
CERIAS Tech Report 2010-34
Automatic Migration to Role-Based Access Control

 by Ian Molloy
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By Ian Molloy

Entitled

Automatic Migration to Role-Based Access Control

For the degree of Doctor of Philosophy

Is approved by the final examining committee:

Ninghui Li
 Chair

Elisa Bertino

Eugene Spafford

Christopher Clifton

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________ Ninghui Li

Approved by: Aditya Mathur / William J. Gorman 07 June 2010
Head of the Graduate Program Date

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

Automatic Migration to Role-Based Access Control

For the degree of __ Doctor of Philosophy

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Ian Molloy
Printed Name and Signature of Candidate

07 June 2010
Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

AUTOMATIC MIGRATION TO ROLE BASED ACCESS CONTROL

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ian M. Molloy

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2010

Purdue University

West Lafayette, Indiana

UMI Number: 3444725

All rights reserved
!

INFORMATION TO ALL USERS
!
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.
!

UMI 3444725
Copyright 2011 by ProQuest LLC.
!

All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 East Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

ii

To Alicia and our Sixteen-Paws. You kept me going and made graduate school more

enjoyable than it ought to be.

iii

ACKNOWLEDGMENTS

My sincerest thanks to my advisor Dr. Ninghui Li for mentoring me all these

years, helping me focus on my research, and allowing me to pursue random topics

I found interesting. I would also like to thank my other committee members, Dr.

Elisa Bertino, Dr. Eugene Spa⇥ord, and Dr. Christopher Clifton, for their helpful

comments and input.

My time as a graduate student and my research has been heavily influenced by

my colleagues at IBM Research. I owe a great amount of gratitude to everyone there,

especially Jorge Lobo and Pau-Chen Cheng, who acted as both mentors and friends.

Additionally, I need to thank my friends Brian Bue and Nick Sumner for never

being too busy to give their opinion to a problem; my parents for their love, support,

and first hand anecdotes of graduate school; and my wife, Alicia, for always humoring

me and letting me ramble about my research even when it didn’t make any sense.

Finally, I am indebted to my furry kids for keeping me grounded: Murphy, you told

me when I worked too hard and should take breaks—but mostly to feed you; Porter,

you told me when my keyboard was too dry and could use a little slobber; and Cayo

and Luna, who always knew my laptop keyboard made for a warm place to sleep and

never could figure out what all the typing was about.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

2 ACCESS CONTROL, DATA MINING, AND ROLE MINING 6

2.1 Access Control . 7

2.1.1 Capability and Access Control List 8

2.1.2 Safety, Security, and Errors 8

2.1.3 Access Control Policies . 10

2.1.4 Access Control Models . 11

2.2 Role-Based Access Control . 12

2.2.1 Core RBAC . 13

2.2.2 Hierarchical RBAC . 14

2.2.3 Direct User-Permission Assignments 15

2.2.4 Constraints . 16

2.3 Role Engineering . 17

2.3.1 Top-Down Role Engineering 17

2.3.2 Bottom-Up Role Engineering 18

2.4 Data Mining . 18

2.4.1 Machine Learning . 21

2.5 Role Mining . 21

2.5.1 Problem Domain . 22

2.5.2 Related Work in Role Mining 24

2.5.3 Evaluation Criteria and Objectives 31

3 MINING ROLES WITH MULTIPLE OBJECTIVES 34

3.1 Using user-permission data . 35

3.1.1 The weighted structural complexity 36

3.1.2 The Weighted Structural Complexity Optimization Problem 38

3.2 Mining Roles with Low Complexity Using Concepts 45

3.2.1 Formal Concept Analysis . 46

3.2.2 The HierarchicalMiner . 50

v

Page

3.2.3 Running Example . 53

3.3 Using User Attributes . 55

3.3.1 Semantic Meanings of Roles 56

3.3.2 Attribute Miner . 58

3.4 Hybrid Role Mining . 61

3.4.1 Optimizing an Existing Set of Roles 61

3.4.2 A Hybrid Approach to Role Engineering 62

3.5 Conclusions . 64

4 HANDLING NOISY OR MISSING ACCESS CONTROL DATA 65

4.1	 Introduction . 65

4.2	 Matrix Decomposition . 67

4.2.1 Decomposition Models . 68

4.3 Identifying Noise . 71

4.3.1 What is Noise? . 71

4.3.2 Using the Decomposition . 75

4.3.3 Performing Prediction . 80

4.4 Mining Noisy Data . 81

4.4.1 Role Quality . 81

4.5 A Distance Metric for RBAC . 83

4.5.1 Distance Measure for Roles 83

4.5.2 Role Matching Distance . 85

4.5.3 Minimum Matching is a Distance Metric 86

4.6 Leveraging Attributes . 87

4.6.1 Analysis of the Organization Dataset 88

4.6.2 Using the Collective Matrix Factorization 90

4.6.3 Collective Matrix Factorization of Risk and Trust 91

4.7 Conclusions . 91

5 EXPERIMENTAL EVALUATION . 93

5.1	 Classification of Role Mining Algorithms 94

5.1.1 Class 1 Algorithms: Outputting prioritized roles 94

5.1.2 Class 2 Algorithms: Outputting RBAC states 95

5.1.3 Class 1 Versus Class 2 Algorithms 95

5.1.4 Class 3 Algorithms: Outputting an Inconsistent Covering . . 96

5.1.5 Converting Class 1 Algorithms to Class 2 Algorithms 96

5.1.6 Converting Class 2 Algorithms to Class 1 Algorithms 98

5.2 Methodology . 98

5.2.1 Metrics for Comparing Algorithms 98

5.2.2 Input Data Type . 102

5.3	 Evaluation of HierarchicalMiner and AttributeMiner against Class 2

Algorithms . 106

5.3.1 Synthetic Dataset with Attributes 106

vi

Page
5.3.2 Evaluation on Real-World Datasets 109

5.4 Evaluations using Class Conversions 114

5.4.1 Prioritized Role Quality . 116

5.4.2 Discovering Original Roles 117

5.4.3 Hybrid Role Mining the University Dataset 119

5.5 Evaluating Mining Noisy Data . 122

5.5.1 Prediction Using Attributes 128

5.5.2 Evaluating Role Quality . 130

5.6 Role Similarity . 131

5.7 Implementation . 134

5.8 Practicality . 134

6 CONCLUSIONS AND FUTURE WORK 137

LIST OF REFERENCES . 139

APPENDIX . 146

A ADDITIONAL PROOFS . 146

A.1 Trivial Solutions to WSCP . 146

A.2 Lemma 1 Redux: HierarchicalMiner 147

A.3 Role Stability . 149

VITA . 152

vii

LIST OF TABLES

Table	 Page

2.1	 Summary of potential role engineering problems with di⇥erent informa­
tion availability. “X” indicates that the corresponding problem is worth

studying and a good solution to the problem is possible; “Limited” indi­
cates that a solution could be provided for the problem, but the solution

may be limited without more information; an empty cell indicates that

the provided information is insu⇤cient to study a problem. 23

3.1	 The relationship between WSC and other role mining criteria 38

3.2	 Cases where trivial optimal RBAC systems exist with respect to a given

weight vector. In the table, ci (i ⌫ { u, p, h }) denotes an arbitrary non­
zero number. In a row, two cells having value x indicates that the two

cells take the same non-zero value. 39

3.3	 Calculating benefits and costs in AttributeMiner 60

4.1	 The total uncertainty reduction of the user-permission relation given

knowledge of a user’s attribute. Total entropy of the user-permission re­
lation is 107.34 bits. 89

5.1	 Sizes of the real-world datasets presented. 103

5.2	 Mining results for the University dataset. 108

5.3	 Overview of the datasets and mining results when W = (1, 0, 0, 0,� .

Non-zero standard deviation in parentheses. 111

5.4	 Total WSC when W = (0, 1, 1,�,� . Standard deviation in parentheses. 112

5.5	 W = (1, 1, 1, 1,� . Standard deviation in parentheses. 113

5.6	 Total WSC when W = (1, 1, 1, 1, 1 . Standard deviation in parentheses. 114

5.7	 W = (1, 1, 5, 1, 5 . Standard deviation in parentheses. 115

| DUP A |
5.8 for W = (1, 1, 1, 1, 1 . 116
| UP |

5.9	 Normalized Qwsc for W = (1, 1, 1, 1, 1 117

5.10 Normalized Q
coverage for W = (1, 1, 1, 1,� 118

viii

Table Page

5.11 Mining the University dataset with W = (1, 1, 1, 1,� . The permission-

assignment relation is mined with W = (1, 1, 1, 0,� 121

5.12 University Dataset: 197 Type I errors and 39 Type II errors. 124

5.13 ERBAC Dataset: 740 Type I errors and 148 Type II errors. 124

5.14 Random Dataset: 573 Type I errors and 114 Type II errors. 125

5.15 Tree Dataset: 198 Type I errors and 38 Type II errors. 125

5.16 Using SVD for all eigenvalues greater than or equal to 1.0 and threshold
0.5. 126

5.17 AUC for LPCA, SVD, NMF and BNMF on three real datasets. 127

5.18 The total entropy of the user-permission relation given knowledge of a

user’s attribute. 129

5.19 The distance between roles mined from clean data with roles mined from

noisy and cleaned data and the e⇥ectiveness of noise removal at stabilizing

candidate roles and the susceptibility of RMP. 132

5.20 Distance between HierarchicalMiner and candidate roles from other algo­
rithms from the literature. 133

5.21 Normalized distance for matched role only. 133

5.22 Comparing the time required to perform formal concept analysis (FCA)

and optimize the lattice with HierarchicalMiner (HM) to algorithms by

Ene et al. Exact finds the minimum number of roles. HPr performs a

heuristic role minimization and HPe performs heuristic edge concentration.

All times given in seconds. 136

ix

LIST OF FIGURES

Figure	 Page

2.1	 An example access control matrix. 7

2.2	 Unifying Policy Hierarchy from [27]. 10

2.3	 Core RBAC with a role hierarchy and direct user-permission assignments.

The components relevant to role mining are shown in the dashed box. . 16

2.4	 In the DDM model each user and each permission is assigned to a single

role. 29

3.1	 Reduction of Set Cover to WDP. User-Assignments for us solve Set

Cover. 43

3.2	 Running Example. 46

3.3	 Role hierarchies generated from other algorithms in the literature. W =

(1, 1, 1, 1,� . Graph optimization has be augmented to use WSC and Dis­
joint Decomposition assumes clean data. RBAM created 19 roles and only

two role-hierarchy relations and is omitted. Note the di⇥erence between

Figures 3.2(e) and 3.3(d) when wd = �. 54

4.1	 Long tail of the user-permission relation for the anonymous dataset. Note

the y-axis is on a log-scale. 74

4.2	 Observing the consistency of the optimal rank k decomposition using mul­
tiple levels of noise. 80

4.3	 Partial order over attributes significance. 90

5.1	 Illustrating the di⇥erence between quickly and optimally optimizing a role

mining objective as the number of roles changes. Selecting the best algo­
rithm depends on the area of the shaded regions. 101

5.2	 Graphical Representation of roles in the student part of the university

dataset: The original roles are shown in 5.2(a), the roles generated by

HierarchicalMiner are shown in 5.2(b), and the roles generated by At­

tributeMiner are shown in 5.2(c). In the figures, the first line in a role

is the name, the other lines are the permissions; the number to the right

indicates the number of users assigned each role.) 107

x

Figure	 Page

5.3	 Plots of the minimal WSC and maximal coverage for several algorithms

and datasets. 119

5.4	 Role similarity for generated datasets. 120

5.5	 The resulting RBAC states using hybrid role mining. Predefined roles are

promoted by the closure ⌘✓. 122

5.6	 ROC curve for real datasets. 128

5.7	 The MAE for the user-permission relation X given several attributes. . 130

A.1	 A small role hierarchy illustrating the incompleteness of defining stable

roles by role weight. 150

xi

ABBREVIATIONS

ACL Access Control List

AM AttributeMiner Role Mining Algorithm

DUPA Direct User-Permission Assignment Relation

HM HierarchicalMiner Role Mining Algorithm

NMF Non-Negative Matrix Factorization

PA Permission-Assignment Relation

RBAC Role Based Access Control

RH Role Hierarchy Relation

SVD Singular Value Decomposition

UA User-Assignment Relation

xii

ABSTRACT

Molloy, Ian M. Ph.D., Purdue University, August 2010. Automatic Migration to Role
Based Access Control. Major Professor: Ninghui Li.

The success of role-based access control both within the research community and

industry is undeniable. One of the main reasons for RBAC’s adoption is its ability

to reduce administration costs, help eliminate errors, and improve the security of a

system. Before these advantages can be observed, an organization must first migrate

their access control data over to RBAC. This is a process known as role engineering,

and is potentially expensive.

We view the problem of role engineering as an optimization of the existing ac­

cess control information (permission assignments, attributes, usage logs, etc.) that

maximizes the return on investment in deploying RBAC given a model of a human

administrator. We focus on three main objectives: the RBAC state must be compact,

and minimize the costs to administer access to users; the RBAC state must contain

semantically meaningful roles that correspond to real-world concepts and job duties;

and the RBAC state must be correct and secure.

We develop a two-phase process for role mining: first clean the data, and then find

candidate roles. Techniques based on rank-reduced matrix decomposition and a model

of security are used to clean the data to eliminate errors, predict unknown values,

and identify assignments that are applicable to RBAC. Second, we develop a measure

of administrative costs based on the structural complexity of the RBAC system. The

complexity is parameterized and makes few assumptions regarding administrative

e⇥ort. Two algorithms founded in the theory of formal concept analysis are developed

to minimize the RBAC state complexity while maintaining semantically meaningful

roles.

xiii

This dissertation illustrates that it is possible to automatically specify an access

control system, such as role-based access control, from incomplete and noisy input

data consisting of allow-deny decisions and attributes describing the subjects, objects,

and rights. Further, one can ensure the resulting access control system has low

administrative costs as measured by the structural complexity and semantic meaning

of the resulting access control state.

1

1 INTRODUCTION

Much of information security is, at its core, about classifying actions into two classes,

e.g., allow and deny, good and bad, or safe and dangerous, and ensuring this division

is not violated. The division balances the confidentiality, integrity, and availability of

the resources based on the needs of resource owners or organizations and is specified

by a policy. One of the primary mechanisms used to ensure a safe division between

the two classes is authorization and access control. Access control systems make the

distinction between allowed and denied at many levels and are central to the security

of any organization.

In the most basic access control models, permissions are directly assigned to users.

When a user enters an organization they must be assigned a set of permissions re­

quired to perform their duties. If a user changes jobs within the organization, their

set of permissions is likely to change; permissions authorizing new job duties must

be assigned and permissions authorizing old job duties revoked. Many organizations

have thousands of employees, hundreds of applications and tens-of-thousands of per­

missions [1], making the assignment of permissions to users costly and error prone.

Many access control models have been proposed that attempt to balance the ex­

pressibility, provable security, and ease of administration of desirable policies. New

models often add levels of abstraction between the users and permissions. One such

model that has gained considerable traction in academia, research, and industry, is

role-based access control (RBAC).

In role-based access control permissions are assigned to roles, and roles are assigned

to users. A user may use the permissions assigned to roles which they are a member

of. When a user changes job functions within the organization, the roles pertaining

to their old job function must be revoked, and the new roles assigned. When each

role is assigned many permission, this greatly simplifies administration. Given m

2

permissions and n users, if we directly assign the permissions to users, and the number

of permissions assigned to each user is large, then we need to maintain on the order of

mn relationships. However, using RBAC, the number of relationships that we need

to maintain could be reduced to the order of (m + n).

Role-based access control is widely used in enterprise security management and

identity management products. According to research conducted by IBM, RBAC is

“creating both a valid Return On Investment (ROI) and driving better control over the

assets of an organization” [2]. Attracted by strong ROI, more and more companies

are driven to migrate to RBAC. However, for most companies, creating an RBAC

configuration from scratch is not easy. According to a study by NIST [1], building an

RBAC system is the costliest part of migrating to an RBAC implementation. Any

improvement on methodology that can reduce the cost of RBAC system creation will

further improve the ROI of RBAC and will accelerate RBAC’s adoption in practice.

There are two general approaches to construct an RBAC system: top-down and

bottom-up. In the top-down approach, system administrators, security professionals,

and business domain experts, perform a detailed analysis of business processes and

derive roles from such analysis. Because such a top-down analysis is human-intensive,

it is believed to be slow and expensive, and potentially error prone. To overcome the

drawback of top-down approaches, researchers have proposed to use data mining

techniques to discover roles from existing system configuration data [3–15]. Such

a bottom-up approach is called role mining, and can potentially accelerate RBAC

system construction to a great extent.

Like all human processes, top-down role engineering is also prone to human er­

rors. The vast size of many organizations containing thousands of users, hundreds

of applications, and tens-of-thousands of permissions [1], makes it prohibitive to per­

form role engineering manually. While some may believe the top-down approach is

more desirable despite the higher cost, because it produces higher quality results,

analysis indicates that this is not always the case. Based on a number of real-world

organizations, many RBAC configurations are poorly designed. In an extreme case,

3

a company created one role (and occasionally two roles) for each of the 486 permis­

sions in the system, which results in 489 roles in total [16]. With such an almost

one-to-one correspondence between roles and permissions, the company can hardly

enjoy the advantages of RBAC.

There are several reasons that top-down approaches may sometimes fail to produce

“good” RBAC systems in practice. First, building an RBAC system is challenging.

It is common for people to adopt some trivial design, such as blindly creating one

role for each job position of the organization regardless of whether these job positions

share the same set of permissions. Second, some system designers have been deeply

influenced by Discretional Access Control (DAC). When they are asked to construct

an RBAC system, they tend to do it in a DAC manner, such as creating a role for each

permission, thinking that the most flexibility is provided in that way. Third, many

organizations do not have expertise in designing RBAC systems. They do not know

what is a “good” RBAC system, and such a definition is lacking in the literature.

This dissertation considers the problem of automatically migrating to role-based

access control given existing access control decisions and applicable business informa­

tion. There are several challenges we consider:

•	 How to formally define the problem of role mining? Several works in the litera­

ture [5–8,17–19] introduce new problem definitions and evaluation criteria. We

attempt to unify these works under a common framework.

•	 What defines a “good” RBAC state or a “good” role mining algorithm?

•	 When is an authorization correct? Migrating to RBAC is not always exact, and

existing access control information may contain errors.

This work is motivated by models of real-world usage of role-based access control

and administrative costs. It argues a good RBAC state should have several properties

that make administration e⇤cient and secure. These include compactness, semantic

meaning, correctness, stability, and applicability. These properties will be formally

4

defined, and a formal foundation is presented. Role mining algorithms that produce

RBAC states with each of these properties are presented.

Specifically, this dissertation proposes formal concept analysis [20] as a theoret­

ical foundation on which to base many role mining problems, and illustrates how

many role mining algorithms from the literature can be expressed in terms of formal

concepts. The compactness and administrative costs of an RBAC state are measured

using weighted structural complexity (WSC), a parameterized flexible role mining ob­

jective that subsumes many popular complexity models in the literature [6–8,17,19].

WSC can be used to model both the human costs, business process costs, and tech­

nical costs of an RBAC state. It is shown that minimizing the weighted structural

complexity of an RBAC state can be performed in polynomial time for some input val­

ues, yet is NP-hard for a wide variety of parameters of interest, even to approximate.

HierarchicalMiner , a role mining algorithm based on formal concept analysis that

heuristically minimizes the WSC of an RBAC state, is presented. HierarchicalMiner

is a heuristic greedy algorithm that locally optimizes the RBAC state.

Semantically meaningful roles are provided by two mechanisms: the properties of

formal concepts; and attributes. Formal concept analysis defines candidate roles that

are maximal sets of users and permissions and arranges them in a partial ordered

lattice, giving more meaning and interpretation than the “set of permissions” used

elsewhere. Attributes describing users and permissions relate permissions to mean­

ingful real-world concepts. By defining roles based on attributes, the roles are thus

semantically meaningful. An extension to the HierarchicalMiner algorithm, called At­

tributeMiner , leverages user attributes to increase the semantic meaning of candidate

roles by defining candidate roles using user attributes.

A third extension to the HierarchicalMiner algorithm is proposed that leverages

top-down role mining analysis, creating a hybrid approach to role engineering. Se­

mantic meaning can be interpreted from the predefined roles.

Finally, this dissertation describes a framework that divides the role mining pro­

cess into two phases: data cleaning and candidate role generation. In the data cleaning

5

phase authorizations that are applicable to role-based access control, and authoriza­

tions that are correct, are identified. In the candidate role generation phase the

cleaned input data is converted into a role-based access control state using a role

mining algorithm such as HierarchicalMiner .

Rank-reduced matrix factorization, a popular tool in many machine learning tasks,

is used to perform data cleaning and prediction. Given a noisy or incomplete1 user-

permission relation, a low rank approximation can reconstruct the most likely ground

truth without being overfit to the data. Overfitting an RBAC state may create roles

for legitimate, but exceptional, access or errors in the existing access control state.

Experimental analysis indicates the the singular value decomposition, non-negative

matrix factorization [21, 22] and logistic PCA [23], have very good performance on

real-world access control datasets. If the user-permission relation contains unknown

values, the reconstruction can be used to perform prediction of unknown access control

decisions. A possible scenario is to perform role mining using user access logs. When

additional information, such as user and permission attributes, are available, collective

matrix factorization [24] is used to decrease the reconstruction error and increase

predictive performance. Collective matrix factorization clusters users using both their

assigned permissions and attributes; permissions are similarly clustered if permission

attributes are available. To measure the susceptibility of a role mining algorithm to

noise and the stability of a set of candidate roles, a distance measure between two

sets of candidate roles is presented. It satisfies the required properties of a metric.

Experimental results on nine real-world datasets are used to evaluate the methods

proposed in this dissertation and illustrate the e⇥ectiveness of the proposed results.

The remainder of this dissertations is organized as follows. Chapter 2 provides

background on access control models and role mining. A formal framework for role

mining and the HierarchicalMiner and related algorithms are presented in Chapter 3.

How to handle noisy data and errors in access control is discussed in Chapter 4 and

experimental evaluation in presented in Chapter 5. Finally, Chapter 6 concludes.

1Containing unknown or missing values.

6

2 ACCESS CONTROL, DATA MINING, AND ROLE MINING

Computer security is the endeavor of ensuring the confidentiality, integrity, and avail­

ability of the information and resources within a system. The objective is to restrict

the interactions of entities with resources to only allow actions that are legitimate,

and are considered safe or secure. A security policy specifies what actions are legiti­

mate, or what states of the system are safe. If the system can be restricted to the set

of safe states and only allows legitimate requests, then it is said to be secure.

A policy itself does not ensure the security of a system—it must also be enforced.

Policy enforcement can be accomplished in a combination of ways: prevention, ensur­

ing the system cannot enter a nonsecure state; detection, identifying when the system

has entered a nonsecure state; or recovery, assessing and repairing the damage and

returning the system to a secure state if possible. A security mechanism is a means

with which the policy can be enforced. This dissertation considers the security mech­

anisms of authorization and access control. Authorization and access control help

enforce a security policy by preventing illegitimate requests. When a request is safe

or secure as specified by the security policy, we say the request is authorized.

The focus of this dissertation is on role mining, the application of data mining

techniques to the state of a system and leveraged to configure an access control model

that satisfies a given policy. This is a growing body of work [5–8,13,17,19] that aims at

automatically learning an access control policy and converting it into a model where

it can be administrated, deployed, and enforced. There are many side objectives,

such as discovering errors in the policy, that will be discussed in this work.

This chapter provides the necessary background in authorization and access con­

trol, and presents the role-based access control model that will be the focus of this

dissertation. This chapter will formalize the notion of a secure access control system

7

and policy that will be used when defining policy errors. Finally, a brief introduction

on data mining and related work on role mining will be provided.

2.1 Access Control

A basic access control model is the access control matrix. In 1971, Lampson [25]

described a very basic and general access control model that was later formalized by

Harrison, Ruzzo, and Ullman [26] (the HRU model). In the HRU model, there exists

a set of objects O that need protection, a set of subjects S � O (called domains

by Lampson) that perform operations on objects, and a finite set of rights R that

authorize subjects to perform actions on objects. The state of the access control

system can be represented as a matrix M where each row is a subject s ⌫ S and each

column is an object o ⌫ O. Each entry M [s, o] gives the set of rights the subject s

has to the object o. That is, if r ⌫ M [s, o] � R, we say s is authorized to perform r

on o. To update the access control matrix, there exists a finite set of commands C,

such as adding or removing rights from M [s, o], or creating and destroying subjects

and objects. The state of the system in the access control matrix model can be

represented as a four tuple (S, O , R, M .

An example access control matrix is shown in Figure 2.1. There are two subjects,

S
1 and S

2

, five objects, and three rights, read, write, and execute (r, w, x respectively).

Consider object O
2

; subject S
2 has both read and execute permissions on O

2 while

subject S
1 has no permissions on O

2

.

S
1 S

2 O
1 O

2 O
3

S
1

S
2

rw

r rx

w

x

Figure 2.1. An example access control matrix.

8

2.1.1 Capability and Access Control List

An access control matrix is often large and sparse, making it ine⇤cient to store

and di⇤cult to maintain when subjects or objects are added and removed. Two

alternative access control mechanisms that are more e⇤cient are the capability list

and the access control list.

In these mechanisms, a system only stores the cells of the matrix that are non-

empty, such as (S, O, R (subject, object, right) tuples. If the tuples are grouped by

subject and the (O, R tuples are stored with the subject, this is called a capability

list. Grouping the tuples by object and storing (S, R with the object is called an

access control list.

2.1.2 Safety, Security, and Errors

In [26], Harrison, Ruzzo, and Ullman define the “safety” problem for an access

control system as follows. Given an access control matrix M , a system leaks a right

r if a right r can be assigned to a subject s on an object o that did not previously

contain r. A system that cannot leak a right r is considered safe (a state with the

leaked right is unsafe). Because there are often privileged trusted users that may

grant permissions, such as an administrator or the root user on Unix-like systems,

these users are removed before attempting to answer the safety question.

While the safety analysis question has been shown to be Turing Undecidable in

general [26], there are many systems of interest where it is decidable. This disserta­

tion does not consider problems of decidability, however, issues regarding safety and

security will be mentioned.

Safety can be defined as the inability of the system to enter an unsafe sate. Secure

can be defined as a system’s ability to defend against attack. Many attacks against

access control systems consider privilege escalation, which is subsumed by the defini­

tion of safety. The safety problem is thus an attractive definition for security as well.

These definitions of safety and security assumes the system is initially in a safe state,

9

In large, complex organizations and access control policies, this assumption is often

spurious. The initial state of the system is an approximation of the security policy

that should be enforced.

In [27], Bishop et al. present a policy hierarchy that captures the notion of errors

in policies, implementations, and executions. At the top of the hierarchy is an Oracle

Policy which represents an ideal policy and has perfect and complete information.

This includes a user’s or subject’s intention which cannot be known to any system.

As we move down the hierarchy we begin to approximate practical policies and actual

running systems (including implementation errors). The full hierarchy is presented

in [27], and a modified version is shown in Figure 2.2.

The Feasible Policy represents policies that can be represented and modeled in

any practical system. The Model Feasible Policy is added in this dissertation, which

represents policies that can be represented using a given model. For example, in

RBAC one cannot state the “Teller” role can access accounts only during business

hours of 9:00AM to 5:00PM. This is because the standard RBAC model cannot be

used to represent time (the RBAC model will be formally defined in Section 2.2).

However, the Generalized Temporal RBAC model can [28], and is a more expressive

model.

In role-mining, an access control policy at the Configured Policy level of the hier­

archy is provided as input. A policy may be considered safe at this level, yet contains

errors. The Feasible Policy level is the highest level attainable on a real system and

closest to the ideal policy at the Oracle Policy level. The security of a policy may be

determined by measuring the gap between the Configured Policy level and the Model

Feasible Policy level. The more a policy resembles the ideal policy, the more secure

it is. The detection and recovery enforcement strategies are designed to cover the

policy gaps.

10

Unifying Policy Hierarchy

Level Domain Description

Oracle Policy all possible

(s, o, a, e) tuples

Captures notion of an “ideal policy” even

if such a policy isn’t explicitly defined.

Feasible Policy system-definable

(s, o, a) tuples

Represents what can in practice

be captured on an actual system.

Model Feasible

Policy

system-definable

(s, o, a) tuples

Represents what can in practice

be captured on an actual system, and

what can be expressed in a given model.

Configured Policy system-defined

(s, o, a) tuples

Represents the policy as configured

on an actual system.

Real-Time Policy system-defined

(s, o, a) tuples

Represents what is possible on

an actual system.

s: subject, o: object, a: action / right, e: environment / intent

Figure 2.2. Unifying Policy Hierarchy from [27].

2.1.3 Access Control Policies

There are two types of access controls that can be used: discretionary access

control (DAC) and mandatory access control (MAC). In a discretionary access control

system, the users can control the level of access in the system. A DAC system is based

on two key concepts: identity and ownership. The owner of an object can specify

what requests are authorized and access is controlled based on the identity of the

subject. The subject that created an object is typically the owner.

Alternatively, when the system controls which requests are authorized, and the

users cannot change the access, then the system is a mandatory access control system.

In a MAC system, neither the subject nor the object owner can grant access. MAC

is used in multilevel security systems where the access is determined by properties of

11

the subject and the object, such as the sensitivity of the object and the clearance of

the subject.

2.1.4 Access Control Models

Researchers have proposed many alternative models to the access control matrix

that aim at easing the administration costs while e⇤ciently enforcing desirable prop­

erties. Three popular models are the Bell-La Padula model [29] for confidentiality,

the Chinese Wall model [30] for conflict of interest, and the Clark Wilson model [31]

for integrity.

The Bell-La Padula model [29] is a mandatory access control model that enforces

the confidentiality security policy. Bell-La Padula formalizes multilevel security and

one-dimensional information flow. Objects are given a label indicating their sensitiv­

ity (typically a classification and set of compartments) and users are given clearance

(authorization) to read information up to a given sensitivity level. The sensitivity

levels of the objects naturally form a lattice structure. The simple security prop­

erty restricts a user at a given clearance level to only read objects at the same or

lower sensitivity level. The ⇤-property restricts write access to objects with the same

or higher level than the subject’s clearance. These two security properties ensure

confidentiality.

The Chinese Wall model [30] is a hybrid confidentiality and integrity model de­

signed to protect against breaches of conflict of interests. Objects are placed into

datasets and datasets are grouped by conflict of interest classes. When a user reads

an objects from one dataset, they are prevented from accessing, e.g., reading and

writing, all objects from a di⇥erent datasets in the same conflict of interest class.

The Clark Wilson model [31] is an integrity model whose aim is to ensure the

consistency (validity) of the data. This is accomplished by first validating the consis­

tency of the data, i.e., certifying it, producing what Clark and Wilson call constrained

data items. The integrity of the constrained data items is ensured by only allowing

12

well-formed transactions, i.e., arbitrary operations on the data are not allowed, and

enforcing separation of duty, i.e., a single subject cannot perform all actions in a

well-formed transaction.

An access control model that has received considerable support from both re­

searchers and industry, and the focus of this dissertation, is role-based access control

(RBAC) [32–35]. The RBAC model will be presented next.

2.2 Role-Based Access Control

Role-based access control (RBAC) was first proposed by Ferraiolo and Kuhn [33]

and was later expanded into a family of models by Sandhu et al. [34], and eventually

became an ANSI INCITS standard [35]. An earlier model based on grouping permis­

sions that resembles RBAC was created by Baldwin [32]. RBAC is a policy neutral

access control model capable of expressing both DAC [36] and MAC [37] policies.

In RBAC, roles are a semantic construct that represent a job function a user

may perform within an organization. A role thus embodies the permissions a user

requires to perform the duties described by the role they hold. The ANSI RBAC

Standard presents a core specification and a set of optional components that may be

included [35]. In the ANSI standard, RBAC has four components:

• Core RBAC

• Hierarchical RBAC

• Static Separation of Duty (SSD) Constraints

• Dynamic Separation of Duty (DSD) Constraints

Core RBAC is required in all implementations of RBAC, while hierarchical RBAC,

and static and dynamic separation of duty constraints may be optionally added. In

Core RBAC, an administrator assigns users to roles and assigns permissions to roles.

When a user activates a role, they obtain the permissions it contains.

�

�

13

The ANSI RBAC Standard is not a perfect model, and several flaws and short­

comings have been discovered and discussed in the literature [38,39]. For the purposes

of this work, only a subset of the ANSI RBAC Standard is required and several small

changes based on some of the findings of Li, Byun, and Bertino [38] are included.

Specifically, this dissertation focuses on Core RBAC without sessions, with role hi­

erarchies, and adding direct user-permission assignments that are not part of the

standard. See Figure 2.3. While this work does not consider any of the numerous

extensions to the RBAC model, for example [40–43], this work should be applicable

as it considers the core RBAC model.

2.2.1 Core RBAC

The subset of Core RBAC used in the literature is the following. There exists a

set of users USERS , a set of permissions PERMS , and a set of roles ROLES . For

role mining, the notion of sessions is often ignored. The set of permissions is defined

= 2OPS ⇥Oas the operations that may be performed on an object, i.e., PERMS .

An operation op ⌫ OPS is semantically the same as a right in the access control

matrix model. The remainder of this work will use the term permission to define an

authorization to perform an action on a object.

Finally, the state of an RBAC system is defined by two relations over the set of

users, permissions, and roles. From the ANSI RBAC standard:

•	 UA USERS ⇥ ROLES , a many-to-many mapping user-to-role assignment

relation.

•	 PA PERMS ⇥ ROLES , a many-to-many mapping permission-to-role assign­

ment relation.

The UA relation stores the roles that are assigned to each user, and the PA

assignment stores the permissions that are assigned to each role. Between these two

relations, one can determine the permissions each user is authorized.

�

14

•	 authorized perms(u : USERS) ⇣ 2PERMS , the mapping of user u onto a set of

permissions. Formally: authorized perms(u) =
⌦

r|(u,r)⌦UA { p | (p, r) ⌫ PA }

In the ANSI standard, a user initiates a session and activates a subset of their roles

for use in the session. The standard defines a set of available permissions for the

given session as the union of the authorized permissions for the roles activated in the

session. Without sessions, the concept of authorized permissions is used instead. Note

that the set of authorized permissions is the same as the set of available permissions

when the user activates all of their assigned roles.

2.2.2 Hierarchical RBAC

Hierarchical RBAC introduces role hierarchies to Core RBAC. A role hierarchy is

a partial order on the set of roles, i.e., RH ROLES ⇥ ROLES , written as t. If

(r
1

, r
2

) ⌫ RH then r
1 t r2 and r

1 is said to be senior to r
2

, and r
2 is the junior role

to r
1

.

Implicitly a role hierarchy defines an inheritance relation. A senior role inherits the

permissions assigned to its junior roles, and a junior role inherits the users assigned

to its senior roles.

This is formalized by as follows:

•	 authorized users(r : ROLES) = { u ⌫ USERS | r/ t r 1 (u, r/) ⌫ UA }

•	 authorized perms(r : ROLES) = { p ⌫ PERMS | r t r/ 1 (p, r/) ⌫ PA }

•	 authorized perms(u : USERS) =
⌦

r|(u,r)⌦UA authorized perms(r)

A role r
1 is the immediate senior role to r

2

, denoted by r
1 ✏✏ r2 if r1 t r2 and there

does not exist a role r
3 such that r

1 t r
2 ⇠ r

3 ⇠ r
3

.t r
3 and r

1 = and r
2 = The RH

relation stores only the inheritance relations ✏✏ specified by the an administrator

and the partial order is the reflexive and transitive closure over RH .

As noted by Li et al. [38], the ANSI standard is potentially misleading. When

introducing role hierarchies they state that:

�

�

�

�

�

15

“Inheritance has been described in terms of permissions; i.e., r
1 ‘inherits’

role r
2 if all privileges of r2 are also privileges of r

1

. ... role hierarchies

are managed in terms of user containment relations: role r
1 ‘contains’

role r
2 if all users authorized for r

1 are also authorized for r
2 [35].”

The role hierarchy facilitates user and permission inheritance, and not conversely

as the above implies. We now state that r
1 t r

2  authorized perms(r
2

)

authorized perms(r
1

) 1 authorized users(r
1

) authorized users(r
2

). It should be noted

that there is not an equivalence between the role hierarchy and the subset relations for

authorized users and permissions, i.e., (authorized perms(r
2

) authorized perms(r
1

) 1

authorized users(r
1

) authorized users(r
2

)) ⇠ r
1 t r2

.

The Standard describes two types of hierarchies: general role hierarchies and

limited role hierarchies. A limited role hierarchy is constrained such that ⇡r, r
1

, r
2 ⌫

ROLES , (r ✏✏ r
1 1 r ✏✏ r

2

)  r
1 = r

2

. Limited role hierarchies are not considered

in this work.

2.2.3 Direct User-Permission Assignments

In additional to Core RBAC and role hierarchies, direct user-permission assign­

ments are added to the RBAC model. Direct user-permission assignments (DUPA)

allow an administrator to assign permissions directly to users without an interme­

diate role. This extension to the RBAC model is more general. There exists many

real-world implementations of RBAC that allow permissions to be directly assigned

to users. Without including such permission assignments into our model, we cannot

model many real-world implementations, which hinders the applicability of this work.

•	 DUPA USERS ⇥ PERMS , a many-to-many mapping user-permission rela­

tion.

These permissions are authorized in addition to the permissions a user obtains from

the roles to which they are assigned. Formally,

16

•	 authorized perms(u : USERS) = { p | (u, p) ⌫ DUPA } ⌧
⌦

authorized perms(r)r|(u,r)⌦UA

Through the remainder of this dissertation we use the following notation. Given

an RBAC state ⇤, the set of permissions assigned to a user or role ↵ is P⌃ and the

set of users assigned to a role r is Ur. When the RBAC state is ambiguous, we will

annotate with the access control configuration, such as Ur
⇥ .

Components Used in the Role Mining Literature

RIGHT OBJECTX

PERMISSIONS

DUPA

USERS

ROLES

RH

SESS-
IONS

PA

UA

Figure 2.3. Core RBAC with a role hierarchy and direct user-
permission assignments. The components relevant to role mining are
shown in the dashed box.

2.2.4 Constraints

The RBAC model includes the notion of constraints which place restrictions on

the set of roles a user may be assigned (static separation of duty), or may activate

in a session (dynamic separation of duty). Constraints are formalized as t-out-of-n

restrictions on user assignments and role activation. Static constraints state a user

cannot be assigned (or authorized in the case of a role hierarchy) t or more roles from

a set of n roles. Dynamic constraints state a user cannot activate t or more roles from

a set of n roles in the same session. Constraints will not be considered in this work.

17

2.3 Role Engineering

Role-based access control o⇥ers many advantages over other access control sys­

tems. It is a conceptually simple and familiar concept for many organizations. RBAC

eases the administration costs by reducing the number of assignments and revocations

required when users enter and leave the system or change jobs within the organiza­

tion. When used in conjunction with sessions, RBAC allows users to activate only the

roles required to perform their duties under the principle of least privilege. Further,

statically and dynamically mutually exclusive roles (constraints) allow separation of

duty policies to be defined.

Before any of the benefits of RBAC can be realized, security administrators have

to define a set of roles that reflect the duties, responsibilities and tasks within the

organization. The definition of such a set of roles is known as role engineering, and

was first proposed by Coyne [44]. There are two approaches to role engineering,

top-down, and bottom-up. These will be discussed next.

2.3.1 Top-Down Role Engineering

Coyne [44] was the first to propose the role engineering problem and the top-

down approach to role engineering. In top-down role engineering, administrators

and domain experts analyze business practices and workflows of an organization.

Roles should resemble the competency, duties, responsibilities, and tasks within the

organization [34].

Fernandex and Hawkins [45] describe a top-down approach to role engineering

using use cases. Use cases typically depict the interaction between an actor and a

system to perform a task. Fernandez and Hawkins define a role by the actor and the

permissions required to perform the task.

Epstein and Sandhu [46] discuss how to design roles by adding several layers of

abstraction, such as jobs, work patterns, and tasks. These abstractions make it easier

to decompose the business practices and requirements.

18

The top-down approach to role engineering is often time consuming and costly

due to the extensive human involvement which can be considerable for large organi­

zations. If administrators do not have experience in RBAC, they may often create

ine⇤cient roles. Researchers at IBM Research and HP Labs have independently found

that administrators often create ine⇤cient roles, for example creating a role for each

user or each permission in the system. Often, administrators will create roles that

are redundant and unnecessary, and can easily be removed without a⇥ecting the per­

missions assigned to each user [16, 19]. In these instances the administrators do not

gain many of the advantages RBAC brings to an organization. This dissertation will

focus on the bottom-up approach to role engineering, and is orthogonal to top-down

role engineering.

2.3.2 Bottom-Up Role Engineering

Top-down role engineering defines roles by manually specifying the requirements

of the system and determining which users and permissions satisfy them. This can

be seen as role engineering “from scratch.” Bottom-up role engineering leverages the

existing access control information to identify latent roles that have been deployed

but not formally specified. Kuhlmann, Shohat and Schimpf [3] were the first to

consider bottom-up role engineering and proposed the application of data mining,

coining the term role mining. Before describing the existing work on role mining, a

brief introduction to data mining is given.

2.4 Data Mining

This section gives a brief introduction to data mining. Data mining is the process

of extracting useful, and usually unknown and unexpected, knowledge from data and

information. Data mining is often called a secondary task; the data is typically

collected for a primary purpose, such as access control, auditing, or payroll, as is the

19

case for the data that is applicable for role mining. To draw a distinction between

data and information, the following definition from Per Brinch Hansen is used:

“Data: Physical phenomena chosen by convention to represent certain

aspects of our conceptual and real world. The meaning we assign to data

are called information. Data is used to transmit and store information and

to derive new information by manipulating the data according to formal

rules [47].”

Knowledge is a higher level form of information gained from interpreting, analyz­

ing, combining, and understanding information from data. These concepts can be

expressed as a progression:

Data ⇣ Information ⇣ Knowledge.

The knowledge extracted from observational data often takes the form of models

or patterns. A model is a global representation of the data and can be used to

make inferences about any datapoint or summarize the data. A model is often a

smaller representation of the observational data, known as a compression. A pattern

is a statement about a restricted region of the data under certain constraints. For

example, a pattern may be restricted to users with a given set of attributes, such

as work location and salary. Models and patterns are useful for two common data

mining tasks that are applicable to role mining: prediction and clustering.

In prediction, one is interested in estimating the value of an unknown variable given

other known inputs. For example, determining whether a user should be assigned a

permission or role given a set of attributes or other permission assignments. This is

not a common task in the role mining literature, but is useful in many settings.

Clustering, or grouping similar objects, is a more common task; roles are easily

defined by clusters of users and permissions. Often users are clustered together, and

all users in a cluster are assigned a common set of roles.

Finally, how well a given model or pattern explains the observational data must

be measured. This is called a score or fitness, and is often measured by a distance

�

�

�

20

measure between the model and observed data. A model can be overfit to the data and

may begin to capture the anomalies and not the underlying relationships. Overfitting

is often the result of a poor choice of model or parameters with too many degrees of

freedom.

The processing of data mining involves several steps, the three most important to

the task of role mining are:

• Select a model or representation

• Select a score or fitness function

• Optimize the score function

A popular data mining technique used in many role mining algorithms is associ­

ation rule mining for discovering patterns, which will be described next. For a more

extensive discussion of data mining, see [48].

Association Rule Mining Association rule mining is a popular technique for dis­

covering patterns and relations between items in large transactional datasets. In

association rule mining, there exists a set of items I, and a database of transactions

T . Each transaction t ⌫ T is taken from items in I, i.e., t I. An association

rule is an implication of the form X  Y , where X, Y I are called itemsets and

X � Y = �. We say the support of an itemset X is the number of transactions in T

that contains X, i.e., suppT (X) = | { t ⌫ T | X t } |, and the confidence of an asso­

ciation rule is confT (X  Y) = suppT (X ⌧ Y)/suppT (X). Finally, an itemset is large

if suppT (X) > for threshold . The aim of association rule mining is to identify

large itemsets with high confidence implications. An itemset X is said to be closed

if ⇡Y ⇧X , suppT (Y) < suppT (X). Two popular algorithms for identifying association

rules are Apriori [49] and FP-Tree [50].

21

2.4.1 Machine Learning

A closely related field to data mining is machine learning. While there is no clear

distinction that separates data mining from machine learning, they vary slightly in

their focus and approaches. Data mining tasks are often more data driven, stemming

from database applications and exploratory data analysis. Here, the focus is on

discovery and extraction of unknown patterns in the dataset.

Machine learning has an emphasis on point estimation for classification and predic­

tion, making it closer to statistics than data mining. Two common types of machine

learning algorithms are supervised and unsupervised learning. In supervised learning

the desired label is given in addition to the data, and the task is to predict the label of

unseen data. The learning task is called regression if the label is a continuous value,

and classification if the label is discrete. In unsupervised learning data labels are

not given, and the objective is to learn the distribution of the data. Semi-supervised

learning combines both labeled and unlabeled data.

Role mining tasks can fall into either supervised or unsupervised learning tasks.

Identifying a suitable set of candidate roles is an unsupervised learning task because

roles are not known a priori. Assigning new users to existing roles using permission

and attribute assignments [51] is a supervised learning task, and predicting unknown

access control decisions can be a supervised or semi-supervised learning.

2.5 Role Mining

Since 2005, most research on role engineering has focused on the bottom-up or hy­

brid approaches. Kuhlmann et al. [3] first proposed the use of data mining techniques

and coined the term “role mining.” The authors described their experiences perform­

ing role mining using an o⇥ the shelf data mining tool, IBM’s Intelligent Miner for

Data, in a seven-step process. The problem space for role mining depends on two

main dimensions: the input data, and the objective, typically defined by a score or

fitness function. We discuss these next.

22

2.5.1 Problem Domain

This section discusses the two main dimensions that define the role mining domain:

input data and objective. First consider the data input dimension. At the bare

minimum, one would have user permission information, that is, the set of users, the

set of permissions, and the binary user-permission relation. For example, the access

control matrix can be converted into a user-permission relation by converting each

object-right tuple into a permission. An existing RBAC state can be converted to a

user-permission relation by flattening it. A flattened RBAC state may be obtained

by calculating the set of authorized permissions (authorized perms) for each user.

In some cases, one also has user attribute information, e.g., a user’s job title, the

department and location a user is in, etc. Often, one also has permission parameter

information, which is similar to user attribute information, but for permissions. For

example, a number of permissions may be about the same enterprise information

management application, or a permission may define accounts on machines in one

domain. In some systems, one may have permission update information, i.e., from

logs that record how the access control state has evolved in the past. For example,

a log entry may record, at a certain time in the past, a user was assigned a number

of permissions soon after the user was revoked certain permissions. This piece of

information would be useful for role mining because it may reflect a job position

change event. One may have permission usage information. For example, one may

have logs showing which permissions are used and at what time. Such logs are

often stored for compliance and auditing purposes. Finally, there may exist a set

of predefined roles from an existing RBAC system or a top-down role mining process.

Next consider the problem dimension. The first problem that naturally arises

is to mine an RBAC state (i.e., roles, role hierarchy, role-permission assignments,

and user-role assignments) while optimizing some complexity measure. The second

problem is to mine roles with good semantic meanings, i.e., roles that correspond to

real-world concept units, e.g. a role for lecturers in the CS department. A similar

23

problem is to construct parameterized roles that correspond to categories of concepts.

For example, we may create a role for lecturers with the course name as a parameter.

Finally, an access control configuration may contain noise or outliers. For example,

one may find that a permission or a role has been assigned to all but one user in the

same department. It would be nice if such outliers are discovered and reported to the

administrator for investigation to discover and correct potential authorization errors.

By combining the data dimension and the problem dimension, a picture on what

problems can be solved (or partially solved) with di⇥erent data availability is formed.

A summary of the discussion from [16] is given in Table 2.1. The ability of predefined

roles to be useful in various role mining tasks depends on the quality of the roles.

For example, if a predefined role is created for each permission, it is unlikely they

are useful for any role mining tasks. For a more complete discussion of the problem

space, see [16, 52].

Table 2.1
Summary of potential role engineering problems with di⇥erent infor­
mation availability. “X” indicates that the corresponding problem
is worth studying and a good solution to the problem is possible;
“Limited” indicates that a solution could be provided for the prob­
lem, but the solution may be limited without more information; an
empty cell indicates that the provided information is insu⇤cient to
study a problem.

Low

Complexity

Good

Semantics

P arameterized

Roles

Least

P rivilege

Detect

Outliers

User Permission Only

With User-Attribute

With Permission-Parameter

With Update Log

With Usage Log

Predefined Roles

X

X

X

X

X

X

Limited

X

X

X

X

Limited

X

Limited

X

Limited

Limited

X

X

X

X

Limited

24

Note that when performing role engineering or role mining, each access control

policy is individually evaluated. This dissertation does not assume knowledge learned

from performing role mining on one access control state can be beneficially applied to

another. Further, it is not assumed two datasets, such as a firewall and file server, can

be directly compared. The process of leveraging knowledge learned on one dataset

to another is known as transfer learning [53], and is out of scope for this dissertation

and considered future work.

2.5.2 Related Work in Role Mining

We now present several representative role mining algorithms from the literature.

We roughly divide the algorithms based on their input data, output, and objectives.

We will then discuss the role mining objectives used in the literature.

Role mining algorithms may be di⇥erentiated by whether they assume the input

data is clean and correct, or whether it assumes the data contains noise. There are

generally two types of noise in access control data that may impact a role mining

algorithm. First, the data may contain errors, such as false positives and false nega­

tives that need to be identified and corrected to ensure the security (confidentiality,

integrity, and availability) and the resources. The second type of noise are legitimate

exceptions that don’t adhere to the motivation underlying role-based access control.

More precise definitions of noise will be presented in this dissertation.

Exact Role Mining Algorithms

All role mining algorithms take a user-permission relation as input, and many find

an RBAC state that represents the same level of access as this input relation. We

consider these algorithms first, and describe several seminal approach to role mining.

ORCA Schlegelmilch and Ste⇥ens [4] were the first to study role mining as a

new algorithmic problem and proposed the ORCA role mining tool. The ORCA

25

algorithm does hierarchical clustering on permissions. One starts with the set

S = {{p
1

}, {p
2

}, · · · , {pn}}, where p
1

, p
2

, · · · , pn are all the permissions. Iteratively,

one finds a pair si, sj ⌫ S such that the number of users having both si and sj is the

largest among all such pairs, and update S by removing sj and sj and merging si and

sj. si ⌧ sj is then added to S. This approach constructs a role hierarchy, but limits

the role hierarchy to a strict tree structure such that each permission and each user

can be assigned to only one role in the tree.

FastMiner and CompleteMiner Vaidya et al. [5] proposed a role mining ap­

proach that consists of two phases. The first phase generates a set of candidate roles,

each of which is given by a set of permissions. They proposed CompleteMiner, which

starts with every user’s permission set, and computes the intersection of all subsets of

the initial set of roles. To reduce the running time of CompleteMiner, they then pro­

posed FastMiner which computes the set of candidate roles as all possible intersections

of at most two initial roles. The second phase selects roles from the candidates based

on a priority calculated from the number of users who have exactly the permissions

in the role and the number of users who have a superset of the permissions.

Vaidya et al. [6] studied the problem of finding a minimal number of roles such

that all user-permission relation (UP) assignments can be performed through these

roles, which they refer to as the role mining problem (RMP, and later basic-RMP).

They show that RMP is NP-complete, and is closely related with several existing data

mining problems such as the minimal titling problem and the discrete basis problem.

[6] then suggests that the techniques and solutions for these known problems may be

used for the role mining problem. Similarly, Lu et al. [7] view the role mining problem

as a decomposition of a boolean matrix. An input matrix, the user-permission relation

UP , is decomposed into a user-role matrix UA and a role-permission matrix PA, such

as UP = UA ⇧ PA, where ⇧ is defined as

k

UP ij =
�

UAi⌥ 1 PA⌥j .
⌥=1

26

Both works suggest greedy algorithms that select roles that solve cover a maximum

number of remaining relations. These techniques are limited to mining RBAC systems

that do not have a hierarchy.

Graph Optimization In [8], Zhang et al. presented a heuristic algorithm for role

mining. The algorithm views an RBAC state as a graph with each user, permission

and role as a vertex and the user-role, role-permission, and role-role relationships

as edges. The goal is to minimize the number of edges while maintaining the same

connectivity. Their algorithm starts with an initial RBAC system and iteratively

improves the system by identifying pairs of roles such that merging or splitting the

two roles will result in a graph with a lower cost.

Frequent Permission Set Mining Colantonio et al. [10] tailor an association

rule mining algorithm for the task of role mining. They attempt to minimize the

administration cost of the RBAC state by choosing large roles (by support) that are

assignable to many users. Their algorithm is based on the Apriori [49] association rule

mining algorithm, and they call their algorithm RBAM (Role-Based Association-rule

Mining). Colantonio et al. use Apriori to output roles that are large when viewing

each user as a transaction and each permission as an item. A cost metric, similar

to weighted structural complexity [16] (see Section 3.1.1), is used to determine the

minimum support and prune unnecessary roles.

Zhang et al. [9] present another algorithm based on association rule mining of

permission sets. Unlike Colantonio [10], they use the FP-Tree algorithm [50] instead

of Apriori. When roles are assigned a large number of permissions, this makes Zhang’s

approach more practical1 . Roles are defined as large itemsets over a static threshold

and placed in a partial order role hierarchy lattice. If a role is not assigned users

beyond those it inherits from its senior roles, the role is pruned. Their algorithm is

evaluated as varies by the percentage of the original user-permission relation that

1Colantonio et al.’s algorithm processes the lattice pertaining to the powerset of the permissions,
⇥(P).

�

27

is covered with only large itemsets. Additionally they consider the number of original

roles recovered and the a⇥ect of various parameters on the time required.

Biclique Covering Ene et al. [19] present a fast method to solve the RMP pre­

cisely in practice by performing graph reductions on the bipartite graph representing

the user-permission relation. The role mining problem is viewed as a biclique cover

of a bipartite graph where the RMP is the minimum biclique cover. They also in­

troduce several heuristic algorithms to approximate the RMP and other variants,

such as minimizing the number of edges (the sum of user-role and role-permission

relationships), and create minimal role hierarchies of height two or three.

Mining Optimal Role Hierarchies Guo et al. [18] consider the problem of se­

lecting an optimal role hierarchy given a set of roles. An optimal role hierarchy

minimizes the size of the role-role relations such that the role hierarchy captures the

complete partial order over the set of roles. That is, given two roles r
1 and r

2

, if

authorized perms(r
2

) authorized perms(r
1

) then r
1 t r2

. This is a contrived and

unrealistic problem in role engineering that likely results from the misleading role

hierarchy specification in the ANSI standard.

Minimum Perturbation Role Mining Unlike the above works, Vaidya et al. [17]

assumes there is an existing RBAC state or set of predefined roles. They define the

minimum perturbation role mining problem where an administrator is interested in

reducing the complexity of the existing RBAC state while minimizing the number of

changes. Minimum perturbation role mining is a dual optimization problem: mini­

mize the complexity of the RBAC system while maximizing the similarity between

the predefined and candidate roles. The similarity between two roles is measured

by the Jaccard coe⇤cient, J(A, B) = | A�B | , and the average maximum Jaccard co­| A↵B |

e⇤cient between all predefined roles and the set of candidate roles as a measure of

similarity between the sets of roles. The final optimization is a weighted sum of the

average maximum Jaccard, and the number of roles k. A weight is used to control

28

the tradeo⇥ between the two objectives and the objectives. Each objective must be

normalized because the average maximum Jaccard is bounded between zero and one

while role minimization is a positive integer k.

Approximate and Probabilistic Role Mining

A growing number of role mining algorithms produce an RBAC state that does

not represent the same level of access as the input data. These approaches may add

or remove permission assignments, granting users more or less access.

⌅-Approximate Role Mining The first role mining work to discuss an approx­

imate solution was Vaidya et al. [6]. They define the basic role mining problem

(basic-RMP), to minimize the number of roles required to cover the user-permission

relation, and two approximation problems: ⌅-RMP, to minimize the number of roles

while allowing no more than ⌅ deviations (over-assignments and under-assignments);

and MinNoise-RMP, to minimize the number of deviations using at most k roles.

In [7] Lu et al. provide solutions to both ⌅-RMP and MinNoise RMP. Their solution

to ⌅-RMP works as follows. First, select ⌅ user-permission pairs (u, p) at random; if

user u is assigned permission p, revoke the assignment, otherwise, add it. Next,

they run their solution for RMP and obtain the minimal number of roles k to cover

the approximation, and repeat the procedure many times. Using their approach, an

optimal solution must search the entire space of
�| U |⇤

⇤
| P |⇥ user-permission assignments

that may be incorrect.

Disjoint Decomposition Model Another approach is the disjoint decomposition

model (DDM) [13]. In DDM, each user is assigned to a single business role, and

each permission is assigned to a single functional or technical role. A two-layer role

hierarchy connects business roles to technical roles, authorizing permissions to users.

This is similar to the enterprise RBAC (ERBAC) model [54, 55] with the constraint

that each user and each permission is assigned to only a single role. See Figure 2.4.

	
�������
����� ���������
����� 	

29

��� � �� ��������

�

�

�

�

�

�

�

�

Figure 2.4. In the DDM model each user and each permission is
assigned to a single role.

Frank et al. use what is called the infinite relational model (IRM) from Kemp et

al. [56] to cluster users into user groups and permissions into permission groups. One

disadvantage of DDM stems from the constraints placed on the user and permission

assignment relations and is best explained in the context of mining clean data. DDM

restricts each user to be assigned to a single business role; all users assigned to the

same business role must have exactly the same set of permissions, and there must exist

a business role for each unique user. This requires the creation of a large number of

roles, something the IRM model penalizes by automatically selecting the number of

roles. Small di⇥erences between users, or small user group, are thus placed together

in larger groups. In experiments [57] it is shown this causes significant permission

under-assignment, including the complete revocation of all permissions from some

users.

Multi-Assignment Clustering Because DDM (and IRM) requires each user and

each permission to be assigned to a single role, Streich et al. [15] propose multi-

assignment clustering (MAC) for binary relations that removes this restriction. MAC

works by assuming each assignment (u, p) comes from either a signal or a noise dis­

tribution, and the signal distribution allows each user to obtain a permission from

30

multiple clusters it is assigned. A cost function for assigning a user to a particular

cluster is based on the probability the user obtains the given permission from either

the signal or noise distributions. The authors use deterministic annealing to select

the user-cluster assignments that minimize the assignments’ costs.

Both DDM and MAC combine the noise identification and candidate role genera­

tion phases of role mining. A system administrator cannot reject the cleaning results

or make further changes. When noise identification is done separately, the system

administrators can be asked to confirm whether the identified noise is really noise.

Leveraging Additional Inputs

The above role mining algorithms only accept a user-permission relation as input.

This restricts the types of problems role mining can attempt to solve, and the quality

of the results. Since 2008, a growing number of role mining algorithms [12, 14] have

accepted additional inputs, such as user attributes. Colantonio [12] use an organi­

zation hierarchy to define roles assigned to closely related users. Frank et al. [14]

select roles with high attribute compliance2 from otherwise similar roles generated

with MAC [15] by maximizing the number of attributes shared by users assigned to

a role. Their approach reduces permission assignment accuracy to increase attribute

compliance, increasing the number of errors in order to gain semantic meaning.

Safety of Role Mining

One must consider how role mining a⇥ects the safety analysis of a system as

defined by [26] (see Section 2.1.2). A system is considered safe if it is initially in a

safe state and it cannot enter an unsafe state. An unsafe state is often defined by

the leakage of a right r to a user u that did not have r. When performing exact role

mining, the RBAC state has the same level of access as the input state, and it is easy

2Number of attributes shared by users assigned to a role.

31

to conclude if the input state was safe, the resulting RBAC state is also safe (we do

not consider the impact of sessions, constraints, etc. here).

When performing inexact role mining, a user may be assigned additional permis­

sions, and the role mining process can be seen as leaking these assignments. One

cannot simply conclude that inexact role mining is unsafe, because inexact role min­

ing operates under the assumption the input data (the original state), was in fact not

in a safe state. That is, if the input state to role mining is not in a safe state, the

results from exact role mining are not safe, and the results from inexact role mining

may be safe. The objective here is to place an unsafe state into a safe state through

the process of role mining.

2.5.3 Evaluation Criteria and Objectives

This section considers the role mining objectives and evaluation criteria that have

been used in the literature. An abstract objective to “convert an existing system to

RBAC” is ill defined and trivial to resolve by creating a new role for each user or

permission (or both). Such a solution is clearly undesirable and a systematic objective

function or criteria under which RBAC states may be compared is required.

Several evaluation criteria or metrics have been used in the literature. Vaidya

et al. [5] randomly generate RBAC states and mine the flattened UP relationship.

To evaluate a set of candidate roles, they count the number of original roles that

are recovered. This method is only useful for evaluating an algorithm against known

desirable data.

In [6], Vaidya et al. use the following formulation of role-mining. Let UP ⌫

{0, 1}n⇥m with n users and m permissions such that UP ij = 1 if and only if user i

has permission j. Role-mining is defined as a decomposition of UP into the relations

UA ⌫ {0, 1}n⇥k and PA ⌫ {0, 1}k⇥m such that UP = UA ⇧ PA.

UP = UA ⇧ PA, (2.1)

32

where ⇧ is defined as
k

UP ij =
�

UAi⌥ 1 PA⌥j ,
⌥=1

creating k roles. The L
1 norm of a matrix A,

||A||
1 =
↵

| Aij | , (2.2)
ij

is used to calculate the number of deviations ⌅ between the original input data UP

and the mined relations UA ⇧PA where ⌅ = ||UP � (UA ⇧ PA)||
1

. They say UA and

PA are ⌅-consistent with UP .

Using this framework, they present three evaluation criteria. First, know as the

basic role-mining problem (basic-RMP), find a minimal set of roles that satisfy Equa­

tion 2.1, i.e., minimize k above. It is believed that by minimizing the number of roles,

the administration costs are significantly reduced. This reduction can be significant

compared to the trivial solution of creating a single role for each user or permission.

The second variant is ⌅-approximate RMP. In ⌅-RMP the objective is to minimize

k such that ||UP � UA ⇧ PA||
1 ⌦ ⌅ (note that basic-RMP is a special case of ⌅­

RMP with ⌅ = 0). The motivation behind ⌅-RMP is that the input UP relation

is likely to contain errors in the form of over and under assignments. Such errors

may be common as users change roles in the organization and not all of their new

permissions are assigned or old permissions revoked. In many instances, it is easier to

add new permissions and not revoke old permissions. The disadvantage of ⌅-RMP is

it requires the administrator to know how many errors are present in the input data

and there is no guarantee the ⌅ errors discovered are correct.

In their third criteria, MinNoise-RMP, the goal is to minimize ⌅ using at most k

roles. MinNoise-RMP is useful when an administrator needs to limit the number of

roles created but retain as much of the original policy as possible. The di⇤culty with

MinNoise-RMP (and all ⌅-approximate solutions) is there is no guarantee that all

permission assignments are equally sensitive. Such solutions may revoke permissions

that adversely damage availability or grant permissions that harm confidentiality or

integrity.

33

Two variants of RMP were later introduced. In [8], Zhang et al. suggest ||UA||
1 +

||PA||
1 + ||RH ||

1 and ||UA||
1 + ||PA||

1 + ||RH ||
1 + | ROLES | as possible evaluation

criteria. Lu et al. [7] also consider ||UA||
1 +||PA||

1 which they call edge-RMP, and Ene

et al. [19] call edge-concentration. These complexity measures more closely model the

work of an administrator because they count the assignment an administrator must

make to create the UP relation.

Colantonio et al. [10] describe a cost measure to for flat RBAC states,

f = � | UA | + ⇥ | PA | + ⇤ | ROLES | + ⌅
↵

c(r),
r⌦ROLES

where c : R ⇣ R and R is the set of all possible roles. The function c allows an

administrator to increase or decrease the cost associated with a specific role based on

its desirability, such as underlying business processes or semantic meaning. Without

domain knowledge, c maps all values to a (presumably non-negative) constant.

The probabilistic models for role mining [13–15] attempt to find user-assignment

(UA) and permission-assignment (PA) relations that maximizes the data probability,

Pr [UP , UA, PA | k]. The main distinction between [13] and [15] are the constraints

placed on UA and PA. In [15], similar to MinNoise-RMP, the correct number of

roles k is assumed known in advance. In [13] the probability of an error in known,

allowing one to approximate ⌅, and k is kept small. These models can be viewed

as solutions to RMP (role minimization) under the assumption the input data is

noisy. These approximate objectives [7, 13–15] treat over-assignments and under-

assignments identically, and are inconsistent with the principle of least privilege and

fail-safe defaults [58].

In [14], user attributes are added to the probabilistic model from [15]. They

define a dual objective to maximize the data model probability, and maximize the

number of common attributes shared by users assigned a common role. The final

maximization objective is a linear combination of the data likelihood and attribute

compliance. By increasing attribute compliance, reconstruction errors are introduced.

34

3 MINING ROLES WITH MULTIPLE OBJECTIVES

In this chapter we define the notion of weighted structural complexity to measure the

complexity of RBAC systems and suggest the framework of formal concept analysis as

a foundation to base many problems in role mining. Using this framework, we present

a role mining algorithm that mines RBAC systems with low structural complexity

and address the problem of discovering roles with semantic meaning. We study the

problem in two primary settings with di⇥erent information availability. When the

only information is a user-permission relation, we propose to discover roles whose

semantic meaning is based on formal concept lattices. We argue that the theory

of formal concept analysis provides a solid theoretical foundation for mining roles

from a user-permission relation. When user-attribute information is also available,

we propose to create roles that can be explained by expressions of user-attributes.

Since an expression of attributes describes a real-world concept, the corresponding

role represents a real-world concept as well. Furthermore, the algorithms we proposed

balance the semantic guarantee of roles with system complexity. Finally, we indicate

how to create a hybrid approach combining top-down candidate roles.

Weighted structural complexity is a more general complexity model compared to

previously proposed complexity measures in the literature [6–8]. These complexity

measures are fixed, and measure a particular component of the role-based access

control state. Weighted structural complexity is parameterized, giving a system ad­

ministrator more control when designing an RBAC system that minimizes their ad­

ministrative e⇥ort. A paramaterized objective also allows for di⇥erent objectives to

be used in di⇥erent contexts.

Second, we show that the theory of formal concept analysis [20] provides a solid

theoretical foundation for role mining, in the case that only user-permission data is

available. Formal concept analysis has been applied extensively in software engineer­

�

�

� �

�

35

ing, for example, on the problem of generating class hierarchies from non object-

oriented code, which is very similar to the problem of mining role hierarchies. We

develop HierarchicalMiner based on formal concept analysis and show that it is able

to mine roles with low complexity. Unlike previous role mining algorithms, it natu­

rally generates excellent role hierarchies. Our evaluation shows that it often generates

better RBAC systems than those generated in ways similar to the top-down approach.

Third, we study the problem of role mining with users’ attribute information in

addition to user-permission relation, and give the first definition of mining roles with

semantic information. Finally, we indicate how these methods can be extended to

include predefined roles to ease interpretation and increase semantic meaning.

This chapter is organized as follows. In Section 3.1 we define the role mining

problem in the context of user-permission data and present weighted structural com­

plexity and related optimization problems. The theoretical complexity of role mining

is also discussed. We present our role mining algorithm that minimizes complexity

using formal concept analysis in Section 3.2, and Section 3.3 studies the problem of

finding roles with semantic meanings from user-attribute data. We define the problem

of hybrid role mining and extend our approaches in Section 3.4.

3.1 Using user-permission data

When the input data consists of only a user-permission relation, the role mining

problem can be defined as follows.

Definition 3.1.1 (Bottom-Up Role Engineering) Given an access control con­

figuration p = (U, P, UP , where U is a set of all users, P is a set of all permissions

and UP U ⇥ P is the user-permission relation, we want to find an RBAC state

⇤ = (R, UA, PA, RH , DUPA that is consistent with p.

In the state, R is a set of roles, UA U ⇥ R is the user-role assignment relation,

PA R ⇥ P is the role-permission assignment relation, RH R ⇥ R is a partial

order over R, which is called a role hierarchy, and DUPA U ⇥ P is the direct

36

user-permission assignment relation. The RBAC state is consistent with (U, P,UP ,

if every user in U has the same set of authorized permissions in the RBAC state as

in UP .

3.1.1 The weighted structural complexity

Given the same access control configuration, many RBAC states are consistent

with it. There has to be a measurement of how good an RBAC state is in order to

select among them. The measure used in [6] is the number of roles needed to explain

all user-permission assignment, while the measure used in [8] is the total number of

edges (and edges plus vertices) when an RBAC state is visualized as a graph. The

intuition is that a major advantage of using RBAC is to simplify management. Given

m permissions and n users, if we directly assign the permissions to users, and the

number of permissions assigned to each user is large, then we need to maintain on

the order of mn relationships. However, using RBAC, the number of relationships

that we need to maintain could be reduced to the order of (m+ n). We generalize the

previous measures and propose the notion of weighted structural complexity. This

complexity sums up the number of relationships in an RBAC state, with possibly

di⇥erent weights for di⇥erent kinds of relationships.

Definition 3.1.2 (Weighted Structural Complexity) Given W =

(wr, wu, wp, wh, wd , where wr, wu, wp, wh, wd ⌫ Q+ ⌧ {�}, 1, the Weighted Structural

Complexity (WSC) of an RBAC state ⇤, which is denoted as wsc(⇤, W), is computed

as follow.

wsc(⇤, W) = wr ⇤|R|+wu ⇤|UA|+wp ⇤|PA|+wh ⇤|t reduce(RH)|+wd ⇤|DUPA| (3.1)

where | · | denotes the size of the set or relation, and t reduce(RH) denotes the

transitive reduction of the role-hierarchy.

1Q+ is the set of all non-negative rational numbers.

37

A transitive reduction is the minimal set of relationships that encodes the same

hierarchy. For example, t reduce ({(r
1

, r
2

), (r
2

, r
3

), (r
1

, r
3

)}) = {(r
1

, r
2

), (r
2

, r
3

)}, as

(r
1

, r
3

) can be inferred. That is (ri, rj) ⌫ t reduce(RH) � ri ✏✏ rj .

Arithmetics involving � is defined as follows: 0 ⇤ � = 0, ⇡x⌦Q+ x ⇤ � = �,

⇡x⌦Q↵{ } x + � = �.

Intuitively, in role mining, we would like to find an RBAC state that has the

smallest weighted structural complexity. One can adjust the weights to limit the

RBAC states to be considered and to meet di⇥erent optimization objectives. By

setting wh to �, we can force a flat RBAC state since each role inheritance relation

costs �. By setting wd to �, we forbid direct user-permission assignment, and adhere

to the RBAC standard. By setting wr = 1, wu = wp = 0, and wh = wd = �, we

aim at minimizing the number of roles. A list of common minimization objectives in

WSC is presented in Table 3.1.

Weighted structural complexity is a flexible complexity notion for role mining, yet

it does not fully capture all existing complexity measures in the literature. Specifically,

WSC cannot capture ⌅-RMP or MinNoise-RMP.

WSC can capture the notion of over-assigned permissions; these are permission as­

signments missing from the standard RBAC relations (UP ,PA,RH), but are captured

by direct user-permission assignments. An RBAC state with direct user-permission

assignments may be seen as a ⌅-consistent RBAC state for ⌅ = | DUPA |. However,

even if we restrict noise to over-assignments, WSC cannot minimize the number of

roles while allowing at most ⌅ under-assignments. Doing so would require wd = 0

when | DUPA | < ⌅ and wd = � otherwise. There are similar problems with repre­

senting MinNoise-RMP. Because of the sensitive nature of over- and under-assigning

permissions, this not believe to be a shortcoming of WSC as a complexity measure for

RBAC states. Handling noisy input data will be considered separately in Chapter 4.

To use WSC, an administrator can select a weight vector based on their own

experience with RBAC, or select a standard weight vector, such as role or edge mini­

mization, or minimizing the total number of relations. An administrator should select

38

Table 3.1
The relationship between WSC and other role mining criteria

Criteria WSC Weight Vector

Basic-RMP

Edge-RMP

Edge-RMP with Hierarchy

Zhang Graph Optimization

W = (1, 0, 0, 0, �

W = (0, 1, 1, �, �

W = (0, 1, 1, 1, �

W = (1, 1, 1, 1, �

a weight vector that estimates their administration costs. If roles remain relatively

static and user-assignments more dynamic, they may wish to increase wu relative

to wp. Conversely, permission-assignments may be viewed as more sensitive than

user-assignments. Selecting an appropriate weight vector is impacted by real-world

constraints, such as system designs and RBAC implementation details, and can be bi­

ased by the personal feelings of an administrator. As such, we assume an appropriate

weight vector W is known.

3.1.2 The Weighted Structural Complexity Optimization Problem

We have introduced the notion of weighted structural complexity (WSC) as a

complexity measure of RBAC systems. Given an access control configuration p and

weight vector W , the role mining problem can be defined as the problem of optimizing

the weighted structural complexity. A natural question that arises is to determine

the WSC value of an optimized RBAC system. In this section, we formally define

the Weighted Structural Complexity Decision Problem and study its computational

complexity.

Definition 3.1.3 (Weighted Structural Complexity Optimization) The

Weighted Structural Complexity Optimization (WSCO) problem is as follows:

Given an access control configuration p = (U, P, UP and a weight vector

39

W = (wr, wu, wp, wh, wd , find an RBAC state ⇤ that is consistent with p and

minimizes wsc(⇤, W).

We first observe that the WSCO problem can be trivially solved for certain weight

vectors. In Table 3.2, we summarize certain cases in which trivial optimal RBAC

systems exist, and note how each may be constructed. A more detailed account is

given in Appendix A.1.

Table 3.2
Cases where trivial optimal RBAC systems exist with respect to a
given weight vector. In the table, ci (i ⌫ { u, p, h }) denotes an arbi­
trary non-zero number. In a row, two cells having value x indicates
that the two cells take the same non-zero value.

wr wu wp wh wd Optimal RBAC System

0 cu 0 ch � Create a role for each user

0 0 cp ch � Create a role for each permission

0 cu cp 0 �
Create a role for each user and for each permission.

Simulate user-permission assignments with a role hierarchy.

x x 0 ch � Create a role for each unique user (permission set)

x 0 x ch � Create a role for each unique permission (user set)

However, more generally the WSCO problem is NP-hard. To show this, we will

prove that the decision problem corresponding to the WSCO problem is NP-complete.

The decision problem is defined below; it is no harder to solve than the WSCO

problem.

Definition 3.1.4 (Weighted Structural Complexity Decision Problem)

Given an access control configuration p = (U, P,UP , W = (wr, wu, wp, wh, wd and

a number k, the Weighted Structural Complexity Decision Problem (denoted as

WDP(p, W, k)) asks whether there exists an RBAC system ⇤ that is consistent with

p and wsc(⇤, W) ⌦ k.

40

Clearly, if one can solve the WSCO problem, then one can find the minimal struc­

tural complexity for an access configuration and can solve the WDP. Furthermore, if

we have a WDP solver, then we can use binary search to find the minimal structural

complexity for an access configuration by invoking the WDP solver a linear number of

times, as follows. Given a configuration p, let ⌦ be the cost of using a trivial RBAC

state to reproduce p, e.g., creating one role for each permission and assigning each

user roles corresponding to the user’s permissions. The minimal complexity is in the

range [0,⌦]. One then sets k = ⌦/2 and ask whether WDP(p, W, k) is true. If the

answer is “yes”, one knows the minimal complexity is in the range [0,⌦/2], and if

the answer is “no”, it is in the range (⌦/2,⌦]. One needs to invoke the WDP solver

O(log ⌦) times, which is linear in the representation of the input p.

We are interested in the computational complexity of WDP when the weight vector

W is fixed. That is, we would like to view WDP as a family of problems, parameterized

by the weight vector W , and understand the computational complexities for di⇥erent

instantiations of the problem. Some special cases in this family have been known

to be NP-hard. Vaidya et al. [6] showed that the case of minimizing the number of

roles (e.g., using a none-zero value for wr, wd = �, and zero for all other weights)

is NP-complete. Edge concentration, which minimizes | UA | + | PA | and can be

equivalently represented by setting wu = wp = 1, wh = wd = �, and wr = 0, has

also been shown to be NP-complete [59]. Furthermore, it has been shown that no

polynomial time approximation with factor n⇤ , ⌅ > 0 exists unless P = NP [19, 60],

making even approximate solutions di⇤cult.

The above results are for specific weight combinations; as Table 3.2 illustrates,

not all weight combinations are NP-complete to solve. Further, none of the above

results allow role hierarchies and/or direct assignments. The theorem below shows

that WDP is NP-complete for many weight combinations.

Theorem 3.1.1 WDP(p, W, k) is NP-complete, for any W = (wr, wu, wp, wh, wd

satisfying the following condition: wd, wp, wh ↵ wu > 0.

 �

41

We argue that most interesting combinations of weights will satisfy the conditions

in the theorem. That wu > 0 means that assigning a role to a user is not free.

That wd, wp, wh ↵ wu means that operations involving permissions (such as assigning

permission to a user or to a role, or assigning a role to a role) costs more than assigning

a role to a user. These assumptions are consistent with the rationale of RBAC.

First, the WDP problem is in NP, as one can provide an RBAC system to a

deterministic Turing machine and the Turing machine can verify the consistency of

the system and compute its WSC value in polynomial-time.

To show the NP-hardness, we need the following lemma.

Lemma 1 Given weights (wr, wu, wp, wh, wd such that wd ↵ wu > 0, a configuration

p = (U, P,UP , and P
1 P where |P

1

| ↵ 2. Let U
1 be the set of users whose set of

permissions is exactly P
1 in p. If

(wr + wp|P1

|)|U
1

| > ,
wu

then any optimal RBAC system for p must include a role that is assigned exactly

permissions in P
1

.

Proof This lemma says that when the number of users having exactly a set P
1 of at

least two permissions is large enough (i.e., satisfying the condition), then it is better

to create a role for the permission set P
1

, so that each user in U
1 can be assigned a

single role. To prove this, we compare the costs of two cases. Case 1 is to create a

role for P
1 and to assign the role to all users in U

1

. Case 2 is not to create a role for

P
1

, and hence users in U
1 cannot be covered by a single role assignment.

In Case 1, the cost of creating a role for P
1 is at most wr + wp|P1

|, which is the

cost of creating a role plus the cost of assigning all permissions in P
1 directly to it.

The cost of assigning the role to users in U
1 is wu|U1

|. Hence the total cost to cover

U
1 under Case 1 is at most wr + wu|U1

| + wp|P1

|.

In Case 2, there is no role having exactly P
1

, then for every user u ⌫ U
1

, one of

the following cases applies:

�

42

•	 u is assigned at least two roles. The cost is at least 2wu.

•	 u is assigned one role plus at least one permission. The cost is at least wu + wd.

•	 u is directly assigned all permissions in P
1

. The cost is wd|P1

|.

The minimum cost of covering a user is min(2wu, wu + wd, wd|P1

|). Because wd ↵

wu and |P
1

| ↵ 2, we have min(2wu, wu + wd, wd|P1

|) = 2wu. Hence the total cost for

Case 2 is at least 2wu|U1

|.

When the upperbound of the cost for Case 1 is less than the lowerbound of the

cost for Case 2, Case 1 must be the case in any optimal state. We have wr + wu|U1

|+
(wr +wp|P1|)wp|P1

| < 2wu|U1

| if and only if |U
1

| > . This lemma thus holds. wu

With Lemma 1, we are ready to prove that WDP(p, W, k) is NP-hard, completing

the proof for Theorem 3.1.1.

Proof We reduce the NP-complete Set Covering to WDP using a polynomial

time Turing reduction, also known as a Cook reduction. Here, a Cook reduction

is a polynomial time algorithm that uses an oracle that can solve WDP to solve a

Set Covering instance. A Cook reduction di⇥ers from the more common Karp

reduction (i.e., a polynomial-time many-one reduction) in that we can call the WDP

oracle more than once.

In Set Covering, we are given a set S = {e
1

, · · · , em}, a family of S’s subsets

F = {S
1

, · · · , Sn} where Si S, and an integer k, and need to determine whether

there exists no more than k subsets in F such that the union of these sets cover S

completely. Without loss of generality, we assume that each element in S is covered

by at least one subset in F . (Otherwise, the answer to the set covering problem is a

trivial “no cover”.)

For any W = {wr, wu, wh, wp, wd} such that wh, wp, wd ↵ wu > 0 we construct an

access control configuration p = (U, P,UP as follows.

•	 P contains m permissions, denoted by p
1

, · · · , pm, where m is the number of

elements in S.

S0

...
S0

S1

...
S1

...
Sn

...
Sn

43

•	 U contains two kinds of users. Users of the first kind correspond to the subsets

in F . For every i ⌫ [1, n], let ti be the smallest integer greater than (wr+

w
w

u

p|Si|) .

There are ti users that have exactly the permissions corresponding to Si, that

is, these users have a permission pj if and only if ej ⌫ Si.

•	 The second kind of users in U consists of a single us that corresponds to S, that

is, us has all permissions in P .

t0

t1

�
⌅⇤

⌅
�
⌅

⌅

⇥

⇤

⇥

...

...

...

...

us

Sn

S1

S0

...

e1

e2

e3

em

...
�

� k

... ...

tn

�
⌅

⇥

⇤

⌅

Figure 3.1. Reduction of Set Cover to WDP. User-Assignments for
us solve Set Cover.

We can then compute c, the minimal weighted structural complexity necessary for

the configuration p/ = (U \ { us } , P,UP under W . Recall that we have explained

that such a c can be computed by invoking a WDP oracle a linear number of times.

Finally, we ask whether WDP(p, W, c + kwu) is true or false. If it is true, then a set

covering with no more than k subsets exist; if it is false, then such a set covering does

not exist.

We now show that the above algorithm correctly solves the set-covering instance.
(wr+wp|Si|)Because there are ti users having permissions corresponding to Si, and ti > wu

,

according to Lemma 1, to cover users of the first kind, an optimized RBAC system

must contain a role ri that has exactly the permissions corresponding to each Si.

44

With the above argument, we show that there is an RBAC system with cost at

most c + kwu if and only if the answer to the Set Covering instance is “yes”.

For the “if” direction, assume that the answer to the Set Covering instance

is “yes”. There exist no more than k subsets that together cover S. Then from the

/RBAC state corresponding to p that costs c, we can add additional assignments to

cover us with cost ⌦ kwu by assigning to us roles corresponding to the subsets that

cover S.

For the “only if” direction, assume that there is an RBAC state consistent with

p while costing no more than c + kwu, we need to show that a k-set covering of S

exists.

First, we can assume, without loss of generality, that the RBAC state has no direct

permission assignment to us. Because wd ↵ wu, we can replace any direct permission

assignment to us with assigning a role that contains the permission to us. Because

any element in S is contained in at least one Si, and any Si is a subset of S, such

replacement is feasible and results in the same permissions for us.

Second, we can assume, without loss of generality, that the RBAC state contains

no roles that are not a subset of one or more Sis. Any such role can be assigned

(directly or indirectly) only to us, and any such role can be removed, with sub-roles

assigned to us (this does not increase cost because wh ↵ wu), and permissions assigned

to the role replaced by assigning appropriate roles to us (this does not increase cost

because wp ↵ wu). Hence every role in the RBAC state either corresponds to an Si

or is a strict subset of one or more Sis.

Third, we can assume, without loss of generality, that in the RBAC state, us is

only assigned roles that correspond to Sis. If any role that is a strict subset of Sj is

assigned to us, it can be replaced by assigning Sj to us instead. Finally, we note that

us is assigned at most k roles. Hence, a k-set cover must exist.

45

3.2 Mining Roles with Low Complexity Using Concepts

In this section, we describe a method for constructing an RBAC state with low

cost and complexity, while maintaining semantic meaning. Given the role mining

definition from Section 3.1.1, how should one discover roles with semantic meanings

other than simply a set of permissions and a set of users that are associated with

it? We examine the available techniques from data mining. The input we have is

essentially a binary matrix with one dimension being the users and the other the

permissions. One technique is clustering. One can cluster the users based on the

similarity of their permissions, or cluster the permissions based on the similarity of

the users assigned to them. These clusters can further be clustered together, resulting

in a tree. One can also use co-clustering (also known as biclustering or two-mode

clustering), which does simultaneous clustering of the rows and columns of a matrix.

However, we believe that these techniques are not the most suitable ones for role

mining. The main reason is that most clustering techniques seek to find mutually-

disjoint groups. That is, each entity (user or permission) can belong to only one

cluster (or appear in only one node in a tree with hierarchical clustering). But we

may expect a user to be a member of at least two di⇥erent roles.

Among the data mining and analysis techniques we examined, it appears that the

most suitable one is formal concept analysis. (Some consider formal concept analysis

to be one kind of co-clustering.) Formal concept analysis takes an input matrix

specifying a set of objects and their properties, and aims to finding “concepts” in

them. This is exactly the same problem as finding meaningful roles. In formal

concept analysis, the concepts are arranged in a lattice. The relative relationships

among concepts provide semantic information in addition to the users and permissions

that are associated with them.

In this section, we give a brief introduction to formal concept analysis [20] and

then develop an algorithm exploiting the connection between formal concept analysis

46

and mining roles with a role hierarchy. We will use the following running example in

this section.

Example 1 The original RBAC state is given in Figure 3.2(a). There are 10 users,

12 permissions, and 7 roles in the original state. The user-permission relation resulted

from the state is given in Figure 3.2(b).

U0

Undergrad P2 P5

U1 U2

GradCourse P1

U3

Grad P3 P4

U5

Staff P9

U4 U6 U7

Faculty P7 P8

U9U8

Member P0 P10 P11

Employee P3 P6

(a) Original Role Hierarchy
(b) User-Permission Relation

User P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11

U0

U1

U2

U3

U4

U5

U6

U7

U8

U9

1 0 1 0 0 1 0 0 0 0 1 1

1 0 1 0 0 1 0 0 0 0 1 1

1 1 1 0 0 1 0 0 0 0 1 1

1 1 0 1 1 0 0 0 0 0 1 1

1 1 0 1 1 0 1 0 0 1 1 1

1 1 0 1 1 0 1 0 0 1 1 1

1 0 0 1 0 0 1 0 0 1 1 1

1 0 0 1 0 0 1 1 1 1 1 1

1 0 0 1 0 0 1 1 1 0 1 1

1 0 0 1 0 0 1 1 1 0 1 1

0
{P0 P10 P11}

{U0 U1 U2 U3 U4 U5 U6 U7 U8 U9}

1
{P0 P3 P10 P11}

{U3 U4 U5 U6 U7 U8 U9}

2
{P0 P3 P6 P10 P11}

{U4 U5 U6 U7 U8 U9}

3
{P0 P3 P6 P7 P8 P10 P11}

{U7 U8 U9}
4

{P0 P3 P6 P9 P10 P11}

{U4 U5 U6 U7}

5
{P0 P3 P6 P7 P8 P9 P10 P11}

{U7}

6
{P0 P1 P10 P11}

{U2 U3 U4 U5}

7
{P0 P1 P3 P4 P10 P11}

{U3 U4 U5}

8
{P0 P1 P3 P4 P6 P9 P10 P11}

{U4 U5}

9
{P0 P2 P5 P10 P11}

{U0 U1 U2}

10
{P0 P1 P2 P5 P10 P11}

{U2}

11
{P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11}

{}

0
{P0 P10 P11}

{}

1
{P3}

{}

2
{P6}

{}

3
{P7 P8}

{U8 U9}
4

{P9}

{U6}

5
{}

{U7}

6
{P1}

{}

7
{P4}

{U3}

8
{}

{U4 U5}

9
{P2 P5}

{U0 U1}

10
{}

{U2}

11
{}

{}

(c) The Concept Lattice (d) Reduced Lattice

{P2 P5} {P3 P9 P6} {P3 P8 P6 P7} {P3 P1 P4} {P2 P5} {P1 P3 P4} {P6 P7 P8}
Undergrad Staff Faculty Grad Undergrad Grad Faculty

{U1 U0 U2}

{P10 P11 P0}

{U5 U4 U7 U6} {U7 U9 U8} {U5 U4 U3} {U0 U1 U2} {U3 U4 U5} {U7 U8 U9}

{P0 P10 P11}
Member Member

{U3} {U6}

(e) Pruned role hierarchy (1, 1, 1, 1, 1 (f) Optimal (1, 1, 1, 1, 1

Figure 3.2. Running Example.

3.2.1	 Formal Concept Analysis

The input to formal concept analysis is called a formal context.

�

� �

�

47

Definition 3.2.1 (Formal Context) A formal context is a triple (G, M, I) where

G and M are sets and I G ⇥ M is a binary relation between G and M . We call

the elements of G objects and the elements of M attributes. For g ⌫ G and m ⌫ M ,

we write gIm when (g, m) ⌫ I.

In role mining, the user-permission relation is a formal context, where G is the

set of all users, M is the set of all permissions, and (g, m) ⌫ I if and only if the

user corresponding to g has the permission corresponding to m. This is, I is the UP

relation.

Definition 3.2.2 (Formal Concept) A concept of the context (G, M, I) is a pair

(X, Y), where X G and Y M satisfy the following properties:

•	 Y = {m ⌫ M | (⇡g ⌫ X) gIm}, i.e., Y is the set of all properties shared by all

objects in X.

•	 X = {g ⌫ G | (⇡m ⌫ Y) gIm}, i.e., X is the set of all objects that share all

properties in Y .

We write X⌥ = Y and Y ⌃ = X. X is also called the extent and Y the intent of

the concept (X, Y). The set of all concepts of the context is denoted by B(G, M, I).

A concept (X
1

, Y
1

) is a subconcept of (X
2

, Y
2

), denoted as (X
1

, Y
1

) ⌦ (X
2

, Y
2

) if and

only if X
1 X

2 (or, equivalently, Y
1 Y

2

).

For instance, in the running example, ({U
3

, U
4

}, {P
0

, P
1

, P
10

, P
11

}) is not a

concept, because U
2

, U
5 also have the permissions {P

0

, P
1

, P
10

, P
11

}. The pair

({U
2

, U
3

, U
4

, U
5

}, {P
0

, P
1

, P
10

, P
11

}) is a concept. See concept 6 in Figure 3.2(c).

The family of these concepts obeys the mathematical axioms defining a lattice,

and is called a concept lattice or Galois lattice. The concept lattice for the running

example is given in 3.2(c). In this concept lattice, each concept inherits all permis­

sions associated with its subconcepts, and users are inherited in the other direction.

Therefore, we can remove redundant permissions and users from each node. The

�

� �

48

result is called the reduced concept lattice and is shown in Figure 3.2(d). The reduced

concept lattice defines a complete RBAC state. Each concept is a role and the lattice

can be viewed as the role hierarchy. In this RBAC state, each user is assigned exactly

one role, and each permission is assigned to exactly one role. The subconcept relation

corresponds to the role inheritance relation. When treating a concept as a role, we

are assured that the permission set and the user set associated with a concept are

maximum. This already has more meaning than a role with just a set of permissions

and a set of users. The lattice hierarchy further illustrates the semantic relationships

among concepts, helping people understand them.

Concepts are not an unnatural way to view roles. Ene et al. [19] show the role

mining problem is equivalent to finding the minimum biclique cover for a bipartite

graph G(V, E) with V = U ⌧P and E = UP . Each concept is a maximal biclique [61,

62], and the concept lattice is the partial relation of all maximal bicliques. [19] finds

the minimal set of maximal bicliques that cover UP . Is it easy to show that the set

of formal concepts can be used to solve the role minimization problem.

Theorem 3.2.1 Given a set of roles R that covers the user-permission relation UP ,

there exists a subset R/ B(U, P, UP) that covers UP where | R/ | ⌦ | R |.

Proof For each role r ⌫ R, we can define the concept (Ur, Pr) which may not

be maximal, i.e., not a formal concept and not in B(U, P, UP). We can replace r

, P⌃⌥with a maximal formal concept r/ ⌫ R/ where r/ = (Pr
⌃

r) ⌫ B(U, P, UP). From

P⌃⌥Definition 3.2.2, we have that Ur Pr
⌃, and Pr r . That is, for each role r ⌫ R,

we can make r maximal. Because two roles ri, rj may have the same maximal role,

the total number of roles may be reduced. Thus, | R/ | ⌦ | R |.

From Theorem 3.2.1, if R solves the role minimization problem, then there exists a

set of formal concepts that also solves the role minimization problem.

�

49

Role Hierarchy and Concept Lattice Relationships

One natural question that arises is that suppose we generated a configuration from

an RBAC state that contains a role hierarchy RH , and then generated the concept

lattice from the configuration, how does the concept lattice relate to RH ?

Observe that in the running example (Figure 3.2(a) and 3.2(c)), roles Member,

GradCourse, and Undergrad correspond to concepts 0, 6, 9, respectively. If users U
0

and U
1 were also assigned the GradCourse role, concept 9 would no longer be maximal

and would not be present in the concept lattice. The extent { U
0

, U
1

, U
2 } (Undergrad)

would have maximal intent { P
0

, P
1

, P
10

, P
11 } (GradCourse and Undergrad). Any role

r not in the concept lattice with users X = Ur and permissions Y = Pr is either a

subconcept of a role in r/ = (X /, Y /) where X � X / and Y ⌥ Y / or is not maximal

and X � X / and Y Y /. This implies that if r is not present, either every user in

r is also assigned another set of permissions or there are users that are assigned the

set of permissions assigned to r that are not members of r.

In the following we state some facts about the relationship between the original

role hierarchy and the concept lattice.

1. For any role r in RH there is a concept (X, Y) such that X Ur and Y Pr.

2. Given an RBAC state, if a role r has at least one unique user or one unique

permission, i.e, there is a user who is assigned to r and no other role or there

is a permission that is assigned to only r and no other role, then (Ur,Pr) is a

concept.

The second fact above shows that if a role is truly “unique”, then it will manifest

itself in the concept lattice, and one can find them by pruning the concept lattice.

The drawback of using the reduced concept lattice as the role hierarchy is that the

role hierarchy may be excessively large. For example, in Figure 1(d) some concepts

introduce no new users, some introduce no new permissions, and some introduce

neither. However, it is incorrect to always remove all concepts with no new users

50

or permissions. We need to compare the desirability of di⇥erent role hierarchies

generated by choosing di⇥erent sets of concepts from the reduced concept lattice. For

this, we use weighted structural complexity.

3.2.2 The HierarchicalMiner

Our algorithm for generating a hierarchical RBAC state, which we refer to as

HierarchicalMiner, is based on pruning the reduced concept lattice. We view the re­

duced concept lattice as the initial role hierarchy and heuristically optimize it based

on the weighted structural complexity. Because the weighted structural complexity

optimization problem in NP-complete, even to approximate, we choose a heuristic

based solution. HierarchicalMiner is a greedy algorithm; it iterates over all of the

roles and performs local pruning or restructuring operations if the change will de­

crease the cost of the RBAC state at the role. The algorithm stops when no more

operations can be performed. The basic intuition behind HierarchicalMiner is to iden­

tify roles that add complexity to the RBAC state, and make changes that decrease

this complexity. These changes include demoting user-role assignments (UA) down

the hierarchy, promoting role-permission assignments (PA) up the lattice, adding and

removing role hierarchy (RH) edges, and adding direct user-permission assignments

(DUPA). Each operation ensures the RBAC state is consistent with the input access

control configuration p, and every restructure reduces the WSC for the RBAC state.

Figure 3.2(e) shows the role hierarchy generated by HierarchicalMiner for our

running example. HierarchicalMiner uses three rules to prune roles, and a forth rule

to restructure the lattice.

Case 1. A role r does not have a new user or a permission assigned to it. In this

case, the role is used solely as a connection point for other roles. Removing r reduces

the cost for creating the role and the associated edges; however, we need to add back

51

some edges so that the inheritance relation remain correct. We remove r only if this

is beneficial. More precisely, role r is removed when

wh ⇤ (| Sen(r) |+ | Jun(r) |) + wr ↵ wh ⇤ |Thr(r) |

where Sen(r) is the set of roles that are the immediate senior to r, Jun(r) is the set

of roles that are the immediate junior to r, and Thr(r) is the set of pairs of roles

(ri, rj) such that, without role r, ri would no longer be senior to rj .

Formally:

Sen(r) = { ri | (ri, r) ⌫ RH } , i.e., ri ✏✏ r

Jun(r) = { rj | (r, rj) ⌫ RH } , i.e., r ✏✏ rj

Thr(r) = { (ri, rj) | ri t rj 1 RH \ { (ri, r), (r, rj) } ri ⇠t rj }

Case 2. A role r has some users but no permissions assigned to it. If role r is

removed, we need to assign each user in {u | (u, r) ⌫ UA} to each role in Jun(r), and

add Thr(r) to RH to maintain the relationships among other roles. Thus role r is

removed when
wr + wu ⇤ n + wh ⇤ (| Sen(r) |+ | Jun(r) |)

↵ wu ⇤ n ⇤ | Jun(r) |+ wh ⇤ |Thr(r) | .

Case 3. A role r has no users but some permissions assigned to it. If r is removed,

we need to assign each permission in {p | (p, r) ⌫ PA} to each role in Sen(r), and

add Thr(r) to RH . Thus role r is removed when

wr + wp ⇤ m + wh ⇤ (| Sen(r) |+ | Jun(r) |)

↵ wp ⇤ m ⇤ | Sen(r) |+ wh ⇤ |Thr(r) | .

In practice, we only need to propagate permissions up the role hierarchy

and users down the role hierarchy when pruning a role r if the propagation

does not create redundant assignments. For example, consider the role relations

{ (r
0 ⇣ r1

), (r
0 ⇣ r2

) }. If both r
1 and r

2 have a permission p
0

, we do not need to

assign p
0 to r

0 if we attempt to prune either r
1 or r

2

, but not both.

52

The assignments that must be propagated to a role r/ when pruning a role r is eas­

ily determined by aggregating all assignments inherited from all roles except r. This

is easily found using a linear scan of all junior roles (in the case of permissions) and all

senior roles (in the case of users) to r/ in the original concept lattice before factoring.

Our restructuring does not a⇥ect the users or permissions authorized to each role,

but rather changes whether they are directly assigned to the role of are authorized

via the role hierarchy. By only propagating the assignments that are necessary more

aggressive restructuring that reduces the weighted complexity are possible without

introducing redundancies that would later be removed. The restructuring benefits

above may be trivially extended to include these additions.

It should be noted that the above restructuring rules do not allow for the creation

of flat RBAC states or direct user-permission assignments. These shortcomings are

resolved in the last case which may not prune the role.

Case 4. A role r has n > 0 users and m > 0 permissions. It may be advantageous

to remove the role from the hierarchy or even remove it completely. To remove the

role from the hierarchy, we perform the restructuring in both Case 2 and Case 3;

permissions are propagated up the role hierarchy, users are propagated down, and

Thr(r) is added to RH . This restructuring is advantageous when

wh ⇤ | Jun(r) | + wh ⇤ | Sen(r) |

↵ wh ⇤ | Thr(r) | + wu ⇤ n ⇤ | Jun(r) | + wp ⇤ m ⇤ | Sen(r) | .

Additionally, we may consider removing the role completely and replace the role

with direct user-permission assignments. In addition to the above restructuring to

remove role r, we assign all m permissions to all n users. We may remove the role r

when

wr + wh ⇤ | Jun(r) | + wh ⇤ | Sen(r) |

↵ wh ⇤ | Thr(r) | + wu ⇤ n ⇤ | Jun(r) | + wp ⇤ m ⇤ | Sen(r) | + wd ⇤ m ⇤ n.

For Case 4, we choose the strategy that produces the greatest improvement in WSC.

When we use this last strategy we can consider all directly assigned permissions to be

53

a form of noise; either assignments that do not fit the RBAC model or are incorrect.

These assignments may be discarded to produce an approximation of the input user-

permission relation.

HierarchicalMiner begins by placing all roles in a queue, and processing each role

according to the above four cases until the queue is empty. By removing a role r from

the lattice, it may become beneficial to perform restructuring on neighboring roles

that were previously overlooked because we may have modified user-, permission-,

or role-assignments in the process. For each role r that is pruned or removed from

the lattice, the roles Sen(r) ⌧ Jun(r) must be added to the queue (if not already

present). When the queue is empty we are assured no additional local restructuring

may improve the complexity of the RBAC state.

3.2.3 Running Example

The output of HierarchicalMiner for the running example is given in Figure 3.2(e);

and the optimal state with weight (1, 1, 1, 1, 1 is given in Figure 3.2(f).

Using this weight vector, the original RBAC state (Figure 3.2(a)) has wsc = 40

and the one found by HierarchicalMiner (Figure 3.2(e)) has wsc = 38 (one direct

assignment not shown), while the optimal solution (Figure 3.2(f)) has wsc = 36

(eight direct assignments not shown). This indicates the total number of relations

that must be maintained to store the given RBAC state.

For comparison, we provide the results when using several algorithms from the

literature that produce role hierarchies on our running example. Because most role

mining algorithms produce a complete covering, for these examples we prevent direct

user-permission assignments (wd = �), and use W = (1, 1, 1, 1, � . First, we use

the constraints of the disjoint decomposition model [13] but not their probabilistic

model, allowing us to assume the data is clean. This corresponds to minimizing

W = (0, 1, 1, 0, � , one of the trivial cases noted in Table 3.2, and has wsc = 65.

Second, ORCA will always generate a tree based structure, assigning each permission

	

 	 		

	

	

	

 	

	
	

	
	

	

54

��
��
����

��
����
��

�	
�� �
��

��
����
��

�	 �
��
����
��

�	 �
�� ��� ����

��

��
��

�� ����

�	 �
�������
��

�

��

�����
�
��

��
����

�

�� �
��

�	
��
����

�	 �
����
��

��
��

�������
��

��
�� �

(a) Disjoint Decomposition (wsc = 65)

R0
{P0}

{}

R1
{}

{}

R2
{}

{}
R20

{}

{U7 U8 U9}

R10
{}

{U3}

R16
{P4}

{}
R9

{P1}

{U2}

R11
{P10}

{}

R12
{P11}

{}

R13
{P2}

{}

R14
{}

{U0 U1 U2}

R17
{P5}

{}

R15
{P3}

{}

R18
{P6}

{}

R19
{P7}

{}
R3

{}

{U4 U5}
R21

{P8}

{}

R22
{P9}

{}

R8
{}

{U6 U7}

R4
{}

{}

R5
{}

{U0 U1 U2}

R6
{}

{U3}

R7
{}

{U8 U9}

(b) ORCA (wsc = 75)

�� ����
�� �	

���� ����

�� � ���
��� �� � ���
���
��
��
���� ��
���� ���������� ���� �������
�� �� �� �
 � � �

�� � ��
��� ���
��� ���
��� �� ���������� �����
���� �� � �� �������

�� � ���
��� �� �� � ����
��� �� �

�� ���� �������� � ����

����
��
��
���� ������������
��� �

�� ��

(c) Graph Optimization (wsc = 45) (d) HierarchicalMiner (wsc = 40)

Figure 3.3. Role hierarchies generated from other algorithms in the
literature. W = (1, 1, 1, 1, � . Graph optimization has be augmented
to use WSC and Disjoint Decomposition assumes clean data. RBAM
created 19 roles and only two role-hierarchy relations and is omitted.
Note the di⇥erence between Figures 3.2(e) and 3.3(d) when wd = �.

55

to a single role. The full role hierarchy is presented in Figure 3.3(b), and has wsc = 75;

note that it is possible to prune roles R1 and R2, leaving a forest of three trees and

reducing the complexity by wr ⇤ 2 + wh ⇤ 4 = 6 to wsc = 69. Next, the graph

optimization algorithm [8] has an interesting byproduct where each user is assigned

to only a single role. The final hierarchy is shown in Figure 3.3(c), and has wsc = 45.

Note that the intersection of roles R6 and R11, { P0, P10, P11 }, can be identified

as a new role without increasing the complexity of the RBAC state2 . Finally we

use HierarchicalMiner. In contrast to Figure 3.2(e), we do not allow direct user-

permission assignments. We can see how this weight a⇥ects roles R3, R4, and R5

in Figure 3.3(d). The final state has wsc = 40, an increase of two. The RBAM

algorithm [10] created a mostly flat RBAC hierarchy, with 19 roles and only two role-

hierarchy edges. There were 81 user-assignments and 44 permission-assignments, for

a total wsc = 146. Due to the flat shape of the hierarchy, we omit it from Figure 3.3.

3.3 Using User Attributes

We have studied how to mine roles when the available information is limited to the

user-permission relation. In this section, we study mining roles when user-attribute

information is also available. Examples of user-attributes include job positions, work

departments, and job responsibilities. For instance, if Alice is a lecturer in the Math

Department, who teaches MA101 this semester, then she has at least three attributes:

Lecturer , MathDepartment , and MA101 . Almost all organizations maintain attribute

information of their employees for the purposes of administration, payroll, etc. Many

organizations even display a portion of their employee’s attribute information on

publicly accessible websites.

26 ⇤ wp = 3 ⇤ wp + wr + 2 ⇤ wh.

�

�

56

3.3.1 Semantic Meanings of Roles

We use A to denote the set of all attributes. The input data to role mining is

modeled as a configuration, given by p = (U, P, UP , UAT , where UP is the user-

permission relation, and UAT U ⇥ A is the user-attribute information. Here,

each attribute has only a binary value of 0 or 1. While this cannot easily model

numerical attributes such as age, it is general enough to model most non-numerical

attributes. For example, if an attribute takes values in a tree structure (such as the

division attribute) of n nodes, then this can be encoded using n binary attributes,

each corresponding to a node in the tree.

Intuitively, a semantically meaningful role should correspond to a real-world con­

cept, and a real-world concept can be described by an expression of user-attributes.

Definition 3.3.1 (Attribute Expression) An attribute expression e can take one

of two forms:

•	 e = All : Any user satisfies e.

•	 e = a
1 1 · · ·1 ak (⇡ i ⌫ [1, k] 1 ai ⌫ A): A user u satisfies e under configuration

p if and only if ⇡ i ⌫ [1, k] (u, ai) ⌫ UAT , i.e., u has all attributes in e.

We use Ue
⇧ to denote all the users that satisfy e.

For example, an expression (CS 1 Faculty) describes all faculty members in the

CS department, while (Programer 1 NY 1 Project101) describes all programmers in

the New York branch who are working on Project 101. To incorporate the attribute

information into an RBAC state, we use expressions to define the memberships of

some roles. First we define the attribute compliance of a role.

Definition 3.3.2 (Attribute Compliance) For a given role r and a set of at­

tributes A, the attribute compliance is the percentage of users having attribute a

that are authorized to the permissions in r, i.e.,

| { u | ⇡a⌦A(u, a) ⌫ UAT } |
. | { u | Pr Pu } |

�

57

Definition 3.3.3 (Membership Definition) Given a configuration p =

(U, P, UP , UAT and a consistent RBAC state ⇤, an expression e is a mem­

bership definition of role r if and only if Ur
⇥ = Ue

⇧ .

Intuitively, a membership definition of a role represents a real-world concept the

role corresponds to. However, not every role in an RBAC state has a membership def­

inition; and a role may have more than one membership definition, as the same set of

users may satisfy di⇥erent expressions. A role with a membership definition has one-

hundred percent attribute compliance for the attributes defined by the membership

definition e.

Definition 3.3.4 (Most-General Definition) An expression e is a most-general

definition of a role r if and only if e is a membership definition of r and there does

/not exist a strict sub-expression e of e such that e/ is also a membership definition of

r. We assume that All is a strict sub-expression of any other expressions.

For example, assume that both expressions e
1 = (NY 1 RegularEmployee) and

e
2 = NY are membership definitions of role r (this indicates that everyone working in

the New York branch is a regular employee), and All is not a membership definition

of r. By definition, e
2 is a most-general definition of r; while e

1 is not, because e
2

is a strict sub-expression of e
1

. Again, a role may have more than one most-general

definitions.

If a role does not have a membership definition, we may conclude that it does

not correspond to a real-world concept that can be identified by the user-attribute

relation in the given configuration. In this case, we may try to see if the role describes

a portion of a real-world concept.

Definition 3.3.5 (Membership Upperbound) Given a configuration p =

(U, P, UP , UAT , let ⇤ be an RBAC state that is consistent with p. An expression e

is a membership upperbound of role r if and only if Ur
⇥ Ue

⇧ .

58

In other words, given an RBAC state and a user-attribute relation, all members

of role r satisfy its membership upperbound e; but there may exist users who satisfy

e but are not members of r. Note that every role has at least one membership upper-

bound, All . Furthermore, if a role has a membership definition, then the membership

definition is also an upperbound of the role.

Intuitively, a role r corresponds to a portion of the real-world concept described

by its upperbound. For example, r having an upperbound (CS 1 F aculty) indicates

that members of r is a portion of all faculty members in the CS department.

Definition 3.3.6 (Least Upperbound) An expression e is the least upperbound of

a role r if and only if e is a membership upperbound of r and there does not exist a

/strict super-expression e of e such that e/ is also an upperbound of r.

Given an RBAC state and a user-attribute relation, there is a unique least up­

perbound for each role. To prove this, assume, for the purpose of contradiction, that

e
1 and e

2 are two di⇥erent least upperbounds of role r. Let a
1 be an attribute that

is in e
1 but not in e

2

. Then, by Definition 3.3.5, e
3 = a

1 1 e2

, being a strict super-

expression of e
2

, is also an upperbound of r. Hence, e
2 is not a least upperbound,

which is a contradiction.

Definition 3.3.7 (Least-Common Upperbound) Given a set S of roles, an ex­

pression e is the least-common upperbound of S if and only if e is an upperbound of

every role in S, while no strict super-expression of e is.

Similar to the case of least upperbound, we can prove that there is a unique

least-common upperbound for a given set of roles.

3.3.2 Attribute Miner

We now study how to construct an RBAC state exploiting the attribute informa­

tion. Intuitively, during the construction of a consistent RBAC state, we would like

�

59

to use roles with membership definition whenever possible, as these roles correspond

to real-world semantic concepts. Also, in order to keep the resulting state simple, we

would like to minimize the number of roles that are used.

We allow two types of roles. Roles of the first type do not use attribute infor­

mation, and we call these roles normal roles. Roles of the second type are called

attribute roles. Every attribute role r has a membership definition D(r) A, and

every user who satisfies the membership definition is assigned the role. That is to

say, ⇡u ⌫ U ⇡r ⌫ R (u satisfies D(r) ◆ (u, r) ⌫ UA). Users cannot be directly

assigned to attribute rules. There may be multiple attribute roles that have the same

set of permissions, as those roles represent di⇥erent real-world concepts that have the

same permissions.

To guide our algorithm to choose attribute roles that use simple membership defi­

nitions to assign many users and to choose normal roles that have tighter upperbound

constraints, we define the following complexity measure as an optimization objective.

Definition 3.3.8 (WSC with Attributes) Suppose in the RBAC state the set of

normal roles is Rn and the set of attribute role is Ra. For every r ⌫ Rn, the least

upperbound of r is B(r). For every r ⌫ Ra, the membership definition of r is D(r).

Given Wa = (wr, wu, wp, wh, wd, we , the Weighted Structural Complexity with At­

tribute (WSCA) of an RBAC state ⇤ is denoted by wsca(⇤, Wa), and

wsca(⇤, Wa) =wr ⇤ (|Rn| + |Ra|) + wp ⇤ |PA| + wh ⇤ |t reduce(RH)|+

wd ⇤ |DUPA| + we ⇤
↵

|D(r)| +

r⌦Ra

wu ⇤
↵ ⌅⇣

|{u ⌫ U | (u, r) ⌫ UA}| ⇤
⇣
|{u ⌫ U | u ⌫ U(B(r))}|

⇧

r⌦Rn

The cost of creating roles, permission assignment, role hierarchy and direct user

permission assignments are the same as in Definition 3.1.2. The cost of user assign­

ment for each normal role is determined by both the number of users authorized for

this role, and the upperbound of this role. The intuition is that each user-role assign­

ment has a cost, and the larger the upperbound, the less desirable the role is. We

60

choose the geometric mean of the two number, as we feel that an arithmetic mean

penalizes too much.

Table 3.3

Calculating benefits and costs in AttributeMiner

Choose an attribute benefits |{(u, p) | u ⌫ r.users 1 p ⌫ r.perms 1 (u, p) ⌫ UP /}|

candidate role r cost wr + we ⇤ |r.attrs| + wp ⇤ |r.perms|

Choose a normal benefits |{(u, p) | u ⌫ U
0 1 p ⌫ r.perms 1 (u, p) ⌫ UP /}|

candidate role r and a

user set U
0

cost wu ⇤ |U0

| +

⌃
�

⌥
wr + wp ⇤ |r.perms| r.users = �

0 r.users ⇠= �

Choose a direct benefits 1

assignment (u, p) cost wd

Our AttributeMiner algorithm takes a configuration as well as a list of permission

sets as input. These permission sets are candidates for the algorithm to generate

roles. They can be computed using HierarchicalMiner, CompleteMiner, or frequent

permission set mining. The algorithm has two phases. The first phase is to identify

candidate roles. For each permission set P in input, we create a candidate normal role

r, and for every most general membership definition a, create a candidate attribute

role using a as definition, if all users that satisfy the definition have permissions in

P . The second phase selects roles and assigns them to users. Here, we use a greedy

approach, and tradeo⇥ the number of user-permission relations a role will cover (the

benefit), but the increase in attribute weighted structural complexity to create such a

role (the cost). This is similar to the HierarchicalMiner algorithm in reverse. Instead

of reducing the complexity by removing roles, we select roles that have the largest

benefits-cost ratio, or a return on investment. The benefits is the number of edges in

UA/ that the selection can cover, and the cost is the complexity cost we need to pay

to choose the selection. They are calculated as in table 3.3.

61

3.4 Hybrid Role Mining

In the previous sections we have illustrated how to mine an RBAC state with low

complexity, and how to ensure that the roles have semantic meaning when a user-

attribute relation is available. In this section we discuss how the existing techniques

can be applied to instances where some roles already exist.

There are several settings where some roles already exist yet role mining is ben­

eficial. In one setting, role mining may be used to alleviate the role proliferation

problem, which may be caused by an administrator creating many unnecessary and

redundant roles, increasing the complexity of the RBAC system. Role proliferation

may also arise when two or more RBAC systems are merged, such as after a merger

or acquisition. In Section 3.4.1, we show how role mining techniques can be used to

optimize an existing deployed RBAC system that has become too large and complex.

In another setting, role mining can be used in combination with a top-down role

engineering e⇥ort, to achieve a hybrid method for role engineering. Here, admin­

istrators, business professionals, and domain experts, may have already performed

a cursory role engineering e⇥ort to “sketch” a set of predefined roles, e.g., defining

permission sets. Role mining techniques can be then used to “fill in the gaps.” In

Section 3.4.2, we discuss how this can be done.

3.4.1 Optimizing an Existing Set of Roles

In this setting, the goal is to optimize the definitions of existing roles in an al­

ready deployed RBAC state while preserving the permissions they have, by merging

and/or splitting roles, finding more e⇤cient ways of assigning permissions to roles, or

removing redundant role hierarchy relationships.

This can be accomplished by applying role mining techniques to the permission-

assignment (PA) relation; that is, one can treat the roles as users, and mine the

resulting configuration. More precisely, we create a new access configuration by cre­

ating nr fake users for each role r such that these fake users all have exactly the

62

same permissions as r. We recommend choosing the number nr based on the number

of users that have the role r in the RBAC state. This way, currently widely used

roles are likely to be preserved intact. From this configuration, the HierarchicalMiner

produces a role hierarchy that provides a low-cost way to cover existing roles. For

each original role r, if nr is large enough, then a role for r is likely to also exist in the

hierarchy, although the way r is defined may be optimized. If nr is small, the role hi­

erarchy may not have a role corresponding to r. Instead, fake users corresponding to

r are covered using two or more roles, or a combination of roles and permissions. The

administrator can then decide whether to remove these roles or keep them. We can

then construct an RBAC state ⇤ consistent with the original RBAC state using the

optimized role definition from ⌥. This approach optimizes the RBAC state without

a⇥ecting role semantics or interpretation.

3.4.2 A Hybrid Approach to Role Engineering

Hybrid role engineering combines the top-down and the bottom-up approaches to

role engineering. In particular, we consider the case that a top-down role engineering

process already created definitions of some roles. These roles may represent the

most critical or sensitive job functions and are manually specified. We would like

to use role mining techniques to find the remaining roles. Furthermore, while the

roles constructed through the top-down role engineering process typically have useful

semantic information, a few of the permissions may be overlooked. The role mining

process may be able to discover these missing permissions and complete the definitions

of these roles.

We informally define the hybrid role mining problem as: Given a set of predefined

roles R and access control configuration p, find an RBAC state ⇤ that is consistent

with p, minimizes wsc(⇤, W) for weight vector W , and includes the roles in R. Here,

including “a role r in R” can be interpreted either strictly, in which case ⇤ must

contains a role with exactly the same permissions as r, or loosely, in which case ⇤ is

 �

�

63

required to contain a role that are semantically equivalent to r while maybe having

a few more permissions missing from the definition of r. Our method also allows the

flexibility of specifying some pre-defined roles as strict and others as loose.

Our approach combines traditional role mining over the user-permission relation

and the approach in Section 3.4.1 for mining the permission-assignment relation,

creating a hybrid method. We begin by flattening the permission-assignment relation

and treat each predefined role as a user as before. To ensure the creation of each

wr +max(wp| Pr |,wh|P |)
✏

3role r ⌫ R, we leverage Lemma 1 and create wu
users with the

permissions Pr. Let R⇤ and PA⇤ be the corresponding set of users and permission

assignments taken from the set of roles R with duplicated users. The final input

access control configuration is p/ = (U ⌧ R⇤, P, UP ⌧ PA⇤ . We can then apply any

existing role mining algorithm to p/ and obtain an RBAC state, yielding the RBAC

state ⇤ as usual.

The RBAC configuration ⇤ will contain both candidate roles R/ and the set of

predefined roles R. If all predefined roles must be included strictly, then the artificially

added users can be removed from ⇤ and returned as the final RBAC state, i.e.,

⇤ = (R/ ⌧ R, UA \ { (u, r) | u ⌫ R⇤ } , PA/, RH , DUPA \ { (u, p) | u ⌫ R⇤ } .

When some predefined roles may be incomplete, the following steps attempt to

find other permissions that should also belong to the same role. For example, a

predefined role may be missing permissions and is not a formal concept of the formal

context (U, P, UP . By the definition of a formal concept, we know that Pr Pr
⌃⌥ ,

, P⌃⌥Ur P⌃, and (P⌃) is a formal concept [63]. To do this, the administrator can r r r

remove the artificially added users and continue to optimize the RBAC state, possibly

pruning the predefined role and returning only its closure. If some predefined roles

are favorable to their closure, e.g., the closure loses semantic meaning, may contain

mutually exclusive permissions, etc., then the users assigned to these roles can be

maintained during the additional optimizations. The number of artificial users can

3Because HierarchicalMiner is a heuristic algorithm, we cannot rely on Lemma 1 alone. Pruning
wr +wh | P |is prevented by analyzing Cases 1–4, yielding < n. The proof is given in Lemma 2, wu

Appendix A.2.

64

be used to turn how favorable the predefined roles are compared to the maximal

formal concepts. This process is likely interactive with inputs from administrator.

We will evaluate how well this approach works at completing a predefined role in

Section 5.4.3.

3.5 Conclusions

This chapter studied how to mine roles and generate a role-based access control

system using di⇥erent types of information under a wide variety of administrative

objectives. Our approaches take into account both the semantics of the roles and the

complexity of the resulting access control system. We have shown that formal con­

cept analysis provides a solid theoretical foundation for mining roles when the only

user-permission information is available, and how to easily extend these methods to

include other information such as user-attributes and predefined roles. We also pre­

sented the weighted structural complexity measure as a general objective that models

the administrative costs associated with managing an RBAC system. The weighted

structural complexity optimization and weighted structural complexity decision prob­

lems were defined, and the computational complexity for a wide variety of weights

was analyzed. We developed the HierarchicalMiner role mining algorithm based on

formal concept analysis and weighted structural complexity, and the AttributeMiner

miner algorithm and extension to increase the semantics of the resulting RBAC states.

The approaches to role engineering presented in this chapter assume the input

user-permission and user-attribute relations are clean. This is, we assume the input

data is correct, i.e., it represents a safe state, and attempt to transition it into a

role-based access control state exactly. In the next chapter we relax this assumption,

and consider how to apply role mining to input data that may contain errors.

65

4 HANDLING NOISY OR MISSING ACCESS CONTROL DATA

Many role mining approaches assume the input data is clean, including Hierarchi­

calMiner and AttributeMiner , and attempt to optimize the RBAC state. In this

chapter we examine role mining with noisy input data and suggest dividing the prob­

lem into two steps: noise removal and candidate role generation. We introduce an

approach to use (non-binary) rank reduced matrix factorization to identify noise and

experimentally show that it is e⇥ective at identifying noise in access control data

and illustrate how to use user- and permission-attributes to improve accuracy. Next,

we show that our two-step approach of mining noisy data is able to find candidate

roles that are close to the roles mined from noise-less data. This method performs

better than the approach of mining noisy data directly and o⇥ering the administrator

increased control in the noise removal and candidate role generation phases. These

methods may be used to predict missing values in the input relations, allowing an ad­

ministrator to input a partial specification of access control decisions. Such a solution

is beneficial when access control usage logs are available indicating which permissions

a subject has used, which may be a subset of the permissions they are authorized to

use.

4.1 Introduction

Most role mining algorithms, such as [6, 7, 16, 19], find a set of candidate roles

and a user-assignment relation such that the RBAC state represents exactly the same

level of access as the input user-permission relation. Such an approach implicitly as­

sumes clean data and uses roles to achieve a complete covering of the user-permission

relation.

66

In reality, access control configurations in any large organization are noisy in at

least two senses: first, they might contain undesirable over- and under-assignments;

and second, not all permissions are assigned due to roles—some assignments may be

exceptions. Hence it is necessary for role mining to deal with noisy data. Conceptually

there are two ways to mine roles from noisy data. One could first clean the data and

then perform role mining, or directly mine the noisy data without a cleaning step. For

the latter approach, one might adapt existing role mining algorithms to prioritize the

roles being selected and only use the top roles by assuming these roles are minimally

a⇥ected by noise.

This chapter presents the first approach, i.e., cleaning noisy data first. In practice,

role engineering often requires an organization to perform a costly data cleaning and

verification step where all changes must be approved by management. It is desirable

to develop techniques to partially automate the process. This chapter illustrates how

to use machine learning techniques, namely various matrix decomposition models,

to identify noise in access control data. The security sensitive nature of role mining

exacerbates the existing challenges of using matrix decomposition for any large ma­

chine learning task. Challenges include: determining the rank of the decomposition;

converting a real-valued matrix into a binary matrix; handling the risk of permission

over- and under-assignment; and isolating the assignments applicable to RBAC.

This chapter presents several findings and contributions. First, singular value

decomposition, non-negative matrix factorization, and logistic PCA have good per­

formance at identifying errors in a user-permission relation and excellent predictive

performance for missing values with low false positive and negative rates.

Second, the inclusion of a small amount of noise can cause significant di⇥erences

in the candidate roles produced when minimizing the number of roles required for an

exact solution. Our contributions include a number of new techniques for mining roles

with noisy data, including how to use non-binary matrix decomposition in role mining,

how to use security relevant attribute information about users and permissions to

improve prediction, and selecting an appropriate rank in matrix decomposition. We

67

also provide a new distance measure between two candidate role sets that addresses

shortcomings of methods previously used in the literature, and use it to measure the

stability of roles given noise. Finally, we refine a measure for attribute importance in

role mining and use attributes to improve prediction.

The rest of this chapter is outlined as follows. In Section 4.2 we provide a back­

ground on matrix decomposition, describe several models, and discuss related work.

We define noise in role mining, describe our approach, and evaluate several matrix

decomposition models in Section 4.3. In Section 4.4 we suggest a new distance mea­

sure for candidate role sets and discuss how noise a⇥ects two popular algorithms.

Section 4.6 describes how attributes can be leveraged in noise detection and provides

an evaluation for a real dataset from a large organization. Section 4.7 concludes.

4.2 Matrix Decomposition

This chapter discusses how to use approximate matrix decomposition to identify

noise at varying levels. Boolean matrix decomposition (also known as matrix factor­

ization) and rank reduction are fundamental machine learning techniques that have

been applied to role mining [6, 7, 15]. In this work, given n users and m permissions,

a matrix X ⌫ { 0, 1 }n⇥m is decomposed into two matrices A ⌫ Rn⇥k and B ⌫ Rm⇥k

such that X � ABT , i.e., the distance between X and ABT , denoted by D(X ! ABT),

is minimized. One can obtain di⇥erent matrix factorization models by selecting a dif­

ferent distance measure D(X ! ABT) and by placing restrictions on A and B [64].

Restrictions include making A and B to be non-negative, binary, or all rows sum to

1.0, etc.

The rank of matrix X is the maximum number of linearly independent columns (or

rows). In matrix decomposition, when X is decomposed into two matrices A ⌫ Rn⇥k

and B ⌫ Rm⇥k, the rank of A and B (and hence of ABT) is typically k. When k

is large, e.g., k = min(n, m), it is possible that X = ABT , and D(X ! ABT) = 0.

Otherwise, the decomposition results in ABT , which has lower rank than X and

68

is an approximation of X. Given a lower-rank approximate decomposition ABT of

X, intuitively ABT captures the information in X that is structured and can be

explained by some underlying succinct model. Hence the di⇥erences between X and

ABT identifies assignments in X that may correspond to noise.

4.2.1 Decomposition Models

We describe the matrix decomposition models evaluated in this work below, and

indicate how the results can be interpreted in the context of RBAC.

Singular Value Decomposition

One of the simplest and best known matrix decompositions is the singular value

decomposition (SVD). The singular value decomposition is X = A�BT , where

� = diag(s
1

, s
2

, · · · , sn) is a diagonal matrix with nonnegative real numbers on the

diagonal, and A and B satisfy the following conditions: AT A = In and BT B = Im

where In and Im are identity matrices, and A and B have orthogonal columns. The

values in � are the singular values of the matrix X, and are uniquely determined

by X. They are typically sorted in non-increasing order. Additionally, the square of

each singular value (the eigenvalue) is relative to the amount of variance in X that

the eigenvalue explains.

To interpret the results of a decomposition in the context of role mining, one

can view it as creating pseudo-roles (or eigenroles). The rows of A give the degrees

that each user is a member of the pseudo-roles, and the columns of BT give the

degrees that each permission is assigned to the pseudo-roles. In SVD, � gives the

global importance of each pseudo-role in reconstructing the complete user-permission

relation. Because these degrees are real numbers, and possibly negative, prevents the

results from being directly interpreted as an RBAC state.

The singular value decomposition is a popular algorithm for performing the rank

reduction of a matrix. If �k = diag(s
1

, s
2

, · · · , sk, 0, · · · , 0), then X̂ = A�kBT is the

69

ˆclosest rank-k approximation to X minimizing the Frobenius norm, D(X ! X) =
2 ⌘⇤⇤⇤

⇤⇤⇤X � X̂
⇤⇤⇤
⇤⇤⇤ = (Xij � X̂ij)2 .ij
F

Non-Negative Matrix Factorization

The singular value-decomposition makes it di⇤cult to interpret the A and B

matrices, especially in the context of RBAC. Instead, we can constrain A and B to be

non-negative, resulting in non-negative matrix factorization (NMF) [21]. To contrast

models with negative assignments, NMF can be viewed as learning a decomposition as

a sum of parts. This is more consistent with RBAC, which lacks negative assignments

and a user’s set of authorized permissions is the disjunction of the permissions of their

authorized roles.

We use an implementation of NMF from Matlab (nnmf) that minimizes the root­

mean-squared error and Bayesian NMF (BNMF) from Schmidt et al. [22] that maxi­

mizes the probability Pr [X | A, B] under the assumption that the data is normally

distributed.

It is known that many NMF implementations are sensitive to initial conditions

and may converge to local optimal solutions. Because of this we run NMF ten times

and select the best decomposition.

Binary Non-Orthogonal Decomposition

We can further constrain A and B to be boolean matrices, allowing us to di­

rectly interpret the results in the context of RBAC. Binary non-orthogonal matrix

decomposition [65] decomposes a matrix X by successive rank-one decompositions

X = abT where a and b are binary vectors that minimize the Hamming distance.

That is, it finds a single role that most closely approximates the remaining uncovered

user-permission relation. If abT is a satisfactory approximation (as measured by the

Hamming radius, the maximum hamming distance between a vector and all columns

of a matrix), then abT is returned as the factorization. Otherwise, the vector a is

70

used to partition X into two sub-matrices of disjoint users and a and b are discarded.

To partition X using a, row i of X is added to sub-matrix X
1 if ai = 1, otherwise it

is added to sub-matrix X
0

.

The decomposition recurses on each sub-matrix X
0

, X
1 until the Hamming radius

drops below threshold e. Finally, the rank-one approximations for each sub-matrix

are combined into a final approximation X � ABT .

Logistic PCA

The above matrix factorization models are linear models where X = ABT .

There exist matrix factorization models that use a non-linear prediction link where

X = f(ABT). Because an access control system is a binary relation, we use logistic

PCA [23], where f(⌃) = (1 + e-⌅)-1 and the loss function is D(X ! X̂ = f(ABT)) =
⌅
Xij log Xij + (1 � Xij) log 1-Xij

⇧
. Instead of assuming the data is normally dis­ij ˆ

1- ˆXij Xij

tributed, logistic PCA assumed a multivariate Bernoulli distribution. The Bernoulli

distribution for x ⌫ {0, 1} with mean p is given by Pr [x | p] = px(1 � p)1-x .

Collective Matrix Factorization

So far we have described several methods to decompose a single user-permission

relation X. This can make detecting noise di⇤cult when the user-permission relation

is sparse, or when an administrator forgets to assign or revoke many permissions from

a user, such as when a user changes positions within the organization. We can often

improve our accuracy if attributes are available.

Singh and Gordon [24] describe a collective matrix factorization method that we

can use to improve noise detection and predictive accuracy when we have attributes

about users or permissions. In the collective matrix factorization framework we have

two or more matrices that share common domains, and we wish to leverage one re­

lation to improve the predictive accuracy of another. Assume we have f attributes

about users, and a user-attribute matrix Y ⌫ R⌥⇥n . Matrix Y could be real-valued, for

71

example containing salary information, ranking, etc., or binary, indicating which at­

tributes a user has. We can collectively factor the user-attribute and user-permission

matrices such that Y = CAT and X = ABT and minimize a linear combination of

their losses, �D(Y ! CAT) + (1 � �)D(X ! ABT). Here � is a mixing parameter of

the importance of reconstructing X versus Y . We can view A as a matrix that collec­

tively groups users by both attributes and permission assignments, and by combining

these two pieces of information we can improve accuracy and reduce the number of

false positives and false negatives. We can also include a permission-attribute matrix

Z ⌫ Rm⇥o such that Z = BDT . We only consider the former case in the remainder

of this work.

4.3 Identifying Noise

In this section we will define noise and present our approach to use the matrix

decomposition models described in the previous section to identify noise prior to role

mining.

4.3.1 What is Noise?

The term noise in access control is ambiguous and may have di⇥erent meanings

to di⇥erent readers. We consider two possible meanings: correctness, and RBAC

applicable.

Correctness Noise

There are some user-permission assignments that many would consider errors.

These are Type I errors (false positives) and Type II errors (false negatives) that

impact the security of the applications they are intended to protect.

A Type I error occurs when a user has been over-assigned permissions and has

gained additional privileges. Type I errors are often the result of users changing

72

job functions in the organization. As an employee remains with an organization

the jobs they perform and the projects they work on change over time. When the

employee moves from one project to the next, not all of their old permissions are

correctly revoked. This provides the employee with an increasing set of permissions

and entitlements and poses a security threat. The security risks associated with not

correctly revoking privileges can often be great when an employee’s new and old jobs

contain mutually exclusive permissions. These can also be leaked rights.

Type II errors are often the result of employees joining the organization or joining

a new project, division of the company, etc. If the employee is not granted all the

permissions required for their job, there may be a loss of availability, a reduction in

productivity, and often resulting in costly calls to support. There are several works

that seek to reduce the costs associated with incorrectly denying requests [51, 66].

Balancing the allowed and denied actions is a very delicate process with many

tradeo⇥s. Reducing Type I errors too aggressively will likely result in an increase

in Type II errors, and vice versa. For some algorithms, one can carefully tune the

parameters to balance how many Type I and Type II errors to output.

Correctness errors can be viewed as gaps between layers on the Unifying Policy

Hierarchy [27] from Figure 2.2. The input user-permission relation is a security policy

at the configured policy level, while a correct policy is at the model level that is closest

to the oracle policy. The distance between the configured policy and the model feasible

policy depends on a distance measure that balances Type I and Type II errors.

Any permission assignment represents a balance of the risks of assigning a per­

mission to a user with the trust the user will perform correctly and honestly. The

classification of a user-permission pair as a Type I or Type II error depends on the

interpretation of risk and trust and by the administrator. Here, risk is defined as

the expected negative outcome. For example, if there is a probability of 0.1% that

granting permission p
1 to user u

1 will leak information, resulting in $5,000 in damage,

the expected harm is $5.00. Trust is a belief the system (or user) will behave honestly

and correctly with a given amount of risk.

73

RBAC Applicability Noise

RBAC is not a panacea for access control, and it may not be suitable for all

access control needs, such as when sharing is low. We now consider how to identify

assignments that are applicable for roles in RBAC.

One can view RBAC as a compression of the access control matrix into the a set

of roles and user-assignment relations. A role mining algorithm is then a (typically

lossless) compression algorithm; the more compressible the data, the more applicable

it is for RBAC. There is also a law of diminishing returns for RBAC; a small number

of roles can typically cover a larger percentage of the user-permission relation, while

complete coverage requires significantly more roles. Each new role contributes a

smaller portion of the user-permission relation [67].

The diminishing returns of adding more roles is known to professional role engi­

neers who often speak of an 80–20 rule for RBAC. This could be loosely interpreted

as 80% of the assignments need to be covered via roles while the remaining 20% are

exceptions. These exceptions do not “fit the mold” of the RBAC model and may or

may not be correct. Many datasets we have analyzed, such as the one we use in Sec­

tion 5.5.1, have a very long tailed distribution, where many permissions are assigned to

one-or-two users. For example, the anonymous dataset contains over three-thousand

users and permissions, and a density of only 0.74%. Over two-thousand permissions

are assigned to fewer than ten users and over twelve-hundred are assigned to fewer

than five. Four-hundred nine permissions are assigned to a single user. The sparsity

and long tail, shown in Figure 4.1, motivate the exception models like the 80–20 rule.

We di⇥erentiate an exception from an error by the intention of the administrator.

Noise and Safety

As mentioned in Section 2.5.2, one objective of noise removal is to place the input

user-permission relation into a safe state. One advantage of the two-step approach

presented is it allows an administrator to validate, approve, or reject the noise removal

74

Figure 4.1. Long tail of the user-permission relation for the anony­
mous dataset. Note the y-axis is on a log-scale.

results. Once the results have been validated one can assume the input data is in

a safe state and an exact role-mining algorithm may be used. Inexact role mining

algorithms, if nondeterministic, may make di⇥erent noise removal suggestions for

each iteration. This makes noise removal and role mining di⇤cult when attempting

to ensure safety; the results from one role mining experiment may be validated and

considered safe while another with identical parameters may be unsafe.

Missing and Unknown Values

In many instances an incomplete view of the user-permission relation is available,

making role mining di⇤cult due to the increased uncertainty. For example, log data

indicating what actions a user has performed in the past, and whether these actions

were allowed or denied, may be available. If the access control state has not been cor­

rectly maintained, e.g., a user’s permission set is monotonically increasing, the access

control logs will be a strictly smaller set of permissions. In these settings, some user-

permission assignments may be known allow-deny decisions, while user-permission

75

pairs remain unknown. Here, the noise removal phase must perform prediction of the

unknown values to identify a complete binary relation to input for role mining.

4.3.2 Using the Decomposition

The two meanings of noise above imply the user-permission relation can be fac­

tored into three disjoint relations: assignments for roles, assignments that are excep­

tions, and assignments that are errors.

If we begin with roles, intuitively these are the dominant patterns in the data

and are strongly reinforced, i.e., there are many users that have identical or similar

permission assignment patterns. Users share a common set of job duties within an

organization and the reinforced patterns imply roles. This is the underlying assump­

tion for all bottom up role engineering; if it does not hold, role mining cannot be

performed.

Exceptions, on the other hand, are user-permission assignments that are slightly

abnormal. Perhaps only some of the users sharing a common permission set have

these extra assignments, or they have a subset of the additional permissions that

similar users have. These assignments are weakly reinforced in the data such that

their patterns are weaker than the user-permission patterns of roles.

Finally, non-systematic errors are likely to be rarely reinforced assignments. If an

error is a strong pattern in the user-permission relation, for example roles that are

incorrectly assigned or revoked, then we will not be able to identify such errors using

just the user-permission relation.

The above analysis implies that the three sets of permission assignments can be

di⇥erentiated by the strength of the patterns in the user-permission relation. The

stronger the pattern, the more likely the user-permission assignment is correct. Low

rank matrix decompositions are well known techniques for identifying dominant pat­

terns where the rank is inversely proportional to the granularity of the patterns. They

76

have frequently been applied in other domains for compression and noise removal [68],

and as we will show, can be successfully applied to the domain of role mining.

To identify noise in the original matrix X, we can compare X with ABT . Where

they di⇥er indicates potential noise. However ABT is not a binary matrix. There are

several strategies that can be used to convert ABT into a binary relation. First, we

are not interested in interpreting the results of the decomposition, so we only need to

make ABT binary, and not A or BT . Let g : Rn⇥m ⇣ { 0, 1 }n⇥m be a function that

converts a real-valued matrix into a binary matrix. A simple example of a function g

is to set all user-permission relations greater than a threshold t, for example 0.5, to 1,

and 0 otherwise. This is the approach we take in our experiments. As we increase t

there will be fewer user-permission assignments in X̂, resulting in a more conservative

approximation (fewer assignments), and a sparser user-permission relation. Because

of the sensitive nature of the access control matrix, we suggest several alternatives

for g that integrate permission sensitivities next. In Section 4.6.3 a method that

leverages risk and trust is presented.

Sensitivity of Users and Permissions

Security is a critical concern when attempting to detect noise in an access control

system. One of the advantages of the two-step method we propose is that an admin­

istrator can inspect, and possibly reject, the noise correction. One shortcoming of all

existing works on handling noisy data in role mining is that all permissions, and over-

and under-assignments, are treated identically. There are several ways we can treat

users and permissions uniquely.

In our experiments we use a single threshold t for all items. Increasing t will

result in a more conservative user-permission relation, while decreasing t will increase

permission assignments. An alternative is to select a threshold tp for each permission.

This allows an administrator to increase the threshold for more security sensitive

permissions, or lower the threshold for permissions that are less sensitive, or are

77

needed for availability. Similarly we can use a unique threshold tu for each user based

on their trust.

If such measures are not available, we can estimate them using permission fre­

quency. For permissions, we assume more sensitive permissions are assigned infre­

quently. We can define the sensitivity of permission j as the probability a user is not

assigned it, S(j) = 1�Pr [(u, pj) ⌫ X], where Pr [(u, pj) ⌫ X] is the fraction of users

assigned pj . This weights rare permissions more heavily than frequent permissions,

but has low variance. Because of the sparsity of X, most permissions have sensitivity

close to 1.

To resolve this issue, we must normalize the results into a more usable range

[0 ⌦ t
0

, t
1 ⌦ 1] and use a unique threshold tj = S(j) for each permission j. When

t
0 = t

1 = 0.5 we have the näıve solution. To be more lenient on assigning common

permissions, we lower t
0

, and to be more conservative for rare permissions, we increase

t
1

.

The objective is to estimate a prior probability the user needs the permission that

will be compared to the posterior probability calculated by the matrix decomposition.

We then assume a user who does not require a permission has a greater likelihood of

misuse. This was called a temptation in [69].

As an alternative to selecting distinct thresholds for discretizing the real-valued

matrix, we can leverage this information in our matrix factorization model. Using

the unified view on matrix factorization [64], a weight matrix W can be applied to

the distance measure, D(W, X ! X̂). By applying a greater weight to more sensitive

permissions one can ensure they are more accurately reconstructed. For example, the

loss function for SVD can be defined as ! W ⌃ (X � X̂) !F
2 , where ⌃ is element-wise

matrix multiplication.

78

Determining the Correctness Noise

Identifying and removing noise is likely to be a human intensive task, even with

tools provided to a role engineer. Assigning new permissions to a user or revoking

permissions from a user is not taken lightly; the administrator must ensure policies

are maintained and balance the requirements of compliance and separation of duty

policies, against job requirements. There are many ways an administrator could

proceed using a matrix decomposition to identify noise and select an appropriate

rank k that will determine the separation between the noise and signal.

First, if the administrator has an estimate on the number of errors ⇧, we can select

the smallest k such that ||X � g(Xk)||
1 ⌦ ⇧. Several prior works [7, 13] assume the

number of errors is known a priori.

Second, an administrator can begin with a high-rank, fully reconstructed dataset,

and slowly reduce the rank of the approximation, observing the changes to the user-

permission relation. The administrator continues to reduce the rank of the decompo­

sition until they are satisfied with the clean representation. While this is still a very

human intensive task, it significantly reduces the work from O(| U | ⇤ | P |).

An alternative approach is based on the decrease in a distance function D(!)
ˆobserved from increasing the rank of X, equivalent to adding a new pseudo-role to

the RBAC state, and thus may be comfortable for system administrators. Roles that

represent correct assignments are often assigned to a wide number of users. A role

should represent a significant user-permission assignment pattern in an organization.

Errors, on the other hand, should be rare; pseudo-roles that capture noisy assignments

will cut small holes in the existing user-permission relation or add a small number of

assignments.

Our approach is to slowly increase the rank of the decomposition and measure the

number of changes made to the user-permission relation between the rank k and rank

k + 1 approximations, that is
⇤⇤⇤
⇤⇤⇤g(X̂k) � g(X̂k+1

)
⇤⇤⇤
⇤⇤⇤
1
. When these gains drop below

79

a given threshold, we believe adding more roles recovers more noise than accurate

user-permission assignments, and we can stop.

Low rank approximations are largely independent of small amounts of noise. We

can correlate the results from many variations of the noisy dataset (e.g., employing

the approach from [7]), and obtain a rank k that should work well for a given dataset.

For example, see Figure 4.2. The top figure plots the L1 norm of the di⇥erence of the

rank-k approximation and the clean data; the vertical lines illustrate the optimal rank

decomposition for each noisy dataset. The second figure plots the normalized di⇥er­

ences between the rank k and rank k + 1 approximation; the vertical lines indicates

when ||g(Xk) � g(Xk+1

)||
1 / ||X||

1 drops below 0.1%.

Finally, a common approach in machine learning to select the rank k of a decom­

position is to evaluate how well the decomposition recovers known values. A small

amount of the data can be held out, and assumed unknown. The rank k that provides

the best approximation of the missing values indicates the appropriate rank of the

decomposition. We evaluate the predictive nature of several matrix decomposition

methods against real datasets in Section 5.5.

Determining the Most Applicable Assignments

Most research in role mining has been concerned with migrating an entire user-

permission relation to RBAC, typically trying to minimize some complexity measure.

In practice, this is rarely required, and often not desirable. In Section 4.3.1 we noted

that professional role engineers often speak of an 80–20 rule for role engineering. The

intention is that in practice only 80% of the user-permission relation needs to be

covered by roles.

Because only 80% of the user-permission relation needs to be represented by roles,

we can be rather lax with our reconstruction, and propose several possible solutions.

When using SVD, a common practice is to discard all singular values that are less

�

80

Figure 4.2. Observing the consistency of the optimal rank k decom­
position using multiple levels of noise.

than 1.0, or to keep the singular values that represent most of the variance in the UP

relation, e.g., the first 80%:
k↵

s⌥
2

1

2
i ↵ �.

si=1 ii
=0

We will evaluate these approaches in the next section.

In general, we can use the 80–20 principle to select the significant 80% (or more) of

the data using an appropriate rank decomposition. Simply stated, if we only require

80% of the data to be covered via roles, we can select k such that
⇤⇤⇤
⇤⇤⇤X � g(X̂k)

⇤⇤⇤
⇤⇤⇤
1 80%. ||X||

1

Because we are selecting a more coarse approximation, it may be desirable to select a

function g that favors under-assignment, for example by setting a threshold t > 0.5.

4.3.3 Performing Prediction

Prediction of unknown values can be performed using the matrix decomposition

methods described in this chapter. The described decomposition methods require a

complete real-valued or binary matrix, and do not allow for null or unknown values.

Before these decomposition methods can be used, the null values must be replaced.

81

Two common approaches are to replace all unknown values with zero or the column

means. To prevent biasing the prediction, the decomposition should be invariant to

the replacement chosen. That is, the unknown values cannot impact the decomposi­

tion’s fitness or distance measure. Given a matrix X with missing values, let X / and

X // be the matrix X with unknown values replaced using two di⇥erent methods. The

X) ⌥ D(X // ! ˆdistance measure is invariant to the unknown values if D(X / ! ˆ X).

This can be accomplished by masking the unknown values such that they do not

contribute to the distance, i.e., D(W, X ! X̂). This method was described in Sec­

tion 4.3.2.

4.4 Mining Noisy Data

The goal of role mining has always been to discover meaningful and useful roles.

Next we consider how well a role mining algorithm can perform this task in the

presence of noise. There are three basic solutions to the problem: clean the data first;

use a role mining algorithm that can identify noise; or mine the noisy data and only

return the top roles. We mine a noisy data before and after cleaning, and compare

the results to the candidate roles obtained from mining the clean data.

A good solution will produce roles that are similar to the roles mined from clean

data regardless of the presence of noise. We introduce a distance measure between

two sets of roles and use it to evaluate how well two role mining algorithms reproduce

meaningful roles when mining both noisy and cleaned data. One result obtained

from this analysis is that the role mining objective can impact the susceptibility of

the candidate roles to overfit noisy user-assignments. In particular RMP, minimizing

the number of roles required, is especially susceptible to noise.

4.4.1 Role Quality

System administrators are often skeptical of candidate roles generated via role

mining, believing the roles are overfitting to the data. Some candidate roles may

82

only be generated when the input data contains noise, making deployment and ad­

ministration di⇤cult. The goal of a role mining algorithm should be to produce a

similar set of candidate roles regardless of the presence of noise. This is similar to

the intuitive definition of role stability from Colantonio et al. [70]. Roles that overfit

a noisy dataset will be di⇥erent from roles mined from a clean dataset. The greater

the di⇥erence, the more unstable and overfit the roles are.

To mine stable roles, Colantonio et al. [70] define the notion of role weight, and

present a method to mine roles satisfying a minimum weight. The weight of a role

in a function of the number of users and permissions assigned to the role, such as

a weighted sum or product. Unfortunately, role stability is not formally defined,

and role weight does not satisfy the intuitive definition of a stable role. A proof is

presented in Appendix A.3.

A stable role is one that is invariant to small changes in the input data, and an

RBAC state that can generalize to an independent set of users drawn from the same

distribution. In the context of role mining, this independent set of users should come

from the same organization. A role mining result isn’t required to generalize to other

organizations. We now define role stability.

Definition 4.4.1 (Role Stability) Let p
0 = (U

0

, P
0

,UP
0 and p

1 = (U
1

, P
1

,UP
1

be two access control configurations where U
0 �U

1 = � and p
0 and p

1 are drawn from

the same distribution. Next, let R
0 and R

1 be the candidate roles output from p
0 and

p
1 by role mining algorithm A respectively. The role mining algorithm A is stable if

R
0 and R

1 are similar, and the distance D(R
0 ! R1

) is small.

In the presence of noise p
1 is a noisy version of p

0

, and the restriction U
0 �U

1 = �

is relaxed. Here stability is defined as the invariance to noise.

To measure how overfit or stable a set of roles is, we first need a distance measure

D(⇤ ! ⇥) between two RBAC states ⇤ and ⇥. We start with a distance measure

between two roles and expand it into a distance measure between two sets of roles.

83

4.5 A Distance Metric for RBAC

Before we can measure the stability of an RBAC state, the impact noise has on a

set of candidate roles, or compare the roles resulting from two di⇥erent role mining

algorithms or weight vectors W and W /, we need a distance metric between the set

of candidate roles. First, we need to define a distance metric.

Definition 4.5.1 (Metric) A distance metric must have the following properties:

1. d(x, y) ↵ 0 [Non-negativity]

2. d(x, y) = 0 � x = y [Identity of Indiscernible]

3. d(x, y) = d(y, x) [Symmetry]

4. d(x, z) ⌦ d(x, y) + d(y, z) [Triangle Inequality]

We will start with a distance measure between two roles, and expand it into a

distance measure between two sets of roles that represent RBAC states.

4.5.1 Distance Measure for Roles

In order to define a distance metric between two roles, we must determine the

domain of a role. Roles are defined by the RBAC user-assignment (UA), permission-

assignment (PA), and role-hierarchy (RH) relations. In the context of role mining,

it is useful to think of a role as a set of authorized users and permissions, and the

role-hierarchy as reducing the absolute size of UA and PA. In many organizations

the job functions a user performs change, while the permissions required for a job are

relatively stable. This is one of the main motivating factors in using RBAC. As a

result, we define a role by its set of authorized permissions, resulting in the following

definition for a role distance metric,

dR : 2P ⇥ 2P ⇣ R. (4.1)

84

We can then use the popular Hamming distance as one possible distance measure

Hamming(X, Y) = | X ⌧ Y | � | X � Y | . (4.2)

One disadvantage of the Hamming distance is that it measures the total number

of di⇥erences between two roles, and not the relative number of di⇥erences. For

example, a Hamming distance of one represents a higher degree of dissimilarity when

| X | is small (e.g., two or three permissions), than when | X | is large (e.g., hundreds

of permissions).

A common measure of similarity between two roles that addresses this issue is the

Jaccard similarity coe⇤cient

| X � Y |
J(X, Y) = , (4.3)| X ⌧ Y |

and the related Jaccard distance, J⇤(X, Y) = 1 �J(X, Y), which satisfies the required

properties of a metric [71]. Note that the Jaccard distance is the normalized Hamming

distance, and is bound by zero and one inclusive. The Jaccard similarity measure has

been extended to a similarity measure between two sets of roles [17] using the average

maximum Jaccard,

AMJ(X, Y) = avg max J(x, y), (4.4)
y⌦Yx⌦X

where X and Y are sets of roles and x and y are sets of permissions. This measure

of role set similarity was proposed by Vaidya et al. [17].

The average maximum Jaccard can easily be converted into a measure of dis­

similarity, 1 � AMJ(X, Y). Equivalently we can define the average minimal Jaccard

dissimilarity measure, AMJ⇤(X, Y) = avgx⌦X miny⌦Y J⇤(x, y).

There are several issues with the average maximum Jaccard. First, it is not a

metric because it does not satisfy the symmetric property: AMJ(X, Y) ⇠= AMJ(Y, X).

This can clearly be seen using the following example. Consider two candidate role

sets, X and Y = ⇠ Y . It is �(P), the powerset of the set of permissions, where X =

clear that AMJ(X, Y) = 1, while AMJ(Y, X) < 1. Second, excessive role creation

can artificially improve the measure, as shown above. A more realistic example is

�

85

the following. Consider a role R = { pj , · · · , pn } taken from a set of permission

P = { p
0

, · · · , pm }. Many roles “close” to R can be generated as Ri = R \ { i }, or

R⌥ = R ⌧ { p⌥ } where p⌥ ⌫ P 1 p⌥ ⇠⌫ R.

4.5.2 Role Matching Distance

We can view the average minimum Jaccard distance, AMJ⇤(X, Y), as finding a

mapping from the set of roles X to the set of roles Y . The main flaw is that it is not

an injective mapping; each role in Y may be the closest match for multiple roles in

X. We resolve this by requiring the closest pairing of roles between two sets where

each role can only appear in only one pair.

Given two RBAC states ⇤ and ⇥, let R⇥ be the roles in ⇤ and R� be the roles in

⇥. The pairing is an injective mapping m : R⇥ ⇣ R� . We force the mapping to be a

bijection by requiring |R⇥ | = |R� |. Without loss of generality (the distance measure

must be symmetric), assume |R� | ⌦ |R⇥ |. We add |R⇥ | � |R� | roles to R� whose

permission set is the empty set. Finally, denote the set of all bijections from R⇥ to R�

as M(R⇥ , R�), and let d be a distance metric between two roles, as defined by their

permission sets (Definition 4.5.1 and Equation 4.1). The distance between ⇤ and ⇥ is

Dd (⇤ ! ⇥) = min
↵

d(ri, m(ri)). (4.5)
m⌦M(R⇥ ,R�)

ri⌦R⇥

This problem is known as minimum weighted bipartite matching (MWBM). The

minimum weighted bipartite matching problem is defined as follows:

Definition 4.5.2 (Minimum Weighted Bipartite Matching) Given a bipartite

graph G = (V = (X, Y), E where X �Y = � and E is a set of undirected edges from

vertices in X to vertices in Y , and a weight function over the set of edges, w : E ⇣ R,

find a set of pairwise adjacent edges M E such that the sum of the weights of the

edges is minimal, i.e., arg minM⌅E e⌦M w(e).

The minimum weighted bipartite matching problem can be solved in O(V 3) using

the Hungarian algorithm [72]. A O(V 2 log V) algorithm that computes the optimal

86

solution with probability 1 �o(n -1) also exists [73]. In practice the number of roles is

expected to be small because they are typically managed by human administrators.

We convert the RBAC distance problem into an instance of the minimum weighted

bipartite matching where we desire a perfect matching, | M | = min(| X | , | Y |), as

follows. Given two RBAC states ⇤ and ⇥, we create one vertex in X for each role in

⇤ and one vertex in Y for each role in ⇥. For each pair of roles (x, y), x ⌫ X and

y ⌫ Y , add an edge (x, y) with weight d(x, y). The solution to the minimum weighted

bipartite matching is the distance between the two RBAC states, which we denote

Dd (X ! Y).

4.5.3 Minimum Matching is a Distance Metric

We now prove the minimum weighted bipartite matching is a metric if the edge

weights are measured by a distance metric.

Theorem 4.5.1 Dd (X ! Y), as defined in Equation 4.5, defines a metric when d

satisfies the properties of a metric.

Proof Dd (X ! Y) satisfies each of the four properties of a metric in Definition 4.5.1.

•	 Dd (X ! Y) satisfies non-negativity, i.e., Dd (X ! Y) ↵ 0. The distance mea­

sure is the sum of individual distance measures defined by edge weights,

which are strictly non-negative. Therefore, the distance measure must be non­

negative.

•	 Dd (X ! Y) satisfies Dd (X ! Y) = 0 � X = Y . Dd (X ! Y) is the sum of the

distances of its parts. If Dd (X ! Y) = 0, then by definition ⇡x⌦X ⇢y⌦Y d(x, y) =

0, and therefore ⇡x⌦X x ⌫ Y by the metric property of d. Finally, because | X | =

| Y |, we know that ⇡y⌦Y y ⌫ X, and therefore X = Y . The reverse direction

follows directly from the definition of Dd (X ! Y) and the metric property of d.

•	 Dd (X ! Y) is symmetric, i.e., Dd (X ! Y) = Dd (Y ! X). Each edge in the

bipartite graph G is undirected, and each edge weight is symmetric by defini­

87

tion, thus G = (V = (X, Y), E ⌥ (V = (Y, X), E , and the minimum weighted

matching must be identical.

•	 Dd (X ! Y), satisfies the triangle inequality, i.e., Dd (X ! Z) ⌦ Dd (X ! Y) +

Dd (Y ! Z). Let MXZ , MXY , and MY Z be the matchings for Dd (X ! Z) ,

Dd (X ! Y), and Dd (Y ! Z) respectively. Then we can rewrite the above as

↵
d(x, z) ⌦

↵
d(x, y) +

↵
d(y, z)

(x,z)⌦MXZ (x,y)⌦MXY (y,z)⌦MY Z ↵
d(x, z) ⌦

↵
d(x, y) + d(y, z); (x, y) ⌫MXY , (y, z) ⌫MY Z

(x,z)⌦MXZ y⌦Y

Because the mappings M⇤ are bijections, (x, z) is uniquely determined by each

y ⌫ Y . Because the triangle inequality holds for d for each unique x, y, z, and

Dd (X ! Y) is the sum of its parts, the triangle property holds.

Finally, the proof of Theorem 4.5.1 follows directly from the above four required prop­

erties. Therefore the Theorem holds, and the minimum weighted bipartite matching

defines a distance metric for RBAC roles when the edge weights are defined by a

distance metric.

4.6 Leveraging Attributes

We have shown how to leverage the structure of the user-permission relation to

identify errors and perform predictive analysis on several real-world datasets. We

now illustrate how attributes can be leveraged to improve predictive accuracy using

a real dataset from a large organization.

Attributes have been used to increase the semantic meaning of roles [12, 14], but

not for noise detection. Colantonio [12] use an organization hierarchy to define roles

assigned to closely related users. Frank et al. [14] select roles with high attribute

compliance1 from otherwise similar roles generated with MAC [15] by maximizing

the number of attributes shared by users assigned to a role. Their approach reduces

1Number of attributes shared by users assigned to a role.

88

permission assignment accuracy to increase attribute compliance, increasing the num­

ber of errors in order to gain semantic meaning.

Frank et al. also provide a method to identify attributes that are applicable to

role mining. They suggest a measure based on the entropy reduction I(pj , A) of a

permission pj ’s assignments given knowledge of a user’s attribute A:

h(pj) � h(pj | A)
I(pj , A) =

h(pj)

where h(pj) is the entropy of the permission pj ,

h(pj) = �
↵

Pr [pj = s] log
2 Pr [pj = s]

s⌦{ 0,1 }

and h(pj | A) is the entropy of pj conditional on the value of the attribute A

↵
h(pj | A) = �

↵
Pr [A = a] Pr [pj = s | A = a] ⇤

a⌦A s⌦{ 0,1 }

log
2 Pr [pj = s | A = s].

In the rest of this section we identify a shortcoming of the above entropy-based

approach on attribute selection. We then use the collective matrix factorization

framework from Section 4.2.1 to illustrate how attributes can be used to improve

the accuracy of a decomposition.

4.6.1 Analysis of the Organization Dataset

We analyze how well attributes can be used on a real dataset from a large anony­

mous organization, which will be referred to as the anonymous dataset. The dataset

contains over three thousand users and permissions, and around seventy-two thou­

sand permission assignments, making it exceptionally sparse compared to the datasets

used elsewhere [13, 19]. Sparsity, combined with a long tail distribution, make the

data di⇤cult to predict held out values. The dataset also contains eight attributes

per user.

We have discovered that the granularity of each attribute, the number of values

it may take, often has a significant impact on the entropy reduction. The conditional

89

entropy above divides the user-permission relation into k disjoint sets of users. If k is

equal to the number of users, then each user is in their own user-permission relation,

and the total conditional entropy is zero. This granularity bias causes the entropy

reduction metric to favor finer grained attributes.

Table 4.1 sums the total conditional entropy over all permissions for each attribute,

h(pj | A), and the total entropy of all permissions, h(pj). It should not pj ⌦P pj ⌦P

be concluded that a user’s Last Name is significant in predicting their permissions

given it has the least total entropy, nor should we consider the Contractor attribute

useless. We do believe that the Department attribute may be more significant than

Title because it produces a greater reduction in the entropy and has a smaller cardi­

nality. We propose a partial order over the attributes by (Cardinality , TotalEntropy

where we wish to minimize both cardinality and total entropy. The partial order is

shown in Figure 4.3.

Table 4.1
The total uncertainty reduction of the user-permission relation given
knowledge of a user’s attribute. Total entropy of the user-permission
relation is 107.34 bits.

Attribute Cardinality p⌦P I(p, A)

Last Name 2224 2769.39

Manager 298 2186.03

Department 192 1931.95

Title 527 1878.51

Location 53 1316.92

Organization 12 789.46

Level 17 170.34

Contractor 2 78.44

�

�

�

90

��������� 	�
����

����

��������
� �������
 ����
������

�����

��
�������

Figure 4.3. Partial order over attributes significance.

4.6.2 Using the Collective Matrix Factorization

The most applicable user-attributes are selected using the cardinality and total

entropy minimization partial order. Categorical attributes are converted into binary

relations UAAA where ⇡u⌦U | { a | (u, a) ⌫ UAAA } | = 1. Multiple user-attribute as­

signment relations may be combined into larger relations such that a user is assigned

only one attribute for each category.

The same techniques may be applied to permission attributes when applicable.

For instance, attributes indicating the application a permission applies to, such as

“DB2”, “PeopleSoft”, “ActiveDirectory”, etc., may be available. This results in a

permission-attribute relation PAA.

The three binary relations, UP , UAA, and PAA, are collectively factored such

that

UP ABT

UAA CAT

PAA BDT

and minimizing the weighted loss

�D(UAA ! CAT) + ⇥D(PAA ! BDT) + (1 � �� ⇥)D(UP ! ABT).

The parameters � and ⇥ are chosen that minimize the predictive error on the UP

relation. Evaluation for the anonymous dataset is given in Section 5.5.1.

91

4.6.3 Collective Matrix Factorization of Risk and Trust

Section 4.3.2 illustrated how to individually weight users and permissions when

performing decomposition to integrate sensitivity semantics. Collective matrix fac­

torization provides more powerful tools by allowing actuarial data, attributes about

users and permissions, to be integrated in the factorization directly.

The permission attribute relation PAA may be a binary relation (for example,

permission p
1 grants access to application a

1

). However, it may represent actuarial

data on the impact from misuse of permissions across multiple vectors such as mone­

tary loss (e.g., fines, lawsuits, stock value), loss of reputation (e.g., expected decrease

in future sales), loss in human life, etc. The loss function for PAA can also assume a

non-Bernoulli distribution, such a normal or lognormal, and it does not need to be the

same loss function as the user-permission relation. For example, a logistic function

can be used for user-permissions, and the Forbenius for expected harm.

4.7 Conclusions

The majority of role mining algorithms assume the provided input data is clean

and correct. In reality, however, in any large organization this data is likely to contain

noise.

We advocate a two-step process to role mining with noisy data: first clean the

data, then mine. We propose non-binary matrix decomposition as a solution to

cleaning the user-permission relation. Our experiments indicate that singular value

decomposition, non-negative matrix factorization, and logistic PCA perform well,

while several other techniques, including two state-of-the-art probabilistic algorithms,

yield high false negative rates. The ability of the top matrix decomposition models to

predict missing values is evaluated on real datasets and we illustrate how attributes

can be leveraged to improve predictive performance.

To evaluate the impact noise has on the quality of the candidate roles we introduce

a new distance measure between two role sets; this measure avoids the pitfalls of the

92

average maximum Jaccard that has been used previously. Using our distance measure,

we find that first cleaning the noisy data produces candidate roles that more closely

resemble the candidate roles mined from the clean data than alternatives such as

selecting the top roles or allowing exceptions. Finally, we found that trying to find

roles to exactly cover the data can reduce the quality of the resulting candidate roles,

causing them to overfit the noisy data.

93

5 EXPERIMENTAL EVALUATION

This chapter presents experimental analysis illustrating the e⇥ectiveness of the role

mining techniques proposed in this dissertation, and compares the results to role min­

ing algorithms from the literature. Because of the diversity of role mining algorithms

from the literature, algorithms are categorized into two classes based on their output;

Class 1 algorithms output a sequence of prioritized roles while Class 2 algorithms

output complete RBAC states. Methods to convert Class 1 output into Class 2 and

vice versa are discussed. A subclass of Class 2 algorithms that produces an RBAC

state that is inconsistent with the input user-permission relation is considered.

Using synthetic as well as real datasets, eight role mining algorithms are compared.

Two new algorithms for generating user-permission data with role hierarchies are

also presented: the tree-based data generator and the ERBAC data generator. The

tree-based data generator outputs a tree-based role hierarchy while ERBAC data

generator outputs a two-level role hierarchy in the Enterprise RBAC model. Both

data generators are parameterized.

Performance of role mining algorithms is evaluated in several ways. First, the

RBAC states generated by each role mining algorithm at satisfying a given role mining

objective, as defined by the weighted structural complexity, are directly compared.

Next, several new role quality measures are described in this chapter to compare

the RBAC states generated from candidate roles mined from algorithms of di⇥erent

classes. These measures, which may discard candidate roles, are used. This allows

one to compare a Class 1 and Class 2 role mining algorithm. Third, the noise re­

moval techniques proposed in this dissertation are evaluated against three techniques

proposed in the literature. Finally, the ability of rank reduced matrix decomposition

to predict unknown access control decisions is evaluated on three real-world datasets.

The improvement in predictive performance gained from attributes using the collec­

94

tive matrix factorization framework is measured. Prediction is useful for granting

exceptional access or mining roles from incomplete data, such as access history logs.

The next section describes a role mining algorithm classification system and algo­

rithms for converting between algorithms of one class to another. Section 5.1 presents

additional RBAC role quality measures used for evaluation, and describes the real,

synthetic, and algorithmically generated datasets used for evaluation. Evaluation

results are then presented: Class 2 algorithms and Class 1 algorithms converted to

Class 2 output are directly compared in Section 5.3; and noise removal and prediction

methods are evaluated in Section 5.5.

5.1 Classification of Role Mining Algorithms

Existing role mining algorithms in the literature can be divided into two main

classes based on their output. This section presents a classification system for role

mining algorithms, and presents methods for converting between the two main classes.

5.1.1 Class 1 Algorithms: Outputting prioritized roles

Algorithms in the first class output a prioritized list of candidate roles, each of

which is a set of permissions. These algorithms output a vector of candidate roles CC

ordered by their priority. Examples include CompleteMiner and FastMiner in [5].

These algorithms can be divided into two phases: candidate role generation and

candidate role prioritization. The candidate role generation phase identifies a set of

candidate roles from the user-permission assignment data. This phase usually outputs

a large number of candidate roles. The candidate role prioritization phase assigns a

priority value to each candidate role; roles with a larger priority value are believed to

be important and useful by the role mining algorithm.

� �

�

�

95

5.1.2 Class 2 Algorithms: Outputting RBAC states

Algorithms in the second class output a complete RBAC state. Examples in­

clude ORCA [4], graph optimization [8], role/edge minimization algorithms [19], and

HierarchicalMiner [16].

These algorithms take as input a configuration p = (U, P,UP and output an

RBAC state ⇤ = (R,UA,PA,RH ,DUPA that is consistent with p. In the state, R

is a set of roles, UA U ⇥ R is the user-role assignment relation, PA R⇥ P is the

role-permission assignment relation, RH R⇥ R is a partial order over R, which is

called a role hierarchy, and DUPA U ⇥ P is the direct user-permission assignment

relation. The RBAC state is consistent with (U, P,UP , if every user in U has the

same set of authorized permissions in the RBAC state as in UP .

Some of these algorithms [6–8, 10, 16, 19] aim at generating an RBAC state that

minimizes some cost measure, such as minimizing the number of roles or the number

of user-assignments and permission-assignments. Weighted structural complexity is

a general parameterized optimization objective that subsumes the objectives used in

the above algorithms. Di⇥erent weight vectors encode di⇥erent mining objectives and

minimization goals. For example, by setting W = (1, 0, 0, 0,� one can minimize the

number of roles. HierarchicalMiner [16] takes both a configuration p and a weight

vector (wr, wu, wp, wh, wd and aims at outputting an RBAC state with low WSC.

Other algorithms, such as graph optimization [8], are often designed to minimize a

specific metric, such as the number of edges. These algorithms can be generalized to

take a weight vector as input. In the experiments in this dissertation, all algorithms

are modified when appropriate to minimize a generalized WSC weight W .

5.1.3 Class 1 Versus Class 2 Algorithms

RBAC states are easy to compare against a common weight vector W , however

it is important to compare role sequences too. Outputting a list of candidate roles

can be more useful in practice. A typical role engineering process is not completely

96

automatic, because the input data is often noisy or incomplete. It is unlikely that

one will adopt a complete RBAC state output by a role mining program. The most

likely usage scenario of a role mining tool is as follows: the administrator examines

the role mining results and determine whether to adopt some part of it. Outputting

a sequence of candidate roles will allow the administrator to examine the sequence of

candidate roles one by one and determine whether these roles should be created. In

short, this dissertation argues that an important metric that is relevant in practice

for role mining algorithms is whether they can suggest the best candidate roles, and

suggest these first.

5.1.4 Class 3 Algorithms: Outputting an Inconsistent Covering

Class 2 algorithms output a complete RBAC state that is consistent with the

input user-permission relation. If the input user-permission relation contains errors

(incorrect assignments described in Section 4.3.1), or missing or unknown values (as

described in Section 4.3.3), a consistent state may be undesirable or insecure. Some

role mining algorithms [7, 13–15], and even HierarchicalMiner and AttributeMiner 1 ,

produce complete RBAC states that are an inexact covering. Class 3 algorithms are

a special case of Class 2 role mining algorithms, providing some users with a di⇥erent

set of authorized permissions. A Class 1 algorithm cannot be consistent with p itself;

a user-assignment relation is needed to authorize roles to users resulting in over- and

under-assign permissions.

5.1.5 Converting Class 1 Algorithms to Class 2 Algorithms

A method to convert outputs of one class into the other is required to compare

Class 1 algorithms and Class 2 algorithms. Class 3 algorithms will be handled sepa­

rately in Section 5.5.

1If wd ⇠= � and the direct user-permission assignments are discarded.

�

97

Given a sequence of candidate roles CC generated by a Class 1 algorithm and a

weight vector W , these roles are used to construct an RBAC state that minimizes the

WSC. For each k from 1 to some suitable upperbound (with a maximum of C
⇤⇤⇤ C
⇤⇤⇤),

consider the optimal RBAC state using the top k roles in the sequence, denoted

⇤⇤ � , and chooses the best among them.
[⇧,C,k,W]

When the exact set of roles R created is known, the optimal RBAC state can be

obtained by finding the optimal way to cover each user and each role with permissions

and the created roles. Each user and each role can be considered separately from how

other users and roles are covered. Note that the resulting RBAC state will often be

hierarchical.

For each user and each role, this creates an instance of the set cover problem:

given a permission set Pi and a family R of roles that are subsets of Pi, a cover is a

subfamily Ri R whose union is Pi; the set cover optimizing problem is to find a

cover which uses the fewest roles. An optimal set cover algorithm is to consider all

subfamilies of R, check whether they cover Pi, and select the subfamily that uses the

fewest sets.

When constructing an RBAC state, users and roles are covered with roles. Cover­

ing a user with a role Ri adds a user-assignment (UA), at a cost of wu, and covering a

role with Ri adds a role hierarchy assignment (RH) at a cost of wh. Individual items

from Pi may also be assigned, adding to PA when Pi is a role, and DUPA when Pi is a

user. As the optimal set cover algorithm runs in exponential time, the experiments in

this dissertation use a dynamic combination of the optimal algorithm and a heuristic

algorithm. If the size of R is at most fifteen, apply the optimal algorithm to cover

Pi; otherwise, use the following heuristic algorithm. At step j, the algorithm chooses

rj ⌫ R such that rj covers the most elements that haven’t been covered in Pi yet

with minimal cost (from W). This procedure terminates when all elements in Pi have

been covered in at least one of the steps and Ri is the union of all the rj s. Because

the same dynamic combination is used for all algorithms, the comparison of di⇥erent

algorithms remains fair.

98

Note that this is a quite expensive procedure. However, this is not part of any

role mining algorithm, but rather a step used to compare di⇥erent algorithms.

5.1.6 Converting Class 2 Algorithms to Class 1 Algorithms

Given an RBAC state, output a prioritized sequence of roles as follows. First,

compute a score for each role. The score of a role r is the di⇥erence in the WSC of the

mined RBAC state and the WSC when r is removed. Roles are ordered in decreasing

order. The intuition is that if a role is important, removing the role would result in

an RBAC system with a large structural complexity.

To calculate the score of a role r, compute the structural complexity of the result­

ing RBAC system when r is removed. When role r is removed from the role hierarchy,

all of r’s children are assigned to all of r’s parents. There are some permissions in

r that do not appear in any of its children. Add these permissions to all of role

r’s parents. Finally, cover all users of role r by applying an optimal set cover algo­

rithm using the other roles and direct user-permission assignment and weights W .

An RBAC system with role r removed has now been constructed, and the structural

complexity di⇥erence is computed.

5.2 Methodology

5.2.1 Metrics for Comparing Algorithms

Role mining algorithms will be compared on both the complexity of the RBAC

state, and on the quality of the roles output. Algorithms will not be evaluated on

their e⇤ciency or running time. However, the RBAM algorithm will not be evaluated

due to its time complexity.

99

Quality of RBAC States

Using the WSC, one can evaluate how well each algorithm performs under a variety

of mining objectives. For each algorithm and dataset, the data will be mined using

a variety of weight vectors that tune the algorithms for each objective, e.g., role

minimization or edge minimization. Algorithms that do not accept WSC inputs, such

as CompleteMiner, are mined only once.

Weights Used

There is a countably infinite2 number of possible WSC weights we could use to

evaluate the role mining algorithms. A small representative set of weights that depict

what is commonly used in the literature is selected.

1.	 W = (1, 0, 0, 0, � . This is the basic-RMP objective. It will minimize the

number of roles.

2.	 W = (0, 1, 1, �, � . This is edge-RMP (edge-concentration). It will minimize

the number of UA and PA relations.

3.	 W = (1, 1, 1, 1, � . This is the Zhang-variant [8] of edge-RMP with a role

hierarchy. It will minimize the number of roles and edges without direct assign­

ments.

4.	 W = (1, 1, 1, 1, 1 . This will minimize the size of the RBAC state representation,

and allows direct assignments.

5.	 W = (1, 1, 5, 1, 5 . Similar to the above, this will minimize the size of the rela­

tion while treating permission assignments (PA and DUPA) as more important.

When wd = �, the described set cover solution will maximize the coverage of UP .

2The set of weights is countably infinite when W ⌫ (Q ⌧ �)5 , and uncountably infinite when
W ⌫ (R ⌧�)5 .

100

Prioritized Role Quality

As discussed in Section 5.1, outputting a prioritized sequence of roles can be

more useful in practice, and one needs a way to compare the quality of this sequence

generated by di⇥erent role mining algorithms. This is not an easy task. While one

can define the quality of a set of roles using some measures, the order in which the

roles are output is important to consider. For example, when there are 100 roles,

outputting the most useful roles early in the sequence is much better than outputting

them last, as the administrators are likely to consider only the roles output earlier.

To address this challenge, the following approach is used. Once the prioritized roles

for each algorithm are obtained, compute the optimal RBAC state using the top

k roles for k = 1 to some upper-bound commensurate with the size of the dataset

(possibly exhausting the set of candidate roles). For each of the k RBAC states are

then evaluated against a common criteria. The ability of the RBAC state to quickly

(in few roles) optimize (minimize or maximize) the objective using is considered.

This analysis allows us to generate simple k vs. criteria plots, such as k vs. cost

and k vs. coverage.

1. Among the top k roles, how quickly do the mined roles reduce the complexity

of ⇤ (compared to UP)? For each weight vector W , we evaluate the complexity

of the optimal RBAC state using only the top k roles.

2. Among the top k roles, how quickly do the mined roles cover the UP relation?

3. Among the top k roles, how well do they “resemble” the original roles? In [5],

Vaidya et al. consider the number of original roles recovered as an evaluation

criteria. One advantage of role-mining is to improve the RBAC state by finding

better roles, a problem directly addressed in [17]. Vaidya et al. [17] use the

Jaccard coe⇤cient as a similarity metric between two roles r
1 and r

2

| r
1 � r2 |

Jaccard(r
1

, r
2

) = | r
1 ⌧ r2 |

101

and define the similarity between two sets of roles R
1 and R

2 as the average

maximum Jaccard between each role ri ⌫ R1 and all roles rj ⌫ R2

sim(R
1

, R
2

) = avg max Jaccard(ri, rj). (5.1)ri⌦R1 rj ⌦R2

Here, R
1 is the set of mined roles in ⇤ and R

2 is the set of roles in the original

data.

When original roles are available, such as in generated data, one can calculate

the similarity between original and mined role sets. This is primarily useful for

evaluation purposes only.

Measuring “how quickly,” or “how well” the candidate roles satisfy the evaluation

criteria has not been addressed. For example, consider the goal of reducing the WSC

of ⇤ and the task of comparing two sets of candidate roles A and B. Set A has

only one role that greatly reduces the complexity while set B requires more roles but

converges to a less costly solution. From an administrative point of view, set A may

to easier to understand (fewer roles) while set B may be easier to manage (lower

cost).

A

B

k

Figure 5.1. Illustrating the di⇥erence between quickly and optimally
optimizing a role mining objective as the number of roles changes. Se­
lecting the best algorithm depends on the area of the shaded regions.

�

102

To balance these two criteria (localized and global improvements), one can inte­

grate the evaluation criteria over the number of roles, creating quality metrics. For

example, the quality of the candidate roles CC at reducing the WSC of p is

k
C

�
Qwsc(p,C, k, W) = wsc(⇤⇤ � , W) dx. (5.2)

[⇧,C,x,W]
0

Similar quality metrics for coverage and similarity can be defined. This strategy is

useful for evaluating any utility measure that one wishes to minimize or maximize.

5.2.2 Input Data Type

All role mining algorithms evaluated use user permission information as the input

data. That is, the input to a role mining algorithm is an access control configuration

as defined in Definition 3.1.1. That is, an access control configuration p is given by

a tuple (U, P,UP , where U is a set of all users, P is a set of all permissions, and

UP U ⇥ P is the user-permission relation. Exceptions include AttributeMiner ,

which also uses user attribute information such as a user’s job title, department,

and location. AttributeMiner will be evaluated separately for its ability to generate

compact, and semantically meaningful roles.

Datasets from the Literature

Both real-world and newly generated data will be used to evaluate Hierarchi­

calMiner and AttributeMiner and other role mining algorithms from the literature.

Datasets that have been used previously are shown in Table 5.1.

The university data was generated based on a template3 used in [74]. Researchers

from Stony Brook University generated a template for an RBAC system in a university

setting, presumably through a process similar to top-down role engineering. They

created this template for the purpose of studying security analysis in role based access

control, rather than role engineering. Thus, the main consideration was to make the

3
http://www.cs.sunysb.edu/

~

stoller/ccs2007/university-policy.txt

103

Table 5.1

Sizes of the real-world datasets presented.

Dataset |Users | |Perm | |UP | Density

Americas 3477 1587 105205 0.019

Firewall 1 365 709 31951 0.123

Firewall 2 325 590 36428 0.190

APJ 2044 1146 6841 0.003

Domino 79 231 730 0.040

EMEA 35 3046 7220 0.068

Healthcare 46 46 1486 0.702

University 493 56 3955 0.143

RBAC system as realistic as possible. This template specifies roles, permissions, the

role hierarchy, and the role permission assignment relation. A dataset is created using

the template by creating users and assigning them to roles. The final dataset contains

493 users, and 56 permissions. Five attributes that are likely to be maintained in a

typical university data system are created: Undergrad, Grad, HonorsStudent, TA,

Faculty. To obtain a user-permission relation, the RBAC state is flattened, directly

assigning users their full set of authorized permissions.

The other seven datasets were obtained from researchers at HP Labs and used for

evaluation in [19]. The healthcare data was from the US Veteran’s Administration;

the domino data was from a Lotus Domino server; americas (referring to amer­

icas small in [19]), emea, and apj data were from Cisco firewalls used to provide

external users access to HP resources. We also use their firewall1 and firewall2

policies.

104

Generated Data

In addition to real-world and top-down datasets, synthetic datasets generated

from three test data generators are used. The first data generator is the random

data generator from Vaidya et al. [5]. Two other data generators, tree-based data

generator and ERBAC data generator, that produce more realistic RBAC datasets,

are proposed. Due to the di⇤culty in obtaining real-world data, especially containing

complete RBAC states, synthetic data generation is still a useful tool for role-mining

evaluation.

Random Data Generator The random data generator was used in [5]; it takes

five parameters {nu, nr, np, mr, mp} where nu, nr, np are the number of users, roles,

and permissions, respectively, and mr, mp are the maximum number of roles a user

can have and the maximum number of permissions a role can have. The algorithm

consists of three steps. First, for each role, a random number of permissions up to mp

are chosen to form the role. Second, for each user, a random number of roles up to

mr are assigned to the user. Finally, for each user, the user-permission assignments

are computed based on user-role assignments and role-permission assignments.

The data generated by the random data generator does not contain any structure

and treats each user, role, and permission as statistically independent. Two data

generation algorithms that consider di⇥erent structures and role hierarchies are also

considered.

Tree-Based Data Generator The tree-based data generator assumes the follow­

ing scenario. A company consists of a number of departments and each department

has several o⇤ces. There are company-wide permissions that are shared by all em­

ployees. Di⇥erent departments have their own department-wide permissions, which

are assigned only to employees within the department. Also, di⇥erent o⇤ces in a

department have di⇥erent job functions and thus each o⇤ce has certain permissions

that are assigned only to employees in that o⇤ce. For example, an employee working

105

in the Business O⇤ce of Department A may have certain company-wide permissions,

some permissions associated to Department A, and a number of permissions specific

to the o⇤ce she is working in. In general, department-wide permissions are never

shared by users from di⇥erent departments, while permissions specific to an o⇤ce are

never shared by users from di⇥erent o⇤ces.

The tree-based data generator takes five parameters {nu, np, h, b
0

, b
1

}, where nu, np

are the number of users and permissions respectively, h is the height of the tree, and

b
0 and b

1 are the lower-bound and upper-bound of the number of children for each

internal node of the tree respectively. The data generation algorithm consists of

three steps. First, randomly generate a tree T of height h such that each internal

node has b ⌫ [b
0

, b
1

] children. Let m be the number of nodes in T . Second, divide

the set of permissions {p
1

, · · · , p } into m disjoint sets P
1

, · · · , P For every node np m.

ni (i ⌫ [1, m]) in T , associate Pi with ni. Let {nj , · · · , nm} be the set of leaf-nodes in

T . For every i ⌫ [j, m], compute Pi
/ such that Pi

/ contains all permissions associated

with ni or ni’s ancestors in T . Finally, divide the set of users {u
1

, · · · , u } into nu

(m + 1 � j) disjoint sets Uj , · · · , Um. For every i ⌫ [j, m], use the random data

generator to generate user-permission assignment UP i between Ui and Pi
/. Return

UP =
⌦m

UP i.i=j

ERBAC Data Generator Experiences from deploying RBAC systems in the real

world suggested the Enterprise RBAC model, which uses a two-level layered role hi­

erarchy [75]. In such a role hierarchy, there are two types of roles: functional roles

and business roles. Permissions are only assigned to functional roles. Business roles

are connected to functional roles and inherit all permissions from the connected func­

tional roles. Finally, users are only assigned business roles and inherit all permissions

from the assigned business roles.

The ERBAC data generator takes seven parameters:

{nu, nbr, nfr, np, mbr, mfr, mp} where nu, nbr, nfr, np are the number of users,

business roles, functional roles, and permissions, respectively, and mbr, mfr, mp are

106

the maximum number of business roles a user can have, the maximum number of

functional roles a business role can have, and the maximum number of permissions a

functional role can have, respectively. The algorithm consists of four steps. First, for

each functional role, a random number of permissions, up to mp, are chosen to form

the functional role. Second, for each business role, a random number of functional

roles, up to mfr, are assigned to the business role. Third, for each user, a random

number of business roles, up to mbr, are assigned to the user. Finally, for each user,

the user-permission assignments are computed.

5.3 Evaluation of HierarchicalMiner and AttributeMiner against Class 2 Algorithms

In this section, the e⇥ectiveness of HierarchicalMiner and AttributeMiner are eval­

uated. As the aim is to construct roles with semantic meanings, the resulting RBAC

states are analyzed in addition to the WSC. Both HierarchicalMiner and AttributeM­

iner are evaluated against the university dataset and the semantic meaning of the

resulting roles is manually analyzed. Next HierarchicalMiner is evaluated against

several role mining algorithms from the literature on six real-world datasets without

attributes on minimizing the structural complexity and other measures. Finally, the

hybrid role mining techniques on the synthetic dataset are evaluated. The results

show that HierarchicalMiner and AttributeMiner are able to generate RBAC states

that have lower complexities than the original RBAC state, while preserving roles

with semantic meanings and discovering some new roles with semantic meaning. Fur­

ther, HierarchicalMiner reduces the complexity of RBAC states when allowing a role

hierarchy better than the existing algorithms in the literature.

5.3.1 Synthetic Dataset with Attributes

The complexity of the RBAC states generated using HierarchicalMiner and At­

tributeMiner using the university dataset are considered first. Table 5.2 shows the

weighted structure complexities of the original role-engineered RBAC state, and the

107

Role: GradStudOfficer
5

ReserveRoomRoomSchedule

Role: UndergradPermittedGradClass

RegisterGradClass

WithdrawGradClass

29

Role: Grader

AssignGradeGradeBook

ViewGradeGradeBook

18

Role: Student

ViewGradeGradeBook

CreateComputerAccount
0

Role: Undergrad

RegisterUndergradClass

WithdrawUndergradClass

300

ObtainStudentParkingPermit

RegisterCourse

PayTuition

Role: Grad

RegisterGradClass

WithdrawGradClass

EnrollStudentHealthInsur

100

Role: TA

AssignGradeGradeBook

ViewGradeGradeBook

40

Role: HonorsStudent

RegisterUndergradHonorsClass

WithdrawUndergradHonorsClass

20
Role: RA Role: GradCommittee

40 10

(a) Original

Roles: HonorsStudent and UndergradPermittedGradClass Roles: Grader and UndergradPermittedGradClass
9 12

Role: Undergrad

RegisterUndergradClass

WithdrawUndergradClass

245

Role: HonorsStudent

RegisterUndergradHonorsClass

WithdrawUndergradHonorsClass

11

Role: UndergradPermittedGradClass

RegisterGradClass

WithdrawGradClass

10
Role: Grader Role: TA Role: GradStudentOfficer

18 40 5
AssignGradeGradeBook AssignGradeGradeBook ReserveRoomRoomSchedule

Role: Student

CreateComputerAccount

ObtainStudentParkingPermit

PayTuition

RegisterCourse

viewGradeGradeBook

0

Role: Grad

EnrollStudentHealthInsur

RegisterGradClass

WithdrawGradClass

55

(b) HierarchicalMiner

Role +Grad

CreateComputerAccount

EnrollStudentHealthInsur

ObtainStudentParkingPermit

PayTuition

RegisterCourse

RegisterGradClass

ViewGradeGradeBook

WithdrawGradClass

100

Role +HonorsStudent

CreateComputerAccount

ObtainStudentParkingPermit

PayTuition

RegisterCourse

RegisterUndergradClass

RegisterUndergradHonorsClass

ViewGradeGradeBook

WithdrawUndergradClass WithdrawUndergradHonorsClass

20

Role +TA

AssignGradeGradeBook

ViewGradeGradeBook

40

Role +Undergrad

CreateComputerAccount

ObtainStudentParkingPermit

PayTuition

RegisterCourse

RegisterUndergradClass

ViewGradeGradeBook

WithdrawUndergradClass

300
Grader

12
AssignGradeGradeBook

Student

CreateComputerAccount

ObtainStudentParkingPermit

PayTuition

RegisterCourse

RegisterGradClass

ViewGradeGradeBook

WithdrawGradClass

17

(c) AttributeMiner

Figure 5.2. Graphical Representation of roles in the student part of
the university dataset: The original roles are shown in 5.2(a), the
roles generated by HierarchicalMiner are shown in 5.2(b), and the
roles generated by AttributeMiner are shown in 5.2(c). In the figures,
the first line in a role is the name, the other lines are the permissions;
the number to the right indicates the number of users assigned each
role.)

108

Table 5.2

Mining results for the University dataset.

W = { 1, 1, 1, 1, 1 } W = { 1, 1, 2, 2, 2 }

R UA PA RH DUPA CR Total Cost R UA PA RH DUPA CR Total Cost

Original

Hierarchical

Attribute

22

18

14

799

499

142

65

57

73

19

14

5

0

12

35

0

0

4

875

600

273

22

19

15

799

500

175

65

66

73

19

15

5

0

2

17

0

0

5

959

685

385

states generated by HierarchicalMiner and AttributeMiner. In the table, W is the

weight vector defined in Definition 3.1.2. Two sets of weights are used to evaluate

this dataset. Costs in columns show a breakdown of the total cost. The columns R,

UA, PA, RH, DUPA, and CR represents number of role, user-assignment, permission-

assignment, role hierarchy, direct user-permission assignment, and role membership

(only used in attribute miner), respectively. The Total Cost column represents the

total cost of the Weighted Structural Complexity from Equation 3.1.

For AttributeMiner, attributes that are likely to be maintained in a typical univer­

sity data system are used, e.g., Undergrad, Grad, HonorsStudent, TA, Faculty. From

the results, one can see that HierarchicalMiner generates significantly fewer roles and

fewer user-role assignments than the original state. In fact, HierarchicalMiner re­

duced the size of each relation except the direct user-permission assignment relation.

In our first test case, the total weighted structural complexity is reduced by 31%,

while in the second test it is reduced by 29%. AttributeMiner is able to further de­

crease the complexity by replacing regular roles with attribute roles, resulting in a

large number of user-role assignments being replaced by a single attribute-based role

assignment.

Next consider the semantics of the roles. Figure 5.2 shows a portion of the original

and generated states graphically. For compactness, the roles relating to students are

presented; these contain more attributes. Figure 5.2(a) presents the original roles.

There are ten roles and two role-hierarchy edges. By analyzing the resulting roles, ob­

109

serve that HierarchicalMiner, Figure 5.2(b), finds semantically meaningful roles. All

except for two roles are from the original state. In some cases, the mined roles have

more permissions than in the original state. For example, the role TA inherits the

Grad role in the mined state. This is because in the original state all users assigned to

the TA role are also assigned to the Grad role. HierarchicalMiner found this implicit

semantic relationship, while also reducing the complexity. HierarchicalMiner finds

two roles that do not exist in the original state; they are the composite roles Hon­

orsStudent and UndergradPermittedGradClass, which has 9 users, and Grader and

UndergradPermittedGradClass, which has 12 users. They represent meaningful con­

cepts. Names for the roles generated by HierarchicalMiner have provided manually

for comparison.

AttributeMiner, Figure 5.2(c), finds four attribute roles corresponding to Grad,

UnderGrad, HonorStudent, and TA, having 100, 300, 20, and 40 users respectively.

AttributeMiner uses fewer roles and has more direct user-permission assignments.

It does not create those roles that have a smaller number of users. The attributes

provide a role name automatically, easing administrator comprehension.

This illustrates how our algorithms HierarchicalMiner and AttributeMiner can

be used to generate RBAC states with low complexity while creating semantically

meaningful roles on a synthetic dataset. The next section will evaluate how well Hi­

erarchicalMiner performs at minimizing the structural complexity on six real-world

datasets over a variety of weighted structural complexity vectors compared to other

algorithms in the literature. Because HierarchicalMiner can be extended using At­

tributeMiner to handle attributes, these results generalize to AttributeMiner.

5.3.2 Evaluation on Real-World Datasets

In the previous section we evaluated HierarchicalMiner and AttributeMiner on a

single, synthetic dataset representing a university. In this section we compare the

results of HierarchicalMiner against three algorithms from the literature at reducing

110

the complexity of six real-world datasets, and the university dataset from the previous

section.

For comparison graph optimization (GO) [8], and the heuristic role minimization

(HPr) and edge-concentration (HPe) algorithms [19] are used. RBAM [10] is also

omitted based on poor results on our running example and excessive running time

on the example datasets. RBAM traverses up a lattice of candidate roles �(P), the

power set of the permissions P , and prunes when certain conditions are met. The

number of roles it considers is either excessively large, or the minimum support must

be set such that it eliminates a large number of rare permissions [11].

The graph optimization and edge-concentration (HPe) algorithms are modified to

use weighted structural complexity to produce a more fair comparison. For exam­

ple, the edge-concentration algorithm may increase the number user-assignments if it

causes a greater decrease in the number of permission-assignments (at the expense of

creating an additional role). The same techniques used to apply a weight vector to

HierarchicalMiner are applied to these algorithms when evaluating such a tradeo⇥.

Two Class 1 algorithms are also considered: CompleteMiner (CM); and PairCount

(PC), which uses the number of pairs of roles as the prioritization method and the

FastMiner algorithm for role generation [67]. All Class 1 algorithms are converted to

Class 2 output. For each objective, the number of roles k is selected that minimizes

(or maximizes) the desired measure. Because the ORCA algorithm cannot be readily

modified to minimize the WSC, it is first converted to Class 1 output, and treated

as a Class 1 algorithm. All experiments are run five times, and non-zero standard

deviations are given in parentheses.

The results for a variety of representative weight vectors are presented in Ta­

bles 5.3–5.7. For each objective and dataset, the minimum solution generated by

the representative algorithms is highlighted in bold. First, consider the benchmark

criteria, minimizing the number of roles. As shown in Table 5.3, the role and edge min­

imization algorithms (HPr and HPe) produce the minimum number of roles among

111

the selected algorithms4 , while the HierarchicalMiner actually performs the worst

(excluding the Class 1 algorithms). HPr finds maximal bicliques (concepts) to cover

the user-permission relation, allowing one to implement this algorithm using the for­

mal concept lattice with minimal e⇥ort. This illustrates one shortcoming of the

HierarchicalMiner algorithm, but not the foundation of formal concept analysis. It

was illustrated in Theorem 3.2.1 that the optimal set of candidate roles required to

minimize the number of roles are a subset of the set of formal concepts.

The priority of each role in a Class 1 algorithm is independent, making them ill

suited at selecting a minimal set of candidate roles when selecting the top k. They

consistently perform poorly across all experiments.

Table 5.3
Overview of the datasets and mining results when W = (1, 0, 0, 0, � .
Non-zero standard deviation in parentheses.

Source

Class 2 Class 1

HM GO HPr HPe PC CM

APJ

Domino

EMEA

Firewall 1

Firewall 2

Healthcare

University

542 (4.6)

27 (2.28)

106 (6.1)

91 (3.34)

10 (0.89)

17 (1.8)

23 (1.3)

564

23

34

90

11

18

22

454 (0.44)

20

34

66

10

14

17

454 (0.44)

20

34

66

10

14

17

779

64

242

248

14

24

31

764

62

674

278

21

31

32

Rank

Average

3.43

116.57

3.29

108.86

1.64

87.86

1.64

87.86

5.29

200.28

5.71

266

Next, consider the problem of edge-RMP, or minimizing the number of user- and

permission-assignments, in Table 5.4. This is an optimization HPe was explicitly de­

signed for, and predictably performs well at. With this objective, HierarchicalMiner

4Note that with this weight vector these algorithms are identical.

112

produces more compact results than the graph optimization and role minimizations.

This represents a tradeo⇥ between their edge-RMP algorithm and our Hierarchi­

calMiner. HierarchicalMiner prunes the formal concept lattice, and the initial set of

candidate roles have a large degree of overlap, which is useful when a role hierarchy

is allowed. However, without the role hierarchy, it leads to an increase in user- and

permission-assignments. To remedy this, one could apply the post processing opti­

mizations of HPe to the candidate roles of our HierarchicalMiner, however we believe

this impacts the semantics of the resulting roles, making them no longer concepts,

and potentially impacting interpretation.

Table 5.4

Total WSC when W = (0, 1, 1, �, � . Standard deviation in parentheses.

Source

Class 2 Class 1

HM GO HPr HPe PC CM

APJ

Domino

EMEA

Firewall 1

Firewall 2

Healthcare

University

4299 (3.1)

539

7920 (39.4)

2866 (0.55)

1364

232

725

5565

716

7246

7100

1499

545

752

4875 (3.1)

741

7246

3413

1554

369

887

4016 (7.6)

408 (3.1)

3963 (38.0)

1861 (72.0)

1146

216 (5.9)

665

7163

1498

21983

16633

1525

589

786

6946

1136

43051

19788

1559

706

786

Rank

Average

2.29

2563.57

3.36

3346.14

3.79

2727.43

1.00

1095

5.07

7168.14

5.50

10567.43

The main benefits of HierarchicalMiner can be observed when a role hierarchy is

allowed. In the following experiments we augment edge-RMP to allow a role hierarchy

and include the number of roles (W = (1, 1, 1, 1, �), the optimization criteria for

graph optimization [8]. The results are shown in Table 5.5. Here HierarchicalMiner

algorithm outperforms the other role mining algorithms from the literature on all but

113

Table 5.5

W = (1, 1, 1, 1, � . Standard deviation in parentheses.

Source

Class 2 Class 1

HM GO HPr HPe PC CM

APJ

Domino

EMEA

Firewall 1

Firewall 2

Healthcare

University

4270 (7.4)

419 (2.5)

3790 (29.9)

1425 (5.1)

948 (1.1)

151 (1.6)

605 (1.1)

4600 (42.3)

413 (5.4)

3888 (18.6)

1543 (28.6)

960 (3.2)

168 (10.2)

607 (2.5)

5337 (3.6)

761

7280

3478

1564

383

904

4475 (12.6)

437 (6.5)

4222 (42.8)

2020 (20.0)

1161 (9.4)

240 (2.8)

703 (8.2)

6496

637

10464

3057

1000

213

626

6815

611

12728 (1.6)

2422

1021

261

627

Rank

Average

1.14

1658.29

2.00

1739.86

5.43

2815.29

3.57

1894.00

4.14

3213.28

4.71

3497.85

one dataset. On the domino dataset, graph optimization produces the most compact

RBAC state.

Finally, direct user-permission assignments are allowed (Table 5.6) and permis­

sion assignments are more heavily weighted (Table 5.7). In both of these instances

HierarchicalMiner produces a more compact RBAC state as measured by weighted

structural complexity. These tests indicate the HierarchicalMiner algorithm is highly

adaptable to a wide variety of role mining criteria, and produces compact RBAC

states that maintain some semantic meaning when concepts can be interpreted. Fur­

ther, the role hierarchy allows an administrator to make additional inferences not

allowed by the other algorithms.

Two role mining objectives, role minimization and edge concentration, have been

identified where other algorithms from the literature produce a more compact RBAC

state. In each instance, the algorithm producing the most compact state was designed

to minimize the objective specifically; these algorithms can also be implemented using

114

the formal concept lattice. This illustrates the advantages of building upon formal

concept analysis as a foundation for many role mining algorithms.

Table 5.6

Total WSC when W = (1, 1, 1, 1, 1 . Standard deviation in parentheses.

Source

Class 2 Class 1

HM GO HPr HPe PC CM

APJ

Domino

EMEA

Firewall 1

Firewall 2

Healthcare

University

3863 (3.9)

381 (0.9)

3706 (12.8)

1355 (6.3)

945

144 (0.4)

600 (1.1)

4600 (17.8)

413 (5.5)

3888 (23.8)

1543 (26.6)

960

168 (11.3)

607 (5.8)

5337 (3.6)

761

7280

3478

1564 (2.9)

383

904

4489 (22.7)

437 (1.7)

4208 (44.8)

2005 (16.0)

1161

244 (2.5)

688 (5.2)

4733

501

5811

2258

992 (1.3)

148

619

4985

495

6364

2678

995

164

620

Rank

Average

1.00

1570.57

2.43

1739.86

6.00

2815.29

3.71

1890.29

3.57

2151.71

4.29

2328.71

5.4 Evaluations using Class Conversions

The previous section compared HierarchicalMiner , a Class 2 algorithm against

other Class 2 algorithms and Class 1 output converted to Class 2. This section

presents results from evaluating role mining algorithms where all output is first con­

verted to Class 1. The ability to quickly and globally optimize an RBAC state is

evaluated.

The ability of the role mining algorithms to minimize the weighted structural

complexity for the weight vector W = (1, 1, 1, 1, 1 has already been evaluated. If the

roles are a poor fit for the user-permission relation, many assignments will be covered

via direct user-permission assignments and are exceptions to the RBAC state. The

fitness of these roles can be measured by evaluating the fraction of assignments that

115

Table 5.7

W = (1, 1, 5, 1, 5 . Standard deviation in parentheses.

Source

Class 2 Class 1

HM GO HPr HPe PC CM

APJ

Domino

EMEA

Firewall 1

Firewall 2

Healthcare

University

8995 (3.7)

1346 (1.0)

16146 (4.1)

4258 (1.0)

3309

334

837 (0.9)

9793 (18.9)

1408 (6.2)

16424 (25.8)

4532 (66.5)

3323

386

843 (15.5)

10877 (1.8)

3017

36124

6926

3928 (6.1)

627 (5.2)

1176

10038 (10.1)

1419 (5.2)

16966 (60.2)

5286 (42.8)

3618

533

1074

11300

1568

46484

7515

3576

432

867

11799

1553

27448 (0.8)

7887

3527

461

868

Rank

Average

1.00

5032.14

2.00

5244.14

5.14

8953.57

3.86

5562.00

4.29

10248.86

4.71

7649.00

are exceptions, i.e., 1 � coverage, where coverage is the fraction of the user-permission

relation covered by roles. The results are presented in Table 5.4.

It can be seen that HierarchicalMiner consistently uses a low number of di­

rect user-permission assignments, despite the ability to e⇥ectively reduce the total

weighted structural complexity (see Table 5.6). However, it can also be observed that

the solution to the role minimization problem, as represented by HPr, produces roles

where many (the majority in some datasets) of the user-permission assignments are

exceptions. Consider the emea dataset; the HPr, CompleteMiner, and PC states

use direct user-permission assignments to cover over 75–100% of UP , while Hierar­

chicalMiner , GO, and HPe use significantly less (33% and 34% for HierarchicalMiner

and GO). Similar results are seen in the domino dataset. This indicates role mini­

mization may be an undesirable objective.

116

Table 5.8
| DUP A |
| UP | for W = (1, 1, 1, 1, 1

Class 2 Class 1

HM GO ORCA HPr HPe PC CM

Americas

APJ

Domino

EMEA

Firewall 1

Firewall 2

Healthcare

University

0.00

0.32

0.26

0.34

0.01

0.00

0.01

0.00

0.01

0.33

0.24

0.33

0.01

0.00

0.01

0.01

0.36

0.45

0.60

0.94

0.48

0.77

0.00

0.34

0.00

0.41

0.97

1.00

0.02

0.00

0.04

0.04

0.00

0.31

0.25

0.40

0.00

0.00

0.04

0.01

0.08 0.22

0.36 0.66

0.18 0.22

0.75 0.86

0.03 0.03

0.00 0.00

0.02 0.02

0.00 0.00

Average 0.12 0.12 0.49 0.31 0.13 0.18 0.25

5.4.1 Prioritized Role Quality

Section 5.2.1 proposed a metric that integrates an evaluation criteria, such as cost

or coverage, over the number of top roles selected. To perform this analysis, all output

must first be prioritized (strictly ordered) by converting to Class 1. The top k roles

are then converted to Class 2 and evaluated for each k, and integrated.

Table 5.4.1 lists the Qwsc metric normalized across the selected algorithms to a [0,1]

range. HierarchicalMiner minimizes the Qwsc for all datasets except the university

dataset. The next best role mining algorithms are HPe and GO. This indicates

HierarchicalMiner is capable of minimizing the total weighted structural complexity,

and maintains a low complexity for a reduced number of roles.

Table 5.4.1 list the Q
coverage metric normalized by the best result (maximal cov­

erage) for each dataset. HPr performed well at quickly covering the UP relation

(this metric is consistent with role-minimization).GO and HPe each performed con­

http:role-minimization).GO

117

Table 5.9
Normalized Qwsc for W = (1, 1, 1, 1, 1

Class 2 Class 1

k HM GO ORCA HPr HPe PC CM

Americas

APJ

Domino

EMEA

Firewall 1

Firewall 2

Healthcare

University

150

150

35

34

30

10

15

15

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.12 1.00

0.11 0.67

0.51 0.95

0.33 0.89

0.08 1.00

0.01 1.00

0.07 1.00

0.09 1.00

0.24

0.94

0.52

1.00

0.06

0.08

0.27

0.16

0.03

0.06

0.47

0.20

0.01

0.04

0.10

0.00

0.30 0.54

0.72 1.00

0.98 1.00

0.52 0.72

0.09 0.17

0.28 0.36

0.05 0.07

0.25 0.32

Average 0.00 0.16 0.94 0.41 0.11 0.40 0.52

sistently with previous tests where both algorithms have proven capable at minimizing

cost and the number of roles. HierarchicalMiner ’s performance was consistent with

role-minimization. The Class 1 algorithms continued to perform poorly.

5.4.2 Discovering Original Roles

The above analysis is based on real-world data without an existing RBAC state.

This section evaluates the similarity of the mined roles to a set of original roles.

Because real-world data containing original roles is not available, the analysis is per­

formed on generated data. Five datasets are generated using each data generating

method. All results indicate the average over the five samples.

To evaluate the similarity of the mined roles to the original roles, the average

maximal Jaccard is used. The results are plotted in Figure 5.4. A good role mining

algorithm should produce familiar (high Jaccard) roles first.

118

Table 5.10
Normalized Q

coverage for W = (1, 1, 1, 1, �

Class 2 Class 1

k HM GO ORCA HPr HPe PC CM

Americas

APJ

Domino

EMEA

Firewall 1

Firewall 2

Healthcare

University

150

150

35

34

30

10

15

15

0.90

0.39

0.84

0.57

0.96

1.00

1.00

0.94

0.91 0.00

0.80 0.00

0.95 0.02

0.83 0.00

0.81 0.00

0.99 0.00

0.93 0.00

0.90 0.00

0.90

0.86

0.94

1.00

1.00

0.93

0.86

1.00

1.00

0.41

1.00

0.74

0.89

0.96

0.90

0.84

0.90 0.85

1.00 0.33

0.04 0.00

0.18 0.11

0.99 0.98

0.74 0.66

0.99 0.98

0.82 0.73

Average 0.82 0.89 0.00 0.94 0.84 0.71 0.58

Two conclusions may be drawn from the figures. In the ERBAC data for HM, it

can be seen that the top 40 roles have a Jaccard close to one, and the Jaccard quickly

begins to fall for subsequent roles. This means that the top 40 roles are very similar

to the ones created by the data generator. By comparing these results to the coverage

in Figure 5.4, one can see that this drop correlates to around 98% coverage. While

GO does not select as many roles that so closely approximate the original RBAC

data, it more consistently selects roles with a high Jaccard compared to the other

role-mining algorithms. Excluding PC (and the related algorithms), HPr performed

the worst, generating roles farthest from the original data.

The results for the tree data are very di⇥erent. HierarchicalMiner still performs

slightly better than GO, but they are among the worst performers, and HPr and HPe

perform the best. Regardless of the algorithm used, the mined roles generated from

tree-based data did not resemble the original roles as closely when compared to the

ERBAC data.

119

� �� �� �� �� ���
��	
��
��
���
�����

����

�����

�����

�����

�����

�����

�����

�����

�
�
�

��������
�������� �
��	���!��"

�#
$#
%&
'�
$'�
&��(

� �� �� �� �� ���
��	
��
��
���
�����

�

��

��

��

��

���

�
�
��
�
�
�

����������
��
��
�������

��
 ��
 �
!"
 ��

(a) EMEA Cost (b) EMEA Coverage

� � �� �� �� �� �� ��
���	
��
���
���
�
�

�

���

����

����

����

����

����

����

����

�
�
�

�
����
��������������
���
���

�!
"!
#$
"%

� � �� �� �� �� �� ��
���	
��
���
���
�
�

�

��

��

��

��

���

�

��

�
�

�
��
����
�
������
�
�

�!
"!
#$
"�

(c) Domino Cost (d) Domino Coverage

Figure 5.3. Plots of the minimal WSC and maximal coverage for
several algorithms and datasets.

5.4.3 Hybrid Role Mining the University Dataset

The hybrid role mining technique presented in Section 3.4 is evaluated using the

university dataset. Table 5.4.3 gives the size of each relation in the original and

optimized versions of each state. It can be seen that optimizing the permission-

assignment relation with W = (1, 1, 1, 0, � produces a more compact RBAC state,

reducing the WSC by over 10% when compared to the original input. This indicates

the top-down RBAC state can be optimized without considering the set of users.

Using just the user-permission relation produced the most compact RBAC state.

120

� �� �� �� �� ��� ��� ��� ���
��	
��
��
���
�����

�

����

����

����

����

�����

�����

�����

�����

�
�
�

��������
����������
��	������

!"�
!#
$%
"�
!"�

� �� �� �� �� ��� ��� ��� ���
��	
��
��
���
�����

�

��

��

��

��

���

�
�
��
�
�
�

����������
��
��
�������

���
�
!"
��
���

(a) ERBAC Cost (b) ERBAC Coverage

� �� �� �� �� ��� ��� ��� ���
��	
��
��
���
�����

����

����

����

����

�����

�����

�����

�
�
�

��������
����������
��	������

!"�
!#
$%
"�
!"�

� �� �� �� �� ��� ��� ��� ���
��	
��
��
���
�����

�

��

��

��

��

���

�
�
��
�
�
�

����������
��
��
�������

���
�
!"
��
���

(c) Tree Cost (d) Tree Coverage

� �� �� �� �� ��� ��� ��� ���
��	
��
��
���
�����

���

���

���

���

���

���

���

���

��
��

�
��

�������
��	����� !

"#�
"$
%&
#'
"#�

� �� �� �� �� ��� ��� ��� ���
��	
��
��
���
�����

���

���

���

���

���

���

���

���

���

��
��

�
��

�������
��	����� !

"#�
"$
%&
#'
"#�

(e) ERBAC Jaccard (f) Tree Jaccard

Figure 5.4. Role similarity for generated datasets.

121

To test the hybrid role mining approach, 80% of the permissions assigned are ran­

domly selected for the “sketch” of each role; this defines the preliminary PA relation.

When the predefined roles are forced to be created, an increase in the WSC can be

observed. Removing the set of users representing predefined roles and further opti­

mizing the RBAC state, eliminating most of the complexity caused by introducing

the predefined roles.

The predefined roles aid in adding semantic meaning to the candidate roles, and

the user-permission relation is used to complete the permissions assigned to the pre­

defined roles. Figure 5.5 shows the candidate roles pertaining to students when the

incomplete predefined roles are forced, and when we allow them to be pruned. By

comparing Figure 5.5(a) (forced) to Figure 5.5(b) (may be pruned), one can see how

the user-permission relation is used to complete the predefined roles. For example,

the Undergrad role in Figure 5.5(a) is missing two permissions (see Figure 5.2(a)),

and is not senior to the Student role. These omissions are corrected automatically in

Figure 5.5(b), and the correct set of permissions for the Undergrad role is the closure,
⌃⌥PUndergrad .

Table 5.11
Mining the University dataset with W = (1, 1, 1, 1, � . The
permission-assignment relation is mined with W = (1, 1, 1, 0, � .

Approach |R | |UA | |PA | |RH | |DUPA | Total

Original 32 799 64 19 0 914

PA Only 20 722 58 12 0 812

UA Only 18 499 57 14 12 600

Force R 44 502 96 49 0 691

Force and Remove R 22 504 79 12 0 617

	
 	

	

	
 	

	

	

122

�������
�� � ��
���

���������
����������

�������
�

���������
�����������

�������
�

���������
�������������

�������
�

���������
���������

�������
�
 ���
������ �

���������
���������

�������
�

���������
������������

�������
�

���������
�����������

������
�
 ���
!"

���������
�����������

�������
�

����������
�����������

�������
�

���������
�����������

�������
�
 ��

���������
�����������

�������
�
���

���������

�����������

�������
�

���������
�����������

�������
�

����������
���������

�������
�	 �� # ��
���������

�����������

�������
�� � ��
���

���������
�����������

�������
�	 �� � ��

�
���

���������

�������������

�������
�
 ���
����� !�

���������
���������

�������
�
 ��

�
���

���������

������������

�������
�
 ���

"#
���������

�����������

�������
�

���������
�����������

�������
�
 ���

"#
���������

�����������

�������
�

����������
���������

�������
�

����������
�����������

(a) Forcing predefined roles R. (b) Removing artificial users from 5.5(a)

and optimizing.

Figure 5.5. The resulting RBAC states using hybrid role mining.
Predefined roles are promoted by the closure ⌘✓.

5.5 Evaluating Mining Noisy Data

The performance of several matrix decomposition models and algorithms from

the literature is evaluated using four representative datasets: university, ERBAC,

Random, and Tree. ERBAC has 500 users, 347 permissions, and a density of 8.5%;

Random has 500 users, 100 permissions, and a density of 22%; and Tree has 500 users,

190 permissions, and a density of 4%.

As opposed to [7, 13], noise is not added uniformly. First, more over-assignments

are added than under-assignments. This based on the noise observed in real-world

datasets and is consistent with the logic behind the principle of least privilege (any

under-assignments will be discovered when access is denied and corrected while over-

assignments often go unnoticed). Next, users and permissions are selected from a

multinomial distribution with normally distributed probabilities, causing some per­

missions to be incorrectly assigned or revoked more than others. For each dataset

five noisy representations are generated, and the results represent the average over all

five datasets. Noise amounts range from 5% to 15% of the size of the user-permission

123

relation ||UP ||
1

, and not | U | ⇤ | P |. All algorithms know the total number of errors ⌅

(Type I plus Type II errors) and are run on the noisy datasets and selects users and

permissions uniformly.

The ⌅-RMP algorithm is run 1000 times, and the solution that minimizes the

number of roles is returned. In the case of a tie (two or more solutions have the same

minimum rank), the mean over is returned. The ⌅-RMP algorithm does not know

the distribution of over- and under-assignments.

The binary non-orthogonal decomposition (BND) algorithm is run with e = 1

(Hamming radius) and the number of resulting patterns p (sub matrices) is noted.

No constraints are placed on the minimum size of each cluster.

The disjoint decomposition model (DDM) determines the appropriate number of

users and permission clusters using the infinite relational model (IRM) and only uses

the noise level for assigning business roles to technical roles. An implementation of

the Infinite Relational Model5 from Charles Kemp [56] is used to implement DDM.

Subroles in which the DDM algorithm is re-run on sub-matrices as described in [13]

is not considered.

For the remaining algorithms, when possible, multiple rank decompositions are

performed and the lowest rank k is selected such that the L1-norm of the approx­

imation and the noisy input data is less than ⌅. This uses the method to select k

described in Section 4.3.2.

The code for MAC6 was supplied by the authors [15]. Because the unconstrained

version of MAC allows a user to be assigned any item in the power-set of [0, k], the

complexity is exponential. Based on recommendations from the authors, users are

constrained to be assigned at most 2 of the k clusters. Even given this constraint the

running time of MAC was prohibitive compared to the other matrix decomposition

methods (days for MAC compared to seconds or minutes for SVD, BNMF, etc.). The

5
http://www.psy.cmu.edu/

~

ckemp/code/irm.html
6
http://www.inf.ethz.ch/personal/mafrank/paper/MAC_1.0.zip

124

Table 5.12

University Dataset: 197 Type I errors and 39 Type II errors.

Method Options False Pos. False Neg. Total

⌅-RMP

BND

BNMF

DDM

LPCA

MAC

NMF

SVD

k = 58.1 (= 1.01)

p = 23.2 (= 2.2)

k = 13.05 (= 0.05)

BR=14.2, TR=14.8

k = 3 (= 0)

k = 12 (= 0)

k = 18.25 (= 2.09)

k = 10.25 (= 0.25)

393.6

94.2

35.48

2.8

49.28

147

43.05

28.5

6.35

9.12

6.07

1.64

4.24

60.32

11.78

4.80

72.9

65.2

29.1

1641

50

79.8

63.55

26

4.65

9.36

8.72

521.02

7.24

22.35

4.22

7.62

466.6 3.55

159.4 16.83

64.58 8.84

1643 491.48

99.28 8.71

226.8 41.19

106.6 13.81

54.5 6.61

Table 5.13

ERBAC Dataset: 740 Type I errors and 148 Type II errors.

Method Options False Pos. False Neg. Total

⌅-RMP

BND

BNMF

DDM

LPCA

MAC

NMF

SVD

k = 579 (= 19.5)

p = 353.8 (= 45.7)

k = 34.8 (= 1.08)

BR=49.2, TR=116.2

k = 9 (= 0)

k = 60 (= 0)

k = 37.9 (= 4.0)

k = 31 (= 1.3)

1529.6

683.4

7.78

1

314.3

92.2

8.2

3

14.30

16.33

4.60

1

23.38

23.12

5.45

0.84

226.4

136.8

6

6602

357.6

250

9

5.8

11.48

6.83

3.48

368.33

38.86

44.40

6.72

4.78

1756 7.48

820.2 22.21

13.78 6.05

6603 367.54

671 50.30

342.4 8.84

17.2 8.84

8.8 4.11

appropriate rank k is selected empirically based on the reconstruction error and we

thank the authors for their assistance in this task.

The results are shown in Tables 5.12–5.15. The average number of false positives

and false negatives and the variance is given.

http:5.12�5.15

125

Table 5.14

Random Dataset: 573 Type I errors and 114 Type II errors.

Method Options False Pos. False Neg. Total

⌅-RMP

BND

BNMF

DDM

LPCA

MAC

NMF

SVD

k = 108.6 (= 10.3)

p = 136.8 (= 42.2)

k = 17.5 (= 0.82)

BR=21.6, TR=22.6

k = 5 (= 0)

k = 30 (= 0)

k = 19.1 (= 1.95)

k = 14.8 (= 0.91)

1071.6

493.8

28.9

0.2

140.55

685.4

17.7

9.5

5.72

19.93

12.20

0.44

16.28

4.16

9.45

7.04

269.6

123.4

6.4

3344

134.5

132.8

6.3

2.25

4.98

9.71

8.78

13.44

23.87

3.67

3.67

1.89

1341.2

617.2

35.3

3344

275

818

24.0

11.8

8.56

27.60

17.52

424.89

34.68

22.60

10.35

6.23

Table 5.15

Tree Dataset: 198 Type I errors and 38 Type II errors.

Method Options False Pos. False Neg. Total

⌅-RMP

BND

BNMF

DDM

LPCA

MAC

NMF

SVD

k = 207.7 (= 27.5)

p = 238.2 (= 21.7)

k = 41.6 (= 1.32)

BR=42.4, TR=50

k = 7 (= 0)

k = 50 (= 0)

k = 41.7 (= 0.69)

k = 39 (= 0)

422.8

137.2

16.6

0

122.4

29.2

14.55

15.8

5.97

6.61

5.48

0

10.51

10.82

4.21

3.40

48.5

25.6

4.6

2413

67.7

6

5.05

10.5

5.75

3.38

1.67

197.60

14.38

2.12

3.29

3.70

471.3 2.07

162.8 5.12

21.3 5.15

2413 6.25

190 17.70

35.2 10.94

19.6 4.22

26.2 6.30

126

It can be seen that in the four representative samples, the singular value de­

composition, non-negative matrix factorization, and Bayesian non-negative matrix

factorization had excellent performance. The logistic PCA finds a lower rank approx­

imation than the competing algorithms and is able to remove a smaller amount of

noise. The next section will illustrate that logistic PCA has better predictive perfor­

mance when values are held out. All four algorithms were capable of removing the

noise without excessive under-assignments of permissions.

The large number of false negatives in the DDM model is consistent with the

observation that it provides clusters that are too coarse to capture the user-permission

relation. Multi-assignment clustering also produces a large number of false negatives

at comparable ranks. For example, in the Random dataset (Table 5.14), using 30

clusters MAC produced 818 total errors on average and takes 5,715 seconds while

SVD produced 11.8 errors in only 0.02 seconds. These experiments were performed

on a 2.0 GHz Core 2 Duo running MATLAB 7.8.

The MAC model appears to be better suited to datasets with fewer clusters that

are large and dense, and not the sparse datasets that appear in many real-world access

control datasets evaluated in this dissertation. Both DDM and MAC may be better

suited to identifying applicable assignments, but may be ill suited at identifying errors

in the user-permission relation, and simpler and less costly methods may be better

suited for those purposes.

Table 5.16
Using SVD for all eigenvalues greater than or equal to 1.0 and threshold 0.5.

Errors > 1.0 � > 80%

Source UP Type I Type II FP FN Recall FP FN Recall

University 4129 197 23 37 216 93.9% 4 308 87.9%

ERBAC 15399 736 154 258 479 95.2% 86 1501 85.78%

Random 11844 568 190 73 1654 85.4% 87 1905 79.4%

Tree 4172 194 5 0 3350 19.7% 3 676 79.2%

127

Table 5.16 provides the results when using the variance and singular values in

SVD to determine the rank. When compared to the results in Tables 5.12–5.15, one

can see this approach provides a more coarse reconstruction, typically resulting in

more under-assignments and lower recall. From the Tree dataset it can be seen that

many permission assignment patterns may be weak and small, possibly indicating

exceptions and explaining the performance of DDM.

Prediction Accuracy

The previous evaluation used artificial datasets providing a ground truth that the

noise removal methods can be evaluated against. In this section the performance

of the top matrix decomposition models, SVD, NMF, BNMF, and logistic PCA, is

evaluated using real datasets from [19, 67].

It is not known whether the real datasets contain any noise and false positives

cannot be separated from true positives (and similar for true and false negatives). As

a result, noise is not added to the real datasets for evaluation. Instead the ability

of the models to predict several known values is measured. Twenty percent of the

user-permission matrix is selected and held out, and the accuracy of the prediction is

measured.

Table 5.17

AUC for LPCA, SVD, NMF and BNMF on three real datasets.

Domino Firewall Healthcare

Algorithm k AUC k AUC k AUC

LPCA 20 .962 19 .999 6 .990

SVD 4 .952 7 .995 3 .993

NMF 4 .954 5 .995 4 .994

BNMF 3 .953 13 .995 3 .993

http:5.12�5.15

128

(a) Domino (b) Healthcare

Figure 5.6. ROC curve for real datasets.

Any prediction method (in our case, deciding whether or not a user should be

assigned a permission) must make a tradeo⇥ between false positives and false neg­

atives. In our case, this is done by selecting a threshold t. This tradeo⇥ is often

illustrated with a receiver operating characteristic (ROC) curve, plotting the true

positive rate (ratio of true positives predicted) against the false positive rate (false

positives divided by negatives). Two ROC curves can be compared by evaluating

the area under the curve (AUC), where 1.0 implies a perfect predictor. The ROC

curves for two datasets is presented in Figure 5.6, and Table 5.5 lists the rank of

each decomposition given the best AUC. The predictive accuracy for the held out

values only is measured. These methods all have excellent performance at predicting

the held out values, with logistic PCA performing the best in general. These results

confirm the previous experiments.

5.5.1 Prediction Using Attributes

Section 4.6 used a measure of the entropy reduction from Frank et al. [14] to predict

which attributes will provide the best predictive performance on the anonymous

129

dataset. This section evaluates how well these attributes improve the actual predictive

performance. Logistic PCA is used to reconstruct both the user-attribute relation Y

(which has been converted to a binary relation) and the user-permission relation X.

Similar to the previous section, 20% of the data is held out and the mean absolute

error (MAE) of the zero-one loss for the binary relation is measured. All experiments

are performed 10 times and the rank of the decomposition is ten. The parameter �

trading o⇥ the loss of X and Y is varied from zero to one. The resulting MAE loss

given � is shown in Figure 5.7. Each attributes is evaluated based on how well it

reduces the predictive error. A summary of these results in given in Table 5.18.

Table 5.18
The total entropy of the user-permission relation given knowledge of
a user’s attribute.

Attribute Cardinality p⌦P I(p, A) Predictive Improvement Std. Dev.

Last Name

Manager

Department

Title

Location

Organization

Level

Contractor

2224

298

192

527

53

12

17

2

2769.39

2186.03

1931.95

1878.51

1316.92

789.46

170.34

78.44

8.50%

20.34%

25.41%

15.03%

21.44%

18.53%

18.59%

12.25%

0.24

0.14

0.24

0.02

0.14

0.51

0.1

0.24

The results illustrate that entropy reduction alone is not a good predictor of an

attribute’s ability to reduce the prediction error. This can clearly be seen from the

Last Name attribute which has the smallest total permission entropy but the highest

order, but only reduces prediction error by 8.5%. These experiments do show that

attributes with smaller total entropy and lower cardinality have better predictive

performance than the attributes they dominate. For example, Manager and Depart­

130

ment have statistically significant better predictive performance compared to Title

(see Figure 5.7(a)) and while Organization has better predictive performance than

Level (see Figure 5.7(b)), it is not statistically significant. Overall, the Organization

and Department attributes are the most applicable attributes for the anonymous

dataset.

5.5.2 Evaluating Role Quality

We measure how noise causes candidate roles to overfit the data using the distance

measure from Section 4.5 on several synthetic and real datasets. Varying amounts

of noise are added to the datasets using the method described in Section 5.5. Roles

are mined from the clean, noisy, and cleaned data. For simplicity, SVD is used

for cleaning. The distance between roles mined from clean and noisy data is used to

measure how overfit the mined roles are. The process is repeated between roles mined

from clean and cleaned data to evaluate how well cleaning stabilizes candidate roles.

If the former distance is great, then noise causes overfit roles.

(a) (b)

Figure 5.7. The MAE for the user-permission relation X given several attributes.

131

Noise can have a significant impact on the number of candidate roles, causing

the unmatched roles to dominate the distance measure. Instead, the top k candidate

roles are selected (by the reduction in weighted structural complexity using the Class

2 to Class 1 prioritization method) such that all sets of roles are the same size.

A summary of the results from our experiments is shown in Table 5.19. Hier­

archicalMiner is used with weight vector W = (1, 1, 1, 1, 1 which allows exceptions

via direct user-permission assignments, and HPr [19], a solution to the role mining

problem. The number of roles generated when mining the clean data, the number of

candidate roles when mining the noisy and cleaned data, and their dissimilarity from

the roles mined from clean data is provided. Unmatched roles are not penalized.

It can be observed that noise causes the number of roles generated from each

role mining criteria to increase, often significantly. This increase is more apparent

when attempting to mine roles that represent an exact cover of the user-permission

relation, as HPr does. For example, the Random dataset with 4% noise added

causes an almost 15-time increase in the number of candidate roles.

The second observation from Table 5.19 is that the candidate roles generated by

HPr are more unstable than roles generated by HierarchicalMiner. This can be seen

by comparing the dissimilarity between noisy and clean roles for each algorithm. The

dissimilarity between clean and noisy candidate roles is 2.5-time greater for HPr than

HierarchicalMiner, and the average Jaccard distance for each matching pair of roles

is 0.16 for HierarchicalMiner and 0.50 for HPr. This implies the matching roles only

share half of the permissions on average. This analysis supports the hypothesis that

solutions to the role minimization problem overfit the roles to the user-permission

relation, leading to an unstable RBAC state.

5.6 Role Similarity

This section uses the distance measure between sets of candidate roles to evaluate

how similar the roles generated from HierarchicalMiner are compared to other algo­

132

Table 5.19
The distance between roles mined from clean data with roles mined
from noisy and cleaned data and the e⇥ectiveness of noise removal at
stabilizing candidate roles and the susceptibility of RMP.

Data Noise

HM HPr

Clean

| R |

Noisy

Diss. | R |

Cleaned

Diss. | R |

Clean

| R |

Noisy

Diss. | R |

Cleaned

Diss. | R |

ERBAC 1% 74 16.22 67 15.39 50 80 19.56 145 15.76 56

2% 72 18.80 82 15.41 70 80 23.50 230 18.65 49

Random 1% 43 2.62 78 0.00 44 40 23.43 240 5.70 47

2%

3%

4%

43

44

43

3.74 105

7.03 128

9.28 113

1.11 40

1.00 55

0.53 62

40

40

40

24.58 296

19.03 506

15.80 595

7.49 56

11.51 72

12.78 84

University 1% 18 1.20 19 0.00 18 17 11.21 45 7.42 21

2%

5%

18

18

0.80 21

0.79 38

0.58 16

0.00 16

17

17

9.37 58

11.25 62

5.66 20

5.81 17

10% 19 2.90 56 0.53 14 17 7.70 67 2.68 8

Domino 15% 11 3.20 12 2.20 11 20 12.09 66 0.10 15

Firewall 1% 48 14.77 59 8.81 53 69 26.72 94 13.59 68

Healthcare 8% 11 2.40 17 2.42 11 15 8.43 38 5.48 12

rithms from the literature. The total distance between the sets of candidate roles is

given in Table 5.20 and the normalized distance for each matched candidate role (un­

matched roles, or role matching an empty role are discarded), is given in Table 5.21.

From this analysis it can be seen that HierarchicalMiner produces sets of candidate

roles that more closely resembles the HPe algorithm, however the individual matched

roles are closer to HPr. This is expected; all initial candidate roles for HPr are bi­

cliques (concepts), which are processed such that no role is the superset of another.

The HPe algorithm further processes (permutes) these roles to reduce UA and PA

assignments. The main di⇥erence between a⇥ecting the distance between these two

RBAC states is the number of unmatched roles.

133

Table 5.20
Distance between HierarchicalMiner and candidate roles from other
algorithms from the literature.

HM HPr HPe GO

Source | R | | R | D(HM ! HPr) | R | D(HM ! HPe) | R | D(HM ! GO)

APJ 497 455 119.871 485 68.065 584 134.111

Domino 33 20 16.682 34 12.210 30 13.382

EMEA 151 34 124.165 190 130.153 173 106.090

Firewall 1 104 65 52.664 91 44.679 114 49.306

Firewall 2 12 10 5.006 15 6.433 16 5.794

Healthcare 18 14 12.610 19 12.613 21 9.018

Average 135.8 99.7 55.2 139.0 45.7 156.3 53.0

Table 5.21

Normalized distance for matched role only.

Source HPr HPe GO

APJ 0.171 0.115 0.095

Domino 0.184 0.339 0.346

EMEA 0.210 0.603 0.557

Firewall1 0.210 0.348 0.378

Firewall2 0.300 0.286 0.150

Healthcare 0.615 0.645 0.334

Average 0.282 0.390 0.310

134

5.7 Implementation

This section describes the implementations of HierarchicalMiner and AttributeM­

iner and the hybrid role mining algorithms described in this chapter.

The HierarchicalMiner has been implemented by separating the formal concept

analysis and candidate role optimization phases. There is extensive research is fast

and e⇤cient methods to compute the set of formal concepts and corresponding lat­

tice [63,76–79]. The implementation used in the experiments in this dissertation use

the C program7 Colibri [76] by Christian Lindig and an updated Java version8 by

Daniel Götzmann for generating concepts. The running time of Colibri is linear in

the size of the concept lattice [76]. The HierarchicalMiner heuristic algorithm to

parse, prune, and restructure the formal concept lattice was written in Python. The

AttributeMiner code was written in Java. The remaining role mining algorithms,

role and edge minimization [19], graph optimization [8], RBAM [10], FastMiner and

CompleteMiner [5] are implemented in Python. The ORCA [4] algorithm was imple­

mented in C++. All matrix factorization and noise removal and detection algorithms

are implemented in Matlab.

5.8 Practicality

This chapter has illustrated the advantages of formal concept analysis for many

role mining problems, and the performance of the HierarchicalMiner algorithm. This

section evaluates how e⇤cient this approach is. Formal concept analysis can be ex­

pensive, in the worst case, producing 2n concepts where n = min(| U | , | P |). In

practice, the number of concepts is strongly dependent on the density of the UP rela­

| UP |tion, [80], and the running time is linear in the size of the concept lattice [76]. | U |⇥| P |

When the relation is sparse (as it often is in access control systems) concept analysis is

often e⇤cient [80]. Table 5.22 provides a comparison of the time required to perform

7
http://code.google.com/p/colibri-concepts/

8
http://code.google.com/p/colibri-java/

135

formal concept analysis on real-world access control configurations from [19] to the

time required to solve the exact role mining problem (W = (1, 0, 0, 0, �) and the fast

heuristic algorithm HPr. The total running time of HierarchicalMiner is divided into

the time it takes to calculate the formal concept lattice (FCA) and the greedy opti­

mization (HM). Formal concept analysis is implemented in C, and HierarchicalMiner

in Python. All code is running on a 2 GHz Intel Core 2 Duo with 2GB RAM. Note

that the formal concept lattice only needs to be calculated once, and can be opti­

mized after with a variety of weight vectors. The running time for the formal concept

analysis uses the C version of Colibri described in the previous section and may be

decreased by using a more e⇤cient formal concept analysis algorithm [63, 77,78].

It can be concluded from Table 5.22 that this approach is practical in practice,

especially when compared to the cost of manual, top-down role engineering on similar

sized datasets that takes months. Role mining is an infrequent and non-interactive

task, and the final results still require manual verification and approval from a system

administrator (a much larger bottleneck). The approach described in this disserta­

tion is practical when compared to the fast heuristic approaches for role minimization

and edge concentration [19]. For illustration purposes the running time for their al­

gorithms are also presented, taken from [19]. Their algorithms are implemented in

Matlab and running on a 3GHz Xeon processor with 2GB RAM. While a direct com­

parison is di⇤cult, once the formal concept lattice is generated the HierarchicalMiner

algorithm is competitive with their approaches.

136

Table 5.22
Comparing the time required to perform formal concept analysis
(FCA) and optimize the lattice with HierarchicalMiner (HM) to algo­
rithms by Ene et al. Exact finds the minimum number of roles. HPr
performs a heuristic role minimization and HPe performs heuristic
edge concentration. All times given in seconds.

Data |U | |P | Density Concepts FCA HM Exact HPr HPe

Americas L 3485 10127 0.01 36991 591.64 132.28 1564 69.8 177

Americas S 3477 1587 0.02 2764 17.3 0.644 412 10.2 13.1

APJ 2044 1164 < 0.01 798 1.66 0.220 39 11.1 12.0

EMEA 35 3046 0.07 780 0.07 0.983 0.68 0.04 0.74

Healthcare 46 46 0.70 31 0.008 0.620 0.02 0.05 0.05

Domino 79 231 0.04 73 0.008 0.618 0.03 0.01 0.05

Firewall 1 365 709 0.12 317 0.3 1.064 3 0.76 1.02

Firewall 2 325 590 0.19 22 0.13 0.822 2 0.12 0.16

Average 76.39 19.6 252.59 11.51 25.515

137

6 CONCLUSIONS AND FUTURE WORK

This dissertation presented an approach to role engineering that produces compact

and semantically meaningful roles that is resilient to noise in the input data.

First, it defined Weighted Structural Complexity (WSC), a complexity measure

that models the human costs of administrating a role-based access control state and is

consistent with the motivation behind RBAC. The problem of minimizing the WSC

of an RBAC state is formalized and shown to be trivial to solve for some input values

and NP-complete in general and for inputs of interest. Next, formal concept analysis

is presented as a formal framework on which to base many role mining optimization

problems. Formal concepts are a natural way to capture hierarchical structure in

binary relations and the formal concept lattice produces a valid complete RBAC state

with desirable properties. A role mining algorithm, HierarchicalMiner , is proposed to

optimize the formal concept lattice with respect to the weighted structural complexity.

Evaluations indicate it produces compact results compared to other algorithms in the

literature at a wide variety of role mining objective.

To further reduce administrative costs, we argue that roles should be semantically

meaningful. While semantic meaning is up to the interpretation of the system ad­

ministrator, we argue roles that can be defined by user attributes are semantically

meaningful. An extension to the HierarchicalMiner algorithm, called AttributeMiner ,

is proposed. It produces semantically meaningful roles while reducing the weighted

structural complexity of the RBAC state.

Finally, real-world data is often noisy and contains errors. The problem of mining

RBAC states given noise is presented and two types of noise are considered. The

first type of noise is correctness noise, Type I and Type II errors that impact the

security and availability of the resources being protected. The second type of noise

is applicability noise. These are assignments that are exceptions to the RBAC model

138

of access control, and depict exceptional or temporary access to resources outside

the job duties of the users. Techniques based on rank reduced matrix decomposition

are presented that correct for both types of noise with low false positive and false

negative rates. When user-attributes are available, false positive and false negatives

are further reduced.

The proposed methods for handling noisy input data can be employed for tasks of

prediction of unknown values. When combined with candidate role generation, this

allows a complete RBAC state to be generated from incomplete and noisy data. This

significantly reduces the costs of role engineering.

This dissertation presented a framework and solutions for general role mining

problems. These solutions all consider the existing access control data is static, and

this dissertation uses a snapshot of the current access control state. Temporal data,

indicating which permissions users use and when are useful for many new role mining

tasks. For example, future research on role mining should consider how permissions

are used together such that they can be clustered and assigned to a single role.

Permissions that are not temporally correlated should be split into two-or-more roles

to satisfy the principle of least privilege. Further, such workflow patterns may be

useful to analyze dynamic constraints, preventing a user from activating roles with

dynamically mutually exclusive permissions.

The role mining problems considered in this dissertation can be viewed as a con­

crete instantiation of a general security policy learning problem to approximate the

Oracle Policy using a role-based access control policy. Future work should consider

other access control models that may be more representative of the Oracle Policy. A

goal of such security policy learning problems would be to a security policy for other

access control models, such as the Bell-La Padula model [29], or a general meta model

for access control [81, 82].

LIST OF REFERENCES

139

LIST OF REFERENCES

[1] Michael P. Gallaher, Alan C. O’Connor, and Brian Kropp. The economic impact
of role-based access control. Technical Report PTI Project Number 07007.012,
National Institute of Standards and Technology, March 2002.

[2] Axel Buecker, Jaime Cordoba Palacios, Brian Davis, Todd Hastings, and Ian Yip.
Identity management design guide with IBM Tivoli Identity Manager, November
2005.

[3] Martin Kuhlmann, Dalia Shohat, and Gerhard Schimpf.	 Role mining — Re­
vealing business roles for security administration using data mining technology.
In Proceedings of the Eighth ACM Symposium on Access Control Models and
Technologies, SACMAT ’03, pages 179–186, 2003.

[4] Jürgen Schlegelmilch and Ulrike Ste⇥ens. Role mining with ORCA. In Proceed­
ings of the tenth ACM symposium on Access control models and technologies,
SACMAT ’05, pages 168–176, 2005.

[5] Jaideep Vaidya, Vijayalakshmi Atluri, and Janice Warner.	 Roleminer: Mining
roles using subset enumeration. Proceedings of the 13th ACM Conference on
Computer and Communications Security, pages 144–153, 2006.

[6] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo.	 The role mining problem:
Finding a minimal descriptive set of roles. In Lotz and Thuraisingham [83], pages
175–184.

[7] Haibing Lu, Jaideep Vaidya, and Vijayalakshmi Atluri. Optimal boolean matrix
decomposition: Application to role engineering. In International Conference on
Data Engineering Conference, pages 297–306. IEEE, 2008.

[8] Dana Zhang, Kotagiri Ramamohanarao, and Tim Ebringer.	 Role engineering
using graph optimisation. In Lotz and Thuraisingham [83], pages 139–144.

[9] Dana Zhang, Kotagiri Ramamohanarao, Tim Ebringer, and Trevor Yann.	 Per­
mission set mining: Discovering practical and useful roles. In Computer Security
Applications Conference, 2008. ACSAC 2008. Annual, pages 247–256, December
2008.

[10] Alessandro Colantonio, Roberto Di Pietro, and Alberto Ocello.	 A cost-driven
approach to role engineering. In Roger L. Wainwright and Hisham Haddad,
editors, Symposium On Applied Computing, SAC’08, pages 2129–2136. ACM,
2008.

[11] Alessandro Colantonio, Roberto Di Pietro, and Alberto Ocello. Leveraging lat­
tices to improve role mining. In Sushil Jajodia, Pierangela Samarati, and Stelvio
Cimato, editors, Proceedings of The IFIP TC-11 23rd International Information

140

Security Conference, IFIP 20th World Computer Congress, IFIP SEC 2008,
September 7-10, 2008, Milano, Italy Tc 11 23rd International Information Se­
curity Conference, volume 278 of IFIP, pages 333–347. Springer, 2008.

[12] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and Nino Vincenzo
Verde. A formal framework to elicit roles with business meaning in RBAC sys­
tems. In Proceedings of the 14th ACM Symposium on Access Control Models and
Technologies, SACMAT’09, pages 85–94, 2009.

[13] Mario Frank, David A. Basin, and Joachim M. Buhmann. A class of probabilistic
models for role engineering. In Peng Ning, Paul F. Syverson, and Somesh Jha,
editors, ACM Conference on Computer and Communications Security, pages
299–310. ACM, 2008.

[14] Mario Frank, Andreas P. Streich, David Basin, and Joachim M. Buhmann. A
probabilistic approach to hybrid role mining. In CCS ’09: Proceedings of the
16th ACM conference on Computer and communications security, pages 101–
111, 2009.

[15] Andreas P. Streich, Mario Frank, David Basin, and Joachim M. Buhmann. Multi-
assignment clustering for boolean data. In Proceedings of the 26th Annual Inter­
national Conference on Machine Learning, ICML ’09, pages 969–976, 2009.

[16] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa Bertino,
Seraphin B. Calo, and Jorge Lobo. Mining roles with semantic meanings. In
Proceedings of the 12th ACM Symposium on Access Control Models and Tech­
nologies, SACMAT’08, pages 21–30, 2008.

[17] Jaideep Vaidya, Vijayalakshmi Atluri, Qi Guo, and Nabil Adam.	 Migrating
to optimal rbac with minimal perturbation. In Proceedings of the 13th ACM
symposium on Access control models and technologies, SACMAT ’08, pages 11–
20, 2008.

[18] Qi Guo, Jaideep Vaidya, and Vijayalakshmi Atluri.	 The role hierarchy mining
problem: Discovery of optimal role hierarchies. In In Proceedings of the 24th
Annual Computer Security Applications Conference (ACSAC 2008), 2008.

[19] Alina Ene, William Horne, Nikola Milosavljevic, Prasad Rao, Robert Schreiber,
and Robert Endre Tarjan. Fast exact and heuristic methods for role minimization
problems. In Indrakshi Ray and Ninghui Li, editors, Proceedings of the 13th ACM
Symposium on Access Control Models and Technologies, SACMAT’08, pages 1–
10. ACM, 2008.

[20] Bernhard Ganter and Rudolf Wille.	 Formal Concept Analysis: Mathematical
Foundations. Springer, 1998.

[21] Daniel Lee and H Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, Oct 1999.

[22] Mikkel N. Schmidt, Ole Winther, and Lars Kai Hansen. Bayesian non-negative
matrix factorization. In Independent Component Analysis and Signal Separation,
International Conference on, volume 5441 of Lecture Notes in Computer Science
(LNCS), pages 540–547. Springer, 2009.

141

[23] Andrew I. Schein, Lawrence K. Saul, and Lyle H. Ungar.	 A generalized linear
model for principal component analysis of binary data. In Proceedings of the 9’th
International Workshop on Artificial Intelligence and Statistics, 2003.

[24] Ajit Paul Singh and Geo⇥rey J. Gordon. Relational learning via collective matrix
factorization. In Ying Li, Bing Liu, and Sunita Sarawagi, editors, Knowledge
Discovery and Data Mining, KDD’08, pages 650–658. ACM, 2008.

[25] Butler W. Lampson. Protection. In Proceedings of the 5th Princeton Conference
on Information Sciences and Systems, 1971.

[26] Michael A. Harrison, Walter L. Ruzzo, and Je⇥rey D. Ullman. Protection in
operating systems. Communications of the ACM, 19(8):461–471, 1976.

[27] Matt Bishop, Sophie Engle, Sean Peisert, Sean Whalen, and Carrie Gates. We
have met the enemy and he is us. In Proceedings of the Fifteenth New Security
Paradigms Workshop, NSPW’08, 2008.

[28] James Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A generalized tem­
poral role-based access control model. IEEE Transactions on Knowledge and
Data Engineering, 17(1):4–23, 2005.

[29] D. E. Bell and L. J. La Padula. Secure computer system: Unified exposition and
Multics interpretation. Technical report, The Mitre Corporation, 1976.

[30] D. Brewer and M. Nash. The chinese wall security policy.	 In Proceedings of the
IEEE Symposium on Security and Privacy, pages 206–214, 1989.

[31] David D. Clark and David R. Wilson. A comparison of commercial and military
computer security policies. IEEE Symposium on Security and Privacy, pages
184–194, 1987.

[32] Robert W. Baldwin. Naming and grouping privileges to simplify security man­
agement in large databases. IEEE Symposium on Security and Privacy, 1990.

[33] David Ferraiolo and Richard Kuhn. Role-based access controls. In In 15th NIST­
NCSC National Computer Security Conference, pages 554–563, 1992.

[34] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–47, 1996.

[35] ANSI.	 Role-based access control. Technical Report ANSI INCITS 359-2004,
American National Standard for Information Technology, 2004.

[36] Ravi Sandhu and Qamar Munawer. How to do discretionary access control using
roles. In Proceedings of the third ACM workshop on Role-based access control,
RBAC ’98, pages 47–54, 1998.

[37] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access
control to enforce mandatory and discretionary access control policies. ACM
Transactions on Information and System Security (TISSEC), 3(2):85–106, 2000.

[38] Ninghui Li, Ji-Wom Byun, and Elisa Bertino. A critique of the ANSI standard
on role based access control. 2005.

142

[39] Trent Jaeger and Jonathon E. Tidswell. Rebuttal to the nist rbac model proposal.
In Proceedings of the fifth ACM workshop on Role-based access control, RBAC
’00, pages 65–66, 2000.

[40] Elisa Bertino, Piero A. Bonatti, and Elena Ferrari.	 TRBAC: A temporal role-
based access control model. ACM Transactions on Information System Security,
4(3):191–223, 2001.

[41] Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca. GEO­
RBAC: a spatially aware RBAC. In Proceedings of the tenth ACM symposium
on Access control models and technologies, SACMAT ’05, pages 29–37, 2005.

[42] Sudip Chakraborty and Indrajit Ray.	 TrustBAC — integrating trust relation­
ships into the RBAC model for access control in open systems. Proceedings of the
eleventh ACM symposium on Access control models and technologies, SACMAT
’06, 2006.

[43] Maria Luisa Damiani, Elisa Bertino, Barbara Catania, and Paolo Perlasca. GEO­
RBAC: A spatially aware RBAC. ACM Transactions on Information System
Security, 00(00):1–34, 2006.

[44] Edward J. Coyne. Role engineering. In Proceedings of the first ACM Workshop
on Role-based access control, RBAC ’95, page 4, 1995.

[45] E. B. Fernandez and J. C. Hawkins. Determining role rights from use cases.	 In
ACM Workshop on Role-Based Access Control, pages 121–125, 1997.

[46] P. Epstein and Ravi Sandhu. Engineering of role/permission assignments. In
Proceedings of the 17th Annual Computer Security Applications Conferences,
ACSAC’01, volume 10, pages 127–136, 2001.

[47] Per Brinch Hansen. Operating System Principles. Prentice-Hall, 1973.

[48] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining.
The MIT Press, 2001.

[49] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associ­
ation rules. pages 487–499, 1994.

[50] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns
without candidate generation: A frequent-pattern tree approach. Data Mining
and Knowledge Discovery, 8(1):53–87, 2004.

[51] Qun Ni, Jorge Lobo, Seraphin Calo, Pankaj Rohatgi, and Elisa Bertino.	 Au­
tomating role-based provisioning by learning from examples. In Proceedings of
the 14th ACM symposium on Access control models and technologies, SACMAT
’09, pages 75–84, 2009.

[52] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa Bertino,
Seraphin Calo, and Jorge Lobo. Mining roles with multiple objectives. In Trans­
actions on Information and System Security (TISSEC), In Submission.

[53] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning.	 IEEE Trans­
actions on Knowledge and Data Engineering, 2009.

143

[54] Axel Kern. Advanced features for enterprise-wide role-based access control. In
Annual Computer Security Applications Conference, ACSAC’02, pages 333–342.
IEEE Computer Society, 2002.

[55] Axel Kern, Martin Kuhlmann, Andreas Schaad, and Jonathan D. Mo⇥ett. Ob­
servations on the role life-cycle in the context of enterprise security management.
In Proceedings of the 6th ACM Symposium on Access Control Models and Tech­
nologies, SACMAT’02, pages 43–51, 2002.

[56] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Gri⇤ths, Takeshi Yamada,
and Naonori Ueda. Learning systems of concepts with an infinite relational
model. In In Proceedings of the 21st National Conference on Artificial Intelli­
gence, 2006.

[57] Ian Molloy, Ninghui Li, Jorge Lobo, Yuan (Alan) Qi, and Luke Dickens. Mining
roles with noisy data. In SACMAT 2010, 14th ACM Symposium on Access
Control Models and Technologies, 2010.

[58] Jerome H. Saltzer and Michael D. Schroeder.	 The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[59] Xuemin Lin. One the computational complexity of edge concentration. In Dis­
crete Applied Mathematics, volume 101, pages 197–205, 2000.

[60] Alina Ene. Biclique covers of bipartite graphs: The minimum biclique cover and
edge concentration problems. Technical report, Princeton University, 2007.

[61] Milind Dawande, Pinar Keskinocak, Jayashankar M. Swaminathan, and Sridhar
Tayur. On bipartite and multipartite clique problems. J. Algorithms, 41(2):388–
403, 2001.

[62] James Abello, Alex J. Pogel, and Lance Miller. Breadth first search graph par­
titions and concept lattices. Journal of Universal Computer Science, 10(8):934–
954, 2004.

[63] Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal.
Computing iceberg concept lattices with Titanic. Data and Knowledge Engi­
neering, 42(2):189–222, 2002.

[64] Ajit Paul Singh and Geo⇥rey J. Gordon. A unified view of matrix factorization
models. In Walter Daelemans, Bart Goethals, and Katharina Morik, editors, Eu­
ropean Conference on Machine Learning and Principles and Practice of Knowl­
edge Discovery in Databases, ECML/PKDD, volume 5212 of Lecture Notes in
Computer Science, pages 358–373. Springer, 2008.

[65] Mehmet Koyutürk, Ananth Grama, and Naren Ramakrishnan. Nonorthogonal
decomposition of binary matrices for bounded-error data compression and anal­
ysis. ACM Transactions Mathematical Software, 32(1):33–69, 2006.

[66] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Detecting and resolving policy
misconfigurations in access-control systems. In Proceedings of the 13th ACM
symposium on Access control models and technologies, SACMAT ’08, pages 185–
194, 2008.

144

[67] Ian Molloy, Ninghui Li, Tiancheng Li, Ziqing Mao, Qihua Wang, and Jorge Lobo.
Evaluating role mining algorithms. In Proceedings of the 13th ACM Symposium
on Access Control Models and Technologies, SACMAT’09, 2009.

[68] Michael E. Wall, Andreas Rechtsteiner, and Luis M. Rocha.	 Singular value de­
composition and principal component analysis, chapter 5, pages 91–109. Kluwer,
2003.

[69] Pau-Chen Cheng, Pankaj Rohatgi, Claudia Keser, Paul A. Karger, Grant M.
Wagner, and Angela Schuett Reninger. Fuzzy MLS: An experiment on quantified
risk-adaptive access control. IEEE Symposium on Security and Privacy 2007,
2007.

[70] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and Nino Vincenzo
Verde. Mining stable roles in RBAC. In IFIP Advances in Information and
Communication Technology, 2009.

[71] Marc Bezem, Karnik Blok, and Maarten Keijzer. Metrics for classifying heteroge­
neous objects. Technical Report PNA-R9804, Stichting Mathematisch Centrum,
May 31 1998.

[72] Harold W. Kuhn.	 The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(83–97), 1955.

[73] Justus	 Schwartz, Angelika Steger, and Andreas Weißl. Fast algorithms for
weighted bipartite matching. Experimental and E�cient Algorithms, pages 476–
487, 2005.

[74] Scott D. Stoller, Ping Yang, C. R. Ramakrishnan, and Mikhail I. Gofman. E⇤­
cient policy analysis for administrative role based access control. October 2007.

[75] Axel Kern, Andreas Schaad, and Jonathan Mo⇥ett. An administration concept
for the enterprise role-based access control model. pages 3–11, June 2003.

[76] Christian Lindig.	 Fast concept analysis. In Gerhard Stumme, editor, Working
with Conceptual Structures - Contributions to ICCS 2000, 2000.

[77] Petr Krajca, Jan Outrata, and Vilem Vychodil. Parallel recursive algorithm for
FCA. In Concept Lattices and Their Applications, 2008.

[78] Simon Andrews.	 In-Close, a fast algorithm for computing formal concepts. In
17TH International Conference on Conceptual Structures (ICCS’09), 2009.

[79] Anne Berry, Jean Paul Bordat, and Alain Sigayret. A local approach to concept
generation. Annals Mathethematics and Artificial Intelligence, 49(1-4):117–136,
2007.

[80] Christian Lindig. Mining patterns and violations using concept analysis. Tech­
nical report, Universität des Saarlandes, Saarbrücken, Germany, June 2007.

[81] David Ferraiolo and Vijay Atluri.	 A meta model for access control: why is it
needed and is it even possible to achieve? In Proceedings of the 13th ACM
symposium on Access control models and technologies, SACMAT ’08, pages 153–
154, 2008.

145

[82] Steve Barker. The next 700 access control models or a unifying meta-model? In
Proceedings of the 14th ACM symposium on Access control models and technolo­
gies, SACMAT ’09, pages 187–196, 2009.

[83] Volkmar Lotz and Bhavani M. Thuraisingham, editors.	 SACMAT 2007, 12th
ACM Symposium on Access Control Models and Technologies, Sophia Antipolis,
France, June 20-22, 2007, Proceedings. ACM, 2007.

APPENDIX

146

A ADDITIONAL PROOFS

A.1 Trivial Solutions to WSCP

There are several weight combinations that yield trivial solutions to the weighted

structural complexity problem. A summary a given in Table 3.2. Here we describe

these trivial solutions. For example, assume that both wr and wu are 0 and wd = �,

which indicates that it costs nothing to create a role or assign a role to a user. In

this case, given (U, P,UP , an RBAC system ⇤ that minimizes the value of WSC is

the one that creates a role ri for every permission pi ⌫ P , and (uj , ri) ⌫ UA if and

only if (uj, pi) ⌫ UP . We have wsc(⇤, W) = wp ⇤ |P |, which is minimum as every

permission in P must be assigned to at least one role so as to make the RBAC system

e⇥ective. Similarly, when both wr and wp are 0 and wd = �, an RBAC system that

trivially minimizes WSC is the one that creates a role ri for every user ui such that

(pj , ri) ⌫ PA if and only if (ui, pj) ⌫ UP .

When setting wu = cu, wp = cp, wr = wh = 0, and wd = �, the minimal RBAC

state is a quadripartite graph using two levels of roles—user roles and permission

roles—by creating a role for each user and each permission. The UP relation is

recreated by assigning permission roles to user roles. We have wsc(⇤, W) = cu ⇤

| U | + cp ⇤ | P |, which is the minimum as every permission and every user must be

assigned to at least one role.

Next, we consider the case when wr = wu = x, wh = ch, wp = 0, and wd = �.

Observe that it costs nothing to add permissions to a role, and a role assignment

costs the same as creating a new role. Assume there exists a role r that completely

covers a user u and we would like to see if there is a less costly assignment that

doesn’t include r. At a minimum, we would need to assign u at least two other roles,

which has the same or higher cost then creating the role that exactly covers u; the

 �

147

complexity will be a minimum when each user is assigned a single role that exactly

covers it. Next observe that creating a role hierarchy cannot decrease the cost of

the RBAC state since it can only decrease the number of permission assignments

(at a cost of ch per assignment) and permission assignments incur zero cost. Thus

wsc(⇤, W) = wr ⇤ | U / |+wu ⇤ | U |, where U / is the set of unique users such that no two

users are assigned the exact same set of permissions1 . Similarly, when wr = wp = x,

wh = ch, wu = 0, and wd = �, we can create a new role for each unique permission

set.

A.2 Lemma 1 Redux: HierarchicalMiner

Because HierarchicalMiner is a heuristic algorithm, and does not exactly solve

the WSCO problem, we cannot rely on Lemma 1 to ensure role creation. Instead, we

must evaluate how HierarchicalMiner will process each role given the four pruning

rules to determine the su⇤cient condition to ensure the roles are not pruned. This

results in the following:

Lemma 2 Given weights (wr, wu, wp, wh, wd such that wd ↵ wu > 0 and wh <�, a

configuration p = (U, P,UP , and P
1 P where |P

1

| ↵ 2. Let U
1 be the set of users

whose set of permissions is exactly P
1 in p. If

(wr + wh | P |)|U
1

| > ,
wu

then HierarchicalMiner will output an RBAC system for p that will include a role

that is assigned exactly permissions in P
1

.

Proof First, a user u is assigned to a single role r in the factored formal concept

lattice, the role containing the exact permission set they are assigned, i.e., Pu ⌥ Pr.

Therefore we can eliminate the need to evaluate Case 1 and Case 3, because they

assume a role has zero users directly assigned. We begin with Case 2.

1This ensures we do not have any redundant roles.

148

Case 2 states that a role will be pruned when

wr + wu ⇤ n + wh ⇤ (| Sen(r) | + | Jun(r) |) ↵ wu ⇤ n ⇤ | Jun(r) | + wh ⇤ | Thr(r) | .

Thus, solving for n, the number of users assigned to the role, the rule will never prune

the role when

wr + wh ⇤ (| Sen(r) | + | Jun(r) | � | Thr(r) |)
< n.

wu ⇤ (| Jun(r) | � 1)

For Case 2, a role must have two or more junior roles (otherwise it must be directly

assigned an additional permission, violating the definition of a formal concept, or

falling under Case 4), and the solution is well defined. Next, each junior or senior

role must be di⇥erent by at least one permission, and the total number of junior and

senior roles | Sen(r) | + | Jun(r) | < | P |. Ignoring the through edges, we have that

wr + wh ⇤ | P |
< n

2

.
wu

Next, we consider Case 4. There are two sub-cases. First, a role is removed from

the lattice, a⇥ecting its set of authorized permissions when

wh ⇤ | Jun(r) | + wh ⇤ | Sen(r) | ↵ wh ⇤ | Thr(r) | + wu ⇤n⇤ | Jun(r) | + wp ⇤m⇤ | Sen(r) | .

Solving for n, we have

wh ⇤ (| Sen(r) | + | Jun(r) | � | Thr(r) |) � wp ⇤ m ⇤ | Sen(r) |
< n

wu ⇤ | Jun(r) | 4a.

As above, we can simplify this as

wh ⇤ | P | � wp ⇤ m ⇤ | Sen(r) |
< n

4a.
wu ⇤ | Jun(r) |

And the role is prune completely, directly assigning the permissions to the users, when

wr + wu ⇤ n + wp ⇤ m + wh ⇤ | Jun(r) | + wh ⇤ | Sen(r) |

↵ wh ⇤ | Thr(r) | + wu ⇤ n ⇤ | Jun(r) | + wp ⇤ m ⇤ | Sen(r) | + wd ⇤ m ⇤ n.

Solving for n, we have

wr � wp ⇤ m ⇤ (| Sen(r) | � 1) + wh ⇤ (| Sen(r) | + | Jun(r) | � | Thr(r) |)
< n

4b,
wu ⇤ (| Jun(r) | � 1) + wd ⇤ m

149

and
wr + wh ⇤ | P | � wp ⇤ m ⇤ (| Sen(r) | � 1)

< n
4b.

wu ⇤ (| Jun(r) | � 1) + wd ⇤ m

It is clear that n
2 ↵ n4⇤, and n

2 is a su⇤cient condition to ensure a role is not pruned.

Note that when wh = �, we cannot guarantee a role will not be pruned. This is a

result of HierarchicalMiner being a heuristic algorithm, and the four cases not being

exhaustive. One could extend HierarchicalMiner in such a way that Lemma 1 holds,

however this increases the number of sub cases. For example, in Case 2, the role

may be removed from the hierarchy completely and directly assigned all permissions,

without having the demote users down the lattice.

A.3 Role Stability

In [70], Colantonio et al. consider the problem of mining stable roles, however they

do not provide a formal definition for a stable role. Informally they suggest that a role

is unstable if the introduction or removal of new users, permissions, or user-permission

assignments could change the optimal candidate role set. Next, they define a weight

function for a role as either the weighted sum of the users and permissions, or a

weighted product of the user-permission relations it captures2 . For a role r, let Ur be

the set of users “associated” with r, and Pr be the set of permissions “associated”

to r. For simplicity, assume associated means the set of users that are assigned a

superset of Pr in UA. Given a vector W = (wr, wu, wp, wh, wd , the weight of a role

r, denoted w(r), is

w(r) = wu | Ur | ⌅ wp | Pr |

where ⌅ is distributive over multiplication.

2Their notation is somewhat confusing and non-traditional. I believe they are attempting to indi­
vidually weight the number of users and permissions, but must make changes to math operations to
make the operations associative and work within their solution framework.

150

They imply a role with limited weight, w(r) < t for threshold t, is unstable, and

suggest a method to prune user-permission assignments that can only belong to roles

where w(r) < t.

Their definition of an instability by role weight does not match their implicit

definition of an unstable role. There are many “unstable” roles that their method

may still propose. Consider three roles, r
1 < r

2 < r
3 as shown in Figure A.1, and

assume w(r
1

) > t and w(r
3

) > t; that is, both r
1 and r

3 are stable. By the definition

in [70], r
2 may3 be considered stable, that is w(r

2

) > t, yet if we prune a single user-

permission assignment, r
2 will no longer be generated. We will assume all candidate

roles are maximal bicliques (concepts), as [70] does.

�

�

�

���
��
�	�

��
��
��

Figure A.1. A small role hierarchy illustrating the incompleteness of
defining stable roles by role weight.

Theorem A.3.1 There exist a role r with su�cient weight w(r) > t that is unstable

and is not a formal concept if one user-permission assignment is pruned.

Proof To be considered stable, w(r
2

) > t. If r
1

, r
2

, and r
3 are all concepts, or

maximal bicliques, then | U | ⌫ [| U |+1, | U |�1], and | P | ⌫ [| P |+1, | P |�1].r2 r3 r1 r2 r1 r3

That is, r
2 must di⇥er from both r

1 and r
3 by at least one user and one permission.

We also note that | U | ↵ | U | + 2, and | P | ⌦ | P | � 2. Next, let r = (U , P)r1 r3 r1 r3 r3 r1

3Proving a role must exist is slightly more di�cult and I do not believe true.

151

/ /and assume w(r) > t, that is, all roles r such that r
1 ⌦ r ⌦ r3 are stable as defined

by [70]. It is trivial to construct such a role.

It is possible that r
2 is not stable by their intuitive definition. Let (u, p) ⌫ UP

where u ⇠⌫ Ur3 and p ⇠⌫ Pr1 . We can define r
2 where Ur2 = Ur3 ⌧ { u } and Pr2 =

Pr1 ⌧ { p }. See Figure A.1. Then r
2 is stable, because w(r

2

) > t, but pruning (u, p)

no longer makes r
2 a concept of UP , and the role will not be generated, violating the

implicit definition of stability by Colantonio et al.

/ 0 0Let r be the role r
2 without (u, p), that is Ur and Pr . The intent of

2 = Ur3 = Pr12 2

/ /r
2 produces r

3

, and the extend of r
2 produces role r

1

. That is r
2 regresses to produce

r
1 and r

3 redundantly in the absence of (u, p). Therefore, if (u, p) is pruned, r
2 will

not be generated, and is thus unstable.

In the above example we over-assigned the permission p to the user u. We can

similarly define an example where we under-assign a permission p to a user u. Imagine

two roles, r
1 < r

2

, where Ur1 = Ur2 ⌧ { u } and Pr2 = Pr1 ⌧ { p }. When wu = wp,

then w(r
1

) = w(r
2

). If user u is removed, then r
1 will no longer be generated since

all remaining users Ur1 have permissions Pr2 .

VITA

152

VITA

Education

Purdue University, West Lafayette, Indiana USA August 2010

Ph.D., Computer Science

–	 Thesis Topic: Automatic Migration to Role-Based Access Control

–	 Advisor: Ninghui Li

Syracuse University, Syracuse, New York USA May 2004

B.S., Computer Science

–	 Magna cum Laude in Computer Science with Honors

–	 Minor in Mathematics

Publications

Journal Articles

•	 I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo.

Mining Roles with Multiple Objectives. ACM Transactions on Information and

System Security (TISSEC), Accepted 2010.

•	 T. Li, N. Li, J. Zhang, and I. Molloy. Slicing: A New Approach to Privacy

Preserving Data Publishing. IEEE Transactions on Knowledge and Data Engi­

neering (TKDE), In Review.

•	 I. Molloy and T. F. Stepinski. Automatic Mapping of Valley Networks on Mars.

Elsevier Computers and Geosciences, 2007.

153

Refereed Conference Papers

•	 I. Molloy, N. Li, J. Lobo, Y. Qi, and L. Dickens. Mining Roles with Noisy

Data. Proceedings of the Fifteenth ACM Symposium on Access Control Models

and Technologies (SACMAT’10), June 2010.

•	 N. Ding, R. Xiang, I. Molloy, N. Li, and Y. Qi. Approximate Inference for

Nonparametric Bayesian Matrix Factorization. Journal Machine Learning Re­

search, W&CP 9, Vol. 9. Artificial Intelligence and Statistics (AISTATS’10),

May 2010.

•	 I. Molloy, N. Li, and T. Li. On the (In)Security and (Im)Practicality of Out­

sourcing Precise Association Rule Mining. IEEE International Conference on

Data Mining (ICDM’09), December 2009.

•	 I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo. Evaluating Role Mining

Algorithms. Proceedings of the Fourteenth ACM Symposium on Access Control

Models and Technologies (SACMAT’09), June 2009.

•	 Z. Mao, N. Li, and I. Molloy. Defeating Cross-Site Request Forgery Attacks

with Browser-Enforced Authenticity Protection. International Conference on

Financial Cryptography and Data Security (FC’09), February 2009.

•	 I. Molloy, P.C. Cheng, and P. Rohatgi. Trading in Risk: Using Markets to

Improve Access Control. Proceedings of the Fifteenth New Security Paradigms

Workshop (NSPW’08), September 2008.

•	 I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo.

Mining Roles with Semantic Meanings. Proceedings of the Thirteenth ACM

Symposium on Access Control Models and Technologies (SACMAT’08), June

2008.

•	 I. Molloy, J. Li, and N. Li.Dynamic Virtual Credit Card Numbers. International

Conference on Financial Cryptography Cryptography and Data Security (FC’07),

February 2007.

154

Technical Reports

•	 T. Li, N. Li, J. Zhang, and I. Molloy. Slicing: A New Approach to Privacy

Preserving Data Publishing. arXiv Report:0909.2290, 2009.

•	 I. Molloy, N.Li , and T. Li. On the (In)Security and (Im)Practicality of Out­

sourcing Precise Association Rule Mining.CERIAS Tech Report, December 2009.

•	 W. R. Speirs and I. Molloy. Making Large Hash Functions from Small Com­

pression Functions. Cryptology ePrint Archive, Report 2007/239, 2007.

Work Experience

T.J. Watson Research Center, IBM Corporation, Hawthorne, New York

USA

Research Co-Op	 Fall 2009 to January 2010

–	 Continued research on role mining from summer internship

Research Internship - Secure Software and Services Summer 2009

–	 Worked with Jorge Lobo and Pau-Chen Cheng under Seraphin Calo and

Josyula Rao

–	 Applied machine learning and data mining techniques to access control poli­

cies

–	 Automatically infer role-based access control policies and detect policy mis­

configurations

–	 Adapt role-mining tools and techniques for real-world requirements, con­

straints, and demands

Research Co-Op	 Fall 2007 to Fall 2008

–	 International Technology Alliance Project on Trust and Risk Management

in Dynamic Coalition Environments

–	 Research topics include risk policies, risk allocation, and policy inference

155

–	 Applied fuzzy logic, machine learning, and economic theory to risk-based

access control systems for MANETs

Research Internship - Secure Software and Services Summer 2007

–	 Worked under Pau-Chen Cheng and Pankaj Rohatgi

–	 Simulated and modeled Risk Adaptive Access Control System for IBM Sys­

tem S

–	 Applied experimental economics to the problem of risk allocation

–	 Applied economic theory and machine learning techniques to analyze simu­

lation results

Lunar and Planetary Institute, Houston, Texas USA

Visiting Graduate Student	 Summer 2005

–	 Worked under Tomasz Stepinski

–	 Designed algorithms to identify valley networks on Martian terrain

–	 Applied image processing and statistical analysis techniques to laser altime­

ter data

–	 Prototyped and implemented algorithms using Mathematica and ArcGIS,

Perl and shell scripts, and produced standalone C++ executables

Syracuse University, Syracuse, New York USA

Undergraduate Research Assistant Spring 2003 to Spring 2004

Virtual Markets and Wireless Grids (wirelessgrids.net)

⇤	$Worked under Lee McKnight

⇤ Designed and implemented demo applications and flexible architecture

for grid computing on lightweight devices

http:wirelessgrids.net

156

⇤ Demo applications were written in Java and included distributed Man­

delbrot animation, distributed surround sound audio recording, and

screen sharing

⇤	$A patent application for this work has been filed: 20090068943.

iMint (Intelligent Middleware and Information Networking Technologies)

Lab

⇤	$Work under Junseok Hwang

⇤ Studied, designed, and devised attacks for peer-to-peer reputation sys­

tems

NSF Research Experience for Undergrads

⇤	$Worked under Junseok Hwang

⇤ Studied the problem of collusion and zero-cost identities in peer-to-peer

networks and attempted to devise resilient systems and detection mech­

anisms

Teaching Experience

Purdue University, West Lafayette, Indiana USA

Instructor - Data Structures	 Summer 2006

–	 Instructor for Data Structures summer session

–	 Duties included running labs, preparing daily lectures, written and program­

ming assignments, and exams

–	 Material included object oriented design, introduction to C++, algorithms,

searching and sorting, asymptotic analysis, data storage, and other related

topics

General Teaching Assistant

157

–	 Operating Systems Fall 2005 to Spring 2007

⇤ Duties included running labs, lecturing, technical demonstrations, and

grading

⇤ Topics included synchronization mechanisms, scheduling, memory man­

agement, systems programming, and other related topics

–	 Data Structures Fall 2004 to Spring 2005

⇤	$Duties included lecturing, technical demonstrations, and grading

Projects

Core-RBAC in MySQL, Purdue University	 Fall 2006

•	 Implemented Core-RBAC into the open source MySQL DBMS

•	 Fine grained capabilities with user@host-level principals and column-level priv­

ileges

•	 Two person group project written in C++ with relations stored in MySQL tables

•	 Source code release back to the community

Honors Project, Syracuse University	 2002 to 2004

•	 Thesis: “Attractors in Real-Valued Circuits” with advisor Howard Blair

•	 Studied the problem of voltage fluctuation, leakage, tunneling, coupling and

other errors in CMOS processors

•	 Applied chaotic attractors and feedback to eliminate errors and converge on a

correct solution

158

Presentations

•	 “Evaluating Role Mining Algorithms”, Fourteenth ACM Symposium on Access

Control Models and Technologies ’09, Stresa, Italy. June 2009.

•	 “Defeating Cross-Site Request Forgery Attacks with Browser-Enforced Authen­

ticity Protection”, Thirteenth International Conference on Financial Cryptogra­

phy and Data Security ’09, Barbados. February 2009.

•	 “Trading in Risk: Using Markets to Improve Access Control”, Fifteenth New

Security Paradigms Workshop ’08, Lake Tahoe, CA, USA. September 2008.

•	 “Mining Roles with Semantic Meanings”, Thirteenth ACM Symposium on Ac­

cess Control Models and Technologies ’08, Estes Park, CO, USA. June 2008.

“Dynamic Virtual Credit Card Numbers”, Eleventh International Conference on

Financial Cryptography and Data Security ’07, Lowlands, Scarborough, Trinidad

and Tobago. February 2007.

•	 Wireless Grid Technical Demonstration. Virtual Markets in Wireless Grids

Project Meeting III Telecom Citys Research & Development Consortium, Mellon

Bank, Everett, MA. January 26, 2004.

