
CERIAS Tech Report 2010-32
Mechanisms for database intrusion detection and response

 by Ashish Kamra
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

Ashish Kamra By

Entitled Mechanisms for Database Intrusion Detection and Response

For the degree of Doctor of Philosophy

Is approved by the final examining committee:

A. Ghafoor, Co-Chair
 Chair

E. Bertino, Co-Chair

A. Raghunathan

N. Li

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

E. Bertino, Co-Chair Approved by Major Professor(s): ____________________________________

Approved by: V. Balakrishnan 7/06/10
Head of the Graduate Program Date

Graduate School Form 20
(Revised 10/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation: Mechanisms for Database Intrusion Detection and Response

Doctor of Philosophy For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Ashish Kamra
Signature of Candidate

7/06/10
Date

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

MECHANISMS FOR DATABASE INTRUSION DETECTION AND RESPONSE

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ashish Kamra

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2010

Purdue University

West Lafayette, Indiana

UMI Number: 3444799

All rights reserved
!

INFORMATION TO ALL USERS
!
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.
!

UMI 3444799
Copyright 2011 by ProQuest LLC.
!

All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 East Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

ii

Your freedom is only in the field of action, and not in the field of bringing about the fruits

of action. Never take yourself as the cause of bringing about a situation, and never resort

to a life of inaction.

- Shrimad Bhagwad-Gita

iii

ACKNOWLEDGMENTS

I would like to extend by sincere gratitude to my adviser, Prof. Elisa Bertino, for her

unwavering support and guidance over the years. Very simply put, there would not have

been a Dr. Ashish Kamra without her constant encouragement and guidance.

I would like to show my appreciation to my wife, Monalisa Hota, for bearing with me

(wholeheartedly I suppose !) over the last few years since we have been married. I was

close to leaving the PhD program once but stuck it out largely because of her encourage­

ment(and insistence !).

I would also like to thank my academic committee members, Prof. Ninghui Li and Prof.

Anand Raghunathan for their valuable inputs. I would like to thank Prof. Arif Ghafoor for

agreeing to be my co-adviser from the ECE department and for providing very valuable

inputs during the preliminary and the final exams that have gone a long way in improving

the quality of this work. I would also like to thank Prof. Guy Lebanon, my former adviser,

for having helped me out and providing the much needed advice whenever I required.

I would like to thank my family for standing firmly behind me during the PhD years

and for never doubting my intent or ability to complete the degree.

Finally, I would like to thank my friends and colleagues who have helped me in one way

or another over the course of this endeavor. They know who they are but I would like to spe­

cially acknowledge Evimaria Terzi, Rimma Nehme, Abhilasha Bhargav-Spantzel, Ji-Won

Byun, Ashish Kundu, and Mohamed Shehab for their unconditional support, guidance, and

encouragement.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Database Intrusion Detection . 1

1.2 DBMS Integration . 2

1.3 Insider Threats . 3

1.4 Overview of Our Approach . 3

1.4.1 Intrusion Detection . 3

1.4.2 Anomaly Response . 4

1.4.3 System Architecture . 7

1.5 Thesis Statement and Contributions 9

1.6 Thesis Organization . 9

2 DETECTING ANOMALOUS ACCESS PATTERNS IN DATABASES 11

2.1 Introduction . 11

2.2 Data Representation . 13

2.3 Role-Based Anomaly Detection . 17

2.3.1 Classifier . 17

2.3.2 Experimental Evaluation . 21

2.3.3 Results . 23

2.4 Unsupervised Anomaly Detection . 26

2.4.1 Distance Functions . 27

2.4.2 Clustering Algorithms . 28

v

Page

2.4.3 Anomaly Detection Methodology 31

2.4.4 Experimental Evaluation . 32

2.5 Conclusion . 36

3 RESPONDING TO ANOMALOUS ACCESS PATTERNS IN DATABASES . 37

3.1 Policy Language . 37

3.1.1 Attributes and Conditions . 39

3.1.2 Response Actions . 40

3.1.3 Interactive ECA Response Policies 42

3.2 Policy Administration . 43

3.2.1 JTAM Set-Up . 46

3.2.2 Lifecycle of a Response Policy Object 49

3.2.3 Attacks and Protection . 56

3.3 Policy Matching . 59

3.3.1 Base Policy Matching . 60

3.3.2 Ordered Policy Matching . 61

3.3.3 Response Action Selection 63

3.4 Implementation and Experiments . 63

3.4.1 Experimental Evaluation . 64

3.5 Conclusion . 69

4 PRIVILEGE STATE BASED ACCESS CONTROL FOR FINE GRAINED IN­
TRUSION RESPONSE . 71

4.1 Introduction . 71

4.2 PSAC Design and Formal Model . 73

4.2.1 Privilege States Dominance Relationship 74

4.2.2 Privilege State Transitions . 76

4.2.3 Formal Model . 77

4.2.4 Role Hierarchy . 79

4.3 Implementation and Experiments . 84

vi

Page

4.3.1 PSAC:PostgreSQL . 85

4.3.2 Experimental Results . 92

4.4 Conclusion . 95

5 INTRUSION DETECTION IMPLEMENTATION IN POSTGRESQL 96

5.1 Anomaly Detection Algorithm . 96

5.2 PostgreSQL Internals . 100

5.3 Our Implementation Strategy . 103

5.4 Experimental Results . 107

5.4.1 Set-up . 107

5.4.2 Results . 108

6 RELATED WORK . 113

6.1 Database Intrusion Detection . 113

6.2 Database Intrusion Response . 116

6.3 Policy Administration . 117

6.4 Policy Matching . 118

6.5 State Based Access Control . 119

7 SUMMARY AND FUTURE RESEARCH DIRECTIONS 121

7.1 Summary . 121

7.2 Future Research Directions . 122

7.2.1 Detection Mechanism . 122

7.2.2 Response Mechanism . 123

LIST OF REFERENCES . 124

VITA . 129

vii

LIST OF TABLES

Table Page

2.1 Quiplet construction example . 17

2.2 Real data: False Positive and False Negative rate 26

3.1 Anomaly Attributes . 38

3.2 Taxonomy of Response Actions . 41

3.3 Response Policy Examples . 42

3.4 Interactive ECA Response Policy Example 44

3.5 sys response policy catalog after Policy Creation 51

3.6 sys response policy catalog after Policy Activation - I 52

3.7 sys response policy catalog after final Policy Activation 52

3.8 sys response policy catalog after final authorization of Policy Suspension . 55

3.9 sys response policy count catalog after Policy Creation 58

3.10 Example Policy Database . 61

3.11 Response Policy System Catalogs . 64

4.1 Privilege States . 74

4.2 PRRPOSORA relation . 83

4.3 Privilege States/Orientation Mode for the privs field in PSAC:PostgreSQL . 87

4.4 New Authorization Commands in PSAC:PostgreSQL 88

5.1 Quiplet Feature Extraction . 98

5.2 Role Profile Information for Various Quiplet Types 98

5.3 Quiplet construction example . 99

viii

LIST OF FIGURES

Figure	 Page

1.1	 System Architecture . 8

2.1	 A sample Zipf distribution for N=10 . 22

2.2	 Dataset 1: False Positive and False Negative rate 24

2.3	 Dataset 2: Description of Roles . 25

2.4	 Dataset 2: False Positive and False Negative rate 25

2.5	 Unsupervised Dataset: k-means - False Positive and False Negative rate for the

naive bayes detection methodology . 33

2.6	 Unsupervised Dataset: k-centers - False Positive and False Negative rate for

the naive bayes detection methodology 33

2.7	 Unsupervised Dataset: k-means - False Positive and False Negative rate for the

outlier detection methodology . 34

2.8	 Unsupervised Dataset: k-centers - False Positive and False Negative rate for

the outlier detection methodology . 34

2.9	 Unsupervised Dataset: False Negative rate for the outlier detection methodol­
ogy with intrusion queries from a different probability distribution 35

3.1	 Policy State Transition Diagram . 48

3.2	 Policy Predicate Graph Example . 62

3.3	 Experiment 1: Number of Predicates vs Policy Matching Overhead 65

3.4	 Experiment 1: Number of Predicates vs Number of Predicates Skipped . . . 65

3.5	 Experiment 2: Number of Matching Policies vs Policy Matching Overhead . 67

3.6	 Experiment 2: Number of Matching Policies vs Number of Predicates Skipped 67

3.7	 Size of n (bits) vs Signature Verification Overhead for a single policy 68

4.1	 Privilege States Dominance Relationship 76

4.2	 Privilege State Transitions . 76

4.3	 A Sample Role Hierarchy . 82

ix

Figure	 Page

4.4	 ACLItem privs field . 85

4.5	 Exp 1: Access Control Enforcement Time in BASE and PSAC PostgreSQL in

the absence of a role hierarchy . 93

4.6	 Exp 2: Access Control Enforcement Time in BASE and PSAC PostgreSQL in

the presence of a role hierarchy . 93

5.1	 PostgreSQL Query Processing Flow . 101

5.2	 PostgreSQL Statistics Collector Framework 102

5.3	 Anomaly Detection and Data Collection Hooks in PostgreSQL 104

5.4	 Exp 1: Database Size vs Statistics Collection Overhead 108

5.5	 Exp 1: Database Size vs Anomaly Detection Time 110

5.6	 Exp 1: Database Size vs Anomaly Detection Overhead (Simple Queries) . . 110

5.7	 Exp 1: Database Size vs Anomaly Detection Overhead (Join Queries) . . . 110

5.8	 Exp 2: Number of Roles vs Anomaly Detection Time 111

x

ABBREVIATIONS

DBMS DataBase Management System

DBA DataBase Administrator

ID Intrusion Detection

AD Anomaly Detection

NBC Naive Bayes Classifier

IDR Intrusion Detection and Response

RBAC Role Based Access Control

ECA Event Condition Action

PSAC Privilege State based Access Control

JTAM Joint Threshold Administration Model

xi

ABSTRACT

Kamra, Ashish. Ph.D., Purdue University, August 2010. Mechanisms For Database Intru­
sion Detection And Response. Major Professors: Elisa Bertino and Arif Ghafoor.

Data represent today a valuable asset for companies and organizations and must be

protected. Most of an organization’s sensitive and proprietary data resides in a Database

Management System (DBMS). The focus of this thesis is to develop advanced security so­

lutions for protecting the data residing in a DBMS. Our approach is to develop an Intrusion

Detection and Response (IDR) system, integrated with the core DBMS functionality, that is

capable of detecting and responding to anomalous SQL commands submitted to a DBMS.

For the intrusion detection mechanism, the key idea is to learn profiles of database users

from the SQL commands submitted by them to the DBMS. A SQL command that devi­

ates from these profiles is then termed as anomalous. For responding to such anomalous

and potentially malicious SQL commands, we introduce a policy-driven intrusion response

mechanism that is capable of issuing an appropriate response based on the details of the

anomalous request. Such response actions include fine-grained actions such as request sus­

pension and request tainting; we introduce an access control system based on the notion

of privilege states to support such fine-grained responses. For the management of the re­

sponse policies, we introduce a joint threshold administration model that mitigates the risk

of insider threats from malicious database administrators. A major component of the thesis

involves prototype implementation of the IDR mechanism in the PostgreSQL DBMS. We

discuss the implementation details on the same and report experimental results that show

that our techniques are feasible and efficient.

1

1. INTRODUCTION

1.1 Database Intrusion Detection

Data represent today an important asset for companies and organizations. Some of

these data are worth millions of dollars and organizations take great care at controlling ac­

cess to these data, with respect to both internal users, within the organization, and external

users, outside the organization. Data security is also crucial when addressing issues related

to privacy of data pertaining to individuals; companies and organizations managing such

data need to provide strong guarantees about the confidentiality of these data in order to

comply with legal regulations and policies [1]. Overall, data security has a central role in

the larger context of information systems security. Therefore, the development of Database

Management Systems (DBMSs) with high-assurance security (in all its flavors) is a cen­

tral research issue. The development of such DBMSs requires a revision of architectures

and techniques adopted by traditional DBMS [2]. An important component of this new

generation security-aware DBMS is an Intrusion Detection (ID) mechanism. Even though

DBMSs provide access control mechanisms, these mechanisms alone are not enough to

guarantee data security; they need to be complemented by suitable ID mechanisms. How­

ever, despite the fact that building ID systems for networks and operating systems has been

an active area of research, few ID systems exist that are specifically tailored to DBMS.

Why is it important to have an ID mechanism tailored for a DBMS? The main reason is

that actions deemed malicious for a DBMS are not necessarily malicious for the underlying

operating system or the network; thus ID systems designed for the latter may not be effec­

tive against database related attacks. For example, consider that a database user/application

normally access data only from the human resources schema. Consider that such user/ap­

plication submits a SQL command to the DBMS that accesses the financial records of the

employees from the finance schema. Such anomalous access pattern of the SQL command

2

may be the result of a SQL Injection vulnerability or privilege abuse by an authorized user.

The key observation is that an ID system designed for a network or an operating system is

ineffective against such database specific malicious actions.

1.2 DBMS Integration

Organizations have stepped up data vigilance driven by various government regulations

concerning data management such as SOX, PCI, GLBA, HIPAA and so forth [3, 4]. The

compliance regulations have led the organizations to use various third-party database ac­

tivity monitoring products that employ DBMS specific ID techniques [3]. Such products

are useful for many reasons. One, they are DBMS technology independent thus they can

work with multiple DBMS vendors. Two, they are mostly non-intrusive since their core

functionality resides outside the DBMS. However, one of the goals of this thesis is to in­

tegrate our DBMS specific ID mechanism with the core DBMS functionality. There are

three main advantages of such close integration of an ID mechanism with a DBMS. First,

the intrusion detection is done as close to the target as possible (during query processing)

thereby ruling out any chances of a backdoor entry to the DBMS that may bypass the ID

mechanism. Second, since the ID mechanism is presented as one of the features of the

DBMS, the physical location of the DBMS is not a constraint on obtaining the ID service.

Such requirement is critical in the current age of cloud computing if the organizations want

to move their databases to a cloud service provider. The problem with the third-party activ­

ity monitoring products is that the organizations may not be able to move them to the cloud

since the network infrastructure is under the control of the cloud service provider. Third,

integration with the DBMS allows the ID mechanism to issue more versatile response ac­

tions to an anomalous request. We expand on the response capabilities of our system in

Chapter 4.

3

1.3 Insider Threats

The problem of insider threats to DBMSs is being recognized as a major security threat

by the organizations; in a 2004 E-crime watch survey conducted by CERT and US Secret

Service, insider threat was identified as the second biggest threat after hackers. The solution

to the insider threat problem requires among other techniques the adoption of mechanisms

able to detect and respond to access anomalies by users internal to the organization owning

the data. For our IDR system to provide stronger security guarantees, it needs to ensure that

the activities of even the database administrators (DBAs) be monitored, and responded to

if deemed malicious. This is a difficult problem to address since the policies that specify a

response action need to be created for the DBAs who are, in turn, responsible for managing

the same policies. We describe our approach in Chapter 3 to address this problem.

1.4 Overview of Our Approach

1.4.1 Intrusion Detection

Our approach to the intrusion detection and response (IDR) mechanism consists of two

main elements, specifically tailored to a DBMS: an anomaly detection (AD) system, and an

anomaly response system. The first element is based on the construction of access profiles

of users, roles and applications, and on the use of such profiles for AD. The first application

of our AD system is detection of anomalous database access patterns of users/roles (Chap­

ter 2). The AD system in this case considers two different scenario. In the first scenario,

it is assumed that the database has a Role Based Access Control (RBAC) model in place.

The AD system is able to determine role intruders, that is, individuals that while holding

a specific role, behave differently than expected. When role information does exist, the

problem is transformed into a supervised learning problem. The roles are treated as classes

for the classification purpose. The AD task for this setting is as follows: For every user

request under observation, its role is predicted by a trained classifier. If the predicted role

is different from the original role associated with the query, an anomaly is detected. In the

4

second case, the same problem is addressed in the context of a DBMS without any role

definitions. In such setting, every SQL command is associated with the user that issued it.

We build user-group profiles (clusters of similar behaviors) based solely on the SQL com­

mands users submit to the database. The specific methodology that is used for the AD task

is as follows: the training data is partitioned into clusters using the standard clustering tech­

niques. A mapping is maintained for every database user to its representative cluster. For

every new query under observation, its representative cluster is determined by examining

the user-cluster mapping. For the detection phase, two different approaches are followed.

In the first approach, the classifier is applied in a manner similar to the supervised case, to

determine whether the user associated with the query belongs to its representative cluster

or not. In the second approach, a statistical test is used to identify if the query is an out­

lier in its representative cluster. If the result of the statistical test is positive, the query is

marked as an anomaly and an alarm is raised. In order to build profiles, the log-file entries

need to be pre-processed and converted into a format that can be analyzed by the detection

algorithms. Therefore, each entry in the log file is represented by a basic data unit that

contains five fields, and thus it is called a quiplet. The abstract form of a quiplet consists

of five fields (SQL Command, Projection Relation Information, Projection Attribute Infor­

mation, Selection Relation Information and Selection Attribute Information). Depending

on the level of detail required in the profile construction phase and in the AD phase, the

quiplets are captured from the log file entries using three different representation levels.

Each level is characterized by a different amount of recorded information. For more details

of this approach, we refer the reader to Chapter 2.

1.4.2 Anomaly Response

The second element of our approach is in charge of taking some actions once an

anomaly is detected. There are three main types of response actions, that we refer to respec­

tively as conservative actions, fine-grained actions, and aggressive actions. The conserva­

tive actions, such as sending an alert, allow the anomalous request to go through, whereas

5

the aggressive actions can effectively block the anomalous request. Fine-grained response

actions, on the other hand, are neither conservative nor aggressive. Such actions may sus­

pend or taint an anomalous request. A suspended request is simply put on hold, until some

specific actions are executed by the user, such as the execution of further authentication

steps. A tainted request is marked as a potential suspicious request resulting in further

monitoring of the user and possibly in the suspension or dropping of subsequent requests

by the same user. For more details on our approach towards supporting such fine-grained

response actions in a DBMS, we refer the reader to Chapter 4.

With such different response options, the key issue to address is which response mea­

sure to take under a given situation. Note that it is not trivial to develop a response mecha­

nism capable of automatically taking actions when abnormal database behavior is detected.

Let us illustrate this with the following example. Consider a database monitoring system

in place that builds database user profiles based on SQL queries submitted by the users.

Suppose that a user U , who has rarely accessed table T , issues a query that accesses all

columns in T . The detection mechanism flags such request as anomalous for U . The major

question is what should the system do next once a request is marked as anomalous by the

AD mechanism. Since the anomaly is detected based on the learned profiles, it may well be

a false alarm. It is easy to see then there are no simple intuitive response measures that can

be defined for such security-related events. If T contains sensitive data, a strong response

action is to revoke the privileges corresponding to actions that are flagged as anomalous.

In our example, such a response would translate into revoking the select privilege on table

T from U . However, if the user action is a one-time action part of a bulk-load operation,

when all objects are expected to be accessed by the request, no response action may be

necessary. The key idea is to take different response actions depending on the details of

the anomalous request, and the context surrounding the request (such as time of the day,

origin of the request, and so forth). Therefore, a response policy is required by the database

administrator to specify appropriate response actions for different circumstances. In Chap­

ter 3, we propose a high-level language for the specification of such policies which makes

it very easy to specify and modify them.

6

The two main issues that we address in the context of such response policies are that of

policy matching and policy administration. Policy matching is the problem of searching for

policies applicable to an anomalous request. When an anomaly is detected, the response

system must search through the policy database and find policies that match the anomaly.

Our ID mechanism is a real-time intrusion detection and response system; thus efficiency

of the policy search procedure is crucial. In Chapter 3, we present two efficient algorithms

that take as input the anomalous request details, and search through the policy database to

find the matching policies. We implement our policy matching scheme in the PostgreSQL

DBMS [5], and discuss relevant implementation issues. We also report experimental results

that show that our techniques are very efficient.

The second issue that we address is that of administration of response policies. Intu­

itively, a response policy can be considered as a regular database object such as a table or a

view. Privileges, such as create policy and drop policy, that are specific to a policy object

type can be defined to administer the policies. However, a response policy object presents

a different set of challenges than other database object types. Recall that a response policy

is created to select a response action to be executed in the event of an anomalous request.

Consider the case of an anomalous request from a user assigned to the database adminis­

trator (DBA) role. Since a DBA role is assigned all possible database privileges, it will

also possess the privileges to modify a response policy object. Now consider a scenario,

where organizational policies require auditing and detection of malicious activities from all

database users including those holding the DBA role. Thus, response policies must be cre­

ated to respond to anomalous requests from all users. But since a DBA role holds privileges

to alter any response policy, it is easy to see that the protection offered by the response sys­

tem against a malicious DBA can trivially be bypassed. The fundamental problem in such

administration model is that of conflict-of-interest. The main issue is essentially that of in­

sider threats, that is, how to protect a response policy object from malicious modifications

made by a database user that has legitimate access rights to the policy object.

To address this issue, we propose an administration model that is based on the well-

known security principle of separation of duties (SoD). SoD is a principle whereby multi­

7

ple users are required in order to complete a given task. As a security principle, the primary

objective of SoD is prevention of fraud (insider threats), and user generated errors. Such

objective is traditionally achieved by dividing the task and its associated privileges among

multiple users. However, the approach of using privilege dissemination is not applicable to

our case as we assume the DBAs to possess all possible privileges in the DBMS. Our ap­

proach instead applies the technique of threshold cryptography signatures to achieve SoD.

A DBA authorizes a policy operation, such as create or drop, by submitting a signature

share on the policy. At least k signature shares are required to form a valid final signature

on a policy, where k is a threshold parameter defined for each policy at the time of policy

creation. The final signature is then validated either periodically or upon policy usage to

detect any malicious modifications to the policies. The key idea in our approach is that a

policy operation is invalid unless it has been authorized by at least k DBAs. We thus refer

to our administration model as the Joint Threshold Administration Model (JTAM) for

managing response policy objects. To the best of our knowledge, ours is the only work

proposing such administration model in the context of management of DBMS objects. The

three main advantages of JTAM are as follows. First, it requires no changes to the exist­

ing access control mechanisms of a DBMS for achieving SoD. Second, the final signature

on a policy is non-repudiable, thus making the DBAs accountable for authorizing a policy

operation. Third, and probably the most important, JTAM allows an organization to utilize

existing man-power resources to address the problem of insider threats since it is no longer

required to employ additional users as policy administrators. For more JTAM details, we

refer the reader to Chapter 3 of the thesis.

1.4.3 System Architecture

The system’s architecture consists of three main components: the traditional DBMS

that handles the query execution, the profile creator module for collecting the training

data and creating/maintaining the profiles, and the detection and response mechanisms in­

tegrated with the core DBMS functionality. These components form the new extended

ra g

8

Query

User

Features Assessment

Log

T inin

Detection Engine Response Engine Feature Selector

Alert

Drop

No Action, Update
Profiles

Profile Creator Audit
Log

Training
Queries

TRAINING PHASE

Response
Policy Base

Profiles

Fig. 1.1. System Architecture

DBMS that is enhanced with an independent ID system operating at the database level.

The flow of interactions for the IDR process is shown in Figure 1.1. During the training

phase, the SQL commands submitted to the DBMS (or read from the audit log) are analyzed

by the profile creator module to create the initial profiles of the database users. For every

SQL command under detection, the feature selector module extracts the features from the

queries in the format expected by the detection engine. The detection engine then runs the

extracted features through the detection algorithm. If an anomaly detected, the detection

mechanism submits its assessment of the SQL command to the response engine according

to a pre-defined interface; otherwise the command information is sent to the profile creator

process for updating the profiles.

The response engine consults a policy base of existing response policies to issue a

response depending on the assessment of the query submitted by the detection engine.

Notice that the fact that a query is anomalous may not necessarily imply an intrusion. Other

information and security policies must also be taken into account. For example, if the user

logged under the role is performing some special activities to manage an emergency, the

response mechanism may be instructed not to raise alarms in such circumstances. If the

9

response engine decides to raise an alarm, certain actions for handling the alarm can be

taken. The most common action is to send an alert to the security administrator. However

other actions are possible (Figure 1.1), such as log the alarm, drop the query, or even

take no action at all. We have implemented a prototype of this system architecture in the

PostgreSQL DBMS. We refer the reader to Chapter 5 for the implementation details and

experimental results concerning the overhead of the system.

1.5 Thesis Statement and Contributions

The goal of the doctoral thesis is to develop architectures, mechanisms and algorithms

for a DBMS equipped with activity monitoring, intrusion detection and response capabili­

ties. Within this broad context, the research issues that we address are as follows:

1. Creating profiles that succinctly represent user/application-behavior interacting with

a DBMS.

2. Developing efficient algorithms for online detection of anomalous database user and

application behavior.

3. Developing strategies for responding to intrusions in the context of a DBMS.

4. Creating a system architecture for database intrusion detection and intrusion response

as an integral component of a DBMS, and a prototype implementation of the same

in the PostgreSQL DBMS [5].

1.6 Thesis Organization

The rest of the thesis document is as follows. Chapter 2 presents our approach towards

detecting anomalous access patterns in a DBMS. Chapter 3 presents our approach towards

the response mechanism in a DBMS. Chapter 4 presents the privilege state based access

control mechanism that provides support for the fine-grained response actions. Chapter 5

presents the details of our prototype implementation of the detection and response mecha­

10

nism in the PostgreSQL DBMS. Chapter 6 presents an overview of related work in the area

of database intrusion detection and response. We summarize the thesis in Chapter 7 with a

brief overview of the future enhancements.

11

2. DETECTING ANOMALOUS ACCESS PATTERNS IN

DATABASES

2.1 Introduction

In this chapter we present algorithms for detecting anomalous user/role access to a

DBMS. The key idea underlying our approach is to build profiles of normal user behavior

interacting with a database. We then use these profiles to detect anomalous behavior. In

this context, our approach considers two different application scenarios. In the first case,

we assume that the database has a Role Based Access Control (RBAC) model in place. Au­

thorizations are specified with respect to roles and not with respect to individual users. One

or more roles are assigned to each user and privileges are assigned to roles. Our ID system

builds a profile for each role and is able to determine role intruders, that is, individuals that

while holding a specific role deviate from the normal behavior of that role. The use of roles

makes our approach usable even for databases with large a user population. Managing a

few roles is much more efficient than managing many individual users. With respect to

ID, using roles means that the number of profiles to build and maintain is much smaller

than those one would need when considering individual users. Note that RBAC has been

standardized (see the NIST model [6]) and has been adopted in various commercial DBMS

products. This implies that an ID solution, based on RBAC, could be easily deployed in

practice.

In the second case, we address the same problem in the context of a DBMS without

any role definitions. This is a necessary case to consider because not all organizations are

expected to follow a RBAC model for authorizing users of their databases. In such a setting,

every SQL command is associated with the user that issued it. A naive approach for ID in

this setting would be to build a different profile for every user. For systems with large user

bases such an approach would be extremely inefficient. Moreover, many of the users in

12

those systems are not particularly active and they only occasionally submit queries to the

database. In the case of highly active users, profiles would suffer from over-fitting, and in

the case of inactive users, they would be too general. In the first case we would observe a

high number of false alarms, while the second case would result in high number of missed

alarms, that is, alarms that should have been raised. We overcome these difficulties by

building user-group profiles (clusters of similar behaviors) based solely on the transactions

users submit to the database. Given such profiles, we define an anomaly as an access pattern

that deviates from the profiles.

The two problems that we address in the context of an intrusion detection mechanism

specifically tailored for a DBMS are as follows: how to build and maintain profiles repre­

senting accurate and consistent user behavior; how to use these profiles for performing the

ID task at hand. The solution to both problems relies on the use of ‘intrusion free’ database

traces, that is, sequences of database audit log records representing normal user behavior1.

However, the information contained in these traces differ depending on the application sce­

nario in question. When role information does exist, the problem is transformed into a

supervised learning problem. A classifier is trained using a set of intrusion-free training

records. This classifier is then used for detecting anomalous behavior. For example, if a

user claims to have a specific role while the classifier classifies her behavior as indicative

of another role, then an alarm is raised. On the other hand, for the case in which no role

information is available, we form our solution based on unsupervised learning techniques.

We employ clustering algorithms to construct clusters of users that behave in a similar

manner (with respect to their database access patterns). These clusters may also help the

DBA in deciding which roles to define. For every user, we maintain the mapping to its

representative cluster. For the ID phase, we specify two different approaches. In the first

approach, we treat the problem in a manner similar to the supervised case with the clusters

1Guarantying the intrusion free nature of the training data is an issue often raised in the context of anomaly
detection systems. The standard technique employed to address this concern is to use outlier detection algo­
rithms to remove potential anomalies from the training data. Though this does not guarantee that all malicious
SQL statements are removed from the training data or that every outlying point that is removed is malicious;
in practice, this step has often been observed to increase the accuracy of anomaly detection systems. In this
work, however, we do not employ such strategy for our experiments.

13

as the classifier classes. In the second approach, we treat the detection phase as an outlier

detection problem. That is, an alarm is raised for a new query if it is marked as an outlier

with respect to its representative cluster.

The main challenge in attacking our problem is to extract the right information from the

database traces so that accurate profiles can be built. To address this problem, we propose

several representations for the database log records, characterized by different granularity

and, correspondingly, by different accuracy levels. By using those representations, we then

address the first scenario as a classification problem and the second one as a clustering

problem.

2.2 Data Representation

In order to identify user behavior, we use the database audit files for extracting infor­

mation regarding users’ actions. The audit records, after being processed, are used to form

initial profiles representing acceptable actions. Each entry in the audit file is represented as

a separate data unit; these units are then combined to form the desired profiles.

We assume that users interact with the database through commands, where each com­

mand is a different entry in the log file, structured according to the SQL language. For

example, in the case of select queries such commands have the format:

SELECT [DISTINCT] {TARGET-LIST}

FROM {RELATION-LIST}

WHERE {QUALIFICATION}

In order to build profiles, we need to pre-process the log-file entries and convert them

into a format that can be analyzed by our algorithms. Therefore, we represent each entry

by a basic data unit that contains five fields, and thus it is called a quiplet.

Quiplets are our basic unit for viewing the log files and are the basic components for

forming profiles. User actions are characterized using sets of such quiplets. Each quiplet

contains the following information: the SQL command issued by the user, the set of re­

lations accessed, and for each such relation, the set of referenced attributes. This in­

14

formation is available in the three basic components of the SQL command, namely, the

SQL COMMAND, the TARGET-LIST and the RELATION-LIST. We also process the

QUALIFICATION component of the query to extract information on relations and their

corresponding attributes, that are used in the query predicate.2 Therefore, the abstract form

of such a quiplet consists of five fields (SQL Command, Projection Relation Information,

Projection Attribute Information, Selection Relation Information and Selection Attribute

Information)3 . For the sake of simplicity we represent a generic quiplet using a 5-ary re­

lation Q(c, PR, PA, SR, SA), where c corresponds to the command, PR to the projection

relation information, PA to the projection attribute information, SR to the selection relation

information, and SA to the selection attribute information. Depending on the type of quiplet

the two arguments PR(or SR) and PA(or SA) can be of different types, but for simplicity

and clarity we allow the symbols to be overloaded. Whenever the type of quiplet is vital,

we will explicitly specify it. However, when it is not specified our claims hold for all types

of quiplets.

Depending on the level of detail required in the profile construction phase and in the ID

phase, we represent the quiplets from the log file entries using three different representation

levels. Each level is characterized by a different amount of recorded information.

We call the most naive representation of an audit log-file record, coarse quiplet or c­

quiplet. A c-quiplet records only the number of distinct relations and attributes projected

and selected by the SQL query. Therefore, c-quiplets essentially model how many relations

and how many attributes are accessed in total, rather than the specific elements that are

accessed by the query. The c-quiplets are defined as follows:

Definition 2.2.1 A coarse quiplet or c-quiplet is a representation of a log record of the

database audit log file. Each c-quiplet consists of 5 fields (SQL-CMD,

PROJ-REL-COUNTER, PROJ-ATTR-COUNTER, SEL-REL-COUNTER,

2The relation and attribute information is assumed to be present in the join conditions of the predicate. We
do not consider the cases of complex sub-queries that cannot be reduced to join conditions.
3For clarity, we only show the representation for the syntax of a select command. The representation is
general enough to capture information from other SQL commands such as insert, delete and update. For
example, for the insert command, the inserted into relation and columns are encoded as the projection relation
and projection attributes.

http:RELATION-LIST.We

15

SEL-ATTR-COUNTER). The first field is symbolic and corresponds to the issued SQL

command. The next two fields are numeric, and correspond to the number of relations and

attributes involved in the projection clause of the SQL query, respectively. The last two

fields are also numeric, and correspond to the number of relations and attributes involved

in the selection clause of the SQL query. !

In terms of the quiplet notation Q(), here both PR(or SR) and PA(or SA) correspond to

the number of relations and attributes involved in the query respectively. Apparently, a large

amount of valuable information in the database log is ignored by c-quiplets. It is however

useful to consider such a primitive data representation since it is sufficient in the case of

a small number of well-separated roles. Moreover, more sophisticated representations of

log-file entries are based on the definition of c-quiplets.

The second representation scheme captures more information from the log file records.

We call this representation, medium-grain quiplet or m-quiplet. These quiplets extend the

coarse quiplets by further exploiting the information present in the log entries. Like a

c-quiplet, a m-quiplet represents a single log entry of the database log file. In this case

though, each relation is represented separately by the number of its attributes projected (or

selected) by the SQL query. Thus, in terms of the quiplet notation Q(), PR, PA, SR and

SA are vectors of the same size which is equal to the number of relations in the database.

The m-quiplets are defined as follows:

Definition 2.2.2 A medium-grain quiplet or m-quiplet is a data object which corre­

sponds to a single entry of the database log file and consists of 5 fields (SQL-CMD,

PROJ-REL-BIN[], PROJ-ATTR-COUNTER[],SEL-REL-BIN[],

SEL-ATTR-COUNTER[]). The first field is symbolic and corresponds to the issued SQL

command, the second is a binary (bit) vector of size equal to the number of relations in the

database. The bit at position i is set to 1 if the i-th relation is projected in the SQL query.

The third field of the quiplet is a vector of size equal to the number of relations in the

database. The i-th element of the PROJ-ATTR-COUNTER[] vector corresponds to the

number of attributes of the i-th relation that are projected in the SQL query. The semantics

16

of SEL-REL-BIN[] and SEL-ATTR-COUNTER[] vectors are equivalent to those of

PROJ-REL-BIN[] and PROJ-ATTR-COUNTER[] vectors, but the information kept in

the former corresponds to the selections rather than to the projections of the SQL query. !

Finally, we introduce a third representation level of log-file records which extracts the

maximum information from the log files. We call this representation fine quiplet or f­

quiplet. The structure of a f-quiplet is similar to that of a m-quiplet. In particular, the first,

the second and the fourth fields of a f-quiplet are the same as the corresponding fields of

the m-quiplets. The f-quiplets and m-quiplets differ only for the third and fifth fields. In the

case of f-quiplets, these fields are vector of vectors and are called PROJ-BIN-ATTR[][]

and SEL-BIN-ATTR[][] respectively. The i-th element of PROJ-BIN-ATTR[][] is

a vector corresponding to the i-th relation of the database and having size equal to the

number of attributes of relation i. The i-th element of PROJ-BIN-ATTR[][] has binary

values indicating which specific attributes of relation i are projected in the SQL query. The

semantics of SEL-BIN-ATTR[][] are analogous. For f-triplets, PR and SR are vectors

of size equal to the number of relations in the database while PA and SA are vectors of the

same size, but with each element i being a vector of size equal to the number of attributes

in relation i. The formal definition of the f-quiplets is as follows:

Definition 2.2.3 A fine quiplet or f-quiplet is a detailed representation of a log entry. It

consists of 5 fields (SQL-CMD, PROJ-REL-BIN[], PROJ-ATTR-BIN[][],

SEL-REL-BIN[], SEL-ATTR-BIN[][]). The first field is symbolic and corresponds

to the SQL command, the second is a binary vector that contains 1 in its i-th position if the

i-th relation is projected in the SQL query. The third field is a vector of n vectors, where n

is the number of relations in the database. Element PROJ-ATTR-BIN[i][j] is equal to

1 if the SQL query projects the j-th attribute of the i-th relation; it is equal to 0 otherwise.

Similarly, the fourth field is a binary vector that contains 1 in its i-th position if the i-th

relation is used in the SQL query predicate. The fifth field is a vector of n vectors, where n

is the number of relations in the database. Element SEL-ATTR-BIN[i][j] is equal to

1 if the SQL query references the j-th attribute of the i-th relation in the query predicate; it

is equal to 0 otherwise. !

http:m-quiplet.In

17

Table 2.1

Quiplet construction example

SQL Command c-quiplet m-quiplet f-quiplet

Select R1.A1, R2.C2

From R1, R2

Where R1.B1 =

R2.B2

select< 2 >< 2 >

< 2 >< 2 >

select < 1, 1 >

< 1, 1 >,

< 1, 1 >< 1, 1 >

select < 1, 1 >

< [1, 0, 0], [0, 0, 1] >

< 1, 1 > [0, 1, 0],

[0, 1, 0]

Table 2.1 shows a SQL command corresponding to select statement and its representa­

tion according to the three different types of quiplets. In the example, a database schema

consisting of two relations R1 = {A1, B1, C1} and R2 = {A2, B2, C2}, is considered.

2.3 Role-Based Anomaly Detection

In this section, we describe our methodology when information related to the roles of

users is available in the database traces. This role information allows us to address the

problem at hand as a standard classification problem.

2.3.1 Classifier

We use the Naive Bayes Classifier (NBC) for the ID task in RBAC administered

databases. Despite some modeling assumptions regarding attribute independence inher­

ent to this classifier, our experiments demonstrate that it is surprisingly useful in practice.

Moreover, NBC has proven to be effective in many practical applications such as text clas­

sification and medical diagnosis [7–9], and often competes with much more sophisticated

learning techniques [10, 11]. The reason for the popularity of NBC is its low computa­

tional requirements for both the training and classification task. The small running time

is mainly due to the attribute independence assumption. Moreover, like all probabilistic

18

classifiers under the Maximum Aposteriori Probability (MAP) decision rule, NBC arrives

at the correct classification as long as the correct class is more probable than any other

class. In other words, the overall classifier is robust to deficiencies of its underlying naive

probability model. We refer the reader to the paper by Domingos et al. [7] that explains the

optimality region for the NBC and discusses the reasons for its effective performance even

when the attribute independence assumption does not completely hold.

We first describe the general principles of the NBC (for details see [8]) and then show

how it can be applied to our setting. In supervised learning, each instance x of the data

is described as a conjunction of attribute values, and the target function f(x) can only

take values from some finite set V . The attributes correspond to the set of observations

and the elements of V are the distinct classes associated with those observations. In the

classification problem, a set of training examples DT is provided, and a new instance with

attribute values (a1, ..., an) is given. The goal is to predict the target value, or the class, of

this new instance.

The approach we describe here is to assign to this new instance the most probable class

value vMAP, given the attributes (a1, ..., an) that describe it. That is

vMAP = arg max P (vj|a1, a2, ..., an).
vj ∈V

Using Bayes Theorem we can rewrite the expression as

vMAP = arg max P (vj|a1, a2, ..., an)
vj ∈V

P (a1, a2, ..., an|vj)P (vj)= arg max
vj ∈V P (a1, a2, ..., an)

∝ arg max P (a1, a2, ..., an|vj)P (vj).
vj ∈V

The last derivation is feasible because the denominator does not depend on the choice of

vj and thus, it can be omitted from the arg max argument. Estimating p(vj) is simple since

it requires just counting the frequency of vj in the training data. However, calculating

P (a1, a2, ..., an|vj) is hard when considering a large dataset and a reasonably large number

19

of attributes [12]. The NBC, however, is based on the simplifying assumption that the

attribute values are conditionally independent, and thus

vMAP ∝ arg max P (vj) P (ai|vj). (2.1)
vj ∈V

i

This reduces significantly the computational cost since calculating each one of the P (ai|vj)

requires only a frequency count over the tuples in the training data with class value equal

to vj .

Thus, the conditional independence assumption seems to solve the computational cost.

However, there is another issue that needs to be discussed. Assume an event e occurring

nej number of times in the training dataset for a particular class vj with size |Dvj | . While

the observed fraction (
nnj) provides a good estimate of the probability in many cases, it |Dvj |

provides poor estimates when nej is very small. An obvious example is the case where

nej = 0. The corresponding zero probability will bias the classifier in an irreversible

way, since according to equation 2.1, the zero probability when multiplied with the other

probability terms will give zero as its result. To avoid this difficulty we adopt a standard

Bayesian approach in estimating this probability, using the m-estimate [8]. The formal

definition of m-estimate is as follows:

Definition 2.3.1 Given a dataset DT with size |DT | and an event e that appears nej times

in the dataset for a class vj with size |Dvj | and ne times in the entire dataset, then the

m-estimate of the probability pej =
nej is defined to be |Dvj |

nej + m · ne

m |DT |pej
= . (2.2)

|Dvj | + m

The parameter m is a constant and is called equivalent sample size, which determines

how heavily to weight pej relative to the observed data. If nE is 0, then we assume that

m 1p = .E |Dvj |

The NBC directly applies to our anomaly detection framework by considering the set of

roles in the system as classes and the log-file quiplets as the observations. In what follows,

we show how equation 2.1 can be applied for the three different types of quiplets.

�

�

20

For the case of c-quiplets the application is simple since there are five attributes

(c, PR, PA, SR, SA) to consider namely the command, the projection relation count, the

projection attribute count, the selection relation count and the selection attribute count. If

R denotes the set of roles, the predicted role of a given observation (ci, PRi, PAi, SRi, SAi)

is

rMAP =
{

arg maxrj ∈R p(rj)p(ci|rj)p(PRi|rj)p(PAi|rj)
}

p(SRi|rj)p(SAi|rj) .

For m-quiplets, we again have five fields (c, PR, PA, SR, SA), where PR, PA, SR and

SA are vectors of the same cardinality. Except for the command attribute c, the rest of the

attributes considered in this case are from the product PRPT and SRST . Therefore there A A

are |PR · PT | + |S AA R · ST | + 1 attributes, and Equation 2.1 can be rewritten as follows

rMAP =
 N

{

arg maxrj ∈R p(rj)p(ci|rj) p(PR[i] · PA
T [i]|rj)

i=1

}

p(SR[i] · SA
T [i]|rj) ,

where N is the number of relations in the DBMS.

Finally, for f-quiplets, where fields PR,SR are vectors and PA,SA are vectors of vectors,

the corresponding equation is

rMAP =
 N

arg maxrj ∈R p(rj)p(ci|rj) {p(PR[i] · PA[i]|rj)
i=1

}

p(SR[i] · SA[i]|rj) .

21

With the above definitions in place, the ID task is quite straightforward. For every

new query, its rMAP is predicted by the trained classifier. If this rMAP is different from the

original role associated with the query, an anomaly is detected. For benign queries, the

classifier can be updated in a straightforward manner by increasing the frequency count of

the relevant attributes.

The procedure for ID can easily be generalized for the case when a user is assigned

more than one role at a time. This is because our method detects anomalies on a per query

basis rather than per user basis. Hence, as long as the role associated with the query is

consistent with the role predicted by the classifier, the system will not detect an anomaly.

2.3.2 Experimental Evaluation

In this section, we report results from an experimental evaluation of the proposed ap­

proach and illustrate its performance as an ID mechanism. Our experimental setting con­

sists of experiments with both synthetic and real data sets. In our previous work [13], we

had reported the performance of the three quiplet types under different modes of database

access patterns. The objective of the current experimental evaluation is to assess the perfor­

mance of our methods on databases deployed for real-world applications. For modeling the

SQL query access patterns in a real-world deployed database, we use the general form of

a zipf probability distribution function (pdf) that is frequently used to model non-uniform

access. The zipf pdf, for a random variable X , is mathematically defined as follows:

1/xs

Zipf(X, N, s) = ,
ΣN

i=11/i
s

where N is the number of elements and s is the parameter characterizing the distribution.

Figure 2.1 shows the cumulative density function for a zipf distribution for N = 10 and

different values of s. Suppose N here denotes the number of tables in a database schema

ordered according to some criteria such as lexicographic order. Then figure 2.1 shows that,

as we increase s, the probability mass accumulates towards the left half of the schema,

thereby making the access pattern more and more skewed. For our experiments, we also

22

 0

 0.2

 0.4

 0.6

 0.8

 1

cd
f(x

)

s=0
s=1
s=2
s=3
s=4
s=5

1 2 3 4 5 6 7 8 9 10
x

Fig. 2.1. A sample Zipf distribution for N=10

use a reverse zipf distribution which is a mirror image of the corresponding zipf plot with

respect to a vertical axis.

Before describing our experimental findings, we give a brief outline of the generation

procedure for our test datasets and anomalous queries.

Data Sets

Synthetic data sets: The synthetic data are generated according to the following model:

Each role r has a probability, p(r), of appearing in the log file. Additionally, for each

role r the generator specifies the following five probabilities: (i) the probability of using a

command c given the role, p(c|r), (ii) the probability of projecting on a table t given the role

and the command, p(Pt|r, c), (iii) the probability of projecting an attribute within a table

a ∈ T given the role, the table and the command, p(Pa|r, t, c), (iv) the probability of using

a table t in the selection clause given the role and the command, p(St|r, c) and finally, (v)

the probability of using an attribute a ∈ t in the query predicate given the role, the table and

the command, p(Sa|r, t, c). We use four different kinds of probability distribution functions

for generating these probabilities namely, uniform, zipf, reverse zipf and multinomial.

23

Real data set: The real dataset used for evaluating our approach consists of 8368 SQL

traces from eight different applications submitting queries to a MS SQL server database.

The database schema consists of 130 tables and 1201 columns in all. The queries in this

dataset consists of a mix of select, insert and update commands with precisely 7583 select

commands, 213 insert commands and 572 update commands. There are no sub-queries

present in any of the query predicates. Also, since role information is not available, we

consider the applications themselves as our roles. For a more detailed description of the

dataset we refer the reader to [14].

Anomalous query generation: We generate the anomalous query set keeping in mind

the insider threat scenario. For this, we generate the anomalous queries from the same

probability distribution as that of normal queries, but with role information negated. For

example, if the role information associated with a normal query is 0, then we simply change

the role to any role other than 0 to make the query anomalous.

2.3.3 Results

We now describe the the first synthetic dataset that we use for our experiments. The

database schema consists of 100 tables and 20 columns in each tables. The number of roles

for the database is 4. The SQL query submission pattern for the roles is governed by the pdf,

Zipf(N = 4, s = 1). The first two roles are read-only, such that they use the select com­

mand with probability 1. The first role accesses the tables with a pdf, Zipf(100, s), and the

columns with a pdf, Zipf(20, s). We vary the parameter s for our experiments. Similarly,

the second role accesses the tables and columns with a pdf governed by R Zipf(100, s)

and R Zipf(20, s), respectively. The third and the fourth roles are read-write such that

they issue the select, insert, delete and update commands with probabilities 0.1, 0.1, 0.1

and 0.7 respectively. For the select, delete and insert commands, these two role access all

the tables and columns within each table with a uniform probability. The third role executes

the update command with a pdf, Zipf(100, s), and the fourth with a pdf, R Zipf(100, s).

We use a training data size of cardinality 5000 and set the m parameter (in equation 2.2) to

http:Zipf(20,s).We

24

Training Data=5000, m=100 Training Data=5000, m=100

0

 20

 40

 60

 80

 100

F
a
ls

e
 P

o
si

tiv
e
s

(%
)

Coarse
Medium

Fine

 0

 20

 40

 60

 80

 100

F
a
ls

e
 N

e
g
a
tiv

e
s

(%
)

Coarse
Medium

Fine

0 1 2 3 4 5 0 1 2 3 4 5
s s

Fig. 2.2. Dataset 1: False Positive and False Negative rate

100. Figure 2.2 shows the False Positive (FP) and False Negative (FN) rates for increasing

values of s. As expected, the FP and the FN rate for f-quiplet is the lowest among the three

quiplet types. Also, as we make the database access becomes more skewed by increasing

s, FP rate for the f-quiplet goes down.

We generate the second dataset as follows. The database schema is same as in the first

dataset with 100 tables and 20 columns in each table. However, there are now 9 roles that

access the database as shown in Figure 2.3. Roles 1 to 6 are read-only and roles 7, 8 and

9 are read-write. Figure 2.4 shows the FP and FN rates for this dataset. An interesting

observation is that the performance of m-quiplet is actually better than that of f-quiplet for

lower values of s and comparable to f-quiplet for higher values of s. This suggests that m­

quiplet may prove to be an effective replacement for f-quiplet for a DBMS with an access

pattern similar to that of the second dataset.

Finally, we present experimental results for the real data set. The results are averaged

over a 10-fold cross validation of the dataset. Anomalous queries are generated as described

earlier. The parameter m in equation 2.2 is again set to be 100. Table 2.2 shows the

performance of the three quiplet types. The FN rate for all three quiplet types is quite low.

One matter of concern is the high FP rate for this dataset. This result could be due to the

25

Role 9

Table: Uniform(100)
Col: Uniform (20)

Role 7 Role 8

Role 5 Role 6

Role 1 Role 2 Role 3 Role 4

Tab access: Zipf (0-25, s) Tab access: Zipf (25-50, s) Tab access: Zipf (50-75, s) Tab access:Zipf (75-100, s)
Col access: Zipf (20, s) Col access: Zipf (20, s) Col access: Zipf (20, s) Col access: Zipf (20, s)

Fig. 2.3. Dataset 2: Description of Roles

Training Data=5000, m=100 Training Data=5000, m=100

0

 20

 40

 60

 80

 100

F
a
ls

e
 P

o
si

tiv
e
s

(%
)

Coarse
Medium

Fine

 0

 20

 40

 60

 80

 100

F
a
ls

e
 N

e
g
a
tiv

e
s

(%
)

Coarse
Medium

Fine

0 1 2 3 4 5 0 1 2 3 4 5
s s

Fig. 2.4. Dataset 2: False Positive and False Negative rate

Table: Zipf (0-100, s)
Col: Zipf (20, s)

Tab: R_Zipf (0-100, s)

Col: R_Zipf (20, s)

Table: R_Zipf (0-50,s)

Col: R_Zipf (20, s)

Table: R_Zipf (50-100, s)

Col: R_Zipf (20, s)

26

Table 2.2
Real data: False Positive and False Negative rate

Quiplet type False Negative (%) False Positive (%)

c 2.6 19.2

m 2.4 17.1

f 2.4 17.9

specific nature of the real dataset; or for m and f-quiplet the large number of attributes may

trigger such behavior.

Overall, the experimental evaluation reveals that in most cases f-quiplet capture the

access pattern of the users much better than either c or m-quiplet.

2.4 Unsupervised Anomaly Detection

We now turn our attention to the case where the role information is not available in the

audit log files. In this case, the problem of forming user profiles is clearly unsupervised

and thus it is treated as a clustering problem. The specific methodology that we use for the

ID task is as follows: we partition the training data into clusters4 using standard clustering

techniques. We maintain a mapping for every user to its representative cluster. The rep­

resentative cluster for a user is the cluster that contains the maximum number of training

records for that user after the clustering phase. For every new query under observation,

its representative cluster is determined by examining the user-cluster mapping. Note the

assumption that every query is associated with a database user. For the detection phase,

we outline two approaches. In the first approach, we apply the naive bayes classifier in a

manner similar to the supervised case, to determine whether the user associated with the

query belongs to its representative cluster or not. In the second approach, a statistical test

is used to identify if the query is an outlier in its representative cluster. If the result of the

statistical test is positive, the query is marked as an anomaly and an alarm is raised. The

4In the unsupervised setting, the clusters obtained after the clustering process represent the profiles.

27

methods we use for clustering include some standard techniques. The next section explains

in detail the distance measures used for clustering. After that we briefly explain the cluster­

ing algorithms and the statistical test for detecting intruders and finally report experimental

results on them.

2.4.1 Distance Functions

For clustering the quiplets into groups such that quiplets in the same group are close to

each other, we need a measure to establish the “closeness” between the quiplets. For this

we provide definitions of the necessary distance functions.

In order to introduce the distance functions, we first need to introduce a (generic and

overloaded) function β() which will be used for evaluating and comparing quiplets of the

A,P A
A,S Asame type. Let Q = (c,PR,PA,SR,SA) and QA = (c R,P A

R,S A) be two quiplets A

in general, and let T = (PR,PA,SR,SA) and T A = (PR
A ,PA

A ,SR
A ,SA

A) denote information

contained in Q and QA respectively, minus the command c. We define, β : T × T → R as

a mapping from pairs of quiplets (minus the command c) to real numbers.

• For c-quiplet, function β() is calculated as follows:

β(T, T A) =
V

(PR − PR
A)2 + (PA − P A)2 + (SR − S A)2 + (SA − S A)2

A R A

• For m-quiplet, we have:

β(T, T A) = ||PRPA − PR
A PA

A ||2 + ||SRSA − SR
A SA

A ||2

Note that given two vectors vi = {vi1, vi2, ..., vin} and vj = {vj1, vj2, ..., vjn}, their
V

L

L2 distance ||vi − vj ||2 is defined to be ||vi − vj ||2 = C
n
=1(viC − vjC)2 .

28

• For f-quiplet, function β() is calculated as follows:

β(T, T A) =

LN {||PR[i]PA[i] − P A [i]P A [i]||2 +i=1 R A

||SR[i]SA[i] − SR
A [i]SA

A [i]||2}

Observation 2.4.1 All the above definitions of β() satisfy the triangle inequality.

Definition 2.4.1 The distance between two quiplets Q and QA is defined as follows:
⎧
⎨ A1 + β(T, T A) if c =� c

dQ(Q, QA) = (2.3)
⎩ β(T, T A) otherwise

The following lemma states an important property of function dT .

Lemma 1 If β() satisfies the triangle inequality, then dQ() satisfies the triangle inequal­

ity.

Proof Consider three quiplets T1, T2 and T3, minus the command c. If β() satisfies the

triangle inequality then the following inequality holds:

β(T1, T2) + β(T2, T3) ≥ β(T1, T3).

This means that dQ satisfies the triangle inequality as well for all the cases when c1 = c2 =

c3. Therefore we only have to re-examine the case when c1 � �= c3. Assume then that c1 = c3.

If c1 = c2, then it should be that c3 � c2 and therefore the triangular inequality for dQ is=

also preserved.

2.4.2 Clustering Algorithms

This section describes the algorithms that are used for forming the profiles in the unsu­

pervised setting.

29

k-centers

The k-centers algorithm takes as input the set of data points and their distances and

a parameter k, which is the desired number of clusters. The output is a flat k-clustering,

that is, a single clustering consisting of k clusters C = {C1, . . . , Ck}. The clusters form a

partitioning the input data points.

If we denote by x a data point, that is a quiplet in the log files, and by µj the point

representing the jth cluster, in the k-centers clustering algorithm we try to find the partition

that optimizes the following function:

max max dQ(x, µj)
j x∈Cj

This problem is NP-Hard. For solving it we use the following approximate algo­

rithm [15], also known as the furthest-first traversal technique. The idea is to pick any

data point to start with, then choose the point furthest from it, then the point furthest from

the first two5 and so on until k points are obtained. These points are taken as cluster centers

and each remaining point is then assigned to the closest center. This algorithm provides a

2-approximation guarantee for any distance function that is a metric. Given Lemma 1 that

proves that dQ is a metric, the above algorithm provides a 2-approximate solution in our

setting as well.

This algorithm minimizes the largest radius of the clusters that are returned as output

and uses as cluster centers, or representatives, points that are already in the data set. The

advantages of this algorithm are expected to be revealed in cases in which the data set does

not contain large number of outliers. That is, if the data we use for creating user profiles

are free from intruders, this algorithm is expected to create profiles reasonably close to the

real ones.
5The distance of a point x from a set S is the usual min{dQ(x, y) : y ∈ S}.

� �

30

k-means

In order to address the case where some outliers may exist in the data used to build

the profiles, we also consider an alternative clustering heuristic. This is the widely used

k-means algorithm. The k-means algorithm is also a member of the flat k-clustering al­

gorithms, that output a single clustering consisting of k-clusters that partition the input

points. Although, there is no proof of how good approximations we obtain using k-means,

the algorithm has been widely adopted due to its low computational requirements, ease of

implementation and mainly due to the fact that it works well in practice. The algorithm con­

sists of a simple re-estimation procedure and works as follows. First, k points are chosen

randomly, representing the initial cluster representatives. In this case, the representatives

of the clusters correspond to the means of the data points in the cluster given the metric

space. Then, the remaining data points are assigned to the closest cluster. The new rep­

resentatives, subject to the last assignment, are re-computed for each cluster. The last two

steps are alternated until a stopping criterion is met, that is, when there is no further change

in the assignment of data points to clusters. The algorithm minimizes the following cost

function:

dQ(x, µj)
j x∈Cj

where x again corresponds to a data point and µj is the representative of the jth cluster;

and in this case, it is the mean of the points in the cluster.

A significant advantage of the k-means algorithm when compared to the other cluster­

ing algorithms discussed in this section is that updates of the clusters can be executed in

constant time. Consider the case in which we have already formed the k clusters on some

initial set of normal input points. Now assume that new normal points arrive and we want

to incorporate them into the existing clusters. Assume that x is a new point and we want to

incorporate it in cluster Ci that has cardinality |Ci| and is described by the mean µi. Then

of course finding the new mean µi
A of the cluster after the addition of point x is a trivial

A x+µi·|Ci|task, since µ = . Now our additional claim is that the error in the new cluster that i |Ci|+1

� � �

31

contains the points Ci ∪ {x} can also be computed in constant time. This can be executed

by computing the error of each cluster by using the following formula:

|Ci| |Ci| b
11 2 2(xi − µi) =

|Ci|
xi − (

|Ci|
xi)

i=1 i=1 i=a

Now, the error when the additional point x is added can be computed in constant time by

keeping two pre-computed arrays for the cluster points: the sum of the values and the sum

of squares of the values of the points appearing in the cluster.

2.4.3 Anomaly Detection Methodology

So far we have described two alternative ways of building the profiles given unclas­

sified log quiplets. In this section, we describe our methodology in detail for identifying

anomalous behavior given the set of constructed profiles.

Let z denote an issued SQL query for which our mechanism has to tell whether it is

anomalous or not. The mechanism that decides whether a query is a potential intruder

works as follows:

1. Find the representative cluster (Cz) for query z issued by user U . The representative

cluster is obtained by simply looking up the user-cluster mapping created during the

clustering phase.

2. We specify two different approaches for the detection phase. In the first approach, we

use the naive bayes classifier in a manner similar to the supervised case by treating

the clusters as the classifier classes. In the second approach, we determine if z is an

outlier in cluster Cz with the help of a statistical test. If it is an outlier, we declare z

as an anomaly.

In the second approach for the detection phase, we use a statistical test for deciding

whether a query is an anomaly or not, but we do not specify the statistical test to use.

In principle, any test appropriate for identifying outliers from a univariate data set which

32

cannot be mapped to a standard statistical distribution like Normal and Lognormal, is ap­

plicable. In our setting we use the MAD (Median of Absolute Deviations) test [16], which

we describe below in brief.

MAD test: Assume to have n data points (log quiplets). Let di denote the distance of data

point i from the cluster center it belongs to. Also, let d denote the median value of the di’s

for i = 1, 2, . . . , n. Then first, we calculate the MAD as

MAD = mediani(|di − d|).

Additionally, for each point i we calculate

0.6745(di − d)
Zi = .

MAD

Now if |Zi| > D, then di is an outlier, meaning that we can infer that point i is an outlier. D

is a constant which has to be experimentally evaluated. In our case, it is set to 1.5 since for

this value we experience satisfactory performance of our system. We treat differently the

special case where MAD = 0. This case is quite likely since many quiplets are expected to

collide with the cluster center. In that case, we consider a point i that belongs in profile Cj

¯ ¯as an outlier if dQ(i, µj) > dµj + 2 · σj. In the above equation, dµj corresponds to the mean

of the distances of all the points in cluster Cj from the representative of cluster i, namely

µj. Likewise, σj corresponds to the standard deviation of those distances.

2.4.4 Experimental Evaluation

We now present the experimental results for the unsupervised case. The objective of the

unsupervised case, after forming the user-cluster mapping is similar to that of the super­

vised case. For every new query under observation, we check if the user associated with the

query is indeed a member of its mapped cluster. The dataset that we use for this evaluation

is similar to the dataset 2 used in the supervised case. However, we reduce the number of

tables to 20 and the number of columns per table to 10. The number of training records

used for clustering are 1000. The results are averaged over 5 iterations of the clustering

algorithms.

33

Training Data=1000, m=100	 Training Data=1000, m=100

0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
a
ls

e
 P

o
si

tiv
e
s

(%
)

Coarse
Medium

Fine

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
a
ls

e
 N

e
g
a
tiv

e
s

(%
)

Coarse
Medium

Fine

s	 s

Fig. 2.5. Unsupervised Dataset: k-means - False Positive and False Nega­
tive rate for the naive bayes detection methodology

Training Data=1000, m=100	 Training Data=1000, m=100

0

 20

 40

 60

 80

 100

F
a
ls

e
 P

o
si

tiv
e
s

(%
)

Coarse
Medium

Fine

 0

 20

 40

 60

 80

 100

F
a
ls

e
 N

e
g
a
tiv

e
s

(%
)

Coarse
Medium

Fine

0	 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4
s s

Fig. 2.6. Unsupervised Dataset: k-centers - False Positive and False Neg­
ative rate for the naive bayes detection methodology

34

Training Data=1000, D=1.5	 Training Data=1000, D=1.5

0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
a
ls

e
 P

o
si

tiv
e
s

(%
)

Coarse
Medium

Fine

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
a
ls

e
 N

e
g
a
tiv

e
s

(%
)

Coarse
Medium

Fine

s	 s

Fig. 2.7. Unsupervised Dataset: k-means - False Positive and False Nega­
tive rate for the outlier detection methodology

Training Data=1000, D=1.5	 Training Data=1000, D=1.5

0

 20

 40

 60

 80

 100

F
a
ls

e
 P

o
si

tiv
e
s

(%
)

Coarse
Medium

Fine

 0

 20

 40

 60

 80

 100

F
a
ls

e
 N

e
g
a
tiv

e
s

(%
)

Coarse
Medium

Fine

0	 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4
s s

Fig. 2.8. Unsupervised Dataset: k-centers - False Positive and False Neg­
ative rate for the outlier detection methodology

35

Training Data=1000, D=1.5 Training Data=1000, D=1.5

0

 20

 40

 60

 80

 100

F
a
ls

e
 N

e
g
a
tiv

e
s

(%
)

Medium
Fine

0

 20

 40

 60

 80

 100

F
a
ls

e
 N

e
g
a
tiv

e
s

(%
)

Medium
Fine

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4
s s

(a) k-means (b) k-centers

Fig. 2.9. Unsupervised Dataset: False Negative rate for the outlier de­
tection methodology with intrusion queries from a different probability
distribution

Figures 2.5 and 2.6 show the results for the naive bayes detection methodology for

both k-means and k-centers clustering algorithms. The FP rate for both the algorithms is

extremely low. However, the corresponding FN rate for k-means is much better than that of

k-centers. This makes k-means the algorithm of choice for the kind of dataset considered

in this test case. Another noticeable observation is the better performance of m-quiplet over

f-quiplet for datasets with smaller values of s.

Figures 2.7 and 2.8 report the performance of the experiments for the outlier detection

methodology. The results for the outlier detection methodology are not very impressive for

either of the clustering algorithms. One probable reason for this result is that anomalous

queries considered in this test case come from the same probability distribution as that of

the normal queries, although with role information inverted. Since they come from the same

distribution, they no longer behave as outliers in the metric space and therefore, the outlier

detection methodology fails to characterize most of the anomalous queries as outliers. We

illustrate this with the help of Figure 2.9 which shows the FN rate for k-means and k-centers

when the anomalous queries are generated from a uniform random probability distribution.

For such queries, the FN rate decreases as the access pattern becomes more specific. This

36

shows the usefulness of the outlier detection based methodology when the access pattern

of users deviate from the overall distribution of the normal access pattern.

Overall, the clustering based approach for the unsupervised case shows promising re­

sults for both m and f-quiplet. Among the clustering algorithms, the results for k-means

are better than those for the k-centers algorithm. This is because k-means better captures

the trend of the dataset.

2.5 Conclusion

In this Chapter, we proposed an approach for detecting anomalous access patterns in

DBMS. We developed three models, of different granularity, to represent the SQL com­

mands appearing in the database log files. We were thus able to extract useful information

from the log files regarding the access patterns of the queries. When role information is

available in the log records, we use it for training a classifier that is then used as the basic

component for our anomaly detection mechanism. For the other case, when no role infor­

mation is present in the log records, the user profiles are created using standard clustering

algorithms. The anomaly detection phase is then addressed in a manner similar to the su­

pervised case or as an outlier detection problem. Experimental results for both real and

synthetic data sets showed that our methods perform reasonably well.

37

3. RESPONDING TO ANOMALOUS ACCESS PATTERNS IN

DATABASES

The response subsystem of our IDR mechanism is in-charge of issuing a suitable response

action when an anomaly is detected by the detection subsystem. It is a policy-driven mech­

anism in which the response policies are pre-defined by DBAs to take an action when an

anomaly matches a policy. In what follows, Section 3.1 presents the details of the response

policy language. Section 3.2 presents the design and implementation details of our Joint

Threshold Administration Model (JTAM) for managing these policies. We discuss the pol­

icy matching algorithms, that search for policies applicable to an anomalous request in

Section 3.3. Section 3.4 discusses the implementation details of our response mechanism

in the PostgreSQL DBMS, and reports the experimental results concerning the overhead

incurred by our techniques. We summarize this Chapter in Section 3.5.

3.1 Policy Language

The detection of an anomaly by the detection engine can be considered as a system

event. The attributes of the anomaly, such as user, role, SQL command, then correspond

to the environment surrounding such an event. Intuitively, a policy can be specified taking

into account the anomaly attributes to guide the response engine in taking a suitable ac­

tion. Keeping this in mind, we propose an Event-Condition-Action (ECA) language for

specifying response policies. Later in this section, we extend the ECA language to support

novel response semantics. ECA rules have been widely investigated in the field of active

databases [17]. An ECA rule is typically organized as follows:

ON {Event} IF {Condition} THEN {Action}

38

Table 3.1

Anomaly Attributes

Attribute Description

CONTEXTUAL

User

Role

Client App

Source IP

Date Time

The user associated with the request.

The role associated with the request.

The client application associated with the request.

The IP address associated with the request.

Date/Time of the anomalous request.

STRUCTURAL

Database

Schema

Obj Type

Obj(s)

SQLCmd

Obj Attr(s)

The database referred to in the request.

The schema referred to in the request.

The object types referred to in the request

such as table, view, stored procedure

The object name(s) referred in the request

The SQL Command associated with the request

The attributes of the object(s) referred in the request.

As it is well known, its semantics is as follows: if the event arises and the condition

evaluates to true, the specified action is executed. In our context, an event is the detection

of an anomaly by the detection engine. A condition is specified on the attributes of the

detected anomaly. An action is the response action executed by the engine. In what fol­

lows, we use the term ECA policy instead of the common terms ECA rules and triggers to

emphasize the fact that our ECA rules specify policies driving response actions. We next

discuss in detail the various components of our language for ECA policies.

39

3.1.1 Attributes and Conditions

Anomaly Attributes. The anomaly detection mechanism provides its assessment of the

anomaly using the anomaly attributes. We have identified two main categories for such

attributes. The first category, referred to as contextual category, includes all attributes de­

scribing the context of the anomalous request such as user, role, source, and time. The

second category, referred to as structural category, includes all attributes conveying infor­

mation about the structure of the anomalous request such as SQL command, and accessed

database objects. Details concerning these attributes are reported in Table 3.1. The de­

tection engine submits its characterization of the anomaly using the anomaly attributes.

Therefore, the anomaly attributes also act as an interface for the response engine, thereby

hiding the internals of the detection mechanism. Note that the list of anomaly attributes

provided here is not exhaustive. Our implementation of the response system can be config­

ured to include/exclude other user-defined anomaly attributes.

Policy Conditions. A response policy condition is a conjunction of predicates where each

predicate is specified against a single anomaly attribute. Note that to minimize the over­

head of the policy matching procedure (cfr. Section 3.3), we do not support disjunctions

between predicates of different attributes such as SQLCmd = ‘Select’ OR ‘IPAddress’ =

‘10.10.21.200’. However, disjunctions between predicates of the same attribute are still

supported. For example, if an administrator wants to create a policy with the condition

SQLCmd = ‘Select’ OR SQLCmd = ‘Insert’; such condition can be supported by our

framework by specifying a single predicate as SQLCmd IN {‘Select’, ‘Insert’}. More ex­

amples of such predicates are given below:

Role != DBA

Source IP IN 192.168.0.0/16

Objs IN {dbo.*}

We formally define a response policy condition as follows:

Definition 3.1.1 (Policy Condition.) Let PA = {A1, A2...An} be the set of anomaly

attributes where each attribute Ai has domain Ti of values. Let a predicate Pr be defined

40

as Pr: Ak θ c, where Ak ∈ PA, θ is a comparison operator in {>, <, >=, <=, =, ! =

, like, IN, BETWEEN}, and c is a constant value in Tk. The condition of a response

policy Pol is defined as Pol(C): Prk and Prl and . . . and Prm where Prk, P rl . . . P rm

are predicates of type Pr.

3.1.2 Response Actions

Once a database request has been flagged off as anomalous, an action is executed by the

response system to address the anomaly. The response action to be executed is specified as

part of a response policy. Table 3.2 presents a taxonomy of response actions supported by

our system. The conservative actions are low severity actions. Such actions may log the

anomaly details or send an alert, but they do not pro-actively prevent an intrusion. Aggres­

sive actions, on the other hand, are high severity responses. Such actions are capable of

preventing an intrusion pro-actively by either dropping the request, disconnecting the user

or revoking/denying the necessary privileges. Fine-grained response actions are neither too

conservative nor too aggressive. Such actions may suspend or taint an anomalous request.

A suspended request is simply put on hold, until some specific actions are executed by

the user, such as the execution of further authentication steps. A tainted request is simply

marked as a potential suspicious request resulting in further monitoring of the user and pos­

sibly in the suspension or dropping of subsequent requests by the same user. We refer the

reader to [18] for further details on request suspension and tainting. Note that a sequence

of response actions can also be specified as a valid response. For example, LOG can be

executed before ALERT in order to log the anomaly details as well as send a notification

to the security administrator.

Table 3.3 describes two response policy examples. The threat scenario addressed by

Policy 1 is as follows. In many cases, the database users and applications have read access

to the system catalogs tables by default. Such access is sometimes misused during a SQL

Injection attack to gather sensitive information about the DBMS structure. An anomaly

detection engine will be able to catch such requests since they will not match the normal

41

Table 3.2

Taxonomy of Response Actions

Action Description

CONSERVATIVE: low severity

NOP

LOG

ALERT

No OPeration. This option can be used to filter

unwanted alarms.

The anomaly details are logged.

A notification is sent.

FINE-GRAINED: medium severity

TAINT

SUSPEND

The request is audited.

The request is put on hold till execution

of a confirmation action.

AGGRESSIVE: high severity

ABORT

DISCONNECT

REVOKE

DENY

The anomalous request is aborted.

The user session is disconnected.

A subset of user-privileges are revoked.

A subset of user-privileges are denied.

42

Table 3.3

Response Policy Examples

Policy 1

ON ANOMALY DETECTION

IF Role != DBA and Obj Type = table and

Objs IN dbo.* and SQLCmd IN {Select}

THEN DISCONNECT

Policy 2

ON ANOMALY DETECTION

IF Role = DBA and Source IP IN 192.168.0.0/16 and

Date Time BETWEEN 0800 - 1700

THEN NOP

profile of the user. Suppose that we want to protect the DBMS from anomalous reads to the

system catalogs (’dbo’ schema) from unprivileged database users. Policy 1 aggressively

prevents against such attacks by disconnecting the user.

Policy 2 prevents the false alarms originating from the privileged users during usual

business hours. The policy is formulated to take no action on any anomaly that originates

from the internal network of an organization from the privileged users during normal busi­

ness hours.

3.1.3 Interactive ECA Response Policies

An ECA policy is sufficient to trigger simple response measures such as disconnect­

ing users, dropping an anomalous request, sending an alert, and so forth. In some cases,

however, we need to engage in interactions with users. For example, as described in Sec­

tion 3.1.2, suppose that upon detection of an anomaly, we want to execute a fine-grained

response action by suspending the anomalous request. Then we ask the user to authenti­

cate with a second authentication factor as the next action. In case the authentication fails,

43

the user is disconnected. Otherwise, the request proceeds. As ECA policies are unable

to support such sequence of actions, we extend them with a confirmation action construct.

A confirmation action is the second course of action after the initial response action. Its

purpose is to interact with the user to resolve the effects of the initial action. If the confir­

mation action is successful, the resolution action is executed, otherwise the failure action

is executed1.

Thus, a response policy in our framework can be symbolically represented as follows2:

ON {Event}

IF {Condition}

THEN {Initial Action}

CONFIRM {Confirmation Action}

ON SUCCESS {Resolution Action}

ON FAILURE {Failure Action}

An example of an interactive ECA response policy is presented in Table 3.4. The initial

action is to suspend the anomalous user request. As a confirmation action, the user is

prompted for re-authentication. If the confirmation action fails, the failure action is to

abort the request and disconnect the user. Otherwise, no action is taken and the request is

processed by the DBMS.

3.2 Policy Administration

As discussed in Chapter 1, the main issue in the administration of response policies is

how to protect a policy from malicious modifications made by a DBA that has legitimate

access rights to the policy object. To address this issue, we propose an administration

1Note that implementing the confirmation actions such as a re-authentication or a second factor of authentica­
tion require changes to the communication protocol between the database client and the server. The scenarios
in which such confirmation actions may be useful are when a malicious subject (user/process) is able to
bypass the initial authentication mechanism of the DBMS due to software vulnerabilities (such as buffer
overflow) or due to social engineering attacks (such as using someone else’s unlocked unattended terminal).
2Note that in case where an interactive response with the user is not required, the confirmation/resolution/­
failure actions may be omitted from the policy.

44

Table 3.4

Interactive ECA Response Policy Example

Policy 3: Re-authenticate unprivileged users who are logged from

inside the organization’s internal network for write anomalies

to tables in the dbo schema. If re-authentication fails, drop the

request and disconnect the user else do nothing.

ON ANOMALY DETECTION

IF Role != DBA and Source IP IN 192.168.0.0/16 and

Obj Type = table and Objs IN dbo.* and

SQLCmd IN {Insert,Update,Delete}

THEN SUSPEND

CONFIRM RE-AUTHENTICATE

ON SUCCESS NOP

ON FAILURE ABORT,DISCONNECT

45

model referred to as the Joint Threshold Administration Model (JTAM). The threat

scenario that we assume is that a DBA has all the privileges in the DBMS, and thus it

is able to execute arbitrary SQL insert, update, and delete commands to make malicious

modifications to the policies. Such actions are possible even if the policies are stored in

the system catalogs3. JTAM protects a response policy against malicious modifications by

maintaining a digital signature on the policy definition. The signature is then validated

either periodically or upon policy usage to verify the integrity of the policy definition.

One of the key assumptions in JTAM is that we do not assume the DBMS to be in pos­

session of a secret key for verifying the integrity of policies. If the DBMS had possessed

such key, it could simply create a HMAC (Hashed Message Authentication Code) of each

policy using its secret key, and later use the same key to verify the integrity of the policy.

However, management of such secret key is an issue since we cannot assume the key to be

hidden from a malicious DBA. The fundamental premise of our approach is that we do not

trust a single DBA (with the secret key) to create or manage the response policies, but the

threat is mitigated if the trust (the secret key) is distributed among multiple DBAs. This

is also the fundamental problem in threshold cryptography, that is, the problem of secure

sharing of a secret. We thus base JTAM on a threshold cryptographic signature scheme.

Threshold Signatures: A k out of l threshold signature scheme is a protocol that allows

any subset of k users out of l users to generate a valid signature, but that disallows the

creation of a valid signature if fewer than k users participate in the protocol [20]. The basic

paradigm of most well-known threshold signature schemes is as follows [21]. Each user Ui

has a secret key share si corresponding to the signature key d. Each of the users Ui partic­

ipating in the signature generation protocol generates a signature share that takes as input

the message m (or the hash of the message) that needs to be signed, the secret key share si,

3Although it is strongly discouraged, many popular DBMSs allow DBAs to make ad-hoc updates to the
system catalogs. For example, in PostgreSQL 8.3, the system catalogs can be updated by a DBA if the
rolcatupdate column is set to ‘true’ in the pg authid catalog [5]. In Oracle 11g Database, the system catalogs
may be updated by users holding the SYS account [19].

46

and other public information. Signature shares from different users are then combined to

form the final valid signature on m.

For a threshold signature scheme to be practical for JTAM, it scheme must meet the

following three key requirements. First, the signature share generation procedure should

be asynchronous, and the signature share combining operation should be completely non-

interactive. In addition, the signature shares should be such that they can be made public

without compromising the security of the secret shares. Such requirement eliminates the

need for all k users to be present simultaneously to generate the final signature on a policy.

Second, a single incorrect signature share should invalidate the final signature on the policy.

Third, the signature verification mechanism should be very efficient to reduce the overhead

on the DBMS’s normal operations. All such requirements are supported by the Practical

Threshold Signature scheme by Victor Shoup [20], and thus we employ such scheme in

the design of JTAM. Shoup’s protocol is based on RSA threshold signatures, and uses the

concept of Lagrange interpolating polynomial [22] to create the final signature from the

signature shares. In what follows, we present the details of Shoup’s protocol in the context

of administration of our response policies.

3.2.1 JTAM Set-Up

Before the response policies can be used, some security parameters are registered with

the DBMS as part of a one-time registration phase. The details of the registration phase

are as follows: The parameter l is set equal to the number of DBAs registered with the

DBMS4. Such requirement allows any DBA to generate a valid signature share on a policy

object, thereby making our approach very flexible. Shoup’s scheme also requires a trusted

dealer to generate the security parameters. This is because it relies on a special property of

the RSA modulus, namely, that it must be the product of two safe primes. We assume the

4The registration of the DBAs (including assigning initial passwords) will be typically handled by a DBA
itself. The security parameters needed for JTAM operations are presented as DBMS configuration options
that may also be set by any DBA. The scenario that we assume here is that there are multiple administrators,
each holding the DBA role, and thus having the same level of privileges. We assume that the DBAs are
individually trusted to perform the administration tasks such as registration of DBAs, database configuration,
etc since these tasks do not lead to the kind of conflict-of-interest that we address in the paper.

http:primes.We

47

DBMS to be the trusted component that generates the security parameters 5. For all values

of k, such that 2 ≤ k ≤ l − 1, the DBMS generates the following parameters:

•	 RSA Public-Private Keys. The DBMS chooses p, q as two large prime numbers

such that

p = 2pA + 1 and q = 2qA + 1

where pA and qA are themselves large primes. Let n = p ∗ q be the RSA modulus. Let

m = pA ∗ qA. The DBMS also chooses e as the RSA public exponent such that e > l.

Thus, the RSA public key is PK = (n, e). The server also computes the private key

d ∈ Z such that de ≡ 1 mod m.

•	 Secret Key Shares. The next step is to create the secret key shares for each of the

l DBAs. For this purpose, the DBMS sets a0 = d and randomly assigns ai from

{0, . . . , m − 1} for 1 ≤ i ≤ k − 1. The numbers {a0 . . . ak−1} define the unique
Li=k−1polynomial p(x) of degree k − 1, p(x) = i=0 aixi. For 1 ≤ i ≤ l, the server

computes the secret share, si, of each DBA, DBAi, as follows:

si = p(i) mod m.

The secret shares can be stored in a smartcard or a token for every DBA, and sub­

mitted to the DBMS when required to sign a policy. The other alternative, that we

implement in JTAM, is to let the DBMS store the shares in the database encrypted

with keys generated out of the DBA’s passwords6. Thus, during the registration

phase, each DBA must submit its password to the DBMS for encrypting its secret

key shares. Using this strategy, whenever a DBA needs to sign a policy for autho­

rization, it submits its password which is used by the DBMS to decrypt the DBA’s

secret share, and use that to generate the correct signature share.

5In practice, only a small portion of the DBMS code base that deals with JTAM operations needs to be trusted.
6We use the widely used OpenPGP (RFC 4880) standard [23] to generate high-entropy keys from the pass­
words, then use such keys to encrypt the secret shares.

48

Fig. 3.1. Policy State Transition Diagram

The three key observations regarding the registration phase of JTAM are as follows.

First, the security parameters, that is, the public-private key pairs, and the secret shares,

need to be generated for every k value (2 ≤ k ≤ l − 1), and not for every policy. This

means that any policy that uses the same value of k will have the same security parameters.

Second, the private key d is only used temporarily to generate the secret key shares and is

not stored by the DBMS. Third, the registration phase needs to be performed as an ACID

database transaction.

49

3.2.2 Lifecycle of a Response Policy Object

In this section, we describe the signature share generation, the signature share com­

bining, and the final signature verification operations, in the context of the administrative

lifecycle of a response policy object. The steps in the life-cycle of a policy object are pol­

icy creation, activation, suspension, alteration, and deletion. The life-cycle is shown in

Figure 3.1 using a policy state transition diagram. The initial state of a policy object after

policy creation is CREATED. After the policy has been authorized by k − 1 administrators,

the policy state is changed to ACTIVATED. A policy in an ACTIVATED state is opera-

tional, that is, it is considered by the policy matching procedure in its search for matching

policies. If a policy needs to be altered, dropped or made non-operational, it must be moved

to the SUSPENDED state. The transition from the ACTIVATED state to the SUSPENDED

state must also be authorized by k − 1 administrators, before which the policy is in the

SUSPEND IN−PROGRESS state. Note that a policy in the SUSPEND IN−PROGRESS

state is also considered to be operational. From the SUSPENDED state, a policy can be

either moved back to the CREATED state or it can be moved to the DROPPED state. A sin­

gle administrator can move a policy to the CREATED state from the SUSPENDED state,

while a policy drop operation must be authorized by k − 1 administrators (before which

the policy is in the DROP IN−PROGRESS state). We begin our detailed discussion of a

policy object’s life-cycle with the policy creation procedure.

Policy Creation

The policy creation command has the following format:

Create Response Policy [Policy Data] Jointly Administered By k Users;

Policy Data refers to the interactive ECA response policy conditions and actions that

were described in Section 3.1. Suppose that DBA1 issues such command and that k =

3, and l = 5. DBA1 becomes the owner of the newly created policy object. The newly

created policy will be administered by 3 users (including the owner). We define an admin­

50

istrator of a policy as a user that has owner-like privileges on the policy object. Owner-like

privileges means that the user has all privileges on the object along with the ability to grant

these privileges to other users7. Note that the DBAs are assumed to possess the owner-like

privileges on all database objects by default.

After the Create Response Policy command is issued, the DBMS performs the follow­

ing operations in a sequence:

1. It prompts DBA1 for its password.

2. It uses the password received at step 1 to decrypt the encrypted secret share of DBA1

corresponding to the value of k = 3 to get s1.

3. It generates a cryptographic hash (such as SHA1) of the policy. The hash is taken on

all the policy attributes (cfr. Section 3.1) that need to be protected from malicious

modifications. Thus,

H(Pol) = SHA1(Policy ID, Conditions, (3.1)

Initial Action(s), Optional Action(s),

k, State).

Policy ID is a unique identifier generated by the DBMS for every policy. The hash

is taken on the ACTIVATED policy state since that is the state of the policy after the

policy has been authorized for activation by k − 1 administrators.

4. It creates a signature share on H(Pol) using the secret share s1 of DBA1. Let x

= H(Pol). The signature share of DBA1, is W (DBA1) = x2Δs1 ∈ Qn, where

Δ = l!, and Qn is the subgroup of squares in Zn
∗ . W (DBA1) does not leak any

information about the secret share s1 because of the intractability of the generalized

discrete logarithm problem [24].

7For example, SQL Server 2005 defines a CONTROL privilege for every database object that confers owner-
like privileges.

51

Table 3.5
sys response policy catalog after Policy Creation

PolID PolData k r hash sig shares

. 3 2 H(Pol) W (DBA1)

state final sig

CREATED

The policy data along with the signature share and H(Pol) is stored in the

sys response policy system catalog as shown in Table 3.5. The column r stores the number

of users that have yet to authorize the policy. The initial value of r after completion of the

policy creation step is k − 1 = 2.

Policy Activation

Once the policy has been created, it must be authorized for activation by at least k − 1

administrators after which the DBMS changes the state of the policy to ACTIVATED. The

policy activation command has the following format:

Authorize Response Policy [Policy ID] Create;

Suppose that DBA3 issues such command. After the command is issued, the DBMS

performs the following operations in a sequence:

1. It prompts DBA3 for its password.

2. It uses the password received in step 2 to decrypt the encrypted secret share of DBA3

corresponding to k = 3 to get s3.

3. It creates a signature share on H(Pol) using the secret share s3 in a manner simi­

lar to the Create Response Policy command. Let W (DBA3) denote the signature

share. W (DBA3) is also stored in sys response policy system catalog as shown in

Table 3.6.

52

Table 3.6
sys response policy catalog after Policy Activation - I

PolID PolData k r hash sig shares

. 3 1 H(Pol) W (DBA1); W (DBA3)

state final sig

CREATED

Table 3.7

sys response policy catalog after final Policy Activation

PolID PolData k r hash sig shares

. 3 0 H(Pol)

state final sig

ACTIVATED Wfinal

4. It decrements the value in column r by 1.

A similar procedure is adopted when another administrator, DBA4, issues the Autho­

rize Response Policy [Policy ID] Create command. When k − 1 administrators have

authorized the policy for activation, the signature combining and verification algorithms

are executed (Section 3.2.2). If the final signature, Wfinal, obtained after the signature

combining procedure is valid, the DBMS changes the state of the policy to ACTIVATED.

The updated policy signature and state are shown in Table 3.7.

Signature Combining and Verification

Let S be the set of DBAs that have submitted the signatures shares on a policy; S

8 2)2= {i1, . . . , ik} ⊂ {1, . . . , l}. Let x = H(Pol) ∈ Zn
∗, and xij

= W (Uij = x 4Δsij . To

combine the signature shares, we compute w such that

8For example, S = {1, 3, 4} since DBA1, DBA3 and DBA4 submitted the signature shares on the policy.

53

2λS 2λS
0,i1 0,ikw = x . . . x i1 ik

P
4Δ(λS)j∈S 0,j sij= x

where the λ’s are the integers defined as follows:

Q

(i−j)j'∈S\{j}λS = Δ Q ∈ Z, i ∈ {0, . . . , l} \ S, j ∈ S.i,j (j−j')j'∈S\{j}

These values of λ are derived from the standard Lagrange polynomial interpolation

formula [22]. Using the Lagrange interpolation formula, we have

L
Δ.f(i) ≡ λS f(j) mod m j∈S i,j

Thus,

P
e 4Δ(λS sij)ej∈S 0,jw = x

P
4Δ(λS f(j) mod m)ej∈S 0,j= x

4Δ(Δf(0)e mod m)= x

4Δ2(de mod m)= x

'e= x

where eA = 4Δ2 since de mod m ≡ 1 (RSA property). Since Shoup’s scheme is based

on RSA threshold signatures, the final signature is the classical RSA signature [24]. To

e acompute the final signature Wfinal = y such that y = x, we set y = w xb where a and b

are integers such that eAa + eb = 1. This is possible since gcd(e, eA) = 1. The values of a

and b are obtained from the standard Euclidean algorithm on e and eA [24].

The final signature, Wfinal, is verified using the public key (n, e) corresponding to the

value of k. We recreate the hash of the policy, H(Pol), according to Equation (3.1). If

e(Wfinal) = H(Pol), the signature is valid otherwise not.

54

Policy Suspension

To alter/drop a policy or to make it non-operational, the policy state must be changed

to SUSPENDED. To change the policy state to SUSPENDED, an administrator issues the

Suspend Response Policy [Policy ID] command. Suppose that DBA2 issues this command.

The sequence of steps followed by the DBMS upon receiving this command is as follows:

1. It prompts DBA2 for its password.

2. It uses the password received in step 2 to decrypt the encrypted secret share of DBA2

corresponding to k = 3 to get s2.

3. It creates a signature share, W (DBA2), on H(Pol) using the secret share s2 in a

manner similar to the Create Response Policy command; the difference in this case

is that the hash, H(Pol), is taken on the SUSPENDED policy state.

4. It resets the value of r to k − 1 = 2.

5. It changes the state of the policy to SUSPEND IN−PROGRESS.

Note that a policy in the SUSPEND IN-PROGRESS state is also considered to be opera­

tional. Thus, to allow for verification of the policy integrity, the final signature, Wfinal, that

was obtained after the policy activation phase is left unchanged in the sys response policy

catalog.

A policy in the SUSPEND IN-PROGRESS state must be authorized for suspension by

at least k − 1 administrators by executing the Authorize Response Policy [Policy ID] Sus­

pend command. The signature share generation, and the signature combining operations

for such command are similar to that in the Authorize Response Policy [Policy ID] Create

command. When k − 1 administrators have submitted their signature shares, the shares

are combined to get the final signature, W A . The sys response policy catalog is then final

updated with the new final signature as shown in Table 3.8.

55

Table 3.8

sys response policy catalog after final authorization of Policy Suspension

PolID PolData k r hash sig shares

. 3 0 H(Pol)

state final sig

SUSPENDED W A
final

56

Policy Alteration

An administrator can alter a policy in the SUSPENDED state by executing the Alter

Response Policy [Policy ID] [Policy Data] command. Upon receiving such command, the

DBMS, creates a new hash, H(Pol), on the policy according to Equation (3.1) (with state

set as ACTIVATED), generates a signature share on H(Pol) (for the administrator who

has issued the command), clears the existing final signature from the sys response policy

catalog, and changes the policy state to CREATED. The policy activation procedure must

now be repeated for activating the policy.

Policy Drop

A response policy is dropped by executing the Drop Response Policy [Policy ID] com­

mand. The sequence of steps performed to drop a policy is similar to the steps performed

for policy suspension; the difference in this case is that the hash, H(Pol), in Equation (3.1)

is taken on the DROPPED policy state. Also, the final signature, W A , obtained after the final

policy suspension phase is left unchanged when the policy state is DROP-IN PROGRESS.

After the policy drop has been authorized by k − 1 administrators, a new final signature,

W AA , is obtained and stored in the sys response policy catalog. The DROPPED state is final

the final state in the lifecycle of a policy, that is, a policy can not be re-activated after it has

been dropped.

3.2.3 Attacks and Protection

In this section, we describe possible attacks on JTAM and strategies to protect from

them. Recall that the threat scenario that we address is that a DBA has all the privileges in

the DBMS, and thus it is able to execute arbitrary SQL commands on the sys response policy

catalog.

Signature share verification. It is possible for a malicious administrator to replace a valid

57

signature share with some other signature share that is generated on a different policy defi­

nition. However, such attack will fail as the final signature that is produced by the signature

share combining algorithm will not be valid. Note that by submitting an invalid signature

share, a malicious administrator can block the creation of a valid policy. We do not see this

as a major problem since the threat scenario that we address is malicious modifications to

existing policies, and not generation of policies themselves.

Final signature verification. A final signature on a policy is present in all the policy states

except the CREATED state. As described earlier, the final signature is verified using the

public key (n, e) corresponding to the value of k. The public key is assumed to be signed

using a trusted third party certificate that can not be forged. Thus, if a malicious DBA

replaces the server generated public key, the final signature will be invalidated. Apart from

verifying the final signature immediately after policy activation, suspension, and drop, the

signature must also be verified before a policy may be considered in the policy matching

procedure. Such strategy ensures that only the set of response policies, that have not been

tampered, are considered for responding to an anomaly. Note that RSA signature verifi­

cation requires modular exponentiation of the exponent e [25]. The overhead to carry out

such modular exponentiation increases with the number of bits set to one in the exponent

e. As we show later in our experiments, an appropriate choice of e, such as 3, 17, or 65537

can lead to a very low signature verification overhead. However, the cumulative overhead

of verifying signatures on every policy during the policy matching procedure may be high.

An alternative strategy is to create a dedicated DBMS process that periodically polls the

sys response policy table, and verifies the signature on all policies.

Malicious Policy Update. A policy may be modified by a malicious DBA using the SQL

update statement. However, all policy definition attributes that need to be protected (see

Equation (3.1)) are hashed and signed; therefore any modification to such attributes through

the SQL update command will invalidate the final signature on the policy.

58

Table 3.9
sys response policy count catalog after Policy Creation

PolID k state sig

. . . k INVALID W A(DBA1)

Malicious Policy Deletion. An authorized policy may be deleted by a malicious DBA

using the SQL delete command. However in JTAM, a policy tuple is never physically

deleted; only its state is changed to DELETED. Thus, a signature on the policy-count can

be used to detect malicious deletion of policy tuples. The detailed approach is as follows:

When the Create Response Policy command is executed, the DBMS counts the number

of policy tuples present in the database. It increments such policy-count by 1 to account

for the new policy being created. A hash is taken on the new policy-count and state =

VALID, and a signature share is generated on such hash. The signature share, policy id

of the policy being created, the k value of the policy being created, and the initial state =

INVALID are all stored in the sys response policy count catalog as shown in Table 3.9.

These values replace the tuple that is already present in the table. Note that the policy id

that is inserted in the sys response policy count table represents the latest policy that has

been created. During policy activation, the DBMS first checks if the policy id present in

sys response policy count matches the id of the policy currently being activated. If the

check succeeds, it counts the number of policy tuples in the database, and generates a sig­

nature share on the hash of the policy-count, and state = VALID. If the check fails, no

signature share is generated. Such strategy ensures that always the correct policy-count is

signed as multiple policies may be in CREATED stage at the same time. The final signature

on the policy-count is generated when the k − 1th administrator activates the policy. The

state of the policy-count signature is then changed to VALID. The dedicated DBMS process

that verifies the individual policy signatures also verifies the signature on the policy-count.

If a policy tuple is deleted, the signature on the policy-count is invalidated.

59

Signature Replay Attacks. A malicious DBA can create a copy of the final signature on a

policy. It can then replay the copied signature, that is, it can replace the existing signature

on the policy with the copied signature and change the policy state to the state correspond­

ing to the copied signature. This attack is possible since we allow alterations to an existing

policy object. To address this attack, we duplicate the policy state to a system column of

the sys response policy catalog. A system column of a table is a column that is managed

solely by the DBMS and its contents can not be modified by any user. In case the policy

state in the system column does not match the policy state in the column visible to the user,

a policy integrity violation is detected.

Policy Replay Attacks. A malicious DBA may insert a previously authorized policy tuple,

whose state has been changed to DROPPED, into the sys response policy catalog. Such

attack can be prevented as follows. There is a unique policy id associated with each pol­

icy tuple that is generated by the DBMS. If a malicious DBA tries to insert a previously

authorized policy tuple, the DBMS will generate a fresh policy id for the new tuple. Since

the hash of the policy, H(Pol), takes into account the policy id, the final signature on such

maliciously inserted policy tuple will be invalidated. In addition, since policy tuples are

not physically deleted, the policy id generated by the DBMS is guaranteed to be unique.

3.3 Policy Matching

In this section, we present our algorithms for finding the set of policies matching an

anomaly. Such search is executed by matching the attributes of the anomaly assessment

with the conditions in the policies. We first state the policy matching problem formally:

Policy Matching Problem: Let AA = {A1, A2, . . . , An} be the set of anomaly attributes.

Let POL = {Pol1, P ol2, . . . , P olk} be the set of response policies.

Let PR = {Pr1, P r2, . . . , P rm} be the set of all distinct policy predicates. Let Poli(C)

be the policy condition for a policy Poli (cfr. Definition 3.1.1). Let AAS : A1 = a1, A2 =

60

a2, . . . , An = an be the assessment of an anomaly submitted by the detection mechanism

to the response system. A policy Poli is said to match AAS if Poli(C) = true evaluated

over AAS. The policy matching problem is to find the set of all policies in POL that match

a given anomaly assessment AAS.

We first present details of our approach towards policy storage in the DBMS. The poli­

cies are stored in the system catalog tables; the main reason is that the PostgreSQL DBMS

maintains a cache of the catalog tables in its buffer pool. Assume a policy database consist­

ing of 4 anomaly attributes, 6 policy predicates and 4 policies as shown in Table 3.10. The

graph shown in Figure 3.2 conceptually describes how the policy cache is maintained. The

graph contains three types of nodes: attribute nodes, predicate nodes, and policy nodes. A

special start node is also added (denoted by s in Figure 3.2) to the graph which is connected

to all the attribute nodes. There is an edge from attribute node Ai to a predicate node Prj

if Prj is a predicate defined on Ai in the policy database. In addition, there is an edge from

a predicate node Prj to a policy node Polk if Prj appears in the policy condition Polk(C)

of policy Polk in the policy database. This graph is used by the policy matching algorithms

to get a list of all the predicates defined on an attribute, all the predicates belonging to a

policy, and all the policies that a predicate belongs to.

We now present details of our approach towards policy matching. There are two varia­

tions of our policy matching algorithm. The first algorithm, called the Base Policy Match­

ing algorithm, is described next.

3.3.1 Base Policy Matching

The policy matching algorithm is invoked when the response engine receives an anomaly

detection assessment. For every attribute A in the anomaly assessment, the algorithm eval­

uates the predicates defined on A. After evaluating a predicate, the algorithm visits all the

policy nodes connected to the evaluated predicate node. If the predicate evaluates to true,

the algorithm increments the predicate-match-count of the connected policy nodes by 1. A

policy is matched when its predicate-match-count becomes equal to the number of pred­

61

Table 3.10

Example Policy Database

Anomaly Attributes

A1 = Source IP, A2 = SQLCmd, A3 = Role, A4 = User

Policy Predicates

Pr1: Source IP IN 192.168.0.0/16

Pr2: Source IP IN 128.10.0.0/16

Pr3: SQLCmd IN {Insert, Delete, Update}

Pr4: SQLCmd = ‘exec’

Pr5: Role ! = ‘DBA’

Pr6: User = ‘appuser’

Policy Conditions

Pol1(C) = Pr1 ˆPr3

Pol2(C) = Pr2 ˆPr6

Pol3(C) = Pr4 ˆPr5

Pol4(C) = Pr1 ˆPr3 ˆPr6

icates in the policy condition. On the other hand, if the predicate evaluates to false, the

algorithm marks the connected policy nodes as invalidated. For every invalidated policy,

the algorithm decrements the policy-match-count9 of the connected predicates; the ratio­

nale is that a predicate need not be evaluated if its policy-match-count reaches zero.

3.3.2 Ordered Policy Matching

The search procedure in the base policy matching algorithm does not go through the

predicates according to a fixed order. We introduce a heuristic by which the predicates

are evaluated in descending order of their policy-count; the policy-count of a predicate

9The policy-match-count of a predicate is the number of non-invalidated policies that the predicate belongs
to.

62

Fig. 3.2. Policy Predicate Graph Example

63

being the number of policies that the predicate belongs to. We refer to such heuristic as

the Ordered Policy Matching algorithm. The rational behind the ordered policy matching

algorithm is that choosing the correct order of predicates is important as it may lead to an

early termination of the policy search procedure either by invalidating all the policies or by

exhausting all the predicates. Note that the sorting of the predicates in decreasing order of

their policy-count is a pre-computation step which is not performed during the run-time of

the policy matching procedure.

3.3.3 Response Action Selection

In the event of multiple policies matching an anomaly, we must provide for a resolution

scheme to determine the response to be issued. We propose the following two rank-based

selection options that are based on the severity level of the response actions:

1.	 Most Severe Policy (MSP). The severity level of a response policy is determined by

the highest severity level of its response action. This strategy selects the most severe

policy from the set of matching policies. Note that the response actions described in

Section 3.1.2 are categorized according to their severity levels. Also, in the case of

interactive ECA response policies, the severity of the policy is taken as the severity

level of the Failure Action.

2.	 Least Severe Policy (LSP). This strategy, unlike the MSP strategy, selects the least

severe policy.

In our implementation, we provide the DBA with an option to switch between the two

choices.

3.4 Implementation and Experiments

We have extended the PostgreSQL 8.3 open-source DBMS [5] with our intrusion re­

sponse mechanism. We have introduced new commands in PostgreSQL for creation, acti­

vation, suspension, and dropping of response policies. We have also added six new system

64

Table 3.11
Response Policy System Catalogs

System Catalog Purpose

pg rpolicy actions

pg rpolicy attrs

pg rpolicy preds

pg rpolicy def

pg rpolicy policypreds

pg rpolicy shares

pg rpolicy adm

Stores the response action definitions.

Stores the anomaly attribute

definitions.

Stores the predicate definitions.

Stores the association of policies with

response actions.

Stores the association of policies with

predicates.

Stores the JTAM security parameters.

Stores the policy administration data.

catalog tables that store the response policy data. The catalogs and their purposes are

described in Table 3.11. We have instrumented the query processing sub-system of Post­

greSQL with our anomaly detection and response mechanism. A user request, after being

parsed, passes through the detection mechanism. The policy matching procedure is in­

voked for every request that is detected as anomalous. We then apply the MSP or the LSP

option to choose a single policy out of the set of policies returned by the policy matching

algorithm.

3.4.1 Experimental Evaluation

The goal of the experimental evaluation is to measure the overhead incurred by the base

policy matching, and the ordered policy matching algorithms. We also report experimental

results on the overhead of the signature verification scheme in JTAM. In what follows, we

first describe the experimental set-up, and then report the evaluation results.

65

Base Policy Matching
Ordered Policy Matching

Po
lic

y
M

at
ch

in
g

O
ve

rh
ea

d
(m

s)

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 0 20 40 60 80 100 120

Number of Predicates

Fig. 3.3. Experiment 1: Number of Predicates vs Policy Matching Overhead

 100

Nu
m

be
r o

f P
re

di
ca

te
s

Sk
ip

pe
d

80

 60

 40

 20

 0

Number of Predicates

Base Policy Matching
Ordered Policy Matching

0 20 40 60 80 100 120

Fig. 3.4. Experiment 1: Number of Predicates vs Number of Predicates Skipped

Set-Up

We use the following six anomaly attributes for our experimental evaluation: User,

Client App, Source IP, Database, Objs, and SQLCmd (see Table 3.1). The predicate gen­

eration code randomly assigns set-valued data to these anomaly attributes to create the

policy predicates. The policy generation code randomly assigns such predicates to policy

conditions to create the policies.

The experiments were conducted on a Intel(R) Core(TM)2 Duo CPU @ 2.33Ghz ma­

chine with 4GB of RAM. The operating system was OpenSuse 10.3.

66

Results

We perform three sets of experiments. The first two experiments report and compare

the overhead of the policy matching algorithms. The third experiment reports results on the

overhead of the signature verification mechanism in JTAM.

In the first experiment, the anomaly assessment is set such that the number of matching

policies for an anomaly is kept constant at 4. The number of predicates, and correspond­

ingly the number of policies, are varied in order to assess the policy matching overhead

time. Figure 3.3 shows the policy matching overhead for the two algorithms as a func­

tion of the number of predicates. Figure 3.4 reports the number of predicates skipped as

a function of the number of predicates. As expected, the policy matching overhead time

increases linearly with the increase in the number of predicates in the policy database. In­

terestingly, the number of predicates skipped in both the algorithms is almost same. Thus,

counter-intuitively, the ordered policy matching algorithm does not lead to a decrease in

the number of predicate evaluations. In fact, for larger number of predicates, the policy

matching overhead of the ordered predicate algorithm is higher than that of the base policy

matching algorithm. Such increase in matching overhead may be explained by the fact that

the predicates evaluated by the ordered policy matching are more computationally expen­

sive than the ones evaluated by the base policy matching algorithm. The key observation

from this experiment, however, is that predicate ordering based on the policy-count param­

eter has no benefits in terms of decreasing the overhead of the policy matching procedure.

In the second experiment, we keep the number of predicates in the policy database con­

stant at 60. The number of policies is also kept constant at 20. The number of matching

policies is varied in order to assess the policy matching overhead. Figure 3.5 shows the

policy matching overhead for the two algorithms as a function of the number of match­

ing policies. As expected, the policy matching overhead increases with the increase in the

number of matching policies. Moreover, in this experiment as well, the overhead of the or­

dered policy matching algorithm is higher than that of the base policy matching algorithm.

Figure 3.6 reports the variation in the number of predicates skipped by varying the number

67

 0.8
Base Policy Matching

0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Po
lic

y
M

at
ch

in
g

O
ve

rh
ea

d
(m

s) Ordered Policy Matching

0
 0 1 2 3 4 5 6

Number of Matching Policies

Fig. 3.5. Experiment 2: Number of Matching Policies vs Policy Matching Overhead

 50
Base Policy Matching

10

 20

 30

 40

Nu
m

be
r o

f P
re

di
ca

te
s

Sk
ip

pe
d Ordered Policy Matching

0
 0 1 2 3 4 5 6

Number of Matching Policies

Fig. 3.6. Experiment 2: Number of Matching Policies vs Number of Predicates Skipped

of matching policies. For both the algorithms, the number of predicates skipped by the

search procedure decreases for increasing numbers of matching policies. Such result is ex­

pected since an increase in the number of matching policies leads to an increasing number

of predicate evaluations.

Overall, the fist two experiments confirm the low overhead associated with our policy

matching algorithms. They also show that predicate ordering based on the descending

policy-count parameter has no significant impact on reducing the overhead of the policy

matching procedure.

We now report results on the overhead of the signature verification scheme in JTAM.

For this experiment, we set k = 2, l = 5, and e = 17. The size of the RSA modulus, n,

is set to 1024 bits. For such set-up, the signature verification overhead for a single pol­

68

 0.2

 0.15

 0.1

 0.05

 0
 1200 1000 800 600 400 200 0

Size of n (bits)

Fig. 3.7. Size of n (bits) vs Signature Verification Overhead for a single policy

Si
gn

at
ur

e
Ve

rfi
ca

tio
n

Ti
m

e
(m

s)

69

icy is approximately 0.17 ms. Such overhead value confirms the low computational com­

plexity associated with the RSA signature verification scheme. However, as mentioned in

Section 3.2.3, the cumulative overhead of verifying the signatures on every policy during

policy matching may be high. One approach to reduce the signature verification overhead

is by decreasing the size of n (see Figure 3.7). Such strategy, however, is not recommended

since 1024 bits is the recommended size of n to ensure sufficient security of the RSA algo­

rithm. Therefore, a better strategy is to create a dedicated DBMS process that periodically

polls the policy tables, and verifies the signature on all the policies.

3.5 Conclusion

In this Chapter, we described the response component of our intrusion detection and

response system for a DBMS. The response component is responsible for issuing a suit­

able response to an anomalous user request. We proposed the notion of database response

policies for specifying appropriate response actions. We presented an interactive Event-

Condition-Action type response policy language that makes it very easy for the database

security administrator to specify appropriate response actions for different circumstances

depending upon the nature of the anomalous request. The two main issues that we ad­

dressed in the context of such response policies are policy matching, and policy adminis­

tration. For the policy matching procedure, we described algorithms to efficiently search

the policy database for policies matching an anomalous request assessment. We extended

the PostgreSQL open-source DBMS to implement our methods. Specifically, we added

support for new system catalogs to hold policy related data, implemented new SQL com­

mands for the policy administration tasks, and integrated the policy matching code with

the query processing subsystem of PostgreSQL. The experimental evaluation of our pol­

icy matching algorithms showed that our techniques are efficient. The other issue that we

addressed is the administration of response policies to prevent malicious modifications to

policy objects from legitimate users. We proposed a Joint Threshold Administration Model

(JTAM), a novel administration model, based on Shoup’s threshold cryptographic signature

70

scheme. We presented the design and the implementation details of JTAM, and reported

experimental results on the efficiency of the policy signature verification mechanism.

71

4. PRIVILEGE STATE BASED ACCESS CONTROL FOR FINE

GRAINED INTRUSION RESPONSE

4.1 Introduction

An access control mechanism is typically based on the notion of authorizations. An au­

thorization is traditionally characterized by a three-element tuple of the form < A, R, P >

where A is the set of permissible actions, R is the set of protected resources, and P is the

set of principals. When a principal tries to access a protected resource, the access control

mechanism checks the rights (or privileges) of the principal against the set of authorizations

in order to decide whether to allow or deny the access request.

The main goal of the work described in this Chapter is to extend the decision semantics

of an access control system beyond the all-or-nothing allow or deny decisions. Specifically,

we provide support for more fine-grained decisions of the following two forms: suspend,

wherein further negotiation (such as a second factor of authentication) occurs with the

principal before deciding to allow or deny the request, and taint, that allows one to audit the

request in-progress, thus resulting in further monitoring of the principal, and possibly in the

suspension or dropping of subsequent requests by the same principal. The main motivation

for proposing such fine-grained access check decisions is to provide system support for

extending the response action semantics of an application level anomaly detection (AD)

system that detects the anomalous patterns of requests submitted to it.

Most AD systems, in the event of detecting an anomaly, would either log the anomalous

request and allow it to proceed or block the request. We want to extend such responses with

actions like request suspension (supported by the suspend decision semantics) and request

tainting (supported by the taint decision semantics). Why do we extend the access control

mechanism to support such response actions? Certainly, such responses may also be issued

by an AD mechanism working independently of the underlying access control system. The

72

usefulness of our approach is evident from the following scenario. Suppose we model a

user request as the usage of a set of privileges in the system where a privilege is defined

as an operation on a resource. For example, the SQL query ‘SELECT * FROM orders,

parts’ is modeled as using the privileges {select,orders} and {select,parts} in the context

of a database management system (DBMS). After detecting such request as anomalous

(using any anomaly detection algorithm), consider that we want to re-authenticate the user

and drop the request in case the re-authentication procedure fails. Suppose that every time

a similar request is detected to be anomalous, we want the same re-authentication proce­

dure to be repeated. If our response mechanism does not remember the requests, then the

request will always undergo the detection procedure, detected to be anomalous and then

submitted to the response mechanism to trigger the re-authentication procedure. A more

generic and flexible approach for achieving such response semantics is to attach a suspend

state to the privileges associated with the anomalous request. Then for every subsequent

similar request (that uses the same set of privileges as the earlier request detected to be

anomalous), the semantics of the privilege in the suspend state automatically triggers the

re-authentication sequence of actions for the request under consideration without the re­

quest being subjected to the detection mechanism. Moreover, if the system is set-up such

that the request is always subjected to the detection mechanism (in case access control en­

forcement is performed after the intrusion detection task), more advanced response logic

can be built based on the fact that a request is detected to be anomalous whose privileges

are already in the suspend state.

In addition to supporting fine-grained intrusion response, manually moving a privilege

to the suspend state (using administrative commands) provides the basis for an event based

continuous authentication mechanism. Similar arguments can be made for attaching the

taint state to a privilege that triggers auditing of the request in progress. Since we extend the

decision semantics of our access control system using privilege states, we call it a privilege

state based access control (PSAC) system. For the completeness of the access control

decisions, a privilege, assigned to a user or role, in PSAC can exist in the following five

states: unassign, grant, taint, suspend, and deny. The privilege states, the state transition

73

semantics and a formal model of PSAC are described in detail in Section 4.2. Note that the

PSAC model that we present in Section 4.2 is flexible enough to allow more that the above

mentioned five states.

We have developed PSAC in the context of a role based access control (RBAC) sys­

tem [26]. Extending PSAC with roles presents the main challenge of state conflict resolu­

tion, that is, deciding on the final state of a privilege when a principal receives the same

privilege in different states from other principals. Moreover, additional complexity is intro­

duced when the roles are arranged in a hierarchy where the roles higher-up in the hierarchy

inherit the privileges of the lower level roles. We present precise semantics in PSAC to deal

with such scenarios.

The main contributions of this work can be summarized as follows:

1. We present the design details, and a formal model of PSAC in the context of a DBMS.

2. We extend the PSAC semantics to take into account a role hierarchy.

3. We implement PSAC in the PostgreSQL DBMS [5] and discuss relevant design is­

sues.

4. We conduct an experimental evaluation of the access control enforcement overhead

introduced by the maintenance of privilege states in PSAC, and show that our imple­

mentation design is very efficient.

The rest of the Chapter is organized as follows. Section 4.2 presents the details of

PSAC and its formal model; it also discusses how a role hierarchy is supported. Section 4.3

presents the details of the system implemented in PostgreSQL, and the experimental results

concerning the overhead introduced by the privilege states on the access control functions.

We conclude the paper in Section 4.4.

4.2 PSAC Design and Formal Model

In this section, we introduce the design and the formal model underlying PSAC. We

assume that the authorization model also supports roles, in that RBAC is widely used by

74

Table 4.1

Privilege States

State Access Check Result Semantics

unassign

grant

taint

suspend

deny

The access to the resource is not granted.

The access to the resource is granted.

The access to the resource is granted;

the system audits access to the resource.

The access to the resource is not granted until

further negotiation with the principal is satisfied.

The access to the resource is not granted.

access control systems of current DBMSs [27–29]. In what follows, we first introduce the

privilege state semantics and state transitions. We then discuss in detail how those notions

have to be extended when dealing with role hierarchies.

4.2.1 Privilege States Dominance Relationship

PSAC supports five different privilege states that are listed in Table 4.1. For each state,

the table describes the semantics in terms of the result of an access check.

A privilege in the unassign state is equivalent to the privilege not being assigned to

a principal; and a privilege in the grant state is equivalent to the privilege being granted

to a principal. We include the deny state in our model to support the concept of negative

authorizations in which a privilege is specifically denied to a principal [30]. The suspend

and the taint states support the fine-grained decision semantics for the result of an access

check.

In most DBMSs, there are two distinct ways according to which a user/role1 can obtain

a privilege p on a database object o:

1. Role-assignment: the user/role is assigned a role that has been assigned p;
1From here on, we use the terms principal and user/role interchangeably.

75

2.	 Discretionary: the user is the owner of o; or the user/role is assigned p by another

user/role that has been assigned p with the GRANT option2.

Because of the multiple ways by which a privilege can be obtained, conflicts are natural

in cases where the same privilege, obtained from multiple sources, exists in different states.

Therefore, a conflict resolution strategy must be defined to address such cases. Our strategy

is to introduce a privilege states dominance (PSD) relation (see Figure 4.1). The PSD

relation imposes a total order on the set of privilege states such that any two states are

comparable under the PSD relation. Note the following characteristics of the semantics of

the PSD relation. First, the deny state overrides all the other states to support the concept of

a negative authorization [30]. Second, the suspend, and the taint states override the grant

state as they can be triggered as potential response actions to an anomalous request. Finally,

the unassign state is overridden by all the other states thereby preserving the traditional

semantics of privilege assignment.

The PSD relation is the core mechanism that PSAC provides for resolving conflicts. For

example, consider a user u that derives its privileges by being assigned a role r. Suppose

that a privilege p is assigned to r in the grant state. Now suppose we directly deny p to

u. The question is which is the state of privilege p for u, in that u has received p with two

different states. We resolve such conflicts in PSAC using the PSD relation. Because in the

PSD relation, the deny state overrides the grant state, p is denied to u.

We formally define a PSD relation as follows:

Definition 4.2.1 (PSD Relation) Let n be the number of privilege states.

Let S = {s1, s2 . . . sn} be the set of privilege states. The PSD relation is a binary relation

(denoted by �) on S such that for all si, sj , sk ∈ S:

1.	 si � sj means si overrides sj

2. if si � sj and sj � si, then si = sj (anti-symmetry)

2A privilege granted to a principal with the GRANT option allows the principal to grant that privilege to other
principals [31].

TAINT

DSU

76

DENY

SUSPEND

TAINT

UNASSIGN

GRANT

X

means ‘X’ overrides ‘Y’

Y

Fig. 4.1. Privilege States Dominance Relationship

+

?

/

unassign

grant

deny

suspend

taint

+

REVOKE

?

GRANT

/ + ? /

/

TAINT

SUSPEN

? +?/

?

SPEND

DENY

Fig. 4.2. Privilege State Transitions

3. if si � sj and sj � sk, then si � sk (transitivity)

4. si � sj or sj � si (totality) !

4.2.2 Privilege State Transitions

We now turn our attention to the privilege state transitions in PSAC. Initially, when a

privilege is not assigned to a principal, it is in the unassign state for that principal. Thus,

the unassign state is the default (or initial) state of a privilege. The state transitions can

be triggered as internal response actions by an AD system, or as ad-hoc administrative

77

commands. In what follows, we discuss the various administrative commands available in

PSAC to trigger privilege state transitions.

The GRANT command is used to assign a privilege to a principal in the grant state

whereas the REVOKE command is used to assign a privilege to a principal in the unassign

state. In this sense, these commands support similar functionality as the SQL-99 GRANT

and REVOKE commands [31]. The DENY command assigns a privilege to a principal in

the deny state. We introduce two new commands in PSAC namely, SUSPEND and TAINT,

for assigning a privilege to a principal in the suspend and the taint states, respectively. The

privilege state transitions are summarized in Figure 4.2. Note the constraint that a privilege

assigned to a principal on a DBMS object can only exist in one state at any given point in

time.

4.2.3 Formal Model

In this section, we formally define the privilege model for PSAC in the context of a

DBMS. The model is based on the following relations and functions:

Relations

1.	 U , the set of all users in the DBMS.

2.	 R, the set of all roles in the DBMS.

3.	 PR = U ∪ R, the set of principals (users/roles) in the DBMS.

4.	 OT , the set of all DBMS object types such as server, database, schema, table, and

so forth.

5.	 O, the set of all DBMS objects of all object types.

6.	 OP , the set of all operations defined on the object types in OT , such as select, insert,

delete, drop, backup, disconnect, and so forth.

78

7.	 S = {deny,suspend,taint,grant,unassign}, a totally ordered set of privilege states un­

der the PSD relation (Definition 4.2.1).

8.	 P ⊂ OP × OT , a many-to-many relation on operations and object types representing

the set of all privileges. Note that not all operations are defined for all object types.

For example, tuples of the form (select, server) or (drop, server) are not elements

of P .

9.	 URA ⊆ U × R, a many-to-many user to role assignment relation.

10.	 PRUPOSA ⊂ PR × U × P × O × S, a principal to user to privilege to object

to state assignment relation. This relation captures the state of the access control

mechanism in terms of the privileges, and their states, that are directly assigned to

users (assignees) by other principals (assigners) on DBMS objects3.

11.	 PRRPOSA ⊂ PR × R × P × O × S, a principals to role to privilege to object

to state assignment relation. This relation captures the state of the access control

mechanism in terms of the privileges, and their states, that are directly assigned to

roles (assignees) by principals (assigners).

These relations capture the state of the access control system in terms of the privilege

and the role assignments. The functions defined below determine the state of a privilege

assigned to a user/role on a DBMS object.

Functions

1.	 assigned roles(u) : U → 2R, a function mapping a user u to its assigned roles such

that assigned roles(u) = {r ∈ R | (u, r) ∈ URA}. This function returns the set of

roles that are assigned to a user.

3In PSAC, a role can also be an assigner of privileges. Consider a situation when a user u gets a privilege
p (with grant option) through assignment of role r. If u grants p to some other user u′, PSAC records p as
being granted to u′ by r even though the actual GRANT command was executed by u.

79

2.	 priv states(pr , r A , p, o) : PR × R × P × O → 2S , a function mapping a principal

pr (privilege assigner), a role rA, a privilege p, and an object o to a set of privilege

states such that priv states(pr , r A , p, o) = {s ∈ S | (pr, rA, p, o, s) ∈ PRRPOSA}.

This function returns the set of states for a privilege p, that is directly assigned to the

role rA by the principal pr, on an object o.

3.	 priv states(pr , u A , p, o) : PR × U × P × O → 2S, a function mapping a principal

pr (privilege assigner), a user uA, a privilege p, and an object o to a set of privilege

states such that priv states(pr , u A , p, o) = {s ∈ S | (pr , u A , p, o, s) ∈ PRUPOSA}

∪r∈assigned roles(u ') priv states(pr , r , p, o). The set of states returned by this function

is the union of the privilege state directly assigned to the user uA by the principal pr,

and the privilege states (also assigned by pr) obtained through the roles assigned to

Au .

4.	 priv states(r , p, o) : R × P × O → 2S , a function mapping a role r, a privilege p,

and an object o to a set of privilege states such that priv states(r , p, o) = ∪pr∈PR

priv states(pr , r , p, o). This function returns the set of states for a privilege p, that

is directly assigned to the role r by any principal in the DBMS, on an object o.

5.	 priv states(u A , p, o) : U × P × O → 2S , a function mapping a user uA, a privilege

p, and an object o to a set of privilege states such that priv states(u A , p, o) = ∪pr∈PR

priv states(pr , u A , p, o). This function returns the set of states for a privilege p, that

is directly assigned to the user uA by any principal in the DBMS, on an object o.

6.	 PSD state(2 S) : 2S → S, a function mapping a set of states 2S to a state ∈ S such

that PSD state(2 S) = sA ∈ 2S | ∀ � ' sA � s. This function returns the final state s∈2S |s=s

of a privilege using the PSD relation.

4.2.4 Role Hierarchy

Traditionally, roles can be arranged in a conceptual hierarchy using the role-to-role as­

signment relation. For example, if a role r2 is assigned to a role r1, then r1 becomes a parent

80

of r2 in the conceptual role hierarchy. Such hierarchy signifies that the role r1 inherits the

privileges of the role r2 and thus, is a more privileged role then r2. However, in PSAC such

privilege inheritance semantics may create a problem because of a deny/suspend/taint

state attached to a privilege. The problem is as follows. Suppose a privilege p is assigned to

the role r2 in the deny state. The role r1 will also have such privilege in the deny state since

it inherits it from the role r2. Thus, denying a privilege to a lower level role has the affect

of denying that privilege to all roles that inherit from that role. This defeats the purpose

of maintaining a role hierarchy in which roles higher up the hierarchy are supposed to be

more privileged than the descendant roles. To address this issue, we introduce the concept

of privilege orientation. We define three privilege orientation modes namely, up, down, and

neutral. A privilege assigned to a role in the up orientation mode means that the privilege

is also assigned to its parent roles. On the other hand, a privilege assigned to a role in

the down orientation mode means that the privilege is also assigned to its children roles;

while the neutral orientation mode implies that the privilege is neither assigned to the par­

ent roles nor to the children roles. We put the following two constraints on the assignment

of orientation modes on the privileges.

• A privilege assigned to a role in the grant or in the unassign state is always in the up

orientation mode thereby maintaining the traditional privilege inheritance semantics

in a role hierarchy.

• A privilege assigned to a role in the deny, taint, or suspend state may only be in the

down or in the neutral orientation mode. Assigning such privilege states to a role in

the down or neutral mode ensures that the role still remains more privileged than its

children roles. In addition, the neutral mode is particularly useful when a privilege

needs to be assigned to a role without affecting the rest of the role hierarchy (when

responding to an anomaly, for example).

We formalize the privilege model of PSAC in the presence of a role hierarchy as fol­

lows:

http:orientation.We

81

1.	 RRA ⊂ R × R, a many-to-many role to role assignment relation. A tuple of the form

(r1, r2) ∈ R × R means that the role r2 is assigned to the role r1. Thus, role r1 is a

parent of role r2 in the conceptual role hierarchy.

2.	 OR = {up, down, neutral}, the set of privilege orientation modes.

3.	 PRRPOSORA ⊂ PR × R × P × O × S × OR, a principal to role to privilege

to object to state to orientation mode assignment relation. This relation captures the

state of the access control system in terms of the privileges, their states, and their

orientation modes that are directly assigned to roles by principals.

4.	 assigned roles(r A) : R → 2R, a function mapping a role rA to its assigned roles

such that assigned roles(r A) = {r ∈ R | (rA, r) ∈ RRA} ∪ assigned roles(r). This

function returns the set of the roles that are directly and indirectly (through the role

hierarchy) assigned to a role; in other words, the set of descendant roles of a role in

the role hierarchy.

5.	 assigned roles(u) : U → 2R, a function mapping a user u to its assigned roles such

that assigned roles(u) = {r ∈ R | (u, r) ∈ URA} ∪ assigned roles(r). This func­

tion returns the set of roles that are directly and indirectly (through the role hierarchy)

assigned to a user.

6.	 assigned to roles(r A) : R → 2R, a function mapping a role rA to a set of roles such

that assigned to roles(r A) = {r ∈ R | (r, rA) ∈ RRA} ∪ assigned to roles(r). This

function returns the set of roles that a role is directly and indirectly (through the role

hierarchy) assigned to; in other words, the set of ancestor roles of a role in the role

hierarchy.

We redefine the priv states(pr , r A , p, o) function in the presence of a role hierarchy

taking into account the privilege orientation constraints as follows:

7.	 priv states(pr , r A , p, o) : PR × R × P × O → 2S , a function mapping a principal

pr, a role rA, a privilege s, and an object o to a set of privilege states such that

p

tom

r

r_t

r_bo

82

r_to

r0

r2

r_bot

2

r3

op

r1

2

ttom

2

r4

Fig. 4.3. A Sample Role Hierarchy

priv states(pr , r A , p, o) = {s ∈ S | ∀ or ∈ OR, (pr, rA, p, o, s, or) ∈ PRRPOSORA

} ∪ {s ∈ {grant, unassign} | ∀ r ∈ assigned roles(r A), (pr, r, p, o, s, ‘upA) ∈

PRRPOSORA } ∪ {s ∈ {deny, suspend, taint} | ∀ r ∈ assigned to roles(r A),

(pr, r, p, o, s, ‘downA) ∈ PRRPOSORA }. The set of privilege states returned by

this function is the union of the privilege states directly assigned to the role rA by the

principal pr, the privilege states in the grant or the unassign states (also assigned by

pr) obtained through the descendant roles of rA, and the privilege states in the deny,

suspend, and taint states (also assigned by pr) obtained through the roles that are the

ancestor roles of rA, and that are in the down orientation mode.

We now present a comprehensive example of the above introduced relations and func­

tions in PSAC. Consider a sample role hierarchy in Figure 4.3. Table 4.2 shows the state of

a sample PRRPOSORA relation.

83

Table 4.2

PRRPOSORA relation

PR R P O S OR

SU1 r top select t1 deny neutral

SU1 r0 select t1 taint down

SU1 r bottom select t1 grant up

SU2 r top select t1 suspend down

84

Let the role r2 be assigned to the user u1. To determine the final state of the select

privilege on the table t1 for the user u1, we evaluate priv states(u1 , select , t1) as follows:

priv states(u1, select, t1)

= priv states(SU1, u1, select, t1) ∪

priv states(SU2, u1, select, t1)

= priv states(SU1, r2, select, t1) ∪

priv states(SU2, r2, select, t1)

= {taint} ∪

{grant} ∪ {suspend}

= {taint, grant, suspend}

The final state is determined using the PSD state() function as follows:

PSD state(taint, grant, suspend) = suspend

4.3 Implementation and Experiments

In this section, we present the details on how to extend a real-world DBMS with

PSAC. We choose to implement PSAC in the PostgreSQL 8.3 open-source object-relational

DBMS [5]. In the rest of the section, we use the term PSAC:PostgreSQL to indicate Post­

greSQL extended with PSAC, and BASE:PostgreSQL to indicate the official PostgreSQL

8.3 release. The implementation of PSAC:PostgreSQL has to meet two design require­

ments. The first requirement is to maintain backward compatibility of PSAC:PostgreSQL

with BASE:PostgreSQL. We intend to release PSAC:PostgreSQL for general public use in

the near future; therefore it is important to take into account the backward compatibility

issues in our design. The second requirement is to minimize the overhead for maintaining

privilege states in the access control mechanism. In particular, we show that the time taken

for the access control enforcement code in the presence of privilege states is not much

85

31 30 . 17 16 15 14 . 1 0

GRANT OPTION BITS PRIVILEGE BITS

Fig. 4.4. ACLItem privs field

higher than the time required by the access control mechanism of BASE:PostgreSQL. In

what follows, we first present the design details of PSAC:PostgreSQL, and then we report

experimental results showing the efficiency of our design.

4.3.1 PSAC:PostgreSQL

Access control in BASE:PostgreSQL is enforced using access control lists (ACLs).

Every DBMS object has an ACL associated with it. An ACL in BASE:PostgreSQL is

a one-dimensional array; the elements of such an array have values of the ACLItem data

type. An ACLItem is the basic unit for managing privileges of an object. An ACLItem

is implemented as a structure with the following fields: granter, the user/role granting the

privileges; grantee, the user/role to which the privileges are granted; and privs, a 32 bit

integer (on 32 bit machines) managed as a bit-vector to indicate the privileges granted to

the grantee. A new ACLItem is created for every unique pair of granter and grantee. There

are 11 pre-defined privileges in BASE:PostgreSQL with a bit-mask associated with each

privilege [32]. As shown in Figure 4.4, the lower 16 bits of the privs field are used to

represent the granted privileges, while the upper 16 are used to indicate the grant option4.

If the kth bit is set to 1 (0 ≤ k < 15), privilege pk is granted to the user/role. If the (k + 16)th

bit is also set to 1, then the user/role has the grant option on privilege pk.

Design Details

There are two design options to extend BASE:PostgreSQL to support privilege states.

The first option is to extend the ACLItem structure to accommodate privilege states. The

4Recall that the grant option is used to indicate that the granted privilege may be granted by the grantee to
other users/roles.

86

second option is to maintain the privilege states in a separate data structure. We chose the

latter option. The main reason is that we want to maintain backward compatibility with

BASE:PostgreSQL. Extending the existing data structures can introduce potential bugs at

other places in the code base that we want to avoid. In BASE:PostgreSQL, the pg class

system catalog is used to store the metadata information for database objects such as tables,

views, indexes and sequences. This catalog also stores the ACL for an object in the acl

column that is an array of ACLItems. We extend the pg class system catalog to maintain

privilege states by adding four new columns namely: the acltaint column to maintain the

tainted privileges; the aclsuspend column to maintain the suspended privileges; the acldeny

column to maintain the denied privileges; and the aclneut column to indicate if the privilege

is in the neutral orientation mode. Those state columns and the aclneut column are of the

same datatype as the acl column, that is, an array of ACLItems. The lower 16 bits of

the privs field in those state and aclneut columns are used to indicate the privilege states

and the orientation mode respectively. This strategy allows us to use the existing privilege

bit-masks for retrieving the privilege state and orientation mode from these columns. The

upper 16 bits are kept unused. Table 4.3 is the truth table capturing the semantics of the

privs field bit-vector in PSAC:PostgreSQL.

Authorization Commands

We have modified the BASE:PostgreSQL GRANT and REVOKE authorization com­

mands to implement the privilege state transitions. In addition, we have defined and im­

plemented in PSAC:PostgreSQL three new authorization commands, that is, the DENY,

the SUSPEND, and the TAINT commands. As discussed in the Section 4.2, the DENY

command moves a privilege to the deny state, the SUSPEND command moves a privilege

to the suspend state, and the TAINT command moves a privilege to the taint state. The

default privilege orientation mode for these commands is the down mode with the option

to override that by specifying the neutral orientation mode. The administrative model for

these commands is similar to that of the SQL-99 GRANT command, that is, a DENY/SUS­

87

Table 4.3

Privilege States/Orientation Mode for the privs field in PSAC:PostgreSQL

acl

kth bit

acl

taint

kth bit

acl

suspend

kth bit

acl

deny

kth bit

acl

neut

kth bit

pk

state

0

1

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

1

1

unassign/up

grant/up

taint/down

suspend/down

deny/down

taint/neutral

suspend/neutral

deny/neutral

Rest all other combinations are not allowed by the system.

88

Table 4.4
New Authorization Commands in PSAC:PostgreSQL

TAINT {privilege name(s) | ALL} ON {object name(s)}

TO {user/role name(s) | PUBLIC} [NEUT ORNT]

SUSPEND {privilege name(s) | ALL} ON {object name(s)}

TO {user/role name(s) | PUBLIC} [NEUT ORNT]

DENY {privilege name(s) | ALL} ON {object name(s)}

TO {user/role name(s) | PUBLIC} [NEUT ORNT]

PEND/TAINT command can be executed on privilege p for object o by a user u iff u has the

grant option set on p for o or u is the owner of o. The syntax for the commands is reported

in Table 4.4. Note that in the current version of PSAC:PostgreSQL, the new commands

are applicable on the database objects whose metadata are stored in the pg class system

catalog.

Access Control Enforcement

We have instrumented the access control enforcement code in BASE:PostgreSQL with

the logic for maintaining the privilege states and orientation modes. The core access con­

trol function in BASE:PostgreSQL returns a true/false output depending on whether the

privilege under check is granted to the user or not. In contrast, the core access control

function in PSAC:PostgreSQL returns the final state of the privilege to the calling function.

The calling function then executes a pre-configured action depending upon the state of the

privilege. As a proof of concept, we have implemented a re-authentication procedure in

PSAC:PostgreSQL when a privilege is in the suspend state. The re-authentication proce­

dure is as follows:

Re-authentication Procedure. Recall that when a privilege is in the suspend state, further

negotiation with the end-user must be satisfied before the user-request is executed by the

89

DBMS. In the current version of PSAC, we implement a procedure that re-authenticates

the user if a privilege, after applying the PSD relationship, is found in the suspend state.

The re-authentication scheme is as follows. In BASE:PostgreSQL, an authentication pro­

tocol is carried out with the user whenever a new session is established between a client

program and the PostgreSQL server. In PSAC:Postgresql, the same authentication protocol

is replayed in the middle of a transaction execution when access control enforcement is in

progress, and a privilege is found in the suspend state. We have modified the client library

functions of BASE:PostgreSQL to implement such protocol in the middle of a transaction

execution. If the re-authentication protocol fails, the user request is dropped. If it suc­

ceeds, the request proceeds as usual, and no changes are made to the state of the privilege.

Note that such re-authentication procedure scheme is implemented as a proof-of-concept

in PSAC:Postgresql. More advanced forms of actions such as a second-factor of authenti­

cation can also be implemented.

Access Control Enforcement Algorithm. The pseudo-code for the access control en­

forcement algorithm in PSAC:PostgreSQL is presented in the Listing 4.1. The function

aclcheck() takes as input a privilege in priv - whose state needs to be determined, a

database object in object - that is the target of a request, and a user in user - the user

exercising the usage of in priv. The output of the algorithm is the state of the in priv.

The algorithm proceeds as follows. Since we define a total order on the privilege states, it

is sufficient to check each state in the order of its rank in the PSD relation (cfr. Section 4.2).

Thus, we first check for the existence of in priv in the deny state, followed by the suspend

state, the taint state, and then the grant state. The function for checking the state of in priv

(function check priv()) in an Acl is designed to take into account all the roles that are di­

rectly and indirectly (through a role hierarchy) assigned to the in user. Note that most

expensive operation in the check priv() function is the run-time inheritance check of roles,

that is, to check whether the user role is an ancestor or descendant of the acl role (lines 58

and 62). We make such check a constant time operation in our implementation by main­

taining a cache of the assigned roles for every user/role in the DBMS. Thus, the running

90

time of the access control enforcement algorithm is primarily dependent upon the sizes of

various Acls.

If the privilege is not found to be in the above mentioned states, the unassign state is

returned as the output of the access check algorithm.

1 −−

2 I n p u t

3 i n u s e r : The u s e r e x e c u t i n g t h e command

4 i n o b j e c t : T a r g e t d a t a b a s e o b j e c t

5 i n p r i v : P r i v i l e g e t o check

6

7 Outpu t

8 The p r i v i l e g e s t a t e

9 −−

10 f u n c t i o n a c l c h e c k (i n u s e r , i n o b j e c t , i n p r i v) r e t u r n s s t a t e

11 {

12 / / Get t h e n e u t r a l o r i e n t a t i o n ACL f o r i n o b j e c t

13 NeutACL = g e t n e u t o r n t (i n o b j e c t) ;

14

15 / / Deny i f i n u s e r has i n p r i v i n DENY s t a t e

16 DenyACL = g e t d e n y s t a t e a c l (i n o b j e c t) ;

17 i f (c h e c k p r i v (i n p r i v , DenyACL , i n u s e r , NeutACL ,DENY) == t r u e)

18 re tu rn DENY;

19

20 / / Suspend i f i n u s e r has i n p r i v i n SUSPEND s t a t e

21 SuspendACL = g e t s t a t e s u s p e n d a c l (i n o b j e c t) ;

22 i f (c h e c k p r i v (i n p r i v , SuspendACL , i n u s e r , NeutACL , SUSPEND) ==

t r u e)

23 re tu rn SUSPEND ;

24

25 / / T a i n t i f i n u s e r has i n p r i v i n TAINT s t a t e

26 TaintACL = g e t s t a t e t a i n t a c l (i n o b j e c t) ;

91

27 i f (c h e c k p r i v (i n p r i v , TaintACL , i n u s e r , NeutACL , TAINT) == t r u e)

28 re tu rn TAINT ;

29

30 / / Grant i f i n u s e r has i n p r i v i n GRANT s t a t e

31 GrantACL = g e t g r a n t s t a t e a c l (i n o b j e c t) ;

32 i f (c h e c k p r i v (i n p r i v , GrantACL , i n u s e r , NeutACL ,GRANT) == t r u e)

33 re tu rn GRANT;

34

35 / / E l s e r e t u r n UNASSIGN s t a t e

36 re tu rn UNASSIGN ;

37 }

38−−

39 f u n c t i o n c h e c k p r i v (i n p r i v , AclToCheck , i n u s e r , NeutACL ,

s t a t e t o c h e c k)

40 r e t u r n s b o o l e a n

41 {

42 / / F i r s t , per form t h e i n e x p e n s i v e s t e p o f c h e c k i n g t h e

p r i v i l e g e s d i r e c t l y a s s i g n e d t o t h e i n u s e r

43 i f (i n u s e r has i n p r i v i n AclToCheck)

44 re tu rn t r u e ;

45

46 / / Get a l l t h e r o l e s d i r e c t l y a s s i g n e d t o i n u s e r

47 u s e r r o l e l i s t = g e t r o l e s (i n u s e r) ;

48

49 / / Do t h e f o l l o w i n g f o r e v e r y r o l e d i r e c t l y a s s i g n e d t o i n u s e r

50 f o r each u s e r r o l e i n u s e r r o l e l i s t

51 {

52 / / Do t h e f o l l o w i n g f o r e v e r y r o l e e n t r y i n AclToCheck

53 f o r each a c l r o l e i n AclToCheck

54 {

55 i f (s t a t e t o c h e c k == GRANT)

92

56 {

57 / / O r i e n t a t i o n o f p r i v i l e g e s i n GRANT s t a t e i s UP

58 i f ((u s e r r o l e == a c l r o l e OR u s e r r o l e i s an ANCESTOR o f

a c l r o l e) AND a c l r o l e h a s i n p r i v)

59 re tu rn t r u e ;

60 }

61 e l s e i f ((u s e r r o l e == a c l r o l e OR u s e r r o l e i s a

DESCENDANT of a c l

62 {

63 i f (a c l r o l e has i n

64 con t in u e l o o p i n g

65 e l s e

66 re tu rn t r u e ;

67 }

68 }

69 }

70

71 re tu rn f a l s e ;

72 }

r o l e) AND a c l
 r o l e has i n
 p r i v)

p r i v i n NeutACL)

t h r o u g h AclToCheck ;

Listing 4.1 Access Control Enforcement Algorithm in PSAC:PostgreSQL

4.3.2 Experimental Results

In this section, we report the experimental results comparing the performance of the ac­

cess control enforcement mechanism in BASE:PostgreSQL and PSAC:PostgreSQL. Specif­

ically, we measure the time required by the access control enforcement mechanism to check

the state of a privilege, test priv, for a user, test user, on a database table, test table. We

vary the ACL Size parameter in our experiments. For BASE:ProstgreSQL, the ACL Size is

the number of entries in the acl column of the pg class catalog. For PSAC:PostgreSQL, the

ACL size is the combined number of entries in the acl, the acldeny, the aclsuspend, and

http:table.We

93

 80

 100
BASE:PostgreSQL

SAACS:PostgreSQL

60

 0 100 200 300

ACL Size
400 500 600

0

 20

 40
A

cc
es

s
C

he
ck

 T
im

e
(m

ic
ro

se
co

nd
s)

Fig. 4.5. Exp 1: Access Control Enforcement Time in BASE and PSAC
PostgreSQL in the absence of a role hierarchy

 200

A
cc

es
s

C
he

ck
 T

im
e

(m
ic

ro
se

co
nd

s) BASE:PostgreSQL
SAACS:PostgreSQL

150

 100

 50

 0

ACL Size
0 100 200 300 400 500 600

Fig. 4.6. Exp 2: Access Control Enforcement Time in BASE and PSAC
PostgreSQL in the presence of a role hierarchy

94

the acltaint columns. Note that for the purpose of these experiments we do not maintain

any privileges in the neutral orientation mode.

We perform two sets of experiments. The first experiment compares the access con­

trol overhead in the absence of a role hierarchy. The results are reported in Figure 4.5. As

expected, the access control overhead for both BASE and PSAC PostgreSQL increases with

the ACL Size. The key observation is that the access control overhead for PSAC:PostgreSQL

is not much higher than that of BASE:PostgreSQL.

The second experiment compares the access control overhead in the presence of a hy­

pothetically large role hierarchy. We use a role hierarchy of 781 roles with depth equal to 4.

The edges and cross-links in the role hierarchy are randomly assigned. The rational behind

such set-up is that we want to observe a reasonable amount of overhead in the access con­

trol enforcement code. The role hierarchy is maintained in PSAC:PostgreSQL in a manner

similar to that in BASE:PostgreSQL, that is, a role rp is the parent of a role rc if rc is as­

signed to rp using the GRANT ROLE command. A role and its assigned roles are stored in

the pg auth members catalog [5]. Next, in the experiment, we randomly assigned 10 roles

to the test user. In order to vary the size of the ACL on the test table, we developed a pro­

cedure to assign privileges on the test table to randomly chosen roles. Figure 4.6 reports

the results of this experiment. First, observe that the access check time in the presence of a

role hierarchy is not much higher than that in the absence of a role hierarchy. As mentioned

before, this is mainly because we maintain a cache of the roles assigned to a user (directly

or indirectly), thus preventing expensive role inheritance tests at the run-time. Second, the

access control enforcement algorithm of PSAC:PostgreSQL reported in Section 4.3.1 is

very efficient with a maximum time of approximately 97 microseconds for an ACL of size

512. Also, it is not much higher than the maximum access control enforcement time in

BASE:PostgreSQL which stands at approximately 46 microseconds.

Overall, the two experiments confirm the extremely low overhead associated with our

design in PSAC:PostgreSQL.

95

4.4 Conclusion

In this Chapter, we presented the design, formal model and implementation of a privi­

lege state based access control (PSAC) system tailored for a DBMS. The fundamental idea

in PSAC is that a privilege, assigned to a principal on an object, has a state attached to it.

We identify five states in which a privilege can exist namely, unassign, grant, taint, sus­

pend and deny. A privilege state transition to either the taint or the suspend state acts as

a fine-grained response to a database anomaly. We designed PSAC to take into account a

role hierarchy. We also introduced the concept of privilege orientation to control the prop­

agation of privilege states in a role hierarchy. We extended the PostgreSQL DBMS with

PSAC describing various design issues related to the actual implementation of PSAC. We

also reported experimental results that confirm that our techniques are efficient.

96

5. INTRUSION DETECTION IMPLEMENTATION IN

POSTGRESQL

A major portion of the thesis involves a prototype implementation of our intrusion detection

and response mechanism in the Postgresql 8.3 DBMS. In Chapter 3, we have described our

approach towards extending PostgreSQL with the intrusion response mechanism. We pre­

sented the implementation details, and experimental results on the overhead of the policy

matching and policy signature verification procedures. In Chapter 4, we have presented the

details on the integration of the PSAC model with PostgreSQL’s access control system. We

also reported experimental results on the overhead of for maintaining the privilege states in

PostgreSQL’s access control enforcement mechanism.

In this Chapter, we describe in detail our design choices and strategies towards im­

plementing our intrusion detection mechanism in PostgreSQL. We begin with revisiting

the intrusion detection algorithm in the context of our implementation in Section 5.1. In

Section 5.2, we discuss the internals of the core query processing and statistics collec­

tion architecture in PostgreSQL. In Section 5.3, we describe how we integrate the intru­

sion detection procedure with the existing query processing architecture. In Section 5.4,

we present extensive experimental results on the overhead of our implementation on the

transaction processing capabilities of PostgreSQL. The experimental results show that our

methods are not only feasible but efficient as well (considering that the implementation is

a research prototype).

5.1 Anomaly Detection Algorithm

We have implemented the Naive Bayes Classification (NBC) algorithm for the role-

based anomaly detection procedure described in Chapter 2. There are a few differences

in the extraction of features from a SQL query between our implementation and the the­

97

ory presented in Chapter 2. In the implementation, we only consider the tables in the

[RELATION LIST] of the FROM clause of the SQL query and the columns in the

[TARGET LIST] of the projection clause when extracting the features. This limitation

is due to our approach towards role profile creation in our implementation. As we explain

later in Section 5.3, for creating the role profiles during the training phase, we update the

table and column access count on a per role basis during the access control enforcement

procedure for the SQL command under consideration. This is necessary since we want to

collect the table and the column information on a per role basis, and this information is only

available during the access control enforcement procedure in PostgreSQL’s flow of query

execution. Also, the access control enforcement procedure only checks the privileges of

the user (or role) against the tables mentioned in the [RELATION LIST] of the FROM

clause of the SQL query, thus we are only able to gather such information for the detection

process. In future, we plan to extend our implementation to gather additional information

in the QUALIFICATION component of the query to make it consistent with the feature

extraction procedure presented in Chapter 2.

With this modification in the feature extraction process, the information that we gather

for various quiplet types introduced in Chapter 2 is described in Table 5.1:

The information in the role-profiles for the various quiplet types is described in Ta­

ble 5.2. Note that for the medium-quiplets we do not maintain the frequency count of the

tables accessed in the [RELATION LIST]. This is because in a SQL command, if the

number of columns accessed for a table is greater than 0, this implies that the table was

accessed in the SQL command. Since we use the NBC for the classification task, in which

the underlying assumption is the independence of the features, we can not have a feature

that can be implied from another feature thereby breaking the independence assumption.

Similar argument is applicable for not maintaining the frequency count of the tables ac­

cessed for the fine-triplets since if a column in a table was accessed in a SQL command, it

implies that the table containing that column was also accessed in the command.

We now give some examples of the feature extraction and the role-profile construction

process for SELECT, INSERT, and UPDATE SQL commands. Consider a database schema

98

Table 5.1
Quiplet Feature Extraction

Quiplet Type features

Coarse SQL Command

Number of tables in the [RELATION LIST]

Number of Columns in the [TARGET LIST]

Medium SQL Command

Tables in the [RELATION LIST]

Number of columns per table in the [TARGET LIST]

Fine SQL Command

Tables in the [RELATION LIST]

Columns in the [TARGET LIST]

Table 5.2

Role Profile Information for Various Quiplet Types

Quiplet Type profile information

Coarse SQL Command Count

Frequency Count of Number of tables in the [RELATION LIST]

Frequency Count of Number of columns in the [TARGET LIST]

Medium SQL Command Count

Frequency count of number of columns per table for all tables

Fine SQL Command Count

Frequency access count of every column in every table

Frequency non-access count of every column in every table

99

Table 5.3

Quiplet construction example

SQL Command c-quiplet m-quiplet f-quiplet

Select R1.A1, R3.C3

, R3.B3 From R1, R3

select < 2 > < 2 > select < 1, 0, 1 >

< 1, 0, 2 >

select < 1, 0, 1 >

<< 1, 0, 0 >

< 0, 0, 0 >

< 0, 1, 1 >>

INSERT INTO R2

VALUES (1, 1, 1)

insert < 1 > < 3 > insert < 0, 1, 0 >

< 0, 3, 0 >

insert < 0, 1, 0 >

<< 0, 0, 0 >

< 1, 1, 1 >

< 0, 0, 0 >>

UPDATE R3

SET R3.C3 = 100

update < 1 > < 1 > update < 0, 0, 1 >

< 0, 0, 1 >

update < 0, 0, 1 >

<< 0, 0, 0 >

< 0, 0, 0 >

< 0, 0, 1 >>

consisting of the following three relations R1 = {A1, B1, C1}, R2 = {A2, B2, C2}, and

R3 = {A3, B3, C3}. Table 5.3 shows the quiplet construction for a SELECT, a INSERT,

and an UPDATE command respectively.

The application of the NBC in the implementation follows directly from our earlier

discussion in Chapter 2. The probabilities are calculated using the m-estimate technique

as defined in Definition 2.3.1. The parameter m determines how heavily to weight the

observed probability relative to the observed data. The fraction ne in the Definition 2.3.1 |DT |

is the initial (or prior) probability of an event e. Since we are free to choose a prior in our

implementation, we choose the zipf probability distribution to model the prior probabilities

of the events.

100

In what follows, we briefly describe the internals of the query execution flow in Post­

greSQL. We then describe how we extend such flow to integrate our intrusion detection

procedure.

5.2 PostgreSQL Internals

PostgreSQL, often simply Postgres, is an object-relational database management sys­

tem (ORDBMS) based on POSTGRES, Version 4.2, developed at the University of Cali­

fornia at Berkeley Computer Science Department [33]. It is released under an MIT-style

license and is thus free and open source software. The key features of PostgreSQL are,

but not limited to, support for user-defined functions (in many flavors of languages such

as C++, Java, R etc), B+-tree, hash, GiST and GiN indexes, triggers, multi-version con­

currency control, query re-writing, wide-variety of built-in data types (and support for

user-defined types), table inheritance, and support for user-defined roles [34]. Our im­

plementation is based on the PostgreSQL version 8.3 [5]1.

The core query processing architecture in PostgreSQL is shown in Figure 5.1. The main

server process called postmaster spawns a new server process called postgres for every new

connection to a database. Every SQL query sent on that connection is handled by this new

postgres process. A SQL query is received by the postgres process via data packets arriving

through TCP/IP or Unix domain sockets. The query string passes through the query parser

which creates a parse tree of the query structure. The next step is for the parse tree to be

modified by any VIEWS or RULES that may apply to the query. This is performed by the

query rewrite system. After the query has been rewritten, the query optimizer takes the

parse tree and generates an optimal query plan that contains the operations to be performed

to execute the query. The plan is then passed to the query executor that is responsible for

execution of the query and passing the results back to the client. Before the executor begins

the query execution, it checks whether the user has the privileges (directly or indirectly

through role membership) to execute the query under consideration [35].

1PostgreSQL 8.3 was the latest release available when we started development of our methods in 2007.

101

Query results

Postmaster
Main process

Postgres
Server process

Server Initialization
Code

Query Parse Tree

Connect

Spawn a new server process

Submit SQL Query

Waiting for
Query Send ‘default’ stats to the

statistics collector process

Query Rewritten
Parse Tree

Query
Plan

Access Control
Enforcement

Query
Executor

Fig. 5.1. PostgreSQL Query Processing Flow

ocess

102

Postgres server process

Query executor

.

.
Collect stats in

memory resident
data structures

.

.

.

.
(

.
(
Send messages to the
(

statistics collector
(
PrProcess

.

.
Periodically

read stats file

Statistics collector process

Stats profile creator

.

.

.
Receive messages
and store stats in
memory resident
data structures

.

.

.
(

.
(

.
(
Periodically write the
(Periodically write the

stats to the pg_stat disk
file

.

.

write

pg_stat
file

read

Fig. 5.2. PostgreSQL Statistics Collector Framework

103

A key component of the PostgreSQL DBMS is the statistics collection framework.

PostgreSQL’s statistics collector is a mechanism that supports collection and reporting of

information about server activity such as a count of accesses to tables and indexes in both

disk-block and individual-row terms, a count of total numbers of rows in each table, and

so forth. The DBMS can be configured to collect or not collect statistics based on some

configuration parameters. Several pre-defined views are available to show the results of

the statistics collection. Figure 5.2 shows the interaction between the statistics collector

process and the postgres server process. The statistics are collected by the postgres server

process in memory resident data structures during query execution. At regular intervals

(500 ms by default), the collected statistics are sent to the statistics collector process using

UDP messages. More that one message may be sent at a time since the size of a single

message is kept at 1024 bytes at the maximum to avoid any fragmentation of the packets

at the network layer. The statistics collector process upon receiving a message updates the

memory resident data structures for maintaining the various statistics. At regular intervals (

500 ms by default), the statistics are written to a memory resident pg stat file. The postgres

server process, that needs to access the statistics, reads the pg stat file at regular intervals

(500 ms by default). When the postgres server is shutdown, the memory resident pg stat

file is persisted to a disk file.

In what follows, we describe our implementation strategy for the detection and response

mechanism within such framework.

5.3 Our Implementation Strategy

Figure 5.3 shows the query processing architecture, that was described earlier in Fig­

ure 5.1, with our hooks for statistics collection required for the detection task, the anomaly

detection, and anomaly response mechanisms. When a new connection is established to the

DBMS by a database user, we report the login statistics to the statistics collector process

that includes the roles activated by the user, and the list of tables under intrusion detection.

Note that we allow administrators to configure the database schemas on which we collect

s

104

Postmaster
Main process

Postgres
Server process

Server Initialization
Code

Query Parse Tree

Connect

Spawn a new server process

Submit SQL Query

Collect role login stats
Collect table initialization stats

Waiting for
Query Send detection stats to the

statistics collector process

Ye

Query Rewritten
Parse Tree

Query
Plan

Access Control
Enforcement

Query
Executor Query results

Collect table/column access stats per role

Anomaly Detection Anomaly Response
Yes

No

Fig. 5.3. Anomaly Detection and Data Collection Hooks in PostgreSQL

105

the statistics and perform the detection task. The major portion of the statistics required

to carry out the detection task are collected during the access control enforcement proce­

dure. The collected statistics include the command count per role, the tables accessed per

command per role, and the columns accessed per table per command per role. Note that

we assume that a strict RBAC model is under operation and thus all privileges required to

access any portion of the database table are inherited from roles. This allows us to capture

the required statistics on a per role basis. For the detection algorithm based on the NBC, we

only require the statistics on the command count, the table access count, and the column

access count on a per role basis. Thus, the table and column statistics are aggregated on a

per role basis before being sent to the statistics collector. Note that the aggregation of the

statistics differs based on the type of quiplet in use. As discussed in Section 5.1, for coarse

quiplets, we only require the count of number of tables and columns accessed per role, for

medium quiplets we require the count of number of columns accessed per table per role,

while for the fine quiplets we require the count of table column that was accessed on a per

role basis. The statistics collector, upon receiving the statistics, updates the memory resi­

dent role profiles that are then periodically written to the pg stat file in a manner similar to

the description in Section 5.2.

The intrusion detection algorithm task is performed on a query under consideration after

the query parser has generated the parse tree. Using the parse tree generated by PostgreSQL

means that we do not have to parse the query again to get the features required for the

detection task. The pseudo-code for the detection algorithm is presented in Listing 5.1. The

algorithm uses pre-defined functions to access the statistics required for the NBC from the

pg stat file. The result of the detection algorithm is whether an anomaly has been detected

or not. As explained earlier, we specify a query as anomalous if the role associated with the

database user (submitting the query) does not match the role predicted by the NBC. Our

current implementation, thus, only supports single role activation by a user in a session.

1 −−

2 I n p u t

3 i n u s e r : The u s e r e x e c u t i n g t h e command

106

4 i n q u e r y : F e a t u r e s of t h e query under d e t e c t i o n

5

6 Outpu t

7 Boolean : t r u e i f t h e query i s anomalous , f a l s e o t h e r w i s e

8−−

9 f u n c t i o n d e t e c t a n o m a l y (i n u s e r , i n q u e r y) r e t u r n s b o o l e a n

10 {

11 / / g e t t h e r o l e a s s o c i a t e d w i t h t h e query

12 i n p r o l e = g e t u s e r r o l e (i n u s e r) ;

13

14 / / g e t t h e r o l e p r e d i c t e d by t h e NBC

15 m a p r o l e = g e t m a p r o l e (i n u s e r , i n q u e r y) ;

16

17 i f (m a p r o l e != i n p r o l e)

18 re tu rn t r u e ;

19

20 re tu rn f a l s e ;

21 }

22−−

23 f u n c t i o n g e t m a p r o l e (i n q u e r y) r e t u r n s r o l e

24 {

25 f o r each r o l e i n t h e d a t a b a s e

26 {

27 r o l e p r i o r p r o b = c a l c u l a t e r o l e p r i o r (r o l e) ;

28

29 r o l e l i k e l i h o o d = c a l c u l a t e r o l e l i k e l i (r o l e , i n q u e r y) ;

30

31 r o l e l o g a p o s t e r i o r i = r o l e p r i o r p r o b + r o l e l i k e l i h o o d ;

32

33 i f (r o l e l o g a p o s t e r i o r i >= m a x r o l e p r o b)

34 {

107

35 m a x p r o b r o l e = r o l e ;

36 }

37 }

38

39 re tu rn m a x p r o b r o l e ;

40 }

Listing 5.1 Anomaly Detection Algorithm in PostgreSQL

Once a SQL command is detected as anomalous by the detection mechanism, it builds

an anomaly assessment structure that is then passed on to the response mechanism. The

response mechanism takes as input the anomaly assessment structure, searches through the

response policy database to find the policies matching the information in the anomaly as­

sessment structure, and then issues a suitable response based on the matched policies. The

response mechanism and its implementation strategy was described in detail in Chapter 3.

In what follows, we present experimental results on the overhead of the statistics col­

lection procedure and the detection mechanism on the transaction processing capabilities

of the PostgreSQL DBMS.

5.4 Experimental Results

The goal of the experiments described in this section is to measure the overhead intro­

duced by our anomaly detection mechanism on the transaction processing capabilities of

the PostgreSQL DBMS. In what follows, we first describe the experimental set-up and then

report the results.

5.4.1 Set-up

We use the pgbench tool distributed with the PostgreSQL DBMS to run the bench­

marking tests [5]. The pgbench tool takes as input a script file containing a series of SQL

commands and executes the commands as a transaction against the database. In our exper­

iments, every transaction consists of 5 SELECT, 5 INSERT, and 5 UPDATE commands.

6

O
ve

h
ea

d
(%

)

108

8

10

12

14

16

rh
ea

d
 (

%
)

medium

fine

0

2

4

6

O
ve

r
Database Size

fine

1Fig. 5.4. Exp 1: Database Size vs Statistics Collection Overhead

When run for a specified amount of time or for a specific number of transactions, the tool

reports the number of transactions per second (tps) processed by the database. In our ex­

periments, we always run the pgbench tool for a duration of 60 seconds.

5.4.2 Results

We perform two sets of experiments. In the first set, we run our tests against an in­

creasing size of the database where the database size is measured in terms of the number

of tables and number of columns per table in the database. The base database size that we

consider is x = 5 tables, 10 columns per table. We effectively double the database size for

every run of the pgbench tool. In addition, for each run, a table is initialized with a constant

amount of 100 rows of data. The database is configured with 3 roles and 3 users. Every

user is assigned to exactly one role in the database.

Figure 5.4 shows the results for the overhead on the transaction processing capabilities

introduced by the statistics collection procedure in this experiment for both the medium

and fine quiplets. The overhead is very reasonable for both quiplet types specially consid­

ering that we also update the probabilities of each individual quiplet feature every time the

statistics are updated.

109

Figure 5.5 reports the results for the absolute time taken by the anomaly detection

procedure during the query processing stage. Note that since we maintain the logarithm

of probability of every feature during the statistics collection phase, the calculation of

role likelihood (see Listing 5.1) during the detection procedure only requires a summa­

tion over all the relevant feature probabilities. Considering this fact, the detection time for

the medium quiplets is very small as shown in the Figure 5.5.

The detection time for the fine quiplets, however, does increase and becomes noticeable

(see the Figure 5.5 when the database size is large. This is primarily because the number of

features considered by the detection algorithm for fine-quiplets becomes very large in case

of a large database size. For example, considering the database size of 16x, corresponding

to a database of 80 tables and 40 columns per table, gives rise to 80 ∗ 40 = 3200 features

to be considered by the detection algorithm (for calculating likelihood of every role) for

the fine quiplets. Thus, if fine quiplets are being used for the anomaly detection procedure,

the number of tables in the database that need to be considered for the anomaly detection

procedure must be carefully configured so as not to adversely impact the performance of

the database.

Since we run the anomaly detection algorithm during the query processing stage, the

overhead introduced by the detection algorithm on the throughput of the DBMS (or tps) will

depend significantly on the complexity of the transactions. Figure 5.6 shows the results for

the overhead on the throughput introduced by the detection algorithm when the transaction

consists of a mix of simple SELECT, UPDATE and INSERT commands. The number of

roles configured in the system is still kept at 3. As shown, the performance of the fine

triplets in this case degrades significantly as the database size increases. This is largely

due to the fact that the SQL queries themselves are very simple and thus the ratio of the

detection time to the actual query processing time is high. Compare this result with the

results shown in Figure 5.7 in which the transactions consists of complex SQL queries

(with joins). The overhead introduced by the fine triplets in this case is much less since the

processing time for the queries themselves is quite high.

D
et

ec
ti

on
Ti

60(m
ic

ro
se

co
nd

s)
O

ve
r

20ea
d

(%
)

O
ve

rh
e

(%
)

110

D
et

ec
ti

on
 T

im
e

m
e

(m
ic

ro
se

co
nd

s)

120

100

80

60

40

20

0

medium

fine fine

x(5,10) 2x(10,12) 4x(20,16) 8x(40,24) 16x(80,40)

Database Size

2

Fig. 5.5. Exp 1: Database Size vs Anomaly Detection Time

40

35

30

O
ve

rh
 he

ad
 (%

) 25

20 medium

15
fine

10

5

0

x(5,10) 2x(10,12) 4x(20,16) 8x(40,24) 16x(80,40)

Database Size

3

Fig. 5.6. Exp 1: Database Size vs Anomaly Detection Overhead (Simple Queries)

ad
 (%

)

20

25

30

O
ve

rh
ea

d

0

5

10

15 medium

fine

x(5,10) 2x(10,12) 4x(20,16) 8x(40,24) 16x(80,40)

Database Size
5

Fig. 5.7. Exp 1: Database Size vs Anomaly Detection Overhead (Join Queries)

D
et

ec
ti

on
Ti

m
e fine

m
ic

ro
se

co
nd

s)

111

35

30

25

20 medium

fine
15

10

5

0

2 3 4 5 6

Num Roles
4

Fig. 5.8. Exp 2: Number of Roles vs Anomaly Detection Time

D
et

ec
ti

on
 T

im
e

((m
ic

ro
se

co
nd

s)

112

In the second experiment set, we measure the changes in anomaly detection time by

varying the number of roles in the DBMS. The database size in this case is kept at 20 tables

and 16 columns per table. Figure 5.8 presents the results for this experiment. As expected,

the detection time increases with increasing number of roles because in the detection al­

gorithm we have to calculate role likelihood for every role in the DBMS. However, the

performance impact is small since calculation of the role likelihood only requires a sum­

mation over the relevant feature probabilities.

Overall, the experimental results show that our anomaly detection procedure integrated

with the database query processing mechanism is very efficient and does not have a sub­

stantial impact on the transaction processing capabilities of the database.

113

6. RELATED WORK

In this chapter, we briefly review some of the related work in the area of database intrusion

detection and response.

6.1 Database Intrusion Detection

Several approaches dealing with ID for operating systems and networks have been de­

veloped [36–40]. However, as we have already argued in Chapter 1, they are not adequate

for protecting databases.

An abstract and high-level architecture of a DBMS incorporating an ID component has

been recently proposed [41]. However, this work mainly focuses on discussing generic

solutions rather than proposing concrete algorithmic approaches. Similar in spirit is the

work of Shu et al. [42] who have developed an architecture for securing web-based database

systems without proposing any specific ID mechanisms. Finally, in [43] a method for ID is

described which is applicable only to real-time applications, such as a programmed stock

trading that interacts with a database. The key idea pursued in this work is to exploit the

real-time properties of data for performing the ID task.

Anomaly detection techniques for detecting attacks on web applications have been dis­

cussed by Vigna et al. [44]. A learning based approach to the detection of SQL attacks is

proposed by Valeur et al. [45]. The motivation of this work is similar to ours as in the use of

machine learning techniques to detect SQL based attacks on databases. Their methodolo­

gies, however, focus on detection of attacks against back-end databases used by web-based

applications. Thus, their ID architecture and algorithms are tailored for that context. We,

on the other hand, propose a general purpose approach towards detection of anomalous

access patterns in a database as represented by SQL queries submitted to the database.

114

An anomaly detection system for relational databases is proposed by Spalka et al. [46].

This work focuses on detecting anomalies in a particular database state that is represented

by the data in the relations. Their first technique uses basic statistical functions to compare

reference values for relation attributes being monitored for anomaly detection. The second

technique introduces the concept of Δ relations that record the history of changes of data

values of monitored attributes between two runs of the anomaly detection system. This

work complements our work as it focuses on the semantic aspects of the SQL queries by

detecting anomalous database states as represented by the data in the relations, while we

focus on the syntactic aspects by detecting anomalous access patterns in a DBMS.

Hu et al. [47] propose an approach for identifying malicious transactions from the

database logs. They propose mechanisms for finding data dependency relationships among

transactions and use this information to find hidden anomalies in the database log. The

rationale of their approach is the following: if a data item is updated, this update does not

happen alone but is accompanied by a set of other events that are also logged in the database

log files. For example, due to an update of a given data item, other data items may also be

read or written. Therefore, each item update is characterized by three sets: the read set, the

set of items that have been read because of the update; the pre-write set, the set of items

that have been written before the update but as consequence of it; and the post-write set,

the set of items that have been written after the update and as consequence of it. They use

data mining techniques to generate dependency rules among the data items. These rules are

in the following two forms: before a data item is updated, what other data items are read,

and after a data item is updated what other data items are accessed by the same transaction.

Once these rules are generated, they are used to detect malicious transactions. The trans­

actions that make modifications to the database without following these rules are termed as

malicious.

The approach is novel, but its scope is limited to detecting malicious behavior in user

transactions. Within that as well, it is limited to user transactions that conform to the read-

write patterns assumed by the authors. Also, the system is not able to detect malicious

behavior in individual read-write commands.

115

DEMIDS is a misuse-detection system, tailored for relational database systems [48].

It uses audit log data to derive profiles describing typical patterns of accesses by database

users. Essential to such an approach is the assumption that the access pattern of users typi­

cally forms a working scope which comprises sets of attributes that are usually referenced

together with some values. The idea of working scopes is captured by mining frequent

itemsets which are sets of features with certain values. Based on the data structures and

integrity constraints encoded in the system catalogs and the user behavior recorded in the

audit logs, DEMIDS describes distance measures that capture the closeness of a set of at­

tributes with respect to the working scopes. These distance measures are then used to guide

the search for frequent itemsets in the audit logs. Misuse of data, such as tampering with the

data integrity, is detected by comparing the derived profiles against the organization’s secu­

rity policies or new audit information gathered about the users. The goal of the DEMIDS

system is two-fold. The first goal is detection of malicious insider behavior. Since a profile

created by the DEMIDS system is based on frequent sets of attributes referenced by user

queries, the approach is able to detect an event when a SQL query submitted by an insider

does not conform to the attributes in the user profile. The second goal is to serve as a tool

for security re-engineering of an organization. The profiles derived in the training stage

can help to refine/verify existing security policies or create new policies. The main draw­

back of the approach presented as in [48] is a lack of implementation and experimentation.

The approach has only been described theoretically, and no empirical evidence have been

presented of its performance as a detection mechanism.

Lee et al. [49] present an approach for detecting illegitimate database accesses by fin­

gerprinting transactions. The main contribution of this work is a technique to summarize

SQL statements into compact regular expression fingerprints. The system detects an intru­

sion by matching new SQL statements against a known set of legitimate database transac­

tion fingerprints. In this respect, this work can be classified as a signature-based ID system

which is conceptually different from the learning-based approach that we propose in this

paper.

116

In addition to the above approaches, our previous work on query floods [50] can also be

characterized as a DBMS-specific ID mechanism. However, in that work we have focused

on identifying specific types of intruders, namely those that cause query-flood attacks. A

user can engineer such an attack by “flooding” the database with queries that can exhaust

DBMS’s resources making it incapable of serving legitimate users.

6.2 Database Intrusion Response

Various commercial database monitoring and intrusion detection products are today

available on the market [3]. We categorize them into two broad categories: network­

appliance-based and agent-based. Network-appliance-based solutions consist of a dedi­

cated hardware appliance that taps into an organization’s network, and monitors network

traffic to and from the data center. Agent-based solutions, on the other hand, have a soft­

ware component installed on the database server that interacts with the DBMS in order

to monitor accesses to the data. Each method has its own advantages and disadvantages.

Network appliances, in general, are unable to monitor privileged users who can log into

the database server directly [3]. Agent-based solutions, on the other hand, result in more

overhead because of the additional software running on the database server and its usage

of CPU and memory resources. Moreover, as mentioned earlier in Chapter 3, a common

shortcoming of these products is their inability to issue a suitable response to an ongoing

attack.

Peng Liu et al. have proposed architectures and algorithms for intrusion tolerant

databases [41, 51]. Their work focuses on techniques to restore the state of the DBMS to a

‘correct’ state after rolling back the effects of a malicious transaction. We instead focus on

creating a framework for providing a real-time response to a malicious transaction so that

the transaction is prevented from being executed.

A taxonomy and survey of intrusion response systems is presented in [52]. According

to this taxonomy, our response mechanism may be termed as ‘static’ by ability to adjust,

‘autonomous’ by cooperation ability, ‘dynamic mapping’ by response selection method

117

and both ‘proactive’ and ‘delayed’ by time of response. We direct the reader to [52] for

further details on the taxonomy.

Foo et. al. [53] have also presented a survey of intrusion response systems. However,

the survey is specific to distributed systems. Since the focus of our work is development of

a response mechanism in context of a stand-alone database server, most of the techniques

described in [53] are not applicable our scenario.

6.3 Policy Administration

An approach towards addressing the problem of insider threats from malicious DBAs is

to apply the principle of least privilege. The principle dictates that a user must be assigned

only those privileges that are necessary to serve its legitimate purpose. This effectively

means to restrict the privileges of the DBAs, and to create new roles for administration of

response policy objects. Such approach is followed by Oracle Database using the concept

of a protected schema for the administration of the database vault policies [54]. Database

vault is a mechanism introduced by Oracle Database to reduce the risk of insider threats by

using policies that prevent the DBAs from accessing application data. The database vault

policy objects are themselves stored in the DVSYS protected schema. A protected schema

guards the schema against improper use of system privileges such as SELECT ANY TA­

BLE, DROP ANY, and so forth. Only the DVDSYS user and other database vault roles

can have the privileges to modify objects in the DVSYS schema. The powerful ANY sys­

tem privileges for database definition language and data manipulation language commands

are also restricted in the DVSYS protected schema. For further details on the adminis­

tration model of Oracle Database Vault, we refer the reader to [54]. Note that the Oracle

Database Vault and the anomaly response system presented in this paper are both policy-

driven mechanisms. Thus, an approach similar to Oracle Database Vault may be followed

to administer response policies as well. However, there are some disadvantages in follow­

ing such approach. First, since the approach is preventive, it requires fundamental changes

to the existing access control mechanism of a DBMS. For example, the semantics of the

http:response.We

118

ANY system privilege in the Oracle Database is required to be changed to ANY except

the protected schema objects. Second, even though the principle of least privilege is a rec­

ommended security best practice, it is often not complied with by many organizations. The

reason is that such practice requires an organization to invest in additional man-power to

assign users to the new roles that can administer the objects in the protected schema. Such

strategy is not financially feasible for many organizations, thereby leaving them exposed to

the risk of insider threats from malicious DBAs.

A discussion of the related work on threshold signature schemes can be found in [20].

To the best of our knowledge, ours is the first work that applies the technique of threshold

signatures for the administration of DBMS objects.

6.4 Policy Matching

The policy matching problem is similar to the event matching problem in content based

publish-subscribe (pub-sub) systems [55]. A subscription in a pub-sub system is similar

to a response policy, and an event is the anomaly detection event in our system. Many

algorithms have been proposed to date for efficient matching of events to subscriptions in

pub-sub systems [55–60]. In what follows, we briefly discuss the applicability of such

algorithms to the policy matching problem.

An algorithm for event-matching based on the concept of subscription trees is described

in context of the GRYPHON project [56]. The algorithm pre-processes the set of subscrip­

tions to build a subscription tree such that each node of the tree is an elementary test on an

event attribute. The leaves of the subscription tree are the actual subscriptions. The match­

ing algorithm walks through the subscription tree to find the set of matching subscriptions.

Since no analysis of the pre-processing algorithm is provided, it is not clear if the order

according to which subscriptions are chosen affects the size of the subscription tree. Also,

the scheme is formulated only for elementary predicates, and it has been optimized only

for the equality predicates. However, for the policy matching problem, we need to consider

arbitrary predicates.

119

Many algorithms for content-based event matching are described by Pereira et al. [57].

The focus of their main algorithm is to improve the cache hit ratio of main memory ac­

cess, which is not our main concern since we store the policies in the system catalogs, the

contents of which are cached by the DBMS in its main memory.

Our base policy matching algorithm is similar to the counting algorithm proposed by

Yan et al. [58]. However, we provide an extension to the counting algorithm by pro-actively

eliminating predicates that no longer need to be evaluated.

An algorithm for matching predicates in database rule systems using a interval binary

tree is proposed by Hanson et al. [60]. The focus of the algorithm is on equality and

inequality predicates on totally ordered domains, whereas our policy matching problem

need to support arbitrary predicates.

Event matching using Binary Decision Diagrams (BDD) is proposed by Campailla et

al. [59]. The scheme considers arbitrary predicates, and also supports disjunctions in the

subscription language. We do not need to support disjunctions; thus employing a BDD-

based scheme will introduce unnecessary complexity to our response system.

Event matching is also related to the problem of continuous query processing in stream­

ing databases [61]. In continuous query processing, the problem that is addressed is match­

ing multiple streaming tuples, belonging to different relations, to the stored queries. This

is different (and much harder) from the policy matching problem in which we only need to

match a single tuple (anomaly assessment) to the stored queries (policy conditions).

6.5 State Based Access Control

Access control models have been widely researched in the context of DBMSs [62]. To

the best of our knowledge, ours is the first solution formally introducing the concept of

privilege states in an access control model.

The implementation of the access control mechanism in the Windows operating sys­

tem [63], and Network File System protocol V4.1 [64] is similar to the semantics of the

taint privilege state. In such implementation, the security descriptor of a protected resource

120

can contain two types of ACLs: a Discretionary Access Control List (DACL), and a System

Access Control List (SACL). A DACL is similar to the traditional ACL in that it identifies

the principals that are allowed or denied some actions on a protected resource. A SACL, on

other hand, identifies the principals and the type of actions that cause the system to generate

a record in the security log. In that sense, a SACL ACL entry is similar to a PSAC ACL

entry with taint privilege state. Our concept of privilege states, however, is more general

as reflected by the semantics of the other states introduced in our work.

Much research work has been carried out in the area of network and host based anomaly

detection mechanisms [65]. Similarly, much work on intrusion response methods is also

in the context of networks and hosts [66, 67]. The fine-grained response actions that we

propose in this work are more suitable in the context of application level intrusion detection

systems in which there is an end user interacting with the system.

The up,down, and neutral privilege orientations (in terms of privilege inheritance) have

been introduced by Jason Crampton [68]. The main purpose for such privilege orientation

in [68] is to show how such scheme can be used to derive a role-based model with multi­

level secure policies. However, our main purpose for introducing the privilege orientation

modes is to control the propagation of privilege states in a role hierarchy.

121

7. SUMMARY AND FUTURE RESEARCH DIRECTIONS

7.1 Summary

The main goal of this dissertation is to build an intrusion detection and response mech­

anism for relational databases integrated with the core database query processing mecha­

nism. Building such a system specifically for databases is important as attacks on databases

are semantically different from attacks on the underlying network infrastructure or the host

platform. In this context, first we introduce mechanisms for detecting anomalous access

patterns of users and roles in a database. The access pattern profiles are created by extract­

ing features from the SQL queries submitted to the database by the users. An intrusion

is identified if a query under consideration deviates from the current user (or role) profile

being maintained by the system. Second, we extend the detection mechanism with an in­

trusion response component. The intrusion response component is responsible for issuing

a suitable response action to a detected anomalous request. The response component of

our system is a policy driven mechanism in which the response policies are pre-configured

by the database administrators. The three key issues that we address in the context of the

response sub-system are that of response policy matching, response policy administration,

and fine-grained response actions. We propose heuristic algorithms for the policy match­

ing task, a joint threshold administration model for the administration of response policies,

and a privilege state based access control system for supporting the fine-grained response

actions. We also perform a prototype implementation of the role based anomaly detec­

tion procedure, the response policy matching algorithms, the joint threshold administration

model, and the privilege state based access control mechanism in the PostgreSQL DBMS

and report experimental results on the overhead of every implementation. The experimental

results show that our approach is not only feasible but also efficient.

122

In what follows, we describe the possible directions for future research based on the

ideas presented in this dissertation.

7.2 Future Research Directions

7.2.1 Detection Mechanism

We have presented two scenarios for the intrusion detection task in databases. For

the first scenario, when a role based access control system is in place, we identify role

intruders, that is, users that while holding a specific role, behave in a manner that of some

other role. The first limitation of our current approach is that we assume the user to activate

only one role in a session. This is because we use the naive bayes classification algorithm

for predicting the role associated with a query; and only one role can be predicted by the

classifier. A possible research direction to extend the scheme is to assume multiple role

activation by a user in a session. The classification algorithm, in such case, may need

to be enhanced with bayesian network based approaches. The second limitation of our

approach is that we assume that the roles form a partitioning of the universe of database

access behavior. With this assumption, we are not able to identify users that while holding

a specific role, behave differently from that role and from any other role in the system.

One approach towards identifying such behavior is to train a one class Support Vector

Machine (SVM) [69] with the normal role behavior SQL query features. Then any behavior

deviating from the normal role behavior learned by the SVM classifier will be identified as

anomalous. A similar approach may be adopted for the unsupervised learning scenario for

the clusters of similar SQL queries. The one class SVM classifier, trained for every cluster,

may be applied to detect SQL queries deviating from their representative cluster.

Apart from the above mentioned research directions, the traditional issues related to

application of machine learning techniques to real-world problems are applicable to our

approach as well. Such issues include, but are not limited to, the problem of concept drift,

the problem of overfitting or underfitting the training data, and so forth.

123

7.2.2 Response Mechanism

The response mechanism described in this dissertation works on the basis of

pre-configured policies. The policies are based on attributes related to the structure of

a SQL query and also the context surrounding the query. In this regard, our response

mechanism may be considered to be static by its ability to adjust. One possible research

direction is to come up with more dynamic approaches that are suitable for responding to a

database intrusion.

An interactive response policy that requires a second factor of authentication provides

a second layer of defense when certain anomalous actions are executed against critical sys­

tem resources such as anomalous access to system catalog tables. This opens the way to

new research on how to organize applications to handle such interactions for the case of

legacy applications and new applications. In the security area there is a lot work dealing

with retrofitting legacy applications for authorization policy enforcement [70]; we believe

that such approaches can be extended to support such an interactive approach. For new

applications, one can devise methodologies to organize applications that support such in­

teractions. Notice that, however, because our approach is policy-based, the database ad­

ministrators have the flexibility of designing policies that best fit the way applications are

organized.

The joint-threshold administration model described in this dissertation was applied to­

wards administration of response policies. However, the principles behind the model are

general enough to be applied to joint administration of any sensitive database operation

such as user creation/modification/deletion, grant/revoke of permissions, and so forth.

The privilege state based access control (PSAC) model may be extended in the fol­

lowing directions. The current version of PSAC does not take into account selective role

activation and deactivation within a user session. The PSAC model may be extended with

such additional features.

LIST OF REFERENCES

124

LIST OF REFERENCES

[1] A. Anton, E.Bertino, N.Li, and T.Yu, “A roadmap for comprehensive online privacy
policies,” in CERIAS Technical Report, 2004.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic databases,” in Proceed­
ings of the 28th International Conference on Very Large Data Bases (VLDB), Morgan-
Kaufmann, 2002.

[3] A.	 Conry-Murray, “The threat from within.” Network Computing (Aug 2005),
http://www.networkcomputing.com/showArticle.jhtml? articleID=166400792.

[4] R. Mogull, “Top five steps to prevent data loss and information leaks.” Gartner Re­
search (July 2006), http://www.gartner.com.

[5] “Postgresql 8.3.” http://www.postgresql.org/.

[6] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The nist model for role based access control:
Towards a unified standard,” in Proceedings of the 5th ACM Workshop on Role Based
Access Control, 2000.

[7] P. Domingos and M. J. Pazzani, “On the optimality of the simple bayesian classifier
under zero-one loss,” Machine Learning, vol. 29, no. 2-3, pp. 103–130, 1997.

[8] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[9] J. Hilden, “Statistical diagnosis based on conditional independence does not require
it,” Computers in biology and medicine, vol. 14, no. 4, pp. 429–435, 1984.

[10] P. Langley, W. Iba, and K. Thompson, “An analysis of bayesian classifiers,” in Na­
tional Conference on Artificial Intelligence, pp. 223–228, 1992.

[11] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine
Learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[12] G.	 F. Cooper, “The computational complexity of probabilistic inference using
bayesian belief networks,” Artificical Intelligence, vol. 42, no. 2-3, pp. 393–405,
1990.

[13] E.	 Bertino, A. Kamra, and E. Terzi, “Intrusion detection in rbac-administered
databases,” in Proceedings of the Applied Computer Security Applications Confer­
ence (ACSAC), 2005.

[14] Q. Yao, A. An, and X. Huang, “Finding and analyzing database user sessions,” in
Proceedings of the 10th International Conference on Database Systems for Advanced
Applications (DASFAA), 2005.

http:Learning,vol.29
http:http://www.postgresql.org
http:http://www.gartner.com
http://www.networkcomputing.com/showArticle.jhtml

125

[15] D. S. Hochbaum and D. B. Shmoys, “A best possible approximation algorithm for
the k-center problem,” Mathematics and Operation Research, vol. 10, pp. 180–184,
1985.

[16] B. Iglewicz and D. C. Hoaglin, How to Detect and Handle Outliers. ASQC Quality
Press, 1993.

[17] J. Widom and S. Ceri, Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann, 1995.

[18] A. Kamra, E. Bertino, and R. V. Nehme, “Responding to anomalous database re­
quests.,” in Secure Data Management (SDM), pp. 50–66, Springer, 2008.

[19] “Oracle	 database concepts 11g release 1 (11.1)..” Online. Available at
http://download.oracle.com/docs/cd/B28359 01/server.111/ b28318/datadict.htm. 03
Jul 2009.

[20] V. Shoup, “Practical threshold signatures.,” in EUROCRYPT, pp. 207–220, 2000.

[21] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk, “Robust and efficient sharing of
rsa functions.,” Journal of Cryptology, vol. 20, no. 3, p. 393, 2007.

[22] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Comput­
ing. Brooks Cole, 2001.

[23] “Openpgp	 message format. rfc 4800..” Online. Available at
http://www.ietf.org/rfc/rfc4880.txt. 03 Jul 2009.

[24] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryp­
tography. CRC Press, 2001.

[25] C. K. Koc, “High-speed rsa implementation. tr-201, version 2.0.,” tech. rep., RSA
Laboratories, 1994.

[26] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The nist model for role-based access control:
Towards a unified standard,” in ACM workshop on Role-based access control, pp. 47–
63, 2000.

[27] R. Chandramouli and R. Sandhu, “Role based access control features in commercial
database management systems,” in Proceedings of 21st National Information Systems
Security Conference, 1998.

[28] “Oracle	 database security guide 11g release 1 (11.1)..” Online. Available
at http://download.oracle.com/docs/cd/B28359 01/ network.111/b28531/toc.htm. 02
Jan 2009.

[29] “Sql server 2008 books online. identity and access control (database engine)..” On­
line. Available at http://msdn.microsoft.com/en-us/library/bb510418(SQL.100).aspx.
02 Jan 2009.

[30] E. Bertino, P. Samarati, and S. Jajodia, “An extended authorization model for rela­
tional databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 9,
no. 1, pp. 85–101, 1997.

[31] “Sql-99 standard. incits/iso/iec 9075..” Online. Available at http://webstore.ansi.org/.
02 Feb 2009.

http:http://webstore.ansi.org
http://msdn.microsoft.com/en-us/library/bb510418(SQL.100).aspx
http://download.oracle.com/docs/cd/B28359
http://www.ietf.org/rfc/rfc4880.txt
http://download.oracle.com/docs/cd/B28359

126

[32] “Postgresql 8.3 documentation. postgresql and global and development and group.”
Online. Available at http://www.postgresql.org/docs/8.3/static/sql-grant.html. 02 Feb
2009.

[33] “University	 postgres 4.2.” Online. Available at
http://db.cs.berkeley.edu//postgres.html. 18 Apr 2010.

[34] “Postgresql	 - wikipedia, the free encyclopedia.” Online. Available at
http://en.wikipedia.org/wiki/PostgreSQL. 18 Apr 2010.

[35] “How	 postgresql processes a query.” Bruce Momjian.
http://anoncvs.postgresql.org/cvsweb.cgi/ checkout /pgsql/src/tools/backend/in­
dex.html. 03 Jul 2008.

[36] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,” Tech. Rep. 99­
15, Chalmers Univ., Mar. 2000.

[37] K. H. A. Hoglund and A. Sorvari, “A computer host-based user anomaly detection
using the self-organizing map,” in Proceedings of the IEEE-INNS-ENNS International
Joint Conference on Neural Networks (IJCNN), 2000.

[38] T.	 Lane and C. E. Brodley, “Temporal sequence learning and data reduction for
anomaly detection,” ACM Transactions on Information and System Security (TIS­
SEC), vol. 2, no. 3, pp. 295–331, 1999.

[39] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann, H. Javitz, A. Valdes,
and T. Garvey, “A real - time intrusion detection expert system (ides) - final technical
report,” Technical Report, Computer Science Laboratory, SRI International, 1992.

[40] R. Talpade, G. Kim, and S. Khurana, “Nomad:	 Traffic-based network monitoring
framework for anomaly detection,” in Proceedings of the 4th IEEE Symposium on
Computers and Communications (ISCC), 1998.

[41] P. Liu, “Architectures for intrusion tolerant database systems,” in Proceedings of the
Annual Computer Security Applications Conference (ACSAC), 2002.

[42] S. Wenhui and T. Tan, “A novel intrusion detection system model for securing web-
based database systems,” in Proceedings of the 25th Annual International Computer
Software and Applications Conference (COMPSAC), 2001.

[43] V. Lee, J. Stankovic, and S. Son, “Intrusion detection in real-time databases via time
signatures,” in Proceedings of the IEEE Real-Time Technology and Applications Sym­
posium (RTAS), 2000.

[44] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,” in Proceedings
of the ACM Conference on Computer and Communications Security (CCS), 2003.

[45] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the detection of sql
attacks,” in Proceedings of the International Conference on detection of intrusions
and malware, and vulnerability assessment (DIMVA), 2003.

[46] A. Spalka and J. Lehnhardt,	 “A comprehensive approach to anomaly detection in
relational databases.,” in DBSec, pp. 207–221, 2005.

http://anoncvs.postgresql.org/cvsweb.cgi
http://en.wikipedia.org/wiki/PostgreSQL
http://db.cs.berkeley.edu//postgres.html
http://www.postgresql.org/docs/8.3/static/sql-grant.html

127

[47] Y. Hu and B. Panda, “A data mining approach for database intrusion detection,” in
SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, (New
York, NY, USA), pp. 711–716, ACM, 2004.

[48] C. Chung, M. Gertz, and K. Levitt, “Demids: a misuse detection system for database
systems,” in Integrity and Internal Control in Information Systems: Strategic Views
on the Need for Control. IFIP TC11 WG11.5 Third Working Conference, 2000.

[49] S. Y. Lee, W. L. Low, and P. Y. Wong, “Learning fingerprints for a database intrusion
detection system,” in ESORICS ’02: Proceedings of the 7th European Symposium on
Research in Computer Security, (London, UK), pp. 264–280, Springer-Verlag, 2002.

[50] E. Bertino, T. Leggieri, and E. Terzi, “Securing dbms: Characterizing and detecting
query floods,” in Proceedings of the International Security Conference (ISC), 2004.

[51] P. Ammann, S. Jajodia, and P. Liu, “Recovery from malicious transactions,” IEEE
Transanctions on Knowledge and Data Engineering (TKDE), vol. 14, no. 5, pp. 1167–
1185, 2002.

[52] N. Stakhanova, S. Basu, and J. Wong, “A taxonomy of intrusion response systems,”
International Journal of Information and Computer Security (IJICS), vol. 1, no. 2,
pp. 169–184, 2007.

[53] B. Foo, M. Glause, G. Modelo-Howard, Y.-S. Wu, S. Bagchi, and E. H. Spafford,
Information Assurance: Dependability and Security in Networked Systems. Morgan
Kaufmann, 2007.

[54] “Oracle database vault administrator’s guide 11g release 1 (11.1)..” Online.	 Avail­
able at http://download.oracle.com/docs/cd/B28359 01/ server.111/b31222/toc.htm.
02 Jan 2009.

[55] F. Fabret, F. Llirbat, J. A. Pereira, I. Rocquencourt, and D. Shasha, “Efficient matching
for content-based publish/subscribe systems.,” tech. rep., INRIA, 2000.

[56] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra, “Match­
ing events in a content-based subscription system.,” in Symposium on Principles of
Distributed Computing (PODC), (New York, NY, USA), pp. 53–61, ACM, 1999.

[57] J. A. Pereira, F. Fabret, F. Llirbat, and D. Shasha, “Efficient matching for web-based
publish/subscribe systems.,” in International Conference on Cooperative Information
Systems (CooplS), (London, UK), pp. 162–173, Springer-Verlag, 2000.

[58] T. W. Yan and H. Garcı́a-Molina, “Index structures for selective dissemination of
information under the boolean model,” ACM Transactions on Database Systems
(TODS), vol. 19, no. 2, pp. 332–364, 1994.

[59] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient filtering in publish-
subscribe systems using binary decision diagrams.,” in International Conference on
Software Engineering (ICSE), (Washington, DC, USA), pp. 443–452, IEEE Computer
Society, 2001.

[60] E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang, “A predicate matching
algorithm for database rule systems.,” SIGMOD, vol. 19, no. 2, pp. 271–280, 1990.

http://download.oracle.com/docs/cd/B28359

128

[61] H.-S. Lim, J.-G. Lee, M.-J. Lee, K.-Y. Whang, and I.-Y. Song, “Continuous query
processing in data streams using duality of data and queries,” in SIGMOD, (New
York, NY, USA), pp. 313–324, ACM, 2006.

[62] E. Bertino and R. S. Sandhu, “Database security-concepts, approaches, and chal­
lenges.,” IEEE Trans. Dependable Sec. Comput., vol. 2, no. 1, pp. 2–19, 2005.

[63]	 “Access control lists in win32..” Online. Available at http://msdn.microsoft.com/en­
us/library/aa374872(VS.85).aspx. 07 Jun 2009.

[64] “Nfs version 4 minor version 1.” Online.	 Available at http://www.ietf.org/internet­
drafts/draft-ietf-nfsv4-minorversion1-29.txt. 07 Jun 2009.

[65] A. Patcha and J.-M. Park,	 “An overview of anomaly detection techniques: Exist­
ing solutions and latest technological trends.,” Computer Networks, vol. 51, no. 12,
pp. 3448–3470, 2007.

[66] A. Somayaji and S. Forrest,	 “Automated response using system-call delays,” Pro­
ceedings of the 9th USENIX Security Symposium (USENIX Association; Berkeley,
CA), p. 185, 2000.

[67] T. Toth and C. Krügel, “Evaluating the impact of automated intrusion response mech­
anisms,” pp. 301–310, IEEE Computer Society, 2002.

[68] J. Crampton, “Understanding and developing role-based administrative models,” in
ACM Conference on Computer and Communications Security, pp. 158–167, 2005.

[69] L. M. Manevitz and M. Yousef, “One-class svms for document classification,” Journal
of Machine Learning Research, vol. 2, pp. 139–154, 2002.

[70] V. Ganapathy, T. Jaeger, and S. Jha, “Retrofitting legacy code for authorization pol­
icy enforcement.,” in IEEE Symposium on Security and Privacy, pp. 214–229, IEEE
Computer Society, 2006.

http://www.ietf.org/internet
http://msdn.microsoft.com/en

VITA

129

VITA

Ashish Kamra was born in Bikaner, Rajasthan (India) in the year 1979. He completed

his schooling from various central schools in India finally settling in Delhi from Class

VIII onwards. After finishing high school from The Air Force School (TAFS), Delhi in

the year 1997, Ashish got admitted to the Visvesvaraya Regional College of Engineering

(now VNIT), Nagpur, Maharashtra (India) for his under-graduate studies. He obtained his

Bachelor’s Degree in Electronics Engineering from VNIT in the year 2001.

From 2001 to 2004, Ashish worked in Tata Consultancy Services (TCS) in capacity

of a systems engineer. During his stint at TCS, Ashish worked on one of the pioneering

e-governance projects in India called “Secretariat Knowledge and Information Manage­

ment System” (SKIMS, later names smartGOV). The SKIMS project aimed at creating a

workflow cum document management system for processing of “files” in a state secretariat.

Ashish joined Purdue University in the Fall of 2004 for the Interdisciplinary Masters

in Information Security program offered by CERIAS in collaboration with the College of

Technology. He then enrolled in the direct PhD program of the Electrical and Computer

Engineering department in the Fall of 2005 under the guidance of Prof. Elisa Bertino.

Ashish did an internship with the Rainfinity group at EMC2 from May 2007 to Aug

2007. He did another internship with the same group from May 2009 to Dec 2009. Since

Jan 2010, he has been working in the Integrated Systems and Components group of the

Unified Storage Division at EMC2. Ashish received his doctorate in Computer Engineer­

ing in Aug 2010 with Prof. Arif Ghafoor and Prof. Elisa Bertino as the major advisers.

Ashish’s research interests are in the area of intrusion detection and prevention technolo­

gies, application of machine learning techniques to computer security, and insider threat

modeling, detection and prevention.

	Form 9
	Form 20
	thesis_main

