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ABSTRACT 

Kamra, Ashish. Ph.D., Purdue University, August 2010. Mechanisms For Database Intru­
sion Detection And Response. Major Professors: Elisa Bertino and Arif Ghafoor. 

Data represent today a valuable asset for companies and organizations and must be 

protected. Most of an organization’s sensitive and proprietary data resides in a Database 

Management System (DBMS). The focus of this thesis is to develop advanced security so­

lutions for protecting the data residing in a DBMS. Our approach is to develop an Intrusion 

Detection and Response (IDR) system, integrated with the core DBMS functionality, that is 

capable of detecting and responding to anomalous SQL commands submitted to a DBMS. 

For the intrusion detection mechanism, the key idea is to learn profiles of database users 

from the SQL commands submitted by them to the DBMS. A SQL command that devi­

ates from these profiles is then termed as anomalous. For responding to such anomalous 

and potentially malicious SQL commands, we introduce a policy-driven intrusion response 

mechanism that is capable of issuing an appropriate response based on the details of the 

anomalous request. Such response actions include fine-grained actions such as request sus­

pension and request tainting; we introduce an access control system based on the notion 

of privilege states to support such fine-grained responses. For the management of the re­

sponse policies, we introduce a joint threshold administration model that mitigates the risk 

of insider threats from malicious database administrators. A major component of the thesis 

involves prototype implementation of the IDR mechanism in the PostgreSQL DBMS. We 

discuss the implementation details on the same and report experimental results that show 

that our techniques are feasible and efficient. 
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1. INTRODUCTION 

1.1 Database Intrusion Detection 

Data represent today an important asset for companies and organizations. Some of 

these data are worth millions of dollars and organizations take great care at controlling ac­

cess to these data, with respect to both internal users, within the organization, and external 

users, outside the organization. Data security is also crucial when addressing issues related 

to privacy of data pertaining to individuals; companies and organizations managing such 

data need to provide strong guarantees about the confidentiality of these data in order to 

comply with legal regulations and policies [1]. Overall, data security has a central role in 

the larger context of information systems security. Therefore, the development of Database 

Management Systems (DBMSs) with high-assurance security (in all its flavors) is a cen­

tral research issue. The development of such DBMSs requires a revision of architectures 

and techniques adopted by traditional DBMS [2]. An important component of this new 

generation security-aware DBMS is an Intrusion Detection (ID) mechanism. Even though 

DBMSs provide access control mechanisms, these mechanisms alone are not enough to 

guarantee data security; they need to be complemented by suitable ID mechanisms. How­

ever, despite the fact that building ID systems for networks and operating systems has been 

an active area of research, few ID systems exist that are specifically tailored to DBMS. 

Why is it important to have an ID mechanism tailored for a DBMS? The main reason is 

that actions deemed malicious for a DBMS are not necessarily malicious for the underlying 

operating system or the network; thus ID systems designed for the latter may not be effec­

tive against database related attacks. For example, consider that a database user/application 

normally access data only from the human resources schema. Consider that such user/ap­

plication submits a SQL command to the DBMS that accesses the financial records of the 

employees from the finance schema. Such anomalous access pattern of the SQL command 
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may be the result of a SQL Injection vulnerability or privilege abuse by an authorized user. 

The key observation is that an ID system designed for a network or an operating system is 

ineffective against such database specific malicious actions. 

1.2 DBMS Integration 

Organizations have stepped up data vigilance driven by various government regulations 

concerning data management such as SOX, PCI, GLBA, HIPAA and so forth [3, 4]. The 

compliance regulations have led the organizations to use various third-party database ac­

tivity monitoring products that employ DBMS specific ID techniques [3]. Such products 

are useful for many reasons. One, they are DBMS technology independent thus they can 

work with multiple DBMS vendors. Two, they are mostly non-intrusive since their core 

functionality resides outside the DBMS. However, one of the goals of this thesis is to in­

tegrate our DBMS specific ID mechanism with the core DBMS functionality. There are 

three main advantages of such close integration of an ID mechanism with a DBMS. First, 

the intrusion detection is done as close to the target as possible (during query processing) 

thereby ruling out any chances of a backdoor entry to the DBMS that may bypass the ID 

mechanism. Second, since the ID mechanism is presented as one of the features of the 

DBMS, the physical location of the DBMS is not a constraint on obtaining the ID service. 

Such requirement is critical in the current age of cloud computing if the organizations want 

to move their databases to a cloud service provider. The problem with the third-party activ­

ity monitoring products is that the organizations may not be able to move them to the cloud 

since the network infrastructure is under the control of the cloud service provider. Third, 

integration with the DBMS allows the ID mechanism to issue more versatile response ac­

tions to an anomalous request. We expand on the response capabilities of our system in 

Chapter 4. 
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1.3 Insider Threats 

The problem of insider threats to DBMSs is being recognized as a major security threat 

by the organizations; in a 2004 E-crime watch survey conducted by CERT and US Secret 

Service, insider threat was identified as the second biggest threat after hackers. The solution 

to the insider threat problem requires among other techniques the adoption of mechanisms 

able to detect and respond to access anomalies by users internal to the organization owning 

the data. For our IDR system to provide stronger security guarantees, it needs to ensure that 

the activities of even the database administrators (DBAs) be monitored, and responded to 

if deemed malicious. This is a difficult problem to address since the policies that specify a 

response action need to be created for the DBAs who are, in turn, responsible for managing 

the same policies. We describe our approach in Chapter 3 to address this problem. 

1.4 Overview of Our Approach 

1.4.1 Intrusion Detection 

Our approach to the intrusion detection and response (IDR) mechanism consists of two 

main elements, specifically tailored to a DBMS: an anomaly detection (AD) system, and an 

anomaly response system. The first element is based on the construction of access profiles 

of users, roles and applications, and on the use of such profiles for AD. The first application 

of our AD system is detection of anomalous database access patterns of users/roles (Chap­

ter 2). The AD system in this case considers two different scenario. In the first scenario, 

it is assumed that the database has a Role Based Access Control (RBAC) model in place. 

The AD system is able to determine role intruders, that is, individuals that while holding 

a specific role, behave differently than expected. When role information does exist, the 

problem is transformed into a supervised learning problem. The roles are treated as classes 

for the classification purpose. The AD task for this setting is as follows: For every user 

request under observation, its role is predicted by a trained classifier. If the predicted role 

is different from the original role associated with the query, an anomaly is detected. In the 
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second case, the same problem is addressed in the context of a DBMS without any role 

definitions. In such setting, every SQL command is associated with the user that issued it. 

We build user-group profiles (clusters of similar behaviors) based solely on the SQL com­

mands users submit to the database. The specific methodology that is used for the AD task 

is as follows: the training data is partitioned into clusters using the standard clustering tech­

niques. A mapping is maintained for every database user to its representative cluster. For 

every new query under observation, its representative cluster is determined by examining 

the user-cluster mapping. For the detection phase, two different approaches are followed. 

In the first approach, the classifier is applied in a manner similar to the supervised case, to 

determine whether the user associated with the query belongs to its representative cluster 

or not. In the second approach, a statistical test is used to identify if the query is an out­

lier in its representative cluster. If the result of the statistical test is positive, the query is 

marked as an anomaly and an alarm is raised. In order to build profiles, the log-file entries 

need to be pre-processed and converted into a format that can be analyzed by the detection 

algorithms. Therefore, each entry in the log file is represented by a basic data unit that 

contains five fields, and thus it is called a quiplet. The  abstract  form  of  a  quiplet  consists  

of five fields (SQL Command, Projection Relation Information, Projection Attribute Infor­

mation, Selection Relation Information and Selection Attribute Information). Depending 

on the level of detail required in the profile construction phase and in the AD phase, the 

quiplets are captured from the log file entries using three different representation levels. 

Each level is characterized by a different amount of recorded information. For more details 

of this approach, we refer the reader to Chapter 2. 

1.4.2 Anomaly Response 

The second element of our approach is in charge of taking some actions once an 

anomaly is detected. There are three main types of response actions, that we refer to respec­

tively as conservative actions, fine-grained actions, and aggressive actions. The conserva­

tive actions, such as sending an alert, allow the anomalous request to go through, whereas 
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the aggressive actions can effectively block the anomalous request. Fine-grained response 

actions, on the other hand, are neither conservative nor aggressive. Such actions may sus­

pend or taint an anomalous request. A suspended request is simply put on hold, until some 

specific actions are executed by the user, such as the execution of further authentication 

steps. A tainted request is marked as a potential suspicious request resulting in further 

monitoring of the user and possibly in the suspension or dropping of subsequent requests 

by the same user. For more details on our approach towards supporting such fine-grained 

response actions in a DBMS, we refer the reader to Chapter 4. 

With such different response options, the key issue to address is which response mea­

sure to take under a given situation. Note that it is not trivial to develop a response mecha­

nism capable of automatically taking actions when abnormal database behavior is detected. 

Let us illustrate this with the following example. Consider a database monitoring system 

in place that builds database user profiles based on SQL queries submitted by the users. 

Suppose that a user U , who  has  rarely  accessed  table  T , issues  a  query  that  accesses  all  

columns in T . The  detection  mechanism  flags  such  request  as  anomalous  for  U . The  major  

question is what should the system do next once a request is marked as anomalous by the 

AD mechanism. Since the anomaly is detected based on the learned profiles, it may well be 

a false alarm.  It  is  easy  to  see then  there are no  simple  intuitive  response measures  that  can  

be defined for such security-related events. If T contains sensitive data, a strong response 

action is to revoke the privileges corresponding to actions that are flagged as anomalous. 

In our example, such a response would translate into revoking the select privilege on table 

T from U . However,  if  the  user  action  is  a  one-time  action  part  of  a  bulk-load  operation,  

when all objects are expected to be accessed by the request, no response action may be 

necessary. The key idea is to take different response actions depending on the details of 

the anomalous request, and the context surrounding the request (such as time of the day, 

origin of the request, and so forth). Therefore, a response policy is required by the database 

administrator to specify appropriate response actions for different circumstances. In Chap­

ter 3, we propose a high-level language for the specification of such policies which makes 

it very easy to specify and modify them. 
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The two main issues that we address in the context of such response policies are that of 

policy matching and policy administration. Policy  matching  is  the  problem  of  searching  for  

policies applicable to an anomalous request. When an anomaly is detected, the response 

system must search through the policy database and find policies that match the anomaly. 

Our ID mechanism is a real-time intrusion detection and response system; thus efficiency 

of the policy search procedure is crucial. In Chapter 3, we present two efficient algorithms 

that take as input the anomalous request details, and search through the policy database to 

find the matching policies. We implement our policy matching scheme in the PostgreSQL 

DBMS [5], and discuss relevant implementation issues. We also report experimental results 

that show that our techniques are very efficient. 

The second issue that we address is that of administration of response policies. Intu­

itively, a response policy can be considered as a regular database object such as a table or a 

view. Privileges, such as create policy and drop policy, that  are  specific  to  a  policy  object  

type can be defined to administer the policies. However, a response policy object presents 

a different  set  of challenges  than  other database  object  types.  Recall  that  a  response  policy  

is created to select a response action to be executed in the event of an anomalous request. 

Consider the case of an anomalous request from a user assigned to the database adminis­

trator (DBA) role. Since a DBA role is assigned all possible database privileges, it will 

also possess the privileges to modify a response policy object. Now consider a scenario, 

where organizational policies require auditing and detection of malicious activities from all 

database users including those holding the DBA role. Thus, response policies must be cre­

ated to respond to anomalous requests from all users. But since a DBA role holds privileges 

to alter any response policy, it is easy to see that the protection offered by the response sys­

tem against a malicious DBA can trivially be bypassed. The fundamental problem in such 

administration model is that of conflict-of-interest. The  main  issue  is  essentially  that  of  in­

sider threats, that  is,  how  to  protect  a  response  policy  object  from  malicious modifications 

made by a database user that has legitimate access rights to the policy object. 

To address this issue, we propose an administration model that is based on the well-

known security principle of separation of duties (SoD). SoD is a principle whereby multi­
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ple users are required in order to complete a given task. As a security principle, the primary 

objective of SoD is prevention of fraud (insider threats), and user generated errors. Such 

objective is traditionally achieved by dividing the task and its associated privileges among 

multiple users. However, the approach of using privilege dissemination is not applicable to 

our case as we assume the DBAs to possess all possible privileges in the DBMS. Our ap­

proach instead applies the technique of threshold cryptography signatures to achieve SoD. 

A DBA authorizes  a  policy  operation,  such  as  create or drop, by  submitting  a  signature  

share on the policy. At least k signature shares are required to form a valid final signature 

on a policy, where k is a threshold parameter defined for each policy at the time of policy 

creation. The final signature is then validated either periodically or upon policy usage to 

detect any malicious modifications to the policies. The key idea in our approach is that a 

policy operation is invalid unless it has been authorized by at least k DBAs. We thus refer 

to our administration model as the Joint Threshold Administration Model (JTAM) for 

managing response policy objects. To the best of our knowledge, ours is the only work 

proposing such administration model in the context of management of DBMS objects. The 

three main advantages of JTAM are as follows. First, it requires no changes to the exist­

ing access control mechanisms of a DBMS for achieving SoD. Second, the final signature 

on a policy is non-repudiable, thus making the DBAs accountable for authorizing a policy 

operation. Third, and probably the most important, JTAM allows an organization to utilize 

existing man-power resources to address the problem of insider threats since it is no longer 

required to employ additional users as policy administrators. For more JTAM details, we 

refer the reader to Chapter 3 of the thesis. 

1.4.3 System Architecture 

The system’s architecture consists of three main components: the traditional DBMS 

that handles the query execution, the profile creator module for collecting the training 

data and creating/maintaining the profiles, and the detection and response mechanisms in­

tegrated with the core DBMS functionality. These components form the new extended 
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Fig. 1.1. System Architecture 

DBMS that is enhanced with an independent ID system operating at the database level. 

The flow of interactions for the IDR process is shown in Figure 1.1. During the training 

phase, the SQL commands submitted to the DBMS (or read from the audit log) are analyzed 

by the profile creator module to create the initial profiles of the database users. For every 

SQL command under detection, the feature selector module extracts the features from the 

queries in the format expected by the detection engine. The detection engine then runs the 

extracted features through the detection algorithm. If an anomaly detected, the detection 

mechanism submits its assessment of the SQL command to the response engine according 

to a pre-defined interface; otherwise the command information is sent to the profile creator 

process for updating the profiles. 

The response engine consults a policy base of existing response policies to issue a 

response depending on the assessment of the query submitted by the detection engine. 

Notice that the fact that a query is anomalous may not necessarily imply an intrusion. Other 

information and security policies must also be taken into account. For example, if the user 

logged under the role is performing some special activities to manage an emergency, the 

response mechanism may be instructed not to raise alarms in such circumstances. If the 
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response engine decides to raise an alarm, certain actions for handling the alarm can be 

taken. The most common action is to send an alert to the security administrator. However 

other actions are possible (Figure 1.1), such as log the alarm, drop the query, or even 

take no action at all. We have implemented a prototype of this system architecture in the 

PostgreSQL DBMS. We refer the reader to Chapter 5 for the implementation details and 

experimental results concerning the overhead of the system. 

1.5 Thesis Statement and Contributions 

The goal of the doctoral thesis is to develop architectures, mechanisms and algorithms 

for a DBMS equipped with activity monitoring, intrusion detection and response capabili­

ties. Within this broad context, the research issues that we address are as follows: 

1. Creating profiles that succinctly represent user/application-behavior interacting with 

a DBMS.  

2. Developing efficient algorithms for online detection of anomalous database user and 

application behavior. 

3. Developing strategies for responding to intrusions in the context of a DBMS. 

4. Creating a system architecture for database intrusion detection and intrusion response 

as an integral component of a DBMS, and a prototype implementation of the same 

in the PostgreSQL DBMS [5]. 

1.6 Thesis Organization 

The rest of the thesis document is as follows. Chapter 2 presents our approach towards 

detecting anomalous access patterns in a DBMS. Chapter 3 presents our approach towards 

the response mechanism in a DBMS. Chapter 4 presents the privilege state based access 

control mechanism that provides support for the fine-grained response actions. Chapter 5 

presents the details of our prototype implementation of the detection and response mecha­
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nism in the PostgreSQL DBMS. Chapter 6 presents an overview of related work in the area 

of database intrusion detection and response. We summarize the thesis in Chapter 7 with a 

brief overview of the future enhancements. 



11 

2. DETECTING ANOMALOUS ACCESS PATTERNS IN 

DATABASES 

2.1 Introduction 

In this chapter we present algorithms for detecting anomalous user/role access to a 

DBMS. The key idea underlying our approach is to build profiles of normal user behavior 

interacting with a database. We then use these profiles to detect anomalous behavior. In 

this context, our approach considers two different application scenarios. In the first case, 

we assume that the database has a Role Based Access Control (RBAC) model in place. Au­

thorizations are specified with respect to roles and not with respect to individual users. One 

or more roles are assigned to each user and privileges are assigned to roles. Our ID system 

builds a profile for each role and is able to determine role intruders, that is, individuals that 

while holding a specific role deviate from the normal behavior of that role. The use of roles 

makes our approach usable even for databases with large a user population. Managing a 

few roles is much more efficient than managing many individual users. With respect to 

ID, using roles means that the number of profiles to build and maintain is much smaller 

than those one would need when considering individual users. Note that RBAC has been 

standardized (see the NIST model [6]) and has been adopted in various commercial DBMS 

products. This implies that an ID solution, based on RBAC, could be easily deployed in 

practice. 

In the second case, we address the same problem in the context of a DBMS without 

any role definitions. This is a necessary case to consider because not all organizations are 

expected to follow a RBAC model for authorizing users of their databases. In such a setting, 

every SQL command is associated with the user that issued it. A naive approach for ID in 

this setting would be to build a different profile for every user. For systems with large user 

bases such an approach would be extremely inefficient. Moreover, many of the users in 
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those systems are not particularly active and they only occasionally submit queries to the 

database. In the case of highly active users, profiles would suffer from over-fitting, and in 

the case of inactive users, they would be too general. In the first case we would observe a 

high number of false alarms, while the second case would result in high number of missed 

alarms, that is, alarms that should have been raised. We overcome these difficulties by 

building user-group profiles (clusters of similar behaviors) based solely on the transactions 

users submit to the database. Given such profiles, we define an anomaly as an access pattern 

that deviates from the profiles. 

The two problems that we address in the context of an intrusion detection mechanism 

specifically tailored for a DBMS are as follows: how to build and maintain profiles repre­

senting accurate and consistent user behavior; how to use these profiles for performing the 

ID task at hand. The solution to both problems relies on the use of ‘intrusion free’ database 

traces, that is, sequences of database audit log records representing normal user behavior1. 

However, the information contained in these traces differ depending on the application sce­

nario in question. When role information does exist, the problem is transformed into a 

supervised learning problem. A classifier is trained using a set of intrusion-free training 

records. This classifier is then used for detecting anomalous behavior. For example, if a 

user claims to have a specific role while the classifier classifies her behavior as indicative 

of another role, then an alarm is raised. On the other hand, for the case in which no role 

information is available, we form our solution based on unsupervised learning techniques. 

We employ clustering algorithms to construct clusters of users that behave in a similar 

manner (with respect to their database access patterns). These clusters may also help the 

DBA in deciding which roles to define. For every user, we maintain the mapping to its 

representative cluster. For the ID phase, we specify two different approaches. In the first 

approach, we treat the problem in a manner similar to the supervised case with the clusters 

1Guarantying the intrusion free nature of the training data is an issue often raised in the context of anomaly 
detection systems. The standard technique employed to address this concern is to use outlier detection algo­
rithms to remove potential anomalies from the training data. Though this does not guarantee that all malicious 
SQL statements are removed from the training data or that every outlying point that is removed is malicious; 
in practice, this step has often been observed to increase the accuracy of anomaly detection systems. In this 
work, however, we do not employ such strategy for our experiments. 
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as the classifier classes. In the second approach, we treat the detection phase as an outlier 

detection problem. That is, an alarm is raised for a new query if it is marked as an outlier 

with respect to its representative cluster. 

The main challenge in attacking our problem is to extract the right information from the 

database traces so that accurate profiles can be built. To address this problem, we propose 

several representations for the database log records, characterized by different granularity 

and, correspondingly, by different accuracy levels. By using those representations, we then 

address the first scenario as a classification problem and the second one as a clustering 

problem. 

2.2 Data Representation 

In order to identify user behavior, we use the database audit files for extracting infor­

mation regarding users’ actions. The audit records, after being processed, are used to form 

initial profiles representing acceptable actions. Each entry in the audit file is represented as 

a separate data unit;  these units  are  then  combined  to  form  the desired  profiles.  

We assume that users interact with the database through commands, where each com­

mand is a different entry in the log file, structured according to the SQL language. For 

example, in the case of select queries such commands have the format: 

SELECT [DISTINCT] {TARGET-LIST} 

FROM {RELATION-LIST} 

WHERE {QUALIFICATION} 

In order to build profiles, we need to pre-process the log-file entries and convert them 

into a format that can be analyzed by our algorithms. Therefore, we represent each entry 

by a basic data unit that contains five fields, and thus it is called a quiplet. 

Quiplets are our basic unit for viewing the log files and are the basic components for 

forming profiles. User actions are characterized using sets of such quiplets. Each quiplet 

contains the following information: the SQL command issued by the user, the set of re­

lations accessed, and for each such relation, the set of referenced attributes. This in­



14 

formation is available in the three basic components of the SQL command, namely, the 

SQL COMMAND, the  TARGET-LIST and the RELATION-LIST. We  also  process  the  

QUALIFICATION component of the query to extract information on relations and their 

corresponding attributes, that are used in the query predicate.2 Therefore, the abstract form 

of such a quiplet consists of five fields (SQL Command, Projection Relation Information, 

Projection Attribute Information, Selection Relation Information and Selection Attribute 

Information)3 . For  the  sake  of  simplicity  we  represent  a  generic  quiplet  using  a  5-ary re­

lation Q(c, PR, PA, SR, SA), where  c corresponds to the command, PR to the projection 

relation information, PA to the projection attribute information, SR to the selection relation 

information, and SA to the selection attribute information. Depending on the type of quiplet 

the two arguments PR(or SR) and  PA(or SA) can  be of different  types,  but  for simplicity  

and clarity we allow the symbols to be overloaded. Whenever the type of quiplet is vital, 

we will explicitly specify it. However, when it is not specified our claims hold for all types 

of quiplets. 

Depending on the level of detail required in the profile construction phase and in the ID 

phase, we represent the quiplets from the log file entries using three different representation 

levels. Each level is characterized by a different amount of recorded information. 

We call the most naive representation of an audit log-file record, coarse quiplet or c­

quiplet. A  c-quiplet  records  only  the  number  of  distinct  relations  and  attributes  projected  

and selected by the SQL query. Therefore, c-quiplets essentially model how many relations 

and how many attributes are accessed in total, rather than the specific elements that are 

accessed by the query. The c-quiplets are defined as follows: 

Definition 2.2.1 A coarse quiplet or c-quiplet is a representation of a log record of the 

database audit log file. Each c-quiplet consists of 5 fields (SQL-CMD, 

PROJ-REL-COUNTER, PROJ-ATTR-COUNTER, SEL-REL-COUNTER, 

2The relation and attribute information is assumed to be present in the join conditions of the predicate. We 
do not consider the cases of complex sub-queries that cannot be reduced to join conditions. 
3For clarity, we only show the representation for the syntax of a select command. The representation is 
general enough to capture information from other SQL commands such as insert, delete and update. For  
example, for the insert command, the inserted into relation and columns are encoded as the projection relation 
and projection attributes. 

http:RELATION-LIST.We
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SEL-ATTR-COUNTER). The first field is symbolic and corresponds to the issued SQL 

command. The next two fields are numeric, and correspond to the number of relations and 

attributes involved in the projection clause of the SQL query, respectively. The last two 

fields are also numeric, and correspond to the number of relations and attributes involved 

in the selection clause of the SQL query. ! 

In terms of the quiplet notation Q(), here  both  PR(or SR) and  PA(or SA) correspond  to  

the number of relations and attributes involved in the query respectively. Apparently, a large 

amount of valuable information in the database log is ignored by c-quiplets. It is however 

useful to consider such a primitive data representation since it is sufficient in the case of 

a small  number of well-separated  roles.  Moreover,  more  sophisticated  representations  of  

log-file entries are based on the definition of c-quiplets. 

The second representation scheme captures more information from the log file records. 

We call this representation, medium-grain quiplet or m-quiplet. These  quiplets  extend  the  

coarse quiplets by further exploiting the information present in the log entries. Like a 

c-quiplet, a m-quiplet represents a single log entry of the database log file. In this case 

though, each relation is represented separately by the number of its attributes projected (or 

selected) by the SQL query. Thus, in terms of the quiplet notation Q(), PR, PA, SR and 

SA are vectors of the same size which is equal to the number of relations in the database. 

The m-quiplets are defined as follows: 

Definition 2.2.2 A medium-grain quiplet or m-quiplet is a data object which corre­

sponds to a single entry of the database log file and consists of 5 fields (SQL-CMD, 

PROJ-REL-BIN[], PROJ-ATTR-COUNTER[],SEL-REL-BIN[], 

SEL-ATTR-COUNTER[]). The first field is symbolic and corresponds to the issued SQL 

command, the second is a binary (bit) vector of size equal to the number of relations in the 

database. The bit at position i is set to 1 if the i-th relation is projected in the SQL query. 

The third field of the quiplet is a vector of size equal to the number of relations in the 

database. The i-th element of the PROJ-ATTR-COUNTER[] vector corresponds to the 

number of attributes of the i-th relation that are projected in the SQL query. The semantics 
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of SEL-REL-BIN[] and SEL-ATTR-COUNTER[] vectors are equivalent to those of 

PROJ-REL-BIN[] and PROJ-ATTR-COUNTER[] vectors, but the information kept in 

the former corresponds to the selections rather than to the projections of the SQL query. ! 

Finally, we introduce a third representation level of log-file records which extracts the 

maximum information from the log files. We call this representation fine quiplet or f­

quiplet. The  structure  of  a  f-quiplet  is  similar  to  that  of  a  m-quiplet. In  particular,  the  first,  

the second and the fourth fields of a f-quiplet are the same as the corresponding fields of 

the m-quiplets. The f-quiplets and m-quiplets differ only for the third and fifth fields. In the 

case of f-quiplets, these fields are vector of vectors and are called PROJ-BIN-ATTR[][] 

and SEL-BIN-ATTR[][] respectively. The i-th element of PROJ-BIN-ATTR[][] is 

a vector  corresponding  to  the  i-th relation of the database and having size equal to the 

number of attributes of relation i. The  i-th element of PROJ-BIN-ATTR[][] has binary 

values indicating which specific attributes of relation i are projected in the SQL query. The 

semantics of SEL-BIN-ATTR[][] are analogous. For f-triplets, PR and SR are vectors 

of size equal to the number of relations in the database while PA and SA are vectors of the 

same size, but with each element i being a vector of size equal to the number of attributes 

in relation i. The  formal  definition  of  the  f-quiplets  is  as  follows:  

Definition 2.2.3 A fine quiplet or f-quiplet is a detailed representation of a log entry. It 

consists of 5 fields (SQL-CMD, PROJ-REL-BIN[], PROJ-ATTR-BIN[][], 

SEL-REL-BIN[], SEL-ATTR-BIN[][]). The first field is symbolic and corresponds 

to the SQL command, the second is a binary vector that contains 1 in its i-th position if the 

i-th relation is projected in the SQL query. The third field is a vector of n vectors, where n 

is the number of relations in the database. Element PROJ-ATTR-BIN[i][j] is equal to 

1 if the SQL query projects the j-th attribute of the i-th relation; it is equal to 0 otherwise. 

Similarly, the fourth field is a binary vector that contains 1 in its i-th position if the i-th 

relation is used in the SQL query predicate. The fifth field is a vector of n vectors, where n 

is the number of relations in the database. Element SEL-ATTR-BIN[i][j] is equal to 

1 if the SQL query references the j-th attribute of the i-th relation in the query predicate; it 

is equal to 0 otherwise. ! 

http:m-quiplet.In
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Table 2.1
 
Quiplet construction example
 

SQL Command c-quiplet m-quiplet f-quiplet 

Select R1.A1, R2.C2 

From R1, R2 

Where R1.B1 = 

R2.B2 

select< 2 >< 2 > 

< 2 >< 2 > 

select < 1, 1 > 

< 1, 1 >, 

< 1, 1 >< 1, 1 > 

select < 1, 1 > 

< [1, 0, 0], [0, 0, 1] > 

< 1, 1 > [0, 1, 0], 

[0, 1, 0] 

Table 2.1 shows a SQL command corresponding to select statement and its representa­

tion according to the three different types of quiplets. In the example, a database schema 

consisting of two relations R1 = {A1, B1, C1} and R2 = {A2, B2, C2}, is  considered.  

2.3 Role-Based Anomaly Detection 

In this section, we describe our methodology when information related to the roles of 

users is available in the database traces. This role information allows us to address the 

problem at hand as a standard classification problem. 

2.3.1 Classifier 

We use the Naive Bayes Classifier (NBC) for the ID task in RBAC administered 

databases. Despite some modeling assumptions regarding attribute independence inher­

ent to this classifier, our experiments demonstrate that it is surprisingly useful in practice. 

Moreover, NBC has proven to be effective in many practical applications such as text clas­

sification and medical diagnosis [7–9], and often competes with much more sophisticated 

learning techniques [10, 11]. The reason for the popularity of NBC is its low computa­

tional requirements for both the training and classification task. The small running time 

is mainly due to the attribute independence assumption. Moreover, like all probabilistic 
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classifiers under the Maximum Aposteriori Probability (MAP) decision rule, NBC arrives 

at the correct classification as long as the correct class is more probable than any other 

class. In other words, the overall classifier is robust to deficiencies of its underlying naive 

probability model. We refer the reader to the paper by Domingos et al. [7] that explains the 

optimality region for the NBC and discusses the reasons for its effective performance even 

when the attribute independence assumption does not completely hold. 

We first describe the general principles of the NBC (for details see [8]) and then show 

how it can be applied to our setting. In supervised learning, each instance x of the data 

is described as a conjunction of attribute values, and the target function f(x) can only 

take values from some finite set V . The  attributes  correspond  to  the  set  of  observations  

and the elements of V are the distinct classes associated with those observations. In the 

classification problem, a set of training examples DT is provided, and a new instance with 

attribute values (a1, ..., an) is given. The goal is to predict the target value, or the class, of 

this new instance. 

The approach we describe here is to assign to this new instance the most probable class 

value vMAP, given  the  attributes  (a1, ..., an) that describe it. That is 

vMAP = arg  max  P (vj|a1, a2, ..., an). 
vj ∈V 

Using Bayes Theorem we can rewrite the expression as 

vMAP = arg  max  P (vj|a1, a2, ..., an) 
vj ∈V 

P (a1, a2, ..., an|vj)P (vj)= arg  max  
vj ∈V P (a1, a2, ..., an) 

∝ arg max P (a1, a2, ..., an|vj)P (vj). 
vj ∈V 

The last derivation is feasible because the denominator does not depend on the choice of 

vj and thus, it can be omitted from the arg max argument. Estimating p(vj) is simple since 

it requires just counting the frequency of vj in the training data. However, calculating 

P (a1, a2, ..., an|vj ) is hard when considering a large dataset and a reasonably large number 
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of attributes [12]. The NBC, however, is based on the simplifying assumption that the 

attribute values are conditionally independent, and  thus  

vMAP ∝ arg max P (vj ) P (ai|vj). (2.1) 
vj ∈V 

i 

This reduces significantly the computational cost since calculating each one of the P (ai|vj) 

requires only a frequency count over the tuples in the training data with class value equal 

to vj . 

Thus, the conditional independence assumption seems to solve the computational cost. 

However, there is another issue that needs to be discussed. Assume an event e occurring 

nej number of times in the training dataset for a particular class vj with size |Dvj | . While 

the observed fraction ( 
nnj ) provides  a  good  estimate of the probability  in  many  cases,  it  |Dvj | 

provides poor estimates when nej is very small. An obvious example is the case where 

nej = 0. The  corresponding  zero  probability  will  bias  the  classifier  in  an  irreversible  

way, since according to equation 2.1, the zero probability when multiplied with the other 

probability terms will give zero as its result. To avoid this difficulty we adopt a standard 

Bayesian approach in estimating this probability, using the m-estimate [8]. The formal 

definition of m-estimate is as follows: 

Definition 2.3.1 Given a dataset DT with size |DT | and an event e that appears nej times 

in the dataset for a class vj with size |Dvj | and ne times in the entire dataset, then the 

m-estimate of the probability pej = 
nej is defined to be |Dvj | 

nej + m · ne 

m |DT |pej 
= . (2.2) 

|Dvj | + m 

The parameter m is a constant and is called equivalent sample size, which  determines  

how heavily to weight pej relative to the observed data. If nE is 0, then  we  assume  that  

m 1p = .E |Dvj | 

The NBC directly applies to our anomaly detection framework by considering the set of 

roles in the system as classes and the log-file quiplets as the observations. In what follows, 

we show how equation 2.1 can be applied for the three different types of quiplets. 
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For the case of c-quiplets the application is simple since there are five attributes 

(c, PR, PA, SR, SA) to  consider  namely  the  command,  the  projection  relation  count,  the  

projection attribute count, the selection relation count and the selection attribute count. If 

R denotes the set of roles, the predicted role of a given observation (ci, PRi, PAi, SRi, SAi) 

is 

rMAP = 
{

arg maxrj ∈R p(rj )p(ci|rj)p(PRi|rj)p(PAi|rj) 
}

p(SRi|rj)p(SAi|rj) . 

For m-quiplets, we again have five fields (c, PR, PA, SR, SA), where  PR, PA, SR and 

SA are vectors of the same cardinality. Except for the command attribute c, the  rest  of  the  

attributes considered in this case are from the product PRPT and SRST . Therefore  there  A A 

are |PR · PT | + |S AA R · ST | + 1  attributes, and Equation 2.1 can be rewritten as follows 

rMAP = 
 N

 

{

arg maxrj ∈R p(rj)p(ci|rj ) p(PR[i] · PA 
T [i]|rj ) 

i=1 

}

p(SR[i] · SA 
T [i]|rj ) , 

where N is the number of relations in the DBMS. 

Finally, for f-quiplets, where fields PR,SR are vectors and PA,SA are vectors of vectors, 

the corresponding equation is 

rMAP = 
 N

 

arg maxrj ∈R p(rj)p(ci|rj) {p(PR[i] · PA[i]|rj ) 
i=1 

}

p(SR[i] · SA[i]|rj ) . 
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With the above definitions in place, the ID task is quite straightforward. For every 

new query, its rMAP is predicted by the trained classifier. If this rMAP is different from the 

original role associated with the query, an anomaly is detected. For benign queries, the 

classifier can be updated in a straightforward manner by increasing the frequency count of 

the relevant attributes. 

The procedure for ID can easily be generalized for the case when a user is assigned 

more than one role at a time. This is because our method detects anomalies on a per query 

basis rather than per user basis. Hence, as long as the role associated with the query is 

consistent with the role predicted by the classifier, the system will not detect an anomaly. 

2.3.2 Experimental Evaluation 

In this section, we report results from an experimental evaluation of the proposed ap­

proach and illustrate its performance as an ID mechanism. Our experimental setting con­

sists of experiments with both synthetic and real data sets. In our previous work [13], we 

had reported the performance of the three quiplet types under different modes of database 

access patterns. The objective of the current experimental evaluation is to assess the perfor­

mance of our methods on databases deployed for real-world applications. For modeling the 

SQL query access patterns in a real-world deployed database, we use the general form of 

a zipf probability distribution function (pdf) that is frequently used to model non-uniform 

access. The zipf pdf, for a random variable X , is  mathematically  defined  as  follows:  

1/xs 

Zipf(X, N, s) =  ,
ΣN

i=11/i
s 

where N is the number of elements and s is the parameter characterizing the distribution. 

Figure 2.1 shows the cumulative density function for a zipf distribution for N = 10 and 

different values of s. Suppose  N here denotes the number of tables in a database schema 

ordered according to some criteria such as lexicographic order. Then figure 2.1 shows that, 

as we increase s, the  probability  mass  accumulates  towards  the  left  half  of  the  schema,  

thereby making the access pattern more and more skewed. For our experiments, we also 
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Fig. 2.1. A sample Zipf distribution for N=10 

use a reverse zipf distribution which is a mirror image of the corresponding zipf plot with 

respect to a vertical axis. 

Before describing our experimental findings, we give a brief outline of the generation 

procedure for our test datasets and anomalous queries. 

Data Sets 

Synthetic data sets: The synthetic data are generated according to the following model: 

Each role r has a probability, p(r), of  appearing  in  the  log  file.  Additionally,  for  each  

role r the generator specifies the following five probabilities: (i) the probability of using a 

command c given the role, p(c|r), (ii)  the  probability  of  projecting  on  a  table  t given the role 

and the command, p(Pt|r, c), (iii)  the  probability  of  projecting  an  attribute  within  a  table  

a ∈ T given the role, the table and the command, p(Pa|r, t, c), (iv)  the  probability  of  using  

a table  t in the selection clause given the role and the command, p(St|r, c) and finally, (v) 

the probability of using an attribute a ∈ t in the query predicate given the role, the table and 

the command, p(Sa|r, t, c). We  use  four  different  kinds  of  probability  distribution  functions  

for generating these probabilities namely, uniform, zipf, reverse zipf and multinomial. 
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Real data set: The real dataset used for evaluating our approach consists of 8368 SQL 

traces from eight different applications submitting queries to a MS SQL server database. 

The database schema consists of 130 tables and 1201 columns in all. The queries in this 

dataset consists of a mix of select, insert and update commands with precisely 7583 select 

commands, 213 insert commands and 572 update commands. There are no sub-queries 

present in any of the query predicates. Also, since role information is not available, we 

consider the applications themselves as our roles. For a more detailed description of the 

dataset we refer the reader to [14]. 

Anomalous query generation: We generate the anomalous query set keeping in mind 

the insider threat scenario. For this, we generate the anomalous queries from the same 

probability distribution as that of normal queries, but with role information negated. For 

example, if the role information associated with a normal query is 0, then  we  simply  change  

the role to any role other than 0 to make the query anomalous. 

2.3.3 Results 

We now describe the the first synthetic dataset that we use for our experiments. The 

database schema consists of 100 tables and 20 columns in each tables. The number of roles 

for the database is 4. The  SQL  query  submission  pattern  for  the  roles  is  governed  by  the  pdf,  

Zipf(N = 4, s  = 1). The  first  two  roles  are  read-only,  such  that  they  use  the  select com­

mand with probability 1. The  first  role  accesses  the  tables  with  a  pdf,  Zipf(100, s), and  the  

columns with a pdf, Zipf(20, s). We  vary  the  parameter  s for our experiments. Similarly, 

the second role accesses the tables and columns with a pdf governed by R Zipf(100, s) 

and R Zipf(20, s), respectively.  The  third  and  the  fourth  roles  are  read-write  such  that  

they issue the select, insert, delete and update commands with probabilities 0.1, 0.1, 0.1 

and 0.7 respectively. For the select, delete and insert commands, these two role access all 

the tables and columns within each table with a uniform probability. The third role executes 

the update command with a pdf, Zipf(100, s), and  the  fourth  with  a  pdf,  R Zipf(100, s). 

We use a training data size of cardinality 5000 and set the m parameter (in equation 2.2) to 

http:Zipf(20,s).We
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Fig. 2.2. Dataset 1: False Positive and False Negative rate 

100. Figure  2.2  shows  the  False  Positive  (FP)  and  False  Negative  (FN)  rates  for  increasing  

values of s. As  expected,  the  FP  and  the  FN  rate  for  f-quiplet  is  the  lowest  among  the  three  

quiplet types. Also, as we make the database access becomes more skewed by increasing 

s, FP  rate  for  the  f-quiplet  goes  down.  

We generate the second dataset as follows. The database schema is same as in the first 

dataset with 100 tables and 20 columns in each table. However, there are now 9 roles that 

access the database as shown in Figure 2.3. Roles 1 to 6 are read-only and roles 7, 8 and 

9 are read-write. Figure 2.4 shows the FP and FN rates for this dataset. An interesting 

observation is that the performance of m-quiplet is actually better than that of f-quiplet for 

lower values of s and comparable to f-quiplet for higher values of s. This  suggests  that  m­

quiplet may prove to be an effective replacement for f-quiplet for a DBMS with an access 

pattern similar to that of the second dataset. 

Finally, we present experimental results for the real data set. The results are averaged 

over a 10-fold cross validation of the dataset. Anomalous queries are generated as described 

earlier. The parameter m in equation 2.2 is again set to be 100. Table  2.2  shows  the  

performance of the three quiplet types. The FN rate for all three quiplet types is quite low. 

One matter of concern is the high FP rate for this dataset. This result could be due to the 
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Fig. 2.3. Dataset 2: Description of Roles
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Table 2.2 
Real data: False Positive and False Negative rate 

Quiplet type False Negative (%) False Positive (%) 

c 2.6 19.2 

m 2.4 17.1 

f 2.4 17.9 

specific nature of the real dataset; or for m and f-quiplet the large number of attributes may 

trigger such behavior. 

Overall, the experimental evaluation reveals that in most cases f-quiplet capture the 

access pattern of the users much better than either c or m-quiplet. 

2.4 Unsupervised Anomaly Detection 

We now turn our attention to the case where the role information is not available in the 

audit log files. In this case, the problem of forming user profiles is clearly unsupervised 

and thus it is treated as a clustering problem. The specific methodology that we use for the 

ID task is as follows: we partition the training data into clusters4 using standard clustering 

techniques. We maintain a mapping for every user to its representative cluster. The rep­

resentative cluster for a user is the cluster that contains the maximum number of training 

records for that user after the clustering phase. For every new query under observation, 

its representative cluster is determined by examining the user-cluster mapping. Note the 

assumption that every query is associated with a database user. For the detection phase, 

we outline two approaches. In the first approach, we apply the naive bayes classifier in a 

manner similar to the supervised case, to determine whether the user associated with the 

query belongs to its representative cluster or not. In the second approach, a statistical test 

is used to identify if the query is an outlier in its representative cluster. If the result of the 

statistical test is positive, the query is marked as an anomaly and an alarm is raised. The 

4In the unsupervised setting, the clusters obtained after the clustering process represent the profiles. 
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methods we use for clustering include some standard techniques. The next section explains 

in detail the distance measures used for clustering. After that we briefly explain the cluster­

ing algorithms and the statistical test for detecting intruders and finally report experimental 

results on them. 

2.4.1 Distance Functions 

For clustering the quiplets into groups such that quiplets in the same group are close to 

each other, we need a measure to establish the “closeness” between the quiplets. For this 

we provide definitions of the necessary distance functions. 

In order to introduce the distance functions, we first need to introduce a (generic and 

overloaded) function β( ) which will be used for evaluating and comparing quiplets of the 

A,P A
A,S Asame type. Let Q = (c,PR,PA,SR,SA) and QA = (c R,P A

R,S A ) be two quiplets A

in general, and let T = (PR,PA,SR,SA) and T A = (PR
A ,PA

A ,SR
A ,SA

A ) denote information 

contained in Q and QA respectively, minus the command c. We  define,  β : T × T → R as 

a mapping  from  pairs  of quiplets  (minus  the command  c) to  real  numbers.  

• For  c-quiplet, function  β( ) is calculated as follows: 

β(T, T A) =  
V

(PR − PR
A )2 + (PA − P A )2 + (SR − S A )2 + (SA − S A )2 

A R A

• For  m-quiplet, we  have:  

β(T, T A) = ||PRPA − PR
A PA

A ||2 + ||SRSA − SR
A SA

A ||2 

Note that given two vectors vi = {vi1, vi2, ..., vin} and vj = {vj1, vj2, ..., vjn}, their  
V

L

L2 distance ||vi − vj ||2 is defined to be ||vi − vj ||2 = C
n
=1(viC − vjC)2 . 
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• For  f-quiplet,  function  β( ) is calculated as follows:
 

β(T, T A) = 
  
LN {||PR[i]PA[i] − P A [i]P A [i]||2 +i=1 R A

||SR[i]SA[i] − SR
A [i]SA

A [i]||2} 

Observation 2.4.1 All the above definitions of β( ) satisfy the triangle inequality. 

Definition 2.4.1 The distance between two quiplets Q and QA is defined as follows: 
⎧ 
⎨ A1 + β(T, T A) if c =� c

dQ(Q, QA) =  (2.3) 
⎩ β(T, T A) otherwise
 

The following lemma states an important property of function dT .
 

Lemma 1 If β( ) satisfies the triangle inequality, then dQ( ) satisfies the triangle inequal­

ity. 

Proof Consider three quiplets T1, T2 and T3, minus  the  command  c. If  β( ) satisfies the 

triangle inequality then the following inequality holds: 

β(T1, T2) + β(T2, T3) ≥ β(T1, T3). 

This means that dQ satisfies the triangle inequality as well for all the cases when c1 = c2 = 

c3. Therefore  we  only  have  to  re-examine  the  case  when  c1 � �= c3. Assume  then  that  c1 = c3. 

If c1 = c2, then  it  should  be  that  c3 � c2 and therefore the triangular inequality for dQ is= 

also preserved. 

2.4.2 Clustering Algorithms 

This section describes the algorithms that are used for forming the profiles in the unsu­

pervised setting. 
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k-centers 

The k-centers algorithm takes as input the set of data points and their distances and 

a parameter  k, which  is  the  desired  number  of  clusters.  The  output  is  a  flat  k-clustering, 

that is, a single clustering consisting of k clusters C = {C1, . . . , Ck}. The  clusters  form  a  

partitioning the input data points. 

If we denote by x a data  point,  that  is  a  quiplet  in  the  log  files,  and  by  µj the point 

representing the jth cluster, in the k-centers clustering algorithm we try to find the partition 

that optimizes the following function: 

max max dQ(x, µj )
j x∈Cj 

This problem is NP-Hard. For solving it we use the following approximate algo­

rithm [15], also known as the furthest-first traversal technique. The idea is to pick any 

data point to start with, then choose the point furthest from it, then the point furthest from 

the first two5 and so on until k points are obtained. These points are taken as cluster centers 

and each remaining point is then assigned to the closest center. This algorithm provides a 

2-approximation guarantee for any distance function that is a metric. Given Lemma 1 that 

proves that dQ is a metric, the above algorithm provides a 2-approximate solution in our 

setting as well. 

This algorithm minimizes the largest radius of the clusters that are returned as output 

and uses as cluster centers, or representatives, points that are already in the data set. The 

advantages of this algorithm are expected to be revealed in cases in which the data set does 

not contain large number of outliers. That is, if the data we use for creating user profiles 

are free from intruders, this algorithm is expected to create profiles reasonably close to the 

real ones. 
5The distance of a point x from a set S is the usual min{dQ(x, y) :  y ∈ S}. 
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k-means 

In order to address the case where some outliers may exist in the data used to build 

the profiles, we also consider an alternative clustering heuristic. This is the widely used 

k-means algorithm. The k-means algorithm is also a member of the flat k-clustering al­

gorithms, that output a single clustering consisting of k-clusters that partition the input 

points. Although, there is no proof of how good approximations we obtain using k-means, 

the algorithm has been widely adopted due to its low computational requirements, ease of 

implementation and mainly due to the fact that it works well in practice. The algorithm con­

sists of a simple re-estimation procedure and works as follows. First, k points are chosen 

randomly, representing the initial cluster representatives. In this case, the representatives 

of the clusters correspond to the means of the data points in the cluster given the metric 

space. Then, the remaining data points are assigned to the closest cluster. The new rep­

resentatives, subject to the last assignment, are re-computed for each cluster. The last two 

steps are alternated until a stopping criterion is met, that is, when there is no further change 

in the assignment of data points to clusters. The algorithm minimizes the following cost 

function: 

dQ(x, µj ) 
j x∈Cj 

where x again corresponds to a data point and µj is the representative of the jth cluster; 

and in this case, it is the mean of the points in the cluster. 

A significant  advantage  of  the  k-means algorithm when compared to the other cluster­

ing algorithms discussed in this section is that updates of the clusters can be executed in 

constant time. Consider the case in which we have already formed the k clusters on some 

initial set of normal input points. Now assume that new normal points arrive and we want 

to incorporate them into the existing clusters. Assume that x is a new point and we want to 

incorporate it in cluster Ci that has cardinality |Ci| and is described by the mean µi. Then  

of course finding the new mean µi 
A of the cluster after the addition of point x is a trivial 

A x+µi·|Ci|task, since µ = . Now  our  additional  claim  is  that  the  error  in  the  new  cluster  that  i |Ci|+1 
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contains the points Ci ∪ {x} can also be computed in constant time. This can be executed 

by computing the error of each cluster by using the following formula: 

|Ci| |Ci| b
11 2 2(xi − µi) =

|Ci| 
xi − (

|Ci| 
xi)

i=1 i=1 i=a 

Now, the error when the additional point x is added can be computed in constant time by 

keeping two pre-computed arrays for the cluster points: the sum of the values and the sum 

of squares of the values of the points appearing in the cluster. 

2.4.3 Anomaly Detection Methodology 

So far we have described two alternative ways of building the profiles given unclas­

sified log quiplets. In this section, we describe our methodology in detail for identifying 

anomalous behavior given the set of constructed profiles. 

Let z denote an issued SQL query for which our mechanism has to tell whether it is 

anomalous or not. The mechanism that decides whether a query is a potential intruder 

works as follows: 

1. Find the representative cluster (Cz) for  query  z issued by user U . The  representative  

cluster is obtained by simply looking up the user-cluster mapping created during the 

clustering phase. 

2. We specify two different approaches for the detection phase. In the first approach, we 

use the naive bayes classifier in a manner similar to the supervised case by treating 

the clusters as the classifier classes. In the second approach, we determine if z is an 

outlier in cluster Cz with the help of a statistical test. If it is an outlier, we declare z 

as an anomaly. 

In the second approach for the detection phase, we use a statistical test for deciding 

whether a query is an anomaly or not, but we do not specify the statistical test to use. 

In principle, any test appropriate for identifying outliers from a univariate data set which 
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cannot be mapped to a standard statistical distribution like Normal and Lognormal, is ap­

plicable. In our setting we use the MAD (Median of Absolute Deviations) test [16], which 

we describe below in brief. 

MAD test: Assume to have n data points (log quiplets). Let di denote the distance of data 

point i from the cluster center it belongs to. Also, let d denote the median value of the di’s 

for i = 1, 2, . . . , n. Then  first,  we  calculate  the  MAD  as  

MAD = mediani(|di − d|). 

Additionally, for each point i we calculate 

0.6745(di − d)
Zi = .

MAD 

Now if |Zi| > D, then  di is an outlier, meaning that we can infer that point i is an outlier. D 

is a constant which has to be experimentally evaluated. In our case, it is set to 1.5 since for 

this value we experience satisfactory performance of our system. We treat differently the 

special case where MAD = 0. This  case  is  quite  likely  since  many  quiplets  are  expected  to  

collide with the cluster center. In that case, we consider a point i that belongs in profile Cj 

¯ ¯as an outlier if dQ(i, µj) > dµj + 2  · σj. In  the  above  equation,  dµj corresponds to the mean 

of the distances of all the points in cluster Cj from the representative of cluster i, namely  

µj. Likewise,  σj corresponds to the standard deviation of those distances. 

2.4.4 Experimental Evaluation 

We now present the experimental results for the unsupervised case. The objective of the 

unsupervised case, after forming the user-cluster mapping is similar to that of the super­

vised case. For every new query under observation, we check if the user associated with the 

query is indeed a member of its mapped cluster. The dataset that we use for this evaluation 

is similar to the dataset 2 used in the supervised case. However, we reduce the number of 

tables to 20 and the number of columns per table to 10. The  number  of  training  records  

used for clustering are 1000. The  results  are  averaged  over  5 iterations of the clustering 

algorithms. 
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Fig. 2.5. Unsupervised Dataset: k-means - False Positive and False Nega­
tive rate for the naive bayes detection methodology
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Fig. 2.6. Unsupervised Dataset: k-centers - False Positive and False Neg­
ative rate for the naive bayes detection methodology
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Fig. 2.7. Unsupervised Dataset: k-means - False Positive and False Nega­
tive rate for the outlier detection methodology
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Fig. 2.8. Unsupervised Dataset: k-centers - False Positive and False Neg­
ative rate for the outlier detection methodology
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Fig. 2.9. Unsupervised Dataset: False Negative rate for the outlier de­
tection methodology with intrusion queries from a different probability 
distribution 

Figures 2.5 and 2.6 show the results for the naive bayes detection methodology for 

both k-means and k-centers clustering algorithms. The FP rate for both the algorithms is 

extremely low. However, the corresponding FN rate for k-means is much better than that of 

k-centers. This makes k-means the algorithm of choice for the kind of dataset considered 

in this test case. Another noticeable observation is the better performance of m-quiplet over 

f-quiplet for datasets with smaller values of s. 

Figures 2.7 and 2.8 report the performance of the experiments for the outlier detection 

methodology. The results for the outlier detection methodology are not very impressive for 

either of the clustering algorithms. One probable reason for this result is that anomalous 

queries considered in this test case come from the same probability distribution as that of 

the normal queries, although with role information inverted. Since they come from the same 

distribution, they no longer behave as outliers in the metric space and therefore, the outlier 

detection methodology fails to characterize most of the anomalous queries as outliers. We 

illustrate this with the help of Figure 2.9 which shows the FN rate for k-means and k-centers 

when the anomalous queries are generated from a uniform random probability distribution. 

For such queries, the FN rate decreases as the access pattern becomes more specific. This 



36 

shows the usefulness of the outlier detection based methodology when the access pattern 

of users deviate from the overall distribution of the normal access pattern. 

Overall, the clustering based approach for the unsupervised case shows promising re­

sults for both m and f-quiplet. Among the clustering algorithms, the results for k-means 

are better than those for the k-centers algorithm. This is because k-means better captures 

the trend of the dataset. 

2.5 Conclusion 

In this Chapter, we proposed an approach for detecting anomalous access patterns in 

DBMS. We developed three models, of different granularity, to represent the SQL com­

mands appearing in the database log files. We were thus able to extract useful information 

from the log files regarding the access patterns of the queries. When role information is 

available in the log records, we use it for training a classifier that is then used as the basic 

component for our anomaly detection mechanism. For the other case, when no role infor­

mation is present in the log records, the user profiles are created using standard clustering 

algorithms. The anomaly detection phase is then addressed in a manner similar to the su­

pervised case or as an outlier detection problem. Experimental results for both real and 

synthetic data sets showed that our methods perform reasonably well. 
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3. RESPONDING TO ANOMALOUS ACCESS PATTERNS IN 

DATABASES 

The response subsystem of our IDR mechanism is in-charge of issuing a suitable response 

action when an anomaly is detected by the detection subsystem. It is a policy-driven mech­

anism in which the response policies are pre-defined by DBAs to take an action when an 

anomaly matches a policy. In what follows, Section 3.1 presents the details of the response 

policy language. Section 3.2 presents the design and implementation details of our Joint 

Threshold Administration Model (JTAM) for managing these policies. We discuss the pol­

icy matching algorithms, that search for policies applicable to an anomalous request in 

Section 3.3. Section 3.4 discusses the implementation details of our response mechanism 

in the PostgreSQL DBMS, and reports the experimental results concerning the overhead 

incurred by our techniques. We summarize this Chapter in Section 3.5. 

3.1 Policy Language 

The detection of an anomaly by the detection engine can be considered as a system 

event. The attributes of the anomaly, such as user, role, SQL command, then correspond 

to the environment surrounding such an event. Intuitively, a policy can be specified taking 

into account the anomaly attributes to guide the response engine in taking a suitable ac­

tion. Keeping this in mind, we propose an Event-Condition-Action (ECA) language for 

specifying response policies. Later in this section, we extend the ECA language to support 

novel response semantics. ECA rules have been widely investigated in the field of active 

databases [17]. An ECA rule is typically organized as follows: 

ON {Event} IF {Condition} THEN {Action} 
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Table 3.1
 
Anomaly Attributes
 

Attribute Description 

CONTEXTUAL 

User 

Role 

Client App 

Source IP 

Date Time 

The user associated with the request. 

The role associated with the request. 

The client application associated with the request. 

The IP address associated with the request. 

Date/Time of the anomalous request. 

STRUCTURAL 

Database 

Schema 

Obj Type 

Obj(s) 

SQLCmd 

Obj Attr(s) 

The database referred to in the request. 

The schema referred to in the request. 

The object types referred to in the request 

such as table, view, stored procedure 

The object name(s) referred in the request 

The SQL Command associated with the request 

The attributes of the object(s) referred in the request. 

As it is well known, its semantics is as follows: if the event arises and the condition 

evaluates to true, the specified action is executed. In our context, an event is the detection 

of an anomaly by the detection engine. A condition is specified on the attributes of the 

detected anomaly. An action is the response action executed by the engine. In what fol­

lows, we use the term ECA policy instead of the common terms ECA rules and triggers to 

emphasize the fact that our ECA rules specify policies driving response actions. We next 

discuss in detail the various components of our language for ECA policies. 
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3.1.1 Attributes and Conditions 

Anomaly Attributes. The anomaly detection mechanism provides its assessment of the 

anomaly using the anomaly attributes. We have identified two main categories for such 

attributes. The first category, referred to as contextual category, includes  all  attributes  de­

scribing the context of the anomalous request such as user, role, source, and time. The 

second category, referred to as structural category, includes  all  attributes  conveying  infor­

mation about the structure of the anomalous request such as SQL command, and accessed 

database objects. Details concerning these attributes are reported in Table 3.1. The de­

tection engine submits its characterization of the anomaly using the anomaly attributes. 

Therefore, the anomaly attributes also act as an interface for the response engine, thereby 

hiding the internals of the detection mechanism. Note that the list of anomaly attributes 

provided here is not exhaustive. Our implementation of the response system can be config­

ured to include/exclude other user-defined anomaly attributes. 

Policy Conditions. A response  policy  condition  is  a  conjunction  of  predicates  where  each  

predicate is specified against a single anomaly attribute. Note that to minimize the over­

head of the policy matching procedure (cfr. Section 3.3), we do not support disjunctions 

between predicates of different attributes such as SQLCmd = ‘Select’ OR ‘IPAddress’ = 

‘10.10.21.200’. However, disjunctions between predicates of the same attribute are still 

supported. For example, if an administrator wants to create a policy with the condition 

SQLCmd = ‘Select’ OR SQLCmd = ‘Insert’; such condition can be supported by our 

framework by specifying a single predicate as SQLCmd IN {‘Select’, ‘Insert’}. More  ex­

amples of such predicates are given below: 

Role != DBA 

Source IP IN 192.168.0.0/16 

Objs IN {dbo.*} 

We formally define a response policy condition as follows: 

Definition 3.1.1 (Policy Condition.) Let  PA  = {A1, A2...An} be the set of anomaly 

attributes where each attribute Ai has domain Ti of values. Let a predicate Pr  be defined 
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as Pr: Ak θ c, where  Ak ∈ PA, θ is a comparison operator in {>, <, >=, <=, =, ! =  

, like, IN, BETWEEN}, and  c is a constant value in Tk. The  condition  of  a  response  

policy Pol  is defined as Pol(C): Prk and Prl and . . .  and Prm where Prk, P rl . . . P rm 

are predicates of type Pr. 

3.1.2 Response Actions 

Once a database request has been flagged off as anomalous, an action is executed by the 

response system to address the anomaly. The response action to be executed is specified as 

part of a response policy. Table 3.2 presents a taxonomy of response actions supported by 

our system. The conservative actions are low severity actions. Such actions may log the 

anomaly details or send an alert, but they do not pro-actively prevent an intrusion. Aggres­

sive actions, on the other hand, are high severity responses. Such actions are capable of 

preventing an intrusion pro-actively by either dropping the request, disconnecting the user 

or revoking/denying the necessary privileges. Fine-grained response actions are neither too 

conservative nor too aggressive. Such actions may suspend or taint an anomalous request. 

A suspended  request  is  simply  put  on  hold,  until  some  specific  actions  are  executed  by  

the user, such as the execution of further authentication steps. A tainted request is simply 

marked as a potential suspicious request resulting in further monitoring of the user and pos­

sibly in the suspension or dropping of subsequent requests by the same user. We refer the 

reader to [18] for further details on request suspension and tainting. Note that a sequence 

of response actions can also be specified as a valid response. For example, LOG can be 

executed before ALERT in order to log the anomaly details as well as send a notification 

to the security administrator. 

Table 3.3 describes two response policy examples. The threat scenario addressed by 

Policy 1 is as follows. In many cases, the database users and applications have read access 

to the system catalogs tables by default. Such access is sometimes misused during a SQL 

Injection attack to gather sensitive information about the DBMS structure. An anomaly 

detection engine will be able to catch such requests since they will not match the normal 
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Table 3.2
 
Taxonomy of Response Actions
 

Action Description 

CONSERVATIVE: low severity 

NOP 

LOG 

ALERT 

No OPeration. This option can be used to filter 

unwanted alarms. 

The anomaly details are logged. 

A notification  is  sent.  

FINE-GRAINED: medium severity 

TAINT 

SUSPEND 

The request is audited. 

The request is put on hold till execution 

of a confirmation action. 

AGGRESSIVE: high severity 

ABORT 

DISCONNECT 

REVOKE 

DENY 

The anomalous request is aborted. 

The user session is disconnected. 

A subset  of  user-privileges  are  revoked.  

A subset  of  user-privileges  are  denied.  
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Table 3.3
 
Response Policy Examples
 

Policy 1 

ON ANOMALY DETECTION 

IF Role != DBA and Obj Type = table and 

Objs IN dbo.* and SQLCmd IN {Select} 

THEN DISCONNECT 

Policy 2 

ON ANOMALY DETECTION 

IF Role = DBA and Source IP IN 192.168.0.0/16 and 

Date Time BETWEEN 0800 - 1700 

THEN NOP 

profile of the user. Suppose that we want to protect the DBMS from anomalous reads to the 

system catalogs (’dbo’ schema) from unprivileged database users. Policy 1 aggressively 

prevents against such attacks by disconnecting the user. 

Policy 2 prevents the false alarms originating from the privileged users during usual 

business hours. The policy is formulated to take no action on any anomaly that originates 

from the internal network of an organization from the privileged users during normal busi­

ness hours. 

3.1.3 Interactive ECA Response Policies 

An ECA policy is sufficient to trigger simple response measures such as disconnect­

ing users, dropping an anomalous request, sending an alert, and so forth. In some cases, 

however, we need to engage in interactions with users. For example, as described in Sec­

tion 3.1.2, suppose that upon detection of an anomaly, we want to execute a fine-grained 

response action by suspending the anomalous request. Then we ask the user to authenti­

cate with a second authentication factor as the next action. In case the authentication fails, 
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the user is disconnected. Otherwise, the request proceeds. As ECA policies are unable 

to support such sequence of actions, we extend them with a confirmation action construct. 

A confirmation action is the second course of action after the initial response action. Its 

purpose is to interact with the user to resolve the effects of the initial action. If the confir­

mation action is successful, the resolution action is executed, otherwise the failure action 

is executed1. 

Thus, a response policy in our framework can be symbolically represented as follows2: 

ON {Event} 

IF {Condition} 

THEN {Initial Action} 

CONFIRM {Confirmation Action} 

ON SUCCESS {Resolution Action} 

ON FAILURE {Failure Action} 

An example of an interactive ECA response policy is presented in Table 3.4. The initial 

action is to suspend the anomalous user request. As a confirmation action, the user is 

prompted for re-authentication. If the confirmation action fails, the failure action is to 

abort the request and disconnect the user. Otherwise, no action is taken and the request is 

processed by the DBMS. 

3.2 Policy Administration 

As discussed in Chapter 1, the main issue in the administration of response policies is 

how to protect a policy from malicious modifications made by a DBA that has legitimate 

access rights to the policy object. To address this issue, we propose an administration 

1Note that implementing the confirmation actions such as a re-authentication or a second factor of authentica­
tion require changes to the communication protocol between the database client and the server. The scenarios 
in which such confirmation actions may be useful are when a malicious subject (user/process) is able to 
bypass the initial authentication mechanism of the DBMS due to software vulnerabilities (such as buffer 
overflow) or due to social engineering attacks (such as using someone else’s unlocked unattended terminal). 
2Note that in case where an interactive response with the user is not required, the confirmation/resolution/­
failure actions may be omitted from the policy. 
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Table 3.4
 
Interactive ECA Response Policy Example
 

Policy 3: Re-authenticate unprivileged users who are logged from 

inside the organization’s internal network for write anomalies 

to tables in the dbo schema. If re-authentication fails, drop the 

request and disconnect the user else do nothing. 

ON ANOMALY DETECTION 

IF Role != DBA and Source IP IN 192.168.0.0/16 and 

Obj Type = table and Objs IN dbo.* and 

SQLCmd IN {Insert,Update,Delete} 

THEN SUSPEND 

CONFIRM RE-AUTHENTICATE 

ON SUCCESS NOP 

ON FAILURE ABORT,DISCONNECT 
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model referred to as the Joint Threshold Administration Model (JTAM). The  threat  

scenario that we assume is that a DBA has all the privileges in the DBMS, and thus it 

is able to execute arbitrary SQL insert, update, and  delete commands to make malicious 

modifications to the policies. Such actions are possible even if the policies are stored in 

the system catalogs3. JTAM  protects  a  response  policy  against  malicious  modifications  by  

maintaining a digital signature on the policy definition. The signature is then validated 

either periodically or upon policy usage to verify the integrity of the policy definition. 

One of the key assumptions in JTAM is that we do not assume the DBMS to be in pos­

session of a secret key for verifying the integrity of policies. If the DBMS had possessed 

such key, it could simply create a HMAC (Hashed Message Authentication Code) of each 

policy using its secret key, and later use the same key to verify the integrity of the policy. 

However, management of such secret key is an issue since we cannot assume the key to be 

hidden from a malicious DBA. The fundamental premise of our approach is that we do not 

trust a single DBA (with the secret key) to create or manage the response policies, but the 

threat is mitigated if the trust (the secret key) is distributed among multiple DBAs. This 

is also the fundamental problem in threshold cryptography, that  is,  the  problem  of  secure  

sharing of a secret. We thus base JTAM on a threshold cryptographic signature scheme. 

Threshold Signatures: A k out of l threshold signature scheme is a protocol that allows 

any subset of k users out of l users to generate a valid signature, but that disallows the 

creation of a valid signature if fewer than k users participate in the protocol [20]. The basic 

paradigm of most well-known threshold signature schemes is as follows [21]. Each user Ui 

has a secret key share si corresponding to the signature key d. Each  of  the  users  Ui partic­

ipating in the signature generation protocol generates a signature share that takes as input 

the message m (or the hash of the message) that needs to be signed, the secret key share si, 

3Although it is strongly discouraged, many popular DBMSs allow DBAs to make ad-hoc updates to the 
system catalogs. For example, in PostgreSQL 8.3, the  system  catalogs  can  be  updated  by  a  DBA  if  the  
rolcatupdate column is set to ‘true’ in the pg authid catalog [5]. In Oracle 11g Database, the system catalogs 
may be updated by users holding the SYS account [19]. 
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and other public information. Signature shares from different users are then combined to 

form the final valid signature on m. 

For a threshold signature scheme to be practical for JTAM, it scheme must meet the 

following three key requirements. First, the signature share generation procedure should 

be asynchronous, and the signature share combining operation should be completely non-

interactive. In addition, the signature shares should be such that they can be made public 

without compromising the security of the secret shares. Such requirement eliminates the 

need for all k users to be present simultaneously to generate the final signature on a policy. 

Second, a single incorrect signature share should invalidate the final signature on the policy. 

Third, the signature verification mechanism should be very efficient to reduce the overhead 

on the DBMS’s normal operations. All such requirements are supported by the Practical 

Threshold Signature scheme by Victor Shoup [20], and thus we employ such scheme in 

the design of JTAM. Shoup’s protocol is based on RSA threshold signatures, and uses the 

concept of Lagrange interpolating polynomial [22] to create the final signature from the 

signature shares. In what follows, we present the details of Shoup’s protocol in the context 

of administration of our response policies. 

3.2.1 JTAM Set-Up 

Before the response policies can be used, some security parameters are registered with 

the DBMS as part of a one-time registration phase. The details of the registration phase 

are as follows: The parameter l is set equal to the number of DBAs registered with the 

DBMS4. Such  requirement  allows  any  DBA to  generate  a  valid  signature  share  on  a  policy  

object, thereby making our approach very flexible. Shoup’s scheme also requires a trusted 

dealer to generate the security parameters. This is because it relies on a special property of 

the RSA modulus, namely, that it must be the product of two safe primes. We  assume  the  

4The registration of the DBAs (including assigning initial passwords) will be typically handled by a DBA 
itself. The security parameters needed for JTAM operations are presented as DBMS configuration options 
that may also be set by any DBA. The scenario that we assume here is that there are multiple administrators, 
each holding the DBA role, and thus having the same level of privileges. We assume that the DBAs are 
individually trusted to perform the administration tasks such as registration of DBAs, database configuration, 
etc since these tasks do not lead to the kind of conflict-of-interest that we address in the paper. 

http:primes.We
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DBMS to be the trusted component that generates the security parameters 5. For  all  values  

of k, such  that  2 ≤ k ≤ l − 1, the  DBMS  generates  the  following  parameters:  

•	 RSA Public-Private Keys. The DBMS chooses p, q as two large prime numbers 

such that 

p = 2pA + 1 and q = 2qA + 1  

where pA and qA are themselves large primes. Let n = p ∗ q be the RSA modulus. Let 

m = pA ∗ qA. The  DBMS  also  chooses  e as the RSA public exponent such that e > l. 

Thus, the RSA public key is PK  = (n, e). The  server  also  computes  the  private  key  

d ∈ Z such that de ≡ 1 mod m. 

•	 Secret Key Shares. The next step is to create the secret key shares for each of the 

l DBAs. For this purpose, the DBMS sets a0 = d and randomly assigns ai from 

{0, . . . , m − 1} for 1 ≤ i ≤ k − 1. The  numbers  {a0 . . . ak−1} define the unique 
Li=k−1polynomial p(x) of degree k − 1, p(x) =  i=0 aixi. For  1 ≤ i ≤ l, the  server  

computes the secret share, si, of  each  DBA,  DBAi, as  follows:  

si = p(i) mod m. 

The secret shares can be stored in a smartcard or a token for every DBA, and sub­

mitted to the DBMS when required to sign a policy. The other alternative, that we 

implement in JTAM, is to let the DBMS store the shares in the database encrypted 

with keys generated out of the DBA’s passwords6. Thus,  during  the  registration  

phase, each DBA must submit its password to the DBMS for encrypting its secret 

key shares. Using this strategy, whenever a DBA needs to sign a policy for autho­

rization, it submits its password which is used by the DBMS to decrypt the DBA’s 

secret share, and use that to generate the correct signature share. 

5In practice, only a small portion of the DBMS code base that deals with JTAM operations needs to be trusted. 
6We use the widely used OpenPGP (RFC 4880) standard  [23] to  generate  high-entropy  keys  from  the  pass­
words, then use such keys to encrypt the secret shares. 
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Fig. 3.1. Policy State Transition Diagram 

The three key observations regarding the registration phase of JTAM are as follows. 

First, the security parameters, that is, the public-private key pairs, and the secret shares, 

need to be generated for every k value (2 ≤ k ≤ l − 1), and not for every policy. This 

means that any policy that uses the same value of k will have the same security parameters. 

Second, the private key d is only used temporarily to generate the secret key shares and is 

not stored by the DBMS. Third, the registration phase needs to be performed as an ACID 

database transaction. 
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3.2.2 Lifecycle of a Response Policy Object 

In this section, we describe the signature share generation, the signature share com­

bining, and the final signature verification operations, in the context of the administrative 

lifecycle of a response policy object. The steps in the life-cycle of a policy object are pol­

icy creation, activation, suspension, alteration, and  deletion. The  life-cycle  is  shown  in  

Figure 3.1 using a policy state transition diagram. The initial state of a policy object after 

policy creation is CREATED. After the policy has been authorized by k − 1 administrators, 

the policy state is changed to ACTIVATED. A policy in an ACTIVATED state is opera-

tional, that  is,  it  is  considered  by  the  policy  matching  procedure  in  its  search  for  matching  

policies. If a policy needs to be altered, dropped or made non-operational, it must be moved 

to the SUSPENDED state. The transition from the ACTIVATED state to the SUSPENDED 

state must also be authorized by k − 1 administrators, before which the policy is in the 

SUSPEND IN−PROGRESS state. Note that a policy in the SUSPEND IN−PROGRESS 

state is also considered to be operational. From the SUSPENDED state, a policy can be 

either moved back to the CREATED state or it can be moved to the DROPPED state. A sin­

gle administrator can move a policy to the CREATED state from the SUSPENDED state, 

while a policy drop operation must be authorized by k − 1 administrators (before which 

the policy is in the DROP IN−PROGRESS state). We begin our detailed discussion of a 

policy object’s life-cycle with the policy creation procedure. 

Policy Creation 

The policy creation command has the following format: 

Create Response Policy [Policy Data] Jointly Administered By k Users; 

Policy Data refers to the interactive ECA response policy conditions and actions that 

were described in Section 3.1. Suppose that DBA1 issues such command and that k = 

3, and  l = 5. DBA1 becomes the owner of the newly created policy object. The newly 

created policy will be administered by 3 users (including the owner). We define an admin­
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istrator of a policy as a user that has owner-like privileges on the policy object. Owner-like 

privileges means that the user has all privileges on the object along with the ability to grant 

these privileges to other users7. Note  that  the  DBAs  are  assumed  to  possess  the  owner-like  

privileges on all database objects by default. 

After the Create Response Policy command is issued, the DBMS performs the follow­

ing operations in a sequence: 

1. It prompts DBA1 for its password. 

2. It uses the password received at step 1 to decrypt the encrypted secret share of DBA1 

corresponding to the value of k = 3 to get s1. 

3. It generates a cryptographic hash (such as SHA1) of  the  policy.  The  hash  is  taken  on  

all the policy attributes (cfr. Section 3.1) that need to be protected from malicious 

modifications. Thus, 

H(Pol) = SHA1(Policy ID, Conditions, (3.1) 

Initial Action(s), Optional Action(s), 

k, State). 

Policy ID is a unique identifier generated by the DBMS for every policy. The hash 

is taken on the ACTIVATED policy state since that is the state of the policy after the 

policy has been authorized for activation by k − 1 administrators. 

4. It creates a signature share on H(Pol) using the secret share s1 of DBA1. Let  x 

= H(Pol). The  signature  share  of  DBA1, is  W (DBA1) =  x2Δs1 ∈ Qn, where  

Δ = l!, and  Qn is the subgroup of squares in Zn
∗ . W (DBA1) does not leak any 

information about the secret share s1 because of the intractability of the generalized 

discrete logarithm problem [24]. 

7For example, SQL Server 2005 defines a CONTROL privilege for every database object that confers owner-
like privileges. 
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Table 3.5 
sys response policy catalog after Policy Creation 

PolID PolData k r hash sig shares 

. . .  . . .  3 2 H(Pol) W (DBA1) 

state final sig 

CREATED 

The policy data along with the signature share and H(Pol) is stored in the 

sys response policy system catalog as shown in Table 3.5. The column r stores the number 

of users that have yet to authorize the policy. The initial value of r after completion of the 

policy creation step is k − 1 = 2. 

Policy Activation 

Once the policy has been created, it must be authorized for activation by at least k − 1 

administrators after which the DBMS changes the state of the policy to ACTIVATED. The 

policy activation command has the following format: 

Authorize Response Policy [Policy ID] Create; 

Suppose that DBA3 issues such command. After the command is issued, the DBMS 

performs the following operations in a sequence: 

1. It prompts DBA3 for its password. 

2. It uses the password received in step 2 to decrypt the encrypted secret share of DBA3 

corresponding to k = 3 to get s3. 

3. It creates a signature share on H(Pol) using the secret share s3 in a manner simi­

lar to the Create Response Policy command. Let W (DBA3) denote the signature 

share. W (DBA3) is also stored in sys response policy system catalog as shown in 

Table 3.6. 
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Table 3.6 
sys response policy catalog after Policy Activation - I 

PolID PolData k r hash sig shares 

. . .  . . .  3 1 H(Pol) W (DBA1); W (DBA3) 

state final sig 

CREATED 

Table 3.7
 
sys response policy catalog after final Policy Activation
 

PolID PolData k r hash sig shares 

. . .  . . .  3 0 H(Pol) 

state final sig 

ACTIVATED Wfinal 

4. It decrements the value in column r by 1. 

A similar  procedure  is  adopted  when  another  administrator,  DBA4, issues  the  Autho­

rize Response Policy [Policy ID] Create command. When k − 1 administrators have 

authorized the policy for activation, the signature combining and verification algorithms 

are executed (Section 3.2.2). If the final signature, Wfinal, obtained  after  the  signature  

combining procedure is valid, the DBMS changes the state of the policy to ACTIVATED. 

The updated policy signature and state are shown in Table 3.7. 

Signature Combining and Verification 

Let S be the set of DBAs that have submitted the signatures shares on a policy; S 

8 2 )2= {i1, . . . , ik} ⊂ {1, . . . , l}. Let x = H(Pol) ∈ Zn
∗, and  xij 

= W (Uij = x 4Δsij . To  

combine the signature shares, we compute w such that 

8For example, S = {1, 3, 4} since DBA1, DBA3 and DBA4 submitted the signature shares on the policy. 
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2λS 2λS 
0,i1 0,ikw = x . . . x  i1 ik 

P 
4Δ( λS )j∈S 0,j sij= x 

where the λ’s are the integers defined as follows: 

Q

(i−j)j'∈S\{j}λS = Δ Q ∈ Z, i ∈ {0, . . . , l} \ S, j ∈ S.i,j (j−j')j'∈S\{j}

These values of λ are derived from the standard Lagrange polynomial interpolation 

formula [22]. Using the Lagrange interpolation formula, we have 

L 
Δ.f(i) ≡ λS f(j) mod m j∈S i,j 

Thus, 

P 
e 4Δ( λS sij )ej∈S 0,jw = x 

P 
4Δ( λS f(j) mod m)ej∈S 0,j= x 

4Δ(Δf(0)e mod  m)= x 

4Δ2(de mod m)= x 

'e= x 

where eA = 4Δ2 since de mod m ≡ 1 (RSA property). Since Shoup’s scheme is based 

on RSA threshold signatures, the final signature is the classical RSA signature [24]. To 

e acompute the final signature Wfinal = y such that y = x, we  set  y = w xb where a and b 

are integers such that eAa + eb = 1. This  is  possible  since  gcd(e, eA) = 1. The values of a 

and b are obtained from the standard Euclidean algorithm on e and eA [24]. 

The final signature, Wfinal, is  verified  using  the  public  key  (n, e) corresponding to the 

value of k. We  recreate  the  hash  of  the  policy,  H(Pol), according  to  Equation  (3.1).  If  

e(Wfinal) = H(Pol), the  signature  is  valid  otherwise  not.  
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Policy Suspension 

To alter/drop a policy or to make it non-operational, the policy state must be changed 

to SUSPENDED. To change the policy state to SUSPENDED, an administrator issues the 

Suspend Response Policy [Policy ID] command. Suppose that DBA2 issues this command. 

The sequence of steps followed by the DBMS upon receiving this command is as follows: 

1. It prompts DBA2 for its password. 

2. It uses the password received in step 2 to decrypt the encrypted secret share of DBA2 

corresponding to k = 3 to get s2. 

3. It creates a signature share, W (DBA2), on  H(Pol) using the secret share s2 in a 

manner similar to the Create Response Policy command; the difference in this case 

is that the hash, H(Pol), is  taken  on  the  SUSPENDED  policy  state.  

4. It resets the value of r to k − 1 = 2. 

5. It changes the state of the policy to SUSPEND IN−PROGRESS. 

Note that a policy in the SUSPEND IN-PROGRESS state is also considered to be opera­

tional. Thus, to allow for verification of the policy integrity, the final signature, Wfinal, that  

was obtained after the policy activation phase is left unchanged in the sys response policy 

catalog. 

A policy  in  the  SUSPEND  IN-PROGRESS  state  must  be  authorized  for  suspension  by  

at least k − 1 administrators by executing the Authorize Response Policy [Policy ID] Sus­

pend command. The signature share generation, and the signature combining operations 

for such command are similar to that in the Authorize Response Policy [Policy ID] Create 

command. When k − 1 administrators have submitted their signature shares, the shares 

are combined to get the final signature, W A . The  sys response policy catalog is then final

updated with the new final signature as shown in Table 3.8. 
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Table 3.8
 
sys response policy catalog after final authorization of Policy Suspension
 

PolID PolData k r hash sig shares 

. . .  . . .  3 0 H(Pol) 

state final sig 

SUSPENDED W A 
final 
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Policy Alteration 

An administrator can alter a policy in the SUSPENDED state by executing the Alter 

Response Policy [Policy ID] [Policy Data] command. Upon receiving such command, the 

DBMS, creates a new hash, H(Pol), on  the  policy  according  to  Equation  (3.1)  (with  state  

set as ACTIVATED), generates a signature share on H(Pol) (for the administrator who 

has issued the command), clears the existing final signature from the sys response policy 

catalog, and changes the policy state to CREATED. The policy activation procedure must 

now be repeated for activating the policy. 

Policy Drop 

A response  policy  is  dropped  by  executing  the  Drop Response Policy [Policy ID] com­

mand. The sequence of steps performed to drop a policy is similar to the steps performed 

for policy suspension; the difference in this case is that the hash, H(Pol), in  Equation  (3.1)  

is taken on the DROPPED policy state. Also, the final signature, W A , obtained  after  the  final

policy suspension phase is left unchanged when the policy state is DROP-IN PROGRESS. 

After the policy drop has been authorized by k − 1 administrators, a new final signature, 

W AA , is  obtained  and  stored  in  the  sys response policy catalog. The DROPPED state is final

the final state in the lifecycle of a policy, that is, a policy can not be re-activated after it has 

been dropped. 

3.2.3 Attacks and Protection 

In this section, we describe possible attacks on JTAM and strategies to protect from 

them. Recall that the threat scenario that we address is that a DBA has all the privileges in 

the DBMS, and thus it is able to execute arbitrary SQL commands on the sys response policy 

catalog. 

Signature share verification. It is possible for a malicious administrator to replace a valid 
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signature share with some other signature share that is generated on a different policy defi­

nition. However, such attack will fail as the final signature that is produced by the signature 

share combining algorithm will not be valid. Note that by submitting an invalid signature 

share, a malicious administrator can block the creation of a valid policy. We do not see this 

as a major problem since the threat scenario that we address is malicious modifications to 

existing policies, and not generation of policies themselves. 

Final signature verification. A final  signature  on  a  policy  is  present  in  all  the  policy  states  

except the CREATED state. As described earlier, the final signature is verified using the 

public key (n, e) corresponding to the value of k. The  public  key  is  assumed  to  be  signed  

using a trusted third party certificate that can not be forged. Thus, if a malicious DBA 

replaces the server generated public key, the final signature will be invalidated. Apart from 

verifying the final signature immediately after policy activation, suspension, and drop, the 

signature must also be verified before a policy may be considered in the policy matching 

procedure. Such strategy ensures that only the set of response policies, that have not been 

tampered, are considered for responding to an anomaly. Note that RSA signature verifi­

cation requires modular exponentiation of the exponent e [25]. The overhead to carry out 

such modular exponentiation increases with the number of bits set to one in the exponent 

e. As  we  show  later  in  our  experiments,  an  appropriate  choice  of  e, such  as  3, 17, or  65537 

can lead to a very low signature verification overhead. However, the cumulative overhead 

of verifying signatures on every policy during the policy matching procedure may be high. 

An alternative strategy is to create a dedicated DBMS process that periodically polls the 

sys response policy table, and verifies the signature on all policies. 

Malicious Policy Update. A policy  may  be  modified  by  a  malicious  DBA using  the  SQL  

update statement. However, all policy definition attributes that need to be protected (see 

Equation (3.1)) are hashed and signed; therefore any modification to such attributes through 

the SQL update command will invalidate the final signature on the policy. 
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Table 3.9 
sys response policy count catalog after Policy Creation 

PolID k state sig 

. . .  k INVALID W A(DBA1) 

Malicious Policy Deletion. An authorized policy may be deleted by a malicious DBA 

using the SQL delete command. However in JTAM, a policy tuple is never physically 

deleted; only its state is changed to DELETED. Thus, a signature on the policy-count can 

be used to detect malicious deletion of policy tuples. The detailed approach is as follows: 

When the Create Response Policy command is executed, the DBMS counts the number 

of policy tuples present in the database. It increments such policy-count by 1 to account 

for the new policy being created. A hash is taken on the new policy-count and state = 

VALID, and a signature share is generated on such hash. The signature share, policy id 

of the policy being created, the k value of the policy being created, and the initial state = 

INVALID are all stored in the sys response policy count catalog as shown in Table 3.9. 

These values replace the tuple that is already present in the table. Note that the policy id 

that is inserted in the sys response policy count table represents the latest policy that has 

been created. During policy activation, the DBMS first checks if the policy id present in 

sys response policy count matches the id of the policy currently being activated. If the 

check succeeds, it counts the number of policy tuples in the database, and generates a sig­

nature share on the hash of the policy-count, and state = VALID. If the check fails, no 

signature share is generated. Such strategy ensures that always the correct policy-count is 

signed as multiple policies may be in CREATED stage at the same time. The final signature 

on the policy-count is generated when the k − 1th administrator activates the policy. The 

state of the policy-count signature is then changed to VALID. The dedicated DBMS process 

that verifies the individual policy signatures also verifies the signature on the policy-count. 

If a policy tuple is deleted, the signature on the policy-count is invalidated. 
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Signature Replay Attacks. A malicious  DBA can  create  a  copy  of  the  final  signature  on  a  

policy. It can then replay the copied signature, that is, it can replace the existing signature 

on the policy with the copied signature and change the policy state to the state correspond­

ing to the copied signature. This attack is possible since we allow alterations to an existing 

policy object. To address this attack, we duplicate the policy state to a system column of 

the sys response policy catalog. A system column of a table is a column that is managed 

solely by the DBMS and its contents can not be modified by any user. In case the policy 

state in the system column does not match the policy state in the column visible to the user, 

a policy  integrity  violation  is  detected.  

Policy Replay Attacks. A malicious  DBA may  insert  a  previously  authorized  policy  tuple,  

whose state has been changed to DROPPED, into the sys response policy catalog. Such 

attack can be prevented as follows. There is a unique policy id associated with each pol­

icy tuple that is generated by the DBMS. If a malicious DBA tries to insert a previously 

authorized policy tuple, the DBMS will generate a fresh policy id for the new tuple. Since 

the hash of the policy, H(Pol), takes  into  account  the  policy  id, the  final  signature  on  such  

maliciously inserted policy tuple will be invalidated. In addition, since policy tuples are 

not physically deleted, the policy id generated by the DBMS is guaranteed to be unique. 

3.3 Policy Matching 

In this section, we present our algorithms for finding the set of policies matching an 

anomaly. Such search is executed by matching the attributes of the anomaly assessment 

with the conditions in the policies. We first state the policy matching problem formally: 

Policy Matching Problem: Let  AA = {A1, A2, . . . , An} be the set of anomaly attributes.
 

Let POL = {Pol1, P ol2, . . . , P olk} be the set of response policies.
 

Let PR  = {Pr1, P r2, . . . , P rm} be the set of all distinct policy predicates. Let Poli(C)
 

be the policy condition for a policy Poli (cfr. Definition 3.1.1). Let AAS : A1 = a1, A2 =
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a2, . . . , An = an be the assessment of an anomaly submitted by the detection mechanism 

to the response system. A policy Poli is said to match AAS if Poli(C) = true evaluated 

over AAS. The  policy  matching  problem  is  to  find  the  set  of  all  policies  in  POL that match 

a given  anomaly  assessment  AAS. 

We first present details of our approach towards policy storage in the DBMS. The poli­

cies are stored in the system catalog tables; the main reason is that the PostgreSQL DBMS 

maintains a cache of the catalog tables in its buffer pool. Assume a policy database consist­

ing of 4 anomaly attributes, 6 policy predicates and 4 policies as shown in Table 3.10. The 

graph shown in Figure 3.2 conceptually describes how the policy cache is maintained. The 

graph contains three types of nodes: attribute nodes, predicate nodes, and policy nodes. A 

special start node is also added (denoted by s in Figure 3.2) to the graph which is connected 

to all the attribute nodes. There is an edge from attribute node Ai to a predicate node Prj 

if Prj is a predicate defined on Ai in the policy database. In addition, there is an edge from 

a predicate  node  Prj to a policy node Polk if Prj appears in the policy condition Polk(C) 

of policy Polk in the policy database. This graph is used by the policy matching algorithms 

to get a list of all the predicates defined on an attribute, all the predicates belonging to a 

policy, and all the policies that a predicate belongs to. 

We now present details of our approach towards policy matching. There are two varia­

tions of our policy matching algorithm. The first algorithm, called the Base Policy Match­

ing algorithm, is described next. 

3.3.1 Base Policy Matching 

The policy matching algorithm is invoked when the response engine receives an anomaly 

detection assessment. For every attribute A in the anomaly assessment, the algorithm eval­

uates the predicates defined on A. After  evaluating  a  predicate,  the  algorithm  visits  all  the  

policy nodes connected to the evaluated predicate node. If the predicate evaluates to true, 

the algorithm increments the predicate-match-count of the connected policy nodes by 1. A  

policy is matched when its predicate-match-count becomes equal to the number of pred­
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Table 3.10
 
Example Policy Database
 

Anomaly Attributes 

A1 = Source IP, A2 = SQLCmd, A3 = Role, A4 = User 

Policy Predicates 

Pr1: Source  IP  IN  192.168.0.0/16 

Pr2: Source  IP  IN  128.10.0.0/16 

Pr3: SQLCmd  IN  {Insert, Delete, Update} 

Pr4: SQLCmd  = ‘exec’ 

Pr5: Role  ! =  ‘DBA’ 

Pr6: User  = ‘appuser’ 

Policy Conditions 

Pol1(C) = Pr1 ˆPr3 

Pol2(C) = Pr2 ˆPr6 

Pol3(C) = Pr4 ˆPr5 

Pol4(C) = Pr1 ˆPr3 ˆPr6 

icates in the policy condition. On the other hand, if the predicate evaluates to false, the 

algorithm marks the connected policy nodes as invalidated. For  every  invalidated  policy,  

the algorithm decrements the policy-match-count9 of the connected predicates; the ratio­

nale is that a predicate need not be evaluated if its policy-match-count reaches zero. 

3.3.2 Ordered Policy Matching 

The search procedure in the base policy matching algorithm does not go through the 

predicates according to a fixed order. We introduce a heuristic by which the predicates 

are evaluated in descending order of their policy-count; the  policy-count of a predicate 

9The policy-match-count of a predicate is the number of non-invalidated policies that the predicate belongs 
to. 
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Fig. 3.2. Policy Predicate Graph Example 
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being the number of policies that the predicate belongs to. We refer to such heuristic as 

the Ordered Policy Matching algorithm. The rational behind the ordered policy matching 

algorithm is that choosing the correct order of predicates is important as it may lead to an 

early termination of the policy search procedure either by invalidating all the policies or by 

exhausting all the predicates. Note that the sorting of the predicates in decreasing order of 

their policy-count is a pre-computation step which is not performed during the run-time of 

the policy matching procedure. 

3.3.3 Response Action Selection 

In the event of multiple policies matching an anomaly, we must provide for a resolution 

scheme to determine the response to be issued. We propose the following two rank-based 

selection options that are based on the severity level of the response actions: 

1.	 Most Severe Policy (MSP). The severity level of a response policy is determined by 

the highest severity level of its response action. This strategy selects the most severe 

policy from the set of matching policies. Note that the response actions described in 

Section 3.1.2 are categorized according to their severity levels. Also, in the case of 

interactive ECA response policies, the severity of the policy is taken as the severity 

level of the Failure Action. 

2.	 Least Severe Policy (LSP). This strategy, unlike the MSP strategy, selects the least 

severe policy. 

In our implementation, we provide the DBA with an option to switch between the two 

choices. 

3.4 Implementation and Experiments 

We have extended the PostgreSQL 8.3 open-source DBMS [5] with our intrusion re­

sponse mechanism. We have introduced new commands in PostgreSQL for creation, acti­

vation, suspension, and dropping of response policies. We have also added six new system 
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Table 3.11 
Response Policy System Catalogs 

System Catalog Purpose 

pg rpolicy actions 

pg rpolicy attrs 

pg rpolicy preds 

pg rpolicy def 

pg rpolicy policypreds 

pg rpolicy shares 

pg rpolicy adm 

Stores the response action definitions. 

Stores the anomaly attribute 

definitions. 

Stores the predicate definitions. 

Stores the association of policies with 

response actions. 

Stores the association of policies with 

predicates. 

Stores the JTAM security parameters. 

Stores the policy administration data. 

catalog tables that store the response policy data. The catalogs and their purposes are 

described in Table 3.11. We have instrumented the query processing sub-system of Post­

greSQL with our anomaly detection and response mechanism. A user request, after being 

parsed, passes through the detection mechanism. The policy matching procedure is in­

voked for every request that is detected as anomalous. We then apply the MSP or the LSP 

option to choose a single policy out of the set of policies returned by the policy matching 

algorithm. 

3.4.1 Experimental Evaluation 

The goal of the experimental evaluation is to measure the overhead incurred by the base 

policy matching, and the ordered policy matching algorithms. We also report experimental 

results on the overhead of the signature verification scheme in JTAM. In what follows, we 

first describe the experimental set-up, and then report the evaluation results. 
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Set-Up 

We use the following six anomaly attributes for our experimental evaluation: User, 

Client App, Source IP, Database, Objs, and  SQLCmd (see Table 3.1). The predicate gen­

eration code randomly assigns set-valued data to these anomaly attributes to create the 

policy predicates. The policy generation code randomly assigns such predicates to policy 

conditions to create the policies. 

The experiments were conducted on a Intel(R) Core(TM)2 Duo CPU @ 2.33Ghz ma­

chine with 4GB of RAM. The operating system was OpenSuse 10.3. 
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Results 

We perform three sets of experiments. The first two experiments report and compare 

the overhead of the policy matching algorithms. The third experiment reports results on the 

overhead of the signature verification mechanism in JTAM. 

In the first experiment, the anomaly assessment is set such that the number of matching 

policies for an anomaly is kept constant at 4. The  number  of  predicates,  and  correspond­

ingly the number of policies, are varied in order to assess the policy matching overhead 

time. Figure 3.3 shows the policy matching overhead for the two algorithms as a func­

tion of the number of predicates. Figure 3.4 reports the number of predicates skipped as 

a function  of the  number of  predicates.  As  expected,  the policy  matching  overhead  time  

increases linearly with the increase in the number of predicates in the policy database. In­

terestingly, the number of predicates skipped in both the algorithms is almost same. Thus, 

counter-intuitively, the ordered policy matching algorithm does not lead to a decrease in 

the number of predicate evaluations. In fact, for larger number of predicates, the policy 

matching overhead of the ordered predicate algorithm is higher than that of the base policy 

matching algorithm. Such increase in matching overhead may be explained by the fact that 

the predicates evaluated by the ordered policy matching are more computationally expen­

sive than the ones evaluated by the base policy matching algorithm. The key observation 

from this experiment, however, is that predicate ordering based on the policy-count param­

eter has no benefits in terms of decreasing the overhead of the policy matching procedure. 

In the second experiment, we keep the number of predicates in the policy database con­

stant at 60. The  number  of  policies  is  also  kept  constant  at  20. The  number  of  matching  

policies is varied in order to assess the policy matching overhead. Figure 3.5 shows the 

policy matching overhead for the two algorithms as a function of the number of match­

ing policies. As expected, the policy matching overhead increases with the increase in the 

number of matching policies. Moreover, in this experiment as well, the overhead of the or­

dered policy matching algorithm is higher than that of the base policy matching algorithm. 

Figure 3.6 reports the variation in the number of predicates skipped by varying the number 
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of matching policies. For both the algorithms, the number of predicates skipped by the 

search procedure decreases for increasing numbers of matching policies. Such result is ex­

pected since an increase in the number of matching policies leads to an increasing number 

of predicate evaluations. 

Overall, the fist two experiments confirm the low overhead associated with our policy 

matching algorithms. They also show that predicate ordering based on the descending 

policy-count parameter has no significant impact on reducing the overhead of the policy 

matching procedure. 

We now report results on the overhead of the signature verification scheme in JTAM. 

For this experiment, we set k = 2, l = 5, and  e = 17. The  size  of  the  RSA  modulus,  n, 

is set to 1024 bits. For such set-up, the signature verification overhead for a single pol­
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icy is approximately 0.17 ms. Such overhead value confirms the low computational com­

plexity associated with the RSA signature verification scheme. However, as mentioned in 

Section 3.2.3, the cumulative overhead of verifying the signatures on every policy during 

policy matching may be high. One approach to reduce the signature verification overhead 

is by decreasing the size of n (see Figure 3.7). Such strategy, however, is not recommended 

since 1024 bits is the recommended size of n to ensure sufficient security of the RSA algo­

rithm. Therefore, a better strategy is to create a dedicated DBMS process that periodically 

polls the policy tables, and verifies the signature on all the policies. 

3.5 Conclusion 

In this Chapter, we described the response component of our intrusion detection and 

response system for a DBMS. The response component is responsible for issuing a suit­

able response to an anomalous user request. We proposed the notion of database response 

policies for specifying appropriate response actions. We presented an interactive Event-

Condition-Action type response policy language that makes it very easy for the database 

security administrator to specify appropriate response actions for different circumstances 

depending upon the nature of the anomalous request. The two main issues that we ad­

dressed in the context of such response policies are policy matching, and  policy adminis­

tration. For  the  policy  matching  procedure,  we  described  algorithms  to  efficiently  search  

the policy database for policies matching an anomalous request assessment. We extended 

the PostgreSQL open-source DBMS to implement our methods. Specifically, we added 

support for new system catalogs to hold policy related data, implemented new SQL com­

mands for the policy administration tasks, and integrated the policy matching code with 

the query processing subsystem of PostgreSQL. The experimental evaluation of our pol­

icy matching algorithms showed that our techniques are efficient. The other issue that we 

addressed is the administration of response policies to prevent malicious modifications to 

policy objects from legitimate users. We proposed a Joint Threshold Administration Model 

(JTAM), a novel administration model, based on Shoup’s threshold cryptographic signature 
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scheme. We presented the design and the implementation details of JTAM, and reported 

experimental results on the efficiency of the policy signature verification mechanism. 
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4. PRIVILEGE STATE BASED ACCESS CONTROL FOR FINE 

GRAINED INTRUSION RESPONSE 

4.1 Introduction 

An access control mechanism is typically based on the notion of authorizations. An au­

thorization is traditionally characterized by a three-element tuple of the form < A, R, P  >  

where A is the set of permissible actions, R is the set of protected resources, and P is the 

set of principals. When a principal tries to access a protected resource, the access control 

mechanism checks the rights (or privileges) of the principal against the set of authorizations 

in order to decide whether to allow or deny the access request. 

The main goal of the work described in this Chapter is to extend the decision semantics 

of an access control system beyond the all-or-nothing allow or deny decisions. Specifically, 

we provide support for more fine-grained decisions of the following two forms: suspend, 

wherein further negotiation (such as a second factor of authentication) occurs with the 

principal before deciding to allow or deny the request, and taint, that  allows  one  to  audit  the  

request in-progress, thus resulting in further monitoring of the principal, and possibly in the 

suspension or dropping of subsequent requests by the same principal. The main motivation 

for proposing such fine-grained access check decisions is to provide system support for 

extending the response action semantics of an application level anomaly detection (AD) 

system that detects the anomalous patterns of requests submitted to it. 

Most AD systems, in the event of detecting an anomaly, would either log the anomalous 

request and allow it to proceed or block the request. We want to extend such responses with 

actions like request suspension (supported by the suspend decision semantics) and request 

tainting (supported by the taint decision semantics). Why do we extend the access control 

mechanism to support such response actions? Certainly, such responses may also be issued 

by an AD mechanism working independently of the underlying access control system. The 
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usefulness of our approach is evident from the following scenario. Suppose we model a 

user request as the usage of a set of privileges in the system where a privilege is defined 

as an operation on a resource. For example, the SQL query ‘SELECT * FROM orders, 

parts’ is  modeled  as  using  the privileges  {select,orders} and {select,parts} in the context 

of a database management system (DBMS). After detecting such request as anomalous 

(using any anomaly detection algorithm), consider that we want to re-authenticate the user 

and drop the request in case the re-authentication procedure fails. Suppose that every time 

a similar  request  is  detected  to  be  anomalous,  we want  the  same re-authentication  proce­

dure to be repeated. If our response mechanism does not remember the requests, then the 

request will always undergo the detection procedure, detected to be anomalous and then 

submitted to the response mechanism to trigger the re-authentication procedure. A more 

generic and flexible approach for achieving such response semantics is to attach a suspend 

state to the privileges associated with the anomalous request. Then for every subsequent 

similar request (that uses the same set of privileges as the earlier request detected to be 

anomalous), the semantics of the privilege in the suspend state automatically triggers the 

re-authentication sequence of actions for the request under consideration without the re­

quest being subjected to the detection mechanism. Moreover, if the system is set-up such 

that the request is always subjected to the detection mechanism (in case access control en­

forcement is performed after the intrusion detection task), more advanced response logic 

can be built based on the fact that a request is detected to be anomalous whose privileges 

are already in the suspend state. 

In addition to supporting fine-grained intrusion response, manually moving a privilege 

to the suspend state (using administrative commands) provides the basis for an event based 

continuous authentication mechanism. Similar arguments can be made for attaching the 

taint state to a privilege that triggers auditing of the request in progress. Since we extend the 

decision semantics of our access control system using privilege states, we call it a privilege 

state based access control (PSAC) system. For the completeness of the access control 

decisions, a privilege, assigned to a user or role, in PSAC can exist in the following five 

states: unassign, grant, taint, suspend, and  deny. The  privilege  states,  the  state  transition  
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semantics and a formal model of PSAC are described in detail in Section 4.2. Note that the 

PSAC model that we present in Section 4.2 is flexible enough to allow more that the above 

mentioned five states. 

We have developed PSAC in the context of a role based access control (RBAC) sys­

tem [26]. Extending PSAC with roles presents the main challenge of state conflict resolu­

tion, that  is, deciding  on  the  final  state  of  a  privilege  when  a  principal  receives  the  same  

privilege in different states from other principals. Moreover, additional complexity is intro­

duced when the roles are arranged in a hierarchy where the roles higher-up in the hierarchy 

inherit the privileges of the lower level roles. We present precise semantics in PSAC to deal 

with such scenarios. 

The main contributions of this work can be summarized as follows: 

1. We present the design details, and a formal model of PSAC in the context of a DBMS. 

2. We extend the PSAC semantics to take into account a role hierarchy. 

3. We implement PSAC in the PostgreSQL DBMS [5] and discuss relevant design is­

sues. 

4. We conduct an experimental evaluation of the access control enforcement overhead 

introduced by the maintenance of privilege states in PSAC, and show that our imple­

mentation design is very efficient. 

The rest of the Chapter is organized as follows. Section 4.2 presents the details of 

PSAC and its formal model; it also discusses how a role hierarchy is supported. Section 4.3 

presents the details of the system implemented in PostgreSQL, and the experimental results 

concerning the overhead introduced by the privilege states on the access control functions. 

We conclude the paper in Section 4.4. 

4.2 PSAC Design and Formal Model 

In this section, we introduce the design and the formal model underlying PSAC. We 

assume that the authorization model also supports roles, in that RBAC is widely used by 
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Table 4.1
 
Privilege States
 

State Access Check Result Semantics 

unassign 

grant 

taint 

suspend 

deny 

The access to the resource is not granted. 

The access to the resource is granted. 

The access to the resource is granted; 

the system audits access to the resource. 

The access to the resource is not granted until 

further negotiation with the principal is satisfied. 

The access to the resource is not granted. 

access control systems of current DBMSs [27–29]. In what follows, we first introduce the 

privilege state semantics and state transitions. We then discuss in detail how those notions 

have to be extended when dealing with role hierarchies. 

4.2.1 Privilege States Dominance Relationship 

PSAC supports five different privilege states that are listed in Table 4.1. For each state, 

the table describes the semantics in terms of the result of an access check. 

A privilege  in  the  unassign state is equivalent to the privilege not being assigned to 

a principal;  and  a privilege  in  the  grant state is equivalent to the privilege being granted 

to a principal. We include the deny state in our model to support the concept of negative 

authorizations in which a privilege is specifically denied to a principal [30]. The suspend 

and the taint states support the fine-grained decision semantics for the result of an access 

check. 

In most DBMSs, there are two distinct ways according to which a user/role1 can obtain 

a privilege  p on a database object o: 

1. Role-assignment: the  user/role  is  assigned  a  role  that  has  been  assigned  p; 
1From here on, we use the terms principal and user/role interchangeably. 
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2.	 Discretionary: the  user  is  the  owner  of  o; or  the  user/role  is  assigned  p by another 

user/role that has been assigned p with the GRANT option2. 

Because of the multiple ways by which a privilege can be obtained, conflicts are natural 

in cases where the same privilege, obtained from multiple sources, exists in different states. 

Therefore, a conflict resolution strategy must be defined to address such cases. Our strategy 

is to introduce a privilege states dominance (PSD) relation (see Figure 4.1). The PSD 

relation imposes a total order on the set of privilege states such that any two states are 

comparable under the PSD relation. Note the following characteristics of the semantics of 

the PSD relation. First, the deny state overrides all the other states to support the concept of 

a negative  authorization  [30].  Second,  the  suspend, and  the  taint states override the grant 

state as they can be triggered as potential response actions to an anomalous request. Finally, 

the unassign state is overridden by all the other states thereby preserving the traditional 

semantics of privilege assignment. 

The PSD relation is the core mechanism that PSAC provides for resolving conflicts. For 

example, consider a user u that derives its privileges by being assigned a role r. Suppose  

that a privilege p is assigned to r in the grant state. Now suppose we directly deny p to 

u. The  question  is  which  is  the  state  of  privilege  p for u, in  that  u has received p with two 

different states. We resolve such conflicts in PSAC using the PSD relation. Because in the 

PSD relation, the deny state overrides the grant state, p is denied to u. 

We formally define a PSD relation as follows: 

Definition 4.2.1 (PSD Relation) Let  n be the number of privilege states.
 

Let S = {s1, s2 . . . sn} be the set of privilege states. The PSD relation is a binary relation
 

(denoted by �) on  S such that for all si, sj , sk ∈ S: 

1.	 si � sj means si overrides sj 

2. if si � sj and sj � si, then  si = sj (anti-symmetry) 

2A privilege  granted  to  a  principal  with  the GRANT  option  allows  the  principal  to  grant  that  privilege  to  other  
principals [31]. 



TAINT

DSU

 

76 

DENY 

SUSPEND 

TAINT 

UNASSIGN 

GRANT 

X 

means ‘X’ overrides ‘Y’ 

Y 
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3. if si � sj and sj � sk, then  si � sk (transitivity) 

4. si � sj or sj � si (totality) ! 

4.2.2 Privilege State Transitions 

We now turn our attention to the privilege state transitions in PSAC. Initially, when a 

privilege is not assigned to a principal, it is in the unassign state for that principal. Thus, 

the unassign state is the default (or initial) state of a privilege. The state transitions can 

be triggered as internal response actions by an AD system, or as ad-hoc administrative 
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commands. In what follows, we discuss the various administrative commands available in 

PSAC to trigger privilege state transitions. 

The GRANT command is used to assign a privilege to a principal in the grant state 

whereas the REVOKE command is used to assign a privilege to a principal in the unassign 

state. In this sense, these commands support similar functionality as the SQL-99 GRANT 

and REVOKE commands [31]. The DENY command assigns a privilege to a principal in 

the deny state. We introduce two new commands in PSAC namely, SUSPEND and TAINT, 

for assigning a privilege to a principal in the suspend and the taint states, respectively. The 

privilege state transitions are summarized in Figure 4.2. Note the constraint that a privilege 

assigned to a principal on a DBMS object can only exist in one state at any given point in 

time. 

4.2.3 Formal Model 

In this section, we formally define the privilege model for PSAC in the context of a 

DBMS. The model is based on the following relations and functions: 

Relations 

1.	 U , the  set  of  all  users  in  the  DBMS.  

2.	 R, the  set  of  all  roles  in  the  DBMS.  

3.	 PR  = U ∪ R, the  set  of  principals  (users/roles)  in  the  DBMS.  

4.	 OT , the  set  of  all  DBMS  object  types  such  as  server, database, schema, table, and  

so forth. 

5.	 O, the  set  of  all  DBMS  objects  of  all  object  types.  

6.	 OP , the  set  of  all  operations  defined  on  the  object  types  in  OT , such  as  select, insert, 

delete, drop, backup, disconnect, and  so  forth.  
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7.	 S = {deny,suspend,taint,grant,unassign}, a  totally  ordered  set  of  privilege  states  un­

der the PSD relation (Definition 4.2.1). 

8.	 P ⊂ OP × OT , a  many-to-many  relation  on  operations  and  object  types  representing  

the set of all privileges. Note that not all operations are defined for all object types. 

For example, tuples of the form (select, server) or (drop, server) are not elements 

of P . 

9.	 URA ⊆ U × R, a  many-to-many  user  to  role  assignment  relation.  

10.	 PRUPOSA ⊂ PR  × U × P × O × S, a  principal  to  user  to  privilege  to  object  

to state assignment relation. This relation captures the state of the access control 

mechanism in terms of the privileges, and their states, that are directly assigned to 

users (assignees) by other principals (assigners) on DBMS objects3. 

11.	 PRRPOSA ⊂ PR  × R × P × O × S, a  principals  to  role  to  privilege  to  object  

to state assignment relation. This relation captures the state of the access control 

mechanism in terms of the privileges, and their states, that are directly assigned to 

roles (assignees) by principals (assigners). 

These relations capture the state of the access control system in terms of the privilege 

and the role assignments. The functions defined below determine the state of a privilege 

assigned to a user/role on a DBMS object. 

Functions 

1.	 assigned roles(u) : U → 2R, a  function  mapping  a  user  u to its assigned roles such 

that assigned roles(u) = {r ∈ R | (u, r) ∈ URA}. This  function  returns  the  set  of  

roles that are assigned to a user. 

3In PSAC, a role can also be an assigner of privileges. Consider a situation when a user u gets a privilege 
p (with grant option) through assignment of role r. If  u grants p to some other user u′, PSAC  records  p as 
being granted to u′ by r even though the actual GRANT command was executed by u. 
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2.	 priv states(pr , r A , p, o) : PR  × R × P × O → 2S , a  function  mapping  a  principal  

pr (privilege assigner), a role rA, a  privilege  p, and  an  object  o to a set of privilege 

states such that priv states(pr , r A , p, o) = {s ∈ S | (pr, rA, p, o, s) ∈ PRRPOSA}. 

This function returns the set of states for a privilege p, that  is  directly  assigned  to  the  

role rA by the principal pr, on  an  object  o. 

3.	 priv states(pr , u A , p, o) : PR  × U × P × O → 2S, a  function  mapping  a  principal  

pr (privilege assigner), a user uA, a  privilege  p, and  an  object  o to a set of privilege 

states such that priv states(pr , u A , p, o) = {s ∈ S | (pr , u A , p, o, s) ∈ PRUPOSA} 

∪r∈assigned roles(u ' ) priv states(pr , r , p, o). The  set  of  states  returned  by  this  function  

is the union of the privilege state directly assigned to the user uA by the principal pr, 

and the privilege states (also assigned by pr) obtained  through  the roles  assigned  to  

Au . 

4.	 priv states(r , p, o) : R × P × O → 2S , a  function  mapping  a  role  r, a  privilege  p, 

and an object o to a set of privilege states such that priv states(r , p, o) = ∪pr∈PR  

priv states(pr , r , p, o). This  function  returns  the  set  of  states  for  a  privilege  p, that  

is directly assigned to the role r by any principal in the DBMS, on an object o. 

5.	 priv states(u A , p, o) : U × P × O → 2S , a  function  mapping  a  user  uA, a  privilege  

p, and  an  object  o to a set of privilege states such that priv states(u A , p, o) = ∪pr∈PR  

priv states(pr , u A , p, o). This  function  returns  the  set  of  states  for  a  privilege  p, that  

is directly assigned to the user uA by any principal in the DBMS, on an object o. 

6.	 PSD state(2 S ) : 2S → S, a  function  mapping  a  set  of  states  2S to a state ∈ S such 

that PSD state(2 S ) = sA ∈ 2S | ∀ � ' sA � s. This  function  returns  the  final  state  s∈2S |s=s 

of a privilege using the PSD relation. 

4.2.4 Role Hierarchy 

Traditionally, roles can be arranged in a conceptual hierarchy using the role-to-role as­

signment relation. For example, if a role r2 is assigned to a role r1, then  r1 becomes a parent 
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of r2 in the conceptual role hierarchy. Such hierarchy signifies that the role r1 inherits the 

privileges of the role r2 and thus, is a more privileged role then r2. However,  in  PSAC  such  

privilege inheritance semantics may create a problem because of a deny/suspend/taint 

state attached to a privilege. The problem is as follows. Suppose a privilege p is assigned to 

the role r2 in the deny state. The role r1 will also have such privilege in the deny state since 

it inherits it from the role r2. Thus,  denying  a  privilege  to  a  lower  level  role  has  the  affect  

of denying that privilege to all roles that inherit from that role. This defeats the purpose 

of maintaining a role hierarchy in which roles higher up the hierarchy are supposed to be 

more privileged than the descendant roles. To address this issue, we introduce the concept 

of privilege orientation. We  define  three  privilege  orientation  modes  namely,  up, down, and  

neutral. A  privilege  assigned  to  a  role  in  the  up orientation mode means that the privilege 

is also assigned to its parent roles. On the other hand, a privilege assigned to a role in 

the down orientation mode means that the privilege is also assigned to its children roles; 

while the neutral orientation mode implies that the privilege is neither assigned to the par­

ent roles nor to the children roles. We put the following two constraints on the assignment 

of orientation modes on the privileges. 

• A  privilege  assigned  to  a  role  in  the  grant or in the unassign state is always in the up 

orientation mode thereby maintaining the traditional privilege inheritance semantics 

in a role hierarchy. 

• A  privilege  assigned  to  a  role  in  the  deny, taint, or  suspend state may only be in the 

down or in the neutral orientation mode. Assigning such privilege states to a role in 

the down or neutral mode ensures that the role still remains more privileged than its 

children roles. In addition, the neutral mode is particularly useful when a privilege 

needs to be assigned to a role without affecting the rest of the role hierarchy (when 

responding to an anomaly, for example). 

We formalize the privilege model of PSAC in the presence of a role hierarchy as fol­

lows: 

http:orientation.We
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1.	 RRA ⊂ R × R, a  many-to-many  role  to  role  assignment  relation.  A  tuple  of  the  form  

(r1, r2) ∈ R × R means that the role r2 is assigned to the role r1. Thus,  role  r1 is a 

parent of role r2 in the conceptual role hierarchy. 

2.	 OR = {up, down, neutral}, the  set  of  privilege  orientation  modes.  

3.	 PRRPOSORA ⊂ PR  × R × P × O × S × OR, a  principal  to  role  to  privilege  

to object to state to orientation mode assignment relation. This relation captures the 

state of the access control system in terms of the privileges, their states, and their 

orientation modes that are directly assigned to roles by principals. 

4.	 assigned roles(r A) : R → 2R, a  function  mapping  a  role  rA to its assigned roles 

such that assigned roles(r A) = {r ∈ R | (rA, r) ∈ RRA} ∪ assigned roles(r). This  

function returns the set of the roles that are directly and indirectly (through the role 

hierarchy) assigned to a role; in other words, the set of descendant roles of a role in 

the role hierarchy. 

5.	 assigned roles(u) : U → 2R, a  function  mapping  a  user  u to its assigned roles such 

that assigned roles(u) = {r ∈ R | (u, r) ∈ URA} ∪ assigned roles(r). This  func­

tion returns the set of roles that are directly and indirectly (through the role hierarchy) 

assigned to a user. 

6.	 assigned to roles(r A) : R → 2R, a  function  mapping  a  role  rA to a set of roles such 

that assigned to roles(r A) = {r ∈ R | (r, rA) ∈ RRA} ∪ assigned to roles(r). This  

function returns the set of roles that a role is directly and indirectly (through the role 

hierarchy) assigned to; in other words, the set of ancestor roles of a role in the role 

hierarchy. 

We redefine the priv states(pr , r A , p, o) function in the presence of a role hierarchy 

taking into account the privilege orientation constraints as follows: 

7.	 priv states(pr , r A , p, o) : PR  × R × P × O → 2S , a  function  mapping  a  principal  

pr, a  role  rA, a  privilege  s, and  an  object  o to a set of privilege states such that 
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Fig. 4.3. A Sample Role Hierarchy 

priv states(pr , r A , p, o) = {s ∈ S | ∀ or ∈ OR, (pr, rA, p, o, s, or) ∈ PRRPOSORA 

} ∪ {s ∈ {grant, unassign} | ∀ r ∈ assigned roles(r A), (pr, r, p, o, s, ‘upA) ∈ 

PRRPOSORA  } ∪ {s ∈ {deny, suspend, taint} |  ∀ r ∈ assigned to roles(r A), 

(pr, r, p, o, s, ‘downA) ∈ PRRPOSORA  }. The  set  of  privilege  states  returned  by  

this function is the union of the privilege states directly assigned to the role rA by the 

principal pr, the  privilege  states  in  the  grant or the unassign states (also assigned by 

pr) obtained  through  the descendant  roles  of  rA, and  the  privilege  states  in  the  deny, 

suspend, and  taint states (also assigned by pr) obtained  through  the roles  that  are the  

ancestor roles of rA, and  that  are  in  the  down orientation mode. 

We now present a comprehensive example of the above introduced relations and func­

tions in PSAC. Consider a sample role hierarchy in Figure 4.3. Table 4.2 shows the state of 

a sample  PRRPOSORA  relation. 
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Table 4.2
 
PRRPOSORA  relation
 

PR R P O S OR 

SU1 r top select t1 deny neutral 

SU1 r0 select t1 taint down 

SU1 r bottom select t1 grant up 

SU2 r top select t1 suspend down 
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Let the role r2 be assigned to the user u1. To  determine  the  final  state  of  the  select 

privilege on the table t1 for the user u1, we  evaluate  priv states(u1 , select , t1 ) as follows: 

priv states(u1, select, t1) 

= priv states(SU1, u1, select, t1) ∪ 

priv states(SU2, u1, select, t1) 

= priv states(SU1, r2, select, t1) ∪ 

priv states(SU2, r2, select, t1) 

= {taint} ∪ 

{grant} ∪ {suspend} 

= {taint, grant, suspend} 

The final state is determined using the PSD state() function as follows: 

PSD  state(taint, grant, suspend) =  suspend 

4.3 Implementation and Experiments 

In this section, we present the details on how to extend a real-world DBMS with 

PSAC. We choose to implement PSAC in the PostgreSQL 8.3 open-source object-relational 

DBMS [5]. In the rest of the section, we use the term PSAC:PostgreSQL to indicate Post­

greSQL extended with PSAC, and BASE:PostgreSQL to indicate the official PostgreSQL 

8.3 release. The implementation of PSAC:PostgreSQL has to meet two design require­

ments. The first requirement is to maintain backward compatibility of PSAC:PostgreSQL 

with BASE:PostgreSQL. We intend to release PSAC:PostgreSQL for general public use in 

the near future; therefore it is important to take into account the backward compatibility 

issues in our design. The second requirement is to minimize the overhead for maintaining 

privilege states in the access control mechanism. In particular, we show that the time taken 

for the access control enforcement code in the presence of privilege states is not much 



                                      

  

85 

31 30 . 17 16 15 14 . 1 0 

GRANT OPTION BITS PRIVILEGE BITS 

Fig. 4.4. ACLItem privs field 

higher than the time required by the access control mechanism of BASE:PostgreSQL. In 

what follows, we first present the design details of PSAC:PostgreSQL, and then we report 

experimental results showing the efficiency of our design. 

4.3.1 PSAC:PostgreSQL 

Access control in BASE:PostgreSQL is enforced using access control lists (ACLs). 

Every DBMS object has an ACL associated with it. An ACL in BASE:PostgreSQL is 

a one-dimensional  array;  the elements  of  such  an  array  have values  of the  ACLItem data 

type. An ACLItem is the basic unit for managing privileges of an object. An ACLItem 

is implemented as a structure with the following fields: granter, the  user/role  granting  the  

privileges; grantee, the  user/role  to  which  the  privileges  are  granted;  and  privs, a  32 bit 

integer (on 32 bit machines) managed as a bit-vector to indicate the privileges granted to 

the grantee. A new ACLItem is created for every unique pair of granter and grantee. There 

are 11 pre-defined privileges in BASE:PostgreSQL with a bit-mask associated with each 

privilege [32]. As shown in Figure 4.4, the lower 16 bits of the privs field are used to 

represent the granted privileges, while the upper 16 are used to indicate the grant option4. 

If the kth bit is set to 1 (0 ≤ k <  15), privilege pk is granted to the user/role. If the (k + 16)th 

bit is also set to 1, then  the  user/role  has  the  grant  option  on  privilege  pk. 

Design Details 

There are two design options to extend BASE:PostgreSQL to support privilege states. 

The first option is to extend the ACLItem structure to accommodate privilege states. The 

4Recall that the grant option is used to indicate that the granted privilege may be granted by the grantee to 
other users/roles. 
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second option is to maintain the privilege states in a separate data structure. We chose the 

latter option. The main reason is that we want to maintain backward compatibility with 

BASE:PostgreSQL. Extending the existing data structures can introduce potential bugs at 

other places in the code base that we want to avoid. In BASE:PostgreSQL, the pg class 

system catalog is used to store the metadata information for database objects such as tables, 

views, indexes and sequences. This catalog also stores the ACL for an object in the acl 

column that is an array of ACLItems. We extend the pg class system catalog to maintain 

privilege states by adding four new columns namely: the acltaint column to maintain the 

tainted privileges; the aclsuspend column to maintain the suspended privileges; the acldeny 

column to maintain the denied privileges; and the aclneut column to indicate if the privilege 

is in the neutral orientation mode. Those state columns and the aclneut column are of the 

same datatype as the acl column, that is, an array of ACLItems. The lower 16 bits of 

the privs field in those state and aclneut columns are used to indicate the privilege states 

and the orientation mode respectively. This strategy allows us to use the existing privilege 

bit-masks for retrieving the privilege state and orientation mode from these columns. The 

upper 16 bits are kept unused. Table 4.3 is the truth table capturing the semantics of the 

privs field bit-vector in PSAC:PostgreSQL. 

Authorization Commands 

We have modified the BASE:PostgreSQL GRANT and REVOKE authorization com­

mands to implement the privilege state transitions. In addition, we have defined and im­

plemented in PSAC:PostgreSQL three new authorization commands, that is, the DENY, 

the SUSPEND, and the TAINT commands. As discussed in the Section 4.2, the DENY 

command moves a privilege to the deny state, the SUSPEND command moves a privilege 

to the suspend state, and the TAINT command moves a privilege to the taint state. The 

default privilege orientation mode for these commands is the down mode with the option 

to override that by specifying the neutral orientation mode. The administrative model for 

these commands is similar to that of the SQL-99 GRANT command, that is, a DENY/SUS­
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Table 4.3
 
Privilege States/Orientation Mode for the privs field in PSAC:PostgreSQL
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unassign/up 

grant/up 

taint/down 

suspend/down 

deny/down 

taint/neutral 

suspend/neutral 

deny/neutral 

Rest all other combinations are not allowed by the system. 
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Table 4.4 
New Authorization Commands in PSAC:PostgreSQL 

TAINT {privilege name(s) | ALL} ON {object name(s)} 

TO {user/role name(s) | PUBLIC} [NEUT ORNT] 

SUSPEND {privilege name(s) | ALL} ON {object name(s)} 

TO {user/role name(s) | PUBLIC} [NEUT ORNT] 

DENY {privilege name(s) | ALL} ON {object name(s)} 

TO {user/role name(s) | PUBLIC} [NEUT ORNT] 

PEND/TAINT command can be executed on privilege p for object o by a user u iff u has the 

grant option set on p for o or u is the owner of o. The  syntax  for  the  commands  is  reported  

in Table 4.4. Note that in the current version of PSAC:PostgreSQL, the new commands 

are applicable on the database objects whose metadata are stored in the pg class system 

catalog. 

Access Control Enforcement 

We have instrumented the access control enforcement code in BASE:PostgreSQL with 

the logic for maintaining the privilege states and orientation modes. The core access con­

trol function in BASE:PostgreSQL returns a true/false output depending on whether the 

privilege under check is granted to the user or not. In contrast, the core access control 

function in PSAC:PostgreSQL returns the final state of the privilege to the calling function. 

The calling function then executes a pre-configured action depending upon the state of the 

privilege. As a proof of concept, we have implemented a re-authentication procedure in 

PSAC:PostgreSQL when a privilege is in the suspend state. The re-authentication proce­

dure is as follows: 

Re-authentication Procedure. Recall that when a privilege is in the suspend state, further 

negotiation with the end-user must be satisfied before the user-request is executed by the 
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DBMS. In the current version of PSAC, we implement a procedure that re-authenticates 

the user if a privilege, after applying the PSD relationship, is found in the suspend state. 

The re-authentication scheme is as follows. In BASE:PostgreSQL, an authentication pro­

tocol is carried out with the user whenever a new session is established between a client 

program and the PostgreSQL server. In PSAC:Postgresql, the same authentication protocol 

is replayed in the middle of a transaction execution when access control enforcement is in 

progress, and a privilege is found in the suspend state. We have modified the client library 

functions of BASE:PostgreSQL to implement such protocol in the middle of a transaction 

execution. If the re-authentication protocol fails, the user request is dropped. If it suc­

ceeds, the request proceeds as usual, and no changes are made to the state of the privilege. 

Note that such re-authentication procedure scheme is implemented as a proof-of-concept 

in PSAC:Postgresql. More advanced forms of actions such as a second-factor of authenti­

cation can also be implemented. 

Access Control Enforcement Algorithm. The pseudo-code for the access control en­

forcement algorithm in PSAC:PostgreSQL is presented in the Listing 4.1. The function 

aclcheck() takes as input a privilege in priv - whose  state  needs  to  be  determined,  a  

database object in object - that  is  the  target  of a  request,  and  a  user  in user - the  user  

exercising the usage of in priv. The  output  of  the  algorithm  is  the  state  of  the  in priv. 

The algorithm proceeds as follows. Since we define a total order on the privilege states, it 

is sufficient to check each state in the order of its rank in the PSD relation (cfr. Section 4.2). 

Thus, we first check for the existence of in priv in the deny state, followed by the suspend 

state, the taint state, and then the grant state. The function for checking the state of in priv 

(function check priv()) in  an  Acl  is  designed  to  take  into  account  all  the  roles  that  are di­

rectly and indirectly (through a role hierarchy) assigned to the in user. Note  that  most  

expensive operation in the check priv() function is the run-time inheritance check of roles, 

that is, to check whether the user role is an ancestor or descendant of the acl role (lines 58 

and 62). We make such check a constant time operation in our implementation by main­

taining a cache of the assigned roles for every user/role in the DBMS. Thus, the running 
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time of the access control enforcement algorithm is primarily dependent upon the sizes of 

various Acls. 

If the privilege is not found to be in the above mentioned states, the unassign state is 

returned as the output of the access check algorithm. 

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

2 I n p u t  

3 i n  u s e r  :  The  u s e r  e x e c u t i n g  t h e  command  

4 i n  o b j e c t  :  T a r g e t  d a t a b a s e  o b j e c t  

5 i n  p r i v  :  P r i v i l e g e  t o  check  

6 

7 Outpu t  

8 The p r i v i l e g e s t a t e 

9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

10 f u n c t i o n  a c l c h e c k  (  i n  u s e r  ,  i n  o b j e c t  ,  i n  p r i v  )  r e t u r n s  s t a t e  

11 { 

12 / /  Get  t h e  n e u t r a l  o r i e n t a t i o n  ACL  f o r  i n  o b j e c t  

13 NeutACL = g e t n e u t  o r n t  (  i n  o b j e c t  )  ;  

14 

15 / / Deny  i f  i n  u s e r  has  i n  p r i v  i n  DENY  s t a t e  

16 DenyACL = g e t d e  n y  s t  a t  e  a c  l  (  i  n  o b j  e  c  t  )  ;  

17 i f  ( c  h  e  c  k  p r  i  v  (  i  n  p r  i  v  ,  DenyACL  ,  i  n  u s  e  r  ,  NeutACL  ,DENY)  ==  t  r  u  e  )  

18 re tu rn  DENY; 

19 

20 / /  Suspend  i f  i n  u s e r  has  i n  p r i v  i n  SUSPEND  s t a t e  

21 SuspendACL = g e t s t a t e  s u s p e n d  a c l ( i n  o b j e c t ) ;  

22 i f  ( c h e c k  p r i v ( i n  p r i v  , SuspendACL , i n  u s e r  , NeutACL , SUSPEND)  ==  

t r u e  )  

23 re tu rn  SUSPEND ; 

24 

25 / /  T a i n t  i f  i n  u s e r  has  i n  p r i v  i n  TAINT  s t a t e  

26 TaintACL  =  g e t  s t a t e  t a i n t  a c l ( i n  o b j e c t ) ;  
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27 i f  ( c h e c k  p r i v ( i n  p r i v  , TaintACL , i n  u s e r  , NeutACL , TAINT )  ==  t r u e )  

28 re tu rn  TAINT ; 

29 

30 / / Grant  i f  i n  u s e r  has  i n  p r i v  i n  GRANT  s t a t e  

31 GrantACL = g e t g r a n t  s t a t e  a c l ( i n  o b j e c t ) ; 
  

32 i f  ( c h e c k  p r i v ( i n  p r i v  , GrantACL , i n  u s e r  , NeutACL ,GRANT)  ==  t r u e ) 
  

33 re tu rn  GRANT;
 

34 

35 / /  E l s e  r e t u r n  UNASSIGN  s t a t e  

36 re tu rn  UNASSIGN ; 

37 } 

38−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

39 f u n c t i o n  c h e c k  p r i v ( i n  p r i v  , AclToCheck , i n  u s e r  , NeutACL ,  

s t a t e  t o  c h e c k  )  

40 r e t u r n s  b o o l e a n  

41 { 

42 / /  F i r s t  ,  per form  t h e  i n e x p e n s i v e  s t e p  o f  c h e c k i n g  t h e  

p r i v i l e g e s  d i r e c t l y  a s s i g n e d  t o  t h e  i n  u s e r  

43 i f  ( i n  u s e r  has  i n  p r i v  i n  AclToCheck )  

44 re tu rn  t r u e  ;  

45 

46 / / Get  a l l  t h e  r o l e s  d i r e c t l y  a s s i g n e d  t o  i n  u s e r  

47 u s e r  r o l e  l i s t  =  g e t  r o l e s ( i n  u s e r ) ;  

48 

49 / / Do  t h e  f o l l o w i n g  f o r  e v e r y  r o l e  d i r e c t l y  a s s i g n e d  t o  i n  u s e r  

50 f o r  each  u s e r  r o l e  i n  u s e r  r o l e  l i s t  

51 {
 

52 / / Do  t h e  f o l l o w i n g  f o r  e v e r y  r o l e  e n t r y  i n  AclToCheck 
  

53 f o r  each  a c l  r o l e  i n  AclToCheck  

54 { 

55 i f  ( s t a t e  t o  c h e c k  ==  GRANT)  
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56 { 

57 / /  O  r  i  e  n  t  a  t  i  o  n  o  f  p  r  i  v  i  l  e  g  e  s  i  n  GRANT  s  t  a  t  e  i  s  UP  

58 i f  ( (  u  s  e  r  r o  l e  ==  a  c  l  r o  l  e  OR  u  s  e  r  r o  l e  i s  an  ANCESTOR  o  f  

a c l  r o  l  e  )  AND  a  c  l  r o  l  e  h  a  s  i  n  p r  i  v  )  

59 re tu rn  t r  u  e  ;  

60 } 

61 e l s e  i f  ( (  u  s  e  r  r o  l e  ==  a  c  l  r o  l  e  OR  u  s  e  r  r o  l  e  i  s  a  

DESCENDANT of a c l 

62 { 

63 i f  ( a c l  r o l e  has  i n  

64 con t in u e  l o o p i n g  

65 e l s e  

66 re tu rn  t r u e  ;  

67 }
 

68 }
 

69 }
 

70
 

71 re tu rn  f a l s e  ;  

72 } 

r o l e  )  AND  a c l 
  r o l e  has  i n 
  p r i v  ) 
  

p r i v  i n  NeutACL )  

t h r o u g h  AclToCheck  ;  

Listing 4.1 Access Control Enforcement Algorithm in PSAC:PostgreSQL 

4.3.2 Experimental Results 

In this section, we report the experimental results comparing the performance of the ac­

cess control enforcement mechanism in BASE:PostgreSQL and PSAC:PostgreSQL. Specif­

ically, we measure the time required by the access control enforcement mechanism to check 

the state of a privilege, test priv, for  a  user,  test user, on  a  database  table,  test table. We  

vary the ACL Size parameter in our experiments. For BASE:ProstgreSQL, the ACL Size is 

the number of entries in the acl column of the pg class catalog. For PSAC:PostgreSQL, the 

ACL size is the combined number of entries in the acl, the  acldeny, the  aclsuspend, and  

http:table.We
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Fig. 4.5. Exp 1: Access  Control  Enforcement  Time  in  BASE  and  PSAC  
PostgreSQL in the absence of a role hierarchy
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the acltaint columns. Note that for the purpose of these experiments we do not maintain 

any privileges in the neutral orientation mode. 

We perform two sets of experiments. The first experiment compares the access con­

trol overhead in the absence of a role hierarchy. The results are reported in Figure 4.5. As 

expected, the access control overhead for both BASE and PSAC PostgreSQL increases with 

the ACL Size. The key observation is that the access control overhead for PSAC:PostgreSQL 

is not much higher than that of BASE:PostgreSQL. 

The second experiment compares the access control overhead in the presence of a hy­

pothetically large role hierarchy. We use a role hierarchy of 781 roles with depth equal to 4. 

The edges and cross-links in the role hierarchy are randomly assigned. The rational behind 

such set-up is that we want to observe a reasonable amount of overhead in the access con­

trol enforcement code. The role hierarchy is maintained in PSAC:PostgreSQL in a manner 

similar to that in BASE:PostgreSQL, that is, a role rp is the parent of a role rc if rc is as­

signed to rp using the GRANT ROLE command. A role and its assigned roles are stored in 

the pg auth members catalog [5]. Next, in the experiment, we randomly assigned 10 roles 

to the test user. In  order  to  vary  the  size  of  the  ACL  on  the  test table, we  developed  a  pro­

cedure to assign privileges on the test table to randomly chosen roles. Figure 4.6 reports 

the results of this experiment. First, observe that the access check time in the presence of a 

role hierarchy is not much higher than that in the absence of a role hierarchy. As mentioned 

before, this is mainly because we maintain a cache of the roles assigned to a user (directly 

or indirectly), thus preventing expensive role inheritance tests at the run-time. Second, the 

access control enforcement algorithm of PSAC:PostgreSQL reported in Section 4.3.1 is 

very efficient with a maximum time of approximately 97 microseconds for an ACL of size 

512. Also,  it  is  not  much  higher  than  the  maximum  access  control  enforcement  time  in  

BASE:PostgreSQL which stands at approximately 46 microseconds. 

Overall, the two experiments confirm the extremely low overhead associated with our 

design in PSAC:PostgreSQL. 
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4.4 Conclusion 

In this Chapter, we presented the design, formal model and implementation of a privi­

lege state based access control (PSAC) system tailored for a DBMS. The fundamental idea 

in PSAC is that a privilege, assigned to a principal on an object, has a state attached to it. 

We identify five states in which a privilege can exist namely, unassign, grant, taint, sus­

pend and deny. A privilege state transition to either the taint or the suspend state acts as 

a fine-grained  response to  a database anomaly.  We designed  PSAC  to  take into  account  a  

role hierarchy. We also introduced the concept of privilege orientation to control the prop­

agation of privilege states in a role hierarchy. We extended the PostgreSQL DBMS with 

PSAC describing various design issues related to the actual implementation of PSAC. We 

also reported experimental results that confirm that our techniques are efficient. 
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5. INTRUSION DETECTION IMPLEMENTATION IN 

POSTGRESQL 

A major  portion  of  the  thesis  involves  a  prototype  implementation  of  our  intrusion  detection  

and response mechanism in the Postgresql 8.3 DBMS. In Chapter 3, we have described our 

approach towards extending PostgreSQL with the intrusion response mechanism. We pre­

sented the implementation details, and experimental results on the overhead of the policy 

matching and policy signature verification procedures. In Chapter 4, we have presented the 

details on the integration of the PSAC model with PostgreSQL’s access control system. We 

also reported experimental results on the overhead of for maintaining the privilege states in 

PostgreSQL’s access control enforcement mechanism. 

In this Chapter, we describe in detail our design choices and strategies towards im­

plementing our intrusion detection mechanism in PostgreSQL. We begin with revisiting 

the intrusion detection algorithm in the context of our implementation in Section 5.1. In 

Section 5.2, we discuss the internals of the core query processing and statistics collec­

tion architecture in PostgreSQL. In Section 5.3, we describe how we integrate the intru­

sion detection procedure with the existing query processing architecture. In Section 5.4, 

we present extensive experimental results on the overhead of our implementation on the 

transaction processing capabilities of PostgreSQL. The experimental results show that our 

methods are not only feasible but efficient as well (considering that the implementation is 

a research  prototype).  

5.1 Anomaly Detection Algorithm 

We have implemented the Naive Bayes Classification (NBC) algorithm for the role-

based anomaly detection procedure described in Chapter 2. There are a few differences 

in the extraction of features from a SQL query between our implementation and the the­
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ory presented in Chapter 2. In the implementation, we only consider the tables in the 

[RELATION LIST] of the FROM clause of the SQL query and the columns in the 

[TARGET LIST] of the projection clause when extracting the features. This limitation 

is due to our approach towards role profile creation in our implementation. As we explain 

later in Section 5.3, for creating the role profiles during the training phase, we update the 

table and column access count on a per role basis during the access control enforcement 

procedure for the SQL command under consideration. This is necessary since we want to 

collect the table and the column information on a per role basis, and this information is only 

available during the access control enforcement procedure in PostgreSQL’s flow of query 

execution. Also, the access control enforcement procedure only checks the privileges of 

the user (or role) against the tables mentioned in the [RELATION LIST] of the FROM 

clause of the SQL query, thus we are only able to gather such information for the detection 

process. In future, we plan to extend our implementation to gather additional information 

in the QUALIFICATION component of the query to make it consistent with the feature 

extraction procedure presented in Chapter 2. 

With this modification in the feature extraction process, the information that we gather 

for various quiplet types introduced in Chapter 2 is described in Table 5.1: 

The information in the role-profiles for the various quiplet types is described in Ta­

ble 5.2. Note that for the medium-quiplets we do not maintain the frequency count of the 

tables accessed in the [RELATION LIST]. This  is  because  in  a  SQL  command,  if  the  

number of columns accessed for a table is greater than 0, this  implies  that  the  table  was  

accessed in the SQL command. Since we use the NBC for the classification task, in which 

the underlying assumption is the independence of the features, we can not have a feature 

that can be implied from another feature thereby breaking the independence assumption. 

Similar argument is applicable for not maintaining the frequency count of the tables ac­

cessed for the fine-triplets since if a column in a table was accessed in a SQL command, it 

implies that the table containing that column was also accessed in the command. 

We now give some examples of the feature extraction and the role-profile construction 

process for SELECT, INSERT, and UPDATE SQL commands. Consider a database schema 
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Table 5.1 
Quiplet Feature Extraction 

Quiplet Type features 

Coarse SQL Command 

Number of tables in the [RELATION LIST] 

Number of Columns in the [TARGET LIST] 

Medium SQL Command 

Tables in the [RELATION LIST] 

Number of columns per table in the [TARGET LIST] 

Fine SQL Command 

Tables in the [RELATION LIST] 

Columns in the [TARGET LIST] 

Table 5.2
 
Role Profile Information for Various Quiplet Types
 

Quiplet Type profile information 

Coarse SQL Command Count 

Frequency Count of Number of tables in the [RELATION LIST] 

Frequency Count of Number of columns in the [TARGET LIST] 

Medium SQL Command Count 

Frequency count of number of columns per table for all tables 

Fine SQL Command Count 

Frequency access count of every column in every table 

Frequency non-access count of every column in every table 
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Table 5.3
 
Quiplet construction example
 

SQL Command c-quiplet m-quiplet f-quiplet 

Select R1.A1, R3.C3 

, R3.B3 From R1, R3 

select < 2 > < 2 > select < 1, 0, 1 > 

< 1, 0, 2 > 

select < 1, 0, 1 > 

<< 1, 0, 0 > 

< 0, 0, 0 > 

< 0, 1, 1 >> 

INSERT INTO R2 

VALUES (1, 1, 1) 

insert < 1 > < 3 > insert < 0, 1, 0 > 

< 0, 3, 0 > 

insert < 0, 1, 0 > 

<< 0, 0, 0 > 

< 1, 1, 1 > 

< 0, 0, 0 >> 

UPDATE R3 

SET R3.C3 = 100  

update < 1 > < 1 > update < 0, 0, 1 > 

< 0, 0, 1 > 

update < 0, 0, 1 > 

<< 0, 0, 0 > 

< 0, 0, 0 > 

< 0, 0, 1 >> 

consisting of the following three relations R1 = {A1, B1, C1}, R2 = {A2, B2, C2}, and  

R3 = {A3, B3, C3}. Table  5.3  shows  the  quiplet  construction  for  a  SELECT,  a  INSERT,  

and an UPDATE command respectively. 

The application of the NBC in the implementation follows directly from our earlier 

discussion in Chapter 2. The probabilities are calculated using the m-estimate technique 

as defined in Definition 2.3.1. The parameter m determines how heavily to weight the 

observed probability relative to the observed data. The fraction ne in the Definition 2.3.1 |DT | 

is the initial (or prior) probability of an event e. Since  we  are  free  to  choose  a  prior  in  our  

implementation, we choose the zipf probability distribution to model the prior probabilities 

of the events. 
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In what follows, we briefly describe the internals of the query execution flow in Post­

greSQL. We then describe how we extend such flow to integrate our intrusion detection 

procedure. 

5.2 PostgreSQL Internals 

PostgreSQL, often simply Postgres, is an object-relational database management sys­

tem (ORDBMS) based on POSTGRES, Version 4.2, developed at the University of Cali­

fornia at Berkeley Computer Science Department [33]. It is released under an MIT-style 

license and is thus free and open source software. The key features of PostgreSQL are, 

but not limited to, support for user-defined functions (in many flavors of languages such 

as C++, Java, R etc), B+-tree, hash, GiST and GiN indexes, triggers, multi-version con­

currency control, query re-writing, wide-variety of built-in data types (and support for 

user-defined types), table inheritance, and support for user-defined roles [34]. Our im­

plementation is based on the PostgreSQL version 8.3 [5]1. 

The core query processing architecture in PostgreSQL is shown in Figure 5.1. The main 

server process called postmaster spawns a new server process called postgres for every new 

connection to a database. Every SQL query sent on that connection is handled by this new 

postgres process. A SQL query is received by the postgres process via data packets arriving 

through TCP/IP or Unix domain sockets. The query string passes through the query parser 

which creates a parse tree of the query structure. The next step is for the parse tree to be 

modified by any VIEWS or RULES that may apply to the query. This is performed by the 

query rewrite system. After the query has been rewritten, the query optimizer takes the 

parse tree and generates an optimal query plan that contains the operations to be performed 

to execute the query. The plan is then passed to the query executor that is responsible for 

execution of the query and passing the results back to the client. Before the executor begins 

the query execution, it checks whether the user has the privileges (directly or indirectly 

through role membership) to execute the query under consideration [35]. 

1PostgreSQL 8.3 was the latest release available when we started development of our methods in 2007. 
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Fig. 5.2. PostgreSQL Statistics Collector Framework 



103 

A key  component  of  the  PostgreSQL  DBMS  is  the  statistics  collection  framework.  

PostgreSQL’s statistics collector is a mechanism that supports collection and reporting of 

information about server activity such as a count of accesses to tables and indexes in both 

disk-block and individual-row terms, a count of total numbers of rows in each table, and 

so forth. The DBMS can be configured to collect or not collect statistics based on some 

configuration parameters. Several pre-defined views are available to show the results of 

the statistics collection. Figure 5.2 shows the interaction between the statistics collector 

process and the postgres server process. The statistics are collected by the postgres server 

process in memory resident data structures during query execution. At regular intervals 

(500 ms by default), the collected statistics are sent to the statistics collector process using 

UDP messages. More that one message may be sent at a time since the size of a single 

message is kept at 1024 bytes at the maximum to avoid any fragmentation of the packets 

at the network layer. The statistics collector process upon receiving a message updates the 

memory resident data structures for maintaining the various statistics. At regular intervals ( 

500 ms by default), the statistics are written to a memory resident pg stat file. The postgres 

server process, that needs to access the statistics, reads the pg stat file at regular intervals 

(500 ms by default). When the postgres server is shutdown, the memory resident pg stat 

file is persisted to a disk file. 

In what follows, we describe our implementation strategy for the detection and response 

mechanism within such framework. 

5.3 Our Implementation Strategy 

Figure 5.3 shows the query processing architecture, that was described earlier in Fig­

ure 5.1, with our hooks for statistics collection required for the detection task, the anomaly 

detection, and anomaly response mechanisms. When a new connection is established to the 

DBMS by a database user, we report the login statistics to the statistics collector process 

that includes the roles activated by the user, and the list of tables under intrusion detection. 

Note that we allow administrators to configure the database schemas on which we collect 
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the statistics and perform the detection task. The major portion of the statistics required 

to carry out the detection task are collected during the access control enforcement proce­

dure. The collected statistics include the command count per role, the tables accessed per 

command per role, and the columns accessed per table per command per role. Note that 

we assume that a strict RBAC model is under operation and thus all privileges required to 

access any portion of the database table are inherited from roles. This allows us to capture 

the required statistics on a per role basis. For the detection algorithm based on the NBC, we 

only require the statistics on the command count, the table access count, and the column 

access count on a per role basis. Thus, the table and column statistics are aggregated on a 

per role basis before being sent to the statistics collector. Note that the aggregation of the 

statistics differs based on the type of quiplet in use. As discussed in Section 5.1, for coarse 

quiplets, we only require the count of number of tables and columns accessed per role, for 

medium quiplets we require the count of number of columns accessed per table per role, 

while for the fine quiplets we require the count of table column that was accessed on a per 

role basis. The statistics collector, upon receiving the statistics, updates the memory resi­

dent role profiles that are then periodically written to the pg stat file in a manner similar to 

the description in Section 5.2. 

The intrusion detection algorithm task is performed on a query under consideration after 

the query parser has generated the parse tree. Using the parse tree generated by PostgreSQL 

means that we do not have to parse the query again to get the features required for the 

detection task. The pseudo-code for the detection algorithm is presented in Listing 5.1. The 

algorithm uses pre-defined functions to access the statistics required for the NBC from the 

pg stat file. The result of the detection algorithm is whether an anomaly has been detected 

or not. As explained earlier, we specify a query as anomalous if the role associated with the 

database user (submitting the query) does not match the role predicted by the NBC. Our 

current implementation, thus, only supports single role activation by a user in a session. 

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

2 I n p u t  

3 i n  u s e r  :  The  u s e r  e x e c u t i n g  t h e  command  
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4 i n  q u e r y  :  F e a t u r e s  of  t h e  query  under  d e t e c t i o n  

5 

6 Outpu t  

7 Boolean :  t r u e  i f  t h e  query  i s  anomalous  ,  f a l s e  o t h e r w i s e  

8−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

9 f u n c t i o n  d e t e c t  a n o m a l y  (  i n  u s e r  ,  i n  q u e r y  )  r e t u r n s  b o o l e a n  

10 {
 

11 / /  g e t  t h e  r o l e  a s s o c i a t e d  w i t h  t h e  query 
  

12 i n p  r o l e  =  g e t  u s e r  r o l e ( i n  u s e r ) ;  

13 

14 / /  g e t  t h e  r o l e  p r e d i c t e d  by  t h e  NBC  

15 m a p  r o l e  =  g e t  m a p  r o l e  (  i n  u s e r  ,  i n  q u e r y  )  ;  

16 

17 i f  ( m a p  r o l e  !=  i n p  r o l e  )  

18 re tu rn  t r u e  ;  

19 

20 re tu rn  f a l s e  ;  

21 } 

22−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

23 f u n c t i o n  g e t  m a p  r o l e  (  i n  q u e r y  )  r e t u r n s  r o l e  

24 { 

25 f o r  each  r o l e  i n  t h e  d a t a b a s e  

26 { 

27 r o l e  p r i o r  p r o b  =  c a l c u l a t e  r o l e  p r i o r ( r o l e ) ;  

28 

29 r o l e  l i k e l i h o o d  =  c a l c u l a t e  r o l e  l i k e l i ( r o l e  ,  i n  q u e r y ) ;  

30 

31 r o l e  l o g  a p o s t e r i o r i  =  r o l e  p r i o r  p r o b  +  r o l e  l i k e l i h o o d  ;  

32 

33 i f  ( r o l e  l o g  a p o s t e r i o r i  >= m a x  r o l e  p r o b  )  

34 { 
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35 m a x  p r o b  r o l e  =  r o l e  ; 
  

36 }
 

37 }
 

38 

39 re tu rn  m a x  p r o b  r o l e  ;  

40 } 

Listing 5.1 Anomaly Detection Algorithm in PostgreSQL 

Once a SQL command is detected as anomalous by the detection mechanism, it builds 

an anomaly assessment structure that is then passed on to the response mechanism. The 

response mechanism takes as input the anomaly assessment structure, searches through the 

response policy database to find the policies matching the information in the anomaly as­

sessment structure, and then issues a suitable response based on the matched policies. The 

response mechanism and its implementation strategy was described in detail in Chapter 3. 

In what follows, we present experimental results on the overhead of the statistics col­

lection procedure and the detection mechanism on the transaction processing capabilities 

of the PostgreSQL DBMS. 

5.4 Experimental Results 

The goal of the experiments described in this section is to measure the overhead intro­

duced by our anomaly detection mechanism on the transaction processing capabilities of 

the PostgreSQL DBMS. In what follows, we first describe the experimental set-up and then 

report the results. 

5.4.1 Set-up 

We use the pgbench tool distributed with the PostgreSQL DBMS to run the bench­

marking tests [5]. The pgbench tool takes as input a script file containing a series of SQL 

commands and executes the commands as a transaction against the database. In our exper­

iments, every transaction consists of 5 SELECT, 5 INSERT, and 5 UPDATE commands. 
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When run for a specified amount of time or for a specific number of transactions, the tool 

reports the number of transactions per second (tps) processed by the database. In our ex­

periments, we always run the pgbench tool for a duration of 60 seconds. 

5.4.2 Results 

We perform two sets of experiments. In the first set, we run our tests against an in­

creasing size of the database where the database size is measured in terms of the number 

of tables and number of columns per table in the database. The base database size that we 

consider is x = 5  tables, 10 columns per table. We effectively double the database size for 

every run of the pgbench tool. In addition, for each run, a table is initialized with a constant 

amount of 100 rows of data. The database is configured with 3 roles and 3 users. Every 

user is assigned to exactly one role in the database. 

Figure 5.4 shows the results for the overhead on the transaction processing capabilities 

introduced by the statistics collection procedure in this experiment for both the medium 

and fine quiplets. The overhead is very reasonable for both quiplet types specially consid­

ering that we also update the probabilities of each individual quiplet feature every time the 

statistics are updated. 
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Figure 5.5 reports the results for the absolute time taken by the anomaly detection 

procedure during the query processing stage. Note that since we maintain the logarithm 

of probability of every feature during the statistics collection phase, the calculation of 

role likelihood (see Listing 5.1) during the detection procedure only requires a summa­

tion over all the relevant feature probabilities. Considering this fact, the detection time for 

the medium quiplets is very small as shown in the Figure 5.5. 

The detection time for the fine quiplets, however, does increase and becomes noticeable 

(see the Figure 5.5 when the database size is large. This is primarily because the number of 

features considered by the detection algorithm for fine-quiplets becomes very large in case 

of a large database size. For example, considering the database size of 16x, corresponding  

to a database of 80 tables and 40 columns per table, gives rise to 80 ∗ 40 = 3200 features 

to be considered by the detection algorithm (for calculating likelihood of every role) for 

the fine quiplets. Thus, if fine quiplets are being used for the anomaly detection procedure, 

the number of tables in the database that need to be considered for the anomaly detection 

procedure must be carefully configured so as not to adversely impact the performance of 

the database. 

Since we run the anomaly detection algorithm during the query processing stage, the 

overhead introduced by the detection algorithm on the throughput of the DBMS (or tps) will 

depend significantly on the complexity of the transactions. Figure 5.6 shows the results for 

the overhead on the throughput introduced by the detection algorithm when the transaction 

consists of a mix of simple SELECT, UPDATE and INSERT commands. The number of 

roles configured in the system is still kept at 3. As  shown,  the  performance  of  the  fine  

triplets in this case degrades significantly as the database size increases. This is largely 

due to the fact that the SQL queries themselves are very simple and thus the ratio of the 

detection time to the actual query processing time is high. Compare this result with the 

results shown in Figure 5.7 in which the transactions consists of complex SQL queries 

(with joins). The overhead introduced by the fine triplets in this case is much less since the 

processing time for the queries themselves is quite high. 
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In the second experiment set, we measure the changes in anomaly detection time by 

varying the number of roles in the DBMS. The database size in this case is kept at 20 tables 

and 16 columns per table. Figure 5.8 presents the results for this experiment. As expected, 

the detection time increases with increasing number of roles because in the detection al­

gorithm we have to calculate role likelihood for every role in the DBMS. However, the 

performance impact is small since calculation of the role likelihood only requires a sum­

mation over the relevant feature probabilities. 

Overall, the experimental results show that our anomaly detection procedure integrated 

with the database query processing mechanism is very efficient and does not have a sub­

stantial impact on the transaction processing capabilities of the database. 
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6. RELATED WORK 

In this chapter, we briefly review some of the related work in the area of database intrusion 

detection and response. 

6.1 Database Intrusion Detection 

Several approaches dealing with ID for operating systems and networks have been de­

veloped [36–40]. However, as we have already argued in Chapter 1, they are not adequate 

for protecting databases. 

An abstract and high-level architecture of a DBMS incorporating an ID component has 

been recently proposed [41]. However, this work mainly focuses on discussing generic 

solutions rather than proposing concrete algorithmic approaches. Similar in spirit is the 

work of Shu et al. [42] who have developed an architecture for securing web-based database 

systems without proposing any specific ID mechanisms. Finally, in [43] a method for ID is 

described which is applicable only to real-time applications, such as a programmed stock 

trading that interacts with a database. The key idea pursued in this work is to exploit the 

real-time properties of data for performing the ID task. 

Anomaly detection techniques for detecting attacks on web applications have been dis­

cussed by Vigna et al. [44]. A learning based approach to the detection of SQL attacks is 

proposed by Valeur et al. [45]. The motivation of this work is similar to ours as in the use of 

machine learning techniques to detect SQL based attacks on databases. Their methodolo­

gies, however, focus on detection of attacks against back-end databases used by web-based 

applications. Thus, their ID architecture and algorithms are tailored for that context. We, 

on the other hand, propose a general purpose approach towards detection of anomalous 

access patterns in a database as represented by SQL queries submitted to the database. 
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An anomaly detection system for relational databases is proposed by Spalka et al. [46]. 

This work focuses on detecting anomalies in a particular database state that is represented 

by the data in the relations. Their first technique uses basic statistical functions to compare 

reference values for relation attributes being monitored for anomaly detection. The second 

technique introduces the concept of Δ relations that record the history of changes of data 

values of monitored attributes between two runs of the anomaly detection system. This 

work complements our work as it focuses on the semantic aspects of the SQL queries by 

detecting anomalous database states as represented by the data in the relations, while we 

focus on the syntactic aspects by detecting anomalous access patterns in a DBMS. 

Hu et al. [47] propose an approach for identifying malicious transactions from the 

database logs. They propose mechanisms for finding data dependency relationships among 

transactions and use this information to find hidden anomalies in the database log. The 

rationale of their approach is the following: if a data item is updated, this update does not 

happen alone but is accompanied by a set of other events that are also logged in the database 

log files. For example, due to an update of a given data item, other data items may also be 

read or written. Therefore, each item update is characterized by three sets: the read set, the  

set of items that have been read because of the update; the pre-write set, the  set  of  items  

that have been written before the update but as consequence of it; and the post-write set, 

the set of items that have been written after the update and as consequence of it. They use 

data mining techniques to generate dependency rules among the data items. These rules are 

in the following two forms: before a data item is updated, what other data items are read, 

and after a data item is updated what other data items are accessed by the same transaction. 

Once these rules are generated, they are used to detect malicious transactions. The trans­

actions that make modifications to the database without following these rules are termed as 

malicious. 

The approach is novel, but its scope is limited to detecting malicious behavior in user 

transactions. Within that as well, it is limited to user transactions that conform to the read-

write patterns assumed by the authors. Also, the system is not able to detect malicious 

behavior in individual read-write commands. 
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DEMIDS is a misuse-detection system, tailored for relational database systems [48]. 

It uses audit log data to derive profiles describing typical patterns of accesses by database 

users. Essential to such an approach is the assumption that the access pattern of users typi­

cally forms a working scope which comprises sets of attributes that are usually referenced 

together with some values. The idea of working scopes is captured by mining frequent 

itemsets which are sets of features with certain values. Based on the data structures and 

integrity constraints encoded in the system catalogs and the user behavior recorded in the 

audit logs, DEMIDS describes distance measures that capture the closeness of a set of at­

tributes with respect to the working scopes. These distance measures are then used to guide 

the search for frequent itemsets in the audit logs. Misuse of data, such as tampering with the 

data integrity, is detected by comparing the derived profiles against the organization’s secu­

rity policies or new audit information gathered about the users. The goal of the DEMIDS 

system is two-fold. The first goal is detection of malicious insider behavior. Since a profile 

created by the DEMIDS system is based on frequent sets of attributes referenced by user 

queries, the approach is able to detect an event when a SQL query submitted by an insider 

does not conform to the attributes in the user profile. The second goal is to serve as a tool 

for security re-engineering of an organization. The profiles derived in the training stage 

can help to refine/verify existing security policies or create new policies. The main draw­

back of the approach presented as in [48] is a lack of implementation and experimentation. 

The approach has only been described theoretically, and no empirical evidence have been 

presented of its performance as a detection mechanism. 

Lee et al. [49] present an approach for detecting illegitimate database accesses by fin­

gerprinting transactions. The main contribution of this work is a technique to summarize 

SQL statements into compact regular expression fingerprints. The system detects an intru­

sion by matching new SQL statements against a known set of legitimate database transac­

tion fingerprints. In this respect, this work can be classified as a signature-based ID system 

which is conceptually different from the learning-based approach that we propose in this 

paper. 
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In addition to the above approaches, our previous work on query floods [50] can also be 

characterized as a DBMS-specific ID mechanism. However, in that work we have focused 

on identifying specific types of intruders, namely those that cause query-flood attacks. A 

user can engineer such an attack by “flooding” the database with queries that can exhaust 

DBMS’s resources making it incapable of serving legitimate users. 

6.2 Database Intrusion Response 

Various commercial database monitoring and intrusion detection products are today 

available on the market [3]. We categorize them into two broad categories: network­

appliance-based and agent-based. Network-appliance-based  solutions  consist  of  a  dedi­

cated hardware appliance that taps into an organization’s network, and monitors network 

traffic to and from the data center. Agent-based solutions, on the other hand, have a soft­

ware component installed on the database server that interacts with the DBMS in order 

to monitor accesses to the data. Each method has its own advantages and disadvantages. 

Network appliances, in general, are unable to monitor privileged users who can log into 

the database server directly [3]. Agent-based solutions, on the other hand, result in more 

overhead because of the additional software running on the database server and its usage 

of CPU and memory resources. Moreover, as mentioned earlier in Chapter 3, a common 

shortcoming of these products is their inability to issue a suitable response to an ongoing 

attack. 

Peng Liu et al. have proposed architectures and algorithms for intrusion tolerant 

databases [41, 51]. Their work focuses on techniques to restore the state of the DBMS to a 

‘correct’ state after rolling back the effects of a malicious transaction. We instead focus on 

creating a framework for providing a real-time response to a malicious transaction so that 

the transaction is prevented from being executed. 

A taxonomy  and  survey  of  intrusion  response  systems  is  presented  in  [52].  According  

to this taxonomy, our response mechanism may be termed as ‘static’ by ability to adjust, 

‘autonomous’ by cooperation ability, ‘dynamic  mapping’  by response selection method 
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and both ‘proactive’ and ‘delayed’ by time of response. We  direct  the  reader  to  [52]  for  

further details on the taxonomy. 

Foo et. al. [53] have also presented a survey of intrusion response systems. However, 

the survey is specific to distributed systems. Since the focus of our work is development of 

a response mechanism  in  context  of a stand-alone database server,  most  of the techniques  

described in [53] are not applicable our scenario. 

6.3 Policy Administration 

An approach towards addressing the problem of insider threats from malicious DBAs is 

to apply the principle of least privilege. The  principle  dictates  that  a  user  must  be  assigned  

only those privileges that are necessary to serve its legitimate purpose. This effectively 

means to restrict the privileges of the DBAs, and to create new roles for administration of 

response policy objects. Such approach is followed by Oracle Database using the concept 

of a protected schema for the administration of the database vault policies [54]. Database 

vault is a mechanism introduced by Oracle Database to reduce the risk of insider threats by 

using policies that prevent the DBAs from accessing application data. The database vault 

policy objects are themselves stored in the DVSYS protected schema. A protected schema 

guards the schema against improper use of system privileges such as SELECT ANY TA­

BLE, DROP ANY, and so forth. Only the DVDSYS user and other database vault roles 

can have the privileges to modify objects in the DVSYS schema. The powerful ANY sys­

tem privileges for database definition language and data manipulation language commands 

are also restricted in the DVSYS protected schema. For further details on the adminis­

tration model of Oracle Database Vault, we refer the reader to [54]. Note that the Oracle 

Database Vault and the anomaly response system presented in this paper are both policy-

driven mechanisms. Thus, an approach similar to Oracle Database Vault may be followed 

to administer response policies as well. However, there are some disadvantages in follow­

ing such approach. First, since the approach is preventive, it  requires  fundamental  changes  

to the existing access control mechanism of a DBMS. For example, the semantics of the 

http:response.We
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ANY system privilege in the Oracle Database is required to be changed to ANY except 

the protected schema objects. Second,  even  though  the  principle  of  least  privilege  is  a  rec­

ommended security best practice, it is often not complied with by many organizations. The 

reason is that such practice requires an organization to invest in additional man-power to 

assign users to the new roles that can administer the objects in the protected schema. Such 

strategy is not financially feasible for many organizations, thereby leaving them exposed to 

the risk of insider threats from malicious DBAs. 

A discussion  of  the  related  work  on  threshold  signature  schemes  can  be  found  in  [20].  

To the best of our knowledge, ours is the first work that applies the technique of threshold 

signatures for the administration of DBMS objects. 

6.4 Policy Matching 

The policy matching problem is similar to the event matching problem in content based 

publish-subscribe (pub-sub) systems [55]. A subscription in a pub-sub system is similar 

to a response policy, and an event is the anomaly detection event in our system. Many 

algorithms have been proposed to date for efficient matching of events to subscriptions in 

pub-sub systems [55–60]. In what follows, we briefly discuss the applicability of such 

algorithms to the policy matching problem. 

An algorithm for event-matching based on the concept of subscription trees is described 

in context of the GRYPHON project [56]. The algorithm pre-processes the set of subscrip­

tions to build a subscription tree such that each node of the tree is an elementary test on an 

event attribute. The leaves of the subscription tree are the actual subscriptions. The match­

ing algorithm walks through the subscription tree to find the set of matching subscriptions. 

Since no analysis of the pre-processing algorithm is provided, it is not clear if the order 

according to which subscriptions are chosen affects the size of the subscription tree. Also, 

the scheme is formulated only for elementary predicates, and it has been optimized only 

for the equality predicates. However, for the policy matching problem, we need to consider 

arbitrary predicates. 
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Many algorithms for content-based event matching are described by Pereira et al. [57]. 

The focus of their main algorithm is to improve the cache hit ratio of main memory ac­

cess, which is not our main concern since we store the policies in the system catalogs, the 

contents of which are cached by the DBMS in its main memory. 

Our base policy matching algorithm is similar to the counting algorithm proposed by 

Yan et al. [58]. However, we provide an extension to the counting algorithm by pro-actively 

eliminating predicates that no longer need to be evaluated. 

An algorithm for matching predicates in database rule systems using a interval binary 

tree is proposed by Hanson et al. [60]. The focus of the algorithm is on equality and 

inequality predicates on totally ordered domains, whereas our policy matching problem 

need to support arbitrary predicates. 

Event matching using Binary Decision Diagrams (BDD) is proposed by Campailla et 

al. [59]. The scheme considers arbitrary predicates, and also supports disjunctions in the 

subscription language. We do not need to support disjunctions; thus employing a BDD-

based scheme will introduce unnecessary complexity to our response system. 

Event matching is also related to the problem of continuous query processing in stream­

ing databases [61]. In continuous query processing, the problem that is addressed is match­

ing multiple streaming tuples, belonging to different relations, to the stored queries. This 

is different (and much harder) from the policy matching problem in which we only need to 

match a single tuple (anomaly assessment) to the stored queries (policy conditions). 

6.5 State Based Access Control 

Access control models have been widely researched in the context of DBMSs [62]. To 

the best of our knowledge, ours is the first solution formally introducing the concept of 

privilege states in an access control model. 

The implementation of the access control mechanism in the Windows operating sys­

tem [63], and Network File System protocol V4.1 [64] is similar to the semantics of the 

taint privilege state. In such implementation, the security descriptor of a protected resource 
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can contain two types of ACLs: a Discretionary Access Control List (DACL), and a System 

Access Control List (SACL). A DACL is similar to the traditional ACL in that it identifies 

the principals that are allowed or denied some actions on a protected resource. A SACL, on 

other hand, identifies the principals and the type of actions that cause the system to generate 

a record  in  the security  log.  In  that  sense,  a  SACL  ACL  entry  is  similar  to  a PSAC  ACL  

entry with taint privilege state. Our concept of privilege states, however, is more general 

as reflected by the semantics of the other states introduced in our work. 

Much research work has been carried out in the area of network and host based anomaly 

detection mechanisms [65]. Similarly, much work on intrusion response methods is also 

in the context of networks and hosts [66, 67]. The fine-grained response actions that we 

propose in this work are more suitable in the context of application level intrusion detection 

systems in which there is an end user interacting with the system. 

The up,down, and  neutral privilege orientations (in terms of privilege inheritance) have 

been introduced by Jason Crampton [68]. The main purpose for such privilege orientation 

in [68] is to show how such scheme can be used to derive a role-based model with multi­

level secure policies. However, our main purpose for introducing the privilege orientation 

modes is to control the propagation of privilege states in a role hierarchy. 
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7. SUMMARY AND FUTURE RESEARCH DIRECTIONS 

7.1 Summary 

The main goal of this dissertation is to build an intrusion detection and response mech­

anism for relational databases integrated with the core database query processing mecha­

nism. Building such a system specifically for databases is important as attacks on databases 

are semantically different from attacks on the underlying network infrastructure or the host 

platform. In this context, first we introduce mechanisms for detecting anomalous access 

patterns of users and roles in a database. The access pattern profiles are created by extract­

ing features from the SQL queries submitted to the database by the users. An intrusion 

is identified if a query under consideration deviates from the current user (or role) profile 

being maintained by the system. Second, we extend the detection mechanism with an in­

trusion response component. The intrusion response component is responsible for issuing 

a suitable  response action  to  a detected  anomalous  request.  The  response component  of  

our system is a policy driven mechanism in which the response policies are pre-configured 

by the database administrators. The three key issues that we address in the context of the 

response sub-system are that of response policy matching, response policy administration, 

and fine-grained response actions. We propose heuristic algorithms for the policy match­

ing task, a joint threshold administration model for the administration of response policies, 

and a privilege state based access control system for supporting the fine-grained response 

actions. We also perform a prototype implementation of the role based anomaly detec­

tion procedure, the response policy matching algorithms, the joint threshold administration 

model, and the privilege state based access control mechanism in the PostgreSQL DBMS 

and report experimental results on the overhead of every implementation. The experimental 

results show that our approach is not only feasible but also efficient. 
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In what follows, we describe the possible directions for future research based on the 

ideas presented in this dissertation. 

7.2 Future Research Directions 

7.2.1 Detection Mechanism 

We have presented two scenarios for the intrusion detection task in databases. For 

the first scenario, when a role based access control system is in place, we identify role 

intruders, that is, users that while holding a specific role, behave in a manner that of some 

other role. The first limitation of our current approach is that we assume the user to activate 

only one role in a session. This is because we use the naive bayes classification algorithm 

for predicting the role associated with a query; and only one role can be predicted by the 

classifier. A possible research direction to extend the scheme is to assume multiple role 

activation by a user in a session. The classification algorithm, in such case, may need 

to be enhanced with bayesian network based approaches. The second limitation of our 

approach is that we assume that the roles form a partitioning of the universe of database 

access behavior. With this assumption, we are not able to identify users that while holding 

a specific role,  behave  differently  from  that  role  and  from  any  other  role in  the  system.  

One approach towards identifying such behavior is to train a one class Support Vector 

Machine (SVM) [69] with the normal role behavior SQL query features. Then any behavior 

deviating from the normal role behavior learned by the SVM classifier will be identified as 

anomalous. A similar approach may be adopted for the unsupervised learning scenario for 

the clusters of similar SQL queries. The one class SVM classifier, trained for every cluster, 

may be applied to detect SQL queries deviating from their representative cluster. 

Apart from the above mentioned research directions, the traditional issues related to 

application of machine learning techniques to real-world problems are applicable to our 

approach as well. Such issues include, but are not limited to, the problem of concept drift, 

the problem of overfitting or underfitting the training data, and so forth. 
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7.2.2 Response Mechanism 

The response mechanism described in this dissertation works on the basis of 

pre-configured policies. The policies are based on attributes related to the structure of 

a SQL  query  and  also  the  context  surrounding  the  query.  In  this  regard,  our  response  

mechanism may be considered to be static by its ability to adjust. One possible research 

direction is to come up with more dynamic approaches that are suitable for responding to a 

database intrusion. 

An interactive response policy that requires a second factor of authentication provides 

a second  layer of defense  when  certain  anomalous  actions  are  executed  against  critical  sys­

tem resources such as anomalous access to system catalog tables. This opens the way to 

new research on how to organize applications to handle such interactions for the case of 

legacy applications and new applications. In the security area there is a lot work dealing 

with retrofitting legacy applications for authorization policy enforcement [70]; we believe 

that such approaches can be extended to support such an interactive approach. For new 

applications, one can devise methodologies to organize applications that support such in­

teractions. Notice that, however, because our approach is policy-based, the database ad­

ministrators have the flexibility of designing policies that best fit the way applications are 

organized. 

The joint-threshold administration model described in this dissertation was applied to­

wards administration of response policies. However, the principles behind the model are 

general enough to be applied to joint administration of any sensitive database operation 

such as user creation/modification/deletion, grant/revoke of permissions, and  so  forth.  

The privilege state based access control (PSAC) model may be extended in the fol­

lowing directions. The current version of PSAC does not take into account selective role 

activation and deactivation within a user session. The PSAC model may be extended with 

such additional features. 
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