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ABSTRACT 

Khreishah, Abdallah Ph.D., Purdue University, August 2010. Analysis and Design 
of Intersession Network Coding in Communication Networks. Major Professors: 
Chih-Chun Wang and Ness B. Shroff. 

Network coding extends the functionality of networking nodes beyond the tra

ditional store-and-forward operations. It allows information from different pack

ets/flows to be mixed together at intermediate nodes using mathematical operations. 

There has been significant prior work that has explored “intrasession” network cod

ing, where only packets of the same session or user are allowed to be mixed together. 

However, intrasession network coding, while providing substantial gains in the pres

ence of multicast traffic, provides no performance gains for unicast traffic, which is the 

predominant traffic on the Internet. On the other hand, intersession network coding, 

where packets of different sessions or users are allowed to be mixed together, improves 

the capacity of the network in the presence of either unicast or multicast traffic. In 

this dissertation, we use optimization and information theoretic approaches to de

sign intersession network coding schemes for both wireline and wireless networks. In 

wireline networks we design a distributed but joint rate control algorithm and coding 

scheme that are optimal when any coded symbol is formed by at most two original 

symbols. The proposed approach improves both the capacity and fairness over exist

ing approaches. Due to their broadcast nature, wireless networks enjoy higher gains 

from network coding than their wireline counterpart. We explore two different wire

less network settings in this dissertation and develop optimal intersession network 

coding schemes under these settings. The first setting is when channel conditions are 

known prior to transmission. In this case we develop a cross-layer framework that re

quires minimal interaction between layers and achieves the optimal solution when any 
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coded symbol is formed by at most two original symbols. We also provide a coding 

scheme that uses only XOR operations and achieves the same throughput as the one 

developed for wireline networks. We study the performance loss of our framework 

when using non-optimal but distributed scheduling algorithms. This framework is 

also extended to include energy minimization. In the second setting we assume that 

channel conditions are unknown prior to transmission. Without network coding the 

optimal solution can be achieved using opportunistic routing. With network coding 

we study the problem of two-hop relay network where the encoding and decoding 

nodes are neighbors. For this problem we provide a coding scheme that achieves 

the capacity of the network with two flows. We also use this result to maximize the 

throughput of a general lossy wireless network. 
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1. INTRODUCTION 

1.1 Overview of Network Coding 

The traditional way of sending information through computer networks is to or

ganize them into data packets at the source and route the packets to the sink through 

intermediate nodes. This method is referred to as store-and-forward or packet switch

ing [1]. We will refer to this method as the non-coded method. For the case of single 

source transmitting to a single sink, the maximum achievable rate equals to the min

cut max-flow value between the source and the sink. The min-cut max-flow is defined 

in [2]. For this unicast model, it is shown in [3] that the min-cut max-flow value 

is achievable by the non-coded method. In the case of a single source broadcasting 

information to more than one sink - known as single source multicast - non-coded 

method is not sufficient to achieve the maximum rate [4]. Furthermore, with the non-

coded approach the problem is equivalent to steiner-tree packing [5] which is known 

to be NP-hard. 

Ahlswede et.al in [4] show that for the single source multicast case, the maximum 

achievable multicast rate is the minimum of the min-cut max-flow values between 

the source and each sink. It was also shown in [4] that this rate is achievable by 

coding. This type of coding is referred to as network coding. For example, in the 

butterfly network in Figure 1.1, we assume that each link can sustain a throughput 

of at most 1 packet per unit time. Source s wants to broadcast packets to sinks d1 

and d2, respectively. For this topology, if only non-coded solutions are permitted, we 

could achieve a multicast rate of 1.5 packets per unit time. However, using network 

coding, it can be easily seen that we can sustain a rate of 2 packets per unit time as 

shown by the coding scheme in the figure. 
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Fig. 1.1. The multicast butterfly network. 

The simplicity of the single source multicast problem is due to two facts. First, 

Linear coding is sufficient to achieve the min-cut max-flow rate [6]. Second, there 

exists a polynomial time algorithm for the code construction [7]. A useful algebraic 

approach to network coding is found in [8]. Based on this approach, it was shown in [9] 

that choosing the coding coefficients randomly with a large enough field size achieves 

very close to optimal solution. The results in [9] facilitate distributed implementation 

of network coding. 

The work on network coding conducted after these basic works are mainly in 

three different directions. The first direction is to provide bounds on the benefits of 

network coding and to study the capacity improvements provided by network coding. 

In [10], both graph and information theoretic characteristics of the network are used 

to provide upper bounds on the capacity of the network with multiple sources and 

sinks. Edge cut sets are used in [11, 12] for the same purpose. In [13] the capacity 

of the network is characterized when the number of nodes allowed to perform coding 

is limited and [14] studied the capacity of multiple unicast sessions in undirected 

networks. For wireless networks [15] showed that in the asymptotic case when the 
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number of nodes in the unit area becomes very large the gain of network coding 

in terms of throughput is bounded by a constant. The benefits of network coding 

in terms of both throughput and energy are also within a constant factor for the 

non-asymptotic case [16]. 

The second direction is to provide distributed algorithms that allocate resources 

at different links in the network. For wireline networks a distributed algorithm for 

the problem of minimum cost single-source multicast is developed in [17]. The same 

work characterizes the problem for wireless networks as a linear program. The con

gestion control problem of the single-source multicast for wireline networks is studied 

in [18–21], where different distributed algorithms are developed. A fast resource al

location algorithm is developed in [22] based on network coding with feedback. For 

wireless networks cross-layer algorithms for multicast are developed in [23–25], and 

opportunistic network coding algorithms are developed in [26,27] for unicast sessions 

and in [28] for both unicast and multicast sessions. 

The third direction is using network coding for problems other than resource 

allocation as peer-to-peer networks in [29, 30], content distribution [31], distributed 

storage [32], network tomography [33], code updates in sensor networks [34], and 

network security [35, 36]. 

1.2 Intrasession and Intersession Network Coding 

When there are multiple sources in the network, the single source multicast prob

lem can be generalized to intrasession network coding. The session is defined by a 

source and a set of sinks interested in receiving symbols from this source. In intrases

sion network coding, coding operations are limited to be between symbols of the same 

session. Intrasession network coding have demonstrated throughput improvement for 

multicast in both wireline [17–21, 28] and wireless networks [23–25]. The benefits of 

Intrasession network coding can also be in terms of energy savings [37]. When inte

grated with feedback messages in [22], intrasession network coding results in a faster 
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resource allocation algothim than the back-pressure algorithm. In general, intrases

sion network coding does not achieve the capacity. Furthermore, if every session has 

only one sink, which is the typical scenario in communication networks referred to 

as multiple-unicast-sessions, the performance of non-coded solutions is the same as 

intrasession network coding. Therefore, in order to enhance the performance of com

munication networks, coding operations have to be performed among the symbols of 

different sessions which is referred to as intersession network coding. 

In contrast to intrasession network coding, intersession network coding is less 

studied and understood. One reason for that is the result in [38] which shows that 

the general intersession network coding problem is NP-hard as the number of ses

sions becomes very large. Another reason for that is that in general linear coding is 

insufficient for the intersession network coding problem [39]. 

Different approaches have been used to study intersession network coding for 

both wireline and wireless networks. For wireline networks, the butterfly structure 

shown in Fig. 1.2, has been exploited in [40, 41] to obtain a capacity region that is 

bigger than the non-coded capacity region. A game theoretic analysis of the butterfly 

capacity region is conducted in [42]. Genetics algorithms have been used in [43] to 

obtain another achievable capacity region for intersession network coding in wireline 

networks. For wireless networks, one approach is to use the butterfly to provide a 

good achievable capacity region as in [40, 41, 44]. Another approach is to limit the 

operations to be XOR and the decoding node to be the next hop of the encoding 

node as in [26, 27]. Nonetheless, the butterfly is not the only structure that provide 

intersession network coding benefits and the approaches in [26,27] do not obtain the 

capacity region for single hop intersession network coding. In this dissertation we 

propose for wireline and wireless networks approaches that can achieve the capacity 

or find all intersession network coding opportunities under some assumptions and 

hence provide performance enhancement over existing techniques. 
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Fig. 1.2. The butterfly network for two unicast sessions. 

1.3 Optimization approaches for communication networks 

Optimization techniques are powerful tools that are used to allocate resources 

for the network. The objective of these optimization approaches is to come up with 

simple operations that can be performed in a distributed way at the network nodes 

and to show that these operations achieve the optimal solution of the given optimiza

tion objective. The optimization objective can be rate control, fairness, throughput 

maximization, energy or delay minimization, or any other objective function. 

The problem of flow control in wireline networks with single path routing is studied 

in [45,46]. The duality approach is used to model and study TCP as an optimization 

problem in [47–49]. The congestion control problem is extended for the multi-path 

routing case in [50, 51] and for the multicast case in [52]. Optimization techniques 

have been also used for network coding in [17–20]. For single-hop wireless networks, 

opportunistic scheduling have been modelled and solved as an optimization problem 

in [53]. For multihop wireless networks cross-layer frameworks for rate control have 

been proposed in [54–59]. In wireless multihop networks optimization techniques have 

been also used for energy minimization problems [60–62] and for network coding [23, 
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25,27,37]. There are several books that discuss the optimization approaches ant their 

applications in communication networks as [63–65]. In this dissertation we will use 

optimization approaches to design efficient resource allocation methods for different 

network setting with intersession network coding. 

1.3.1 Pairwise Intersession Network Coding 

Since the general intersession network coding problem is NP-hard, and because 

linear coding is not sufficient for the problem as discussed in Section 1.2, more restric

tions need to be put on the problem to make it more tractable. One of these restric

tions is to limit the number of sessions to be two and to limit any coded symbol to be 

a result of at most two original symbols. We call this settings pairwise intersession 

network coding. In [66, 67] pairwise intersession network coding was characterized. 

We use this characterization in Chapters 2 and 3 to develop optimal algorithms for 

both wireline and wireless networks. In the following we review the characterization 

of pairwise intersession network coding from [66, 67]. 

Consider directed cyclic/acyclic wireline network G = (V,E), in which each edge 

is able to carry one GF(q) symbol per unit time (say a second) and the propagation 

delay is also one second. High-rate links are modelled by parallel edges and long-delay 

links are modelled by long paths with added auxiliary intermediate nodes. A pair of 

coexisting unicast sessions (s1, d1) and  (s2, d2) would like to transmit two strings of 

independently distributed GF(q) symbols X1, · · ·  , XT and Y1, · · ·  , YT (one string for 

each session) simultaneously over a given duration of T seconds. Pairwise intersession 

network coding (PINC) is allowed and packets of these two strings {Xt, Yt : t = 

1, · · ·  , T} can be arbitrarily mixed in a linear or non-linear fashion. 
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We say a PINC solution exists for transmitting two rate-1 strings of packets (over 

the given unit-edge-capacity network), if given any � > 0, there exists a sufficiently 

large T such that 

1 
I([X ]T 

1 ; [Md1 ]1 
T ) > (1 − �) log(q)

T 

and 
1 
I([Y ]1 

T ; [Md2 ]1 
T ) > (1 − �) log(q),

T 

Δ	 Δ
where [X]T 

1 = {X1, · · ·  , XT }, [Y ]T 
1 = {Y1, · · ·  , YT }, I(·; ·) is the mutual information 

and [Mdi ]
T 
1 is the symbols received by destination di for i = 1, 2. 

For the following, we use Pu,v to represent a path connecting nodes u and v. 

Proposition 1.3.1 A PINC  solution  exists  if  and  only if  one  of  the  following  two  

conditions holds. 

•	 Condition 1: There exist two edge-disjoint paths Ps1,d1 and Ps2,d2 . 

•	 Condition 2: There exist six paths grouped into two sets P = {Ps1,d1 , Ps2,d2 , Ps2,d1 } 

and Q = {Qs2,d2 , Qs1,d1 , Qs1,d2 } such that for all e ∈ E, 

1{e∈Ps1,d1 } + 1{e∈Ps2,d2 } + 1{e∈Ps2,d1 } ≤ 2 

and } + 1{e∈Qs1,d1 } + 1{e∈Qs1,d2 } ≤ 2,1{e∈Qs2,d2 

where 1{·} is the indicator function. 

If condition 1 of the proposition is satisfied, a non-coding solution is sufficient for 

the problem. On the other hand, if only condition 2 is satisfied, network coding 

is necessary to achieve simultaneous rate-1 transmission. For example, the acyclic 

network in Fig. 1.3(a) satisfies condition 2 by choosing Ps1,d1 = s1v1v3v4v6d1, Ps2,d2 = 

s2v2v3v4v5d2, Ps2,d1 = s2v2v6d1, Qs1,d1 = s1v1v3v4v6d1, Qs2,d2 = s2v2v3v4v5d2, and 

Qs1,d2 = s1v1v5d2. A unit rate can be supported between (s1, d1) and  (s2, d2), if 
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the coding scheme represented in the figure is used. Another example where only 

condition 2 is satisfied is the grail network in Fig. 1.4(a) with 

Ps1,d1 = s1v2v3v4v5d1, Ps2,d2 = s2v1v2v3v6d2,
 

Ps2,d1 = s2v1v4v5d1, Qs1,d1 = s1v2v3v4v5d1,
 

Qs2,d2 = s2v1v4v5v6d2, Qs1,d2 = s1v2v3v6d2. (1.1)
 

Fig.	 1.5 contains a cyclic network that satisfies condition 2 of the proposition by 

choosing Ps1,d1 = s1v7v6v5v2v3v4d1, Ps2,d1 = s2v1v4d1, Ps2,d2 = s2v1v2v3v6v5v8d2, 

Qs1,d1 = s1v7v6v5v2v3v4d1, Qs1,d2 = s1v7v8d2, and  Qs2,d2 = s2v1v2v3v6v5v8d2. The  

corresponding coded symbols carried by each edge are also illustrated in Fig. 1.5, 

and rate-1 is sustainable for both unicast sessions (s1, d1) and  (s2, d2). Note that the 

(�, T ) is essential to take into account the delay of each edge as seen in Figs. 1.3(a), 

1.4(a) and 1.5. Proposition 1.3.1 shows that as the existence of non-coding solutions 

is equivalent to finding edge-disjoint paths, the existence of PINC solutions is equiv

alent to finding paths with controlled edge overlap. The intuition is that when the 

packets/paths are not overly using any bottleneck edge (those edges used by three 

paths), coding enables the information to be transmitted simultaneously for both 

sessions. The subgraph G� induced by any six paths satisfying condition 2 of Propo

sition 1.3.1 will be referred as a pairwise intersession coding configuration (PICC). 

In a broad sense, a path is the smallest “graph unit” for non-coding multiple session 

communications while a PICC is the smallest “graph unit” when coding across two 

sessions is permitted. 

Next we will give an overview of our contribution in this dissertation. 

1.4	 Optimization Based Approach for Pairwise Intersession Network Cod

ing for Wireline Networks 

Fairness among sessions can be modelled by associating a utility function with 

each session. Maximizing the sum of these utility functions achieves specific type 

of fairness as shown in [68]. Based on this modelling, distributed algorithms that 
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Fig. 1.3. The butterfly topology and its capacity regions with and without 
network coding. 

achieve fairness have been developed for the non-coded solution as in [45, 51, 69, 70], 

which were extended for intrasession network coding in [18–20, 71]. In Chapter 2 we 

extend these results to pairwise intersession network coding, i.e. the setting where any 

coded packet can be generated from only two original packets. Based on the PINC 

results, we represent the network with arbitrary number of sessions as a superposition 

of intersession coded traffic and non-coded traffic. The intersession coded traffic 

satisfies the necessary and sufficient conditions for PINC. The rate control algorithm 

we obtain is a fully distributed queue length algorithm that selects good paths in 

the network and perform coding along these paths. Due to its path based nature, 

the complexity of our scheme is much lower than that of other existing schemes that 

search for butterfly structures in the network [40,41]. Simulation results also confirm 
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the benefits of the proposed approach over the path based one in terms of fairness and 

throughput. We also provide in Chapter 2 a distributed coding scheme for pairwise 

intersession network coding that perform random coding operations on all the links 

except for selected ones. Decoding operations are performed on the selected links and 

the determination of these selected links are done in a distributed way. The proposed 

coding scheme achieves the optimal solution with a moderate field size, typically 216 . 

1.5	 Pairwise Intersession Network Coding for Wireless Networks with 

opportunistic scheduling 

One of the key features in wireless multihop networks is their broadcast nature. 

Due to this feature, wireless networks observe larger gain from network coding than 

their wireline counterpart. If unicast sessions are present in the wireless network, 

most coding opportunities involve only two or three sessions as coding across many 

sessions requires greater transmission power to broadcast the coded symbol to many 

receivers, which enhances interference as observed in [26, 27]. Therefore, in Chap

ters 3 and 4 we study cross-layer optimization for wireless multihop networks with 

pairwise intersession network coding. Pairwise intersession network coding as defined 

in Section 1.4 means that any coded packet is made of at most two original packets. 

The assumption we make here is the ability for any node to perform opportunistic 

scheduling, i.e., the channel conditions are known prior to transmission. In Chapter 5 

we remove this assumption and design suitable intersession network coding schemes. 

The solutions we have in Chapters 3 and 4 are cross-layer solutions that satisfy the 

loose coupling principle between layers, introduced in [54]. This means that while the 

solutions jointly optimize through all the network layers, they do not loose modularity 

by having a separate optimization problem for each layer and minimum number of 

variables are used across the layers. The provided solutions can be considered as 

extensions of the results in Chapter 2 to wireless networks. However, these extensions 

are not trivial due to the unique features of wireless networks. Therefore, the solutions 
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take into account the transmission power, broadcast nature, scheduling, and rate 

control. 

Two basic principles are used to develop the solutions in Chapters 3 and 4. The 

first princible is the wireless to wireline conversion. The conversion is performed by 

introducing for each original node a set of auxiliary nodes, each auxiliary node is con

nected by directed links to a set of the next-hop nodes of the original node. Therefore, 

designing a wireless transmission scheme that exploits the broadcast advantages of 

wireless networks is equivalent to designing a good routing/scheduling algorithm on 

its wireline counterpart with the additional node-exclusive scheduling constraints that 

auxiliary nodes corresponding to the same auxiliary node cannot be active simulta

neously. The wireless to wireline conversion is used to allocate rates for individual 

nodes. The second principle is that of a hyperlink. The hyperlink is defined as the 

set of auxiliary links adjacent to an auxiliary node.The hyperlink principle is used to 

make scheduling decisions. Therefore, the scheduling algorithms we obtain consider 

hyperlinks instead of links. 

Wireless networks have limited processing capacity. Therefore, any developed 

coding scheme should not use complex mathematical operations. We design a dis

tributed XOR based coding scheme that uses the knowledge of the nodes about the 

paths they belong to to decide wether to XOR two incoming packets or to forward 

only one of them. The performance of the proposed coding scheme is the same as that 

of the coding scheme developed in Chapter 2, i.e., it achieves the optimal solution for 

pairwise intersession network coding. 

We have used two approaches to develop distributed algorithms for wirless multi-

hop networks with pairwise intersession network coding. These are, path based and 

back-pressure approaches. In the following, we discuss the unique features of these 

approaches. 
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1.5.1 Path based approach 

In the path based approach presented in Chapter 3, paths are found before running 

the algorithm and the transmission operations should be performed on these paths 

when running the algorithm. This approach permits us to analyze the performance 

loss of rate control for both deterministic and stochastic arrivals due to the use of 

suboptimal but distributed and less complex scheduling algorithms. This analysis 

is important because optimal scheduling polices are always centralized with high 

complexity. 

1.5.2 Back-pressure approach 

In this approach presented in Chapter 4, the routes that the packets follow are 

not predetermined and decided dynamically while the algorithm is running. Here, 

we allow the decoded packet to be re-encoded again in contrast to the path-based 

approach. This provides a larger capacity region. It is computationally expensive 

to find all the pairwise intersession network coding opportunities in the network. 

Therefore, we specify a parameter κ and allow coding to be performed within κ-hops. 

The parameter κ is an arbitrary integer, balancing the tradeoff between complexity 

and the achievable capacity. The back-pressure approach allows the extension of 

our scheme to energy minimization framework and studying the increase of power 

consumption due to the use of imperfect scheduling. The back-pressure approach 

on the other hand incurs more delay and takes more time to converge as observed 

in [72–74]. 

1.6	 Intersession Network Coding in Wireless Networks without Oppor

tunistic Scheduling 

In Chapter 5 we remove the assumption of opportunistic scheduling. This is a 

more realistic setting, because the channel states change rapidly over time. With 
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this assumption the wireless to wireline conversion in Chapters 3 and 4 does not 

work, because the nodes cannot control which one of their neighbors receive the 

transmitted packet. Without network coding the optimal solution can be achieved 

using opportunistic routing introduced in [75]. Intrasession network coding can be 

combined with opportunistic routing as in [28]. 

Most of previous works on intersession network coding either ignore the assump

tion of no opportunistic scheduling [26, 76, 77] or design suboptimal policies under 

the no opportunistic scheduling case [27]. These works were conducted under the 

single-hop intersession network coding settings, i.e., the encoding and decoding nodes 

are one-hop away from each other. In Chapter 5, we provide a coding scheme for 

single-hop intersession network coding with the erasure channel model that achieves 

the capacity of the network with two flows. The capacity region obtained by the pro

vided coding scheme can be characterized by linear equations. The coding scheme is 

not limited to XOR operations and uses random network coding. In Chapter 6 we use 

the capacity results to enhance the throughput of a general lossy wireless multihop 

network. 

The rest of this dissertation is organized as follows: In Chapter 2, we develop a 

distributed rate control algorithm and distributed coding scheme for pairwise inters

ession network coding. We then turn to wireless networks in Chapter 3 and develop 

a path based cross layer rate control algorithm for wireless multi-hop networks with 

pairwise intersession network coding and the associated XOR-based coding scheme. 

In Chapter 4 we use the back-pressure technique to obtain distributed algorithms for 

rate control and energy minimization. Chapter 5 presents coding schemes for single 

hop intersession network coding when the opportunistic scheduling assumption is re

moved and Chapter 6 uses these results for multihop wireless networks. We briefly 

summarize our work in this dissertation and provide future research directions in 

Chapter 7. 
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2. RATE CONTROL WITH PAIRWISE INTERSESSION 

NETWORK CODING 

2.1 Main Contribution 

Wireline network is the simplest multihop network model. This is due to the 

absence of interference and the high delivery rate of links. Due to this fact, we 

start our study of intersession network coding by considering a wireline network with 

arbitrary number of sessions. We represent the network by a superposition of PICCs 

and routing paths with non-coded traffic to obtain a larger capacity region than 

existing works. Our main contributions in this chapter are as follows: 

1.	 The development of a distributed algorithm with rate control and utility maxi

mization for intersession network coding for multiple unicast flows, which can be 

easily generalized for the case of multiple multicast flows [78]. Our results show 

that the utility-optimization-based rate-control algorithm, originally designed 

for non-coded transmissions [45,69,70,79] and later generalized for intrasession 

network coding [18–20, 71, 80, 81] can be extended to pairwise intersession net

work coding for the first time. This is a non trivial generalization considering 

the characteristic difference between inter and intrasession network coding. 

2.	 Our result is developed based on finding good paths rather than finding specific 

structures in the network (such as the butterfly structures in [82]). This enables 

more efficient solutions since one can leverage upon existing work on how to 

choose good paths through the network. Further, we show empirically that the 

capacity region obtained via our approach can be considerably larger than those 

obtained via the pattern search algorithm [40, 41, 82]. 
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3.	 A pairwise random coding scheme is proposed, which is a modified version of 

the random linear coding scheme in [9]. The pairwise random coding scheme 

decouples the coding and rate-control decisions and facilitates the development 

of a fully distributed algorithm. Combining the distributed rate control and the 

decentralized coding scheme, we eliminate unnecessary queue length information 

exchange among intermediate nodes, which results in improved efficiency of the 

overall scheme compared to the back-pressure algorithms in [41] and [40]. 

The rest of the chapter is organized as follows. In Section 2.2, the graph theoretic 

characterization of pairwise intersession network coding is reviewed for completeness. 

In Section 2.3, we describe the system settings and the formulation of our optimization 

problem. In Section 2.4, we solve the dual problem to obtain the optimal distributed 

rate control algorithm for pairwise intersession network coding. Several practical 

implementation issues are in Section 2.5 including the pairwise random coding scheme. 

In Section 2.6 we propose two approaches to reduce the complexity of the rate control 

algorithm. Section 2.7 is devoted to simulation results. We conclude the chapter in 

Section 2.8. 

2.2 Settings and Preliminaries 

2.2.1 System Settings 

We model the network by a directed graph G = (V, E), where V and E are the sets 

of all nodes and links, respectively. We use In(v) to represent the set of all incoming 

links to node v and Out(v) to represent the set of all outgoing links from node v. Two  

types of graphs are considered depending on the corresponding edge capacity: graphs 

with integral edge-capacity and graphs with fractional edge-capacity. For the former 

type, each edge has unit capacity and carries either one or zero packet per unit time. 

(No fractional packets are allowed.) For the latter type, each edge e has a fractional 

capacity, denoted by Ce, and can transmit at any rate between 0 and Ce. An integral 

graph models the packet-based transmission in a network, for which a high-rate link is 
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represented by parallel edges. On the other hand, the fractional graph can be viewed 

as a time-averaged version of the integral graph, which focuses on the “transmission 

rates” rather than the packet-by-packet behavior. For the rate-control algorithm in 

this chapter, we use the fractional graph model. When discussing the detailed coding 

operations among different packets, we use the integral graph model. 

For networks modelled by fractional graphs, the rate control problem is defined by 

the set of tuples (si, di, Ui(Ri)) i ∈ 1, 2, . . . , N , where  N is the number of coexisting 

unicast sessions. si and di are the source and destination nodes of session i and Ui(·) 

is the utility function of session i that is concave and monotonically increasing. Ri is 

the transmission rate supported in the i-th session. 

Some graph-theoretic definitions will also be used in this work. We use Pv,w or 

Qv,w to denote paths from nodes v to w. Here, we used two different notations to 

describe a path from u to v to make the characterization in Proposition 1.3.1 easier 

to understand. We use P to represent  a  set  of  paths.  

2.2.2 Superposition Approach 

Proposition 1.3.1 serves as the building foundation of intersession network coding 

over pairs of unicast sessions. 

Consider N source-&-sink pairs and each source si would like to transmit at rate 

Ri packets per unit time to the corresponding sink di over a fractional directed graph. 

The rate vector (R1, · · ·  , RN ) is feasible if the original graph G can be viewed as the 

superposition of one graph G� and many PICCs such that (i) non-coded transmission 

is performed for every (si, di) pair in G�, (ii) pairwise linear network coding across 

(si, di) and  (sj, dj), i �= j is performed in each PICC individually, and (iii) the trans

mission rates (R1, · · ·  , RN ) can  be  supported.  Here,  Ri is the sum of the non-coding 

transmission rate between si and di through G� and all the rates supported in any 

PICC where intersession network coding is performed between session i and some 

other session j. 
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Based on this superposition principle the above construction describes the achiev

able rate region of Pairwise Intersession Network Coding (PINC). Fig.s 1.3(b) and 

1.4(b) compare the capacity regions obtained using the superposition approach with 

the non-coded capacity regions for both the butterfly and the grail. For these two 

topologies the capacity region obtained using the superposition approach is the ca

pacity region of the network. In the next section we will describe the corresponding 

PINC achievable rate region by a set of constraints. 

2.3 Problem Formulation 

Since in the PINC region, the rate Ri is expressed as the sum of rates with/without 

intersession network coding, two sets of parameters and variables will be used in 

our formulation. Some parameters and variables are for the non-coded transmission 

and the others capture the intersession network coding performed on the PICCs. 

For the non-coded transmission, we define the parameters Pi and Hi
k(e), and the 

variable xk
i . Let  Pi represent the collection of all paths between si and di. If link 

e is used by the k-th path between si and di, where  k ranges from 1 to |Pi|, then  

the indicator function Hi
k(e) = 1. Otherwise it is set to zero. xk

i represents the 

uncoded transmission rate supported through the k-th path between si and di in G� . 

For the coded transmission through the PICCs, we define the parameters P(i, j), 

and Ep (e), and the variable xpm . P(i, j) is the set of all tuples containing all possible ij ij 

choices of paths {Psi,di , Psj ,dj , Psj ,di }. Because each PICC contains two sets of 3 paths, 

therefore, any PICC between sessions i and j can be indexed by p and m jointly, where 

the p and m means that the p-th tuple in P(i, j) and  the  m-th tuple in P(j, i) are  

used to generate the PICC of interest. The rate supported for sessions i and j over 

that PICC is denoted by xpm . x i
k ,ij We also define −→ as a column vector containing x

∀ i, k and xpm , ∀ i, j, p, m. Therefore, the total supported rate for session i becomes ij 
LL|Pi| k 

L|P(i,j)| L|P(j,i)| pmRi = + =i x .k=1 xi j:j � p=1 m=1 ij 
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L 

Consider a specific link e. The capacity consumed by pure routing traffic is: 
LN L|Pi| Hk k 

i For the PICC between sessions i and j, indexed by p and m,i=1 k=1 (e)xi .
 
pm
the capacity consumed by the path selection P is Eij

p (e)xij , where  Eij
p (e) is defined 

in the following manner: 
⎧
 
⎪
 
⎪ 
⎪0 if no path in the p-th tuple in P(i, j)
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ uses link e 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨1 if 1 or 2 paths in the p-th tuple in 

Ep (e) =ij 
⎪ 
⎪ 
⎪ P(i, j) use link e 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪2 if 3 paths in the p-th tuple in P(i, j)
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩ use link e. 

This is because by Proposition 1.3.1, successful pairwise network coding requires that 

1{e∈Ps1,d1 } + 1{e∈Ps2,d2 } + 1{e∈Ps2,d1 } ≤ 2. If all three paths in P use link e, then  

the traffic along these three paths must use two parallel edges instead of a single 

one. Otherwise, 1{e∈Ps1,d1 } + 1{e∈Ps2,d2 } + 1{e∈Ps2,d1 } = 3, which violates the necessary 

condition for pairwise intersession network coding. The same argument holds for the 

traffic along the paths in Q, the  m-th tuple in P(j, i), for which the network coded 
pmtraffic consumes Eji

m(e)xij . From the above reasoning, the total capacity consumed 

by intersession coding for the PICC between sessions i and j, indexed by p and m 

is the maximum of the two which is formally expressed as max(Ep (e), Em(e))xpm .ij ji ij 

Summing over all pairs of sessions i � j, and all p-th and m-th tuples of P(i, j)= 

and P(j, i), the total capacity consumed by intersession network coding becomes 
L|P(i,j)| L|P(j,i)| pm 

(i,j):i<j p=1 m=1 max(Eij
p (e), Eji

m(e))xij . 

Let PICCij represent the collection of all PICCs between sessions i and j. For  

simplicity we use xl instead of xpm, where  l is the index indicating that the l-th PICC ij ij 

of PICC ij is used. Since any union of the p-tuple and the m-th tuple of P(i, j) and  

P(j, i) can  be  mapped  to  the  l-th PICC between i and j. We can also define 

1 
Hij

l (e) =  max(Eij
p (e), Eji

m(e)). (2.1) 
2 
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From the above discussion, the following constraints represent the PINC capacity 

region. 

N |Pi| |PICCij | 

Hk k H l l 
i (e)xi + 2  ij (e)xij ≤ Ce, ∀ e ∈ E (2.2) 

i=1 k=1 (i,j):i<j l=1 

x l = x l ∀ i < j, l.  (2.3) ij ji, 

Thus, our optimization problem becomes: 

N |Pi| |PICCij | 

max Ui( x k + x l ) (2.4) i ij−→ x ≥ 0 
i=1 k=1 j:i� l=1=j 

subject to −→ x satisfying (2.2) and (2.3).
 

By change of variable indices i and j we have
 

|PICCij | |PICCij | 

H l (e)x l = H l (e)x l ij ij ji ji. 
(i,j):i<j l=1 (i,j):j<i l=1 

Since xl = xl according to (2.3), the constraints in (2.2) can be rewritten as: ij ji 

N |Pi| |PICCij | 

Hi
k(e)xi

k + Hij
l (e)xij

l ≤ Ce, ∀ e ∈ E (2.5) 
i=1 k=1 � l=1(i,j):i=j 

For the following we focus on the rate control problem satisfying constraints (2.3) 

and (2.5) with the objective function being (2.4). 

2.4 The Rate Control Algorithm 

Note that even if every utility function Ui(·) is strictly concave, the objective 

function in (2.4) may not be strictly concave due to the presence of the linear terms 
L|Pi| L L|PICCij |k + xl Thus, a direct application of standard convex opk=1 xi � l=1 ij .j:i=j 

timization techniques might lead to multiple solutions, for which the output of an 

iterative method may oscillate. However, we can apply the “proximal method” de

scribed in [63] page 233 to ensure convergence. The idea behind the proximal method 

is to solve a series of problems, each of which has a strictly concave objective function. 
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The limit of the series approaches a single solution of the original problem. A detailed 

description of the proximal method is in [63]. To implement the proximal method, 

we now introduce auxiliary variables −→ = i , yij } with the same size of −→ x . The  y {yk l 

intermediate optimization problem of the proximal method becomes: 

N |Pi| |PICCij | 

max Ui( xi
k + xij

l ) (2.6) 
−→ x ≥ 0 

i=1 k=1 j:i� l=1=j 

N |Pi| |PICCij |
αi αik k l l− (x − yi )

2 − (xij − yij )
2 

2 i 2 
i=1 k=1 � l=1(i,j):i=j 

subject to −→ x satisfying (2.3) and (2.5), where αi is a positive constant. 

In the following, we focus on the dual of the intermediate maximization problem. 

Since the Slater condition holds (see for reference [65]), there is no duality gap between 

the primal and the dual problems. Hence, we can use the dual approach to solve the 

problem. 

Associate Lagrange multiplier λe with each link e, and  µl with the l-th PICC ij 

between sessions i and j. Also, let λ µ be two column vectors with elements 
−→ 

and −→ 

λe and µij
l , respectively. The Lagrange function of the above primal intermediate 

problem is: 

N |Pi| |PICCij | |PICCij | 

L(−→ 
−→ −→ −→ k l αi l l x ,  λ , µ ,  y ) =  Ui( xi + xij ) − (xij − yij )

2 

2 
i=1 k=1 j:i� l=1 � l=1=j (i,j):i=j 

N |Pi| |PICCij | |PICCij |
αi k k l l l l− 
2
(xi − yi )

2 − µij xij + µij xji 
i=1 k=1 (i,j):i<j l=1 (i,j):i<j l=1 

⎧ ⎫ 
|Pi| |PICCij |

⎨ N 
⎬ 

Hk k l+ λeCe − λe (e)x + Hij
l (e)xiji i 

⎩ ⎭ 
e e k=1 � l=1i=1 (i,j):i=j 

L L|PICCij | L L|PICCij |l l l lSince µij xji = µjixij , by a simple change of vari(i,j):i<j l=1 (i,j):j<i l=1 

ables the Lagrange function is separable and we can rewrite it as: 

N
−→ −→ 

L(−→ −→ −→ 
i(
−→ −→ −→ x ,  λ , µ ,  y ) = B x ,  λ , µ ,  y ) + λeCe. 

i=1 e 



� � � � 

� �	 � � 
� � 

� � �	 � � 
� � 

� � 

22 

Here, 

|Pi| |PICCij | |Pi| 

Bi(
−→ −→ −→ −→ k	 l αi k k x ,  λ , µ ,  y ) =Ui( xi + xij ) − 

2
(xi − yi )

2 

k=1 j:i� l=1 k=1=j 

|PICCij |	 |Pi|
αi l l )2 −	 Hk k− (x − y	 i (e)λe xiij ij2 

j:i� l=1	 k=1 e=j 

|PICCij |	 |PICCij | 

H l l	 l l−	 (e)λe x − µij ij ij xij 

j:i� l=1 j:i<j l=1=j e 

|PICCij | 

+ µ l l 
jixij . 

j:i>j l=1 

The objective function of the dual problem is 

−→	 −→−→ −→ L(−→ −→ −→D( λ , µ ,  y ) =  max x ,  λ , µ ,  y ),
−→ x ≥ 0 

and the dual problem is: 
−→ −→ −→ 

−→ 
min 

−→ 
D( λ , µ ,  y ). 

λ ≥ 0, µ 

The dual optimization problem can be solved using the gradient method. 

Based on the above discussion we have the following distributed rate control al

gorithm (Algorithm A). 

Algorithm A: 

•	 Initialization phase: Find all paths between all sources and destinations. This 

can be done using any routing protocol that finds multiple paths in a distributed 

way as in [83, 84]. After this, sources send control messages to every link e to 

set the values of Hi
k(e) and  Hij

l (e). Each link sets its corresponding λe(0) to 

zero, each destination di	 sets its corresponding µij
l (0) to zero, and each source 

k l k lsi chooses the values of yi (0), yij (0), xi (0) and xij (0) arbitrarily. 

•	 Iteration phase: At the t-th iteration: 

−→ −→ 
1.	 Fix λ (t, 0) = µ (t), and −→ x (t).µ (t, 0) = −→λ (t), −→	 x (t, 0) = −→ 

2.	 perform the following steps sequentially for κ = 0, . . . , K  − 1. 
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–	 Update the dual variables at each link e by: 

N |Pi| 

λe(t,κ + 1)  =  λe(t,κ ) +  βe Hi
k(e)xi

k(t,κ ) (2.7) 
i=1 k=1 

|PICCij | 
��+ 

+	 Hij
l (e)xij

l (t,κ ) − Ce . (2.8) 
(i,j):i=j l=1 

Here, [.]+ is a projection on [0, ∞ ) and  βe is a positive step size. Also, 
LN L|Pi|	 L L|PICCij |( Hk(e)xk(t,κ ) + 	  H l (e)xl (t,κ ) − Ce) is i=1 k=1 i i (i,j):i=j l=1 ij ij 

the queue length change at link e during the time from the κ-th to the 

(κ + 1)-th  step.  

–	 Set 

l	 l l l µij (t,κ + 1)  =  µij (t,κ ) +  βij
l (xij (t,κ ) − xji(t,κ )), ∀ i <  j.  (2.9) 

This can be implemented at each destination di, where  βij
l is a positive 

step size. 
−→ 

0 L(
−→ −→ −→ –	 Let −→ x ≥ x ,  µ (t,κ + 1), y (t)).x (t,κ + 1)  =  arg  max−→ λ (t,κ + 1), 

This can be computed in a distributed way at each source since the L 

function is separable. It is worth noting that computing −→ x (t,κ + 1)  
L 

needs the values of (i) e Hij
l (e)λe(t,κ + 1), ∀ i <  j, l,m, which 

can be computed along the paths, (ii) µl (t,κ + 1),  ∀ i <  j, l, and  ij 

(iii)µji
l (t,κ + 1),  ∀ i >  j, l. All of this information can be sent back to 

the source using an acknowledgment message as will be explained in 

Section 2.5.1. 

−→ −→ 
3. Let λ (t + 1)  = 	  µ (t + 1)  =  −→λ (t, K) and  −→ µ (t, K). Set 

−→ y (t + 1)  =  −→ x (t, K) 

and 
−→ x (t + 1)  =  −→ x (t, K). 
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For sufficiently large K and sufficiently large number of iterations, −→ x (t) converges  to  

∗the optimizing −→ for the original problem with the objective function in (2.4) and x 

the constraints (2.3) and (2.5). 

Proposition 2.4.1 As K −→ ∞ , with  the  step  sizes  (βe, βij
l ) satisfying  the  following:  

(L ·  maxe βe + 2  max{i,j,l} βij
l ) < 2 mini(αi), where  

|Pi| |PICCij | 
( N 

)

L = Hi
k(e) +  (Hij

l (e))2 , 
e i=1 k=1 (i,j):i=j l=1 

Algorithm A converges to the optimal solution of (2.4) subject to the constraints (2.3) 

and (2.5). 

The proof is provided in Appendix A.4. For the case when K is bounded away from 

infinity, the convergence of Algorithm A is verified by simulations. Similar proofs to 

those in [79] can be used to rigorously prove the convergence of Algorithm A with 

fixed K and with noisy and delayed measurements. This makes Algorithm A suitable 

for practical implementation. 

2.5 Implementation Details 

In this section, we discuss several practical issues that may impact the imple

mentation of our algorithm. In Section 2.5.1 we show how to collect the implicit 

costs needed for Algorithm A. The pairwise random coding scheme is introduced in 

Section 2.5.2, followed by a discussion of the transient behavior before Algorithm 

A converges in Section 2.5.3. A brief discussion of how to deal with non-concave 

objective functions for real-time traffic is in Section 2.5.4. 

2.5.1 Collecting implicit costs 

L 
Each source si needs to collect e λeHij

l (e), ∀ j � = i, l ∈ {1, . . . ,  |PICC l 
ij |} in order 

to compute the update rate xij
l . To do so, special control messages Sij

l (u, e) and  

Sij
l (e, v) are  used.  Sij

l (u, e) is the control message sent from node u to link e to collect 
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L 
e λeHij 

l (e). Similarly, Sij
l (e, v) is the control message sent from link e to node v to 

L L 
collect e λeHij

l (e). More explicitly, collecting e λeHij
l (e), ∀ j � = i is done according 

to the following. 

• Each source si sets Sij
l (si, e) =  0  to all of it’s outgoing links e that satisfy 

Hij
l (e) � = 0.  

• Assuming e = (u, v), then at link e, Sij
l (e, v) =  Sij

l (u, e) +  λeHij
l (e). 

• At every intermediate node v, let Inl (v) be the set of incoming links to node vij 

such that Hij
l (e) � = 0,  and  Outl (v) be the set of outgoing links from node v such ij 

that H l (e) = 0.  � Then  node  v arbitrarily chooses one ev ∈ Outl (v) and  sets  ij ij 
L 

Sij
l (v, ev) =  e∈Inl (v) Sij

l (e, v) and  Sij
l (v, e) = 0 for all links e ∈ Outlij (v)\ev. ij 

L 
The third step avoids overcounting the implicit costs. In the end, S l (e, di)+e∈Inl (di) ijij 
L L 

e∈Inl (dj ) 
Sij

l (e, dj ) =  λeHij
l (e). The first term of the left hand side can be ob

ij e 

tained at di while the second can be obtained at dj . Both of them can be sent back 
L 

using the acknowledge messages and si can obtain e λeHij
l (e). 

2.5.2 The Coding Scheme 

The optimization problem and the solution described thus far allocate rates at 

each link so that the utility function can be optimized subject to −→ being in the x 

PINC region. The next question is what is the network coding scheme that can 

achieve the optimal rate assignment? In this section, we propose the use of a scheme 

we call the pairwise random coding scheme. Suppose rate xl is sustained along the ij 

l-th PICC between sessions i and j. From a packet-by-packet perspective it means 

that every 1 unit time one packet will be sent from si to di and another packet will l
xij
 

be sent form sj to dj . Therefore, we can focus on coding over those two packets (every 

x
1 unit time) along the corresponding PICC. Let the integral graph G�� represent the l
 
ij
 

underlying PICC. Without loss of generality we assume that G�� is for the session 
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pair (s1, d1) and  (s2, d2). We further assume that the packets for the unicast sessions 

(s1,d1), (s2,d2) are  X, Y , respectively. 

One choice of the coding scheme that is widely used is the random linear coding 

scheme, as in [9]. Unfortunately directly using random network coding for pairwise 

intersession network coding without modification is infeasible. Take Fig. 2.1(a) for 

example, which is a typical choice of random network coding over GF(17) where the 

vector (θ1, θ2) at edge  e in the figure represents that the packet at link e contains 

θ1X + θ2Y . In this case d1 will not be able to decode both X and Y , as  random  

mixing is performed at v3 and d1 will receive 9X + 2Y . If both d1, d2 have min-cut 

max-flow values being ≥ 2, random network coding is sufficient for PINC, because 

both d1, d2 can decode both symbols. The infeasibility of random network coding is 

caused by the min-cut max-flow value from s1 and s2 to either d1 or d2 being 1. If the 

min-cut max-flow value from s1 and s2 to either d1 or d2 is 1, either the paths in the set 

Q1 = {Ps1,d1 , Ps2,d1 , Qs1,d1 } or the paths in the set Q2 = {Ps2,d2 , Qs1,d2 , Qs2,d2 } share 

the same edge in G�� based on the path selection in (1.1). For example, in Fig. 2.1(c) 

all paths in the set Q1 share edge (v3, v4). Motivated by this observation, the pairwise 

random coding scheme performs pure routing and random network coding on most 

part of the network and performs decoding on only two nodes. The pairwise random 

network coding is described as follows. 

Find the furthest edge e1 = (u1, v1) from  d1 such that (i) 1e1∈Ps1,d1 
+ 1e1∈Ps2,d1 

+ 

= 3. (ii) For all paths in Q1 the segments from v1 to d1 are edge disjoint 1e1∈Qs1,d1 

from the path Ps2,d2 . Also find the furthest edge e2 = (u2, v2) from  d2 such that (a) 

+1e1∈Qs1,d2 
+ 1e1∈Qs2,d2 

= 3. (b) For all paths in Q2 the segments from v2 to1e1∈Ps2,d2 

d2 are edge disjoint from the path Ps1,d1 . After that perform random linear network 

coding through all the edges of G�� except edges e1 and e2. Decode X on e1 and 

forward it to d1 through the segment of path Qs1,d1 that goes from u1 to d1, decode  

Y on e2 and forward it to d2 through the segment of path Ps2,d2 that goes from u2 to 

d2. For example, if we use pairwise random coding in Fig. 2.1(b), (v3, v4) will be the 

first edge that satisfies the conditions for e1 in the pairwise coding scheme as is clear 
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from Fig. 2.1(c). Therefore,  v3 will decode X instead of random mixing and forward 

it to d2. 

(1,0)(0,1) 

(13,6) (0,1) 

(15,3) 

(10,12) 

s1 s2 

v1 

v2 

v3 

v4 

d2 d1 

(3,12) 

(9,2)(16,13) 

(1,0)(0,1) 

(13,6) (0,1) 

(15,3) 

(10,12) 

s1 s2 

v1 

v2 

v3 

v4 

d2 d1 

(1,0) 

(1,0)(11,0) 
d1 

s1 s2 

d2 

s1 s2 

d2 d1 

(a) Random network (b) Pairwise random (c) The set Q1 (d) The set Q2 

coding coding 

Fig. 2.1. Applying both the random network coding and the pairwise 
random network coding to the grail structure. 

Proposition 2.5.1 Given that pairwise network coding is feasible on the directed 

acyclic PICC G�� as in Proposition 1.3.1, the probability that the pairwise random 

coding scheme is able to transmit X and Y successfully for sessions (s1, d1) and  

(s2, d2), is lower bounded by Pr(success) ≥ (1 − 2 
q )

|E��|. Here,  q is the field size and 

|E ��| is the number of edges in G�� . 

Proof Pr(success) is lower bounded by the probability that both u1 and u2 recover 

both X and Y successfully. Because (i) G�� is directed acyclic, (ii) the min-cut from 

s1 and s2 to u1 is ≥ 2, (iii) the min-cut from s1 and s2 to u2 is ≥ 2, we  have  three  

cases. Case 1: There is no path from v1 to u2 nor there is a path from v2 to u1. The  

problem is the same as multicasting both X and Y to both u1 and u2 when all the 

coding coefficients are random and the inequality holds. Case 2: There exists a path 

from v1 to u2. Here  we  construct  another  graph  F �� from G�� by removing all outgoing 
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edges from v1 and replacing them by new edges from s1 to the same vertices that the 

removed edges were going to. We send X through these edges and perform pairwise 

random coding through the rest of the edges in F �� . The probability that both u1 

and u2 recover both X and Y on G�� is the same of that on F ��, which satisfies the 

inequality. Case 3: There exists a path from v2 to u1. This case is symmetric to 

case 3 and so we remove the outgoing edges of v2 and replace them by new edges 

from s2 to show that the inequality holds. 

The pairwise random coding scheme can be implemented in a distributed way. Two 

trace messages can be sent back by the destinations d1 and d2 during the initialization 

phase to identify edges e1 and e2 to perform decoding. Furthermore, by Proposi

tion 2.5.1, we can see that the success probability of pairwise random coding scheme 

approaches one when the size of the finite field is sufficiently large. In practice [85] 

moderately-sized q = 216 or q = 28 is sufficient without incurring too much overhead 

(generally 3-6%). 

2.5.3 Coding Scheme when xl =� xl 
ij ji 

The above pairwise random coding scheme assumes that two sessions (si, di) and  

(sj, dj) share the same pairwise coding rates xl = xl , which is achieved after the ij ji

convergence of the Algorithm A (as proven in Proposition 2.4.1). However, during the 

transient time before convergence, we might have unequal cross-coding rates assigned 

by each individual session respectively. Furthermore, it is difficult to know when 

Algorithm A converges. To overcome these difficulties the coding scheme can be 

l l lmodified in the transient state when x � ji. The basic idea is if x (t) > xl
ji(t), we = xij ij

perform pairwise network coding at the smaller rate xji
l (t) and  send  uncoded  packets  

at rate (xl (t) − xl (t)). Therefore, dj can receive coded packets at rate xl while ij ji ji 

l l ldi can receive coded packets at rate x and uncoded packets at rate x − x (the ji ij ji 

l l ltotal rate is still xij). For example, assume that xij(t) =  3 and  xji(t) =  2,  then  

packets with sequence numbers 1,2,4,5,7,8,10,11 of si will be coded with packets with 
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sequence numbers 1,2,3,4,5,6,7,8 of sj . Packets with sequence numbers 3,6,9,12 of si 

will be forwarded as shown in Fig. 2.2(b). Take the well studied butterfly structure 

as an example, the assignment of the code on the edges of this PICC in the transient 

state is represented in Fig. 2.2(a). In the figure we assume that the rate is 3 for s1 

and 2 for s2. Therefore, in one time slot s1 will send X, Y , and  X3 and s2 will send 

Y1 and Y2. Packets  X and Y will be coded with packets Y1 and Y2, respectively, and 

packet X3 will be forwarded without coding. In this way d1 is able to receive at rate 

3 and  d2 is able to receive at rate 2. 

s2s1 

d1d2 

v1 

v2 

X1, X2 
X3 Y1, Y2 

Y1, Y2X1, X2 
X1 + Y1 

X2 + Y2 
X3 

X3 

X1 + Y1 X1 + Y1 
X2 + Y2X2 + Y2 

X3 

3 � 4 � 

6 �5 �4 �3 �2 �1 � 

2 � 9 �6 � 7 �5 � 8 �1 �From S �i � 

From S �j � 

X�1� 
X�9�X�8�

X�7�X�6�X�5�X�4�X�2� X�3� 

Y�5�Y�4�Y�2� Y�3�Y�1� Y�6� 

(a) (b) 

Fig. 2.2. (a) The assignment of the codes on the butterfly as an example 
of the l-th PICC between sessions i and j with unequal rates xij

l = 3  and  
xl = 2 during the transient state. (b) The upper sequence represents the ji 

sequence numbers of packets sent by si through the l-th PICC between 
sessions i and j, and the lower sequence represents the sequence numbers 
of packets sent by sj through the same PICC. If a packet in the upper 
sequence is to be coded with another one in the lower sequence, there is 
a link between them. Packets without links are those for which no coding 
is performed. 
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2.5.4 Dealing with non-concave objective functions for real-time traffic 

Our assumption here is that the utility function is concave which does not hold 

for transmission scenarios like real-time traffic. Real-time traffic can be modelled by 

sigmoidal functions. In this case Algorithms A can be modified as in [86] to achieve 

the optimal rate control when the number of sessions is sufficiently large. This is 

possible because of the path based formulation we use. 

2.6 Complexity Reduction 

The complexity of Algorithm A depends on the number of PICCs in the network. 

This is because for the l-th PICC between sessions i and j we assign two primal 

variables xl and xji
l . Also every link e has to maintain variables of the form H l (e)ij ij 

and each destination di has to maintain variables of the form µij
l . Furthermore,  to  

l 
L 

H lcompute xij in every update, source si has to collect e λe ij (e) as explained in 

Section 2.5.1. Using the approach in Section 2.3, the number of PICCs between 
( )

session i and j is |Pii|2 · |Pjj |2 · |Pij | · |Pji| , and so the total number of PICCs in 
L 

the network is |Pii|2 · |Pjj |2 · |Pij | · |Pji|. Here,  |Pij | represents the number of (i,j):i=j 

paths between si and dj. From the above discussion, reducing the number of PICCs 

in the network plays a major role in the practical implementation of the proposed 

algorithm. In this section we provide two approaches to reduce the complexity of 

Algorithm A. The first approach reduces the number of PICCs without sacrificing 

performance, while the second chooses paths and PICCs adaptively and may sacrifice 

performance. 

2.6.1 Excluding redundant PICCs in the initialization step 

By construction, the l-th PICC between sessions i and j satisfies condition 2 of 

Proposition 1.3.1 and supports the coded traffic rate xl In this section we provide ij . 

rules to see whether condition 1 of Proposition 1.3.1 is also satisfied on that PICC at 
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rate xl . If  so,  we  can  remove  xl and H l (e), ∀e from the optimization problem (2.4) ij ij ij 

and still achieve the same optimal solution. This is because the 2EDPs in that PICC 

can be used to send uncoded traffic which has already been characterized by xk
i , 

the uncoded data rate in (2.2). The rules also help detecting whether a given PICC 

contains redundant links such that there exists another PICC whose links are a proper 

subset of the links used by the given PICC. Since for these PICCs, we can use a strictly 

smaller part of the PICC while still providing the same throughput improvement, we 

term those PICCs redundant PICCs. The following rules remove redundant PICC and 

result in a tremendous reduction in the complexity of Algorithm A. In the following 

we assume the same simplification as in section 2.5.2 by considering the integral graph 

G�� for session pair (s1, d1), (s2, d2). To identify the PICCs that should be removed 

from the optimization problem, we have the following rules for directed acyclic PICCs: 

• Rule 1: For G�� , if neither Ps1,d1 = Qs1,d1 nor Ps2,d2 = Qs2,d2 , then  G�� is a 

redundant PICC. 

• Rule 2: For a given path P , let E(P ) be the set of edges in path P . If  the  two  
� � 

sets of edges E(Ps1,d1 ) E(Qs1,d1 ) and  E(Ps2,d2 ) E(Qs2,d2 ) are disjoint, then 

G�� is a redundant PICC. 

• Rule 3: If Hij
l (e) = 1 for some link e, then  the  l-th PICC between sessions i 

and j is redundant. 

If a PICC is classified as redundant by a rule, we say that the PICC is declared 

redundant by that rule. Otherwise, we say that the PICC passes that rule. 

Proposition 2.6.1 Rules 1-3 identify redundant PICCs. All redundant PICCs can 

be removed without sacrificing the achievable rate. 

Based on Proposition 2.6.1, we have the following reduced-complexity algorithm which
 

achieves the same capacity region as by Algorithm A.
 

(Algorithm B):
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1.	 Path Finding : Every source finds a set of paths to every destination, and an

nounces the sizes of these sets to the links in these paths and to other sources. 

Every PICC that passes Rule 1 will have a unique ID number which can be 

computed locally at every link in the network. 

2. Source si sends trace message through all paths Psidj . This message includes 

i, j, and  the  path  number.  

3.	 Link e sets up Hij
l (e) for all PICCs that pass Rule 1. 

4.	 The following steps are executed at every link e in parallel 

•	 If P l or Ql share link e with P l or Ql a notification message of si,di si,di sj ,dj sj ,dj 

type X is sent back to si, sj , with the ID number of the l-th PICC between 

sessions i and j. This means that the PICC passes Rule 2. Here, P l 
si,di 

represents the path from si to di in the set P in Proposition 1.3.1 for the 

l-th PICC between sessions i and j. Ql , Ql , and  P l are defined in si,di sj ,dj sj ,dj 

the same way. 

•	 If Hij
l (e) = 1, link e sends a notification message of type Y to si, sj , with 

the ID number of the l-th PICC between sessions i and j. This means the 

l-th PICC between i and j is redundant by Rule 3. 

5. Sources si and sj delete all PICC for which a notification message of type Y is 

received or no notification message of type X is received. 

6.	 Run Algorithm A on the non deleted PICCs. 

Steps (1)-(5) are initialization steps and executed only once. Also, they can be exe

cuted in a distributed manner. 

2.6.2 Adaptive Algorithm 

The reductions in Section 2.6.1 reduce the number of PICCs in the initialization 

step without sacrificing the performance by eliminating redundant PICCs. To further 
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reduce the complexity, we propose another type of reduction. As observed by our 

simulations the rates on some PICCs converge to zero very quickly (generally after 

only a few iterations), which means that network coding over those PICCs provides 

no positive gain when compared to the optimal rate-control solution. This may be 

due to that non-coded solution is sufficient for those PICCs because they satisfy both 

conditions of Proposition 1.3.1. It may also be because the links used by the PICCs 

can be used by more significant PICCs. We termed those PICCs as insignificant 

PICCs. The adaptive scheme we propose in this section works initially on a small 

number of PICCs. While the algorithm is run on these PICCs, insignificant PICCs 

among them will be deleted and new PICCs formed by the newly found paths will 

be added adaptively. This approach reduces the variable space of the optimization 

problem. Fig. 2.3 contains a detailed description of the above scheme with an adaptive 

path search mechanism. 

In the flow chart in Fig. 2.3, every source maintains a collection of paths Pfound  and 

every source pair maintains collections of PICCs PICCfound  and PICCactive. Every  

time new paths are found, the source puts them in Pfound  which is executed in parallel 

to the steps in Fig. 2.3. When PICCfound  becomes empty, all possible PICCs that 

can be formed by the paths in the Pfound  and have not been used by the algorithm 

yet, are put in PICCfound. Each pair of sessions i and j is assigned a value φij. 

The constant φij represents the maximum number of PICCs (for sessions i and j) 

that can be included in the maximization problem simultaneously. If the rate of a 

given PICC converges to zero, it is identified as an insignificant one. Convergence 

to zero is detected when the rate of the PICC goes below a threshold value. Every 

time insignificant PICCs (for sessions i and j) are removed from the optimization 

problem, the complexity of the algorithm reduces and we can afford to include one 

new PICC when solving the optimization problem. Therefore, si moves some of the 

PICCs (for sessions i and j) from  PICCfound  to PICCactive. This is done in a way 

such that the total number of PICCs for i and j in PICCactive does not exceed φij. 
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PICCf ound 

Add PICC formed by paths in Pfound  

Move one PICC from PICCfound  to PICCactive 

# of  PICC  in  PICCactive < φij 

and PICCfound  not empty 

Run Algorithm A on the PICCs in PICCactive 

and not marked “used” to PICCfound  

Mark these PICCs as used 

-

Initialize PICCfound  and 
PICCactive to empty 

NO 

YES 

YES 

NO 

NO 

� 

∃ PICC in PICCactive 

whose rate converges to zero 

YES 

Remove PICCs whose rate converges to zero from PICCactive 

Fig. 2.3. Flow chart for the adaptive algorithm. 
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For distributed implementation one source of each pair is assigned as a controller to 

ensure the consistency of PICCfound  and PICCactive for the two sources. 

2.7 Simulation Results 

The objectives of the simulations are to verify the convergence of Algorithms A and 

B, and to show the benefits of the proposed intersession network coding solution in 

terms of throughput, fairness, and its complexity advantage over existing intersession 

coding rate-control solutions. 

2.7.1 Convergence 

To study the convergence of Algorithms A and B, we run simulations on the so 

called grail topology in Fig. 1.4(a) with the utility function of each source si being 

log2(Ri). As is evident from the grail topology (Fig. 1.4(a)), there are three paths 

connecting (s2,d2), two paths connecting (s1,d2), two paths connecting (s2,d1), and 

one path connecting (s1,d1). Therefore, there are six different path collections P and 

six different path collections Q. Totally, there are 36 possible PICCs. We assign the 

initial rates of each PICC randomly, and vary βe, βij
l and the number of proximal 

iterations K to test the speed of convergence of Algorithm A. 

The optimal solution for the grail topology is to assign unit rate to the optimal 

PICC that uses the paths in (1.1), and zero rates to all of the other PICCs. These 

are the paths that satisfy condition 2 in Proposition 1.3.1 as explained in section 2.2. 

In Fig. 2.4 we show the rates for the optimal PICC with different step sizes. Every 

outer iteration contains K proximal iterations. Our algorithm converges even with a 

very small number of proximal iterations. As expected, increasing the step size up to 

a specific value will make the algorithm converge faster. A bigger topology in Fig. 3.8 

with 36 nodes and unit capacity links is used in our simulations. This topology has 

four unicast sessions. The convergence results for one of the optimal PICCs and one 
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of the insignificant PICCs in the topology in Fig. 3.8 are shown in Fig. 2.6. In Fig. 2.6, 

the rate of the insignificant PICC converges quickly to zero. 
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Fig. 2.4. Convergence results for s1 in the grail topology with different step 
sizes and K, the number of proximal iterations. Here, the rate corresponds 
to the optimal PICC. 

s1s2s3s4 

d1d2d3d4 

Fig. 2.5. Topology contains four source-sink pairs. 
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Fig. 2.6. Convergence results for the topology in Fig. 3.8 with β = 0.01, 
and the number of proximal iterations K = 5. We plot the convergence 
rate vs. iterations for the optimal PICC and one insignificant PICC. 

2.7.2 Gain and Fairness 

We compare Algorithm A with existing algorithms and quantify the benefits of 

intersession network coding over non-coded solutions. The simulation is conducted 

on a graph depicted in Fig. 3.8. For this topology, the butterfly-based work [82] and 

its distributed implementation in [41] and [40] cannot realize any throughput benefits 

of network coding and the performance of these algorithms is the same as that of 

non-coded solutions since there is no butterfly substructure in Fig. 3.8. It is worth 

noting that the distributed implementations of the butterfly-based region in [40, 41] 

focus on stabilizing the given traffic load instead of maximizing the utility function. 

We define the utility gain of pairwise intersession network coding PINC, UG  as 

Utility(PINC) − Utility(non-coded) 
UG  = . 

Utility(non-coded) 
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We denote the total throughput of the network when the optimal utility is achieved 
L	 L 

under the PINC and the non-coded solutions by i Ri(PINC) and i Ri(non-coded), 

respectively. The throughput gain, T G  is defined as 
L L 

i Ri(PINC) − i Ri(non-coded) 
T G = L	 . 

i Ri(non-coded) 

We evaluate the gains of Algorithm A using different utility functions presented in [68] 

and [69]. The first type of utility function is log2(δ + Ri), where	 δ is a constant in 
R1−σ 

the range [0, 1]. The second type of utility function is of the form	 1
i 
−σ , where σ is a 

constant in the range (0, 1). The results are shown in Figs. 2.7 and 2.8. Algorithm A 

provides strict performance gains over both non-coded and butterfly-based capacity 

region on this topology. Moreover, the largest throughput gain happens when fairness 

is the design criteria for the network, i.e, when δ is small and when σ is large. This 

is the same conclusion drawn from the capacity regions in Figs. 1.3(b) and 1.4(b). 

We also run simulations on the grid topology in Fig. 2.9. In this topology there 

are four paths between s1 and d1, four  paths  between  s2 and d2, and only one path 

between s3 and d3. Also, the path between s3 and d3 overlaps with all the other eight 

paths. Therefore, without network coding the rates of sessions 1 and 2 are about 3.7 

times the rate of session 3 when δ is small 0.1 (fairness is of high priority) as shown 

in Table B.1. Using network coding the rate ratio is reduced to about 2.2 times with 

a small decrease in rates R1 and R2 and a considerable increase in R3 from 0.29 to 

0.47. When δ is relatively large 0.6, the rate ratio without network coding is about 

21, because less emphasis is put on the smaller rate (rate of session 3 in this case.) 

Surprisingly with network coding the rate ratio is reduced to 4. This decrease in the 

ratio is due to that network coding resolves the bottlenecks. The fairness is thus 

improved as network coding removes the bottleneck for the smallest-rate session 3. 

2.7.3 Complexity 

In terms of computational complexity of Algorithm A and the existing butterfly-

based method [82], the path based Algorithm A solves a maximization problem of 
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Table 2.1 
Rate Ri assigned for each session in Fig. 2.9 using routing and intersession 

L 
network coding with the objective function i log2(δ + Ri) and different 
values of δ 

δ = 0.1 δ = 0.2 

R1 R2 R3 R1 R2 R3 

Non-coded 1.066 1.066 0.289 1.133 1.133 0.244 

PINC 1.033 1.033 0.467 1.067 1.0667 0.433 

δ = 0.4 δ = 0.6 

R1 R2 R3 R1 R2 R3 

Non-coded 1.266 1.266 0.155 1.399 1.399 0.066 

PINC 1.133 1.133 0.367 1.200 1.200 0.300 
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Fig. 2.7. Gain for the topology in Fig. 3.8 with the objective function 
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i log2(δ + Ri) and different values of δ. 
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Fig. 2.8. Gain for the topology in Fig. 3.8 with the objective function 
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i and different values of σ.i 1−σ 

2,328 variables and 36 constraints in a distributed way for the topology in Fig. 3.8, 

while the pattern-search-based optimization problem [82] has more than 31,104 vari
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s1 s2 s3 

d1 d2d3 

Fig. 2.9. Grid topology with three sessions 

ables and 31,104 constraints. Furthermore, if we use Algorithm B, we can reduce the 

number of variables to 22. Also, for the topology in Fig. 2.9 the number of variables 

using the pattern search algorithm is more than 17,000 and the number of constraints 

is more than 30,000. The number of variables is reduced to about 3000 using Algo

rithm A and to 300 using Algorithm B and the number of constraints is reduced to 35 

using both Algorithms A and B. In sum, the flexible choice of utility functions, decen

tralized rate control capability, superior performance in terms of utility/throughput 

gains, fairness and manageable complexity with an adaptive path search mechanism, 

demonstrate the efficacy of the path-based Algorithms A and B. 

2.8 Conclusion 

In this chapter we develop a distributed rate control algorithm for the multiple

unicast-sessions problem in wireline networks. The algorithm supports rates in the 
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PINC achievable rate region that allows for intersession network coding. We also pro

pose a distributed pairwise random coding scheme suitable for online implementation. 

Our algorithm improves both throughput and fairness among flows in information net

works. In the next chapter we generalize our result to wireless networks by developing 

a path based cross-layer algorithm. 
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3. CROSS-LAYER OPTIMIZATION FOR WIRELESS 

MULTIHOP NETWORKS WITH PAIRWISE 

INTERSESSION NETWORK CODING 

3.1 Main Contribution 

In this chapter we turn attention to wireless networks by extending our results in 

Chapter 2 to wireless networks with opportunistic scheduling capability. This means 

that the channel conditions are known prior to transmission. The extension is not 

straightforward due to the unique features of wireless networks as the broadcast na

ture, dependency among the links due to interference, and the unreliability of wireless 

links. The main contribution in this chapter is two-fold. (i) Based the characteriza

tion of PINC, a new path-based distributed, optimal, joint coding, scheduling, and 

rate-control scheme is devised, which uses only binary XOR operations, admits fully 

decoupled rate-control/scheduling, and achieves the optimal rates by identifying all 

pairwise coding opportunities that include the one-hop opportunity and the butterfly 

structure as special cases. (ii) Optimal scheduling is computationally expensive to 

achieve even in a pure non-coding paradigm, let alone with network coding. The 

PINC-based scheme demonstrates provably graceful throughput degradation for im

perfect scheduling [54] that facilitates the design tradeoff between the throughput 

optimality and computational complexity of different scheduling schemes. Our re

sults show that PINC improves the throughput of routing-based solutions regardless 

of whether perfect/imperfect scheduling is used. The striking resemblance between 

PINC and non-coding communications thus advocates extensions of non-coding wis

doms to their network coding counterpart. 

The remainder of this chapter is organized as follows. In Section 3.2 we review 

previous works to motivate the work in this chapter. Section 3.3 introduces the model 
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of wireless networks and provides concrete examples to illustrate the benefits of PINC 

in wireless networks. For streamlining the discussion, a new distributed PINC code 

design is relegated to Section 3.6, which is based on binary XOR operations. An 

optimal joint scheduling/rate-control scheme is provided in Section 3.4, which admits 

decoupled implementations. Section 3.5 studies the impact of imperfect scheduling 

on the proposed PINC solution for both deterministic and stochastic models of packet 

arrivals and departures. The throughput improvement of PINC and its performance 

under imperfect scheduling are verified by simulation in Section 3.7. Section 3.8 

concludes the chapter. 

3.2 Motivation 

Most of the intersession network coding research in wireless networks focuses on 

capitalizing two particular network substructures that admit the intersession coding 

benefits: the butterfly structure of any sizes [82] and the wireless one-hop coding 

opportunity (also known as the “wireless cross” topology) [26]. For the butterfly-

based approaches, the achievable rate region was studied in [82,87] and the associated 

back-pressure algorithm was studied in [40, 41]. The one-hop coding opportunities 

were first studied and exploited by the COPE protocol in [26]. The simple one-hop 

nature and the empirical success of COPE has since motivated numerous subsequent 

works. Some examples include the centralized computation of the achievable rates 

with scheduling [76], the energy efficient scheduling with opportunistic coding [27], 

the power and throughput tradeoff between multicasting and unicasting [77], and the 

maximum number of overhearing opportunities under practical wireless settings [88]. 

By taking advantage of both the local butterfly structure and the one-hop coding 

opportunities, a hybrid, practical scheme has been proposed to further improve the 

throughput of wireless multi-hop networks [44]. 

In COPE [26], coding can be performed among ≥ 2 sessions especially when 

opportunistic listening and coding is used. In its empirical study using 802.11 [26], 
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50% of the coding operations are performed over only two symbols. In a similar but 

energy-aware setting with scheduling [27], less than 1% coding operations is used to 

combine ≥ 3 symbols. The intuition behind is that coding more symbols together 

requires greater transmission power to broadcast the coded symbol to more receivers, 

which enhances interference and affects negatively the throughput of other traffic. As 

a result, in this chapter we consider PINC that allows network coding only between 

pairs of coexisting sessions. 

3.3 Preliminary Results 

3.3.1	 Analytical Framework for Wireless Multi-hop Networks — A Wire

less to Wireline Conversion 

An important feature of wireless multi-hop network is the broadcast nature of 

wireless media, which is termed the wireless multicast advantage (WMA). The WMA 

can be modelled as follows (see [17,89] for details). For each node u with k neighbors 

{v1, · · ·  , vk}, introduce 2k − 1 auxiliary nodes such that each auxiliary node corre

sponds to a non-empty element of the powerset of {v1, · · ·  , vk}. Add  2k − 1 directed 

edges connecting u and each of the auxiliary nodes. For each auxiliary node, add 

directed edges from the auxiliary node to each node in the corresponding subset of 

neighbors. Fig. 3.1 illustrates one such conversion for a node with three neighbors. 

In a wireless network, every time a packet is about to be sent, the sender u chooses 

the target receiver(s) of the packet, which is equivalent to choosing the correspond

ing auxiliary node/link for transmission. Therefore, designing a wireless transmission 

scheme that exploits the advantages of the WMA is equivalent to designing a good 

routing/scheduling algorithm on its wireline counterpart with the additional node-

exclusive scheduling constraints that auxiliary nodes corresponding to the same u can

not be active simultaneously. This framework takes into account the WMA and maps 

the wireless scheduling problem to a wireline scheduling problem while the underly
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ing interference model for the former is absorbed as scheduling constraints Θ for the 

latter problem, which will be clear in the later section. 

u 

v1 v2 v3 

u 

v1 v2 v3 

(b) The corresponding wireline counterpart. (a) Wireless broadcast advantage. 

Fig. 3.1. Modelling the wireless mulitcast advantage. 

3.3.2 Pairwise Intersession Network Coding for Wireless Networks 

Based on a necessary and sufficient condition, the six-path-based PICC cap

tures all pairwise coding opportunities once the aforementioned wireless to wireline 

conversion is properly exploited, which include the widely studied butterfly struc

ture [40, 41, 44, 82, 87] and the one-hop coding opportunities [26, 27, 76, 77, 88] as 

special cases when coding is permitted only between two sessions. 

Fig. 3.2(a) is a classic example of the one-hop intersession coding opportunity for 

wireless networks. Node A would like to send symbol X to node C while C intends 

to send Y to A. Fig. 3.2(a) depicts how to send two symbols in three time slots. 

The 1 and 2 in the small boxes indicate that A sends X to B in the first time slot 

while C sends Y to B in the second time slot. In the third time slot, B broadcasts 

coded symbol X + Y to A and C using the WMA. If we follow the wireless to wireline 

conversion, Fig. 3.2(a) is transformed to Fig. 3.2(b). By noticing the existence of the 

P and Q paths with controlled edge-overlap as in Figs. 3.2(c) and 3.2(d), this one-hop 

coding opportunity for coding across two sessions is captured by Proposition 1.3.1 and 

corresponds to an instance of PICC. Note that Fig. 3.2(b) also indicates that under 
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a node exclusive model at least three time slots are necessary as the three involved 

auxiliary nodes cannot be scheduled simultaneously. 

3 

A 

B 

C 

X + Y 

X + Y 

X 
Y 

1 

2 

A 

B 

C 

(a) (b) (c) (d) 

Fig. 3.2. A simple wireless one-hop coding opportunity with two sessions: 
X Y

Session 1: A −→ C; Session 2: C −→ A. (a) The slot-by-slot wireless 
transmission. (b) Wireless to wireline conversion. (c) Paths Ps1,d1 , Ps2,d2 , 
and Ps2,d1 . (d)  Paths  Qs2,d2 , Qs1,d1 , and  Qs1,d2 . 

Similarly Fig. 3.3(a) describes the classic wireless cross-flows in which symbols X 

and Y can be sent from A to E and from B to D in three time slots. D and E 

use the overheard packets X and Y for decoding. Figs. 3.3(b) to 3.3(d) depict the 

corresponding wireless to wireline conversion and show that the wireless cross flows 

can again be captured as a special instance PICC (which is actually a butterfly in the 

corresponding wireline network). Since the path-based characterization of PINC 

does not require that encoding and decoding happen at nodes that are 1-hop apart 

from each other, our formulation naturally takes into account coding opportunities 

over subgraphs of different “sizes,” e.g. 2-hop butterflies used in [44]. Capturing 

all pairwise coding opportunities, the PICCs also prompt new wireless intersession 

coding opportunities different from Figs. 3.2 and 3.3. For example, in Fig. 3.4(a), 

a new type of wireless cross flows is identified, for which A sends symbol X to F 

while C sends symbol Y to D. This example is not captured by the traditional one
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DE d2 d1 

s1 s2 s1 s2 

d2 d1 

(a) (b) (c) (d) 

X
Fig. 3.3. The wireless cross flows with two sessions: Session 1: A −→ E; 

Y
Session 2: B −→ D. (a) The slot-by-slot wireless transmission. (b) 
Wireless to wireline conversion. (c) Paths Ps1,d1 , Ps2,d2 , and  Ps2,d1 . (d)  
Paths Qs2,d2 , Qs1,d1 , and  Qs1,d2 . 

hop coding opportunity as node D does not overhear the original symbol X sent by 

A but overhears the reconstructed symbol X decoded and sent by E. Figs. 3.4(c) 

and 3.4(d) illustrate the corresponding P and Q paths, which verify that this new 

type of wireless cross flows is a special instance of PICC (that is different than the 

classic butterfly structure). By including the existing coding opportunities as special 

cases and capturing additional ones, our PICC-based solution will enhance further 

the achievable capacity region of intersession network coding. 

3.4 Optimal Joint Scheduling/Rate-Control With PINC 

Following Section 3.3.1, we model a wireless network by its wireline counterpart 

denoted by G = (V, E) where  V is the set of network nodes plus auxiliary nodes and 

E is the edge set. Consider slotted transmission, a scheduling policy Θ is a collection 

of active edges and the associated power levels. Under a given interference model, we 

use re 
Θ to denote the rate that can be supported on edge e under the scheduling policy 

Θ, and we often use rΘ for the collective rate vector. Let Θ denote the collection of 
Δ

all policies and let R = {rΘ : ∀ Θ ∈ Θ} denote the corresponding rates. Any rate 

vector r ∈ Co(R), the convex hull of R, can be achieved via time sharing. Without 
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Fig. 3.4. A new type of wireless cross flows with two sessions: Session 1: 
X Y

A −→ F ; Session 2: C −→ D. (a) The slot-by-slot wireless transmission. 
(b) Wireless to wireline conversion. (c) Paths Ps1,d1 , Ps2,d2 , and  Ps2,d1 . (d)  
Paths Qs2,d2 , Qs1,d1 , and  Qs1,d2 . 



� � �

�

�

�� �

�

�

50 

loss of generality, we assume the rate region is bounded. There are N coexisting 

unicast sessions using the network to send data from source si to destination di where 

i = 1, · · ·  , N . The utility function Ui(x) for each session is strictly concave and 

monotonically increasing, where x is the end-to-end data rate for the session. 

The utility optimization for multiple unicast sessions using PINC can be cast as 

follows. 

⎛ ⎞ 
N |Pi| |PICCij | 

max Ui ⎝ x k + x l ⎠ (3.1) i ij
0≤x≤MX ,r∈Co(R) 

i=1 k=1 j:j=i l=1 

N |Pi| |PICCij | 

k Hij
l (e)xij

l 

subject to Hi
k(e)xi + 2 

≤ re, ∀e ∈ E (3.2) 
i=1 k=1 (i,j):i=j l=1 

x l = x l ∀(i, j) :  i <  j, ∀l (3.3) ij ji, 

where Pi is the collection of paths from si to di along which packets will be routed 

without any coding operations and xk
i is the rate assigned for the k-th path. PICCij 

is the collection of PICCs between sessions i and j on which intersession network 

coding will be performed and xl is the packet rate of source si that will be network ij 

coded using the l-th PICC of PICCij . Without loss of generality, we further assume 

the indices of PICCij and of PICCji are consistent. Namely, for all l, the  l-th PICC 

of PICC ij is also the l-th PICC of PICCji. Since in PINC, packets from si and sj 

are coded bijectively with each other, the system requires the equal-rate constraint 

(3.3). Without loss of generality, we also assume that the rate vector x is bounded 

by a finitely large constant MX . 

In (3.2), Hi
k(e) is the indicator function whether the k-th path in Pi uses edge 

e. Hij
l (e) is the indicator function whether the l-th PICC in PICCij uses edge e. 

PINC ensures that the two packet flows (with rates xl and xl respectively) jointly ij ji 

use only the max rate max(H l (e)xl , H l (e)xl ) instead of the sum rate H l (e)xl 
ij ij ji ji ij ij + 

H l l 
ji(e)xji. By the fact that the indicator function is symmetric by definition, i.e. 

H l (e) =  H l (e), and by the equal-rate constraint in (3.3), the rate consumption ij ji
l lHl (e)x ji(e)xij ij +Hl 

jibecomes max(Hij
l (e)xl 

ji(e)x
l 

2 . For each edge e, summing over ij , H
l 

ji) =  
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rates consumed by multi-path routing and by multi-PICC network coding leads to 

the capacity constraint (3.2). The non-negative rate vector x, including all xk
i and 

xij
l , is the subject of rate control and the edge rate vector r ∈ Co(R) is the subject 

of optimal scheduling and time-sharing. One can use any path search algorithm to 

initialize the paths collection Pi. One advantage of considering PICC is that unlike the 

existing butterfly-search approach [40,41], the characterization of PICC is path-based 

rather than structure-based. One can thus use any path search algorithm to identify 

possible constituent paths and any six paths Ps1,d1 , Ps2,d2 , · · ·  , Qs1,d2 can serve as a 

PICC. It is worth pointing out that there is no need to strictly enforce Condition 2 

of Proposition 1.3.1 during implementation. More explicitly, since each edge e knows 

whether itself participates in a given path during the path-search phase, e also knows 

its edge-overlap in the given six paths. Consider an edge e that is a bottleneck, i.e. 

} + 1{e∈Ps2,d2 } + 1{e∈Ps2,d1 } = 3  (3.4) 1{e∈Ps1,d1 

or 1{e∈Qs1,d1 } + 1{e∈Qs2,d2 } + 1{e∈Qs1,d2 } = 3. 

We can still treat the given six paths as a PICC in our optimization problem (3.1) 

to (3.3) even though they do not satisfy Condition 2 of Proposition 1.3.1. To that end, 

we simply need to generalize the indicator function Hij
l (e) and let Hij

l (e) =  2  (rather  

than 1) for any bottleneck edge. In this way, we allocate double the capacity for 

such e (see (3.2)), which thus resolves the corresponding bottleneck caused by (3.4). 

With the use of a generalized indicator Hij
l (e), searching for PICCs is equivalent 

to searching for paths plus combining six paths as a group, which can be achieved 

by any path-search algorithms. Note that the larger the path collection Pi and the 

PICC collection PICC ij , the higher achievable throughput will be. Depending on 

the available resources, there thus exists a complexity-performance tradeoff on how 

exhaustive the path-search algorithm should be. 

The optimal solution of (3.1–3.3) can be achieved in a decoupled way by solving 

its dual problem via the sub-gradient method. 

Algorithm A: 
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Rate Update For each si, update its rate vector xi[t] =  {xk
i [t], x

l
ij [t] :  ∀k, j, l} for 

the t-th time slot by 

⎛ ⎞ 
|P(i)| |PICCij | 

xi[t] =  arg  max  ⎝ x k + x l ⎠Ui i ij
0≤xi≤MX 

k=1 j:j=i l=1 
⎛ ⎞ 

|Pi| |PICCij | H l l(e)xij ij− qe[t] ⎝ Hi
k(e)xi

k + ⎠ 
2 

e∈E k=1 j:j=i l=1 

|PICCij | 

l l l l− q [t]x − q [t]xij ij ji ij 

l=1 j:j>i j:j<i 
⎛ ⎞ 

|Pi| |PICCij | 
( )2 ( )2k k l l− αi ⎝ x − y + x − y ⎠ ,i i ij ij 

k=1 j:j=i l=1 

lwhere qe[t] and  qij [t] are dual variables at the t-th time slot, whose values are feedback 

k lto si. The  αi are small constants and yi = {yi , yij : ∀j, k, l} are auxiliary variables of 

the proximal method in order to eliminate oscillation [63]. Periodically, yi is set to 

xi[t] and the iteration continues using the new yi. 

Scheduling Update The network selects the optimal scheduling policy for the t-th 

time slot by 

r[t] =  arg  max  qe[t]re. (3.5) 
r∈R 

e∈E 

Queue-length Update Each link e updates its dual variable qe[t+ 1] according to 

the following equation. 

N |PICCij | 
� ( |Pi| l )�+ 

k Hij
l (e)xij [t] qe[t + 1]  =  qe[t] +  βe Hi

k(e)xi [t] +  − re[t] ,
2 

i=1 k=1 (i,j):i=j l=1 

Δ
where [·]+ = max(·, 0) is the projection operator and βe is a small step size for the 

sub-gradient method. 



�

53 

Balance Update Each destination d updates the dual variable ql [t + 1] for all i ij 

j > i. The dual variable ql accounts the difference between packet rates of sources iij 

and j that use the same PICC. 

( )

l l l l qij [t+ 1]  =  qij [t] +  βi xij [t] − xji[t] , ∀j : j > i, ∀l, (3.6) 

where βi is a small step size for the sub-gradient method.
 

Proximal Update Periodically, after every K time slots, set yi ← xi[t]. For
 

notational simplicity, after the proximal update, we reset the timer value t← 0.
 

The five different parts of Algorithm A are coupled implicitly via the queue lengths 

q and the balance information ql at the destinations. One important observation is e ij 

that with PINC, only the rate and the balance updates, performed at the sources si 

and destinations di, differ from its non-coding counterpart (cf. [90]). The scheduling 

and queue-length updates remain identical. The impact of PINC on rate-control and 

scheduling is thus minimal and confined only in sources and destinations. 

The complexity of Algorithm C depends mainly on the number of feedback mes

lsages qij [t] that each source receives at each time slot t, which is proportional to the 

number of PICCs in the network. Therefore, the number of queue-length exchange 
L 

messages is of the order O(N × |E| × (maxi |PICC ij |)). This is of similar j:i=j 

complexity to that of traditional multipath routing with scheduling and congestion 

control [90] typically proposed for static mesh networks without mobility. Distributed 

methods that reduce the number of need-to-be-considered PICCs can be found in Sec

tion 3.6 and in [91], which mitigate the complexity of this algorithm and is executed 

only once in the initialization phase. Another approach for complexity reduction is 

to include the paths that form PICCs one by one in an adaptive way such that the 

number of control messages exceed a threshold as explained in [92]. For comparison, 
( )

the number of multicast sessions used in the framework of [27] is N 
2 × |V |×(|V |−1), 

(

N )and 2 × |V | × (|V | − 1), and the number of queue-length exchange messages in the 

corresponding back-pressure algorithm is thus O(N2 × |V |3 × nbs), where  nbs is the 

average number of neighboring nodes for nodes in V . 
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3.4.1 Convergence Analysis of Algorithm A 

Proposition 3.4.1 Consider a decreasing non-negative sequence {βτ } such that 
L∞ L∞→ ∞ and (βτ )2 < ∞. If  in  the  beginning  of  each  proximal  iteration,  τ =1 βτ τ =1

we reset the step sizes βe = βi = βτ with τ = 1. As  the  inner  iteration  proceeds,  

we use βτ , τ = 1, · · ·  , K  as the step sizes in the K inner iterations. Then when the 

update period K of the proximal variable yi ← xi[t] is sufficiently large, Algorithm A 

converges to the optimal solution of (3.1–3.3), the optimal rate assignment of PINC. 

A sketch of the proof is as follows. The boundedness of the rate region Co(R) 

and rate-vector x implies the boundedness of the sub-gradient of the dual problem 

of (3.1–3.3). Proposition 8.2.6 in [93] then guarantees the convergence. A detailed 

proof is relegated to [94]. The convergence with K bounded away from infinity and 

βτ bounded away from zero is empirically verified during our simulations. 

3.4.2 Stability of Algorithm A 

Definition 3.4.1 A system  load  {wi : i = 1, · · ·  , N} (we sometimes use {wi}i as 

shorthand) can be stabilized by Algorithm A if there exists a non-negative vector w = 

{wi
k, wl i, j, k, l} such that ij : ∀

|Pi| |PICCij | 

wi = w k + w l i,i ij , ∀
k=1 j:j=i l=1 

and w l = w l (i, j) :  i <  j,  ∀l. (3.7) ij ji, ∀

Moreover, if we replace the “rate update” in Algorithm A by a fixed rate assignment 

x[t] =  w, then the dual variables qe[t] and ql [t] must stay bounded away from infinity ij 

when t tends to infinity. 
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Let Λ denote a set of system loads Λ= {{wi}i} such that for any {wi}i ∈ Λ, 

k lthere exists a rate vector r ∈ Co(R), a non-negative vector w = {wi , wij : ∀i, j, k, l} 

satisfying (3.7), and jointly w and r satisfy 

N |Pi| |PICCij | l 
k Hij

l (e)wijHi
k(e)wi + ≤ re, ∀e ∈ E. 

2 
i=1 k=1 (i,j):i=j l=1 

We then have the following stability result regarding the system load region Λ. 

Proposition 3.4.2 Any system load {wi}i that is in the interior of Λ can be stabilized 

by the optimal rate-control/scheduling in Algorithm A. 

(Proposition 3.4.2 can be regarded as a corollary of Proposition 3.5.1 that will be 

introduced shortly after.) 

3.5 Pairwise Intersession Network Coding with Imperfect Scheduling 

In general, it is computationally expensive to find the optimal scheduling decision 

satisfying (3.5) in Algorithm A. Depending on different interference models, finding 
L 

the optimal scheduling r that maximizes e qe[t]re is NP-hard in many cases and 

generally requires centralized implementation. In practice, we would often have to  

resort to imperfect scheduling schemes that select the rate vector r[t] that achieves γ 

fraction of the maximum value. Namely, an imperfect scheduling policy choose r[t] 

satisfying 

qe[t]re[t] ≥ γ max qe[t]re, (3.8) 
r 

e∈E e∈E 

where γ is a constant in [0, 1]. With imperfect scheduling (γ < 1), the tie between Al

gorithm A and the gradient method for the dual problem is severed and Algorithm A 

may not converge to any fixed-point solution. The following results show that even 

with imperfect scheduling, the proposed PINC scheme with cross-layer optimization 

Algorithm A still shows tractable performance in terms of the stability region. 

Proposition 3.5.1 Any system load {wi} that is in the interior of γΛ can be stabi

lized by Algorithm A with γ-imperfect scheduling. 
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The sketch of the proof is provided in Appendix B.1, which covers Proposition 3.4.2 

as a special case. 

3.5.1 Networks with Dynamic Arrivals and Departures 

In addition to networks with static arrivals and departures, we also consider 

the case of dynamic system loads with logarithmic utility functions. Consider N 

classes of users. For all i, users in class i have a common logarithmic utility function 

Ui(x) =  κi log(x) where  κi > 0 are predefined system parameters. All users in class 

i will send packets from si to di and will use the same routing paths in Pi and the 

same PICCs in PICCij for transmission. We also assume that users of class i arrive 

according to a Poisson process with rate λi and each user needs to send a file whose 

size is exponentially distributed with mean µ
1 
i 
. The system load of this network with 

{( ) } 
dynamic arrivals is then defined as µ

λi
i 

: ∀i . The dynamic nature of this setting 

prompts a slightly different definition of stability. 

{( ) } 
Definition 3.5.1 A system  load  µ

λi
i 

: ∀i can be stabilized by Algorithm A if the 

ldual variables qe[t] and qij [t] are bounded away from infinity for each iteration with 

probability one.1 

We then have the following stability result. 

Proposition 3.5.2 (Stability for Dynamic Systems) Consider logarithmic util

ity functions Ui(x) =  κi log(x). With  sufficiently  small  αi, βe, and  βi, any  system  
{( ) }

load µ
λi
i 

: ∀i that is in the interior of γΛ can be stabilized by Algorithm A with 

γ-imperfect scheduling. 

The proof of Proposition 3.5.2 is sketched in Appendix B.2. Proposition 3.5.2 

implies that although the instantaneous system load imposed on the network may 

well exceed the network capacity, as long as the average system load is within γ times 

1In contrast with Definition 3.4.1 where the rate update rule is modified for a static system load, 
for a dynamic system load, the optimal rate update is kept unchanged. Only the scheduling update 
will be changed to incorporate imperfect scheduling as in (3.8). 
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the capacity, the queue lengths of the network are bounded away from infinity and 

the system is stable. 

Proposition 3.5.2 shows that the graceful stability degradation that was previously 

known only for non-coding transmission (cf. [54]) also holds for PINC. Shifting from 

non-coding to network-coding solutions enhances the throughput without sacrificing 

the associated stability even with imperfect scheduling. 

3.5.2 A Generalized Node Exclusive Interference Model With the WMA 

The node exclusive model is a commonly used interference model for bluetooth 

or for FH-CDMA networks [95–97] that admits efficient and provably good approx

imation of the optimal scheduling policy. In the traditional node exclusive model 

(without taking advantages of the WMA), the data rate of each link is fixed at ce and 

each node can only send to or receive from one other node at any time. The objective 

function of optimal scheduling is thus equivalent to 

max qe[t]re = max  qe[t]ce1{e∈M} = max  qe[t]ce, (3.9) 
r M M 

e∈E e∈E e∈M 

where M is a matching of the underlying graph G. Finding the optimal scheduling 

of (3.9) thus becomes a maximum weighted matching problem. 

Nonetheless, when the WMA is taken into account, i.e. with the auxiliary nodes 

added for the broadcast nature of wireless transmission as discussed in Section 3.3.1, 

the objective function of scheduling becomes 

max qe[t]re = max  qe[t]ce1 , (3.10) 
r A {e is adjacent to some node in A}

e∈E e∈E 

where A is a set of active auxiliary nodes. Since each network node can only send 

to or receive from one auxiliary node (due to the node-exclusiveness assumption), we 

require that the node set A satisfies that any node in A does not share any common 

neighbor with any other node in A. 

Fig. 3.5(a) depicts a wireless network of six nodes. Nodes u1, u2, and  u3 would like 

to transmit and the transmission can be overheard by more than one receivers (see 
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Fig. 3.5(a)). Two possible scheduling policies (two different As) are illustrated. In 

Fig. 3.5(b), the wireline counterpart of Fig. 3.5(a), three auxiliary nodes are active and 

correspond to three unicast transmissions ((u1, v4), (u2, v6), and (u3, v5)) highlighted 

by thick edges. The other scheduling policy contains two active auxiliary nodes 

as in Fig. 3.5(c) that correspond to two broadcast transmissions ((u1, {v4, u3}) and  

(u2, {v5, v6})). 

u1 u2 

v4 u3 v5 v6 

(a) Consider the WMA of a 

wireless network. 

(b) Three active auxiliary (c) Two active auxiliary 

nodes corresponding to nodes corresponding to two 

three unicast transmis- broadcast transmission. 

sions. 

Fig. 3.5. Illustration of the node exclusive model when the WMA is taken 
into consideration. 

It can be shown that maximizing (3.10) is equivalent to solving a maximum 

weighted hypergraph matching (MWHM) problem. In [25] a greedy maximal hy

pergraph matching (GMHM) is proposed as an approximation of the MWHM. More 

explicitly, the network first selects an auxiliary node va that maximizes 
L 

qe[t]ce and includes va as part of the scheduling policy A. Remove  e is adjacent to va 

va and its neighbors and then restart this greedy selection of auxiliary node until 

a maximal scheduling policy A is reached. In this way, GMHM guarantees to find 

a 1 -approximation of the MWHM, where nbs(va) is the set of neighbors maxva |nbs(va)| 

around va. We can further sharpen the approximation ratio as follows. 

Proposition 3.5.3 For any given network, the GMHM is a 1
5 -approximation algo

rithm and can thus achieve at least 1
5 of the stability  region  Λ when used as an im

perfect scheduling policy for the node-exclusive model. 

u1 u2 

u3v4 v5 v6 

u1 u2 

v4 u3 v5 v6 
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Proof Since each PICC consists of six paths, any auxiliary node participating in a 

PICC has at most six outgoing branches plus one incoming edge. As a result, during 

the wireless to wireline conversion, there is no need to include auxiliary nodes of 

> (6 + 1) neighbors as the neighbors of those nodes will not fully participate in a 

1
7PICC. The above reasoning shows that the GMHM can be made a -approximation 

by eliminating the auxiliary nodes with > 7 neighbors. By further taking into account 

the edge-overlap conditions in Proposition 1.3.1, it can be shown that each auxiliary 

node needs to have at most four outgoing branches (two for the P paths and two for 

1
5the Q paths). Therefore, the approximation ratio can be improved to by eliminating 

the auxiliary nodes with > (4 + 1) neighbors. The proof is complete. 

1
5It is worth mentioning that the -approximation is a lower bound of the perfor

mance of the GMHM. In our numerical study, GMHM has almost identical perfor

mance to the optimal MWHM solution. Other studies on the performance of greedy 

maximal matching for non-coding networks can be found in [98, 99]. 

3.6 Distributed Code Design for PINC 

The rate control and link scheduling algorithms described thus far allocate optimal 

rates at each link so that the utility function can be maximized. The next question 

is what is the network coding scheme that can achieve the optimal rate assignment? 

For a given PICC, we proposed a coding scheme based on identifying distributedly 

special edges in the PICC in [92]. Specifically, carefully chosen decoding operations 

are performed on special decoding edges, while random network coding is performed 

on all other edges for the sake of scalability and distributiveness. In this chapter 

we present a new, more efficient approach in which each edge e decides the coding 

operation based on the subset of the six paths of the given PICC that use e. Since 

each edge naturally knows whether itself participates in a given route/path or not (a 

byproduct of the initial path-search phase of Algorithm C), the corresponding coding 

operation can be decided locally without knowing the entire topology of the network. 
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Moreover, this scheme only uses binary XOR operations, which has computational 

advantages over schemes based on a large finite field GF(28) or  GF(216). The new 

binary scheme achieves the same optimal throughput as that of [91] while the later 

requires the use of a larger field. 

Practical network coding [85] uses the concept of “generations” that synchronize 

the network operations as coding is performed only within the same generation. With 

appropriate route/path selection and a carefully-designed generation-flushing policy, 

packets seldom cycle in the network. For the following, we thus restrict our attention 

to acyclic networks. In [91], it is observed that some PICCs have negligible impact 

on scheduling/rate-control and can be absorbed by a pair of edge-disjoint paths or by 

other PICCs. Fig. 3.6(a) represents one such insignificant PICC. The P and Q paths 

in Figs. 3.6(b) and 3.6(c) verify that Fig. 3.6(a) is indeed a PICC. However, within 

Fig. 3.6(a), there exists a pair of edge-disjoint paths Ps1,d1 and Ps2,d2 as illustrated 

in Fig. 3.6(d). One can send symbols X and Y along the edge-disjoint paths with

out using up all available bandwidth in the given PICC. From the throughput/cost 

perspective, the pair of edge-disjoint paths (Fig. 3.6(d)) dominates the given PICC 

(Fig. 3.6(a)), the latter of which is thus insignificant in the rate-control/scheduling 

analysis and can be removed from consideration without affecting the optimality of 

the solution. Let (s1, d1) and  (s2, d2) denote the pair of unicast sessions of interest. 

s1 s2 

d2 d1 d2 d1 

s1 s2 

d2 d1 

s 

d2 d1 

Disjoint path1 

Disjoint path 2 

(a) An Insignificant (b) Paths Ps1 ,d1 , (c) Paths Qs2 ,d2 , (d) The embedded edge-disjoint 

PICC. Ps2 ,d2 , and  Ps2 ,d1 . Qs1,d1 , and  Qs1,dd . paths. 

Fig. 3.6. Illustration of an insignificant PICC that contains a pair of 
edge-disjoint paths as a strict subgraph. 
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For acyclic networks, the following four rules2 identify the insignificant PICCs (each 

consisting of three P paths and three Q paths). 

• Rule 1: If Ps2,d1 and Qs1,d2 meet at any edge, the PICC is insignificant. 

Depending on whether Ps1,d1 and Qs1,d1 are the same path (and symmetrically whether 

Ps2,d2 and Qs2,d2 are the same path), we have the following three more rules. 

•	 Rule 2.1: Suppose Ps1,d1 = Qs1,d1 and Ps2,d2 �= Qs2,d2 . If there exists an edge e 

shared by all three paths Ps1,d1 , Ps2,d2 , and  Qs2,d2 , then the PICC is insignificant. 

•	 Rule 2.2: Suppose Ps1,d1 �= Qs1,d1 and Ps2,d2 = Qs2,d2 . If there exists an edge e 

shared by all three paths Qs2,d2 , Qs1,d1 , and  Ps1,d1 , then the PICC is insignificant. 

•	 Rule 2.3: Suppose Ps1,d1 �= Qs1,d1 and Ps2,d2 �= Qs2,d2 . Declare the PICC as 

insignificant. 

Rules 1 to 2.3 can be implemented distributedly in the initialization phase by 

sending tokens along the paths to explore whether the paths share a given edge. For 

example, the insignificant PICC in Fig. 3.6(a) can be identified by Rule 1 and removed 

from consideration. Our new XOR-based scheme is then performed on the remaining 

PICCs that are not removed by the above four rules. The detailed description of the 

code construction is as follows. 

The source: Source s1 sends its own symbol X along Ps1,d1 , Qs1,d1 , and  Qs1,d2 , 

and s2 sends its own symbol Y along Ps2,d2 , Qs2,d2 , and  Ps2,d1 . 

Each intermediate edge: At each edge e that is the outgoing edge of an inter

mediate network node v � Consider the following cases. = s1, s2. 

•	 Case 1: Ps1,d1 = Qs1,d1 and Ps2,d2 �= Qs2,d2 . Consider four sub-cases. Case 1.1: 

If all incoming edges of v carry the same symbol, then forward that symbol. 

Case 1.2: If Case 1.1 is not satisfied and e /∈ Ps1,d1 , then  send  Y through e. 

2A detailed proof of the correctness of these four rules and the corresponding distributed implemen
tation can be found in [94]. 
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M

v 

1 = M2 

v

M1 �= M2	 M1 �= M2 

Me ←− Y e /∈ Ps1,d1
Me ←− M1 = M2 Me ←− Y e /∈ Ps1,d1 e /∈ Ps2,d2 

v 

(a) Case 1.1	 (b) Case 1.2 (c) Case 1.3 

v 

M1 �= M2 

e ∈ Ps1,d1 
e ∈ Ps2,d2 

Me ←− X + Y 

(d) Case 1.4 

Fig. 3.7. Cases 1.1 to 1.4 of the new distributed code construction using 
only the binary XOR operation. M1 and M2 are the coded symbols along 
the two incoming edges of v. Me is the outgoing coded symbol along edge 
e. 

Case 1.3: If Case 1.1 is not satisfied, e ∈ Ps1,d1 , and  e /∈ Ps2,d2 , then  send  X 

through e. case 1.4: If Case 1.1 is not satisfied, e ∈ Ps1,d1 , and  e ∈ Ps2,d2 , then  

send the binary XORed symbol X + Y through e. 

•	 Case 2: Ps1,d1 � s1,d1 and Ps2,d2 = Qs2,d2 .= Q This is a symmetric case of Case 1. 

We perform the symmetric operations of Case 1 by swapping the roles of the first 

unicast session (s1, d1), X, and  P with the roles of the second session (s2, d2), 

Q and Y . 

•	 Case 3: Ps1,d1 = Qs1,d1 and Ps2,d2 = Qs2,d2 . Perform the same operations as in 

Cases 1.1 to 1.4. 

Fig. 4.1 illustrates Cases 1.1 to 1.4 for an outgoing edge e of an intermediate node v. 
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Proposition 3.6.1 For an acyclic network, consider a PICC that is not removed by 

Rules 1 to 2.3. Then destination d1 (resp. d2) is  able  to recover  the designated  symbol  

X (resp. Y ) using the above locally computed binary coding scheme. 

The proof is relegated to Appendix B.3. 

3.7 Numerical Experiments 

We perform simulations under the linear signal-to-noise-&-interference-ratio 

(SINR) model. The objective is to compare the non-coded and the network cod

ing solutions with both perfect and imperfect scheduling. To implement imperfect 

˜scheduling, we maintain a smaller pool imperfect scheduling policy Θ ! Θ and 

˜choose the imperfect scheduling from the smaller policy pool Θ in a similar way 

˜as in [54] according to the following. Every scheduling policy θ ∈ Θ is associated 

with a rate vector re 
θ Θ is associated with a set of . Further  assume  that  every  θ ∈ ˜

queue lengths {qe 
θ : ∀e} such that the policy θ is a γθ-approximation policy satisfying 

L L

θ θ θr ≥ γθ maxr re. If the following condition holds in the t-th time slot e∈E qe e e∈E qe 

L 
θ θrθ θ]+ max e∈E qe e max qe[t]r ≥ γ min [qe[t] − q r + ,e e e 

θ∈ ̃ θ∈ ̃ γθΘ Θ 
e∈E e∈E 

max for some γ, where  re is the maximum possible rate along edge e, then policy θa 
∗ that 

maximizes the left-hand side is a γ-approximation of the optimal scheduling policy 

with weights qe[t] on each edge. We can use such a scheduling policy θa 
∗ in the reduced 

policy pool Θ̃ without the computationally expensive step of computing the optimal 

scheduling policy θ∗ in the right-hand side of (3.8). If no such θa 
∗ exists, we compute 

directly one θ[t] satisfying (3.8) and store this new θ[t] and the associated qe[t] in the 

small pool Θ̃. 

We assume that the total power assigned to node u at any time slot is bounded 

by Pu,max. To achieve the optimal throughput, in each time slot, each node u should 

either transmit at full power Pu,max or remain silent. For any unicast transmission 
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from u to v, the  data  rate  ru,v is assumed to be proportional to the SINR level3 at 

the receiver v, which is formally expressed as. 

G(u, v)1{(u,v) is  activated}Pu,max 
ruv = W L ,

N0 + G(w, v)1{node w is sending}Pw,max w:w=u 

where N0 is the background noise, W is the bandwidth of the system, and G(u, v) is 

the path gain between nodes u and v which is set to (dist(u, v))−4, where dist(u, v) 

is the Euclidean distance between nodes u and v. With network coding, the data 

rate of the broadcast link with multiple receivers is proportional to the minimum of 

the SINR levels at those receivers. More precisely, if node u is broadcasting to nodes 

v1, · · ·  , vn, the data rate of this broadcast link, ru,{v1,...,vn}, becomes  

G(u, vi)1{(u,{v1,...,vn}) is  activated}Pu,max 
ru,{v1,...,vn} = W min L . 

{i=1,...,n} N0 + G(w, vi)1{w is sending}Pw,max w:w=u 

We run the simulations on the topology in Fig. 3.8. The X- and Y-coordinates of the 

node location Class Source Destination 

1 

2 

3 

4 

5 

6 

1 (0,0) 

2 (0,2) 

3 (1,1) 

4 (2.2,0) 

5 (2.5,2) 

6 (3.5,1) 

1 1 6 

2 2 6 

3 4 5 

Fig. 3.8. The network topology, node locations, and three classes of uni
cast traffic used in the simulations. 

six network nodes are specified in the figure. We simulate three classes of users and 

each class is allowed to use multi-path or multi-PICC communications. The source 

and destination pair of each class is also shown in the figure. A logarithmic utility 

function U(·) = log(·) is assumed for all classes. In our simulation, we use W = 10,  

N0 = 1,  Pu,max = 1,  ∀u, the proximal coefficient αi = 0.01, the step sizes βe = 0.01, ∀e, 

3The linear SINR model can be viewed as a first order approximation of the information-theoretic 
W log(1 + SINR) model. 
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βi = 0.01, ∀i, and 10 inner iterations within each proximal iteration K = 10. Fig. 3.9 

represents the results for the case of deterministic arrival and departure. Using the 

non-coded solution with perfect scheduling the rates of classes 1 and 2 converge to 

about 0.377 and the rate of class 3 converges to 0.325. When imperfect scheduling 

is used without network coding and γ = 0.6 the rates of classes 1 and 2 remain the 

same as the perfect scheduling case and the rate of class 3 is reduced by only 0.02. 

The number of time slots in which new schedules need to be computed is 18 out of 

totally 5000 time slots (500 proximal iterations). When we further reduce γ to 13 , the  

rate of class 1 is 4.0, the rate of class 2 is 3.5, and the rate of class 3 is 3.2 which 

shows a deviation from the fairness point. The number of time slots in which new 

schedules need to be computed is 7 out of totally 5000 time slots. 
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Fig. 3.9. The convergence results for the case of deterministic arrival with 
the linear SINR-based interference model. 
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0.1 

1
3The PINC solution with both the perfect and imperfect scheduling with γ = 0.6,

achieves strict fairness as the data rates of all classes converge to 4 as shown in 

Fig. 3.9. Using imperfect scheduling from a reduced pool of scheduling policies, the 

new schedules need to be computed in only 21 time slots when γ = 0.6 and in only 13 

1
3time slots when γ =
 .
 With network coding, the computationally efficient imperfect 

scheduling method outperforms the non-coding solution with optimal scheduling from 

both the throughput and fairness perspectives. To show that the performance gain of 

PINC is universal for other channel models, we have also simulated the same topology 

with a W log(1 + SINR) model. Similar performance gain is observed in Fig. 3.10. 
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Fig. 3.10. The convergence results for the case of deterministic arrival 
with the W log(1 + SINR)-based interference model. 

For the dynamic arrival and departure, we simulated the arrival of files for each 

class whose size is exponentially distributed with average size ( µ 
1 = 100). Each file 
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arrives according to a Poisson process with rate λ. We  vary  the  rate  λ and report in 

Fig. 3.11 the average number of users in the system with respect to the system load 
Δ 

per user ρ = µ 
λ . As shown in the figure network coding with imperfect scheduling 

outperforms the non-coded solution with perfect scheduling by a significant 20%. 

30 
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Non−coding with Perfect Scheduling 
Non−coding with Imperfect Scheduling g = 0.8 
Non−coding with Imperfect Scheduling g = 0.5 
PINC with Perfect Scheduling 
PINC with Imperfect Scheduling g = 0.8 
PINC with Imperfect Scheduling g = 0.5 

Fig. 3.11. The number of users in the system versus the system load for 
the case of dynamic arrival with the linear SINR-based interference model. 

3.8 Conclusion 

For intersession network coding, coding across many sessions requires greater 

transmission power to broadcast the coded symbol to many receiver, which results in 

higher interference in the wireless multi-hop network. In both empirical and analyti

cal studies, it has been shown that for an interference/energy aware network coding 

scheme, most of the coding opportunities involve only two sessions, referred herein as 

pairwise intersession network coding (PINC). 
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In this chapter, we have proposed a jointly optimal coding, scheduling, and rate-

control scheme for wireless multi-hop networks based on the recent theoretical find

ing of PINC. The corresponding coding, scheduling, and rate-control components 

are decoupled by the use of queue lengths and the introduction of rate-balance dual 

variables. Our results have proven that in a wireless multi-hop network, the through

put advantage of PINC can be achieved without sacrificing the stability conditions. 

Moreover, PINC has minimal impact on the optimal rate-control/scheduling as the 

only new component necessary for scheduling PINC traffic is the balance update per

formed at the receivers. Following this new formulation, we have also studied the 

impact of γ-imperfect scheduling on PINC-based rate-control algorithm and for the 

corresponding distributed greedy hypergraph matching algorithm. 

Numerical experiments have also been conducted for the linear and the logarithmic 

signal-to-noise/interference-ratio (SINR) models, which shows that the achievable 

rates using PINC and efficient imperfect scheduling outperforms that of non-coding 

transmission with computationally expensive optimal scheduling. 

The approach proposed in this chapter is a path-based approach which converges 

faster than the back-pressure approach. However, the path based approach in this 

chapter does not allow the decoded packet to be reencoded again. In the next chapter 

we study the back-pressure approach that provides a potentially bigger capacity region 

by allowing the decoded packet to be reencoded again. The back-pressure approach 

can be used for both rate control and energy minimization. 
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4. BACK-PRESSURE ALGORITHM FOR FULL 

UTILIZATION OF WIRELESS MULTIHOP NETWORKS 

WITH PAIRWISE INTERSESSION NETWORK CODING 

4.1 Introduction and related work 

In this chapter we develop a back-pressure algorithm for pairwise intersession net

work coding. In the back-pressure approach, paths are not fixed unlike the path-based 

approach in Chapter 3. This feature of the back-pressure approach allows finding all 

of the PINC opportunities, reencoding the decoded packets again, and reducing the 

complexity of implementing PINC in wireless networks. Our main contributions in 

this chapter that distinguish it from previous chapters are as follows: 

•	 Development of an optimization framework that takes into account the trans

mission power, broadcast nature of wireless links, link scheduling, and the pair-

wise intersession network coding possibilities. Existing works either consider 

the non-network coding solutions [54,60,61,100], use intersession network cod

ing but limit the encoding and decoding nodes to be neighbors as in [26,27,76], 

consider specific structures for intersession network coding opportunities as the 

butterfly in [40, 41, 44], or do not allow decoded packets to be reencoded again 

as in Chapter 3. In contrast our framework considers all pairwise intersession 

network coding opportunities within κ-hops, where κ is an arbitrary integer 

balancing the tradeoff between complexity and the achievable capacity. Our 

approach also allows the decoded packet to be reencoded again. 

•	 The framework allows us to develop cross-layer algorithms for both energy min

imization and rate control and study their performance loss under suboptimal 

but distributed scheduling algorithms. Our performance loss results are tighter 
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than these in Chapter 3, because we carefully characterize the maximum broad

cast link size with pairwise intersession network coding. Characterizing the 

maximum broadcast link size also simplifies the distributed implementation of 

the proposed algorithms and reduces their complexity. 

The rest of the chapter is organized as follows. In Section 3.3 we review the char

acterization and implementation of pairwise intersession network coding in wireline 

as well as wireless networks. In Section 4.2 we provide a new result regarding the 

broadcast link size for pairwise intersession network coding in wireless networks. The 

formulation of our optimization framework is in Section 4.3 followed by distributed 

algorithms for energy minimization and rate control in Sections 4.4 and 4.5, respec

tively. Section 4.6 is devoted to practical implementation details of our algorithms. 

We present our simulation results in Section 4.7 and conclude the chapter in Sec

tion 4.8. 

4.2 Broadcast Link size with PINC 

To efficiently apply the WMA in Section 3.3.1 to PINC, we need to know the 

largest necessary broadcast link size that can provide strict throughput benefits over 

non-coded solutions when PINC is used. By excluding those broadcast links with 

size greater than the largest necessary, an efficient scheduling algorithm can be de

signed with provable approximation constant. Using the approach in Section 3.3.1, 

the number of added auxiliary nodes for node v grows exponentially in nb(v), where 

nb(v) is the number of neighbors for node v. By excluding the unnecessary broadcast 

links, the number of auxiliary nodes for node v grows in polynomial time with re

spect to nb(v) (actually (nb(v))2 as will be clear shortly after) which greatly reduces 

the complexity in dense mesh networks. Excluding unnecessary broadcast links also 

simplifies the formulation and the distributed algorithms in Sections 4.3, 4.4, and 4.5. 

The following proposition characterizes unnecessary broadcast links. 
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u2 u1 

(a) Case 1 

s1s2 
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u � 1 

u ∗ 
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u2 u1 
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u � 1u � 2 

u ∗ 
1u ∗ 
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u � 1u � 2 

u ∗∗ 
1 

u2 u1 

d2 d1 

u ∗ 
1u ∗ 

2 

s1s2 

d2 d1d2 d1 

(b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5 

Fig. 4.1. Graphical representation of the different cases in the proof of 
Proposition 4.2.1 
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Proposition 4.2.1 With the use of the WMA and PINC, ignoring broadcast links 

with more than two receivers does not affect the overall performance of any scheduling 

algorithm. 

We have the following corollary for the GMHM discussed in Chapter 3. 

Corollary 4.2.1 With PINC, GMHM guarantees to find a 3
1 -approximation of the 

MWHM 

Proof This proposition follows for acyclic networks due to Theorem 3 in [78]. 

In [66] it has been shown that if a cyclic network contains no 2EDPs connecting 

(s1, d1) and  (s2, d2) and satisfies the necessary and sufficient conditions for the exis

tence of a PINC solution as in Theorem 1.3.1, then it must satisfy one of five cases. 

We will show that the Proposition holds in all of these cases. In all of these cases 

we will show that there exists two sets of path segments, and the path segments in 

each set are edge disjoint. Moreover, the sets of path segments satisfy that if we 

remove all edges in the network except those belonging to these two sets, condition 2 

in Theorem 1.3.1 holds. Therefore, for any given edge e, at  most  two  path  segments  

use e (one from each set of path segments). Therefore, the number of links branching 

from a single edge or splitting after sharing an edge is at most two and there is thus 

no need to consider broadcast links with more than two receivers. 

Before considering the cases, we use the following notations and definitions: 

•	 We assume that the two unicast sessions are (s1, d1) and  (s2, d2). 

•	 Critical 1-edge cut: For any node u in a cyclic network, the critical 1-edge cut 

e ∗ is a 1-edge cut separating {s1, s2} and u that is the farthest from u. Namely, 

any path from {s1, s2} to u will meet e ∗ before meeting any other 1-edge cut. 

If there exists 1-edge cut separating {s1, s2} and u, then  e ∗ always exists and is 

unique. A detailed discussion is in [66]. 

•	 We assume that e1 = (u1, v1) (e2 = (u2, v2)) is the critical 1-edge cut separating 

{s1, s2} and d1 (d2). 
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•	 G\e: Denotes the subgraph induced by removing edge e from G. 

•	 Pu1,u2 e1Pv1,v2 : is the path formed by the path segment Pu1,u2 followed by edge 

e1 and then followed by Pv1,v2 . 

G\e2 G\e2	 G\e1 G\e1Case 1: ∃ 2EDP Ps1,u1 , Ps2,u1 in G\e2 and ∃ 2EDP Ps1,u2 , Ps2,u2 in G\e1. We  
G\e2 G\e2 G\e2have 3 edge disjoint path segments Ps1,u1 , Ps2,u1 , P in G\e2 and other 3 edge u1,d1 

G\e1 G\e1 G\e1disjoint path segments Ps1,u2 , Ps2,u2 , P in G\e1. We  can  construct  the  P and u2,d2 

G\e2 G\e2Q satisfying condition 2 of Theorem 1.3.1 by letting Ps1,d1 = Qs1,d1 = Ps1,u1 Pu1,d1 
, 

G\e1 G\e1 G\e2 G\e2 G\e1 G\e1Ps2,d2 = Qs2,d2 = Ps2,u2 P , Ps2,d1 = Ps2,u1 P , and Qs1,d2 = Ps1,u2 P . By the u2,d2 u1,d1	 u2,d2 

same reasons stated in the opening paragraph of the proof, Case 1 is proven. This 

case is shown in Figure 4.1(a). 
G\e1 G\e1	 G\e2 G\e2Case 2: ∃ 2EDP Ps1,u2 , Ps2,u2 in G\e1, � ∃ 2EDP Ps1,u1 , Ps2,u1 in G\e2, and  e1 is 

reachable from both s1 and s2 in G\e2. 

1, vLet e = (u ) be the critical 1-edge cut for u1 in G\e2. Therefore,  we  must  have  1 1

G\e G\e
in G\e2. Also we must have path segments Pu2,u1 and Pu1,d1 . The  2 22EDP P
 , P 
s1,u s2,u1 1 

G\e1 G\e1first set of path segments contains the three edge disjoint path segments Ps1,u2 , Ps2,u2 , 

P
G\e1 

u2,d2 
in G\e1. Let  u G\e1 

u2,d2 

∗ be the last vertex where P and Pu2,u1 meets, the other set 2 

G\e G\e G\e2 G\e22 2of path segments contains the following five path segments P , P 
 , P 
 , P 

1,u1 

is edge disjoint from all the remaining four path segments because 

u1,d1s1,u s2,u u1 1 

and Pu ∗ ,u12 
.
 P
G\e2 

u1,d1 

G\e2is the critical 1-edge cut for d1. P and P are edge disjoint, because e is 

1}
 

e1 ∗ 
1,u1 

a critical 1-edge cut for u1 in G\e2 and so the min-cut max flow value from {v2, v

1u2 ,u1 u

G\e G\eG\e2 

1,u1 
because e1 is a critical 2 2to u1 is 2. P is edge disjoint from both P and Pu s1,u s2,u1 1 

G\e2 G\e21-edge cut for u1 in G\e2. If either of P or P meet with P , then this means ∗ 
1,u

is a critical 1-edge cut for u1 in G\e2 which is 

u2 ,u1s s2,u1 1 

that P ∗ u2,u1 and Pu1,u1 meet because e1 

impossible. We can construct the P and Q satisfying condition 2 of Theorem 1.3.1 by 
G\e G\e2 G\e2 G\e1 G\e1 G\e22letting Ps1,d1 = P P
 P
 , Qs1,d1 = P P
 P
 P
 , Ps2,d2 = Qs2,d2 =
∗ u2,u1 ∗ u1,u1 

s1,u2u1,d1 

1,u1 

u1,d1u2,us1,u 21 

G\e1 G\e1 G\e G\e2 G\e2	 G\e1 G\e12P
 P
 , Ps2,d1 = P P
 P
 , and Qs1,d2 = P P
 .
s2,u2 s1,u2u2,d2 u1,d1 u2,d2s2,u u1 
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1

2 

1 

2 

1 

G\e1 G\e1 G\e2 G\e2Case 3: � ∃ 2EDP Ps1,u2 , Ps2,u2 in G\e1, � ∃ 2EDP Ps1,u1 , Ps2,u1 in G\e2, and  

2, ∃ 2EDP P

2)) is the critical 1-edge cut for u1 (u2). 

G\e G\e G\e G\e � , v1 
2 2 1 1∃ 2EDP P

2 = (u2, v

, P 
 in G\e , P 
 in G\e , where  e = (u )
1 1s1,u s2,u s1,u s2,u1 1 2 2 

(e
G\e G\e G\e

1,u1 

G\e2 2 2The first set contains the following five path segments P , P
 , P
 , P
� 
1 u1,d1s1,u s2,u u1 

G\e G\e1and P and the second set contains the following five path segments P , P
∗ u2 ,u1 ,
s2,u s1,u2 

G\e

2,u2 

G\e1P
 ,
 P
 and P Paths in every set are edge disjoint by similar state∗ .
 u2,d2 u1 ,u2u

ment to the above. We can construct the P and Q satisfying condition 2 of The
G\e G\e G\e1 G\e2 G\e G\e1 G\e11 1 11.3.1 by letting Ps1,d1 = P P
 P
 P
 , Ps2,d2 = P P
 P
orem ,
∗ 

2,u 

P
1,u1 

∗ u2,u2u1,d1 u2,d2u2 ,u1s1,u u s2,u2 2 2 

2G\e G\e G\eG\e2 G\e2 G\e2 G\e2 G\e2 G\e12 2P = P
 P
 P
 , Qs1,d1 = P P
 , Qs2,d2 = P P
 P
 P
∗ u1 ,u2 ,
s2,d1 u1,u1 

2,u2 

u1,u ∗ u1,d1 u1,d1 u2,d2s2,u s1,u u s1,u1 1 1 1 

G\e G\e1 G\e11Qs1,d2 = P P
 P
 .
 u2,d2s1,u u2 

G\e1 G\e1 G\e2 G\e2Case 4 � ∃ 2EDP Ps1,u2 , Ps2,u2 in G\e1, � ∃ 2EDP Ps1,u1 , Ps2,u1 in G\e2, and  ∃ 

2, � ∃ 2EDP P 1, and  u2 is reachable from G\e G\e G\e G\e2 2 1 12EDP P
 , P 
 in G\e , P 
 in G\es1,u s2,u s1,u s2,u1 1 2 2 

both s1 and s2. 

Let e2 = (u2, v2 ) be the critical 1-edge cut for e2. The first set contains the follow-
G\e G\e G\e

1,u1 

G\e2 2 2 2ing five paths segments P , P 
 , P 
 , P 
 , P 
 that are disjoint by the same ∗ u2 ,u1u1,d1s1,u s2,u u1 1 

1G\e
argument in Case 3. The other set contains the following seven path segments P

2u1 

1u

�� ,s2u2 

G\e ∗∗1P
 , P
 , P
 , P
 , P
 , and  P , such  that  uu1d1 is the last vertex where ∗ 
2 u

∗∗ 1u1 u2u u u us1u 2 1 22 

P
 and P d1 meet. These seven path segments are disjoint by similar argument u u2 1

to case 2. We can construct the P and Q satisfying condition 2 of Theorem 1.3.1 
G\e G\e2 G\e2 G\e G\e2 G\e1 G\e12 2by letting Ps1,d1 = P P
 P
 , Ps2,d2 = P P
 P
 P
 P
 , Ps2,d1 =∗∗ 

1,u1 

, Qs1,d1 = P

u1,u ∗∗ � 

2 

2,u2u1,d1 u2,d2u ,u1s1,u u s2,u u21 1 1 

G\e G\e G\eG\e1 G\e2 G\e2 G\e2 G\e2 G\e11 2P
 P
 P ∗∗ P P
 P
 , , Qs2,d2 = P P
 P
 P
∗ u1 ,u2 ,
u2,u ∗∗ u1,u1 u1,u ∗u ,u12 u1,d1 u1,d1 u2,d2s2,u s1,u s2,u2 2 1 1 1 

G\e G\e1 G\e11Qs1,d2 = P P
 P
 .
 
2,u2 

Case 5: The Network contains the network in Figure 4.1(d). In this case, if we 

remove all edges except those for the network in Figure 4.1(d), it is obvious that the 

proposition follows without considering the two sets. 

u2,d2s1,u u2 
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4.3 Problem Formulation 

For the following, we model the wireless multi-hop network by a directed hy

pergraph G = (V,E), which is equivalent to the auxiliary node-based framework in 

Section 3.3.11, where  V is the set of vertices that models the nodes and E is the set 

of hyperedges that models the links and broadcast links (as in Section 3.3.1). For 

the rest of the chapter we will use the term link to refer to both broadcast and non-

broadcast links unless otherwise specified. We use I(v) and  O(v) to  represent  the  

sets of incoming and outgoing links of node v, respectively. Their union is denoted 

as N(v). 

We use Xd
v to represent the long-term average data rate supported from node v 

to node d. Nodes  v and d here form a unicast session where a long term average data 

rate Xd
v is supported. The “type” of this session is defined by the destination node 

d. For any two pairs of nodes (u1, v1) and  (u2, v2), as in Figure 4.2, a PICC can be 

defined as the six paths that satisfy the necessary and sufficient conditions for PINC 

in Theorem 1.3.1 that can be used to transmit packets of unicast session d1 from u1 

to v1 and packets of unicast session d2 from u2 to v2. In Figure 4.2 we term u1 and 

v1 the entry and exit nodes of the PICC for session d1, respectively. Similarly, u2 

and v2 are the entry and exit nodes of the PICC for session d2. In this chapter, each 

PICC is thus described and differentiated by two parameters: the subgraph structure 

and the index pairs of the two sessions that are mixed together. For example, there 

are four distinct PICCs in Figure 4.3. All of the PICCs have the same subgraph 

structure but have different index pairs: (d1, d2), (d1, d4), (d3, d2), (d3, d4), where the 

first coordinate corresponds to the session using (u1, v1) as the entry and exit nodes. 

Similarly, the second coordinate corresponds to the second session using (u2, v2) as  

the entry and exit nodes. 

1The auxiliary node-model allows us to directly apply Theorem 1.3.1 to the wireline counterpart of a 
wireless network. On the other hand the hypergraph framework facilitates the use of one hyperedge 
for one physical transmission. 
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We define  PICC  as the collection of all distinct PICCs, and PICC(d) as  those  

PICCs with one of the session indices being d. For example: PICC(d1) ∩  PICC(d2) 

denote those PICCs with the two session indices being d1 and d2. Suppose  the  k-th 

PICC is mixing two sessions d1 and d2, we  use  Γ+(k, d1) to  denote  the  entry  node  of  

the k-th PICC for session d1. Similarly,Γ −(k, d2) denotes the exit node of the k-th 

PICC for session d2. In this chapter, the alphabet k is reserved as the index of the 

PICCs in PICC. 

u1 

v1 

d1 

u2 

v2 

d2 

w 

Fig. 4.2. The X-topology identified by the solid links with entry and exit 
nodes for session d1 (d2) being u1, v1 (u2, v2). The dotted lines represent 
the logical paths the information is flowing through. The logical paths 
might be non-coded paths or through PICCs 

For the resource allocation problem of interest, each edge e has two types of rate 

assignments: xd
e represents the rate allocated for transmitting non-coded packets, and 

xe
k represents the rate allocated for transmitting coded packets over the k-th PICC 

in PICC  (totally there are |{d}| + |PICC| such x’s). We also use −→ to denote the x 

d kvector containing all of x and x , and  use  −→ to represent the vector containing all of e e xe 
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d2d3 

u1 

v1 

d1 

u2 

v2 

w 

d4 

Fig. 4.3. Four PICCs are using the X-topology. The four sets of coexisting 
sessions for these PICCs are (d1, d2), (d1, d4), (d3, d2), (d3, d4) The  dotted  
lines represent the logical paths the information is flowing through. The 
logical paths might be non-coded paths or through PICCs 

the x variables for link e. The following constraints represent a new PINC capacity 

region. 

kxd e xe + 1{e∈Ok(v),v=Γ+(k,d)}
|Ok(v)|

e∈O(v) k∈PICC(d) 

kxd e − Xd− xe + 1{e∈Ik(v),v=Γ− (k,d)} v ≥ 0, ∀v, ∀d, (4.1) 
|Ik(v)|

e∈I(v) k∈PICC(d) 

x k − x k ≥ 0, ∀k, ∀e1 ∈ E, e2 ∈ Ik(e1), (4.2) e1 e2 

x k = x k , ∀k, ∀v ∈ V, ∀e1, e2 ∈ Ik(v), (4.3) e1 e2 

x k = x k , ∀k, ∀v ∈ V, ∀e3, e4 ∈ Ok(v), (4.4) e3 e4 

The scheduling constraints are satisfied. (4.5) 

Here, Ik(v) (Ok(v)) represents the set of incoming (outgoing) links to (from) node v 

that the k-th PICC uses. Similarly, Ok(e) (Ik(e)) represents the set of next (previous) 

hop links from (to) link e in the k-th PICC. 

Equations (4.1)–(4.5) represent the constraints for the routing and data link lay

ers. Constraint (4.1) regards the PICC as a black box. It requires that at every node 
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v1 

v3 

v2 

v4 v5 

v6 

v7 v8 

e1 e2 

e3 

e4 
e5 

e6 

e7 

e8 

e9 

Fig. 4.4. Topology used to represent the linear formulation 

v, the total outgoing rate for non-coded traffic of type d plus the rate of the coded 

traffic through all PICCs (where node v is the entry node for session d) should be 

able to support the locally generated traffic Xv
d, the total incoming rate for non-coded 

traffic of session d, and the rate through all PICCs where node v is the exit node for 

session d. The division by |Ik(v)| and |Ok(v)| in (4.1) becomes clear when we discuss 

the constraints in (4.3) and (4.4). The constraint in (4.2) handles the traffic inside the 

PICC. It requires that for a node that is neither an entry nor an exit node in a PICC 

the outgoing flow for that PICC from that node through any link should be able to 

support the incoming flows for that PICC through any link to that node. The con

straint in (4.3) ((4.4)) requires that if node v has more than one incoming (outgoing) 

link in a PICC, the data rate for that PICC through these links should be the same. 

For a PICC with |Ok(v)| > 1 it means that each of the |Ok(v)| links is supporting 
L 

data rate xk
e . Therefore, the total occupied capacity is k∈PICC(d) x

k
e 1{e∈Ok(v),v=Γ+(k,d)} 

L 
ewhile the net information rate is xk 

1{e∈Ok(v),v=Γ+(k,d)}, which explains k∈PICC(d) |Ok(v)| 

the division by |Ik(v)| and |Ok(v)| in (4.1). 

In Figure 4.4, node v5 is the entry node for the bottom X-topology PICC formed 

by links e4, e5, e6 for session d, the exit node in the top X-topology PICC formed by 

links e1, e2, e3 for session d, and an intermediate node for the third PICC (involving 
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v2, v5, and v8) that exchange  packets  among  nodes  v2 and v8 and uses links e7, e8, e9. 

Constraint 4.1 requires that the total outgoing non-coded traffic of type d from node 

v5 and the total outgoing traffic of type d using the bottom X-topology should be 

no less than the total generated traffic of type d at node v5, the incoming non-coded 

traffic of type d and the decoded traffic of type d from the top X-topology at node v5. 

Constraint 4.2 requires that the outgoing rate at node v5 for the third PICC which is 

through the broadcast link e9 should be no less than the input rates for that PICC 

at that node which are from links e7 and e8. Constraint 4.3 ensures that the coded 

data rates for the third PICC through links e7 and e8 are the same. 

Consider the wireless network in Fig. 4.5, where each source si wants to send one 

packet to its corresponding sink ti. Using the approach in [26] the total number of 

transmissions cannot be less than twelve. The approach in [101] reduces the total 

number of transmissions to ten, but more than two hundred PICCs need to be exam

ined. Our approach in this chapter reduces the number of transmissions to nine and 

the number of examined PICCs to 36. The reduction in the number of transmissions 

is due to allowing decoded packets to be reencoded again and the reduction in the 

number of examined PICCs is due to that the selected paths for forming PICCs in 

our approach have limited number of hops, while the approach in [101] uses all the 

end to end paths from the sources to the sinks which are so many. Another example 

is in Fig. 4.6 where there are three sessions. The sources and sinks for these three 

sessions are in the same figure To send one packet through each session, we need 

eight transmissions using the approach in [101] and seven transmissions using both 

our approach and the approach in [26]. The above two examples show the superiority 

of our approach in terms of both throughput and complexity. In the following we will 

use the above constraints to formulate both the energy minimization and the rate 

control problems. 
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s1 

d1 

s2d2 

s3d3 

s4 

d4 

Fig. 4.5. A topology used to compare different capacity regions 

V1V2V3V4V5V6 

Session Source Sink 
1 V1 V3 

2 V6 V1 

3 V4 V6 

Fig. 4.6. A topology used to compare different capacity regions 

4.4 Energy minimization 

4.4.1 Distributed Algorithm 

We assume that the power assignment at link e during time slot t is h(Re[t]), where 

Re[t] is the data rate at link e during time slot t and h(·) is a non-decreasing convex 
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function satisfying h(0) = 0. For example h(·) can be the power-rate relationship in 

an Additive White Gaussian Noise (AWGN) channel. Let fe represent the fraction 

of time slots for which link e is activated, we have, 
L L 

+d xe
d 

k∈ PICC xe
k 

fe = , ∀ e ∈ E, 
Re 

which is due to the following lemma from [60]. 

Lemma 4.4.1 For all time-slots t when link e is activated, the instantaneous data 

k
e 

rate Re[t] is independent of t in any power-optimal scheme. 

Using a similar approach to that in [61], the optimization problem becomes: 

d
e

(−→min ℘e xe, fe), (4.6) 
−→−→ x , f e∈ E 

subject to: (4.1)-(4.5) and 
−→ 

(−→ x ,  f ) ∈ X , 

where 
⎧ 
⎪ 
⎨0, fe = 0  

  
d x + xk∈PICC 

(−→℘e xe, fe) =  (4.7)
 
⎪
 
⎩
feh( ) fe > 0,fe

and 
� 

X = (−→ x ,  
−→ 
f ) :  0  ≤ fe ≤ 1, ∀ e, 0 ≤ x d 

e ≤ xmax, ∀ e, ∀ d, 0 ≤ x k 
e ≤ xmax, ∀ e, ∀ k, 

xe
d + xe

k ≤ Rmaxfe, ∀ e ,
 
d k∈ PICC
 

where xmax and Rmax are the allowable maximum rates of a practical system. The 
L 

d 
L 

kconstraint d xe + k∈ PICC xe ≤ Rmaxfe, ∀ e is to ensure convergence, otherwise −→ x 
−→ 

can be set to a large number and f to zero. The objective function (4.6) is convex 

over the set X , (see [61] for details). 

What remains to be specified is the scheduling constraint (4.5). If we use a layered 

approach, then (4.5) can be replaced by 

fe < ϑ , ∀ v ∈ V, (4.8) 
e∈ N(v) 
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where ϑ is a constant ∈ [0, 1]. Using Proposition 4.2.1, it can be shown that with 

the node exclusive model and PINC a hypergraph maximal matching scheduling al

gorithm can stabilize the system with any value of ϑ < 13 . 

If we assume the class of K-hop interference model as defined in [102], one can 

also use the cross-layer approach. In this interference model if a link is scheduled 

all other links that are within K-hop distance can not be scheduled simultaneously. 

When K = 1, the model reduces to the node exclusive model and when K = 2 it 

reduces to the 802.11 interference model. Let Ψ be the set of schedules and ψ is an 

instance of Ψ. We define the following 
⎧ 
⎪ 
⎨1 e ∈ ψ 

fψ = e 
⎪ 
⎩0 Otherwise, 

and 

−→−→ 
� −→ 

fψΠ = f 
� f = cψ , cψ ≥ 0, cψ ≤ 1 , 

ψ∈Ψ ψ∈Ψ 

−→ 
where fψ is a vector containing all variables of the form fe 

ψ , ∀ e and cψ is the time 

sharing coefficient. Therefore, (4.5) can be replaced by 

−→ 
f ∈ Π (4.9) 

We refer to (4.6), (4.1)–(4.4), and (4.8) as the layered energy minimization formulation 

and to (4.6), (4.1)–(4.4), and (4.9) as the cross-layer energy minimization formulation. 

In either of the two settings, we have a convex optimization problem. In the following 

we will work on the dual problem of the layered formulation. 

Associate Lagrange multipliers qv
d with each constraint in (4.1), qk with each e1,e2 

constraint in (4.2), λk with each constraint in (4.3), λk with each constraint v,in v,out 

in (4.4), and qv with each constraint in (4.8). We assume that e = (u, v), where v is 

the set of receiving nodes at link e. If  e is a non-broadcast link, then v contains one 

node. On the other hand, if e is a broadcast link , v contains two nodes. Note that by 
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Proposition 4.2.1, a broadcast link with |v| > 2 can be ignored without affecting the 

performance. The Lagrange function is separable and can be written as the following. 

−→ −→ −→ 
L(−→ −→ (−→ −→ dXd x ,  f ,  λ , q ) =  Be xe , fe, qe , λe) +  qv v − qvϑ, 

e∈E v∈V d v∈V 

where, 

−→ 
(−→ −→ (−→ d kBe xe , fe, qe , λe) =  ℘e xe , fe) − BLr(d, e)xe − BLc(k, e)xe + (  qv + qu)fe, 

d k∈PICC v∈v 

(4.10) 

−→ 
where λ e is a vector containing the lagrange multipliers λk and λk ∀ v ∈ v and u,out v,in 

−→ d kq e is a vector containing the lagrange multipliers qu, ∀ d, qv
d , ∀ d, ∀ v ∈ v, qe1,e, ∀ k, 

k∀ e1 ∈ Ok(e), qe,e2 
, ∀ k, ∀ e2 ∈ Ik(e), qu, qv , ∀ v ∈ v. Here, the non-coded backlog 

BLr(d, e) = (qu
d − qv

d), 
v∈v 

and the coded backlog 

( )

BLc(k, e) =  
1 

qu
d1 1{e∈Ok(u),u=Γ+(k,d1)} + qu

d2 1{e∈Ok(u),u=Γ+(k,d2)}|Ok(u)|
( )1 d1 d2− qv 1{e∈Ik(v),v=Γ+ (k,d1)} + qu 1{e∈Ok(u),u=Γ+(k,d2)}|Ik(v)|v∈v 

k k λk 
e1,e e,e2 u,out u,out− q + q − 1{e=Ok(u,1)} + λk 1{e=Ok(u,2)} 

e1∈Ok(e) e2∈Ik(e) 
⏐ 
⏐ 
⏐

− (λk λv,
k 
in1{e=Ik(v,2)}) (d1,d2): . (4.11) v,in1{e=Ik(v,1)} − 

⏐ 
⏐ d1>d2v∈v 

k∈PICC(d1) 
k∈PICC(d2) 

As implied by the proof of Proposition 4.2.1, the maximum number of outgoing or 

incoming edges for any node in a PICC is at most 2. Therefore, the output (input) 

links of node u corresponding to the k-th PICC are numbered and we use Ok(u, 1) 

(Ik(u, 1)) to refer to the first link and Ok(u, 2) (Ik(u, 2)) for the second link. If there 

is only one outgoing edge from v for the k-th PICC, then λk is set to zero. v,out 
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Figure 4.7 represents the queuing process used for PICCs. In the figure two 

symbols X and Y in the input links of v are to be coded together and the resulting 

symbol Z is to be sent through the output link of u. We maintain three queues at 

u. The first two queues are for the received packets at the input links, we call them 

the I queues. I queues grow up when new packets arrive in the input link they are 

assigned to. They shrink when the coded packet is sent through the output link. 

The third queue is for the coded symbol Z in the output link, we call it O queue. 

O queues grow up when two packets from both input links are received and coded 

together. They shrink when this coded packet is sent through the output link. The 
L 

kterm in (4.11) can be interpreted as the average O queue lengths at e2∈Ik(e) 
qe,e2 

L 
node u, we will refer to this term by q̂u

k. The  term  e1∈Ok(e) 
qe
k 
1,e can be interpreted 

as the average I queue lengths at node v we will refer to this term by q̇v
k. We  have  

X Y 

Z 

I queue I queue 
for Yfor X 

O queue 

u 

Fig. 4.7. Two I queues at node u for the received symbols X and Y 
in the input links and one O queue for the symbol Z sent through the 
output link. They grow up at possibly different times, but they shrink at 
the same time when a packet of the coded symbol Z is sent through the 
output link of u. 

the following proposition. 

Proposition 4.4.1 There is no duality gap of the energy minimization problem. The 

optimal solution to the dual problem gives the optimal solution the primal problem. 
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Proof The formulation satisfies Assumption 6.4.1 in [64]. Therefore by Proposi

tion 6.4.2 in [64] the statement is correct. 

The Lagrange function is separable and each link can maximize its own share of the 

Lagrange function. The dual objective function becomes 

−→	 −→ −→ 
D(−→	 L(−→ f ,  −→ q , 	  λ ) = min x ,  q ,  λ ),

−→ 
(−→ x , f )∈ X 

subject to −→ q ≥ 0. The dual problem becomes: 
−→ 

D(−→ max−→ −→ q ,  λ ),
q ≥ 0, λ 

We can rewrite xd[t] =  fe[t]Rd[t] and  xk[t] =  fe[t]Rk[t], where Rd[t] is the instane e e e e

taneous rate for the non-coded traffic of session d through edge e at time slot t and 

Re
k[t] is the instantaneous rate for the k-th PICC through link e at time t. We  have  

−→ 
(−→Be xe [t], fe[t]) = fe[t]Ce(Re[t]), where, 

−→ 
Ce(Re[t]) =h( Re

d[t] +  Re
k[t]) − BLr(d, e)Re

d[t] 
d k d 

+ BLc(k, e)Re
k[t] + (  qv[t] +  qu[t]). 

k∈ PICC	 v∈ v 

We then have the following Layered Energy Efficient Algorithm: 

Algorithm LEEA 

(1) Initialization phase: Each node finds all the possible PICCs in which it 

participates. The detailed PICC search algorithm will be explained in Section 4.6. 

(2) Iterative phase 

•	 Finding the maximum backlog: Each link minimizes Ce. The minimal value 

Ce 
∗ is attained if the total energy is assigned to one of the Re

d, or  one  of  the  Re
k . 

Each link finds 

d∗ (e) =  arg  maxdBLr(d, e), and 

k∗ (e) =  arg  maxk BLc(k, e). 

d∗(e) k∗(e)•	 Selecting the power level: Choose Re and Re that minimizes Ce, and  

denote the minimized value as Ce 
∗ . 
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• Considering the link for scheduling:	 Set: 
⎧ 
⎪ 
⎨1 if Ce 

∗ < 0 
f̂e[t] = 	  (4.12) 

⎪ 
⎩0 otherwise, 

•	 Link scheduling: Perform a maximal hypergraph matching e.g., the GMHM 

ˆ ˆalgorithm on the links which have their fe[t] =  1.  Note  that  fe[t] =  1  means  

that the link is a candidate to be scheduled. It does not mean that the link will 

be scheduled. It is shown in [61] that by choosing ϑ carefully, 13 in our case, the 

number of time slots that link e has to wait until being scheduled is bounded. 

It is also shown that this will not affect the optimal solution. 

•	 Selecting the packet to send through the link: Given that link e is sched

uled, if 

BLr(d∗(e), e) > BLc(k∗(e), e) un-coded  packets  of  type  d∗(e) is sent through e, 

otherwise perform pairwise intersession network coding on the k∗(e)-th PICC 

through edge e. The distributed XOR-based coding scheme in [101] is used for 

coding. 

Dual updates: Here, for simplicity we assume that the step size β[t] is a constant 

β. 

•	 Each node v update qv
d , ∀d according to the following, 

xk[t]d d	 d e q	 [t+ 1]  =  q [t] − β x [t] +  1{e∈Ok(v),v=Γ+ (k,d)}v v	 e |Ok(v)|
e∈O(v) k∈PICC(d) 

+ 
k 

d	 xe [t] − Xd− xe [t] −	 1{e∈Ik(v),v=Γ− (k,d)} v ,
|Ik(v)|

e∈I(v) k∈PICC(d) 

where ()+ is a projection on [0,∞). 

•	 At each node v and every two links e1 and e2 s.t e2 ∈ Ik(v) and  e1 ∈ Ok(v), 

update qk according to the following, e1,e2 

+ 

k	 k k k q [t+ 1]  =  q [t] − β x [t] − x [t] .e1,e2 e1,e2 e1 e2 



� �

� �

� �

�

��

�

87 

• Each node v updates λk k according to the following, v,out, ∀ 

λk [t+ 1]  =  λk [t] +  β x k [t]1{e1 x k [t]1{e2 .v,out v,out e1 =Ok(v,1)} − e2 =Ok(v,2)} 

• Each node v updates λk k according to the following, v,in, ∀ 

λk [t + 1]  =  λk [t] +  β x k [t]1{e1 x k [t]1{e2 .v,in v,in =Ik(v,1)} − =Ik(v,2)}e1 e2 

• Each node v updates its own qv according to the following, 

+ 

qv[t+ 1]  =  qv[t] +  β fe[t] − ϑ . 
e∈ N(v) 

The Cross-layer Energy Efficient Algorithm CEEA can be obtained by removing the 
L −→ 

term ( v∈ v qv + qu) from  C(Re) and performing the scheduling with the objective 

function being 

max − Ce 
∗ [t], 

M 
e∈ M 

where M is a set of valid schedules. 

Since fe[t] is set to either 0 or 1 under the K-hop interference model, there might 

be no single time slot where the algorithms converge to the optimal solution. The 

following proposition shows that the average consumed power over many time slots 

indeed converges to the optimal solution. 

−→ −→ 
Proposition 4.4.2 (a)Let Φ be the set of all (−→ q , λ ) that  maximizes  D(−→ q , λ ) for 

the layered energy minimization formulation. Then for any � > 0, ∃ β0 > 0, such  

that for any LEEA with a constant β < β0 and ϑ small enough to guarantee stability 

we have 

a1) ∃ a time  T0 such that ∀ t > T0 we have: 

−→ −→ 
(−→ (−→ ∗ λ ∗min

(−→ 
−→ � q [t], λ [t]) − q , )� ≤  �. 

q ∗ , λ ∗)∈ Φ
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a2) 

(−→ (−→ ∗lim sup 
1 

T 

℘e x e[t], fe[t]) < ℘e xe , fe 
∗ ) 

T −→∞ T 
t=1 e∈ E e∈ E 

+ �, 

∗where (−→ xe , fe 
∗ ) is the optimal solution to the Layered energy formulation. 

−→ −→ 
(b) Let Φ be the set of all (−→ q ,  q ,λ ) that  maximizes  D(−→ λ ) for the cross layer 

energy minimization formulation. Then for any � > 0, ∃ β0 > 0, such that  for  any  

CEEA with perfect scheduling and a constant β < β0 we have 

b1) ∃ a time  T1 such that ∀ t > T1, we  have: 
  

−→ −→
 
(−→ (−→ ∗min

(−→ , 
−→ 

Φ q [t], λ [t]) − q , λ ∗ ) �≤ �. 
q ∗ λ ∗)∈ 

b2) 

T 

(−→ (−→ ∗lim sup 
1 

℘e x e[t], fe[t]) < ℘e xe , fe 
∗ ) 

T −→∞ T 
t=1 e∈ E e∈ E 

+ �, 

∗where (−→ xe , fe 
∗ ) is the optimal solution to the Cross-layer energy formulation. 

Proof Due to the constraints xe
d ≤ xmax, xe

k ≤ xmax, and  fe ≤ 1, the subgradient 

(−→of the dual problem is bounded. Note that because ℘e xe , fe) is nondecreasing in −→ e ,x

the optimal solution to the problem with xmax = |V |2 maxv,d Xv
d is the same as that 

without the constraints xd
e ≤ xmax, xk

e ≤ xmax. 

Since the gradient of the dual problem is bounded a1 is guaranteed by Proposi

tion 8.2.2 in [64] and the fact the the objective function in (4.6) is continuous. Note 
−→ 

that statement a1 implies that the sequence (−→ q [t], λ [t]) is bounded for all t which 

will be used to prove statement a2. Statement b1 follows by similar argument. 
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To show statement a2, we use the following Lyapunov function:
 

1 ( )2 � ( )2

V [t] =  q d[t] + q k [t]v e1,e22 

v,d v,k e1∈Ik(v) 
e2∈Ok(v)

( )2 ( )2� ( )2 
+ λk ] + λk [t] + qv[t]v,in[t v,out

v 

−→ 
The subgradients of D(−→ λ ) at time slot t can be written as: q , 
  

d ∂ 
D(−→ −→
 

δqv [t] ! q [t], λ [t])
∂qv

d 

k 
d xe [t] = − xe[t] +  1{e∈Ok(v),v=Γ+ (k,d)}|Ok(v)|

e∈O(v) k∈PICC(d) 

xk[t]d e d− xe [t] +  1{e∈Ik(v),v=Γ− (k,d)} − Xv . 
|Ik(v)|

e∈I(v) k∈PICC(d) 

∂ −→k D(−→ k kδq [t] ! q [t], λ [t]) = − x [t] − x [t] .e1,e2 e1 e2∂qk 
e1 ,e2 

∂ −→ 
D(−→ k kδλk [t] ! q [t], λ [t]) = x [t]1{e1 x [t]1{e2v,out e1 =Ok(v,1)} − e2 =Ok(v,2)}. ∂λk 

v,out 

∂ −→ 
D(−→ k kδλk [t] ! q [t], λ [t]) = x [t]1{e1=Ik(v,1)} − x [t]1{e2=Ik(v,2)}.v,in e1 e2∂λk 

v,in 

∂ −→ 
D(−→ δqv[t] ! q [t], λ [t]) = fe[t] − ϑ. 

∂qv 
e∈N(v) 

We have, 
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V [t + 1] − V [t] 
2 

{

d d d =
1 

(q [t] +  βδq [t])+ − (q [t])2 
v v v2 

v,d 

2 

k k	 k+	 (q [t] +  βδq [t])+ − (q [t])2 
e1,e2 e1,e2 e1,e2 

v,k e1∈Iv (k) 
e2∈Ok(v) 

2 

+ (λv,
k 
in[t] +  βδλk − (λv,

k 
in[t])

2 
v,in[t]) 

2 

+ (λk [t] +  βδλk [t]) − (λk [t])2 
v,out v,out v,out

2 

+	 (qv[t] +  βδqv[t])
+ − (qv[t])

2 

v 



�

�

�� � �

�

�

�

� � �

�� � �

�� � �

�

�� � ��

�

�

�

�

�

�

� �

�

� ��

�

�

91 

2 
1 d d d≤ (q [t] +  βδq [t]) − (q [t])2 

v v v2 
v,d 

2 

k k k+	 (q [t] +  βδq [t]) − (q [t])2 
e1,e2 e1,e2 e1,e2 

v,k e1∈ Iv(k) 
e2∈ Ok(v) 

2 

+ (λk [t] +  βδλk [t]) − (λk [t])2 
v,in v,in v,in

2 

+ (λk [t] +  βδλk [t]) − (λk [t])2 
v,out v,out v,out

2 

+	 (qv[t] +  βδqv[t]) − (qv[t])
2
 

v
 

≤ β (qv
d[t]δqv

d[t])
 
v,d
 

+ (q k [t]δq k [t])e1,e2 e1,e2
 

v,k e1∈ Iv(k)
 
e2∈ Ok(v)
 

+ (λk [t]δλk [t]) + (λk [t])v,in v,in [t]δλk 
v,out v,out

+	 qv[t]δqv[t]) + β2J
 
v
 

where J is a constant large enough to guarantee the inequality. Such a constant 
−→ 

exists because both (−→ q ,  λ ) and the subgradient of the dual problem are bounded. 

Therefore, we have, 

(−→V [t + 1]  − V [t] +  β ℘e xe [t], fe[t]) 
e∈ E 

−→ 
βD(−→≤ q [t], λ [t])) + β2J 

−→ 
(D(−→≤ β max 

−→ 
q [t], λ [t], )) + β2J 

−→ q ≥ 0, λ 

(−→ ∗ = β ℘e xe , fe 
∗ ) +  β2J. 

e∈ E 
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The last inequality is due to the strong duality theorem. Summing over t = 1, . . . , T  

and dividing by T , we  have,  

V (T + 1)  − V (1) β 
∞ 

(−→+ ℘e x , f )
T T e e

t=1 e∈ E 

(−→ ∗≤ β ℘e xe , fe 
∗ ) +  β2J 

e∈ E 

JFor a given �, ∃ β2 s.t. βJ ≤ 2 , ∀ β ≤ β2. x [t]} isAlso, since the sequence {−→ e 

V (T +1)− V (1) Jbounded, for any �, ∃ T large enough s.t. βT ≤ 2 . This implies that a2 

follows. Statement b2 follows by similar argument. 

4.4.2 Power Efficiency Ratio 

LetΥ e be the interference set of link e, i.e., the set of links that interfere with link 

e. Assume that the capacity of link e is re. It is shown in [55] that if 
L 

d 
L 

k+d xe k xe ≤ 1, ∀ e, (4.13) 
re e∈ Υe 

a maximal matching algorithm stabilizes the system. With PINC using Proposi

tion 4.2.1, the maximum number of links in the interference set that can be scheduled 
L 

simultaneously is 3. Hence, if fe ≤ 1 − δ, ∀ v, ∀ δ > 0, then the condition e∈ N(v) 3 

in (4.13) is satisfied and the system is stable. 

As discussed in Section 4.3 setting ϑ = 1 gives a necessary conditions for schedul

ing. On the other hand if ϑ = 13 − δ, using a maximal hypergraph matching algorithm 
−→ 

guarantees stability. Assume that (−→ ∗ , ) results in the optimal power assignment x f ∗ 

−→ 
f ∗ ∗with perfect scheduling, it is obvious that (−→ x , 3+J) is a feasible solution to our prob

lem. Using the first order approximation in [60] the consumed power in the additive 
L 1white gaussian noise channel is proportional to e fe 

. Therefore, the power con

sumption of our algorithm is at most (3 + �) times the optimal power assignment for 

any � > 0. 
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4.5 Rate Control 

Instead of the energy minimization problem considered in previous section, we 

can also consider the utility maximization problem. For this case, we can further 

extend the K-hop interference model to a general interference model. Let Ω be the 

u(−→set of feasible power assignments, we assume that −→ x = p ), i.e., the data rates 
{ }

u(−→ −→are completely defined by the global power assignment. Let R = p ), p ∈ Ω . 

We assume that Co(R), the convex hull of R is close and bounded. The rate control 

formulation becomes: 

−→ 
max U(Xd) (4.14) v 

0≤ X ≤ Xmax v=d 

subject to: (4.1)-(4.4), and −→ Co(R). Here, U is a concave non-decreasing function x ∈
 
−→
 

and X = {Xv
d : ∀ v, d, v =� d}. 

Using the dual approach as in the energy minimization problem we have the 

following Cross-layer Rate Control Algorithm CRCA: 

Source Algorithm. The source node v that wants to send packets to d solves 

the following problem. 

Xv
d[t] =  arg  max  U(Xv

d) − qv
d[t]Xv

d (4.15) 
0≤ Xd≤ Xmax v 

Link Algorithm. Link e chooses d∗ (e) and  k∗ (e) as in the energy minimization 

problem and sets 

we[t] =  max(BLr(d
∗ (e), e), BLc(k

∗ (e), e)). 

Link scheduling. Perform link scheduling with the objective function being 
L 

max −→ 
u(−→ −→ Rewe[t].{ R ∈ p ), p ∈ Ω} e 

Selecting the packets to send through the link If 

∗ ∗ ∗BLr(d (e), e) < BLc(k (e), e)), coded packets from the k (e)-th PICC are sent through 

link e at rate Re[t]. Otherwise un-coded packets of type d∗ (e) at  rate  Re[t] are  sent.  

−→ 
Proposition 4.5.1 For CRCA with perfect scheduling, let Φ be the set of (−→ q ,  λ ) 

−→ 
that minimizes D(−→ λ ), the  dual  objective  function  of  the  cross-layer  rate  control  q ,  
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−→ 
formulation, and let X ∗ be the unique optimal solution. If 
−→ L 
β [t] −→ 0 as t −→ ∞ and t β[t] =  ∞ then, 

−→ −→ 
(−→ (−→min

(−→ , 
−→ 

Φ q [t], λ [t]) − q ∗ , λ ∗ ) �−→ 0 and 
q ∗ λ ∗)∈ 

−→ −→ 
X [t] −→ X ∗ as t −→ ∞ 

Proof The rate control formulation satisfies Assumption 6.4.1 in [64]. Therefore, 

there is no duality gap by Proposition 6.4.2 in [64]. By Proposition 8.2.5 in [64] we 

have 
−→ −→ 

(−→ (−→ ∗ λ ∗min q [t], λ [t]) − q , ) �−→ 0 
−→ 

(−→ q ∗ , λ ∗)∈ Φ 

as t −→ ∞ . Also because there is no duality gap the primal variables converge to the 
−→ 

optimal solution. What remains to be proven is that there is a single maximizer X ∗ . 

Let 

−→ xk 
d d eX,−→ gv ( x ) =  − xe + 1{e∈ Ok(v),v=Γ+(k,d)}

|Ok(v)|
e∈ O(v) k∈ PICC(d) 

kxd e Xd− xe + 1{e∈ Ik(v),v=Γ− (k,d)} − v ,
|Ik(v)|

e∈ I(v) k∈ PICC(d) 

k (−→ k k g x ) =  − x − x .e1,e2 e1 e2 

hk (−→ k k 
out,e1,e2 

x ) =  xe1 
1{e1=Ok(v,1)} − xe2 

1{e2=Ok(v,2)}. 

hk (−→ k k 
in,e1,e2 

x ) =  x 1{e1=Ik(v,1)} − x 1{e2=Ik(v,2)}.e1 e2 

−→ 
Also let −→ h be a vector containing all hg be a vector containing all g functions and 

−→ 
functions. Therefore for any (−→ q ,  λ ) ∈ Φ, we have: 

−→ −→−→ −→−→−→U(Xd X,−→ X,−→U(Xv
d∗ ) =  maxXv

d≤ Xmax v ) − q g ( x ) − λ h ( x ) 
v=d v=d 

−→ −→−→ −→−→−→ −→ ∗ −→ ∗≥ U(Xv
d∗ ) − q g (X ∗ , x ) − λ h (X ∗ , x ). 

v=d 
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−→ −→	 −→ −→ 
X ∗ −→ ∗)	 −→ X ∗ −→ ∗) ≥ −→ X ∗ −→ ∗) ≤Since h ( , x = 0, we should have −→ g ( , x 0. But −→ g ( , x 0,q	 q 
−→	 −→−→ −→because X ∗	 q g (X ∗ , xis a maximizer. Therefore, we have −→ ∗) = 0 and the following 

equality follows, 

−→ −→−→ −→−→−→ maxXd U(Xd) − q g (X,−→ x ) − λ h (X,−→ x )
v ≤Xmax v
 

v=d
 

−→ −→−→ −→−→−→ −→	 −→ = U(Xv
d∗) − q g (X ∗ , x ∗) − λ h (X ∗ , x ∗). 

v=d 

−→ −→	 −→ −→−→However, given (−→ λ ), the point ( x ) that maximizes L( x ,  λ ) should be q ,  X,−→ X,−→ q ,  

the optimal solution to (4.15). Since U(·) is strictly concave, the optimal solution is 

unique. 

4.6 Finding PICCs 

For the developed algorithms to run properly, every node should know all PICCs 

in which it itself participates. In this section we provide a way to find all the PICCs 

in the network such that every one of the six paths of the PICC uses at most κ hops. 

Here, κ is an arbitrary integer. As κ increases, more PICCs are considered which 

results in a better solution. On the other hand increasing κ increases the complexity 

of the algorithm. The following steps describe how to find the PICCs distributively. 

Phase 1: Finding the sets of candidate entry and exit nodes to form PICCs 

1. Every node u finds all of the paths Puv that use at most κ hops and start at u. 

2.	 The destinations of these paths then form possible exit nodes for the κ-hop 

PICCs with node u being one of the entry nodes. Node u finds all possible pairs 

of exit nodes. 

3. For every found path Puv, that  uses  more  than  one  hop, node  u sends a control 

message containing all pairs of exit nodes found in the previous step such that 

v is an element in all of these pairs2 . 
2Nodes u and v here are candidates for the entry and exit nodes for the same session in a PICC. 
It is inefficient for neighboring nodes to be the entry and exit nodes for the same session, because 
non-coded packets can be sent in one time slot. Therefore, we exclude one-hop paths in this step. 
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4.	 If two paths with different sources and different destinations that carry control 

messages meet at an intermediate node, the intermediate node searches for a 

match in the exit nodes pairs that the control messages carry. If a match is 

found a feedback message is sent back to the sources of both paths to set up 

PICCs with the entry nodes being the sources of the paths and the exit nodes 

being the nodes in the matched pair. 

Phase 2: Checking the edge overlap conditions Assume that two node pairs 

(u1, v1) (u2, v2) are selected in Phase 1 as the entry and exit node pairs. The corre

sponding PICCs are formed according to the following steps. 

1.	 Every node adds auxiliary nodes as in Section 3.3.1 to consider broadcast links 

of size 2. 

2. Node u1 (u2) forms two sets of paths such that the first one contains all paths of 

the form Pu1,v1 (Pu2,v2 ) and the second one contains all paths of the form Pu1,v2 

(Pu2,v1 ). Here, one path from the first set of u1, one  path  from  the  first  set  of  

u2, and  one  path  from  the  second  set  of  u1 form the set P in Theorem 1.3.1. 

Similarly, one path from the first set of u1, one  path  from  the  first  set  of  u2, 

and one path from the second set of u2 form the set Q in Theorem 1.3.1. 

3. Nodes u1 and u2 announce the sizes of the sets formed in the previous step to 

all of the nodes in the paths on these four sets. Every possible PICC will have 

a unique ID number. Since intermediate nodes know the sizes of the four sets 

in step 2 of this phase, the ID number can be computed locally. 

4.	 Every link e knows all the paths that it is involved in. For every possible PICC 

at link e if the the controlled-edge overlap condition in Theorem 1.3.1 is not 

satisfied, a feedback message is sent back to both u1, u2 to exclude that PICC3 . 

The energy minimization and the rate-control algorithms in Sections 4.4 and 4.5 can 

then be performed on the constructed PICCs. 
3Our results consider both cyclic and acyclic PICCs which is guaranteed by Theorem 1.3.1. If we 
restrict our assumption to acyclic PICCs, redundant PICCs can be excluded in a similar way to [91]. 
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4.7 Simulation Results 

The purpose of our simulations is to verify the convergence of the algorithms and 

to show the benefit of the new approach over the non-coded solutions. 

We first run simulations for both our CEEA and the non-coded version of the 

CEEA. We assume the node-exclusive model and use the following power rate func-

GPetion, Re = log(1 + N0W ), where the link gain G = 1.6 × 10−13, the background noise 

N0 = 1.6 × 10−18 mW/Hz, and the bandwidth W = 1  × 106 MHz. For scheduling we 

use the Greedy Maximal Matching GMM algorithm for the non-coded algorithm and 

GMHM for the network coding one. For the network coding algorithm, we use κ = 3.  

We run simulations on the 3×3 grid topology in Figure 4.8 with four sessions shown 

in the same figure. Each sessions demand is 500kb/sec. The convergence results for 

both the network coding and non-coded versions of the CEEA algorithm are in Fig

ure 4.9. The non-coded solution consumes 26% more power than the network coding 

one. 

For rate control we assume the linear signal-to-noise-&- interference-ratio (SINR) 

model. We assume that the total power assigned to node u at any time slot is 

bounded by Pu,max. In each time slot, each node u should either transmit at full 

power Pu,max or remain silent in order to achieve the optimal scheduling solution. 

Without WMA, the date rate Re at link e = (u, v) is assumed to be proportional to 

the SINR level at the receiver v, which is formally expressed as. 

G(u, v)1{e is activated}Pu,max 
Re = W L ,

N0 + G(w, v)1{node w is sending}Pw,max w:w=u 

where N0 is the background noise, W is the bandwidth of the system, and G(u, v) is 

the path gain between nodes u and v which is set to (dist(u, v))−4, where dist(u, v) 

is the Euclidean distance between nodes u and v. With PINC and WMA, the data 

rate of the broadcast link with two receivers is proportional to the minimum of the 
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SINR levels at those receivers. More precisely, for e = (u, {v1, v2}), the data rate of 

this broadcast link, Re, becomes,  

G(u, v1)1{e is activated}Pu,max 
Re = W min L ,

N0 + G(w, v1)1{w is sending}Pw,max w:w=u 

G(u, v2)1{e is activated}Pu,max 
L . 

N0 + G(w, v2)1{w is sending}Pw,max w:w=u 

We use the topology in Figure 4.10 with two sessions (s1, d1) and  (s2, d2) and  

N0 = 1,  W = 10,  Pu,max = 10. For the session between nodes v and d we use the 

utility function U(Xv
d) = ln(Xv

d). The locations of the nodes are shown in Figure 4.10. 

Figure 4.11 shows the rate assigned to the sessions at each iteration for both the coded 

and non-coded versions of the CRCA algorithm. An improvement of 35% is gained 

by using network coding. 

321 

4 5 6 

7 8 9 

Session Source Dist 

1 1 6 

2 3 7 

3 9 2 

4 8 4 

Fig. 4.8. A 3 × 3 grid topology used in the simulations. 

4.8 Conclusion 

In this chapter we present a framework for using pairwise intersession network 

coding in wireless networks. The framework is used to develop distributed algorithms 

for both the energy minimization and rate control problems. As is the case in the non-

coded case, the most complex part of our algorithms is the scheduling part. While 

our formulation is suitable for a general class of interfernce models, we have used a 
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10 

0 

Iteration number 

Fig. 4.9. Convergence for both the coded and non-coded versions of the 
CEEA Algorithm on a 3 × 3 grid topology. 

Node Location 

distributed algorithms for scheduling in the node exclusive interference model. The 

approach used in this chapter is a back-pressure one which allows decoded packets to 

be reencoded again. Since our approach uses local paths to form PICCs its complexity 

is less than that provided in Chapter 3. 

The assumption made in this chapter and the previous one is that of opportunistic 

scheduling that assumes that the channel conditions are known prior to transmission, 

which might not be the case in most of practical wireless networking scenarios. In 
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Fig. 4.11. Convergence for both the coded and non-coded versions of the 
CRCA Algorithm. 

the next chapter we remove this assumption and develop the corresponding optimal 

coding schemes. 
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5. THE CAPACITY REGION OF 2-HOP RELAY 

NETWORK WITHOUT OPPORTUNISTIC SCHEDULING 

5.1 Main Contribution 

In wireless mesh networks it is hard to perform opportunistic scheduling which 

is to estimate the channel conditions prior to transmission. Therefore, the feedback 

that is obtained after the transmission plays a major role in designing optimal trans

mission schemes. Without intersession network coding and under the assumption of 

no opportunistic scheduling, the optimal transmission policy can be obtained using 

opportunistic routing [75], or intrasession network coding [28] when complete or lim

ited feedback is allowed. To further increase the achievable rate, intersession network 

coding should be used. This chapter represents the first work that characterizes in

tersession network coding capacity when the channel conditions are unknown prior 

to transmission. Our main contributions in this chapter are as follows. 

•	 It is hard to characterize the general capacity region of intersession network cod

ing. Therefore, when we limit the encoding and decoding nodes to be neighbors 

also called as 2-hop relay network and under the no opportunistic scheduling 

assumption, we characterize the capacity region for two flows using linear pro

gramming. We also provide a coding scheme that uses random network coding 

and achieves the characterized capacity. 

•	 Under the no opportunistic routing case and for 2-hop relay network, when only 

XOR operations are allowed, we characterize the capacity region for arbitrary 

number of sessions. The capacity region is represented by a linear program. 
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(a) With OpR (b) Without OpR 

Fig. 5.1. Illustration of 2-session relay networks. 

•	 We compare the improvement achieved by using three different techniques to 

maximize the achievable rate of wireless network. These are, Intersession Net

work Coding, Opportunistic Routing, and Cross-Layer Design. 

5.2 The Capacity region of two hop coding with two flows 

5.2.1 The Setting 

We use X (and sometimes Y ) to denote a symbol in GF(q). A 1-to-K packet 

erasure channel (PEC) takes an input X ∈ GF(q) and  outputs  a  K-dimensional 

vector in ({X} ∪ {∗ })K, where  the  k-th coordinate being “∗” denotes that the input 

symbol X is erased for the k-th receiver. We consider only i.i.d. PECs of which the 

erasure pattern is independent for each channel usage. For example, a 1-to-2 PEC 

can be described by four parameters ps;12, ps;12c , ps;1c2, and  ps;1c2c , which denote the 

probabilities that X is received by both receivers (rx) 1 and 2, by only rx 1, by only 

rx 2, and by neither rx 1 nor 2. This notation can be easily extended to the marginal 
Δ	 Δ

success probability ps;1 = ps;12 + ps;12c and to the union ps;1∪2 = ps;12 + ps;12c + ps;1c2. 

A 2-session relay network is described in Fig. 5.1(a), in which source s1 would 

like to send nR1 packets X1, · · ·  , XnR1 to destination d1, and  s2 would like to send 

nR2 packets Y1, · · ·  , YnR2 to d2. r is a relay node. Each of s1, s2, and  r can use 
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Fig. 5.2. The overhearing probability versus the distance. 
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the corresponding PEC n times, respectively, and we are interested in the largest 

achievable rate pair (R1, R2) that guarantees decodability at d1 and d2 with close-to

1 probability for sufficiently large n and the finite field size q. 

To model the “reception report” suggested in COPE, we enforce the following 

sequential, round-based feedback schedule: Each of s1 and s2 transmits n symbols, 

respectively. After the transmission of 2n symbols, two reception reports are sent 

from d1 and d2, respectively, back to the relay r so that r knows which packets 

have successfully arrived which destinations. After the reception reports, no further 

feedback is allowed and the relay r has to make its own decision how to use the 

available n PEC usages to guarantee decodability at d1 and d2. In our setting, we 

also assume that the success probability parameters of all PECs and all the coding 

operations are known to all nodes. The only unknown part is the values of the X 

and Y symbols. For the purpose of illustration, a simplified network setting is also 

depicted in Fig. 5.1(b), in which the packets sent by si will not be overheard by the 

2-hop-away destination di. In this simplified setting, the question thus becomes given 

the following parameters: ps1;rd2 , ps1;rdc , ps1;rcd2 , and  ps1;rcdc ; ps2;rd1 , ps2;rdc , ps2;rcd1 ,2 2 1 

and p ; p , p , p , and  p dc , what is the maximum achievable rate s2;rcdc 
1 r1;d1d2 r;d1d2 

c r;dc 
1d2 r;dc 

1 2 

under the round-based feedback model. For future reference, we say Fig. 5.1(a) admits 

OpR as the packets can be overheard by the two-hop destinations while Fig. 5.1(b) 

does not admit OpR. Since the settings are symmetric, we sometimes assume that 

pr;d1 ≥ pr;d2 which can be achieved by relabelling the sessions. 

5.2.2 The Capacity Results 

Consider Fig. 5.1(b) and the scenario in which s1 and s2 have finished transmission 

and the reception reports have been sent to r. The question now becomes a broadcast 

PEC problem with side information (SI) as depicted in Fig. 5.3. That is, the packets 
[2] [2] [2c] [2c]X1 , · · ·  , X have been overheard by d2 and the packets X1 , · · ·  , X have nR1;2 nR1;2c 

[1] [1] [1c] [1c]not. Similarly, Y , · · ·  , Y have been overheard by d1 and Y , · · ·  , Y have 1 nR2;1 1 nR2;1c 
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Fig. 5.3. A broadcast PEC problem with side information. 

(a) (b) 

Fig. 5.4. (a) An example of random node placement for M = 2 sessions. 
(b) The constraint on the topological relationship between si and di. 
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not. X [2] and Y [1] packets can later serve as SI when decoding at d2 and d1, respec

tively. The total rates for each session are R1 = R1;2 + R1;2c and R2 = R2;1 + R2;1c . 

We then have the following proposition: 

Proposition 5.2.1 For any rate vectors (R1;2, R1;2c , R2;1, R2;1c ) for the broadcast PEC 

with SI in Fig. 5.3 and assuming that pr;d1 ≥ pr;d2 , one  can  communicate  the  values  

of all X and Y packets to d1 and d2, respectively, within  n channel usage if and only 

if (R1;2, R1;2c , R2;1, R2;1c ) satisfies 

R1;2 + R1;2c + R2;1c ≤ pr;d1 (5.1) 
p

R2;1 + R2;1c + r;d2 R1;2c ≤ pr;d2 . (5.2) 
pr;d1 

Remark: The broadcast capacity of Gaussian channel with SI has been considered in 

many papers (see [103] as a representative work). In addition to the difference of the 

settings of PECs and Gaussian channels, this chapter will also consider the best coding 

strategy at sources s1 and s2 and characterize the capacity as a linear programming 

problem. It is worth noting that for 3-session Gaussian broadcast channels with 

general SI, the capacity remains an open problem. On the other hand, in [104] we 

show that the capacity of 3-session broadcast PEC can be computed in a similar way 

as outlined in this paper. Recently, the capacity of 2-session broadcast PECs with 

instant packet-by-packet feedback (but without SI) is studied in [105]. 

Sketch of the proof of Proposition 5.2.1: 

Achievability: For any vector (R1;2, R1;2c , R2;1, R2;1c ) satisfying (5.1) and (5.2), 

perform the following 2-staged coding scheme sequentially. 

[2] [2] [1] [1] [1c] [1c] 

Stage 1: Whenever we can use the broadcast PEC, we mix the packets of the 

three groups: X to X , Y to Y , and  Y to Y by random linear 1 nR1;2 1 nR2;1 1 nR2;1c 

network coding (RLNC) [106] and generate one outgoing symbol. Repeat this random 

packet generation until we have sent out the following amount of randomly generated 

packets: 

nR1;2 + nR2;1c nR2;1 + nR2;1c 

max , . (5.3) 
p pr;d1 r;d2 
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[2c]Stage 2: Whenever we can use the broadcast PEC, we mix the packets of X1 

[2c]to X by RLNC and generate one outgoing symbol. Repeat this random packet nR1;2c 

generation until we have sent out the following amount of packets: 

nR1;2c 

. (5.4) 
pr;d1 

The decodability proof is straightforward as from rx 1’s perspective, d1 has re

ceived a sufficiently large amount of coded packets to decode the information packets 

in the three groups: X [2], X [2c], and  Y [1c] (since d1 has already heard the Y [1] packets). 

Similarly, d2 simply ignores the packets transmitted in Stage 2 and use the packets 

in Stage 1 to decode the desired two groups of packets Y [1c] and Y [1]. It remains to 

show that one can finish Stages 1 and 2 within the allowed n channel usages, which 

is equivalent to proving that (5.3) plus (5.4) is no larger than n. By noticing that 

(5.3)+(5.4)≤ n is satisfied for any (R1;2, R1;2c , R2;1, R2;1c ) vector satisfying (5.1) and 

(5.2), the proof of the achievability is thus complete. 

The converse part can be proven by deriving the lower bound on the amount of 

interference that session 1 will impose on destination d2. (Stage 2 of the achievability 

scheme carefully limits the amount of interference to the minimal possible amount, 
pr;d2 R1;2c , one can hope to achieve.) pr;d1 

Proposition 5.2.1 can be used to derive the 2-session relay network capacity by 

noting that if we let each of s1 and s2 send n packets by RLNC, we can maximize the 

overheard SI at d2 and d1, respectively. Based on this observation, the capacity of a 

2-session relay network becomes: 

Proposition 5.2.2 Assuming that pr;d1 ≥ pr;d2 , for a 2-session relay network without 

OpR (Fig. 5.1(b)), the rate pair (R1, R2) is achievable if and only if they satisfy 

(

)+
)

R1 ≤ min ps1;r, pr;d1 − (R2 − ps2;d1 

r;d2R2 ≤ min ps2;r, pr;d2 − 
p

(R1 − ps1;d2 )
+ , 

pr;d1 

where (·)+ is the projection to a non-negative number. 



108 

In the following, we generalize Proposition 5.2.2 for OpR (Fig. 5.1(a)) and for the 

case in which s1, s2, and  r have different amount of available time slots: nts1 , nts2 , 

and ntr, respectively. 

Proposition 5.2.3 Assuming that pr;d1 ≥ pr;d2 and variable transmission time nts1 , 

nts2 , and  ntr, for a 2-session relay network with OpR (Fig. 5.1(b)), the rate pair 

(R1, R2) is achievable if and only if they satisfy 

R1 ≤ ts1 ps1;d1 + min(ts1 ps1;rdc ,
1 

trpr;d1 − (R2 − ts2 ps2;d1∪d2 )
+) (5.5) 

R2 ≤ ts2 ps2;d2 + min(ts2 ps2;rdc ,
2 

pr;d2trpr;d2 − (R1 − ts1 ps1;d1∪d2 )
+). (5.6) 

pr;d1 

5.3 The Capacity of two hop coding with only XOR operations 

5.3.1 The Settings 

We consider N -sessions 2 hop relay network with each channel represented by 

a PEC.  Each  source  si intend to send symbols to di at rate Ri through the relay 

node. Direct communication between si and di is impossible. Relay node r is limited 

to perform XOR operations. After each transmission by the relay node r, it gets 

a feedback from all di nodes. We use tAr to represent the frequency that the relay 

node sends XORed packets formed by the packets of the sessions in the set A. We  

also use xA
i to represent the achievable rate for session i from the auxiliary session 

ABformed by XORing packets from the sessions in the set A. Symbol  xi represents 

the achievable rate for session i from the auxiliary session formed by XORing packets 

from the sessions in the set A with the constraint that session i packets that are used 
� � 

in XORing are received by exactly all the nodes in r ( dj ) before being XORed. j∈B 

We use Ri,A to represent the rate at which packets sent by si are overheared by all 

the nodes dj, j ∈ A, i �= j at the time they are transmitted by the relay node. 
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5.3.2 The Characterization 

The capacity region can be represented by the following four equations. 

ARi ≤ xi , ∀i (5.7) 
A:i∈A 

x A ≤ tA , ∀A, i ∈ A (5.8) i r pr,di 

x A 
i = x AB 

i ∀A, i ∈ A (5.9) 
B:(A\i)⊆B 

x AB 
i = Ri,A, ∀B, i /∈ B (5.10) 

A:(A\i)⊆B 

Necessity 

Using XOR coding, any coded packet is formed by xoring packets of session i, 

∀i ∈ A,where A is a set of sessions belonging to the power set of all sessions. Con

straint (5.7) states that the total rate of session i is the sum of the achievable rate 

for session i from all of the auxiliary sessions A, where  i ∈ A. 

Since tAr is the frequency of sending XORed packets by the relay node formed 

by packets of the sessions in the set A, node  di will receive XORed packets for the 

auxiliary session A from the relay node at rate tAr pr,di . Therefore, constraint (5.8) 

should be satisfied for any achievable XOR based code. 

Note also that (5.8) does not require the coded packet for the auxiliary session A 

to be received by all of di, i ∈ A, every time it is sent, any one of the di that receive 

this packet can decode it and it will count as a decodable packet. 

For any auxiliary session A and i ∈ A, the set of the packets for session i that 

are used in this auxiliary session should be received from si by all the nodes in the 
� � 

set r ( dj), because r should be able to relay the XORed packets formed in j∈A,j=i 

part by these packets, and also because all dj should have enough remedy to remove 

the components corresponding to these packets from the XORed packets and recover 

their respective packets. Also the set of packets for session i that are received from si 
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�	� 
by any super  set  of  r ( dj ) can be used in the XORed auxiliary session A, j∈A,j=i 

�	� 
because this will guarantee that all the nodes in the set r ( dj ) have received j∈A,j=i 

these packets. This explains the constraint (5.9). 

The right hand side of (5.10) Ri,A represents the rate of session i packets received 
� � 

by exactly all of the nodes in the set r ( dj ) after being sent by si. These  j∈A,j=i 

packets can be used by any auxiliary session A such that (A\i) ⊆ B. This is be

cause this guarantees that all of the nodes dj , j  ∈ A, i �= j will have enough remedy 

packets to remove session i components in the XORed packets. Therefore, we have 

constraint (5.10). We postpone calculating a closed form expression for Ri,A to the 

end of this section. 

Note that the packets sent by si can be divided among all of the auxiliary sessions 

A, i ∈ A. This is due to the following. 

•	 Because the right hand side of (5.10) represents the rate at which an exactly 

specific set of nodes are receiving the packets from si. Therefore every triple 

(i, A, B) can be assigned an exclusive share of these packets. 

AB•	 Because each xi appears only once in (5.9), the packets of session i that are 
� 

used in in the auxiliary session A will be B:(A\i)⊆B Yi
AB , where  Yi

AB are the 

set of set of packets assigned for the triple (i, A, B). 

An achievable coding scheme 

-Node si, ∀i keeps trying to send its NRi packets one-by-one until all of them are 

received by the relay nodes. 

-Feedback messages from all dj , j �= i to si are sent to the relay node r. 

A-For every set A, the relay node chooses the corresponding feasible xi , ∀i from 

the linear program depending on the objective function. It also assign NxA
i packets 

for every A and i, such that these packets are received by r and all j ∈ A, j �= i. As  

explained above, we can assign unique packets for every A. 
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-For every A the relay node XORs one packet from each NxA
i packets for all i ∈ A 

and sends this packet. If this packet is received by dj for j ∈ A, this means that 

the packets belonging to session j in the XORed packets can be recovered by dj . 

Therefore, we remove this packet from the set of packets assigned to j and A at the 

relay node. The relay node keep performing the XORing and sending untill all of the 

packets assigned for the set A at the relay node are empty. 

Computing Ri,A 

In this section, we provide a closed form expression for Ri,A. Since we keep sending 

a packet until it is received by the relay node, we have. 

Ri,A = tsi × (delivery rate from si to r) 

× (probability that r receives a 

symbol and by that time the symbol is received by 

exactly the nodes in dj , j ∈ A, j �= i) 
∞ 

= tsi psi,r psi,r(1 − psi,r)
n−1(Πj /∈A(1 − psi,dj )

n)Πj∈A(1 − (1 − psi,dj )
n) 

n=1 

2 = tsi psi,r× 
∞ 

� �n−1 � � 
Πj /∈A(1 − psi,dj ) (1 − psi,r)Πj /∈A(1 − psi,dj ) Πj∈A(1 − (1 − psi,dj )

n) 
n=1 

2 = tsi p Πj /∈A(1 − psi,dj )×si,r

∞ 
� �n � � 

)n+1)(1 − psi,r)Πj /∈A(1 − psi,dj ) Πj∈A(1 − (1 − psi,dj
 

n=0
 

2 = tsi psi,rΠj /∈A(1 − psi,dj )× 
∞ 

)n+1][(1 − psi,r)Πj /∈A(1 − psi,dj )]
n[ Πk∈D(1 − psi,dk .
 

n=0 D:D⊆A
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By Fubini’s theorem we have. 

2Ri,A = tsi psi,rΠj /∈A(1 − psi,dj )× 
∞ 

Πk∈D(1 − psi,dk ) [(1 − psi,r)Πj /∈A(1 − psi,dj )Πk∈D(1 − psi,dk )]
n 

D:D⊆A n=0 

2 = tsi psi,rΠj /∈A(1 − psi,dj )× 

1 
Πk∈D(1 − psi,dk ) 1 − [(1 − psi,r)Πj /∈A(1 − psi,dj )Πk∈D(1 − psi,dk )]D:D⊆A 

5.4 Two-hop Relay Network Simulations 

5.4.1 The Variants of Optimal Intersession Network Coding (INC) 

The optimal capacity of INC in Proposition 5.2.3 is cast as a linear-programming 

problem and contains three orthogonal components: (i) INC via the new coding-based 

argument in Proposition 5.2.1, (ii) Opportunistic Routing (OpR) via modelling the 

overhearing opportunities as the 1-to-3 PECs of s1 and s2 in Fig. 5.1(a), and (iii) 

Cross-Layer (CL) design via variable transmission time ts1 , ts2 , and  tr. One  can  thus  

quantify the improvement of each component. For example, with CL we are allowed 

to optimally choose ts1 to tr with ts1 + ts2 + tr = 1 assuming that the node exclusive 

model is used and s1, s2, and  r cannot transmit simultaneously. If without CL, we 

simply set ts1 = ts2 = tr = 1/3 for fair time-sharing between the sources and the relay. 

If OpR is not allowed, we simply use the extended version of Proposition 5.2.2 with 

added time variables t’s. We denote the four variants of the INC schemes, depending 

on whether we use OpR or CL or not, by (INC, OpR, CL), (INC, OpR, ×CL), (INC, 

×OpR, CL), (INC, ×OpR, ×CL). 
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5.4.2 The Baseline Non-Coding Scheme and Its Variants 

If we use a single-hop routing scheme without OpR, then the capacity region can 

be described as 

Ri ≤ min(t p , t[i]p ), ∀i ∈ {1, 2}, (5.11) si si;r r r;di 

where tr 
[i] is the amount of time that r sends the session-i packets. If we allow OpR, 

for which the packets can directly reach its 2-hop-away destinations, the capacity 

region becomes 

Ri ≤ tsi psi;di + min(tsi psi;rdci 
, t[r

i]pr;di ), ∀i ∈ {1, 2}. (5.12) 

Whether to use CL or not will impose different time sharing constraints on tsi and 

tr 
[i] in a similar way as discussed in Section 5.4.1. (5.11) and (5.12) can thus be used to 

generate four variants of non-coding schemes, depending on whether we use OpR or 

CL or not. We denote the four variants by (×INC, OpR, CL), (×INC, OpR, ×CL), 

(×INC, ×OpR, CL), (×INC, ×OpR, ×CL). The simplest scheme (×INC, ×OpR, 

×CL) will be used as the baseline of all our numerical comparison. 

5.4.3 Schemes for More Than 2 Sessions 

The ×INC schemes described in (5.11) to (5.12) can be easily generalized to the 

case when there are M > 2 sessions, for which (5.11) and (5.12) hold for i = 1  to  M ; 

and the time sharing constraints without CL become 

M
1 1 

∀i ∈ {1, · · ·  ,M} tsi = , and tr 
[i] = ,

M + 1 M + 1
i=1 

M M 
[i]or when CL is used: tsi + tr = 1. 

i=1 i=1 

Proposition 5.2.3 describes the INC-based schemes for M = 2. In [104], Propo

sition 5.2.3 has been generalized for M = 3 and new upper and lower bounds are 
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provided for general M > 3, which are empirically tight for most PEC channel pa

rameters when M ≤ 5. In our simulation results, we also include the curves for M = 3  

to 5 for better comparison. 

5.4.4 Practical, Low-Complexity Schemes for M > 2 

Optimally performing INC over multiple sessions, say M = 5, is an exponentially 

complicated process as it requires carefully taking advantages of the various overheard 

portions of the data stream. In this paper, we thus consider some suboptimal but 

more practical schemes as follows. 

Multipath Routing 

Unlike the single-path routing, each source si can choose whether to directly send 

the packets to the 2-hop-away destination at the cost of higher drop rate (since 

psi;di is generally less than psi;r), or to send the packets through the relay r. The  

corresponding capacity is thus characterized by the following linear program: 

( )

[direct] [relay] [i]R p + min t p , t p .i ≤ tsi si;di si si;r r r;di 

LM [direct] [relay] [i]With CL, we enforce that i=1 tsi + tsi + tr ≤ 1. 

2-INC and 3-INC 

To reduce complexity of INC over multiple sessions, we can limit the number of 

sessions to be coded together and use linear programming to optimally identify which 

sessions to encode. For example, 2-INC denotes a scheme that allows INC only over 

two sessions while optimally allocating the corresponding time-sharing percentage. 

The following linear constraints describe the capacity region of 2-INC without OpR. 
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{i,j}Ri ≤ Ri ∀i ∈ {1, · · ·  ,M} 
j:j=i 

({i,j} {i,j}∀i, j, i � R ≤ min t= j, i si 
psi;r, 
( )+ 

{i,j} pr;di {i,j} {i,j}t − min 1, R − t ,r pr;di j sj 
psj ;di pr;dj 

where {i, j} is an � j ≤ M . For  unordered pair of distinct indices with 1 ≤ i = 
( ){1,2} {2,1} Mexample, both notations ts1 and ts1 refer to the same variable. There are 2 

( )

M {i,j}different unordered {i, j} pairs. Therefore, there are totally 2 · 2 variables of Ri , 
(

M
) {i,j} (M) {i,j}2 · 2 variables of tsi , 2 variables of tr , and  M variables of Ri. With CL, we 

{i,j} {i,j}require the sum of all tsi and tr to be ≤ 1. Similar formulation can be made by 

combining the 3-session INC capacity in [104] to derive a 3-INC scheme for general 

M ≥ 3. 

A multicast-based scheme in [27] 

In Section 4 of [27] an INC scheme, denoted as the CCH scheme, is proposed 

based on using several multicast sessions (totally 2M − 1 multicast sessions) to serve 

the need of M unicast sessions. Each multicast session is indexed by C ∈ 2{1,··· ,M}, 

which contains all sessions participate in this multicast session. The corresponding 

capacity region is described by the following linear constraints: 

Ri ≤ Ri
C , ∀i ∈ {1, · · ·  ,M} 

C:i∈C 

C ,M}, ∀C ∈ 2{1,··· ,M}Ri
C ≤ tsi 

psi;r, ∀i ∈ {1, · · · 
  

RC RC C C
≤ t pr;di + psj ;di ,i + j r tsj 

j:j∈A\i j:j∈A\i 

,M}, ∀C ∈ 2{1,··· ,M}∀i ∈ {1, · · ·  , ∀A ⊆ C, 

where Ri
C , tCsi 

, and  tCr are the rate of session i, and the time allocations of si and r 

for the multicast session C, respectively. With CL, we require the sum of all tCsi 
and 

tCr to be ≤ 1. 



 

 

 

 

116 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 
S

um
 ra

te
 (S

i=
1

M
 R

 i) 
(INC,OpR,CL) 
(OpR,CL) 
(INC,CL) 
(INC,OpR) 
(CL) 
(OpR) 
(INC) 
baseline 

2 3 4 5 6
 
No. of sessions (M)
 

Fig. 5.5. The average sum rates for different schemes combining INC, 
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5.4.5 Numerical Experiments 

We compare the throughput of various schemes on randomly constructed 2-hop 

relay networks. Our construction starts from a unit circle with the relay r placed at 

the center. We then uniformly randomly place M source nodes si and M destination 

nodes di in the circle (see Fig. 5.4(a)). The only condition we impose is that for 

each (si, di) pair, di must be in the 90-degree pie area opposite to si (see Fig. 5.4(b)). 

For each randomly constructed network, we use the Euclidean distance between each 

node to determine the overhearing probability. More explicitly, for any two nodes 

separated by distance D we use the Rayleigh fading model to decide the overhearing 
� − x Δ2x 1probability: p = ∞ 

σ2 e σ

2

2 dx, where  we  choose  σ2 = , the path loss order T ∗ (4π)2 Dα 

α = 2.5, and the decodable SNR threshold T ∗ = 0.06. Fig. 5.2 plots the overhearing 

probability p versus distance D. We assume that the overhearing event is independent 

among different receivers. 

For each randomly generated network, we compute the overhearing probabilities 

and use the corresponding linear constraints on the time-sharing variables t’s and the 

rate variables R’s to compute the achievable rate of each scheme. A common linear 

objective function is used for all different schemes, which is described in the following: 

M 

max 
t’s, R’s, β 

i=1 

Ri (5.13) 

subject to Ri = β min (psi;r∪di , psi;di + pr;di ) , ∀i, (5.14) 

linear ineq. for the scheme of interest. 

Namely, we are interested in maximizing the sum rate while (5.14) enforces that the 

rates are proportional to the unicast capacity with fair scheduling (assuming all other 

sessions j �= i remain silent). Constraint (5.14) thus ensures fairness proportional to 

the inherent interference-free capacity. 

Given a randomly generated network, the achievable sum rates are computed 

for all the schemes. We then repeat this computation for 1000 randomly gener

ated networks. Let ζ∗ denote the achievable sum rate of the given scheme for 
scheme,k 
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the k-th randomly chosen topology. We are interested in the following two perfor
L1000 mance metrics. The average sum rate over 1000 topologies 1 ζ∗ and 1000 k=1 scheme,k 

ζ∗ Δ scheme,kper topology improvement = .ζ∗ 
baseline,k 

A common baseline scheme, the vanilla (×INC, ×OpR, ×CL) scheme as described 

in Section 5.4.2, is used when computing the Per Topology Improvement (PTI). The 

above procedure is then repeated for different M values. 

Fig. 5.4.4 plots the sum rates of different schemes with respect to (w.r.t.) the 

number of sessions. To satisfy the proportional fairness constraint in (5.14), the sum 

rate of the baseline scheme decreases w.r.t. M due to the increased congestion at relay. 

On the other hand, schemes using CL and INCs successfully mitigate the congestion 

as their rum rates remain flat (even after satisfying (5.14)) for large M . When  we  

jointly incorporate all three techniques: INC, OpR, and CL, not only the congestion is 

resolved but sum rate also increases w.r.t. M by taking full advantage of the spatial 

diversity, which mounts to x6.5 improvement over the baseline single-hop routing 

scheme when M = 6. We also plot the empirical cumulative distribution function 

(CDF) of PTI for the 1000 random topologies with M = 5. The (INC,OpR,CL) 

scheme achieves x3.8 to x6.5 throughput improvement when compared to the baseline 

scheme. 

We also compare the practical schemes discussed in Section 5.4.4. Fig. 5.4.4 plots 

the average sum rates versus M . Among all practical schemes, 3-INC realizes the 

largest percentage of the gains of the optimal INC scheme. 2-INC schemes has similar 

performance to the CCH scheme for M = 2–5. The 2-INC scheme has lower complex
(

M
)

ity as it considers only 2 pairs of sessions, while the CCH scheme jointly considers 

all 2M − 1 different multicast sessions. All INC schemes do not allow direct si to di 

communication (i.e., without OpR) but can still outperform the multipath-routing 

schemes with direct (si, di) links by an additional 10–20% for M = 5. Fig. 5.4.4 plots 

the PTI for 25 representative topologies whose sum rates are the i/25-th quantile 

points when sorting the 1000 topologies according to the ascending order of the sum 

rates of the baseline scheme. As shown in Fig. 5.4.4, the practical INC schemes and 
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the optimal INC scheme demonstrate uniform PTI (3.5–4.7) for all topologies. In 

general, the more congested the original topology is, the higher PTI we have when 

using INC schemes (other than the multipath-routing scheme) to resolve congestion, 

which is illustrated by the negative trend of the PTI when moving from the 1st to 

the 25-th quantile point topology. 

5.5 Conclusion 

In this chapter, we have derived the capacity region for 2-hop relay network with 

two sessions under the PEC channel model and no opportunistic scheduling assump

tion. We have also characterized the capacity region of the same network with ar

bitrary number of sessions when only XOR operations are allowed. Both character

izations are represented by a linear program. We also provide capacity approaching 

codes for the characterized problems. Additionally we have constructed and com

pared various inter-session coding schemes for practical 2-hop relay networks both 

theoretically and numerically, which have demonstrated significant throughput ben

efits (x3.8–x6.5) when compared to the baseline single-path routing solution. In the 

next chapter we use our results in this chapter to provide a coding scheme that en

hances the achievable rate region of a general multihop lossy wireless network. 
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6. INTERSESSION NETWORK CODING FOR LOSSY 

WIRELESS MULTIHOP NETWORKS 

6.1 Main Contribution 

In this Chapter we consider a general lossy wireless multihop network. For such 

networks the use of opportunistic scheduling is impractical. Therefore, two techniques 

have been used to maximize the capacity. These are opportunistic routing as in [27, 

75, 107] and intrasession network coding as in [28, 108, 109]. These techniques do 

not allow intersession network coding which limits the achievable capacity. In this 

chapter we build on the results from the previous chapter to study the throughput 

benefits of using intersession network coding in such networks. We provide a linear 

programming formulation of the achievable rate region and compare it to the other 

previously used techniques. 

6.2 Settings 

We consider a general multihop wireless network represented by a graph G = 

(V, E), where V is the set of vertices representing the nodes and E is the set of edges 

representing the links between the nodes. Transmission by a node can be overheared 

by multiple nodes and we model this by a hyperarc (i, J), where i is the transmitter 

and J is a subset of the set of direct receivers. Every broadcast channel with K 

receivers is modelled by a 1-K PEC. There are N sessions in the network. For every 

session c, the  source  node  SRC(c) wants  to  send  packets  at  rate  fc to the session’s 

destination node DST (c) over possibly multiple intermediate nodes. We use P(c) to  

refer to the path used for session c. For  every  node  i on path P(c), V1(i, c) represents  

the next hop node on that path and V2(i, c) represents  the  next  hop  node  of  V1(i, c) 
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on P(c). We assume that every sent packet is either a packet formed by intrasession 

coding packets of one session or intersession coding different sessions’ packets. This 

cinclude the case of sending non-coded packets as a special case. We use yij to represent 

the rate of linearly independent intrasession coded packets for session c that is sent by 

i and can be decoded by j, if j is DST (c) or  can  be  forwarded  by  j otherwise. Symbol 

ycX represent the same as yc but for intersession coded packets. The fraction of time ij ij 

node i is scheduled for sending session c intrasession coded packets is represented by 

αi
c and αi

X represents the fraction of time node i is scheduled to send intersession 

coded packets. Symbol αi represents the fraction of time node i is scheduled. 

6.3 Formulation without Intersession Network Coding 

Without using intersession network coding and if we do not have specified paths, 

the linear constraints that specify the capacity region are as follows. 
⎧
 
⎪
 
⎨−fc i = SRC(c) 

y c − y c ≤ ∀c, i ∈ E\DST (c) (6.1) ji ij 
⎪ 
⎩j:i=j j:i=j 0 Else, 

c yij ≤ αi
c piJ , ∀(i, J), c.  (6.2) 

j:j∈J 

where piJ is the probability that any node in J receive the packet. 

The constraints in (6.1) represent balance equations such that the total received 

linearly independent packets and the total generated packets at a node should be at 

most equal to the totaly sent linearly independent ones. Constraint (6.2) states that 

for any set of nodes that can receive the sent packets by a specific node, the total 

number of linearly independent packets that these nodes can forward equal to the 

probability that anyone of these nodes received the packet which is piJ . 

If the paths are not specified, the solution of ((6.1)-(6.2)) will result in a back-

pressure algorithm which has bad delay performance and might not converge to the 

optimal solution as noted in [72,74]. Therefore, in the following we study the case of 

specified paths. The formulation becomes. 
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⎧ 
⎪ 
⎨−fc i = SRC(c)

c c c c y − y − y ≤	 ∀c, i ∈ E\DST (c) (6.3) j1i + yj2i iV1(i,c) iV2(i,c) 
⎪ 
⎩0 Else, 

Where i = V1(j1, c), i = V2(j2, c)	 (6.4) 

y c i, j ∈ P(c)	 (6.5) ij ≤ αi
c pij , ∀c, 

(	 )

c c ≤ αc yiV1(i,c) + yiV2(i,c) i pi;V1(i,c) + pi;V2(i,c) − pi;V1(i,c)pi;V2(i,c) ∀i ∈ P(c). (6.6) 

The above formulation can be obtained by noting that the only hyperarc for a node 

with session c is the one with the receivers being V1(i, c) and  V2(i, c). This modelling 

agrees with practical implementations of intrasession network coding as in [28, 108] 

which state that overhearing of a node transmission over a path happens only for one 

and two hop away nodes. 

6.4 Extension to Intersession Network Coding 

6.4.1 Single hop Coding Restrictions for Intersession Network Coding 

It is hard to characterize the general capacity region of lossy wireless multihop 

networks. Therefore, in this section we provide a restriction under which we can char

acterize the capacity region by linear constraints. The restriction is that intersession 

network coding is limited to be in the form of 2-hop relay network, where the coding 

node is the relay node and the decoding nodes are subset of the next hop nodes of the 

relay node. Therefore, the general lossy multihop network can be decomposed into a 

superposition of non-intersession coding traffic and intersession network coding traffic 

in 2-hop relay networks. The assumption we have has the following implications on 

the capacity region. 

•	 In Fig. 6.1 if there are two sessions one of them goes through the path v1w2v2rv3 

and the other one goes through u1u2ru3. Intersession network coding can hap

pen at node r. Due to our restriction, we assume there is no side information 

from w2 to u3 nor from u1 to v3. If such side information exist, we ignore them. 
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Fig. 6.1. An example of network with two flows to explain the single hop 
coding restrictions. 

• If in the same figure there is another session that goes through w1w2w3, and  node  

w2 is acting as a relay node for performing intersession network coding between 

this session and the session that goes through v1w2v2rv3, and the intersession 

coded packets are overheared by r, node  r will deal with these packets as useless 

and drop them. 

6.4.2 The Capacity of 2-hop Relay Network 

In Chapter 5 we have characterized the capacity region of 2-hop relay network 

with 2 sessions. In order to use these results to enhance the achievable rate for 

multihop networks, we need to extend the characterization to the case of arbitrary 

number of sessions. Based on our results in Chapter 5, the work in [104] does the 
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extension. In the extension, both an upper and lower bounds were provided. For 

the case of less than four sessions the two bounds are the same which represents 

the capacity region. For four sessions or more the two bounds agrees 99% of the 

time. Both the upper and lower bounds can be solved by linear programs. Under the 
Δ Δ

assumption that the channels are independent, let α = [αr,αs1 , . . . ,αsN ], psld = 
Δ Δ

[p , . . . , p , p , . . . , p ], psd = [ps1d, . . . ,psNd], ps = [ps1;r, . . . , p ],sl;d1 sl;dl−1 sl;dl+1 sl;dN sN ;r

Δ
and pd = [pr;d1 , . . . , pr;dN ]. In the case when dl cannot overhear sl, we  use  

CapO(α,psd,ps,pd) =  

{(R1, . . . , RN ) :  The  rates  R1, . . . , RN satisfy the upper bound constraints.} 

and we use 

CapI(α,psd,ps,pd) =  

{(R1, . . . , RN ) :  The  rates  R1, . . . , RN satisfy the lower bound constraints.} 

For example when N = 2, the rates that satisfy 

R1 ≤ min(αs1 ps1;r,αrpr;d1 − (R2 − αs2 ps2;d1 )
+) 

)+ pr;d2R2 ≤ min(αs2 ps2;r,αrpr;d2 − (R1 − αs1 ps1;d2 ) 
pr;d1 

belong to both CapO(α,psd,ps,pd) and  CapO(α,psd,ps,pd), because both the up

per and lower bounds are the same when N = 2.  When  dl can overhear sl, and if 

dl forwards γlpsl;dl linearly independent symbols of the overheared packets or decode 

them if it is the last destination of the packets, intersession network coding should 

happen for the symbols in the complementary spaces of the forwarded or decoded 
Δ Δ

symbols. Let γ = [γ1, . . . , γN ] and  p� = [p , . . . , psN ;dN ] in this case we use 
sd s1;d1 

Cap�O(γ,α,p � (R1 − γ1p , . . . , RN − γN p ) :sd,psd,ps,pd) =  s1;d1 sN ;dN 

The rates R1, . . . , RN satisfy the upper bound constraints when dl can overhear sl. 

and we use 

Cap�I(γ,α,p � sd,psd,ps,pd) =  
� 
(R1 − γ1ps1;d1 , . . . , RN − γN psN ;dN ) :  

The rates R1, . . . , RN satisfy the inner bound constraints when dl can overhear sl. . 
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For example when N=2 we any (R1
� , R2

� ) that satisfy the following constraints belong 

to both Cap�O(γ,α,p
sd
� ,psd,ps,pd) and  Cap�I(γ,α,p

sd
� ,psd,ps,pd), because both 

the upper and lower bounds agree when N = 2.  

R� ≤ min(Y1,αrp − (R2 − Z1)
+)1 r;d1 

R2 
� ≤ min(Y2,αrpr;d2 − (R1 − Z2)

+)
pr;d2 ), 
pr;d1 

where Y1, Y1, Z1, Z2 satisfy the following. 

Y1 ≤ αs1 (ps1;r + ps1;d1 − ps1;d1 ps1;r) − γs1;d1 ps1;d1 . 

Y1 ≤ αs1 ps1;r. 

Y2 ≤ αs2 (ps2;r + ps2;d2 − ps2;d2 ps2;r) − γs2;d2 ps2;d2 

Y2 ≤ αs2 ps2;r. 

Z1 ≤ αs2 (ps2;d1 + ps2;d2 − ps2;d1 ps2;d2 ) 

Z1 ≤ αs1 (ps1;d2 + ps1;d1 − ps1;d2 ps1;d1 ) 

Using random network coding and when considering the symbols directly received 

from sl by any dm or r, any two symbols related to two different received packets are 

linearly independent. Therefore, using the feedback the relay will be able to know the 

coefficients related to the received packets by it’s next hop nodes to generate packets 

with coefficients in their complementary space. 
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6.4.3 Formulation with Intersession Network Coding 

The following linear equations represent an upper bound on the capacity region. 
⎧ 
⎪ 
⎨−fc i = SRC(c)

c c cX c c cX y − y − y − y ≤ ∀c, i ∈ E\DST (c)j1i + yj2i + yj1i iV1(i,c) iV2(i,c) iV1(i,c) 
⎪ 
⎩0 Else, 

Where i = V1(j1, c), i = V2(j2, c) (6.7) 

c yij = γij
c pij ≤ αi

c pi;j , ∀c, i, j ∈ P(c) (6.8) 
( )

c c yiV1(i,c) + yiV2(i,c) ≤ αi
c pi;V1(i,c) + pi;V2(i,c) − pi;V1(i,c)pi;V2(i,c) ∀i ∈ P(c). (6.9) 

c1(i)X ck(i)X i i �i i i i(y , . . . , y  ) ∈ Cap�O(γ ,α ,p ,p ). (6.10) iV1(i,c1(i)) iV1(i,ck(i)) sd,psd,ps d

Here, k is the number of sessions intersecting at node i. These sessions are 

c1(i), . . . , ck(i) and  we  use  j1(i, cl(i)) such that i = V1(j1(i, cl(i)), cl(i)). Also, we 
Δ Δi i ,αc1(i)have γ = [γc1(i) ] α j1(i,c1(i))

, . . . ,αck(i) ]j1(i,c1(i))V1 (i,c1(i))
, . . . , γck(i) = [αX 

j1(i,ck(i))V1 (i,ck(i)) i j1(i,ck(i))

Δ�ip = [pj1(i,c1(i));V1 (i,c1(i)), . . . , pj1(i,ck(i));V1 (i,ck(i))],sd 

Δip
sld = [pj1(i,cl(i));V1(i,c1(i)), . . . , pj1(i,cl(i));V1 (i,cl−1(i)), pj1(i,cl(i));V1 (i,cl+1(i)), . . . ,  

Δ Δ Δi i i i ipj1(i,cl(i));V1 (i,ck(i))], psd = [p
s1d

, . . . ,p
skd

], ps = [pj1(i,c1(i));i, . . . , pj1(i,ck(i));i], and p
d = 

[pi;V1(i,c1(i)), . . . , pi;V1(i,ck(i))]. For session c, any  node  i has three different kinds of in

coming packets and three different kinds of outgoing packets. The incoming packets 

types are intrasession received from previous hop with rate yc , intrasession packets j1i

overheared from two-hop away node with rate yj
c 
2i, and intersession coded packets 

cXreceived from previous hop with rate yj1i . Note that due to the restriction we have, 

intersession coded packets overheared from two hop away nodes are dropped. The 

outgoing packets can also be classified as intersession with rate ycX , intrasession iV1(i,c)

that is received and used by the next hop with rate yc and intrasession that is iV1(i,c) 

overheared and used by the next two hop away nodes with rate yc 
iV2(i,c)

. 

The constraints in (6.7) state that at every node and for every session the total 

incoming traffic at a node should be equal to the total outgoing traffic. The con

straints (6.8)-(6.9) are for intrasession network coding and are the same as in the 

previous section. Constraints (6.10) specify the intersession coding rate at node i by 
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treating it as a relay node in a 2-hop relay network. Due to the restriction we have, at 

node i only the incoming intrasession coded traffic from previous hop can be used for 

intersession network coding at node i. This is reflected in the formulation by using 

αi as the second arguments of Cap�O which only contains the intrasession scheduling 

frequency of the previous hop nodes of node i. Since γc1(i) pj1(i,cl(i));V1 (i,cl(i))j1(i,cl(i))V1 (i,cl(i))

is the rate of the intrasession coded packets for session cl(i) that are  sent  by  node  

j1(i, cl(i)) and overheared by the the node V1(i, cl(i)) and used by that node, the 

first argument in Cap�O states that intersession network coding is performed in the 

complementary space of the symbols related to these packets. 

6.5 Numerical Results 

To show the benefits of intersession network coding, we use randomly generated 

topologies of fifteen nodes located in a 6×6 unit square area. We compute the delivery 

rate between the nodes the same way as in previous chapter. We choose α = 2.5 and  

T ∗ = 0.1. For simplicity, we assume that the channels are orthogonal and every node 

can be scheduled in every time slots. This can be achieved by equipping the nodes 

with multiple-input and multiple-output (MIMO). For each possible source and sink 

pair we find the path that minimize the ETX metric as defined in [110]. For each 

source, we mark the longest path among the found paths that minimize the ETX 

metric. We randonly select K paths from the marked ones to perform the simulation. 

For each value of K we simulated 200 different topologies. Fig 6.2 represents the 

average gain of intersession network coding ((6.7)-(6.10)) over the intrasession network 

coding solution ((6.4)-(6.6)) when the objective is to maximize the total throughput. 

We report the network coding gain when the lower and upper bounds agree. As the 

number of the sessions increases, the gain of intersessions network coding increases 

due to the fact that we have more sessions going through a node which increases the 

intersession coding opportunities. Figure 6.3 shows that intersession network coding 

http:6.7)-(6.10
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Fig. 6.2. Average Gain of Intersession network coding for randomly gen
erated topologies with respect to the number of sessions in the network. 
The Objective is to maximize the total throughput of the network. 

gain is even more when the objective function is to achieve strict fairness among the 

flows. 

6.6 Conclusions 

In this chapter we provided a formulation for using intersession network coding in 

lossy multihop wireless network. The formulation is in a form of linear program. To 

achieve the throughput provided by the formulation, random linear coding is required. 

The capacity achieved by the linear constraints is not in general the capacity region of 

multihop wireless networks, but our simulations show large gain over the traditional 
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Gain of intersession network coding with strict fairness 
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Fig. 6.3. Average Gain of Intersession network coding for randomly gen
erated topologies with respect to the number of sessions in the network. 
The Objective is to achieve strict fairness among the flows. 
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intrasession network coding schemes. The gain is also increasing with respect to the 

number of sessions in the network. 



133 

7. CONCLUSION AND FUTURE WORK 

7.1 Summary of Contribution 

Intersession network coding is a very rich research area. The major open problem 

in this area is to explicitly characterize the capacity region of the network with many 

sources sending at different rates to different sets of sinks and to design the corre

sponding coding scheme that can achieve the capacity. Since such problem is shown 

to be NP-hard and linear network coding is not sufficient for such a problem, in this 

dissertation we put some restrictions on the number of sessions to be mixed together, 

or the structure of the topology such that optimal solutions can be implemented in a 

distributed and fast way using linear coding. 

For wireline networks, we restricted any coded packet to be a result of coding at 

most two original packets. Based on the results in [66, 67], we have designed both 

optimal distributed rate control algorithm and optimal distributed coding scheme for 

the problem of multiple-unicast-sessions. The decision of assigning rates at different 

links in the rate control algorithm is controlled by the queue lengths at different 

links and done in a distributed way. In the coding scheme few links are selected in 

a distributed way; random network coding is performed in all of the remaining links 

and decoding operations are performed on the selected links. 

The results obtained in wireline networks were extended to wireless networks 

with opportunistic scheduling capability. This means that the channel conditions are 

known prior to transmission. We developed cross-layer rate control frameworks for 

wireless multihop networks. The solutions require minimal interactions between the 

layers where every layer has its own distributed algorithm. Two approaches have been 

used to develop the algorithms. The first approach is a path-based one which con

verges quickly, and makes it easier to study the impact of imperfect scheduling under 
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both the static and stochastic arrival models. The second approach is a back-pressure 

approach where the framework can be extended to include energy minimization. The 

back-pressure approach also allows the decoded packets to be reencoded again which 

results in an improved capacity region. The back-pressure algorithm searches for local 

coding opportunities which results in a reduced complexity algorithm. The coding 

scheme developed for wireline networks can be used in wireless networks, but it re

quires large computation processing, which is not suitable for most wireless networks. 

Therefore, we proposed an XOR based coding scheme that achieves the same perfor

mance as the coding scheme designed for wireline networks with a lower processing 

overhead. 

We studied another wireless networks settings by removing the assumption of op

portunistic scheduling to consider more realistic conditions. For this channel model, 

we proposed a coding scheme for single-hop intersession network coding that out

performs existing schemes. The relay node uses its knowledge about the erasure 

probabilities of the links to decide wether to perform intersession or intrasession net

work coding. We characterized the capacity region obtained by this scheme using a 

set of linear equations. When the number of sessions in the network is two, we show 

that the scheme achieves the capacity region of the network. 

In the following we discuss different future research directions. Some of these 

directions are extensions of the work in this dissertation and hence can be conducted 

under the same settings considered here i.e., either (i) pairwise intersession network 

coding for both wireline networks and wireless networks with opportunistic scheduling 

capability, or (ii) single-hop intersession network coding for wireless networks without 

opportunistic scheduling capability. The rest are under new proposed settings. We 

believe that such new proposed settings might result in an easy characterizations and 

implementable algorithms for intersession network coding. 
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7.2 Future Research Directions 

7.2.1	 Integrating Our Solution with TCP 

The technique we provided in Chapter 2 achieves the optimal solution with pair-

wise intersession network coding. However, it is difficult to implement this approach 

in practice, because the internet which is the most common wireline network uses 

TCP. Therefore, it is crucial for our approach to be integrated with TCP and the 

internet. Many challenges arise in this direction. One of these challenge is that TCP 

uses window flow control and the objective function that it tries to maximize is im

plicit. Also, TCP uses special kind of feedback messages, handshaking mechanism, 

and specific packet format. Therefore, it is crucial to reverse engineer TCP and study 

the effect of integrating pairwise intersession network coding with TCP. 

7.2.2	 Distributed Scheduling Algorithm for Pairwise Intersession Net

work Coding under more General Interference Models. 

The frameworks in Chapters 3 and 4 decompose the problem into different prob

lems for each different layer. The most difficult problem is the MAC layer problem 

which might be NP-hard in some cases. The requirements are to develop distributed 

and low complexity algorithm with good performance guarantees, because it has to 

run at each time slot. The developed algorithms should also take into account that 

network coding exploits the broadcast advantage of wireless networks. This makes 

the problem with network coding different from that without network coding. The 

algorithm developed in Chapters 3 and 4 is based on the assumption of the node ex

clusive model. Also its worst case performance guarantee is 13 of the optimal solution. 

Without network coding there have been many scheduling algorithms developed for 

more general interference models with good performance guarantees [111–117]. In

sights provided by these algorithms can be used as the first step towards developing 

distributed MAC layer algorithms for network coding with good performance guar
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antees. The characterization of broadcast link size in Chapter 4 can also help in 

reducing the complexity of any proposed algorithm. 

7.2.3	 The Capacity Region of Single-hop Intersession Network Coding 

without Opportunistic Scheduling and More than Two sessions 

In Chapter 5 we provided a coding scheme that can achieve the capacity of the 

network under the assumption of single-hop intersession network coding, no oppor

tunistic scheduling, and erasure channel model. The scheme achieves the capacity 

region when the number of sessions is two. When the number of sessions is more than 

two, the coding scheme provides improvement over existing schemes, but no proof 

of the capacity achievement was provided. One extension of the work in Chapter 5 

would be to prove or disprove that the provided coding scheme achieves the capacity. 

If it does not achieve the capacity, it would be interesting to know how much close to 

the capacity does it perform. Another extension would be to design network codes 

for other channel models like gaussian channels. 

7.2.4	 More Complex Pairwise Intersession Network Coding 

The main result in [66, 67] is a characterization theorem for the necessary and 

sufficient conditions for transmitting two symbols through two sessions such that one 

symbol belongs to each session. One extension of the results in [66,67] is to consider 

sending more than one symbol through each session. The superposition approach in 

Chapter 2 does not achieve the capacity in general. One example where the capacity 

can not be achieved using the superposition approach is the network in Fig. 7.1. For 

this network the rate region (R1 = 1,R2 = 2) is not achievable using the superposition 

approach, while the linear coding scheme in the figure achieves this capacity region. 

It can be shown using the results in [11], that (R1 = 1,R2 = 2) is the capacity region 

of the network. As can be noted from Fig. 7.1, both intersession and intrasession 

network coding are required to achieve the capacity. We expect the necessary and 
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sufficient conditions for two sessions such that more than one symbol is sent through 

each session to be cut based conditions. 

s2s1 

d2 d1 

Y2 

Y1 

Y1 + Y2 

X1 

X1 + Y1 

X1 + Y1 

X1 

X1 + X2 + Y1 

Fig. 7.1. An example where the superposition approach in Chapter 2 does 
not achieve the capacity of the network. 

7.2.5 k-hop intersession network coding without opportunistic scheduling 

In this dissertation we have studied pairwise intersession network coding that is not 

limited to single-hop coding with the assumption of opportunistic scheduling. When 

the opportunistic scheduling assumption was removed, we developed optimal coding 

schemes policies for single-hop intersession network coding. It worths investigating 
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intersession network coding over k-hops when opportunistic scheduling is not possible. 

Fig. 7.2 gives a two-hop example where the capacity region represented by (R1 = 

0.5, R2 = 0.5) is achievable, but neither opportunistic routing nor a superposition of 

single-hop intersession network coding and opportunistic routing can achieve the rate 

region. 

s1 

d1 

s2 

d2 

Fig. 7.2. An example to illustrate the importance of characterizing inter-
session network coding for more than one hop. Every link has a delivery 
probability of 0.5. 

7.2.6	 Reduced Complexity and provably efficient coding scheme for 2-hop 

relay network with PEC model 

The generalization of our scheme in Chapter 5 that is presented in [104] requires 

exponential number of decisions with respect to the number of sessions at the relay 

node. This makes this scheme impractical when the number of sessions is more than 5. 

One direction worthy of study is to propose schemes that requires linear or polynomial 

number of decisions at the relay node and to study their performance loss. 
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7.2.7	 Distributed Algorithms for Intersession Network Coding in lossy 

Multihop Wireless Networks. 

One interesting direction worthy of investigation is to achieve the gains in Chap

ter 6 in a distributed way, or to propose suboptimal distributed schemes and study 

their performance loss compared to the one in Chapter 6. 
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A. SUPPORTING RESULTS FOR CHAPTER 2 

A.1 Notations used for the proof of Proposition 2.4.1 

Let	 
⎧
 
⎪
LN L|Pi|


⎪	 k 
⎪ Ui( i + 
⎪ i=1 k=1 x
⎪ 
⎨ 

V (−→ 
L L|PICCij | −→x ) = 	  xl ) x ≥ 0 

⎪ j=i l=1 ij 
⎪ 
⎪ 
⎪ 
⎪ 
⎩−∞	 else. 

Then V is the extended concave objective function, and we can write our problem in 

the following matrix form: 

max V (−→ x ) 

−→ 
subject to: A−→ x ≤ xC and B−→ = 0, and the Lagrangian can be written as: 

⎡ ⎤−→ 

L(−→
−→ −→ −→ −→ T	 (−→ −→ y )T C(−→ −→ y ) =  V (−→ AT BT ⎣ 

λ 
⎦ − 

1 
x ,  λ , µ ,  x ) − x	 x − x − y ), (A.1) 

−→ 2µ 
L 

where A, B, and  C are constructed as follows. Let M(i) =  |PICC i,j |, A is a j:j=i 
L 

matrix with |E| rows and ( i |Pi| + 2M(i)) columns, where the e-th row is filled with 

Hi
k(e) and  H l	 

i
k and xij

l x .ij (e) in the same order as the corresponding x appear in −→ 

L	 L 
Matrix B is defined as a matrix with i M(i) rows  and  (  i |Pi| + 2M(i)) columns, 

lsuch that the (a, b) entry in B is 1 if the b-th entry in −→ is a variable of the form xijx 

and the a-th entry in −→ µ is µij . The  (a, b) entry in B is − 1 if the b-th entry in −→l	 x is a 

variable of the form xij and the a-th entry in −→ ji. For all other cases, the (a, b)
l	 µ is µl 

L 
entry in B is 0. We define C as a diagonal matrix of size ( i |Pi| + 2M(i)). If the 

k la-th variable of −→ is xi ij for some i, the  a-th diagonal elements of C will be αi.x or x

Throughout the proof we use the following norm 
�A� = AT D−1A, where  D = 

⎡ ⎤ D 

E 0 
⎣ ⎦. Here,  E is an |E| elements diagonal matrix with the e-th entry being βe. 
0 F 
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L 
Matrix F is another ( i M(i)) diagonal matrix, in which the a-th diagonal element 

is βij
l where i, j, l are the same indices of the a-th element of −→ µ . 

A.2 Lemma A.2.1 
⎡ ⎤ ⎡ ⎤−→ −→ 
λ1 λ2 ∗Lemma A.2.1 Fix −→ ⎣ and ⎦ x1y . Let  ⎦ ⎣ be two implicit cost vectors and let −→ 
−→ −→ µ1 µ2
 

x2 
∗
and −→ be the corresponding maximizers of the Lagrangian, then: 

⎡ ⎤
 
A−→ −→ 

(−→ −→ 
⎦ (−→ ∗ −→ ∗ (−→ ∗ −→ ∗ )T C(−→ ∗ −→ ∗ (λ1 − λ2)T µ1 − µ2)T ⎣ x1 − x2 ) ≤ −  x1 − x2 x1 − x2 ). 

B 

−→∗ L(−→ −→ −→Proof Let −→ = arg  max−→ x ,  λ , µ ,  y ). By taking the subgradient of (A.1) x0 x 

∗with respect to −→ x0x , we can see that there must exist a subgradient of (A.1) at −→ 

such that: 
⎡ ⎤−→ 
λ 

V (−→ ∗ C(−→ ∗ −→� x0 ) − AT BT ⎣ ⎦ − x0 − y ) = 0. (A.2) 
−→ µ 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−→ −→ −→ 
λ λ1 λ2 

Substituting ⎣ ⎦ in (A.2) by ⎣ ⎦ and ⎣ ⎦, respectively, and taking the difference, 
−→ −→ −→ µ µ1 µ2 

we have: 
⎡ ⎤−→ −→ 
λ1 − λ2 

V (−→ ∗ V (−→ ∗ C(−→ ∗ −→ ∗ 
⎣AT BT ⎦ = � x1 ) −�  x2 ) − x1 − x2 ).−→ −→ µ1 − µ2 

Since V is concave we have: 
� �T 

V (−→ ∗ V (−→ ∗ (−→ ∗ −→ ∗ � x1 ) −�  x2 ) x1 − x2 ) ≤ 0. 

Hence 
⎡ ⎤ 
A−→ −→ 

(−→ ∗ −→ ∗ λ2)T (−→ −→ 
⎣ ⎦ x1 x2(λ1 − µ1 − µ2)T − ) 
B 

� �T 

V (−→ V (−→ (−→ ∗ −→ ∗ = � x1 
∗ ) −�  x2 

∗ ) x1 − x2 ) 

(−→ ∗ −→ ∗ )T C(−→ ∗ −→ ∗− x1 − x2 x1 − x2 ) 

(−→ ∗ −→ ∗ )T C(−→ ∗ −→ ∗ ≤ −  x1 − x2 x1 − x2 ). 



�

151 

A.3 Lemma A.3.1 

( )

L LN LL|Pi| L|PICCij |Lemma A.3.1 Let L = Hk(e) +  (H l (e))2 . The  e i=1 k=1 i (i,j):i=j l=1 ij 

sufficient condition for 2C − AT EA − BT FB to be positive definite is that the step
 

sizes βe, βij
l fall in the following region:
 

(L ·maxe βe + 2  maxi,j,l βij
l ) < 2 mini(αi)
 

Proof If 2C − AT EA − BT FB is positive definite, then 

−→ −→ 
δx T (2C − AT EA − BT FB)δx > 0, 

−→ 
for all nonzero column vectors δx, which is equivalent to 

−→ −→ −→ −→ 
2δx T Cδx > δx T (AT EA + BT FB)δx. 

−→ 
We use δxi to refer to the i-th element of δx. By the Cauchy-Schwartz Inequality, 

we have 

−→ −→ −→ −→ 
δx T (AT EA)δx + δx T (BT FB)δx 
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Hk k = βe( i (e)δxi 
e i k 

|PICCij | 

+ (H l (e))δx l )2 
ij ij 

(i,j):i=j l=1 

+ βl [(δx l − δx l )2]ij ij ji

(i,j):i<j l 

≤ βe( Hi
k(e) 

e i k 

|PICCij | 

(H l 2+	 ij (e))
2) δxi 

(i,j):i=j l=1 i 

(βl l l )2)+	 ij (2δxij )
2 + 2(δxji

(i,j):i<j l 

≤ max βe( ( Hi
k(e) 

e 
e i k 

|PICCij | 

+ (Hij
l (e))2)) δx 2 

i 

(i,j):i=j l=1 i 

βl 2+(max )2 δxij i
i,j,l 

i 

= (L ·max βe + 2  max  βij
l ) δx 2 

i e i,j,l 
i 

Therefore if the inequality that 

(L ·max βe + 2  max  βij
l ) δxi 

2 < 2 min (αi) δxi 
2 

e i,j,l	 i 
i	 i 

holds, then we have 

−→ −→ −→	 −→ 
2δx T Cδx > δx T (AT EA + BT FB)δx 

which in turn implies that 2C − AT EA − BT FB is positive definite. The proof is 

complete. 
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A.4 Proof of Proposition 2.4.1 

In this section, we prove Proposition 2.4.1 the convergence of Algorithm A for 

the case that K tends to infinity first and then let the number of iterations goes to 

infinity. 

Proof We will prove the convergence of Algorithm A when K −→ ∞ . To  do  so,  

we will prove the convergence of the first step during the proximal iteration. The 
−→ −→convergence of the whole algorithm follows from [63] page 233. Fix −→ y (t). Let λ0, µ0 

be a x0stationary point of (2.7) and (2.9), and let −→ be the corresponding primal 
−→variable. x0 x , and  −→ =is unique since L(·) is strictly concave with respect to −→ x0 

−→ 
L(−→ −→ −→ arg max−→ x ,  λ , µ ,  y ). By the projection theorem in [63] page 211 we have, x 

⎡ ⎤ 
� −→ −→ � 
� λ (t,κ + 1)  − λ0 � 
⎣ ⎦ 
−→ −→ 

� µ (t,κ + 1)  − µ0 � 
D 

⎡ ⎤ 
� −→ −→ −→ −→ � 

λ (t,κ ) +  E(A−→ λ0 + E(A−→ � [ x (t,κ ) − C )]+ − [ x0 − C )]+ 
� 

⎣ ⎦ = 
−→ −→ 

� µ (t,κ ) +  FB−→ x0 �x (t,κ ) − µ0 + FB−→ 
D 

⎡ ⎤ 
� −→ −→ −→ −→ � 

λ0 + E(A−→ � λ (t,κ ) +  E(A−→ C ) − C ) �x (t,κ ) − x0 − 
≤ ⎣ ⎦ 

−→ −→ 
� µ (t,κ ) +  FB−→ x0 �x (t,κ ) − µ0 + FB−→ 

D 
⎡ ⎤ 
� −→ −→ �−→λ0 + EA(−→ � λ (t,κ ) − x (t,κ ) − x0 ) � 

= ⎣ ⎦ .
−→ −→ −→ µ0 + FB(−→ � µ (t,κ ) − x (t,κ ) − x0 ) � 

D 

This gives: 
⎡ ⎤ 
� −→ −→ � 
� λ (t,κ + 1)  − λ0 � 
⎣ ⎦ 
−→ −→ 

� µ (t,κ + 1)  − µ0 � 
D 
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⎡ ⎤ ⎡ ⎤ 
� −→ −→ � −→ 

T 

� λ (t,κ )− λ0 � EA(−→ x (t,κ )− x0 )
≤ ⎣ ⎦ + ⎣ ⎦ 

−→ −→ −→ 
� µ (t,κ )− µ0 � FB(−→ x (t,κ )− x0 )

D 
⎡ ⎤ 

−→EA(−→ x0)x (t,κ )− 
D−1 

⎣ ⎦ 
−→FB(−→ x0)x (t,κ )− 

⎡ ⎤T ⎡ ⎤−→ −→ −→EA(−→λ (t,κ )− λ0 x (t,κ )− x0)
+ 2⎣ ⎦ D−1 

⎣ ⎦ 
−→ −→ −→FB(−→ µ (t,κ )− µ0 x (t,κ )− x0 ) 

⎡ ⎤ 
� −→ −→ � 
� λ (t,κ )− � 
�⎣ 

λ0 
⎦� + (−→ −→ T 

AT BT= x (t,κ )− x0)−→ −→ 
� µ (t,κ )− µ0 � 

D 
⎡ ⎤ ⎡ ⎤⎡ ⎤ 
ET 0 E 0 A 
⎣ ⎦ D−1 

⎣ ⎦⎣ ⎦ (−→ −→ x (t,κ )− x0) 
0 FT 0 F B 
⎡ ⎤T−→ −→ 
λ (t,κ )− λ0 

+ 2⎣ ⎦ 
−→ −→ µ (t,κ )− µ0 
⎡ ⎤⎡ ⎤ 
E 0 A 0 −→D−1 
⎣ ⎦⎣ ⎦ (−→ x (t,κ )− x0) 
0 F 0 B 

⎡ ⎤ 
� −→ −→ � 
� λ (t,κ )− � 
�⎣ 

λ0 
⎦� + (−→ −→ T AT BT= x (t,κ )− x0)−→ −→ 

� µ (t,κ )− µ0 � 
D 

⎡ ⎤ 
A 

(−→ −→DD−1D ⎣ ⎦ x (t,κ )− x0) 
B 

⎡ ⎤ ⎡ ⎤−→ −→ T 

λ (t,κ )− λ0 A 
⎣ ⎦ D−1D ⎣ ⎦ (−→ −→+ 2  x (t,κ )− x0)−→ −→ µ (t,κ )− µ0 B 

By Lemma A.2.1 we have: 
⎡ ⎤ 
� −→ −→ � 
� λ (t,κ + 1)− λ0 � 
⎣ ⎦ 
−→ −→ 

� µ (t,κ + 1)− µ0 � 
D 
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⎡ ⎤ 
�	 −→ −→ � 
�	 λ (t,κ ) − λ0 � 
≤ �⎣ ⎦� 

−→ −→ 
�	 µ (t,κ ) − µ0 � 

D 
⎡ ⎤ 
A 

+ (−→ −→	 
⎣ ⎦ (−→ −→ x (t,κ ) − x0)

T AT BT D x (t,κ ) − x0) 
B 

−→	 −→ x0)
T C(−→− x (t,κ ) −	 x0)2(−→	 x (t,κ ) − 

⎡ ⎤ 
�	 −→ −→ � 
�	 λ (t,κ ) − λ0 � 

(−→ −→ −→ x0)
T L(−→ = ⎣ ⎦ − x (t,κ ) − x (t,κ ) − x0),−→ −→ 

�	 µ (t,κ ) − µ0 � 
D 

⎡ ⎤
 
A 

where L = 2C − AT BT D ⎣ ⎦ . When L is positive definite, we have: 
B 

⎡	 ⎤ ⎡ ⎤ 
� −→ −→ � � −→ −→ � 
� λ (t,κ + 1)  − λ0 � � λ (t,κ ) − λ0 � 
⎣	 ⎦ ≤ ⎣ ⎦ . (A.3) 
−→ −→ −→ −→ 

� µ (t,κ + 1)  − µ0 � � µ (t,κ ) − µ0 � 
D	 D 

Therefore, if the step sizes βe and βl satisfy the condition in Proposition 2.4.1, then ij	 
�⎡ ⎤� 
�	 −→ −→ � 
�	 λ (t,κ ) − λ0 � 

by	 Lemma A.3.1, L is positive definite. Accordingly ⎣ ⎦ will be a 
−→ −→ 

�	 µ (t,κ ) − µ0 � 
−→ D −→nonnegative and decreasing sequence. Therefore, as K −→ ∞ , x (t, K) −→ x0 . 

A.5 Proposition A.5.1 

Recall the following theorem from [78]. 

Theorem A.5.1 Define two sets of integral graphs, Gb and Gg, as  follows.  

1.	 Gb contains the full butterfly as described in Fig. 1.3(a), and all graphs obtained 

from the full butterfly via edge contraction. See [118] for the definition of edge 

contraction and subdivision. 

2.	 Gg contains the full grail as described in Fig. 1.4(a), and all graphs obtained from 

the full grail via edge contraction. 
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Suppose there exists a network coding solution to the two unicast-session problem. 

Then one of the following two conditions must hold. 

• There exist two EDPs connecting (s1, d1) and (s2, d2). 

• G�� contains an integral subgraph F = (V F , EF ) such that (i) {s1, s2, d1, d2} ∈ V F 

� 
and (ii) there exists a Gq ∈ Gb Gg such that F is a subdivision of Gq. Namely,  

F can be obtained from Gq by replacing each edge of Gq with an interior-vertex

disjoint path, also known as an independent path. 

Proposition A.5.1 For F as defined in Theorem A.5.1, if F contains two edges that 

connect the same pair of vertices, then F contains 2 EDPs connecting (s1, d1) and 

(s2, d2) 

Proof F is a subdivision of Gq. If  F contains two edges that connect the same pair 

of vertices then so does Gq. It is easy to check that for all subgraphs in Gb or in Gg, if 

there are two edges connecting the same pair of vertices, there exist two edge-disjoint 

paths connecting (s1,d1) and  (s2,d2). The proof is complete. 

A.6 Proof of Proposition 2.6.1 

Proof For any PICC if there exist 2EDPs between (s1,s2) and (s1,s2), we can send 

packets through these paths and achieve the required rate without network coding, 

which means that the PICC of interest is redundant. We exploit this observation in 

the following to show that a PICC is redundant. 

If G�� is declared “redundant” by rule 2, we have 2EDPs between (s1, d1) and  
� � 

(s2, d2), because of the disjointness of E(Ps1,d1 ) E(Qs1,d1 ) and  E(Ps2,d2 ) E(Qs2,d2 ). 

In the following, we will prove rule 3. Without loss of generality, we can use the 

G��integral graph G�� to represent the l-th PICC between sessions i and j. always 

satisfy condition 2 of Proposition 1.3.1. If condition 1 is satisfied, there is no need to 

include G�� in the optimization problem because there are 2 EDPs. Assume condition 1 

is not satisfied. We have two cases. Case 1: F in Theorem A.5.1 is the same as G�� . 
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By (2.1), if Hij
l (e) = 1, then link e is modelled as two edges connecting the same pair 

of vertices. G�� contains 2 EDPs by Proposition A.5.1. Case 2: F is a proper subgraph 

of G�� . The edges and vertices in F are subsets of the edges and vertices in G��, and  

F satisfies the necessary and sufficient conditions for pairwise linear network coding. 

Therefore, the same solution in G�� can be achieved in F by consuming fewer resources 

and hence G�� is a redundant PICC. Rule 1 follows by using the same technique. 
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B. SUPPORTING RESULTS FOR CHAPTER 3 

B.1 Sketches of the proof of Proposition 3.5.1: 

Proof We first notice that by (3.6), ql is a constant and is thus bounded away from ij 
L (qe)2 

infinity. For the following, choose the following Lyapunov function V (q) =  e 2βe 

for the dual variables q = {qe : ∀e}. Then  

( )1 
Hk k H l lV (q[t + 1]) − V (q[t]) = qe[t] (e)x + − re + const,i i ij xij2 

e i k (i,j):i=j l 

(B.1) 

where const is a constant bounded away from positive and negative infinity. 

Since the fixed rate assignment x is in the interior of γΛ, the first term of (B.1) 

can be rewritten as 
⎛ ⎞ 

k 1 l−� qe[t] ⎝ Hi
k(e)xi + Hij

l xij 
⎠ (B.2) 

2 
e i k (i,j):i=j l 

for some � > 0. Combining (B.1) and (B.2), we have that any component of q tends 

to infinity will lead to negative difference of the Lyapunov function V (q). As a result, 

lall dual variables qe and qij are bounded away from infinity. Since the primal variables 

have only bounded domains, the proof is complete. 
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B.2 Sketches of the proof of Proposition 3.5.2: 

Δ
Proof Let ρi = µ

λ
i

i . Since {ρi}i is in the interior of γΛ, by the definition of Λ, we 

can find �, ρk and ρl satisfying i ij 

ρi = ρk + ρlij , ∀i,ρ lij = ρlji, ∀i, j, l, i 

k j,l:j=i 

∗and (1 + 2�) Hk(e)ρk +
1 

H l (e)ρl ≤ γri i ij ij e2 
i k j,l:j=i 

for some r ∗ ∈ Co(R). (B.3) 

Let ni denote the number of users in the system. The probability law of ni is 

determined by a Markov process. Its transition rate is given by: 
⎧
 
⎪
 
⎨ni[t] → ni[t] + 1 with rate λi 

( )

L L L 
⎪ 
⎩ k lni[t] → ni[t] − 1 with rate µi i [t] +  ni[t]k x j,l:j=i l xij [t]

A heuristic fluidity model argument is provided as follows. By the rate and scheduling 

update rules, we have 

1k l k l xi[t] =  arg  max  Ui x + x − qe[t] Hk(e)x + H l (e)xi ij i i ij ij
x 2 

k j,l:j=i e k j,l:j=i 

l l l l− q [t]x − q [t]xij ij ji ij
 
j:j>i l j:j<i l
 

αi ( )2 ( )2k k l l− 
2 

xi − yi + xij − yij (B.4) 
k j,l:j=i 

qe[t]re[t] ≥ γ max qe[t]re 
[r] 

e e 
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The first order derivatives of ni, qe, and  ql become ij 

d k l ni[t] = λi − µini[t] x [t] +  x [t]i ijdt 
k j,l:j=i 

d 
qe[t]

dt
⎧ 
⎪ L L 
⎪ k 
⎪βe Hk(e)x [t]
⎪ i ni[t] 
⎪ k i i 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ L 
⎨ l+1 H l (e)x [t] − re[t] if positive 2 j,l:j=i ij ij= 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ or qe[t] > 0 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩0 otherwise 

d ( )

l l l qij [t] =  βi ni[t]xij [t] − nj [t]xji[t]dt

Consider the following V (·, ·) function that will be used as the Lyapunov function of 

the system. 

V (n, q) =  Vn(n) +  Vq(q) 

where 

1 Kκin2 αinii k lVn(n) =  + y + yij2 λi µi
i 

i k j,l:j=i 

)2 l )2(qe (q

Vq(q) =  + ij
 

2βe 2βi
 e i,j:i<j,l 

By the fluidity model, we have the following expression for any positive constant K. 

dVn(n[t]) kKκini[t] l = + αi yi + yijdt ρii k j,l:j=i 

ρi − ni[t] xi
k[t] +  x l ij 

k j,l:j=i 
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Therefore 

dVn k l = − � Kκini + αiρi y + yi ijdt 
i k j,l:j=i 

Kκini k l+ + αi y + yi ijρii k j,l:j=i 

(1 + �)ρi − ni x k + x l i ij 
k j,l:j=i 

= − � Kκini + αiρi y k + y l i ij 
i k j,l:j=i 

K(1 + �)κi 
+ L L

k l 
k x +i j,l:j=i xiji 

+ αi y k + y l i ij 

k j,l:j=i 

(1 + �)ρi − ni x k + x l i ij 

k j,l:j=i 

+ (A), 

where 

(1 + �) ni
(A) ! − Kκi L 

k 
L 

l − 
k x + =i x ρii j,l:j iji 

(1 +  �)ρi − ni x k + x l ≤ 0.i ij 

k j,l:j=i 

k/l In the following we will use the following notation yi(j) to express that we are iterating 
L L

k l k/l L|Pi| k 
L|PICCij | lover all y and y For example ! + yi ij . k,l,j,:j=i yi(j) k=1 yi j:j=i l=1 ij . 

Similar notation is used for other variables such as ρ and q. We  define  F0 and F1 such 

that: 
⎛ ⎞ 

k/l k�/l� F0 =(1 + �) ⎝ αi y ρ ⎠ 
i(j) i(j�) 

i k,j,l:j=i k�,j�,l�:(k�,j�,l�)=(k,j,l) 

k/l − � αiρi yi(j) + (A) 
i k,j,l 
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L L k/l F1 = (1 + �) αiMΣx ρ . Here  MΣx is the maximum rate assigned to i k,j,l:j=i i(j)

any user. 

i , δ
lSince xi[t] solves (B.4) and Ui(·) =  κi log(·), there exist δk 
ij ≥ 0 and  δi,M ≥ 0 

such that 

κi k/l k/l k/l 
L − αi(x − y ) +  δ − δi,M k�/l� i(j) i(j) i(j) 

k�,j�,l�:j�=i xi(j�) 

= qk/l , i, j, k, l : i =� je,i(j)

where 

q k = q Hk(e)e,i e i 
e 
⎧ 

L 
⎪1 H l 
⎨ q (e) +  ql if i < j  2 e e ij ijl q = e,ij 

L 
⎪ 
⎩ 1 l 

2 e qeHij 
l (e) − qji if i > j.  

( )

k/l k/l We have δ x = 0  and  δi,M 
L 

l − M x = 0 due to the complementary i(j) i(j) k,j,l:j=i xi(j) 

slackness conditions. In our online technical report [94] for each i we have explicitly 

construct a positive integer Ji such that 
L k/l 

κi k,j,l:i=j yi(j)
δi,M ≤ + αi , ∀i. (B.5) 

MΣx Ji 

k/l 
κi k,j,l yi(j)By choosing F2 = maxi{ + αi }, F2 is an upper bound for all δi,M . Let  MΣx Ji 

K = 1 , we have 1+J 

dVn ≤ −� Kκini
dt 

i 

+ q (1 + �) Hk(e)ρk +
1 

H l (e)ρl e i i ij ij2 
e i k j,l:j=i 

k 1 l− niHi
k(e)xi + niHij

l (e)xij2 
i k j,l:j=i 

( ( ) ( ))

l l l l+ q (1 + �) ρl − ρl − q nix − nj xij ij ji ij ij ji

(i,j):i<j l 

+ F0 + F1 + F2(1 + �) ρk/l (B.6) i(j). 
i k,j,l:j=i 
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The details of how (B.6) is obtained in our online technical report [94]. Since 

dVq(q) 1 
Hk k H l l 

dt 
= qe ni i (e)xi + 2 ij (e)xij − re 

e i k j,l:j=i 

( )

l l l+ qij nixij − nj xji , 
(i,j):i<j l
 

= ρl dVn dVq
and ρl , the overall drift dV = + becomes ij ji dt dt dt 

dV 
≤− � Kκini − � qe Hk(e)ρk +

1 
H l (e)ρl .i i ij ijdt 2 

i e i k j,l:j=i 

+ F0 + F1 + F2(1 + �) ρk/l i(j). 
i k,j,l:j=i 

Here, we used (B.3). The Lyapunov function will have a negative drift and the 

system is stable. A full proof that takes into account the second-order variation can 

be obtained accordingly. 

B.3 Proof of Proposition 3.6.1 

Proof We prove this theorem by induction. We perform coding operations sequen

tially from the most upstream edges to the most downstream edges. Let Me represent 

the symbol transmitted along edge e. We have the following induction hypothesis: If 

Case 1 is satisfied, then for any edge e we have: 
⎧ 
⎪ 
⎪ 
⎪ 
⎪ X or X + Y if e ∈ Ps1,d1 
⎪ 
⎨ 

Me = Y or X + Y if e ∈ Ps2,d2 
(B.7) 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩X or Y if e ∈ Ps2,d1 or e ∈ Qs2,d2 . 

Case 2 is a symmetric version of Case 1 and the discussion is thus omitted. 

If Case 3 is satisfied, for any edge e we have: 
⎧ 
⎪ 
⎪ 
⎪X or X + Y if e ∈ Ps1,d1⎪ 
⎪ 
⎨ 

Me = Y or X + Y if e ∈ Ps2,d2 
(B.8) 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩X or Y if e ∈ Ps2,d1 or e ∈ Qs1,d2 
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Both hypotheses (B.7), (B.8) are satisfied on the immediate outgoing edges of sources 

s1 and s2 which carry X and Y respectively. To show that the induction holds for all 

edges, we need to consider 13 scenarios when Case 1 is satisfied as in Table B.1 and 5 

scenarios when Case 3 is satisfied as in Table B.2. The entries in the second column 

in both Table B.1 and B.2 represent the paths that share edge e and the entries in 

the third column represent the corresponding coding operation on edge e according 

to either (B.7) or (B.8). 

Since Case 3 is simpler than Case 1, we disccuss Case 3 first and then move on to 

Case 1. 

For Case 3 we have Ps1,d1 = Qs1,d1 , Ps2,d2 = Qs2,d2 . Therefore, we have four distinct 

paths 

Ps1,d1 , Ps2,d2 , Ps2,d1 , and  Qs1,d2 in the PICC. If an edge is shared by three paths, it is 

either the case that the PICC is insignificant by Rule 1 or condition 2 of Theorem 1.3.1 
(

4
)

is not satisfied. There are 2 = 6 scenarios in which two paths meet at a single edge. 

Since by Rule 1, Ps2,d1 and Qs1,d2 do not meet, we are left with 5 scenarios to consider 

as in Table B.2 

In the following, we prove that the induction hypothesis follows for the 5 scenarios 

in Case 3. 

Scenario 1 as in Table B.2 The paths that meet at edge e are Ps1,d1 and Ps2,d2 . 

The symbols carried by the paths on the respective previous edges can be the same 

or not. If they are the same, the symbols must be X+ Y according to the hypothesis, 

which is the intersection of the first two cases of (B.8). The coded symbol X + Y 

will be forwarded and the invariant holds for the target edge e. If the symbols that 

enter edge v, the tail of e are different, then node v can decode both X and Y and 

compute the coded symbol X + Y according to Case 3.4 (or equivalently Case 1.4) 

in Section 3.6 and send X + Y along e. The hypothesis holds in this scenario that 

e ∈ Ps1,d1 ∩ Ps2,d2 . 

Scenario 2 and 3 as in Table B.2 The paths that meet at edge e are Ps1,d1 

and Qs1,d2 (Ps1,d1 and Ps2,d1 ). The symbols carried by the paths on the respective 
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Table B.1 
The list of possible coding operations a node has to perform if the PICC 
satisfies Case 1 

PICC satisfies Case 1 

Paths sharing edge e Symbols transmitted on edge e 

Scenario 1 Ps2,d1 Ps2,d2 Y 

Scenario 2 Ps2,d1 Ps1,d1 X 

Scenario 3 Ps2,d1 Qs2,d2 Y 

Scenario 4 Ps2,d1 Ps2,d2 Qs2,d2 Y 

Scenario 5 Ps2,d1 Ps1,d1 Qs2,d2 X 

Scenario 6 Ps1,d1 Ps2,d2 X + Y 

Scenario 7 Ps2,d2 Qs2,d2 Y 

Scenario 8 Qs1,d2 Ps1,d1 X or X + Y 

Scenario 9 Qs1,d2 Ps2,d2 Y or X + Y 

Scenario 10 Qs1,d2 Qs2,d2 Y or X + Y 

Scenario 11 Qs1,d2 Ps1,d1 Ps2,d2 X + Y 

Scenario 12 Qs1,d2 Ps2,d2 Qs2,d2 Y 

Scenario 13 Ps1,d1 Qs2,d2 X 

Table B.2 
The list of possible coding operations a node has to perform if the PICC 
satisfies Case 3 

PICC satisfies Case 3 

Paths sharing edge e Symbols transmitted on edge e 

Scenario 1 Ps1,d1 Ps2,d2 X + Y 

Scenario 2 Ps1,d1 Qs1,d2 X 

Scenario 3 Ps1,d1 Ps2,d1 X 

Scenario 4 Ps2,d2 Qs1,d2 Y 

Scenario 5 Ps2,d2 Ps2,d1 Y 
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previous edges can be the same or not. If they are the same, the symbols must be X 

according to the hypothesis, which is the intersection of the first and third cases of 

(B.8). The symbol X will be forwarded and the invariant holds for the target edge e. 

If the symbols that enter edge v, the tail of e are different, then node v can compute 

X according to Case 3.3 (or equivalently Case 1.3) in Section 3.6 and send X along 

e. The hypothesis holds in this scenario that e ∈ Ps1,d1 ∩ Qs1,d2 (e ∈ Ps1,d1 ∩ Ps2,d1 ). 

Scenario 4 and 5 as in Table B.2 The paths that meet at edge e are Ps2,d2 and 

Qs1,d2 (Ps2,d2 and Ps2,d1 ). The symbols carried by the paths on the respective previous 

edges can be the same or not. If they are the same, the symbols must be Y according 

to the hypothesis, which is the intersection of the last two cases of (B.8). The symbol 

Y will be forwarded and the invariant holds for the target edge e. If the symbols 

that enter edge v, the tail of e are different, then node v can compute the symbol Y 

according to Case 3.2 (or equivalently Case 1.2) in Section 3.6 and send Y along e. 

The hypothesis holds in this scenario that e ∈ Ps2,d2 ∩ Qs1,d2 (e ∈ Ps2,d2 ∩ Ps2,d1 ). 

For Case 1 we have Ps1,d1 = Qs1,d1 . Therefore, we have five distinct paths 

Ps1,d1 , Ps2,d2 , Ps2,d1 , Qs2,d2 , and  Qs1,d2 in the PICC. By Rule 1 Ps2,d1 and Qs1,d2 will 

not meet at a single edge. Also Ps1,d1 , Ps2,d2 , Qs2,d2 will not meet at a single edge due 

to Rule 2.1. Therefore, any scenario in which an edge is used by five or four of the 
( )

paths is impossible. We have 5
3 = 10 different scenarios in which edge e is used by 

three distinct paths. The scenarios in which an edge is used by Ps1,d1 , Ps2,d2 , Ps2,d1 or 

Ps1,d1 , Qs2,d2 , Qs1,d2 violate condition 2 of Theorem 1.3.1. The scenario in which an 

edge is used by Ps1,d1 , Ps2,d2 , Qs2,d2 , will be removed because it satisfies Rule 2.1. The 

scenarios in which an edge is used by (Ps1,d1 , Ps2,d1 , Qs1,d2 ), (Ps2,d2 , Qs2,d1 , Qs1,d2 ), or 

(Ps2,d1 , Qs2,d2 , Qs1,d2 ) will be removed because it satisfies Rule 1. As a result, we need 

to only consider 4 scenarios in which e is used by three distinct paths (Scenarios 4, 

5, 11, 12 in Table B.1). Since by Rule 1 Ps2,d1 and Qs1,d2 do not use the same edge 

we have only 9 scenarios in which e is used by two paths. The total is 13 scenarios 

as in Table B.1. 
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In the following, we prove that the induction hypothesis holds for the 13 scenarios 

of Case 1. 

Scenarios 1, 3, 4, 7 and 12 as in Table B.1 The paths that meet at edge e are 

(Ps2,d1 and Ps2,d2 ), (Ps2,d1 and Qs2,d2 ), (Ps2,d1 , Ps2,d2 , and  Qs2,d2 ), (Ps2,d2 and Qs2,d2 ), 

or (Qs1,d2 , Ps2,d2 , and  Qs2,d2 ). The symbols carried by the paths on the respective 

previous edges can be the same or not. If they are the same, the symbols must be Y 

according to the hypothesis, which is the intersection of the last two cases of (B.7). 

The symbol Y will be forwarded and the invariant holds for the target edge e. If  the  

symbols that enter edge v, the tail of e are different, then node v can compute the 

symbol Y according to Case 1.2 in Section 3.6 and send Y along e. The hypothesis 

holds in these scenarios. 

Scenarios 2, 5 and 13 as in Table B.1 The paths that meet at edge e are 

(Ps2,d1 and Ps1,d1 ), (Ps2,d1 , Ps1,d1 , and  Qs2,d2 ), or (Ps1,d1 and Qs2,d2 ). The symbols 

carried by the paths on the respective previous edges can be the same or not. If 

they are the same, the symbols must be X according to the hypothesis, which is the 

intersection of the first and third cases of (B.7). The symbol X will be forwarded and 

the invariant holds for the target edge e. If the symbols that enter edge v, the tail of 

e are different, then node v can compute X according to Case 1.3 in Section 3.6 and 

send X along e. The hypothesis holds in these scenarios. 

Scenarios 6 and 11 as in Table B.1 The paths that meet at edge e are (Ps1,d1 

and Ps2,d2 ) or  (Qs1,d2 , Ps1,d1 , and  Ps2,d2 ). The symbols carried by the paths on the 

respective previous edges can be the same or not. If they are the same, the symbols 

must be X + Y according to the hypothesis, which is the intersection of the first two 

cases of (B.7). The coded symbol X + Y will be forwarded and the invariant holds 

for the target edge e. If the symbols that enter edge v, the tail of e are different, then 

node v can decode both X and Y and compute the coded symbol X + Y according 

to Case 1.4 in Section 3.6 and send X + Y along e. The hypothesis holds in these 

scenarios. 
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Scenarios 9 and 10 as in Table B.1 The paths that meet at edge e are (Qs1,d2 

and Ps2,d2 ), or (Qs1,d2 and Qs2,d2 ). The symbols carried by the paths on the respective 

previous edges can be the same or not. If they are the same, the symbols must be 

either Y or X + Y according to the hypothesis. The symbol Y or X + Y will be 

forwarded and the invariant holds for the target edge e. If the symbols that enter 

edge v, the tail of e are different, then node v can compute the symbol Y according to 

Case 1.2 in Section 3.6 and send Y along e. The hypothesis holds in these scenarios. 

Scenario 8 as in Table B.1 The paths that meet at edge e are (Qs1,d2 and 

Ps1,d1 ). The symbols carried by the paths on the respective previous edges can be the 

same or not. If they are the same, the symbols must be either X or X + Y according 

to the hypothesis. The symbol X or X + Y will be forwarded and the invariant holds 

for the target edge e. If the symbols that enter edge v, the tail of e are different, then 

node v can compute X according to Case 1.3 in Section 3.6 and send X along e. The  

hypothesis holds in this scenario. 



VITA
 



169 

VITA 

Abdallah Khreishah received the B.S. degree from Jordan University of Science 

and Technology (JUST), Irbid, Jordan in 2004, and the M.S. degree from the School of 

Electrical and Computer Engineering, Purdue University, West Lafayette, IN, in 2006. 

Since then he has been working toward the Ph.D. degree at Purdue University. His 

research interests include network coding, congestion control, opportunistic routing, 

and cross layer design in wireless networks. 


