09, (Montreal, Canada), pp. 67–82, USENIX
Association, 2009.

[10] V. Ganesh, T. Leek, and M. Rinard,	 “Taint-based directed whitebox fuzzing,” in
Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pp. 474–484, IEEE Computer Society, 2009.

[11] G. Banks, M. Cova, V. Felmetsger, K. C. Almeroth, R. A. Kemmerer, and G. Vigna,
“Snooze: Toward a stateful network protocol fuzzer,” in Information Security
Conference/Information Security Workshop, pp. 343–358, 2006.

[12] X.	 Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi, “Packet vaccine:
Black-box exploit detection and signature generation,” in Proceedings of the 13th
ACM Conference on Computer and Communication Security (CCS), (Alexandria,
Virginia, USA), pp. 37–46, ACM Press, 2006.

http://www.trl.ibm.com/projects/security/ssp
http://en.wikipedia.org/wiki/Single

135

[13] W. Cui, M. Peinado, H. J. Wang, and M. Locasto, “Shieldgen: Automatic data patch
generation for unknown vulnerabilities with informed probing,” in Proceedings of
2007 IEEE Symposium on Security and Privacy, (Oakland, CA), May 2007.

[14] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-based exploit
generation is possible: Techniques and implications,” in Proceedings of the IEEE
Symposium on Security and Privacy, May 2008.

[15] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG: Automatic exploit
generation,” in Proceedings of Network and Distributed System Security Symposium,
Feb. 2011.

[16] S. Heelan,	 “Msc computer science dissertation: Automatic generation of control
flow hijacking exploits for software vulnerabilities,” 2009.

[17] W.	 Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol reverse
engineering from network traces,” in Proceedings of the 16th USENIX Security
Symposium (Security’07), (Boston, MA), August 2007.

[18]	 “The Protocol Informatics Project,” http://www.baselineresearch.net/PI/.

[19] J. Caballero and D. Song, “Polyglot: Automatic extraction of protocol format using
dynamic binary analysis,” in Proceedings of the 14th ACM Conference on Computer
and and Communications Security (CCS’07), (Alexandria, Virginia, USA), pp. 317–
329, 2007.

[20] Z.	 Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format reverse
engineering through context-aware monitored execution,” in Proceedings of the
15th Annual Network and Distributed System Security Symposium (NDSS’08), (San
Diego, CA), February 2008.

[21] G. Wondracek, P. Milani, C. Kruegel, and E. Kirda, “Automatic network protocol
analysis,” in Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS’08), (San Diego, CA), February 2008.

[22] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni: Automatic
reverse engineering of input formats,” in Proceedings of the 15th ACM Conference
on Computer and Communications Security (CCS’08), (Alexandria, Virginia, USA),
pp. 391–402, October 2008.

[23] G. Palmer, “A road map for digital forensic research.,” Report from DFRWS 2001,
First Digital Forensic Research Workshop, pp. 27–30, August 2001.

[24] S. Peisert, M. Bishop, S. Karin, and K. Marzullo, “Toward models for forensic
analysis,” in Proceedings of the Second International Workshop on Systematic
Approaches to Digital Forensic Engineering, (Washington, DC, USA), pp. 3–15,
IEEE Computer Society, 2007.

[25] N. L. Petroni, Jr., A. Walters, T. Fraser, and W. A. Arbaugh, “Fatkit: A framework
for the extraction and analysis of digital forensic data from volatile system memory,”
Digital Investigation, vol. 3, no. 4, pp. 197 – 210, 2006.

[26] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based architecture
for intrusion detection,” in Proceedings Network and Distributed Systems Security
Symposium (NDSS’03), February 2003.

http://www.baselineresearch.net/PI

136

[27] P. M. Chen and B. D. Noble, “When virtual is better than real,” in Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems, pp. 133–, 2001.

[28] B. D. Payne, M. Carbone, and W. Lee, “Secure and flexible monitoring of virtual
machines,” in Proceedings of the 23rd Annual Computer Security Applications
Conference (ACSAC 2007), December 2007.

[29] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS’07), (Alexandria,
Virginia, USA), pp. 128–138, ACM, 2007.

[30] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping kernel
objects to enable systematic integrity checking,” in The 16th ACM Conference on
Computer and Communications Security (CCS’09), (Chicago, IL, USA), pp. 555–
565, 2009.

[31] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “Siggraph: Brute force scanning of
kernel data structure instances using graph-based signatures,” in Proceedings of the
18th Annual Network and Distributed System Security Symposium (NDSS’11), (San
Diego, CA), February 2011.

[32] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin,	 “Robust signatures for
kernel data structures,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS’09), (Chicago, Illinois, USA), pp. 566–577,
ACM, 2009.

[33] A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging for data structures,” in
Proceeding of 8th Symposium on Operating System Design and Implementation
(OSDI’08), (San Diego, CA), pp. 231–244, December, 2008.

[34] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS’07), (Alexandria,
Virginia, USA), pp. 128–138, ACM, 2007.

[35] L. G. Greenwald and T. J. Thomas, “Toward undetected operating system finger­
printing,” in Proceedings of the first USENIX Workshop on Offensive Technologies,
pp. 1–10, USENIX Association, 2007.

[36] M. Smart, G. R. Malan, and F. Jahanian, “Defeating TCP/IP stack fingerprinting,”
in Proceedings of the 9th Conference on USENIX Security Symposium, pp. 17–17,
USENIX Association, 2000.

[37] O. Arkin, F. Yarochkin, and M. Kydyraliev, “The present and future of xprobe2: The
next generation of active operating system fingerprinting. sys-security group,” July
2003.

[38] Zero, CuTedEvil, and Crick The art of disassembly, Free online book.

[39] G.	 Balakrishnan and T. Reps, “Divine: Discovering variables in executables,”
in Proceedings of International Conference on Verification Model Checking and
Abstract Interpretation (VMCAI’07), (Nice, France), ACM Press, 2007.

137

[40] A. Walters, “The volatility framework: Volatile memory artifact extraction utility
framework.” https://www.volatilesystems.com/default/volatility.

[41] A. Schuster, “Searching for processes and threads in Microsoft Windows memory
dumps,” Digital Investigation, vol. 3, no. Supplement-1, pp. 10–16, 2006.

[42] C. Betz, “Memparser.” http://sourceforge.net/projects/memparser.

[43] A.	 Baliga, V. Ganapathy, and L. Iftode, “Automatic inference and enforcement
of kernel data structure invariants,” in Proceedings of the 2008 Annual Computer
Security Applications Conference (ACSAC’08), (Anaheim, California), pp. 77–86,
December 2008.

[44] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating transfor­
mations,” Technical Report 148, Department of Computer Science, University of
Auckland, 1997.

[45] Z.	 Lin, R. D. Riley, and D. Xu, “Polymorphing software by randomizing data
structure layout,” in Proceedings of the 6th SIG SIDAR Conference on Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA’09), (Milan, Italy),
July 2009.

[46] R. Milner, “A theory of type polymorphism in programming,” Journal of Computer
and System Sciences, vol. 17, pp. 348–375, 1978.

[47] O. Agesen, “The cartesian product algorithm: Simple and precise type inference
of parametric polymorphism,” in Proceedings of the 9th European Conference on
Object-Oriented Programming (ECOOP’95), (London, UK), pp. 2–26, Springer-
Verlag, 1995.

[48] C. Chambers and D. Ungar, “Iterative type analysis and extended message splitting:
Optimizing dynamically-typed object-oriented programs,” in Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation,
pp. 150–164, 1990.

[49] J. Palsberg and M. I. Schwartzbach, “Object-oriented type inference,” in OOPSLA
’91: Conference proceedings on Object-oriented programming systems, languages,
and applications, (Phoenix, Arizona, United States), pp. 146–161, ACM, 1991.

[50] R. O’Callahan and D. Jackson, “Lackwit: A program understanding tool based on
type inference,” in Proceedings of the 19th International Conference on Software
engineering, (Boston, Massachusetts, United States), pp. 338–348, ACM, 1997.

[51] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst, “Dynamic inference of
abstract types,” in Proceedings of the 2006 International Symposium on Software
testing and analysis (ISSTA’06), (Portland, Maine, USA), pp. 255–265, ACM, 2006.

[52] A. Case, A. Cristina, L. Marziale, G. G. Richard, and V. Roussev, “Face: Automated
digital evidence discovery and correlation,” Digital Investigation, vol. 5, no. Sup­
plement 1, pp. S65 – S75, 2008. The Proceedings of the Eighth Annual DFRWS
Conference.

[53] P.	 Movall, W. Nelson, and S. Wetzstein, “Linux physical memory analysis,” in
Proceedings of the FREENIX Track of the USENIX Annual Technical Conference,
(Anaheim, CA), pp. 23–32, USENIX Association, 2005.

http://sourceforge.net/projects/memparser
https://www.volatilesystems.com/default/volatility

138

[54] I. Sutherland, J. Evans, T. Tryfonas, and A. Blyth,	 “Acquiring volatile operating
system data tools and techniques,” SIGOPS Operating System Review, vol. 42, no. 3,
pp. 65–73, 2008.

[55] J. Rutkowska, “Klister v0.3.” https://www.rootkit.com/newsread.php?newsid=51.

[56] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot - A coprocessor-
based kernel runtime integrity monitor,” in Proceedings of the 13th USENIX Security
Symposium, (San Diego, CA), pp. 179–194, August 2004.

[57] N.	 L. Petroni, Jr., T. Fraser, A. Walters, and W. A. Arbaugh, “An architecture
for specification-based detection of semantic integrity violations in kernel dynamic
data,” in Proceedings of the 15th USENIX Security Symposium, (Vancouver, B.C.,
Canada), USENIX Association, August 2006.

[58] M. Polishchuk, B. Liblit, and C. W. Schulze,	 “Dynamic heap type inference for
program understanding and debugging,” SIGPLAN Not., vol. 42, no. 1, pp. 39–46,
2007.

[59] Z. Lin, X. Zhang, and D. Xu,	 “Automatic reverse engineering of data structures
from binary execution,” in Proceedings of the 17th Annual Network and Distributed
System Security Symposium (NDSS’10), (San Diego, CA), February 2010.

[60]	 “Mission critical linux.” http://oss.missioncriticallinux.com/projects/mcore/.

[61] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recognition,” Pattern
Recognition, vol. 33, pp. 1771–1782, November 2000.

[62] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler,	 “From uncertainty to
belief: Inferring the specification within,” in Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI’06), (Seattle, Washington),
pp. 161–176, USENIX Association, 2006.

[63] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin: specification
inference for explicit information flow problems,” in Proceedings of ACM SIGPLAN
2009 International Conference on Programming Language Design and Implemen­
tation (PLDI’09), pp. 75–86, 2009.

[64] N. E. Beckman and A. V. Nori, “Probabilistic, modular and scalable inference of
typestate specifications,” in Proceedings of the 2011 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’11), 2011.

[65] T. Minka, J. Winn, J. Guiver, and A. Kannan, “Infer.NET 2.3,” 2009. Microsoft
Research Cambridge. http://research.microsoft.com/infernet.

[66] J.	 Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference (2nd ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1988.

[67] J.	 S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief propagation
and its generalizations,” Exploring Artificial Intelligence In The New Millennium,
pp. 239–269, 2003.

[68] L. Dietz, V. Dallmeier, A. Zeller, and T. Scheffer, “Localizing bugs in program
executions with graphical models,” in Proceedings of the 2009 Advances in Neural
Information Processing Systems, December 2009.

http://research.microsoft.com/infernet
http:Infer.NET
http://oss.missioncriticallinux.com/projects/mcore
https://www.rootkit.com/newsread.php?newsid=51

139

[69] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building customized program analysis
tools with dynamic instrumentation,” in Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’05), (Chicago, IL,
USA), pp. 190–200, 2005.

[70]	 “Libdwarf,” http://reality.sgiweb.org/davea/dwarf.html.

[71]	 “Gnu compiler collection (gcc) internals,” http://gcc.gnu.org/onlinedocs/gccint/.

[72] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineering of types
in binary programs,” in Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS’11), (San Diego, CA), February 2011.

[73] A.	 Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator for
reverse engineering data structures,” in Proceedings of the 18th Annual Network
and Distributed System Security Symposium (NDSS’11), (San Diego, CA), February
2011.

[74] J.	 Rhee, R. Riley, D. Xu, and X. Jiang, “Kernel malware analysis with un­
tampered and temporal views of dynamic kernel memory,” in Proceedings of the
13th International Symposium of Recent Advances in Intrusion Detection, (Ottawa,
Canada), September 2010.

[75]	 “QEMU: an open source processor emulator,” http://www.qemu.org/.

[76] J.	 Chow, B. Pfaff, K. Christopher, and M. Rosenblum, “Understanding data
lifetime via whole-system simulation,” in Proceedings of the 13th USENIX Security
Symposium, 2004.

[77] J. Solomon, E. Huebner, D. Bem, and M. Szezynska, “User data persistence in
physical memory,” Digital Investigation, vol. 4, no. 2, pp. 68 – 72, 2007.

[78] D. Bovet and M. Cesati, Understanding The Linux Kernel. Oreilly & Associates Inc,
2005.

[79] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember: Cold-
boot attacks on encryption keys,” in Proceedings of the 17th USENIX Security
Symposium, (San Jose, CA), August 2008.

[80] B. Fabrice,	 “Qemu, a fast and portable dynamic translator,” in Proceedings of
the 2005 USENIX Annual Technical Conference, (Berkeley, CA, USA), USENIX
Association, 2005.

[81] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford, “Virtual Playgrounds for Worm
Behavior Investigation,” Proceedings of the 8th International Symposium on Recent
Advances in Intrusion Detection, Sept. 2005.

[82] Z.	 Lin, X. Zhang, and D. Xu, “Convicting exploitable software vulnerabilities:
An efficient input provenance based approach,” in Proceedings of the 38th An­
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’08), (Anchorage, Alaska, USA), June 2008.

http:http://www.qemu.org
http://gcc.gnu.org/onlinedocs/gccint
http://reality.sgiweb.org/davea/dwarf.html

140

[83] T. Wang, T. Wei, Z. Lin, and W. Zou, “Intscope: Automatically detecting integer
overflow vulnerability in x86 binary using symbolic execution,” in Proceedings of
the 16th Annual Network and Distributed System Security Symposium (NDSS’09),
(San Diego, CA), February 2009.

[84] B. Laurie and A. Singer, “Choose the red pill and the blue pill: A position paper,” in
Proceedings of the 2008 Workshop on New Security Paradigms, pp. 127–133, 2008.

[85] G.	 Ramalingam, J. Field, and F. Tip, “Aggregate structure identification and its
application to program analysis,” in Proceedings of the 26th ACM SIGPLAN­
SIGACT Symposium on Principles of programming languages (POPL’99), (San
Antonio, Texas), pp. 119–132, ACM, 1999.

[86] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 executables,” in
Proceedings of International Conference on Compiler Construction (CC’04), pp. 5–
23, Springer-Verlag, 2004.

[87] T.	 W. Reps and G. Balakrishnan, “Improved memory-access analysis for x86
executables,” in Proceedings of International Conference on Compiler Construction
(CC’08), pp. 16–35, 2008.

[88] T. Reps, G. Balakrishnan, J. Lim, and T. Teitelbaum, “A next-generation platform for
analyzing executables,” in The Third Asian Symposium on Programming Languages
and Systems, (Tsukuba, Japan), 2005.

[89] T. Reps, G. Balakrishnan, and J. Lim, “Intermediate-representation recovery from
low-level code,” in Proceedings of the 2006 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, (Charleston, South Car­
olina, USA), pp. 100–111, 2006.

[90]	 “The IDA Pro disassembler and debugger.” http://www.hex-rays.com/idapro/.

[91]	 “CodeSurfer: A code browser that understands pointers, indirect function calls, and
whole-program effects,” http://www.grammatech.com/products/codesurfer/.

[92] C. Cifuentes, “Reverse Compilation Techniques,” PhD thesis, Queensland Univer­
sity of Technology, 1994.

[93] M.	 V. Emmerik and T. Waddington, “Using a decompiler for real-world source
recovery,” in Proceedings of the 11th Working Conference on Reverse Engineering,
pp. 27–36, 2004.

[94] P.	 T. Breuer and J. P. Bowen, “Decompilation: The enumeration of types and
grammars,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1613–1647, 1994.

[95]	 “Hex-rays decompiler SDK.” http://www.hex-rays.com/.

[96] A.	 Mycroft, “Type-based decompilation (or program reconstruction via type re­
construction),” in Proceedings of the 8th European Symposium on Programming
Languages and Systems (ESOP’99), (London, UK), pp. 208–223, Springer-Verlag,
1999.

[97] E. N. Dolgova and A. V. Chernov, “Automatic reconstruction of data types in the
decompilation problem,” Program. Comput. Softw., vol. 35, no. 2, pp. 105–119,
2009.

http:http://www.hex-rays.com
http://www.grammatech.com/products/codesurfer
http://www.hex-rays.com/idapro

141

[98] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary analysis
platform,” in Proceedings of Computer Aided Verification (CAV), July 2011.

[99] R. Brooks,	 “Towards a theory of the comprehension of computer programs,”
International Journal of Man-Machine Studies, vol. 18, no. 6, pp. 543 – 554, 1983.

[100] T.	 A. Corbi, “Program understanding: Challenge for the 1990s,” IBM Systems
Journal, vol. 28, no. 2, pp. 294 –306, 1989.

[101] S. Tilley, S. Paul, and D. Smith, “Towards a framework for program understanding,”
in Proceedings of the Fourth Workshop on Program Comprehension, pp. 19–28, Mar
1996.

[102] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling for software
maintenance with applications to the year 2000 problem,” SIGSOFT Software
Engineering Notes, vol. 22, no. 6, pp. 432–449, 1997.

[103] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of the 29th annual
ACM/IEEE International Symposium on Microarchitecture (MICRO-29), (Paris,
France), pp. 46–57, 1996.

[104] B. Calder, P. Feller, and A. Eustace, “Value profiling,” in Proceedings of the 30th
annual ACM/IEEE International Symposium on Microarchitecture (MICRO-30),
(Research Triangle Park, North Carolina, United States), pp. 259–269, 1997.

[105] J. Misurda, J. Clause, J. Reed, B. Childers, and M. Soffa, “Jazz: A tool for demand-
driven structural testing,” in Proceedings of the 14th International Conference on
Compiler Construction(CC’05), (Edinburgh, Scotland), pp. 242–245, 2005.

[106] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Proceedings of
the 28th International Conference on Software Engineering (ICSE’06), (Shanghai,
China), pp. 142–151, 2006.

[107] F. Tip,	 “A survey of program slicing techniques,” Journal of Programming Lan­
guages, vol. 3, pp. 121–189, 1995.

[108] M. Weiser, Program slices: formal, psychological, and practical investigations of an
automatic program abstraction method. PhD thesis, 1979. University of Michigan.

[109] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Dynamic slicing in the presence of
pointers, arrays, and records,” in Proceedings of the4th ACM Symposium on Testing,
Analysis, and Verification, pp. 60–73, 1991.

[110] H. Agrawal, R. A. Demillo, and E. H. Spafford, “Debugging with dynamic slicing
and backtracking,” Softw. Pract. Exper., vol. 23, pp. 589–616, June 1993.

[111] J.	 R. Bogdan Korel, “Application of dynamic slicing in program debugging,”
in Proceedings of the International Symposium on Automated Analysis-driven
Debugging (AADEBUG’97), no. 43-58, 1997.

[112] E.	 Soloway and K. Ehrlich, “Empirical studies of programming knowledge,”
Software Engineering, IEEE Transactions on, vol. SE-10, pp. 595 –609, sept. 1984.

[113] B. Shneiderman and R. Mayer,	 “Syntactic/semantic interactions in programmer
behavior: A model and experimental results,” International Journal of Parallel
Programming, vol. 8, pp. 219–238, 1979. 10.1007/BF00977789.

142

[114] A. Von Mayrhauser and A. Vans, “Program comprehension during software mainte­
nance and evolution,” Computer, vol. 28, pp. 44 –55, aug 1995.

[115] Z. Lin and X. Zhang, “Deriving input syntactic structure from execution,” in
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE’08), (Atlanta, GA, USA), November 2008.

[116] P. Milani Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex: Protocol
Specification Extraction,” in IEEE Symposium on Security & Privacy, (Oakland,
CA), pp. 110–125, 2009.

[117] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher: Enabling active
botnet infiltration using automatic protocol reverse-engineering,” in Proceedings
of the 16th ACM Conference on Computer and and Communications Security
(CCS’09), (Chicago, Illinois, USA), pp. 621–634, 2009.

[118] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “Reformat: Automatic reverse
engineering of encrypted messages,” in Proceedings of 14th European Symposium
on Research in Computer Security (ESORICS’09), (Saint Malo, France), LNCS,
September 2009.

[119] W.	 Drewry and T. Ormandy, “Flayer: Exposing application internals,” in Pro­
ceedings of the first USENIX Workshop on Offensive Technologies, (Boston, MA),
pp. 1:1–1:9, USENIX Association, 2007.

[120] Y. Xie, A. Chou, and D. Engler, “Archer: Using symbolic, path-sensitive analysis
to detect memory access errors,” in Proceedings of the 9th European Software
Engineering Conference held jointly with 10th ACM SIGSOFT International Sympo­
sium on Foundations of Software Engineering (ESEC/FSE-10), (Helsinki, Finland),
pp. 327–336, 2003.

[121] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “Exe: Auto­
matically generating inputs of death,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS’06), (Alexandria, Virginia, USA),
pp. 322–335, ACM, 2006.

[122] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham,
“Vigilante: End-to-end containment of internet worms,” in Proceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP’05), (Brighton, United
Kingdom), pp. 133–147, 2005.

[123] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado, “Bouncer: Securing soft­
ware by blocking bad input,” in Proceedings of the 21st ACM SIGOPS Symposium on
Operating systems principles (SOSP’07), (Stevenson, Washington, USA), pp. 117–
130, ACM, 2007.

[124] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software,” in Proceedings of the
14th Annual Network and Distributed System Security Symposium (NDSS’05), (San
Diego, CA), February 2005.

[125] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
D. Song, and H. Yin, “Bitscope: Automatically dissecting malicious binaries,” 2007.
Technical Report CMU-CS-07-133, Carnegie Mellon University.

143

[126] J. Caballero, P. Poosankam, S. McCamant, D. Babi ć, and D. Song, “Input generation
via decomposition and re-stitching: Finding bugs in malware,” in Proceedings of
the 17th ACM Conference on Computer and Communications Security, CC ’10,
(Chicago, Illinois, USA), pp. 413–425, ACM, 2010.

[127] T. Wang, T. Wei, G. Gu, and W. Zou,	 “Taintscope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection,” in Proceedings of the
31st IEEE Symposium on Security and Privacy (Oakland’10), May 2010.

[128] D. Brumley, T. cker Chiueh, R. Johnson, H. Lin, and D. Song, “Efficient and accurate
detection of integer-based attacks,” in Proceedings of the Network and Distributed
System Security Symposium, 2007.

[129] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random testing,”
in Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’05), (Chicago, IL, USA), pp. 213–223, ACM,
2005.

[130] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,” in
Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE-13), (Lisbon, Portugal), pp. 263–272, ACM, 2005.

[131] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs,” in USENIX Symposium on
Operating Systems Design and Implementation (OSDI’08), (San Diego, CA), 2008.

[132] P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox fuzz testing,” in Pro­
ceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS’08), (San Diego, CA), February 2008.

[133] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox fuzzing,” in
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’08), (Tucson, AZ, USA), pp. 206–215, ACM, 2008.

[134]	 “Automated vulnerability auditing in machine code,” Phrack Magzine, Vol(64).
http://www.phrack.com/issues.html?issue=64&id=8.

[135] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level rootkits through
binary analysis,” in Proceedings of the 20th Annual Computer Security Applications
Conference(ACSAC’04), pp. 91–100, 2004.

[136] N. L. Petroni, Jr. and M. Hicks, “Automated detection of persistent kernel control-
flow attacks,” in Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS’07), (Alexandria, Virginia, USA), pp. 103–115,
ACM, October 2007.

[137] M.	 Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically discovering
likely program invariants to support program evolution,” IEEE Trans. on Software
Engineering, vol. 27, no. 2, pp. 1–25, 2001.

[138] Fyodor,	 “Remote os detection via TCP/IP fingerprinting (2nd generation). inse­
cure.org,” January 2007. http://insecure.org/nmap/osdetect/.

http://insecure.org/nmap/osdetect
http:cure.org
http://www.phrack.com/issues.html?issue=64&id=8

144

[139] B. D. Carrier and E. H. Spafford, “Automated digital evidence target definition using
outlier analysis and existing evidence,” in Proceedings of the 5th Annual Digital
Forensic Research Workshop, 2005.

[140]	 “Grepexec: Grepping executive objects from pool memory,” Uninformed Journal,
Vol(4), 2006.

[141] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious
patterns,” in Proceedings of the 12th USENIX Security Symposium (Security’03),
pp. 169–186, USENIX Association, USENIX Association, Aug. 2003.

VITA

145

VITA

Zhiqiang Lin received his BE degree in computer science from Nanjing University

of Posts and Telecommunications in 2002, MS degree in computer science from Nanjing

University in 2006, and PhD degree in computer science from Purdue University in 2011.

His research interests mainly focus on systems and software security, with an emphasis

on the development of program analysis and reverse engineering techniques, and their ap­

plications to OS kernel integrity enforcement, software vulnerability discovery, malicious

code analysis, and computer forensics. In the fall of 2011, he will join the faculty of the

University of Texas at Dallas as an Assistant Professor of Computer Science.

	EDT9
	GS20
	thesis.pdf

