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Abstract

To secure today’s computer systems, it is critical to have different intrusion detection sensors embedded in them. The
complexity of distributed computer systems makes it difficult to determine the appropriate choice and placement of these
detectors because there are many possible sensors that can be chosen and each sensor can be placed in several possible
places in the distributed system. In this paper, we describea method to evaluate the effect a detector configuration has on
the accuracy and precision of determining the system’s security goals. The method is based on a Bayesian network model,
obtained from an attack graph representation of multi-stage attacks. We use Bayesian inference to solve the problem of
determining the likelihood that an attack goal has been achieved, given a certain set of detector alerts. We quantify the
overall performance as a function of the placement, quality, and uncertainty in knowledge of the detectors. Based on these
observations, we implement a dynamic programming algorithm for determining the optimal detector settings in a large-scale
distributed system and compare it against a previous Greedyalgorithm. Finally, we report the results of five experiments,
measuring the Bayesian networks behavior in the context of two real-world distributed systems undergoing attacks. Results
show the dynamic programming algorithm outperforms the Greedy algorithm in terms of the benefit provided by the set of
detectors picked. The dynamic programming solution also has the desirable property that we can trade off the running time
with how close the solution is to the optimal.

1 Introduction

It is critical to provide intrusion detection to secure today’s distributed computer systems. The overall intrusion detection
strategy involves placing multiple detectors at differentpoints of the system. Examples of specific locations are network
ingress or combination points, specific hosts executing parts of the distributed system, or embedded in specific applications
that form part of the distributed system. At the current time, the placement of the detectors and the choice of the detectors
are more an art than a science, relying on expert knowledge ofthe system administrator.

The choice of the detector configuration has substantial impact on the accuracy and precision of the overall detection
process. There are many choices to consider, including the placement of detectors, their false positive (FP) and false negative
(FN) rates, and other detector properties. This results in alarge exploration space which is currently explored using ad-hoc
techniques. Our paper presents an important step in constructing a principled framework to investigate this exploration space.

At first glance it may seem that increasing the number of detectors is always a good strategy. However, this is not always
the case and an extreme design choice of a detector at every possible network point, host, and application may not be ideal.
First, there is the economic cost of acquiring, configuring,and maintaining the detectors. Detectors need tuning to achieve
their best performance and to meet the targeted needs of the application (specifically in terms of the balance between false
positive and false negative rates). Second, a large number of imperfect detectors means a large number of alert streams in
benign conditions that could overwhelm the manual or automated response process. Third, detectors impose a performance
penalty on the distributed system as they typically share bandwidth and computational cycles with the application. Fourth,
system owners may have varying security goals such as requiring high sensitivity or ensuring less tolerance for false positive
alerts.

In this paper we address the problem of determining where (and how many) to place detectors in a distributed system,
based on situation-specific security and performance goals. We also show that this is an intractable problem. The security



Figure 1. Attack graph model for a sample web server. There ar e three starting vertices, representing
three vulnerabilities found in different services of the se rver from where the attacker can elevate the
privileges in order to reach the final goal of compromising th e password file.

goals are determined by requiring a certain trade-off between the true positive (TP) – true negative (TN) detection rates.
Our proposed solution starts with attack graphs, as shown inFigure 1, which are a popular representation for multi-stage

attacks [8]. Attack graphs are a graphical representation of the different ways multi-stage attacks can be launched against a
specific system. The nodes depict successful intermediate attack goals with the end nodes representing the ultimate attack
goal. The edges represent the notion that some attack goals serve as stepping stones to other attack goals and therefore have
to be achieved first. The nodes can be represented at different levels of abstraction; thus the attack graph representation can
bypass the criticism that detailed attack methods and stepsneed to be known a priori to be represented (which is almost
never the case for reasonably complex systems). Research inthe area of attack graphs has included automation techniques to
generate these graphs [28], [11], to analyze them [13], [22], and to reason about the completeness of these graphs [13].

We model the probabilistic relations between attack steps and detectors using the statistical formalism of Bayesian net-
works. Bayesian networks are particularly appealing in this setting since they enable computationally efficient inference for
unobserved nodes (such as attack goals) based on observed nodes (detector alerts.) The important question that Bayesian
inference can answer for us is, given a set of detector alerts, what is the likelihood or probability that an attack goal has been
achieved. A particularly important advantage is that Bayesian network can be relatively easily created from an attack graph
structure which is often assumed to be provided.

We formulate two Bayesian inference algorithms, implementing a greedy approach for one and dynamic programming for
the other, to systematically determine the accuracy and precision a specific detector configuration has. We then proceedto
choose the detector placement that gives the highest value of a situation-specific utility function. From prior work, weshow
the Greedy algorithm has an approximation ratio of1

2 . The dynamic programming solution falls in the algorithm category
of thefully polynomial time approximation scheme(FPTAS) and has the desirable property that we can trade off the running
time with how close the solution is to the optimal.

We demonstrate our proposed framework in the context of two specific systems, a distributed E-commerce system and
a Voice-over-IP (VoIP) system, and compared both algorithms. We experiment with varying the quality of the detectors,
the level of knowledge of attack paths, and different thresholds set by the system administrator for determining whether an
attack goal was reached. Our experiments indicate that the value of a detector in terms of determining an attack step degrades
exponentially with its distance from the attack site.

The rest of this document is organized as follows. Section 2 introduces the attack graph model and provides a brief
presentation of inference in Bayesian networks. Section 3 describes the model and algorithms used to determine an appro-
priate location for detectors. Section 4 provides a description of the distributed systems used in our experiments. Section 5
presents a complete description of the experiments along with their motivations to help determine the location of the intrusion
detectors. Section 6 presents related work and section 7 concludes the paper and discusses future work.

2 Background

2.1 Attack Graph

An attack graph is a representation of the different methodsby which a distributed system can be compromised. It
represents the intermediate attack goals for a hypothetical adversary leading up to some high-level attack goals such as
violating the confidentiality, integrity, or availabilityof a component in the system. It is particularly suitable forrepresenting
multi-stage attacks, in which one or more successful attacksteps is used to achieve success in a subsequent attack step.
The graph nodes represent attack stages, while edges connect the antecedent (or precondition) stages to the consequent(or
post-condition) stages. To be accurate, we consider the exploit-dependency attack graph [11], [28], [13], which is by far the
most common attack graph type. Recent research on attack graph generation has resulted in the creation of large graphs for
systems scaling up to hundreds and thousands of hosts [11], [28].



Figure 2. Simple Bayesian network with two types of nodes: an observed node u and unobserved
node v. The observed node corresponds to the detector alert in our f ramework and its conditional
probability table includes the true positive (α) and false positive (β) rates.

We construct a Bayesian network that includes the attack graph as a sub-graph. Additional nodes represent detectors,
connected by edges to the attack stages they are designed to detect.

2.2 Inference in Bayesian Networks

Bayesian networks [12] provide a convenient framework for modeling the relationship between attack steps and detector
alerts. Using Bayesian networks, we can infer which unobserved attack steps have been achieved based on the observed
detector alerts.

Formally, a Bayesian network is a joint probabilistic modelfor n random variables(x1, . . . , xn) based on a directed
acyclic graphG = (V,E), whereV is a set of nodes corresponding to the variablesV = (x1, . . . , xn), andE ⊆ V V

contains directed edges connecting some of these nodes in anacyclic manner. Instead of weights, the graph edges are
described by conditional probabilities of nodes given their parents that are used to construct a joint distribution viathe
productP (x1, . . . , xn) =

∏n
i=1 P (xi|{xj : xj is parent ofxi}). Figure 2 shows an example of a Bayesian network with two

nodesv, u ∈ V and the corresponding probability values associated to each node. Nodev is the parent of nodeu.
As previously mentioned, in our context the nodes correspond to either attack stages or detectors. Formally, the nodes are

binary random variables with 1 indicating that the attack stage was achieved or the detector issued an alert, and 0 otherwise.
Edges correspond to attack graph edges (in the case of edges connecting attack stage nodes) or detector edges connecting
detectors to the corresponding attack stage nodes. Consider for example,Va as the set of attack stages andVb as the set of
detectors. Then, a specific pair of nodesv ∈ Va, u ∈ Vb represents an attack step and a corresponding detector alert. The
conditional probabilityP (v|u) determines the valuesP (v = 1|u = 0), P (v = 0|u = 1), P (v = 0|u = 0), P (v = 1|u = 1).
These probabilities represent FN, FP, and correct behavior(last two), measure the detector effectiveness and can be obtained
by evaluating the quality of the detector.

There are three main tasks associated with Bayesian networks. The first is inferring values of variables corresponding to
nodes that are unobserved given the values of the observed nodes. In our context this corresponds to predicting whether an
attack step has been achieved based on detector alertsP (xa = 1|{xd : xd is a detector connected to attack stagexa}). The
second task is learning the conditional probabilitiesP (xi|{xj : xj is parent ofxi}) based on available data which in our
context corresponds to estimating the reliability of the detectors and the probabilistic relations between differentattack steps.
The third task is learning the structure of the network basedon available data. All three tasks have been extensively studied
and despite their difficulty in the general case, may be accomplished relatively easily for Bayesian networks.

We focus in this paper mainly on the first task. The second taskof estimating the conditional probabilities can be achieved
by characterizing the quality of the detectors [21] and the perceived difficulty of achieving an attack step through riskassess-
ment.

We consider the fact that the estimate is unlikely to be perfectly accurate and provide experiments to characterize the
loss in performance due to these imperfections. The third task of obtaining the network structure may be achieved based
on the attack graph and detector placement. In our Bayesian network, the network nodesV = Va

⋃

Vb are partitioned to
attack stage nodesVa, indicating whether an attack stage was achieved, and detector nodesVb, indicating whether a specific
detector issued an alert. The first set of nodes representingattack steps is typically unobserved while the second set ofnodes
corresponding to alerts are observed and constitute the evidence.

The Bayesian network defines a joint distributionP (V ) = P (Va, Vb) which can be used to compute the marginal proba-
bility of the unobserved valuesP (Va) and the conditional probabilityP (Va|Vb) =

P (Va,Vb)
P (Vb)

of the unobserved values given
the observed values. The conditional probabilityP (Va|Vb) can be used to infer the likely values of the unobserved attack
steps given the evidence from the detectors. Comparing the value of the conditionalP (Va|Vb) with the marginalP (Va)



Figure 3. A block diagram of the framework to determine place ment of intrusion detectors. The
dotted lines indicate a future component, a controller, not included currently in the framework. The
controller would provide for a feedback mechanism to adjust location of detectors.

reflects the gain in information for estimating successful attack steps given the current set of detectors. Alternatively, we
may estimate the suitability of the detectors by computing the classification error rate, precision, recall, and the Receiver
Operating Characteristic (ROC) curve associated with the prediction ofVa based onVb.

Note that the analysis above is based on emulation done priorto deployment with attacks injected through vulnerability
analysis tools, a plethora of which exist in the commercial and research domains, including integrated infrastructures for
combining multiple tools.

3 System Design

3.1 Framework Description

Our framework uses a Bayesian network to represent statistical relationships between different attack steps, and between
attack steps and detectors. The structure of the Bayesian network1 is based on the attack graph whose nodes represent attack
stages, with additional nodes added to represent the presence of detectors. Each node in the Bayesian network can be in one
of two states: attack stage nodes can be 0 or 1, representing whether the stage was achieved or not, and detector nodes can be
0 or 1, representing whether an alarm was generated. The initial nodes correspond to the starting stages of the attack, which
do not need any precondition, and the end nodes correspond tothe adversary’s end goals. Typically, there are multiple leaf
nodes and multiple end nodes. Figure 3 shows the complete framework.

The Bayesian network requires that the sets of vertices and directed edges form a directed acyclic graph (DAG). This
property is also found in attack graphs. The idea is that the attacker follows a monotonic path, in which an attack step does
not have to be revisited after moving to a subsequent attack step. This assumption can be considered reasonable in many
scenarios according to experiences from real systems.

A Bayesian network quantifies the statistical relation implied by the edges connecting parent nodes to children nodes.
When a node has a parent, a conditional probability table (CPT) is attached to the child node and this is determined by the
existence of an incoming edge. As such, the probability values for the state of the child are conditioned on the states of the
parents. As an example, the different values of nodeu in Figure 2 are conditioned on the possible states of its parent, nodev.

The values of the conditional probabilities in the CPTs may be obtained from data or by testing specific elements of
the system, for example by using IPTables [25] or Snort [32],or by using the subjective judgment of a system administrator.
From the perspective of the expert (administrator), the probability values reflect the difficulty of reaching a higher-level attack
goal, having achieved some lower-level attack goal.

A potential problem when building the Bayesian network is that the CPT values cannot be reliably determined. In this case,
we consider the performance of the Bayesian network under the assumption that the CPT values are inaccurate estimates that
may somewhat degrade our ability to diagnose the system. We compute the conditional probabilities of unobserved attack
stages given detector alerts using thejunction treeinference algorithm [19]. The junction tree engine is one ofthe most

1Henceforth, when we refer to a node, we mean a node in the Bayesian network, as opposed to a node in the attack graph. The clarifying phrase is thus
implied.



popular inference engines for Bayesian networks and generally provides accurate probability values relatively fast for small
or middle-sized networks.

3.2 Cost–Benefit Analysis

In this paper, we address the problem of determining the number and placement of detectors as a cost-benefit exercise.
The system benefit is calculated by the BENEFIT function shown below. This specific design considers only the end nodes in
the BN, corresponding to the ultimate attack goals. Other nodes that are of value to the system owner may also be considered
in alternate designs.

Algorithm 1 BENEFIT (di, aj)

1: //This is to calculate the benefit from attaching detectordi to attack vertexaj
2: //F is the set of end attack verticesfk
3: F ←

⋃M

k=1 fk
4: for all fk ∈ F do
5: perform Bayesian inference withdi as the only detector in the network and connected to attack vertexaj
6: calculatePrecision(fk, di, aj)
7: calculateRecall(fk, di, aj)

8: systemBenefit←
∑m

i=1

(1+β2

di
)
(

Precision(fk ,di,aj)×(Recall(fk ,di,aj)
)

(

β2

di
×Precision(fk,di,aj)+Recall(fk,di,aj)

)

9: end for
10: returnsystemBenefit

The BENEFIT function is used to calculate the benefit from attaching a detector to an attack vertex in the Bayesian
network. To evaluate the performance of a detector, the algorithm uses two popular measures from statistical classification,
precisionandrecall. Precision is the fraction of true positives (TP) determined among all attacks flagged by the detection
system. Recall is the fraction of TP determined among all real positives in the system. Then, the BENEFIT function combines
both measures into a single measure,Fβ −measure [4], which is the weighted harmonic mean of precision and recall and
a popular method to evaluate predictors.β is the ratio of recall over precision, defining the relative importance of one to the
other. The resultingFβ −measure constitutes the output of the BENEFIT function and is calledthesystemBenefit, provided
from attaching the detector to the Bayesian network.

The cost model for the system under analysis is defined by the following formula, corresponding to the expectation (in the
probabilistic sense) of the cost:

COST (di, aj) =
M
∑

k=1

(

Probfk (TP )×(costrespond)+Probfk(FP )×(costrespond)+Probfk (FN)×(costnotrespond
)

(1)

We calculate the cumulative cost associated by selecting a detector, based on its different outcomes with respect to theend
nodes: true positive (TP), false positive (FP), and false negative (FN). True negatives (TN) are not considered to compute
the detector cost as we believe there should not be any penalty for correct classification of non-malicious traffic. The cost of
positive (FP and TP) outcome is related to the response made by the detection system, whereas the FN cost depends on the
damage produced by not detecting the attack.

In our design, all probability values (TP, FP, and FN) are first computed by performing sampling on the Bayesian network,
since there are no real data (logs) when the system starts andplacement of detectors is calculated for the first time. After the
initial configuration is done and the system has been monitored for some time, the detection system can be reconfigured by
using the log files collected to compute new probability values.

3.3 Greedy Algorithm

We present here an algorithm to determine the choice and placement of detectors in a distributed system, using a greedy
approach, and first published in [23]. It takes as input (i) a Bayesian network with all attack vertices, their corresponding
CPTs, and the hosts impacted by the attack vertices; (ii) a set of detectors, the possible attack vertices with which each



Algorithm 2 DETECTOR-PLACEMENT(BN,D)

Input: (i) Bayesian networkBN = (V,CPT (V ), H(V )) whereV is the set of attack vertices,CPT (V ) is the set of
conditional probability tables associated with the attackvertices, andH(V ) is the set of hosts affected if the attack
vertices are achieved; (ii) Set of detectorsD = (di, V (di), CPT (i, j)) wheredi is the ith detector,V (di) is the set
of attack vertices that the detectordi can be attached to (i.e., the detector can possibly detect those attack goals being
achieved), andCPT (i, j)∀vj ∈ V (di) is the CPT table associated with detectori and attack vertexj.

Output: Set of tuplesΘ = (di, πi) wheredi is the ith detector selected andπi is the set of attack vertices to which it is
attached.

1: systemCost= 0
2: sort all(di, aj), whereaj ∈ V (di), ∀i by BENEFIT(di, aj). Sorted list= L

3: n← length[L]
4: for i← 1 to n do
5: systemCost← systemCost + COST(di, aj)
6: // COST(di, aj) can be in terms of economic cost, cost due to false alarms and missed alarms, etc.
7: if (systemCost> τ ) then
8: //τ is maximum cost system owners can afford (threshold)
9: break

10: end if
11: if (di ∈ θ) then
12: addaj to πi ∈ θ

13: else
14: add(di, πi = aj) to θ

15: end if
16: end for
17: returnΘ

detector can be associated, and the CPTs for each detector with respect to all applicable attack vertices. In symbolicalterms,
the input and output are:

The algorithm DETECTOR-PLACEMENT starts by sorting all combinations of detectors and their associated attack
vertices according to their benefit to the overall system (line 2). A greedy decision is made since the detector with highest
benefit from the unpicked set is considered singly. From the sorted list, (detector, attack vertex) combinations are added in
order, until the overall system cost due to detection is exceeded (line 7).

The worst-case complexity of the DETECTOR-PLACEMENT algorithm isO(dvB(v, CPT (v))+dv log(dv)+dv) where
d is the number of detectors andv is the number of attack vertices.

B(v, CPT (v)) is the cost of Bayesian inference on aBN with v nodes andCPT (v) defining the edges. The first term is
due to calling Bayesian inference with up tod timesv terms. The second term is the sorting cost and the third term is the cost
of going through the for loop (line 4)dv times. In practice, each detector will be applicable to onlya small, constant number
of attack vertices and therefore thedv terms can be replaced by the constant timesd, which will be onlyd considering order
statistics.

A slight but important variation to the Greedy algorithm presented above, found in [15], is also considered in our ex-
periments. We define the modified Greedy algorithm m-DETECTOR-PLACEMENT, which consists of running the original
Greedy algorithm first and then comparing the solution with the highest benefit value of any single item. The larger of the
two is picked as the output to the algorithm.

The greedy choice of detectors is not guaranteed to provide an optimal solution. For example, consider when three
detectors(d1, d2, andd3) are evaluated and a maximum cost of3M is allowed. Detectord1 has costw1 = 1 and benefit
b1 = 2 and detectorsd2 andd3 have the same cost and benefit withw2 = b2 = w3 = b3 = 1.5M . The Greedy algorithm
would pickd1 andd2 for a total benefit of2 + 1.5M while the optimal solution would included2 andd3 and would have a
benefit value of3M . The non-optimality of DETECTOR-PLACEMENT can be seen theoretically from the observation that
the problem of optimal detector choice and placement can be mapped to the 0-1 Knapsack problem which is known to be
NP-hard. The mapping is straightforward: consider the threshold cost in our problem to be the weight capacity W for the
Knapsack; and the set of possible detectors are the items considered to be included in the Knapsack, with their corresponding
benefit and cost as the profit and weight, respectively. An approximation ratio for the modified Greedy algorithm of the



Knapsack problem is found in [34] to be12 . We have included a summary of the calculation in Appendix 9.

3.4 FPTAS Algorithm

The mapping of our DETECTOR-PLACEMENT problem to the 0-1 Knapsack problem allows us to utilize the existing
algorithms for the popular NP-hard optimization problem. In particular, the Knapsack problem allows approximation to
any required degree of the optimal solution by, as previously mentioned, using an algorithm classified as (FPTAS) since
the algorithm is polynomial in the size of the instancen and the reciprocal of the error parameterǫ. An FPTAS is the best
possible solution for an NP-hard optimization problem, assuming of course thatP 6= NP . The original FPTAS for the 0-1
Knapsack problem was given in [10].

A description of the FPTAS implemented for our experiments follows and is adapted from [15], [34]. The scheme is
composed of two steps: first, the scaling of the benefit space to reduce the number of different benefit values to consider and
second, running a pseudo polynomial time algorithm based onthe dynamic programming technique on the scaled benefit
space.

Step 1 - Scaling Step
To obtain the FPTAS, the benefit space is scaled to reduce the number of different profit values and effectively bound the

profits inn, the input size. By scaling with respect to the error parameter ǫ, the algorithm produces a solution that is at least
(1− ǫ) times the optimal value, in polynomial time with respect to bothn andǫ. The algorithm is as follows:

Algorithm 3 BENEFIT SPACE SCALING
1: LetB ← benefit of the most profitable object
2: Givenǫ > 0, letE = ǫB

n

3: n← length[L]

Step 2 - Dynamic Programming Step
Let W be the maximum capacity of the knapsack. Alln items under consideration are labeledi ∈ 1, . . . , k, . . . , n and

each item has some weightwi and a scaled benefit valueb′i. Then the Knapsack problem can be divided into sub-problems
to find an optimal solution forSk; that is the solution for when items labeled from1 to k have been considered, but not
necessarily included, in the solution. Then, letB[k, w] be the maximum profit ofSk that has total weightw ≤W . Then, the
following recurrence allows to calculate all values forB[k, w]:

B[k, w] =

{

B[k − 1, w] ifwk > w

maxB[k − 1, w], B[k − 1, w − wk] + b′k else

The first case of the recurrence is when an itemk is excluded from the solution since if it were, the total weight would be
greater thanw, which is unacceptable. In the second case, itemk can be in the solution since its weight(wk) is less than the
maximum allowable weight(w). We choose to include itemk if it gives a higher benefit than if we exclude it. In the formula,
if the the second term is the maximum value, then we include itemk, and we exclude it if the first term is the maximum. The
final solutionB[n,W ] then corresponds to the setSn,W for which the benefit is maximized and the total cost is less orequal
toW .

The running time of FPTAS is given byO
(

n2B
ǫ

)

, and its design is based on the idea of trading accuracy for running
time. The original benefit space of the 0-1 Knapsack problem is mapped to a coarser one, by ignoring a certain number
of least-significant bits of benefit values, which depend on the error parameterǫ. The mapped coarser instance is solved
optimally through an exhaustive search by using a dynamic programming-based algorithm. The intuition, then, is to allow
the algorithm to run in polynomial time by properly scaling down the benefit space. This thus provides a trade-off between
the accuracy and the running time.

4 Experimental Systems

We created three Bayesian networks for our experiments modeling two real systems and one synthetic network. These are
a distributed electronic commerce (e-commerce) system, a Voice-over-IP (VoIP) network, and a synthetic generic Bayesian
network that is larger than the other two. The Bayesian networks were manually created from attack graphs that include sev-
eral multi-step attacks for the vulnerabilities found in the software used for each system. These vulnerabilities are associated
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Figure 4. Network diagram for the e-commerce system and its c orresponding Bayesian network. The
white nodes are the attack steps and the blue nodes are the det ectors.

with specific versions of the particular software, and are taken from popular databases [31], [27]. An explanation for each
Bayesian network follows.

4.1 E-Commerce System

The distributed e-commerce system used to build the first Bayesian network is a three tier architecture connected to the
Internet and composed of an Apache web server, the Tomcat application server, and the MySQL database backend. All servers
are running a Unix-based operating system. The web server sits in a de-militarized zone (DMZ) separated by a firewall from
the other two servers, which are connected to a network not accessible from the Internet. All connections from the Internet
and through servers are controlled by the firewall. Rules state that the web and application servers can communicate, andthat
the web server can be reached from the Internet. The attack scenarios are designed with the assumption that the attacker is
an external one and thus its starting point is the Internet. The goal for the attacker is to have access to the MySQL database
(specifically, access to customer confidential data such as credit card information – node 19 in the Bayesian network of Figure
4).

As an example, an attack step would be a portscan on the application server (node 10). This node has a child node, which
represents a buffer overflow vulnerability present in the rpc.statd service running on the application server (node 12). The
other attack steps in the network follow a similar logic and represent other phases of an attack to the distributed system. The
system includes four detectors: IPtables, Snort, Libsafe,and a database IDS. As shown in Figure 4, each detector has a causal
relationship to at least one attack step.

Further details on the e-commerce testbed used for the experiments, including all the probability values used for the
corresponding Bayesian network, is available in Appendix 8.

4.2 Voice-over-IP (VoIP) System

The VoIP system used to build the second network has a few morecomponents, making the resulting Bayesian network
more complex. The system is divided into three zones: a DMZ for the servers accessible from the Internet, an internal
network for local resources such as desktop computers, mailserver and DNS server, and an internal network only for VoIP
components. This separation of the internal network into two units follows the security guidelines for deploying a secure
VoIP system [18].

The VoIP network includes a PBX/Proxy, voicemail server andsoftware-based and hardware-based phones. A firewall
provides all the rules to control the traffic between zones. The DNS and mail servers in the DMZ are the only accessible
hosts from the Internet. The PBX server can route calls to theInternet or to a public-switched telephone network (PSTN).
The ultimate goal of this multi-stage attack is to eavesdropon VoIP communication. There are four detectors – IPtables,and
three network IDSs on the different subnets.

A third synthetic Bayesian network was built to test our framework for experiments where a larger network, than the other
two, was required. This network is shown in Figure 7(a).
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5 Experiments

The correct number, accuracy, and location of the detectorscan provide an advantage to the system’s owner when deploy-
ing an intrusion detection system. Several metrics have been developed for evaluation of intrusion detection systems.In our
work, as first presented in section 3.3, we concentrate on precision and recall. The notions of TP, FP, etc., are shown in Figure
6. We also plot the ROC curve which is a traditional method forcharacterizing detector performance – it is a plot of the true
positive against the false positive.

For the experiments, we create a dataset of 50,000 samples orattacks, based on the respective Bayesian network. We use
the Bayesian network toolbox for Matlab [24] for our Bayesian inference and sample generation. Each sample consists of a
set of binary values, for each attack vertex and each detector vertex. A one (zero) value for an attack vertex indicates that
attack step was achieved (not achieved), and a one (zero) value for a detector vertex indicates the detector generated (did
not generate) an alert. Separately, we perform inference onthe Bayesian network to determine the conditional probability of
different attack vertices. The probability is then converted to a binary determination – whether or not the detection system
flagged that particular attack step, using a threshold. Thisdetermination is then compared with reality, as given by theattack
samples which leads to a determination of the system’s accuracy. There are several experimental parameters – which specific
attack vertex is to be considered, the threshold, CPT values, etc. – and their values (or variations) are mentioned in the
appropriate experiment. The CPTs of each node in the networkare manually configured according to the authors’ experience
administering security for distributed systems and frequency of occurrences of attacks from references such as vulnerability
databases, as mentioned earlier.

5.1 Experiment 1: Distance from Detectors

The objective of experiment 1 was to quantify for a system designer the gain in placing a detector close to a service where
a security event may occur. Here we used the synthetic network since it provided a larger range of distances between attack
steps and detector alerts.

The CPTs were fixed to manually determined values on each attack step. Detectors were used as evidence, one at a time,
on the Bayesian network and the respective conditional probability for each attack node was determined. The effect of the
single detector on different attack vertices was studied, thereby varying the distance between the node and the detector. The
output metric is the difference of two terms. The first term isthe conditional probability that the attack step is achieved,
conditioned on a specific detector firing. The second term is the probability that the attack step is achieved, without useof
any detector evidence. The larger the difference is, the greater is the value of the information provided by the detector. In
Figure 7(b), we show the effect due to detector corresponding to node 24, and in Figure 7(c), we consider all the detectors
(again, one at a time). The effect of all the detectors shows that the conclusions from node 24 are general.

The results show that a detector can affect nodes inside a radius of up to three edges from the detector. The change in
probability for a node within this radius, compared to one outside the radius, can be two times greater when the detector is
used as evidence. For all Bayesian networks tested, the results were consistent with the three edges radius observation.
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5.2 Experiment 2: Impact of Imperfect Knowledge

The objective of experiment 2 was to determine the performance of the detection system in the face of attacks. In the first
part of the experiment (experiment 2a), the effect of the threshold that is used in converting the conditional probability of an
attack step into a binary determination is studied. This corresponds to the practical situation in which a system administrator
has to make a binary decision based on the result of a probabilistic framework, and there is no oracle at hand to help. For
the second part of the experiment (experiment 2b), the CPT values in the Bayesian network are perturbed by introducing
variances of different magnitudes. This corresponds to thepractical situation that the system administrator cannot accurately
gauge the level of difficulty for the adversary to achieve attack goals. The impact of the imperfect knowledge is studied
through a ROC curve.

For experiment 2a, precision and recall were plotted as a function of the threshold value. This was done for all the attack
nodes in the Bayesian network, and the results for a representative sample of six nodes are shown in Figure 8. We used
threshold values from 0.5 to 0.95, since anything below 0.5 would imply the Bayesian network is useless in its predictive
ability.

As expected, when the threshold is increased, there are fewer FP and the precision of the detection system improves. The
opposite is true for the recall of the system since there are more false negatives. However, an illuminating observationis
that the precision is relatively insensitive to the threshold variation while the recall has a sharp cut-off. Clearly, the desired
threshold is to the left of the cut-off point. Therefore, this provides a scientific basis for an administrator to set the threshold
for drawing conclusions from a Bayesian network representing the system.

In experiment 2b we introduced variance to the CPT values of all the attack nodes, mimicking different levels of imperfect
knowledge an administrator may have about the adversary’s attack strategies. When generating the samples corresponding
to the attacks, we used three variance values: 0.05, 0.15, and 0.25. Each value could be associated with a different levelof
knowledge from an administrator: expert, intermediate, and nave, respectively. For each variance value, ten batches of 1,000
samples were generated and the detection results were averaged over all batches.

In Figure 9, we show the ROC curves for nodes 1 and 6 of the e-commerce system, with all four detectors in place. As the
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Figure 9. ROC curves for two attack steps in e-commerce Bayes ian network. Each curve corresponds
to a different variance added to the CTP values.

variance increases, the performance suffers. However, theprocess of Bayesian inference shows an inherent resiliencesince
the performance does not degrade significantly with the increase in variance. For node 1, several points are placed so close
together that only one marker shows up. On the contrary, for node 6, multiple well spread out TP-FP value pairs are observed.
We hypothesize that since node 1 is directly connected to thedetector node 3, its influence over node 1 dominates over all
other detectors. Hence fewer numbers of sharp transitions are seen compared to node 6, which is more centrally placed with
respect to multiple detectors.

Experiment 2c also looked at the impact of imperfect knowledge when defining the CPT values in the Bayesian network.
Here we progressively changed the CPT values for several attack steps in order to determine how much we would deviate
from the correct value. We used two values, 0.6 and 0.8, for each CPT cell (only two are independent), giving rise to four
possible CPT tables for each node. We plot the minimum and maximum conditional probabilities for a representative attack
node for a given detector flagging. We change the number of CPTs that we perturb from the ideal values. As assumed, when
the number of CPTs changed increases, the difference between the minimum and the maximum increases, but the range is
within 0.03. Note that the point at the left end of the curve for zero CPTs changed gives the correct value.

Both experiments indicate that the BN formalism is relatively robust to imperfect assumptions concerning the CPT values.
This is an important fact since it is likely that the values determined by an experienced system administrator would still be
somewhat imperfect. Overall, as long as the deviation of theassumed CPTs from the truth is not overwhelming, the network
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Figure 11. Comparison between Greedy algorithm and FPTAS fo r different cost values.

performance degrades gracefully.

5.3 Experiment 3: Comparison between Greedy algorithm and FPTAS

The objective of experiment 3 was to determine the performance of the FPTAS and compare it to the Greedy algorithm,
using the Bayesian network for the e-commerce distributed system. The experiment was repeated for different capacity
thresholds, representing cases for different numbers of detectors(1, 2, 3, or 4). For FPTAS, the algorithm usedǫ = 0.01
since varying the parameter for different values, from0.01 to 0.30, produced no relevant change on the resulting set of
detectors and the running time was similar to the one from Greedy. More information on the running times is provided at the
end of this section.

In all cases of the experiment, FPTAS performed better than Greedy algorithm in terms of achieving a higher benefit.
FPTAS always first picked the (detector, location) pair(d20,a19) closer to the attack goal of interest and with the highest
benefit, given the capacity constraint. Nevertheless, the selection of (detector, location) pairs was not accumulative as the
capacity threshold was increased. As an example, when the threshold was set to0.60 (representing the case for two detectors
picked), FPTAS selected pairs(d20,a19) and (d3,a1) but when threshold was increased to120 (three detectors), FPTAS
selected(d20,a19), (d20,a17), and(d3,a2), removing(d3,a1) from the solution set. The reason for this situation is that as the
capacity threshold is increased, it might include a detector with higher benefit and cost than one selected under the previous
threshold considered.

The performance of the Greedy algorithm was interesting as it always started selecting the(d3,a1) pair, regardless of the
capacity threshold. This actually shows the drawback of theGreedy algorithm. It picks detectors that are accurate but are
far from the ultimate attack goals that we are interested in.The case when the threshold was set toW = 0.51 (one detector)
represented an example of a worst-case scenario since the ratio between the optimal selection and the greedy choice was
1
2 . Still, as the threshold was increased, the Greedy algorithm seemed to correct itself and provide a solution closer to the
optimal set. For cases ofW = 1.20 andW = 1.50, the Greedy algorithm had all but one of the (detector, location) pairs that
are part of the solution set chosen by FPTAS.
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Figure 12. ROC curves for detectors picked by Greedy (dashed line) and FPTAS (solid line) for differ-
ent capacity values: (a) W = 0.51, (b) W = 0.60, (c) W = 1.20 and (d) W = 1.50.

An interesting result is the cost associated to the detectors picked by the Greedy algorithm when compared to the choices
made by FPTAS. In all our experiments, the selections made byGreedy had an overall lower cost and benefit than FP-
TAS. Although the cost value achieved by Greedy might be considered positive result, it is important to remember that our
DETECTOR-LOCATION problem is an optimization problem where we try to maximize the benefit.

The ROC curves shown in Figure 12 also represent the results from the experiment. In (a) and (b), the Greedy algorithm
starts picking detectors too far away from the attack goal such that it doesn’t have any (TPR,FPR) points, except for (0,0) and
(1,1). We decided not to plot such lines because the performance of the detector(s) selected is no better than flipping a (fair)
coin to determine if the attack goal has been achieved.

FPTAS performs better than the Greedy algorithm by immediately picking the detector closest to the attack goal, in the
case of cost = 0.51 (one detector). In this case, FPTAS picks detectord20, which is directly connected to the attack goal. In
comparison, the Greedy algorithm starts by picking the detector farthest away from the attack goal. The reason for this is
that such a detector has the highest benefit-to-cost ratio among all detectors. The problem is that this ratio does not reflect
the actual performance of the detector for the attack goal. Such performance is shown in the corresponding ROC curve (one
detector).

In the case of cost = 0.60 (two detectors), The Greedy algorithm follows a similar pattern as the previous case, picking the
remaining detector with highest benefit-to-cost ratio. This detector is also far from the attack goal. In contrast, FPTAS picks
a detector connected to an attack step, which is connected toattack goala19, and increasing the overall True Positive Rate of
the detection system. Nevertheless, the same addition alsoincreases the false positive rate.

For cases of cost = 1.20 (three detectors) and 1.50 (four detectors), the Greedy algorithm starts picking detectors closer to
the attack goal that, as is shown in the corresponding ROC curves, perform relatively similar to the set of detectors selected
by FPTAS.

In conclusion, FPTAS starts by selecting the closest (best)detector for the attack goal, and as it adds more detectors
improves (marginally) the TPR of the detection system but with a price (also increasing the FPR). The Greedy algorithm
selects from a decreasingly sorted list of detectors, according to their benefit-to-cost ratio. These are two examples of the
first experiment we performed with Bayesian networks, wherewe demonstrated that as distance increases between detector
and attack goal, the detection capability decreases.
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Figure 14. Sensitivity analysis to different low (0.1, 0.2, 0.3) and medium (0.4, 0.5, 0.6) cost values.
The table on the left is for capacity of 0.90, which correspon ds to two detectors selected by both
algorithms. The table on the right is for capacity of 2.0, whi ch corresponds to five detectors selected.

We evaluated the running time for both algorithms by performing 100 execution runs for the Greedy algorithm and for
each FPTAS with an error parameter(ǫ) from 0.0001 to 1. Figure 13 summarizes the findings on the running time for both
algorithms. It shows the results for FPTAS, forǫ from 0.0001 to 0.1 along with an exponential regression curve to fit the
series of data points collected. In the case of the Greedy algorithm, we report a single value (represented by a straight line
at 0.0523 seconds) since it is unaffected byǫ. From the results, the Greedy algorithm ran faster than FPTAS, when the error
parameter was less than 0.01. In our experiments, around that error value (0.01) they both showed similar running times.For
the Greedy algorithm it took on average 0.0523 seconds, while for FPTAS the average running time was 0.0499 seconds. We
excluded from both algorithms the time taken to create the Bayesian network, the samples and to compute the probability
values. All are necessary inputs for both algorithms and took 32.75 seconds on average to create and compute.

5.4 Experiment 4: Sensitivity to Cost Value

The objective of experiment 4 was to evaluate the impact of varying the quantitative value assigned to each cost category
(low, medium, high). Three values were used for each category: low (0.10, 0.20, 0.30), medium (0.40, 0.50, 0.60) and
high (0.70, 0.80, 0.90). The experiment was repeated on bothalgorithms, FPTAS and Greedy algorithm, using the Bayesian
network for the e-commerce distributed system and for different knapsack capacities (0.51, 0.90, 1.20, 1.50, 2.00, 2.50, and
3.50). Such capacities correspond to the total resources available to the administrator to deploy and administer the detection
system. For FPTAS, the algorithm usedǫ = 0.01.

Varying the quantitative value of a cost level seems to only slightly affect the outcome from the algorithms. In all cases,
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Figure 15. Detectors selected by Greedy algorithm and FPTAS for different attack goals (ai).

both algorithms are somehow consistent picking at least thefirst two or three (detector, attack node) pairs, while varying the
quantitative value of the cost level. This is a positive result since the quantitative values are arbitrarily determined by the
system administrator or person responsible for assessing the detection systems.

Comparing these results to the previous experiment, both the Greedy algorithm and FPTAS performed as they did in the
previous experiment. In the case of Greedy algorithm, it keeps picking(d3, a1) before any other pair as this has the highest
benefit-to-cost ratio. The FPTAS algorithm starts by picking (d20, a19) as it shows the highest benefit for the knapsack
capacity constraint, regardless of the different values used for each cost level. In the case when a(detector, attack node)pair
is changed because a level value has been changed, this can beexplained from the impact the pair has on the individual cost
assigned to each pair.

5.5 Experiment 5: ROC curves across Different Attack Graphs

The goal of this experiment is to show the performance of eachalgorithm, Greedy and FPTAS, by picking a pair of detec-
tors for different attack goals. All attack goals in the e-commerce Bayesian network were used to evaluate the performance
of the algorithms.

We decided to limit the size of the set of detectors picked to two, for each case and algorithm, since in our experience
it is a reasonable number of detectors for a system administrator to use to defend a particular attack goal. Although such
number would ultimately depend on several factors (for example: number of detectors available, the size of the network
and its corresponding Bayesian network), we believe that the two-detector scenario allows us to show the behavior of each
algorithm for the different attack goals considered.

To show the results, Figure 15 is used to present the detectors picked for each attack goal scenario and the corresponding
algorithm used to picked the pair of detectors. Also, a ROC curve is created by averaging the FPR and TPR from the different
attack goal scenarios.

The results from this experiment validate the observationsfrom previous experiments. The Greedy algorithm starts by
picking the detectors showing the highest benefits regardless of its distance from the attack goal. Still, since all attack nodes
are considered as goals, there are several cases where the Greedy algorithm will pick detectors close to the goal and with
high benefit values. Therefore, the ROC curve (dashed line) shown in Figure 16 performs just slightly worse than in the case
of the FPTAS algorithm. Looking at the choices made by FPTAS,it consistently picks detectors with a high benefit and close
to the attack goal considered.

All the experiments validate the intuition that the algorithms can provide good results when multiple detectors are consid-
ered together and over the entire Bayesian network. The Greedy algorithm performed well under the scenarios considered,
which we believe a good representation of the cases found in real-world systems. Still, as it is shown in Appendix 9, there
could be some scenarios for which the Greedy algorithm couldproduce results as low as half of the optimal solution. The
FPTAS allows getting closer to the optimal solution as the algorithm is bounded by a polynomial in the size of the input and
the reciprocal of the error parameter. In the experiments the FPTAS always selected a solution equal to or better than the
Greedy algorithm, in terms of the benefit provided. As futurework, we will test the algorithms under larger scenarios, which
will determine the impact of the error parameter on the running time of the scheme.

6 Related Work

Bayesian networks have been used in intrusion detection to perform classification of events. [17] proposed the usage of
Bayesian networks to reduce the number of false alarms. Bayesian networks are used to improve the aggregation of different
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Figure 16. ROC curves for detectors picked by Greedy (dashed line) and FPTAS (solid line) across
all different attack goals in E-Commerce Bayesian network.

model outputs and allow integration of additional information. The experimental results show an improvement in the accuracy
of detections, compared to threshold-based schemes. [1] studied the use of nave Bayes in intrusion detection, which included
a performance comparison with decision trees. Due to similar performance and simpler structure, naı̈ve Bayes is an attractive
alternative for intrusion detection. Other researchers have also used nave Bayesian inference for classifying intrusion events
[33].

To the best of our knowledge, the problem of determining an appropriate location for detectors has not been systematically
explored by the intrusion detection community. However, analogous problems have been studied to some extent in the
physical security and the sensor network fields.

[14] developed a Markov Decision Process (MDP) model of how an intruder might try to penetrate the various barriers
designed to protect a physical facility. The model output includes the probability of a successful intrusion and the most likely
paths for success. These paths provide a basis to determine the location of new barriers to deter a future intrusion.

In the case of sensor networks, the placement problem has been studied to identify multiple phenomena such as determin-
ing location of an intrusion [2], contamination source [5],[30], and atmospheric conditions [16]. In these cases, the authors
are attempting to detect events of interest, which propagate using some well-defined models, such as through the cluster
head en route to a base node. Some of the work [16] is focused ondetecting natural events that do not have a malicious
motive in avoiding detection. In our case, we deal with malicious adversaries who have an active goal of trying to bypass
the security of the system. The adversaries’ methods of attacking the system do not follow a well-known model making our
problem challenging. As an example of how our solution handles this, we use noise in our BN model to emulate the lack of
an accurate attack model.

There are some similarities between the work done in alert correlation and ours, primarily the interest in reducing the
number of alerts from an intrusion to be analyzed. Approaches such as [26] have proposed modeling attack scenarios to
correlate alerts and identify causal relationships among the alerts. Our work aims to closely integrate the vulnerability
analysis into the placement process, whereas the alert correlation proposals have not focused on such scenario.

The idea of using the Bayes’ theorem for detector placement is suggested in [29]. No formal definition is given, but
several metrics such as accuracy, sensitivity, and specificity are presented to help an administrator make informed choices
about placing detectors in a distributed system. These metrics are associated with different areas or sub-networks of the
system to help in the decision process.

Many studies have been done on developing performance metrics for the evaluation of intrusion detection systems (IDS),
which have influenced our choice of metrics here. [3] showed the applicability of estimation theory in the intrusion detection
field and presented the Bayesian detection rate as a metric for the performance of an IDS. His observation that the base rate,
and not only the false alarm rate, is an important factor on the Bayesian detection rate, was included in our work by using
low base rates as part of probability values in the Bayesian network. The MAFTIA Project [7] proposed precision and recall
to effectively determine when vulnerability was exploitedin the system. A difference from our approach is that they expand
the metrics to consider a set of IDSes and not only a single detector. The idea of using ROC curves to measure performance
of intrusion detectors has been explored many times, most recently in [6], [9].

Extensive work with attack graphs has been done for many years. Recent work has concentrated on the problems of
generating attack graphs for large networks and automatingthe process to describe and analyze vulnerabilities and system



components to create the graphs. The NetSPA system [11] and MulVal tool [28] are two examples.

7 Conclusions and Future Work

Bayesian networks have proven to be useful tools in representing complex probability distributions, such as in our case
of determining the likelihood that an attack goal has been achieved, given evidence from a set of detectors. By using attack
graphs and Bayesian inference, we can quantify the overall detection performance in the systems by looking at different
choices and placements of detectors and the detection parameter settings. We also quantified the information gain due toa
detector as a function of its distance from the attack step. Also, the effectiveness of the Bayesian networks can be affected
by imperfect knowledge when defining the conditional probability values. Nevertheless, the Bayesian network exhibits
considerable resiliency to these factors, as our experiments showed. Finally, we compared the performance of Greedy and
FPTAS algorithms to determine a set of detectors given an attack goal. FPTAS consistently outperformed Greedy, although
the latter could be used in scenarios where time constraintsexist.

Future work will include looking at the scalability issues of Bayesian networks and its impact on determining the location
for a set of detectors in a distributed system. The probability values acquisition problem can be handled by using techniques
such as the recursive noisy-OR modeling [20] or using honeynets to monitor the behavior of attackers and compute the
corresponding probability values. Experimentation is required to determine its benefits and limitations for our scenario.
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8 Appendix: Description of E-Commerce Bayesian Network

We provide a description of the Bayesian network built for the e-commerce system used in the experiments. It includes
a description of each node in the Bayesian network, for the observed and unobserved nodes, as well as the corresponding
probability values (shown as tables) associated with each node.
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Figure 17. Bayesian network for the e-commerce system with c orresponding description of the
nodes. Each node is either an attack step or a detector.
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Figure 18. Bayesian network for the e-commerce system with t he conditional probabilities values
used for the experiments.



9 Appendix: Calculation of Approximatio Ratio for Greedy Algorithm

We provide the calculation of the approximation ratio for aGreedy algorithmof the 0-1 knapsack problem (KP), for
the bounded case (when there is a limited number of items fromwhich to pick and put in the knapsack). The proofs for
the calculation of the approximation ratio are adapted from[15] and [34]. We include the proofs in this paper to make the
previous proofs more accessible to a systems security audience and to show the thinking process that went on behind our
search for FPTAS after having designed the Greedy solution.

KP can be formally defined as the following: given aninstancewith item setN , consisting ofn itemsxi, each with a
profit pi and weightwi. The knapsack has a capacity valuec. The objective is to select a subset ofN such that the total profit
of the selected items(Σn

i=1pixi) is maximized subject to the corresponding total weight not exceeding the knapsack capacity
(Σn

i=1wixi ≤ c). The optimal solution value is denoted byzOPT .
The idea of the Greedy algorithm with a solution valuezG is to start with an empty knapsack, sort the items in decreasing

order according to its profit to weight ratiopi

wi
and go through the sorted items, adding every item into the knapsack while its

capacity is not overwhelmed. The final step is making a comparison between the given solution and the highest profit value
of any item. The larger of the two is finally taken and is denoted byzmG. This final step can be considered a modification of
the original Greedy algorithm found in literature [33], butnecessary to guarantee an approximation ratio of1

2 to the optimal
solution.

A linear programming relaxation (LKP) is made to compute theapproximation ratio, omitting the integer constraint of KP
and optimizing instead over all nonnegative real values. Naturally, the optimal solution valuezLKP of the relaxed problem is
at least as large as the original valuezOPT because the set of feasible solutions for the original KP is asubset of the feasible
solutions for the relaxed problem. The Greedy algorithm forLKP packs the items in decreasing order of profit-to-weight
ratio, similar to the original Greedy algorithm, but with one difference. When adding an items to the knapsack would cause
the capacityc to overflow for the first time, only an appropriate fractionalpart of the item is used. Items is referred as the
split item, its corresponding profit asps and weight asws. The split solution, not including the split item, is definedby a
profit p̂ and weightŵ. Therefore, the optimal solution value of LKP is defined as

zLKP = Σs−1
i=1 pi + (c− Σs−1

i=1wi)
ps

ws

. (2)

The valuezLKP is an upper bound on the optimal solution for KP. A tighter upper boundULP for zOPT can be obtained
by using the floor ofzLKP , i.e.ULP := ⌊zLKP ⌋, since all data are integers. Then we get the following bounds onzLP :

p̂ ≤ zOPT ≤ ULKP ≤ zLKP ≤ Σs
i=1pi = p̂+ ps = zG + ps. (3)

Another consequence of these considerations is the following fact:

zOPT − zG ≤ zOPT − p̂ ≤ pmax, (4)

wherepmax denotes the largest profit of any item in the set N.
The Greedy algorithm has an approximation ratio of1

2 and this bound is tight. As proof, we know from (3) that:zOPT ≤
zG + pmax ≤ zmG + zmG = 2zmG

The tightness of the bound can be shown by the following example. Item 1 is given byw1 = 1, p1 = 2, andb1 = 1
(number of item 1 available). Item 2 is given byw2 = p2 = M andb2 = 2. The knapsack capacity isc = 2M . The Greedy
algorithm would pack item 1 first and then an item 2, reaching asolution value of2 +M while the optimal solution would
pack items 2 and would reach a value of2M . ChoosingM large enough, the ration between the approximate and optimal
solution value can be arbitrarily close to12 .


