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ABSTRACT 

Rao, Prathima Rama. Ph.D., Purdue University, August 2010. EXAM: An Environment 
for XACML Policy Analysis and Management. Major Professor: Elisa Bertino. 

As distributed collaborative applications and architectures are adopting policy based 

management for tasks such as access control, network security and data privacy, the man­

agement and consolidation of a large number of policies is becoming a crucial component 

of such policy based systems. In large-scale distributed collaborative applications like web 

services, there is need for analysing policy interaction and performing policy integration. 

In this thesis, we propose and implement EXAM, a comprehensive environment for pol­

icy analysis and management, which can be used to perform a variety of functions such 

as policy property analyses, policy similarity analysis, policy integration etc. As part of 

this environment we have proposed two novel policy similarity analysis techniques along 

with fine-grained integration algebra (FIA) for integrating 3-valued access control policies. 

We also provide a framework for specifying policy integration constraints using FIA and 

generating an integrated policy. Our work focuses on analysis of access control policies 

written in the dialect of XACML (Extensible Access Control Markup Language) [1]. We 

consider XACML policies because XACML is a rich language which can represent many 

policies of interest to real world applications and is gaining widespread adoption in the 

industry. 
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1 INTRODUCTION 

The widespread deployment of distributed applications and architectures such as Web Ser­

vices, Virtual Private Networks and Service-Oriented Architectures has led to the prolifer­

ation of security policies that are specified and maintained independent of the application 

logic. Policy-based approaches enhance flexibility and reduce the application development 

time. Changes to the security requirements of an application simply entail modifying the 

policies without requiring changes to the application logic. Particularly important class of 

such security policies is represented by access control policies which determine whether re­

quests to protected resources are permitted or denied. Various types of access control mod­

els and mechanisms have emerged, such as PolicyMaker [2], the ISO 10181-3 model [3] 

and the eXtensible Access Control Mark-up Language (XACML) [4]. 

A key requirement for the successful large scale deployment of policy-based access 

control services is represented by tools for managing and analyzing policies. Such tools 

must not only enable a policy administrator to easily acquire, edit and retrieve policies 

but must also support powerful analysis that are needed to perform tasks such as consis­

tency checking, comparison and integration that are particularly crucial in the context of 

distributed collaborative applications. 

A key goal for collaborative applications is to share resources, such as services, data 

and knowledge. Such applications may have different objectives, such as provisioning 

some complex service to third parties or performing some collaborative data analysis, and 

may adopt different collaboration mechanisms and tools. However, a common requirement 

is represented by the need for parties to compare their access control policies in order to 

decide which resources to share. For example, an important question that a party P may 

need to answer when deciding whether to share a resource with other parties in a coalition 

is whether these parties guarantee the same level of security as P . This is a complex 

question and approaches to it require developing adequate methodologies and processes, 
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and addressing several issues. A relevant issue is represented by a comparison of access 

control policies. A party P may decide to release some data to a party P � only if the access 

control policies of P � are very much the same as its own access control policies. Also 

as policies are increasingly being deployed at various levels within a distributed system ­

network devices, firewalls, hosts, applications - an important issue is to determine whether 

all the deployed policies authorize the same set of requests. Hence an important issue in 

the development of an analysis environment is devising techniques and tools for assessing 

policy similarity, that we define as the characterization of the relationships among the sets 

of requests respectively authorized by a set of policies. An important example of such 

relationship is represented by intersection, according to which one characterizes the set of 

common requests authorized by a set of given policies. 

Another important requirement that arises in collaborative applications due to the need 

to integrate and share resources is the integration of access control policies. In order to 

define a common policy for resources jointly owned by multiple parties applications may 

be required to combine policies from different sources into a single policy. Even in a single 

organization, there could be multiple policy authoring units. If two different branches of an 

organization have different or even conflicting access control policies, what policy should 

the organization as a whole adopt? If one policy allows the access to certain resources, but 

another policy denies such access, how can they be composed into a coherent whole? Since 

no single policy integration strategy is known to be suitable for every possible situation it 

is important to have an effective policy integration mechanism that is able to support a 

flexible fine-graines policy integration strategy capable of handling complex integration 

specifications. 

To date, no comprehensive environments exist supporting a large variety of query anal­

ysis and related management functions. Specialized techniques and tools have been pro­

posed, addressing only limited forms of analysis (detailed discussion is presented in Chap­

ter 5). Common limitations concern: policy conditions, in that only policies with simple 

conditions can be analyzed [5]; and relationship characterization, in that for example one 
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can only determine whether two policies authorize some common request, but no charac­

terization of such request is provided. 

The objective of this thesis is to address such lack by developing a comprehensive 

environment supporting a variety of analysis. This thesis focuses on the management and 

analysis of access control policies expressed in the dialect of XACML (eXtensible Access 

Control Mark-up Language) [1]. XACML has gained widespread adoption as an industry 

standard and can express many policies of interest to real world applications. 

1.1 Contributions 

The main contributions of this thesis is summarized below: 

•	 We have identified and implemented several analysis queries for single and multiple 

policies. 

•	 We have developed two variants of policy similarity analysis : 

–	 A policy similarity measure, which is a lightweight filter based on information 

retrieval techniques, that quickly computes an approximate similarity score for 

two access control policies. We have incorporated ontology matching tech­

niques to solve the problem of attribute name and value heterogeneity when 

comparing policies. We have incorporated the notion of predicate selectivity to 

improve the effectiveness of the similarity scores. We have also conducted a 

pilot study among system administrators and students to validate the practical 

value of such an approach for policy comparison. 

–	 A heavyweight policy similarity analyzer, based on a combination of model-

checking and SAT solving techniques, that gives a precise characterization of 

the similarity between policies at the granularity of requests that are permitted 

or denied. We have proposed and implemented a novel multi-level grid based 

visualization of results of policy similarity analysis. 



4 

We have implemented both variants of the policy similarity analysis and reported the 

experimental results. 

•	 We have proposed a fine-grained integration algebra for language independent 3­

valued policies. We introduce a notion of completeness and prove that our algebra 

is minimal and complete with respect to this notion. We have proposed and imple­

mented a framework that uses the algebra for the fine-grained integration of policies 

expressed in XACML. The method automatically generates XACML policies as the 

policy integration result. To the best of our knowledge, none of the existing ap­

proaches has generated real policies as policy integration output. We have carried 

out experimental studies which demonstrate the efficiency and practical value of our 

policy integration approach. 

•	 We have proposed EXAM (Environment for XACML policy Analysis and Manage­

ment), a comprehensive environment for the management and analysis of access con­

trol policies expressed in XACML that incorporates the policy analysis and integra­

tion frameworks. We have developed EXAM as web-based application and made it 

available for use in a virtual appliance. 

1.2 Background 

In this section we review basic XACML concepts. 

1.2.1 XACML Policies 

XACML [4] is the OASIS standard language for the specification of access control 

policies. It is an XML language able to express a large variety of policies, taking into 

account properties of subjects and resources as well as context information. In general, a 

subject can request an action to be executed on a resource and the policy decides whether to 

deny or allow the execution of that action. Several profiles, such as a role profile, a privacy 
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profile etc. have been defined for XACML. Commercial implementations of XACML are 

also available [6, 7]. The main concepts in XACML policies are sketched as follows. 

•	 The Policy Target identifies the set of requests that the policy is applicable to. It 

contains attribute constraints characterizing subjects, resources, actions, and envi­

ronments. 

•	 Each Rule in turn consists of another optional Target, a  Condition and an Effect ele­

ment. The rule Target has the same structure as the policy Target. It specifies the set 

of requests that the rule is applicable to. The Condition specifies restrictions on the 

attribute values in a request that must hold in order for the request to be permitted or 

denied as specified by the Effect. The Effect specifies whether the requested actions 

should be allowed (Permit) or denied (Deny). 

The restrictions specified by the target and condition elements correspond to the no­

tion of attribute-based access control, under which access control policies are ex­

pressed as conditions against the properties of subjects and resources. In XACML 

such restrictions are represented as Boolean functions taking the request attribute val­

ues as input, and returning true or false depending on whether the request attributes 

satisfy certain conditions. If a request satisfies the policy target, then the policy is 

applicable to that request. Then, it is checked to see if the request satisfies the targets 

of any rules in the policy. If the request satisfies a rule target, the rule is applica­

ble to that request and will yield a decision as specified by the Effect element if the 

request further satisfies the rule condition predicates. If the request does not satisfy 

the policy(rule) target, the policy(rule) is “Not Applicable” and the effect will be 

ignored. 

•	 The Rule combining algorithm is used to resolve conflicts among applicable rules 

with different effects. For example, if a request is permitted by one rule but denied 

by another rule in a policy and the permit-overrides combining algorithm is used, the 

request will be permitted by the policy. If the deny-overrides combining algorithm is 

used, the request will be denied by the policy. 
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PolicyId=Pol1 
<RuleId=R11 Effect=Permit> 

<Target> 
<Subject domain belong to {“.edu”} > 

</Target> 
<Condition 8 : 00 ≤ Time ≤ 22 : 00 > 

</Rule> 

Figure 1.1. Policy Pol1 

• The Policy set is a set of XACML policies. 

An XACML policy may also contain one or more Obligations,which represent func­

tions to be executed in conjunction with the enforcement of an authorization decision. 

However, obligations are outside the scope of this work and we do not further consider 

them in this thesis. 

Figure 1.1 shows the structure of an example policy, with identifier Pol1, which states 

that any user from domain “.edu” is authorized to access the data from 8am to 10pm 

everyday. This policy contains a single rule, R11, with the Permit effect. The rule target 

element restricts the users to be from domain “.edu”, and the condition element restricts 

the access time. Such restrictions can be represented as the Boolean formulae:(domain = 

“.edu��) ∧ (8 ≤ time ≤ 22). For an incoming request, if the attribute values of the request 

make the Boolean formulae true, a permit decision is returned. 

The rest of this document is structured as follows : Chapter 3 presents an overview 

of EXAM’s architecture and analysis capabilities. Chapter 4 presents in detail the two 

policy similarity analyses along with experimental results. The policy integration algebra 

is presented in Chapter 5. Related work is presented in Chapter 6 and finally Chapter 7 

discusses conclusions and future work. 
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2 EXAM – AN OVERVIEW 

In this chapter we discuss the various components in EXAM’s architecture. We then present 

an illustrative example ch is used to present an overview of the various functions supported 

by EXAM. Then, we present some formal definitions of policy analysis queries. 

2.1 EXAM Architecture 

The EXAM environment, an overview of which is shown in Figure 2.1, includes three 

levels. The first level is the user interface, which receives policies, requests and queries 

from users, and returns request replies and query results. The second level is the query 

dispatcher, which handles various requests received from the user interface, dispatches 

them to proper analysis module and aggregates obtained results. 

User User User 

User Interface 

Annotation 
Policy 

Repository 
Policy 

Query Dispatcher 

Policy Similarity 

Analyzer (PSA) 

Policy 
Filter 

Policy 
Integration 
Framework 

. . .  .  . . 

Figure 2.1. EXAM Architecture 

The third level is the core level of EXAM and includes four modules supporting differ­

ent functionalities, namely: policy annotator, policy filter, policy similarity analyzer and 

policy integration framework. 
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•	 The Policy annotator [8] module preprocesses each newly acquired policy by adding 

annotations to it. The annotations explicitly represent the behavior or semantics of 

each function referred in the policy. Such annotations help in automatically translat­

ing policies into Boolean formulae that can then be evaluated by the policy analysis 

modules. The annotated policies are stored in the policy repository together with the 

policy metadata. 

•	 The Policy filter [9] implements a lightweight approach which quickly evaluates sim­

ilarity between each pair of policies and assigns each pair a similarity score ranging 

from 0 to 1. The higher the similarity score is, the more similar the two policies are. 

According to the obtained similarity scores, policies with low similarity scores may 

be pruned from further analysis, whereas policies with high similarity scores can be 

further examined. The main goal of the policy filter module is to reduce the number 

of policies that need to be analyzed more in details, when dealing with large size 

policy sets. The filtering approach we use is based on techniques from information 

retrieval and is extremely fast. 

The use of filtering in the policy analysis process is however optional. The query 

dispatcher can directly send analysis queries to the policy similarity analyzer, to carry 

out a fine-grained policy analysis, without performing the filtering. 

•	 The Policy similarity analyzer (PSA) module is the core component of our ap­

proach to policy analysis. It basically implements the strategies for processing the 

policy analysis queries supported by EXAM, and thus in the subsequent sections we 

describe in details its main techniques and query processing strategies. 

•	 The Policy integration framework [10] module provides the capability for integrat­

ing policies using operators defined in the proposed fine grained integration algebra 

(FIA). It uses the MTBDD based representation of policies to implement the alge­

braic operators. Operations on policies are mapped onto operations on the corre­

sponding policy MTBDDs and an integrated policy MTBDD is obtained. The inte­
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grated policy MTBDD is then traversed to generate a well-formed XACML version 

of the integrated policy. 

It is worth noting that our system is flexible and supports an easy integration of new 

functions. Even though its current version applies only to XACML policies, it can be 

easily adapted to deal with other policy languages. The policy repository, policy filter and 

policy integration modules need to be modified for supporting other policy languages. 

2.2 An Illustrative Example 

To illustrate the discussion we consider a scenario from a content delivery network 

(CDN) system built on P2P network in which parties can replicate their data in storage 

made available by third party resource providers. Real systems adopting this model are for 

instance Lockss [11] and LionShare [12]. In such scenario, there are usually two types of 

parties: data owner and resource owner. A data owner owns some data, whereas a resource 

owner manages some resources for storing data and processing queries on data. A data 

owner typically needs to determine which resource owners can be more suited for storing 

its content. Examples of such CDN systems can be found in Grid computing systems and 

P2P systems. Each such party in a CDN typically has its own access control policies. The 

policies of a data owner specify which users can access which data, among these owned by 

the data owner, under which conditions. The access control policies of the resource owners 

specify conditions for the use of the managed resources. In large dynamic environments, 

we cannot expect such policies to be integrated and harmonized beforehand, also because 

policies may dynamically change. Therefore, a subject wishing to run a query has to com­

ply with both the access control policy associated with the queried data and the access 

control policy of the resource to be used to process the query. Because such parties may 

not have the same access control policies, in order to maximize the access to the data, it is 

important to store the data at the resource owner having access control policies similar to 

the access control policies associated with the data. Furthermore, besides determining the 

common parts of the access control policies shared by the data owner and resource owner, 
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the data owner may also be interested in checking if certain key requests can be success­

fully handled, if the data were to be located at a given resource owner. In other words, the 

data owner may want to know if the difference among the multiple access control policies 

has a negative effect on some important tasks. 

We now introduce two example policies from the above scenario. 

Example 1 Pol1 (Data Owner): Any user from domain “.edu” is authorized to access the 

data from 8am to 10pm everyday. 

Pol2 (Resource Owner): Any user from domain “.edu” or affiliated with “IBM” is 

authorized to access the resource from 6am to 8pm everyday. 

In order for the data owner to decide whether to store the data at the resource owner, 

it is crucial to determine which kinds of requests will be permitted by both policies and 

which will not. Because in this case we are dealing with only two policies, the filtering 

phase is not required and the policies can be directly transmitted to the PSA. The PSA then 

returns the following characterization of the similarity for the input policies: 

•	 When domain is in the name space of “.edu” and time is in the range of [8am, 8pm], 

such requests are permitted by Pol1 and Pol2. 

•	 When domain is in the name space of “.edu” and time is in the range of (8pm, 10pm], 

such requests are permitted by Pol1, denied by Pol2. 

•	 When affiliation is “IBM” and time is in the range of [6am, 8pm], such requests are 

denied by Pol1, permitted by Pol2. 

•	 When (domain is in the name space of “.edu” or affiliation is “IBM”), and time is in 

the range of [6am, 8am), such requests are denied by Pol1, permitted by Pol2. 

By using such characterization, the data owner can check if most requests (or some 

important requests) are satisfied and then decide whether to send his data to such resource 

owner. More specifically, if the data owner knows that a large percentage of requests are 

issued during the time interval [8am, 8pm], sending the data to this resource owner would 



11 

be a good choice, as both policies yield same effect for the requests during that time period. 

If, instead, it is crucial that the data be also available at other times, the data owner may 

determine if there are other resource owners, whose policies are closer to its own, or use 

some data replication strategies to make sure that at any point of time there is at least one 

resource owner whose policies allow the data queries to be processed. 

The data owner may also investigate additional properties concerning the policies; for 

example the data owner may also issue queries like “when are the requests of users from 

domain “.edu” permitted by both policies?”. For such query the PSA will return the time 

interval in which both policies are satisfied. 

2.3 Analysis Queries on Policies 

In this section, we present formal definitions of policy analysis queries that are sup­

ported by EXAM. Because one can analyze policies and sets of policies from different 

perspectives, it is important to devise a comprehensive categorization of such queries. In 

our work, we have thus identified three main categories of analysis queries, which differ 

with respect to the information that they query. These categories are: policy metadata 

queries, policy content queries, and policy effect queries. Figure 2.2 provides a taxonomy 

summarizing the various query types. 

Policy metadata queries analyze metadata associated with policies, such as policy cre­

ation and revision dates, policy author, and policy location. A policy content query, by 

contrast, extracts and analyzes the actual policy content, such as the number of rules in 

the policy, the total number of attributes referenced in the policy, the presence of certain 

attribute values. 

A policy effect query analyzes the requests allowed or denied by policies and interac­

tions among policies. The category of the policy effect queries is the most interesting one 

among the query categories we have identified. The processing of policy effect queries is 

also far more complex than the processing of queries in the other two categories, and thus 

we address its processing in details (see next section). The policy effect query category can 
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Policy Metadata Query Policy Content Query Policy Effect Query 

Policy Analysis Query 

Single−Policy Query Multiple−Policy Query 

Common Property Query Discrimination QueryProperty Verification Query 

Q Qc 
Qdp 

Figure 2.2. Query Categorization 

be further divided into two subcategories: (i) queries on single policy; and (ii) queries on 

multiple policies. The first subcategory contains one type of query, referred to as property 

verification query. The second subcategory contains two main types of queries, namely 

common property query and discrimination query. 

In the following, we first introduce some preliminary notions, and then present more 

details for each type of policy effect query (query for short), including their definitions and 

functionalities. 

2.3.1 Preliminary Notions 

In our work, we assume the existence of a finite set A of names. Each attribute, char­

acterizing a subject or a resource or an action or the environment, has a name a in A, and 

a domain, denoted by dom(a), of possible values. The following two definitions introduce 

the notion of access request and policy semantics. 

Definition 1 Let a1, a2, ..., ak be attribute names in policy P , and let vi ∈ dom(ai) (1 ≤ 

i ≤ k). r ≡ {(a1, v1), (a2, v2), · · ·  , (ak, vk)} is a request, and eP
r denotes the effect of this 

request against P . 

Example 2 Consider a policy that permits access to data to users from the “.edu” domain 

between 8am and 10pm. An example of a request to which this policy applies is that of 
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a user from domain “.edu” wishing to access the data at 9am. According to Definition 1, 

such request can be expressed as r ≡ {(domain, “.edu”), (time, 9am)}. 

Definition 2 Let P be an access control policy. We define the semantics of P as a pair 

{Bpermit, Bdeny}, where Bpermit and Bdeny are Boolean expressions corresponding to per­

mit and deny rules respectively. Bpermit and Bdeny are defined as follows. 

⎧
 
⎨
 Bpermit = TP ∧ ((TPR1 ∧ CPR1 ) ∨ ... ∨ (TPRk ∧ CPRk )) 

⎩ Bdeny = TP ∧ ((TDR1 ∧ CDR1 ) ∨ ... ∨ (TDRj ∧ CDRj )) 

where, TP denotes a Boolean expression on the attributes of the policy target; TPRi and 

CPRi (i = 1, ..., k) denote the Boolean expressions on the attributes of the rule target and 

rule condition of permit rule PRi; and TDRi and CDRi (i = 1, ..., j) denote the Boolean 

expressions on the attributes of the rule target and rule condition of deny rule DRi. 

The Boolean expressions (T and C) that frequently occur in policies can be broadly 

classified into the following five categories, as identified in [13] : 

- Category 1: One variable equality constraints. 

x = c, where x is a variable and c is a constant. 

- Category 2: One variable inequality constraints. 

x � c, where x is a variable, c is a constant, and � ∈ {<, ≤, >, ≥}. 

- Category 3: Real valued linear constraints. 
�n 

i=1 aixi � c, where xi is variable, ci is a constant, and � ∈ {=, <, ≤, >, ≥}. 

- Category 4: Regular expression constraints. 

s ∈ L(r) or s /∈ L(r), where s is a string variable, and L(r) is the language generated 

by regular expression r. 

- Category 5: Compound Boolean expression constraints. 
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This category includes constraints obtained by combining Boolean constraints be­

longing to the categories listed above. The combination operators are ∨, ∧ and ¬. 

By using ¬, we can represent the inequality constraint x  = c as ¬(x = c). 

It is worth noting that Boolean expressions on the attributes of policy targets or rule targets 

(TP , TPR) usually belong to Category 1. 

The domains of the attributes that appear in the above Boolean expressions belong to 

one of the following categories : 

- Integer domain : The attribute domains in Boolean expressions of categories 1,2 and 

5 can belong to this domain. 

- Real domain : The attribute domains in Boolean expressions of categories 1,2,3 and 

5 can belong to this domain. 

- String domain : The attribute domains in Boolean expressions of categories 1, 4 and 

5 can belong to this domain. 

- Tree domain : Each constant of a tree domain is a string, and for any constant in the 

tree domain, its parent is its prefix (suffix). The X.500 directories, Internet domain 

names and XML data are in the tree domain. For example, an Internet domain con­

stant “.edu” is the parent of an Internet domain constant “purdue.edu”. The attribute 

domains in Boolean expression of categories 1 and 5 can belong to this domain. 

At the end, we define the degree of similarity between two policies as follows. 

Definition 3 Let P1 and P2 be access control policies. The degree of similarity between 

P1 and P2 is the percentage of requests which are granted the same decisions (Permit or 

Deny) by the two policies. 

According to Definition 4.2.2, we say that P1 and P2 are equivalent if P1 always permits 

(or denies) a request that P2 permits (or denies) and vice versus. 

http:purdue.edu
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2.3.2 Policy Effect Query 

Definition 4 Let P1, P2, ..., Pn be n (n ≥ 1) policies. A policy effect query has the form: 

(Bq, (eq1 , eq2 , ..., eqn ), fq), where Bq is a Boolean function on a subset of attributes oc­

curring in the n policies, eqi ⊂ {Permit, Deny, NotApplicable1} (1 ≤ i ≤ n), and fq is a 

Boolean expression on the number of requests. 

To evaluate a policy effect query, we first find the requests that satisfy Bq. For each such 

request, we obtain the decisions from n (n ≥ 1) policies and compare the decisions with 

eq1 , ..., eqn . If the decision yielded by Pi is an element in eqi (1 ≤ i ≤ n), insert the request 

to a result set R. The last step is to check fq. Currently, our system supports two types of fq 

functions (i)true, which means there is no constraint; (ii)|R|<x (< ∈ {<, ≤, =, =, >, ≥}), 

where |R| is the number of requests and x is a constant. For example, |R| > 0 is a query 

constraint which checks if the corresponding query returns at least one request. It is worth 

noting that fq can be a more complicated function on a particular set of attributes. Such 

flexibility in the definition on fq allows our query language to cover various situations. The 

output of a policy effect query is a value “true” and a set of requests when fq is satisfied, 

otherwise the output is “false”. In what follows, we show how to represent property verifi­

cation query, common property query and discrimination query through examples. 

Property verification query (Qp). It checks if a policy can yield specified decisions given 

a set of attribute values and constraints. 

Example 3 Consider a scenario from a content delivery network(CDN) built on P2P net­

work, e.g. Lockss [11] and LionShare [12], in which parties can replicate their data in 

storage made available by third party resource providers. There are usually two types of 

parties: data owner and resource owner. The policies of a data owner specify which users 

can access which data, among these owned by the data owner, under which conditions. The 

access control policies of the resource owners specify conditions for the use of the managed 

resources. 
1We do not distinguish “NotApplicable” and “Non-determinism” in this work. 
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For example, P1 is a policy of a data owner who allows any user from domain “.edu” to 

access his data from 8am to 10pm everyday. P2 is a policy of a resource owner who allows 

any user from domain “.edu” or affiliated with “IBM” to access his machine from 6am 

to 8pm everyday, and allows his friend Bob to access his machine anytime if the sum of 

uploading and downloading file sizes is smaller than 1GB. According to Definition 4.2.2, 

policy P1 and P2 are represented as functions (1) and (2) respectively2. 

⎧ 
⎪ 
⎪ Bpermit = ( ( (domain = “.edu”)
⎪ 
⎨ 

∧ (8am ≤ time ≤ 10pm) ) )  (2.1) 
⎪ 
⎪ 
⎪ 
⎩ Bdeny = F ALSE 

⎧
 
⎪
 
⎪ Bpermit = ( ( (domain = “.edu”∨ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ affiliation = “IBM”)
⎪ 
⎪ 
⎪ 
⎪ 
⎨ ∧ (6am ≤ time ≤ 8pm) )  

(2.2) 
⎪ 
⎪ ∨ ( (user = “Bob”)
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ ∧ (upload + download < 1GB) ) )
⎪ 
⎪ 
⎪ 
⎪ 
⎩ Bdeny = F ALSE 

Suppose that the resource owner would like to carry out system maintenance in the time 

interval [10pm,12am], and hence he may want to check if policy P2 will deny any external 

access to the resource between 10pm and 12am. Such a query can be expressed as follows: 

Qp ≡ (10pm ≤ time ≤ 12am, ({Permit}), |R| = 0). 

The query first checks if any request with the time attribute in the range of 10pm and 12pm 

is permitted, and stores such requests in R. Then, the query verifies the constraint fq. In 

this example, some requests from “Bob” during [10pm,12am] will be permitted and hence 

R is not empty which violates fq. The query will return “false” as the final answer. 

Common property query (Qc). It can be used to find the common properties shared 

by multiple policies i.e., to find some or all requests which have the same effect in all 

the policies. These type of queries are particularly useful in the context of large dynamic 
2The predicates on domain, affiliation and user attributes belong to the rule targets and the predicates on time, 
upload and download attributes belong to rule conditions. 
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environments where one cannot expect policies to be integrated and harmonized beforehand 

and one needs to determine if multiple parties actually provide similar level of security for 

protected resources. For example, a data owner who wishes to host his data on some 

remote machine and wants to ensure that certain subjects can always access his data can 

use a common property query that analyses the data owner’s access control policy and the 

host machine’s access control policy to check if requests with certain subjects are always 

permitted by both policies. 

Example 4 Consider P1 and P2 in Example 3, an example common property query is to 

find all the requests permitted by both policies, which is written as 

Qc ≡ (true, ({Permit}, {Permit}), true). 

In this query, Bq and fq are true, which means there is no constraint on the attributes of 

a request. “({Permit}, {Permit})” indicate that any request be permitted by both policies 

will be returned as an answer. 

The following example shows a common property query with constraints on the at­

tributes of a request. 

Example 5 Determine when the requests of users from domain “.edu” are permitted by 

policy P1 and P2. This query consists of two parts. First, we need to find all requests 

of users from domain “.edu” that can be permitted by both policies, which is a common 

property query with the constraint on the domain attribute. It can be written as 

Qc ≡ (domain = “.edu”, ({Permit}, {Permit}), true). 

Suppose that Qc returns the result set R as follows: 

R={(domain = “.edu”, 8am ≤ time ≤ 8pm, P ermit, P1), (domain = “.edu”, 

8am ≤ time ≤ 8pm, P ermit, P2), (domain = “.edu”, 8pm < time ≤ 10pm, P ermit, 

P1), (domain = “.edu”, 6am ≤ time < 8pm, P ermit, P2)}. 

The second step is to post process R and extract the subsets of R with common time at­

tribute, and the final answer is 8am ≤ time ≤ 8pm. 

Discrimination query (Qd). Besides determining the common parts of the access control 

policies shared by multiple parties, one party may also be interested in checking if certain 
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key requests can be successfully handled by its potential collaborators. In other words, 

one may want to know if the difference among the multiple access control policies has a 

negative effect on some important tasks. A discrimination query is thus used to find the 

difference between one policy and the others. 

Example 6 A patient needs to be transferred from a local hospital to a specialistic hospital. 

He is satisfied with the privacy policies in the local hospital because, for example, the 

local hospital protects patient data from being used for lab research without the patient 

agreement. Before the transfer, he wants to make sure that the specialistic hospital will 

also well protect his medical data. He can then issue a discrimination query like Qd ≡ 

(true, ({Deny}, {Permit}), true) to find out the requests denied by the local hospital’s 

policy but permitted by the specialist hospital’s policy. 

For example, suppose that the local hospital’s policy states that patient medical data will 

not be accessed by any third party, while the specialist hospital’s policy states that patient 

medical data may be used by research labs. Using Qd, the patient will be able to find out 

this difference. 

Both the common property query and the discrimination query focus on a partial view 

of policies. The common property query only considers the intersections of request sets 

with the same effects, and the discrimination query only considers the mutually exclusive 

request sets. To obtain an overview of relationships between policies, we combine the 

common property queries and discrimination queries. Example 7 shows how to check 

policy equivalence. 

Example 7 To determine whether P1 is the same as P2, i.e. for any request r, P1 and P2 

yield the same effect, we can use the following set of discrimination queries. 
⎧ 
⎪ Qd1 ≡ (true, ({P ermit},{Deny, NotApplicable}), |R| = 0)
⎪ 
⎨ 

Qd2 ≡ (true, ({Deny},{P ermit, NotApplicable}), |R| = 0). 
⎪ 
⎪ 
⎩ 

Qd3 ≡ (true, ({NotApplicable},{P ermit, Deny}), |R| = 0). 

Qd1 checks if there exists any request permitted by P1 but not permitted by P2. Qd2 and 

Qd3 check the other two effects. When all queries return “true”, P1 equals P2. Note that 

though there are multiple queries, they can be executed simultaneously (see Section 3.2.4). 
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Similarly, we can also use combinations of queries to represent other relationships like 

policy inclusion, policy incompatibility and policy conflict. In particular, policy inclusion 

means: for any request r that is applicable to P1, if P1 and P2 yield the same effect for r, 

we say P1 is included by P2. Policy incompatibility means: there exists a request r such 

that P1 and P2 yield different effects; also there exists a request r such that P1 and P2 yield 

same effect. Policy conflict means: for every request r that is applicable to P1 and P2, P1 

and P2 yield different effects. 

From the previous discussion, we can observe that the execution of each policy query 

essentially corresponds to the evaluation of a set of requests. For clarity, we would like 

to distinguish a policy query from general requests in two aspects. First, a policy query 

usually specifies some constraints on some attributes. A request that only contains the 

specified attributes is not sufficient for evaluating the policy property, because the policy 

will consider other attributes as “don’t care” and most possibly yields the effect “Not Ap­

plicable”. Therefore, for a policy query, we need to consider all possible combinations of 

value assignments for the attributes that are not specified in the query. Second, a policy 

query often needs to analyze a set of requests. It may not be efficient to treat these requests 

separately. 

2.4 System Demonstration – A tour of EXAM 

In this section we present screen shots of the EXAM environment and illustrate EXAM’s 

various functionalities with the help of two policies policy1 and policy2 shown in Example 

8 and Example 9. 

Example 8 The policy policy1 permits any action for users of the edu domain between 

8am and 10pm and denies any action to the user bob if download is greater than 1GB 

or the upload is greater than 3GB. Also, this policy uses a deny-overrides rule combining 

algorithm. A succinct representation of this policy is as follows: 



20 

Figure 2.3. EXAM – The login screen. 

Figure 2.4. EXAM – Create New Project Screen. 

⎧ 
⎪ 
⎪ Bpermit = ( ( (domain = “.edu” ∧ action = “Any”)
⎪ 
⎪ 
⎪ 
⎪ 
⎨ ∧ (8 ≤ time ≤ 22) ) ) 

⎪ 
⎪ Bdeny = ( ( (user = “bob” ∧ action = “Any”)
⎪ 
⎪ 
⎪ 
⎪ 
⎩ ∧ (download > 1 ∨ upload > 3) ) ) 

Example 9 The policy policy2 permits any action for users of the edu domain between 

6am and 8pm and denies any action to the user bob if the sum of upload and download is 
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Figure 2.5. EXAM – View/Edit Policy Screen. 

greater than 2GB and the upload is less than 1 GB. This policy also uses a deny-overrides 

rule combining algorithm. A succinct representation of this policy is as follows: 

⎧
 
⎪
 
⎪ Bpermit = ( ( (domain = “.edu”) ∧ (action = “Any”)
⎪ 
⎪ 
⎪ 
⎪ 
⎨ ∧ (6 ≤ time ≤ 20) ) ) 

⎪ 
⎪ Bdeny = (user = “bob”) ∧ (action = “Any”)
⎪ 
⎪ 
⎪ 
⎪ 
⎩ ∧ (upload + download > 2 ∧ upload < 1) ) ) 

A policy administrator who wishes to manage and analyze a set of policies must first log 

on to the environment as shown in Figure 2.3. After log in, the administrator can choose 

to create, update or delete projects as shown in Figure 2.4. A new project can be created 

by uploading XACML policy files. The XACML files are parsed and information is stored 

in various tables in a MySQL database. These tables are used to answer the metadata 

and content queries. Currently a new project IJIS has been created and populated with 

three files policy1.xml, policy2.xml and policy3.xml. The files policy1.xml and policy2.xml 

correspond to the policies discussed in Example 8 and Example 9 respectively which we 
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Figure 2.6. EXAM – Metadata Query Screen. 

Figure 2.7. EXAM – Content Query Screen. 

will be using for further discussion in this section. Policies in a selected project can be 

viewed and/or modified using the interface shown in Figure 2.5. 
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Figure 2.8. EXAM – Single Policy Query Screen. 

An administrator can query specific policy files for metadata or query the entire policy 

repository to find policies with specific values of the various metadata attributes. In Figure 

2.6, the author name, date of creation and date of modification for the policy file policy1.xml 

is being queried. In addition, the policy repository is also being queried for all policies with 

a specific author name. 

Figure 2.7 shows the interface that can be used for performing content queries. Here 

an administrator can query specific policy files for information like the number of deny 

(permit) rules, the number of different attribute names referenced in the policy and the list 

of attributes. Figure 2.7 shows the content query results for the policy file policy1.xml 

which has 1 permit rule, 1 deny rule and total of 6 different attribute names referenced 

in the policy. In addition, an administrator can also query the entire policy repository for 
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Figure 2.9. EXAM – Result of a Single Policy Query. 

Figure 2.10. EXAM – Policy Similarity Filter Screen. 
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policy files with specific contents like presence of target elements and presence of certain 

attribute names in specific elements of the policy. Figure 2.7 shows a list of all policies in 

the repository which reference that domain attribute. 

The interface shown in Figure 2.8 can be used to perform single policy property verifi­

cation queries. An administrator can select the policy file he wishes to query and can select 

the constraints on the attributes appearing in the policy and the desired effect. The set of 

requests satisfying the query (if any) can be visualized as a multi-level two dimensional 

grid whose rows and columns represent predicates on attributes appearing in the policy 

being queried. For better clarity, the administrator can view the grid for one action at a 

time. A cell (pi, pj ) in the grid represents requests that satisfy the predicates pi and pj and 

is associated with a color. A red cell indicates that no requests satisfying the correspond­

ing predicates were found. A grey cell represents the fact that there can be no requests 

(regardless of the query) that can satisfy the corresponding predicates. A green cell repre­

sents requests that are characterized by exactly the two predicates pi and pj . A  yellow cell 

represents requests which are characterized by more predicates in addition to pi and pj . If 

there are requests which are characterized by just one additional predicate, the additional 

predicate is displayed in a tool-tip that is displayed when the cursor is placed on the cell. 

Requests that are characterized by more than one additional predicates are represented by 

yellow cells that contain the zoom-in icon hyperlink. On clicking this hyperlink a popup 

window opens up which shows a smaller 2-D grid (not including pi and pj ) indicating 

the other predicates on which the requests depend. In addition, the green and yellow cell 

with tool-tip contain an action code corresponding to the action that the user has chosen to 

view. More details on this type of policy analysis visualization technique is discussed in 

sub section 3.2.6. Figure 2.8 shows the results for the following query on policy2 : Qp ≡ 

(((upload = 0) ∧ (download = 3)), ({P ermit}), true). 

The grid corresponds to any action indicated by the selection All in the action drop-

down list. 3 Since policy2 uses a deny-overrides algorithm no request must be permitted 

for user bob when upload = 0  and download = 3. Hence we can observe in Figure 2.8 

3The keyword Any in the figures denotes any type of action like read, write, update, etc. 
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Figure 2.11. EXAM – Multiple Policy Effect Query Screen. 

that all cells in the column(row) corresponding to the predicate user = bob are colored 

red indicating that no such requests were found thus not permitting any action. Another 

example of a request satisfying this query is illustrated in Figure 2.9. Here we observe that 

any action is allowed during 6am and 8pm for the edu domain provided the user is not bob 

(indicated by the predicate !(user = bob) in the tool-tip). 

The interface for the policy similarity filter is shown in Figure 2.10. An administrator 

can choose a specific policy and a set of policies which he wishes to compare it with. The 

administrator can also specify the weights to be assigned to the different policy elements 

when calculating the similarity score. A bar graph illustrating the similarity scores ( a value 

between 0 and 1 ) is displayed. Figure 2.10 shows the results of comparing policy1 with 

itself, policy2 and policy34. The corresponding similarity scores obtained are 1.0, 0.91 and 

0.25 respectively. The higher similarity with policy2 as compared to the score obtained with 

policy3 can be attributed to the fact that policy1 and policy2 have more similar structure 

4The policy policy3 has one permit rule that allows a subject from the domain edu write access to files of type 
source 
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Figure 2.12. EXAM – Policy Integration Screen. 

and common attributes. More details of how a similarity score is obtained between two 

policies can be found in [9]. 

An administrator can further perform an exhaustive comparison between pairs of poli­

cies by using the common property and discrimination queries interface, which is shown in 

Figure 2.11. Here an administrator can specify the two policies he wishes to query and the 

effects corresponding to the common property or discrimination queries. 

The set of requests satisfying the query are displayed in a multi-level two dimensional 

grid similar to the results for single policy effect query. 

Figure 2.11 shows the results of performing the following common property query 

between policy1 and policy2: 

Qc ≡ (true, ({Permit}, {Permit}), true). 

An example of a request (shown in Figure 2.11) that is permitted by both the policies is a 

request that arrives between 8am and 8pm by a user other than bob from the domain edu 

and the value of the upload attribute is between 1 and 3. 

Figure 2.12 shows the interface for performing integration of two policies using oper­

ators defined in a fine-grained integration algebra. An administrator can specify the two 
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policies he wishes to integrate and the operator he wishes to use for integration. An inte­

grated XACML policy is generated and displayed. Figure 2.12 shows the XACML policy 

generated as a result of integrating policy1 and policy2 using the Addition operator. More 

details on policy integration can be found in [10]. 
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3 POLICY SIMILARITY ANALYSIS 

A key goal for collaborative applications is to share resources, such as services, data and 

knowledge. Such applications may have different objectives, such as provisioning some 

complex service to third parties or performing some collaborative data analysis, and may 

adopt different collaboration mechanisms and tools. However, a common requirement is 

represented by the need to assure security for the shared resources. It is important that 

collaboration does not undermine security of the collaborating parties and their resources. 

Security however should not drastically reduce the benefits deriving from the collaboration 

by severely restricting the access to the resources by the collaborators. An important ques­

tion that a party P thus may need to answer when deciding whether to share a resource 

with other parties is whether these other parties guarantee the similar level of security as 

P . This is a complex question and approaches to it require developing adequate method­

ologies and processes, and addressing several issues. One relevant issue is the comparison 

of access control policies; access control policies govern access to protected resources by 

stating which subjects can access which data for which operations and under which cir­

cumstances. Access control represents a key component of any security mechanism. A 

party P may decide to release some data to a party P � only if the access control policies 

of P � are very much the same as its own access control policies. It is important to notice 

that an approach under which P just sends its policies together with the data to P � so that 

P � can directly enforce these policies may not always work. The evaluation of P ’s policies 

may require accessing some additional data that may not be available to P � for various rea­

sons, for example for confidentiality, or P may not just be able to share, for confidentiality 

reasons, its policies with P � . 

More complex situations arise when several alternative resources and services, each 

governed by its own independently-administered access control policies, may have to be 

selected and combined in a complex service. In order to maximize the number of requests 
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that can be satisfied by the complex service, and also satisfy the access control policies 

of each participating resource and service, one would like to select a combination of re­

sources and services characterized by access control policies that are very much similar. 

As an example consider the case of a grid computing system consisting of data owners and 

resource owners, each with its own access control policies [14]. For a subject to be able to 

run a query on the data, this subject must verify both the access control policy associated 

with the queried data and the access control policy of the resource to be used to process 

the query. It is often the case that such parties do not have exactly the same access con­

trol policies; therefore in order to maximize the access to the data, the data for processing 

should be stored at the resource having access control policies similar to the access control 

policies associated with the data. 

Policy similarity can be defined as the characterization of the relationships among the 

sets of requests respectively authorized by a set of policies. The goal of policy similarity 

analysis is to provide such a characterization. The result of a policy similarity analysis 

between a set of policies can be used to derive for all requests of the form (s, a, r, p) the 

corresponding effects of the policies in the set and thus to compare the behavior of policies 

in the set with respect to all possible requests. Such an analysis can be used to answer 

the common property and discrimination queries which could be helpful during the harmo­

nization of security and privacy policies. It can also be used for change impact analysis 

where an administrator may want to verify the effect of changes to current policies [5] or 

find differences among rules. 

A brute force approach to determine policy similarity is to simply evaluate both poli­

cies for any request and any assignment, and then compare the results. Obviously, such an 

approach is very inefficient and even infeasible when the request domain is infinite. Ap­

proaches based on model checking [5] and SAT-solving [13] have been proposed. However, 

these approaches have several shortcomings. The technique in [5] supports only equality 

conditions on attributes and is restricted to the string domain and hence is not capable of 

handling complex conditions that are prevalent in most real-world application policies. The 

SAT-solver based technique [13] is able to handle complex conditions but is only able to say 
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if there is atleast one request that is commonly authorized by a set of policies as opposed 

to enumerating all such requests. 

In this thesis, we propose two techniques to determine similarity between policies. The 

first technique is a policy similarity filter that uses the notion of a policy similarity measure 

between policies and is a quick but less precise technique based on principles from the 

information retrieval field [9]. Second technique is a policy similarity analyzer that is 

precise but computationally intensive and combines the capabilities of model-checking and 

SAT-solving techniques to provide a precise characterization of the policy similarities. 

The rest of this chapter is organized as follows. Section 1 and Section 2 present in 

the detail the techniques and experimental results for the policy similarity filter and policy 

similarity analyzer respectively. 

Environment 

EnvironmentResourceSubject 

Rule 

Effect Target 
ActionResourceSubject 

Target 

Policy 

Condition 

Action 

Figure 3.1. Policy Structure 

3.1 Policy Similarity Filter 

The policy similarity filter technique uses the notion of policy similarity measure, based 

on which a similarity score, a value in the interval [0, 1], is computed between two policies 

to quantify the degree of similarity between them. Specifically, if the similarity score be­

tween policies P1 and P2 is higher than that between policies P1 and P3, it means P1 and 

P2 may yield same decisions to a larger common request set than P1 and P3 will do. The 
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similarity computation is simple and quick and is based on techniques from the information 

retrieval field. 

The similarity measure takes into account the policy structure typical of XACML shown 

in figure 3.1. Given two polices, our algorithm for computing the similarity score first 

groups the same components of the two policies and evaluates their similarity. Then 

the scores obtained for the different elements of the policies are combined according to 

a weighted (usually linear) combination in order to produce an overall similarity score. 

Weights are used so that one can emphasize scores obtained due to one or more specific 

elements when computing the similarity. For example, one may want to find policies most 

similar with respect to the subjects to which they apply to. Techniques like dictionary 

lookup and ontology matching are also incorporated when computing the similarity scores 

to bridge the semantic gap arising due to the use of different vocabularies in expressing 

access control policies. Such techniques are particularly useful when harmonizing poli­

cies across administrative domains where each domain may use a different vocabulary for 

names and values appearing in their policies. As our case study shows, our approach can 

successfully identify similar policies. 

3.1.1 An Illustrative Example 

As an example that we will use throughout this section, we consider three policies P1, 

P2 and P3, in the context of data and resource management for a grid computing system 

in a university domain. In particular, P1 is a data owner policy, whereas P2 and P3 are 

resource owner policies. Specifically, P1 states that professors, postdocs, students and 

technical staff in the IBM project group are allowed to read or write source, documentation 

or executable files of size less than 100MB. P1 denies the write operations for postdocs, 

students and technical staff between 19:00 and 21:00 because professors may want to check 

and make changes to the project files without any distraction. P2 is an access control 

policy for a project machine. P2 allows students, faculty and technical staff in the IBM 

or Intel project group to read or write files of size less than 120MB. P2 gives a special 
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PolicyId=P1 
<PolicyTarget> 

<Subject GroupName=IBMOpenCollaboration>
 
</PolicyTarget>
 
<RuleId=R11 Effect=Permit>
 

<Target> 
<Subject Designation belong to {Professor, PostDoc, Student, TechnicalStaff} > 
<Resource FileType belong to{Source, Documentation, Executable} > 
<Action AccessType belong to{Read, Write} > 

</Target> 
<Condition FileSize ≤ 100MB >
 

</Rule>
 
<RuleId=R12 Effect=Deny>
 

<Target> 
<Subject Designation belong to {Student, PostDoc, TechnicalStaff} > 
<Resource FileType belong to{Source, Documentation, Executable}> 
<Action AccessType=Write> 

</Target>
 
<Condition 19 : 00 ≤ Time ≤ 21 : 00>
 

</Rule>
 

Figure 3.2. Data Owner Policy P1 

permission to technical staff between time 19:00 and 22:00 so that technical staff can carry 

out system maintenance and backup files, and denies students the permission to write any 

file when technical staff is possibly working on maintenance. Moreover, P2 does not allow 

any user to operate on media files on the machine. P3 is an access control policy for 

another machine, mainly used by business staff. P3 states that only business staff in the 

group named “Payroll” can read or write .xls files of size less than 10MB from 8:00 to 

17:00, and it clearly denies students the access to the machine. Figure 3.2, 3.3 and 3.4 

report the XACML specification for these policies. 

From a user’s perspective, P1 is more similar to P2 than P3 because most activities 

described by P1 for the data owner are allowed by P2. Our motivation is to quickly compute 

similarity scores S1 between P1 and P2, and S2 between P1 and P3, where we would expect 

that S1 be larger than S2 to indicate that the similarity between P1 and P2 is much higher 

than the similarity between P1 and P3. 
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PolicyId=P2 
<PolicyTarget> 

<Subject GroupName belong to {IBMOpenCollaboration, IntelOpenCollaboration}> 
</PolicyTarget> 
<RuleId=R21 Effect=Permit> 

<Target> 
<Subject Designation belong to {Student, Faculty, TechnicalStaff} > 
<Action AccessType belong to{Read, Write}> 

</Target> 
<Condition FileSize ≤ 120MB >
 

</Rule>
 
<RuleId=R22 Effect=Permit>
 

<Target>
 
<Subject Designation=TechnicalStaff>
 
<Action AccessType belong to{Read, Write}>
 

</Target> 
<Condition 19 : 00 ≤ Time ≤ 22 : 00 >
 

</Rule>
 
<RuleId=R23 Effect=Deny>
 

<Target>
 
<Subject Designation=Student>
 
<Action AccessType=Write>
 

</Target> 
<Condition {19 : 00 ≤ Time ≤ 22 : 00>
 

</Rule>
 
<RuleId=R24 Effect=Deny>
 

<Target>
 
<Subject Designation belong to {Student, Faculty, Staff}>
 
<Resource FileType=Media>
 
<Action AccessType belong to {Read, Write}>
 

</Target>
 
</Rule>
 

Figure 3.3. Resource Owner Policy P2 

3.1.2 Policy Similarity Measure 

Our proposed policy similarity measure is based on the comparison of each correspond­

ing component of the policies being compared. Here, the corresponding component means 

the policy targets and the same type of elements belonging to the rules with the same effect. 

We use a simplified XACML format for defining the policy similarity measure. Each 

XACML policy must be converted to this format when calculating the similarity score. 

Figure 3.5 gives the syntax of the simplified format. 
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PolicyId=P3 
<PolicyTarget> 

<Subject GroupName = Payroll >
 
</PolicyTarget>
 
<RuleId=R31 Effect=Permit>
 

<Target> 
<Subject Designation=BusinessStaff> 
<Resource FileType=“.xls”> 
<Action AccessType belong to {Read, Write}> 

</Target> 
<Condition 8 : 00 ≤ Time ≤ 17 : 00 AND FileSize ≤ 10MB > 

</Rule> 
<RuleId=R32 Effect=Deny> 

<Target> 
<Subject Designation=Student> 
<Action AccessType belong to {Read, Write}> 

</Target>
 
</Rule>
 

Figure 3.4. Resource Owner Policy P3 

We would like the policy similarity measure between any two given policies to assign 

a similarity score Spolicy that approximates the percentage of the requests obtaining the 

same decisions (permitted or denied) from the two policies. The definition is given in 

Equation 3.1, where Nsreq denotes the number of the requests with the same decisions 

from P1 and P2 and Nreq is the number of the requests applicable to either P1 or P2. 

Spolicy(P1, P2) ≈ Nsreq/Nreq (3.1) 

The similarity score is a value between 0 and 1. Two equivalent policies are expected 

to obtain the similarity score close to 1. In a scenario where a set of requests permitted (de­

nied) by a policy P1 is a subset of requests permitted (denied) by a policy P2, the similarity 

score for policies P1 and P2 must be higher than the score assigned in a scenario in which 

the set of requests permitted (denied) by P1 and P3 have very few or no request in common. 



36 

POLICY : 
<policy policy-id = “policy-id” combining-algorithm = “combining-algorithm”> 

(TARGET ELEMENT)? 
<permitrules> 

(RULE ELEMENT)*
 
</permitrules>
 
<denyrules>
 

(RULE ELEMENT)* 
</permitrules> 

</policy> 

RULE ELEMENT : 
<rule rule-id=“rule-id” effect=“rule-effect”> 

(TARGET ELEMENT)? 
<condition>PREDICATE</condition> 

</rule> 

TARGET ELEMENT : 
<target>
 

<subject>PREDICATE</subject>
 
<resource>PREDICATE </resource>
 
<action>PREDICATE </action>
 
<environment>PREDICATE </environment>
 

</target> 

PREDICATE : 
(attr name ⊕ (attr value)+)* 

attr name denotes attribute name, attr value denotes attribute value 
and ⊕ denotes any operator supported by the XACML standard. 

Figure 3.5. Simplified XACML format 

3.1.2.1 Policy Normalization 

Before calculating the similarity scores, a policy normalization process will be exe­

cuted, which aims to capture more equivalent policies. Policy normalization consists of 

two operations: (i) upgrading rule targets; and (ii) decomposing condition component. The 

first operation extracts the common part of rule targets in all rules and treat it as the policy 

target during the similarity score calculation. The second operation is applied only to poli­

cies with the permit-override or deny-override combining algorithm. In particular, consider 

a rule R with a condition (c1 OR c2 OR ... OR ck), where ci (1 ≤ i ≤ k) can be any arbi­
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trary Boolean expression. The policy normalization process will replace rule R with k new 

rules, each corresponding to a ci. Note that, both operations will not affect the semantic 

meaning of the policy. 

3.1.2.2 Overview of Policy Similarity Measure 

We now introduce how to obtain the similarity score of two policies. Given two policies 

P1 and P2, the rules in these policies are first grouped according to their effects, which 

results in a set of Permit Rules (denoted as PR) and a set Deny Rules (denoted as DR). 

Note that we do not change the rule ordering. The grouping is just done logically. Each 

single rule in P1 is then compared with a rule in P2 that has the same effect, and a similarity 

score of two rules is obtained. The similarity score obtained between the rules is then used 

to find one-many mappings (denoted as Φ) for each rule in the two policies. For clarity, 

we choose to use four separate Φ mappings ΦP 
1 , Φ

D 
2 2 . 1 (Φ

D)1 , Φ
P and ΦD The mapping ΦP 

1 

maps each PR(DR) rule r1i in P1 with one or more PR(DR) rules r2j in P2. Similarly the 

mapping ΦP 
2 2(ΦD) maps each PR(DR) rule r2j in P2 with one or more PR(DR) rules r1i in 

P1. For each rule in a policy P1(P2), the Φ mappings give similar rules in P2(P1) which 

satisfy certain similarity threshold. The computation of the Φ mapping will be addressed 

in the Section 3.1.2.3. 

By using the Φ mappings, we compute the similarity score between a rule and a policy. 

We aim to find out how similar a rule is with respect to the entire policy by comparing 

the single rule in one policy with a set of similar rules in the other policy. The notation 

rs1i(rs2j ) denotes the similarity score for a rule r1i(r2j ) in policy P1(P2). The rule similarity 

score rs1i(rs2j ) is the average of the similarity scores between a rule r1i(r2j ) and the rules 

similar to it given by the Φ mapping. rs1i and rs2j are computed according to Equations 

3.2 and 3.3, where Srule is a function that assigns a similarity score between two rules. 

Next, we compute the similarity score between the permit(deny) rule sets PR1 (DR1) 

and PR2(DR2) of policies P1 and P2 respectively. We use the notations SP andrule−set 

SD to denote the similarity scores for permit and deny rule sets respectively. Therule−set 
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similarity score for a permit(deny) rule set is obtained by averaging the rule similarity 

scores (Equations 3.2 and 3.3) for all rules in the set. The permit and deny rule set similarity 

scores are formulated by Equation 3.4 and 3.5, where NPR1 and NPR2 are the numbers of 

rules in PR1 and PR2 respectively, NDR1 and NDR2 are the numbers of rules in DR1 and 

DR2 respectively, and px reflects the importance of rule rx. In particular, px is determined 

by the number of requests applicable to the rule rx. It is set to 1 by default. It comes into 

effect when the statistical information about the request distribution is available. Suppose 

that policy P1 contains k rules and the numbers of applicable requests for the rules are n1,..., 

nk respectively. Correspondingly, p1, ..., pk can be calculated as : px = nx/(n1 +...+nk). 

⎧ 
⎪ 
⎪ Srule(r1i, rj ) 
⎪ 
⎪ 
⎪ 
⎪

⎪ rj∈Φ1 
P (r1i) 

⎪ , r1i ∈ PR1 
⎪ |ΦP (r1i)|
⎨ 1 

rs1i = (3.2) 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ Srule(r1i, rj ) 
⎪ 
⎪ 
⎪ 
⎪ rj∈ΦD(r1i) 
⎩ 1 , r1i ∈ DR1|ΦD(r1i)|1 

⎧ 
⎪ r2j , ri)⎪ Srule(
⎪ 
⎪ 
⎪ ri∈ΦP (r2j)⎪ 2 
⎪ 
⎪ , r2j ∈ PR2 
⎪ |ΦP (r2j)|
⎨ 2 

rs2j = (3.3) 
⎪ 
⎪ 
⎪ 
⎪ r2j, ri)⎪ Srule(
⎪ 
⎪ 
⎪ 
⎩

⎪ ri∈Φ2 
D(r2j) 

, r2j ∈ DR2|ΦD(r2j)|2 

NPR1 NPR2 

(rs1i · p1i) +  (rs2j · p2j ) 
i=1 i=1SP = (3.4)rule−set NPR1 + NPR2 

NDR1 NDR2 

(rs1i · p1i) +  (rs2j · p2j ) 

SD i=1 i=1 = (3.5)rule−set NDR1 + NDR2 

Finally, we combine the similarity scores for permit and deny rule sets between the 

two policies along with a similarity score between the Target elements of the two policies, 
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to develop an overall similarity score, Spolicy. The formulation of Spolicy is given by the 

following equation: 

Spolicy(P1, P2) = wT ST (P1, P2) + wpS
P + wdS

D (3.6)rule−set rule−set 

where ST is a function that computes a similarity score between the Target elements of any 

two given policies; wT , wp and wd are weights that can be chosen to reflect the relative 

importance to be given to the similarity of the policy target, permit and deny rule sets 

respectively. For normalization purpose, the weight values should satisfy the constraint: 

wT + wp + wd = 1. The weights introduced here and in the later part aims to provide more 

flexibility for users to locate desired policies. For example, if a user would like to find 

policies applicable to similar targets regardless of policy decision, he can assign a larger 

value to wT to emphasize on the target similarity. Without any preference, equal weight 

values are assumed by default. An example is given in Section 3.1.2.12 (refer to step 5–9). 

The intuition behind the similarity score assigned to any two policies is derived from 

the fact that two policies are similar to one another when the corresponding policy elements 

are similar. 

In the following sections, we introduce the detailed algorithms for the computation of 

Φ mappings and rule similarity score Srule. Table 3.1 lists main notations used in this 

section. 

3.1.2.3 Computation of Φ Mappings 

The one-many Φ mappings determine for each PR(DR) rule in P1(P2) which PR(DR) 

rules in P2(P1) are very similar. Intuitively, two rules are similar when their targets and the 

conditions they specify are similar. Thus we define a general Φ mapping as follows: 

Φ(ri) = {rj |Srule(ri, rj ) ≥ t} (3.7) 

http:3.1.2.12
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where Srule is computed by Equation 3.8 and t is a threshold. The threshold term allows us 

to calibrate the quality of the similarity approximation. 

Table 3.1
 
Notations
 

Notation Meaning 
Policy 
Permit rule set 
Deny rule set 
Rule 
Attribute 
Attribute value 
Height of a hierarchy 
Similarity score of two policies 
Similarity score of two rules 
Similarity score of two sets of permit rules 
Similarity score of two sets of deny rules 
Similarity score of elements, 

' ' ' ' ' ' ' ' ' ' '(Element) ∈ {'T ', t , c , s , r , a , e'} 
Similarity score of two categorical values 
Similarity score of two categorical predicates 
Similarity score of two numerical values 
Similarity score of two numerical predicates 
Similarity score between a rule and a policy 
Rule mapping 
Set of pairs of matching attribute names 
Set of pairs of matching attribute values 
Number of permit rules in a policy 
Number of deny rules in a policy 
Number of attributes in an element 
Number of values of an attribute 
Length of shortest path of two categorical values 
Weight of similarity scores of elements, 

' t' ' ' ' ' ' ' ' ' ' '}(Element) ∈ {'T ', , c , s , r , a , e
Rule similarity threshold 
Compensating score for unmatched values 
Percentage of requests applicable to rule r 

P 
PR  
DR 
r 
a 
v 
H 
Spolicy 

Srule 

SP 
rule−set 

SD 
rule−set 

S(Element) 

scat 

Scat 

snum 

Snum 

rs 
Φ 
Ma 

Mv 

NPR  

NDR 

Na 

Nv 

SP ath 
w(Element) 

E 
δ 
pr 

An example of the computation of a Φ mapping is shown by steps 3 and 4 in Section 

3.1.2.12. 

The general Φ mapping is further refined to a one-one mapping when the first-one­

applicable or only-one-applicable rule combining algorithm is employed. Without loss of 

generality, we consider the calculation of the mappings for rules in P1. Let ri and rj denote 

the rule with the same effect in P1 and P2 respectively. If P2 has the first-one-applicable 
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, R��Procedure ComputePhiMapping(R� , t) 
Input : R� and R�� are sets of rules and t 
is a threshold value. 
1. foreach rule r� ∈ R� 

2.	 Φ(r�) = Ø  
�� ∈ R��3. foreach rule r

4. if Srule(r�, r��) ≥ t then 
��}5. Φ(r�) =Φ( r�) ∪ {r

6. return Φ 
end ComputePhiMapping. 

Figure 3.6. Procedure for computing a Φ mapping 

rule combining algorithm, the Φ mapping for ri will contain the only rj which is the first 

rule with the similarity score Srule(ri, rj ) above the threshold t. This method first ensures 

that the two rules are applicable to the similar set of requests with the aid of the threshold, 

and then reflects the definition of the first-one-applicable rule combining algorithm which 

specifies that the first applicable rule makes the final decision. We can deal with the P2 

with the only-one-applicable rule combining algorithm in a similar way. The Φ mapping 

for ri will contain the only rj which has the maximum similarity score and the score should 

also be above the threshold. 

Figure 3.6 summarizes the procedure for calculating a Φ mapping. This procedure 

takes two rule sets R� and R�� as input and computes a mapping for each rule in R� based 

on Equation 3.7. 

3.1.2.4 Similarity Score between Rules 

Since our similarity measure is targeted as a lightweight approach, we do not want to 

involve complicated analysis of Boolean expressions. Our similarity measure is developed 

based on the intuition that rules ri and rj are similar when both apply to similar targets 
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and both specify similar conditions on request attributes. Specifically, we compute the rule 

similarity function Srule between two rules ri and rj as follows: 

Srule(ri, rj ) = wtSt(ri, rj ) + wcSc(ri, rj ) (3.8) 

wt and wc are weights that can be used for emphasizing the importance of the rule target 

or condition similarity respectively. For example, if users are more interested in finding 

policies applied to similar targets, they can increase wt to achieve this goal. The weights 

satisfy the constraint wt + wc = 1. St and Sc are functions that compute a similarity 

score between two rules based on the comparison of their Target and Condition elements 

respectively. 

As the Target element in each rule contains the Subject, Resource and Action elements, 

each of these elements in turn contains predicates on the respective category of attributes. 

Thus, the Target similarity function St is computed as follows: 

St(ri, rj ) = wsSs(ri, rj ) + wrSr(ri, rj ) + waSa(ri, rj ) + weSe(ri, rj ) (3.9) 

In Equation 3.9, ws, wr, wa, we represent weights that are assigned to the corresponding 

similarity scores. Like in the previous equations, weight values need to satisfy the con­

straint ws +wr +wa +we = 1. Ss, Sr, Sa and Seare functions that return a similarity score 

based on the Subject, Resource, Action and Environment attribute predicates respectively 

in the Target elements of the two given rules. 

The computation of functions Sc, Ss, Sr, Sa and Se involves the comparison of pairs 

of predicates in the given pair of rule elements, which we discuss in detail in the next 

subsection. 

3.1.2.5 Similarity Score of Rule Elements 

Each of the rule elements Subject, Resource, Action, Environment and Condition is 

represented as a set of predicates in the form of {attr name1 ⊕1 attr value1, attr name2 
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⊕2 attr value2, ...}, where attr name denotes the attribute name, ⊕ denotes a comparison 

operator and attr value represents an attribute value. 

We support syntactic and semantic variations, with respect to attribute names and val­

ues, that can occur in different policies. An example of syntactic variation is the use of 

“emp-name” and “EmpName” to refer to the employee name attribute. An example of se­

mantic variation is a case in which the synonym “pay” is used to refer to an employee’s 

“salary” attribute. Syntactic variations are addressed by using a user-defined lookup ta­

ble typically set up by a policy administrator. For detecting semantic variations we use 

the WordNet [15], a lexical database for English language, which is used to derive all the 

synonyms in the context of English language for an attribute name. Semantic variations 

can also occur when attribute names or values are associated with different domain ontolo­

gies. For such cases we use a semantic score obtained from running an ontology matching 

algorithm [16] on the specified ontologies. 

Based on the type of attribute values, predicates are divided into two categories, namely 

categorical predicate and numerical predicate. 

•	 Categorical predicate: The attribute values of this type of predicate belong to the 

string data type. Such values may or may not be associated with a domain-specific 

ontology. They may also be associated with more than one ontology. Predicates like 

“Designation = Professor” and “FileType = Documentation” belong to the categorical 

type. 

•	 Numerical predicate: The attribute values of this type of predicate belong to in­

teger, real, or date/time data types. For example, predicates “FileSize < 10MB”, 

“Time=12:00” are of numerical type. 

The similarity score between two rules ri and rj regarding the same element is de­

noted as S�Element�, where (Element) refers to condition, subject, resource or action. The 

S�Element� is computed by comparing the corresponding predicate sets in two rules. There 

are three steps. First, we cluster the predicates for each rule element according to the at­

tribute names. It is worth noting that one attribute name may be associated with multiple 
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values. Second, we find the predicates in the two rules whose attribute names match exactly 

and then proceed to compute a similarity score for their attribute values. The way we com­

pute similarity score between attribute values differs, depending on whether the attribute 

value is of categorical type or numerical type (details about the computation are covered 

in the following subsection). Finally, we summarize the scores of each pair of matching 

predicates and obtain the similarity score of the rule element. Since not all attributes in one 

rule can find a matching in the other, we include a penalty for this case by dividing the sum 

of similarity scores of matching pairs by the maximum number of attributes in a rule. In 

addition, there is a special case when the element set is empty in one rule, which means no 

constraint exists for this element. For this case, we consider the similarity of the elements 

of the two rules to be 0.5 due to the consideration that one rule is a restriction of the other 

and the 0.5 is the estimation of the average similarity. The formal definition of S�Element� 

is given by Equation 3.10. 

⎧ 
� 

⎪ 
⎪ 
⎪ 
⎨ 

S�attr typ�(a1k, a2l) 
(a1k,a2l)∈MaS�Element�(ri, rj ) =  max(Na1 ,Na2 ) , Na1 > 0 and Na2 > 0; (3.10) 

⎪ 
⎪ 
⎪ 
⎩ 1, otherwise. 

In Equation 3.10, Ma is a set of pairs of matching predicates with the same attribute 

names; a1k and a2l are attributes of rules r1i and r2j respectively; S�attr typ� is the similarity 

score of attribute values of the type attr typ; and Na1 and Na2 are the numbers of distinct 

predicates in the two rules respectively. 

In addition, the computation of the similarity score of two policy targets ST is the same 

as that for the rule targets i.e. St. 

3.1.2.6 Similarity Score for Categorical Predicates 

For the categorical values, we not only consider the exact match of two values, but 

also consider their semantic similarity. For example, policy P1 is talking about the priority 
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of professors, policy P2 is talking about faculty members, and policy P3 is talking about 

business staff. In some sense, policy P1 is more similar to policy P2 than to policy P3 

because “professors” is a subset of “faculty members” which means that policy P1 could be 

a restriction of policy P2. Based on this observation, our approach assumes that a hierarchy 

relationship exists for the categorical values. The similarity between two categorical values 

(denoted as Scat) is then defined according to the shortest path of these two values in the 

hierarchy. The formal definition is shown below: 

SP ath(v1, v2) scat(v1, v2) = 1 − (3.11)
2H 

where SP ath(v1, v2) denotes the length of the shortest path between two values v1 and v2, 

and H is the height of the hierarchy. In Equation 3.11, the length of the shortest path of two 

values is normalized by the possible maximum path length which is 2H . The closer the 

two values are located in the hierarchy, the more similar the two values will be, and hence 

a higher similarity score scat will be obtained. 

Figure 3.7 gives an example hierarchy, where each node represents a categorical value 

(specific values are given in Figure 3.12). The height of the hierarchy is 3, and the length 

1.2.1.1 

A 

C D 

HGE 

B 

F I J 

LK M 

1 

1.1 1.31.2 

1.1.1 1.1.2 

1.2.1 1.2.2 

1.3.1 1.3.2 

1.2.1.2 1.2.1.3 

Figure 3.7. An Example Hierarchy 

of maximum path of two values is estimated as 2× 3 = 6 (the actual maximum path in the 

figure is 5 due to the imbalance of the hierarchy). SP ath(E, B) is 1 and SP ath(E, F ) is 

2. According to Equation 3.11, the similarity score of nodes E and B is 1 − 1/6 = 0.83, 

http:1/6=0.83
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and the similarity score of nodes E and F is 1 − 2/6 = 0.67. From the obtained scores, 

we can observe that E is more similar to B than to F . The underlying idea is that the 

parent-child relationship (B and E) implies that one rule could be a restriction of the other 

and this would be more helpful than the sibling relationship (E and F ) especially in rule 

integration. 

To avoid repeatedly searching the hierarchy tree for the same value during the shortest 

path computation, we assign to each node a hierarchy code (Hcode), indicating the position 

of each node. In particular, the root node is assigned an Hcode equal to ‘1’, and its children 

nodes are named in the order from left to right by appending their position to the parent’s 

Hcode with a separator ‘.’, where we will have Hcodes like ‘1.1’ and ‘1.2’. Then the process 

continues till the leaf level. The number of elements separated by ‘.’ is equal to the level at 

which a node is located. From such Hcodes we can easily compute the length of shortest 

path between two nodes. We compare two Hcodes element by element until we reach the 

end of one Hcode or there is a difference. The common elements correspond to the same 

parent nodes they share, and the number of different elements correspond to the levels that 

they need to be generalized to their common parent node. Therefore, the shortest path is the 

total number of different elements in two Hcodes. For example, the length of the shortest 

path from node ‘1.1’ to ‘1.2’ is 2, as there are two different elements in the Hcodes. 

Note that our definition of scat can also be applied to categorical values which do not 

lie in a hierarchy. In that case, if two values are matched, their shortest path SP ath is 0 

and their similarity score will be 1; otherwise, SP ath is infinity and their similarity score 

becomes 0. 

Having introduced our approach to compare two single values, we now extend the dis­

cussion to two sets of values. Suppose there are two attributes a1 : {v11, v12, v13, v14} and 

a2 : {v21, v22, v23}, where a1 and a2 are the attribute names belonging to policy P1 and P2 

respectively, and the values in the brackets are corresponding attribute values. Note that 

the values associated with the same attribute are different from one another. The similarity 

score of the two attribute value sets is the sum of similarity scores of pairs (v1k, v2l) and a 

compensating score δ (for non-matching attribute values). Obviously, there could be many 

http:2/6=0.67


  

 

47 

combinations of pairs. Our task is to find a set of pairs (denoted as Mv) which have the 

following properties: 

1. If v1k = v2l, then (v1k, v2l) ∈ Mv. 

2. For pairs v1k = v2l, pairs contributing to the maximum sum of similarity scores 

belong to Mv. 

3. Each attribute value v1k or v2l occurs at most once in Mv. 

The process of finding the pair set Mv is the following. First, we obtain the hierarchy 

code for each attribute value. See Figure 3.8 for an example of these values for the example 

hierarchy from Figure 3.7. Then we compute the similarity between pairs of attribute 

values with the help of the hierarchy code. Figure 3.9 shows the resulting scores for the 

example. Next, we pick up exactly matched pairs, which are (v11, v21) and (v14, v23) 

in the example. For the remaining attribute values, we find pairs that maximize the sum 

of similarity scores of pairs. In this example, (v12, v22) has the same similarity score 

as (v13, v22), and hence we need to further consider which choice can lead to a bigger 

compensating score. The compensating score δ is for attribute values which do not have 

matchings when two attributes have different number of values. δ is computed as average 

similarity scores between unmatched values with all the values of the other attribute. For 

this example, no matter which pair we choose, the compensating score is the same. Suppose 

we choose the pair (v12, v22), and then one value v13 is left whose compensating score δ is 

(0.33 + 0.67 + 0.17)/3 = 0.39. Finally, the similarity score for the two attribute a1 and a2 

Policy P Policy P1 2 

Attr Hcode 

v13 

v12 

v14 

v11 1.1 

1.2.1.1 

1.2.1.2 

1.3.2 

Attr Hcode 

v21 1.1 
v22 1.2 
v23 1.3.2 

Figure 3.8. Hierarchy Code 
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v11 v12 v13 v14 

0.50.330.33 

0.67 0.50.67 

0.17(1.3.2) 

(1.1) (1.3.2)(1.2.1.2)(1.2.1.1) 

0.5 

0.67 

0.17 

(1.1) 

(1.2) 

1 

P 

Figure 3.9. Similarity Score of Two Sets of Attributes 

takes into account both the similarity of attribute names and attribute values. Specifically, 

the similarity score for attribute names is 1 as the exact matching of names is used. The 

similarity score for attribute values is the average scores of pairs and the compensating 

score. The final score is 2
1 [1 + (1 + 1 + 0.67 + 0.39)/4] = 0.88. 

The similarity score of two categorical predicates is finally defined as below: 

  1 (v1k,v2l)∈Mv 
scat(v1k, v2l) +  δ 

1 +  (3.12)Scat(a1, a2) =  
2 max(N ,N )v1 v2 

⎧ 
Nv2 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ scat(v1k, v2l) 
⎪ 
⎪ 
⎪ (v1k, )∈/Mv l=1 

δ = 
⎨ 

Nv2 
Nv1 

, Nv1 > Nv2 ; (3.13) 
⎪ � � 
⎪ 
⎪ 
⎪ 
⎪ scat(v1k, v2l) 
⎪ 
⎪ 
⎪ ( ,v2l)∈/Mv k=1 
⎩ , N > N .v2 v1Nv1 

where N and N are the total numbers of values associated with attributes a1 and a2v1 v2 

respectively. 

3.1.2.7 Similarity Score for Numerical Predicates 

Unlike categorical values, numerical values do not have any hierarchical relationship. 

For computation efficiency, the similarity of two numerical values v1 and v2 is defined 

based on their difference as shown in Equation 3.14. 

|v1 − v2|snum(v1, v2) = 1  − (3.14) 
range(v1, v2) 
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snum tends to be large when the difference between two values is small. 

The computation of the similarity score of two numerical value sets is similar to that for 

two categorical value sets; we thus have the following similarity definition for numerical 

predicates: 
s (v1k, v2l) + δ1 (v1k,v2l)∈Mv num

Snum(a1, a2) =  1 +  (3.15)
2 max(Nv1, Nv2) 

⎧ 
Nv2 

⎪ 
⎪ 
⎪ 
⎪ s (v1k, v2l)
⎪ num
⎪ 
⎪ 
⎪ (v1k, )∈/Mv l=1 

δ = 
⎨ 

Nv2 
Nv1 

, Nv1 > Nv2 ; (3.16) 
⎪ � � 
⎪ 
⎪ 
⎪ 
⎪ snum(v1k, v2l) 
⎪ 
⎪ 
⎪ ( ,v2l)∈/Mv k=1 
⎩ , N > N .v2 v1Nv1 

3.1.2.8 Similarity Score of Rule Elements - A Variation 

As aforementioned, we do not want to complicate the policy comparison by introducing 

Boolean expression analysis, and hence we ignore operators (denoted by ⊕) in the predi­

cates. This would mean that two predicates like salary < 10000 and salary > 10000 would 

be given a similarity score of 1. In order to distinguish these two cases to some extent while 

still keeping our approach a lightweight approach, we propose the following variation for 

computing rule element similarity scores. 

The basic idea is to first cluster the predicates for each rule element according to the 

attribute names and then further cluster values of the same attributes according to the op­

erators. After that, we use the same procedure as described in Section 3.1.2.5 to compute 

the similarity scores between clusters with matching attribute names. The new similarity 

score between rule elements is computed by Equation 3.17. 

⎧ 
⎪ Sop 
⎪ (a1k, a2l) 
⎪ �attr typ�
⎨ 

Sop (a1k,a2l)∈Ma(ri, rj ) =  , Na1 > 0 and Na2 > 0; (3.17)�Element� max(Na1 ,Na2 ) 
⎪ 
⎪ 
⎪ 
⎩ 1, otherwise. 
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Note that Equation 3.17 now uses a new similarity score given by Sop which is �attr typ� 

defined in Equation 3.18. 

S�attr typ�(a1k, a2l) 

Sop 1 (a1k,a2l)∈Mop
(a1, a2) =  1 +  (3.18)�attr typ� 2 max(Nop1 , Nop2 ) 

where Nop1 and Nop2 are the number of unique operators in the predicates corresponding to 

attributes a1 and a2 respectively. Mop is a set of pairs of predicates with the same operator 

and attribute name. Depending on the types of the attributes being compared S�attr typ� in 

Equation 3.18 is substituted with Scat or Snum which can be calculated using equations 

3.12 and 3.15 respectively. 

3.1.2.9 Selectivity 

The operator-based variant of policy similarity measure can be further extended to in­

corporate the notion of predicate selectivity. The concept of predicate selectivity is often 

used in relational database management systems for query cost estimation. Typically, se­

lectivity of a predicate p refers to the percentage of records in a relation that satisfy p. 

Extending this concept to the current context,we can regard selectivity as a measure of the 

fraction of requests that satisfy predicates in a policy rule. Selectivity is very useful in im­

proving the accuracy of similarity scores n some cases. Below is a simple example which 

contains three policies P1, P2 and P3 with the permit effect and the same target component. 

They differ only in their condition components as shown below: 

P1: (sex=female) ∧ (salary = 5000) 

P2: (sex=female ∨ sex=male) ∧ (salary = 5000) 

P3: salary = 5000 

We can observe that P2 and P3 are much more similar than P2 and P1 in terms of number 

of requests that can be permitted. However, when using previous introduced similarity 

measure, we may obtain a lower Spolicy(P2, P3) than Spolicy(P1, P2) because P1 and P2 have 

more common attributes. Such problem can be relieved if selectivity is considered and 
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carefully integrated into similarity score calculation, as we can see that the selectivity of 

the conditions in P2 and P3 is higher than that of the condition in P1. 

We proceed to formally define the selectivity used in our similarity measure. Selectivity 

of a predicate pi : ai ⊕ vi is computed as follows: 

# of values in domain(ai) that satisfy piSelpredicate(pi) =  (3.19)
total # of distinct values in domain(ai) 

For example, selectivity of the predicate “sex = female” is 1/2 considering that the 

domain of the sex attribute has two distinct values {male, female}. Using the independence 

assumption, selectivity of a conjunctive predicate of the form pi ∧ pj can be computed as 

follows: 

Selpredicate(pi ∧ pj ) = Selpredicate(pi) ∧ Selpredicate(pj ) (3.20) 

Similarly, the selectivity of a disjunctive predicate pi ∨ pj can be computed using the 

formula: 

Selpredicate(pi ∨ pj ) = Selpredicate(pi) + Selpredicate(pj ) − Selpredicate(pi)Selpredicate(pj ) 

(3.21) 

The basic idea here is to adjust the policy similarity score obtained for a policy pair, 

Spolicy(P1, P2), based on the selectivities of the policy target and rule elements of P1 and 

P2. In order to do this, we compute a policy target selectivity, denoted by SelT 1(SelT 2), 

and a rule selectivity, denoted by Selr1i(Selr2j ) for each policy target and rule respectively 

in P1(P2), where 1 ≤ i ≤ (NPR1 + NDR1 )(1 ≤ j ≤ (NPR2 + NDR2 )). 

The policy target selectivity is derived by combining the selectivities of the elements 

within the target. The target is essentially a conjunction of the subject, action, resource and 

environment element predicates. Thus, the policy target selectivity SelT can be computed 

as follows: 

SelT = Sel�s�Sel�a�Sel�r�Sel�e� (3.22) 
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where Sel�s�, Sel�r�, Sel�a� and Sel�e� denote the subject , action, resource and envi­

ronment element selectivities respectively. Each of these element selectivities is in turn 

computed based on the selectivities of the corresponding element predicates. Each of these 

elements is essentially a disjunctive normal form of predicates ((p1 ∧ p2 ∧  · · · pi) ∨ (pi+1 ∧ 

· · ·∧  pj ) ∨  · · ·  ∨  (pk ∧ cdots ∧ pn)) [1] and thus the element selectivity can computed 

using equations 3.20 and 3.21. The policy target selectivities SelT 1 and SelT 2 obtained for 

policies P1 and P2 respectively are used to derive a new policy target similarity score ST 
� 

using the following steps: 

1. The difference in selectivities, SDT = |SelT 1 − SelT 2| is computed. 

2. The SDT (if greater than 0) is used to derive a selectivity difference weight, SWT , the 

computation for which is given in equation 3.23. 

SWT = 1 + log SDT (3.23) 

3. If 0 ≤ SWT ≤ 1, the original policy target similarity score ST is adjusted to derive 

the new policy target score ST 
� using equation 3.24. 

ST 
� (P1, P2) =  ST (P1, P2)(1 − SWT ∗ ξ) (3.24) 

The intuition behind steps (1)-(3) is the following. Higher difference in selectivities 

SDT implies that the policy elements are different and hence must be assigned lower sim­

ilarity scores. However, lower selectivity difference does not guarantee that two policy 

elements are similar since it is possible that two different policy elements containing dif­

ferent sets of attributes have similarly high selectivity values. Therefore, we integrate only 

a partial effect of selectivity difference by using the parameter ξ which is set to 0.2 as de­

fault. In addition, since we use selectivity to mainly reduce the rate of false positives, we 

ignore any selectivity difference (SD) less than 0.1 and adjust the original similarity score 

only when SWT lies between 0 and 1. 
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Similarly, the rule selectivity is derived by combining the rule target and condition 

selectivities as follows: 

Selri = SeltiSelci (3.25) 

where Selti, the rule target selectivity and Selci, the condition selectivity are computed 

from the corresponding element predicates using equations 3.20 and 3.21. Further, the 

Selr1i and Selr2j computed for each rule in P1 and P2 respectively is used to compute a 

new rule similarity score S � (r1i, r2j ) for each pair of permit and deny rules in the two rule

policies using computations similar to steps (1)-(3) described above. Finally, the new rule 

similarity scores are used to derive new permit and deny set similarity scores S �P andrule−set 

S �D as outlined in section 3.1.2.2. rule−set 

3.1.2.10 Similarity Score with Dictionary Lookup and Ontology Matching 

So far, our similarity measure is defined under an implicit assumption that every party 

uses the same vocabulary to write its policies. However, policies being compared for simi­

larity may use different vocabularies and hence have syntactic and/or semantic variations of 

attribute names and categorical values. Therefore, we extend our policy similarity measure 

with dictionary lookup and ontology matching techniques to incorporate such variations.. 

An example of syntactic variation is the use of ”emp-name” and ”EmpName” to refer to 

the employee name attribute. For such cases, we use a user-defined lookup table typically 

set up by a policy administrator. 

An example of semantic variation is a case in which the synonym “pay” is used to 

refer to an employee’s salary attribute. For such cases, we use the WordNet [15], a lexical 

database for English language, which is used to derive all the synonyms in the context of 

English language. 

Semantic variations can also occur when attribute names or categorical values are as­

sociated with different ontologies. For such cases, we use a semantic score obtained from 

running an ontology matching algorithm [16] on the different ontologies. We will now dis­

http:3.1.2.10
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cuss how to obtain such a semantic score between two attribute names or values belonging 

to different ontologies. 

Let O1 and O2 be different ontologies to which the values v1 and v2 that are being com­

pared belong to respectively. This means that v1 and v2 represent concepts (nodes) in the 

ontologies O1 and O2 respectively. An ontology matching algorithm AO [16] takes two 

ontologies O1 and O2 as input and returns a mapping MO1→O2 between the two ontolo­

gies. The mapping MO1→O2 contains for each concept (node) Ci in the ontology O1(O2) a  

matching concept Cj in O2(O1) along with a confidence measure m, a value between 0 and 

1, indicating the similarity between the matched concepts. Thus the matching MO1→O2 is a 

list of triples of the form (Ci, Cj ,m). Second, we incorporate the scores obtained from the 

ontology mapping MO1→O2 to calculate the similarity score between two categorical values 

as follows : 

1. Let C12 be the concept in O2 that matches v1 and let m12 be the corresponding match­

ing score. Similarly let C21 be the concept in O1 that matches v2 and let m21 be the 

corresponding matching score. If no matching concept is found in either case a 0 

score is returned. 

2. We now have two pairs of values P1 : {v1, C21} and P2 : {v2, C12} that belong to 

the ontologies O1 and O2 respectively. We then apply the techniques presented in 

Section 3.1.2.6 and use Equation 3.11 to calculate the scores s1 and s2 for pairs P1 

and P2 respectively. Note that the score s1 (s2) is calculated using Equation 3.11 

only if the matching score m21(m12) is greater than a matching threshold tm(a value 

between 0 and 1). Otherwise they are set to 0. 

3. An average of the scores s1 and s2 is returned as the semantic score between the 

values v1 and v2. 

ONT O Let scat denote the function that computes the semantic score. Equation 3.26 sum­

marizes the computation of the semantic score. 
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⎧ 
⎪ scat(v1, C21) + scat(v2, C12) 
⎪ , C21, C12 = ∅ and m21,m12 ≥ tm 
⎪ 2 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 0, C21 = ∅ or C12 = ∅ 
⎪ 
⎨ 

ONT O scat (v1, v2) =  
⎪ 
⎪ 
⎪ 
⎪ scat(v1, C21) 
⎪ 
⎪ 2 , m21 < tm 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩ scat(v2, C12) 

2 , m12 < tm 

(3.26) 

We then revise Equations 3.12 and 3.15 for computing predicate similarity scores to 

Equations 3.27 and 3.28 respectively, by incorporating syntactic and semantic variations. 

ONT O 
1 s (v1k, v2l) + δ(v1k,v2l)∈Mv cat 

Scat(a1, a2) =  saname(na1 , na2 ) +  (3.27)
2 max(N ,N )v1 v2 

1 snum(v1k, v2l) + δ(v1k,v2l)∈MvSnum(a1, a2) =  saname(na1 , na2 ) +  (3.28)
2 max(Nv1, Nv2) 

where n and n denote the attribute names associated with a1 and a2 respectively and a1 a2 

saname(na1 , na2 ) is a function that returns 1 if na1 and na2 are syntactic variation or syn­

onym of one another and returns a value equal to SONT O (n , n ) if n and n are asso­cat a1 a2 a1 a2 

ciated with different ontologies and in all other cases returns a value 0. 

Note that as a result of this change, we no longer only compare predicates whose at­

tribute names match exactly. Instead, we compare all pairs of predicates. 

3.1.2.11 Overall Algorithm 

In this section, we summarize the steps involved in the computation of a similarity score 

between two policies P1 and P2. Figure 3.10 presents the pseudo-code of the complete 

algorithm, which consists of five phases. First, we categorize rules in P1 and P2 based on 

http:3.1.2.11
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their effects (line 1). Second, we compute the similarity score Srule for each pair of rules in 

P1 and P2 (line 2-7). Third, based on Srule, we compute the Φ mappings (line 8-11). 

Algorithm PolicySimilarityMeasure(P1, P2) 
Input : P1 is a policy with n rules {r11, r12, ...., r1n} 
and P2 is a policy with m rules {r21, r22, ......, r2m} 

1. Categorize rules in P1 and P2 based on their effects. 
Let PR1(PR2) and DR1(DR2) denote the set of permit 
and deny rules respectively in P1(P2). 

/* Compute similarity scores for each rule in P1 and P2 */ 
2. foreach rule r1i ∈ PR1 

3. foreach rule r2j ∈ PR2 

4. Srule(r1i, r2j ) //compute similarity score of rules 
5. foreach rule r1i ∈ DR1 

6. foreach rule r2j ∈ DR2 

7. Srule(r1i, r2j ) //compute similarity score of rules 

/* Compute Φ mappings */ 
ΦP8. 1 ←ComputePhiMapping(PR1, PR2, E) 

9. ΦP ←ComputePhiMapping(PR2, PR1, E)2 
10. ΦD ←ComputePhiMapping(DR1, DR2, E)1 
11. ΦD ←ComputePhiMapping(DR2, DR1, E)2 

/* Compute the rule set similarity scores */ 
12. foreach rule r1i ∈ P1 

13. if r1i ∈ PR1 then 
14. rs1i ← ComputeRuleSimilarity(r1i, ΦP )1 
15. elsif r1i ∈ DR1 then 
16. rs1i ← ComputeRuleSimilarity(r1i, ΦD)1 
17. foreach rule r2j ∈ P2 

18. if r2j ∈ PR2 then 
19. rs2j ← ComputeRuleSimilarity(r2j , ΦP )2 
20. elsif r1i ∈ DR1 then 
21. rs2j ← ComputeRuleSimilarity(r2j , ΦD)2 
22. SP ← average of rs of permit rules rule−set 
23. SD ← average of rs of deny rules rule−set 

/* Compute the overall similarity score */ 
24. Spolicy(P1, P2) = ST (P1, P2) + wpS

P + wdS
D 

rule−set rule−set 

end PolicySimilarityMeasure. 

Figure 3.10. Algorithm for Policy Similarity Measure 

Fourth, we use the Φ mappings to calculate the rule set similarity scores (line 12-23). 

Finally, the overall similarity score is obtained (line 24). 
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The most computationally expensive part of the algorithm is to compute Srule. We  

analyze its complexity as follows. Srule is the sum of similarity scores of corresponding 

elements. Suppose that the average number of attributes in one element is na. To find 

matching attributes with the same name, it takes O(nalogna) to sort and compare the list 

of attribute names. For each pair of matching attributes, we further compute the similarity 

scores of attribute values. Generally speaking, one attribute name is associated with one or 

very few number of values (e.g. ≤ 10). Therefore, we estimate the time for the attribute 

value computation to be a constant time c. Then the complexity of computing a similarity 

score of two elements is O(nalogna+nac). For each rule, there are at most 5 elements, and 

the computation complexity of Srule is still O(nalogna). 

'Procedure ComputeRuleSimilarity(r , Φ) 
'Input : r is a rule and Φ is a mapping between rules 

''1. foreach rule r ∈ Φ 
' '' )2. sum = sum +Srule(r , r  

3. rs = sum 
|Φ| 

4. return rs 
end ComputeRuleSimilarity. 

Figure 3.11. Procedure for Computing Rule Similarity 

It is worth noting that na is usually not a big value. For an entire policy, the total number 

of attribute-value pairs tested in [5] is 50. The maximum number of attribute-value pairs 

in one policy we have seen so far is about 500 [17]. Considering that the average number 

of attributes in one policy component is even smaller, our similarity score computation is 

very efficient. 

3.1.2.12 Case Study 

In this section we present a detailed example to illustrate how our policy similarity 

measure algorithm works. Continuing with the policy examples P1, P2 and P3 introduced 

in Section 2, we show how our policy similarity algorithm assigns a similarity score to these 

policies. We further show that our similarity algorithm assigns a higher similarity score 

http:3.1.2.12
http:Srule.We
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Department 

Student Faculty Staff 

Undergraduate Graduate Researcher Instructor Business Technical

PostDoc Professor Professor Emeritus 

Staff  Staff 

Figure 3.12. User Hierarchy in the University Domain 

FileType 

Documentation Executable Media Source 

.o .exe ....pdf .doc .txt ... .mp3 .avi ... .c .cpp .java ....xls 

Figure 3.13. File Hierarchy in the University Domain 

between the data owner policy P1 and resource owner policy P2 than between the data 

owner policy P1 and resource owner policy P3, adequately representing the relationship 

between the sets of requests permitted(denied) by the corresponding policies. Thus using 

the similarity score computed by our algorithm, the data owner is notified that P2 is more 

compatible to its own policy. The data owner only need to further check one policy P2 

instead of testing two policies before sending its data to the resource owner. 

In the following discussion we refer to the policies shown in Figures 3.2, 3.3 and 3.4. 

We also refer to two attribute hierarchies in the domain, namely the user hierarchy (Figure 

3.12) and file type hierarchy (Figure 3.13). Without having any additional knowledge of 

the application, we assume that each rule component is equally important and hence assign 

the same weight to all computations. 

The similarity score between P1 and P2 is calculated as follows: 
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1. We categorize rules in P1 and P2 based on their effects and find the permit and deny 

rule sets, PR1(PR2) and DR1(DR2). These sets are 

PR1 = {R11}
 

PR2 = {R21, R22}
 

DR1 = {R12}
 

DR2 = {R23, R24}
 

2. We compute the rule similarity scores between pairs of rules with the same effect in 

both policies. 

S(R11, R21) = 0.81 

S(R11, R22) = 0.56 

S(R12, R23) = 0.81 

S(R12, R24) = 0.76 

3. For policy P1, we find the Φ mappings ΦP 
1 and ΦD 

1 using the ComputePhiMapping 

procedure. We use 0.7 as the value of the threshold for this example when computing 

the mappings. The Φ mappings obtained for policy P1 are as follows: 

P 
1Φ
 = {R11 → {R21}}
 

D 
1Φ
 = {R12 → {R23, R24}}
 

4. The Φ mappings ΦP 
2 and ΦD 

2 are calculated similarly for policy P2. 

P 
2Φ
 = {R21 → {R11}, R22 →{}}
 

D 
2Φ
 = {R23 → {R12}, R24 → {R12}}
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5. For each rule r1i in P1, the corresponding rule similarity score rs1i is computed: 

rs11 = Srule(R11, R21) = 0.81 
1� � 

rs12 = Srule(R12, R23) + Srule(R12, R24) = 0.79 
2 

6. For each rule r2j in P2, the corresponding rule similarity score rs2j is computed: 

rs21 = Srule(R11, R21) = 0.81 

rs22 = 0  

rs23 = Srule(R12, R23) = 0.81 

rs24 = Srule(R12, R24) = 0.76 

7. Then, the similarity between the permit rule sets of P1 and P2, given by SP isrule−set 

computed: 

SP 
rule−set = 

rs11 + rs21 + rs22 

3 
0.81 + 0.81 + 0 

= 
3 

= 0.54 

8. The similarity between the deny rule sets of P1 and P2, given by SD , is com­rule−set

puted: 

rs12 + rs23 + rs24SD = rule−set 3 
0.79 + 0.81 + 0.76 

= 
3 

= 0.79 

9. Finally the permit and deny rule set similarities and policy target similarities are 

combined to obtain the overall policy similarity score between policies P1 and P2: 
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1 1 1 
SP SD+ST +Spolicy(P1, P2) =  rule−set rule−set 3 3 3 

1 1 1 
= · 0.75 + · 0.54 + · 0.79 

3 3 3 
= 0.71 

We then calculate the policy similarity score for policies P1 and P3. The policy target 

similarity score ST = 0.5. The rule similarity scores for policies P1 and P3 are: 

S(R11, R21) = 0.7
 

S(R12, R23) = 0.66
 

By using the threshold 0.7, we obtain the following Φ mappings: 

ΦP 
1 = {R11 → {R31}} 

ΦD 
1 = {R12 →{}} 

Following the same steps as described for policies P1 and P2, we have the following simi­

larity score between P1 and P3. 

1 1 1 
SP SD+ST +Spolicy(P1, P3) =  rule−set rule−set 3 3 3 

1 1 1 
= · 0.5 +  · 0.7 +  · 0 

3 3 3 
= 0.4 

We observe that policy P1 is clearly more similar to policy P2 than to policy P3. Hence, 

the data owner will be suggested to carry out the fine-grained policy analysis with P2 first. 

Next we briefly discuss an example of two semantically equivalent but syntactically 

different policies. Policies P8 and P9 share the same policy targets. P8 has only two permit 

rules R81 and R82. R81 contains only one condition component which is (5am < t < 8am). 

R82 also contains only one condition component which is (3am < t < 6am). P9 has 
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only one permit rule which is (3am < t < 8am). It is clear that the two policies are 

equivalent. Their similarity score is close to 1 as calculated in the following, which also 

satisfies Property 1. 

S(R81, R91) = 0.98 

S(R82, R91) = 0.98 

rs81 + rs82 + rs91SP = rule−set 3 
S(R81, R91) + S(R82, R91) + S(R82, R91)

= 
3 

0.98 + 0.98 + 0.98 
= 

3
 
= 0.98
 

1 1 1 
SP SD+ST +Spolicy(P8, P9) =  rule−set rule−set 3 3 3 

1 1 1 
= · 1 +  · 0.98 + · 1 

3 3 3 
= 0.99 

3.1.3 Experimental Evaluation 

We have implemented a prototype of the proposed similarity measure techniques us­

ing Java. We have performed extensive testing of the implementation on randomly gen­

erated access control policies. We evaluated both the effectiveness and efficiency of our 

lightweight policy similarity measure in contrast to exhaustive policy comparison tech­

niques which involve Boolean expression analysis. 

We have used the Falcon-AO v0.7 [18] ontology mapping implementation for per­

forming ontology matching. The 2007 Ontology Alignment Evaluation Initiative(OAEI 

07) results indicate Falcon to be the best performing ontology matcher available. We have 

used the WordNet2.1 Java API corresponding to the WordNet [15] English language lexi­
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cal database for implementing the functions dealing with finding the semantic variations in 

names. 

All experiments were conducted on 3Gz Pentium III processor machine with 500MB 

RAM. 

3.1.3.1 Random generation of access control policies 

We implemented a random attribute based access control policy generator (RACPG). 

RACPG generates policies in two formats : (i) simple XACML format which serves as 

input for the policy similarity measure and (ii) Boolean expression format which serves as 

input for the Boolean policy comparison. Each generated policy contained conditions on 

attributes randomly chosen from a list of 21 attributes. Out of the 21 attributes, there were 

10 categorical, 7 numerical, 2 date and 2 time attributes. Out of the 10 categorical attributes 

4 of them were associated with hierarchies. A maximum of 12 attribute-conditions were 

included in each policy element. Each policy or a rule in a policy could have a target with 

probability 0.5. 

In case of policies generated for testing the policy similarity measure with ontology 

matching we used concepts randomly chosen from the swportal( [19]) and swrc updated( [20]) 

ontologies that are available online. In addition we also introduced semantic variations 

(synonyms) in the attribute list. 

We first evaluated the effectiveness and efficiency of the policy similarity measure. 

These set of experiments were conducted without considering the ontology matching and 

dictionary lookup techniques. We then measured the scalability of the implementation 

for both versions with and without ontology. Finally we looked in detail the differences 

obtained with respect to the similarity scores when using ontology matching and dictionary 

lookup techniques. 
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3.1.3.2 Effectiveness 

Since our policy similarity measure is an approximation of the similarity between two 

policies, in order to demonstrate the effectiveness of the similarity measure, we compared 

our results with those obtained by an exact policy similarity analyzer. The exact policy 

similarity analyzer represents each policy as a Boolean expression and constructs a cor­

responding MTBDD. When comparing two policies, the MTBDD of the two policies are 

combined to determine the differences between the two policies. More information on such 

technique can be found in [21]. The output of the exact policy similarity analyzer is a list 

of requests and effects of the two policies for these requests. Based on this information, we 

can quantify the differences between two policies using the percentage of the requests for 

which the two policies have different effects. The higher the percentage of such requests 

the less similar the policies are. 

Each policy pair in set-4 and set-8 was input to both the policy similarity measure and 

the exact policy similarity analyzer. For each policy pair a policy similarity score and a 

policy difference percentage was recorded. The test sets set-4 and set-8 each contained 100 

pairs of policies. In set-4 each policy had 4 rules each and in set-8 each policy had 8 rules 

each. The maximum number of attribute predicates in any given policy was 68 for set-4 

and 124 for set-8. Considering that for typical policies we have encountered in real world 

applications the average number of atomic Boolean expressions lies between 10 and 50, 

our test sets covered a much bigger range. 

Figure 3.14 shows the policy similarity score and policy difference percentage for pol­

icy pairs in set-4 and set-8 with the threshold t set to 0.75. We observe that policy similarity 

scores decrease when the differences between two policies increase. This indicates that our 

policy similarity measure provides a good approximation of the similarity between policies. 

3.1.3.3 Effect of varying t 

We evaluated the effect of the threshold t by varying t from 0.2 to 0.75 for the two 

test tests. The result is shown in Figure 3.15. Observe that for both test sets set-4 and 
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Figure 3.14. Policy Similarity Scores versus Policy Difference
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Figure 3.15. Effect of Varying t 

set-8 higher values of t tend to provide a better approximation. This is because the overall 

similarity score is the average of the rule similarity scores above t and using higher values 

of t prunes more rules which are less similar to one another. 

3.1.3.4 Effect of varying policy element weights 

The computation of policy similarity score is associated with five policy element weights 

namely wT :policy target weight, wp:permit set weight, wd:deny set weight, wt:rule target 

weight, wc:condition weight. In this set of experiments we evaluated the effect of varying 

these element weights on the similarity score computation. 
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Table 3.2 
Configurations with varying policy element weights 

Configuration Policy 
Target 
Weight 
(wT ) 

Permit 
Set 
Weight 
(wp) 

Deny 
Set 
Weight 
(wd) 

Rule 
Target 
Weight 
(wt) 

Rule 
Condition 
Weight 
(wc) 

config-1 
config-2 
config-3 
config-4 
config-5 
config-6 

0.33 
0.25 
0.5 
0.75 
0.33 
0.33 

0.33 
0.375 
0.25 
0.125 
0.33 
0.33 

0.33 
0.375 
0.25 
0.125 
0.33 
0.33 

0.5 
0.5 
0.5 
0.5 
0.25 
0.75 

0.5 
0.5 
0.5 
0.5 
0.75 
0.25 

We obtained the policy similarity scores for policy pairs in set-4 and set-8 for six dif­

ferent configurations of the policy similarity computation. Each configuration was asso­

ciated with different values of policy element weights as shown in Table 3.2. The thresh­

old(epsilon) value was set at 0.75 for all the configurations. Figure 3.16 shows the results 

obtained for set-4 and set-8. We observe for both policy sets that config-1, config-2 and 

config-5 yielded similar results with respect to effectiveness of the similarity scores. How­

ever, config-3 and config-4 in which the policy target weight wT was given higher weight 

compared to permit- and deny-set weights produced lot of false positives resulting in policy 

pairs with higher difference percentage being assigned higher similarity scores. Similarly, 

config-6 which assigned higher weight to wt, the rule target weight compared to the condi­
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Figure 3.16. Effect of Varying Policy Element Weights 
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Policy Difference 
(c) Computational Overhead of Selectivity 

Figure 3.17. Effect of Selectivity 

tion weight wc did not perform well. The results obtained from this experiment re-iterates 

our general guideline to assign equal values to the various policy element weights. How­

ever, a user may want to assign unequal values if he wants to find policies which are similar 

with respect to one particular element. 

3.1.3.5 Effect of Operators and Selectivity 

Similar experiments for policy pairs in set-4 and set-8 are conducted by using the variant 

of the policy similarity measure that considers operators in predicates (in Section 3.1.2.8). 

We observe that the trends of scores obtained from the variant are similar to that of the origi­

nal version which did not consider operators. Here, we did not see significant improvement 
1 over the score accuracy after considering operators. This is because that policies with 

1By improvement we mean that there is a decrease in the value of the scores obtained for policy pairs with 
higher policy difference percentage 
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Figure 3.18. Execution time 

similar attributes but totally different operators do not occur very often in general. In other 

words, the consideration of operators mainly help adjust similarity scores in the special 

cases when two policies contain same attributes but differ in operators. 

We also evaluate the effect of incorporating selectivity (discussed in Section 3.1.2.9) 

computation while computing the scores. The results for set-4 and set-8 are shown in Figure 

3.17. We observe that by adjusting the similarity score based on selectivity there is a slight 

improvement in the effectiveness of the scores especially for policy pairs that are not very 

similar. In effect, incorporating selectivity decreases the similarity scores for policy pairs 

that are not very similar thereby improving the effectiveness. It is also worth noting that 

this slight improvement does not come at the cost of efficiency as can be observed from 

Figure 3.17(c). 

3.1.3.6 Efficiency 

The previous set of experiments demonstrate the effectiveness of the policy similarity 

measure. In order for our technique to be useful as a light weight approach that can quickly 

rank policies, it must also be efficient. We compared the execution time of the policy 

similarity measure with that of the exact policy similarity analyzer. The same data sets 

set-4 and set-8 were used. The results for set-4 and set-8 are shown in Figures 3.18. Each 
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point in the graphs corresponds to the average execution time for 10 different policy pairs. 

The value of t was set to 0.5. 

From the figures, we observe that the policy similarity measure almost remains constant 

for both set-4 and set-8. This is because the time taken by the policy similarity measure 

depends on the number of rules and attribute predicates in the policies being compared 

which is constant for policies in both sets. In contrast, the time taken by the exact policy 

similarity analyzer is a function of the size of the resulting comparison MTBDD which 

increases with increase in policy difference. Observe that the average execution time taken 

by the policy similarity measure is two to three orders of magnitude less than the time taken 

by the exact similarity analyzer. Such difference can be attributed to the quick comparison 

techniques which avoids computationally intensive Boolean expression analysis. This also 

indicates that considerable gain in time can be achieved by using the similarity measure 

before invoking the more computationally expensive similarity analysis. 

3.1.3.7 Scalability 

In this set of experiments, we evaluated the scalability of the policy similarity measure 

implementation considering both versions with and without ontology matching2. We used 

test cases that considered attribute names and values from the WordNet synonym set and 

ontologies as described in Section 3.1.3.1. We varied the number of attribute predicates 

across the policies and plotted the average time taken to compute the similarity score. For 

these experiments the value of the threshold t was set to 0.5. 

Figure 3.19 reports the average time taken to compute similarity scores for 10 different 

policy pairs in data sets containing 7 and 8 rules per policy, when varying the number 

of predicates in each policy from 25 to 400. We can observe that both versions scale 

reasonably well as the number of predicates per policy increases. Though the average time 

taken by the ontology matching version is marginally higher than that taken by the version 

without ontology matching, it is still two to three orders of magnitude lower than the exact 

2We use the term “ontology mapping” to refer also to dictionary lookup 
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Figure 3.19. Scalability as number of attribute predicates per policy is increased 

similarity analyzer indicating that incorporating ontology matching as part of a filtering 

phase can still be feasible. 

3.1.3.8 Effect of Ontology Matching on Similarity Scores 

In the final set of experiments, we explored the benefit from introducing ontology 

matching. For these experiments we generated a random policy with 4 rules and 68 at­

tribute predicates considering concepts from a single ontology. We then generated five 

different variants of this policy by replacing attribute names with synonyms and equiva­

lent concepts belonging to another ontology. In effect, all the policies were semantically 

the same but only the vocabulary was different, and hence similarity score 1 is expected. 

We then compared the similarity scores for both versions with and without ontology. The 

results are shown in table 3.3. We observe that as the number of changes increases the pol­

icy similarity score without ontology indicates decreasing scores although all the policies 

were semantically similar while the version with ontology matching consistently gives the 

highest score indicating the underlying semantic similarity of the policy pairs considered. 

In general, for all policy pairs used in the scalability experiments, we observed that the 

ontology matching version gave higher similarity scores. 
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Table 3.3 
Similarity Scores for the With and Without Ontology Versions 

Policy Variant # of Changes Score Without Score With 
Ontology Matching Ontology Matching 

Variant1 5 0.58 0.99 
Variant2 8 0.58 0.98 
Variant3 12 0.55 0.99 
Variant4 17 0.43 0.98 
Variant5 23 0.43 0.96 

3.1.4 Applications 

Our similarity measure can be applied in many scenarios. In what follows, we discuss 

some of the potential applications. 

3.1.4.1 Policy integration 

With the advent of Web 2.0, collaborative applications (web services) that share and 

protect resources are becoming important. Such applications are associated with complex 

security policies. To support a secure collaboration, it is necessary to consolidate (integrate) 

the security policies of the parties involved in the collaboration. Techniques to determine 

the similarity between security policies are vital to perform such integration. Mazzoleni et 

al. [Mazzoleni et al. 2006] discuss integration algorithms that require the knowledge of the 

similarity between access control policies in terms of the relationship between the set of 

requests permitted (denied) by a given set of policies. 

When a large number of policies are to be integrated in a time efficient manner, inte­

grating more similar policies first can reduce the overall integration time since less conflict 

needs to be resolved during each round of integration. Our similarity measure can be used 

to quickly identify those similar policies without invoking time-consuming Boolean simi­

larity analysis. Thus the time overall time needed to perform the integration can be reduced. 
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3.1.4.2 Policy clustering 

Clustering is an important technique for discovering interesting data patterns. Policy 

clustering can help in understanding the most commonly occurring entities in policies, in 

finding meta-policies and policy writing guidelines for different types of organizations. Our 

similarity measure can serve as a good distance function among policies so that it can be 

used with existing clustering algorithms. 

3.1.4.3 Language independent policy comparison 

Although the proposed policy similarity measure is defined for XACML policies, we 

should notice that the underlying schema of XACML policies is XML. It is not surprising 

that our policy similarity measure can be easily adapted to compare any attribute-based 

access control policies expressed in a XML based language like P3P (Platform for Privacy 

Preferences) policies. 

P3P policy comparison 

The P3P policy is a World Wide Web Consortium (W3C) standard for expressing pri­

vacy policies of a website. A similarity measure for comparing two P3P policies can be 

useful when a website visitor would like to ensure that privacy policy of a website he wishes 

to conduct business with is similar to an ideal privacy policy reflecting his privacy prefer­

ences. It can also be used to rank websites based on similarity between an ideal privacy 

policy and the privacy policies of the websites. In the following, we briefly discuss how to 

adapt our current similarity measure to this case. 

A P3P policy is mainly composed of statements that describe the data and category 

of information collected along with how the information may be used, how the informa­

tion may be shared and the associated data retention policies. Thus a P3P policy can be 

abstracted into a list of tuples each containing the data, category, purpose, recipient and 

retention elements. Each of the elements can contain values belonging to a pre-defined set 

specified in the P3P specification. A similarity score between two P3P policies is derived 

by computing the similarity score between pairs of tuples corresponding to the two policies. 
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A score between a pair of tuples is calculated by comparing the individual components of 

the two tuples. 

Further, since our policy similarity measure is defined by comparing the corresponding 

components in two policies, the basic idea can be used for comparing policies not even 

written in XML. We consider the web server configuration files in Apache and SELinux 

policy as examples. 

Web server configuration file comparison 

Web server configuration files also contain access control information and are used 

to direct traffic from browsers to applications running at the server. In particular, such 

files specify whether a requested operation can be performed by certain applications. For 

collaboration purpose, different web servers will need to check if their configuration files 

allow the same set of requests to the same applications. Again, they can use a similarity 

measure to quickly obtain a basic idea on the similarity of their configuration files before 

the collaboration. 

In the Apache web-server, the main configuration file “httpd.conf” contains the con­

figuration directives that give the server its instructions. The configuration directives are 

grouped into three basic sections: 1) Directives that control the operation of the Apache 

server process as a whole; 2) Directives that define the server type; 3) Settings for virtual 

hosts. To obtain a similarity measure for such files, we can follow the basic idea of the 

XACML policy comparison and summarize the similarities between each corresponding 

sections. 

Security-Enhanced Linux (SELinux) policy comparison 

The SELinux policy [22] is a set of rules that guide the SELinux security engine. It 

defines types for file objects and domains for processes. Rules (referred to as access vec­

tor rules) in the policy determine how each domain may access each type. Only what is 

specifically allowed by the rules is permitted. By default, every operation is denied. 

A SELinux policy consists of many components like commons, object classes, types, 

attributes, access vector rules, type rules, users, roles, role allow rules, role and range 

transition rules. Typically a policy consists of thousands of access vector rules which makes 
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the search of similar policies using tools like sediff and sediffx [23] a time-consuming 

task. A quick similarity computation among pairs of access vectors rules, using techniques 

proposed in this work, can be useful for pruning dissimilar policies. Another scenario 

where a similarity score between SELinux policies can be useful is when an administrator 

who has to manage a large cluster of servers each with its own policy configuration would 

like to ensure that every server’s policy has similar level of security as specified in an ideal 

server policy configuration. 

An access vector rule in a SELinux policy is made up of four components: (i) an access 

vector which could be one of the values in the set {allow, neverallow, auditallow, 

dontaudit},(ii) the source type, (iii) the target type and (iv) classes or list of permis­

sions. The access vector component can be regarded as analogous to the Effect in XACML 

rules and the access vector rules can be first grouped based on the value of this component. 

Now for each pair of rules that have the same access vector value we can compare the cor­

responding source, target and permission components and compute a score based on each 

of these and aggregate the obtained results to get a similarity score between two access 

vector rules. 

Similar techniques can be used to derive a similarity score not only for the different 

kinds of rules in a SELinux policy like the type rules, role allow rules and role transi­

tion rules but also for other components like the types, commons and users. Considering 

that SELinux policies support role-based access control, we can also utilize the hierarchy 

distance based measures proposed here to find similarity between roles in the SELinux 

policies. The scores obtained for individual components can be combined as a weighted 

aggregrate to determine a similarity score for two SELinux policies. 

3.1.5 Usability Survey 

In order to assess the practical value of the proposed policy similarity measure, we con­

ducted a pilot survey involving system administrators and graduate students. We developed 

a questionnaire (see Appendix) which contained 30 pairs of security policies in natural lan­
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guage. Each participant was asked to rate the similarity of policies in each of the policy 

pairs on a scale of 1-7 where 1 corresponds to Not similar at all and 7 corresponds to Very 

similar. We also asked them to give a rating for the appropriateness 3 of each of the policies 

on a scale of 1-7 where 1 corresponds to Not appropriate at all and 7 corresponds to Very 

appropriate. 8 system administrators and 22 students participated in this pilot study. 

We converted each of the policies to an intermediate form as required for the policy 

similarity measure and computed a similarity score for each policy pair using the tech­

niques presented in subsection 3.1.2. We converted the similarity score which is a value 

between 0 and 1 to a corresponding value between 1 and 7 in order to compare the scores 

with the similarity ratings given by participants. We plotted the similarity score assigned 

by our policy similarity measure and the average of similarity ratings assigned by all the 

participants for each policy pair. The results are shown in Figure 3.20. We observed that 

the policy similarity measure conforms well to the similarity ratings assigned by the users 

and is a good predictor of which policies users may evaluate as similar. 

Encouraged by the promising results of the pilot study, we conducted another survey 

with larger number of participants involving information security executives, system ad­

ministrators and students. This larger study involved 82 students and 30 professionals. 

Results of this larger survey(Figure 3.21) showed trends similar to that of the pilot study 

thus further establishing that our proposed similarity measure can be a useful tool to assess 

the similarity of policies. 

3.2 Policy Similarity Analyzer 

PSA is the key component of EXAM in that it implements the analysis queries. In 

what follows, we describe its architecture, detailed construction algorithms and the query 

processing strategies. 

3Although appropriateness is not directly related to our work on policy similarity we included this as part of 
another study to understand different stakeholders perspectives toward security policies. 
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3.2.1 Architecture of PSA 

The problem of analyzing policies can be translated into the problem of analyzing 

Boolean formulae. The main task of the PSA module is to determine all variable assign­
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Figure 3.22. Architecture of the Policy Similarity Analyzer (PSA) 

ments that can satisfy the Boolean formulae corresponding to one or more policies, and 

also variable assignments that lead to different decisions for different policies. The basic 

idea is to combine functionalities of the policy ratification technique [13] and MTBDD 

technique [5] by using a divide-and-conquer strategy. 

Figure 3.22 shows the architecture of PSA. Policies are first passed to a preprocessor 

which identifies parts to be processed by the ratification module and parts to be directly 

transmitted to the MTBDD module. The ratification module then generates unified nodes 

and a set of auxiliary rules that are transmitted to the MTBDD module. The MTBDD mod­

ule then creates a combined MTBDD that includes policies and additional rules. By using 

the combined MTBDD, the PSA module can thus process the queries that we introduced in 

Section 2.3. Specifically, queries on a single policy are carried out on the MTBDD of the 

policy being queried, whereas queries on multiple policies are carried out on the CMTBDD 

of corresponding policies. Finally, the result analyzer reformats the output of the MTBDD 

module and reports it to the users. 

In the following sections, we first introduce how to represent a policy using a MTBDD 

and then present the details of policy analysis based on such representation. Finally, we 

discuss the policy query processing. 



78 

Pol2 

a 

N 

tu 

f 

CP P 

d 
0 

1 

1 

0 1 

10 

0 1 

0 

Figure 3.23. The MTBDD for policy P2 

3.2.2 Policy Representation 

Given an input policy, the policy preprocessor translates it into at most two compound 

Boolean expressions (category 5) which correspond to the permit and deny effects respec­

tively. The compound Boolean expressions are composed of atomic Boolean expressions 

which usually belong to the first four categories, i.e., one variable equality, one variable in­

equality, real valued linear and regular expression constraints as presented in Section 2.3.1. 

Example 3 shows the Boolean expressions of policy P1 and P2. 

The compound Boolean expressions of a policy are represented as a MTBDD. The 

structure of a MTBDD is a rooted acyclic directed graph. The internal nodes represent 

atomic Boolean expressions and the terminals represent policy effects, i.e., Permit(P), 

Deny(D) and NotApplicable (NA). Each non-terminal node has two edges labeled 0 and 1 

which means that the atomic Boolean expression associated with this node is unsatisfied or 

satisfied respectively. Nodes along the same path have “∧”(AND) relationship and nodes 

in the different paths have “∨” (OR) relationship. Each path in the MTBDD represents a 

set of requests that satisfy the atomic Boolean expressions in the nodes with 1-edge along 

the path, and the terminal at the end of the path represents the effect of the policy for the 

set of requests. While in the worst case the number of nodes in an MTBDD is exponential 

in the number of variables, in practice the number of nodes is often polynomial or even 

linear [5]. 
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Example 10 Figure 3.23 shows the MTBDD for policy P2. The MTBDD has five nodes 

and three terminals. Nodes d, a, t, u and f stand for atomic Boolean expressions (domain 

= “.edu”), (affliation= “IBM”), (6am ≤t≤8pm), (user=“Bob”) and (upload + download < 

1GB), respectively. Terminals “N”, “CP” and “P” stand for “NotApplicable”, “Conditional 

Permit” and “Permit” respectively. Take the right most path as an example. Such path 

indicates that if a request satisfies Boolean expressions in nodes d and t, the request will be 

permitted by policy P2. 

From Figure 3.23, we notice a new terminal “CP” which means conditional permit. 

Such a terminal indicates that there exist some requests satisfying the Boolean expressions 

along the paths ending at this terminal but the variable assignments cannot be directly 

derived from the internal nodes due to the existence of linear constraints or regular expres­

sions. Checking whether the Boolean expressions along that path is satisfiable is the task 

of the ratification module which will be detailed in the next subsubsection. Similarly, we 

can define another terminal “CD” (conditional deny). 

3.2.3 Policy Comparison 

To compare policies, their corresponding MTBDDs are combined to form a combined 

MTBDD (CMTBDD) by a binary operation called Apply [24]. MTBDDs to be combined 

need to follow the same variable ordering, i.e. the ordering that determines which node pre­

cedes another. We first consider the CMTBDD constructed from two policies. The Apply 

operation is a recursive operation that traverses two MTBDDs simultaneously starting from 

the root node. If the currently retrieved nodes of the two MTBDDs are the same, the node 

will be kept and the Apply operation is applied to the left children of both nodes, and the 

right children of both nodes separately. If node N1 of MTBDD1 precedes N2 of MTBDD2, 

N1 will be kept in the CMTBDD and the Apply operation continues to compare N2 with 

both left and right children of N1. When the terminals of both MTBDDs are reached, 

the terminal of the CMTBDD is obtained by combining the effects of the two terminals. 

Since each MTBDD has five terminals: P(Permit), D(Deny), CP(Conditional Permit), CD 
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(Conditional Deny) and N(NotApplicable), a CMTBDD has twenty-five terminals, one for 

each ordered pair of results from the policies being compared (such as P-P, P-D). A high 

level description of the Apply operation is shown in Figure 4.3. For multiple policies, we 

can construct CMTBDD for each pair of policies to be compared and then aggregate the 

analysis results. 

The construction of the CMTBDD is for the purpose of supporting policy analysis 

queries. However, if we construct the CMTBDD without analyzing the Boolean expres­

sions represented by nodes in MTBDDs, the resulting CMTBDD may contain useless in­

formation as shown by Example 11. 

Procedure Apply(N1, N2)
 
Input : N1, N2 are MTBDD nodes
 

1. initiate Nc // Nc is the node in the CMTBDD 
2. if N1 and N2 are terminals then 
3. Nc ← (N1.var + N2.var, null, null) 
4. else 
5. if N1.var = N2.var then 
6. Nc.var ← N1.var 
7. Nc.left ← Apply(N1.left, N2.left, OP ) 
8. Nc.right ← Apply(N1.right, N2.right, OP ) 
9. if N1.var precedes N2.var then 
10. Nc.var ← N1.var 
11. Nc.left ← Apply(N1.left, N2, OP ) 
12. Nc.right ← Apply(N1.right, N2, OP ) 
13. if N2.var precedes N1.var then 
14. Nc.var ← N2.var 
15. Nc.left ← Apply(N2.left, N1, OP ) 
16. Nc.right ← Apply(N2.right, N1, OP ) 
17. return Nc 

Figure 3.24. Description of the Apply operation 

Example 11 The left part of Figure 3.25 shows the MTBDDs of policies P3 and P4 and 

their CMTBDD P34 constructed by the Apply operation. Policy P3 allows access during 

time 6am to 8am while policy P4 allows access during time 2pm to 4pm. Since these two 

time ranges are disjoint, the path shown as a dashed line in their CMTBDD should not 

exist, i.e., no request can satisfy this path. 
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The right part of Figure 3.25 shows the MTBDDs of policies P5 and P6 and their 

CMTBDD P56. Policy P5 allows access when the condition “x < 0 ∧ x + y > 10” 

is satisfied. Policy P6 allows access when the condition “y < 0” is satisfied. Without 

considering the relationship between Boolean expressions of each node, the constructed 

CMTBDD P56 contains one path (shown by the broken line) which can never be satisfied. 
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Figure 3.25. Examples of CMTBDDs 

The problem in the above examples is mainly due to the existence of complex Boolean 

expressions of category 2, 3 and 4. To solve the problem, we propose two important opera­

tions termed as node unification and auxiliary rule generation, which are carried out in the 

ratification module before the MTBDD construction. An auxiliary rule has the same format 

of a policy rule. We proceed to present how to apply the two operations to each type of 

Boolean expression. Note that we do not need to take special care of Boolean expressions 

of category 5 since they are just combinations of previous types of Boolean expressions 

and such combinations are naturally reflected by the MTBDD structure. 

Boolean expressions of category 1. For one variable equality constraints, we need to be 

careful about variables in the tree domain. For values along the same path in the tree, 

an auxiliary rule is needed to guarantee that if a variable cannot be assigned a certain 

value, then none of its children value can be satisfied. For example, suppose there are two 

constraints, “domain = .edu” and “domain = purdue.edu”. The auxiliary rule will specify 

http:purdue.edu
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that if the node of “domain=.edu” is false, the node of “domain=purdue.edu” should also 

be false. We will present how to generate such an auxiliary rule. 

An auxiliary rule is represented as a Boolean expression. Let x be a variable in a 

tree domain and f1, ..., fk be a set of equality constraints on x occurring in policies to be 

compared. Suppose that f1, .., fk are in an ascending order of values of x, i.e., value in fi is 

the ancestor of the value in fj in the tree domain when i < j. Then we have the following 

auxiliary rule which specifies that fj can be true only when every fi (i < j) is satisfied. 

The effect of the rule is permit. 

(f1 ∧ ¬f2 · · · ∧¬fk) ∨ (f1 ∧ f2 ∧ ¬f3 · · · ∧¬fk) ∨ · · · ∨ (f1 ∧ f2 · · ·∧ fk−1 ∧ fk) 

Boolean expressions of category 2. To generate unified nodes containing the Boolean 

expressions of category 2, i.e. one variable inequality constraints, we need to first find the 

disjoint domain ranges of the same variable occurring in different policies. Assume that the 

original domains of a variable x are (d− 
1 , d

+
2 , d

+ 
n , d

+ 
n ), where the superscript 1 ), (d

− 
2 ), ..., (d

− 

‘-’ and ‘+’ denote lower and upper bound respectively, d− 
i can be −∞, and d+ 

i can be +∞ 

(1 ≤ i ≤ n), ( can be ’[’ or ’(’ depending on whether the lower bound is included or not 

and ) can be ’]’ or ’)’ depending on whether the upper bound is included or not. We sort the 

domain bounds in an ascending order, and then employ a plane sweeping technique which 

scans the sorted domain bounds from left to right and keeps the ranges of two neighbor 

bounds if the ranges are covered in the original domain. The obtained disjoint ranges: 

(d�− ), (d�−, d�+ , d�+), · · · , (d�−, d�+), satisfy the following three conditions. It is easy to 1 1 2 2 m m 

prove that m is at most 4n − 2. 

, d�+ ∈ D, D = {d−, d+, ..., d−, d+}(1) d�− 
i i 1 1 n n .
 

m (d�− n
(2) ∪i=1 i , d�
i 
+) = ∪j=1(d

− 
j , d

+ 
j ). 

(3) For every k, l where 1 ≤ k, l ≤ m and k = l,
 

(d�−
 
k , d

�
k 
+) ∩ (d�− 

l , dl 
�+) = ∅. 

After having obtained disjoint domain ranges, all related Boolean functions are rewrit­

ten by using new domain ranges. Specifically, an original Boolean function d− 
j < x < d+ 

j 

(1 ≤ j ≤ n, < ∈ {<,≤}) is reformatted as ∨k
i=1di 

�− 
< x < di 

�+, where ∪k 
i i ) = i=1(d
�−, d�+ 

http:domain=purdue.edu
http:domain=.edu
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− +(dj , dj ). Then, the ratification module generates unified nodes of the form of N(f(x)), 
�− �+where f(x) is an inequality function in the form of di < x < di . 

Next, we construct auxiliary rules to indicate that each time only one node of x can 

be assigned the value true. In other words, this rule tells the MTBDD module that each 

variable can only have one value or belong to one disjoint range during each round of the 

assessment. In particular, given a set of constraints on x: f1, ..., fk, we have the following 

auxiliary rule with the permit effect. 

(f1 ∧ ¬f2 · · ·∧  ¬fk) ∨ (¬f1 ∧ f2 ∧ ¬f3 · · ·∧  ¬fk) ∨  · · ·∨  (¬f1 ∧ ¬f2 · · ·∧  ¬fk−1 ∧ fk) 

An example of such auxiliary rule will be given in Example 12 at the end of this section. 

Boolean expressions of category 3. This type of Boolean expressions is handled during 

the combination of two MTBDDs. Given any one path in MTBDD1 and any one path 

in MTBDD2, the path in the CMTBDD is obtained by merging the two paths using the 

Apply operation. The SAT solver is invoked when the merged path contains atleast one 

linear constraint along with other constraints on common attributes. For example, (i) when 

both paths contain nodes4 of linear constraints, we need to use the SAT solver to check the 

satisfiability of the merged path and (ii) when only one of the two paths contains nodes 

of linear constraints and the other path contains other constraints (e.g. equality constraint) 

on the variables occurring in the linear constraints, we also need to use the SAT solver 

to check the satisfiability of the merged path. If the Boolean expression corresponding 

to the merged path is satisfiable, the terminal in the CMTBDD is the combination of the 

terminals of MTBDD1 and MTBDD2. Otherwise, the terminal in the CMTBDD is “NA­

NA” which means the variable assignment along the merged path does not satisfy policies 

corresponding to MTBDD1 and MTBDD2. The above steps are integrated into the Apply 

operation, specifically line 3 in Figure 4.3 which is revised to take into account the types of 

Boolean expressions, satisfiability check and terminal changes. 

To exemplify, consider policies P5 and P6 in Figure 3.25. When the path “x < 0 ∧ x+ 

y > 0” is merged with path “y < 0”, we need to check the satisfiability of “x < 0∧x+y >  

4Here, we only need to consider nodes with 1-edge 
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0 ∧ y <  0”. Since it is unsatisfiable, the terminal of this path should be “N-N” instead of 

“CP-P” shown in Figure 3.25. 

Boolean expressions of category 4. For the Boolean functions of category 4, we use 

finite automata techniques to determine satisfiability [25]. In particular, when combining 

two MTBDDs, we check whether the regular expression constraints along the same path 

in the CMTBDD can be satisfied simultaneously. For example, consider two constraints 

“x ∈ L(“A∗”)” and “x ∈ L(“B∗”)” which require x to be a string with starting letter A and 

B respectively. Obviously, there is no assignment of x that can satisfy both constraints at 

the same time and we call these two constraints conflicting constraints. More generally, for 

all regular expression constraints, we first find all pairs of conflicting constraints. Then for 

each pair fi and fj , we construct an auxiliary rule with permit effect: (fi ∧¬fj )∨(¬fi ∧fj ), 

which specifies that each time only one constraints can be satisfied. 

The unified nodes and auxiliary rules are fed into the MTBDD module. The MTBDD 

module constructs a MTBDD for each policy and each auxiliary rule. Then the MTBDDs 

are combined and auxiliary rules are applied to the CMTBDD. When the effect of the 

auxiliary rule is Permit, the terminal function follows the original CMTBDD. When the 

effect of the rule is NotApplicable, the corresponding terminal function changes to “NA­

NA”. Figure 3.26 summarizes the CMTBDD construction procedure followed by the PSA 

module. 

To illustrate the above steps, let us consider again policy P1 and P2 in Example 3. 

Example 12 Policy P1 and P2 are first translated into Boolean formulae as shown in func­

tion (1) and (2) in Example 3. There are six variables occurring in these policies, namely 

“domain”, “time”, “affiliation”, “user”, “upload” and “download”. For variables “domain”, 

“affiliation” and “user”, whose Boolean expressions belong to the first category, the pre­

processor generates the following nodes: 

d(domain=“.edu”), a(affiliation=“IBM”), u(user = “Bob”). 

These nodes are sent to the MTBDD module. For the Boolean formulae of variable 

“time” which are inequality constraints, the preprocessor sends them to the ratification 

module. The ratification module computes the disjoint range of the variables and obtain 

http:d(domain=�.edu
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Procedure CMTBDD Construction(P1, P2, ..., Pn) 
Input: Pi is a policy, 1 ≤ i ≤ n 

/* Policy Preprocessor */ 
1.	 translate policies into Boolean formulae BF1 and BF2 

2.	 for each variable x in BF1 and BF2 

3. Cx ← [f1(x), ..., fn(x)] 
// a cluster of atomic Boolean expressions with x 

/* Ratification Module */ 
4. if Cx contains only Boolean expressions of category 1 
5. construct node N(fi(x)) for every fi(x)(1 ≤ i ≤ n) 
6. construct auxiliary rules for the domain constraint 
7. if Cx contains Boolean expressions of category 2 
8. compute disjoint domains of x 
9. convert every fi(x) to f ' (x) by using new domains i 
10. construct auxiliary rules for the domain constraint 
11. construct node N(f ' (x)) for every f ' (x)i i 
12. if Cx contains Boolean expressions of category 4 
13. construct node N(fi(x)) for every fi(x) 
14. find conflicting constraints 
15.	 construct auxiliary rules for each conflicting constraint 

/* MTBDD Module */ 
16.	 construct an MTBDD for each policy 
17.	 construct an MTBDD for each auxiliary rule 
18. combine MTBDDs and create the CMTBDD, 

invoke the ratification module when Boolean expressions 
of category 3 are encountered 

19. combine the CMTBDD with auxiliary rules 

Figure 3.26. Procedure of CMTBDD Construction 

three nodes: t1(6 ≤ time < 8), t2(8 ≤ time ≤ 20), t3(20 < time ≤ 22). Correspond­

ingly, P1 and P2 are rewritten as: 

⎧
 
⎪
 
⎪	 Bpermit = ( ( (domain = “.edu”)
⎪ 
⎨ 

P1 ∧ ( (8 ≤ time ≤ 20 ∨ 20 < time ≤ 22) ) ) 
⎪ 
⎪ 
⎪ 
⎩ Bdeny = F ALSE 
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⎧
 
⎪
 
⎪ Bpermit = ( ( (domain = “.edu” 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ ∨ affiliation = “IBM”)
⎪ 
⎪ 
⎪ 
⎪ 
⎨ ∧ ( (6 ≤ time < 8 ∨ 8 ≤ time ≤ 20) ) ) 

P2 
⎪ 
⎪ ∨ ( (user = “Bob”)
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ ∧ (upload + download < 1) ) 
⎪ 
⎪ 
⎪ 
⎪ 
⎩ Bdeny = F ALSE 

An auxiliary rule is associated with the variable “time”, which is expressed as follows. 

(t1 ∧ ¬t2 ∧ ¬t3) ∨ (¬t1 ∧ t2 ∧ ¬t3) ∨ (¬t1 ∧ ¬t2 ∧ t3) 

Variables “upload” and “download” appear in a linear function. The ratification module 

checks its satisfiability and then inform the MTBDD module to construct the terminal “CP” 

for it. 

By taking the unified nodes and new Boolean formulae as inputs, the MTBDD module 

first constructs the MTBDD for each policy and auxiliary rules as shown in Figure 3.23. 

Notice the difference between the MTBDDs of P2 in Figure 3.27 and Figure 3.23 where 

node t in Figure 3.23 is split into nodes t1 and t2 in Figure 3.27. Then these MTBDDs are 

combined into one CMTBDD. In the following subsection, we show how the CMTBDD is 

used to execute policy analysis queries. 

Pol1 Pol2 Auxiliary Rule 
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t3 

PN 
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t1

t2

t3 t3
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01 

0 1 

10 

Figure 3.27. MTBDD of policies P1 and P2 and the auxiliary rule 
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Query 
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Figure 3.28. Query MTBDD 

3.2.4 Query Processing Strategy 

Policy analysis queries are carried out based on the MTBDDs and CMTBDDs. For the 

same set of policies, we only need to construct their MTBDDs and CMTBDDs once and 

store them in the policy repository for the query processing. In what follows, we propose 

a generic query processing algorithm that applies to all types of queries on both single and 

multiple policies. Note that the technique used for queries on a single policy is a special 

case of the technique used for queries on multiple policies; thus we only discuss queries on 

multiple policies in the following. 

Recall that each query has three types of constraints, Bq, eq and fq, where Bq is a 

Boolean expression on Attrq, eq is the desired effect and fq is a constraint on a set of 

requests. The query algorithm consists of three steps. The first step preprocesses the query, 

the second step constructs the query MTBDD and performs model checking, and the final 

step performs some post-processing. 

In particular, for a given query, first we normalize its Bq, map the specified ranges of 

attributes to the existing unified nodes, and represent the specified ranges as corresponding 

unified nodes. Then, we construct the query MTBDD. Here, we can treat the normalized 

Bq and effect eq in a query as a rule, and then construct the MTBDD for it. With reference 

to Example 1, a query like find the time interval when the user from domain “.edu” can 

access the data can be translated as “given Domain = “.edu”, Decision = permit, find all 

possible requests”. Figure 3.28 shows the query MTBDD. 

After we obtain the query MTBDD, we combine it with the MTBDD or CMTBDD 

of the policies being queried, where we obtain a temporary structure – Query CMTBDD. 
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By using model checking on the Query CMTBDD, we are now able to find the requests 

satisfying the Aq and eq. As for the example query, we just need to find all paths in the 

Query CMTBDD which leads to the terminal named “P-P”. For conditional decisions, the 

nodes along the path may need to be examined by plugging the specific variable values. 

As for the policy queries with an empty set of Bq, such as the policy relationship eval­

uation queries, the processing is even simpler. We only need to check the terminals of the 

CMTBDD. For example, to check if two policies are equivalent, we check whether there 

exist only three terminals containing “P-P”, “D-D” and “N-N”, which means two policies 

always yield same effects for incoming requests. In contrast, if we want to know if two 

policies totally conflict with one another, we only need to check there does not exist any 

terminal containing same decisions from two policies, e.g., terminals of “P-P”, “D-D”, 

“CP-P”. Yet another case is that when terminals like “P-P” and “P-D” both exist which 

indicates that two policies may yield same decisions sometimes but not always. 

Finally, a post-processing may be required if there are constraints specified by fq. This 

step is straightforward since we only need to execute some simple examinations on the 

requests obtained from the previous step. The results will then be collected and organized 

by the result analyzer before being presented to the user. 

3.2.5 Experimental Evaluation 

The PSA module has been implemented in Java. An implementation of the modified 

simplex algorithm [13] has been used for processing Boolean expressions with real value 

linear constraints. The modified CUDD library developed in [5] has been used for the 

MTBDD module. In order to test our implementation, we generated XACML policies in 

which each rule contained randomly generated atomic Boolean expressions of the first three 

types introduced in Section 4 5, and then concatenated them with the operator and or or. 

The atomic Boolean expression (ABE for short) usually contains a pair of attribute name 

and value except for the atomic linear inequality function which has multiple attributes. 

5We have not fully tested and incorporated the automata technique for processing regular expression con­
straints in the current prototype. 
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The attributes in each atomic Boolean expression were randomly selected from a predefined 

attribute set. We performed policy similarity analysis between pairs of generated XACML 

policies with varying number of rules and ABEs. The experiments were conducted on a 

Intel Pentium4 CPU 3.00GHz machine with 512 MB RAM. 

The performance of our policy similarity analyzer is determined by the three main 

modules: the ratification module which preprocesses the policies, the MTBDD module 

which constructs the policy MTBDDs and the CMTBDD and the result analyzer which 

queries the CMTBDD. In what follows, we first evaluate the preprocessing time taken by 

ratification module which is followed by evaluation of the MTBDD and the result analyzer 

modules. 

We report results for two sets set-1 and set-2 of policy pairs. In set-1, the number 

of rules in each policy was fixed to 10 and the number of atomic Boolean expressions in 

each rule was varied between 2 and 10 in increments of 2. In set-2, the number of atomic 

Boolean expressions per rule was fixed to 10 and the number of rules was varied between 

2 and 10 in increments of 2. Each of the sets contained 4 different types of policy pairs. 

The policy pairs denoted by 25, 50, 75 and 100 on the x-axis of the graphs, the two policies 

had 25, 50, 75 and 100 percent of related atomic Boolean expressions respectively. We 

define two atomic Boolean expressions to be related if they have the same attribute name 

but different attribute value and possibly different operator. 

10 different pairs of policies of each of the four types of policy pairs were generated 

for the two sets. Thus each point in the following graphs represents an average of these 10 

different pairs of policies. 

3.2.5.1 Preprocessing Time 

Compared to Margrave [5], our policy similarity analyzer supports more rich classes of 

policies. The performance difference between the two approaches mainly lies in the pre­

processing time taken by the ratification module which analyzes the relationships between 

atomic Boolean expressions before sending them to the MTBDD module. Therefore, in the 

first round of experiments, we examined the time consumed in the ratification module. 
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Figures 3.29 and 3.30 show preprocessing time for set-1 and set-2 respectively. Time 

on y-axis is shown in log scale. The amount of work done by the preprocessing module 

is directly proportional to the number of related atomic Boolean expressions among the 

policies since every group of related expressions is analyzed and corresponding auxiliary 

expressions are generated. Thus, as expected we observe that as the number of related 

Boolean expressions is increased from 25% to 100% the preprocessing time increases.
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Figure 3.29. Preprocessing Time for set-1.
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Figure 3.30. Preprocessing Time for set-2. 
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3.2.5.2 MTBDD and CMTBDD Construction Time 

Figures 3.31 and 3.32 show the time taken for constructing the MTBDDs of the two 

policies that are being compared and the CMTBDD in set-1 and set-2 respectively. As the 

number of related Boolean expressions increases more predicates are introduced as a result 

of preprocessing the two policies being compared. And since the size of the MTBDD 

constructed for a policy depends on the number of unique predicates in the policy, the 

increase in number of predicates results in an increase in the size of the policy MTBDD to 

be constructed which in turn increases the time required to construct the MTBDDs and the 

CMTBDD. Thus we observe that the time for constructing the MTBDDs and CMTBDDs 

is larger for policy pairs that have higher percentage of related atomic Boolean expressions. 

Although the increase in preprocessing and construction times is not linear with in­

crease in number of rules and number of atomic Boolean expressions, the actual prepro­

cessing and construction times for policies with the largest number of atomic Boolean 

expressions, i.e., policies with 100 atomic Boolean expressions were 0.63 seconds and 4.3 

seconds respectively. Considering that the number of atomic Boolean expressions in poli­

cies occurring in practice tends to lie in the range of 20 to 100 as reported in [5] and the 

CMTBDD once constructed can be used for answering multiple queries, we believe that 

the performance is acceptable.
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Figure 3.31. MTBDD Construction Time for set-1. 
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Figure 3.32. MTBDD Construction Time for set-2. 

3.2.5.3 Query Processing Time 

Figures 3.33 and 3.34 show the average time taken for an effect query for policy pairs 

in set-1 and set-2 respectively. When the number of related atomic Boolean expressions 

between the policies being compared increases there are more number of common nodes 

when the policy MTBDDs are combined resulting in CMTBDDS with fewer nodes and 

paths. Thus we observe that for policy pairs with higher percentage of related Boolean 

expressions the average query time decreases. Notice that the decrease in average query 

time becomes more pronounced in policy pairs with higher number of rules and atomic 

Boolean expressions. This means that the result analyzer is efficient for larger policies with 

larger number of related Boolean expressions. Also, as the number of rules and the number 

of atomic Boolean expressions are increased the average query time scales well. 

3.2.6 Multi-level Grid Visualization 

Policy analyses like policy similarity and policy conflict return large sets of requests, 

characterized by many attributes. The issue of representing such requests has received 

little attention so far, undermining the usability of the analysis. To facilitate the correct 
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Figure 3.33. Query Processing Time for set-1.
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Figure 3.34. Query Processing Time for set-2. 

interpretation of such results, a concise and intuitive representation method is necessary. 

An effective visualization tool must address several design goals: 

•	 Eliminate redundant information, by representing requests in a simple and concise 

manner. 

•	 Extract semantic information from policy attribute domains to simplify visualization. 

•	 Provide a generic visual interface that can represent in a uniform fashion the results 

of several analysis types. 
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In this thesis, we propose a multi-level grid visualization method to represent sets of re­

quests resulting from policy similarity analysis. Access control policies consist of rules that 

specify subjects which can perform particular actions on resources. Rules are expressed 

using predicates defined on the domains of attributes that describe subjects, actions and re­

sources. A request authorized by such policies is thus an assignment of values to attributes. 

Each cell in the grid represents a single request or a group of requests. By looking at the 

different visual aspects like color, content, and the column and row headers of a cell in the 

grid, a user can quickly visualize the requests covered by the cell. The grid is also useful 

for visualizing a policy by itself, and thus can also help in the process of policy authoring. 

3.2.6.1 Preliminary Definitions 

We consider policies expressed in an attribute-based access control language, such as 

XACML [4]. Denote by {Ai}1≤i≤m the set of attributes, and by {Di}1≤i≤m their domains. 

Definition 5 (Domain Space Partition) Let each domain Di be partitioned into a set of ni 
� 

disjoint sub-sets Dj , i.e., Di = j←1,ni 
Di

j and ∀1 ≤ j1, j2 ≤ ni|j1 = j2 it holds i (1≤j≤ni)

Dj2that Di
j1 

i = ∅. A  domain space partition D is defined as the Cartesian product 

D = D1 · × Dn1 · × D1 · × Dnm 
1 × · · 1 × · · m × · · m 

We consider minimal partitions of the attribute domain space, in the sense that all access 

control policy rules are specified with respect to sub-domains of equal or coarser granularity 

than the partition granularity. 

Example 13 An on-line live-streaming content provider specifies access control policies 

with respect to two attributes: A1 = ConT ype specifies the content type, and A2 = T ime 

specifies the time of request. The corresponding domains are D1 = {video, audio}, par­

titioned into D1
1 = video, D1

2 = audio, and D2 = [00:00-23:59] split into time intervals 

D2
1 = [00:00-12:00], D2

2 = [12:01-18:00] and D2
3 = [18:01-23:59]. 
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Definition 6 (Aggregate Request) A request is a m-dimensional tuple (v1, . . . , vm), which 

specifies the assignment of value6 vi for each attribute Ai. An aggregate request is a m­

Dj1tuple r ≡ ( 1 , . . . , D
jm ), which represents a generalization of all requests in a particular m 

sub-set of attribute domain space partition D. 

Informally, an aggregate request allows ranges of attribute values to be specified instead 

of exact values, subject to the granularity restriction mentioned earlier. The advantage of 

aggregate requests is that they allow concise representation of a larger (possibly infinite, 

if attribute domains are continuous) set of requests. Note that, each sub-set Di
j can be 

associated with a Boolean predicate, characterizing whether a certain value belongs to Di
j 

or not. For instance, we can associate D1
1 with predicate p1 ≡ “ConType = video” and 

D2
3 with p2 ≡ ”18 : 01 ≤ time ≤ 23 : 59”. Then, an aggregate request for downloading 

video in the evening hours can be expressed as conjunction p1 ∧ p2. Based on domain 

space partition D, we obtain a set of predicates P = {p1, . . . , pn} (one for each Di
j ), where 

m 

n = ni. We further consider only aggregate requests, specified as conjunctions of 
i=1 

predicates in P . 

3.2.6.2 Multi-Level Grid 

Consider set R of aggregate requests, which is the result of one of the policy analysis 

types discussed earlier (e.g., the set of all requests permitted by a certain policy). We 

aim to represent R in the n-dimensional space of predicate set P . Since the number of 

dimensions that can be visually represented is limited, we construct projections on pairs of 

predicates. Specifically, we use a two-dimensional grid (or matrix) representation, where 

rows and columns represent predicates. The entry (pi, pj ) corresponds to the projection 

of P on predicates pi and pj . Since projection is order-independent, the resulting matrix 

is symmetric, and we only represent entries above the main diagonal. Furthermore, we 

require the predicates in the projection to be distinct, hence we omit the first column (i.e., 

p1) and the last row (i.e., pn) resulting in a grid with (n − 1) × (n − 1) cells. 
6We consider that each value is a singleton. However, our technique can accommodate multiple values for an 
attribute, if the partition D is defined on the power-sets of attribute domains 
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The visualization grid is built in two stages: request hashing and dependence list mini­

mization. 

Request Hashing. Each request r ∈ R is hashed into all grid cells (pi, pj ) such that 

pi, pj belong to the predicate list of r. For each such cell, a dependence list is maintained, 

which is the conjunction of all predicates contained in r, other than pi and pj . The depen­

dence list is non-empty for all requests that are expressed as a conjunction of three or more 

predicates. 

Example 14 Consider requests r1, r2, r3 shown in Figure 3.35(a). Request r1, which is 

the conjunction of predicates p1, p2 and p3, is hashed into cell (p1, p2) with dependence 

list {p3} (Figure 3.35(b)). Note that, r1 also hashes into cells (p1, p3) and (p2, p3) (i.e., 

the other combinations of two predicates out of set {p1, p2, p3}). However, for clarity of 

presentation, we omit the contents of other cells. Similarly, request r2 hashes into cell (p1, 

p2) with dependence list {p4}. Request r2 also hashes into cell (p2, p4) with dependence 

list {p1}, etc. 

r1: ( p1,p2,p3) 

r2: ( p1,p2,p4) 

r3: ( p2,p3,p5,p6) 

r1: p3 
r2: p4 

r3: p3, p5r2: p1 

p3 p4 p5 
p1 
p3 
p4 

Undefined 
Null 

Conditional 

Unconditional 

p3 p4 p5 p6 

p2 

p1 

p1 

p3 
p4 
p5 

p2
p2 

p2 
p3 

p4 p5 

p5 

p6p3 

p4 

p1 A 

+A 

(d) SECOND−LEVEL GRID 
(a) REQUEST SET 

A 

conditioned on two 
predicates 

conditioned on 
one predicate 

( p3 V p4 = true ) 
unconditional 

(b) REQUEST HASHING (c) BASE−LEVEL GRID 

Figure 3.35. Multi-level Grid Visualization of Policy Analysis Results. 

When the hashing is complete (Figure 3.35(b)), the dependence list of each cell is a dis­

junctive normal form (DNF), i.e., a disjunction of dependence lists of all hashed requests. 

Dependence List Minimization. To obtain a concise representation of requests, the 

DNF of each cell is further subjected to binary minimization, with the aim of eliminating 

redundant dependencies. The binary minimization can be performed based on two criteria: 

(i) factoring common predicates of distinct requests and (ii) using semantic relationships 

among predicates. For the former case, we use the ESPRESSO Boolean minimization 
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tool [26], which minimizes the DNF of each cell. The following example illustrates the 

latter case of using attribute semantics. 

Example 15 Let p3 and p4 represent predicates corresponding to the time attribute with 

p3 ≡ “00:00 <= time < 12:00” and p4 ≡ “12:00 <= time < 23:59”. Let p1 ≡ “user = 

Bob” and p2 ≡ “ConT ype = video”. The dependence lists of r1 and r2 in cell (p1, p2) 

(Figure 3.35(b)) can be minimized, since the two time intervals are disjoint, and cover 

the entire time range, Hence, p3 ∨ p4 = T rue. By using such semantic information, we 

eliminate the dependencies in the cell (p1, p2). 

Following the minimization phase, the grid representation shown in Figure 3.35(c) is 

obtained. Note that, also due to attribute semantics, not all cells correspond to valid predi­

cate combinations. For instance, predicates p3 and p4 in the previous example correspond 

to disjoint time intervals, and no request can be characterized by both predicates. We refer 

to such cells as undefined, and we represent them in grey color. 

One of the main challenges of concise visualization is dealing with the large number 

of predicates. Since high-dimensional functions are difficult to represent graphically, we 

employ alternative means to specify certain predicates. Specifically, action is a type of 

attribute that appears in every request. The set of actions is typically restricted to a few 

values (e.g., read, write, etc). Similar to [27], we represent action as a special predicate, 

which is not associated with grid row/columns. Instead, each grid cell is split into a number 

of sub-cells, one for each action type, and an abbreviation of the action name (e.g., W for 

write, D for download, etc) identifies each sub-cell . The hashing and minimization phases 

are performed independently with respect to each action type. In Figure 3.35(c) there is a 

single action type, abbreviated as “A”. 

The content of each grid cell (pi, pj ) is decided as follows: 

Case 1. No requests were hashed into cell (pi, pj ). This means that the attribute domain 

sub-space corresponding to pi and pj does not contain any requests in R. We refer to such 

cells as Null cells, and represent them with red background. For example, in Figure 3.35(c), 

none of the requests depend on the predicates p4 and p6, therefore (p4, p6) is a Null cell. 
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Case 2. At least one request was hashed into cell (pi, pj ), and after minimization the 

cell’s dependence list is empty. This means that at least one request in R belongs to the 

domain sub-space characterized by pi and pj , regardless of whether the request contains 

other predicates or not. Such cells are called unconditional, and are represented with green 

background. Cell (p1, p2) in Figure 3.35(c) is an unconditional cell. 

Case 3. At least one request was hashed into cell (pi, pj ), and after the minimization 

phase the dependence list contains exactly one predicate pk. This case signifies that at 

least one request belongs to the domain sub-space characterized by pi and pj , subject to 

restrictions on the value of pk. We call such cells conditional, and we represent them using 

yellow background. In addition, a tool-tip displays the additional restriction on pk, when 

a user moves the cursor over the cell. In Figure 3.35(c), request r2 that is hashed into cell 

(p2, p4) is conditioned by predicate p1. The tool-tip displays the additional predicate p1. 

Case 4. This case is similar to Case 3, except that the dependence list includes at 

least two predicates. Such cells are also called conditional, and represented with yellow 

background. However, a tool-tip cannot completely express the dependence condition. 

Instead, such cells contain a zoom-in hyperlink. Clicking this hyperlink opens a new grid 

with all predicates except pi and pj . The hashing and minimization phases are applied 

recursively on the reduced grid, but only with respect to requests hashed in cell (pi, pj ). In 

the worst case, requests specified by all n predicates require at most ln/2J grid levels. In 

practice, however, considerably fewer grid levels are necessary. In Figure 3.35(b), request 

r3 is hashed into cell (p2, p6), with dependence on p3 and p5. This cell is expanded into a 

second-level grid in Figure 3.35(d). In this case, at the second level there is no conditional 

cell. 

3.2.6.3 Case Study 

Consider the example of a data owner who wishes to outsource the data to a storage 

service provider (SP). Both the owner and the SP have their own access policies, and a data 

request will only be allowed if it is permitted by both policies. Therefore, the data owner 

wants to find an SP with a similar access control policy. 
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(a) Base-level Grid 

(b) Second-level Grid
 

Figure 3.36. Visualizing Results of Policy Similarity Analysis.
 

The policy P1 of the data owner permits download access to monthly subscribers but 

denies downloading of video files between 19 : 00 and 22 : 00 to subscribers whose status 

is past due. The policy P2 of the SP permits all downloads, but also denies downloading of 

video files between 21 : 00 and 22 : 00, due to maintenance. Both P1 and P2 use the deny-

override rule combining algorithm. The full specification of P1 and P2 is the following: 

P1 : 

Bpermit = ( (memtype = “monthly”∧ 

(action = “download”) ) 

Bdeny = ( (status = “pastdue”) ∧ (action = “download”) 

∧ (contype = “video” ∧ 19 : 00 < time < 22 : 00) ) 

P2 :
 

Bpermit = (action = “download”)
 

Bdeny = ( (action = “download”)
 

∧ (contype = “video” ∧ 21 : 00 < time < 22 : 00) ) 
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The objective is to find the set of requests R which are the results of the PSA query 

”Find all requests that have effect Permit in policy P1 and effect Permit in policy P2.” 

Figure 3.36(a) shows the grid visualization of set R. The abbreviation “D” in each cell 

stands for download action. The cells corresponding to combinations of disjoint time in­

tervals are not valid predicate combinations, and are shown in grey. The red cell (“21:00 < 

time < 22:00”, “contype = video”) indicates that no requests issued between 21 : 00 and 

22 : 00 are permitted by both policies. 

Both policies permit download for monthly subscribers (“memtype = monthly”) if the 

request is in time interval “Other”, i.e., outside time interval 19 : 00 to 22 : 00. The corre­

sponding cell is green, meaning that the effect is independent of any other predicates. All 

other cells are conditional, meaning that they do contain some requests that are permitted 

by both policies, but only subject to predicates other than the ones corresponding to the 

cells. For instance, a monthly subscriber is permitted download access between 21 : 00 

and 22 : 00 only if the content type is not video. This single condition is represented by the 

tooltip in the cell (“21:00 < time < 22:00”, “memtype = monthly”). 

Finally, the cell (“status = pastdue”, “contype = video”) has a dependence on more 

than two additional predicates. Note that, a zoom-in hyperlink is represented inside the 

cell, to mark the fact that the dependence cannot be represented using a tool-tip. When 

a user clicks on the hyperlink, a second-level grid is opened in a new window, shown in 

Figure 3.36(b). The highlighted blue banner at the top left of the window displays the fixed 

predicates (“status = pastdue”, “contype = video”) from the previous grid level. Within this 

fixed sub-space of the attribute domain, both policies permit download access to monthly 

subscribers at all times outside the 19 : 00 to 21 : 00 interval. This is indicated by the green 

cell (“time = Other”, “memtype = monthly”). The two red cells (“21:00 < time < 22:00”, 

“memtype = monthly”) and (“19:00 < time < 21:00”, “memtype = monthly”) signify that 

access is never permitted by either policy within the 19 : 00 to 22 : 00 time interval. 



101 

4 POLICY INTEGRATION FRAMEWORK 

Many distributed applications such as dynamic coalitions and virtual organizations need 

to integrate and share resources, and these integration and sharing will require the integra­

tion of access control policies. In order to define a common policy for resources jointly 

owned by multiple parties applications may be required to integrate policies from different 

sources into a single policy. Even in a single organization, there could be multiple policy 

authoring units. If two different branches of an organization have different or even conflict­

ing access control policies, what policy should the organization as a whole adopt? If one 

policy allows the access to certain resources, but another policy denies such access, how 

can they be composed into a coherent whole? Approaches to policy integration are also 

crucial when dealing with large information systems. In such cases, the development of 

integrated policies may be the product of a bottom-up process under which policy require­

ments are elicited from different sectors of the organization, formalized in some access 

control language, and then integrated into a global access control policy. 

When dealing with policy integration, it is well known that no single integration strat­

egy works for every possible situation, and the exact strategy to adopt depends on the 

requirements by the applications and the involved parties. An effective policy integration 

mechanism should thus be able to support a flexible fine-grained policy integration strategy 

capable of handling complex integration specifications. Some relevant characteristics of 

such an integration strategy are as follows. First, it should be able to support 3-valued poli­

cies. A 3-valued policy may allow a request, deny a request, or not make a decision about 

the request. In this case we say the policy is not applicable to the request. Three-valued 

policies are necessary for combining partially specified policies, which are very likely to 

occur in scenarios that need policy integration. When two organizations are merging and 

need policy integration, it is very likely that the organizations are unaware or might not 

have jurisdiction over each other resources, and thus a policy in one organization may be 
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“NotApplicable” to requests about resources in the other organization. Second, it should 

allow one to specify the behavior of the integrated policy at the granularity of requests and 

effects. In other words, one should be able to explicitly characterize a set of requests that 

need to be permitted or denied by the integrated policy. For example, users may require 

the integrated policy to satisfy the condition that for accesses to an object Oi policy P1 has 

the precedence, whereas for accesses to an object Oj , policy P2 has precedence. Third, it 

should be able to handle domain constraints requiring the integrated policy to be applied 

to a restricted domain instead of the original domain. And fourth, it should be able to sup­

port policies expressed in rich policy languages, such as XACML with features like policy 

combining algorithms. 

The problem of policy integration has been investigated in previous works. The concept 

of policy composition under constraints was first introduced by Bonatti et al. [28]. They 

proposed an algebra for composing access control policies and use logic programming and 

partial evaluation techniques for evaluating algebra expressions. Another relevant approach 

is by Wijesekera et al. [29] who proposed a propositional framework for composing access 

control policies. Those approaches have however a number of shortcomings. They support 

only limited forms of compositions. For example, they are unable to support compositions 

that take into account policy effects or policy jumps (i.e., if P1 permits, let P2 makes de­

cision, otherwise P3 makes decision). They only model policies with two decision values, 

either “Permit” or “Deny”. It is not clear the scope or expressive power of their languages 

since they do not have any notion of completeness. They do not provide an actual method­

ology or an implementation for generating the integrated policies. Neither work relates 

their formalisms to any language used in practice. 

In this thesis we propose a framework for the integration of access control policies that 

addresses the above shortcomings. The overall organization of our integration framework is 

outlined in Figure 4.1. The core of our framework is the Fine-grained Integration Algebra 

(FIA). Given a set of input policies P1, P2, · · · , Pn, one is able to specify the integration re­

quirements for these input policies through a FIA expression, denoted as f(P1, P2, · · ·  , Pn) 

in Figure 4.1. The FIA expression is then processed by the other components of the frame­
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Integrated Policy Generation 

Integrated Policy of P1,P2,...,Pn 

f(P1,P2,...,Pn) 

P1 PnP2 ... ... 

Fine−grained Integration Algebra 

Policy Expression Processing 

Figure 4.1. Policy integration 

work in order to generate the integrated policy. We demonstrate the effectiveness of our 

framework through an implementation that supports the integration of XACML policies. 

We choose XACML because of its widespread adoption and its many features, such as 

attribute-based access control and 3-valued policy evaluation. We use Multi-Terminal Bi­

nary Decision Diagrams (MTBDD) [24] for representing policies and generating the inte­

grated policies in XACML syntax. With the aid of the implementation of algebra operators, 

users can now easily specify their integration requirements by an expression and do not 

need to write a new complex policy combining algorithm by themselves. 

4.1 An Illustrative Example 

We now introduce an example of XACML policies that will be used throughout this 

chapter. 

Example 16 Consider a company with two departments D1 and D2. Each department has 

its own access control policies for the data under its control. Assume that P1 and P2 are 

the access control policies of D1 and D2 respectively. P1 contains two rules, P1.Rul11 and 

P1.Rul12. P1.Rul11 states that the manager is allowed to read and update any data in the 

time interval [8am, 6pm]. P1.Rul12 states that any other staff is not allowed to read. P2 

also contains two rules, P2.Rul21 and P2.Rul22. P2.Rul21 states that the manager and staff 

can read any data in the time interval [8am, 8pm], and P2.Rul22 states that the staff cannot 

perform any update action. For simplicity, we adopt the following succinct representation 
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in most discussion, where “role”, “act” and “time” are attributes representing information 

on role, action and time, respectively. 

P1.Rul11: role=manager, act=read or update, 

time= [8am, 6pm], effect= Permit. 

P1.Rul12: role=staff, act=read, effect = Deny. 

P2.Rul21: role=manager or staff, act=read, 

time = [8am, 8pm], effect = Permit. 

P2.Rul22: role=staff, act=update, effect = Deny. 

4.2 Policy Semantics 

Before we introduce our algebra we need to find a suitable definition for a policy. We  

propose a simple yet powerful definition for a policy according to which a policy is defined 

by the set of requests that are permitted by the policy and the set of requests that are denied 

by the policy. This simple notion will provide us with a precise characterization of the 

meaning of policy integration in terms of the sets of permitted and denied requests. In the 

rest of this chapter, we use Y , N and NA  to denote the “Permit”, “Deny” and “NotAppli­

cable” decisions respectively. 

In our work, we assume the existence of a vocabulary Σ of attribute names and domains. 

Each attribute, characterizing a subject or an object or the environment, has a name a and 

a domain, denoted by dom(a), in Σ. The following two definitions introduce the notion of 

access request (request, for short) and policy semantics. 

Definition 4.2.1 Let a1, a2, ..., ak be a set of attribute names and let vi ∈ dom(ai) (1 ≤ 

i ≤ k) in the vocabulary Σ. r ≡ {(a1, v1), (a2, v2), · · ·  , (ak, vk)} is a request over Σ. The 

set of all requests over Σ is denoted as RΣ. 

Example 17 Consider policy P1 from Example 16. An example of request to which this 

policy applies is that of a manager wishing to read any resource at 10am. According to 

Definition 1, such request can be expressed as r ≡ {(role, manager), (act, read), (time, 

10am)}. 

http:policy.We
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Definition 4.2.2 A 3-valued access control policy P is a function mapping each request to 

a value in {Y,N,NA}. RY
P , RP and RP denote the set of requests permitted, denied and N NA 

= RP ∪ RP ∪ RP RPnot applicable by the policy P respectively, and RΣ Y N NA, RY
P 

N = ∅, 

RP RP = ∅, RP RP = ∅. We define a policy P as a triple (RP , RP , RP ).Y NA N NA Y N NA

Our approach to formulating the definition of a policy is independent of the language 

in which access control policies are expressed. Therefore, our approach can be applied to 

languages other than XACML. 

4.3 A Fine-grained Integration Algebra 

The Fine-grained Integration Algebra (FIA) is given by (Σ, PY, PN, +, & , ¬, Πdc), 

where Σ is the vocabulary of attribute names and their domains, PY and PN are two policy 

constants, + and & are two binary operators, and ¬ and Πdc are two unary operators. 

4.3.1 Policy Constants and Operators in FIA 

We now describe the policy constants and operators in FIA. In what follows, P1 ≡ 

(RY
P1 , RP1 , RP1 ) and P2 ≡ (RP2 , RP2 , RP2 ) denote two policies to be combined, and PI ≡N NA Y N NA

(RPI , RPI , RPI ) denotes the policy obtained from the combination. Operators on policies Y N NA

are described as set operations.
 

Permit policy (PY). PY is a policy constant that permits everything. Thus PY ≡ (RΣ, ∅, ∅)
 

Deny policy (PN). PN is a policy constant that denies everything. Thus PN ≡ (∅, RΣ, ∅)
 

Addition (+). Addition of policies P1 and P2 results in a combined policy PI in which
 

requests that are permitted by either P1 or P2 are permitted, requests that are denied by one
 

policy and are not permitted by the other are denied. More precisely:
 

⎧ 
⎨ RPI = RP1 ∪ RP2 

Y Y YPI = P1 + P2 ⇐⇒ 
⎩ RPI \RP2 ) ∪ (RP2 \RP1 

N = (RP1 
Y N Y )N 
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A binary operator can be viewed as a function that maps a pair of values {Y, N, NA} 

to one value. We give this view of addition, intersection, and two other derived binary 

operators to be introduced later in Table 4.1. A binary operator is represented using a 

matrix that illustrates the effect of integration for a given request r. The first column of 

each matrix denotes the effect of P1 with respect to r and the first row denotes the effect of 

P2 with respect to r. 

Table 4.1
 
Policy combination matrix of operator +, & , − , �
 

P1 + P2 P1 & P2 P1 − P2 
! 

! 
! 

!!
P1 

P2 Y N NA 

Y Y Y Y 
N Y N N 
NA Y N NA 

! 
! 

! 
!!

P1 

P2 Y N NA 

Y Y NA NA 
N NA N NA 
NA NA NA NA 

! 
! 

! 
!!

P1 

P2 Y N NA 

Y NA NA Y 
N NA NA N 
NA NA NA NA 

P1 ! P2 
! 

! 
! 

!!
P1 

P2 Y N NA 

Y Y Y Y 
N N N N 
NA Y N NA 

Intersection ( & ). Given two policies P1 and P2, the intersection operator returns a policy 

PI which is applicable to all requests having the same decisions from P1 and P2. More 

precisely, 
⎧ 
⎨ RPI = RP1 ∩ RP2 

Y Y YPI = P1 & P2 ⇐⇒ 
⎩ RPI = RP1 ∩ RP2 

N N N 

The intersection operator can be viewed as taking minimum on the information order. 

The integrated policy makes a decision only when the two policies agree. 

The intersection operator is useful in situations in which consensus is required for mak­

ing an allow or deny decision. 

Example 18 Consider Example 16. The result of adding two policies will give more au­

thorization to both manager and staff. The integrated policy PI may contain the following 

four rules, from which we can see that now the staff from department D1 are also allowed 

to read customer information. 

PI .RulI1: role=manager or staff, act=read, 

time= [8am, 8pm], effect= Permit. 
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PI .RulI2: role=manager, act=update,
 

time= [8am,6pm], effect = Permit.
 

PI .RulI3: role=staff, act = read,
 

time = [8am, 8pm], effect = Deny.
 

PI .RulI4: role=staff, act=update, effect = Deny.
 

Negation (¬). Given a policy P , ¬P returns a policy PI , which permits (denies) all requests 

denied (permitted) by P . The negation operator does not affect those requests that are not 

applicable to the policy. More precisely: 

⎧ 
⎨ RPI = RP 

PI = ¬P ⇐⇒ Y N 

⎩ RPI = RP 
N Y 

Table 4.2 summarizes all operators. 

Table 4.2
 
Basic Policy Operators
 

Operator Meaning Format 
+ Addition P1 + P2 

& Intersection P1 & P2 

− Subtraction P1 − P2 

¬ Negation ¬P 
Π Projection Πdc,ec(P ) 

Domain projection (Πdc) The domain projection operator takes as parameter the domain 

constraint dc and restricts a policy to the set of requests identified by dc. 

Definition 4.3.1 A domain constraint dc takes the form {(a1, range1), (a2, range2), · · · , 

(ak, rangek)}1, where a1, a2, ..., ak are attribute names, and rangei(1 ≤ i ≤ k) is a set 

of values in dom(ai). Given a request r = {(ar1 , vr1 ), · · · , (arm , vrm )}, we say that r 

satisfies dc if the following condition holds: for each (arj , vrj ) ∈ r (1 ≤ j ≤ m) there 

exists (ai, rangei) ∈ dc, such that arj = ai and vrj ∈ rangei. 

1In case of an ordered domain, these sets can be represented by ranges. 
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The semantics of Πdc (P ) is given by 

⎧ 
⎨ RPI 

Y = {r|r ∈ RY
P and r satisfies dc}

PI = Πdc (P ) ⇐⇒ 
⎩ RPI = {r|r ∈ RP and r satisfies dc}N N 

4.3.2 FIA Expressions 

The integration of policies may involve multiple operators, and hence we introduce the 

concept of FIA expressions. 

Definition 4.3.2 A FIA expression is recursively defined as follows:
 

- If P is policy, then P is a FIA expression.
 

- If f1 and f2 are FIA expressions so are (f1) + (f2), (f1) & (f2), and ¬(f1).
 

- If f is a FIA expression and dc is a domain constraint then Πdc(f) is a FIA expression.
 

In what follows we will use the terms “policy” and “expression” synonymously. In FIA 

expressions, the binary operators are viewed as left associative and unary operators are 

right associative. The precedence are ¬ and Πdc together have the highest precedence, 

followed by & , and then by +. For example, P1 + Πdc P2 + ¬P3 & P4 is interpreted as 

((P1 + (ΠdcP2)) + ((¬P3) & P4). FIA has algebraic properties including commutativity, 

associativity, absorption, distributivity, complement, idempotence, boundedness and invo­

lution. 

Theorem 4.3.1 Let P1, P2 and P3 denote policies. FIA has the following algebraic prop­

erties. 

Proof 

• Commutativity: 

P1 + P2 = P2 + P1; 

P1 & P2 = P2 & P1; 
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• Associativity: 

(P1 + P2) + P3 = P1 + (P2 + P3); 

(P1 & P2) & P3 = P1 & (P2 & P3); 

• Absorption: 

P1 + (P1 & P2) = P1; 

P1 & (P1 + P2) = P1; 

• Distributivity: 

P1 + (P2 & P3) = (P1 + P2) & (P1 + P3);
 

P1 & (P2 + P3) = (P1 & P2) + (P1 & P3);
 

Πdc (P1 + P2) = (Πdc P1) + (Πdc P2);
 

Πdc (P1 & P2) = (Πdc P1) & (Πdc P2) 

• Complement: PY = ¬PN; PN = ¬PY; 

• Idempotence: P1 + P1 = P1; P1 & P1 = P1; 

• Boundedness: P1 + PY = PY; 

• Involution: ¬(¬P1) = P1. 

4.3.3 Derived Operators 

In this section, we introduce some commonly used operators. They are defined using 

the core operators. 

Not-applicable policy (PNA). PNA is a policy constant that is not applicable for every 

request. Since the & operator applies only to requests that have common effects and PY 
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and PN have no requests with common effects, PY & PN yields a policy that is not applicable 

for every request. Thus PNA can be defined as PY & PN. 

Effect projection (ΠY and ΠN ). ΠY (P ) restricts the policy P to the requests allowed by it. 

It is defined as: ΠY (P ) =  P & PY. Similarly, ΠN (P ) restricts the policy P to the requests 

denied by it; it is defined as ΠN (P ) = P & PN. We are overloading Π to denote both effect 

projection and domain projection; the meaning should be clear from the subscript. 

Subtraction (−). Given two policies P1 and P2, the subtraction operator returns a policy 

PI which is obtained by starting from P1 and limiting the requests that the integrated policy 

applies only to those that P2 does not apply to. The subtraction operator is defined as: 

P1 − P2 = (PY & (¬(¬P1 + P2 + ¬P2))) + 

(PN & (P1 + P2 + ¬P2)) . 

To see why this is correct, observe that ¬P1 + P2 +¬P2 will deny a request if and only 

if P1 allows it and P2 gives NA for it. Thus PY & (¬(¬P1 + P2 + ¬P2)) allows a request 

if and only if P1 allows it and P2 gives NA it, and is not applicable for all other requests. 

Similarly, PN & (P1 + P2 + ¬P2) denies a request if and only if P1 denies it and P2 gives 

NA for it. 

An example is when controlling access to an important document, owned by multiple 

parties; in such case the access is granted only when all the relevant access control policies 

of these parties agree. 

Consider Example 1 again, the result of intersecting two policies is the following. 

Example 19 (PI = P1 & P2). 

PI .RulI1: role=manager, act=read, 

time=[8am, 6pm], effect = Permit. 

Precedence (�). Given two policies P1 and P2, the precedence operator returns a policy 

PI which yields the same decision as P1 for any request applicable to P1, and yields the 

same decisions as P2 for the remaining requests. The precedence operator can be expressed 
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as P1 + (P2 − P1). By limiting P2 to requests that P1 does not decide, this operator can be 

used as a building block for resolving possible conflicts between two policies. 

Example 20 Policies P1 and P2 in Example 1 grant different authorizations to the man­

ager and staff, which means that some requests may receive different decisions from two 

policies. The integrated policy PI = P1 − P2 removes possible conflicts by providing a 

new policy, presented below, that only contains requests applicable to P1. 

PI .RulI1: role=manager, act=update, 

time= [8am, 8pm], effect= Permit. 

In Theorem 1, (1),(2),(3), and (4) together state that operators +, & are both commuta­

tive and associative; (5) (6) states that the absorption property holds between +, & , and +, 

−; (7), (8), (9) and (10) state that the operators are distributive; and finally, (11) and (12) 

show the properties of the negation operator. This theorem can be easily proved by using 

the set representations of FIA operators and the well-known properties of set operators. 

The proof is similar to that for the Boolean algebra, and hence we do not include the details 

here. 

4.4 Expressiveness of FIA 

In this section, we first show that our operators can express the standard policy-combining 

algorithms defined for XACML policies as well as other more complex policy integration 

scenario. We then show that the operators in FIA are minimal and complete in that any 

possible policy integration requirements can be expressed using a FIA expression. Finally, 

we discuss some interesting reasonability properties of FIA. 

4.4.1 Expressing XACML Policy Combining Algorithms in FIA 

In XACML there are six standard policy-combining algorithms as follows: 

Permit-overrides: The combined result is “Permit” if any policy evaluates to “Permit”, 

regardless of the evaluation result of the other policies. If no policy evaluates to “Permit” 
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and at least one policy evaluates to “Deny”, the combined result is “Deny”. The combina­

tion of policies P1, P2,..., Pn under this policy-combining algorithm can be expressed as 

P1 + P2 + · · · + Pn. 

Ordered-Permit-overrides: The behaviour of this policy combining algorithm is exactly 

the same as Permit-overrides except that the policies must be evaluated in the originally 

specified order. Thus, if P1, P2, · · ·Pn is a ordered set of policies, the combination of these 

policies under this policy-combining algorithm can be expressed as P1 + P2 + · · · + Pn. 

Deny-overrides: The combined result is “Deny” if any policy is encountered that evaluates 

to “Deny”. The combined result is “Permit” if no policy evaluates to “Deny” and at least 

one policy evaluates to “Permit”. Deny-overrides is the opposite of permit-overrides. By 

using the combination of the negation and addition operator, we can express deny-overrides 

as ¬((¬P1) + (¬P2) + · · · + (¬Pn)). 

Ordered-Deny-overrides: The behaviour of this policy combining algorithm is exactly 

the same as Deny-overrides except that the policies must be evaluated in the originally 

specified order. Thus, if P1, P2, · · ·Pn is a ordered set of policies to be combined, the 

combination of these policies under this policy-combining algorithm can be expressed as 

¬((¬P1) + (¬P2) + · · · + (¬Pn)). 

First-applicable: The combined result is the same as the result of the first applicable pol­

icy. This combining algorithm can be expressed by using the precedence operator. Given 

policies P1, P2, ..., Pn, the expression is P1� P2 � · · ·� Pn. 

Only-one-applicable: The combined result corresponds to the result of the unique policy 

in the policy set which applies to the request. Specifically, if no policy or more than one 

policies are applicable to the request, the result of policy combination should be “NotAp­

plicable”; if only one policy is considered applicable, the result should be the result of 

evaluating the policy. 

When combining policies P1, · · · , Pn under this policy-combining algorithm, we need 

to remove from each policy the requests applicable to all the other policies and then com­
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bine the results using the addition operator. The final expression is : (P1 − P2 − P3 −  · · ·−  

Pn) + (P2 − P1 − P3 −  · · ·−  Pn) + · · · + (Pn − P1 − P2 −  · · ·−  Pn−1). 

Note that the behaviour of Ordered-Permit-overrides and Ordered-Deny-overrides pol­

icy combining algorithms is exactly the same as Permit-overrides and Deny-overrides re­

spectively except that the policies are evaluated in the originally specified order. The 

behaviour of the combined policy is the same in the unordered and ordered versions of 

Permit(Deny)-overrides except the set of obligations enforced might be different in the two 

versions. Thus Ordered-Permit-overrides and Ordered-Deny-overrides policy combining 

algorithms can be expressed using the same FIA expressions used for Permit-overrides and 

Deny-overrides. 

4.4.2 Expressing Complex Policy Integration Requirements in FIA 

Our algebra supports not only the aforementioned policy combining algorithms, but 

also other types of policy combining requirements, like rule constraints. A rule constraint 

specifies decisions for a set of requests. It may require that the integrated policy has to 

permit a critical request. Such an integration requirement can be represented as a new 

policy. Let P be a policy, and c be the policy specifying an integration constraint. We can 

combine c and P by using the first-applicable combining-algorithm. The corresponding 

expression is c � P . Another frequently used operator is to find the portion of a policy P1 

that differs from a policy P2, which can be expressed as: P1 & (¬P2). 

By using the two policy constants, we can easily modify a policy P as an open policy or 

a closed policy. An open policy of P allows everything that is not explicitly denied, which 

can be represented as P � PY. A closed policy of P denies everything that is not explicitly 

permitted, which can be represented as P � PN. 

Our algebra can also express the policy jump(similar to if-then-else), a feature in the 

iptables firewall languages. The specific requirement is that if a request is permitted by 



114 

policy P1, then the final decision on this request is given by policy P2; otherwise, the final 

decision is given by policy P3. This can be expressed using 

ΠY (P1 & P2) + ΠN (¬P1 & P2)) + 

ΠY (¬P1 & P3) + ΠN (P1 & P3)) 

Among the four sub-expressions, the first one gives Y when both P1 and P2 do so, and 

gives NA in all other cases. Similarly, the second sub-expression gives N when P1 gives Y 

and P2 gives N , and gives NA otherwise. The third sub-expression gives Y when P1 gives 

N and P3 gives Y and finally the fourth sub-expression gives N when both P1 and P3 give 

N . 

Next, we elaborate the example mentioned in the introduction where the combination 

requirements are given for parts of a policy. 

Example 21 Consider the policies introduced in Example 16. Assume that the policies 

must be integrated according to the following combination requirement: for users whose 

role is manager, the access has to be granted according to policy P1; for users whose role 

is a staff, the access has to be granted according to policy P2. 

The resultant policy will consist of two parts. One part is obtained from P1 by restrict­

ing the policy to only deal with managers. Such extraction can be expressed in our algebra 

as Πdc1 (P1) where dc1 ={(role, {manager}), (act, {read,update}), (time, [8am,8pm])}. The 

other part is obtained from P2 by restricting the policy to only deal with staff. Correspond­

ingly, we can use the expression: Πdc2 (P2) with dc2 = {(role, {staff}), (act, {read,update}), 

(time, [8am,8pm])}. Finally, we have the following expression representing the integrated 

policy : Πdc1 (P1) + Πdc2 (P2). The integrated policy PI is thus: 

PI .RulI1: role=manager, act=read or update, 

time=[8am, 6pm], effect=Permit. 

PI .RulI2: role=staff, act=read, 

time=[8am, 8pm], effect=Permit. 

PI .RulI3: role=staff, act=update, effect=Deny. 
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Table 4.3 
n policies 

P1, P2, ..., Pk−1 Pk M∗ fk−1(P1, P2, ..., Pk−1) 

Y, Y, ..., Y 
... 
NA, NA, ..., NA 

Y, Y, ..., Y 
... 
NA, NA, ..., NA 

Y, Y, ..., Y 
... 
NA, NA, ..., NA 

Y 
... 
Y 

N 
... 
N 

NA  
... 
NA  

e1,1 

... 
e1,3k−1 

e2,1 

... 
e2,3k−1 

e3,1 

... 
e3,3k−1 

fk−1 
1,1 (P1, P2, ..., Pk−1) 

... 
fk−1 
1,3k−1 (P1, P2, ..., Pk−1) 

fk−1 
2,1 (P1, P2, ..., Pk−1) 

... 
fk−1 
2,3k−1 (P1, P2, ..., Pk−1) 

fk−1 
3,1 (P1, P2, ..., Pn−1) 

... 
fk−1 
3,3k−1 (P1, P2, ..., Pk−1) 

Pk ei,j fk 
i,j 

Y Y fk−1 
i,j &(Pk&PY) 

Y N fk−1 
i,j &[¬(Pk&PY)] 

N Y fk−1 
i,j &[¬(Pk&PN)] 

N N fk−1 
i,j &(Pk&PN) 

NA  Y fk−1 
i,j 

NA  N fk−1 
i,j 

(b) 

(a) 

4.4.3 Completeness 

While we have shown that many policy integration scenarios can be handled by the 

operators in the algebra, our list of examples is certainly not exhaustive. A question of 

both theoretical and practical importance is whether FIA can express all possible ways of 

integrating policies, that is, whether FIA is complete. Addressing this question requires 

choosing a suitable notion of completeness. There are different degrees of completeness, 

and we show that FIA is complete in the strongest sense. First, while Table 4.1 gave the 

policy combination matrices for the four binary operators, many other matrices are possi­

ble, and each such matrix can be viewed as a binary operator for combining two policies. 

As there are three possibilities for each cell in a matrix, namely, Y , N , and NA, and there 

are nine cells, the total number of matrices is 39 = 19683. Second, when n (n ≥ 2) 

policies are combined, policy combination can be expressed using a n-dimensional matrix. 

We show that each such n-dimensional matrix can be expressed using (PN, PY, +, & , ¬). 

Finally, a fine-grained integration may use different policy combination matrices for dif­

ferent requests. We show that this can be handled by using the operator Πdc in addition to 

(PN, PY, +, & , ¬). 
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Theorem 4.4.1 (Completeness) Given n (n ≥ 1) policies P1, P2, ..., Pn, let M∗(P1, P2, ... 

, Pn) be a n-dimensional policy combination matrix which denotes the combination result 

of the n policies. There exists a FIA expression fI (P1, P2, ..., Pn) that is equivalent to 

M∗(P1, P2, ..., Pn). 

Proof We prove this theorem by induction. The base case is when n = 1. Given a policy 

P1, its 1-dimensional matrix (Table 3) contains three entries corresponding to the Permit, 

Deny and NotApplicable request sets . For each entry, we aim to find an expression fi 

(1 ≤ i ≤ 3). When e1 is Y , f1 = PY&P1; when e1 is N , f1 = ¬(PY&P1). Similarly, we 

can obtain f2, which is PN&P1 for e2 equal to N and ¬(PN&P1) for e2 equal to Y . f3 is 

PY −P1 when e3 is Y , and PN −P1 when e3 is N . Finally, fI is the sum of three expressions, 

i.e., fI =f1+f2+f3. Note that when all three entries are NA, the integrated policy will be 

PNA. 

Table 4.4
 
1-dimensional Policy Combining Matrix
 

Y N NA  
PI 

P1 

e1 e2 e3 

Assuming that when n = k − 1 the theorem holds, we now consider the case when 

n = k. As shown in Table 4.3(a), M∗(P1, ..., Pk) has 3k entries in total, each of which is 

denoted as ei,j (1 ≤ i ≤ 3, 1 ≤ j ≤ 3k−1). Take entries ei,1 to ei,3k−1 as a (k-1)-dimensional 

policy combination matrix, and we have three such (k-1)-dimensional policy combination 

matrices corresponding to the policy Pk’s effect. Based on the assumption, we obtain the 

FIA expression for each cell for the k − 1 policies as shown in the column of fk−1(P1, ..., 

Pk−1). 

Next, we extend fk−1(P1, ..., Pk−1) to fk(P1, ..., Pk) for each cell in M∗ (in what 

follows we use fk−1 and fk for short). According to the effect of Pk and ei,j , we summarize 

the expressions of fk in Table 4.3(b). Note that we do not need to consider the cell where 

ei,j is NA. 
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Finally, we add up fk for all the cells and obtain the expression f(P1, P2, ..., Pk). 

We have shown that the theorem holds for n = 1, and we have also shown that if the 

theorem holds for n = k − 1 then it holds for n = k. We can therefore state that it holds 

for all n. 

So far, we have proved the completeness in the scenario when there is one n-dimensional 

combination matrix for all requests. In the following theorem, we further consider the 

fine-grained integration when there are multiple combination matrices each of which is 

corresponding to a subset of the requests. 

Definition 4.4.1 A fine-grained integration specification is given by [(R1,M1 
∗), (R2, M2 

∗), 

· · · , (Rk, Mk 
∗)], where R1, R2, · · · , Rk form a partition of RΣ (the set of all requests over 

the vocabulary Σ), i.e., RΣ = R1 ∪ R2 ∪ ... ∪ Rk (k ≥ 1) and Ri ∩ Rj = ∅ when i = j, 

and each Mi 
∗(P1, .., Pn) (1 ≤ i ≤ k) is a n-dimensional policy combination matrix. This 

specification asks requests in each set Ri to be integrated according to the matrix Mi 
∗ . 

Theorem 4.4.2 Given a fine-grained integration specification [(R1, M1 
∗), (R2, M2 

∗), · · · , 

(Rk, Mk 
∗)], if for each Ri, there exists dci,1, · · · , dci,mi such that Ri = R(dci,1) ∪  · · · ∪  

R(dci,mi )(where R(dci,j ) denotes the set of requests satisfying dci,j ), then there exists a 

FIA expression fI (P1, P2, ..., Pn) that achieves the integration requirement. 

Proof We first use the domain projection operator Πdc to project each policy according to 

dc1,1, · · ·  , dck,mk . For requests in each R(dci,j ), there is one fixed Mi 
∗. By Theorem 4.4.1, 

there is a FIA expression (denoted as fi,j ) for integrating policies Πdci,j (P1), ..., Πdci,j (Pn) 

according to Mi 
∗. Finally, fI is the addition of all fi,j ’s. 

We note that the above theorem requires that each Ri in the partition to be expressible 

in a finite number of domain constraints. 

4.4.4 Minimal Set of Operators 

Recall that FIA has {PY, PN, +, & , ¬, Πdc }. The operator Πdc is needed to deal with 

fine-grained integration. Operators {PY, PN, +, & , ¬} are complete in the sense that 
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any policy combination matrix can be expressed using them. A natural question is among 

the set Θ = {PN, PY, PNA, +, & ,¬, ΠY , ΠN ,−,�}, what subsets are minimally complete. 

We say a subset of Θ is minimally complete, if operators in the subset are sufficient for 

defining all other operators in Θ, and any smaller subset cannot define all operators in Θ. 

The following theorem answers this question. The only redundancy in {PY, PN, +, & ,¬} 

is that only one of PY and PN is needed. 

Theorem 4.4.3 Among the 10 operators in Θ, there are 12 minimally complete subsets. 

They are the 12 elements in the cartesian product {¬} ×{ PY, PN} × {ΠY , ΠN , & } × 

{+,�}. 

Proof 

•	 The policy constant PN cannot be expressed using Θ \ {PY, PN}. When given ¬, PY and 

PN can be derived from each other: PY = ¬PN and PN = ¬PY. 

We need to show that no policy expression using operators in Θ \ {PY, PN} exists that is 

equivalent to PN. Consider the information ordering among the three values: Y >  NA 

and N >  NA. The key observation is that the operators in Θ \ {PY, PN} are all non-

increasing in the information ordering. 

Suppose, for the sake of contradiction, that a policy expression f(P1, P2, · · ·  , Pn) con­

structed from Θ \ {PY, PN} and policies P1, · · ·  , Pn is equivalent to PN. Then this must 

mean that no matter what actual policies are used to instantiate P1, · · ·  , Pn, the result is 

PN. Let e0 = f(PNA, PNA, · · ·  , PNA) = PN. We now use a structural induction to show 

that e0 must give NA for every request and thus a contradiction follows. For the base 

case, we have policy constant PNA, this is true. For the unary operators, if e gives NA for 

a request, then ΠY (e), ΠN (e), and ¬(e) are also NA. For the binary operators +, −, &, 

and �, if both operands are NA for a request, then the result is also NA for the request. 

•	 The unary operator ¬ cannot be expressed using Θ \ {¬}. 

The key observation is that without ¬, one cannot switch Y and N . 
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Suppose, for the sake of contradiction, that e0(P ) is equivalent to ¬P . Let P be a policy 

that returns Y on r1 and N on r2. Then e0(P ) must return N on r1 and Y on r2, i.e., 

it must give (N, Y ) on r1 and r2. We use structural induction to show that the result 

e0(P ) gives for r1 and r2 must be among (Y, N), (Y, Y ), (N,N), (NA, NA), (Y,NA), 

(NA, N). That is, if the answer for r1 is N , then the answer for r2 must be N , and if the 

answer for r2 is Y , the answer for r1 must be Y . Hence contradiction. For the base case, 

this holds for P and the three constants PY, PN, PNA. One can verify that the six pairs 

are closed under ΠY , ΠN , +,−, & ,�. 

•	 The binary operator & cannot be expressed using Θ \ {  & , ΠY , ΠN }. Given ¬, ΠY and 

ΠN can be expressed from each other: ΠY (P ) = P &¬PN, ΠN (P ) = ¬ΠY (¬P ). ΠY 

can be expressed using { & , PY} by definition, and & can be expressed using {PN, +, 

¬, ΠN }. 

Assume, for the sake of contradiction, that e0(P1, P2) is equivalent to P1&P2. Let P1 be 

a policy that returns (Y, Y ) on r1 and r2, and P2 be a policy that returns (Y,N) on r1 and 

r2. Then e0(P1, P2) must return (Y,NA) on r1 and r2. We show that this is not possible. 

The key insight here is that without & , ΠY , ΠN , one cannot get information asymmetry 

Y or N for one request and NA for another from symmetric policies. 

We use a structural induction to show that the result e(P1, P2) gives for r1 and r2 must 

be an element of the following set: {(Y,N), (Y, Y ), (NA, NA), (N, Y ), (N,N)}. This 

holds for all P1, P2, PY, PN, PNA. One can verify that the set is closed under ¬, +,−, �. 

Given {PN, +,¬}, & can be expressed using either ΠY or ΠN : 

P1 & P2 = (P1 � P2) + ¬(¬P1 � ¬P2), 

where 

P1 � P2 = ΠY (P1) − (ΠN (PN + P2)), 
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and − can be defined using ΠY , ΠN as: 

P1 − P2 = (  ΠY (¬(¬P1 + P2 + ¬P2))) + 

(ΠN (P1 + P2 + ¬P2)) . 

The effect of P1 � P2 is to authorize any request that is authorized by both P1 and P2, 

and to be NA for all other requests. 

•	 The binary operator + cannot be expressed using Θ \ {+,�}. However, + can be 

expressed using {PN,¬, & ,�} or {PN, ¬, ΠN , �}, and � can be expressed using 

{PN, +,¬, & }. 

Suppose, for the sake of contradiction, that an expression e0(P1, P2) constructed from 

P1, P2 and Θ \ {+,�} is equivalent to P1 + P2. Let P1 be a policy that returns (Y,NA) 

on r1 and r2, and P2 be a policy that returns (NA, N) on r1 and r2. Then e0(P1, P2) must 

return (Y,N) on r1 and r2. 

We use a structural induction to show that the result e(P1, P2) gives for r1 and r2 must be 

an element of the set {(Y, Y ), (Y,NA), (N,N), (N,NA), (NA, Y ), (NA, N), (NA,NA)}. 

Hence contradiction. This is satisfied by P1, P2, PY, PN, PNA. One can verify that these 

seven values are closed under ¬, ΠY , ΠN ,−, & . 

The + operator can be expressed using {PN, ¬, & , �}: 

P1 + P2 = (P1 & PY) � (P2 & PY) � (P1 & PN) � (P2 & PN). 

Similarly, the + operator can be expressed using {PN,¬, ΠN ,�}: 

P1 + P2 = (ΠY P1) � (ΠY P2) � (ΠN P1) � (ΠN P2). 

Recall that the operator � is defined using + and − as P1 � P2 = P1 + (P2 − P1), and 

P1 − P2 = (PY & (¬(¬P1 + P2 + ¬P2))) + (PN & (P1 + P2 + ¬P2)). Thus, � can be 

expressed using {PN, −, ¬, & }. 
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In summary, among the 10 operators in Θ, for completeness, we must have ¬, one in 

{PY, PY}, one in {ΠY , ΠN , & }, and one in {+, �}. There are 12 combinations. It is not 

difficult to verify that every such combination is in fact complete. For example, once we 

have {¬, PN, ΠN }, adding + allows us to derive & , and then derive �, adding � allows us 

to derive + and then & . There are thus 12 minimally complete subsets in Θ. 

4.5 Integrated Policy Generation 

In this section, we present an approach to automatically generate the integrated policy 

given the FIA policy expression. Internally, we represent each policy as a Multi-Terminal 

Binary Decision Diagram (MTBDD) [24], and then perform operations on the underlying 

MTBDD structures to generate the integrated policy. We have chosen an MTBDD based 

implementation of the proposed algebra because (i) MTBDDs have proven to be a sim­

ple and efficient representation for XACML policies [5] and (ii) operators in FIA can be 

mapped to efficient operations on the underlying policy MTBDDs. Our approach consists 

of three main phases: 

1.	 Policy representation: For each policy Pi in the FIA expression f(P1, P2, ..., Pn), we 

construct a policy MTBDD, T Pi . 

2.	 Construction of the integrated policy MTBDD: We combine the individual policy 

MTBDD structures according to the operations in the FIA expression to construct the 

integrated policy MTBDD. 

3.	 Policy generation: The integrated policy MTBDD is then used to generate the actual 

integrated XACML policy. 

4.5.1 Policy Representation 

Recall from Section 3 that we characterize a policy P as a 3-tuple (RP , RP , RP ),Y N NA

where RP is the set of requests permitted by the policy, RP is the set of requests denied Y N 

by the policy and RP is the set of requests not applicable to the policy. Alternatively, we NA 
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can define P as a function P : R → E from the domain of requests R onto the domain of 

effects E, where E = {Y, N, NA}. 

An XACML policy can be transformed into a compound Boolean expression over re­

quest attributes [30]. A compound Boolean expression is composed of atomic Boolean 

expressions (AE) combined using the logical operations ∨ and ∧. Atomic Boolean ex­

pressions that appear in most policies belong to one of the following two categories: (i) 

one-variable equality constraints, a [ c, where a is an attribute name, c is a constant, and 

[ ∈ {=, =}; (ii) one-variable range constraints, c1 < a [ c2, where a is an attribute name, c1 

and c2 are constants, and <,[ ∈ {<, ≤}. 

Example 22 Policy P1 from Example 16 can be defined as a function : 

⎧
 
⎪
 
⎪ 
⎪ Y if role = manager ∧ (act = read∨ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨ act = update) ∧ 8am ≤ time ≤ 6pm 

P1(r) =  
⎪ 
⎪ 
⎪N if role=staff ∧ act=read 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩NA Otherwise 

where r is a request of the form {(role, v1), (act, v2), (time, v3)}. 

We now encode each unique atomic Boolean expression AEi in a policy into a Boolean 

variable xi such that: xi = 0 if AEi is false; xi = 1 if AEi is true. To determine 

unique atomic Boolean expressions we use the following definition. The Boolean encoding 

for policy P1 is given in Table 4.5. 

Table 4.5
 
Boolean encoding for P1
 

i AEi xi 

0 role = manager x0 

1 role = staff x1 

2 act = read x2 

3 act = update x3 

4 8am ≤ time ≤ 6pm x4 
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Using the above Boolean encoding, a policy P can be transformed into a function P : 

Bn �→ E, over a vector of Boolean variables, �x = x0, x1, · · ·  , xn, onto the finite set of 

effects E = {Y,N,NA}, where n is the number of unique atomic Boolean expressions 

in policy P . A request r corresponds to an assignment of the Boolean vector �x, which is 

derived by evaluating the atomic Boolean expressions with attribute values specified in the 

request. 

Example 23 After Boolean encoding, the policy P1 is transformed into the function : 

⎧ 
⎪ 
⎪ 
⎪ 
⎪ Y if x0 ∧ (x2 ∨ x3) ∧ x4 
⎪ 
⎨ 

P1(�x) =  N if x1 ∧ x4 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩NA Otherwise 

The transformed policy function can now be represented as a MTBDD. A MTBDD 

provides a compact representation of functions of the form f : Bn �→ R, which maps bit 

vectors over a set of variables (Bn) to a finite set of results (R). The structure of a MTBDD 

is a rooted acyclic directed graph. The internal (or non-terminal) nodes represent Boolean 

variables and the terminals represent values in a finite set. Each non-terminal node has two 

edges labeled 0 and 1 respectively. Thus when a policy is represented using a MTBDD, the 

non-terminal nodes correspond to the unique atomic Boolean expressions and the terminal 

nodes correspond to the effects. Each path in the MTBDD represents an assignment for 

the Boolean variables along the path, thus representing a request r. The terminal on a 

path represents the effect of the policy for the request represented by that path. Note that 

different orderings on the variables may result in different MTBDD representations and 

hence different sizes of the corresponding MTBDD representation. Several approaches for 

determining the variable ordering that results in an optimally sized MTBDD can be found in 

[31]. For examples discussed here, we use the variable ordering x0 � x1 � x2 � x3 � x4. 

The MTBDD of the policy P1 is shown in Figure 4.2, where the dashed lines are 0-edges 

and solid lines are 1-edges. 
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Figure 4.2. MTBDDs of P1 and P2 

Compound Boolean expression representing the policies to be integrated may have 

atomic Boolean expressions with matching attribute names but overlapping value ranges. 

In such cases, we need to transform the atomic Boolean expressions with overlapping value 

ranges into a sequence of new atomic Boolean expressions with disjoint value ranges, be­

fore performing the Boolean encoding. A generic procedure for computing the new atomic 

Boolean expression is described below. 

, ..., [d−, d+ , [d−Assume that the original value ranges of an attribute a are [d− 
1 , d

+
1 ] 2 , d

+ 
2 ] ]
 

jj
n
jii

m
i

�+, dm

nni

i

[d�− 

(the superscript ‘-’ and ‘+’ denote lower and upper bound respectively). We sort the range 

bounds in an ascending order, and then employ a plane sweeping technique to obtain the 

�− � � −−+ + +tions: (i) +d , d , ..., d , d , d [d , d=1 =1i

m
ii [d�− 

=1 , d�+ 

, [d�−disjoint ranges: [d�−, d�+] , d�+ 
1 1 2 2 

�−[d, ..., m

, d+
1 

], which satisfy the following three condi­]


{d− 
1 }; (ii) ∪ ]; and∈ D, D
 ] = ∪
=


(iii) ∩ ] = ∅.
 

Consider policy P2 from Example 16. We can observe that the atomic Boolean ex­

pression 8am ≤ time ≤ 6pm in P1 refers to the same attribute as in the atomic Boolean 

expression 8am ≤ time ≤ 8pm in P2 and their value ranges overlap. In order to distin­

guish these two atomic Boolean expressions during the later policy integration, we split the 

value ranges and introduce the new atomic Boolean expression 6pm ≤ time ≤ 8pm. The 

expression 8am ≤ time ≤ 8pm in P2 is replaced with (8am ≤ time ≤ 6pm ∨ 6pm ≤ 

time ≤ 8pm). Boolean encoding is then performed for the two policies by considering 

unique atomic Boolean expressions across both policies. 
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Example 24 By introducing another atomic Boolean expression 6pm ≤ time ≤ 8pm, i.e. 

x5, the transformed function for policy P2 is : 

⎧ 
⎪ 
⎪ 
⎪Y, if (x0 ∨ x1) ∧ x2 ∧ (x4 ∨ x5)
⎪ 
⎪ 
⎨ 

P2(�x) =  N, if x1 ∧ x3 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩NA Otherwise 

Using the same variable ordering x0 � x1 � x2 � x3 � x4 � x5 we construct the 

MTBDD for P2 shown in Figure 4.2. 

Procedure Apply(Node1, Node2, OP ) 
Input : Node1, Node2 are MTBDD nodes, 

OP is a policy operation 

1. initiate NodeI // NodeI is the combination result 
2. if Node1 and Node2 are terminals then 
3. NodeI ← (Node1 OP Node2, null, null) 
4. else 
5. if Node1.var = Node2.var then 
6. NodeI .var ← Node1.var 
7. NodeI .left ← Apply(Node1.left, Node2.left, OP ) 
8. NodeI .right ← Apply(Node1.right, Node2.right, OP ) 
9. if Node1.var precedes Node2.var then 
10. NodeI .var ← Node1.var 
11. NodeI .left ← Apply(Node1.left, Node2, OP ) 
12. NodeI .right ← Apply(Node1.right, Node2, OP ) 
13. if Node2.var precedes Node1.var then 
14. NodeI .var ← Node2.var 
15. NodeI .left ← Apply(Node2.left, Node1, OP ) 
16. NodeI .right ← Apply(Node2.right, Node1, OP ) 
17. return NodeI 

Figure 4.3. Description of the Apply procedure 
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4.5.2 Construction of Integrated Policy MTBDD 

Given the FIA expression f(P1, P2, ..., Pn) and the MTBDD representations T P1 , T  P2 , ..., T Pn 

of the policies P1,P2,...,Pn respectively, we construct the integrated policy MTBDD T PI , 

by performing the operations (specified in f ) on the individual policy MTBDDs. 

Operations on policies can be expressed as operations on the corresponding policy 

MTBDDs. Many efficient operations have been defined and implemented for MTBDDs 

[24]. In particular, we use the Apply operation defined on MTBDDs to perform the 

FIA binary operations {+, −, &, �} and not operation defined on MTBDD to perform 

the FIA unary negation (¬) operation. We introduce a new MTBDD operation called 

Projection to perform the effect(ΠY and ΠN ) projection and domain projection(Πdc 

operations defined in FIA. 

The Apply operation combines two MTBDDs by a specified binary arithmetic opera­

tion. A high level description of the Apply operation is shown in Figure 4.3, where var, 

left, right refer to the variable, left child and right child of a MTBDD node, respectively. 

The Apply operation traverses each of the MTBDDs simultaneously starting from the root 

node. When the terminals of both MTBDDs are reached, the specified operation is applied 

on the terminals to obtain the terminal for the resulting combined MTBDD. A variable 

ordering needs to be specified for the Apply procedure. 

The integrated MTBDD T PI for the policy expression f(P1, P2) = P1 + P2 is obtained 

by using MTBDD operation Apply(T P1 .root, T P2 .root, +), where “root” refers to 

the root node of the corresponding MTBDD. Figure 4.4 (in appendix) shows the integrated 

policy MTBDD. The same variable ordering x0 � x1 � x2 � x3 � x4 � x5 has been used 

in the construction of the integrated policy MTBDD. 

The procedure for performing effect projection operations is the following. For ΠY , 

those paths in T P that lead to N are redirected to the terminal NA. Similarly, for ΠN , 

those paths in T P that lead to Y are redirected to the terminal NA. 

For the domain projection operation with domain constraint dc, we traverse the policy 

MTBDD from the top to the bottom and check the atomic Boolean expression associated 
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Figure 4.4. MTBDDs of P1 + P2 

Procedure Projection(T P , dc) 
Input : T P is the MTBDD of policy P , 

dc is a domain constraint 

1. for each internal node Node in T P 

2. if Node.var is in dc then 
3. replace the domain of Node.var according to dc 
4. else 
5. if Node is the root then 
6. let Node.left become new root 
7. else 
8. let Node’s parent node point to N.left 
9. delete Node 
10. delete those nodes that have no incoming edges 

Figure 4.5. Description of the Projection operation 

with each node (denoted as Node). There are two cases. If the atomic Boolean expression 

of Node contains an attribute specified in dc, we simply replace the attribute domain with 

the new domain given by dc. Otherwise, it means Node represents an attribute no longer 

applicable to the resulting policy, and hence we should remove it. After removing Node, 

we need to adjust the pointer from its parent node by redirecting it to Node’s left child 

which leads to the path when N is not considered. After all nodes have been examined, 

those nodes that have no incoming edges are also removed. Figure 4.5 summarizes the 

algorithm. 
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Thus, given any arbitrary FIA expression f(P1, P2, ..., Pn), we can use a combination of 

the Apply, not, Projection MTBDD operations on the policy MTBDDs to generate 

the integrated policy MTBDD. An example is given below. 

Consider the FIA policy expression for the only-one-applicable policy combining algo­

rithm together with the domain constraint dc = {(role, {manager}), (act, {read, update}), 

(time, [8am, 8pm])}. Here, f(P1, P2) =  Πdc((P1 − P2) + (P2 − P1)). The integrated 

MTBDD can be obtained by using the Apply and Projection operations as follows : 

Projection(Apply(Apply(T P1 .root, T P2 .root, −),
 

Apply(T P2 .root, T P1 .root, −), +), dc) . 
  

4.5.3 XACML Policy Generation 

In the previous section, we have presented how to construct the integrated MTBDD 

given any policy expression f . Though such integrated MTBDD can be used to evaluate re­

quests with respect to the integrated policy, they cannot be directly deployed in applications 

using the access control system based on XACML. Therefore, we develop an approach that 

can automatically transform MTBDDs to actual XACML policies. The policy generation 

consists of three steps : 

1. Find the paths in the combined MTBDD that lead to the Y and N terminals, and 

represent each path as a Boolean expression over the Boolean variable of each node. 

2. Map the above Boolean expressions to the Boolean expressions on actual policy at­

tributes. 

3. Translate the compound Boolean expression obtained in step 2 into a XACML policy. 

We first elaborate on step 1. In the MTBDD, each node has two edges, namely 0-edge 

and 1-edge. The 0-edge and 1-edge of a node labelled xi correspond to edge-expressions 

x̄i and xi respectively. A path in the MTBDD corresponds to an expression which is the 

conjunction of edge-expressions of all edges along that path. We refer to this as a path-

expression. Those paths leading to the same terminal correspond to the disjunction of path­
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Figure 4.6. Policy generation using MTBDD 

PolicyId=P1+P2 
<RuleId=R1 Effect=Deny> 

<Target>
 
<Subject role=staff>
 
<Action act=update>
 

</Target>
 
</Rule>
 
<RuleId=R2 Effect=Deny>
 

<Target>
 
<Subject role=staff>
 
<Action act=read>
 

</Target> 
<Condition time = [8am, 6pm] AND time = [6pm, 8pm]> 

</Rule> 
<RuleId=R3 Effect=Permit> · · ·  

Figure 4.7. The integrated XACML policy representing P1 + P2 

expressions. Figure 4.6 shows an example of P1 +P2, where the Figure 4.6(a) and (b) show 

the paths leading to the Y and N terminals and the corresponding Boolean expressions. 

Next, we replace Boolean variables in the path-expressions with the corresponding 

atomic Boolean expressions by using the mapping constructed in the Boolean encoding 

phase. During the transformation in each path-expression, we need to remove some redun­

dant information. For instance, the resulting expression may contain an attribute with both 
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equality and inequality functions like (role = manager) ∧ (role = staff ). In that case, 

we only need to keep the equality function of the attribute. 

Example 25 After the replacement, the Boolean expression of the N terminal in Figure 4.6 

is transformed as follows: 

(role = staff ∧act = update)∨(role = staff ∧act = read∧time = [8am, 6pm]∧time = 

[6pm, 8pm]) 

The last step is to generate the actual XACML policy from the compound Boolean ex­

pression obtained in previous step. Specifically, for each path-expression whose evaluation 

is Y , a permit rule is generated; and for each path-expression whose evaluation is N , a deny 

rule is generated. Attributes that appear in conditions of the rules in original policies still 

appear in conditions of the newly generated rules, and attributes that appear in targets in the 

original policies still appear in targets in the integrated policy. Here we do not distinguish 

the policy target with rule target. Instead, all targets appear as rule targets. 

Consider policies P1 and P2 in Example 16, and the Boolean expression in Example 25. 

We generate the corresponding deny rules for the integrated policy of P1 + P2 as shown in 

Figure 4.7. 

4.6 Obligations 

In the discussions so far we have not considered the impact of the presence of obli­

gations when integrating policies using FIA. In this section, we briefly discuss how to 

generate the correct set of obligations for an XACML policy that is generated as result of 

integrating policies using operations in FIA. We plan to extend the current algebra with the 

notion of obligations as part of future work. 

An XACML policy can have obligations associated with “Permit” and/or “Deny” ef­

fects. According to the XACML standard specification, the set of obligations returned by 

the policy decision point for a given request is derived from the evaluation tree of policy 

sets and policies. The final set of obligations returned by the policy decision point includes 
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obligations of policies along those paths of the tree where effect at each level is the same 

as the final effect returned by the policy decision point. 

Treating the obligations similarly in our framework, we can obtain the set of obliga­

tions that must be enforced by integrated policy. The set of obligations can be easily de­

rived when using the & or − operations for integrating policies. For example, consider 

the & operation. In this case, since a request in the integrated policy is permitted(denied) 

only when both the policies permit(deny) the request, the set of “Permit”(“Deny”) obliga­

tions enforced by the integrated policy must be the union of the set of “Permit”(“Deny”) 

obligations specified in the individual policies that are being combined. Similarly, when 

combining policies P1 and P2 using the − operation, a request is permitted(denied) in the 

combined policy when the request is permitted(denied) by P1 and is not applicable to P2 

and hence the set of “Permit”(“Deny”) obligations enforced by the integrated policy is 

exactly the same as the “Permit”(“Deny”) obligations of P1. 

Deriving the set of obligations that must be enforced by the integrated policy is not 

straightforward in the case of the + and � operations because when a request is permit­

ted(denied) in the policy integrated using these operations, the decision of the individual 

policies participating in the integration with respect to this request is not known. However, 

this problem can be solved by generating an integrated XACML policy set instead of an 

integrated XACML policy from the integrated MTBDD. Note that each terminal in the in­

tegrated MTBDD corresponding to integration of two policies P1 and P2 using the +(�) 

operation represents a cell in the matrix representation of +(�) shown in Figure 4.1. Thus 

the terminals correspond to E1i -E2i (E1i, E2i ∈ {Y,N,NA} and 1 ≤ i ≤ 9) where E1i 

represents effect of P1 and E2i represents effect of P2 in cell i. Each terminal is mapped to 

a final decision Efi  which could be one of Y , N or NA depending on the operation used to 

generate the integrated MTBDD. Using the same techniques for generating a single policy 

from a given MTBDD, we can generate a sub policy SPi corresponding to cell E1i -E2i by 

collecting all paths leading to the E1i -E2i terminal. The correct set of obligations for each 

of these sub policies in the integrated policy set can be obtained based on the individual 

decisions E1i and E2i and the final decision Efi  given by the specific operation. That is, the 
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obligations for a sub policy SPi generated by traversing paths leading to E1i -E2i includes 

the obligations of policy Pk corresponding to effect Eki (“Permit” obligations if Eki = Y 

or “Deny” obligations if Eki = N ) only if Eki is the same as Efi  for k = 1, 2. 

For example, consider an integrated MTBDD that corresponds to the + operation on 

two policies P1 and P2. Then, 

•	 For the policy corresponding to the Y -Y terminal the set of obligations is the union 

of the set of “Permit” obligations of P1 and P2, 

•	 For the policy corresponding to the N -N terminal the set of obligations is the union 

of the set of “Deny” obligations of P1 and P2, 

•	 For the policies corresponding to the Y -N (N -Y ) and Y -NA(NA-Y ) the set of obli­

gations consists only of the set of “Permit” obligations of P1(P2), 

•	 For the policy corresponding to the N -NA(NA-N ) terminal the set of obligations 

consists only of the set of “Deny” obligations of P1(P2). 

Similar method can be used to derive the obligations for an XACML policy obtained 

by integrating n policies P1, P2, · · ·  , Pn using arbitrary FIA operations. In this case, each 

terminal of the integrated MTBDD will correspond to E1i -E2i -· · · -Eni, 1 ≤ i ≤ 3n . The 

set of obligations for the sub policy SPi will include the obligations of policy Pk corre­

sponding to effect Eki (“Permit” obligations if Eki = Y or “Deny” obligations if Eki = N ) 

only if Eki is the same as Efi  for k = 1, 2, · · ·  , n. Note that the integrated policy set is 

only generated from the final integrated MTBDD and not for the MTBDDs obtained when 

performing the intermediate operations. 

4.7 Experimental Evalutation 

We performed experiments to evaluate the time taken for performing FIA operations 

and the time for generating an integrated policy. We also examined the size of the generated 

integrated policy in terms of the number of rules and number of atomic Boolean expressions 
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in each rule. All experiments were conducted on a Pentium III 3GHz 500 MB machine. 

MTBDD operations were implemented using the modified CUDD library developed in [5]. 

We implemented a random attribute based access control policy generator to generate 

XACML policies in Boolean form. Each policy contained atomic Boolean expressions on 

a set of predefined attribute names and values. The Boolean expressions corresponding 

to the Condition element of an XACML policy was derived by randomly concatenating 

atomic Boolean expressions with the logical ∨, ∧ and ¬ operators. Each rule was randomly 

assigned to either permit or deny effect. Each policy was also associated with either a deny-

override or permit-override rule combining algorithm. 

In the first set of experiments we measured the average time required for performing 

the FIA operations and the size of the obtained MTBDDs. Figure 4.8 shows along the left 

y-axis the average time (in ms) for performing + and � operations on policies in which 

the total number of atomic Boolean expressions in a policy was fixed to 50 and the number 

of rules was varied between 2 and 10. This graph shows along the right y-axis the average 

size, i.e., the number of nodes, in the corresponding integrated MTBDDs. From Figure 4.8,
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Figure 4.8. Average time and average integrated MTBDD size with respect 
to operations “+” and “�” 

we can observe that the average time taken to perform these operations increases with the 

increase in the size of the integrated MTBDDs, and it differs for different operators. The 

reason is that the actual time for performing operations depend on the size of the resulting 

integrated MTBDD. The larger the MTBDD is, the longer time the integration will take. 

Performing the � operation usually resulted in MTBDDs with a smaller size and hence it 
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took lesser time. Considering that for typical policies we have encountered in real world 

applications the average number of atomic Boolean expressions lies between 10 and 50, 

the time trends observed in Figure 4.8 is very encouraging. 

We also evaluated the time taken to perform FIA operations on policies with 10 rules 

and varying number of atomic Boolean expressions. The results are shown in Figure 4.9.
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Figure 4.9. Average time(in ms) and average integrated MTBDD size for 
policies with varying number of atomic Boolean expressions per policy 

Although the time complexity of the + and � operations is proportional to the product 

of the sizes of the input policy MTBDDs, the actual times observed for performing these 

operations differed. This is because the actual times for these operations also depend on the 

size of the resulting integrated MTBDD. Observe that the actual time taken to perform these 

operations increases with the increase in the size of the generated MTBDDs. Performing 

the � operation almost always resulted in MTBDDs whose size was smaller and hence 

took lesser time. Considering that for typical policies we have encountered in real world 

applications the average number of atomic Boolean expressions lie between 10 and 50, the 

time trends observed in figures 4.8 and 4.9 are very encouraging. 

In the second set of experiments, we studied the characteristics of the integrated policy. 

Because the number of rules generated in the integrated policy is equal to the number of 

paths which can be exponential in the size of the integrated MTBDD a large number of 

rules can be generated. We used ESPRESSO [26], a two level logic minimizer to reduce 

the number of rules. ESPRESSO uses state-of-the-art heuristic Boolean minimization al­

gorithms to produce a minimal equivalent representation of two-valued or multiple-valued 
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Boolean functions. The minterms obtained from the integrated MTBDD were transformed 

to ESPRESSO inputs and the minimized output was used for policy generation. Table 4.6 

summarizes the results obtained for + operation performed on data sets that contained 

policies with 4 and 8 rules with an average 20 atomic Boolean expressions per policy. We 

observe that using ESPRESSO a substantial decrease in the number of rules and atomic 

Boolean expressions(terms) was obtained. For the data sets used in our experiments we 

observed a 75% to 99% reduction in the number of rules and 35% to 71% reduction in the 

number of atomic Boolean expressions per rule. 

Table 4.6
 
Characteristics of integrated policy
 

Without ESPRESSO With ESPRESSO 
# of Rules 
in a 
Policy 

Rule 
Type 

Avg # of 
Rules 

Avg # of 
terms 
per Rule 

Avg # of 
Rules 

Avg # of 
terms 
per Rule 

4 Rules Permit 
Deny 

790 
3625 

19 
21 

69 
233 

9 
6 

8 Rules Permit 
Deny 

20192 
131348 

37 
36 

1221 
152 

19 
11 

Finally, we evaluated the time required for generating the integrated XACML policy. It 

is worth noting that this step is optional. Users can also directly use the integrated MTBDD 

for request evaluation. Figure 4.10 shows the policy generation times for integrated MTB-

DDs with different number of paths. The time for policy generation is observed to be 

proportional to the number of paths in the integrated MTBDD. The number of paths in the 

integrated MTBDD is in turn determined by the nature of the compound Boolean expres­

sions in the policies and the chosen variable ordering. 
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5 RELATED WORK 

The techniques proposed in this thesis are closely related to works in the area of access 

control policy analysis and policy integration. 

5.1 Policy Analysis 

Works in the area of policy analysis can be broadly classified into two categories: (i) 

those that deal with verification of properties of a single policy and (ii) those that deal with 

policy similarity analysis that may involve verification of different relationships such as 

equivalence, refinement, redundancy etc among two or more policies. 

5.1.1 Single Policy Analysis 

Most approaches for single policy property analysis are based on model checking tech­

niques [32–34]. Ahmed et al. [32] propose a methodology for analyzing four different 

policy properties in the context of role-based CSCW (Computer Supported Cooperative 

Work) systems; this methodology uses finite-state based model checking. Since they do 

not present any experimental results, it is not clear if their state-exploration approach can 

scale well to policies with a very large set of attributes and conditions. Guelev et al. pro­

pose a formal language for expressing access-control policies and queries [33]. Their sub­

sequent work [34] proposes a model-checking algorithm which can be used to evaluate 

access control policies written in their proposed formal language. The evaluation includes 

not only assessing whether the policies give legitimate users enough permissions to per­

form their tasks, but also checking whether the policies prevent intruders from achieving 

some malicious goals. However, the tool can only check policies of reasonable size. 
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5.1.2 Policy Similarity Analysis 

Existing approaches to the policy similarity analysis are mostly based on graph, model 

checking or SAT-solver techniques [5, 13, 35–38]. Koch et al. [36] use graph transforma­

tions to represent policy change and integration, which may be used to detect differences 

among policies. Such an approach supports an intuitive visual representation which can be 

very useful in the design of a customized access control policy. However, it can only be 

used as a specification method but not as an execution method. Backes et al. [35] propose 

an algorithm for checking refinement of enterprise privacy policies. However, their algo­

rithm only identifies which rule in one policy needs to be compared with the rules in the 

other policy. They do not provide an approach to the evaluation of condition functions. 

A more practical approach is by Fisler et al. [5], who have developed a software tool 

known as Margrave for analyzing role-based access-control policies written in XACML. 

Margrave represents policies using the Multi-Terminal Binary Decision Diagram (MTBDD), 

which can explicitly represent all variable assignments that satisfy a Boolean expression 

and hence provides a good representation for the relationships among policies. Policy 

property verification is then formulated as a query on the corresponding MTBDD struc­

tures. For processing a similarity query involving two policies, the approach proposed by 

Fisler et al. is based on combining the MTBDDs of the policies into a CMTBDD (change­

analysis MTBDD) which explicitly represents the various requests that lead to different 

decisions in the two policies. The MTBDD structure has been credited with helping model 

checking scale to realistic systems in hardware verification. The major shortcoming of 

Margrave is that it can only handle simple conditions, like string equality matching. A 

direct consequence of such limitation is an explosion of the MTBDD size when conditions 

on different data domains (e.g. inequality functions) have to be represented. For exam­

ple, to represent the condition “time is between 8am to 10pm”, the MTBDD tool needs to 

enumerate all possible values between “8am” to “10pm”(e.g., “time-is-8:00am”, “time-is­

8:01am”, “time-is-8:02am”, ...). 
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Other relevant approaches are the ones based on SAT-solver techniques. Most such 

approaches [37, 38] however only handle policy conflict detection. A recent approach by 

Agrawal et al. [13] investigates interactions among policies and proposes a ratification tool 

by which a new policy is checked before being added to a set of policies. In [39], McDaniel 

et al. carry out a theoretical study on automated reconciliation of multiple policies and then 

prove that this is an NP-complete problem. In [40], Kolovski et al. formalize XACML 

policies by using description logics and then employ logic-based analysis tools for policy 

analysis. These SAT-solver based approaches formulate policy analysis as a Boolean sat­

isfiability problem on Boolean expressions representing the policies. Such approaches can 

handle various types of Boolean expressions, including equality functions, inequality func­

tions, linear functions and their combinations. By construction, the SAT algorithms look 

for one variable assignment that satisfies the given Boolean expression, although they may 

be extended to find all satisfying variable assignments. For each round of analysis or query, 

SAT algorithms need to evaluate the corresponding Boolean expression from scratch. They 

cannot reuse previous results and are not able to present an integrated view of relationships 

among policies. 

More recently, Mazzoleni et al. [14] also considered policy similarity problem in their 

proposed policy integration algorithm. In contrast to our approach, they do not quantify 

the similarity between two policies by assigning a score. Instead, they determine whether 

two policies converge, diverge, extend, extend or shuffle with respect to the sets of requests 

they authorize. Moreover, their method for computing policy similarity assumes that each 

rule in a policy contains predicates on one attribute. They do not address cases where 

predicates on multiple attributes are contained in a single rule or cases where multiple 

predicates concerning the same attribute are contained in a single rule. 

Unlike aforementioned works that focus on a special case or a certain type of policy 

analysis, our approach aims at providing an environment in which a variety of analysis 

can be carried out. In particular, our environment is able not only to handle conventional 

policy property verification and policy comparison, but also to support queries on common 

portions and different portions of multiple policies. 
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Unlike all approaches to policy similarity analysis which require extensive comparison 

between policies, our proposed similarity measure is a lightweight approach which aims at 

reducing the searching space, that is, at reducing the number of policies that need to be fully 

examined. From the view of an entire policy analysis system, our policy similarity measure 

can be seen as a tool which can act as a filter phase, before more expensive analysis tools 

are applied. 

For completeness it is also important to mention that the problem of similarity for docu­

ments has been investigated in the information retrieval area. Techniques are thus available 

for computing similarity among two documents (e.g. [41–43]). However, these cannot be 

directly applied because of the special structures and properties of the XACML policies. 

5.1.3 Visualization 

Several visualization techniques to improve the usability of access control policy sys­

tems have been proposed in literature. However the main focus of these works has been 

towards building better interfaces that can aid in more efficient and error free policy author­

ing and not towards visualizing the results of policy analysis. 

Reeder et al [27] have proposed the Expandable Grids tool for displaying and authoring 

policies. They have implemented an interface based on the concept of expandable grids for 

setting file permission in Windows NTFS file system. The grid is a matrix with subjects 

along rows, resources along columns, and the effective access for each subject/resource 

combination in the matrix cells. Expandable grids are useful for authoring policies, but 

they do not support visualization of policy analysis results. , where since they cannot 

represent attribute predicates which are necessary for characterizing requests. 

Vaniea et al [44] have proposed the Prismos system which provides visualization of 

both policy and analysis results. The interface contains a grid where rows represent attribute 

predicates and columns represent rules. A side bar displays analysis results, e.g., which 

rules are conflicting and which are redundant. However, the interface is not useful for 
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displaying sets of requests, as their visualization would be equivalent to displaying a list of 

request predicate tuples. 

The SPARCLE Policy Workbench by Brodie et al [45] allows policy authors to express 

policies in natural language, which are subsequently parsed to create machine-readable 

policies. SPARCLE also supports a table-based policy visualization, but the representation 

is textual and mainly applicable to privacy policies. Furthermore, SPARCLE does not 

support visualization of results from conflict analysis. 

5.2 Policy Integration 

In the literature, many efforts have been devoted to policy composition [28, 29, 39, 46– 

49]. Few approaches have been proposed for dealing with the fine-grained integration of 

XACML policies. Approaches most closest to ours are by Halpern et al. [48], Mazzoleni 

et al. [14], Bonatti et al. [28], Wijesekera et al. [29], Backes et al. [46] and Jagadeesan et 

al. [49]. 

One early work on policy composition is the policy algebra proposed by Bonatti et 

al. [28], which aims at combining authorization specifications originating from heteroge­

nous independent parties. They model an access control policy as a set of ground (variable­

free) authorization terms, where an authorization term is a triple of the form (subject, ob­

ject, action). However, their algebra only supports 2-valued policies and they do not clearly 

point out what authorization specifications can be expressed and what cannot by using their 

algebra. Regarding the algebra implementation, they suggest to use logic programming, but 

do not show any experimental result. Compared to their work, we have proved that our al­

gebra can express any possible policy integration requirement and our implementation is 

based on representations used in model checking techniques which have been proven to be 

very efficient. 

Halpern et al. [48] have used first-order logic to specify policies and support the compo­

sition of policies in this context. Only those policies which do not have any conflicts when 

logically combined can be composed using their framework. In contrast, our work defines 
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operators that can be used to resolve any potential conflicts that may arise when performing 

the composition. Mazzoleni et al. [14] have proposed an extension to the XACML lan­

guage, called policy integration preferences, using which a party can specify the approach 

that must be adopted when its policies have to be integrated with policies by other parties. 

They do not discuss mechanisms to perform such integrations. Also, the integration pref­

erences discussed in such work are very limited and do not support fine-grained integration 

requirements. Wijesekera et al. [29] have proposed a propositional algebra for access con­

trol. They model policies as nondeterministic transformers of permission set assignments 

to subjects and interpret operations on policies as set-theoretic operations on the transform­

ers. They make use of signed action terms to represent negative authorizations. Backes et 

al. [46] have proposed an algebra for combining enterprise privacy policies. They define 

conjunction, disjunction and scoping operations on 3-valued EPAL [50] policies. Unlike 

our work which can handle 3-valued policies, the above works do not explicitly support 

negative authorizations. Jagadeesan et al. [49] have proposed a 3-valued policy algebra 

in the timed concurrent constraint programming paradigm and define boolean operators 

whose expressive power is equivalent to the algebra in [28] in addition to added temporal 

features. However, unlike our work none of the above works study the completeness and 

minimality of their algebras. 

Most recently, Bruns et al. [51] proposed an algebra for four-valued policies based on 

Belnap bilattice. In particular, they map four possible policy decisions, i.e. grant, deny, 

conflict and unspecified, to Belnap bilattice and claim that their algebra is complete and 

minimal. However, such completeness is limited to Belnap space where policy decisions 

need to follow certain order according to the Belnap bilattice. Moreover, they did not 

propose any implementation of their algebra. 

Our work is also related to the area of many valued logics. Most of these works fo­

cus on establishing criteria for Sheffer functions in m-valued logic. A Sheffer function can 

be defined as a logical function that is complete. Martin [52] isolates all binary sheffer 

functions in 3-valued logic and proves properties of such functions. Wheeler [53] proves 

a generalization of [52] and establishes the necessary and sufficient conditions for n-nary 
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Sheffer functions in the context of 3-valued propositional calculus. Rousseau [54] provides 

further generalization and proves the necessary and sufficient conditions for any finite al­

gebra with a single operation to be complete. Haddad et al. [55] characterize binary and 

ternary partial Sheffer functions in 3-valued logic. Arieli et al. [56] propose a propositional 

language with four-valued semantics and study in detail the expressive power of their lan­

guage. They also compare 3-valued and 4-valued formalisms. In contrast to these works, 

we do not find or establish criteria for all possible complete operators or functions for a 

3-valued algebra. Instead, we focus on the definition of a set of operators that have intu­

itive semantic meaning in the context of combining 3-valued policies and study whether 

this set of operators is complete. We also study properties such as expressive power and 

minimality for this set of operators. 
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6 CONCLUSIONS AND FUTURE WORK 

The use of policy based security management in distributed collaborative applications and 

architectures has led to the proliferation of policies. A direct consequence of this is the 

need for tools and techniques to manage and consolidate a large set of policies. 

In this thesis we have proposed EXAM, a comprehensive environment for the analysis 

and management of access control policies. We consider policies expressed using XACML 

(Extensible Access Control Markup Language) [1] because XACML is a rich language 

which can represent many policies of interest to real world applications and is gaining 

widespread adoption in the industry. We identified and defined three types of basic policy 

analysis queries which can be combined to perform various other advanced analyses. 

We have proposed a novel policy similarity measure which can be used as a filter ap­

proach in policy comparison. The policy similarity measure represents a lightweight ap­

proach to quickly analyze similarity of two policies. Detailed algorithms of computation 

of similarity scores are presented. To the best of our knowledge ours is the first work to 

introduce the notion of a similarity score for access control policies. We have extended 

the basic policy similarity measure computation to incorporate a new semantic matching 

score for attributes and values that do not exactly match using ontology matching tech­

niques and WordNet lexical database [15] thus solving the problem of attribute name and 

value heterogeneity when comparing policies for similarity. We have also incorporated the 

notion of predicate selectivity to improve the effectiveness of the similarity score. We have 

implemented all variations of the similarity score computation and reported experimental 

results that demonstrate the efficiency and effectiveness of these approaches. We have also 

conducted a pilot study among system adminstrators and students to validate the practical 

value of our proposed similarity measure. Encouraged by the positive results of the pilot 

study we are currently conducting a survey with larger number of participants including 

information security executives. 
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We have proposed a policy similarity analyzer that combines the advantages of MTBDD 

based model checking and SAT-solver based techniques to provide a precise characteriza­

tion of the set of requests permitted, denied or not-applicable to the policies being ana­

lyzed. The experimental results obtained from the prototype implementation of the ana­

lyzer demonstrate the efficiency and scalability of the proposed approach. We have also 

proposed and implemented a novel multi-level grid visualization technique to visualize the 

results of policy analysis. 

We have proposed an algebra for the fine-grained integration of language independent 

3-valued policies. Our operations can not only express existing policy-combining algo­

rithms but can also express any arbitrary combination of policies at a fine granularity of 

requests, effects and domains, as we have proved in the completeness theorem. We have 

also proved algebraic and minimality properties for the algebra. Based on this algebra, 

we have proposed and implemented a framework for integration of XACML policies. The 

framework generates XACML policies as the policy integration result. We present experi­

mental results which demonstrate the efficiency of our integration approach. 

Finally, we have incorporated all the above policy analysis and integration techniques 

and have developed a functional prototype of EXAM. EXAM is a web-based application 

and is available in a virtual appliance for use. 

The current thesis opens several interesting directions for future research: 

•	 Policy authoring tools [27, 44, 45] are an important part of today’s policy based 

security landscape. However these tools do not focus on the policy analysis aspects. 

An interesting direction of research would be to explore the integration of such policy 

authoring tools with policy analysis tools like EXAM. Such an integration would 

help policy authors to leverage the results of policy analysis during the process of 

policy authoring, thus leading to the development of a consistent and error free policy 

repository. 

•	 Policy similarity measure techniques can be used to compare several other types of 

policies as discussed in Section 3.1.4. For example, it can be used to define a distance 
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function for Platform for Privacy Preferences(P3P) [57] policies. The distance func­

tion can then be used for clustering these P3P policies and deriving a meta-policy 

that can serves as a representative P3P policy for individual business domains (like 

bookstores, apparels) across the internet. 

•	 Currently the policy similarity analyzer supports the comparison of two policies at 

a time. However it would be interesting to extend the current technique to compare 

more than two policies at once. This is particularly useful in a scenario where large 

number of policies need to be integrated in a time efficient manner. Preliminary ex­

periments have indicated that the order in which the policies are compared can result 

in an order of magnitude difference in the time needed to perform the comparison. 

It would be interesting to study in detail the cause for such difference and explore 

optimization techniques to determine the optimum order in which to compare the 

policies so as to minimize the comparison time. 

•	 An interesting question that arises when using integration algebras such as proposed 

is: how can one be sure that a given algebriac expression will behave as expected?. 

We believe that software engineering techniques can be leveraged to examine the 

integrated policy with a random number of requests and provide assurance with some 

high probability that the expression indeed corresponds to the expected behaviour. 
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A POLICY SIMILARITY SURVEY QUESTIONNAIRE 

In the following survey, we would like to ask you three questions about the Company 

X. This company is in retail business and works with a network of partners, suppliers, 

and customers. An information security breach directed at any one link, for instance, 

a distribution center that manages inventory and shipments electronically, can affect 

the entire chain. In the following survey, we ask you about the similarity and appro­

priateness of information security policies that Company X may implement to protect 

its information system infrastructure. In questions about similarity, we ask your opin­

ion about how similar are these pairs of policies in the scale of 1-7 (1 is not similar at 

all, and 7 is very similar). In questions about appropriateness, we ask your opinion 

about the appropriateness of these policies in the scale of 1-7 (1 is not appropriate at 

all, and 7 is very appropriate). 

1) Company X can collect, and use customers personal sensitive and non-sensitive data on
 

a need-to-know basis.
 

1.2) Company X can collect, and use, customers personal sensitive and non-sensitive data.
 

This information may be used to provide discounts to customers.
 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 1: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 1.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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2) Company X can store customers personal sensitive and non-sensitive data for a limited 

time– as it is needed for the stated purposes. 

2.2) Company X can store customers personal information for an unlimited time. This 

information may benefit customers networking purposes. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 2.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

3) Opt-in and opt-out require each individual’s explicit, informed consent. 

3.2) Only Opt-in requires each individual’s explicit, informed consent. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 3: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 3.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

4) Policies must be explicit, when they deal with personal sensitive and non-sensitive data. 

4.2) Policies must be explicit only when they deal with personal non-sensitive data. 
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Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 4: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 4.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

5) Users can access and modify their stored personal sensitive and non-sensitive data. 

5.2) Users can access their stored personal sensitive and non-sensitive data, only if they 

can fulfill training requirements. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 5: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 5.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

6) Third parties cannot access personal sensitive and non-sensitive data of the customers. 

6.2) Third parties can access personal data if it can help customers networking purposes. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 6: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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Appropriateness of Policy 6.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

7) All Internet-connected computers must be running an intrusion detection system ap­

proved by the Information Security Department. 

7.2) All Internet-connected computers with personal and sensitive data must be running an 

intrusion detection system approved by the Information Security Department. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 7: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 7.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

8) All Web servers accessible via the Internet must be protected by a router or firewall 

approved by the Information Security Department. 

8.2) Web servers which deal with sensitive data must be protected by a router or firewall 

approved by the Information Security Department. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 8: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

9) All Internet commerce servers must employ unique digital certificates and must use 

encryption to transfer information in and out of these servers. 
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Appropriateness of Policy 8.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

9.2) Internet commerce servers which run personal and sensitive data servers must employ 

unique digital certificates and must use encryption to transfer information in and out of 

these servers. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 9: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 9.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

10) Employees must not construct passwords which are identical or substantially similar 

to passwords that they had previously used. 

10.2) Employees who have access to sensitive data must not construct passwords which are 

identical or substantially similar to passwords that they had previously used. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 10: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 10.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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11) All employees must be automatically forced to change their passwords at least once 

every ninety days. 

11.2) Employees who have access to sensitive data must be automatically forced to change 

their passwords at least once every ninety days. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 11: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 11.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

12) Employees should have no expectation of privacy in anything they store, send or re­

ceive on the company’s email system. The company may monitor messages without prior 

notice. 

12.2) Employees and customers should have no expectation of privacy in anything they 

store, send or receive on the company’s email system. The company may monitor messages 

without prior notice. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 12: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 12.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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13) Instant message conversations of employees, who have access to private and sensitive 

data, that are Administrative or Fiscal in nature should be copied into an email message 

and sent to the appropriate email retention address. 

13.2) Instant message conversations of employees and customers that are Administrative 

or Fiscal in nature should be copied into an email message and sent to the appropriate 

email retention address. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 13: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 13.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

14) All employees must refrain from using the same password on multiple computer sys­

tems. 

14.2) Employees, who have access to personal and sensitive data, must refrain from using 

the same password on multiple computer systems. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 14: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 14.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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15) At log-in time, every employee must be given information reflecting the last log-ins 

time. 

15.2) At log-in time, every employee, who has access to personal and sensitive data, must 

be given information reflecting the last log-ins time. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 15: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 15.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

16) Personal electronic devices cannot be used for companys sensitive information, unless 

they have first been configured with the necessary controls by Information Security Dept. 

16.2) Personal electronic devices can be used for companys non sensitive information. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 16: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 16.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

17) All employees with computers which have remote real-time dialogue with companys 

network must run access control package approved by the Information Security Dept. 

17.2) Employees, who have access to private and sensitive data, and have computers which 
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have remote real-time dialogue with companys network must run access control package 

approved by the Information Security Dept. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 17: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 17.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

18) When an employees working relationship is terminated with the company, all access 

rights to the companys data must be immediately revoked. 

18.2) When an employees working relationship is terminated with the company, all access 

rights to the companys personal and sensitive data must be immediately revoked. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 18: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 18.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

19) The Information Security Dept. should be able to control user access to all objects on 

the systems according to the stated policy. 

19.2) The Information Security Dept. should be able to control user access to sensitive 

data objects according to the stated policy. 
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Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 19: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 19.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

20) All employees should be allowed to label data with a classification. 

20.2) Only employees of Information Security Dept. should be allowed to label data with 

a classification. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 20: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 20.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

21) Company X maintains and owns backup tapes from the email servers. 

21.2) Company X may share maintaining and owning backup tapes from the e-mail servers 

with other companies. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 
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Appropriateness of Policy 21: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 21.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

22) The responsibility for Information security and privacy is every employees duty. 

22.2) The Responsibility for information security and privacy is only in the Information 

Security Department. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 22: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 22.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

23) All the security and privacy issues should be handled by internal Information Security 

Department. 

23.2) Security and privacy issues can be handled with contractors and outside companies– 

This saves cost for the company and customers. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 23: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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Appropriateness of Policy 23.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

24) Employees of the Information Security Department should comply with security policy 

and procedures. 

24.2) All employees in the Company X should comply with security policy and procedures. 

This may cause additional cost to company and to customers. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 24: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 24.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

25) To mitigate risks, Company X should purchase cyber insurance and pay premium. 

25.2) Company X should purchase cyber insurance and pay premium. Portions of premium 

should be paid by customers. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 25: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 25.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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26) Company X should spend its information security budget on technical vulnerabilities. 

26.2) Company X should spend its information security budget on technical vulnerabili­

ties, organizational awareness, and trainingthe people component of information security 

technology. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 26: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 26.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

27) Security measures should be applied to all electronic and physical (printouts, mi­

crofiche) copies of personal sensitive and non-sensitive data. 

27.2) Security measures only need to be applied to electronic and physical (printouts, mi­

crofiche) copies of personal sensitive data. To provide security measures for non-sensitive 

data customers must enrollee in special security plans. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 27: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 27.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

28) In outsourcing, the service provider can share decisions with the company about who 

will be granted access to companys information and information systems. 
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28.2) In outsourcing, Company X is the only one that can make decisions about who will 

be granted access to companys information and information systems. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 28: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 28.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

29) Employees who deal with sensitive and personal data should receive a minimum secu­

rity training before they can begin work. 

29.2) All new employees should receive a minimum of security training before they can 

begin work– This may cause additional cost for customers and company. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 29: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 29.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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30) Company X is responsible for establishing a process for responding to security inci­

dents. 

30.2) Company X should follow standardized processes for responding to security inci­

dents. 

Similarity of the two policies: 

Not similar at all 1 2 3 4 5 6 7 Very similar 

Appropriateness of Policy 30: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 

Appropriateness of Policy 30.2: 

Not appropriate at all 1 2 3 4 5 6 7 Very appropriate 
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