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ABSTRACT 

Ma, Yu Tak. Ph.D., Purdue University, December, 2010. Mobility in Mobile Sensor 
Networks: A Study of Sensing Performance and Privacy. Major Professor: David K. 
Y. Yau. 

Recent advances in sensor technologies have made sensors more economical, power 

efficient, and portable to be mounted onto handheld devices for monitoring different 

environmental factors, and made mobile sensor networks possible. 

When it is financially infeasible to deploy enough or an excessive number of sen­

sors, while the environmental factors they monitor are critical for public health and 

safety, such as chemical or radiation monitoring, we deploy mobile sensors that move 

under our control. We also decide the best mobility strategy to achieve the desired 

goals. We propose and analyse mobility strategies that give a well-balanced perfor­

mance for various goals which may be antagonistic. We notice that for a stochastic 

mobility algorithm, pausing at a location is well-justified to achieve better quality in 

event monitoring and a closer match with the expected monitoring time of a location 

by the sensor. We also notice that the quality of event monitoring at a location may 

not be proportional to the time the sensors spend at the location. 

In other cases when it is economical to deploy an excessive number of sensors to 

monitor the environment by attaching them to electronic devices owned by the public, 

traces of mobile nodes are collected to help design and analyse of such systems and 

evaluate the expected performance before deployment. We are interested in studying 

privacy leakage through trace publication. Although published traces have their iden­

tity being replaced consistently with random IDs, movements of mobile nodes can be 

openly observed by others, or they may be learned through web blogs, status in social 

networks, and causal conversations, etc. It is then possible for an attacker to learn 



xii 

the whole movement history of the participants, breaching the privacy protection. We 

study comprehensively attack strategies both analytically and experimentally using 

real and synthetic traces. We observe that with high probability an adversary can 

identify participants in the trace set with the current scale of trace collection and 

publication. 
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1 INTRODUCTION 

Mobile sensor networks have become an active area of research in recent years. The 

excitement is brought by advances in sensor technologies, which have led to greatly 

improved performance and capabilities of the sensors in many aspects. In particular, 

sensors have been made more precise for event detection, more power efficient in 

operations, and more economical in production. They have also become smaller in 

size, and can be attached to various handheld electronic devices carried by people 

and other mobile agents. Exciting applications have been developed, including urban 

sensing of radiation, biological agents, and chemicals for people protection [1,2], traffic 

monitoring [3], and road surface condition sensing [4]. 

1.1 Problem Statement 

Different applications impose different requirements and constraints on the design 

and deployment of mobile sensor networks. For instance, radiation, biological, and 

chemical sensors that give precise measurements remain relatively expensive, making 

them infeasible to be extensively deployed in a city setting. To reduce the sensing 

cost, these sensors can be carried by vehicles and other mobile entities on patrol 

in deployment areas for the purpose of threat detection. The mobility algorithms 

utilized by these mobile nodes must then be designed to meet the objectives of the 

subject applications. On the other hand, sensors useful for applications such as traffic 

monitoring and road surface sensing are less complicated than specialized sensors for 

radiational, biological, and chemical plumes. These more general purpose and less 

expensive sensors may be carried around by ordinary users in everyday life. 

In this section, we introduce two problems of mobile sensor networks studied in 

this dissertation. 
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1.1.1 Mobility algorithms for urban sensing 

The first problem we study is the analysis of stochastic mobility algorithms for 

sensors to achieve certain event monitoring objectives. From past sensor network 

deployments for detecting chemical and radiation threats [5, 6], we have learned the 

following lessons. 

• The need for resource management. Radiation or chemical sensors with high 

precision are expensive. Hence, it is not financially feasible to deploy enough 

sensors to cover expansive areas such as whole urban cities. With static sensors, 

different heuristic deployment strategies have been employed to determine the 

best locations for their placement [5, 6], such that user- or application-specific 

objectives in coverage and connectivity can be satisfied. 

• The need for human protection. One major objective of urban-sensing applica­

tions is human life protection [6]. In particular, the failure to deploy sensors 

at optimal locations for countering chemical or radiation threats can lead to 

unnecessary compromise of the public’s safety. Hence, placement of sensors in 

a people-centric manner is highly desirable. 

• The need for event uncertainty reduction. Because of the nature of the events be­

ing detected, the limitations of measurement devices being deployed, or inherent 

natural phenomena such as background noise, a single measurement reported by 

the sensors may not give high confidence information about the targeted events. 

For instance, measurements for radiation detection are inherently probabilistic 

with high variance [7]. High confidence in the event monitoring is only possible 

after taking measurements over a non-negligible period of time, leading to the 

important temporal dimension of sensing. 

Against the above background, first we will propose and analyze stochastic mobil­

ity algorithms to handle the first two requirements. We will use mobile sensors such 

that every relevant location in the network area can be covered over time. Mean­
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while, the portion of time sensors spend at each location is allocated to each location 

is designed to be proportional to the threat-level associated with the location. Intu­

itively, the threat-level of a location indicates the level of damage if the case that a 

threat materializes there but is left undetected; it could be quantified as the human 

casualties or financial loss resulting from the threat. 

To tackle the third requirement, next we analyze how the quality of event monitor­

ing is affected by the proportional share as well as the sharing granularity of a sensor’s 

coverage schedule at each location. Our analysis will account for different real-world 

dynamics of events and types of events as characterized by a utility function for the 

temporal dimension of sensing each event type. 

1.1.2 Privacy concerns for published mobility traces 

Common sensors that are inexpensive and highly portable can be carried by ev­

eryday people and/or vehicles to help monitor possible threats in an urban area. 

Clearly, the mobility patterns of potential real-world participants in these networks, 

including their correlations and interactions with each other, will have large impact on 

the network performance (e.g., coverage and connectivity in the collaborative sensing 

network). Researchers have also found that existing synthetic movement models of 

mobile entities, such as pedestrians and different kinds of vehicles, though attractive 

for their low production cost and high repeatability, generally fail to capture essen­

tial behaviors of real users. Therefore, the use of synthetic traces in network design 

can lead to wrong conclusions about network performance (e.g., routing efficiency) 

in reality [8]. Hence, there are increasing efforts to trace the locations of real users, 

leading to the public availabilities of many such traces through either consolidated 

data portals such as Crawdad [9] or websites set up by individual research groups [10]. 

In order to protect the privacy of participants in real user traces, the true identity 

of each participant is often replaced by a consistent, unique, and random identifier 

that is not correlated in any way with the true user identity. Moreover, the precision 
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of the traces in the spatial and temporal domains can often be reduced by cloaking 

techniques such as reducing the resolution of the recorded data or introducing noise 

deliberately in the data. It is not clear, however, if these “anonymization” and cloak­

ing techniques are sufficient to protect the privacy of the participants. This is because 

movements or whereabouts of participants in public spaces can be openly observed 

by others through chance or engineered meeting opportunities. Similar location or 

movement information can also be learned indirectly from conversations, news arti­

cles, publicly viewable webcams, online social networks, tweets, or web blogs, though 

the inference could be noisy. By gathering a few such (possibly rough) snapshots of a 

participant’s location over time, which we term as side information, an adversary may 

be able to identify (either uniquely or with high probability) the participant’s trace 

from a set of anonymous traces. Hence, the complete whereabouts of the participant 

(the victim) over an extended time duration will be revealed to the adversary. 

The second problem we study in this dissertation is a formal analysis of the above 

problem. We will provide comprehensive quantitative analysis and experimental re­

sults under different mobility patterns and attack strategies. 

1.2 Contributions 

1.2.1 Mobility Algorithms for Urban Sensing 

Concerning the problem of designing mobility algorithms for sensors in area and 

event monitoring, our contributions are as follows. 

• To the best of our knowledge, ours is the first effort to investigate general 

threat-based coverage by mobile sensors encompassing both stochastic and de­

terministic algorithms. 

• We identify matching and fairness as two major performance criteria in evaluat­

ing the effectiveness of coverage. We show that the two performance measures 

are in general antagonistic, and discuss their tradeoffs. 
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• We present the design of a stateful mobility algorithm for sensors to achieve 

effective matching and fairness simultaneously under realistic deployment sce­

narios. The algorithm provides a tunable parameter to control the tradeoff 

between matching and fairness. 

We also present the design of a stateless mobility algorithm, and the use of a 

steepest descent approach to determine the optimal optimal parameters in the 

algorithm. We expose the presence of possibly numerous local optima in the 

search space due to the interactions of multiple objectives under a large number 

of control parameters. We show how controlled noise can be introduced into the 

search strategy so that the algorithm can avoid being stuck at a local optimum 

and arrive at a global optimum with high probability. 

• We analyze the quality of monitoring (QoM) for different types of events using 

mobile sensors. We provide extensive analysis to study how the granularity of 

sensor coverage and different levels of proportional share of sensor resource at a 

cell affect the QoM as a function of the event dynamics and type of events. In 

contrast to prior results, we show that whether increased mobility is beneficial 

depends critically on how information is gained as the event monitoring time 

increases. 

1.2.2 Privacy concerns for published mobility traces 

Concerning the privacy issues for publishing mobility traces, our contributions are 

two-fold. 

• We provide extensive analysis both theoretically and experimentally to demon­

strate that with the practice of recording and publishing anonymous location 

traces of reduced spatial and temporal granularity of real users, the concern 

exists that an adversary could identify the traces of one or more victims in the 

published data set with high probability, by learning a small amount of side 
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information about the participants. In particular, we present comprehensive 

attack strategies available to the adversary when it collects information about 

a victim’s movement either through direct observations or indirect information 

sources, and show that these attacks are effective in breaching privacy. We also 

provide a mathematical framework to show the optimality of specific attack 

strategies in that they utilize all the available information in the most effective 

way. 

• We give comprehensive experimental analysis to show the differences between 

synthetic and real traces from the perspective of the privacy problem. Despite 

generated from the same basic statistics (e.g., size of the network and average 

speeds of the mobile nodes) of the real traces, the synthetic traces may behave 

quite differently from the real traces. Their different characteristics result in 

different performance of various privacy attacks. For instance, mobile nodes in 

the synthetic traces are more sparsely distributed in the network. This leads to 

easier de-anonymization of synthetic traces when the adversary attacks by col­

lecting side information passively, but the de-anonymization may take a longer 

time if the adversary attacks by observing the participants directly. The differ­

ent characteristics of the traces may also reduce the effectiveness of a privacy 

protection measure if it is designed and verified using the synthetic traces. 

1.3 Dissertation Organization 

This dissertation is organized as follows. In Chapter 2, we study the use of stochas­

tic mobility algorithms to achieve given user-specific or application-specific goals in 

sensor networks. We will evaluate key coverage properties of the mobility algorithms, 

including the ability of the coverage to match a given threat profile of the network, 

and the exposure of different locations to possible threats during the monitoring. We 

will analyze the performance of both a stateful and a stateless algorithms analyti­

cally and experimentally. In Chapter 3, we analyze the quality of event monitoring 
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by mobile sensors for different types of events. We show how different proportional 

shares and fairness granularities may affect the monitoring performance at different 

network locations. This will lead to a basic understanding of the impact of mobil­

ity in monitoring tasks. In Chapter 4, we study the problem of privacy breaches in 

published mobility traces. We analyze effective attack strategies by an adversary to 

identify a victim’s trace given side information about the victim obtained from other 

sources. We mathematically prove the optimality of certain attack strategies in that 

they can make full use of the available information in the attack. We then present 

a comprehensive experimental study on the characteristics of various synthetic and 

real mobility traces, and discuss their implications in the privacy attack problem. We 

summarize the dissertation and give future directions of research in Chapter 5. 
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2 MOBILITY ALGORITHMS FOR MOBILE SENSOR NETWORKS 

In this chapter we study the problem of using mobile sensors to provide protection by 

detecting threats in a network area. To accomplish the task, the sensors use a mobility 

algorithm to direct their movements, which aims at optimizing the user-specific or 

application-specific goals. We first propose and explain the rationale of two different 

mobility algorithms (one is stateful [11] while the other one is stateless [12],) and 

then evaluate their performance analytically and experimentally in terms of coverage 

properties. 

2.1 Problem Formulation 

We consider the monitor of a network area, which we call the map, for a given 

threat by one or more mobile sensors. For simplicity, we assume that the map is a 

two-dimensional rectangular space of dimensions x×y, where x and y are in distance 

units. The map is partitioned into an m × n array of cells, each of dimensions S × S 

(in distance units), where S divides both m and n. The cells are enumerated by their 

unique integer ids, 0, 1, . . . , in top-to-bottom row order, and left-to-right column order 

within each row. 

The distribution of threat in the map area is specified by a threat profile, denoted 

by Φ. The threat level of a cell, say i, is given by Φ(i), and quantifies the risk of not 

covering the cell relative to the other cells. The threat profile is determined accord­

ing to the application, namely the kind of threat, and any relevant meteorological, 

environmental, and human factor. In addition, we allow certain cells to be marked as 

inaccessible, meaning that a sensor can neither monitor nor travel over such a cell due 

to physical limitations or policy decisions, which are excluded from the threat profile. 

Mathematically, Φ is a probability distribution, 0 ≤ Φ(i) ≤ 1 and ΣjΦ(j) = 1. 
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To address threat-based sensing, in solving the coverage problem, areas of higher 

threat level should receive greater attention in the form of proportionately higher 

coverage. The goal is to be achieved by a mobility algorithm that controls the move­

ment of the sensors. As a sensor moves, it visits different cells. For the purpose of 

bookkeeping, we assume that a cell is covered, in the sense that any threat event 

presents in the cell is detected, whenever a sensor is inside the cell. By bookkeeping 

on a per-cell basis, the bookkeeping costs can be kept low, at the cost of possibly 

losing some precision in matching. However, the precision loss is small if the cell 

dimension S is comparable to the sensing range of the sensor. The fraction of time 

that a sensor, say l, spends in each cell up to time t is given by the sensor’s coverage 

profile, denoted by Πl
t. Specifically, Πt

l(i) gives the fraction of time that the sensor l 

spends in the cell i up to time t. Similar to Φ, Πt is a probability distribution. When 

the context of the sensor is clear, we drop the superscript l for simplicity. 

For simplicity, we assume that the threat profile is time invariant. In practice, it 

is clear that when the threat profile changes, we can use the current profile as a new 

input to the mobility algorithm, and the sensor’s mobility will adapt accordingly. 

Threat profiles in real life are likely to depend on factors that are close to static 

because they change slowly – e.g., population, locations of strategic facilities, and 

seasonal changes of weather. 

2.2 Related Work 

Sensor coverage problem has received a lot of attention in the literature. In static 

sensor domain, [13,14] studied the minimum number of static sensor devices required 

to cover a surveillance area. Clouqueur et al. [15] studied algorithm to optimally place 

static sensors in a surveillance area to obtain best coverage that minimize the exposure 

in target intrusion monitoring. In environmental monitoring application, [6] solved 

the problem of optimal placement of static sensors to protect population against 

release of toxic substance including chemical, biological, and radiological substances. 
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Meteorological data were used in modeling dispersion and calculate population at 

risk. 

The above-mentioned work rely on the use of static sensors to detect, identify and 

track event of interest, moving target, and spreading toxic substance. In recent years, 

research have also focused on using mobile sensors to perform similar tasks to gain 

robustness and achieve higher efficiency of the sensor network. For instance, Batalin et 

al. [16] have studied the use of static and mobile sensors in a hybrid sensor network 

to support high fidelity environmental monitoring application. Other researchers 

have also studied coverage of mobile sensors [17–19]. Nevertheless, our study is very 

different from their problems. Namely, sensor mobilities in those papers are limited to 

movement during deployment to maximize the coverage of the area of interest. Once 

the sensors have moved to the appropriate position, they remain static thereafter. 

Researches in [20, 21] concerned about finding the least covered path in the area, 

which is interpreted as appropriate places for extra sensors. However, the sensors’ 

position remain static after deployment. Rao et al. [22,23] addressed the terrain model 

acquisition problem by mobile robots in the formulation of convergent algorithms 

using visibility graphs. Rao [24] showed the importance of the connectivity of a space 

to determine the size of the robot team that is effective to explore the terrain, and 

proposed methods to coordinate members of the robot team for efficient exploration. 

However, the sensors do not need to monitor the terrain after the exploration. 

For event detection, [25] studied the problem of using mobile sensors to capture 

transient events that appear and fade away. Their work differs from ours in the 

following fundamental aspects. First, they consider a collection of point of interests 

scattered along a simple closed curve whereas our work consider a rectangular surveil­

lance area to be protected by a sensor network. Second, their work uses mobile sensors 

that move deterministically along the closed curve to visit each point of interest in 

sequence. Our work uses mobile sensors to patrol the surveillance area with stochas­

tic movement to detect event of interest. Third, there is no accessibility constrain in 

their model as the mobile will move deterministically in the closed curve. In contrast, 
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we take the more generic approach where the mobile sensors will take accessibility 

constraint into account when planning a trip. Lastly, our mobility algorithms are 

adaptive to the needs of coverage (measured in terms of exposure) where the mobile 

sensors will provide coverage to the area that needs the most whereas theirs is not. 

Hsu et al. have investigated a weighted version of random waypoint model denoted 

as weighted waypoint model WWP in [26]. Nonetheless, their work is fundamentally 

different from ours. In their paper, they are modeling physical movement of people in 

real world and evaluated their model by profiling students’ movement in University of 

Southern California campus. Our work seeks for an algorithm that mobile sensor can 

use to effectively monitor a surveillance area and not to model physical movements. 

In general, mobility models that are widely studied in the literature are proposed to 

model the movement of physical entities such as human and vehicles. This chapter 

studies mobility algorithms that are designed to guide movement of mobile sensors 

such that the movement provide effective coverage to the surveillance area, given an 

arbitrary risk distribution. 

2.3 Stochastic Mobility Algorithms 

In this section we propose and analyse two different types of mobility algorithms 

to instruct the movement of the mobile nodes, such that user-specific or application-

specific goals can be achieved. 

2.3.1 Stateful — Weighted Random Waypoint 

In this section, we develop stateful mobility algorithms for a mobile sensor to 

follow. We aim at the following desirable properties of the algorithm in our design: 

• Accurate. The algorithm should give a close match with the expected resource 

allocation. 
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• Fair. The algorithm should be fair, i.e., no cells in the network area is exposed 

to threats for a prolonged period of time. 

• Stochastic. The random movement makes it hard for an adversary to anticipate 

the sensor’s movement and hence avoid detection. 

• Efficient. The algorithm should have low space and time complexities, so that 

it can be efficiently executed on the mobile sensor. 

• Practical. The algorithm should obey given accessibility constraints for the 

coverage area, such as avoiding movement over inaccessible areas. For example, 

a sensor carried on a terrestrial vehicle will not be able to enter sea areas in a 

geographical region. 

As a starting point of our design, we use a weighted random waypoint (WRW) 

algorithm. The random waypoint formulation proposed in [27] has been used widely 

to model user/device movement in a mobile network, although there is a significant 

debate about whether the model is realistic or not. Notice that the concern of realism 

does not apply in our problem context, since our objective is not to model the move­

ment of a mobile node, but to develop an algorithm for determining sensor movement. 

In our algorithm, a sensor moves in a sequence of trips. The t-th trip, t = 0, 1, . . ., 

starts at a (uniformly) random position in cell st and ends at a (uniformly) random 

position in cell dt, the (t+1)-st trip starts at the random position in cell st+1 = dt and 

ends at a random position in cell dt+1, and so on. We pick a random position with 

uniform probability inside a cell, because each cell is of non-negligible dimensions 

S × S. For simplicity, we assume henceforth that when we say a trip starts/ends at 

a cell, it is understood that the trip starts/ends at a random position inside the cell. 

The movement from st to dt occurs in a direct, straightline path at speed vt (vt > 0). 

Moreover, to be threat-aware, our algorithm considers the given threat profile when 

choosing a waypoint, and selects a cell i as the waypoint with probability Φi, which 

is the threat level of i. 
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The WRW algorithm is simple and probabilistic, thus meeting the third and fourth 

design objectives. Moreover, it attempts to achieve a coverage that matches the threat 

profile, by considering the profile in selecting the waypoints. The basic algorithm, 

however, fails to achieve an accurate match because it fails to consider the effects of a 

trip on covering the intermediate cells between the source and destination. For exam­

ple, consider a map with a few high threat hotspots. In attempting to move between 

the hotspots to give them sufficient coverage, the sensor will also visit frequently all 

the cells between the hotspots, thereby overcovering the intermediate cells. To over­

come the weaknesses of the basic algorithm, WRW can be used in conjunction with 

the following complementary features: 

• Adaptivity to prior coverage. Because of the stochastic nature of the WRW 

algorithm, and the correlations between cells visited due to their physical po­

sitions, the algorithm’s actual coverage at any point in time may deviate from 

the given threat profile. To avoid such deviations from accumulating to an un­

acceptable level, we propose to use the sensor’s prior coverage as an input in 

selecting the next waypoint. Specifically, we compute the undercoverage of each 

cell, say i, as 

Ct(i) = max{0, Φ(i) − Πt(i)}, 

where Πt(i) is the fraction of time that cell i was visited by the sensor up 

until the end of the t-th trip. Then, the probability that a candidate cell, say 

i, is chosen as the next waypoint dt+1 is proportional to Ct(i). Considering 

undercoverage as a selection criterion has the obvious advantage of increasing 

the probability to visit cells that have been neglected relative to their threat 

level, at the expense of cells that have received too much prior coverage. 

• Maximum trip length. In this variation, we do not allow the distance of a 

trip to exceed a given parameter L (in distance units). Hence, in choosing the 

next waypoint dt+1 after the t-th trip, we constrain the candidate cells to be 

within a disc centered at dt of radius L. The choice of the destination among the 
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restricted set of candidate cells occurs as in the basic algorithm. Limiting the 

trip length helps to decouple the intermediate cells visited from a set of high 

threat cells that require frequent visits. For example, consider two hotspots, 

say i and j, in a map. A suitable maximum trip length will force the sensor 

to consider more possible paths to move between i and j, thereby reducing the 

possibility of “warming up” the intermediate cells as a side effect. 

• Random pause time at the destination. To raise the coverage of an un­

dercovered cell, say i, in order to improve matching with the threat profile, the 

most efficient approach is for the sensor to stay in i for long enough time to cor­

rect the undercoverage. The approach is extremely efficient because it requires 

zero overhead of movement and there is no possibility of inadvertently changing 

the coverage of other cells due to the (now avoided) movement. However, by 

staying at the current cell longer, clearly the sensor will take longer time before 

it can return to a previously visited cell. Hence, fairness suffers, showing that 

there is an inherent tradeoff between improving matching efficiently/accurately 

and being fair. To enable a useful and controllable tradeoff between the match­

ing and unfairness metrics, the sensor, on reaching the destination of a trip, will 

stay at the destination for a pause time p (in time units) before selecting the 

next waypoint. The time p is drawn randomly from a distribution determined 

by a pause time parameter denoted by P (in time units). Specifically, at the 

end of the t-th trip at destination cell i, p ∼ U(0, Ωt(i)), where 

P × Φt(i)
Ωt(i) = 

Σj∈CΦt(j)
 

for the basic WRW algorithm, and
 

P × Ct(i)
Ωt(i) = 

Σj∈CCt(j) 

for the WRW variant that is adaptive to prior coverage, and C is the set of cells 

that are candidates as the next waypoint. 
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Family of algorithms. Notice that the complementary features augmenting the 

WRW algorithm can be orthogonally combined, thereby offering a family of algo­

rithms for threat-based mobile coverage. We will denote a particular augmented 

algorithm by WRW-feat, where feat is a list of letters enumerating the augmenta­

tions in alphabetical order, and the letters a, L, and P, are for the “adaptivity to prior 

coverage”, “maximum trip length”, and “random pause time” features, respectively. 

For example, WRW-L denotes the WRW algorithm with the maximum trip length 

constraint, and WRW-aLP denotes the algorithm with all the three features enabled. 

The experimental results in Section 2.4 show that each feature contributes positively 

to accurate matching, and hence the WRW-aLP algorithm is the most powerful in 

the matching respect. Additionally, the pause time parameter in WRW-aLP enables 

a useful tradeoff between matching and fairness. 

The WRW-aLP algorithm is specified in Fig. 2.1. In the specification, the WRW­

aLP program takes as input the threat profile Φ, and the L and P parameters of 

the WRW-aLP algorithm. The function SelectWaypoint takes four input param­

eters, in which the parameter xt is the current position of the sensor, and returns 

the destination and pause time of the next trip. The Accessible function (whose 

specification is not shown) checks if all the intermediate cells connecting a given pair 

of cells are accessible, and can be precomputed for each given pair. Either for-loop 

in SelectWaypoint has a complexity of O(L2), where L/s. Hence, WRW-aLP s Ls = 

requires O(L2 
s) computation after every trip of length O(L). The space costs of stor­

ing either the map of cells or the precomputed Accessible function is O(m × n). 

Hence, WRW-aLP can handle given inaccessibility constraints and has an efficient 

implementation. 

Multi-sensor Coordinations 

When the network is large relative to the sensing range of a sensor, it is hardly 

sufficient to deploy a single sensor to monitor the whole area. Even though the sensor 
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1 SelectWaypoint (L, P, Ct, xt) 

2 Initialize u ∼ U (0, 1), a := 0, b := 0, c := 0; 

3 For each cell i within range L of xt 

4 If (Accessible(xt, i) and Ct(i) > 0) 

5 a := a + Ct(i); 

6 If (b < Ct(i)) 

7 b := Ct(i); 

8 Endif 

9 Endfor 

10 For each cell i within range L of xt 

11 If (Accessible(xt, i) and Ct(i) > 0) 

12 c := c + Ct(i)/a; 

13 If (u < c) 

14 pick xt+1 as random point inside i with uniform probability; 

15 p := (P × Ct(i))/(a × b); 

16 Endif 

17 Endif 

18 Endfor 

19 return (xt+1, p); 

20 WRW-aLP(Φ, L, P ) 

21 While (true) 

22 (xt+1, p) := SelectWaypoint(L, P, Ct, xt);
 

23 move to xt+1;
 

24 pause for p time;
 

25 update Ct(i); 

26 Endwhile 

Figure 2.1. Specification of WRW-aLP algorithm.
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is able to navigate the whole area and cover it eventually, the exposure time will be far 

from satisfactory. When multiple mobile sensors are deployed in the network, it may 

be important to coordinate their movements such that they could provide the optimal 

performance. In this section we consider four different coordination approaches. We 

first present the details of these approaches, and then evaluate their performance in 

Section 2.4. 

The four approaches are listed as follows, 

• No coordination, NC. In this approach the mobile sensors do not coordinate 

their movements with each other, and they take no measures to prevent dupli­

cation of effort in coverage. Each mobile sensor monitors the whole network 

area following the WRW-aLP algorithm using each own coverage history. 

• Global knowledge of coverage history, GK. In this approach, the coverage his­

tory of every node is shared among all the mobile nodes, and the overall effective 

coverage after removing duplicated coverage by multiple mobile sensors is used 

as the coverage history for the WRW-aLP algorithm. We assume that there 

exists a mechanism to allow the sharing of coverage history among all of the 

mobile sensor nodes, such as the existence of an infrastructure. The goal here 

is not to study how the information can be shared among the nodes, but how 

effective it is to share such information among the mobile nodes. 

• Static division of sensor responsibility (no overlapping), MD. In order to com­

pletely eliminate the redundancy between sensors, we sub-divide the whole cov­

ered area into non-overlapping subregions. One single sensor is dedicated to 

each sub-region and it follows its own WRW-aLP algorithm. Note that because 

of the non-overlapping constraints, in general, the total threat-levels in the sub­

region will not be the same. The matching and unfairness of this approach 

rely heavily on the topology of the PoIs, the distribution of threats among the 

PoIs, and the manner in which the network is partitioned among the sensors. 

In particular, a sensor in one assigned subregion will not be able to compensate 
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for any undercoverage of PoIs in another subregion. Although the redundancy 

of coverage problem is eliminated in MD, the sensors’ effective coverage is still 

not 100% due to travel overhead between the PoIs. Nevertheless, with proper 

division of the surveillance area, this travel overhead can be greatly reduced, 

and the effective coverage of MD may be significantly better than either NC or 

GK, thereby improving the information capture. 

The algorithm to divide the network is specified in Fig. 2.2. An example illus­

trating the output of the algorithm is shown in Fig. 2.3(a). The goals of the 

algorithm are to divide the area into subregions of similar aggregate threat lev­

els for good matching performance, while none of the subregions should overlap 

so that redundant sensing can be eliminated. Notice that the algorithm as­

sumes that the graph consists of a single connected component. If there is more 

than one connected component in the graph due to physical constraints or other 

reasons, the number of sensors allocated to each connected component can be 

determined first, after which we run the map division algorithm for each com­

ponent using the determined number of sensors. In the algorithm, we build a 

graph of the topology by treating the PoIs as vertices. We connect two PoIs 

with an edge if a line (of non-negligible width) connecting the centers of the PoIs 

does not pass through any other PoIs in the topology. This connection method 

ensures that if two PoIs are neighbors in the graph, a sensor can move between 

them without passing through any other PoIs. We then build each subregion 

sequentially by picking a PoI that satisfies the following three conditions: (i) 

it is a neighbor of any PoIs already included in the subregion, (ii) it is not a 

cut vertex1, and (iii) after taking the vertex, either the subregion has the target 

threat level, or there exists a non-cut vertex to choose from to expand the sub­

region. Not picking any cut vertex in constructing a subregion is a sufficient but 

not necessary condition to ensure that the remaining subregions can be built to 

1A vertex is a cut vertex if its removal causes an increment in the number of connected components 
in the graph. 
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achieve the target threat level without overlapping with other subregions. For 

example, if we pick a cut vertex as part of a subregion, it is possible that the 

last subregion needs to include vertices from the two disconnected components 

formed after removing the cut vertex. In this case, the connection would require 

passing through other subregions in the network. 

By following the above map division algorithm, we can guarantee that (i) PoIs of 

each subregion are connected, given that the original graph is connected, and (ii) 

subregions do not pass through each other. This is because we build a subregion 

by selecting only neighbors of PoIs that are already included in the subregion, 

i.e., all candidate PoIs must be connected to the subregion without passing 

through any other subregions. Moreover, the algorithm tries to achieve similar 

threat levels among all the subregions, by adding PoIs until a subregion’s threat 

level reaches the target value. However, the goal is not guaranteed because as we 

grow a subregion, we may not be able to find a node that satisfies all the three 

selection criteria. When that happens, we have to stop growing the subregion 

even if the target threat level has not been reached. 

• Static division of sensor responsibility (with overlapping), MDO. Experimental 

results show that although MD gives much improved performance in effective 

coverage, the matching metric could suffer seriously because subregions could 

be of very different threat levels. The key objective of the MDO algorithm 

is to divide the threat of the surveillance area as evenly as possible among the 

subregions. To do so, the MD algorithm is modified so that subregions may now 

overlap. This is achieved by modifying Line 12 in Fig. 2.2 to remove v from G 

only when all its threat is covered; otherwise, we subtract the covered threat 

from v and keep it at G. An example illustrating the output of the algorithm 

is shown in Fig. 2.3(b). Although the change from MD to MDO seems minor, 

experimental results show that MDO can out-perform MD significantly in terms 

of the matching metric. We will discuss in the following section how this change 
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1 Map Division(topology t, number of sensors n) 

// graph building 

2 for all non-zero threat cells i, j 

3 add edgei,j to G if the edge does not pass through any other non-zero threat cell 

// the target threat level at each subregion 

4 target = threat(G)/n 

// region partition 

5 for i = 1 to number of sensors −1 

6 let Ri be the set of cells in the i-th region 

7 Ri = {} 

8 find a vertex v in G such that at least one of its neighbors is not a cut vertex 

9 remove v from G and add to Ri 

10 while threat(Ri) < target 

11 find a neighbor, v, from members of Ri such that 

v is not a cut vertex and 

(there exists a vertex in v ∪ Ri which has a non-cut vertex neighbor 

or threat(Ri) ≥ target after adding v) 

12 remove v from G and add to Ri 

13 if no such vertex exists, proceed to next subregion 

14 Rn = {all remaining vertices} 

15 output all Ri 

Figure 2.2. Specification of map division algorithm.
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(a) Sub-regions for MD (b) Sub-regions for MDO 

Figure 2.3. Examples illustrating the output of the map division 
algorithms using the San Francisco city map for a 4-sensor case. 

in map division helps improve the matching. Within the assigned subregion, 

each sensor follows the WRW-aLP algorithm. To avoid redundant coverage due 

to overlapping subregions, a sensor is not allowed to pick a cell that is being 

chosen as the destination by another sensor sharing the overlapping cell. 

Analytical Study of WRW-aLP 

Markov Model of WRW-aLP 

We model the WRW-aLP algorithm by a Markov Chain for a single WRW-aLP sensor. 

Without loss of generality, we assume that the PoI cells of the surveillance region are 

denoted as cells i = 1, . . . , n of the Markov model, and use cell 0 in the model to 

represent the collection of non-PoI cells in the surveillance region. The state of the 

Markov Chain is denoted by X = (i, U), where i is the location of the sensor (i.e., 

the PoI the sensor is at), and U is the vector of undercoverage times as defined in 

Section 2.1. 

Besides the notations in Section 2.1, it is convenient to introduce the following 

quantities. Tij specifies the actual travel time of the sensor to travel from i to j. In 

addition, the numbers Tij,k specify how such a trip increases the coverage time of each 
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PoI k during the travel from i to j. We use Tij,0 to denote the travel time overhead of 

the trip from i to j, i.e., the period during which the sensor is not within the range 

of any PoI. Hence, Tij,k = Tij. Finally, we use Dij = Tij − Tij,0 to denote the 0≤k≤n 

duty time portion of the actual travel time. To admit more general models, we allow 

i = j, i.e., the sensor can decide to remain at its current location in a transition. In 

this case, Tii is set to be zero. 

Notice that all the quantities {Tij}, {Tij,k} and {Dij} are deterministic properties 

of the surveillance region and the paths between pairs of PoIs. Thus, they can be 

pre-computed by the coverage algorithm. 

A transition from state X = (i, UX) to state Y = (j, UY ) in the Markov Chain is 

labeled by (i, j), a trip of the sensor from cell i to cell j. As the goal of the WRW­

aLP algorithm is to reduce the undercoverage, the sensor tends to go to PoIs with 

large undercoverage. In the stochastic algorithm, the transition probability is chosen 

according to: 

(1) Whether j is within a given distance from i. If so, we say that j is eligible. We 

indicate the condition by the indicator function I(i, j), i.e., I(i, j) = 1 if j is within 

the allowed distance of i, otherwise I(i, j) = 0. 

(2) The relative under-coverage times between the eligible PoIs. The probability 

that j is chosen as the next PoI is given by 

I(i, j) × WjUj 
+ 

Prij = � , (2.1) 
I(i, k) × WkU

+ 
1≤k≤n k 

where Uk 
+ = max(Uk, 0) and Wk are the weights given as some positive numbers, e.g., 

Wk = Φk. 

In the degenerate cases that I(i, k) = 0 or Uk 
+ = 0 for all k, we can simply choose 

the next PoI randomly, according to some uniform distribution. The precise choices 

of the Wk’s and what to do in the degenerate cases will not affect the qualitative 

results. 

In WRW-aLP, once the sensor has moved from i to j, it will stay there for a pause 

time, TP (Uj), which can depend on j’s current undercoverage. The value of this pause 
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time is part of the decision of the transition. Hence, a movement from i to j increases 

the sensor’s duty time by Dij + TP (Uj). In addition, for each cell, its coverage time 

will be increased by Tij,k for k  j and TP (Uk) for k = j. Using the above, the change = 

of the undercoverage Uk
Y − Uk

X (for k = 1, . . . n) can be computed explicitly. 

Note that the transition probability from X to Y given by (2.1) depends only on 

the current state i and UX . Hence, it models a Markov Chain process. 

Performance analysis: single sensor 

This section analyzes the WRW-aLP Markov Chain model for the single sensor 

case. One of the main behaviors of any Markov Chain concerns its long time behavior 

and ergodicity and stationarity properties. It is natural to ask these questions to our 

WRW-aLP model. Many of the standard results are expected to be true. However, 

due to the side effects of coverage—the sensor can pass by some unintended PoIs due 

to Tij,k > 0 for k  j—it is not immediately clear whether the long time behavior can = 

be related to the desired threat-based coverage, or the threat profile can be achieved. 

For example, without the side effects, i.e., Tij,k = 0, to achieve the threat pro­

file Φ, we can simply construct a Markov Chain with Φ as its stationary distribution. 

Such a chain can be realized by appropriate Monte-Carlo simulations. However, with 

non-zero Tij,k’s, the analysis needs to be modified with some care. Our main results 

state that the desired threat profile can always be achieved, provided that the pause 

time is long enough compared with the Tij,k’s. They are proved through the con­

cept of Lyaponouv function, which appears in the study of the stability properties of 

dynamical systems. 

To simplify the analysis, we set all the pause times TP (Uj)’s equal to some fixed 

constant TP . Furthermore, I(i, j) = 1 for all i and j, i.e., any PoI is accessible within 

one transition. Such an assumption can certainly be relaxed. In general, the pause 

time can even be random as in our WRW-aLP specification. 

Consider the following quantity: 

n 
L

V (X) = αi(Ui
X)2 , (2.2) 

i=1 
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where αi’s are some weights to be determined. Clearly, V = 0 refers to perfect 

matching with the threat profile. Hence, the goal is, in the long run, to make V as 

small as possible. The following two results show that “on average,” V decreases as 

the mobile algorithm continues. To better illustrate the idea, we first consider the 

case of no side effects and treat the latter as a perturbation. 

Theorem 2.3.1 Let Tij,k = 0 for i, j, k = 1, . . . n. There exists a positive number 

λ > 0 such that if V (X) ≥ λ, then 

EXV (Y ) ≤ V (X) − 1, (2.3) 

where X and Y refer to the current and next states, respectively, and EX(·) denotes 

the expectation given the state X. (The choice of the weights αi’s will be specified in 

the proof of this Theorem.) 

Proof Let the current and next sensor locations be i and j. Then the undercoverage 

of PoI k will be increased by ΦkTp for k = j and (Φj − 1)TP if k = j. Hence, 

L

( )2 ( )2 
V (Y ) = αk Uk

X + ΦkTp + αj Uj
X + (Φj − 1)TP . 

k  =j 

Then, the expectation EX(V (Y )) equals 

n 
L L 

( )2 ( )2 
αk Uk

X + ΦkTp + αj Uj
X + (Φj − 1)TP Prij. 

j=1 k= j 

Now consider 

EXV (Y ) − V (X) 

n n 
L L

( )2 L 
= 

 

αk Uk + ΦkTp + αj (Uj + (Φj − 1)TP )2 − 
k=1 

αk(Uk)
2 Prij 

j=1 k=j 

(note: j Prij = 1) 
[ ]

= TP 2 × I + II ,Z∗
−1 
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�nwhere Z∗ = k=1 WkUk 
+ . The quantities I and II are defined and analyzed as follows. 

n n 
L

(

L	 )

I = αkΦkUk − αjUj WjUj 
+ 

j=1 k=1 

( n 
)( 
L ) (

LL n n 
)

≤ αkΦkU
+ WjUj 

+ − αkWk(U
+)2 ,k k 

k=1 j=1 k=1 

where we have used U ≤ U+ and UU+ = (U+)2 . Using the Cauchy-Schwartz inequal­

ity, we have 

n	 n n 
(

L ) (

L

)1/2(L )1/2 

αkΦkUk 
+ ≤ Φk αk

2Φk(Uk 
+)2 , 

k=1 k=1 k=1 

(	 n 
) ( n 

)1/2( n 

)2
L 

WkUj 
+ ≤ 

L Wk 
L 

αkWk(Uk 
+ 
)1/2 

. 
αk

k=1 k=1 k=1 

WkΦ
−1By choosing Φkαk 

2 = αkWk, i.e., αk = k	 , then 

( n 
( n 

L

)1/2 L

)1/2Wk 
= Φk = 1,

αk
k=1 k=1 

which gives I ≤ 0. On the other hand, equalities in the above Cauchy-Schwartz in­

equalities hold if and only if the vector (U+)n is a multiple of (αkΦk)
n or (Wk)

n 
k k=1 k=1 k=1. 

�nThis is impossible as k=1 Uk = 0. We can thus infer the existence of a µ > 0 such 

that 
n 
L 

I ≤ −µ αk(Uk 
+)2 .	 (2.4) 

k=1 

(See also Remark (B) on Page 27.) 

Next, the quantity II equals: 

n n 
L L 

II = TP αkΦ
2 
k + αj(Φj − 1)2 WjUj 

+ . 
j=1 k=j 

Note that it involves only linear terms of Uj 
+ . Hence, there exists a C > 0 such that 

�nII ≤ C k=1(Uk 
+)2 . 

So if n
k=1(Uk 

+)2 ≥ λ for some large number λ, we have 

Lµ 
n 

2 × I + II ≤ − αk(Uk 
+)2 . 

2 
k=1 



 

�
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After taking into account of the prefactor Z−1 and re-defining the value of the ∗ 

constant µ, we get the desired result: 

EXV (Y ) − V (X) ≤ −µ V (X) < −1. 

In the above, we have used the fact that for k Uk = 0, there exists a C > 0 such 

that 
L L L 

(Uk 
+)2 ≤ (Uk)

2 ≤ C (Uk 
+)2 . 

The next result incorporates the presence of side effects, i.e., Tij,k > 0. We use 

the same notation as in the previous Theorem. 

Corollary 2.3.2 There exist λ, TP 
∗ > 0 such that for TP > TP 

∗ and V (X) > λ, then 

EXV (Y ) ≤ V (X) − 1. 

Proof We will only outline the proof as it is very similar to Theorem 2.3.1. Due to 

the Tij,k’s, the function V (Y ) evaluated at the new state is now given as: 

L

( )2 ( )2 
αk UX + ΦkTp − Tij,k + αj Uj

X + (Φj − 1)TP .k
 

k=j
 

Hence, the quantity EXV (Y ) − V (X) equals 

n 
(

n 
L L )2 L 

2αk Uk + ΦkTp − Tij,k + αj (Uj + (Φj − 1)TP ) − αk(Uk)
2 Prij. 

j=1 k=j k=1 

We proceed as before. The quantity I now has an extra term given by:
 

n 
L L Tij,k 

− αkUk WjUj 
+ . 

TPj=1 k=j 

Tij,k nNote that if ≪ 1, this extra term can be bounded by c (Uk 
+)2 for some small 

TP k=1

constant c so that it can be absorbed by the −µV (X) appearing in Theorem 2.3.1. 

The quantity II becomes 

n n 
L

[

L

( )2 ]Tij,k 
TP αk Φk − + (Φj − 1)2 WjUj 

+ . 
TPj=1 k=j 
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Again, it can be considered in exactly the same way as before because only linear 

terms of Uk 
+’s are involved. 

Combining the above statements about I and II, we have the desired conclusions. 

[Remarks] (A) The above two results show that the positive quantity V decreases 

in expectation if it has a large value to start with. Hence on average, large values of 

V will be reduced. Combining with the theory of Martingales, we can show that 

1 
lim V (X(T )) = 0, 

T−→+∞ T 

i.e., the overall undercoverage has at most sub-linear growth. This leads to the result 

that, in the long run, the threat profile can be achieved exactly. 

(B) The number µ in Eqn (2.4) can be estimated. In fact, 

L 
µ = 1 − max Φ2 

k (> 0). 
j 

k=j 

Combining with the actual pre-computed values of the Tij,k’s, we can also estimate λ 

and most importantly, TP
∗ . This can provide practical guidance of how long the pause 

time should be in order to ensure bounded global undercoverage. 

Performance analysis: multiple sensors 

The analysis of the algorithm in the multi-sensor case turns out to be quite in­

tricate due to action of multiple factors including travel overheads, overlapping in 

the sensor trajectories, and redundancy in the destination occupancy by the sensors, 

among others. In realistic parameter settings, it is not easy to single out one particu­

lar factor and perform control experiments. Hence we will concentrate on extracting 

intuitions from the simulation results which already can demonstrate a broad range 

of possibilities. Our main message is that without proper sub-division of the network 

and sensor coordination, the overall performance can deteriorate easily. 

Despite the complexity of exact analysis, the following theorem nevertheless gives 

better understanding of the matching performance of MD and MDO. Assume that 
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there are m sensors deployed, and we divide the network into m sub-regions, one for 

each sensor. We use Φ ′ i and ei to denote the threat level and effective coverage by the 

assigned sensor of sub-region i. 

Theorem 2.3.3 If the sensor assigned to a sub-region does not overlap with any 

other sensors at any time, perfect matching of the whole network can be achieved in 

the long run if and only if the condition 

e0 e1 e2 em 
= = = · · · = (2.5) 

Φ ′ Φ ′ Φ ′ Φ′ 
0 1 2 m 

holds. 

Proof Since there is no overlap of the sensors, the matching performance of a sensor 

in each sub-region can be determined individually. In this case, the result of achieving 

the threat profile exactly in the long run for each sub-region follows directly from the 

analysis in the previous section. 

The condition of Eq. (2.5) implies that sensors of different sub-regions spend the 

same amount of monitoring time per unit threat level. Since matching is achieved 

exactly in each sub-region in the long run, it follows that perfect matching of the 

whole area can also be achieved in the long run. Conversely, if perfect matching 

of the whole network is achieved in the long run, it implies that sensors spend the 

correct portion of time at each PoI. Hence, the monitoring time per unit threat level 

is the same among all of the sensors, and the condition of Eq. (2.5) holds. 

Notice that the map division algorithm in MD or MDO does not explicitly consider 

the condition for perfect matching of the whole network. This is because it is hard to 

determine the effective coverage of a sensor in a subregion without actually deploying 

the sensor and measuring the performance. However, our experiments show that 

MDO out-performs MD significantly in terms of matching when the sensor density 

is high, which shows in turn that MDO is able to approximate the condition more 

closely than MD. The latter observation holds because in MDO, we divide the network 

into subregions of equal threat levels, i.e., Φ ′ 0 = Φ1 
′ = · · · = Φm

′ . Hence, the condition 
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for perfect matching in the whole network (Theorem 2.3.3) becomes e0 = e1 = · · · = 

em, which is more easily satisfied even without its explicit consideration in the map 

division. In particular, when the sub-regions contain no zero-threat cells, then we 

have e0 = e1 = · · · = em = 1 naturally. 

2.3.2 Stateless — Markov chain 

In the previous subsection we proposed and analyzed a stateful mobility algorithm. 

However, its performance in balancing matching and fairness is based on heuristics 

only, and there is no mathematical analysis to compute the optimal pause time to 

achieve the desired balance in terms of matching and fairness. In this subsection, 

we consider a stateless mobility algorithm in which the decision to pick the next 

destination is based on the current position and a transition matrix. The mobility 

algorithm is stateless because the decision for the next destination only depends on 

the current position, and the decision can be made in constant time by flipping a 

coin. Hence, the movement of the mobile node can be modeled using a Markov chain. 

We demonstrate how the cost of the mobility algorithm can be expressed in terms of 

the transition matrix. And we propose a steepest descent algorithm to compute the 

optimal parameters to minimize the cost function. 

Problem Formulation 

Scheduling of our mobile sensor using the stateless mobility algorithm is controlled 

by a Markov chain, which describes the sensor’s travel between the PoIs. We design 

the Markov chain to minimize a general cost function, which can account for factors 

such as the distributions of per-PoI coverage and exposure times, an entropy mea­

sure quantifying the randomness of the sensor schedule, information capture about 

dynamic events, energy efficiency, etc. A key feature of our framework is that it 

can incorporate possibly conflicting performance objectives while accounting for the 

dependencies between the PoIs covered due to their geographical placement. 
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For the sake of discussion, we will focus on a cost function, denoted as U , that 

considers the distributions of per-PoI coverage times and per-PoI exposure times. 

Other performance criteria can be included without much difficulty. Our approach 

expresses the cost function in terms of the transition probabilities of the Markov chain 

and uses steepest descent to find the optimal transition probabilities. The advantages 

of our method are its simplicity and the comprehensiveness of the search space. 

Derivation of the cost function 

We now describe details of the mathematical set-up. Suppose there are M PoIs, 

denoted by the set S = {1, 2, . . .M}. Consider a time-homogeneous Markov chain 

{Xn}n≥1 taking values in S. The sensor moves between the PoI locations (i.e., states in 

the Markov chain) as the Markov chain state transitions. The transition probabilities 

are denoted by {pij} : pij = P (Xn+1 = j|Xn = i). i,j∈S

In order to relate the (discrete) transition time step n and the physical elapsed 

time, we use the following notation: 

• T ′ equals the sum of the travel time from PoI j to PoI k and the pause time jk
 

Pk at k. Note that T ′ =
 jj Pj. 

• T ′ equals the time the sensor, upon traveling from j to k, passes by PoI i.jk,i 

These quantities in essence reflect the side effects of coverage imposed by ge­

ographical constraints: A PoI, say i, can still be covered even if it is not the 

intended destination of a transition, because the sensor has to go through i in 

order to reach the destination. We use the following convention: T ′ = 0 for jj,i 

j = i and T ′ = Pj (the pause time at j). jj,j 

With the above, the physical time elapsed after N state transitions is given by: 

N 
LL 

′ T (N) = Tjkδj(Xn)δk(Xn+1), 
n=1 j,k 
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where δi(x) = 1 if x = i and 0 otherwise. Furthermore, the total coverage time of PoI 

i by the sensor is given by: 

N 
LL 

Ci(N) = T ′ δj(Xnjk,i )δk(Xn+1). 
n=1 j,k 

Next we define (Ei(N)), the average exposure time, to be the arithmetic average (taken 

in the first N transitions) of the lengths of the continuous time intervals during which 

the PoI i is out of range of the sensor. More precisely, let Ei,1, Ei,2, . . . Ei,m be the 

consecutive time intervals during which the sensor is away from i. Then 

Ei,1 + Ei,2 + · · · + Ei,m 
(Ei(N)) = . 

m 

With the above, we define the cost function U to be the following long time limit: 

� �2 
L L

( )21 Ci(N) 1 
lim αi − Φi + βi (Ei(N)) , (2.6) 

N→∞ 2 T (N) 2 
i∈S i∈S 

where the αi’s and βi’s are user-defined constants, and Φi’s represent the prescribed 

distribution of per-PoI coverage times. 

The intuition of the above cost function is as follows. The part with the αi 

terms measures the discrepancy between the actual and prescribed distributions of 

the per-PoI coverage times. The part with the βi terms measures the average per-PoI 

exposure time. Intuitively, minimizing the function U attempts to reduce both the 

coverage-time discrepancy and expected exposure time. However, the coverage-time 

and exposure-time measures are generally antagonistic so that the optimal choice of 

the transition probabilities is the result of a delicate trade-off between them. The 

parameters αi’s and βi’s reflect the relative importance between the two measures 

and they can be adjusted by the user. 

Our next goal is to express the above cost function as an explicit function of the 

pij ’s which completely characterize the Markov chain. For this, we will assume for 

the rest of the paper that the Markov chain is ergodic. 
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Let {πi}i∈S be the stationary distribution of the Markov chain. By ergodicity, we 

have: 
L LT (N) Ci(N)′ ′ lim = πjpjkTjk and lim = πjpjkTjk,i. 

N→∞ N N→∞ N 
j,k j,k 

Hence the long term average of the coverage time distribution C̄i can be defined and 

computed as: 
′ Ci(N) j,k πjpjkTjk,i 

C̄i = lim = � . (2.7) 
N→∞ T (N) πjpjkT ′ j,k jk 

In order to simplify the mathematical expression for the long time limit 

limN→∞ (Ei(N)), we will make the following assumptions which will not change our 

conclusions qualitatively: 

• If a PoI is simply being passed by while the sensor is traveling between two 

other PoIs in a transition, then the passing-by is not considered a return visit. 

• We assume that the time elapsed during each travel is always equal to one unit 

of time — this assumption is only enforced in the computation of the (Ei)’s. 

With the above simplifications, physically each exposure time segment Ei,j is mea­

sured from the PoI location (e.g., j) immediately after the sensor has left i. Then 

necessarily, j = i. Let Rji be the expected value of the time the sensor takes to reach 

(or return to) i from j. This quantity is also traditionally called the expected first 

passage time. As the probability of traveling from i to j is given by pij, we have the 

following expression for the long time average of the exposure times: 

j=i pijRji j=i pijRji 
Ēi = lim (Ei(N)) = � = . (2.8) 

N→∞ pij j=i 1 − pii 

With the above, the cost function U can be written as: 

2 
�

� 
�2 

L L L1 1 j=i pijRji ′ ′ U = πjpjk(T − ΦiTjk) + βi . (2.9) αi jk,i2 2 1 − pii i∈S j,k i∈S 

It is now time to remark about the search space of our optimization. In the 

current setting, we search within the space of all transition probabilities. This is in 

contrast to most problems in stochastic control, in which the search or action space 
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is usually parameterized by a finite number of parameters. Thus the novelty of our 

approach is that the solution gives the true optimal among the class of all Markov 

chains. However, the solution space also becomes significantly more complex than 

less comprehensive formulations, and we will solve the problem by properly adding 

noise in the optimization procedure. 

Analytical representation of U using generalized inverse 

Even though the formula (2.9) for the cost function is highly explicit, it still re­

quires the computation of the stationary distribution {πi} and the first passage time 

matrix {Rij}. In order to compute them efficiently, we employ the concept of gener­

alized inverse. In the following, we review the basic properties of this mathematical 

term, with particular application towards Markov transition matrices. The material 

is discussed in [28]. 

Let P = be an ergodic Markov transition matrix. Consider the general­{pij}i,j∈S 

ized inverse A♯ of A = I − P which is defined as the matrix satisfying: 

AA♯A = A, A♯AA♯ = A♯ , and A♯A = AA♯ . 

The existence and computation of A♯ is given by [28, Thm. 2.1, 5.1]. 

Using A♯, the stationary distribution π = {πi} and the expected first passage time 

matrix R = {Rij} can be expressed as: 

W = I − AA♯ ( [28, Thm. 2.3]), (2.10) 

R = (I − A♯ + JA♯ )D ( [28, Thm. 3.3, 3.6]), (2.11) dg

where W is the matrix such that all of its rows are the stationary distribution π; J 

is the M × M square matrix with all of its entries equal to one; A♯ is the diagonal dg 

matrix consisting of the diagonal entries of A♯; and D is the diagonal matrix such 

that Dii = 
π
1 

i 
. Note that we can have such a simple expression (2.11) for the Rij’s 

because of the simplifying assumptions we have for the exposure times. 

http:expression(2.11
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The generalized inverse is also related to the commonly known fundamental matrix 

Z = (I − P + W )−1 by the formula [28, Thm. 3.1]: 

Z = I + PA♯ . (2.12) 

Using Z, R can then be expressed as 

δij − zij + zjj 
R = (I − Z + JZdg)D, or component-wise, Rij = . (2.13) 

πj 

The above result is the one used in the actual numerical computation. 

Note that in principle the pij ’s satisfy the constraints 0 ≤ pij ≤ 1 and = 1, j∈S pij 

i.e., they lie in a higher dimensional polytope. Even though this property is manage­

able, to simplify the computational algorithm, we add a small penalization term to 

handle the case of pij = 0 or 1. More specifically, we consider the following penalized 

version Uǫ of U : 

2 
L 1 L

( )

′ ′ Uǫ =
2 
αi πjpjk Tjk,i − ΦiTjk


i j,k
 

2 
L L1 βi 

+ pij(δji − zji + zii)
2 πi 

2(1 − pii)2 
i j=i 

L

[ ]

− 
1 

ln pij (ǫ − pij)
2sgn(ǫ − pij)

ǫ
ij 

L

[ ]

− 
1 

ln(1 − pij) (1 − ǫ − pij)
2sgn(pij − 1 + ǫ), (2.14) 

ǫ
ij 

where sgn(x) equals one for x ≥ 0 and zero otherwise. Note that Uǫ −→ +∞ as any 

of the pij converges to 0 or 1. This is prohibited by the steepest descent algorithm 

whose purpose is to minimize the U . The constraint j pij = 1 can be handled easily 

by a projection method to be described later. 

Steepest Descent Optimization 

This section describes the use of steepest descent to search for the minimum of 

Uǫ. Let U = U(q1, q2 . . . ql) be some function depending on the variables q1 . . . ql. We 
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would like to search for the minimum of U by evolving the variable qi’s. For simplicity, 

let Q(t) = (q1(t), . . . ql(t)) denote the values of the qi’s at time t. Then, we compute: 

d dQ(t)
U(Q(t)) = ∇U(Q(t)) ,

dt dt 

Now if we choose 
dQ(t) 

= −∇U(Q(t)),
dt 

then 
d

U(Q(t)) = − |∇U(Q(t))|2 < 0,
dt 

i.e., U is decreasing! Note that steepest descent as implemented above could only lead 

to a local minimum or critical point. Later in this section we will show how stochastic 

perturbation can solve this problem. 

To apply the above formalism for the minimization of the cost function, we write 

U as: 

U = U(π, Z, P ) = U(π(P ), Z(P ), P ) = U(P ), 

where P = (pij) is the transition matrix. Then 

d ( )

L ∂U dπi(t) L ∂U dzjk(t) L ∂U dpjk(t)
U P (t) = + + . 

dt ∂πi dt ∂zjk dt ∂pjk dt 
i jk jk 

∂U ∂U The expressions for ∂U , and can be easily derived by straightforward 
∂πi ∂zij ∂pij 

dπi(t) dzjk(t)
partial differentiation. The formula for and can be obtained by considering 

dt dt 

the perturbation analysis of Markov chain. For this, we follow [29] closely. 

• By [29, Formula (23c), (15), and (17)]: 

Ldπ dπi ˙= π ˙ = πkzji Pkj.PZ, or component-wise, 
dt dt 

k,j 

• By [29, Formula (23d), (16), and (18)]: 

LdZ dzij [ ]

Z ˙ P (Z2), ˙= PZ − W ˙ or component-wise, = zikzlj − πk(Z
2)lj Pkl,

dt dt 
kl 

where (Z2)lj = m zlmzmj . 
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Using the above, we have dU equals 
dt 

L L L∂U dπi ∂U dzij ∂U dpij
+ + 

∂πi dt ∂zij dt ∂pij dt 
i ij ij 

L ∂U L L ∂U L[ ]

L dpij
= πkzli Ṗkl + zikzlj − πk(Z

2)lj Ṗkl + 
∂U 

∂πi ∂zij ∂pij dt 
i k,l ij kl ij 

L

]

L L ∂U [ ∂U ˙= πkzli + 
∂U 

zikzlj − πk(Z
2)lj + Pkl. 

∂πi ∂zij ∂pkl 
kl i ij 

If we let [DP U ]kl be the expression 

L L∂U ∂U [ ] ∂U 
πkzli + zikzlj − πk(Z

2)lj + , (2.15) 
i 

∂πi ij 
∂zij ∂pkl 

then we have: 
L ( )dU 

= [DP U ]kl Ṗkl = DPU, Ṗ . 
dt 

kl 

˙We can simply take: Pkl = −[DP U ]kl. However, as mentioned earlier, P (t) must 

be a transition matrix at all t, i.e., it has to satisfy the constraint that for all j, 

= 1. To accommodate this, we project orthogonally DPU onto this linear k pjk(t)

subspace, i.e., 
( )dU ˙= Π[DP U ], P ,

dt 

and then take: 

Ṗkl = − (Π[DP U ])kl . 

The formula for the projection Π is given by: 

k Uik
Πij = Uij − , for all i, j, (2.16) 

M 

where Uij and Πij are the entries of [DP U ] and Π[DP U ], respectively. Note that 

j Πij = 0, i.e., the sum of each row of Π is zero. Hence, the property that the 

quantities represent a transition probability matrix is preserved at all time. 

Computational Algorithm 

The above described steepest descent algorithm will be implemented as follows:
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1. Start with an arbitrary ergodic transition probability P . 

2. Compute [DPU ] (2.15) and its projection Π[DPU ] (2.16). 

3. Set V = −Π[DP U ]. 

4. Set the new P as P + V ∗ △t, where △t is some small time step. 

5. For the new P , compute π, Z and R by (2.10), (2.12) and (2.13). 

6. Go back to step two, or stop if the optimal is attained (within some tolerance 

level). 

Note that the ergodicity of P is ensured by the finiteness of all the Rij’s which is 

indeed preserved during the whole computation. 

In the rest of the chapter, we will study the following variants of the steepest 

descent algorithm: 

V1: Basic algorithm. All the pij values are initially set to 1 , where M is the 
M

number of PoIs. A constant time step Δt is used. This provides a basic test for the 

validity of our steepest descent algorithm. 

V2: Random initial data. In this case, the initial values of the pij ’s are random 

while satisfying the constraints that j pij = 1 and 0 ≤ pij ≤ 1. This test will ensure 

that our algorithm is stable with respect to the initial condition. 

V3: Adaptive time step Δt. With the gradient information ∇U in the current 

transition matrix P , the optimal time step Δt∗ is chosen as follows: 

Δt∗ = min U(P − δ∇U(P )). 
δ>0 

The boundaries of δ are first determined with respect to the constraint that 0 ≤ pij ≤ 

1 after the update. As it is unclear how the utility changes within the range of δ, a 

conservative trisection method (wherein only one sub-section is removed as we tighten 

the bounds) is used to tighten the range until Δt∗ is found. The algorithm terminates 

when Δt∗ = 0. We define the terminating point as a local optimum when in fact there 

exists another terminating point with a lower cost. 

http:and(2.13
http:by(2.10),(2.12
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V4: Stochastic perturbations. This step is to make sure that our algorithm 

will not get stuck at a local minimum of the cost function, which is shown to be 

essential in the next section. The [DP U ] values are perturbed by mean zero Gaussian 

noise with standard deviation σ. Δt∗ is then computed using the perturbed [DP U ]. 

If Δt∗ = 0, then Δt = rand, where rand is a random number between the boundaries 

of Δt, which are determined with respect to the constraint that 0 ≤ pij ≤ 1 after 

the update. The updates to pij ’s are accepted if the computed utility is better than 
−ΔU 

the original values; otherwise, they are accepted with probability ek×log(count) , where 

ΔU is the worsening in cost U after normalization by the best cost computed so 

far, count is the number of iterations already performed by the algorithm, and k 

is a constant parameter. The normalization is important because it allows us to 

determine how high the algorithm should “jump” (in trying to get out of a local 

optimum) without knowing the range of the cost function Uǫ (which is frequently 

unknown beforehand). Intuitively, the algorithm accepts unattractive changes with 

higher probability at the beginning of the search, and this probability decreases as the 

algorithm proceeds. This way of accepting the updates is similar to the cooling process 

in simulated annealing. The optimality and convergence of simulated annealing has 

a strong theoretical basis [30]. However, the proofs are mostly of theoretical interest, 

since the convergence in practice is usually much faster, as we show in Section 2.4.3. 

Henceforth in this chapter, we will use steepest descent algorithm to refer to our 

general solution approach. Additionally, we will call variant V1 of the algorithm 

the basic algorithm, the basic algorithm modified by variants V2 and V3 the adaptive 

algorithm, and the basic algorithm modified by all of variants V2–V4 the stochastically 

perturbed algorithm or simply perturbed algorithm. We have verified the performance 

of the steepest descent by using the transition matrices computed by the algorithm 

at each iteration to drive a corresponding simulation of the mobile sensor’s coverage. 

We found that the algorithm is able to achieve good tradeoffs between the coverage-

time and exposure-time metrics, as the weightings of the two parameters in the cost 

function are varied. Also, the adaptive algorithm can speed up convergence to the 
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final solution, and the perturbed algorithm can additionally converge to the globally 

optimal steady state in practically all of the scenarios. 

2.4 Evaluation 

Here we evaluate the surveillance properties of the mobility algorithms quantified 

using the following three metrics, 

• Matching between the actual coverage time and the targeted coverage time of 

a cell. This metric quantifies the degree the mobility algorithm achieves the 

desired allocation of resource according to the threat-level of the cells. The 

closer the matching, the better the performance because the mobility algorithm 

gives a better approximation for the threat-based protection. 

• Unfairness. This metric quantifies the weighted average amount of time a cell 

is exposed to threats without being monitored by any of the mobile sensors. A 

smaller value of unfairness is better as it means events happening at a cell can 

be captured in a shorter time by the mobile sensors. 

• Effective coverage. This metric quantifies the fraction of time the sensors 

are monitoring effectively. As we assume that the sensing range of the mobile 

sensors can be approximated with a fixed value, and using more than one sensor 

to monitor a cell does not improve the accuracy of the reported value, a sensor 

is not monitoring effectively when it travels on cells of zero threat level, or it 

covers a cell that is already being monitored by another sensor. 

2.4.1 Performance of the WRW Mobility Algorithm 

Here we first present the performance of variants of the WRW Mobility Algorithm. 

We then study how the pause time of the WRW-aLP algorithm can be adjusted to 

achieve a balance between matching and fairness. 



40 

Performance of Variants of the WRW Mobility Algorithm 

We evaluate the performance of the WRW-aLP algorithm in Section 2.3.1. We 

show the results for a real-life topology, namely a residential region in San Francisco. 

The map of the region is shown in Fig. 2.4(a). The region is of size 2000 feet by 

2000 feet. It is divided into 8× 8 cells, 51 of them are PoIs. The threat level of a cell 

is taken to be the number of residents in that cell, estimated from the LandScanTM 

2004 database of population data. Figs. 2.4(c)–(f) show that progressively adding 

the a, L, and P features to WRW achieves actual coverage that increasingly match 

the threat profile in Fig. 2.4(b). WRW-aLP achieves the threat profile exactly when 

P = 30 minutes (Fig. 2.4(f)). This important property of exact threat-based coverage 

is further investigated in Fig. 2.5 for WRW-aLP. The figure shows a log-log plot of 

the growth rate of the global undercoverage time (as a percentage of the sensor duty 

time) against the pause time parameter P , for San Francisco and also two other cities 

Chicago and San Jose. Note that as P increases, the growth rate decreases. The 

log-log scale of the plot amplifies the effect of zero rate of growth as P becomes larger 

than some critical value. 

Performance of WRW-aLP – Adjusting the Pause Time Parameter 

We illustrate the impact of the pause time parameter P on the matching and 

unfairness measures, for the case of one mobile sensor using the WRW-aLP algorithm. 

In this set of experiments, we vary the pause time parameter to be P = 1, 2, 4, 8, 16, 

32, and 64 time units. Fig. 2.7 show combined plots of the RMSE (left y-axis) and 

the unfairness (right y-axis) as a function of P , for Atlanta and LA. The city map 

and the corresponding threat profile of the two cities are shown in Fig. 2.6. Notice 

that for both figures, as the pause time increases, (1) the unfairness increases, in a 

partly constant, partly linear manner; and (2) the RMSE decreases like 1/(P + c), 

where c is a small constant. We also show the 25- and 75-percentiles of the RMSE 

in Table 2.1 for the set of runs for Atlanta. Notice that the values deviate little from 
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0 0.5 1 

(a) SF Map (b) Threat Profile (c) WRW
 

(d) WRW-a (e) WRW-aL (f) WRW-aLP 

Figure 2.4. (a) Map of residential area in San Francisco. (b) Threat 
profile of the residential area. (c)–(f) Actual coverage achieved by 
progressive variants of WRW. 

the averages. We will omit the 25- and 75-percentiles of the data distributions for 

the future sets of experiments, due to their closeness to the means. From this set of 

experiments, we conclude that there is an inherent tradeoff between the matching and 

fairness of coverage, and that the pause time parameter provides a means to control 

this tradeoff for the WRW-aLP algorithm. 

Table 2.2 lists the fraction of time a sensor moves under WRW-aLP for different 

maximum sensor speeds and pause time in San Francisco (Threat profile is shown in 

Fig. 2.4(a).) It verifies that the amount of sensor movement required by WRW-aLP 

is practically small. 
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Figure 2.5. Rate of growth of global undercoverage time. 

(a) Atlanta, GA (b) Threat profile of Atlanta
 

(c) Los Angeles, CA (d) Threat profile of Los Angeles 

Figure 2.6. Maps of the cities under surveillance and their correspond­
ing threat profile. 
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Figure 2.7. RMSE/unfairness tradeoff by P of WRW-aLP. 

Table 2.1 
Average and 25-/75-percentiles of WRW-aLP RMSE of population 
distribution for Atlanta, as a function of P . 

P (time unit) 1 2 4 8 16 32 64 

RMSE average 258.44 201.83 136.35 76.98 37.69 17.3 7.32 

25-percentile 258.32 201.57 136.12 76.61 37.6 17.28 7.28 

75-percentile 258.76 201.89 136.59 77.21 37.75 17.34 7.35 

Table 2.2 
Fraction of time sensor moves under WRW-aLP, for different maxi­
mum sensor speeds v and pause time parameters P . 

P Maximum sensor speed v (mph) 

(min) 0.4 0.6 0.8 1.2 2.4 3.6 4.8 

1.3 0.983 0.975 0.967 0.950 0.900 0.852 0.807 

2.7 0.967 0.950 0.933 0.900 0.807 0.725 0.658 

13 0.837 0.765 0.702 0.601 0.422 0.323 0.260 

2.4.2 Performance of Different Coordination Approaches among Multiple Sensors 

Here we present the performance of different coordination approaches when more 

than one sensor is deployed in the network. As we have shown in the previous section 
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Figure 2.8. Percentage deviation of WRW-aLP global coverage profile 
from given threat profile, for multiple sensors under NC, GK, MD, and 
MDO in San Francisco. 

that WRW-aLP gives the best balance between matching and fairness, we assume 

that in this section, no matter how sensors coordinate with each other, they all follow 

the WRW-aLP mobility algorithm. 

This set of experiments illustrates the performance of NC, GK, MD, and MDO 

coordination (Section 2.3.1) under different sensor densities. Figs. 2.8, 2.9, 2.10, 

and 2.11 show the percentage deviation from the threat profile of WRW-aLP, un­

fairness, effective coverage, and pause fraction of the algorithm for San Francisco, 

respectively. The number of sensors is varied to be 2, 4, 7, 10 and 20. Notice from 

the figures that the trends for the performance of MD and MDO may not be smooth 

when we increase the number of sensors. It is because as we increase the number of 

sensors, we are also changing the way the area is divided among the sensors, and the 

performance of the algorithm depends highly on the resulting division. 
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(c) MD (d) MDO 

Figure 2.9. Unfairness of WRW-aLP global coverage profile from given 
threat profile, for multiple sensors under NC, GK, MD, and MDO in 
San Francisco. 

Fig. 2.11 shows that for all coordination approaches, the sensors move for a small 

fraction of the time only, verifying the limited mobility property of WRW-aLP. Notice 

from Fig. 2.9 that for all coordination approaches, the unfairness is roughly reduced 

by half when we double the number of sensors, showing that sensor coordination will 

likely not further improve the unfairness beyond independent deployment of multiple 

sensors. Figs. 2.8(a) and 2.8(b) show that in contrast to unfairness, the steady-state 

matching does not improve as we use more sensors for NC and GK. This is because 

having more sensors will exacerbate the coverage redundancy, thus hurting the match­

ing metric. However, for the high sensor speed shown in Fig. 2.8, GK achieves a 60% 

improvement over NC in terms of the percentage deviation (of the global coverage 

profile) from the threat profile when the sensor density is high. It is because a sensor 
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Figure 2.10. Effective coverage of WRW-aLP global coverage profile 
from given threat profile, for multiple sensors under NC, GK, MD, 
and MDO in San Francisco. 

under GK can exploit the actual global coverage to better compensate for matching 

inaccuracies occurring from prior redundant coverage. 

MD is an explicit attempt to solve the coverage redundancy problem and reduce 

the travel overhead. Fig. 2.10 shows that as the sensor speed is increased under higher 

sensor density, MD can achieve an effective coverage of more than 95%. Matching, 

however, may be significantly worsened when there are more sensors. This is because 

as the sensor density increases, the size of a subregion assigned to a sensor becomes 

smaller. It then becomes more difficult to divide the surveillance area into subregions 

of adjacent cells having similar threat levels. The unfairness achieved by MD also 

get worsened with higher sensor densities, as shown in Fig. 2.9. It is because under 

MD, the number of possible destination cells of a sensor is much reduced with more 

sensors. Hence, it is more likely for the sensor to stay at the current PoI. This results 
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Figure 2.11. Pause fraction of WRW-aLP global coverage profile from 
given threat profile, for multiple sensors under NC, GK, MD, and 
MDO in San Francisco. 

in higher unfairness as the sensor travels less and has longer pause times as shown in 

Fig. 2.11. 

MDO is an attempt to solve the matching problem experienced by MD while en­

joying its performance in effective coverage. We can observe from the figures that 

this approach is successful in achieving a good effective coverage while fairness is 

only slightly worsened. When the total number of mobile sensors is large, the match­

ing performance of MDO can even outperform NC and GK because MDO has no 

mismatch caused by redundant coverage. 

In summary, NC and GK give better matching than MD when the sensor speed or 

the sensor density is high, but they do so at the cost of significantly reduced effective 

coverage. On the other hand, MD may achieve a much better effective coverage, espe­

cially when the sensor density is high. This may lead to improved information capture 

http:Figure2.11
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globally, although higher-threat PoIs may no longer receive proportionally higher al­

locations of the constrained sensing resources. MDO gives the best balance between 

matching, fairness, and effective coverage among all the coordination approaches we 

studied. Its only drawback, which also applies to MD, is the requirement of redis­

tributing the responsibility among all of the sensors when new sensors are added or 

old sensors are no longer functioning, and the ability to distribute such information 

to every participating sensor. 

2.4.3 Performance of the Stateless Mobility Algorithm 

In this section, we first analyse the performance of the Steepest Descent Algorithm 

to locate the optimal set of parameters of the transition matrix to achieve the best 

performance according to the defined cost function. We then evaluate the performance 

of the Markov chain-driven stateless mobility algorithm when the computed optimal 

transition matrix is used, and contrast the value with the one computed from the 

Steepest Descent Algorithm. 

Using Steepest Descent Algorithm to Determine the Optimal Transition Matrix 

In this section we study the performance of the steepest descent algorithm. For 

simplicity of exposition, we consider the case that the αi’s and βi’s in Eq. (2.14) are 

all equal, i.e., α1 = α2 = · · · = αM = α and β1 = β2 = · · · = βM = β. We further 

define the coverage-time deviation ΔC as 

2 
L L 

′ ′ ΔC = πjpjk(Tjk,i − ΦiTjk) , (2.17) 
i∈S j,k 

and the average exposure time Ē as 

 

 2 
L 

¯
 

 

j=i pijRji 
E = . (2.18) 

1 − pii 
i∈S 

http:�i�sinEq.(2.14
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Hence, the cost function in Eq. (2.9) can be rewritten as
 

1 1 
Ē2U = αΔC + β . (2.19) 

2 2 

¯Note that (i) we use the ΔC defined above instead of i(Ci −Φi)
2 (see Eq. (2.7)) as 

it has an easier computational expression. Qualitatively, both of them measure the 

discrepancy between the actual and desired coverage profiles; (ii) the quantity Ē is 

¯related to the long time average exposure times as Ē = i Ei 
2 (see Eq. (2.8)). 

We will study the following performance aspects of the steepest descent algorithm. 

Trade-off between coverage-time and exposure-time metrics. We examine 

the characteristics of the steady state distribution of the sensor’s locations as we vary 

the weight of the coverage-time deviation ΔC (Eq. (2.17)) and that of the average 

¯exposure time E (Eq. (2.18)), i.e., α and β respectively in Eq. (2.19). 

Stability and adaptivity of the algorithm. We evaluate the cost U (Eq. (2.19)) 

of the transition matrix in terms of the iteration number of the steepest descent al­

gorithm. (Recall that the algorithm works by iteratively updating the transition ma­

trix.) We also compare the U value achieved by the basic algorithm and its variants 

given in Section 2.3.2, and test if the algorithm gets stuck at a local minimum. 

Performance of actual simulation of the coverage schedules. We verify 

the performance of steepest descent by applying the computed transition matrices 

to control the movement of the mobile sensor in the Markov chain simulations. The 

sensor in a simulation picks the destination of its next transition according to the 

transition matrix, and pauses at the destination for a fixed time interval before its 

¯next transition. We measure ΔC in Eq. (2.17) and E in Eq. (2.18). 

In our experiments, we use the four topologies shown in Fig. 2.12. Each PoI i in 

the topologies is the center of the cell labeled with i, and its targeted share of coverage 

time Φi is in parentheses. We assume that in traveling from i to j, the sensor uses 

the straight-line path between i and j. 

http:Eq.(2.18
http:inEq.(2.17
http:Eq.(2.19
http:Eq.(2.19
http:Eq.(2.18
http:Eq.(2.17
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Figure 2.12. Target per-PoI shares of coverage times Φi in four simu­
lation topologies. 

Existence of Numerous Local Optima 

We characterize the search space by comparing the adaptive algorithm (i.e., the 

basic algorithm modified by variants V2 and V3 in Section 2.3.2) and the perturbed 

algorithm (i.e., the basic algorithm modified by variants V2–V4 in Section 2.3.2) 

under Topology 3 in Fig. 2.12(c). In computing the cost function, we illustrate the 

cases of considering (i) Ē only (α = 0, β = 1) and (ii) both ΔC and Ē (α = 1, β = 1), 

while having ǫ = 0.0001 and k = 10000. The CDFs of the achieved costs Uǫ by the 

adaptive and perturbed algorithms are shown in Figs. 2.13(a) and 2.13(b) for the 

cases (i) and (ii), respectively. 

From the figures, observe that the adaptive algorithm hits a large number of 

local optima in its search, from which it is not able to discover a better cost U in the 

computed descent direction. The presence of numerous local optima makes it essential 
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Figure 2.13. CDFs of achieved cost Uǫ in a large number of runs by 
the adaptive algorithm and the perturbed algorithm (Topology 3). 

to adopt noise in the search process, as detailed by the design of the perturbed 

algorithm in Section 2.3.2. From Fig. 2.13, notice that the perturbed algorithm 

achieves much better performance than the adaptive algorithm, as evidenced by the 

extremely sharp rise of the CDF at the global optimum solution. Indeed, the perturbed 

algorithm computes a solution extremely close to, if not exactly the same as, the global 

optimum in all the runs of the experiment, irrespective of the initial search parameters. 

Trade-off between ΔC and Ē Metrics 

We study the characteristics of the transition matrix {pij} and the steady-state 

distribution πi of the Markov chain, when we vary α and β in Eq. (2.19), using 

Topology 1 in Fig. 2.12(a). We use ǫ = 0.0001 and Δt = 0.000001, and vary β from 1 

to 0.0000001 while keeping α = 1. We also study two extreme cases: (i) α = 1 and 

β = 0 (we are concerned with the ΔC metric only); and (ii) α = 0 and β = 1 (we 

¯ ¯are concerned with the E metric only). The results for the C̄i and Ei (defined in 

Eq. (2.7) and (2.8)) are shown in Tables 2.3 and 2.4, respectively. 

¯Observations. From the simulation results, we deduce that when we reduce β, Ci 

(the fraction of time PoI i is actually covered) will more closely approximate the 

¯target share of coverage time, while Ei (the average exposure time of i) grows, as 

shown in Tables 2.3 and 2.4. Hence, ΔC decreases while Ē increases. It is because 
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Table 2.3 
C̄i for ǫ = 0.0001, Δt = 0.000001, Topology 1. 

α : β 1 

C̄i 

2 3 4 

0:1 0.214 0.286 0.286 0.214 

1:1 0.250 0.250 0.250 0.250 

1:0.1 0.250 0.250 0.250 0.250 

1:0.01 0.254 0.246 0.246 0.254 

1:0.001 0.316 0.183 0.183 0.317 

1:0.0001 0.369 0.130 0.131 0.370 

1:0.00001 0.394 0.107 0.106 0.393 

1:0.000001 0.399 0.101 0.101 0.399 

1:0 0.4 0.1 0.1 0.4 

Table 2.4 
Ēi for ǫ = 0.0001, Δt = 0.000001, Topology 1. 

α : β 1 

Ēi 

2 3 4 

0:1 

1:1 

1:0.1 

1:0.01 

1:0.001 

1:0.0001 

1:0.00001 

1:0.000001 

1:0 

9.001 

8.992 

8.922 

8.255 

15.811 

29.770 

43.062 

48.264 

6.944 

9.001 9.001 

9.040 9.004 

9.082 9.082 

9.836 9.835 

24.502 24.398 

62.513 62.099 

104.126 105.010 

118.937 118.898 

13742.767 13742.768 

9.001 

8.960 

8.922 

8.254 

15.703 

29.524 

43.657 

48.290 

6.944 

upon reducing β, we are less concerned about the exposure time of the PoI, and are 

¯more focused on the target coverage time. We can also observe that C̄i and Ei are 
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Figure 2.14. Cost function value U in terms of the iteration number. 
ǫ = 0.0001, Δt = 0.000001, Topology 1. 

not significantly changed when β is large. It is because for Topology 3, the magnitude 

¯ ¯of E is significantly larger than ΔC. Hence, even if β (weight of E) is reduced from 

1 to 0.01, the exposure-time component still dominates the cost function, and the 

resulting pij and πi do not change significantly. We notice that as the size of the 

topology grows, Ē grows, and we will need to further reduce β before the coverage-

time component in U will have an observable effect on the pij and πi. 

Adaptivity and Stability of the Algorithm. 

In this set of experiments, we trace the evolution of the cost function U as the 

transition matrix changes in each iteration of the steepest descent algorithm. We ver­

ify that steepest descent can progressively improve the transition matrix by reducing 

U over the iterations. To demonstrate that the algorithm does not get stuck at a 
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Table 2.5 
The minimum, maximum, and average optimal cost determined by 
the adaptive algorithm and the perturbed algorithm (α = 0, β = 1, 
Topology 3). 

Algorithm min U max U avg U 

Adaptive 288.0125 499.3528 332.3202 

Perturbed 288.0125 288.0145 288.0127 

local minimum, we show convergence to the same transition matrix and U value from 

different initial pij’s using the perturbed algorithm in Section 2.3.2. 

We study the stability and adaptivity of the algorithm under three settings (ǫ = 

0.0001, Δt = 0.000001): 

(1) ΔC only (α = 1, β = 0). We evaluate the case when the cost function 

considers the coverage-time deviation metric only. The results of the basic algorithm 

using Topology 2 are depicted in Fig. 2.16(a). In addition, we evaluate the perturbed 

algorithm with different initial values of pij’s (i.e., the initial pij’s are generated using 

different random seeds), and the results are shown in Fig. 2.16(b). 

¯(2) E only (α = 0, β = 1). We evaluate the case when the cost function con­

siders the exposure-time metric only. The results of the basic algorithm are depicted 

in Fig. 2.15. In addition, we evaluate the cases when the adaptive algorithm and the 

perturbed algorithm (recall the definitions in Section 2.3.2) are used. The minimum, 

maximum, and average optimal cost determined by the algorithms using Topology 3 

of 200 independent runs are summarized in Table 2.5. 

(3) Both ΔC and Ē (α = 1, β = 1). We further consider the case the coverage­

time deviation metric and the exposure time metric have the same weight (i.e., α = β). 

We omit plots of results for the basic algorithm because they are quite similar to the 

case when we consider Ē only. The results for different α and β values for the basic 

algorithm using Topology 1 are shown in Fig. 2.14. 

Observations. From the simulation results, we deduce that: 
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Figure 2.16. Performance of (a) the basic algorithm, and (b) the 
perturbed algorithm with different initial pij’s: cost function value U 
as a function of the iteration number (α = 1, β = 0, Topology 2). 

1. During the optimization process, the cost function generally decreases until it 

reaches a stable value as depicted in Figs. 2.14 and 2.16. However, the marginal 

reduction in the cost becomes smaller as the number of iterations becomes 

larger. 

2. Using different random seeds to generate the initial pij ’s does not affect the per­

formance of the perturbed algorithm (Fig. 2.16(b)) in that it will converge to 

the same stable values of the cost function. However, the convergence process 

and its time will be affected. Moreover, the perturbed algorithm can converge 

extremely close to the same optimal costs in all these situations, i.e., the al­

http:inFigs.2.14
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Table 2.6
 
Performance for different α/β ratios using Topology 3.
 

α : β ΔC Ē 

0:1 0.0095 288.002 

1:1 0.0072 288.010 

1:0.0001 0.0052 288.974 

1:0 0.0012 1143.45 

gorithm is not trapped at a local minimum. This result also holds for more 

complex topologies. 

3. The best solution by the adaptive algorithm (i.e., without noise in the opti­

mization) can have a large range depending on where the search starts. For 

instance, Table 2.5 shows that the difference between the minimum and max­

imum returned best costs by the adaptive algorithm is much larger than that 

by the perturbed algorithm. The average performance of the perturbed algo­

rithm is also much better than that of the adaptive algorithm. The difference 

in performance is due to the adaptive algorithm being trapped at one of the 

numerous local optima in the solution space, and the perturbed algorithm’s 

ability to jump out of the local optima. 

Performance of actual Markov chain simulations 

We evaluate the performance of actual sensor schedules as they are controlled by 

the Markov chain with the transition matrices found by the steepest descent algo­

rithm. We verify that the cost function computed by steepest descent indeed reflects 

the realized ΔC and Ē metrics when the computed transition probabilities are applied 

in practice. 

We vary the weights α and β in Eq. (2.14) as before, and use steepest descent 

to compute the optimal transition matrix. A matrix generated by each iteration
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Figure 2.17. Performance of coverage algorithm: (a) ΔC and (b) E 
as a function of the iteration number (α = 1, β = 0, Topology 2). 

of the steepest descent algorithm is used to drive a corresponding Markov chain 

¯simulation of the mobile sensor schedule, and the ΔC and E values are measured. 

Each simulation is repeated ten times to obtain the reported average. 25-th and 

75-th percentiles of the measured values are reported as error bars where they are 

significant. Combinations of the α and β used in different cases are as follows (again 

ǫ = 0.0001, Δt = 0.000001): 

(1) ΔC only (α = 1, β = 0). The cost function considers only the coverage-time 

deviation measure. The results are shown in Figs. 2.17 and 2.18 for Topology 2 and 

Topology 4, respectively. 

¯(2) E only (α = 0, β = 1). The cost function considers the exposure-time metric 

only. As the steepest descent algorithm stabilizes very quickly, we only evaluate the 

stabilized transition matrix in the sensor simulations, and the results are shown in 

Table 2.6. 

¯(3) Both ΔC and E (α = 1, β = 0.0001). We study the case in which we use 

a small β. The results are shown in Fig. 2.19 for Topology 3. 

Observations. From the simulation results, we deduce that 

1. When β = 0, the measured U in the simulations gives a perfect match with the 

U value computed by steepest descent (Figs. 2.17 and 2.18). If exposure time 

is also considered (β > 0), the measured U in the simulations gives a very close 

http:steepestdescent(Figs.2.17
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match with the computed U by the steepest descent (Fig. 2.19). However, the 

¯match is not exact because in computing E, the analytical formula makes the 

http:steepestdescent(Fig.2.19
http:Figure2.19
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simplifying assumption that the time duration of each transition is the same, 

which does not hold in practice. However, observe from Fig. 2.19 that the 

difference between the simulated and computed values is very small. 

2. If β = 0, then Ē becomes big, but it does not necessarily worsen as the ΔC 

metric improves (Fig. 2.17). Moreover, the extent to which Ē worsens is not 

determined by the size of the map, but the target allocation of per-PoI coverage 

times (compare Figs. 2.17 and 2.18). 

2.5 Summary 

In this chapter we have presented two stochastic mobility algorithms which give 

good performance in terms of network coverage properties. In the stateful mobility 

algorithm, WRW-aLP, we showed analytically and experimentally the use of the pause 

time parameter, P , to achieve a balance between matching the expected proportional 

share of resource and fairness, which are antagonistic in nature. We also studied 

different coordination approaches when multiple sensors are deployed, and suggested 

the use of a static division of responsibility among the sensors to achieve a good 

balance between matching, fairness, and coverage overhead. In the stateless mobility 

algorithm, we presented (1) the use of Markov chain to model the goals of the sensor 

network, namely matching and fairness, into a cost function, and (2) the use of 

steepest descent algorithm to determine the optimal parameters for the transition 

matric to achieve the best cost. From the experiments we discovered the possibility 

of numerous local optimal in the search space, and we suggested the use of stochastic 

perturbation to help us jump out from the local optimal. 

http:times(compareFigs.2.17
http:metricimproves(Fig.2.17
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3 QUALITY OF EVENT MONITORING BY MOBILITY ALGORITHMS 

As suggested in our motivation in Chapter 1, it is not enough to focus on the cov­

erage properties of mobile sensor networks only because they are used to monitor 

events, which are mostly uncertain in nature. In this chapter, we begin by giving 

a comprehensive analytical and experimental study on the quality of monitoring by 

mobile sensors following a deterministic periodic mobility schedule with movements 

of different granularity and proportional share at a cell [31]. We then present the 

event monitoring performance of the mobility algorithm, WRW-aLP, we proposed in 

Chapter 2 [32]. 

3.1 Problem Formulation 

We assume that events appear and disappear at given points of interest (PoIs) and 

are to be monitored by sensors whose sensing range is R and whose sensing region is 

a circle of radius R. This widely applied “perfect disk” sensing model is a simplifying 

assumption as the coverage regions of real-world signals have been found to be non-

isotropic [33]. While it is possible to obtain more accurate numerical solutions by 

considering more elaborate sensing models (e.g., accounting for the exact geometry 

of the sensing region or specifying the sensing range as a random variable of some 

probability distribution), the simple model allows us to obtain essential results about 

how event monitoring is impacted by the event types and dynamics, without being 

detracted by the more involved mathematics. We assume the PoIs are located on 

a 2D plane. A pair of PoIs, say i and j, are connected by a road, given by Eij , of 

distance dij. If there is no road that directly connects i and j, dij = ∞. Otherwise, 

the sensor traveling at speed v from i to j takes time dij/v to complete the trip. 
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Figure 3.1. Event dynamics at PoI i, with the event staying and 
absent times Xk

i and Yk
i for k = 1, 2, . . .. 

The next set of assumptions concerns the event dynamics. The events appear at 

PoI i one after another. After appearing, each event stays for a duration of time, 

which we call the event staying time, and then disappears. The next event appears 

after another duration of time, which we call the event absent time. Here and in the 

following, we will use superscript and subscript to denote the PoI and event indices. 

We denote the sequential staying and absent times by {X i}k≥1 and {Y i The k k}k≥1. 

event inter-arrival time is then denoted by Zk
i = Xk

i + Yk
i . We assume that (for 

each i) the vectors {(Xk
i , Y k

i)}k≥1 are i.i.d. random variables drawn from a common 

distribution (X i, Y i), even though for each k, the Xk
i and Yk

i may be dependent. 

The commonly known event arrival times can be recovered by the formula: T0 
i = 0, 

Tk
i = Tk

i 
−1 + Zk

i for k, i ≥ 1. These variables are illustrated in Fig. 3.1. 

An important assumption behind the analysis of the current formulation is that 

the event dynamics at different PoIs are independent. This is justified in two situa­

tions: (i) there are indeed no correlations between the PoIs because they are physically 

isolated or are far apart relative to the spatial extents of the events; and (ii) regardless 

of the presence or absence of correlations between the PoIs, the information acquired 

at different PoIs is not aggregated but is accounted for on a per-PoI basis. Clearly, if 

information can be aggregated across PoIs to gain further global information about a 

target (e.g., movement of the target in a global surveillance area), the above assump­

tion will have to be relaxed, but such aggregation is beyond the scope of the current 

formulation. 
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We further classify the events as follows. When the staying time draws from X i is 

an infinitesimally small amount of time ǫ, the corresponding events are like “blips,” 

i.e., they do not stay but disappear instantaneously after arrival. Another type of 

events is that which stays, i.e., there is an 0 < ǫ ≪ 1 such that P (X ≥ ǫ) = 1. 

An event at a PoI is captured by the sensor provided that the PoI is within range 

of the sensor during the event’s lifetime. We assume that events are identifiable, i.e., 

the sensor knows if it is observing the same event or not at different visits to a cell. 

It is important to note that many investigative actions in the real-world assume the 

identifiability of events naturally, either by reasonable domain knowledge or because 

the target possesses easily identifiable attributes. On the other hand, if events are not 

identifiable, then it is not possible to accumulate knowledge across non-contiguous 

measurements and the information learned for an event will be in principle the max­

imum obtained for that event among all the individual measurements. However, in 

practice, the set of measurements that should be used in taking the maximum is not 

clear without event identities. The monitoring of such non-identifiable events is be­

yond the scope of the current formulation. We assume that when the sensor observes 

an event, the information it accumulates about the event is non-decreasing as the 

observation time increases. 

3.1.1 Utility Functions 

To quantify the quality of monitoring by the mobile sensors, we propose the use 

of five different utility functions as depicted in Fig. 3.2. We believe these five utility 

functions represent how confidence about a captured event grows as a function of 

time in most, if not all, of the scenarios where mobile sensors are deployed. The 

significance of these utility functions are discussed as follows, 

• Step utility function, UI(x) = 1 for x > 0. Full information of an event is 

captured upon contact. This utility function models the capturing of simple 

events which can be identified immediately upon entering the sensing range of 
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the sensor. This utility function is also widely used in the research community 

when event capturing ability of a mobility algorithm is to be measured. 

• Exponential utility function, UE(x) = 1 − e−Ax . Information gain of a captured 

event is large initially, but the marginal gain diminishes as capture time in­

creases. This utility function models events with confidence following the law 

of diminishing marginal returns, such as the detection of radioactive sources 

as depicted in Fig. 3.3, which shows the fraction of averaging values that falls 

within a range of the actual radiation strength using different window size, w, 

reported by a radiation sensor to detect a low-strength radiation source, and 

the approximation using the exponential utility function. 

x ≤ 1 1• Linear utility function, UL = Mx for 0 ≤ 
M

, and UL = 1 for x > 
M

. In­

formation gain of a captured event grows linear with the capturing time. This 

utility function models events whose confidence grows linearly with its captur­

ing time, and each measured value is equally important towards the overall 

knowledge of the captured event. 

• S-shaped utility function, US. Information gain increases exponentially initially 

until a critical observation time is reached, then the marginal gain diminishes 
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as capture time further increases. This utility function models general learning 

trends which are combinations of positive and negative learning curves [34]. 

• Delayed-step utility function, UD(x) = UI(x − D). No information is gained 

by capturing the event until a critical observation time is reached, then all 

information is obtained. This utility function also serves as an approximation 

of the mathematically less tractable S-shaped utility function for analysis. 

When PoI i falls within the range of the sensor, we say that the sensor is present 

at i. Otherwise, the sensor is absent from i. Since we are interested in the resource 

competition between different PoIs in the analysis of the deterministic periodic sched­

ule, we make the following assumption. 

Assumption 1 The PoIs and the roads between them are separated such that (1) 

no two PoIs fall within the range of the sensor at the same time; (2) for the sensor 

traveling from PoI i to PoI j on Eij at speed v, i will be within range of the sensor 

for R/v time before the sensor leaves i, and j will be within range of the sensor for 

R/v time until the sensor reaches j, and (3) no PoI other than i and j falls within 

the range of the sensor during the trip on Eij. In general, however, the sensor can 
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vary its speed while traveling on a road, and the sensor may cover other PoIs as the 

sensor travels from the source PoI to the destination PoI. 

Notice that Assumptions (1) and (2) also hold in the event monitoring analysis of 

WRW-aLP, but we do not make Assumption (3) in that case. 

3.1.2 Definition of QoM 

We now define the quantitative measurement of the QoM at a PoI and for the 

whole protected area. In the course of a deployment, e1
i , . . . , el

i 
i 

denote the sequence 

of events appearing at PoI i over the duration [0, T ] of the deployment. For the 

event ei
j , assume that it is within range of the sensor for a total (but not necessarily 

contiguous) amount of time tij , where tij ≥ 0. The sensor will then gain a certain 

amount of information, Uj
i(tj

i ), about ej
i , where Uj

i(·) is the utility function of ej
i . The 

total information gained by the sensor at i is defined by Ei(T ) = U i(ti ), and 1≤j≤li j j

the average information gained per event at i during the whole deployment period is 

then Ei(T ) = Ei(T )/li. Similarly, the total information gained by the sensor in the 

whole deployment is E∗(T ) = Ei(T ), where n is the number of PoIs in the 1≤i≤n 

protected area. The average information gained per event in the whole deployment 

is then 
� � 
L1 

E∗(T ) = � liEi(T ) . 
li1≤i≤n 1≤i≤n 

By means of the strong law of large numbers and renewal theory, Ei(T ) and E∗(T ) 

can be shown to converge to a deterministic number as T −→ ∞. Hence, we define 

the QoM of PoI i and the whole covered area as: 

Qi = lim Ei(T ), and Q∗ = lim E∗(T ). (3.1) 
T→∞ T→∞ 

Furthermore, they are related by: 

L1 
Q∗ = µiQi, (3.2) 

µ∗ 1≤i≤n 

where µi = 1 is the mean event arrival rate at PoI i and µ∗ = 
� 

µi.E(Z) 1≤i≤n 
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Remark. Note that in defining the QoM of PoI i, we should in principle divide 

not only by the number of events li, but also by the maximum possible utility achiev­
J ∞

able for an event: 
0 

U(x)f(x) dx, where f(x) is the pdf of the event staying time 

distribution. The latter may be less than 1 if the events do not stay infinitely long. 

However, the difference is only by a proportionality constant, and hence, will not 

affect our comparison results. Unless otherwise stated, we will further assume that 

all the events at i have the same utility function, and denote this function by U i(·). 

3.2 Related Work 

Quality of monitoring metrics in a sensor network have been proposed, e.g., the 

rate of false positives in a detection problem [35]. The importance of the sensing time 

in accurately assessing various physical phenomena has been well documented [36]. 

The need for non-negligible sensing durations to obtain useful information is due to 

noise in the measurement process and the probabilistic nature of the phenomena under 

observation. The impact of the sensing time on the information gained is captured 

by the event utility functions in our problem statement. 

The dynamics of real-world events are frequently modeled as stochastic processes. 

Poisson arrivals are generally accurate characterizations of a large number of indepen­

dent event occurrences, whose event inter-arrival times are Exponentially distributed. 

Real-world network/computing workloads have properties that are found to be long-

range dependent and follow the Pareto distribution, e.g., the distribution of traffic in 

a computer network [37,38]. In a sensor network, the target events may have similar 

dynamic behaviors. For example, radioactive particles arriving at a Geiger-Müller 

counter follow a Poisson process [36]; a chemical leak at a facility may occur with a 

probability, and the leak may persist for a random duration until the chemical has 

been dispersed; people may arrive at a location and then leave. Our analysis applies 

to a wide range of event inter-arrival and staying time distributions. 
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Event monitoring at PoIs by mobile sensors has been studied in [25, 39]. [39] 

study the problem of finding the minimum number of sensors to estimate the state 

of processes present in a network with a bounded estimate error covariance. They 

assume that the measurements made by the sensors are coupled with zero mean white 

Gaussian noise. The consideration of explicit stochastic events at PoIs in the mobile 

sensing has been studied in [25]. Our problem in this chapter is quite different from 

these earlier papers. First, we consider differential coverage of PoIs by proportional 

sharing whereas they do not. In particular, we analyze the QoM of periodic sensor 

schedules, as a function of the proportional share q/p and the period p. Such analysis 

has applications besides mobile coverage, e.g., energy-efficient sensing by periodically 

switching off a sensor. Second, we consider sensing tasks with the temporal dimension 

as defined by the event utility function, whereas they either do not consider the events 

explicitly or focus only on the number of captured events (where an event is captured 

whenever it falls within the sensing range of a sensor). 

3.3 QoM of Periodic Schedules 

To better analyse how the quality of event capturing of mobility algorithms varies 

with the utility function, we analyse the performance of periodic schedule with dif­

ferent temporal granularities subject to the five utility functions we proposed in Sec­

tion 3.1.1. 

3.3.1 Single-PoI Analysis of QoM 

This section forms the basis of the analysis of the impact on the QoM by the 

coverage schedule of a sensor at a given PoI. The schedule specifies the time intervals 

over which the sensor is present at or absent from the PoI. A given schedule is achieved 

by how the sensor moves between the PoIs according to some movement algorithm. 

We can already illustrate some interesting QoM properties of proportional-share 

mobile coverage by considering only periodic schedules at individual PoIs. Specifically, 
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we assume that the sensor is alternately present and absent at a PoI, say i, for qi and 

pi−qi time units, respectively. For example, let S1 be the following coverage schedule 

of i: 

S1 = {PAAAPAAA . . .}, 

for qi = 1 and pi = 4. In the schedule, P denotes one time unit of the sensor’s 

presence and A denotes one time unit of the sensor’s absence. Thus the proportional 

share equals qi/pi = 25% of the sensor’s total coverage time. 

Clearly, a given proportional share for i can be achieved in many different ways. 

For example, qi = 2 and pi = 8 give the following schedule S2 with the same 25% 

share for i: 

S2 = {PPAAAAAAPPAAAAAA . . .}. 

While S1 and S2 are equivalent from the proportional-share point of view, they differ 

in terms of the time scale over which the proportional share is achieved. Specifically, 

S1 achieves the 25% share over a time period of 4 time units, whereas S2 achieves 

the same share over a period of 8 time units. We say that S1 has a finer fairness 

granularity than S2, and will use pi to quantify this fairness granularity. Notice that 

for a fixed proportional share, a smaller pi implies a proportionately smaller qi. 

The main purpose of this section is to analyze the dependence of the QoM on the 

utility function and the fairness granularity. As we will focus on a single PoI, the 

superscript i will be omitted where there is no confusion. 

The problem as formulated in Section 3.1 fits perfectly well in the realm of renewal 

theory (see [40, Chapter 3]). Recall that Tk refers to the k-th event arrival time. Then 
�∞the function N([0, t]) = k=1 1[0,t](Tk) is the total number of arrivals in the interval 

[0, t]. Its expectation m(t) = E(N([0, t])) is called the renewal function. Many 

important quantities about the renewal process {Tk}k≥1 can be expressed in terms of 

m(·). In the following, we use µ = 1/E(Zk) to denote the event arrival rate. The 

main results from renewal theory we will use are: 

N([0,t]) 1. limt→∞ t 
= µ a.s.; 
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2. limt→∞ 
m

t 
(t) = µ; 

3. limt→∞ m(t + a) − m(t) = µa, for any a > 0. 

The last statement is true provided that the distribution of Z is not lattice. It shows 

that regardless of the distribution of Z, in the long run, the “probability” of an event 

arriving in an interval dt equals µ dt. 

The following two types of event staying time distribution will be considered in 

this paper, where f(x) is the pdf of X: 

• Exponential Distribution (λ > 0):
 

1
 
λe−λx f(x) = , x > 0, mean = . 

λ 

• Pareto Distribution (α, β > 0):
 

αβα αβ
 
f(x) = 

α+1 
, x > β, mean = (for α > 1). 

x α − 1 

Furthermore, as a simplification for the simulations, the statistics of the event absent 

times Yk
i’s is taken to be the same as that for the event staying times Xk

i ’s, even 

though this is by no means necessary. 

We first explain the intuition in analyzing the QoM function. The main step in 

computing the QoM at a PoI is to consider the overlapping periods during which 

both the event and the sensor are present at the same PoI. A complication is that 

the sensor can leave and come back multiple times to the same PoI and observe the 

same event. Hence, the total observation period of a single event will in general be a 

collection of disjoint time intervals. See Fig. 3.4 for an example. 

For the convenience of the presentation that follows, we denote the proportional 

share 
p
q by γ. Furthermore, we use Pj = [(j−1)p, (j−1)p+q] and Aj = [(j−1)p+q, jp] 

to refer to the j-th sensor present and absent periods, respectively. For many of the 

proofs, it is sufficient to consider just the case j = 1, i.e., P1 = [0, q] and A1 = [q, p]. 

This is illustrated in Fig. 3.4. 
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Event Dynamics 

Sensor Dynamics
X Yk k 

p−qq 

AP j j 

t (time)I I 

k 

1 2 total observation time 
of a single event X 

Figure 3.4. Event and sensor dynamics at a PoI. The Xk’s and Yk’s 
are the event present and absent periods and the Pj’s and Aj’s are 
the sensor present and absent periods. The lengths of the Pj’s and 
Aj ’s equal q and p − q respectively. In the above example, the total 
observation period of the event Xk is the sum of I1 and I2. 

As an example, to compute the utility acquired of the event Xk
i in Fig. 3.4, note 

that the total observation time of the event equals I1 + I2. Hence, the utility is given 

by U(I1 + I2). This is analytically computable as the statistics of Xk is assumed to 

be known and the sensor movement is periodic. The machinery of renewal theory is 

used to handle the statistics of the starting point of the event. 

We gradually establish our results and understanding by first considering the step 

utility function with blip and staying events. Then we write down formulas for general 

utility functions. Several analytic results are obtained for events with Exponential 

and Pareto distributions. Now we proceed to present our results. 

3.3.2 Step Utility Function 

We begin our discussion with events that have the step utility function UI(x) 

(see Fig. 3.2). In this case, since the utility reaches one instantaneously, the QoM is 

equivalent to the fraction of events captured. The next result illustrates the effect on 

the QoM by a periodic sensor schedule with parameters p and q at a fixed PoI. 

Theorem 3.3.1 For independent arrivals of events that have the step utility function 

and do not stay, i.e., “blip events,” the QoM at any PoI is directly proportional to its 
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share of coverage time q/p. In particular, the achieved QoM does not depend on the 

fairness granularity. 

Proof The statement is a simple consequence of the fact that an event is completely 

captured if and only if it arrives when the sensor is present. Hence, the QoM is simply 

the ratio between the expected number (per unit time) of arrivals during the sensor 

present period q and the total period p, i.e.,
 q
p 
.
 

The above scenario shows that only the proportional sharing information deter­

mines the QoM. On the other hand, for events that do stay, the QoM depends on the 

relationship between the event staying time distribution and the parameters p and q. 

Specifically, we have the following result. 

Theorem 3.3.2 For independent arrivals of events that stay and have the step utility 

function, the QoM at a PoI is given by 

q 1 
 p−q 

Q = + Pr(X ≥ t) dt. (3.3) 
p p 0 

Proof As the utility function is a step function, the overall utility is given by the 

total number of events captured when the sensor is present. Note that an event will 

be captured if (i) it arrives during the sensor present period [0, q]; (ii) it arrives during 

the sensor absent period [q, p], but stays long enough to be captured during the next 

sensor present period [p, p+q]. The contribution of (i) to the QoM is given by
 q
p
, while
 

p

q
1that of (ii) is given by 
p

J

after a simple change of variable. 

Theorem 3.3.2 implies that the sensor that stays at a PoI for γ = q/p fraction of 

the time may be able to capture a significantly larger fraction of events than q/p. The 

following two corollaries give further information about this extra fraction of events. 

Corollary 3.3.3 Under the setting of Theorem 3.3.2, with the fairness granularity p 

kept constant, we have: 

Pr(X + t ≥ p) dt, which is the second term of Eq. (3.3)
 

 

1 
lim Q = 

p 

Pr(X ≥ t) dt. (3.4)
 
γ→0 p 0 
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Proof The proof is a direct consequence of Eq. (3.3), upon taking the limit γ −→ 0. 

(Note that q = γp −→ 0.) 

This result indicates that no matter how small the proportional share is, there is 

always some definite, positive gain of information. This is due to the fact that the 

events stay. 

Corollary 3.3.4 Under the setting of Theorem 3.3.2, the QoM of a given fixed pro­

portional share γ is a monotonically decreasing function of the fairness granularity, 

i.e., Q decreases as p increases. Furthermore, 

q
lim Q(p) = 1, and lim Q(p) = . (3.5) 
p→0 p→∞ p 

Proof The statement again is a simple consequence of Eq. (3.3) which is re-written 

in the following form: 

(1−γ)p1 
Q = γ + (1 − γ) Pr(X ≥ t) dt. 

(1 − γ)p 0 

Note that the second term in the above is the average over the interval [0, (1−γ)p] of 

the monotonically decreasing function Pr(X ≥ t) of t. Furthermore, limt→0 Pr(X ≥ 

t) = 1 and limt→∞ Pr(X ≥ t) = 0. Hence, 

(1−γ)p1 
lim Pr(X ≥ t) dt = 1 
p→0 (1 − γ)p 0 

(1−γ)p1 
and lim Pr(X ≥ t) dt = 0, 

p→∞ (1 − γ)p 0 

which leads to the stated result. 

In contrast to Theorem 3.3.1 which applies for blip events, Corollary 3.3.4 im­

plies that finer-grained fairness does generally improve the QoM for events which stay 

and have the Step utility function. In particular, no matter how small the propor­

tional share is, an arbitrarily high QoM can be achieved by an extremely fine fairness 

granularity. This makes intuitive sense for two reasons. First, by leaving and com­

ing back to a PoI infinitely often and fast, the sensor can capture any event (which 
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Event Dynamics Sensor Dynamics 

t (Time) 

(a) The advantage of having finer granularity for events that stay. 

Every event will be observed with the maximum utility. 

Event Dynamics Sensor Dynamics 

t (Time) 

(b) The disadvantage of coarser granularity for events that stay.
 

Some events will be missed while it is wasteful to observe an event for a longer time.
 

Figure 3.5. Step utility function. Illustration of sensor dynamics 
versus event dynamics. 

stays) while maintaining the desired proportional sharing. Second, if the granularity 

is coarse, there is a definite amount of time during which the sensor is absent. Thus, 

some events will be missed while those events which are already observed will not 

lead to a higher QoM as the maximum amount of utility is already achieved by the 

first moment the event is observed. Hence, it is advantageous to leave the PoI and 

search for other new events. The above reasoning is illustrated in Fig. 3.5. 

The following are some explicit examples to illustrate Theorem 3.3.2 and Corol­

lary 3.3.4. 

1. Exponential Distribution. 

(1−γ)p ∞ −λ(1−γ)p1 1 − e
Q = γ + λe−λx dx dt = γ + , (3.6) 

p 0 t λp 

which converges to 1 and γ as p −→ 0 and ∞.
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2. Pareto Distribution. 

When (1 − γ)p ≤ β, then Q = 1 because any event will always be captured as 

its duration is at least β time units long. Hence, 

(1−γ)p1 
Q = γ + Pr(X ≥ t) dt = 1. (3.7) 

p 0 

When (1 − γ)p > β, then Q is given by 

1 β ∞ 

Q = γ + Pr(X ≥ t) dt + (1 − γ)pPr(X ≥ t) dt , 
p 0 β 

which equals 

1 βα 1 1 
γ + 

p 
β + 

(α − 1) βα−1 
− 

((1 − γ)p)α−1 
. (3.8) 

The above expression also converges to γ as p −→ ∞. 

We now consider a scaling result for mobile sensor coverage k out of n PoIs, whose 

event arrival and departure processes are i.i.d., as k increases. Assume that initially, 

the sensor performs periodic schedules among k of the n PoIs such that qi = δ and 

pi = kδ, for 1 ≤ i ≤ k, where δ is a unit of time. The following theorem holds. 

Theorem 3.3.5 The expected fraction of events captured is an increasing function 

of k, the number of PoIs covered. 

Proof According to Eq. (3.2), the overall QoM is given by: 

(k−1)δ 
L L1 1 1 1 

Q∗ = Qj = + P (X ≥ t) dt 
n n k kδ 01≤j≤k 1≤j≤k 

(k−1)δ1 1 
= 1 + P (X ≥ t) dt , 

n δ 0 

which is clearly an increasing function of k. 

Theorem 3.3.5 provides a formal justification for mobile coverage, namely that 

the amount of information captured increases as the sensor moves among more PoIs 

to search for interesting information. This is in addition to the obvious advantage of 

fairly distributing the sensing resources among the PoIs. 
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3.3.3	 General Utility Function 

We now turn our attention to events that have a general utility function U(·). In 

this case, we have the following QoM result. 

Theorem 3.3.6 For independent arrivals of events at a PoI that have the utility 

function U(·) and whose event staying time pdf is given by f(x), the achieved QoM 

equals (ξi = iq − t, ηi = x + ip − t): 

∞q q−t	 
L q 

U(x)f(x) dx + U(ξi + x)f(ηi) dx 
0 0	 0i=1 

∞ 0 
L 

+	 U(ξi) f(ηi) dx dt (3.9) 
−(p−q)i=1
 

p q p
∞	 ∞ 
L	 L 

+	 U(ξi − q)f(ηi) dx + U(ξi + t) f(ηi) dx dt. (3.10) 
q 0 qi=1	 i=1 

Proof The above formula follows from the fact that the overall utility available for 

any particular event depends on the total length of the intersecting region (which 

might be discontinuous) during which both the event and sensor are present. The 

various summands in integral Eqs. (3.9) and (3.10) correspond to the cases that the 

event arrives when the sensor is present or absent. 

If an event arrives at t ∈ [0, q], i.e., when the sensor is present, then the total 

utility available from this event is given by (ξi = iq − t): 

q−t 

U(x)f(x) dx 
0 

∞ x+t=ip+q
L 

+	 U(ξi + x + t − ip)f(x) dx 
x+t=ipi=1 

∞ x+t=ip
L 

+	 U(ξi)f(x) dx. 
x+t=ip−(p−q)i=1 

In the above, the different integrals correspond to the cases when the event departure 

time t + x falls in [t, q], [ip, ip + q], and [ip − (p − q), ip] respectively. A change of 

variable gives Eq. (3.9). 

http:and(3.10
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Similarly, if an event arrives at t ∈ [q, p], i.e., when the sensor is absent, then the 

total utility available from this event is given by: 

∞ x+t=ip+q
L 

U((i − 1)q + x + t − ip)f(x) dx 
x+t=ipi=1 

∞ 
L x+t=ip 

+ U((i − 1)q)f(x) dx. 
x+t=ip−(p−q)i=1 

A change of variable formula then also gives the form of Eq. (3.10). 

Eqs. (3.9) and (3.10) above can have a complicated analytical form in general, but 

they are certainly amenable to numerical computation. Nevertheless, we first present 

two exact analytical results. (Recall γ = 
p
q .) 

(1) Exponential utility function UE(x) = 1 − e−Ax and Exponential staying time: 

f(x) = λe−λx . 

−λq −(A+λ)q)Aγ 1 − e λ(1 − e
Q = − + 

A + λ λp (A + λ)2p 
λq − 1)2 −(A+λ)q(e λ(e(A+λ)q − 1)2e

+ − 
λpeλq(eλp − 1) (A + λ)2p(e(Aq+λp) − 1) 

λq − 1 (A+λ)q − 12(eλ(p−q) − 1) e e
+ × − 

p λ(eλp − 1) (A + λ)(e(Aq+λp) − 1) 
Aq − 1)eλq(e(e λ(p−q) − 1)2 

+ . (3.11) 
λp(eλp − 1)(e(Aq+λp) − 1)
 

Note that the above leads to
 

Aγ Aγ 
lim Q = , and lim Q = . (3.12) 
p→0 Aγ + λ p→∞ A + λ 

(2) Delayed-step utility function UD(x) = UI(x − D) and Exponential staying 

time: f(x) = λe−λx . 

When p is very small such that D is an integral multiple of q, i.e., D = kq for 

k = 1, 2, . . ., we have: 
λ(1−γ)p − 1−λD e

γQ = e γ + . (3.13) 
λp 

On the other hand, when p is very large, specifically, when q > D, then 

−λ(p−q)1 1 − e
Q = e −λD γ + − D . (3.14) 

λ p 

http:and(3.10
http:ofEq.(3.10
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It is also interesting to obtain Eq. (3.14) without using Theorem 3.3.1. In order 

for the sensor to capture an event and gain enough information, the event staying 

time and the sensor present period should overlap for at least an interval of length 

D. Based on this, let t be the time that an event occurs and let x be its staying 

time. Consider the first sensor present and absent periods [0, q] and [q, p]. Then 

the probability of gaining enough information for an event arrived during these two 

periods is given by 

q−D 

Pr(X ≥ D) dt 
0 

q 

+ Pr(t + x − p + (q − t) ≥ D) dt 
q−D 
p 

+ Pr(t + x − p ≥ D) dt, 
q 

which gives Eq. (3.14) upon dividing by p. 

Combining Eqs. (3.13) and (3.14), we have: 

−λ D 

γe−λD γlim Q = e , and lim Q = . (3.15) 
p→0 p→∞ 

For the Pareto type events, even though analogous results can be derived, the 

analytical formula are quite complicated and hard to be put into closed form. But 

they demonstrate similar qualitative behaviors as seen in the simulation section. 

The above analytical results can be intuitively understood in many ways, and are 

discussed in the following section. 

3.3.4 Implications of Theoretical Results 

The first three discussion points concern various limiting cases. 

(i) Let the fairness granularity p and the proportional share γ be fixed. Then as 

the event staying time goes to infinity, every event will always be captured and the 

maximum value 1 for the utility can be achieved. Therefore, the QoM is an increasing 

function of the mean event staying time. Note that this scenario corresponds to 

http:and(3.14
http:CombiningEqs.(3.13
http:whichgivesEq.(3.14
http:obtainEq.(3.14
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λ −→ 0 for the exponential staying time distribution, and β −→ ∞ for the Pareto 

distribution. 

(ii) In the limit of p −→ 0, every event which stays will always be captured. 

However, the total observation time is only γ fraction of the event’s duration. Hence, 

the average utility achieved is: 

∞ 

Q0 = U(γx)f(x) dx. (3.16) 
0 

This result is consistent with the explicit Eqs. (3.12) and (3.15). 

The following give an explicit expression of the QoM for the Pareto event staying 

time distribution. 

• With the exponential utility function UE, 

∞ −Aγx ∞ −Aγβx e e
Q0 = 1 − αβα dx = 1 − α dx. 

α+1 α+1 x xβ 1 

• With the Delayed-step utility function UD, 

 
 1 for D ≤ γβ, 

Q0 = 


(

γβ 
)α 

for D > γβ. 
D 

(iii) In the limit of p −→ ∞, each event, if captured, will essentially be observed 

for its whole duration. On the other hand, only γ fraction of the events will be 

captured. Hence, the QoM is given by: 

∞ 

Q∞ = γ U(x)f(x) dx, (3.17) 
0 

which is also consistent with the explicit Eqs. (3.12) and (3.15). 

Again, for Pareto event staying time distribution, we have: 

• With the Exponential utility function: 

∞ −Ax ∞ −Aβx e e
Q∞ = γ 1 − αβα dx = γ 1 − α dx . 

xα+1 xα+1 
β 1 

http:and(3.15
http:explicitEqs.(3.12
http:and(3.15
http:explicitEqs.(3.12
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• With the Delayed-step utility function: 
 
 γ for D ≤ β, 

Q∞ = 
)α(

γ β
D

for D > β.
 
 

The next two discussion points concern the two most important qualitative de­

scriptions of the QoM function. 

(iv) For the step and exponential utility functions, the QoMs are monotonically 

decreasing functions of p. This is because both utility functions are concave functions 

of the observation time. Hence, it is advantageous to capture as many new events 

as possible rather than to gain further information for the event which has already 

been observed. A finer fairness granularity exactly achieves this. More precisely, a 

very fine granularity can basically capture every single event (as the event stays), and 

each event captured gives the best possible initial utility gain per unit time. On the 

other hand, coarser granularity can miss some events while for those events captured, 

the information captured per unit time is not maximized due to the concavity of the 

utility function. 

The above is certainly consistent with Theorem 3.3.2 for the step utility function 

which is qualitatively illustrated in Fig. 3.5. Furthermore, This is also explicitly 

demonstrated by the analytical Eqs. (3.6), (3.7)-(3.8). It is easy to see that their 

derivatives with respect to p is negative. For Eq. (3.11), this behavior is graphically 

demonstrated in Fig. 3.6. 

(v) However, the key feature is that for certain utility functions, the maximum 

QoM is only achieved at some intermediate fairness granularity. We spend a moment 

to explain this important phenomenon. 

The above observation is easiest to explain for the delayed-step utility UD. In the 

limit of p −→ 0, any event can always be captured. This is essentially the statement 

of Corollary 3.3.4. However, in order to gain enough information about the event, it 

is necessary that the event staying time be at least
 D
γ

long. This probability is given
 

by Pr(X ≥
 D
γ
). When p is positive (no matter how small it is), however, this is not
 

absolutely necessary. In fact, if the event arrives right at the beginning of a sensor
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Figure 3.6. The QoM for the exponential utility function and expo­
nential staying time. 

present period, then the event staying time just needs to be at least
 D
γ
−(1−γ)p long.
 

It is this saving that increases the QoM. Hence, initially the QoM is an increasing
 

function of p for small p. This can also be seen analytically from Eq. (3.13) by which
 

we have for 0 < p ≪ 1: 

QoM ≈ e −
λD 
γ 1 + 

(1 − γ)2λp 

2 
+ · · · , 

which is an increasing function of p. 

The behavior of QoM when p is large is also interesting and in fact quite intricate. 

From Eq. (3.14), observe that the QoM is a decreasing, constant, or increasing function 

1of for λ less than equal to greater than p , or ,
D

for q ≫ 1, we have: 

dQoM −λD 1 1 
≈ e γ − − D + · · · . 

dp λ p2 

The above is due to the competitive effect (for p large) of the loss of utility for 

events arriving near the end of a sensor present period and the gain of utility for 

1 

, respectively. This can be seen that
 

events arriving before the sensor present period. Hence, for λ
 <

D

, the QoM initially
 

increases and then decreases as a function of p, i.e., it is optimal at some intermediate 

p value. 

http:FromEq.(3.14
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All of the above implications are supported by the simulation results in Section 3.4. 

3.3.5 Discussions on Multiple Sensors 

In the previous analysis, it is simplest to interpret that the periodic PoI visit 

schedule is induced by a single periodic sensor. We now discuss an extended scenario 

in which multiple mobile sensors, each on the same periodic schedule, visit the PoI in 

sequence. We acknowledge that the general coordination between multiple sensors is 

a very important problem of practical and research relevance. A full analysis of the 

scenario deserves another line of work and is out of the scope of the current chapter. 

On the other hand, we will demonstrate that the present QoM analysis can already 

lead to some interesting consequences. 

We assume that the PoIs {Li}i=1,2,...n’s are located along a circular circuit. The 

mobile sensors {Pj}j=1,2,...m move along the circuit in an identical fashion. The geom­

etry of the sensor locations is such that they are clustered together in the following 

sense (see Fig. 3.7(a)): 

dist(Pj, Pj+1) = A, for j = 1, 2, . . .m − 1, 

dist(Pm, P1) = B. 

In the above, the distance is measured in the clockwise sense. From each PoI’s point 

of view, the pattern of the coverage time is illustrated in Fig. 3.7(b). As each sensor 

is associated with a sensing range R, the coverage time is finite, denoted by q. In 

addition, due to the separations A and B between the sensors, we let the sensor absent 

times be a and b. We investigate the QoM for each PoI in relation to the following 

quantities: 

1. p: the total period of the sensor movement; 

2. m: the number of mobile sensors; 

3. r = 
a
b : the “clustering ratio” of the sensors’ visit sequence. 
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(with sensing range R) 

a a a a b 
Sensor Movement 
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(a) Geometry of schedule (b) Sensor dynamics at a PoI 

Figure 3.7. Geometry of schedule and sensor dynamics at a PoI using 
multiple sensors. 

Note the relation p = mq+(m−1)a+b. In addition, r = 1 implies that the sensors are 

equidistant from each other while for r = ∞, it is equivalent to having a single mobile 

sensor with coverage time q ′ = mq for each period p. Furthermore, the information 

acquired by the sensors is aggregated for possibly higher combined utilities. 

First we consider the case of the step utility function. In this case, any event 

will be captured with the maximum utility value one if it occurs when the sensor is 

present (see Fig. 3.8, event A). On the other hand, if it occurs when the sensor is 

absent, then the event must stay at least till the first moment the sensor comes back 

in order to be captured (see Fig. 3.8, events B and C). Based on this argument, the 

QoM function is given by: 

q a b1 
QoM = m dt + (m − 1) P (T ≥ a − t) dt + P (T ≥ b − t) dt , (3.18) 

p 0 0 0 

where T is the event staying time. The pre-factors before the integrals in the above 

expression come from the fact that there are m identical cases of the event type A, 

m − 1 identical cases of type B, and one case of type C. 

To give further explicit analysis, we assume that the event staying time follows 

the exponential distribution with parameter λ. In this case Eq. (3.18) is reduced to: 

−λa − −λb 1 m − (m − 1)e e
QoM = mq + . (3.19) 

p λ 
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Figure 3.8. The relation between event dynamics and the multisensor 
coverage pattern. In the above, the number of sensors m equals 5. 
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Figure 3.9. Plot of the QoM function (3.20) for the step utility func­
tion: p = 10, q = 0.1, and varying number of mobile sensors m. 

b p−mq In addition, by means of p = mq +(m−1)a+ b and r = , we get a = . Hence, 
a m−1+r 

the above QoM function becomes: 

p−mq p−mq 
−λ( −λr( )m−1+r m−1+r1 m − (m − 1)e ) − e 

QoM = mq + . (3.20) 
p λ 

This QoM function is plotted in Fig. 3.9. 

The monotonically decreasing behavior is expected as explained previously. It 

can also be seen by taking the derivative of the QoM with respect to the clustering 

ratio r. The result is given by: 

[ ]

p−mq p−mq dQoM (m − 1)(p − mq) −λ( ) −λr( )m−1+r m−1+r= −e + e , (3.21) 
dr p(m − 1 + r)2 

which is clearly negative for r ≥ 1. 

http:theQoMfunction(3.20
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We now consider the second, more interesting case of the delayed step utility 

function with delay D. The argument is similar to the previous case, except that in 

order to gain the maximum utility value one, the event must now stay long enough 

so that the total observation time is at least D. 

To obtain a tractable mathematical formula, we assume that D = Nq for some 

positive integer N . Then based on the consideration of different event types such as 

A, B, and C in Fig. 3.8, the QoM function is given by: 

q1 
QoM = (m − N) P (T ≥ (a + q)N) dt 

p 0 
q 

+ (m − N) P (T ≥ (a + q)N − t) dt 
0 

q 

+ N P (T ≥ (a + q)N − a + b) dt 
0 

a 

+ (N − 1) P (T ≥ (a + q)N − a + b − t) dt 
0 

b 

+ P (T ≥ (a + q)N − a + b − t) dt . 
0 

As before, by assuming the exponential distribution for the event staying time, 

we have 

λa − 11 e−λ(a+q)NQoM = (m − N)e q + 
p λ 

λa − 1 λb − 1e e−λ(a+q)N+b−a+ e Nq + (N − 1) + . (3.22) 
λ λ 

The above function is plotted in Fig. 3.10. 

From the above, it appears that the behavior of the QoM is quite elaborate as a 

function of the clustering ratio r and the number of mobile sensors m. In particular, 

it can be a monotonically increasing, non-monotonic, or monotonically decreasing 

function of m, depending on the competition between eliminating redundancies in the 

information capture and avoiding the loss of events. See also the explicit discussion 

in Section 3.3.4(v). 
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Figure 3.10. Plot of the QoM function (3.22).
 

3.4 Evaluation 

We present simulation results to illustrate the analytical results in Section 3.3. 

Recall the use of X and Y to denote the event staying and absent time variables, 

http:theQoMfunction(3.22
http:Figure3.10
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Table 3.1
 
Maximum available information for capture, averaged over all the simulated events.
 

Utility X ∼ Y ∼ Exp(λ) X ∼ Y ∼ Pareto(α = 2, β) 

function λ = 0.25 0.5 1 2 β = 0.25 0.5 1 2 

Step 1 1 1 1 1 1 1 1 

Exponential 0.95 0.91 0.83 0.72 0.84 0.97 1 1 

Linear 0.89 0.79 0.63 0.43 0.44 0.75 1 1 

S-shaped 0.88 0.78 0.62 0.40 0.36 0.82 1 1 

Delayed-step 0.88 0.78 0.61 0.37 0.50 1 1 1 

respectively. We measure the QoM Qi achieved over 1,000,000 time units in a simu­

lation run, and report the average Qi of 10 different runs. The different runs produce 

results that have extremely small differences. Hence, we omit the error bars in the 

reported results. Notice that not all the events in a simulation stay long enough to 

be captured at the full utility. The maximum information available for capture is 
J ∞

given by 
0 

U(x)f(x) dx as explained in Section 3.1.2, and the values obtained from 

the experiments are shown in Table 3.1. Each reported experiment uses the same 

distribution for both the event staying and absent times, which is either Exponential 

with varying λ, or Pareto with varying β (and α is kept to be 2). 

3.4.1 QoM of Periodic Schedule 

In this section we evaluate the QoM performance of the periodic schedule we 

studied in Section 3.3. 

Step utility 

We now present results for the step utility function UI . Figs. 3.11(a) and 3.11(b) 

show the achieved QoM as a function of the proportional share q/p for Exponential 

and Pareto event dynamics, respectively. The results agree with Theorem 3.3.2 and 
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Figure 3.11. Achieved QoM for events that stay and have the step 
utility function UI . 

its instantiations for the distributions. Note that the fraction of events captured can 

be significantly higher than the proportional share, e.g., a QoM of close to 0.4 is 

achieved for Exp(λ = 0.25) and Pareto(α = 2, β = 2) even when the share is only 

slightly positive (see Corollary 3.3.3). The observation time of the events increases as 

the events stay longer, and so the QoM is higher when λ is smaller for Exponential 

event dynamics and β is larger for Pareto event dynamics (see Section 3.3.4(i)). In 

general, the QoM is not linear in the proportional share. 

Figs. 3.11(c) and 3.11(d) show the QoM as a function of the fairness granularity for 

Exponential and Pareto event dynamics, respectively. As predicted by Corollary 3.3.4, 

the QoM is a monotonically decreasing function of q (and hence, p, as we have qi/pi 

fixed), meaning that finer-grained fairness will improve performance. As explained 

before, the QoM increases as λ decreases for the Exponential distribution and as 
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Figure 3.12. Achieved QoM for events that stay and have the expo­
nential utility function UE , A = 5. 

β increases for the Pareto distribution. Furthermore, the QoM converges to the 

maximum value one and the proportional share γ = q/p as q (and hence, p) converges 

to 0 and ∞, respectively (see Corollary 3.3.4). 

Exponential utility 

We now present results for the exponential utility function UE (with A = 5). 

Figs. 3.12(a) and 3.12(b) show the achieved QoM as a function of the proportional 

share for Exponential and Pareto event dynamics, respectively. Unlike Step utility, 

the achieved QoM is close to zero when the share is only slightly positive. This is due 

to the need to accumulate information for Exponential utility. As the share increases 

initially, however, there is a sharp gain in the QoM. This is because most information 

is gained during the initial observation of an event for Exponential utility. Moreover, 
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the initial gain is higher when the events stay longer (i.e., smaller λ or larger β), 

because longer staying events are more likely to be captured even if they arrive when 

the sensor is not present. As the share further increases, the marginal gain in the 

QoM becomes smaller, again mimicking the decreasing marginal gain of information 

with longer observation time for the type of events. Note that for the larger λ values 

(e.g., λ = 2) or smaller β values (e.g., β = 0.25), the QoM is significantly smaller 

than one even for a large share. This is in part because at those parameter values, 

the events do not stay long enough to be captured at their full utility. 

Figs. 3.12(c) and 3.12(d) show the achieved QoM as a function of the fairness 

granularity for Exponential and Pareto event dynamics, respectively. For Exponential 

utility, the results agree with Eqs. (3.11) and (3.12). (See also Section 3.3.4(iv).) In 

particular, Fig. 3.12(c) shows that the QoM is monotonically decreasing in q (and 

hence, p) and gives the correct QoM limits in Eq. (3.12) as p → 0 and p → ∞. In 

addition, the QoM increases when λ decreases. The results in Fig. 3.12(d) show that 

similar results hold for Pareto event dynamics. 

Linear utility 

We now present results for the linear utility function UL (with M = 1). Figs. 3.13(a) 

and 3.13(b) show the achieved QoM as a function of the proportional share for Ex­

ponential and Pareto event dynamics, respectively. Figs. 3.13(c) and 3.13(d) show 

the achieved QoM as a function of the fairness granularity for the two types of event 

dynamics. The results are similar to Exponential utility. In particular, the QoM is 

a monotonically decreasing function of p, although it is flat over an initial range of 

p values, showing that there is no need for the sensor to move faster and achieve a 

smaller p after some point. 

Delayed-step utility 

We now present simulation results for the delayed-step utility function UD (D = 

0.5 time units). Figs. 3.14(a) and 3.14(b) show the achieved QoM as a function of the 

proportional share for Exponential and Pareto event dynamics, respectively. They 

http:correctQoMlimitsinEq.(3.12
http:and(3.12
http:withEqs.(3.11
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Figure 3.13. Achieved QoM for events that stay and have the linear 
utility function UL, M = 1. 

show that the QoM is monotonically increasing in the proportional share, and the 

QoM is higher when the events stay longer (i.e., smaller λ or larger β). 

Figs. 3.14(c) and 3.14(d) show the achieved QoM as a function of the fairness 

granularity. Note that in this case, the QoM is no longer monotonically decreasing 

in p, but the optimal fairness occurs at an intermediate value. Note also that for 

λ = 2 = 
D
1 , the QoM is a constant function of p for large p. These properties are all 

discussed in Section 3.3.4(v). 

S-shaped utility 

Fig. 3.15 presents the QoM results for the S-shaped utility function US. Al­

though we do not have corresponding analytical results for S-shaped utility, note 
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Figure 3.14. Achieved QoM for events that stay and have the delayed­
step utility function UD, D = 0.5. 

from Fig. 3.15 that the results are similar to Delayed-step utility. This is due to the 

resemblance between the two utility functions. 

Multiple sensor scenario 

We now evaluate the multiple-sensor scenario discussed and analyzed in Sec­

tion 3.3.5. We first summarize the simulation results and their interpretation, before 

presenting the detailed results. 

1. The QoM is a monotonically increasing function of m. This is easily understood 

as the effective coverage time is equal to mq which is proportional to the number 

of sensors present. 

2. For concave utility functions, such as the step, exponential, and linear functions, 

the QoM decreases with p and r. This is because a larger p effectively leads 

http:Figure3.14
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Figure 3.15. Achieved QoM for events that stay and have the S-shaped 
utility function US. 

to a coarser fairness granularity. By the analysis in Section 3.3.5, for concave 

utility functions, a finer granularity gives a higher QoM. Similarly, a larger r 

means that the coverage times are more clustered together, i.e., a ≪ b. This is 

equivalent to a coarser granularity leading to missed events and also redundancy 

in observing the same event. 

3. For non-concave utility functions such as the delayed-step and S-shaped ones, 

the QoM initially increases and then decreases with r. The explanation is 

similar to the analysis in Section 3.3.5. In order to gain a significant amount 

of information about a single event, enough observation time must be achieved. 

This requires larger values of r. After the critical time is passed, a higher degree 

of clustering leads to redundancy in collecting the information. 

http:Figure3.15
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We now proceed to discuss the detailed results. These results are all supported 

by the analysis in Section 3.3.5. As mentioned there, we will emphasize the behavior 

of the QoM as a function of the parameters p, m, and r. We consider the cases when 

there are 2, 4, 5, 10, 20, and 40 mobile sensors. We measure the QoM Qi achieved 

over 1,000,000 time units in a simulation run, and report the average Qi of 20 different 

runs. The event staying and absent times are both Exponentially distributed with 

λ = 1, and the share q/p = 0.01. 

Non-decreasing concave utility functions 

We present results for the non-decreasing concave utility functions, namely, the 

step utility function UI , exponential utility function UE (with A = 5), and linear 

utility function UL (with M = 1). Figs. 3.16, 3.17, and 3.18 show the achieved QoM 

as a function of the number of mobile sensors m and the clustering ratio r for the 

Step, Exponential, and Linear utility functions, respectively. The figures show that 

the achieved deployment QoM Qi is the highest when the visits are evenly distributed, 

i.e., r = 1. As the visits are more clustered together, i.e., r is larger, Qi is worsened 

when the interval of consecutive visits, if they are evenly distributed, is comparable 

to the event staying time. It is because when we have a concave utility function, it is 

generally more productive to monitor more events than to observe the same event for 

longer time. For Linear utility, however, notice from Fig. 3.18 that the separation of 

consecutive visits to a PoI has insignificant effects on the achieved deployment QoM. 

This is due to the nature of the linear utility function, i.e., it is indifferent to Qi 

whether the same event or different events are monitored. 

The figures also show that the achieved deployment QoM Qi may grow sub-linearly 

with the number of sensors. It is because as the interval of consecutive visits, if they 

are evenly distributed in one period, is comparable or smaller than the event staying 

time, then it is more likely for the sensors to capture the same event, which results 

in no improvement in Qi. 

When the visit time of a sensor at the PoI is comparable to the event dynamics as 

depicted in Fig. 3.16(c), Qi can only be slightly worsened, if it is affected at all, when 

http:Figs.3.16,3.17
http:q/p=0.01
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the sensors are more clustered together. It is because in such a situation, different 

visits to the PoI are likely to observe different events, and a more clustered group of 

sensors only reduces the probability of capturing new events. 

(d) As a function of p 

    
Figure 3.16. Achieved deployment QoM Qi for staying events with 
step utility function UI . q/p = 0.01, X ∼ Y ∼ Exp(λ = 1).   p                 X    =               
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Figure 3.17. Achieved deployment QoM Qi for staying events with 
exponential utility function UE , A = 5. q/p = 0.01, X ∼ Y ∼ 
Exp(λ = 1). 
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(a) p = 1 (b) p = 10 

Figure 3.18. Achieved deployment QoM Qi for staying events with 
linear utility function UL, M = 1. q/p = 0.01, X ∼ Y ∼ Exp(λ = 1). 

Utility functions as a combination of convex and then concave parts 

We now present results for the S-shaped utility function US and the delayed-step 

utility function UD (D = 0.5 time units). Each can be seen as a combination of two 

different parts, a convex part followed by a concave part. Figs. 3.19 and 3.20 depict 

the achieved QoM as a function of the number of mobile sensors m and the clustering 

ratio r for the S-shaped and delayed-step functions, respectively. The figures show 

that clustering sensors together can improve the achieved deployment QoM as the 

separation of consecutive visits, when they are evenly distributed, is comparable to 

the event present time. It is because in such a scenario, clustering sensors together can 

help monitor the same event for longer in the convex part of the utility function, so 

that it is more likely to approach the information threshold for a better Qi. However, 

Figs. 3.19(d) and 3.20(d) show that when the sensor visits are too clustered together, 

so that they collect information in the concave part of the utility function instead of 

capturing new events in the convex part of the function, the overall Qi will suffer. 

Fig. 3.20 also shows that the achieved deployment QoM Qi may grow super-

linearly with the number of sensors. It is because as the interval of consecutive visits, 

when they are evenly distributed in one period, is comparable or smaller than the 

event staying time, then it is more likely for the sensors to monitor the same event 

http:q/p=0.01
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Figure 3.19. Achieved deployment QoM Qi for staying events with 
S-shaped utility function US. q/p = 0.01, X ∼ Y ∼ Exp(λ = 1). 

and aggregate information within the threshold for productive information gain, which 

results in a sharp increase in the utility and an improvement in Qi. 

3.4.2 QoM of WRW-aLP 

We now present the QoM performance of our proposed WRW-aLP mobility algo­

rithm (Section 2.3.1). We only consider events of exponential dynamics. 

(A) Single sensor using Residential Maps. 

We evaluate the performance of the WRW-aLP algorithm and the BAI algo­

rithm [25]. We show the results for real-life topologies, namely residential regions 

in Chicago, San Francisco, San Jose. The three city maps and their corresponding 

threat profiles are depicted in Fig. 3.21. The sensing utility function is the concave 

function given in Fig. 3.3. We use the dynamic events defined in Section 3.1.2. The 

http:q/p=0.01
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Figure 3.21. The three city maps and their corresponding threat profiles. 

event durations are exponentially distributed with mean 13 minutes. Their absent 

times at a cell are exponentially distributed with mean value of 1 hour. 
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Figure 3.20. Achieved deployment QoM Qi for staying events with 
delayed-step utility function UD, D = 0.5 time units. q/p = 0.01, 
X ∼ Y ∼ Exp(λ = 1). 
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Figure 3.22. Per captured event utilities as a function of the maximum 
sensor speed. 

Figs. 3.22 (a), (b), and (c) show the per-captured event utilities achieved for San 

Francisco, San Jose, and Chicago, respectively, by BAI and WRW-aLP (with varying 

P given in minutes) for different maximum speeds of the sensor. The results show that 

(1) pausing, which is possible with WRW-aLP and increases with P , can significantly 

increase the utilities of the sensing results; and (2) as the sensor speed increases, the 

utilities do not increase, but rather decrease consistently. 

(B) Multi-sensors using Residential Maps. 

In this section, we investigate the effects of multiple sensors. For simplicity, the 

sensors are assumed to coordinate through NC, i.e., they run independently in the 

surveillance area, under the same mobility algorithm. 

Fig. 3.23(a) shows the normalized utility achieved by WRW-aLP(13) and BAI06 

for 1, 2, and 4 sensors using the exponential utility function, UE . In the figure, each 

http:Figure3.22
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Figure 3.23. Performance of WRW-aLP and BAI with 1, 2, and 4 
sensors: (a) normalized utility, and (b) utility per captured event. 

plot is labeled “algorithm/number of sensors”; e.g., “BAI06/2” refers to the BAI06 

algorithm with two sensors. For both algorithms, the normalized utility roughly 

doubles when the number of sensors doubles. The exact performance of n times 

more sensors improves by slightly less than a factor of n (from several to about 10% 

less). This is because the sensors work independently. Without coordination, it is 

possible for two sensors to cover the same PoI at the same time, and the redundant 

coverage causes an efficiency loss. However, the relative small efficiency loss in these 

experiments shows that the redundancy is not severe when 10 PoIs are served by up 

to four sensors. 

In terms of the utility per captured event, shown in Fig. 3.23(b), the improvement 

is quite small with more sensors. For example, the per-captured event utilities of 

WRW-aLP(13) are all about 0.76 whether 1, 2, or 4 sensors are used. The results 

show that the higher normalized utility achieved by more sensors is mostly due to 

proportionately more events captured by the additional sensors. 

(C) Simulation Results (Ring Topology) 

In this section, we discuss results for the ring topology in Fig. 3.24. The same 

topology is used in [25] to evaluate the BAI algorithm. The ring consists of a sequence 

of 50 cells, each of dimension 250 ft. × 250 ft., and 10 PoIs are uniformly placed on 
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Figure 3.24. The ring topology. 

the ring. We use the same sensing utility function and the same type of dynamic 

events as in Subsection 3.4.2(A). The event staying and absent times are exponentially 

distributed with mean 800 s. For WRW-aLP, L is set to be 1500 ft. The pause time 

parameter P is varied to control the amount of sensor movement. We use WRW­

aLP(k) to denote the algorithm running with P = k minutes. 

To assess the impact of mobility, we also compare with best-case static coverage, 

in which each sensor’s static position is chosen to give the best performance. We 

report results that are averages of at least 10 different runs. The standard deviations 

are very small (within 1% of the averages). Hence, we do not report the standard 

deviations or the error bars. 

In this set of experiments, one sensor is used to cover the whole area. This 

corresponds to a severely constrained resource environment, in which the resource 

availability is only 10% (i.e., one sensor for 10 PoIs). 

(1) Normalized Utility. We compare WRW-aLP (with different values of P ), 

BAI, and static coverage by the normalized utility measure defined as follows, 

• Normalized utility of the events captured. This is the sum of utilities of 

all the events captured within a given time interval, normalized by the total 

number of events that appear during the time interval. A higher normalized 

utility shows that the sensors can collect a larger total amount or fraction of 

the interesting information. 



 

 

 

                          
 4
   

     202

4

6

Maximum 
sensor 

0.2 

                       
0.15 

0.1 

0.05  �� �             
101

0 

�   :                                  --  .  --      -  .    -                                              _.        

                                                         00 
10 

30 

speed (mph) 

P (min) 

(a) (b)                  
 


(c) 

Figure 3.25. Normalized utility as a function of (a) maximum sensor 
speed, (b) different WRW-aLP parameters. (c) Utility per-captured 
event as a function of maximum sensor speed. 

Fig. 3.25(a) plots the normalized utility achieved by the different algorithms as a 

function of the sensor’s maximum speed. The following observations are in order: 

(i) For static coverage, the sensor always stays at one PoI. Hence, it should be able 

to capture 10% of the events at their maximum utilities. From Fig. 3.25(a), however, 

notice that static coverage has a normalized utility of about 0.08, which is less than 

0.1. This is because some of the events are short-lived, and do not last long enough 

for them to be captured at utility one. 

(ii) From Fig. 3.25(a), notice that WRW-aLP(0) has similar performance as BAI. 

This is because P = 0 ensures that the sensor will continuously move between the 

PoIs, similar to the BAI algorithm. When P increases to 80 seconds, however, WRW­

aLP(1.3) can perform significantly better than BAI. The results show that pausing 
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at PoIs can improve the quality of the sensing by allowing the events to be measured 

for longer and therefore with higher confidence. 

(iii) Static coverage is extremely efficient. Hence, while it is inherently unfair, it might 

perform the best purely from a utility standpoint. Fig. 3.25(a), however, shows that 

WRW-aLP always outperforms static coverage when the maximum speed exceeds a 

modest value. This is partly due to the concavity of the utility function. When the 

utility function is concave, much of the utility is obtained during the initial period 

of observing a new event. This encourages the sensor to occasionally move from one 

PoI to another in order to catch more new events, as long as the moving speed is not 

too low to make the travel overhead too high. 

The normalized utility as a function of P and the maximum sensor speed is shown 

in Fig. 3.25(b). Notice that the binary function is concave in both arguments, showing 

that standard techniques can be applied to compute, for example, the optimal P for 

maximizing performance. 

(2) Utility per captured event. Fig. 3.25(c) compares the utility per captured 

event for the different algorithms as a function of the maximum sensor speed. No­

tice from Fig. 3.25(c) that WRW-aLP(p), for p ≥ 1, achieves a significantly higher 

per-captured event utility than BAI or WRW-aLP(0) for the same maximum speed. 

Hence, whereas the previous results show that a positive pause time with WRW-aLP 

achieves a higher normalized utility than a continuous movement algorithm such as 

BAI or WRW-aLP(0), these results further show that they do so not by capturing 

more events, but by improving the confidence of each captured event. For the con­

tinuous movement algorithms, notice also that the per-captured event utility drops 

significantly as the sensor speed increases. This shows that for sensing with a tem­

poral dimension, too much mobility can be counterproductive. 

(3) Performance of other utility functions. We further present the perfor­

mance of the mobility algorithms when the utility of event sensing is given by other 

utility functions given in Fig. 3.2. 
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(a) Normalized utility (b) Utility per captured event 

Figure 3.26. Achieved utility as a function of maximum sensor speed 
using step utility function UI . 

(i) Step utility. Fig. 3.26 depicts the results for step utility function. The figure 

shows that pausing hurts performance in normalized utility. 

It is because as utility is achieved instantaneously when the event is captured, it 

is beneficial to move on and capture new events at other PoIs instead of waiting for 

the next event to appear at the same PoI. 

(ii) Linear utility. Fig. 3.27 depicts the results for linear utility function. The 

figure shows that a longer pause time is beneficial to achieve both a higher normalized 

utility and utility per captured event. The larger the pause time, the better the 

normalized utility. It is because by using Linear utility, it does not matter if the 

sensor is capturing the same event or a new event, provided that the maximum 

utility has not yet reached. By having a longer pause time, the mobile sensor spends 

less time on traveling over non-PoIs. At the same time, by traveling occasionally, the 

mobile sensor can capture new events at different PoI instead of waiting for the next 

event or capturing the same event beyond the time to reach maximum utility at the 

same PoI. 

(iii) Delayed-step utility. Fig. 3.28 depicts the results for step utility function. 

The figure shows that pausing is beneficial to achieve better performance in nor­

malized utility and utility per captured event. It is because a threshold amount 

of monitoring time for an event is necessary to achieve non-zero utility under the 
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(a) Normalized utility (b) Utility per captured event 

Figure 3.27. Achieved utility as a function of maximum sensor speed 
using linear utility function UL.          gg                    g                 g        U                                                                   
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(a) Normalized utility (b) Utility per captured event 

Figure 3.28. Achieved utility as a function of maximum sensor speed 
using delayed-step utility function UD. 

delayed-step utility function. Hence, if the pause time of the mobile sensor is not 

long enough, it can hardly achieve that threshold monitoring time. 

For WRW-aLP with small pause time, an initial increase in speed hurts normalized 

performance because the drop in utility per captured event under delayed-step utility 

function is significant when speed is initially increased, while the number of new events 

being captured with non-zero utility is not increased fast enough to compensate for 

the lose of utility in each monitored event. 

(iv) S-shaped utility. Fig. 3.29 depicts the results for s-shaped utility function. 

The figure shows similar performance as delayed-step utility function, but the achieved 
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(a) Normalized utility (b) Utility per captured event 

Figure 3.29. Achieved utility as a function of the maximum sensor 
speed using S-shaped utility function US. 

performance is better. it is because the drop of utility per captured event for mobile 

sensors is less significant when speed is increased initially, which is due to the more 

gradual change in utility as monitoring time is reduced than the delayed-step utility 

function. 

3.5 Summary 

In this chapter we have presented extensive analysis to understand the QoM prop­

erties of periodic proportional-share mobile sensor coverage. We show that (1) A 

higher share of the coverage time generally increases the QoM, but the relationship 

is not linear. (2) For staying events, the QoM can be much higher than the propor­

tional share, due to the observation of “extra” events that arrive when the sensor is 

not present. This justifies mobile coverage from an information-capture point of view, 

i.e., the sensor gains by moving between places to search for new information. (3) The 

event utility function is important in determining the optimal fairness granularity p. 

For concave utility functions such as Step, Exponential, and Linear utilities, the QoM 

monotonically decreases with p, whereas for Delayed-step and S-Shaped utilities, the 

QoM generally peaks at an intermediate p. Our analysis for Exponential/Pareto event 
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dynamics and different forms of the utility function is all supported by the simulation 

results. 

We have also analyzed the costs/benefits of a stateful stochastic mobile coverage 

algorithm for sensing tasks with a temporal dimension. Our results show that when 

sensor resources are constrained, a limited amount of sensor movement can provide 

threat-based fairness. Moreover, the quality of the sensing can be even better than 

best-case static coverage. Comparisons between WRW-aLP and BAI have provided 

insights on how mobility may impact our performance differently than simple event 

capture. We show that, in contrast to existing basic results on simple event capture, 

too much mobility may be counterproductive in our case, by reducing the accuracy 

of threat-based coverage and compromising the utility of the sensing results. 
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4 PRIVACY STUDY 

More economical but less precise sensors can be attached to the handheld devices 

used by the general public, especially with the advances in the sensor technologies in 

recent years, which have made the sensors smaller, lighter, cheaper, and more power 

efficient. To facilitate the design and evaluate the performance of using the general 

public as the backbone of a mobile sensor network, mobility traces of different entities 

are collected and published. In this chapter, we study the privacy vulnerability of 

published anonymous trace sets with different characteristics when the location of the 

participants can be openly observed or learned by an adversary who tries to identify 

the complete path history of the participant(s) [41]. 

4.1 System Model 

We assume a set of traces recording the movement of some mobile nodes over a 

period of time is published and made available to everyone. Participants are mobile 

nodes that have their movement being published in the trace set. The traces may be 

snapshots or samplings of the movement of the participants. To protect the privacy 

of the participants, the ID of the traces are consistently replaced with a random ID 

which is not correlated with the real ID. The granularity in the spatial and temporal 

domains may also be reduced for privacy protection. In particular, the location of a 

participant may be reported as inside an area of specific size, which we called a cell, 

instead of being reported at a specific location precisely. There is an adversary who 

tries to identify the complete trace of one or more participants from the published 

trace set. The adversary does so by collecting snapshots of the movement of the 

participant(s), which we named as side information, from sources other than the 

published traces, and uses appropriate strategies to combine the two information 
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sources and identify the complete trace of the participant. The participant(s) the 

adversary tries to identify is/are named as victim(s). 

Notations to be used in this chapter are summarized as follows, 

• Θ : The collection of all cell IDs. 

• {Li}i=1,2,...N : The collection of all the traces of the participants, each indexed 

by an anonymous index i. N is the total number of traces. More specifically, 

for each i, Li is a function of time Li : R+ −→ Θ giving the ID of the cell 

visited by participant i. 

• {sk}k=1,2,... : The sampled times at which the actual node locations are pub­

lished, i.e., Li(sk) is the published ID of the cell of the mobile node i at time 

sk. 

• R : The noisy side information of the victim. 

• {tk}k=1,2,... : The time instants corresponding to the victim’s locations in the 

sequence of noisy pieces of side information about the victim, i.e., R(tk) is the 

(perturbed) ID of the cell visited by the victim at time tk as revealed to the 

adversary. 

• Pij : The transition probability for a node to go from cell i to cell j in some 

pre-defined time interval T . 

In order to concentrate on the key issue of privacy breach, we further make the 

following assumptions: 

1. The sampled times sk’s are equally spaced. 

2. The noise in the side information in each revelation instance is assumed to be 

some iid random variable Zk’s of some given distribution PrZ . Hence we have 

R(tk) = Li∗ (tk) + Zk, (4.1) 

where i∗ is the victim’s trace ID (which is of course not known to the adversary). 
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3. All the mobile nodes are assumed to have the same movement model which is 

assumed to be Markovian. Hence the statistics of the whole collection of traces 

can be completely described by one single transition matrix Pij. This matrix is 

either given or estimated by some general world knowledge. 

4.2 Related Work 

Various privacy issues of published data sets have been studied in the litera­

ture [42–49]. Sweeney [42] proposes a protection model named k-anonymity and a set 

of accompanying policies for privacy protection. When k-anonymity is satisfied, each 

individual is indistinguishable from k−1 other individuals. Bayardo and Agrawal [43] 

propose a practical method to identify a provably optimal k-anonymization of real 

census data, or a good anonymization when the optimal one cannot be found in rea­

sonable time, because the general problem is NP-hard. Xiao and Tao [44] propose 

a generalization principle of m-invariance to effectively limit the risk of privacy dis­

closure in data re-publications, given the many potential correlations among various 

snapshots of each data entry in subsequent publications that can be used to derive 

sensitive information. Martin et al. [45] quantify the impact of background knowledge 

possessed by an attacker on privacy breach. They express the attacker’s background 

knowledge in a language, and provide an algorithm to determine the amount of dis­

closed sensitive information in the worst case with respect to the amount of the 

background knowledge. Nergiz et al. [46] extend the notation of k-anonymity for 

trajectories and propose a generalization-based approach to publish trajectories for 

further privacy protection. Abul et al. [47] propose the use of space translation to 

achieve (k, δ)-anonymity for moving objects databases, where δ is the radius of a cylin­

drical volume representing the trajectory imprecision. In the data mining context, 

Agrawak and Srikant [48] propose a reconstruction procedure to build a decision-

tree classifier without accessing the precise information in individual data records, 

so that the distributions of the data values can be reconstructed with sufficient ac­
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curacy. They also suggest the use of value-class membership and value distortion 

to preserve privacy. [49] gives a detailed study on the state-of-the-art approaches to 

protect privacy while mining knowledge from databases of trajectories. The authors 

discuss technical and regulation approaches for privacy protection on trace collection, 

processing, access, and publication, and knowledge discovery and sharing. 

Narayanan and Shmatikov [50] study the privacy implications of releasing anony­

mous and perturbed user ratings of movies in the Netflix database for a research 

competition to better predict customers’ preferences for different new movies, such 

that the revenue of Netflix can be improved. They propose an effective algorithm to 

de-anonymize the data set, and verify its performance with the published data. Their 

problem, in which an adversary is given perturbed side information about a victim 

to identify the victim’s record among all the database records, is one of the attack 

scenarios we consider in this paper. 

Privacy protection of mobile nodes in location-based services has also been stud­

ied [51–54]. One proposed approach is to reduce the spatial/temporal granularity 

of the location information made available to the service provider while achieving 

satisfactory service effectiveness [51, 52]. Hoh et al. [53] devise a protection strat­

egy to release user data only when certain privacy constraints are met. Meyerowitz 

and Choudhury [54] suggest sending fake requests with the real ones to reduce the 

ability for an adversary to trace a mobile node over time. A summary of the above 

approaches can also be found in [49]. 

Our problem differs from the previous work by its specific focus on privacy leaks of 

user location information considering the characteristics of anonymous mobility traces 

of users, under the assumption that an adversary, assisted by different amounts of side 

information that can be realistically obtained, employs various well grounded strate­

gies to infer the private information. As discussed in Chapter 1, we are motivated 

by the emerging practice of collecting traces of real users in a mobile network and 

publishing anonymized and possibly cloaked versions of these traces through various 

data portals, to assist in the design and evaluation of these networks. 
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4.3 Adversary Strategies 

In this section, we present the attack strategies to be used by the adversary. 

4.3.1 Passive Adversary 

There are many ways an adversary can collect the snapshots of a victim without 

physically observing the victim. For instance, snapshots may be collected through 

press releases, news, web blogs, online social networks, tweets, etc. After collecting 

such snapshots, the adversary may need to infer the location of the victim at the sam­

pling time of the published traces. The adversary can do so by consulting a transition 

matrix which describes the general movement pattern of nodes in the network area, 

which may be resulted from the nature of the nodes, physical constraints, and speed 

limit. The adversary then applies Bayesian Inference or use the maximum likelihood 

estimator (MLE) to identify the trace that gives the best match with these pieces of 

side information. Notice that because the adversary does not personally observe the 

victims, precision of the side information is compromised, and errors may be assumed. 

The goal of the attack strategy is that given R, find the Li that gives the best 

match. The formulation of such a procedure is described below. Given {R(tk)k=1,2,...}, 

compute 

Pr(Li|{R(tk), k = 1, 2, . . .}) 

Pr(Li, R(tk), k = 1, 2, . . .) 
= 

Pr(R(tk), k = 1, 2, . . .) 

Pr(R(tk), k = 1, 2, . . . |Li) Pr(Li) 
= . (4.2) 
�N 

j=1 Pr(R(tk), k = 1, 2, . . . |Lj) Pr(Lj) 

The goal of the MLE is to find i which maximizes the expression (4.2). Note that the 

denominator is a constant. In addition, without any knowledge about how the victim 

is chosen, we set the a priori distribution of the victim to be uniform: P (Li) = 
N 
1 for 

i = 1, 2, . . . N . Hence the solution of the MLE is given by: 

max Pr(R(tk), k = 1, 2, . . . |Li). (4.3) 
i=1,2,...N 
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With the assumption of the noise model given in (4.1), the expression (4.3) can 

be given in the following form: 

• Side information references time instants that coincide with sampled 

times in the trace only, case A1. Because the noise is iid, we have 

Pr(R(tk), k = 1, 2, . . . |Li) = ΠkPrZ(R(tk) − Li(tk)). (4.4) 

The assumption of equally spaced sampled times sk’s means {tk : k = 1, 2, . . .} = 

{sk : k = 1, 2, . . .}; then T = s2 − s1. 

• Side information may reference time instants between two consecutive 

sampled times in the set of traces, case A2. By the Markovian assumption 

of the movement model, (4.3) can be given by: 

Pr(R(tk), k = 1, 2, . . . |Li) 

= Pr(R(tk), k = 1, 2, . . . |Li(sj), j = 1, 2, . . .) 
[ ]

Πk Pr(Li(sk̃+1)|R(tk)) × Pr(R(tk)|Li(sk̃))
= [ ] , (4.5) 

Πk Pr(Li(sk̃+1)|Li(sk̃))

which can be easily expressed in terms of the transition matrix Pij . 

The assumption of equally spaced sampled times sk’s means {tk : k = 1, 2, . . .} = 

{sk : k = 1, 2, . . .}; then we assume that for each tk, there exists k̃ such that 

s˜ < tk < s˜ and tk = 1(s˜ + s˜ ). In this case, we take T = 1(s2 − s1). k k+1 2 k k+1 2

Note that the expression (4.4) takes on the particularly simple form if the noise 

Zk’s are iid Gaussian random variables N(0, σ2): 

L1 
Pr(R(tk), k = 1, 2, . . . |Li) = C exp − 

2σ2 
|R(tk) − Li(tk)|

2 , (4.6) 
k 

for some constant C. Hence, the MLE is the same as the following minimum square 

approach: 
L

�2 

min 
� R(tk) − Li(tk)� . (4.7) 

i 
k 
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The above provides a rigorous mathematical formulation for the Bayesian infer­

encing equipped with the side information. On the other hand, the above also leads 

to some simplified heuristic approaches for tackling the victim identification problem. 

Qualitatively, they are all similar to the minimum square approach. We find it a 

useful contribution to record and compare their performance. In the following we 

consider four strategies used by the adversary to identify the victim’s trace from the 

published trace set, when it collects side information {R(tk) : k = 1, 2, . . .M} of the 

victim node from third parties. We first describe them for case A1: 

1. MLE Approach (MLE). This is the same as formulation (4.4), i.e., the sim­

ilarity value of trace i is given by ΠkPrZ(R(tk) − Li(tk)). The trace with the 

maximum similarity value is declared to be the victim’s. 

2. Minimum Square Approach (MSQ). This is the same as formulation (4.7), 
� 2 

i.e., the similarity value of trace i is given by − k � R(tk)−Li(tk)� . The trace 

with the least negative similarity value is declared to be the victim’s. 

3. Basic Approach (BAS). In this approach, the adversary assumes that the 

noise is zero-mean and has a specific standard deviation (σ), but makes no 

assumption about its exact distribution. The adversary then computes the 

similarity value of trace i with the collected side information using the following 

equation: 
M 
L 

I (R(tk), Li(tk)) , (4.8) 
k=1 

where I(x, y) = 1 if |x− y| ≤ 2σ and 0 otherwise. Hence, the adversary accepts 

a trace as a potential candidate if it is possible for the trace owner to appear in 

a radius of 2 × σ of the revealed location, which encloses all possible noise if it 

is uniformly distributed, or 95.6% of noise if it is Gaussian. The trace with the 

maximum similarity value is declared to be the victim’s. 

4. Weighted Exponential Approach (EXP). In this approach, which is pro­

posed and analyzed in [50], we assume that the adversary does not know the 
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type of noise or its magnitude. Similar to BAS, the adversary computes and 

maximizes the similarity value of trace i using the following equation, 

M � � 
L 1 1 

exp − |R(tk) − Li(tk)| , (4.9) 
Weight(R(tk)) C 

k=1 

where Weight(R(tk)) is some weight assigned to the revealed cell R(tk) and C is 

a constant. In the simulations we assign equal weights to all of the cells because 

with possible errors in the revealed location, it is unclear how different weights 

could be assigned. 

The above formula can be easily modified for case A2. For convenience, we first 

define for each trace i, the function Pi : Θ × {tk : k = 1, 2, . . .M} −→ R+: 

Px,lPl,y 
Pi(l, tk) = ,

Px,y 

where x = Li(sk̃), y = Li(sk̃+1), and sk̃ < tk < sk̃+1. Then we have, 

• MLE2: 
(

L )

Πk Pi(l, tk)PrZ(R(tk) − l) . (4.42) 
l∈Θ 

• MSQ2: 
� �2L L 

Pi(l, tk)� R(tk) − l
� . (4.72) 

k l∈Θ 

• BAS2: 
M 
� � 

L L 
Pi(l, tk) × I(R(tk), l) . (4.82) 

k=1 l∈Θ 

• EXP2: 
M � � 
L L Pi(l, tk) 1 

exp − |R(tk) − l| . (4.92)
Weight(R(tk)) C 

k=1 l∈Θ 

Notice that the four approaches have the same computational complexity, which 

is linear in the number of pieces of revealed side information and the number of nodes. 
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4.3.2 Active Adversary 

The adversary can also personally observe the participants, remember the time 

and location it meets with a participant, and use these pieces of side information to 

infer the trace that gives the best match with each encountered participant. Fig. 4.1 

details the strategy used by the adversary to identify the traces of the participants. 

The Attack program takes as input the traces that are published progressively. The 

algorithm first assumes that all the traces are candidate traces for each participant. 

A trace is said to be a candidate trace of a participant if it appears at the same 

set of times and locations as when/where the adversary meets the participant, and 

the trace has not been identified. As time evolves, the adversary removes candidate 

traces which do not agree with the observed information about each victim from 

the set for that victim. The function Cascade takes two input parameters, where 

candidate set is the candidate set of all victim nodes and i is the victim ID identified. 

The function is called when a victim’s trace is identified, so as to remove that trace 

from the candidate set of other victims. 

Notice that the adversary may not identify a participant at times they meet each 

other, but the identification can occur at a later time when all but one of the candidate 

traces are identified and removed, as indicated by the recursive Cascade function call 

in Fig. 4.1. Hence, the adversary identifies a participant more efficiently when it tries 

to identify as many participants as possible in this scenario. 

4.4 Evaluation 

In this section we give a comprehensive evaluation of the privacy vulnerability 

problem in trace set publication. We first present the characteristics of the mobility 

traces we used in our evaluation. We then present the performance of the different 

privacy attack strategies of the adversary and explain the observations using the 

characteristics of the traces. 



1

2

3

4

5  

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

116 

Cascade(candidate set, i) 

let j = trace id where candidate seti = {j} 

/* remove the identified trace from candidate set of other victims */ 

For (m = 0; m < number of trace; m++) 

If trace j in candidate setm and m = i
 

remove trace j from candidate setm
 

If |candidate setm| = 1
 

Cascade(candidate set, m) 

Endif 

Endif 

Endfor 

Attack({Li}i=1,2,...N ) 

/* initially all traces are possible candidates to each victim */
 

For (m = 0; m < number of trace; m++)
 

add all traces to candidate setm
 

Endfor
 

While (sampling time not ended)
 

For each node i met at sampling time and each trace j in candidate seti 

/* check if a candidate trace appear at the observed location */ 

If (met node i at location r at sampling time and Lj(sampling time) != r) 

remove trace j from candidate seti
 

If |candidate seti| = 1
 

Cascade(candidate set, i)
 

Endif
 

Endif
 

Endfor
 

report all identified victims in the current sampling time
 

evolve sampling time
 

Endwhile 

Figure 4.1. Specification of active adversary attack algorithm.
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4.4.1 Characteristics of Mobility Traces 

We begin the evaluation by analyzing the differences in behaviors between the 

real traces and the simple synthetic traces. Their fundamental differences will be 

illustrated by six sets of mobility traces. They include two sets of real traces: (1) taxi 

cabs in the San Francisco area [55], and (2) buses in the ShangHai Grid system [10]. 

Basic statistics about these two sets of traces are listed in Table 4.1. We then make 

use of statistics from the San Francisco cab trace to generate four other synthetic 

traces using the random waypoint mobility model (rway) and two of its variants 

which impose a maximum trip length of x (in km) (rway − x with x = 10, 20), and 

the random walk model (rwalk). In particular, we use the number of cells visited 

by the cabs as the size of the map of the synthetic traces (approximated by a square 

of size 0.63◦ × 0.63◦), the average speed of the cabs (about 13.8 mph) as that of the 

synthetic mobile nodes, and the average time the cabs are active (about 15 days) as 

the simulation run time of the synthetic traces. We assume that published traces 

are snapshots taken every minute with spatial granularity of 0.01◦ in latitude and 

longitude unless stated otherwise. Characteristics of traces are studied using the 

following four metrics. Observations that can be explained using differences between 

movement preferences of the mobile nodes are summarized at the end of this section. 

They are useful in establishing intuition about the attack strategies. 

Correlation between traces 

We use the Pearson product-moment correlation coefficient [56] to quantify the 

correlations between node pairs. For any mobile node pair i and j, the quantity is 

defined as follows. 

L1 
M 

Li(sk) − ELi Lj(sk) − ELj
C(i, j) = lim , 

M→∞ M σLi 
σLjk=1 
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Table 4.1
 
Basic statistics of the real traces.
 

San Francisco cabs ShangHai Grid buses 

Min. latitude 

Max. latitude 

Min. longitude 

Max. longitude 

# cellsa 

# active cellsb 

# nodes 

Min. timestamp 

(local time) 

Max. timestamp 

(local time) 

37.05 

38.00 

-122.86 

-122.00 

8170 

3997 

536 

Sat May 17 

03:00:04 2008 

Tue June 10 

02:25:34 2008 

30.7217 

31.5899 

121.0001 

121.9117 

8004 

2108 

2348 

Mon Feb 19 

08:00:01 2007 

Sat Feb 24 

08:00:00 2007 

awhen spatial granularity is 0.01◦ . 
bcells ever visited by any node. 

where ELi and σLi 
are respectively the average and standard deviation of node i’s 

locations: 

M 
L1 

ELi = lim Li(sk), 
M→∞ N 

k=1 

σLi 
= lim 

M→∞ 

1 

M 

M 
L 

(Li(sk) − ELi)2 . 
k=1 

The distribution of the correlations between different node pairs is depicted in Fig. 4.2. 

The figure shows that movements of different cabs have little or no correlation, 

while those of the random walk nodes have higher correlations. It is because cabs 

are unlikely to follow each other for a long time. Random walk nodes show the 

highest correlation since their movements are synchronized and their choices of next 

movement are limited to the immediate neighboring cells. Although a low correlation 
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Figure 4.2. Distribution of correlations between traces of the same set. 

between the traces indicates that they do not share common paths over a long time, 

having a high correlation between the traces does not imply otherwise. It is because 

the computed correlation is based on the distance relative to the mean position of each 

trace but not to a common location, and it does not take into account the orientation 

of the nodes. 

Autocorrelation of the same trace 

The autocorrelation C(i, s) of trace i with time shifting of s is defined as: 

M 
L1 

lim (Li(sk + s) − ELi)(Li(sk) − ELi). 
M→∞ M 

k=1 

Fig. 4.3 depicts the autocorrelation as a function of the time shift s. 

The figure shows that for real traces, there are sharp rises in autocorrelation 

individually and on average when the time shift is one day. The bus traces also show 

repeatedly oscillating autocorrelation values throughout a day because each bus runs 

on a periodic schedule. Such oscillations are much less obvious for the cabs as they 

move more randomly in the city. 
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Figure 4.3. Autocorrelation of each trace for different sets of traces
as a function of the time shift s.
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Complexity of movement 

In this section, we demonstrate the complexity of nodal movements as quantified 

through the order-n model complexity given by: 

( )

L 
Hn {Li}i=1,2,...N = p(l1, . . . , ln−1)×
 

Θn−1
 

L 
p(ln|l1, . . . , ln−1) log p(ln|l1, . . . , ln−1) . (4.10) 

Θ 

In the above, the functions p(· · · ) : Θn−1 −→ R+ and p(·| · · · ) : Θ × Θn−1 −→ R+ 

are the joint probability and conditional probability densities of the locations in the 

collection of traces {Li}i=1,2,...N . 

The above function, defined for general stochastic processes, is well-known in the 

information theory community (see for example [57, Chapter 3]). The value of Hn 

represents the uncertainty of the order-n model. The smaller the value, the less 

uncertainty there is in the model. Notice that H0 is essentially the entropy of the 

stationary distribution. 

The behavior of (4.10) as a function of n is depicted in Fig. 4.4. The result 

conforms to the theoretical result that for any stationary process X, Hn(X) is a 

decreasing function of n and the limit limn→∞ Hn(X) thus exists. The limiting value 

is called the entropy rate of the process X. 

Notice that because of the relatively slow movement of the mobile nodes, the 

synthetic traces do not have enough time to reach steady state if we limit the synthetic 

traces to the same length as the real traces in quantifying their characteristics. As a 

result, although one may expect random walk traces to have a constant entropy as the 

order increases, we observe otherwise in the figure, and the entropy of the synthetic 

traces also drops more significantly than the real traces as the order increases. 
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Figure 4.4. Order-n complexity of different sets of traces as a function of order.
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(a) Average distance (b) Minimum distance
 

Figure 4.5. Average and minimum distances between each node pair.
 

Distance between traces 

Fig. 4.5(a) depicts the distribution of average distance between trace pairs, which 

is defined as 
N 
L1 

lim |Li(k) − Lj(k)|, 
N→∞ N 

k=1 

for trace pair i and j, where i = j, and Fig. 4.5(b) depicts the distribution of minimum 

distance between trace pairs, which is defined as 

min (|Li(sk) − Lj(sk)|) . 
k 
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Implications of the trace characteristics 

Many of the observed different characteristics of the mobility traces can be sum­

marized and explained using the lack of preferred locations and the random initial 

positions of the synthetic traces. Specifically, real traces show natural preferences for 

certain places visited by the mobile nodes, such as the busy downtown area for the 

cabs and the assigned routes for the buses, whereas the synthetic traces do not. 

Since synthetic traces do not have a set of preferred locations to visit, and they 

are placed randomly in the network initially, they exhibit much sparser spatial distri­

butions in the network than the real traces. Moreover, the shorter the maximum trip 

length in the synthetic traces, the sparser they are in the network. These observations 

are shown through the higher order-0 entropy of the synthetic traces than the real 

traces (Fig. 4.4), the larger autocorrelation values of the synthetic traces (Fig. 4.3), 

the longer average distances between synthetic node pairs (Fig. 4.5(a)) (with random 

walk having the largest average distance), and the fact that not all the random walk 

nodes have met each other during the simulation (Fig. 4.5(b)). On the other hand, 

the real traces have their preferred visiting places, resulting in a smaller H0 than the 

synthetic traces, and the entropy drops much more slowly when the order increases. 

This is also reflected in the smaller average distances between cabs or between buses, 

although the distance between buses exhibits a broader range because some of the 

bus routes are closer together while some are farther apart. The result is that only 

50% of the buses have met each other as shown in Fig. 4.5(b), while almost 100% of 

the cabs have met each other. 

When nodes are more sparsely distributed in the network area, more efficient vic­

tim identification results when the adversary collects the side information passively. 

Hence, we would expect victims in the synthetic traces to be more easily identified 

than in the real traces. However, sparsity of nodes can both be beneficial and detri­

mental to the performance of an adversary who observes the participants directly. It 

is because when the mobile nodes are sparsely distributed, it could take much longer 
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time for the adversary to meet them, thus harming the attack efficiency. On the 

other hand, once the adversary meets a mobile node, it could identify the trace of 

the node almost instantaneously as no other mobile nodes (and hence, traces) are 

around at the same time, thus helping the attack performance. We will verify these 

expectations experimentally in the following section. 

4.4.2 Passive Adversary 

In this section, we study the attack scenario where the adversary tries to identify 

the trace of one participant (the victim) by gathering side information passively. In 

each simulation, the victim is randomly picked from all the participants. Pairs of 

<time, location> of the victim are then randomly sampled from the trace and noise 

is introduced in the spatial domain. The noisy data are revealed to the adversary 

as side information, which the adversary utilizes to identify the complete movement 

history of the victim from the published traces. Results reported are for simulation 

experiments each repeated 100,000 times. 

We quantify the performance of the strategies with the following metrics, 

1. Fraction of correct conclusions. A conclusion is correct if the victim is uniquely 

identified according to the criterion of highest similarity metric. 

2. Fraction of incorrect conclusions. A conclusion is incorrect when the victim is 

not among the set of candidates having the highest similarity metric. 

Problem A1 - side information references time instants that coincide with sampled 

times in the trace 

We present the results based on the perception of the adversary on the noise. 

(1) Correct assumption of noise distribution 

We first consider the case when the revealed location of the victim is perturbed 

with zero-mean Gaussian noise with standard deviation σ, which matches the as­
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(e) Correct conclusions, random waypoint (f) Incorrect conclusions, random waypoint 

Figure 4.6. (A1) Performance of various metrics as a function of the 
number of <location, time> pairs revealed. (a), (b) San Francisco 
cab traces, (c), (d) ShangHai Grid bus traces, and (e), (f) random 
waypoint traces. Zero-mean Gaussian noise with σ = 5. 

sumption made by the adversary in MLE. Fig. 4.6 shows the performance of the 

attack strategies using the cab, bus, and random waypoint traces. Results of random 

walk traces are not shown because they give similar trends as random waypoint. 

When we compare the two attack strategies that assume knowledge of the noise, 

namely MLE and BAS, MLE is more aggressive as it excludes a trace from further 

consideration as soon as it determines that the trace cannot be perturbed to the 

revealed locations of the victim given the type and magnitude of the noise assumed. 
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Hence, when the adversary’s assumption is correct, this approach can give very good 

results in the fraction of correct conclusions, although it can also give a large fraction 

of incorrect conclusions initially, when the adversary has only a few pairs of the side 

information. In comparison, BAS generally returns lower fractions of both correct 

and incorrect conclusions as it gives equal weights to traces that agree with the side 

information within the error bounds. This results in more undecided conclusions. 

We now look at the other two approaches that do not use knowledge of the noise, 

namely MSQ and EXP. We can see that although MSQ does not require the knowl­

edge, its performance is similar to the best-case performance of MLE in terms of the 

fraction of correct conclusions. Meanwhile, EXP performs the worst as it puts too 

much weight on traces that give little deviations from some of the pieces of side 

information. 

(2) Wrong noise assumptions 

We now consider the case when the assumption of noise distribution made by the 

adversary in MLE is incorrect. Figs. 4.7(a) and (b) show the performance of the 

strategy when the actual and assumed noise is Gaussian and Uniform, respectively. 

Figs. 4.7(c) and (d) show the results when the actual and assumed noise is Uniform 

and Gaussian, respectively. Figs. 4.7(e) and (f) show the results when the noise 

distribution is Uniform, and the adversary assumes the same. 

Notice that among the approaches that assume about the noise, MLE is affected 

the most by the wrong assumptions. In particular, the performance of MLE varies 

depending on the types of actual and assumed noise. When the adversary assumes 

the noise to be Uniform but it is Gaussian, the performance much worsens since the 

victim’s trace can be mistakenly and permanently removed from consideration due to 

occasional Gaussian noise that exceeds the range of the assumed Uniform noise. On 

the other hand, when Gaussian noise is assumed but it is actually Uniform, MLE 

surprisingly gives a greater fraction of correct conclusions than when the correct noise 

distribution is assumed, albeit at the price of getting a greater fraction of incorrect 
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(a) Correct conclusions 

(c) Correct conclusions 

(e) Correct conclusions (f) Incorrect conclusions 

Figure 4.7. (A1) Performance of various metrics as a function of 
number of <location, time> pairs revealed. (a), (b) Uniform noise 
assumed, Gaussian actual; (c), (d) Gaussian noise assumed, Uniform 
actual; (e), (f) Uniform noise both assumed and actual. San Francisco 
cab traces. Noise with σ = 5. 

conclusions also. In contrast to MLE, the performance of BAS is less sensitive to 

the type of noise. 
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Problem A2 - side information references time instants that does not coincide with 

sampled times in the trace 

Fig. 4.8 depicts the performance of the attack approaches for different sampling 

time intervals. Zero-mean Gaussian noise with σ = 5 is introduced into the spatial 

domain of the side information except for the line labeled “no noise.” The figure 

shows that the sparser the samples in the traces, the less effective the attacks are in 

general. This is expected since when samples are sparser, inference of nodal move­

ments between the sampling points becomes less reliable. Fig. 4.9 depicts the results 

for the bus traces and the synthetic random waypoint traces. The figure shows that 

without noise in the side information, even with a sampling temporal granularity of 

an hour and spatial granularity of 0.01◦, the adversary is able to identify the victim’s 

trace by fewer than 25 pairs of side information with high probability. When noise is 

introduced, however, the results depend heavily on the traces. For instance, the ef­

fect of noisy side information on the attack strategies is insignificant for the synthetic 

traces, but it is more noticeable for the bus traces. 

When we compare the performance of the attack approaches in this case with 

the special case in the previous subsection, in which no inference using a general 

movement model is necessary, the performance here does not degrade significantly for 

MLE2 and MSQ2. Interestingly, BAS2 gives a large fraction of correct and incorrect 

conclusions initially when movement has to be inferred, while EXP2 performs about 

the same. 

Summary on passive adversary strategies 

The results show that approaches relying on the assumption of noise could have 

very poor performance when the assumption is wrong, as illustrated by the MLE 

results. On the other hand, an approach not having knowledge of the noise may 

still perform well. In particular, MSQ performs equally well as MLE even when 

the latter has the correct noise assumption. Since MSQ also performs better than 
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(e) Correct conclusions, 60 min sampling (f) Incorrect conclusions, 60 min sampling 

Figure 4.8. (A2) Performance of various metrics for attacks requiring 
different degrees of movement inference for each trace as a function of 
number of <time, location> pairs revealed. San Francisco cab traces, 
zero-mean Gaussian noise with σ = 5. (a), (b) S = ten minutes; T = 
five minutes; (c), (d) S = thirty minutes; T = fifteen minutes; (e), (f) 
S = one hour; T = half an hour. (S is the trace sampling time and 
T is the interval for computing the transition matrix.) 

the heuristic approaches of BAS and EXP, it appears to be the preferred adversary 

strategy overall. 

The results also verify our claim in Section 4.4.1 that victim identification is much 

easier for the synthetic than real traces, due to higher nodal sparsity in the former. 
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Figure 4.9. (A2) Performance of various metrics for attacks requiring 
different degrees of movement inference for each trace as a function of 
number of <time, location> pairs revealed. Traces are sampled every 
half an hour and the transition matrix is generated using sampling 
information every fifteen minutes. 

4.4.3 Results for Active Adversary 

In this section, we examine the performance of the active adversary which gains 

side information by direct meetings with the participants. Recall that this adversary 

can identify a victim by elimination, and the process is most efficient if the adversary 

meets the participants as quickly as possible. We assume that the adversary oper­

ates to achieve this goal. We further assume that the adversary’s side information 

is gained only at times coinciding with sampled times of the traces. As discussed in 

Section 4.4.1, we expect the active adversary needs a longer time to identify all the 

synthetic traces than the cab traces, because the former have sparser node distribu­

tions. Further, we expect random walk requires the longest time among the synthetic 
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Figure 4.10. (B1) Average k-anonymity as a function of attack time 
when the adversary is one of the mobile nodes. 

traces, and the bus trace requires the longer time between the real traces. To quantify 

the performance, we consider the following five metrics when applicable, 

• k-anonymity as a function of time. This metric represents the number of 

traces the victim’s one cannot be distinguished from using the side information 

available to the adversary. 

• The number of encounters to identify a victim. This is the total meeting time 

(in terms of time steps) to identify a victim’s trace. 

• The number of visits to identify a victim. This is the total number of non­

consecutive meetings with a victim to identify the victim’s trace. 

• The length of time from the beginning of simulation to identify a victim. This 

is the duration to identify a victim from the beginning. 

• The length of time from the first encounter to identify a victim. This is the 

duration to identify a victim from the first meeting with the victim. 
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Table 4.2
 
Statistics of an active adversary who is one of the participants to identify a victim.
 

Traceset Average number 

of encounters 

Average number 

of visits 

Average time (mins) 

from beginning 

Average time (mins) 

from first encounter 

cab 

shbus 

rwalk 

rway-10 

rway-20 

rway 

18.486 

12.443 

1.087 

1.077 

1.092 

1.119 

2.064 

1.736 

1.020 

1.018 

1.023 

1.031 

967.589 

1538.863 

6228.523 

4458.226 

3965.484 

3382.869 

142.430 

301.192 

11.074 

44.106 

57.673 

71.222 

Problem B1 - adversary as one of the participants 

Fig. 4.10 depicts the average k-anonymity of the victims as observed by the ad­

versary as a function of the attack time for different sets of the traces, when the 

adversary is one of the mobile nodes. The figure shows that the most reduction in 

k-anonymity for each participant results from observations made in the first day in 

the real traces. The figure also shows that as time increases, the k-anonymity always 

drops to close to one on average, except for random walk traces and the bus traces 

as expected. 

Table 4.2 lists the averages of the other four metrics, which shows that, as our 

expectation, synthetic traces takes fewer number of encounters and visits to identify 

a victim trace. Among random waypoint traces, the set without bound takes slightly 

larger number of encounters to identify a victim trace because the mobile nodes are 

more likely to be present at the center of the network area, and meet with each 

other there with the presence of other nodes. Hence, it is harder for an adversary 

to identify the victims, and more encounters are needed (albeit slightly more). On 

the other hand, random walk traces also need slightly more encounters and visits 

to identify a victim trace than other synthetic traces because of the synchronized 

movement of the nodes, which means that if two mobile nodes visit the same cell at 
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(a) Real traces (b) Synthetic traces 

Figure 4.11. Distribution of total number of meeting time to identify 
a victim when the adversary is one of participants.
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(a) Real traces (b) Synthetic traces 

Figure 4.12. Distribution of number of non-consecutive meetings to 
identify a victim when the adversary is one of participants. 

the same time together with the adversary, they are likely to leave the cell at the 

same time, and the adversary needs at least one more encountering to differentiate 

the two. 

The table also shows that cab traces need more encounters and visits than bus 

traces to identify, but the total time needed is shorter. It is because when the adver­

sary is one of the cabs, they are more likely to follow the same path for a longer time 

in the busy district. At the same time, when cab traces cannot be identified, they can 

be encountered more quickly in the busy district. On the other hand, buses are more 

likely to follow different routes, and hence, they are less likely to encounter each other 

consecutively for long time. Moreover, since they run different routes, they are met 

much less frequently than cabs, and hence, it takes a longer time to identify them. 
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(a) Real traces (from beginning) (b) Synthetic traces (from beginning)
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(c) Real traces (from first encounter) (d) Synthetic traces (from first encounter) 

Figure 4.13. Distribution of time ((a), (b) from beginning; (c), (d) 
from first encounter) to identify a victim when the adversary is one 
of participants. 

Fig. 4.11 depicts the distribution of total number of meeting time to identify a 

victim, while Fig. 4.12 depicts the distribution of number of non-consecutive meetings 

to identify the victim. They show that if the adversary is one of the participants in 

real traces, it takes a long time for him to identify a victim. It is because in a short 

time interval, nodes that are close together are more likely to stay together because 

of physical constraints or preferences. This is much less likely for synthetic traces. 

Fig. 4.13 depicts the distribution of time from the beginning of the simulation and 

from the first encounter to identify a victim. The figure shows that for real traces, 

there are periodic pattern in the number of victims identified as a function of time 

from the beginning. The sharp peaks of the buses indicate the early morning peak 

hours when buses start serving. The pattern for cabs is less obvious as some of them 

work overnight. Among all synthetic traces, shorter time from beginning is needed to 

identify a trace of mobile nodes of longer trip length. It is because when nodes can 

http:Figure4.13
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Table 4.3
 
Statistics of a static adversary to identify a victim.
 

Traceset Average number 

of encounters 

Average number 

of visits 

Average time (mins) 

from beginning 

Average time (mins) 

from first encounter 

cab 

shbus 

rwalk 

rway-10 

rway-20 

rway 

1.569 

3.929 

1.112 

1.065 

1.074 

1.084 

1.040 

1.064 

1.018 

1.004 

1.005 

1.006 

4427.944 

1556.462 

6649.473 

5746.883 

5406.299 

5152.405 

20.454 

19.611 

12.003 

19.100 

27.807 

31.429 

travel a longer distance, they are more likely to visit more places in a shorter time 

and possibly meet with the adversary. 

The figure also shows that for synthetic traces, most of the victim traces can be 

identified in a short time. In particular, most of the victim traces can be identified 

at the first meeting with the adversary because there are no other mobile nodes at 

the same location at the same time when the victim meets with the adversary. 

Problem B2 - adversary stays at one of the cells 

Fig. 4.14 depicts the k-anonymity of the victims as observed by the adversary as 

a function of attack time, when the adversary stays at one of the cells. Each line in 

the figure represents the results for a particular staying cell, and the line label shows 

the relative coordinates of that cell in the network area. We plot the results of the 

six most popular cells in each figure, and the popularity of a cell is ranked according 

to the total number of visits made by the mobile nodes over the entire trace. 

The figures indicate that for the real traces, staying at a cell for a day is sufficient 

to reduce the k-anonymity for each participant significantly. The improvement by 

staying longer at each cell is minimal. The k-anonymity of the random walk and bus 

traces drops more slowly than the other traces as expected. 
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(c) random walk (d) random waypoint 

Figure 4.14. (B2) k-anonymity of the victim as observed by a static 
adversary as a function of attack time. 

Table 4.3 lists the averages of the other four metrics, which shows that the per­

formance for synthetic traces when the adversary is one of the participants is very 

similar to the previous case. It is because for synthetic traces, being one of the mobile 

nodes is very similar to being one of the cells. 

At the same time, the table shows that it takes longer time to identify a victim from 

synthetic traces than real traces from the beginning of the trace collection period. It 

is because synthetic mobile nodes are more sparsely distributed in the network area, 

and the time for a mobile node to move across the area is longer when they are 

only able to travel a shorter distance. Notice that among the real traces, bus traces 

take shorter time to identify. It is because buses usually follow a specific schedule 

throughout a week. Hence, it is more likely for a static adversary to identify the trace 

of a bus on the first day, or the adversary cannot identify the victim’s trace at all 

since the bus does not visit the cell during the week. 
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(a) Real traces (b) Synthetic traces 

Figure 4.15. Distribution of number of encounters to identify a victim 
when the adversary is static. 

The table also shows that when we consider the time needed to identify a victim 

trace from the first encountering among synthetic traces, the one with shorter trip 

length takes shorter time. It is because if the mobile node cannot be identified 

instantaneously, it takes a shorter time for them to reach the same cell again if they 

can only travel for a shorter length, and then they are very likely to be identified. 

Fig. 4.15 depicts the distribution of number of encounters to identify a victim, 

which shows that fractionally, most of the synthetic traces can be identified by en­

countering the mobile node once. The performance among synthetic traces is very 

similar. While among real traces, interestingly cab traces are more easily identified 

than the bus traces in terms of the number of encounters. Intuitively we would expect 

the otherwise because cabs are more likely to move within the downtown area, and 

hence, they should be less easily identified since there are more traces show similar 

paths. On the other hand, as cabs are less likely to follow each other for a long time, 

when they cannot be identified at the first encountering by the adversary, they are 

more likely to be differentiated at the next encountering. Meanwhile, it takes a longer 

time for buses to move across a cell, resulting in a greater number of encounters before 

the trace of a passing node is identified. 

Fig. 4.15 also shows that when we consider the number of victims identified among 

the synthetic traces, the longer the average trip length, the greater the number of vic­

tims identified by a static adversary with a single observation, except the one without 

http:Figure4.15


138

                         4   22


                    4 2  
                2                               
        
  


                 


    6
              
     
    


         6 


      
                                      "         
                         

(a) Real traces (b) Synthetic traces 

Figure 4.16. Distribution of time (from beginning) to identify a victim 
when the adversary is static. 

bound in trip length. It is because when the trip length increases, a mobile node is 

more likely to visit more places, resulting in greater number of victims identified (re­

call that the figure considers all victims identified at all possible locations.) When 

there is no bound on the travel trip length, however, cells at the center are more likely 

to be visited by more than one mobile nodes at the same time, and hence, victims 

are less easily identified there, resulting in a slight drop in the number of victims 

identified. 

Fig. 4.16 depicts the distribution of time from the beginning of the traces to 

identify a victim, which shows that for real traces, there are periodic pattern in the 

number of victims identified as a function of time. The sharp peaks of the buses 

indicate the early morning peak hours when buses start serving. The pattern for cabs 

is less obvious as some of them work overnight. Among all synthetic traces, shorter 

time is needed to identify a trace of mobile nodes of longer trip length. It is because 

when nodes can travel a longer distance, they are more likely to visit more places in 

a shorter time, and being identified at these locations earlier. 

Problem B3 - adversary moves actively in the area 

Fig. 4.17 depicts the k-anonymity of the victim as observed by the adversary as a 

function of attack time, when the adversary moves actively inside the network area. 

http:Figure4.16
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(c) random walk (d) random waypoint 

Figure 4.17. (B3) k-anonymity of the victim as observed by the ad­
versary as a function of attack time, when the adversary is mobile 
within a pre-determined path. 

The label of each line in the figure indicates the number of popular cells visited by 

the adversary. Notice that as the adversary travels between the popular cells, it may 

visit other cells during the journeys. 

The figures show that travels made by the adversary generally improve the attack 

efficiency in identifying the traces. For instance, for the bus traces, traveling helps 

the adversary reduce the size of the candidate set for each participant from more than 

2000 to only a few in about one day, while staying at a cell can only reduce the size 

by half. It is because by traveling, the adversary is able to meet more participants, 

especially when their spatial distribution is sparser, such as the random walk and bus 

traces. However, traveling to too many places may hurt the performance because the 

adversary may spend too much time traveling over unpopular places. 
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Summary on active adversary strategies 

The results show that for the real traces, the ability of the active adversary to 

travel helps it identify many of the victim traces within one day. For synthetic traces, 

however, the attack efficiency is lower because their spatial distribution is sparser, 

verifying our observation in Section 4.4.1, though it is still better than staying at 

a cell or being one of the participants in general. When the adversary prefers to 

stay at a cell, the attack efficiency depends on the type of traces and the location of 

the adversary. In general, staying at a more popular location helps by allowing the 

adversary to identify more victims more quickly. 

4.5 Summary 

In this chapter, we discussed the privacy vulnerability of publishing mobile traces 

to assist the analysis and evaluation of mobile sensor networks, since the mobile enti­

ties could also be observed directly or indirectly by an adversary, who tries to identify 

the complete path history of one or more of the participants. We presented compre­

hensive strategies for an adversary to utilize side information about node movements 

to achieve different privacy attacks. The simulation results under comprehensive sys­

tem parameters, such as the nodal mobility, adversary strategy, noise in the trace 

or the side information, and different degrees of movement inference needed for the 

attack, show that the adversary is able to identify victims with high probability even 

when the available side information is limited and noisy. 

We also explained the differences between traces with different characteristics, 

such as the different sparsity of real and synthetic traces, from the perspective of the 

privacy problem. A privacy protection measure targeting the synthetic traces may 

not be effective on real traces because of these differences. 
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5 SUMMARY 

In this dissertation we have studied two interesting and important problems in mobile 

sensor networks. 

We have studied mobility algorithms for sensors to cover a surveillance area. We 

considered two types of mobility: stateful and stateless. For the stateful algorithms, 

we studied how to add features to a basic algorithm to achieve a good balance between 

different (possibly antagonistic) goals of the user. We showed the benefits of pausing 

in the weighted random waypoint algorithm for achieving (i) good matching between 

the coverage and threat profiles of the network, and (ii) high-confidence event moni­

toring when the temporal dimension of sensing is considered. Further to single sensors, 

we studied various coordination approaches for multiple sensors. We found that if the 

sensor density is low, or if matching and fairness are the only performance objectives, 

then coordination among the sensors is largely not necessary. However, we found also 

that if the sensor density is high, then different coordination approaches can result 

in significantly different performance, complexity, and robustness to changes. In par­

ticular, to have good matching, exposure, and effective coverage simultaneously, the 

sensors should partition their responsibilities for cover different parts of the network, 

such that each sensor will only need to monitor a smaller sub-region. 

For the stateless mobility algorithm, we analyzed the use of a steepest descent 

algorithm to compute the optimal transition probabilities for maximizing a given 

utility function. We further proposed the use of an adaptive time step to improve the 

search efficiency as an implementation issue. Importantly, our results demonstrate 

that numerous local optima may exist in the solution space, and we showed how the 

use of controlled noise can help us get out of these local optima with high probability. 

We have analyzed the quality of monitoring of a general paradigm of periodic cov­

erage by mobile sensors. We showed the basic importance of the temporal dimension 
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of sensing in determining the performance of different coverage strategies. Our results 

are also applicable for duty-cycled static sensors that are widely deployed for energy 

efficiency. 

We then studied the privacy issue in publishing anonymous mobility traces. We 

provided a comprehensive study on analyzing available attack strategies to an adver­

sary who may collect or infer location information of one or more participants in the 

network. We formally proved that certain strategies can use all available information 

effectively in the attack. Our analysis is verified and complemented by simulation 

results under comprehensive system parameters, including nodal mobility, adversary 

strategy, noise in the trace or the side information, and degree of movement inference 

needed. In particular, we studied different characteristics of synthetic and real-world 

mobilities, and discussed their implications on the privacy attack. In general, our re­

sults showed that the adversary is able to identify the complete history of the victims 

with high probability even when the available side information is limited, indicating 

the privacy concerns of publishing these trace sets. 

5.1 Future Work 

In this dissertation we have presented algorithms for controlling the movement 

of mobile sensors for given user- and application-specific goals. Further interesting 

research includes the following. 

• Better coordination between multiple sensors. We have studied studied 

a number of coordination approaches that vary in performance complexity. Al­

gorithms that are provably optimal by certain metrics are still missing. Also, 

the way responsibilities are divided among the sensors in the MD and MDO 

approaches is specific to the goals of matching and fairness. It is interesting to 

study how responsibilities can be divided effectively when other performance 

considerations are introduced into the cost function. 
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• Stateless mobility algorithm for multiple sensors. The stateless mobility 

algorithm is based on the optimization of a cost function. Its extension to 

multiple sensors means that the cost function must be generalized to include 

the effects of sensor interactions, such as duplicate coverage in certain cases. 

The generalization is interesting and can lead to the determination of optimal 

transition probabilities for multiple collaborating sensors in a network. 

• Privacy protection for mobility traces. We showed that when anonymous 

mobility traces are published even with reduced spatial and/or temporal pre­

cision, the complete path history of participants may still be revealed by an 

adversary armed with a small amount of side information. An interesting next 

problem is to devise techniques for privacy protection of the traces without 

compromising knowledge that is intended to be learned from them. This will 

require a delicate balance between preserving the essential properties of traces 

for a particular objective and fuzzing the details to avoid leak of sensitive in­

formation. 
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