CERIAS Tech Report 2011-01
Approximation Algorithmsfor Deter mining Placement of Intrusion Detectors
by Gaspar Model o-Howard, Saurabh Bagchi, Guy Lebanon
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

Approximation Algorithmsfor Deter mining Placement of I ntrusion Detectors

Gaspar Modelo-Howard Saurabh Bagchi Guy Lebanon
Purdue University Purdue University Georgia Institute of Technology
gmodeloh@purdue.edu sbagchi@purdue.edu lebanon@cc.gatech.edu
Abstract

To secure today's computer systems, it is critical to haiemint intrusion detection sensors embedded in them. The
complexity of distributed computer systems makes it diffioudetermine the appropriate choice and placement ofghes
detectors because there are many possible sensors thatecahdsen and each sensor can be placed in several possible
places in the distributed system. In this paper, we desaibeethod to evaluate the effect a detector configuration mas o
the accuracy and precision of determining the system’srigga@pals. The method is based on a Bayesian network model,
obtained from an attack graph representation of multi-stagtacks. We use Bayesian inference to solve the problem of
determining the likelihood that an attack goal has been e, given a certain set of detector alerts. We quantify the
overall performance as a function of the placement, quadity uncertainty in knowledge of the detectors. Based ogethe
observations, we implement a dynamic programming algaritbr determining the optimal detector settings in a largels
distributed system and compare it against a previous Gredglgrithm. Finally, we report the results of five experingnt
measuring the Bayesian networks behavior in the context@féal-world distributed systems undergoing attacks.uRes
show the dynamic programming algorithm outperforms thee@yealgorithm in terms of the benefit provided by the set of
detectors picked. The dynamic programming solution alsotha desirable property that we can trade off the runningetim
with how close the solution is to the optimal.

1 Introduction

Itis critical to provide intrusion detection to secure tgdadistributed computer systems. The overall intrusiotedgéon
strategy involves placing multiple detectors at differpoints of the system. Examples of specific locations are owtw
ingress or combination points, specific hosts executintspithe distributed system, or embedded in specific apica
that form part of the distributed system. At the current tithe placement of the detectors and the choice of the detecto
are more an art than a science, relying on expert knowledtieeafystem administrator.

The choice of the detector configuration has substantiahahpn the accuracy and precision of the overall detection
process. There are many choices to consider, including#oement of detectors, their false positive (FP) and fadégmtive
(FN) rates, and other detector properties. This resultdange exploration space which is currently explored usitdhac
techniques. Our paper presents an important step in catisgu principled framework to investigate this explovatspace.

At first glance it may seem that increasing the number of deteds always a good strategy. However, this is not always
the case and an extreme design choice of a detector at evesipfgonetwork point, host, and application may not be ideal
First, there is the economic cost of acquiring, configurangd maintaining the detectors. Detectors need tuning teaeh
their best performance and to meet the targeted needs opghiieation (specifically in terms of the balance betweendal
positive and false negative rates). Second, a large nunibeperfect detectors means a large number of alert streams i
benign conditions that could overwhelm the manual or autetheesponse process. Third, detectors impose a perfoemanc
penalty on the distributed system as they typically shareltvédth and computational cycles with the application. fiHou
system owners may have varying security goals such as neg/hilgh sensitivity or ensuring less tolerance for falssitice
alerts.

In this paper we address the problem of determining where (@w many) to place detectors in a distributed system,
based on situation-specific security and performance gdésalso show that this is an intractable problem. The sgcuri

o
o

Figure 1. Attack graph model for a sample web server. Therear e three starting vertices, representing
three vulnerabilities found in different services of the se rver from where the attacker can elevate the
privileges in order to reach the final goal of compromising th e password file.

goals are determined by requiring a certain trade-off betwbe true positive (TP) — true negative (TN) detectionsate

Our proposed solution starts with attack graphs, as showigure 1, which are a popular representation for multi-stag
attacks [8]. Attack graphs are a graphical representafitimeodifferent ways multi-stage attacks can be launcheéhaga
specific system. The nodes depict successful intermediaiekagoals with the end nodes representing the ultimaselatt
goal. The edges represent the notion that some attack goatsas stepping stones to other attack goals and therefoee h
to be achieved first. The nodes can be represented at diffexets of abstraction; thus the attack graph represematn
bypass the criticism that detailed attack methods and stepd to be known a priori to be represented (which is almost
never the case for reasonably complex systems). Resedluhamnea of attack graphs has included automation techsitque
generate these graphs [28], [11], to analyze them [13], @&] to reason about the completeness of these graphs [13].

We model the probabilistic relations between attack steisceetectors using the statistical formalism of Bayesian ne
works. Bayesian networks are particularly appealing ia $gitting since they enable computationally efficient exfiee for
unobserved nodes (such as attack goals) based on obsedesl (detector alerts.) The important question that Bagesia
inference can answer for us is, given a set of detector alehist is the likelihood or probability that an attack goas heen
achieved. A particularly important advantage is that Beyeaetwork can be relatively easily created from an attaelply
structure which is often assumed to be provided.

We formulate two Bayesian inference algorithms, implerimgra greedy approach for one and dynamic programming for
the other, to systematically determine the accuracy ancigio@ a specific detector configuration has. We then proteed
choose the detector placement that gives the highest valusituation-specific utility function. From prior work, vwahow
the Greedy algorithm has an approximation ratioé—oﬂ'he dynamic programming solution falls in the algorithntecgory
of thefully polynomial time approximation scherfePTAS) and has the desirable property that we can tradéeffunning
time with how close the solution is to the optimal.

We demonstrate our proposed framework in the context of pezific systems, a distributed E-commerce system and
a Voice-over-IP (MolP) system, and compared both algorithivwe experiment with varying the quality of the detectors,
the level of knowledge of attack paths, and different thoéd$h set by the system administrator for determining wiredine
attack goal was reached. Our experiments indicate thattiue of a detector in terms of determining an attack ste padiggy
exponentially with its distance from the attack site.

The rest of this document is organized as follows. Sectiont®duces the attack graph model and provides a brief
presentation of inference in Bayesian networks. Sectioasgmbes the model and algorithms used to determine an-appro
priate location for detectors. Section 4 provides a desoripf the distributed systems used in our experimentstiGed
presents a complete description of the experiments alotigtiaéir motivations to help determine the location of thteligion
detectors. Section 6 presents related work and sectionclumtes the paper and discusses future work.

2 Background
2.1 Attack Graph

An attack graph is a representation of the different methmdsvhich a distributed system can be compromised. It
represents the intermediate attack goals for a hypothetthaersary leading up to some high-level attack goals ssch a
violating the confidentiality, integrity, or availabilitgf a component in the system. It is particularly suitablerégresenting
multi-stage attacks, in which one or more successful attdefs is used to achieve success in a subsequent attack step.
The graph nodes represent attack stages, while edges ¢ehe@mntecedent (or precondition) stages to the consegoent
post-condition) stages. To be accurate, we consider theiexiependency attack graph [11], [28], [13], which is lay the
most common attack graph type. Recent research on attapk gemeration has resulted in the creation of large graphs fo
systems scaling up to hundreds and thousands of hosts 28], [

e]

P(u=1]v) | P(u=0|v)
v=1 a 1-a

v=0 B 1-B

Figure 2. Simple Bayesian network with two types of nodes: an observed node w and unobserved
node v. The observed node corresponds to the detector alert in our f ramework and its conditional
probability table includes the true positive (a) and false positive () rates.

We construct a Bayesian network that includes the attacihgas a sub-graph. Additional nodes represent detectors,
connected by edges to the attack stages they are designetttn. d

2.2 Inference in Bayesian Networks

Bayesian networks [12] provide a convenient framework fodeling the relationship between attack steps and detector
alerts. Using Bayesian networks, we can infer which unakegkattack steps have been achieved based on the observed
detector alerts.

Formally, a Bayesian network is a joint probabilistic moé®l n random variablegz1, ..., z,) based on a directed
acyclic graphG = (V, E), whereV is a set of nodes corresponding to the variabfes= (x1,...,2,), andE C VV
contains directed edges connecting some of these nodesacyatic manner. Instead of weights, the graph edges are
described by conditional probabilities of nodes given itipgirents that are used to construct a joint distributionthi&
productP(z1,...,z,) = [[;-; P(xi|{z; : z; is parentof; }). Figure 2 shows an example of a Bayesian network with two
nodesv, u € V and the corresponding probability values associated to eade. Node is the parent of node.

As previously mentioned, in our context the nodes corredporither attack stages or detectors. Formally, the nages a
binary random variables with 1 indicating that the attaclgstwas achieved or the detector issued an alert, and 0 d@skerw
Edges correspond to attack graph edges (in the case of edgesating attack stage nodes) or detector edges connecting
detectors to the corresponding attack stage nodes. Coffisidexample,V, as the set of attack stages ardas the set of
detectors. Then, a specific pair of nodes V,,u € V; represents an attack step and a corresponding detector Hher
conditional probabilityP (v|u) determines the valueB(v = 1ju = 0), P(v = Olu = 1), P(v = 0Ju = 0), P(v = 1ju = 1).
These probabilities represent FN, FP, and correct beh#uaigirtwo), measure the detector effectiveness and cantaaed
by evaluating the quality of the detector.

There are three main tasks associated with Bayesian netwdhe first is inferring values of variables corresponding t
nodes that are unobserved given the values of the obserda$ ntn our context this corresponds to predicting whether a
attack step has been achieved based on detector Blerts= 1|{x4 : x4 IS a detector connected to attack stageé). The
second task is learning the conditional probabilitis:; |{x; : z; is parent ofz;}) based on available data which in our
context corresponds to estimating the reliability of theedtors and the probabilistic relations between diffeegtatck steps.
The third task is learning the structure of the network basedvailable data. All three tasks have been extensivetiiesiu
and despite their difficulty in the general case, may be aptishred relatively easily for Bayesian networks.

We focus in this paper mainly on the first task. The seconddésktimating the conditional probabilities can be achikve
by characterizing the quality of the detectors [21] and theeeived difficulty of achieving an attack step through askess-
ment.

We consider the fact that the estimate is unlikely to be p#feaccurate and provide experiments to characterize the
loss in performance due to these imperfections. The thskl td obtaining the network structure may be achieved based
on the attack graph and detector placement. In our Bayeswork, the network nodeE = V, |V}, are partitioned to
attack stage noddsg,, indicating whether an attack stage was achieved, andtdeteadesl},, indicating whether a specific
detector issued an alert. The first set of nodes represeattimck steps is typically unobserved while the second sebdés
corresponding to alerts are observed and constitute thieee.

The Bayesian network defines a joint distributiB(l") = P(V,, V) which can be used to compute the marginal proba-
bility of the unobserved valueB(V,) and the conditional probabiliti? (V,|V;,) = P}‘E‘%}{Xb) of the unobserved values given
the observed values. The conditional probabilt{},|V;) can be used to infer the likely values of the unobserved lattac
steps given the evidence from the detectors. Comparingaheof the conditionaP(V,|V;) with the marginalP (V)

Input from
Intrusion
detectors

!

Attack Graph o |Bayesian Network o Inference
algorithm o algorithm o algorithm

A

Figure 3. A block diagram of the framework to determine place ment of intrusion detectors. The
dotted lines indicate a future component, a controller, not included currently in the framework. The
controller would provide for a feedback mechanism to adjust location of detectors.

reflects the gain in information for estimating successftdak steps given the current set of detectors. Alternigtivee
may estimate the suitability of the detectors by computhmgdlassification error rate, precision, recall, and theeiec
Operating Characteristic (ROC) curve associated with tediption ofV, based orV;.

Note that the analysis above is based on emulation donetpratgployment with attacks injected through vulnerability
analysis tools, a plethora of which exist in the commercial gesearch domains, including integrated infrastrustéoe
combining multiple tools.

3 System Design
3.1 Framework Description

Our framework uses a Bayesian network to represent statisélationships between different attack steps, and doetw
attack steps and detectors. The structure of the Bayestaoreé is based on the attack graph whose nodes represent attack
stages, with additional nodes added to represent the mreséudetectors. Each node in the Bayesian network can besin on
of two states: attack stage nodes can be 0 or 1, represertiieth@r the stage was achieved or not, and detector nodegcan b
0 or 1, representing whether an alarm was generated. Thed imitdes correspond to the starting stages of the attadkhwh
do not need any precondition, and the end nodes correspdahd aaversary’s end goals. Typically, there are multipéd le
nodes and multiple end nodes. Figure 3 shows the completeivark.

The Bayesian network requires that the sets of vertices aadtdd edges form a directed acyclic graph (DAG). This
property is also found in attack graphs. The idea is that ttaelker follows a monotonic path, in which an attack stepsdoe
not have to be revisited after moving to a subsequent attegk §his assumption can be considered reasonable in many
scenarios according to experiences from real systems.

A Bayesian network quantifies the statistical relation iiegblby the edges connecting parent nodes to children nodes.
When a node has a parent, a conditional probability table{@Pattached to the child node and this is determined by the
existence of an incoming edge. As such, the probabilityesfor the state of the child are conditioned on the statelgeof t
parents. As an example, the different values of nedeFigure 2 are conditioned on the possible states of itspianedev.

The values of the conditional probabilities in the CPTs mayobtained from data or by testing specific elements of
the system, for example by using IPTables [25] or Snort [82hy using the subjective judgment of a system administrato
From the perspective of the expert (administrator), théabdity values reflect the difficulty of reaching a highew| attack
goal, having achieved some lower-level attack goal.

A potential problem when building the Bayesian network & the CPT values cannot be reliably determined. In this,case
we consider the performance of the Bayesian network unéeagbumption that the CPT values are inaccurate estimates th
may somewhat degrade our ability to diagnose the system.diipate the conditional probabilities of unobserved attack
stages given detector alerts using thection treeinference algorithm [19]. The junction tree engine is onéhaf most

1Henceforth, when we refer to a node, we mean a node in the Bayrstwork, as opposed to a node in the attack graph. Thiyirigrphrase is thus
implied.

popular inference engines for Bayesian networks and giyeravides accurate probability values relatively fagt $mall
or middle-sized networks.

3.2 Cost—Benefit Analysis

In this paper, we address the problem of determining the murabd placement of detectors as a cost-benefit exercise.
The system benefit is calculated by the BENEFIT function shbalow. This specific design considers only the end nodes in
the BN, corresponding to the ultimate attack goals. Othdesahat are of value to the system owner may also be condidere
in alternate designs.

Algorithm 1 BENEFIT (d;, a;)
1: /[This is to calculate the benefit from attaching deted{do attack vertex:;
. I/F is the set of end attack vertic¢s
D= in:l e
: for all f € Fdo
perform Bayesian inference with as the only detector in the network and connected to attatkxue;
calculatePrecision(fx, d;, a;)
calculateRecall(fx, di, a;)

(1+,8§i) (Precision(fk,di,aj) X (Recall(fk,di,aj))

8: systemBenefit + > "
y f Zl_l (B; XPrecision(fk,di,aj)JrRecall(fk,di,aj))

9: end for
10: returnsystemBene fit

The BENEFIT function is used to calculate the benefit fronaaiting a detector to an attack vertex in the Bayesian
network. To evaluate the performance of a detector, theidthgo uses two popular measures from statistical classifica
precisionandrecall. Precision is the fraction of true positives (TP) deterrdiaenong all attacks flagged by the detection
system. Recall is the fraction of TP determined among alfrasitives in the system. Then, the BENEFIT function conelsin
both measures into a single measurg,— measure [4], which is the weighted harmonic mean of precision andlitemd
a popular method to evaluate predictgfss the ratio of recall over precision, defining the relatiwgobrtance of one to the
other. The resulting’s — measure constitutes the output of the BENEFIT function and is catleesystemBenefiprovided
from attaching the detector to the Bayesian network.

The cost model for the system under analysis is defined bytteaving formula, corresponding to the expectation (in the
probabilistic sense) of the cost:

M
COST(d;,a;) = Z (Probfk (T'P) x (costrespona)+Proby, (FP) X (costrespond)+Probs, (FN)x (costnotrespond) Q)
k=1

We calculate the cumulative cost associated by selectiregectbr, based on its different outcomes with respect tetik
nodes: true positive (TP), false positive (FP), and falsgatiee (FN). True negatives (TN) are not considered to cdmpu
the detector cost as we believe there should not be any pdaattorrect classification of non-malicious traffic. Thestof
positive (FP and TP) outcome is related to the response matteletection system, whereas the FN cost depends on the
damage produced by not detecting the attack.

In our design, all probability values (TP, FP, and FN) aré &inmputed by performing sampling on the Bayesian network,
since there are no real data (logs) when the system stargg@aeiment of detectors is calculated for the first time. #the
initial configuration is done and the system has been madtéor some time, the detection system can be reconfigured by
using the log files collected to compute new probability eslu

3.3 Greedy Algorithm
We present here an algorithm to determine the choice anémplact of detectors in a distributed system, using a greedy

approach, and first published in [23]. It takes as input (i)ag&sian network with all attack vertices, their correspogd
CPTs, and the hosts impacted by the attack vertices; (ii} afsdetectors, the possible attack vertices with which each

Algorithm 2 DETECTOR-PLACEMENT(BN, D)

Input: (i) Bayesian networkBN = (V,CPT(V),H(V)) whereV is the set of attack vertice§;PT (V) is the set of
conditional probability tables associated with the attaektices, andH (V) is the set of hosts affected if the attack
vertices are achieved; (ii) Set of detectdvs= (d;,V(d;), CPT(i,j)) whered; is the ith detector}/(d;) is the set
of attack vertices that the detectdy can be attached to (i.e., the detector can possibly detesethttack goals being
achieved), and'PT (i, j)Vv; € V(d;) is the CPT table associated with detedtand attack vertex.

Output: Set of tuple® = (d;, m;) whered; is the ith detector selected and is the set of attack vertices to which it is
attached.

1. systemCost 0

2: sortall(d;,a;), wherea; € V(d;), Vi by BENEFIT(d;, a;). Sorted list= L
3: n < length L]

4: for i <~ 1tondo

5: systemCost- systemCost + COSE;, a;)
6: /[COST(d;,a;) can be in terms of economic cost, cost due to false alarms @&s#dalarms, etc.
7. if (systemCost> 7) then
8: /IT is maximum cost system owners can afford (threshold)
o break
10: endif
11: if (d; € 0) then
12: adda; tom; € 0
13. ese
14: add(di,m:aj)toe
15. end if
16: end for
17: return®©

detector can be associated, and the CPTs for each detetiiaespect to all applicable attack vertices. In symbolieahs,
the input and output are:

The algorithm DETECTOR-PLACEMENT starts by sorting all doimations of detectors and their associated attack
vertices according to their benefit to the overall systeme(R). A greedy decision is made since the detector with lsighe
benefit from the unpicked set is considered singly. From tnted list, (detector, attack vertex) combinations areeadd
order, until the overall system cost due to detection is ested (line 7).

The worst-case complexity of the DETECTOR-PLACEMENT algon is O(dvB(v, CPT(v))+dv log(dv)+dv) where
d is the number of detectors ands the number of attack vertices.

B(v,CPT(v)) is the cost of Bayesian inference oBaV with v nodes and” PT'(v) defining the edges. The first term is
due to calling Bayesian inference with updtimesv terms. The second term is the sorting cost and the third t®theicost
of going through the for loop (line 4jv times. In practice, each detector will be applicable to @anynall, constant number
of attack vertices and therefore tlie terms can be replaced by the constant timheshich will be onlyd considering order
statistics.

A slight but important variation to the Greedy algorithm g#eted above, found in [15], is also considered in our ex-
periments. We define the modified Greedy algorithm m-DETERTRLACEMENT, which consists of running the original
Greedy algorithm first and then comparing the solution whtih highest benefit value of any single item. The larger of the
two is picked as the output to the algorithm.

The greedy choice of detectors is not guaranteed to providepimal solution. For example, consider when three
detectorgd;, da, andds) are evaluated and a maximum cost3dff is allowed. Detector; has costr; = 1 and benefit
b1 = 2 and detectord, andds have the same cost and benefit with = b, = w3z = b3 = 1.5M. The Greedy algorithm
would pickd; andds for a total benefit oR + 1.5M while the optimal solution would includé, andds and would have a
benefit value oBA . The non-optimality of DETECTOR-PLACEMENT can be seen tiegically from the observation that
the problem of optimal detector choice and placement can dggoed to the 0-1 Knapsack problem which is known to be
NP-hard. The mapping is straightforward: consider thestmoéd cost in our problem to be the weight capacity W for the
Knapsack; and the set of possible detectors are the itensgdewad to be included in the Knapsack, with their corredpam
benefit and cost as the profit and weight, respectively. An@afmation ratio for the modified Greedy algorithm of the

Knapsack problem is found in [34] to k%e We have included a summary of the calculation in Appendix 9.
3.4 FPTAS Algorithm

The mapping of our DETECTOR-PLACEMENT problem to the 0-1 Esack problem allows us to utilize the existing
algorithms for the popular NP-hard optimization problem. plrticular, the Knapsack problem allows approximation to
any required degree of the optimal solution by, as previoogéntioned, using an algorithm classified as (FPTAS) since
the algorithm is polynomial in the size of the instancand the reciprocal of the error paramete’An FPTAS is the best
possible solution for an NP-hard optimization problempasisg of course thaP # N P. The original FPTAS for the 0-1
Knapsack problem was given in [10].

A description of the FPTAS implemented for our experimewntfivs and is adapted from [15], [34]. The scheme is
composed of two steps: first, the scaling of the benefit sparediuce the number of different benefit values to considér an
second, running a pseudo polynomial time algorithm basethermynamic programming technique on the scaled benefit
space.

Step 1 - Scaling Step

To obtain the FPTAS, the benefit space is scaled to reduceuthber of different profit values and effectively bound the
profits inn, the input size. By scaling with respect to the error paramethe algorithm produces a solution that is at least
(1 — €) times the optimal value, in polynomial time with respect tatbn ande. The algorithm is as follows:

Algorithm 3 BENEFIT SPACE SCALING
1: Let B < benefit of the most profitable object
2: Givene > 0, letE = £
3: n <+ length L]

Step 2 - Dynamic Programming Step

Let W be the maximum capacity of the knapsack. Alitems under consideration are labeled 1,...,k,...,n and
each item has some weight and a scaled benefit valdg Then the Knapsack problem can be divided into sub-problems
to find an optimal solution foSy; that is the solution for when items labeled framo & have been considered, but not
necessarily included, in the solution. Then, Bk, w] be the maximum profit of}; that has total weight> < W. Then, the
following recurrence allows to calculate all values ik, w:

B Blk — 1, w] ifwg >w
Blk,w] = { mazxB[k — 1,w], Blk — 1,w — wg] + b), else

The first case of the recurrence is when an ifeis excluded from the solution since if it were, the total wetigrould be
greater thanw, which is unacceptable. In the second case, ieran be in the solution since its weighty,) is less than the
maximum allowable weiglitv). We choose to include itefif it gives a higher benefit than if we exclude it. In the formul
if the the second term is the maximum value, then we inclueta it, and we exclude it if the first term is the maximum. The
final solutionB[n, W] then corresponds to the s&t - for which the benefit is maximized and the total cost is lessoural
to .

The running time of FPTAS is given b@("%B) and its design is based on the idea of trading accuracy foring
time. The original benefit space of the 0-1 Knapsack probkemapped to a coarser one, by ignoring a certain number
of least-significant bits of benefit values, which dependrmndrror parameter. The mapped coarser instance is solved
optimally through an exhaustive search by using a dynamdgnamming-based algorithm. The intuition, then, is towllo
the algorithm to run in polynomial time by properly scalingwh the benefit space. This thus provides a trade-off between
the accuracy and the running time.

4 Experimental Systems

We created three Bayesian networks for our experiments lngd@/o real systems and one synthetic network. These are
a distributed electronic commerce (e-commerce) systenoj@\over-IP (VolP) network, and a synthetic generic Bayres
network that is larger than the other two. The Bayesian nétswyere manually created from attack graphs that include se
eral multi-step attacks for the vulnerabilities found ie #oftware used for each system. These vulnerabilitiesssecamted

Web Server

Internal

Network
Firewall

Application Database
Server Server

Figure 4. Network diagram for the e-commerce system and its ¢ orresponding Bayesian network. The
white nodes are the attack steps and the blue nodes are the det ectors.

with specific versions of the particular software, and akeafrom popular databases [31], [27]. An explanation fatea
Bayesian network follows.

4.1 E-Commerce System

The distributed e-commerce system used to build the firseBap network is a three tier architecture connected to the
Internet and composed of an Apache web server, the Tomclitaign server, and the MySQL database backend. All server
are running a Unix-based operating system. The web setgdns de-militarized zone (DMZ) separated by a firewall from
the other two servers, which are connected to a network regsaible from the Internet. All connections from the Inggrn
and through servers are controlled by the firewall. Rules steat the web and application servers can communicatehand
the web server can be reached from the Internet. The attatlagos are designed with the assumption that the attagker i
an external one and thus its starting point is the Internieé doal for the attacker is to have access to the MySQL databas
(specifically, access to customer confidential data sucteaist card information — node 19 in the Bayesian network gtiFé
4).

As an example, an attack step would be a portscan on the apipticerver (node 10). This node has a child node, which
represents a buffer overflow vulnerability present in thestatd service running on the application server (node Thg
other attack steps in the network follow a similar logic aedresent other phases of an attack to the distributed sy3ieen
system includes four detectors: IPtables, Snort, Libsafd,a database IDS. As shown in Figure 4, each detector hasal ca
relationship to at least one attack step.

Further details on the e-commerce testbed used for the iexgrets, including all the probability values used for the
corresponding Bayesian network, is available in Appendix 8

4.2 Voice-over-IP (VoIP) System

The VoIP system used to build the second network has a few nmomgonents, making the resulting Bayesian network
more complex. The system is divided into three zones: a DMZHe servers accessible from the Internet, an internal
network for local resources such as desktop computers,saaier and DNS server, and an internal network only for VoIP
components. This separation of the internal network into twits follows the security guidelines for deploying a secu
\oIP system [18].

The VoIP network includes a PBX/Proxy, voicemail server aoftware-based and hardware-based phones. A firewall
provides all the rules to control the traffic between zondse DNS and mail servers in the DMZ are the only accessible
hosts from the Internet. The PBX server can route calls tdrttexnet or to a public-switched telephone network (PSTN).
The ultimate goal of this multi-stage attack is to eavesanopOIP communication. There are four detectors — |Ptabled,
three network IDSs on the different subnets.

A third synthetic Bayesian network was built to test our feavork for experiments where a larger network, than the other
two, was required. This network is shown in Figure 7(a).

Ve
N

oIP
jetwork

VoIP Phone VolP Phone VoiceMail PBX/Proxy
(hardware) (software)

Figure 5. VoIP system and its corresponding Bayesian networ k.

5 Experiments

The correct number, accuracy, and location of the detectrgrovide an advantage to the system’s owner when deploy-
ing an intrusion detection system. Several metrics have Heeeloped for evaluation of intrusion detection systelimsur
work, as first presented in section 3.3, we concentrate azigioa and recall. The notions of TP, FP, etc., are showngnfei
6. We also plot the ROC curve which is a traditional methodcfwaracterizing detector performance — it is a plot of the tru
positive against the false positive.

For the experiments, we create a dataset of 50,000 sampé¢tmoks, based on the respective Bayesian network. We use
the Bayesian network toolbox for Matlab [24] for our Bayesiaference and sample generation. Each sample consists of a
set of binary values, for each attack vertex and each deteettex. A one (zero) value for an attack vertex indicates th
attack step was achieved (not achieved), and a one (zenog Y@ a detector vertex indicates the detector generaidd (d
not generate) an alert. Separately, we perform inferentceeBayesian network to determine the conditional prolitgiuf
different attack vertices. The probability is then conedrto a binary determination — whether or not the detectistesy
flagged that particular attack step, using a threshold. détisrmination is then compared with reality, as given byattteck
samples which leads to a determination of the system’s acguThere are several experimental parameters — whiclifispec
attack vertex is to be considered, the threshold, CPT vakies — and their values (or variations) are mentioned in the
appropriate experiment. The CPTs of each node in the netarerknanually configured according to the authors’ expeeenc
administering security for distributed systems and freqyeof occurrences of attacks from references such as \ability
databases, as mentioned earlier.

5.1 Experiment 1: Distance from Detectors

The objective of experiment 1 was to quantify for a systenigies the gain in placing a detector close to a service where
a security event may occur. Here we used the synthetic nktsice it provided a larger range of distances betweenlattac
steps and detector alerts.

The CPTs were fixed to manually determined values on eactkegtap. Detectors were used as evidence, one at a time,
on the Bayesian network and the respective conditionalglitity for each attack node was determined. The effect ef th
single detector on different attack vertices was studteeteby varying the distance between the node and the detéb®
output metric is the difference of two terms. The first ternthis conditional probability that the attack step is achigve
conditioned on a specific detector firing. The second terméagrobability that the attack step is achieved, withoutafse
any detector evidence. The larger the difference is, thatgrés the value of the information provided by the detechor
Figure 7(b), we show the effect due to detector correspanidimode 24, and in Figure 7(c), we consider all the detectors
(again, one at a time). The effect of all the detectors shbasthe conclusions from node 24 are general.

The results show that a detector can affect nodes insideiasrafiup to three edges from the detector. The change in
probability for a node within this radius, compared to onésie the radius, can be two times greater when the detector i
used as evidence. For all Bayesian networks tested, thiksesre consistent with the three edges radius observation

Attack = Trie | Attack = False

TP

ion = Recall=——— Precision=
Detection = True TP FP TP+EN TP+EP

Detection = False FN TN

Figure 6. Parameters used for our experiments: True Positiv e (TP), False Positive (FP), True Negative
(TN), False Negative (FN), precision, and recall.

I

=1)
1

1) - P(X

1|X24=1) - P(X:
detector

11X

P(X

IP(X

0 2 4 6 8 0 2 4 6 8
Distance(X2 4,><‘) Distance(X detector’ Xi)
(b) (©
Figure 7. Results of experiment 1: Impact of distance on a set of attack steps. (a) Generic Bayesian

network used. (b) Using node 24 as the detector (evidence),t he line shows mean values for rate of
change. (c) Comparison between different detectors as evid ence, showing the mean rate of change
for case.

5.2 Experiment 2: Impact of Imperfect Knowledge

The objective of experiment 2 was to determine the perfonaarf the detection system in the face of attacks. In the first
part of the experiment (experiment 2a), the effect of theghold that is used in converting the conditional probshiif an
attack step into a binary determination is studied. Thisegponds to the practical situation in which a system adstnator
has to make a binary decision based on the result of a prattabitamework, and there is no oracle at hand to help. For
the second part of the experiment (experiment 2b), the CRiesan the Bayesian network are perturbed by introducing
variances of different magnitudes. This corresponds t@thetical situation that the system administrator canooteately
gauge the level of difficulty for the adversary to achievaeltgoals. The impact of the imperfect knowledge is studied
through a ROC curve.

For experiment 2a, precision and recall were plotted as etimof the threshold value. This was done for all the attack
nodes in the Bayesian network, and the results for a repi@sansample of six nodes are shown in Figure 8. We used
threshold values from 0.5 to 0.95, since anything below G&ld/imply the Bayesian network is useless in its predictive
ability.

As expected, when the threshold is increased, there are feéivand the precision of the detection system improves. The
opposite is true for the recall of the system since there anerfalse negatives. However, an illuminating observaiton
that the precision is relatively insensitive to the thrddhariation while the recall has a sharp cut-off. Clearhe tesired
threshold is to the left of the cut-off point. Therefore stprovides a scientific basis for an administrator to sethheshold
for drawing conclusions from a Bayesian network represgrttie system.

In experiment 2b we introduced variance to the CPT value# tif@attack nodes, mimicking different levels of impeitfec
knowledge an administrator may have about the adversatgskastrategies. When generating the samples corresppndi
to the attacks, we used three variance values: 0.05, 0.45).256. Each value could be associated with a different lefvel
knowledge from an administrator: expert, intermediate, @ave, respectively. For each variance value, ten batdtie6@0
samples were generated and the detection results weregyadevaer all batches.

In Figure 9, we show the ROC curves for nodes 1 and 6 of the evmge system, with all four detectors in place. As the

Node 1 Node 4 Node 9

100p-8-&2-5-8-§ 100x 100
80 \ 80
L I

60 60
50
40 40
20 20
0 0 51 0 =]
0.6 0.8 0.6 0.8 0.6 0.8
Nodel4 Node 17 Node 19
100p—=—a58-8 100 100E
i
50 50 50
0 £ 0 51 0 S5
0.6 0.8 0.6 0.8 0.6 0.8

Figure 8. Precision and recall as a function of detection thr eshold, for the e-commerce Bayesian
network. The line with square markers is recall and other lin e is for precision.

Node 1 Node 6

True Positive Rate
True Positive Rate

—&—var = 0.05 —&—var = 0.05
0.2 var = 0.15 0.2 var = 0.15
—Oe—var =0.25 —6—var =0.25
0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate

Figure 9. ROC curves for two attack steps in e-commerce Bayes ian network. Each curve corresponds
to a different variance added to the CTP values.

variance increases, the performance suffers. Howeveprtieess of Bayesian inference shows an inherent resil&nce

the performance does not degrade significantly with theegs® in variance. For node 1, several points are placed se clo
together that only one marker shows up. On the contrary,dder®, multiple well spread out TP-FP value pairs are observe
We hypothesize that since node 1 is directly connected talétector node 3, its influence over node 1 dominates over all
other detectors. Hence fewer numbers of sharp transitiensesen compared to node 6, which is more centrally placdd wit
respect to multiple detectors.

Experiment 2c also looked at the impact of imperfect knogéedhen defining the CPT values in the Bayesian network.
Here we progressively changed the CPT values for seveeakasteps in order to determine how much we would deviate
from the correct value. We used two values, 0.6 and 0.8, foh &PT cell (only two are independent), giving rise to four
possible CPT tables for each node. We plot the minimum andmuamr conditional probabilities for a representative dtac
node for a given detector flagging. We change the number os@ak we perturb from the ideal values. As assumed, when
the number of CPTs changed increases, the difference betlveaninimum and the maximum increases, but the range is
within 0.03. Note that the point at the left end of the curvedero CPTs changed gives the correct value.

Both experiments indicate that the BN formalism is reldyivebust to imperfect assumptions concerning the CPT walue
This is an important fact since it is likely that the valuesedmined by an experienced system administrator woulldostil
somewhat imperfect. Overall, as long as the deviation odseimed CPTs from the truth is not overwhelming, the network

0.72

o
~
w
1] X,5=1)
o
3
S

o
3

P(Xlgzl | X20:1)
P(X21

o
o
©

0_71\/\/\

0 1 2 3 4 5
Number of CPTs changed

@ (b)

0 5

1 2 3 4
Number of CPTs changed

Figure 10. Impact of deviation from correct CPT values, for t he (a) e-commerce and (b) generic
Bayesian networks.

Capacity (W=0.51) | Capacity (W=0.60) ‘ Capacity (W=1.20) Capacity (W=1.50)

Selections made (ds,a1) (ds,a1) (d3,a1) (d3,a1)
by greedy (ds,a;) (ds,a2) (ds,a2)
algorithm (d20,a19) (d20,a19)

(d7,a4)
Benefit 0.64 0.61 1.46 2.05
Cost 0.12 0.42 0.88 1.27
Selections made (d2o,a10) (dz0,a19) (d20,a19) (d20,a10)
by FPTAS (d3,a1) (dao, 317) (dao, a17)
algorithm (e=0.01) (ds,az) (ds,a1)
(d7,a4)
Benefit 0.91 1.57 1.49 2.21
Cost 0.46 0.58 1.21 1.41

Figure 11. Comparison between Greedy algorithm and FPTAS fo r different cost values.

performance degrades gracefully.
5.3 Experiment 3: Comparison between Greedy algorithm and FPTAS

The objective of experiment 3 was to determine the perfonaaf the FPTAS and compare it to the Greedy algorithm,
using the Bayesian network for the e-commerce distribuyestesn. The experiment was repeated for different capacity
thresholds, representing cases for different numbers tefctes(1, 2, 3, or 4). For FPTAS, the algorithm used= 0.01
since varying the parameter for different values, fromil to 0.30, produced no relevant change on the resulting set of
detectors and the running time was similar to the one frone@reMore information on the running times is provided at the
end of this section.

In all cases of the experiment, FPTAS performed better thage@ algorithm in terms of achieving a higher benefit.
FPTAS always first picked the (detector, location) f@lf a19) closer to the attack goal of interest and with the highest
benefit, given the capacity constraint. Nevertheless, ¢tecton of (detector, location) pairs was not accumuaéis the
capacity threshold was increased. As an example, whent&ghibld was set t0.60 (representing the case for two detectors
picked), FPTAS selected paifglz,a19) and (ds a;) but when threshold was increased120 (three detectors), FPTAS
selected dzo,a19), (d20,a17), and(ds,az), removing(ds a1) from the solution set. The reason for this situation is tisathe
capacity threshold is increased, it might include a detegith higher benefit and cost than one selected under thequev
threshold considered.

The performance of the Greedy algorithm was interesting @svays started selecting ttié; a,) pair, regardless of the
capacity threshold. This actually shows the drawback ofGheedy algorithm. It picks detectors that are accurate it a
far from the ultimate attack goals that we are interestedite case when the threshold was selfifo= 0.51 (one detector)
represented an example of a worst-case scenario sincetihdeaveen the optimal selection and the greedy choice was
%. Still, as the threshold was increased, the Greedy algorgemed to correct itself and provide a solution closeréo th
optimal set. For cases &F = 1.20 andW = 1.50, the Greedy algorithm had all but one of the (detector, ioodpairs that
are part of the solution set chosen by FPTAS.

0.8

0.6

TPR

04

0.2

° FPTAS: (dm‘a]g)
u Greedy d)

0.8

0.6

TPR

04

o2ff .7~

FPTAS: (8,0, (0,08,
;)

Greedy: (da,), (d4ya,)
T (Gp259)

TPR

TPR

0.8

0.6

0.4

0.2

° FPTAS: (dm,alg)‘ (Ug,al)
u Greedy: (d,a,), (da,)

0.8

0.6

0.4

025

FPTAS: (5,0 gy)
@3, @5a,)
Greedy: (dya,), (da,),
" (dyp219) 72

02 0.4 0.6 08
FPR

Figure 12. ROC curves for detectors picked by Greedy (dashed line) and FPTAS (solid line) for differ-
ent capacity values: (&) W = 0.51, (b) W = 0.60, (c) W = 1.20 and (d) W = 1.50.

An interesting result is the cost associated to the detepioked by the Greedy algorithm when compared to the choices
made by FPTAS. In all our experiments, the selections madérnegdy had an overall lower cost and benefit than FP-
TAS. Although the cost value achieved by Greedy might beidensd positive result, it is important to remember that our
DETECTOR-LOCATION problem is an optimization problem waeve try to maximize the benefit.

The ROC curves shown in Figure 12 also represent the resaitsthe experiment. In (a) and (b), the Greedy algorithm
starts picking detectors too far away from the attack goeth shat it doesn’t have any (TPR,FPR) points, except for) @nal
(1,1). We decided not to plot such lines because the perfocmef the detector(s) selected is no better than flippingig) (f
coin to determine if the attack goal has been achieved.

FPTAS performs better than the Greedy algorithm by immedtliggicking the detector closest to the attack goal, in the
case of cost = 0.51 (one detector). In this case, FPTAS pietectbrdsg, which is directly connected to the attack goal. In
comparison, the Greedy algorithm starts by picking theaetdarthest away from the attack goal. The reason for this i
that such a detector has the highest benefit-to-cost ratimgrall detectors. The problem is that this ratio does no¢cefl
the actual performance of the detector for the attack gaath®erformance is shown in the corresponding ROC curve (one
detector).

In the case of cost = 0.60 (two detectors), The Greedy algaribllows a similar pattern as the previous case, pickieg th
remaining detector with highest benefit-to-cost ratio.sldetector is also far from the attack goal. In contrast, FPpieks
a detector connected to an attack step, which is connectdthitk goakh;9, and increasing the overall True Positive Rate of
the detection system. Nevertheless, the same additiomnalsases the false positive rate.

For cases of cost = 1.20 (three detectors) and 1.50 (fouctdes?, the Greedy algorithm starts picking detectorserits
the attack goal that, as is shown in the corresponding RO@superform relatively similar to the set of detectors celé
by FPTAS.

In conclusion, FPTAS starts by selecting the closest (laesigctor for the attack goal, and as it adds more detectors
improves (marginally) the TPR of the detection system bub\ai price (also increasing the FPR). The Greedy algorithm
selects from a decreasingly sorted list of detectors, adegrto their benefit-to-cost ratio. These are two exampfdh®
first experiment we performed with Bayesian networks, whezelemonstrated that as distance increases between detecto
and attack goal, the detection capability decreases.

0.45

)
°
o o
& =

Running Time (seconds,

y=1.634 & 778

+0.08919 ™33

/ R?=0.9986

T T T
® FPTAS
Curve fitting
—&— Greedy

0.02 0.03

0.04 0.05 0.06 0.07

Error Parameter (g)

Figure 13. Execution time comparison between Greedy algori

the error parameter
faster than Greedy.

LOow

Greedy

(€). In our experiments, values of

0.08

thm and FPTAS, for different values of
e equal or larger than 0.01 allow FPTAS to run

0.09 0.1

Capacity = 2.00

FPTAS (£=0.01) MEDIUM Greedy FPTAS (£=0.01)
0.1 (d3,a1) (d3,a,) (da0,a10) (d30,317) 0.4 (d3,a1) (d3,a2) | (d0,a10) (d0,217)
(d13,315) (d3,az) (d0,a10) (d13,a12) (d3,a)
0.2 (ds,a4) (d3,az) (d20,210) (d0,217) (da0,217) (ds,a1)
03 (dy0,310) (d0,a10) (d7,a4)
0.5 (d3,a1) (d3,a2) | (da0,310) (d0,817)
(d0,a10) (di13,a15) (d3,a,)
(dz0,217) (ds,a1)
(d13,312)
0.6 (d3,a1) (d3,a2) | (dz0,a10) (d0,217)
(d0,a10) (di13,a15) (d3,a,)
(da0,a17) (d3,a1)
(di13,315)

Figure 14. Sensitivity analysis to different low (0.1, 0.2, 0.3) and medium (0.4, 0.5, 0.6) cost values.
The table on the left is for capacity of 0.90, which correspon ds to two detectors selected by both
algorithms. The table on the right is for capacity of 2.0, whi ch corresponds to five detectors selected.

We evaluated the running time for both algorithms by periagrl00 execution runs for the Greedy algorithm and for
each FPTAS with an error parametey from 0.0001 to 1. Figure 13 summarizes the findings on theingtime for both
algorithms. It shows the results for FPTAS, fofrom 0.0001 to 0.1 along with an exponential regression etiovfit the
series of data points collected. In the case of the Greeayitiign, we report a single value (represented by a straigéat |
at 0.0523 seconds) since it is unaffectectbffrom the results, the Greedy algorithm ran faster than IR When the error
parameter was less than 0.01. In our experiments, arouhdriioa value (0.01) they both showed similar running tinfes:.
the Greedy algorithm it took on average 0.0523 secondsevitilFPTAS the average running time was 0.0499 seconds. We
excluded from both algorithms the time taken to create thgeBian network, the samples and to compute the probability
values. All are necessary inputs for both algorithms an#l 875 seconds on average to create and compute.

5.4 Experiment 4: Sensitivity to Cost Value

The objective of experiment 4 was to evaluate the impact nfing the quantitative value assigned to each cost category
(low, medium, high). Three values were used for each cayedow (0.10, 0.20, 0.30), medium (0.40, 0.50, 0.60) and
high (0.70, 0.80, 0.90). The experiment was repeated ondigthithms, FPTAS and Greedy algorithm, using the Bayesian
network for the e-commerce distributed system and for difieknapsack capacities (0.51, 0.90, 1.20, 1.50, 2.00, ard
3.50). Such capacities correspond to the total resourealsible to the administrator to deploy and administer thect@n
system. For FPTAS, the algorithm usee: 0.01.

Varying the quantitative value of a cost level seems to olijhdy affect the outcome from the algorithms. In all cases

Attack
Goal

Greedy (d3,a1) (d3,a,) (d3,a;) (d3,a1) (d3,a1) (d3,a1) (d13,212) (d3,a1)
(d3,a2) (d3,a1) (d3,a1) (d,a2) (d,a2) (d3,32) (d3,a2) (d3,a2)
FPTAS (dao,a10) (da,a18) (da,a17) (d13,a12) (d13,a12) (di3,a12) (di3,a12) (di3,a12)
(d7,4) (d3,a) (d7,24) (d,a2) (d3,a2) (d3,a2) (d3,a2) (d7,a4)

aio a9 ag £ as A a a

Cit) a1 a7 Ci ais A an an

Attack
Goal

Greedy (ds,a,) (d7,a4) (d3,a,) (d,36) (ds,a;) (d7,34) (ds,a,) (d3,a1)
(d3,a1) (d7,26) (d3,a1) (d3,a5) (ds,a1) (d3,a5) (ds,1) (d3,a5)
FPTAS (d3,a12) (d7,26) (d13,a12) (d7,26) (du,a12) (du,a1) (dy,a1) (dy,a1)
(d7,a4) (d7,24) (ds,a7) (ds,a3) (ds,a3) (d7,24) (ds,a3) (ds,a7)

Figure 15. Detectors selected by Greedy algorithm and FPTAS for different attack goals (a;).

both algorithms are somehow consistent picking at leadfingtewo or three (detector, attack node) pairs, while vagythe
guantitative value of the cost level. This is a positive hesimce the quantitative values are arbitrarily deterrdibg the
system administrator or person responsible for assedsindetection systems.

Comparing these results to the previous experiment, betitieedy algorithm and FPTAS performed as they did in the
previous experiment. In the case of Greedy algorithm, ipkgacking(ds, a;) before any other pair as this has the highest
benefit-to-cost ratio. The FPTAS algorithm starts by pigkidso, a19) as it shows the highest benefit for the knapsack
capacity constraint, regardless of the different valuesidsr each cost level. In the case whefdatector, attack nodgjair
is changed because a level value has been changed, this eaplaimed from the impact the pair has on the individual cost
assigned to each pair.

5.5 Experiment 5: ROC curves across Different Attack Graphs

The goal of this experiment is to show the performance of aeégbrithm, Greedy and FPTAS, by picking a pair of detec-
tors for different attack goals. All attack goals in the evconerce Bayesian network were used to evaluate the perfaenan
of the algorithms.

We decided to limit the size of the set of detectors pickeduvm, ffor each case and algorithm, since in our experience
it is a reasonable number of detectors for a system adnatostto use to defend a particular attack goal. Although such
number would ultimately depend on several factors (for gamnumber of detectors available, the size of the network
and its corresponding Bayesian network), we believe thatwiv-detector scenario allows us to show the behavior df eac
algorithm for the different attack goals considered.

To show the results, Figure 15 is used to present the desquitked for each attack goal scenario and the corresponding
algorithm used to picked the pair of detectors. Also, a RO@eis created by averaging the FPR and TPR from the different
attack goal scenarios.

The results from this experiment validate the observatfoor® previous experiments. The Greedy algorithm starts by
picking the detectors showing the highest benefits regssditits distance from the attack goal. Still, since allcktaodes
are considered as goals, there are several cases whereetb@y@igorithm will pick detectors close to the goal and with
high benefit values. Therefore, the ROC curve (dashed Ihmys in Figure 16 performs just slightly worse than in theecas
of the FPTAS algorithm. Looking at the choices made by FPT&nsistently picks detectors with a high benefit and close
to the attack goal considered.

All the experiments validate the intuition that the alglnits can provide good results when multiple detectors arsidon
ered together and over the entire Bayesian network. Thed@ragorithm performed well under the scenarios considered
which we believe a good representation of the cases founghirworld systems. Still, as it is shown in Appendix 9, there
could be some scenarios for which the Greedy algorithm cprdduce results as low as half of the optimal solution. The
FPTAS allows getting closer to the optimal solution as tigpathm is bounded by a polynomial in the size of the input and
the reciprocal of the error parameter. In the experimer@HRTAS always selected a solution equal to or better than the
Greedy algorithm, in terms of the benefit provided. As futnoek, we will test the algorithms under larger scenariosicivh
will determine the impact of the error parameter on the rgnime of the scheme.

6 Redated Work

Bayesian networks have been used in intrusion detectioerfogn classification of events. [17] proposed the usage of
Bayesian networks to reduce the number of false alarms.d8@myaetworks are used to improve the aggregation of diftere

0.8 a

0.6

TPR

0.4

0.2

—o—FPTAS

— B - Greedy

0.2 0.4 0.6 0.8 1
FPR

o2

Figure 16. ROC curves for detectors picked by Greedy (dashed line) and FPTAS (solid line) across
all different attack goals in E-Commerce Bayesian network.

model outputs and allow integration of additional inforiaat The experimental results show an improvementin tharacy
of detections, compared to threshold-based schemesufigstthe use of nave Bayes in intrusion detection, whicludexd
a performance comparison with decision trees. Due to sipédegormance and simpler structure, naive Bayes is aactitte
alternative for intrusion detection. Other researcheve ladso used nave Bayesian inference for classifying imtnusvents
[33].

To the best of our knowledge, the problem of determining gu@griate location for detectors has not been systemhBtical
explored by the intrusion detection community. Howevelalagous problems have been studied to some extent in the
physical security and the sensor network fields.

[14] developed a Markov Decision Process (MDP) model of havindruder might try to penetrate the various barriers
designed to protect a physical facility. The model outpakides the probability of a successful intrusion and thetilcedy
paths for success. These paths provide a basis to detetmitecation of new barriers to deter a future intrusion.

In the case of sensor networks, the placement problem hasshedied to identify multiple phenomena such as determin-
ing location of an intrusion [2], contamination source [BJ0], and atmospheric conditions [16]. In these cases, titieoas
are attempting to detect events of interest, which progagsing some well-defined models, such as through the cluster
head en route to a base node. Some of the work [16] is focuseltacting natural events that do not have a malicious
motive in avoiding detection. In our case, we deal with malis adversaries who have an active goal of trying to bypass
the security of the system. The adversaries’ methods dflattg the system do not follow a well-known model making our
problem challenging. As an example of how our solution hesithis, we use noise in our BN model to emulate the lack of
an accurate attack model.

There are some similarities between the work done in aleretadion and ours, primarily the interest in reducing the
number of alerts from an intrusion to be analyzed. Approacueh as [26] have proposed modeling attack scenarios to
correlate alerts and identify causal relationships amdwegalerts. Our work aims to closely integrate the vulneitgbil
analysis into the placement process, whereas the aleglatbon proposals have not focused on such scenario.

The idea of using the Bayes’ theorem for detector placensentiggested in [29]. No formal definition is given, but
several metrics such as accuracy, sensitivity, and spigcifice presented to help an administrator make informedcelso
about placing detectors in a distributed system. Theseiecaaire associated with different areas or sub-networkbef t
system to help in the decision process.

Many studies have been done on developing performanceas&trithe evaluation of intrusion detection systems (IDS),
which have influenced our choice of metrics here. [3] shovaedpplicability of estimation theory in the intrusion dzten
field and presented the Bayesian detection rate as a mattitdf@erformance of an IDS. His observation that the base rat
and not only the false alarm rate, is an important factor @ Bhyesian detection rate, was included in our work by using
low base rates as part of probability values in the Bayesiwark. The MAFTIA Project [7] proposed precision and récal
to effectively determine when vulnerability was exploitadhe system. A difference from our approach is that theyaexip
the metrics to consider a set of IDSes and not only a singkctiat The idea of using ROC curves to measure performance
of intrusion detectors has been explored many times, mosntly in [6], [9].

Extensive work with attack graphs has been done for manysyelecent work has concentrated on the problems of
generating attack graphs for large networks and autom#imgrocess to describe and analyze vulnerabilities artdrays

components to create the graphs. The NetSPA system [11] afdaMool [28] are two examples.

7 Conclusions and Future Work

Bayesian networks have proven to be useful tools in reptiegecomplex probability distributions, such as in our case
of determining the likelihood that an attack goal has bedreaed, given evidence from a set of detectors. By usinglatta
graphs and Bayesian inference, we can quantify the ovessdiction performance in the systems by looking at different
choices and placements of detectors and the detection pteasettings. We also quantified the information gain duwee to
detector as a function of its distance from the attack stdpo,Ahe effectiveness of the Bayesian networks can betaffec
by imperfect knowledge when defining the conditional pralitgbvalues. Nevertheless, the Bayesian network exhibits
considerable resiliency to these factors, as our expetsrsfrowed. Finally, we compared the performance of Greedy an
FPTAS algorithms to determine a set of detectors given aclkatioal. FPTAS consistently outperformed Greedy, althoug
the latter could be used in scenarios where time constrexits

Future work will include looking at the scalability issudsBayesian networks and its impact on determining the locati
for a set of detectors in a distributed system. The prokighitilues acquisition problem can be handled by using teghas
such as the recursive noisy-OR modeling [20] or using hoeeyto monitor the behavior of attackers and compute the
corresponding probability values. Experimentation isufegf to determine its benefits and limitations for our sciena

Acknowledgement

The authors would like to thanks the anonymous reviewersgpoéiminary conference version of this article [23]. Gaspa
Modelo-Howard was partly supported by an IFARHU-SENACY h8larship from the Republic of Panama. Saurabh Bagchi
was partly supported in this work by an endowment grant framdBe’s Center for Education and Research in Information
Assurance and Security (CERIAS).

References

[1] N. B. Amor, S. Benferhat, and Z. Elouedi. Naive bayes vsiglen trees in intrusion detection systemsSIAC '04: Proceedings of
the 2004 ACM symposium on Applied computipages 420-424, New York, NY, USA, 2004. ACM.

[2] F. Anjum, D. Subhadrabandhu, S. Sarkar, and R. Shettyo@imal placement of intrusion detection modules in senstworks.
Broadband Networks, International Conference 01690-699, 2004.

[3] S. Axelsson. The base-rate fallacy and the difficultyndfuision detectionACM Trans. Inf. Syst. SecuB(3):186—205, 2000.

[4] R. A. Baeza-Yates and B. A. Ribeiro-Netblodern Information RetrievalACM Press / Addison-Wesley, 1999.

[5] T. Berger-Wolf, W. Hart, and J. Saia. Discrete sensoc@taent problems in distribution networkMathematical and Computer
Modelling 42(13):1385 — 1396, 2005.

[6] A.A.Cardenas, J. S. Baras, and K. Seamon. A framewarthfevaluation of intrusion detection systems2006 IEEE Symposium
on Security and Privacy (S&P 2006), 21-24 May 2006, Berk&eyjifornia, USA pages 63—-77. IEEE Computer Society, 2006.

[7]1 M. D. (Ed.). Design of an intrusion-tolerant intrusioatdction system. Technical report, Maftia Project, 2002.

[8] B. Foo, Y.-S. Wu, Y.-C. Mao, S. Bagchi, and E. H. Spafforddepts: Adaptive intrusion response using attack graptenie-
commerce environment. [R005 International Conference on Dependable Systems ahdares (DSN 2005), 28 June - 1 July
2005, Yokohama, Japan, Proceedingages 508-517. IEEE Computer Society, 2005.

[9] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skoric. Meagyiittrusion detection capability: an information-thearetpproach. In
ASIACCS '06: Proceedings of the 2006 ACM Symposium on lat@wm computer and communications secyrjggges 90-101,
New York, NY, USA, 2006. ACM.

[10] O. H. Ibarra and C. E. Kim. Fast approximation algorithfar the knapsack and sum of subset probled#\CM 22(4):463-468,
1975.

[11] K. Ingols, R. Lippmann, and K. Piwowarski. Practicalaak graph generation for network defense. AGSAC '06: Computer
Security Applications Conference, 22nd Annuyages 121-130, December 2006.

[12] F. V. JensenBayesian networks and decision grap&pringer, 2001.

[13] S. Jha, O. Sheyner, and J. M. Wing. Two formal analys dtathk graphs. Ini5th IEEE Computer Security Foundations Workshop
(CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova Scaiizada pages 49—-63. IEEE Computer Society, 2002.

[14] D. Jones, C. Davis, M. Turnquist, and L. Nozick. Phykgegcurity and vulnerability modeling for infrastructugflities. InSandia
National Laboratories2005.

[15] H. Kellerer, U. Pferschy, and D. Pisingé¢napsack ProblemsSpringer, 1 edition, October 2004.

[16] A. Krause, C. Guestrin, A. Gupta, and J. M. KleinbergaNeptimal sensor placements: maximizing informationle/minimizing
communication cost. IfProceedings of the Fifth International Conference on Infation Processing in Sensor Networks, IPSN
2006, Nashville, Tennessee, USA, April 19-21, 2pa§es 2—-10. ACM, 2006.

[17] C. Krugel, D. Mutz, W. K. Robertson, and F. Valeur. Baisn event classification for intrusion detection.18th Annual Computer
Security Applications Conference (ACSAC 2003), 8-12 Dbee003, Las Vegas, NV, USgages 14-23. IEEE Computer Society,
2003.

[18] D. R. Kuhn, T. Walsh, and S. Fires. Nist special publmaB00-58 security considerations for voice over ip syste?@05.

[19] S. L. Lauritzen and D. J. Spiegelhalter. Local compatet with probabilities on graphical structures and thpjleation to expert
systemsJournal of the Royal Statistical Society. Series B (Methagloal), 50(2):157—-224, 1988.

[20] J. F. Lemmer and D. E. Gossink. Recursive noisy or - afarestimating complex probabilistic interactionEEE Transactions on
Systems, Man, and Cybernetics, PayBB(6):2252-2261, 2004.

[21] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, ®cClung, D. Weber, S. Webster, D. Wyschogrod, R. Cunninghaamal
M. Zissman. Evaluating intrusion detection systems: th@81®arpa off-line intrusion detection evaluation.DARPA Information
Survivability Conference and Exposition, 2000. DISCEX Pf@ceedingsvolume 2, pages 12 —26 vol.2, 2000.

[22] V. Mehta, C. Bartzis, H. Zhu, E. M. Clarke, and J. M. Wiriganking attack graphs. lRRecent Advances in Intrusion Detection, 9th
International Symposium, RAID 2006, Hamburg, Germanyte®eiper 20-22, 2006, Proceeding®lume 4219 of_ecture Notes in
Computer Sciencgages 127-144. Springer, 2006.

[23] G. Modelo-Howard, S. Bagchi, and G. Lebanon. Deterngrplacement of intrusion detectors for a distributed aapion through
bayesian network modeling. IRAID '08: Proceedings of the 11th international symposiumRecent Advances in Intrusion
Detection pages 271290, Berlin, Heidelberg, 2008. Springer-derla

[24] K. Murphy. Bayes net toolbox for matlab, March 2006.

[25] Netfilter/IPTables. Iptables firewall. http://wwwifiter.org/projects/iptables/, 2008.

[26] P. Ning, Y. Cui, and D. S. Reeves. Constructing attagnacios through correlation of intrusion alerts. Hroceedings of the 9th
ACM Conference on Computer and Communications Secpatyes 245-254. ACM, 2002.

[27] NIST. National vulnerability database. http://nvidtrgov/nvd.cfm, 2008.

[28] X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approtchttack graph generation. @CS '06: Proceedings of the 13th ACM
conference on Computer and communications secyéges 336—345, New York, NY, USA, 2006. ACM.

[29] C. Peikari and A. ChuvakinSecurity Warrior O’Reilly Media, 2004.

[30] S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungsandrobust location detection with sensor networkEEE Journal on
Selected Areas in Communicatio22(6):1016-1025, 2004.

[31] SecurityFocus. Bugtraq vulnerability database. :figpvw.securityfocus.com/vulnerabilities, 2008.

[32] Sourcefire. Snort ids. http://www.snort.org, 2008.

[33] A.Valdes and K. Skinner. Adaptive, model-based mamitpfor cyber attack detection. Recent Advances in Intrusion Detection,
Third International Workshop, RAID 2000, Toulouse, Fran©etober 2-4, 2000, Proceedinggolume 1907 of_ecture Notes in
Computer Sciencgages 80-92. Springer, 2000.

[34] V. V. Vazirani. Approximation AlgorithmsSpringer, March 2004.

8 Appendix: Description of E-Commerce Bayesian Networ k

We provide a description of the Bayesian network built fa& #&acommerce system used in the experiments. It includes
a description of each node in the Bayesian network, for treeted and unobserved nodes, as well as the corresponding
probability values (shown as tables) associated with eadie.n

DESCRIPTION OF NODES
1
@< NODE 1: Attack step - ping or
traceroute to web servers

NODE 2: Attack step - run
portscanner on web servers

NODE 3: Detector alert — IPTables

NODE 4: Attack step - exploit
ssldump vuln. on web server

NODE 5: Attack step - access web
server admin site

NODE 6: Attack step - Brute force
admin pwd

NODE 7: Detector alert — Snort

NODE 8: Attack step - Copy hacker
tool to web server by using tftp

NODE 9: Attack step - Install vuln
scanner on web server

NODE 10: Attack step - Run
portscanner on internal network

NODE 11: Attack step - Install sniffer
to capture pwds

NODE 12: Attack step - Exploit
rpc.statd service on app controller

NODE 13: Detector alert — Libsafe
@ @ NODE 14: Attack step - Exploit
remote vuln. on MySQL server
@ NODE 15: Attack step - Brute force
root pwd on app controller
@ @ @ NODE 16: Attack step - Run SQLplus
to execute queries on tables
@ NODE 17: Attack step - Connect to

MySQL server with admin account

NODE 18: Attack step - Read
customer data table

ATTACK STEP
(UNOBSERVED NODE) NODE 19: Attack step - Copy
customer credit card list
(oY
@ ATTACK GOAL NODE 20: Detector alert - Database
(UNOBSERVED NODE) IDS (Application Security
DbProtect)
@ DETECTOR
(OBSERVED NODE)

Figure 17. Bayesian network for the e-commerce system with c orresponding description of the
nodes. Each node is either an attack step or a detector.

@4 1 X1 X2 X3 X4

F | 0.99998 X1 F T ||X2 X1| F T ||X2| F T

T 1000002 |1 Elo7 03[|F F|lo09 01||F|03 07
T|03 07||T Flo6 04||T|o01 09

F T 04 06

T T|o02 08

X5 X6 X7

X2| F T X5| F T X6 X4| F T

Fl103 07 F|109 0.1 F F |0.95 0.05
T|01 09 T|07 03 T F|07 03
F T]03 07
T T]0.15 0.85

X8 X9 X10

X6 X4| F T X6 X4| F T X9 X8| F T

F F|]03 0.7 F F |0.99 0.01 F F |0.99 0.01

T F|02 08 T F|03 07 T F|01 09

F T]02 08 F T]03 07 F T]01 09

T T|01 09 T T (0.01 0.99 T T1]0.01 0.99
X1 X12 X13

X9 X8| F T X10, F T X12| F T

F F|0.99 0.01 F|02 08 F|109 0.1
T F |01 09 T|01 09 T|01 09
F T]01 09

T T]0.01 0.99

X20

X14 X15 X19 X18 X17X16| F T

0.99 0.01
04 06
0.35 0.65

X12 F T X12 F T
F|102 08 F|02 08

0.15 085
0.15 0.85
0.01 0.99

F F F F
T F F F
F T F F
T|01 09| | T|01 09 T T F F|03 07
F F T F 035065
x16 x17 X18 X19 FoTOTOFl0s o7
X15X14X11 F T | X15X11 F T | [Xi4x11 F T | [xX17 F T T T T F1015085
F F F T 035065
09 01| |F F (095005 |F F|[09 01| |F |09 0.1 T F F T|03 07
08 02| |T F|07 03| |T F|06 04| [T 01 09 F T F T|03 07
07 03| |F T|08 02| |F T|04 06 T T F T/|015 085
03 07| |T T|02 08| |T T|02 08 F F T T/03 07
T F T T
F T T T
T T T T

AT AT =TT
A —4mMTm -7

A4 —A4—4—4TmTmTm
o
~
o
w

Figure 18. Bayesian network for the e-commerce system with t he conditional probabilities values
used for the experiments.

9 Appendix: Calculation of Approximatio Ratio for Greedy Algorithm

We provide the calculation of the approximation ratio foGeeedy algorithmof the 0-1 knapsack problem (KP), for
the bounded case (when there is a limited number of items fwbinh to pick and put in the knapsack). The proofs for
the calculation of the approximation ratio are adapted ffp&) and [34]. We include the proofs in this paper to make the
previous proofs more accessible to a systems security megl@nd to show the thinking process that went on behind our
search for FPTAS after having designed the Greedy solution.

KP can be formally defined as the following: given iastancewith item setNV, consisting ofn itemsz;, each with a
profit p; and weightw,. The knapsack has a capacity vatud he objective is to select a subsetéfsuch that the total profit
of the selected item&7"_, p;x;) is maximized subject to the corresponding total weight moeeding the knapsack capacity
(X7, wiz; < c). The optimal solution value is denoted by*7".

The idea of the Greedy algorithm with a solution vakieis to start with an empty knapsack, sort the items in deangasi
order according to its profit to weight rat% and go through the sorted items, adding every item into tla@&ack while its
capacity is not overwhelmed. The final step is making a coimpabetween the given solution and the highest profit value
of any item. The larger of the two is finally taken and is deddig ™. This final step can be considered a modification of
the original Greedy algorithm found in literature [33], Imgcessary to guarantee an approximation rati@ tuf the optimal
solution.

A linear programming relaxation (LKP) is made to computedhproximation ratio, omitting the integer constraint of KP
and optimizing instead over all nonnegative real valuesubddly, the optimal solution value’*” of the relaxed problem is
at least as large as the original valtie”” because the set of feasible solutions for the original KPsisteset of the feasible
solutions for the relaxed problem. The Greedy algorithmlfidP packs the items in decreasing order of profit-to-weight
ratio, similar to the original Greedy algorithm, but witheodifference. When adding an iteso the knapsack would cause
the capacity: to overflow for the first time, only an appropriate fractiopalt of the item is used. Itemis referred as the
split item, its corresponding profit ag and weight asv;. The split solution, not including the split item, is definieyl a
profit p and weighto. Therefore, the optimal solution value of LKP is defined as

PREARIED Yoty PN (G i 1wz)p‘s. (2)

The valuez“%7 is an upper bound on the optimal solution for KP. A tighter eippound/ ¥ for z©*T can be obtained
by using the floor ot L5 ie. UL p := [215, since all data are integers. Then we get the following bewmt~%":

p< 2P <Upgp < 2P <22 pi=p+ps =29 +ps. (3)

Another consequence of these considerations is the faitpbaict:

ZOPT - ZG S ZOPT _ﬁ S Pmax (4)

wherep,, ... denotes the largest profit of any item in the set N.

The Greedy algorithm has an approximation ratid @fnd this bound is tight. As proof, we know from (3) that!”” <
ZG +pmaz < ZmG + ZmG — QZmG

The tightness of the bound can be shown by the following eXxamipem 1 is given byw; = 1, p; = 2, andb; = 1
(number of item 1 available). Item 2 is given by = p, = M andb, = 2. The knapsack capacity is= 2M . The Greedy
algorithm would pack item 1 first and then an item 2, reachisglation value o2 + M while the optimal solution would
pack items 2 and would reach a value2df/. ChoosingM large enough, the ration between the approximate and olptima
solution value can be arbitrarily closego

