
CERIAS Tech Report 2009-32
Data in the Cloud: Authentication without Leaking

 by Ashish Kundu
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

DATA IN THE CLOUD: AUTHENTICATION WITHOUT LEAKING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ashish Kundu

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2010

Purdue University

West Lafayette, Indiana

ii

Dedicated to

My Beloved Parents

Aniruddha and Brundabati

and Grandparents Uday and Menaka

iii

ACKNOWLEDGMENTS

Translation from Sanskrit:
“Salutations to that Guru, who is the Creator,

Sustainer and Destroyer, who is the limiteless one.”
Adi Shankaracharya (788–821 CE)

Here is another night, quietly passing by. Perhaps, the last night of my pursuit of the

degree, that degree, for which I started this marathon in 2005 – the highest academic

degree of Ph.D. In the air, there is a feeling of nostalgia, a feeling of emptiness,

alongwith, of course, a great sense of joy and perhaps, relief. A great number of

individuals have contributed to my successful run at Ph.D. and to this feeling of mine

today. I wish I could mention each one of them with honor and gratitude here. Alas!

This night may not last that long. But I would give it a try.

Without the constant encouragement, support, and inspiration over these years

from my advisor, Prof. Elisa Bertino, it would not have been possible at all for this

dissertation to materialize. I have the highest respect and gratitude in my heart for

Prof. Bertino, who has painstakingly listened to my ideas and thoughts, revised my

papers, and has shown me the right directions. My advisor has been instrumental in

all the success during my Ph.D. I feel honored and privileged to have such a great

advisor and a distinguished doctoral committee.

I would like to express my sincere-most gratitude and respect for Prof. Mikhail

Atallah for being such a great teacher to me, for giving me an opportunity to work

with him, for kindly serving on the doctoral committee.

I would like to express my highest regards and gratitude for Dr. Guruduth Ba-

navar. Dr. Banavar has been a great mentor, and a constant source of inspiration

iv

and encouragement to me not only during my Ph.D. as a member of the doctoral

committee but also since the days I started working in his group at IBM Research.

Dr. Banavar has regularly monitored my progress, the direction of my research, and

has played a pivotal role in my development as a researcher and individual. I would

also like to thank Dr. Nevenka Dimitrova for her encouragement during my Ph.D.,

and for inspiring me to work on solving real world problems such as those in biology

with the help of computer science.

I am highly thankful to Prof. Ninghui Li for kindly serving on my doctoral com-

mittee, and for his kind advice and feedbacks throughout my Ph.D. My sincere-most

gratitude to Prof. Sunil Prabhakar, for kindly serving on my doctoral committee, for

his suggestions, and encouragement over these years.

I am highly thankful to Prof. Eugene Spafford for his kind support and encour-

agement, and for being such a wonderful teacher to me over all these years. I would

like to express my sincere-most gratitude to Professors Aditya Mathur and Jyoti

Mathur, who have been very inspirational to me over all these years with a great

positive influence during my graduate studies. I am highly thankful to Professors

Greg Frederickson, Susanne Hambrusch, Samuel Wagstaff, Christina Nita-Rotaru,

Patrick Eugster, Bharat Bhargava, Saurabh Bagchi, Kihong Park, Chris Clifton, So-

nia Fahmy, and Ahmed Elmagarmid for their time, advice and help at various stages

during my Ph.D. I am very much thankful to Dr. William J. Gorman for his sup-

port and help related to my progress during my Ph.D., and for his patience and

perseverance towards the realization of this dissertation in this final form.

I would like to extend my sincere gratitude and respect to Dr. Ponani Gopalakr-

ishnan, the then Director of IBM India Research Lab, for his kind support and en-

couragement towards my Ph.D. during 2005. I would like to extend my sincere-most

thanks to Dr. Amit A. Nanavati and Ms. Hruta Nanavati for being such wonderful

friends to me. Since the time Amit and I came to know each other at IBM, Amit

has encouraged and guided me towards my Ph.D. and research. His honest thoughts

and advice have had a great positive influence on my personal and professional de-

v

velopment. I have my heart-felt gratitude and regards for Dr. Sudha Krishnamurthy

who have given me her invaluable thoughts and advice before and during my Ph.D.

My sincere thanks to Prof. Rahul Shah, Prof. Amitabh Chaudhary, Dr. Tanu Malik,

and Dr. Ashish Gehani for their insightful thoughts and advice during my Ph.D. I

would like to extend my greatest thanks to my ex-colleagues at IBM, from whom I

have learnt a lot – Dr. Danny Soroker, Dr. Vijay Naik, Dr. Mukesh Mohania, Dr.

Satish Chandra, Dr. Neeran Karnik, Dr. Vinayaka Pandit, Krishna P. Chitrapura,

Nitendra Rajput, Girish Chafle, Vikas Agarwal and Arun Kumar.

Whatever I am today and whatsoever success I have achieved are because of my

loving family. My parents Aniruddha and Brundabati have been my finest teachers,

and have given me an unlimited world full of love and compassion, a world where

each horizon is colorful and full of happiness, a world of hope and optimism, a world

that they have created tirelessly with their vision and great sacrifices and dedication.

No word can ever describe their love for me – words have edges and boundaries, while

their love for me is limitless. The love and affection of my paternal grandparents

Uday and Menaka, and maternal grandparents Satyendra and Bidhumati have played

a significant role in my growth as an individual. My elder brother, Chinmay, a Ph.D.

in Aerospace Engineering has mentored me since college days, has been there with

me always. My elder sister, Chinmayi is an epitome of love and care, and has given

a sense of security in every step of my life. My brother-in-law, Prof. Narayan Jana,

a Ph.D. in Geography and co-author of several books, have been of constant advice

to me on how to do a Ph.D. or rather how not to do a Ph.D. Nandini, my sweet

little niece, has brought joy and happiness for me always, whenever I have stared at

the bottom of the horizon. And then there is some love in the life of this graduate

student – Rakhi, my wife, who has been with me since I started my doctoral research,

and through all the ups and downs. She has given me all her unconditional love and

support, so that I could just focus on doing my research. She is the first person (other

than the author), who has painstakingly reviewed this dissertation. My in-laws Dr.

Satish Tyagi, and Savita Tyagi have given me a lot of encouragement and support

vi

towards my doctoral research. Rakhi’s grand-father Jai Dutt Tyagi has been a great

source of inspiration for me. I am very much thankful to God for giving me such a

loving and wonderful family.

I would like to thank my friends S. Ravi Shankar, G. N. Mangalam, Aditya Phatak,

Suhas Urkude, Amit Shirsat, Ravi Aggu Sher, Jay Dhariwal, Udaya Yalamanchi,

Sarvjeet Singh, Niharika R. Singh, Debabrata Mohapatra, Suprem Das, Mummoor-

thy Murugesan, Yinian Qi, Mohan Rokkam, Asima Mishra, Gaurav Nanda, Romila

Pradhan, Cecon Mohapatra, Lalatendu Acharya, Ashish Kamra, Abhilasha Bhargav-

Spantzel, Prathima R. Bobbarjung, and Deepak R. Bobbarjung, Somesh Soni, Rashmi

Singh, Sanjib Kundu, and Rabindra Senapati.

I would like to thank Cathy Muller and Asha Thimmanna of IBM. I offer my

heartiest thanks and regards to the late Amy Ingram, who used to work as the

graduate office secretary in the Department of Computer Science. For the most part

of my graduate studies, Amy had been of great help to me in taking care of various

matters related to administration. May her soul rest in peace. I would also like to

thank all the staff of the Computer Science and CERIAS for their help and support

over these years.

vii

PREFACE

Take up an idea, devote yourself to it,
struggle on in patience, and the sun will rise for you.

Swami Vivekananda [133]

No Words – Acts.
The Mother (Pondicherry, 1969)

Since my first semester, I was in search of an important problem that would form

the core of my doctoral thesis. I knew of one problem in language security, from my

work at IBM Research; however, I was not sure if that was of the right depth and

breadth to become a topic of doctoral research.

During the Fall 2005, I was taking the class of Information Security offered by

Prof. Elisa Bertino. During the discussion of secure XML dissemination in the class,

I found that existing schemes leak information, especially structural information. I

discussed this problem with Prof. Bertino, who suggested me to study it further as

a course project. Thus I started working on the problem of “Authentication of trees

without leaking”.

Our first paper in this topic was on secure dissemination of XML documents

using randomized traversal numbers, which received the Best Student Paper at IEEE

Enterprise Computing (2006). We were encouraged by this interest in the community,

and wanted to explore this problem further. At this point, with the advice of my

advisor Prof. Bertino, we decided to take this problem as the topic of my doctoral

research. We developed a scheme for leakage-free authentication of trees, following

which we asked ourselves – can we solve the problem for graphs, or is it the end of

this problem? It seemed to be more challenging, especially for cyclic graphs. Since

we found that the problem had enough depth and breadth for the purpose of doctoral

research, we continued working on it.

viii

TABLE OF CONTENTS

Page

LIST OF TABLES . xii

LIST OF FIGURES . xiii

ABBREVIATIONS . xvi

ABSTRACT . xvii

1 INTRODUCTION . 1
1.1 The Problem . 5
1.2 Contributions . 7
1.3 Dissertation Roadmap . 9

2 RELATED WORKS . 10
2.1 Merkle Hash Technique . 10
2.2 Authenticated data structures . 11
2.3 Transitive Signatures . 12
2.4 Redactable Signatures . 13
2.5 Sanitizable Signatures . 14
2.6 Commitment Schemes . 15
2.7 Proxy Signatures . 15
2.8 Zero-Knowledge Sets and Membership Queries 16
2.9 Hashing and Accumulation Schemes 17
2.10 Traversal numbers . 18
2.11 RSA Signatures . 18
2.12 Privacy-preserving Authentication of Query Results 19
2.13 Secure Publish/Subscribe . 21

3 STRUCTURAL LEAKAGES AND PRIVACY 23
3.1 Inference Attacks on Merkle Hash Technique 23

3.1.1 Leakages during Authentication using MHT 24
3.1.2 Inference Attacks . 25

3.2 Structural Leakages in Tree-structured Data 26
3.3 Structural Leakages in Graph-structured Data 33

4 FORMAL MODEL OF LEAKAGE-FREE REDACTABLE SIGNATURES 38
4.1 Preliminaries . 38

4.1.1 Signature Schemes . 39
4.1.2 Forgery . 40

ix

Page
4.2 Leakage-Free Redactable Signatures 41

4.2.1 Why a New Model? . 41
4.2.2 Definition of a General Scheme 42

4.3 Security of Leakage-Free Redactable Signatures 44
4.3.1 Unforgeability . 44
4.3.2 Leakage-Free Properties . 46
4.3.3 Privacy . 47
4.3.4 Transparency . 48
4.3.5 Relationships of Privacy and Transparency 49

4.4 Secure Names . 50
4.4.1 Secure Naming Schemes . 50
4.4.2 Security of Naming Schemes 51

4.5 Summary . 53

5 STRUCTURAL SIGNATURES FOR TREES 54
5.1 Review of Tree Traversals . 54
5.2 Randomized Traversal Numbers . 55

5.2.1 Computation of randomized traversal numbers 57
5.3 Structural Signatures . 58

5.3.1 Signing (rSign) . 59
5.3.2 Distribution of a Subtree (rRedact) 60
5.3.3 Distribution of a Subtree along with its Structure 61
5.3.4 Authentication (rVrfy) . 61
5.3.5 Sharing a Subtree – Only the Nodes 62
5.3.6 Illustration . 66

5.4 Security Analysis . 67
5.5 Complexity and Performance Analysis 69

5.5.1 Complexity Analysis . 70
5.5.2 Performance . 70

5.6 Dynamic Trees . 74
5.7 Applications . 77

5.7.1 Automatic Recovery from Structural Errors 77
5.8 Summary . 78

6 STRUCTURAL SIGNATURES FOR GRAPHS 79
6.1 Background . 79
6.2 DAGs . 82

6.2.1 Signing a DAG . 84
6.2.2 Distribution . 85
6.2.3 Authentication . 85

6.3 Graphs with Cycles . 88
6.3.1 Signing a Graph . 93
6.3.2 Distribution . 93

x

Page

6.3.3 Authentication . 93
6.4 Security Analysis . 100
6.5 Complexity and Performance Results 104

6.5.1 Complexity . 105
6.5.2 Performance Results . 106

6.6 Summary . 107

7 LEAKAGE-FREE REDACTABLE SIGNATURES 110
7.1 Trees . 110

7.1.1 Preliminary Scheme (Scheme-1) 111
7.1.2 Efficient Scheme (Scheme-2) 113
7.1.3 Secure Names . 114
7.1.4 Leakage-Free Signatures of Trees (rSign) 117
7.1.5 Distribution (rRedact) . 118
7.1.6 Authentication (rVrfy) . 119

7.2 Graphs . 122
7.2.1 Leakage-Free Signatures for Graphs (rSign) 123
7.2.2 Distribution of Graphs (rRedact) 123
7.2.3 Authentication (rVrfy) . 126

7.3 Single Signature Scheme . 127
7.3.1 LFR Signature: rΠ . 128
7.3.2 Complexity . 130

7.4 Security Analysis . 130
7.4.1 Secure Names . 131
7.4.2 Trees . 133
7.4.3 Graphs . 134
7.4.4 Single Signature Scheme . 134

7.5 Performance Results . 135
7.5.1 CRSA/BGLS-based Schemes 139
7.5.2 Single Signature Scheme . 140

7.6 Discussion . 142
7.6.1 Forests . 143
7.6.2 Encrypted Trees, Graphs and Forests 143
7.6.3 Dynamic Trees, Graphs and Forests 143
7.6.4 Automatic Recovery from Structural Errors 144
7.6.5 Path Queries . 144

7.7 Summary . 145

8 SECURE PUBLISH/SUBSCRIBE OF XML 146
8.1 Some Simple Observations . 147
8.2 XML Data Model . 147
8.3 Document Encoding and Encryption 148
8.4 Structure-based Routing . 149

xi

Page
8.4.1 Content Routers . 151
8.4.2 Dissemination Network . 153
8.4.3 Content Publishing . 155
8.4.4 Document Verification . 157
8.4.5 Update Management . 158

8.5 Discussion . 158
8.6 Summary . 161

9 AUTHENTICATION OF OBJECTS . 162
9.1 Introduction . 162
9.2 Objects . 163
9.3 Object Trees . 164
9.4 Redaction of Objects . 166
9.5 Authentication of Objects . 168

9.5.1 Scheme Based on Merkle Hash Technique 169
9.5.2 Leakage-free Scheme . 170

9.6 Summary . 171

10 CONCLUSIONS . 172
10.1 Research Contributions . 172
10.2 Open Problems . 174
10.3 Future Research Directions . 175

LIST OF REFERENCES . 177

VITA . 188

xii

LIST OF TABLES

Table Page

3.1 Leakage during authentication of Tδ2 using MHT 29

3.2 Inference of sensitive information from leakages (Continued to Table 3.3) 30

3.3 Inference of sensitive information from leakages (Continued from Table 3.2) 31

3.4 XML elements for the healthcare records 34

3.5 Leakage via cross-edge e(g11, g12), subgraph: Gδ1. 35

3.6 Leakage via back-edge e(g14, g9), subgraph: Gδ2. 36

6.1 Acronyms and notations . 80

6.2 Information leakages via edge-types. 82

8.1 Encoding of XML tree in Figure 8.1. 149

8.2 Information at a router for PEPON 43 in Figure 8.3. 153

xiii

LIST OF FIGURES

Figure Page

1.1 (a) Tree T and subtree Tδ. (b) Graph G and subgraph Gδ. 3

3.1 An example tree with each node having some content. 24

3.2 XML-based Health-care record of a patient. 27

3.3 The tree representation of the HealthRecord in Figure 3.2. 28

3.4 A health-record graph; tree-edges in bold. 33

5.1 Algorithm to sign a tree. 60

5.2 Protocol for trees. 61

5.3 Algorithm to compute the redacted signature of a subtree Tδ(Vδ, Eδ) ⊆
T (V,E). 62

5.4 Algorithm to verify the authenticity of a redacted subtree Tδ(Vδ, Eδ). . 64

5.5 Algorithm to reconstruct the structure of a tree given the set of structural
positions. 65

5.6 (a) Post-order and pre-order numbers assigned to the healthcare record as
(PON, RON). (b) Randomized post-order and pre-order numbers assigned
to the healthcare record as (RPON, RRON). 66

5.7 CRSA: Average time to sign versus number of IVs. 70

5.8 BGLS: Average time to sign versus number of IVs. 71

5.9 CRSA: Average time to distribute versus number of IVs. 71

5.10 BGLS: Average time to distribute versus number of IVs. 72

5.11 CRSA: Average time to verify versus number of nodes. 72

5.12 BGLS: Average time to verify versus number of nodes. 73

6.1 A graph with depth-first tree in bold. 81

6.2 Algorithm to sign a DAG. 86

6.3 Algorithm to redact a DAG. 87

6.4 Protocol for DAGs. 87

xiv

Figure Page

6.5 Algorithm to authenticate a DAG. 88

6.6 Illustration of not-β-covered edges. 90

6.7 Algorithm to sign a graph (continued to Figure 6.8). 95

6.8 Algorithm to sign a graph (continued from Figure 6.7). 96

6.9 Algorithm to distribute a subgraph (continued to Figure 6.10). 97

6.10 Algorithm to distribute a subgraph (continued from Figure 6.9). 98

6.11 Protocol for graphs. 98

6.12 Algorithm to verify the structural integrity of a graph. 99

6.13 Average time in seconds to compute the χ- and τ -structural positions vs.
the number of cross-edges in each ordered-DAG. 106

6.14 Average time in seconds to compute the β-,χ- and τ -structural positions
vs. the number of back-edges in a graph with cycles. 107

6.15 Leakages in structural signature scheme for trees. 108

7.1 Algorithm to compute secure names for T (V,E) (Scheme-1). 112

7.2 Secure names ηVi
and ηx of siblings Vi and x in the context of the efficient

naming scheme. 113

7.3 Efficient algorithm to compute secure names for tree T (V,E) (Scheme-2)
(Continued to Figure 7.4). 115

7.4 Efficient algorithm to compute secure names for tree T (V,E) (Scheme-2)
(Continuted from Figure 7.3). 116

7.5 Algorithm to sign a tree. 119

7.6 Algorithm to redact a subtree. 120

7.7 Algorithm to verify a subtree. 121

7.8 Algorithm to sign a graph. 124

7.9 Algorithm to redact a subgraph. 124

7.10 Algorithm to verify a subgraph. 125

7.11 Algorithm to sign a tree. 128

7.12 Algorithm to redact a tree. 128

7.13 Algorithm to verify a tree. 129

xv

Figure Page

7.14 Average number of attempts to assign a secure name to a node; branching
factor ≤ 100. 136

7.15 Average time in micro-sec to assign a secure name to a node; branching
factor ≤ 100. 137

7.16 Average number of attempts to assign a secure name to a node; branching
factor ≤ 300. 138

7.17 Average time in micro-sec to assign a secure name to a node; branching
factor ≤ 300. 138

7.18 CRSA: Time to sign a tree. 139

7.19 CRSA: Time to redact a subtree. 139

7.20 CRSA: Time to verify a subtree. 140

7.21 Computation of signature of a tree. 141

7.22 Computation of redacted signature of a subtree. 141

7.23 Computation of verification of a subtree. 142

8.1 (a) A tree: abstract representation of an XML Document, (b) Post-order
numbers associated with each node and (c) Randomized post-order num-
bers associated with each node. 147

8.2 Three sub-trees of the content tree are shared with three consumers: con-
sumer 1, 2 and 3. 149

8.3 Routing of three sub-trees to consumers using RPONs. 152

9.1 Tree representations of members of objects: (a) primitive data type, (b)
array of primitive types, (c) methods, and (d) instances of user-defined
types.) . 165

9.2 (a) Class hierarchy of Emp and RegEmp, (b) Object Tree of objRegEmp1.
(c) Redacted object tree for scenario 2, (d) Redacted object tree for sce-
nario 3. 169

xvi

ABBREVIATIONS

PON Post-Order Number

RON Pre-Order Number

ION In-Order Number

RPON Randomized Post-Order Number

RRON Randomized Pre-Order Number

RION Randomized In-Order Number

IV Integrity Verifier

CRSA Condensed-RSA

BGLS Boneh Gentry Lynn Sacham (Aggregate signature scheme)

POPF-CCA Pseudo-random Order-Preserving Function Chosen Ciphertext

Attacks

IND-CCA Indistinguishability against Chosen Ciphertext Attacks

EU-CMA Existentially Unforgeable against Chosen Message Attacks

xvii

ABSTRACT

Kundu, Ashish Ph.D., Purdue University, December 2010. Data in the Cloud:
Authentication without Leaking . Major Professor: Elisa Bertino.

Third party data distribution frameworks such as the cloud are increasingly be-

ing employed in order to store, process, and publish sensitive information such as

healthcare and finance information, belonging to individuals and enterprises. Such

data objects are often organized as trees, graphs or even forests (e.g., XML). In third

party frameworks, not only authentication of data is important but also protection

of privacy and assurance of confidentiality are important. Moreover, data authentic-

ity must be assured even when the data object that a user has access to consists of

subset(s) of the signed data.

Existing solutions such as Merkle hash technique and the redactable signature

schemes lead to leakages of structural information, which can be used to infer sensitive

information, which in turn would lead to privacy and confidentiality breaches. So the

question is: can we authenticate subset(s) of signed data objects without leaking,

and if so, how efficiently such authentication can be carried out? We have reported a

positive result by presenting efficient and provably secure solutions not only for trees,

but also graphs and forests. We have presented a scheme that computes only one

signature per tree, graph or forest.

Our schemes support encrypted data to be stored at third-party services. Our

schemes can also be used to automatically recover from structural errors in tree-

structured data, and for leakage-free authentication of paths (e.g., XPaths). Further,

as the applications of our schemes, we have also developed a publish/subscribe model

for XML – Structure-based routing, and a scheme for authentication of objects.

1

1 INTRODUCTION

A man provided with paper, pencil, and rubber,
and subject to strict discipline, is in effect a universal machine.

Alan M. Turing [130]

Third-party model of data distribution and computing has been of growing interest to

the enterprises and businesses over the past decade. Such a model helps organizations

achieve economies-of-scale while focusing on their core competencies, and deliver bet-

ter products/services. The explosive growth in the amount of data that needs to be

collected, stored, processed, analyzed, distributed, displayed, and even destroyed as

and when needed, requires significant amount of technological and financial invest-

ment on the part of enterprises. Such an investment spans over the lifetime of the

deployment of several technological products and services, and thus puts a continuous

strain on the enterprises and their revenue. The third-party model provides viable

and cost-effective alternatives for the said requirements while minimizing such strains

and allowing enterprises focus on their core-competencies. As a result, recently, cloud

computing [132] has emerged as the umbrella area that covers all the business and

computing aspects of third party data distribution and computing models.

In the emerging cloud-computing paradigms, which are increasingly being em-

ployed in order to store, process, and distribute sensitive information belonging to

individuals and enterprises, protection of privacy and confidentiality are as important

as assuring authenticity of such data (e.g., [7, 24]). As it is, privacy is an important

problem in data publishing itself(e.g., [91, 93]). In a third-party model, there is an

authorized owner of the data, which maybe the source of the data, one or more third-

party services (or distributors), and one or more queriers/subscribers (collectively

called as users or data consumers). In the cloud, the distribution of data is carried

out by third party services (such as in “Database as a Service” [69]). Such third-

2

party services may not be trusted (e.g., Amazon EC2 and Amazon Web Services:

AWS [1]). In such third-party data distribution setting, an important requirement

is to assure data authenticity. An authentication scheme is used to verify (1) the

integrity of data, and (2) that the claimed owner is in fact the authorized owner of

the data. Authenticity is typically assured by message authentication codes or dig-

ital signatures computed by the authorized owner of the data, which in third-party

distribution setting, are different from the party distributing the data (referred to as

distributor). Data objects in the context of third-party architectures are very often

organized as trees, graphs or even forests (set of disconnected trees/graphs); for ex-

ample, data organized according to XML schemas. Often users receive part of the

data that is stored at the database(s), as users maybe authorized to access only a

subset of the data. For example, a querier receives a part of an XML document or a

relational table from a database instead of the complete XML document or the table.

Consequently, data authenticity must be assured even when the data that a user can

access, is a subset of the signed data. A crucial requirement is to ensure that the

techniques are used for verifying the data authenticity do not result in data leakages

in order to protect privacy of the users and confidentiality of data. Such leakages can

be used to infer sensitive information that is not part of the received data, which in

turn would lead to privacy and confidentiality breaches.

When addressing the problem of authentication of trees, graphs and forests, it is

important to notice that each node may contain some contents and that the edges

and ordering between nodes may establish some relationships between the contents

in these nodes. Such relationships may be defined according to properties such as

classification, indexing, temporal-orientation and sensitivity of the contents [60]. In-

tegrity of such edges and ordering between the nodes is referred to as structural

integrity, whereas the integrity of the contents is referred to as content integrity. An

authentication scheme for tree structures must thus preserve both content and struc-

tural integrity. An additional requirement for authentication of sensitive data is to

maintain the confidentiality of the content and the structural information [134]. By

3

Figure 1.1. (a) Tree T and subtree Tδ. (b) Graph G and subgraph Gδ.

confidentiality, we mean that: (i) a user receives only those subtree(s) that the user is

authorized to access, according to the stated access control policies, (ii) a user should

not receive nor should be able to infer any information about the nodes and edges

that the user is not authorized to access. Nodes and edges that are in a tree/graph

but not in the subtree(s)/subgraph(s) that a user receives are referred to as extrane-

ous information. Let us consider two application scenarios.

Healthcare: XML is the de-facto standard for specification of healthcare records. A

doctor’s system uploads an XML-based healthcare record to a third-party service, and

a query from an end-user such as nurse would be processed by the third-party service.

The query result may be one or more sub-documents in the XML document. In such

a scenario, the user should be able to verify the authenticity of the query result, and

due to privacy requirements (such as HIPAA [2] requirements), the user should not be

able to infer any information about the remaining nodes (diseases/treatments) and

edges (types of diseases) in the source XML healthcare record.

Finance: XML is used to specify financial information of individuals and financial

accounts. When a user receives part of the financial document of another individual

or enterprise, she should not be able to infer existence of any other nodes (bank

accounts/credit cards/loans) and edges (types of accounts/cards/loans) in the source

financial record.

4

Before we describe the problem, let us describe the third-party model informally.

The formal security model is given elsewhere (Chapter 4).

Data

Trees, Graphs and Forests: A directed (rooted) tree T (V,E) or a directed graph

G(V,E) is a data object, where V and E are the sets of vertices and edges in T . A

node x represents an atomic unit of the data referred to as cx. e(x,w) represents a

directed edge from x to node w. The fact that x precedes one of its siblings y in

a DAG is denoted by x ≺ y. A subtree Tδ(Vδ, Eδ) that is shared with a user as a

result of a query on the tree T (V,E) is a subtree Tδ(Vδ, Eδ) ⊆ T (V,E). Likewise, a

subgraph Gδ(Vδ, Eδ) ⊆ graph G(V,E). Υ(V,E) represents either a tree or a graph.

Third-Party Model

Authorized owner: Alice, the authorized owner of one or more data object(s) digi-

tally signs each data object. The signature is referred to as σΥ(V,E), where Υ(V,E)

denotes the data object. After signing Υ, Alice may delegate the job of publishing

Υ or processing queries over Υ to one or more third-party distributors D (such as a

cloud server).

Users: A user (also referred to as Bob) receives a subtree/subgraph/sub-forest from

a third-party distributor and verifies its authenticity.

Third-party distributors: A third-party distributor D processes queries from a clien-

t/user Bob on the data objects, and sends the query result(s) to Bob. The data

object that a user receives as a result of its query on a tree or a graph is a subtree

or a subgraph, respectively. D also sends a signature σΥδ
for Υδ so that the user can

verify the authenticity of the Υδ.

5

Authorized owner is trusted. The third-party distributors are untrusted in the fol-

lowing sense: a distributor can carry out data tampering attacks, it maybe vulnerable

to disasters or security compromises, and it does not have any signature authority on

behalf of the authorized owner.

Threats

Throughout the dissertation, we assume a probabilistic polynomial time (PPT)

adversary [61]. There are two types of threats.

1. Data tampering attack: by an adversary over the communication channel: main-

in-the-middle attack or at the distributor. The adversary may tamper the

content of one or more nodes, the structural order and/or the type of structural

relation (edge) between two or more nodes of a tree/subtree.

2. Inference attack: A user, who receives Υδ that is a portion of the data object

Υ, infers information (at least one bit of information) about (Υ \ Υδ) from the

signature σΥ for Υδ that it receives from D.

In order to protect from data tampering attacks as well as inference attacks, we

need to develop “leakage-free” data authentication schemes.

1.1 The Problem

The problem is how does Alice (the data owner) sign the data (a tree, a graph, or a

forest) once, so that the authenticity of a subset of the data (subtree(s)/subgraph(s)/sub-

forest(s)) can be verified without leaking any information about the remaining part

of the data. A leakage-free signature scheme must make it possible for the receiver of

one or more subtree(s)/subgraph(s)/sub-forest(s) in order to verify the authenticity

of data with the following crucial requirement: the receiver should not be able to infer

any extraneous information; extraneous information in a tree/graph/forest Υ(V,E)

with respect to its subset Υδ(Vδ, Eδ) comprises of (Υ \ Υδ) the nodes and edges that

6

are in Υ but not in Υδ (such as b, f, g and h, edges: e(d, b), e(h, d), e(h, g), and e(g, f)

w.r.t. Tδ in Figure 1.1).

Consider the tree in Figure 1.1(a) and suppose that the user receives the subtree

Tδ. The user should neither receive nor should be able to infer anything about the

nodes b, f, g and h, and edges e(d, b), e(h, d), e(h, g), and e(g, f). In the case of

graphs, another basic form of leakage is about immediate ancestors of a node. For

example, assume that the user receives Gδ, subgraph of G in Figure 1.1(b). The user

should not learn that node c has another immediate ancestor other than d (which is

h), which is in Gδ. For nodes a, b and d, the user should not learn whether they have

any other immediate ancestors in the graph.

The notion of redactable signatures and sanitizable signatures are used for authen-

tication of subsets of a data object that is signed by an authorized owner. However,

existing solutions (See Chapter 2) leak structural information; so does the widely

used Merkle Hash Technique, which is used for authentication of trees and has also

been extended for DAGs.

A Straightforward Scheme: A straightforward scheme for trees and graphs is to sign

each node as well as each edge (Brzuska et al. [29] proposed such a scheme for trees).

When a user has access to a subgraph (including a subtree), the signatures of the

nodes and edges in the subgraph are also sent to the user. However, such a scheme

has two major drawbacks: (1) If the graph has an ordering between the siblings, it

would not be possible for the user to verify such ordering; (2) the total number of

signatures computed and stored in the worst case is O(n2), where n is the number of

nodes in the graph. This is because, a graph may have O(n2) number of edges. For

a graph of even medium size such as one thousand nodes, about a million signatures

need to be stored and managed by the distributor, which is quite large. For a tree,

it would have 2n− 1 signatures. The question is can we support (1) while using less

number of signatures?

7

1.2 Contributions

Highlights of our contributions are as follows. As far as we know, this work is the

first such work that addresses authentication of data (ordered trees and graphs) and

the related leakage-free requirements in a holistic manner.

1. We have characterized several inference attacks that can be carried out on the

widely used Merkle hash technique [87].

2. We have shown that leakages of structural information can lead to privacy

and confidentiality breaches, in several scenarios such as in healthcare. We

have demonstrated such leakages and breaches in the context of healthcare

scenarios [84, 86].

3. Existing formal models in security do not cover the notion of leakage-free au-

thentication of trees, graphs and forests. We have provided the first formal

security model for leakage-free redactable signatures. Security notions of un-

forgeability, privacy and transparency have been formally defined as part of this

model [81].

4. A signature scheme called as “structural signatures” based on the traversal

numbers of a tree has been proposed that can be used to authenticate a subtree

of a tree in a leakage-free manner. For this purpose, we have defined the notion

of randomized traversal numbers [84]. Structural signatures scheme can be used

for leakage-free authentication of induced subtrees.

5. Structural signature schemes for graphs – both directed acyclic graphs, and

graphs with cycles, have been proposed that facilitate authentication of a sub-

graph in a leakage-free manner [86].

6. In order to facilitate the leakage-free authentication of multiple subtrees/sub-

graphs, the notion of secure names have been developed and a cryptographic

construction has been presented [80].

8

7. Based on the secure names and an existing redactable signature scheme for sets,

we have defined a highly efficient and generic leakage-free redactable signature

scheme that can be used not only for trees, but also for graphs and forests.

Our scheme compute only one signature for any tree/graph/forest, thus is an

optimal leakage-free redactable signature scheme [81].

8. Our schemes for leakage-free authentication can also be used when for encrypted

data, when nodes are encrypted.

9. We have shown how the structural signatures can be used to automatically

recover from structural errors in tree-structured data. Such a scheme has appli-

cations in several scenarios such as satellite-based data transmission and sen-

sors [87].

10. Our schemes can be used for leakage-free authentication of paths, and has ap-

plications in secure evaluation of XPath [6] queries.

11. As an application of the structural signatures, we have developed a publish/sub-

scribe scheme for XML distribution called as “structure-based routing”, which

uses randomized traversal numbers not only for verification structural integrity,

but also for efficient routing of contents [82,83].

12. Objects are a primary model of data representation in object-oriented soft-

ware, web services, and object-oriented databases. Serialized objects are stored

and/or transmitted in environments that involves untrusted third-party enti-

ties. In such scenarios, leakage-free authentication of objects is an important

security requirement. We have applied our signature schemes in this context,

and have developed the first such scheme for this problem [85].

13. We have presented the security analysis, and performance analysis of the pro-

posed signature schemes wherever it is required.

9

1.3 Dissertation Roadmap

Chapter 2 describes the related works. Inference attacks on the Merkle hash

technique, and leakages of structural information in trees and graphs in a health-

care context are described in the next chapter - Chapter 3. A formal security model

for leakage-free redactable signatures with the notions of unforgeability, privacy and

transparency, is presented in Chapter 4, which also describes the formal notion of

secure names. Structural signatures for trees are described in the next chapter, and

structural signatures for graphs are given in Chapter 6. Leakage-free redactable sig-

natures for trees, graphs and forests are given in the next Chapter 7. An application

of structural signatures: structure-based routing of XML documents in a publish/-

subscribe model is given in Chapter 8, and a scheme for authentication of objects

using the Merkle hash technique and our leakage-free scheme is given in Chapter 9.

Chapter 10 summarizes the dissertation, describes some open problems and future

research directions.

10

2 RELATED WORKS

An algorithm must be seen to be believed.
Donald E. Knuth [77]

2.1 Merkle Hash Technique

Merkle [99, 100] proposed a digital signature scheme based on a secure conven-

tional encryption function over a hierarchy (tree) of document fragments. Since then,

this technique has been used widely, but always with an authentication path of log-

arithmic size to verify even a single document fragment. It also leads to leakage

of information (discussed in Section 3.1). Buldas and Laur [32] have also found

that Merkle trees are binding (integrity-preserving) but not hiding (confidentiality-

preserving).

The use of commutative hash operations (one-way accumulators [17,65]) to com-

pute the Merkle hash signature prevents leakage related to the ordering among the

siblings. However it cannot prevent the leakage of signatures of a node and the

structural relationships with its descendants or ancestors. Moreover, one-way accu-

mulation is very expensive (due to modular exponentiation) in comparison to the

one-way hash operation. By salting [76], the Merkle hash of each node is secured

against the known-plaintext and known-ciphertext inference attacks. However, salt-

ing cannot prevent structural inference attacks completely even when coupled with

one-way accumulators, because structural information would still be leaked. There

have been several works [18, 73, 94] in order to optimize traversal of Merkle hash

trees so that the auxiliary information required for authentication can be determined

efficiently. Improved (more efficient) versions of MHT have also been proposed [31].

11

The MHT has been widely used for data authentication [19,53,54,68,92,113,124].

Bertino et al. [20] proposed a technique based on the Merkle hash technique for

selective dissemination of XML data in a third party distribution framework. In

[19], Bertino et al. have defined an authentication scheme using MHT for UDDI

repositories towards building secure web services directories. Using techniques from

incremental cryptography, Naor and Nissim [106] dynamize hash trees to support the

insertion and deletion of elements. In their scheme, the source and the directory

maintain identically implemented 2 − 3 trees. Each leaf of such a 2 − 3 tree stores

an element of set, and each internal node stores a one-way hash of its children’s

values. Hence the source-to-directory communication is reduced to O(1) items, but

the directory-to-user communication remains at O(logn). Thus, their solution is

however not size oblivious. Martel et al. [98] proposed an authentication technique for

data structures - directed acyclic graphs referred to as “Search DAGs” in third party

distribution frameworks. However their technique uses Merkle hash technique [100],

which leaks information during authentication [32, 82–84, 87]. Moreover the “Search

DAGs” technique only covers DAGs, not the general directed graphs. For secure

multicast, Perrig uses static data ordering over symmetric encryption [117]. Li

et al. [92] propose a scheme for trustworthy verification (authentication) of write-

only read-many data based on the MHT. Singh and Prabhakar [124] developed an

authentication scheme for uncertain databases using MHT. Kocher [78] presented a

scheme using Merkle hash technique for data distribution using third party models.

2.2 Authenticated data structures

Authenticated data structures (ADS’s) have been used to verify the authenticity

of data in a static as well as in the dynamic context. Goodrich and Tamassia [63] pro-

posed authenticated dictionaries using skip lists and commutative hashing (one-way

accumulators). Goodrich et al. [67] proposed techniques to authenticate graphs with

specific path queries and geometric searching. Goodrich et al. [67] define a generalized

12

Merkle Hash tree for paths in graphs, and propose a mechanism for authenticating

path queries in graphs. They leak structural information because their notion of

“path hash accumulator” and their use of generalized merkle hash technique. Martel

et al. also proposed Search DAGs [98] using the Merkle hash technique, which how-

ever leaks information. Papamanthou et al. [115] propose authenticated hash tables,

where leakage-free property is not achieved, rather efficiency is of primary concern.

Goodrich et al. [67] provides an excellent related works section on authenticated data

structures and we refer interested readers to this paper. Atallah et al. [8] have de-

veloped a scheme for authentication of 2-dimensional data using only one aggregate

signature. Atallah et al. [9] developed schemes for covering a tree with minimum

number of paths such that the total number of nodes in all the paths is minimized.

Such a scheme has applications in verification of integrity of trees and paths. How-

ever, it is not obvious on how to develop a leakage-free authentication scheme for

trees or paths using such solutions.

2.3 Transitive Signatures

Transitive signatures were originally conceptualized by Rivest in his seminal talk

in 2001 [119], and a concrete scheme for undirected graphs were developed by Micali

and Rivest [102]. In such signature schemes, the objective is to use the signatures of

two or more messages and compute the signature of the messages that is derived from

these messages. For example, in a binary tree (in a network route topology), given

the signature of two child nodes (routers), the objective is to compute the signature

of their parent node (router) [42].

The notion of transitive signatures by Micali and Rivest [102] helps computing a

graph in a dynamic manner from authenticated nodes and edges so that the graph

built at any point of time is an authenticated one. There are a number of inter-

esting works on directed trees and their transitive signatures. However, they leak

information about the history of the transitive signature - from the paths it has been

13

computed [14, 15, 108, 135, 136]. By history independence, it means that verification

of a transitive signature for (i, k) would not leak information about node j and/or

its signature. The latest paper by Xu [135] use the notion of RGGMs developed for

redactable signatures by Chang et al. [41] in order to develop transitive signatures on

a path, where it is history independent. However, it uses RGGM trees and thus are

quite expensive: for a given path, it computes one RGGM tree.

2.4 Redactable Signatures

Redactable signature schemes (e.g., [74]) inspired by transitive signatures support

computation of valid signatures for modified messages from the signatures of the

source messages. Anyone with the knowledge of a message, its signature and the

associated public key can compute a signature of a redacted message. (In contrast,

in case of sanitizable signatures, only a designated sanitizer can compute such a

signature.) However, such schemes have been developed only for documents that are

linear sequences of sub-documents, and leak structural information. On exception is

the redactable signature scheme for sets by Johnson et al. [74]. They use RSA-based

one-way accumulators and compute a single signature for any set, which allows anyone

to computed the signature of the subset without leaking any information about the

remaining elements. In this dissertation, we have developed leakage-free redactable

signatures for non-linear and complex data objects such as trees and graphs.

Formalization of our work: Brzuska et al. [29] extended our work [84] and at-

tempted to formalize the notion of structural signatures for trees. However, their

formal model is quite restrictive: does not support query results to be disconnected

subtrees, and do not address graphs and forests. Moreover, its definition of integrity

is flawed: it claims to support security as strong as “existentially unforgeable under

adaptive chosen message attack”, which however cannot be supported by redactable

signatures as shown by Johnson et al. [74]. Moreover, their construction is quite ex-

pensive: computes a linear number of signatures for the tree, and for authenticating

14

the ordering among sibling, computes a quadric number of signatures. An open prob-

lem Brzuska et al. pose is to find a more efficient solution for trees, which we solve

in this dissertation.

Content Extraction Signatures Steinfeld [126] proposed content extraction signatures

in which they use RSA homomorphic property to build a redactable signature on doc-

uments: the messages are deleted but the structural position is leaked. This scheme is

a form of redactable signatures. Bull et al. [33] proposed content extraction signatures

for XML documents, which however, leaks structural information.

2.5 Sanitizable Signatures

: There are two types of sanitization of documents, where a document is a collec-

tion of several messages/sub-documents: one that allows modification of messages in a

document (e.g., [10], [30]), and another that allows only deletion of the messages [103].

Such signature schemes focus on hiding only the messages being sanitized, but not

their structural position in the document and the structural relationships they have

with other messages. Brzuska et al. [30] propose a notion of “unlinkability” between

sanitized documents. Unlinkability means that the hidden/sanitized messages in a

sanitized version cannot be recovered even with the knowledge of two or more sani-

tized versions of the same document. On the other hand, our notion of “leakage-free”

signatures focus on hiding not only contents (nodes as messages) but also structure

of the original document. Moreover, some of these schemes have a designated entity

called “sanitizers”. Leakage-free signatures are redactable in nature: applicable to a

more relaxed notion of security models that involve untrusted third-parties. Haber

et al. [68] proposed a signature scheme that allows redaction, and pseudonymization

of parts of data (messages/sub-documents), as well as controls redaction of a docu-

ment by prohibiting it. It does not leak information about messages that have been

redacted/pseudonymized, however it leaks information about the existence of such

15

messages and their structural positions. Hiding not only the messages but also the

structural information is the purpose of our leakage-free signature scheme.

2.6 Commitment Schemes

Commitment schemes [116] are not signature schemes. Let c is a commitment of

value m; c is not a signature of m, because (1) m remains hidden until c is opened; (2)

c can be forged easily as everyone knows the public key being used to compute c from

m; (3) in order to verify the so called “signature” c of m, the signer has to release its

private key, which is not a case in digital signatures. Set commitment schemes prove

that an element is in fact an element of a set in a zero knowledge manner [101]. In

commitment schemes, an important issue is who generates the commitment key pair

(pk, sk): is it the sender (who commits), the recipient (who receives) or a trusted

third party. There are solutions using trusted third party. But in our setting in the

dissertation, third party is not “trusted”. The primary objective is hiding, and then

proving, whereas in a signature scheme, the primary objective is proving.

2.7 Proxy Signatures

There have been several works on proxy signatures (e.g., [27, 88, 97]), where the

data owner delegates the signing of a data object to a proxy, who computes a proxy

signature of the data. A verifier uses the public key of the proxy and validates the

data against the proxy signature. Such a model is similar but different from the third-

party model that is being used in this work. One can assign a proxy key pair to each

third party server, who would sign each subtree/subgraph that is the result of the

graph (that it has not signed earlier). However, the proxy in the signature may not

be trusted but not malicious as the third-party servers in our model are assumed to

be. Moreover, signing each subtree/subgraph as a query result on behalf of the data

owner dynamically exposes the server to side channel attacks, key recovery attacks

as well as denial of service attacks.

16

2.8 Zero-Knowledge Sets and Membership Queries

ZKS (Zero-Knowledge Sets) have been proposed by Micali, Rabin and Killian [101],

later extended by [40]. The setting of ZKS has a prover and a verifier engaging in

non-interactive zero-knowledge proofs about membership of a value in a set. The

prover commits a set, and then generates proof for an element without revealing any-

thing about the other elements, even the size of the set. Such a scheme comes quite

close to what we want to achieve, but there are several differences: (1) the setting

is different: in our case, the data owner needs to sign a tree/graph and give it to an

untrusted server(s), who then evaluate queries from users. (2) the user needs proofs

of subtree/subgraph relationships instead of a set membership. (3) we need a digital

signature instead of a commitment scheme. (4) In our case, the untrusted server

should be able to compute a proof for the subtree/subgraph the user receives using

the digital signature computed by the owner, and should not be able to forge such

proofs.

Membership queries and associated proofs of their answers have been studied

by [101]. Ostrovsky et al. [111] proposed a consistency proof for membership queries

in a database that also protects privacy. In their model, a database is a set of

key-value pairs. Privacy means that the user can only know the answer it receives

and it cannot learn any other information about the other key-value pairs in the

database. However, they cannot hide the size of the database ([111]: Page: 7). Our

leakage-free signatures achieve this: hiding the size of a tree/graph or a database of

trees/graphs. They also use a notion of “explicit hashing” which is constructed such

that the user always learns that the same number of paths irrespective of the query it

issues. It is achieved by issuing dummy pre-images. Moreover, their protocol is used

for membership queries in sets and range queries. It is not trivial as how to apply

their scheme to solve the problem for trees and graphs. Moreover, their scheme is a

commitment scheme, which is different from digital signature schemes.

17

2.9 Hashing and Accumulation Schemes

Merkle-Damgard [50,99] (MD) model of hash functions (conceptually modeled as

random oracles [16]) is widely used in designing modern hash functions such as SHA1

and MD5. Their proposal is to divide an arbitrary length message into blocks of

identical size k (pad the last block if necessary), and apply a compression function

such as a block cipher on the blocks sequentially with the output of the compression

of block bi given as an input to the compression of the next block bi+1. At the end, a

finalization stage that appends bits and information related to the size of the entire

message to the output compression of the last block bn. Coron et al. [46] define a new

security notion for random oracles and the hash functions defined thereof: for a hash

function H to behave as a random oracle, the underlying fixed-size block cipher must

behave as a random oracle as well. Such a property is stronger than the standard

collision resistant property of hash functions. Coron et al. show that the MD model

does not satisfy this property of hash function. Dodis et al. [56] show that a pre-image

attack can be carried out on MD-hash functions by knowing the padding used. They

propose a methodology for how to strengthen the one-way compression function in

order to prevent such attacks.

Accumulators : Exponential accumulators have been proposed by Benaloh and Mare‘

[17]. The core scheme works as follows: a seed y0 is used such that y0 > 1, y0 and

N are relatively prime, N = pq, as in RSA. Accumulator H(y0, x1) = yx1
0 mod N ;

H(yi−1, xi) = (yi−1)
xi mod N . It is commutative, but not associative [63]. So in-

cremental computations are not feasible. It is important for its implementation that

the seed y0 of the accumulator should be relatively prime to the RSA primes p, and

q [121]. This work has been improved by Baric and Pfitzmann [13] with efficient

constructions using strong RSA assumptions. Baric and Pfitzmann developed two

RSA-based accumulators: one without random oracles, and the other one using ran-

dom oracles and they prove that they are collision-resistant assuming that the RSA is

18

an one-way function. They also proposed fail-stop signature schemes based on the ac-

cumulators. The public keys are accumulated and the messages are also accumulated,

if there are more than one message. However, the update operations on such accu-

mulators were not size-oblivious (size of the set being accumulated). Camenisch and

Lysyanskaya [34] made the update operations size-oblivious. Li et al. [90] built upon

this work and developed accumulators using which non-membership can be proven

efficiently, and memberships can be revoked in anonymous manner.

2.10 Traversal numbers

Traversal numbers have been used for querying and navigation of XML data by

Zezula et al. [137]. However, they do not address any security issues. Wang et

al. [134] have used a notion similar to traversal numbers in defining the structural

index in XML databases in order to be able to locate encryption blocks as well as

their unencrypted data nodes that satisfy user query. They use real intervals [0, 1]

for root and every child of the root is assigned a sub-interval such as [0.5, 0.6]. The

first entry in the interval can be assumed to be referring to the pre-order number

and the second one to the post-order number. However, they do not derive such an

interval from traversal numbers nor do they use traversal numbers for signing trees.

None of the previous approaches propose the use of randomized traversal numbers

for the signature of trees. As such, the previous approaches do not include security

analysis, performance evaluations nor detailed comparison with the MHT and other

secure data publishing techniques derived from the MHT.

2.11 RSA Signatures

The Condensed-RSA signature scheme by Mykletun et al. [105] is an aggre-

gate signature scheme. They compare Condensed-RSA and the aggregate signature

scheme by Boneh et al. [28] in order to efficiently authenticate outsourced databases.

Condensed-RSA is secure as against another similar signature scheme: Batch-RSA.

19

Batch verification of RSA signatures were first proposed by Harn [70] and was thought

to support secure signature aggregation. However, such a scheme is insecure (Hwang

et al. [72] first showed a forgery attack). Later in another paper [71] Hwang et al.

proposed a new scheme overcoming the weakness of Harn’s scheme. However, Bao

et al. [12] have shown that even this scheme is not secure. The scheme proposed

in [12] has also not been proven to be secure. The Condensed-RSA signature scheme

is secure under the RSA assumption, because the user does not receive individual

signatures [105]. The aggregate signature scheme by Boneh et al. [28] is based on

elliptic curves and bilinear maps, and is proven to be secure.

2.12 Privacy-preserving Authentication of Query Results

Confidentiality and authenticity are important requirements in secure data man-

agement and publishing [22,25]. Some of the other notable authentication schemes in

the literature are by Li et al. [89], Mouratidis et al. [104], Pang and Mouratidis [113],

and by Pang and Tan [114]. The authentication scheme for completeness of query

results proposed by Pang et al. [112] leaks even in the simple case of “greater than”

predicates. In their scheme, if a3, a4, and a5 satisfy a the “greater than” predicate

among elements a1, a2, . . . , a10, then the user uses auxiliary information about a2 and

of a6 in order to authenticate the results; such extra information leads to leakage

about the existence and structural position of these two elements in the data object,

which as we have seen earlier could be sensitive information or could lead to infer-

ence of sensitive information. Mykletun et al. [105] use aggregation of signatures for

efficient authentication of tuples in outsourced databases. Ma et al. [96] proposes

an approach using Merkle hash technique and aggregate signatures [28, 105] in order

to authenticate query results in databases. It computes an attr-MHT for each tuple

and signs the Merkle hash for the tuple; signatures of the tuples are aggregated to

compute the signature of the whole table. However, this scheme leaks: consider the

case in which a querier does not receive all (possibly some of these are sensitive at-

20

tributes), but receives only some attributes of a tuple in the result set. Narasimha

and Tsudik [107] proposed another scheme for authenticated database outsourcing.

However, this solution computes a signature for each tuple: a hash H is signed where

H is the hash of the concatenation of the hash of the tuple and hash of each its

immediate preceding tuple in each searchable dimension. Clearly this scheme also

leaks: consider the case when a querier has access to only on tuple, but it receives

auxiliary information and learns about other tuples. Even though each of these tech-

niques provides authenticity, yet they leak. Moreover, none of these works address

the problem of authentication of tree structures.

The PADS framework by Thompson et al. [128] uses Pedersen’s homomorphic

commitment scheme [116], Shamir’s k-out-of-n secret sharing scheme [123] and Merkle

hash technique in order to prevent leakage of micro-data (value of an attribute) while

(1) carrying out aggregate query evaluation at multiple third-party servers (in a

privacy-preserving manner) and (2) supporting authentication of query results by

the client. However, the PADS scheme leaks information about the size of the table

and about the existence and positions of other attributes in the table that are not part

of the query evaluation. Pang et al. [112] propose completeness verification and au-

thentication of data without revealing micro-data, however, they still leak structural

information.

Chatvichienchai and Iwaihara [43] proposed mechanisms for secure updates of

XML, without leading to information leakages. However such mechanism does not

address the problem of information leakages during verification of integrity of partial

XML documents. Wang et al. [134] treat structure and content as first-class protection

units. However they focus on a sharing model, in which the receiver of the data has

access to only the content (nodes) and not to the structural relationship between

them. The paper proposed a scheme for securing structural information in XML

databases: how to process queries on an encrypted XML database such that individual

element content and structural relations are kept confidential if the security constraint

21

specified requires so. In our case, we allow the receiver to have access to both nodes

and the structural relationships between them.

Graphs are commonly used to model relationships between data items such as

documents such as text, XML, richtext, images [58], geographic information [118],

healthcare and biological data [57]. Querying, management [44, 57, 129] and min-

ing [59, 122] of graph-structured data as well as privacy-preserving graph publishing

and mining techniques [95, 139] have recently emerged as important topics in both

academia and industry.

2.13 Secure Publish/Subscribe

The main research efforts related with our work are in the area of secure dissemi-

nation of XML data and in the area of secure publish-subscribe systems.

In the first area, the only approach supporting access control in both pull and

push based distribution of data has been proposed by Bertino and Ferrari [21]. Such

an approach relies on encrypting different portions of the data with different keys and

then distributing the keys to data consumers according to the access control policies.

Bertino et al. [20] have also investigated the problem of integrity of XML data by using

the notion of Merkle hash. Those approaches have however some major drawbacks in

that they are not scalable and do not remove extraneous data from contents. These

drawbacks are fully addressed by the approach proposed in this paper.

In the second area, several approaches have been proposed to address efficiency

issues concerning pub/sub systems ([37–39, 47–49, 52, 110]). Several highly efficient

publish/subscribe systems (e.g., IBM Gryphon [127], JMS-based systems) have been

developed. Multicast-based content dissemination [11, 109] techniques have been de-

veloped in order to support efficient dissemination of contents to subscribers. Most

approaches (e.g., [38, 48, 49]) use a spanning tree structure for event routing. In or-

der to reduce the matching that has to be performed by brokers from the root to

the leaves, several optimization techniques have been proposed. Virtual groups are

22

used to reduce the matching performed by brokers [138]. However, security issues

in content-based pub/sub systems have not been investigated. The only exceptions

are the approaches by Srivatsa and Liu [125], that focuses only on resiliency, and by

Opyrchal and Prakash [110], which is very inefficient and is not flexible with respect

to access control policies. By contrast our approach addresses a larger spectrum of

security requirements while being at the same time efficient and scalable.

23

3 STRUCTURAL LEAKAGES AND PRIVACY

Not all bits have equal values.
Carl Sagan [120]

Structural information is leaked when existing data authentication schemes such as

Merkle hash technique is used. Most existing works are not designed to protect such

information with the assumption that structural information does not lead to any

privacy/confidentiality breaches. In this chapter, we have demonstrated the relation-

ship between privacy and structural leakages in the healthcare context. We have also

described the possible inference attacks on Merkle Hash Technique, which is widely

used for authentication of tree-structured, and graph-structured data.

3.1 Inference Attacks on Merkle Hash Technique

In the MHT, a tree is signed by signing the Merkle hash (MH) of its root, which

is computed as described below. Common notations are defined in Table 1. In what

follows, ‖ denotes concatenation.

The MHT works bottom-up. For a node x in tree T (V,E), it computes a MH

mh(x) as follows: if x is a leaf node, then mh(x)←H(cx); else mh(x) ← H(mh(y1)

‖. . . ‖mh(ym)), where y1, . . . ,ym are the m children of x in T in that order from left to

right. For example, the MH of the tree in Figure 3.1(a) is computed as follows. The

MHes of e and f are: H(ce) and H(cf), respectively, which are then used to compute

the MH of d as mh(d)←H(mh(e) ‖ mh(f)). The MH of b is H(mh(d)). Similarly,

the MHes of c and a are computed as H(cc) and H(mh(b) ‖ mh(c)), respectively.

By using such a technique, only the contents of the leaf nodes can be authenticated.

In case, the non-leaf (root/intermediate) nodes have contents, the computation of the

24

Figure 3.1. An example tree with each node having some content.

MH of a non-leaf node x involves the MH of all of its children, and either (a) the

content of x, or (b) hash of the content of x (used for Figure 3.1(a)).

3.1.1 Leakages during Authentication using MHT

Let Tδ be a subtree of tree T to be shared with Bob. Bob needs the following

auxiliary information for authentication of Tδ. Such auxiliary information constitute

the information leakages by MHT (Figure 3.1). The user then computes the MH of

the whole tree using such information (the subtree and auxiliary information) and

verifies the signature of the original tree using this MH.

1. Let x be a node in Tδ. The MH of each sibling of x that is in T but not in Tδ.

(e.g., mh(f) w.r.t. e.)

2. The MH of each sibling y of each ancestor of x, such that y is not in Tδ. (E.g.,

mh(c) and mh(f) w.r.t. e.)

3. The hash of the content of each ancestor of x. (e.g., H(ca) and H(cb) with

respect to x.)

4. (i) The structural order between x and its those sibling(s) that are not in Tδ,

and (ii) the structural order between those siblings of x that are not in Tδ. (e.g.,

(i) the order between e and f , and (ii) the order between b and c.)

25

5. (i) The parent-child/ancestor-descendant relationship(s) between a node in Tδ

and another node not in Tδ, and (ii) those between the nodes that are not in Tδ.

(e.g., the relationships (i) between b and d, (ii) between a and b, and between

a and c).

6. The fact that a given node is the root of the tree T (even if it is the root of Tδ).

3.1.2 Inference Attacks

The attacks on the MHT are based on the set of auxiliary information sent to the

user. By exploiting these leakages, the following inference attacks can be carried out

on MHT.

• Dictionary attack-1: It exploits the information (1), (2), (3), and (6). By

comparing the MH of a node e in the shared subtree with the MH of another

node f received as part of the auxiliary information, the user can infer whether

contents of e is same as that of f and if the subtree with root e is identical

to the subtree with root f . With the auxiliary information (6), the user can

also infer (a) whether the received subtree is in fact the original tree, and (b)

whether the root of received subtree is in fact the root of the tree.

• Dictionary attack-2: It exploits the information (1), (2), (3), and (6). By

comparing the Merkle hashes of two nodes (c and f) that are received as part

of the auxiliary information, the user can infer whether the contents of c is same

as that of f and whether the subtree with root c is identical to the subtree with

root f . With the auxiliary information (6), the user can also infer whether the

received subtree is in fact the original tree.

• Structural inference attack: It exploits the information (1), (2), (3), and (5).

The user infers the number of nodes that are not in the received subtree, and

the structure of the original tree from the auxiliary information and shared

subtree. If the user receives non-empty auxiliary information, then it infers

26

that the shared subtree is a proper subtree of the original tree and there are

nodes it has not received. In some cases, the user can also infer the exact size

of the original tree (such as in the case of our example in Figure 3.1).

• Missing-siblings inference attack: It exploits the information (1) and (2). From

the auxiliary information, the user infers the number of siblings of a received

node e that are not in the shared subtree. If the shared subtree has x and y as

siblings, the user also infers the number of siblings that are not in the shared

subtree but are to the right of x and to the left of y in the original tree.

• Structural-order inference attack: It exploits the information (4) and (5). The

user infers structural order between siblings involving one or more nodes that

the user does not have access to. In our example, the user learns that b and e

are left siblings of c and f , respectively.

• Parent-child inference attack: It exploits the information (4) and (5). The user

infers the parent-child relationships involving one or more nodes that the user

does not have access to. In our example, the user learns that b and d are the

parents of e and f , respectively. The user also learns that b is an ancestor of e

and f .

The MHT requires certain auxiliary information about the contents and/or the

structure of the signed tree in order to authenticate a subtree. This inherent require-

ment leads to leakages and cannot be completely prevented by the use of salting, or

of one-way accumulators. In the next section, we give examples in order to illustrate

the significance of such leakages and related inference attacks.

3.2 Structural Leakages in Tree-structured Data

Our running example is in the area of XML data management. XML organizes

data according to the tree structure; integrity and confidentiality of XML data is

an important requirement, given the widespread adoption of XML for distributed

27

<HealthRecord>

. . .

<PatientID id=2345S> . . . </PatientID>

<Contact> . . . </Contact>

<CriticalDiseases>

<Disease name=Cancer>

<Surgery> . . . </Surgery>

<Chemotherapy>

<Treatment instance=1>

<Doctor name=Dr. S. Stevens/>

<DateTime date=. . . time=. . . />

</Treatment>

<Treatment instance=2>

<Doctor name=Dr. M. Paul/>

<DateTime date=. . . time=. . . />

</Treatment>

</Chemotherapy>

<Medication> . . . </Medication>

</Disease>

<Disease name=KidneyFailure> . . . </Disease>

</CriticalDiseases>

. . .

</HealthRecord>

Figure 3.2. XML-based Health-care record of a patient.

web-based applications. As such, XML is an important application domain for the

techniques presented in the paper.

28

Figure 3.3. The tree representation of the HealthRecord in Figure 3.2.

The XML document in Figure 3.2 is a fictitious health-care record of a patient and

thus contains sensitive information. Assume that such record is stored in a hospital

database and that its schema, referred to as HealthRecord, is defined as follows. The

HealthRecord element, that is, the root of the tree has a child for each of the following

elements: CriticalDiseases, PatientID, and Contact. The CriticalDiseases element

lists all the critical diseases a patient suffers from; information about a specific critical

disease is specified as its child by the element Disease. Each Disease element lists

the types of treatment that the patient has gone through for that same disease.

For Cancer, the types of treatment are specified by the following elements: Surgery,

Chemotherapy, and Medication. Each type of administered treatment is specified as a

child node of the node specific to the treatment type and is an instance of Treatment

element. It contains an attribute instance, which refers to the specific instance of

the treatment, and child elements to specify the date and time of administering

(DateTime), and the name of the doctor who administered the treatment (Doctor).

29

Table 3.1
Leakage during authentication of Tδ2 using MHT

Node x Nodes whose MH Distinct leakages during

used in this order computation of MH(x)

to compute MH(x)

a13 a13 none

a12 a12 none

a10 a12, a13, a10 none

a8 a10, a11, a8 hash of a11,

a11 is sibling of a10,

a11 is child of a8 ,

a11 is to the right of a10

a5 a7, a8, a9, a5 a7-specific leakage:

hash of a7,

a7 is sibling of a8,

a7 is child of a5,

a7 is to the left of a8;

a9-specific leakage:

hash of a9,

a9 is sibling of a8,

a9 is child of a5,

a9 is to the right of a8

a4 a5, a6, a4 hash of a6

a6 is sibling of a5,

a6 is child of a4,

a6 is to the right of a5

A patient may have received treatments from different doctors, each related to a

different instance of the same type of treatment or instance of a different type of

30

Table 3.2
Inference of sensitive information from leakages (Continued to Table 3.3)

Leakage during Inference from the leakage

computation of MH(x) in the health-care context

a8: hash of a11 AND Patient has gone through

another Chemotherapy.

(a11 is sibling of a10 OR

a11 is child of a8)

a8: a11 as to the right If sibling-order represents

of a10 certain information such as

temporal order, then it can

be inferred if the chemotherapy

referred to by node a11 was

administered earlier or later

than the one referred to by a10.

a5: hash of a7 AND Patient has gone through another

(a7 is sibling of a8 OR type of treatment; also inferred is:

a7 is child of a5) it is either Surgery or Medication.

a5: a7 is to the left of a8 More leakage related to the order

such as temporal order.

a5: hash of a9 AND Patient has gone through another

(a9 is sibling of a8 OR type of treatment; also inferred is:

a9 is child of a5) it is either Surgery or Medication.

a5: a9 is to the right of a8 More leakage related to the order

such as temporal order.

treatment. For expository purposes, we associate a label with each node in the health

record in Figure 3.3; for example, the node Chemotherapy is labeled by a8.

31

Table 3.3
Inference of sensitive information from leakages (Continued from Table 3.2)

Leakage during Inference from the leakage

computation of MH(x) in the health-care context

a4: hash of a6 AND Patient suffers from another

(a6 is sibling of a5 OR critical disease, whose type can

a6 is child of a4) be inferred from the

hospital specialization.

a4: a6 is to the right More leakage related to the order

of a5 such as temporal order: time of

treatment of this disease in this

hospital relative to the time of

treatment of Cancer.

The hospital database, which can be accessed remotely, stores all such patient

health records. The Merkle hash technique is used to sign the tree and support

authentication of the data by users. Table 3.1 lists the details about how to compute

and verify the Merkle hash for each node in the tree in Figure 3.3. The third column

of such table also lists the information which is leaked when the integrity of a node

is verified. Table 3.2 lists the inference attacks that can be carried out due to the

leakages.

Consider the following scenario. A cashier has access to the subtree Tδ1, shown

in Figure 3.3, including the root a1, that is essential for financial and administrative

purposes. She does not have access to a4 and its content that refers to CriticalDis-

eases. An access to the health-record in Figure 3.2 leads to the integrity verification

of this portion of the health record at the side of the cashier. During this process,

the cashier receives the Merkle hash of a node a4 and she also receives the following

information: a4 is a child of a1 and is on the left side of a2 and a3. By knowledge of

32

the schema, the cashier determines that a node at such position must be the Criti-

calDiseases node. Thus the cashier infers that the patient is definitely suffering from

some critical disease. If the hospital specializes in some specific critical disease(s), the

cashier can further infer which (possible) disease the patient is suffering from. Each

of these inferences leads to disclosure of information that is sensitive for the patient.

We now consider another scenario, which leads to leakage of more detailed sensitive

information. A nurse has access to Tδ2 and a1 from the record in Figure 3.2. He has

access to Tδ2, because he works with the doctor S. Stevenson, who prescribed the

administering of this treatment. The nurse receives Tδ2 and a1, and the corresponding

hashes from the remote database. In order to be able to verify the integrity of Tδ2,

he also receives the hashes of a6, a7, a9 and a11.

The schema of HealthRecord specifies that a child of CriticalDiseases refers to a

critical disease from which a patient suffers from. By receiving the hash for a6, which

is a child of the node a4 (element CriticalDiseases), the nurse infers that the patient

is suffering from another critical disease different from cancer. This is a disclosure

of private information, to which the nurse does not have access to. Assume that

the hospital of our example specializes on the treatment of only a limited number of

critical diseases. It is thus easy to infer what the other disease is. Furthermore, by

inferring that a8 has two siblings, that is, a7 and a9, the nurse is able to infer that

the patient has gone through two other treatments other than chemotherapy. Such

inference may easily lead to determine the seriousness of the illness. In addition, from

the schema, the nurse can infer that these nodes refer to Surgery and Medication,

which reveals that the patient has been received either or both of these treatments.

If the hospital has two doctors who specialize in Surgery or Medication, then the

knowledge that the patient has been treated with Surgery or Medication leads to

more information, such as that he has been treated by more than one doctors and

who (possibly) has been his doctor.

Furthermore, by the disclosure of the hash of node a11 and its structural relation-

ship with a8 as its child, and by knowing that children of a Chemotherapy element refer

33

<Symptom
type=Fever>

g1

g2 g3

g12

g5

g8

g6

g7

Subgraph Gδ2

g9

g10 g11

g13

g17

g14

g18

g15

g16

<HealthRecord>

<Symptoms>

<Symptom
type=Swelling>

<Symptom
type=UrinationPain>

<CriticalDiseases>

<Disease
name=Cancer>

<Treatment
name =Surgery>

<Doctor>

<Disease
name=KidneyStone>

<Treatment
name =Medication>

<Doctor>

<PostRecovery
Problems>

<Problem
type=DigestiveProblem>

<Problem
type=AbdominalPain>

<PatientID>
<...>

Subgraph Gδ1

g4
<ContactDetails>

Figure 3.4. A health-record graph; tree-edges in bold.

to the treatment instances, the nurse is sure that the patient went through another

Chemotherapy treatment and possibly with another doctor. Additional knowledge

about doctors and the hospital could lead to more leakage.

3.3 Structural Leakages in Graph-structured Data

The “IDREF” attribute or a user-defined attribute in XML is used to refer to

another element (node) in an XML document, which leads to a non-tree edge (either

a back-edge, cross-edge, or a forward-edge). The data object in Figure 3.4 is a graph-

based representation of XML-based health-care record of a patient, which typically

contains sensitive information. The XML schema elements are described in Table 3.4.

The hospital database, which can be accessed remotely, stores all such patient health

records.

34

Table 3.4
XML elements for the healthcare records

Element Semantics

HealthRecord Root of the XML document

Symptoms Lists the symptoms of a patient

CriticalDiseases Critical diseases the patient

suffers/suffered from.

Symptom Specifies a symptom. Attributes.

type refers to the type a symptom.

idref refers to the related disease.

Disease Information about a specific

critical disease; Attributes: idref

refers to PostRecoveryProblems.

Treatment Type of treatment administered on the

patient. Attributes: name specifies the

treatment. idref refers to the symptom

that a medication may affect.

Doctor Name of the doctor who

administered the treatment.

PostRecovery- Post-recovery problems that

Problems a patient goes through. The node

is created only once for the first

recovery. For any later disease and

recoveries from it, this node

is referred to from that Disease node.

Problem A post-recovery problem. Attribute:

type specifies the type of the problem.

PatientID Identifier of the patient.

Attributes: id and name

ContactDetails Contact details of the patient.

Consider the following scenario. An insurance manager handling the insurance

claim specifically towards the treatment of the disease KidneyStone has access to

35

Table 3.5
Leakage via cross-edge e(g11, g12), subgraph: Gδ1.

Distinct leakages Related sensitive

information leaked

In-degree of g12 ≥ 2 The patient has suffered

from at least one

more disease.

There is at least (1) This disease is a

one more path critical disease.

from the node (2) The patient has already

CriticalDiseases to g12 recovered from this disease.

The graph is (1) The patient has been

larger than Gδ1 treated by another doctor.

(2) She has been associated

with this hospital earlier.

(3) HealthRecord contains

more disease-related data.

subgraph Gδ1. As a result of querying the database, the manager receives Gδ1 and a

set of authenticity verification items. This portion includes the nodes g1, g3, g11, g12,

g14, g15, g16 and g18. One of the cross-edges received is (e(g11, g12)). By knowing that

e(g11, g12) is a cross-edge, the manager also learns that there is a tree-edge (to which

the manager has no access) to the node representing PostRecoveryProblems, which

implies that the patient has also suffered from another disease.

By knowledge of the schema, the insurance manager determines that an edge to

such a node must be from a Disease node, which is a child of the CriticalDiseases

node. Thus the manager infers that the patient is definitely suffering from some

other critical disease. If the hospital specializes in some specific critical disease(s),

which is mostly the case in reality, the manager can further infer which (possible)

disease the patient is suffering from. Moreover, the manager can definitely infer that

36

Table 3.6
Leakage via back-edge e(g14, g9), subgraph: Gδ2.

Distinct leakages Related sensitive

information leaked

(a) There is at least (1) Symptom

one cycle in the graph; UrinationPain led to

(b) so there is at least a disease, which is being

one path from g9 to g14 treated with medication.

(2) Since the treatment is

medication, with high

probability, this disease

is not in a serious stage.

The graph is larger than Gδ2 HealthRecord contains

more disease-related data.

such a disease was cured (and thus diagnosed) before the KidneyStone disease; this

is because the node of PostRecoveryProblems already exists. Each of these inferences

leads to disclosure of information that is sensitive for the patient. Leakages inferred

from the knowledge that e(g11, g12) is a cross-edge are listed in Table 3.5.

We now consider another scenario, which also leads to leakage of some sensitive

information by the knowledge that an edge is a back-edge. A pharmacist has access

to Gδ2 from the record in Figure 3.4. She has access to Gδ2, because she provides this

medication (specified by node g14) to the patient. The pharmacist receives Gδ2 and

the corresponding verification items from the remote database to verify authenticity.

If she somehow learns that the e(g14, g9) is a back-edge from the received information,

she would learn that there is a path from g9 to g14 in the health-record. The schema

of HealthRecord specifies that a symptom node is related to a critical disease from

which a patient suffers from, that is there is an edge from the symptom node to a

disease node. The disease node further has an edge to the Medication node. The

only path that can exist from g9 to g14 is through a disease node. It is thus apparent

37

that the patient suffers from a critical disease related to the symptom UrinationPain.

The symptom name further leads to the possible name of the disease. If the hospital

specializes in a limited number of critical diseases, the pharmacist can determine the

name of the disease. The treatment type may easily lead to determine the seriousness

of the illness (Table 3.6).

38

4 FORMAL MODEL OF LEAKAGE-FREE REDACTABLE SIGNATURES

One of the greatest lessons I have learnt in my life
is to pay as much attention to the means of work as to its end.

Swami Vivekananda (Los Angeles, California, January 4, 1900)

In this chapter, we propose the formal model of leakage-free redactable signatures

that is general and supports not only trees, but also for graphs and forests; moreover,

it supports authentication of disconnected subtrees/subgraphs/sub-forests.

4.1 Preliminaries

Trees and Graphs: A directed (a directed graph G(V,E) is a set of nodes (or

vertices) V and a set of edges E between these nodes: e(x, y) is an edge from x to

y, (x, y) ∈V × V . A node x represents an atomic unit of the data, which is always

shared as a whole or is not shared at all. A node x is called the ancestor of a node

y iff there exists a path consisting of one or more edges from x to y. Node x is an

immediate ancestor of y in G iff there exists an edge e(x, y) in E. Nodes having a

common immediate ancestor are called siblings. If there is a specific order between

siblings in G, then G is an ordered graph. The fact that x precedes one of its siblings

y in an ordered graph is denoted by x ≺ y; i.e., x is to the left of y. The contents, if

any, of a node x is referred to as cx. A redacted subgraph graph G(V,E) is denoted by

Gδ(Vδ, Eδ), and Gδ(Vδ, Eδ) ⊆ G(V,E). Gδ(Vδ, Eδ) ⊆ G(V,E) if and only if Vδ ⊆ V and

Eδ ⊆ E. Gδ(Vδ, Eδ) ⊂ G(V,E) if and only if Vδ ∪ Eδ ⊂ V ∪ E. Redacted subgraph

Gδ(Vδ, Eδ) is derived from the graph G(V,E) by redacting the set of nodes V \ Vδ and

the set of edges E \ Eδ from G. A directed tree T (V,E) is a directed graph with the

following constraint: removal of any edge e(x, y) from E leads to two disconnected

trees with no edge or path between nodes x and y. Two nodes are siblings, if they

39

have a common parent; x is a parent of node y iff there is an edge e(x, y) in T ; y is

called the child of its parent x. In a tree, a parent node is nothing but the immediate

ancestor of all its child nodes. An ordered tree is one where each pair of siblings have

an order between them. A rooted tree has a special node called root, for which there

is no parent node. As in the case of graphs, a redacted subtree of tree T (V,E) is

denoted by Tδ(Vδ, Eδ) such that Tδ(Vδ, Eδ) ⊆ T (V,E). Tδ(Vδ, Eδ) ⊆ T (V,E) denotes

that Vδ ⊆ V and Eδ ⊆ E. Redacted subgraph Tδ(Vδ, Eδ) is derived from the tree

T (V,E) by redacting the set of nodes V \ Vδ and the set of edges E \ Eδ from

T . Two trees/graphs/forests with the same nodes and edges, but different ordering

between at least one pair of siblings are different trees/graphs/forests. In the rest

of the paper, a trees refers to an ordered directed rooted tree, and a graph refers to

an ordered directed graph, a subtree/subgraph refers to a redacted subtree/subgraph

of a tree/graph unless otherwise stated. Υ(V,E) refers to either a tree T (V,E) or a

graph G(V,E).

4.1.1 Signature Schemes

In this section, we review the standard definition of digital signatures (adopted

from [76]). A standard digital signature scheme Π is a tuple (Gen, Sign, Vrfy).

Definition 4.1.1 (Standard digital signature scheme) A digital signature

scheme rΠ consists of two probabilistic polynomial-time algorithms and one deter-

ministic polynomial-time algorithm Π ≡ (Gen, Sign, Vrfy) satisfying the following

requirements:

KEY GENERATION: The probabilistic key generation algorithm Gen takes as in-

put a security parameter 1n and outputs a pair of keys (pk, sk), where pk and

sk are the public and private keys, respectively. We assume for convention that

each of these keys has length n bits, and that n can be determined from

(pk, sk).

(pk, sk)← Gen(1n).

40

SIGNING: The probabilistic signing algorithm Sign takes as input a private key sk

and a message M , and outputs a signature σ.

σ ← Signsk(M)

VERIFICATION: The deterministic verification algorithm Vrfy takes as input a

public key pk, a message M , and a signature σ, and outputs a bit b, with b = 1

meaning valid (i.e., σ is a valid signature of message M), and b = 0 meaning

invalid (i.e., σ is not a valid signature of message M).

b← Vrfypk(σ,M)

4.1.2 Forgery

The strongest form of security for a digital signature scheme Π is existentially

unforgeable against chosen message attack (EU-CMA). The following experiment

Sig-Forgeeu−cmaA,Π (λ) and definition review the unforgeability property of digital sig-

natures (originally defined in [62]).

Unforgeability: Let us consider the following signature forging experiment. A is a

probabilistic polynomial time (PPT) adversary with the knowledge of pk.

Signature Forging Experiment: Sig-Forgeeu−cmaA,Π (λ)

1. (pk, sk) ← Gen(1λ)

2. A may know pk and has oracle accesses to Signsk(·) and rVrfysk(·). Let Q be

the set of messages for which A queries Signsk(·).

3. A outputs (σ, M), where M 6∈ Q.

4. The output of the experiment is 1 if and only if Vrfypk(σ,M) outputs 1, else the

experiment outputs 0.

41

Definition 4.1.2 The digital signature scheme Π is (t, q, ε) − secure if the experi-

ment Sig-Forgeeu−cmaA,Π (λ) outputs 1 with probability ε(λ) = 1
2
+ ε(λ), where ε(λ) is a

negligible function in terms of λ; i.e.,

Pr[Sig− Forgeeu−cmaA,Π (λ) = 1] ≤ ε(λ) =
1

2
+ ε(λ)

4.2 Leakage-Free Redactable Signatures

In this section, we present the formal model of the leakage-free redactable (LFR)

signatures for trees, graphs and forests.

4.2.1 Why a New Model?

The standard notion of digital signatures (Section 4.1) has several shortcomings in

our context. (1) It is not suitable for cases when a user has access only to a part of the

message, and not the full message. (2) It is not suitable for messages that are trees,

graphs or forests. Therefore, they also do not define the notion of “leakage-free”.

Redactable signatures have been proposed to address the first shortcoming. Such

schemes allow signature of (a designated) part of a message to be computed from the

signature of the complete message using the knowledge of the public key. Existing

models for redactable and sanitizable signatures do not capture all our requirements

in a holistic manner, and thus their security definitions are not applicable here as

they are.

Brzuska et al [29] have defined formal security definitions of redactable structural

signatures for tree data structures. Their definition is restrictive and cannot be ap-

plied to our general case. First of all, their scheme is defined only for trees, and can

support neither graphs nor forests. Second, their scheme is restrictive for trees as

well. They define an operation called sCut(·), which “cuts” a leaf node from a tree,

and can be applied multiple times in o order to compute the redacted subtree and its

signature. However, by this cut operation, a tree can be reduced to only a connected

42

subtree, not to a set of disconnected subtrees. The cases, in which a receiver that must

receive multiple disconnected subtrees of a tree and verify their authenticity cannot

be supported by such a definition. For example, consider the tree in Figure 1.1(a).

Consider that a query on tree T evaluates to a subtree Tδ that is verified by the

querier for its authenticity. By the definition of Brzuska et al., the sCut(·) operation

is applied on leaf b, and iteratively on leaf f . It then results on the subtree Tδ as

shown shaded in the figure. The signature of Tδ is computed from the signature of the

T without the knowledge of the secret key, with which T was signed. Now consider

another scenario – a query on tree T evaluates to two disconnected subtrees: Tδ and

the subtree – g → f . Such a scenario cannot be modeled by this definition. However,

such scenarios occur quite frequently in practical usages and databases, and cannot

be ignored by a security model. Therefore, there is a need for a completely general

security model, which should also support graph-structured data (XML graphs, bi-

ological and genetic data, which have private and sensitive information encoded in

them).

4.2.2 Definition of a General Scheme

In the following definition, Υ(V,E) refers to a tree, a graph, or a forest (a set of

disconnected trees/graphs) with the set of vertices and edges being denoted by V and

E, respectively.

Definition 4.2.1 (Leakage-Free Redactable Signature Scheme rΠ) A leakage-

free redactable signature scheme rΠ consists of four polynomial algorithms rΠ ≡

(rGen, rSign, rRedact, rVrfy) satisfying the following requirements. Let Υ(V,E) re-

fer to either a tree, graph, or a forest, and let Υδ(Vδ, Eδ) ⊆ Υ(V,E), i.e., Υδ(Vδ, Eδ)

is a redacted subtree/subgraph/sub-forest derived from Υ(V,E).

KEY GENERATION: A key generation algorithm rGen takes as input a security

parameter 1λ and outputs a pair of keys (pk, sk), where pk and sk are the

43

public and private keys, respectively. We assume for convention that each

of these keys has length λ, and that λ can be determined from pk and sk.

(pk, sk)← rGen(1λ).

SIGNING: The signing algorithm rSign takes as input a private key sk and a

tree/graph/forest Υ(V,E), where the content cx of each node x ∈ V is such that

cx ∈ {0, 1}∗. It outputs a signature σΥ.

(σΥ ,Υ(V,E))← rSignsk(Υ(V,E)).

REDACTION: The redaction algorithm rRedact takes as input Υ(V,E), its sig-

nature σΥ, and a set of nodes V ′
δ and edges E ′

δ, where V ′
δ ⊂ V and E ′

δ ⊆ E.

rRedact outputs a redacted signature σΥδ(Vδ ,Eδ) for Υδ(Vδ, Eδ), where Υδ(Vδ, Eδ)

is a tree/graph/forest derived from Υ(V,E) consisting of vertices in Vδ = V \V ′
δ ,

and edges Eδ = E \E ′
δ.

(σΥδ
,Υδ(Vδ, Eδ))← rRedact(pk, σΥ ,Υ(V,E), V ′

δ)E
′
δ

VERIFICATION: The verification algorithm rVrfy takes as input a public key

pk, a tree/graph/forest Υ(V,E), whose authenticity needs to be verified, and

a signature σ. It outputs a bit b, with b = 1 meaning valid (i.e., σ is a

valid signature of Υ(V,E)) and b = 0 meaning invalid (i.e., σ is not a valid

signature of Υ(V,E)).

b← rVrfypk(σ,Υ(V,E))

An LFR signature scheme is correct if the following properties hold.

Signing Correctness: For any tree/graph/forest Υ(V,E), any positive integer value

of λ, any key pair (pk, sk) ← rGen(λ), and any (σΥ(V,E), Υ(V,E)) ←

rSignsk(Υ(V,E)), rVrfypk(σΥ(V,E),Υ(V,E)) always outputs 1.

44

Redaction Correctness: For any tree/graph/forest Υ(V,E), any positive integer

value of λ, any key pair (pk, sk) ← rGen(λ), any (σΥ(V,E), Υ(V,E)) ←

rSignsk(Υ(V,E)), any subset of vertices V ′
δ ⊂ V , any subset of edges E ′

δ ⊆

E such that Vδ = V \V ′
δ , and Eδ = E \E ′

δ, and any (σΥδ
, Υδ(Vδ, Eδ)) ←

rRedact(pk, σΥ ,Υ(V,E), V ′
δ)E

′
δ, rVrfypk(σΥδ

,Υδ(Vδ, Eδ)) always outputs 1.

4.3 Security of Leakage-Free Redactable Signatures

In this section, we define the security requirements of the leakage-free redactable

signature scheme rΠ. Informally, these requirements are:

Unforgeability: Someone who does not know the secret key and does not know

a valid signature for a tree/graph/forest Υ should not be able to compute a

valid signature for Υ provided that (s)he does not know the valid signature for

any tree/graph/forest Υ′ such that Υ ⊂ Υ′. This is a bit different from the

traditional notion of EU-CMA (More on this in Section 4.3.1).

Privacy: Someone who has access to Υ ⊂ Υ′ but not to Υ′ should not be able to

infer any information about the redacted nodes and edges (in Υ′ but not in Υ)

from the leakage-free redactable signature of Υ.

Transparency: Someone who has access to Υ ⊂ Υ′ but not to Υ′ should not be

able to infer whether the signature of Υ has been computed from scratch or

through the process of redaction.

4.3.1 Unforgeability

In standard digital signature schemes, only the signer can compute the signature

of a given message. However, a redactable signature scheme allows “anyone” with

the public key pk to be able to compute the signature of a (designated) part of the

data (In contrast, for sanitizable signatures, a designated sanitizer can only compute

45

signatures on altered documents). Redactable signatures by Johnson et al. [74] com-

pute the signature of a message M , which consists of n parts: m1,m2,m3, . . . ,mn. It

allows anyone, who has a knowledge of the public key to compute the signature of

a redacted document M ′ that consists of a subset of mi’s. Due to such a property,

redactable signature schemes cannot support the strongest notion of unforgeability,

i.e., existentially unforgeable under adaptive chosen-message attack, as it is. It has

to be adapted (in other words, weakened) in order incorporate the fact that the sig-

natures of any redacted sub-document M ′ can be “legally forge” with respect to the

operation that can be used to compute these sub-documents from the original docu-

ment M (cf., [74]). Therefore, the notion of unforgeability proposed by Brzuska et al

([29]: Definition 3) for redactable structural signatures for trees, is rather too strong

to be supported by any redactable signature scheme. Moreover, their definition does

not formally define what a “tree attack” means.

In what follows, we make use of the results of Johnson et al. [74] in defining the

notion of unforgeability for the leakage-free redactable signature scheme rΠ defined

in the previous section. The operation related to our notion of redaction is the subset

⊂ operation: a redacted subtree Tδ is a tree with subsets of nodes and edges of the

original tree T . Intuitively this notion means that if an adversaryA has the knowledge

of a subtree/subgraph/sub-forest Υδ, its valid signature σΥδ
, and the public key, then

A can in fact compute the valid signature of any subtree/subgraph/subforest of Υδ,

and these are the only “messages” for which A can “forge” a signature without the

knowledge of the secret key.

Existentially unforgeable under adaptive chosen-message attack with

respect to the ⊂ operation (EU-CMA-⊂): Let us consider the following signature

forging experiment. As earlier, A is a PPT adversary has access to the signing oracle

rSignsk(·) with the knowledge of pk. A should not be able to forge a valid signature

σ for a “new” tree/graph/forest even after it has adaptively queried the signing oracle

rSignsk(·). A “new” tree/graph/forest denotes a tree/graph/forest Υ′, for which the

A has not received a valid signature from the signing oracle and Υ′ is not a redacted

46

subtree/subgraph/sub-forest of another Υ for which A has received a valid signature

from the signing oracle.

Signature Forging Experiment: Sig-Forgeeu−cma−⊂A,rΠ (λ)

1. (pk, sk) ← Gen(1λ)

2. A is given the pk, and is allowed oracle accesses to rSignsk(·), rRedactpk(·, ·),

and rVrfysk(·). Let Q be the set of all trees/graphs/forests for which A queries

rSignsk(·) for their signatures.

3. A outputs (σ, Υ′), such that

(a) Υ′ 6∈Q: Υ′ is a tree/graph/forest whose signature the A has not queried

from the signing oracle, and

(b) Υ′ 6∈∪Υ∈QΘΥ , where ΘΥ = {Υ′′|Υ′′ ⊂ Υ}: Υ′ is not a subtree/subgraph/

sub-forest of any Υ(V,E), whose signature has been queried by A from

rSignsk(·).

4. The output of the experiment is 1 if and only if Vrfypk(σ,Υ
′) = 1, else the

experiment outputs 0.

Definition 4.3.1 (LFR Signature: Integrity) The leakage-free redactable signa-

ture scheme rΠ is existentially unforgeable under adaptive chosen-message attack

over ⊂ operation, if the experiment Sig-Forgeeu−cma−⊂A,rΠ (λ) outputs 1 with probability

ε(λ) = 1
2

+ ε(λ):

Pr(Sig− Forgeeu−cma−⊂A,rΠ (λ) = 1) ≤ ε(λ) =
1

2
+ ε(λ).

4.3.2 Leakage-Free Properties

There are two leakage-free properties: privacy and transparency. Transparency is

the stronger property and subsumes privacy.

47

4.3.3 Privacy

An LFR signature scheme supporting privacy does not lead to leakage of the con-

tents of the nodes that have been redacted. Given a redacted subtree/subgraph/sub-

forest and its LFR signature, one cannot infer any of the contents of the redacted

nodes. For example, given a subtree from a financial XML document that lists credit-

card information, and given two source XML documents, one cannot identify which

source tree the subtree has been redacted from.

In the following adversarial experiment, a PPT adversary A outputs two trees/-

graphs/forests Υ0 and Υ1 such that (a) A has not queried the signatures for them

nor has queried signatures for super-trees/super-graphs/super-forests of them; (b)

redacting a given set of vertices V ′
δ and edges E ′

δ from either of them lead to the same

subtree/subgraph/sub-forest Υ′
δ(V

′
δ , E

′
δ). The experiment randomly chooses either Υb

(b = 0 or 1) to be signed, and then computes the signature for the redacted subtree

Υ′
δ. A challenge consisting of the redacted subtree and its signature is given to the

adversary. The experiment is successful, if the adversary can infer the Υb from which

Υ′
δ has been redacted with a probability non-negligibly larger than 1

2
.

Privacy Experiment: Sig-Priv
priv
A,rΠ(λ) Let us consider the following experiment

on privacy of the LFR signature scheme rΠ:

1. rGen(1λ) is run to obtain keys (pk, sk).

2. Probabilistic polynomial-time adversary A is given pk and oracle access to

rSignsk(·), rRedact(·) and rVrfypk(·). Let Q be the set of all trees/graph-

s/forests for which A queries rSignsk(·) for their signatures.

3. A outputs two trees/graphs/forests Υ0(V0, E0), and Υ1(V1, E1), and Υδ(Vδ, Eδ),

where Υδ(Vδ, Eδ) ⊂ Υ0(V0, E0) and Υδ(Vδ, Eδ)⊂ Υ1(V1, E1).

4. Draw a random b uniformly from {0,1}. (σΥb
,Υb(Vb, Eb))← rSignsk(Υb(Vb, Eb)).

The signature for redacted subtree Υδ is computed from σΥb
: (σΥδ

,Υδ) ←

rRedact(pk, σΥb
,Υb(Vb, Eb), Vb\Vδ)Eb\Eδ. Then the challenge (σΥδ

,Υδ) is given

to A.

48

5. The adversary A continues to have oracle access to rSignsk(·), rRedactpk(·, ·),

and rVrfypk(·). Eventually, A outputs a bit b′ (for the challenge (σΥδ
,Υδ)).

6. The output of the experiment is 1 if b′ = b, and 0 otherwise.

Definition 4.3.2 (LFR Signature: Privacy) The LFR signature scheme rΠ pre-

serves privacy if Pr(Sig-PrivprivA,rΠ(λ)=1) ≤ 1
2

+ ε(λ).

4.3.4 Transparency

In this section, we formally define a transparent LFR scheme. In many applica-

tions, it is expected that the end-user should not be able to infer whether the received

subtree/subgraph/sub-forest is a redacted one or not. If such information can be in-

ferred, the adversary can learn that the source tree/graph/forest has a higher number

of vertices/edges (which might represent the number of bank accounts one has, or

the number of critical diseases one has suffered from). Therefore, the leakage-free

redactable signature scheme should prevent inference of such information.

A similar notion exists in the literature for sanitizable signatures in the name

of “signature transparency” [74], which however, is different from our notion of

signature-indistinguishability in the sense that in our case, the adversary should not

be able to infer any extraneous information (either contents or structural) in Υ with

respect to Υδ (extraneous information is defined in Section 4.2). The existing notion

transparency does not capture leakage of structural information.

In the following adversarial experiment, a PPT adversary A outputs two trees/-

graphs/forests Υ0 and Υ1 such that Υ0 ⊂ Υ1. The experiment randomly chooses

either Υb (b = 0 or 1) to be signed; if Υ1 is signed, then the signature for Υ0 is com-

puted by redaction from that of Υ1. A challenge consisting of Υ0 and its signature

is given to the adversary. The experiment is successful (returns 1) if the adversary

can infer whether the signature of Υb was computed by the signing oracle or by the

redaction oracle, with a probability non-negligibly larger than 1
2
.

49

Transparency Experiment: Sig-Transp
transp
A,rΠ (λ) Let us consider the following

experiment on transparency of the LFR signature scheme rΠ:

1. rGen(1λ) is run to obtain keys (pk, sk).

2. Probabilistic polynomial-time adversary A is given pk and oracle access to

rSignsk(·), rRedact(·) and rVrfypk(·). Let Q be the set of all trees/graph-

s/forests for which A queries rSignsk(·) for their signatures.

3. A outputs two trees/graphs/forests Υ0(V0, E0), and Υ1(V1, E1), such that

Υ0(V0, E0) ⊂ Υ1(V1, E1).

4. Draw a random b uniformly from {0,1}. (σΥb
,Υb(Vb, Eb))← rSignsk(Υb(Vb, Eb)).

If b=1, then the signature for Υ0(V0, E0) is computed from σΥ1 : (σΥ0 ,Υ0(V0, E0))

← rRedact(pk, σΥ1 ,Υ1(V1, E1), V1\V0)E1\E0. Then the challenge

(σΥ0 ,Υ0(V0, E0)) is given to A.

5. The adversary A continues to have oracle access to rSignsk(·), rRedactpk(·, ·),

and rVrfypk(·). Eventually, A outputs a bit b′ (for the challenge (σΥδ
,Υδ)).

6. The output of the experiment is 1 if b′ = b, and 0 otherwise.

Definition 4.3.3 (LFR Signature: Transparency) The LFR signature scheme

rΠ preserves transparency, if Pr(Sig-TransptranspA,rΠ (λ)=1) ≤ 1
2

+ ε(λ).

4.3.5 Relationships of Privacy and Transparency

In this section, we analyze the relationships between the two leakage-free proper-

ties of LFR signature schemes: privacy and transparency. In whatever follows, any

mention of tree/subtree can be substituted by the term graph/subgraph or forest/sub-

forest without any change to the semantics of the context.

50

Proposition 4.3.1 Privacy 6⇒ Transparency.

Consider two trees: Υ1: x is the parent of y and z, and y ≺ z; Υ2: x is the parent of y

and w, and y ≺ w. Consider the case in which a party receives subtree x, y, and the

edge from x and y, and its signature. If the signature scheme supports privacy, the

signature does not leak contents of z or w, but may provide the fact that y has a right

sibling. Such a scheme is privacy-preserving, but not transparent, because someone

who knows Υ1, and the subtree and its signature, can infer that the signature is a

redacted signature from Υ1.

Proposition 4.3.2 Transparency ⇒ Privacy.

Someone who cannot determine if a signature is a redacted signature, cannot in fact

determine if the subtree is a redacted subtree or a source tree by itself. By taking

negation of the implication, if an LFR scheme does not support privacy, then one can

determine the source tree from whose signature, the signature of a subtree has been

derived. Such inference in fact implies that the signature of the subtree has not be

computed from scratch, but is a redacted signature, which is why transparency also

does not hold for such a scheme. The transparency property of a redactable signature

scheme is indeed its leakage-free property.

4.4 Secure Names

We would now define a formal notion of secure names, and secure naming schemes.

Secure names are assigned with nodes in order to prove/disprove the allged ordere

between a pair of nodes.

4.4.1 Secure Naming Schemes

Each secure (i.e., leakage-free) naming scheme rN ≡ (rNameGen, rNameVrfy) has

two components: generation of secure names and verification of the order between

secure names, and is defined as follows.

51

Definition 4.4.1 (Secure Naming Scheme rN) A leakage-free naming scheme

rN consists of two polynomial algorithms rN ≡ (rNameGen, rNameVrfy) satisfying

the following requirements. Let V refer to a set of vertices such that V = {xi|1 ≤ i ≤

|V |}, and xi ≺ xj, for all 1 ≤ i < j ≤ |Θ|. Let Vδ ⊆ V , i.e., Vδ is a redacted set of

vertices derived from V .

NAME GENERATION: A name generation algorithm rNameGen takes as input

two or less security parameters 1λ1, and 1λ2 and V and outputs a set of Θ

= {ηi|1 ≤ i ≤ |V |}such that ηi is a secure name for node xi. We assume

for convention that each of these secure names has length λ, and that λ can

be determined from ηi’s. In case of one security parameter, 1λ2 would just be

replaced by 0.

Θ ← rNameGen(1λ1 , 1λ2 , V).

ORDER VERIFICATION: The order verification algorithm rNameVrfy takes as

input two or less security parameters 1λ1, and 1λ2 and two pairs (xi,ηi) and

(xj,ηj), where a pair is: (node x, secure name ηx), and outputs a bit b, with

b = 1 meaning valid (i.e., xi ≺ xj) and b = 0 meaning invalid (i.e., xi 6≺

xj).

b← rNameVrfy(1λ1 , 1λ2 , (xi, ηi), (xj, ηj))

An LFR signature scheme is correct if the generated secure names are verified to

be order-preserving.

Naming Correctness: For any set of vertices V such that between a pair of vertices

x, y ∈ V , x ≺ y, any positive integer values of λ1, and λ2, and any Θ ←

rNameGen(1λ1 , 1λ2 , V), rNameVrfy(1λ1 , 1λ2 , (x, ηx), (y, ηy)) always outputs 1.

4.4.2 Security of Naming Schemes

In this section, we define the security requirement of the secure names. Informally,

this requirement is as follows.

52

Name-Transparency: Someone who has access to an ordered set of secure names

Θδ ⊂ Θ but not to Θ should not be able to infer whether Θ = Θδ or Θ 6= Θδ.

Let us formally define a transparency notion for secure names. Such a notion is

similar to that of transparency (Section 4.3.4).

In the following adversarial experiment, a PPT adversary A outputs two sets of

vertices V0 and V1 such that V0 ⊂ V1, and xi ≺ xj, where 1 ≤ i < j ≤ |V1|. The

experiment randomly chooses either Vb (b = 0 or 1) for which secure names are to be

generated; if V1 is chosen, then the secure names for the vertices in V0 are selected

from V1 . A challenge consisting of V0 and its set of secure names Θ0 is given to the

adversary. The experiment is successful (returns 1) if the adversary can infer whether

the secure names in Θ0 of Υb was computed from scratch or was selected from the

Θ1 after computing Θ1, with a probability non-negligibly larger than 1
2
.

Name-Transparency Experiment: Name-Transp
transp
A,rN (λ) Let us consider the fol-

lowing experiment on name-transparency of the secure names rΠ:

1. Probabilistic polynomial-time adversary A is given oracle access to

rNameGen(λ1, λ2, ·) and rNameVrfy(λ1, λ2, ·).

2. A outputs two sets of vertices V0, and V1, such that V0 ⊂ V1.

3. Draw a random b uniformly from {0,1}. Θb ← rNameGen(1λ1 , 1λ2 , Vb). If b = 1,

then the set of secure names Θ0 for the vertices in V 0 are selected from Θ1.

Then the challenge (Θ0,V 0) is given to A.

4. The adversary A continues to have oracle access to rNameGen(λ1, λ2, ·) and

rNameVrfy(λ1, λ2, ·). Eventually, A outputs a bit b′ (for the challenge (Θ0,V 0).

5. The output of the experiment is 1 if b′ = b, and 0 otherwise.

Definition 4.4.2 (Secure Naming Scheme: Name-Transparency) The

secure naming scheme rN preserves transparency, if Pr(Name-TransptranspA,rN (λ)=1) ≤
1
2

+max(ε(λ1), ε(λ2)), where max(i, j) returns the larger of i and j.

53

4.5 Summary

Redactable signatures for linear-structured data such as strings have been studied.

Redactable signatures for non-linear-structured data such as trees and graphs have

also been recently developed with a stronger security requirement - that is - such

signatures should be completely leakage-free. However, it is restrictive and is flawed.

We proposed the first fully general formal model for leakage-free redactable signatures

for trees, graphs and forests. We also defined a notion of security of secure names for

ordered vertices.

54

5 STRUCTURAL SIGNATURES FOR TREES

Whether you can observe a thing or not depends on the theory
which you use. It is the theory which decides what can be observed.

Albert Einstein (during Heisenberg’s 1926 lecture at Berlin)

In this chapter, we present a solution to our problem of leakage-free authentica-

tion of trees, for scenarios when a user receives “only one subtree”. This scheme is

based on the notion of randomized traversal numbers and post-order/pre-order/in-

order traversals of trees, and aggregate signature schemes. We then provide security

analysis, and complexity as well as performance analysis of this scheme.

For scenarios, in which a receiver receiver receives more than one subtrees as a

result of one or more queries, this scheme leaks path-related information between each

pair of subtrees.

5.1 Review of Tree Traversals

Post-order, pre-order, and in-order tree traversals are defined in [77]. While post-

order and pre-order traversals are defined for all types of trees, in-order traversal is

defined only for binary trees. Binary trees are the trees in which each non-leaf node

has at most two children, and they are left and right children. A node can have a

right child without having a left child and vice versa. In each of these traversals, the

first node visited is assigned 1 as its visit count. For every subsequent vertex visited,

the visit count is incremented by 1 and is assigned to the vertex. This sequence of

numbers is called the sequence of post-order (PON), pre-order (RON), or in-order

(ION) numbers for the tree T , depending on the particular type of traversal.

Properties of traversal numbers: The post-order number of a node is smaller than

that of its parent. The pre-order number of a node is greater than that of its parent.

55

The in-order number of a node in a binary tree is greater than that of its left child

and smaller than that of its right child. A specific traversal number of a node x is

always smaller than that of its right sibling y. The distribution and range of the

traversal numbers are uniform and deterministic ([1, 2, . . . , |V |]). The determinism

of the distribution and range of the traversal numbers make them unsuitable for our

purposes as they reveal information about the approximate size of the data and the

position of the subset of data in the data set. It is possible for an adversary to

exploit this information and replace a signed node with a compromised or a different

node altogether by assigning to it the original pre-order number. Siblings can be

interchanged and the corresponding visit counts could also be interchanged while

satisfying the specific properties. A non-binary tree can be uniquely reconstructed

from the sequences of pre-order and post-order numbers of its nodes. A binary tree

can be uniquely reconstructed from the sequences of in-order and either pre-order or

post-order numbers of its nodes.

In order to overcome the above limitations of the traversal numbers, we propose

the notion of randomized traversal numbers.

5.2 Randomized Traversal Numbers

We transform a set of traversal numbers (of a specific traversal) into a set of dis-

tinct random numbers such that the order between the traversal numbers is preserved.

By preserving the order of their original counterparts, these randomized traversal

numbers (RTNs) preserve their properties. The distribution and range of randomized

traversal numbers is non-uniform and non-deterministic. The randomized post-order,

pre-order and in-order numbers are called randomized post-order (RPON), random-

ized pre-order (RRON), and randomized in-order (RION) numbers. RPON, RRON,

and RION for a node x are denoted by px, rx and ix, respectively.

Before we define the randomized traversal numbers formally, we would need to

introduce the security notion of POPF-CCA introduced by Boldyreva et al. [26] in

56

order to develop secure order-preserving encryption schemes. Boldyreva et al observe

that the standard indistinguishability notion of IND-CCA (indistingushable against

chosen-ciphertext attack) cannot be supported by any order-preserving encryption

(OPE), because any OPE scheme (1) has to be deterministic in order to support

determination of equality among plaintexts, (2) leaks equality, and (3) order among

plaintexts. Our notion of randomized traversal numbers in fact can be defined to

be the ciphertexts of such OPE scheme that is secure under the new notion of in-

distinguishability as defined in [26]: pseudo-random order-preserving function against

chosen-ciphertext attack (POPF-CCA). We should note that POPF-CCA is weaker

than the strongest notion of indistinguishability - indistingushable against chosen-

ciphertext attack (IND-CCA). We refer the reader to [26] for detailed description on

this notion.

Definition 5.2.1 Let T (V,E) be a tree. Let Vδ be a subset of V . Let ox be the

traversal number of a node x ∈V , OV = {ox|x ∈ V }. Let O′
V = {o′x|x ∈ V }, where

o′x is the randomized traversal number associated with ox for node x if and only if the

following hold true. Let � denote either <,=, >.

1. ox � oy ⇔ o′x � o′y.

2. Let EncK(·) be a POPF-CCA secure order-preserving encryption, which is used

as follows: O′
V ← EncK(OV).

From the definition, it is clear that given the knowledge of any subset O′
Vδ

of ran-

domized traversal numbers O′
V in a tree T (V,E), a PPT adversary A has a negiblible

advantage (as defined in [26]) in determining whether V \ Vδ is empty or non-empty

under the POPF-CCA notion of security. In other words, EncK(·) is transparent

(Section 4.3.4).

The following lemmas provide the basis for developing the structural signatures

for trees.

57

Lemma 5.2.1 The pair of randomized in-order number and either post-order or pre-

order number for a node in a binary tree correctly and uniquely determines the position

of the node in the structure of the tree, where the position of a node is defined by its

parent and its status as the left or right child of that parent.

Proof From the in-order and either post-order or pre-order traversal sequences of

the vertices, it is possible to uniquely re-construct a binary tree [75]. Thus from these

sequences or from their randomized counterparts, for a node, it is possible to correctly

identify its parent and its status as left or right child of that parent in the tree. Thus

the lemma is proven. Follows from [75].

Lemma 5.2.2 The pair of randomized post-order number and pre-order number for

a node in a (non-binary) tree uniquely determines the position of the node in the

structure of the tree, where the position of a node is defined by its parent and its

siblings to its immediate left and right in the tree.

Proof Follows from [51].

5.2.1 Computation of randomized traversal numbers

In order to compute the randomized traversal numbers, we refer to the secure

scheme presented in the literature.

1. By using Boldyreva et al’s order-preserving encryption: Boldyreva et al. [26] re-

cently developed a symmetric order-preserving encryption (OPE) scheme that

is secure with respect to a security notion - POPF-CCA This scheme is based

on hypergeometric (HG) and negative hypergeometric (NHG) probability distri-

butions, and their relation with order-preserving encryption. For our purpose,

let EncK([i, j]) refer to the randomized order-preserving encryption of the list

of integers [i, j] using OPE scheme and the key K. For our purpose, we just

58

need to carry out verification of the order among them, there is no decryp-

tion of the encrypted integers. These encrypted numbers can be used as the

randomized traversal numbers. However, order-preserving encryption is more

expensive than (1) and (2) as it provides a trapdoor to compute the plaintext

from the ciphertext. We do not need such a property here. We should note

that Boldyreva et al. have not characterized the leakage and its amount due to

their OPE scheme ([26]: page: 5). However, this is the state-of-the art scheme.

Existing order-preserving hash functions are not related to security in any sense

([26]: page: 5).

2. Not provably secure: One scheme is to draw as many randoms as the number of

the nodes, and sort them. The sorted (increasing-order) random numbers are

assigned as the randomized post-order numbers. This process is repeared for

randomized pre-order numbers.

We mention of the second scheme because we believe that it provides security for

trees with small arity such as 2 (however, we note that we do not have a proof of

security in terms of transparency as of now).

5.3 Structural Signatures

In this section, we develop the protocol of structural signature scheme for trees.

Structural signatures for non-binary trees are based on post-order and pre-order num-

bers, and those of binary trees are defined identically to that of non-binary trees except

that in-order traversals are used in place of either the post-order and pre-order traver-

sals (Lemma 5.2.1). For simplicity of exposition, we focus primarily on non-binary

trees. The structural signature scheme is referred to as rΠ ≡ (rGen, rSign, rRedact,

rVrfy), and is presented in the following sections.

59

5.3.1 Signing (rSign)

Structural Position: A structural position uniquely identifies a node in a tree

structure. It is defined as a pair of the RPON and the RRON of a node and for

binary trees it is defined as a pair of the RION and RPON (or RRON) of the node

(Definition 5.3.1). An integrity verifier (IV) is different from an authenticity verifier

(VO), in the sense that the latter is defined from IV s, and can be used to verify

authenticity of a subtree (as described later). A structural position is essential a

secure-name of a node.

Definition 5.3.1 (Structural Position and Integrity Verifier) Let x be a node

in tree T (V,E). Its structural position, denoted by ηx, is defined as a pair of its RPON

px and RRON rx, that is, ηx = (px, rx). Let cx denote the content of node x. Its

structural integrity verifier (IV) denoted by ξx, is defined as: ξx = H(ηx‖cx).

Using the IV s, we define the structural signature σT (V,E) of T (V,E). Such signa-

tures are leakage-free. In cases when “the received subtree (sent to the user) is the

same as the original tree” is a sensitive information, the signature of a tree may be

salted using a random value in order to protect this fact. The (salted) tree signature is

publicly available or passed to the user alongwith the subtree that the user has access

to. σT (V,E) is an aggregate signature, computed over the IV s of its nodes. We define

two types of signatures for trees: one based on the condensed-RSA signatures [105]

and the other based on bilinear maps [28].

Definition 5.3.2 (Structural Signature using CRSA) Let T (V,E) be a tree.

Let H denote a random oracle. Let the RSA signature σx of each node x be defined

as follows σx ← ξd̄x mod n̄, where ξx is the IV of x. Let ωT be a random. The

leakage-free signature of T , denoted by σT (V,E), is defined as

σT (V,E) = (ωT
∏
x∈V

ξx)
d̄ (mod n̄). (5.1)

60

rSign: Sign tree T (V,E).

1. Compute the post-order and pre-order numbers for each

node in T .

2. For each node x in T : transform the post-order and pre-

numbers into post-order and pre-order numbers denoted,

respectively, as px and rx

3. For each node x,

(a) Assign (px, rx) to x as its structural position ηx.

(b) Compute the IV ξx of x: ξx ← H(ηx‖cx).

4. Compute the leakage-free signature σT (V,E) using either

Condensed-RSA (Eq.5.1) or BGLS (Eq.5.2).

Figure 5.1. Algorithm to sign a tree.

Definition 5.3.3 (Structural Signature using BGLS) Let T (V,E) be a tree.

Let H denote a random oracle. Let the RSA signature σx of each node x be defined as

follows σx ← skξx, where ξx is the IV of x. Let ωT be a random. The leakage-free

signature of T , denoted by σT (V,E), is defined as

σT (V,E) ← (P, sk(ωT +
∑
x ∈ V

ξx)). (5.2)

The signing algorithm for a tree T (V,E) is given belowin Figure 5.1.

5.3.2 Distribution of a Subtree (rRedact)

Suppose that Bob receives Tδ(Vδ, Eδ), a subtree of T (V,E). Tδ(Vδ, Eδ) can be

shared with Bob according to two different strategies: (1) by sharing the signed

subtree - its nodes and the structure; (2) by sharing the signed nodes in the subtree

61

and letting Bob reconstruct the subtree using the RPON’s and RRON’s of the nodes.

We describe both options in the following sections. By use of either CRSA or BGLS,

the distributor D needs to only send O(1) authenticity verifiers to the user.

5.3.3 Distribution of a Subtree along with its Structure

Alice
T,{ηx,σx|x∈V },σT

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→D

D
Tδ(Vδ ,Eδ),{ηx|x∈Vδ},σT ,σTδ

,VO
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Bob

Figure 5.2. Protocol for trees.

Let Tδ(Vδ, Eδ) be the subtree of T (V,E) that is to be shared with user Bob by

the distributor. The distributor D sends the information about the parent-child re-

lationships and ordering between siblings (e.g. as an adjacency matrix) in Tδ(Vδ, Eδ)

and σ′Tδ
to Bob: σ′Tδ

= (σT (V,E), σTδ
, V O, {ηx, σx|x ∈ Vδ}). The redaction procedure is

given in Figure 5.3.3.

The purpose of sending σTδ
to each user is to prevent injection of spurious nodes

to the subtree either at the distributor (cloud server), and/or in the communication

channel. The purpose of sending the verification object V O is to prevent an attacker

from deleting nodes from the subtree.

5.3.4 Authentication (rVrfy)

Figure 5.2 summarizes the interactions between Alice, D and Bob. Bob receives

the subtree Tδ(Vδ, Eδ) (with a different name in order avoid any ambiguity), the struc-

tural position ηx of each node x, V O, and the signature of the tree σT . It verifies

the authenticity of the contents; if they are authentic then the integrity of structural

relations are verified.

62

rRedact: Compute signature of subtree(s) Tδ(Vδ, Eδ)⊂ T (V,E).

1. Aggregate signature of the nodes: σTδ
computed as follows:

in CRSA, σTδ
=

∏
x∈(Vδ) σx mod n̄; in BGLS, σTδ

= (P,∑
x∈(Vδ) σx).

2. Verification object V O computed as follows:

CRSA: V O ← ωT
∏

x∈(V−Vδ) σx mod n̄;

BGLS: V O ← ωT+
∑

x∈(V−Vδ) σx.

Figure 5.3. Algorithm to compute the redacted signature of a subtree
Tδ(Vδ, Eδ) ⊆ T (V,E).

Authentication of Contents: Authentication of contents and structural positions of

the subtree received verifies (1) its integrity and, (2) the authorized owner (signer) of

the subtree. Verification of structural relations is carried out in the next step.

Verification of Structural Relations: The integrity verification of structural relations

in a tree involves traversing the tree and comparing the RPON (RRON) of each node

with the RPON (RRON) of its parent or its sibling (Figure 5.3.4).

5.3.5 Sharing a Subtree – Only the Nodes

An advantage of the use of structural signatures is that there is no need to supply

the user with the structure of the subtree it is receiving. It reduces the amount of

data that needs to be transmitted from the distributor to the users and thus improves

the efficiency of the data distribution. The structure can be reconstructed from the

pre-order and post-order traversals (for non-binary trees [51]) (in-order and pre/post-

traversals for binary trees [75]).

63

Authentication and Reconstruction of a Subtree: If all the node contents are verified

to be authentic, the subtree Tδ is re-constructed using RPONs and RRONs using

the algorithm in Figure 5.3.5. Structural integrity is automatically verified during

the subtree re-construction process. This algorithm has a lower-bound complexity of

O(nlogn) due to sorting.

64

rVrfy: Verify authenticity of Tδ(Vδ, Eδ).

1. Authentication of contents:

(a) For each y ∈Vδ(received nodes), ξy ← H(ηy‖cy).

(b) CRSA:
∏

y∈Vδ
ξy

?
= (σTδ

)ē mod n̄.

BGLS: (Q,
∑

y∈Vδ
ξy)

?
= σTδ

.

(c) CRSA: V O
∏

y∈Vδ
ξy

?
= (σT)ē mod n̄.

BGLS: (Q, VO +
∑

y∈Vδ
ξy)

?
= σT.

(d) If (b) and (c) are true, the contents and structural

positions of Tδ(Vδ, Eδ) are authenticated.

(e) Else if (c) is true and (b) is false, at least one of the

nodes in Vδ is an unauthorized node.

(f) Else if (b) is true and (c) is false, at least one of

the nodes in T (V,E) has been dropped in an unau-

thorized manner from Vδ or from the computation of

VO.

2. Verification of structural relations:

(a) Carry out a pre-order traversal on Tδ.

(b) Let x be the parent of z; if ((px≤ pz) or (rx≥ rz)),

then parent-child relationship between x and z is in-

correct.

(c) For ordered trees, let y be the right sibling of z; if ((pz

≥ py) or (rz ≥ ry)), then the left-right order among

the siblings y and z is incorrect.

Figure 5.4. Algorithm to verify the authenticity of a redacted subtree Tδ(Vδ, Eδ).

65

1. Initialize a stack Sp, and subtree Tδ as empty.

2. SortedV ← Sort the vertices with increasing RRONs.

3. x ← remove first item from SortedV .

4. Push(Sp, x). Assign x as the root of Tδ.

5. y ← remove next item from SortedV ; (i.e., ry > rx).

6. Push(Sp, y). Create edge e(x, y).

7. While SortedV is not empty

(a) z ← remove next item from SortedV .

(b) Let y refer to the item on top of Sp.

(c) If py > pz, create e(y, z).

(d) Else Pop(Sp, y), and repeat from Step 7(b).

(e) Push(Sp, z).

Figure 5.5. Algorithm to reconstruct the structure of a tree given the
set of structural positions.

66

(a) (b)

Figure 5.6. (a) Post-order and pre-order numbers assigned to the
healthcare record as (PON, RON). (b) Randomized post-order and
pre-order numbers assigned to the healthcare record as (RPON,
RRON).

5.3.6 Illustration

Consider the tree in our running example (Figure 3.3) and suppose that the tree

has been assigned post and pre-order numbers (Figure 5.6(a)) and their randomized

counterparts (Figure 5.6(b)). Since the IV s and the hash values are large bit strings

(e.g., 256 bits for SHA2), we do not show their actual values. The document T (V,E),

its signature σT (V,E), the structural position of each node ηx, and the salt ωT , if any,

are then stored at the database server (distributor).

The cashier has access to subtree Tδ1. The database server D sends two nodes - a2

and a3, their structural positions, the tree-signature σT , and V O. V O is computed by

D from the IV s (ξx) of the remaining nodes. The cashier receives two nodes a2 and

67

a3. She applies the authentication procedure which includes computing the IV of a2

by computing the hash of the (66.2, 69.1) and c2 (and similarly that of a3). If the

authentication is successful, then the integrity verification of structural relationships

and orderings is carried out. Then because a2 and a3 were sent as siblings, the cashier

verifies whether p2 (=66.2), the RPON of a2 is smaller than p3(=69.5), the RPON of

a3; if so, then a3 is an ancestor or a right sibling of a2. However since r2 (=69.1) <

r3 (=78.2), a3 is not an ancestor of a2. Thus their relationship is correctly verified.

In the second scenario, the nurse is authorized to access Tδ2; however suppose

he receives a tampered Tδ2, such that in the tampered tree, a10 is the child of a5

and a left sibling of a8. Such a violation of structural integrity can be detected by

comparing the structural positions of the nodes as discussed in Section 6.2.3. The

RRON of node a10 is greater than that of a8, which means that a10 cannot be a left

sibling of a8. If a10 is received as the right sibling of a8, the structural integrity is

violated. Such violation is detected, because the RPON of a10 is smaller than that of

a8, which means that a10 cannot be a right sibling of a8.

5.4 Security Analysis

This section analyzes the security of the structural signature scheme in terms of

its authenticity and confidentiality guarantees with respect to information leakage

defined earlier.

Lemma 5.4.1 (Name-transparency) Under the assumption that Boldyreva et al.’s

order-preserving encryption scheme OPE [26] is POPF-CCA secure, structural posi-

tions as secure names are name-transparent.

Proof Follows from [26].

68

Lemma 5.4.2 (Authenticity) Under the random oracle hypothesis, and the as-

sumption that the RSA problem is hard, rΠ = (rGen, rSign, rRedact, rVrfy) is

existentially unforgeable under chosen-message attacks over subset operation over

trees/graphs/forests.

Proof [Sketch] The signature σT (V,E) of a tree T (V,E) is unforgeable under adap-

tive chosen message attack (CRSA under strong RSA assumption [105], or BGLS

under the assumption that computational Computational Diffie-Hellman problem is

hard [28]). Thus any violation to the authenticity of contents and structural positions

would be detected by the structural signature scheme. Consider that an adversary A

can compromise the content cx or the structural position ηx of a node x in T without

invalidating the structural signature of the tree, then A has successfully found a col-

lision in H, which not feasible under the random oracle hypothesis, or or A has been

able to solve the RSA problem or the computation Diffie-Hellman problem (BGLS:

[28]), efficiently, which contradicts our assumption.

Structural integrity: Any unauthorized re-ordering of two or more nodes (violation of

structural integrity) can be detected using the RPON’s and RRON’s (Lemma 5.2.2).

By the Random Oracle Hypothesis [16], it is not feasible one to find a collision in H

function, which is why one cannot replace a node by an unauthorized one (or else the

integrity verifier would be invalidated).

However, anyone can compute the signature σ′Tδ(Vδ ,Eδ) of a subtree Tδ of tree

T (V,E), without the knowledge of the secret key. Therefore, the signature scheme is

existentially unforgeable against chosen message attacks over the ⊂ operation.

Lemma 5.4.3 (Transparency) Under the assumption that the order-preserving en-

cryption scheme is POPF-CCA-secure, then rΠ preserves transparency.

Proof [Sketch] Consider the experiment for transparency: Sig-TransptranspA,rΠ (λ) Ex-

periment 4.4.2. The adversary A invokes the signing oracle, with two trees: T (V,E):

that x as a root of w ≺ y≺ z; and Tδ(Vδ, Eδ): that x as a root of w ≺ z; i.e., y is not

69

present in Tδ(Vδ, Eδ) ⊂ T (V,E). Let Υ0(V0, E0), and Υ0(V0, E0) refer to Tδ(Vδ, Eδ)

and Υ0(V0, E0) refer to T (V,E).

1. rGen(1λ) is run to obtain keys (pk, sk).

2. Probabilistic polynomial-time adversary A is given pk and oracle access to

rSignsk(·), rRedact(·) and rVrfypk(·). Let Q be the set of all trees/graph-

s/forests for which A queries rSignsk(·) for their signatures.

3. A outputs two trees/graphs/forests Υ0(V0, E0), and Υ1(V1, E1), such that

Υ0(V0, E0) ⊂ Υ1(V1, E1).

4. Draw a random b uniformly from {0,1}. (σΥb
,Υb(Vb, Eb))← rSignsk(Υb(Vb, Eb)).

If b = 1, then the signature for Υ0(V0, E0) is computed from σΥ1 :

(σΥ0 ,Υ0(V0, E0)) ← rRedact(pk, σΥ1 ,Υ1(V1, E1), V1\V0)E1\E0. Then the chal-

lenge (σΥ0 ,Υ0(V0, E0)) is given to A.

5. The adversary A continues to have oracle access to rSignsk(·), rRedactpk(·, ·),

and rVrfypk(·). Eventually, A outputs a bit b′ (for the challenge (σΥδ
,Υδ)).

6. The output of the experiment is 1 if b′ = b, and 0 otherwise.

Consider that Sig-Transp
transp
A,rΠ (λ) returns 1. For Sig-Transp

transp
A,rΠ (λ) to return

1, A determined the correct value of b, which in turn implies that a node (i.e., y)

is missing from the set of children of x, and that w is left of this missing node,

which is left of z. In other words, A has managed to break the POPF-CCA security

of Bondyreva et al.’s symmetric order-preserving encryption, which is against our

assumption. So the lemma is proven that rΠ is transparent.

5.5 Complexity and Performance Analysis

In this section, we present the complexity and performance analysis of the struc-

tural signatures for trees.

70

 0

 200

 400

 600

 800

 1000

 1200

 0 10000 20000 30000 40000 50000 60000

T
im

e
 (

s
e
c
)

Number of Integrity Verifiers

Sign using CRSA

Figure 5.7. CRSA: Average time to sign versus number of IVs.

5.5.1 Complexity Analysis

Trees: The cost of signing a tree T (V,E) is O(|V |). The number of signatures

that is computed is |V |+1. The number of structural positions that a user receives is

the number of nodes in Tδ. The number of signatures that need to be sent to a user

is 1 irrespective of the size of the subtree Tδ(Vδ, Eδ) that a user receives. The time

to compute this aggregate signature of the subtree at the distributor is O(|Vδ|). The

user receives 1 signature for the subtree Tδ(Vδ, Eδ), 1 signature for the complete tree,

and 1 verification object V O. The verification cost for content/structural integrity

is linear in terms of the size of the received subtree, that is, O(|Vδ|). The cost of

comparison of RPON’s and RRON’s (and RIONs for binary trees) is constant.

5.5.2 Performance

We implemented the structural signature scheme and the Merkle hash technique in

Java 1.6 and JCA 6.0 (Java Cryptography Architecture) APIs. The experiments were

carried out on a IBM Thinkpad T61 with the following specification: 32-bit Linux

(Ubuntu 10.04) on Intel Core 2 Duo CPU with 3GB RAM (2560MB as the maximum

heap size for Java). Performance analysis of our BGLS-based authentication scheme

71

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10000 20000 30000 40000 50000 60000

T
im

e
 t
o
 S

ig
n
 a

 T
re

e
/G

ra
p
h
 (

s
e
c
)

Number of Integrity Verifiers

Structural signatures using BGLS

Figure 5.8. BGLS: Average time to sign versus number of IVs.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10000 20000 30000 40000 50000 60000

T
im

e
 (

s
e
c
)

Number of Nodes (out of 65535 nodes)

Distribute using CRSA

Figure 5.9. CRSA: Average time to distribute versus number of IVs.

is based on a C++ implementation. We used the implementation of pairing-based

cryptography (PBC) from Stanford, OPENSSL and GMP1.

Experiments Our experiments are on complete trees. The trees are 2-ary with

the height from 1 to 16. The number of nodes in the largest tree is 65535. The

subtrees used for authentication are complete left-most subtrees in a tree with the

height varying from 1 to 16. We carried two experiments: one for the time taken to

1PBC and GMP are available at http://crypto.stanford.edu/pbc and http://gmplib.org, respectively.

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10000 20000 30000 40000 50000 60000

T
im

e
 (

s
e
c
)

Number of Nodes (out of 65535 nodes)

Distribute using BGLS

Figure 5.10. BGLS: Average time to distribute versus number of IVs.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10000 20000 30000 40000 50000 60000

T
im

e
 (

s
e
c
)

Number of Nodes (out of 65535 nodes)

Verify using CRSA

Figure 5.11. CRSA: Average time to verify versus number of nodes.

sign using CRSA-based structural signature and another using BGLS-based structural

signatures. The size of RSA keys is 1024-bits and SHA1 as the hash function. We

have also implemented the BGLS scheme.

CRSA Vs. BGLS The BGLS authentication scheme is much more expensive for

trees than the CRSA-based scheme. This is expected [105] as the BGLS aggregate

signature scheme is based on elliptic curves and bilinear maps. We proposed the

use of the BGLS scheme in the paper, because cryptosystems developed on elliptic

73

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10000 20000 30000 40000 50000 60000

T
im

e
 (

s
e
c
)

Number of Nodes (out of 65535 nodes)

Verify using BGLS

Figure 5.12. BGLS: Average time to verify versus number of nodes.

curves have already been in use as an alternative to the RSA cryptosystems. In case

of BGLS however, signing a tree of n nodes and verification of a tree of the same

number nodes n take the same amount of time. This can be explained by considering

the cost of the bilinear operation, which is much higher than any other cost such as

verification of structural relationships.

Signing: Figure 5.7 presents the performance of computing the signature of a tree

using CRSA, and Figure 5.8 presents signing using BGLS based structural signatures.

As mentioned above, it takes more time to compute the BGLS signatures than the

CRSA signatures. Each node has one integrity verifier in a Ltree. In comparison, the

less secure Merkle Hash Technique incurs much less cost (about two seconds to sign

65535 integrity verifiers using RSA) for signing a tree (the common tradeoff of cost

Vs. security) as it computes a single signature. However, the cost of signing a tree

with structural signatures is not an issue especially when the structural signature is

computed once and re-used many times for any subtree.

Distribution: Figure 5.9 presents the performance of distributing subtrees with

height from 1 to 16 using CRSA, and Figure 5.10 presents distribution using BGLS

based structural signatures. The larger the subtree of a tree with 65535 nodes being

distributed by a server, the less the number of nodes over which the verification object

74

VO being computed, and more the number of nodes over which the condensed (ag-

gregate) signature is being computed. Therefore, as the size of the subtree increases

(number of nodes), the cost of distribution decreases. The cost of distribution for

CRSA is slightly less than that for BGLS. Pre-computed integrity verifiers of nodes

are stored at the distributor, and are used in distribution.

Verification: Figure 5.11 presents the performance of verifying subtrees (that are

distributed) with height from 1 to 16 using CRSA, and Figure 5.12 presents perfor-

mance of verification using BGLS based structural signatures. The amount of time

taken for verification using our structural signature scheme using CRSA is much less

than the time required by the BGLS. BGLS takes more time than CRSA because

two bilinear maps are to be applied and m number of elliptic curve computations are

needed to be carried out, while for CRSA only m modular multiplications and two

modular exponentiations are needed to be carried out. MHT takes more time (about

2.25 seconds for 65535 nodes) than the CRSA based structural signatures, but less

than BGLS. Even small overhead in verification is significant because: (1) the time

taken for user-side authentication affects the end-to-end response time at the user

side, and (2) since authentication would be carried out by many users, the collec-

tive overhead would be very high, (3) for energy-constrained devices, the processing

overhead of even 2.25 seconds should be avoided.

5.6 Dynamic Trees

Updates to a tree include insertions, deletions or a combination of insertions and

deletions. An update to the tree is reflected by a new signature such that replay

attacks cannot be carried out. If the signature does not reflect the updates, a replay

attack on the authentication of dynamic trees can be carried out easily. When the

owner Alice updates the tree T (V,E) to T ′(V ′, E ′), a malicious distributor may con-

tinue distributing or processing queries on an older version; this can be prevented if

75

some extra authentication information is supplied to the user alongwith the signature.

Certification validation and revocation are used in this context.

In our solution, whenever Alice signs an updated tree, she includes the hash of

the current timestamp in the computation of the signature. In order to make all

the previous signatures invalid, Alice publishes the latest timestamp when the cur-

rent signature was computed. A signature is valid, if it contains the latest timestamp.

Insertion of nodes : Upon insertion of a node z, its structural position ηz is computed

such that the RPON pz and RRON rz preserve correct relationships with the par-

ent and siblings of the node. Insertion of a subtree is carried out as a sequence of

insertions.

Leaf-level updates: Let z be the new leaf node in T ′ added as the child of x, a leaf

in T . Let the lowest RPON in T be pu, and the largest RRON in T be rv. RPON pz

should satisfy pu < pz < px, and RRON rz should satisfy rx < rz < rv.

Root-level updates: Let x be the root node and z be the new root node added

as the parent of x. RPON pz should satisfy px < pz, and RRON rz should satisfy

rz < rx.

Updates in-between two siblings: Let z be inserted as a new node between two

siblings x and y such that x is to the left of y. RPON pz should satisfy px < pz < py,

and RRON rz should satisfy rx < rz < ry.

Updates in-between parent and child: Let z be inserted as a new node between

parent x and child y such that x is to the left of y. RPON pz should satisfy py <

pz < px, and RRON rz should satisfy rx < rz < ry.

Let (Lp, Rp), and (Lr, Rr), respectively be the intervals in which the RPON pz

and RRON rz of z should be in (as specified above). Computation of the RPON and

RRON can be carried out as follows: repetitively select a secure random number η

until Lp < η < Rp; η is assigned to pz.

76

Deletion of nodes : Upon the deletion of a node or a subtree, only the signature needs

to be recomputed on the remaining set of nodes (V ′). The structural positions of

nodes that are remaining from the old tree are not modified.

Insertion and deletion of edges : Deletion of an edge is generally followed by a in-

sertion of a new edge and vice versa, in order to maintain the structural properties

typical of trees to remain connected and to have n − 1 edges for n nodes. If e(x, y)

is removed and e(z, y) is inserted, then the structural position ηy of y (and all its

children, if any) needs to be re-computed with respect to z. It is similar to deletion

of y and then insertion of y as a child of z. The subtree rooted at y remains rooted at

y. Such a process leads to re-computation of RPON and RRON of y, and the nodes

in its subtree in the same manner as it is done for insertion of nodes.

Incremental computation of the signatures: Alice may store the current σx for each

node x ∈V ′, so that it can be re-used during the next computation of the signature.

As seen earlier, it might be necessary to re-compute RPONs and RRONs after a

large number of insertions (in the order of millions for 512-bit RPONs and RRONs)

between nodes. In practice, such re-computations would not occur frequently and

thus are not a major concern, because in large trees (with millions of nodes), inser-

tions get distributed over various parts of the tree. For small trees, signing (includes

computation of RPONs and RRONs) is not expensive (corroborated by our experi-

mental results). If a node is dropped, the multiplicative inverse (CRSA) or additive

inverse (BGLS) of its signature (signatures in case of cyclic graphs) is computed and

is used to cancel out the corresponding signature(s) of the node in the signature of

the tree/graph.

Complexity: Insertion or update of a node and a subtree that has m nodes incurs O(1)

and O(m) cost, respectively including the cost of computing one signature. Deletion

of a node or a subtree incurs only the cost of computation of the signature. In con-

77

trast, in the case of Merkle Hash technique, an insertion or deletion of a single node

z in a tree of n nodes incurs O(log(n)) cost in average. This is because, the Merkle

hashes of all the ancestors of z are affected due to that operation (even though only

one signature has to be computed). Insertion or deletion of a subtree of m nodes

incurs O(mlog(n)) cost in the MHT.

5.7 Applications

The structural authentication scheme facilitates structural recovery of trees, which

is of importance in data recovery and in digital forensics.

5.7.1 Automatic Recovery from Structural Errors

Consider the case in which the nodes (contents and structural positions) in a tree

are not compromised, but their structural integrity is compromised by compromising

the edge relationships and sibling orderings (as specified in the adjacency list or other

means). From the structural positions (RPONs and RRONs), the correct structure

of the tree can be easily re-constructed. Such a capability helps automatic correction

of data without any interaction with the distributor. The cost of such re-construction

is O(|V |) for a tree T (V,E).

For example, suppose that two nodes x and y are received and are authenticated

against the signature. However, the structural integrity is found to be invalid. Sup-

pose that the ordering that y is left of x is the received (but incorrect) order for these

nodes in a subtree. The user tests using the structural positions if x is left of y. If

the test succeeds, the correct order is recovered. If there are many nodes with their

structural integrity found to be invalid, the reconstruction algorithm is applied to

re-construct the structure of the subtree.

Structure-based Routing: Secure Publish/Subscribe of XML: The structural signa-

ture scheme can be used for secure dissemination of XML documents (and of data

78

objects organized as trees, in general) in a publish-subscribe model. Chapter 8 de-

scribes this scheme of structure-based routing in detail.

5.8 Summary

In this chapter, we proposed the notion of structural signatures in order to assure

authenticity of subtrees and subgraphs without leaking. The notion of structural

signatures for trees is based on the simple notion of tree traversals and the fact that a

combination of two tree traversals - post-order and pre-order can be used to uniquely

re-construct a tree and any of its subtrees. The number of signatures computed is

linear in the number of nodes. However, the number of signatures that are sent to

the user by the distributor is constant: 2. In terms of complexity, the scheme for

trees incurs O(n) cost for time and storage (n is the number of nodes in a tree).

In this chapter, we have also discussed two important applications of the proposed

structural signatures scheme for trees. One in the area of automatic data recovery

from errors - our scheme is capable of automatic correction of structural errors in the

data with no extra overhead. The other application is the secure publish/subscribe

of XML documents using structure-based routing. This technique is an extension to

our earlier work, and is more secure and efficient.

79

6 STRUCTURAL SIGNATURES FOR GRAPHS

The origins of graph theory are humble, even frivolous.
N. Biggs, E. K. Lloyd, and R. J. Wilson [23]

In the previous chapter, we have described a scheme for authentication of a single

subtree that is based on the notion of depth first traversal numbers - pre-order num-

bers and post-order numbers. However, this scheme cannot be directly applied to

graphs, because graphs are structurally different from trees, and graphs with cycles

cannot be topologically sorted.

In this chapter, we propose two schemes on how to authenticate DAGs and di-

rected cyclic graphs without leaking, which are the first such schemes in the literature.

It is based on the structure of the graph as defined by depth-first graph traversals and

aggregate signatures. Graphs are structurally different from trees in that they have

four types of edges: tree, forward, cross, and back-edges in a depth-first traversal.

The fact that an edge is a forward, cross or a back-edge conveys information that

is sensitive in several contexts. Moreover, back-edges pose a more difficult problem

than the one posed by forward, and cross-edges primarily because back-edges add

bidirectional properties to graphs. We prove that the proposed technique is both

authenticity-preserving and non-leaking. While providing such strong security prop-

erties, our scheme is also efficient, as supported by the performance results. The

common notations used in this chaper are given in Table 6.

6.1 Background

Graphs contains edges that can be organized into four different types based on

a specific depth first traversal of the graph: tree-edges, forward-edges, cross-edges

and back-edges (related to cycles), while trees have only one type of edges: tree-

80

Table 6.1
Acronyms and notations

Notation/Acro. Meaning

α Related to forward, the direction of

forward-, cross- and tree-edges.

β Related to backward, the direction

of back-edges. Used in the context of

β-nodes and β-reachable nodes.

f , χ, τ For forward-, cross- & tree-edges.

qχx , rχx χ-RON of x, χ-RRON of x.

oβ:u→v
x , pβ:u→v

x , β-PON, β-RPON, β-RON, β-RRON,

qβ:u→v
x , rβ:u→v

x resp. of x with respect to a

not-β-covered back-edge e(u, v).

ητx, ηχx Structural position of τ - or χ-node x.

ηβ:u→v
x ,σβ:u→v

x Structural position/signature resp.,

of a β-node or β-reachable node x,

with respect to a not-β-covered

back-edge e(u, v).

σαx Forward structural signature of x.

(same as α-signature of x).

σαG Structural signature of DAG G.

Also referred to as α-signature of G.

σG Structural signature of graph G.
∪← Union of the left set with the

right set followed by the assignment

of the result to the left set.

edges [77]. Depth-first traversal numbers are used to determine the type of an edge

for that specific traversal Such numbers are assigned to a node in the order in which

81

Figure 6.1. A graph with depth-first tree in bold.

they are visited in a specific traversal; for example, post-order and pre-order numbers

are assigned to the nodes in post-order and pre-order traversals, respectively. (For

more details, the reader is referred to [77]). The various types of edges in a graph are

defined below using the notion of traversal numbers.

Definition 6.1.1 Let τ be the depth-first tree (DFT) of a directed graph G(V,E). Let

x, y ∈ V , and e(x, y) ∈ E. Let ox and qx refer to post-order number and pre-order

number of node x, respectively. With respect to the DFT τ , e(x, y) is a (1) tree-edge,

iff ox>oy, and qx<qy; (2) forward-edge, iff there is a path from x to y consisting of

more than one tree-edges, ox>oy, and qx<qy; (3) cross-edge, iff ox>oy, and qx>qy;

(4) back-edge, iff ox<oy, and qx>qy.

An example of depth-first tree, types of edges are given in Figure 1.1 with the

post- and pre-order numbers for each node being given in the table in the figure. An

authenticity-preserving and confidentiality-preserving scheme for graph data must not

convey the knowledge of whether a given edge is a forward-edge (edge e(g3, g6)), a

cross-edge (edge e(g5, g6)) or a back-edge (edge e(g6, g2)), unless the user is autho-

rized to access a corresponding tree-edge(s) or the associated cycle, respectively. The

information leakages due to the knowledge about the type of the edge are listed in

Table 6.1. Such leakages are described in detail in the context of health information

in Section 3.3. Whether an edge is a back or a cross-edge can be determined using

both post-order and pre-order numbers [77], as the above definition specifies.

82

Table 6.2
Information leakages via edge-types.

Type of e(x, y) Associated information leakages

Forward-edge (i) in-degree of y ≥ 2.

(ii) ≥ 2 edges e′ incident on y.

(iii) e′ is a tree-edge.

(iv)≥ 2 nodes w, such that

x. . .w. . . y is a simple path.

(v) G is larger than the Gδ.

Cross-edge (i), (ii), (v).

Back-edge (a) ≥ 1 simple path from y to x.

(b) ≥ 1 cycle in the graph,

(c) one cycle between x, y; (d) (v).

In the remaining sections of this chapter, we first propose the structural signatures

for DAGs, and then the structural signatures for graphs with cycles.

6.2 DAGs

In this section, we develop structural signatures for DAGs. Table 6.1 summarizes

the common acronyms and notations that are used for DAGs and graphs. Consider

a user authorized to access one or more cross-edges incident upon a node x, but

not the associated tree-edge(s). With reference to Figure 3.4, the user has access

only to e(g11, g12), which is a cross-edge. One way to share a forward or cross-edge

with the user, without leaking it to the user the type of the edge (such as the fact

that “e(g11, g12) is a cross-edge”) is to convey to the user that it is a tree-edge. By

concealing the original type of an edge (such as forward or cross-edge) and conveying

to the user that any edge it receives is of type tree-edge, unless the user also receives

the associated tree-edge(s), we can prevent leakages associated with cross-edges. Note

83

that the structural signature makes use of the notion of traversal numbers, and that

post-order and pre-order numbers allows one to detect whether an edge is a cross-edge

or not (Definition 6.1.1). Moreover, such numbers cannot be used to differentiate a

forward-edge from a tree-edge.

We thus need to define a different notion of traversal numbers so that a cross-edge

would be verified by Bob as a tree-edge. In that context, we refer to the end-point of

cross-edge(s) as a χ-node. By Definition 6.1.1, it is the pre-order number (and not the

post-order number) of a χ-node that violates the behavior of pre-order numbers that

is exhibited in case of tree-edges. We first define a variant of the pre-order numbers

denoted by χ-pre-order numbers (in short, χ-RONs) (Definition 6.2.2) specifically for

χ-nodes. Using a randomized notion of such variants of pre-order numbers, denoted by

χ-randomized pre-order numbers (in short, χ-RRONs), we define a structural position

of a χ-node that satisfies the constraints of a tree-edge in terms of traversal numbers

(Definition 6.1.1). Such a notion of structural position is then used to compute the

aggregate signature for the DAG. Since the definitions of χ-RONs and χ-RRONs are

specific to cross-edges and χ-nodes only, tree-edges are always conveyed as they are.

Given that the tree-edges, forward-edges, and cross-edges have the same direction,

we refer to the signatures for DAGs as forward-signatures (denoted by α-signatures).

A node that is not a χ-node such as g3 in Figure 3.4, is referred to as a tree-node (in

short, τ -node).

Definition 6.2.1 (χ-node) A node x in a connected directed acyclic graph G(V,E)

is a χ-node, iff there exists an edge e(w, x) in G such that e(w, x) is a cross-edge.

Definition 6.2.2 (χ-RONs) Let x be a χ-node in a connected directed acyclic graph

G(V,E). Let e(w, x) and e(x, y) be two edges in G. The χ-pre-order numbers of x and

w denoted by qχx and qχw are defined such that they satisfy the following conditions:(1)

qχx > qτx; (2) if w is a χ-node, qχx > qχw, else qχx > qτw; (3) qχx < qτy ; (4) qχu < qχx < qχv ,

where u, x, and v are siblings and u ≺ x ≺ v.

84

Since a DAG can be topologically-ordered, the properties of a χ-pre-order number

can be satisfied. For a χ-node x, its χ-randomized pre-order number (χ-RRON) is

the randomized version of qχx and is denoted by rχx . It is defined in the same way

RPON is defined for PON and RRON for RON.

In our running example (Figure 3.4), g10 and g12 are χ-nodes; rχg10 and rχg12 are the

χ-RRONs of g10 and g12. The notions of τ -structural and χ-structural position (τ -

position and χ-position in short, respectively) of a τ -node and a χ-node, respectively

are defined by the following definitions.

Definition 6.2.3 (τ-structural position) Let x be a node in a connected DAG

G(V,E). Its τ -structural position, denoted by ητx, is defined as: ητx=(pτx, r
τ
x).

Definition 6.2.4 (χ-structural position) Let x be a χ-node in a connected DAG

G(V,E). Its χ-structural position, denoted by ηχx , is defined as: ηχx=(pτx, r
χ
x).

In our running example (Figure 3.4), the τ -structural position of node g3 is ητx =

(pτg3 , r
τ
g3

); for χ-node g10, its χ-structural position is ηχx = (pτg10 , r
χ
g10

).

6.2.1 Signing a DAG

The algorithm to sign a DAG is described in Figure 6.2.

Definition 6.2.5 (Integrity Verifier of a Node) Let x be a node in a connected

DAG G(V,E). Let H denote a one-way cryptographic hash function. The integrity

verifier ξx of x is defined as follows: ξx = H(ηx‖cx), where: if x is a χ-node, ηx is

equal to ηχx , else it is equal to ητx.

Definition 6.2.6 (Signature of a DAG using CRSA) Let H denote a random

oracle, and ωG be a random. The signature σx of a node x is defined as: σx ←

ξd̄x mod n̄, where ξx is the IV of x. The structural signature of a graph G(V,E),

denoted by σG(V,E), is defined as follows:

σG(V,E) ← (ωG
∏
x∈V

ξx)
d̄ (mod n̄). (6.1)

85

Definition 6.2.7 (Signature of a DAG using BGLS) Let H denote a random

oracle, and ωG be a random. Let sk be the private key and P be defined as in an

aggregate signature framework. Let ωG be a random. The signature σx of a node x

is defined as: σx ← skξx. The structural signature of a graph G(V,E), denoted by

σG(V,E), is defined as follows:

σG(V,E) ← e(P, sk(ωG +
∑
x ∈ V

ξx)). (6.2)

6.2.2 Distribution

Let Gδ(Vδ, Eδ) be an arbitrary weakly connected subgraph of the weakly connected

DAG G(V,E). A weakly connected (directed) graph is one in which if all the edges are

changed from being directed to undirected, the graph turns into a connected one [45].

D sends the following items to Bob: (1) Gδ(Vδ, Eδ), and (2) σ′Gδ
= ({ηx, σx|x ∈

Vδ}, σG, σGδ
, V O) the set of verification units VOGδ(Vδ ,Eδ) consisting of the signature

of the DAG σG, the integrity verifier of the subgraph ξGδ
, and aggregate signature

of the subgraph σGδ
. ξGδ

and σGδ
are computed as follows. The computation of one

bilinear map in the BGLS step is to balance the work done between the distributor

and the user(s). If the distributor does not carry out the bilinear mapping, then the

user has to carry out two mappings.

6.2.3 Authentication

Figure 6.4 summarizes the interactions between Alice, D and Bob. A user Bob

receives (1) a subgraph Gδ(Vδ, Eδ), (2) the signature of the DAG σG, and (3) the

verification object VO of the subgraph from the distributor D. The verification

process goes as follows.

Verification of Contents: If (2) (or 4) is invalid and (1) (resp., 3) is valid, then

some nodes have been dropped from the subgraph (i.e., Gδ does not contain some

86

rSign:

1. Execute a depth-first traversal of G(V,E).

2. For each node x ∈ V , compute its post-order number oτx

and pre-order number qτx.

3. If e(w, x) ∈ E is such that (oτw > oτx) and (qτw > qτx), then

mark e(w, x) as a χ-edge and x as a χ-node.

4. For each χ-node, compute its χ-RON qχ.

5. For all nodes in V , transform the traversal numbers into

traversal numbers, that preserve the order.

6. For a χ-node x, ηχx ← (pτx, r
χ
x).

7. For each x that is not a χ-node, assign (pτx, r
τ
x) to x as its

structural position ητx.

8. For each node x in V , compute its integrity verifier ξx:

(a) If x is a cross-node, ηx ← ηχx ; Else ηx ← ητx.

(b) ξx ← H(ηx‖cx).

9. Choose a random ωG.

10. Compute the signature of the DAG either using CRSA

(equation 6.1) or using BGLS (equation 6.2).

Figure 6.2. Algorithm to sign a DAG.

of the nodes), ξ is tampered with, and/or the signature σG has been tampered with.

Otherwise if (1) (or 3) is invalid, and (2) (resp., 4) is valid then some nodes in Gδ are

not authentic.

87

rRedact:

1. CRSA: VO ← ωG
∏

y∈(V−Vδ) ξy mod n̄.

2. CRSA: σGδ
←

∏
y∈(V) σy mod n̄.

3. BGLS: VO ← ωG +
∑

y∈(V−Vδ) ξy.

4. BGLS: σGδ
← e(P,

∑
y∈(Vδ) σy).

Figure 6.3. Algorithm to redact a DAG.

Alice
G(V,E),{ητ

x or ηχ
x ,σx|x∈V },σG

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→D.

D
Gδ(Vδ ,Eδ),σ′Gδ

=({ηx,σx|x∈Vδ},σG,σGδ
,VO)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Bob.

Figure 6.4. Protocol for DAGs.

Verification of Structural Relations Verification of structural relations in a

DAG involves traversing the DAG and comparing the RPON (RRON) of each node

with the RPON (RRON) of its parent or its sibling. The steps are given in Fig-

ure 6.2.3.

Example: Suppose that the back-edge e(g14, g9) did not exist in our running exam-

ple (Figure 3.4), thus turning this graph into a DAG. In such a DAG, the cross-edges

are e(g11, g12), e(g8, g10), and e(g3, g10). Consider the cross-edge e(g11, g12) and the

cross-node g12. The α-structural signatures for this DAG are computed such that

rχg12 is larger than rχg11 and pτg12 is smaller than pτg11, which conveys that e(g11, g12) is

a tree-edge and conceals the fact that it is a cross-edge.

88

rVrfy:

Authentication of contents:

1. CRSA:
∏

y∈Vδ
ξy mod n̄

?
= σGδ

.

2. CRSA: VO
∏

y∈Vδ
ξy mod n̄

?
= σG

3. BGLS: e(Q,
∑

y∈Vδ
ξy)

?
= σGδ

.

4. BGLS: e(Q, Ω + VO)
?
= σG, where Ω←

∑
y∈Vδ
H(ηy ‖ cy).

Verification of structural relations:

1. Execute a depth-first traversal of Gδ.

2. Let x be an immediate ancestor of z; if (px≤ pz) or (rx≥

rz), then this relationship between x and z is incorrect.

3. For ordered-DAGs, let y be the right sibling of z; if (pz

≥ py) or (rz ≥ ry), then the left-right order among the

siblings y and z is incorrect.

Figure 6.5. Algorithm to authenticate a DAG.

6.3 Graphs with Cycles

In this section, we build on the solution for DAGs and present the general solution

for graphs with cycles that handles all the four types of edges. Like in the case of

DAGs, in our scheme, a user verifies a back-edge as a tree-edge, in order to conceal

the fact that it is a back-edge and thus it prevents the leakages associated with it.

A back-edge (such as e(g14, g9) in the graph in Figure 3.4) should be presented

to the user as a tree-edge unless the user has access to an cycle associated with the

back-edge also. Following Definition 6.1.1, both the post-order and pre-order numbers

of a node (e.g., g14), which is the origin of a back-edge (denoted by β-nodes), violate

89

the behavior of the respective numbers that is exhibited in case of tree-edges. In

order to handle back-edges, we define a notion of β-post-order number (β-PON) and

β-pre-order number (β-RON) for each node that either is a β-node or is reachable

from a β-node over a simple path. Nodes that are reachable from a β-node x over a

simple path over a β-edge e(x,w), also need to be considered for the following reason.

The integrity verifier of such nodes must be such that when they are presented to an

authenticity prover along-with the related back-edge e(x,w), they should not leak the

fact that e(x,w) is a back-edge; rather they should be consistent with the information

presented to the prover that e(x,w) is a tree-edge. Examples of β-reachable nodes

from the β-node g14 in Figure 3.4 are g9, g11, g12, g15 and g16.

We define the notion of β-nodes like the notion of χ-nodes. β-nodes are nodes that

are origins of back-edges (Definition 6.3.1). We then define the notion of β-reachable

nodes (Definition 6.3.2). Our goal is to be able to provide the prover with a set of

verification items about back-edges and β-reachable nodes such that the prover would

learn that all the edges it received are tree-edges (since she does not have any right

to learn otherwise). In order to define such signatures, we define a variant of PON

and RON for such nodes (Definition 6.3.4). Such variants satisfy the property of

tree-edges in terms of traversal numbers.

Definition 6.3.1 (β-node) A node x in a graph G(V,E) is a β-node, iff there exists

an edge e(x,w) in G such that e(x,w) is a back-edge.

Definition 6.3.2 (β-reachable) Let node x be a β-node in a graph G(V,E) and let

e(x,w) be a back-edge. A node y is said to be β-reachable from x (over e(x,w)) in

G iff either y is w or there exists a simple path sp(x, y) from x to y in G such that

sp(x, y) = x→w. . .→y.

Unlike the case of cross-edges (Section 6.2), in the case of back-edges, a β-node

or a β-reachable node has the following position(s) and integrity verifier(s): (1) β-

structural; and (2) χ-structural, if it is a χ-node, τ -structural, otherwise. A β-node,

or a node that is β-reachable, may have multiple β-structural positions (β-positions

90

Figure 6.6. Illustration of not-β-covered edges.

in short) and integrity verifiers. A given node may be reachable from multiple back-

edges over a simple-path. We only need to consider a minimal set of such edges, which

are not covered by other back-edges in a simple-path. Such back-edges are called not-

β-covered (Definition 6.3.3). The number of such positions and integrity verifiers for

a node is the same as the number of not-β-covered back-edges (Definition 6.3.3) from

which it is reachable over a simple path. However, a user receives one position per

node. If a user does not have access to a cycle, but to the associated back-edge, the

β-structural position and signature are sent to the user. However, if she has access

to the cycle, conveying the fact that one of the edges in the cycle is a back-edge does

not leak any information. In what follows, x→y denotes the edge e(x, y) and y. . .→z

denotes the simple path sp(y, z) from y to z.

In a graph, a node maybe β-reachable from many back-edges. The question is do

we need to consider only one of them or “some” of them in order to minimize the

number of β-positions. Consider the graph in Figure 6.6 with a as the root of the

depth-first tree; edges e(a, b) and e(a, c) are the tree-edges. Edges e(b, a) and e(c, a)

are back-edges. Both b and c are β-nodes. a is β-reachable from both b and c. The

question is would there be one or two β-positions for a. If a user has access to all

nodes and only the back-edges, then how would both of them be proven as tree-edges.

To this end, let us first define β-covered and not-β-covered edges.

Definition 6.3.3 (β-covered, not-β-covered) A back-edge e(u, v) is said to be “β-

covered” by another back-edge e(x, y) in graph G(V,E) iff there is a simple path

sp(x, v) in G such that sp(x, v) = x→y. . .→ u → v. A back-edge e(u, v) is said

to be “not-β-covered” iff there exists no such back-edge e(x, y) in G.

91

β-structural positions are assigned to nodes as follows: for each node x that is β-

reachable from a not-β-covered back-edge e(u, v), a β-position is assigned to x for each

such e(u, v). In order to define the constituents of a β-position, we define β-PONs

and β-RONs next.

Definition 6.3.4 (β-PONs, β-RONs) Let e(x,w) and e(y, z) be back-edges in graph

G(V,E). Let e(x,w) be not-β-covered and e(y, z) be β-covered by e(x,w). The β-

post-order (β-pre-order) numbers of x, w, y and z with respect to e(x,w), denoted by

oβ:x→w
x , oβ:x→w

w , oβ:x→w
y , and oβ:x→w

z , respectively (qβ:x→w
x , qβ:x→w

w , qβ:x→w
y , and qβ:x→w

z ,

respectively) satisfy the following conditions:

(1) oβ:x→w
x =oτx; if x is a χ-node qβ:x→w

x = qχx , else qβ:x→w
x = qτx;

(2) oβ:x→w
w < oβ:x→w

x ; qβ:x→w
w > qβ:x→w

x ;

(3) oβ:x→w
z <oβ:x→w

y <oβ:x→w
w ; qβ:x→w

z >qβ:x→w
y >qβ:x→w

w .

For a β-node x, the randomized versions of its β-post-order number with respect

to e(x,w) oβ:x→w
x and β-pre-order number qβ:x→w

x are denoted by pβ:x→w
x and rβ:x→w

x ,

respectively and are defined in the same manner as RPON is defined for PON and

RRON for RON. In order to define α-signatures for non-acyclic graphs, the χ-pre-

order-numbers for χ-nodes are defined below with an additional constraint related to

back-edges, but without changing their properties in Definition 6.2.2. Difference from

Definition 6.2.2 is “such that neither of them is a back-edge”.

Definition 6.3.5 (χ-RONs) Let x be a χ-node in a connected directed graph G(V,E).

Let e(w, x) and e(x, y) be edges in G “such that neither of them is a back-edge”. The

χ-pre-order number of x and w denoted by qχx and qχw, respectively, satisfy the follow-

ing conditions:(1) qχx > qτx; (2) if w is a χ-node, qχx > qχw, else qχx > qτw; and (3) qχx

< qτy .

Definition 6.3.6 (β-structural position) Let x be a node, which is β-reachable

from y over the not-β-covered back-edge e(y, z) in a graph G(V,E). The β-structural

92

position of x with respect to e(y, z) denoted by ηβ:y→z
x , is defined as the pair of its β-

RPON pβ:y→z
x and β-RRON rβ:y→z

x , that is, ηβ:y→z
x = (pβ:y→z

x , rβ:y→z
x). Similarly, the

β-structural position of y with respect to e(y, z) denoted by ηβ:y→z
y = (pβ:y→z

y , rβ:y→z
y).

If a node is a β-node, it is also a τ -node or a χ-node. However if a node is a χ-

node it is not a τ -node and vice versa. The integrity verifiers associated with β-nodes,

β-reachable nodes and back-edges are called backward signatures (β-integrity verifier

in short). Each node has a α-integrity verifier. Moreover, if a node x is β-reachable

from a not-β-covered back-edge e(y, z) in G, it has a β-integrity verifier σβ:y→z
x .

Definition 6.3.7 (β-integrity verifier of a Node) Let x be a node and e(y, z) be

a not-β-covered edge in a weakly connected directed graph G(V,E) such that x is β-

reachable from y over e(y, z). The β-structural integrity verifier of x, denoted by

ξβ:y→z
x , is defined as ξβ:y→z

x = H(ηβ:y→z
x ‖cx). The β-structural signature of the β-node

y, denoted by ξβ:y→z
y , is defined as ξβ:y→z

y = H(ηβ:y→z
y ‖cy).

Definition 6.3.8 (Signature of a Graph using CRSA) Let H denote a random

oracle, and ωG be a random. The signature σx of a node x is defined as: σx ←

ξd̄x mod n̄, where ξx is the IV of x. The structural signature of a graph G(V,E),

denoted by σG(V,E), is defined as follows:

σG(V,E) ← (ωG
∏
x∈V

ξαx
∏
x∈V

∏
e(y,z)∈Sx

ξβ:y→z
x)d̄ mod n̄. (6.3)

Definition 6.3.9 (Signature of a Graph using BGLS) Let ωG be a random. The

signature σx of each node x is defined as: σx ← sk(ξαx +
∑

e(y,z)∈Sx
ξβ:y→z
x). Let Sx

be the set of not-β-covered edges from each of which x is β-reachable. The structural

signature of a graph G(V,E), denoted by σG(V,E), is defined as follows:

σG(V,E) ← e(P, sk(ωG +
∑
x∈V

ξαx +
∑
x∈V

∑
e(y,z)∈Sx

ξβ:y→z
x)). (6.4)

93

6.3.1 Signing a Graph

The steps that the trusted owner Alice uses to sign and share a graph G(V,E)

with Bob are presented in Figure 6.7. How the set of not-β-covered back-edges are

determined is stated by Lemma 6.3.1. Answer freshness can be achieved by using a

timestamp in the computation of the signature, which would deter replay attacks.

Lemma 6.3.1 In a graph G, the β-node u that has the lowest oτu among all β-nodes

is such that a back-edge e(u, v) in G is not-β-covered by any other back-edge.

Proof Let w be a node and e(w, x) be a back-edge in G such that e(u, v) is β-covered

by e(w, x). In such a case, by the property of post-order numbers, the depth-first

traversal would assign a post-order number oτw to w such that oτw < oτu, which is a

contradiction.

6.3.2 Distribution

In this section, we show how to provide an optimal distribution technique that

sends only O(1) integrity verifiers to the user.

D sends the following items to Bob: Gδ(Vδ, Eδ), the signature of the graph σG,

and a verification object of the subgraph VO. The set of verification units σGδ(Vδ ,Eδ)

= {σG, VO, σGδ
}. VO is computed as shows in Figure 6.9, which is continued in

Figure 6.10.

6.3.3 Authentication

Figure 6.11 summarizes the interactions between Alice, D and Bob. Bob receives

(1) a subgraph Gδ(Vδ, Eδ), (2) the signature of the graph σG, and (3) σ′Gδ
. The

user verifies the authenticity of the contents as well as the structural position of the

nodes in Gδ by using the aggregate signature σGδ(Vδ ,Eδ). The process for verification

94

of contents is same as the process described in Section 6.2.3. The algorithm given in

Figure 6.12 are used to verify the contents authenticity of structural relations.

Using the depth-first traversal carried out during authentication of structural re-

lations, it is easy to determine if x is a β-node or e(x, z) is a β-edge in Gδ(Vδ, Eδ)

(Definition 6.1.1). We just need to initialize a pair of new pre-order and post-order

numbers of each node to −1. These numbers are different than the ones that have

been received as signature items. For each edge e(x, z), if the PON of z is already

computed (i.e., its value is larger than −1), then e(x, z) is not a back-edge, which

implies that x is not a β-node.

Example: Consider our running example in Figure 3.4. Edge e(g14, g9) is a back-

edge; g14 is a β-node but is not β-reachable (and is the one with minimum pτg14)

(Lemma 6.3.1). Therefore the computation of β-signatures, i.e. step 2(a) starts from

g14. The β-reachable nodes are g9, g11, g12, g15 and g16. Notice that nodes g11 and

g12 are also χ-nodes. β-structural signatures are defined for each of these nodes.

χ-structural signatures are defined for g11 and g12 and τ -structural signatures are

defined for g14, g9, g15 and g16. The information that (1) pβ:g14→g9
g14 is larger than

pβ:g14→g9
g9 and (2) rβ:g14→g9

g14 is smaller than rβ:g14→g9
g9 , convey the prover that e(g14, g9)

is a tree-edge. Similarly consider that a prover has access to the edges e(g14, g9) and

e(g9, g11). The signatures of g9 and g11 are computed such that (a) pβ:g14→g9
g9 is larger

than pβ:g14→g9
g11 and (b) rβ:g14→g9

g9 is smaller than rβ:g14→g9
g11 ; (a) and (b) convey that

e(g9, g11) is a tree-edge. The same can be verified for other structures.

95

rSign: Sign a graph G(V,E).

1. Forward pass on graph G(V,E).

(a) Execute a depth-first manner traversal on G(V,E).

(b) For each node x ∈ V , compute oτx and qτx.

(c) If e(w, x) ∈ E, and

i. If ((oτw > oτx) and (qτw > qτx), then mark e(w, x)

as a cross-edge and x as a χ-node.

ii. If (oτw < oτx) and (qτw > qτx), then mark e(w, x) as

a back-edge and w as a β-node.

(d) For each χ-node, compute its qχ.

2. Backward pass on graph G(V,E).

(a) Let V β be the set of all back-nodes in G.

(b) Let y ∈ V β such that oτy < oτu, ∀ u ∈ (V β − {y})

(c) For each back-edge e(y, z) from y, execute a depth-

first traversal of the graph from z.

(d) For each w β-reachable from y over e(y, z),

i. If w is not visited earlier from y, compute oβ:y→z
w

and qβ:y→z
w .

ii. Else compute oβ:y→z
w and qβ:y→z

w , such that oβ:y→z
w

is less than and qβ:y→z
w is larger than the respec-

tive values computed in the previous visit.

iii. if w is a back-node, V β ← V β − {w}.

(e) Goto step (a) until V β is empty.

Figure 6.7. Algorithm to sign a graph (continued to Figure 6.8).

96

rSign(Continuted):

3. For each node x ∈ V , transform the traversal numbers into

traversal numbers, so that they preserve the order.

4. For each node x ∈ V that is a χ-node, assign (pτx, r
χ
x) to

x as its structural position ηχx .

5. For each node x ∈ V that is not a χ-node, assign (pτx, r
τ
x)

to x as its structural position ητx.

6. For each node x ∈ V , and for each not-β-covered back-

edge e(y, z) such that x is β-reachable from y over e(y, z),

ηβ:y→z
x ← (pβ:y→z

x , rβ:y→z
x).

7. For each node y ∈ V such that e(y, z) is a not-β-covered

back-edge, ηβ:y→z
y ← (pβ:y→z

y , rβ:y→z
y).

8. For each node x ∈ V :

(a) If x is a χ-node, ηx ← ηχx else ηx ← ητx.

(b) Compute the α-signature ξαx ← H(ηx‖cx).

(c) If x is β-reachable from a not-β-covered back-edge

e(y, z), compute the β-signature ξβ:y→z
x ← H(ηβ:y→z

x

‖cx).

(d) If x is such that e(x,w) is a not-β-covered back-edge,

compute the β-signature ξβ:x→w
x ← H(ηβ:x→w

x ‖cx).

9. Choose a secure random ω; Let ωG ← H(ω).

10. Compute the signature of the graph G(V,E) either using

CRSA (equation 6.3) or using BGLS (equation 6.4).

Figure 6.8. Algorithm to sign a graph (continued from Figure 6.7).

97

rRedact:

1. ϑ ←∅.

2. Let ψ be a set: ψ ← {〈x, ηx, ξx〉|∀x∈V , ηx is a structural

position of x, and ξx refers to the authentication unit of x

associated with ηx}.

3. If no edge in Gδ is a back-edge in G, For each node x in

Gδ,

(a) If x is a cross-node, ηx ← ηχx . Else ηx ← ητx.

(b) ϑ
∪← 〈x, ηx, ξαx 〉.

Else proceed to the next step.

4. For each e(x, y) in Gδ that is a not-β-covered back-edge in

G,

(a) For each node z in Gδ such that z is either x or is

β-reachable from x over e(x, y) in Gδ,

ϑ
∪← 〈z, ηβ:x→y

z , ξβ:x→y
z 〉. Flag z as visited.

Flag e(x, y) as visited.

5. Let Eβ
0← {e(x, y)|e(x, y) is in Gδ and is not visited, e(x, y)

is a back-edge in G and is not-β-covered in Gδ}.

6. For each e(x, y) ∈ Eβ
0 ,

(a) Let be the back-edge e(u, v) in G but not in Gδ such

that e(x, y) is β-covered by e(u, v) in G.

(b) For each node z such that z is in Gδ, z is not visited,

z is either x or β-reachable from x over e(x, y) in Gδ,

ϑ
∪← 〈z, ηβ:u→v

z , ξβ:u→v
z 〉. Flag z as visited.

Figure 6.9. Algorithm to distribute a subgraph (continued to Figure 6.10).

98

rRedact(Continued from Figure 6.9):

7. For each node w that is not visited and has a simple path

w. . . → x in Gδ, If w is β-reachable from u over e(u, v),

and e(u, v) is in G, but not in Gδ, ϑ
∪← 〈w, ηβ:u→v

w , ξβ:u→v
w 〉.

Flag w as visited.

8. For each node w in Gδ that is not visited,

If w is a χ-node, ϑ
∪← 〈w, ηχw, ξαw〉. Else ϑ

∪← 〈w, ητw, ξαw〉.

9. Compute ξGδ(Vδ ,Eδ) and σGδ(Vδ ,Eδ) as follows:

10. CRSA:

(a) ξGδ
←

∏
〈x,ηx,ξx〉 ∈ψ−ϑ ξx mod n̄.

(b) σGδ
←

∏
〈x,ηx,ξx〉 ∈ψ−ϑ σx mod n̄.

11. BGLS:

(a) ξGδ
←

∑
〈x,ηx,ξx〉 ∈(ψϑ) ξx.

(b) σGδ
← e(P,

∑
〈x,ηx,ξx〉 ∈(ψϑ σx).

Figure 6.10. Algorithm to distribute a subgraph (continued from Figure 6.9).

Alice

G(V,E),σG,{ητ
x orηχ

x |x∈V },{ηβ:y→z
x |x∈V ∧

e(y,z)∈E ∧ e(y,z) not−β−covered∧ y→z→...→x}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→D

D
Gδ(Vδ ,Eδ),σ′Gδ

=({ηx|x∈Vδ},σG,σGδ
,VO)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Bob

Figure 6.11. Protocol for graphs.

99

Authentication of contents:

1. CRSA:
∏

y∈Vδ
ξy mod n̄

?
= σGδ

.

2. CRSA: VO
∏

y∈Vδ
ξy mod n̄

?
= σG

3. BGLS: e(Q,
∑

y∈Vδ
ξy)

?
= σGδ

.

4. BGLS: e(Q, Ω + VO)
?
= σG, where Ω←

∑
y∈Vδ
H(ηy ‖ cy).

Verification of structural relations:

1. Execute a depth-first traversal of Gδ. Let the structural

position of each node x be denoted by ηx = (px, rx).

2. For edge e(x, z), if (px< pz) and (rx> rz), then if x is

not a β-node in Gδ, then e(x, z) is not a back-edge (there

is no cycle in Gδ involving x and z), so the parent-child

relationship between x and z is incorrect.

3. Else if (px≤ pz) or (rx≥ rz), then parent-child relationship

between x and z is incorrect.

Figure 6.12. Algorithm to verify the structural integrity of a graph.

100

6.4 Security Analysis

The proposed schemes for DAGs/graphs with cycles support non-repudiation pri-

marily because both the CRSA and BGLS schemes support non-repudiation. More-

over, the proposed schemes for DAGs and graphs with cycles are “existentially un-

forgeable under adaptive chosen-message attack”. In what follows, we provide proof

sketches for the security of the proposed schemes.

Lemma 6.4.1 (Authentication (DAGs)) Under the random oracle model, any authen-

ticity violation of a graph can be detected by using the structural signatures for DAGs.

Proof [Sketch] Let ξG′δ(V ′,E′) and σG′δ(V ′,E′) be the authentication units received by a Bob,

who receives the G′
δ(V

′, E′), subgraph of G(V,E). Suppose that the authenticity verification

scheme in Section 6.2.3 authenticates a graph, G′′
δ (V

′′, E′′) different from Gδ, to G, using

ξG′δ(V ′,E′) and σG′δ(V ′,E′). By Definitions of χ-RONs, τ -PONs and τ -RONs, the relationship

between the nodes in G′′
δ must be identical to that of G′

δ(Section 6.2.3), otherwise the

randomized traversal numbers are not secure, which is a contradiction. Contents of G′′
δ

would be authenticated iff Verification of G′′
δ is satisfied, which implies that the random

oracle H incurred a collision, and the CRSA/aggregate signature scheme and H are not

secure, which is a contradiction, under the random oracle hypothesis [76] and hardness of

computational Diffie-Hellman problem [28]. Thus the lemma is proven.

Lemma 6.4.2 (Non-leakage (DAGs)) Under the random oracle model, the structural

signature of a DAG do not lead to any leakage of any extraneous information.

Proof [Sketch] A user receiving a sub-DAG G′
δ(V

′, E′) of DAG G should not be able to

infer any extraneous information of G from (1) the signature σG, (2) set of verification units

VOG′δ , and (3) the τ - and χ-structural positions of the nodes in G′
δ. Due to the properties

of Bilinear maps and aggregate signatures, (1) and (2) do not leak any information (i.e.,

the probability of leakage is negligible) [28]. We now would prove that (3) does not leak.

(Forward-edges:) The τ -structural positions of nodes in a forward-edge are identical to the

rules of tree-edge (Definition 6.1.1); therefore an edge e(x, y) that is a forward-edge in G

101

but not a forward-edge in G′
δ would be verified by the user as a tree-edge. (Cross-edges:)

By Definitions 6.2.2 and 6.2.4, a χ-node x has a structural position such that rχx is larger

than the rτw for each w that has a cross-edge incident on x. By Definition 6.1.1, the user

would only know that e(w, x) is a tree-edge and thus cannot learn whether it is a cross-edge

(Definition 6.1.1). Thus the lemma is proved. If the signature of the DAG and the integrity

verifier of the subgraph leak extraneous information, then H incurred a collision, and the

aggregate signature scheme and H are not secure, which is a contradiction, under the

random oracle hypothesis [76] and hardness of computational Diffie-Hellman problem [28].

Thus the lemma is proven.

Lemma 6.4.3 (Authentication (Graphs with Cycles)) Under the random oracle model,

any authenticity violation of a graph can be detected by using the structural signature scheme

for connected directed graphs.

Proof [Sketch] Let G(V,E) be a directed connected graph and x be a node in it.

Content authenticity: Any compromise of the content cx or the structural position

(either τ , χ, or β) of a node x in G would invalidate the structural integrity verifier ξx,

which is a hash of a message that contains cx and structural position of x as defined

by Definitions 6.2.4, and 6.3.6, unless the hash function H encounters a collision, which

contradicts our assumption and the random oracle hypothesis. Moreover, if a node/edge is

added to or dropped from the received subgraph G′
δ(V

′, E′), it would invalidate the received

integrity verifier of the subgraph ξG′δ(V ′,E′). If ξG′δ(V ′,E′) does not get invalidated, then either

H is not a random oracle or the CRSA/BGLS scheme is not secure – both are contradictions.

Structural authenticity: The signature of a node in a graph is a forward-signature, if it is

not reachable from a back-edge. Such a signature is with respect to the DFT obtained from

a forward traversal of the graph. Any unauthorized re-ordering between two or more nodes

(violation of structural integrity) in such a DFT can be detected using the randomized

traversal numbers. If a node is a β-node or is reachable from a back-edge, then such a node

also belongs to the DFT obtained from a depth-first traversal carried out from β-node(s)

over back-edges. Any unauthorized re-ordering would be detected here as well. Suppose x

belongs to another tree G′, but claimed to belong to G. By the arguments similar to the

one in the proof of Lemma 6.4.1, it is not possible.

102

Lemma 6.4.4 (Non-leakage (Graphs with Cycles)) Under the random oracle model,

the structural signatures for connected directed graphs do not lead to any leakage of any

extraneous information.

Proof [Sketch] A user receiving a subgraph G′
δ(V

′, E′) of graph G should not be able

to infer any extraneous information of G from (1) the signature σG, (2) set of verification

units VOG′δ , and (3) the τ -, χ-, and β-structural positions of the nodes in G′
δ. Due to

the properties of Bilinear maps and aggregate signatures, (1) and (2) do not leak any

information (i.e., the probability of leakage is negligible) [28]. We now would prove that

there is no leakage due to (3).

In order to be confidentiality-preserving, an authentication scheme must not leak any

extraneous information about (a) cross-edges, (b) forward-edges, (c) back-edges. Following

Lemmas 6.4.2, the authentication scheme for connected directed graphs does not leak

any information about (a) and (b). The scheme does not leak any information via the

back-edges or β-structural positions proven as follows.

Let e(x,w) be a not-β-covered back-edge in graph G(V,E) (e.g., e(g14, g9) in Figure 3.4).

By Definitions 6.3.4 and 6.2.4, the β-node x has a β-structural position such that pβ:
x and

rβ:
x are larger and smaller than the pβ:x→w

w and rβ:x→w
w , respectively. By Definition 6.1.1, the

user would only verify that e(x,w) is a tree-edge and cannot learn whether it is a back-edge.

The following cases arise when a user is authorized to access a connected subgraph that

includes a back-edge e(x,w), which is not-β-covered in the subgraph; the subgraph may

also include: (I) nodes reachable from w, (II) nodes reachable from x and (III) nodes x is

reachable from.

Case I: Nodes reachable from w: The user is authorized to access the back-edge e(x,w)

and the edge e(w, y) (e.g., e(g9, g11) in Figure 3.4). By Definition 6.3.2, y is β-reachable

from x. Further by Definitions 6.3.4 and 6.2.4, pβ:x→w
x and rβ:x→w

x are larger and smaller

than the pβ:x→w
y and rβ:x→w

y , respectively. By Definition 6.1.1, the user would only verify

that an edge e(w, y) is a tree-edge and cannot learn from it whether e(x,w) is a back-edge.

Case II: Nodes reachable from x: The user is authorized to access the back-edge e(x,w)

and the edge e(x, y) (e.g., e(g14, g18) in Figure 3.4).

103

• y is not β-reachable and x is not β-reachable: By sending τ -position and τ -signatures

for both x and y and β-position and β-signatures for w, the edges would be verified

as tree-edges. This is because, pτx = pβ:x→w
x and rτx = rβ:x→w

x (Definition 6.3.4) and

thus the τ -signature for x are same as its β-signature.

• y is not β-reachable and x is β-reachable: Not possible by the definition of the notion

of β-reachable.

• y is β-reachable and x is not β-reachable: By sending τ -position and τ -signatures for

y and β-position and β-signature for x and w, both the edges e(x,w) and e(y, x) are

verified by the user as tree-edges, thus hiding the original type of e(x,w). This is

because, since x is not β-reachable, by Definition 6.3.4, pτx = pβ:x→w
x and rτx = rβ:x→w

x .

Thus and by the properties of post-order and pre-order numbers, since e(y, x) is a

tree-edge in G, pτy > pβ:x→w
x and rτy < rβ:x→w

x .

• y is β-reachable and x is β-reachable: By sending β-positions and β-signatures for

both y, x and w, the edges would be verified as tree-edges. This is because, by

Definition 6.3.4, pβ:x→w
y > pβ:x→w

x > pβ:x→w
w and rβ:x→w

y < rβ:x→w
x < rβ:x→w

w .

Case III: Nodes from which x is reachable: The user is authorized to access the back-

edge e(x,w) and the edge e(y, x) (e.g., e(g11, g14) in Figure 3.4). Four cases arise:

• y is not β-reachable and x is not β-reachable: Proof is identical to this condition in

Case-II.

• y is not β-reachable and x is β-reachable: By sending τ -positions and τ -signatures

for y and β-positions and β-signatures for x and w, the edges would be verified as

tree-edges. This is because, for an x that is β-reachable and a β-node, pβ:x→w
x < pτx

and rβ:x→w
x > rτx. Since e(y, x) is an edge in the graph, pτx < pτy and rτx > rτy .

• y is β-reachable and x is not β-reachable: Proof is identical to this condition in

Case-II.

• y is β-reachable and x is β-reachable: Proof is identical to this condition in Case-II.

The above arguments can be easily extended to multiple not-β-covered back-edges in

the graph. Consideration of one not-β-covered back-edge takes care of all other back-edges

104

that are it covers. So the argument also extends to multiple β-covered and not-β-covered

back-edges.

Suppose that a user Bob has access to G′
δ, a subgraph in G. Bob receives the structural

signature of G, the node signatures of G′
δ and their structural positions. Any leakage would

be a direct leakage through these information or an inference from them.

Direct leakage: Clearly (as per Definitions 6.2.7, 6.2.5, 6.3.9 and 6.3.7, and the protocols

specified in Sections 6.2.2 and 6.3.2) Bob does not need the integrity verifier of any node

u that is in G but not in G′
δ. He therefore does not need to know any of the structural

relationships and ordering that exist in G, but not in G′
δ. Therefore none of (3), (4),

(5) and (6) is directly leaked to Bob; he does not learn any extra information from the

authentication process.

Indirect leakage through the signature of the graph and integrity verifier for G′
δ: Under

the Random Oracle Hypothesis and the hard-ness of Computational Diffie-Hellman problem,

the structural signature of the tree reveals neither (3) the signature of u, nor (4) the existence

of u. Similarly, the structural signature of a node leaks neither (3) nor (4). Therefore (5) –

the structural relations (edges or paths) and (6) – the structural order among nodes in G′
δ

and u are also not revealed by the signatures.

In addition, the structural positions of the nodes in G′
δ do not reveal any informa-

tion [84]: because the probability of inference (and leakage) about (2) – the existence of

node u between two immediate siblings from such randoms is negligible. Therefore struc-

tural positions of nodes cannot be used to determine the structural signature of u. Since

(3) and (4) cannot be inferred from the RPON’s and RRON’s, (5) and (6) also cannot be

inferred from the structural position of a node.

6.5 Complexity and Performance Results

In the following sections, we analyze the complexity and performance of the pro-

posed schemes.

105

6.5.1 Complexity

Signature Generation Complexity. The pre-order and post-order numbers can be

generated by a single traversal of the graph G(V,E). The traversal complexity is thus

O(|V |+|E|). In the signing scheme of graphs (Section 6.3.1), a graph is traversed once

forward, a number of times backward, and once for computing the signatures in the

end. The number of backward traversals is the number of not-β-covered back-edges d,

which is in [0, |V |−1] (0 in case of DAGs and (|V |−1) in case of complete graphs). In

case of signing DAGs, the scheme requires only two traversals (no backward traversal

is required here). Therefore, the complexity for signing a DAG is O(|V |+|E|). In case

of graphs with cycles, the scheme requires d number of backward traversals, where d

is the number of not-β-covered back-edges.

The number of authentication items that need to be computed, and stored is

(|V |∗(2 + 2d)) as explained below by assuming that the sizes of the secure random

number and the cryptographic hash are identical. In the worst case (when the graph

is a complete graph), each node is a β-node; so each node has one forward and d

backward positions. Each structural position involves two secure random numbers.

Therefore, the storage complexity of structural signatures is O(|V |*d).

Distribution Complexity. Let the signed subgraph that needs to be shared with a

user be G′
δ(V

′, E ′). In the worst case (G′
δ(V

′, E ′) is a complete graph), the distributor

has to send (2 ∗ |V ′|) number of signature items as follows. Each node in such a

subgraph is a β-node; thus the β-structural position (two authentication items) of

each node is sent to the user. Therefore the distribution complexity of structural

signatures is O(|V ′|).

Integrity Verification Complexity. The procedure for the verification of content

integrity incurs a cost linear in terms of the size of the subgraph G′
δ(V

′, E ′) received,

that is, O(|V ′|+ |E ′|). It accounts for one hashing for each node. The cost of verifi-

cation of structural integrity is also linear: O(|V ′| + |E ′|), as the cost of comparison

of randomized traversal numbers is constant.

106

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10000 20000 30000 40000 50000 60000

T
im

e
fo

r
(c

ro
ss

/tr
ee

)-
st

ru
ct

ur
al

 p
os

iti
on

s
(S

ec
)

Number of cross-edges

Ordered DAG: 2 Million Nodes
Ordered DAG: 1 Million Nodes

Figure 6.13. Average time in seconds to compute the χ- and τ -
structural positions vs. the number of cross-edges in each ordered-
DAG.

6.5.2 Performance Results

We implemented the two schemes - DAG and graphs in Java 1.6 and JCA 6.0 (Java

Cryptography Architecture) APIs. The experiments were carried out on a desktop

with the following specification: 64-bit Linux (Ubuntu 8.10) on Intel Core 2 Duo

CPU with 4GB RAM. For signing using aggregate signatures and bilinear maps, we

used the C implementation of bilinear maps [3]. The performance metrics measured

are: time to compute the χ-, τ -structural positions and β-structural positions (for

graphs) versus the number of cross-edges, back-edges in the DAG and the graphs.

The other performance metric that we have evaluated the schemes against is time

taken for signing and verification.

Time to Compute Structural Positions: The process of computing appropriate

structural positions of each node in either a DAG or a graph is part of the one-time

process of signing. Figure 6.13 shows that the time for computation of χ- and τ -

structural positions for DAGs is very efficient (linear). For DAGs of size about 2

million nodes, it takes only 14 seconds. Figure 6.14 shows that the time to compute

all the structural positions for all the nodes in a graph with respect to the number of

107

 0

 1

 2

 3

 4

 5

 6

 7

 0 100000 200000 300000 400000 500000

T
im

e
fo

r
(b

ac
k,

 c
ro

ss
, t

re
e)

-s
tr

uc
tu

ra
l p

os
iti

on
s

(S
ec

)

Number of back-edges

Cyclic graph with 130K nodes
Cyclic graph with 65K nodes

Figure 6.14. Average time in seconds to compute the β-,χ- and τ -
structural positions vs. the number of back-edges in a graph with
cycles.

back-edges in the graph is also highly efficient - for more than 0.5 million back-edges,

it takes 6.5 seconds.

The performance of signing a graph, redaction and verification of a subgraph

is same as that of the trees. This is primarily beacause computation of various

structural positions in case of a graph is what is the major difference between trees and

graphs. However such a cost as shown in the previous paragraph is almost negligible

in comparison to the cost of signing, which is in thousands of seconds. Such high

cost of signing and verification is due to involvement of modular exponentiations.

Our performance results are in terms of the number of integrity verifiers; in case of

trees, the number of integrity verifiers per node is one, whereas in a graph, it is more

especially for nodes involved in cycles.

6.6 Summary

In this chapter, we proposed two schemes in order to address the problem of

leakage-free authentication - one for DAGs and another for graphs with cycles. The

proposed schemes are based on structure of graphs and aggregate signatures.

108

Figure 6.15. Leakages in structural signature scheme for trees.

A graph contains nodes and tree-edges, forward-edges, cross-edges and back-edges.

The fact that an edge is a forward-, cross- or a back-edge in a depth-first traversal

conveys information that is sensitive in several contexts. Moreover, back-edges pose

a more difficult problem than the one posed by forward- and cross-edges (i.e. DAGs)

primarily because back-edges add a bidirectional nature to the graph, which turns

graphs into complex structures, which in turn makes the problem of authentication

with confidentiality of such structures a hard one.

Our schemes prevent leakage of information while facilitating authentication of

content as well as the structure of trees and graphs. The security of such schemes

are based on the security of cryptographic hash functions (random oracles) and ag-

gregate signatures (Computational Diffie-Hellman problem). In terms of complexity,

the schemes for DAGs and graphs with cycles incur O(n) and O(n ∗ d), respectively,

for time and storage (n is the number of nodes in the graph). Performance of our

schemes on large DAGs and on graphs as large as 0.5-million back-edges nodes show

that our scheme is efficient. Further, experimental results show that our technique

for graphs with cycles performs linearly – better than the complexity analysis.

Limitations of Structural Signatures Structural signature schemes for trees and

graphs are however not secure when the user receives more than one subtrees/sub-

graphs of a tree/graph. A user can infer about the existence of path relationship

109

between nodes that are different subtrees. In Figure 6.15, we show that a user re-

ceives first and second subtrees as the results of query-1 and query-2, respectively. As

part of this process, the user also receives the randomized post-order and pre-order

numbers of these nodes. Since post-order (pre-order) number of an ancestor is larger

(resp., smaller) than that of the descendant. In this example, the post-order (pre-

order) number of g2 is greater (resp., smaller) than that of g6, which why, the user can

infer that there exists a path between between these two nodes in the original trees.

This maybe a sensitive information in many scenarios, such as, healthcare (disease is

denoted by g2 and patient is referred to by g6), in finance (a specific loan is denoted

by g2 and an individual is referred to by g6).

In the next chapter, we have presented a scheme that is leakage-free even when a

user has access to multiple subtrees/subgraphs.

110

7 LEAKAGE-FREE REDACTABLE SIGNATURES

The only truly secure system is one that is powered off,
cast in a block of concrete and sealed in a lead-lined room

with armed guards – and even then I have my doubts.
Eugene H. Spafford [55]

The structural signature scheme described in the previous chapters can authen-

ticate only “single” subtrees, and will leak when “multiple” subtrees are results of

one or more queries. Moreover, structural signatures compute a linear number of

signatures for the trees and at least a linear number of signatures for graphs. In this

chapter, we present a scheme that computes only one signature for a tree/graph/for-

est, is generic for trees, graphs, and forests, and can be used to authenticate multiple

subtrees/subgraphs without leaking.

7.1 Trees

In this section, we propose a leakage-free signature scheme rΠ for trees. It relies

on the notion of “secure names” that are assigned to the nodes in a tree.

The purpose of secure names is to convey the order of siblings (which node is to

the left of which other node) without leaking anything else (e.g., whether they are

adjacent siblings, how many other siblings are between them, etc). For example, in

Figure 1.1(a), a, b, and c are siblings such that a ≺ b ≺ c. Secure names ηa, ηb, and

ηc are assigned to a, b, and c, respectively. Given ηa, and ηc, alongwith a and b, a

user can establish the fact that a ≺ c. But it cannot learn anything about b, or its

existence (extraneous information).

The signing procedure traverses a tree T (V,E) bottom-up, and assigns an N -bit

secure name ηx to each node x in the tree, and then computes the signature σT of

the tree using these secure names. Using the secure names of the nodes in a tree,

111

an “integrity verifier” for each node is computed, which in turn is used to define

the signature of the tree σT (V,E). A user that receives a subtree Tδ also receives the

signature of the tree, and a verification object (VO) in order authenticate the integrity

and the origin of this subtree. VO is computed using the integrity verifiers of those

nodes that are not in the subtree Tδ. The user verifies the signature of the tree using

the VO and the received subtree together. The structural relationships between the

nodes and the order between the siblings in Tδ are verified using their secure names.

In the following sections, we have shown how to compute the signature of a tree,

and distribute, and how to authenticate a subtree. To ease the exposition, we first

introduce a preliminary approach for naming the nodes, which is easier to understand

and is secure but is not efficient - it has an exponential complexity. We then present

the efficient solution that is both secure and efficient for trees with large branching

factor.

7.1.1 Preliminary Scheme (Scheme-1)

Our approach for generating secure names follows a bottom-up strategy. Let

v1, . . . , vk be a list of siblings listed in left to right order. Let lsb(s) denote the

least significant bit of the bit-string s. The secure names of siblings vi and vi+1 are

computed such that the least significant bits of the hash of ηvi
‖ηvi+1

and the hash

of ηvi+1
‖ηvi

are 1 and 0, respectively. We call this as the ordering property of secure

names. This scheme is given in Figure 7.1.

Example: In the tree in Figure 1.1(a), N -bit secure names ηa, and ηb, are assigned

to a, and b, respectively. ηa is a assigned as a random. ηb is computed such that

lsb(H(ηa ‖ ηb)) = 1 and lsb(H(ηb ‖ ηa)) = 0. This process is repeated for each set of

siblings.

112

rNameGen: Compute the secure names for siblings v1, v2, . . . , vk,

children of node x, where vi ≺ vj, i < j.

1. For the root node root of T , assign a random to ηp̂root
.

2. Repeat the following statements for each x ∈V . Let

v1, v2, . . . , vk be the set of the children of x.

3. Generate a random permutation π of the integers

{1, . . . , k}.

4. Set ηvπ(1)
to be any random.

5. For i = 2, . . . , k, compute ηvπ(i)
as follows.

(a) Choose a random r.

(b) For j = 1, . . . , i− 1, do the following:

i. λ≺ ← H(ηvπ(j)
‖ r).

ii. λ� ← H(r ‖ ηvπ(j)
).

iii. If vπ(i) is to the left (resp., right) of vπ(j), then

check whether lsb(λ≺) is 1 (resp., 0) and lsb(λ�)

is 0 (resp., 1).

iv. If the answer is “yes” for all j, then ηvπ(i)
← r.

v. Else go back to Sub-step 5(a).

rNameVrfy: Verify the order between two nodes vi ≺ vj, using

their secure names ηvi
and ηvj

.

1. vi ≺ vj ⇔ lsb(H(ηvi
‖ ηvj

))= 1 ∧ lsb(H(ηvj
‖ ηvi

)) = 0.

Figure 7.1. Algorithm to compute secure names for T (V,E) (Scheme-1).

113

Figure 7.2. Secure names ηVi
and ηx of siblings Vi and x in the context

of the efficient naming scheme.

Complexity

Scheme-1 takes O(n) time, where n is the number of nodes in the tree. The

probability that a particular choice of r is found suitable for ηvπ(i)) is 4−i+1, and the

average number of r values generated for the selection of such an ηvi
is 4i−1. The

expected time to compute the secure names all k siblings is therefore:
∑k

i=1 4i−1 =

(4k − 1)/3, and the average time to compute all secure names is (n− `) ∗ (4k − 1)/3.

Note that, although it is quite unlikely to happen, it is nevertheless possible that two

non-sibling nodes receive the same secure name. In such a case, step 5(a) should be

repeated.

7.1.2 Efficient Scheme (Scheme-2)

The main drawback of the Scheme-1 is the fact that the worst-case time to compute

an ηx, when x is the (j + 1)’th leftmost child of its parent, is exponential in j (Step

3 in Section 7.1.1). This section describes an improved scheme that does not suffer

from this drawback. As earlier, a non-leaf node in a tree has k number of children.

114

7.1.3 Secure Names

The idea is, as before, to compute the ηx’s (secure names) bottom-up and, within

a set of siblings, in left-to-right order. The main difference is how a secure name ηx

is computed. This scheme (Scheme-2) is given in Figure 7.3.

In this approach, we split the N -bit long secure name ηx of a node x into two

disjoint parts: ηlx and ηrx of sizes L and R refer to the left and right parts of ηx,

respectively (Figure 7.2). If x is the leftmost child (i.e., the first child) of its parent

then ηx is selected randomly. If x is (m + 1)’th leftmost child of its parent, then ηx

depends on the secure names of its left siblings. Let w be a left sibling of x: w ≺ x.

Two bits (bw and b′w) in ηlw and two bits (bx and b′x) in ηlx are selected and their values

are set such that bw ⊕ bx < b′w ⊕ b′x. bw and bx are the j’th leftmost bit in w and

x, respectively, where j is computed using ηrw and ηrx in this order (because w ≺ x).

Similarly b′w and b′x are the (j′)’th leftmost bit in w and x, respectively, where j′ is

computed using ηrw and ηrx in the reverse order. This is the ordering property of secure

names computed in this fashion. Alongwith N , (L − 2 ∗ k), and R are sufficiently

large as security parameters.

Example: For N = 512, choose L=360 for k ≤ 100, and R=152 in the context of

current computational power. In the tree in Figure 1.1(a), secure names ηa, and ηb, are

assigned to a, and b, respectively. ηa is an N -bit random and each bit of ηla is marked

as not-used. ηb is computed as follows. ηrb is an R-bit random and ηlb is initialized to

0. Each bit of ηlb is marked as not-used. j is computed as (1 + H(ηra ‖ ηrb) mod L).

Since j’th leftmost bits of ηla and ηlb referred to as bi and b, respectively, are marked

as not-used, j′ is computed as (1 + H(ηrb ‖ ηra) mod L). If (j 6= j′) and the (j′)’th

leftmost bits of ηla and ηlb referred to as b′i and b′, respectively, are marked as not-used,

then proceed as follows. Assign either (0,0) or (1,1) to (bi,b
′
i) in ηla, and (0,1) or (1,0)

to (b,b′) in ηlb. Such an assignment assures that bi ⊕ b(= 0) < b′i ⊕ b′(= 1). The j’th

and (j′)’th bits of ηa and ηb are marked as used. ηc depends on both ηa and ηb. This

process is repeated for each set of siblings.

115

rNameGen: Compute the secure name for x such that

v1, v2, . . . , vk, x are siblings, where vi ≺ vj ≺ x, i < j.

1. Choose a sufficiently large N . Choose L and R are such

that (a) N = L + R, (b) R ≥ log(L), and (c) (L− 2 ∗ k)

and R are sufficiently large as security parameters. Let ηrx

and ηlx refer to the right-part consisting of R and left-part

consisting of L bits of the secure name ηx of x.

2. Assign random values to ηrx, and zero values to ηlx. As-

sociate with each bit of ηlx a status that is initially set to

not-used.

3. Compute secure names of siblings in the left-to-right order

of the siblings. Let v1, . . . , vk be the siblings to the left of

x, where vi is the ith leftmost one. (Each of the ηvi
’s of

these k siblings of x have already been computed.)

4. For i = 1 to k do the following.

(a) λ≺ ← H(ηrvi
‖ ηrx); j ← 1 + (λ≺ mod L). Let bi

(resp., b) denote the jth leftmost bit of ηlvi
(resp.,

ηlx). If the status of b is not-used then continue with

the next step, else go back to step (2).

(b) λ�←H(ηrx ‖ ηrvi
); j′ ← 1+(λ� mod L). Let b′i (resp.,

b′) denote the (j′)’th leftmost bit of ηlvi
(resp., ηlx).

(c) If (j 6= j′) and the status of b′ is not-used then pro-

ceed to the next step, else go back to step (2).

(d) Set b and b′ such that bi ⊕ b < b′i ⊕ b′.

(e) Change the status of b and b′ from not-used to used.

Figure 7.3. Efficient algorithm to compute secure names for tree
T (V,E) (Scheme-2) (Continued to Figure 7.4).

116

rNameVrfy: Verify whether y ≺ z, using their secure names ηy

and ηz.

1. j ← 1 + (H(ηry ‖ ηrz) mod L)

2. j′ ← 1 + (H(ηrz ‖ ηry) mod L)

3. Let by and bz be the j’th, and b′y and b′z are the (j′)’th bits

in ηy and ηz, respectively.

4. Check the following: y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z.

Figure 7.4. Efficient algorithm to compute secure names for tree
T (V,E) (Scheme-2) (Continuted from Figure 7.3).

117

Complexity

The above algorithm translates into a simple and constant-time test of which of

two given siblings is to the left of the other. But we need to analyze the expected

number of re-starts. Suppose that the size L of the left part (ηlx) of a secure name

is 500. The probability of a “collision” and re-start at Step (1) is the probability

that 2k numbers drawn randomly from the 500 choices [1, 500] are not all distinct,

i.e., that at least 2 of them are equal. This is the classic birthday problem, and

the probability of a re-start is (assuming 2k ≤ 500): 1 −
∏2k−1

j=1 {(1 − (j/500))} ≈

1− e−(2k)(2k−1)/1000. For 2k = 50 this probability is 0.91, hence the expected number

of re-starts is (1/(1− 0.91) = 11, which is much better than the preliminary scheme

where the expected number of re-starts would have been proportional to 425. Scheme-

2 incurs linear cost O(n) in terms of the number of nodes in the tree.

7.1.4 Leakage-Free Signatures of Trees (rSign)

In this section, we describe the signature, distribution and verification protocols

for trees. Prior to computing the signatures, a dummy node is inserted by splitting

an edge: if e(x, y) is an edge in the original tree, add a node w such that e(x,w) and

e(w, y) are the new edges in the modified tree. Secure name ηw of each inserted node

w is a random. Such node w when given to a user only when the user has access

to both x and y. The ordering between them is not needed to be verified by secure

names.

Integrity Verifiers

An integrity verifier (IV) of a node is the hash of the secure name of its parent,

its secure name and its contents. In case of inserted nodes, no contents is used in IV .

Using the IV s, we define a signature σT (V,E) (also referred to as σT) for T (V,E). In

cases when “the received subtree (sent to the user) is the same as the original tree” is

118

a sensitive information, the signature of a tree may be salted using a random value in

order to protect this fact. The (salted) tree signature is publicly available or passed

to the user alongwith the subtree that the user has access to. σT (V,E) is an aggregate

signature, computed over the IV s of its nodes. We define two types of signatures

for trees: one based on the condensed-RSA signatures [105] and the other based on

bilinear maps [28].

Definition 7.1.1 (Integrity Verifier) Let x be a node in tree T (V,E), and cx be

the content of node x. Its integrity verifier (IV) denoted by ξx, is defined as: ξx ←

H(ηp̂x
‖ηx‖cx).

In this section, we define the signature of a tree based on Condensed-RSA signature

scheme [105] and aggregate signatures [28].

Definition 7.1.2 (Signature of Trees using CRSA) Let T (V,E) be a tree. Let

H denote a random oracle. Let the RSA signature σx of each node x be defined as

follows σx ← ξd̄x mod n̄, where ξx is the IV of x. Let the salt be ωT be a random,

and let ΩT ← ωT
d̄ mod n̄. The signature of T , denoted by σT , is defined as

σT = ΩT

∏
x∈V

σx mod n̄. (7.1)

Definition 7.1.3 (Signature of Trees using BGLS) Let T (V,E) be a tree. Let

H denote a random oracle. Let the salt be ωT . The signature σx of each node x is

defined as σx ← skξx. The signature of T , denoted by σT , is defined as

σT ← (P, sk(ωT +
∑
x ∈ V

ξx)). (7.2)

7.1.5 Distribution (rRedact)

The distributor D sends the following items to Bob, who has access to Tδ(Vδ, Eδ),

a subtree of tree T (V,E): (Tδ(Vδ, Eδ),VOTδ
,σT), where VOTδ(Vδ ,Eδ) (also referred to

as VOTδ
) is the verification object of Tδ, and σT the signature of the T (V,E). The

119

rSign: Sign tree T (V,E).

1. For each node x∈V , compute its secure name ηx, and com-

pute its IV : ξx←H(ηp̂x
‖ηx‖cx).

2. Assign a salt ωT to T .

3. If CRSA is used, compute the “signature of the tree”

σT (V,E) as follows:

(a) For each x ∈V , σx ← (ξx)
d̄ mod n̄.

(b) Compute the signature σT by evaluating Eq. 7.1,

where ΩT ← ωT
d̄ mod n̄.

4. If BGLS is used, compute the signature of each node, and

compute “signature of the tree” σT by evaluating Eq. 7.2.

Figure 7.5. Algorithm to sign a tree.

following steps show how to compute VOTδ
. D computes two collective integrity

verifiers σTδ
and ∆Tδ

as part of VOTδ
over the integrity verifiers of all the nodes that

are not in the subtree and also includes the salt.

VO is used to verify the signature of the tree, and is used to detect if any node(s)

has been dropped form Tδ in an unauthorized manner. σTδ
is used to verify the

signature of all the nodes in the subtree in an aggregate manner, and is used to

detect if any node(s) has been injected form Tδ in an unauthorized manner. ηx is the

secure name of x.

7.1.6 Authentication (rVrfy)

Bob receives the subtree Tδ(Vδ, Eδ), the signature of the tree σT , and the verifi-

cation object VO. As part of the content authentication process, Bob computes the

120

rRedact: Computed signature of the redacted subtree Tδ(Vδ, Eδ)

⊆ T (V,E).

1. σ′Tδ
← 〈σTδ

,VO,ΘTδ
〉, computed as follows.

2. ΘTδ
is the set of all secure names of the nodes and their

respective parents in Tδ: ΘTδ
← {(ηx,ηp̂x

)|x ∈ Vδ}.

3. Compute the collective integrity verifier VO as follows.

(a) CRSA: VO ← ωT
∏

x∈(V−Vδ) ξx mod n̄;

σTδ
←

∏
x∈Vδ

σx mod n̄.

(b) BGLS: VO ← ωT+
∑

x∈(V−Vδ) ξx;

σTδ
← (P,

∑
x∈Vδ

σx).

Figure 7.6. Algorithm to redact a subtree.

integrity verifiers of the nodes in Vδ and combines them with the received collective

integrity verifier VO. If the contents of the nodes are valid, the structural integrity

is verified with the help of secure names: the parent-child relationship, and the order

among the siblings. Authentication of contents and structural positions of the subtree

received includes (1) verification of integrity and, (2) verification of the source of the

subtree. The integrity verification of structural relations in a tree involves traversing

the tree and using the secure-name of two siblings of its parent or its sibling. The

user can carry out verification of integrity of a n′-node subtree in O(n′)-time. The

verification procedure is given in Figure 7.7.

121

rVrfy: Verify authenticity of subtree Tδ(Vδ, Eδ).

Authentication of nodes:

1. For each node y ∈Vδ, compute ξy ← H(ηp̂y
‖ηy‖cy).

2. CRSA: Verify (a) and (b):

(a) (σTδ
)ē

?
=

∏
y∈Vδ

ξy (mod n̄), and,

(b) (σT)ē
?
= VO

∏
y∈Vδ

ξy (mod n̄).

3. BGLS: Verify (a) and (b):

(a) (σTδ
)

?
= (Q,

∑
y∈Vδ

ξy)), and,

(b) (σT)
?
= (Q,(VO+

∑
y∈Vδ

ξy)).

4. If (a) and (b) are valid, then the contents and secure names

of Tδ are authenticated. Otherwise, if (b) is invalid and (a)

is valid, then the received nodes are authenticated, but

either some nodes have been dropped, or VO and/or σT

have been tampered with.

Verification of edges and ordering among siblings:

1. Carry out a depth-first traversal on Tδ.

2. Parent-child relationship: Let x be the parent of y in Tδ;

if (ηx 6= ηp̂y
), then this relationship is incorrect.

3. Order among siblings: For ordered trees, in Tδ, let y and

z are children of x, and let y ≺ z.

(a) For scheme-1 (Section 7.1.1): y ≺ z ⇔

(lsb(H(ηy ‖ ηz)) = 1) ∧ (lsb(H(ηz ‖ ηy)) = 0).

(b) For scheme-2 (Section 7.1.2):

i. j ← 1 + (H(ηry ‖ ηrz) mod L)

ii. j′ ← 1 + (H(ηrz ‖ ηry) mod L)

iii. by and bz are the j’th, and b′y and b′z are the (j′)’th

bits in ηy and ηz, respectively.

iv. y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z.

Figure 7.7. Algorithm to verify a subtree.

122

7.2 Graphs

Our proposed authentication scheme for graphs is a general one. It can be used

for trees, DAGs, graphs with cycles as well as forests. However, for trees, it is recom-

mended to use the scheme specifically developed for trees (in Section 7.1), especially

when the fact that the data is organized as trees need not be kept as a secret from

users. The scheme for trees computes only one signature and is more efficient than

that for the graphs (described below). Moreover, as we will see later (Section 7.6.1),

the scheme for graphs can be used for signing forests of trees and graphs as well as

authenticate such forests in a leakage-free manner.

Consider a simple graph G shown in Figure 1.1(b). It is a directed acyclic graph

(DAG) with node c having two immediate ancestors - d and h (this DAG can be

turned into a cyclic graph, by adding a back-edge such as one from f to h). Our

solution for trees described earlier, does not work for graphs. In case of graphs, a

node may have multiple incoming edges (i.e., multiple immediate ancestors such as

c), whereas in case of trees, a node has only one parent (immediate ancestor) except

for the root, which does not have any parent. Therefore, in the context of graphs, we

cannot use the notion of integrity verifiers that is used for trees (Definition 7.1.1). The

challenge in designing leakage-free signatures for graphs arises from the fact that the

set αδ(x) of immediate ancestors of a node x in a subgraph Gδ is a (possibly empty)

subset of the set α(x) of immediate ancestors of x in G. The question is how to

verify the authenticity of αδ(x) without leaking any information about (α(x)\αδ(x)):

whether it is empty or non-empty, what is its size, etc? For example, c has only d

as its immediate ancestor Gδ, whereas it has d and h as the immediate ancestors in

G. How to authenticate the fact that d in fact is a correct immediate ancestor of c

in Gδ, without leaking any information about h.

Ordering among siblings makes sense for graphs with cycles if and only if, the

back-edge (or the edge which can be removed to break a given cycle among nodes)

need to be of different semantics.

123

7.2.1 Leakage-Free Signatures for Graphs (rSign)

Our proposed scheme computes the integrity verifier of a node independent of the

secure name of the parent, and integrity verifiers for edges. It computes secure names

for nodes that have specific ordering with their siblings. If in a graph, the ordering

between some siblings is not possible, then the secure names of such nodes are just

randoms.

Definition 7.2.1 (Integrity Verifier: Node) Let x be a node in graph G(V,E),

and cx be the content of node x. Its integrity verifier (IV) denoted by ξx, is defined

as: ξx ← H(ηx‖cx).

Definition 7.2.2 (Integrity Verifier: Edge) Let e(x, y) be an edge in graph G(V,E).

Its integrity verifier (IV) denoted by ξ(x,y), is defined as: ξx ← H(ηx‖ηy).

Signature of a graph is then computed as the aggregate signature of the integrity

verifiers of nodes and edges. Distribution is similar in the case of trees: if a user

has access to a specific set of nodes and edges, signatures of the integrity verifiers of

the edges and nodes as well as the secure names of the nodes are given to the user

alongwith the nodes and edges. Also the aggregate signature of these IV s are given

to the user alongwith the signature of the source graph and the verification object.

The signature scheme has a complexity of O(|V | + |E|). It computes as many

signatures as the number of nodes and edges in the graph (as in the case of trees)

and another signature for the whole graph.

7.2.2 Distribution of Graphs (rRedact)

The distributor D sends the following items to Bob, who has access to Gδ(Vδ, Eδ),

a subgraph of graph G(V,E): (Gδ,VOGδ
,σG), where VOGδ

(also referred to as VOGδ
)

is a verification object, and σG is the signature of G.

124

rSign: Sign a graph G(V,E).

1. For each node x∈V ,

(a) For each node x, compute its secure name ηx.

(b) For each node x, compute its integrity verifier

ξx ← H(ηx‖cx); For each edge e(x, y), compute its

integrity verifier ξ(x,y) ← H(ηx‖ηy).

2. Assign a salt ωG to G.

3. If CRSA is used, compute the signature σG:

(a) For each x ∈V , σx ← (ξx)
d̄ mod n̄; For each edge

e(x, y) ∈E, σ(x,y) ← (ξ(x,y))
d̄ mod n̄.

(b) ΩG ← ωG
d̄ mod n̄. Compute

σG(V,E) ← ΩG

∏
x∈V σx

∏
e(x,y)∈E σ(x,y) mod n̄.

4. If BGLS is used, compute σG as follows:

σG(V,E) ← (P, sk(ωG +
∑

x∈V ξx +
∑

e(x,y)∈E ξ(x,y))).

Figure 7.8. Algorithm to sign a graph.

rRedact: Computation of the redacted signature of Gδ(Vδ, Eδ):

1. Compute σGδ
and ∆Gδ

as follows.

(a) CRSA: (a)σGδ
←

∏
y∈Vδ

σy
∏

e(x,y)∈Eδ
σ(x,y) mod n̄.

(b) ∆Gδ
← ωG

∏
y∈V−Vδ

ξy
∏

e(x,y)∈E−Eδ
ξ(x,y) mod n̄.

(b) BGLS: (a)σGδ
← (P,

∑
y∈Vδ

σy +
∑

e(x,y)∈Eδ) σ(x,y)).

(b) ∆Gδ
← ωG +

∑
y∈V−Vδ

ξy +
∑

e(x,y)∈E−Eδ) ξ(x,y).

2. ΘGδ
←{ηx | x∈}; VOGδ

←〈σGδ
,∆Gδ

,ΘGδ
〉.

Figure 7.9. Algorithm to redact a subgraph.

125

rVrfy: Verification of authenticity of subgraph Gδ(Vδ, Eδ)

Authentication of contents:

1. For each node x ∈Vδ in a subgraph Gδ(Vδ, Eδ), compute

its integrity verifier: ξx ← H(ηx‖cx).

2. For each edge e(x, y), compute its integrity verifier:

ξ(x,y) ← H(ηx‖ηy).

3. CRSA: Compute (a) ((σGδ
)ē

?
=

∏
x∈Vδ

ξx (mod n̄)) and,

(b) ((σG)ē
?
= ∆Gδ

∏
x∈Vδ

ξx (mod n̄)).

4. BGLS: (a) (σGδ

?
= (Q,

∑
x∈V ′ ξx)) and,

(b) (σG
?
= (Q, ∆Gδ

+
∑

x∈V ′ ξx)).

5. If (a) and (b) are valid, then the contents and secure names

of Gδ are authenticated. Otherwise, if (b) is invalid and

(a) is valid, then the received nodes are authenticated, but

either some nodes have been dropped, ∆Gδ
and/or σG have

been tampered with. Parent-child relationship is verified

during this process.

Verification of ordering among siblings:

1. Carry out a depth-first traversal on Gδ.

2. Order among siblings: In Gδ, let y and z are children of x,

and let y ≺ z.

(a) For scheme-1 (Section 7.1.1): y ≺ z ⇔(lsb(H(ηy ‖

ηz)) = 1) ∧ (lsb(H(ηz ‖ ηy)) = 0).

(b) For scheme-2 (Section 7.1.2):

i. j ← 1 + (H(ηry ‖ ηrz) mod L)

ii. j′ ← 1 + (H(ηrz ‖ ηry) mod L)

iii. by and bz are the j’th, and b′y and b′z are the (j′)’th

bits in ηy and ηz respectively.

iv. y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z.

Figure 7.10. Algorithm to verify a subgraph.

126

∆Gδ
is used to verify the signature of the graph, and is used to detect if any

node(s) has been dropped form Gδ in an unauthorized manner. σGδ
is used to verify

the signature of all the nodes in the subgraph in an aggregate manner, and is used

to detect if any node(s) has been injected form Gδ in an unauthorized manner. ηx is

the secure name of x.

Example: D has to send Gδ in our example to Bob. σG is a CRSA-signature.

D computes the ∆Gδ
as a modular multiplication of the salt ωG, and the integrity

verifiers of f , g, and h, because f , g, and h are not in Gδ. Now VOGδ
is the tuple

consisting of σGδ
, ∆Gδ

and a set consisting of an element for each node in Gδ. D then

sends the signature of the graph σG and VOGδ
alongwith Gδ, to the user.

7.2.3 Authentication (rVrfy)

Bob receives the subgraph Gδ(Vδ, Eδ), the secure name ηx of each node x, verifi-

cation object VOGδ
, and the signature of the graph σG. It verifies the authenticity of

the contents; if they are authentic then the structural integrity is verified.

Authentication of the contents of subgraph Gδ

By contents, we mean the contents of each node x as well as ηx. In order to

authenticate contents of Gδ(Vδ, Eδ), Bob first computes the integrity verifiers ξx for

each node, and then combines them appropriately with ∆Gδ
in order to verify the

signature σG. If the signature verifies, the edges and ordering among siblings are also

verified. Authentication of contents of Gδ(Vδ, Eδ) has a complexity of O(|Vδ|+ |Eδ|).

Example: Bob computes the integrity verifiers of a, b, c and d in Gδ in our example.

Consider CRSA signatures. Bob computes a modular multiplication of these integrity

verifiers together with ∆Gδ
received as part of VOGδ

. Then Bob applies the signature

verification process of CRSA on the result of this multiplication and the received

signature σG of the graph. If the verification turns out to be valid, the contents are

authenticated.

127

Authentication of the structural relationships

In order to verify the integrity of the ordering among siblings (in ordered DAGs),

Step 4(a) or 4(b) in Section 6.2.3 can be used for Scheme-1 or Scheme-2, respec-

tively. Verification of immediate ancestors and the structural order between siblings

in Gδ(Vδ, Eδ) has a complexity of O(|Vδ|+ |Eδ|).

7.3 Single Signature Scheme

In this section, we propose a construction of leakage-free redactable signatures for

trees that is transparent as well as highly efficient (computes only one signature).

The LFR signature scheme is based on the notion of secure names developed earlier

in the dissertation, and the redactable set signatures developed by Johnson, Molnar,

Song and Wagner (JMSW) [74].

Review of JMSW Redactable Set Signatures: Johnson et al. [74] developed a redactable

set signature scheme based on RSA primitives and random oracle. The signature

secure (EU-CMA over ⊂ and ∪ operation). Since it is redactable, given the signature

of a set, and the elements that are to be removed from the set (that results in the

subset), anyone who knows the public key, can efficiently compute the signature of the

subset. The signature is history-independent, and thus can be shown to be a leakage-

free redactable signature for sets. Let the public key be ē and the RSA modulus be

n̄. Some constraints on RSA are that n̄ = p̄.q̄, where p̄ and q̄ are “safe primes”.

Given a set S = {s1, s2, . . . , sn}, its signature σS is computed as follows: compute

H(S) =
∏

1≤i≤nH(Si)mod n̄, and I(S) = H−1
S mod φ(n̄), where φ(n̄) = (p̄−1)(q̄−1).

Signature σS is computed as (ē)I(S). Verification proceeds as follows: Given a set S’,

and a signature σ, one computes the H(S ′) =
∏

1≤i≤|S′|H(S ′i), where S ′i is the i’th

element in S ′; And then it is checked if (σ)H(S ′) is equal to ē. If the equality holds,

σ is a valid signature of the set S ′. In order to compute the signature of a subset

128

rSign: Sign tree T (V,E). Let p(x) be the parent of node x.

1. For each node w with m children, let xi be the i’th child,

1 ≤ i ≤ m, and xj ≺ xj+1, 1 ≤ j ≤ m− 1.

2. Let ηx refer to the secure name assigned to node x.

3. Add a dummy node dxy to each edge e(x, y), thereby split-

ting the edge to two edges e(x, dxy) and e(dxy, y). As-

sign a random ηdxy to each dummy node dxy. V ′← V ∪

{dxy|e(x, y) ∈ E}.

4. For each node x in V ′, compute θx ← H(ηp(x) ‖ ηx ‖ cx).

5. H(V) ←
∏

x∈V θx mod n̄.

6. σT ← (ē)I(V) mod n̄, where I(V)← H−1
V mod φ(n̄), φ(n̄) =

(p̄− 1)(q̄ − 1).

Figure 7.11. Algorithm to sign a tree.

rRedact: Compute signature of subtree(s) Tδ(Vδ, Eδ)⊂ T (V,E).

1. σTδ
← (σT)H(V \Vδ) mod n̄, where H(V \Vδ) ←

∏
x∈V \Vδ

θx

mod n̄.

Figure 7.12. Algorithm to redact a tree.

S ′′ ⊂ S, one redacts the hashes of the elements S\ S ′′ from the signature σS as follows:

compute H(S\S ′′) and σS′′ is computed as σS
H(S\S′′).

7.3.1 LFR Signature: rΠ

In this section, we present an LFR signature scheme rΠ for trees that can be

easily extended to graphs/forests. Ordered graphs and forests can be signed using

the above scheme. The number of signatures computed is optimal: 1, and the number

129

Verification (rVrfy): Verify (σ, Tδ(Vδ, Eδ)); verifier receives θx

for each node x in Vδ, and θdxy for each edge e(x, y) in Vδ.

Verification of Contents:

1. For each node x in V ′, compute θx ← H(ηp(x) ‖ ηx ‖ cx).

2. H(Vδ) ←
∏

x∈Vδ
θx mod n̄, θx = H(ηp(x) ‖ ηx ‖ cx).

3. If σTδ

H(Vδ) mod n̄ = ē, all nodes are authenticated.

Verification of Edges and Ordering:

1. Carry out a depth-first traversal on Tδ.

2. Parent-child relationship: Let x be the parent of y in Tδ;

if (ηx 6= ηp̂y
), then this relationship is incorrect.

3. Order among siblings: For ordered trees, in Tδ, let y and

z are children of x, and let y ≺ z.

(a) For Scheme-1 (Section 7.1.1): y ≺ z ⇔

(lsb(H(ηy ‖ ηz)) = 1) ∧ (lsb(H(ηz ‖ ηy)) = 0).

(b) For Scheme-2 (Section 7.1.2):

i. j ← 1 + (H(ηry ‖ ηrz) mod L)
ii. j′ ← 1 + (H(ηrz ‖ ηry) mod L)
iii. by and bz are the j’th, and b′y and b′z are the (j′)’th

bits in ηy and ηz respectively.
iv. Check: y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z.

4. If contents, the edges, and the orderings among all siblings

are verified to be authentic, return 1, else return 0.

Figure 7.13. Algorithm to verify a tree.

of hashings carried out is O(|V | + |E|). The signing, distribution, and verification

schemes are given in Figures 7.11, 7.13, and 7.12, respectively.

130

7.3.2 Complexity

Single signature scheme: Our single signature scheme takes a single traversal on

a tree/graph/forest, and incurs cost of O(n + m), where n and m are number of

nodes and edges, respectively. The number of signatures computed is 1, and the

number of order-preserving encryptions that are carried out is n/k, as that many

groups of siblings are there. The cost of computing a subtree/subgraph/sub-forest

of n′ nodes and m′ edges is O(n − n′ + m −m′), because n − n′ nodes and m −m′

edges have to be redacted from the signature. The cost of verifying the integrity of

a subtree/subgraph/sub-forest is O(n′ + m′), but needs to verify only 1 signature.

There is no decryption of the encrypted integers.

Brzuska et al’s scheme: For trees, it computes n signatures for the tree, and

quadratic number of signatures for each group of siblings: O(k2) (and there are

n/k such groups of siblings), k is the arity of the tree. More precisely, it computes

O(n+nk) signatures, and incurs cost of O(n+nk). The cost of computing a subtree of

n′ nodes is O(n′+n′k), because n′k orderings and their signatures have to be selected.

The cost of verifying the integrity of a subtree/subgraph/sub-forest is O(n′ + n′k):

these many signatures are verified.

Comparison: In comparison to our scheme, signing by Brzuska et al’s is n +

nk times more expensive. For computation of signature of redacted signatures, our

scheme requires one modular exponentiation, whereas the other scheme does not

need any such operations; however, their scheme incurs O(nk) more traversal cost.

Verification of the integrity of a subtree using Brzuska et al’s is (n′ +n′k) times more

expensive than our scheme.

7.4 Security Analysis

We prove the security of the signature schemes by proving the name-transparency

of the secure names, unforgeability and transparency of the signature schemes, for

both trees and graphs.

131

7.4.1 Secure Names

Lemma 7.4.1 (Name-transparency) Under the random oracle hypothesis, secure

names computed by Scheme-1 are name-transparent.

Proof [Sketch] Consider that an adversary A can determine with non-negligible

probability whether a given set of secure names for a subset of siblings Vδ have been

computed as part of the computation of secure names of V (Vδ ⊂ V), or have been

computed afresh. Consider the sets of nodes as output from A: V0 = {x,z} and V1 =

{x,y,z}, x ≺ y ≺ z. b is drawn uniformly and randomly from {0, 1}. The adversary

then receives the challenge (V0,Θ0). Consider that b = 1, and A outputs b′ = 1. A

determines that there are one or more siblings in between x and z. It implies that

the j′th and (j′)’th bit positions for (x,y) pair and/or for (y,z) pair are known to

A, which implies that A has been able to carry out second-preimage attack on H.

Therefore, H is not a random oracle, which contradicts our assumption.

Let all secure names be in the interval [1 : U]. Let y be a node with rank i among its

siblings and be referred to as vi (to remain consistent with the terminology used in the

scheme). To prove that a secure name ηvi
reveals nothing about i, it suffices to prove

that the proposed process for secure-name computation is such that the probability

of an ηvi
being equal to any u ∈ [1 : U] is independent of i. We write the event

{ηvi
= u} as the union of k disjoint events E1, . . . , Ek where Ej = {π(i) = j, ηvi

= u}.

We thus have: Pr(ηvi
= u) =

∑k
j=1 Pr(π(i) = j, ηvi

= u) =
∑k

j=1(1/k)(1/U)(1/4j−1)

where we used the facts that: (i) Pr(π(i) = j) = 1/k; (ii) ηvi
is u iff Sub-step 3(a)

selects u out of the U choices (with probability 1/U) and that choice is not discarded

in Sub-step 3(b), i.e., the choice is admissible relative to the j − 1 other already

assigned secure names (probability of non-discard is 4−j+1). Because
∑k

j=1 1/4j−1 =

(4/3)(1− 4−k) we obtain: Pr(ηvi
= u) = (4/3kU)(1− 4−k), which is independent of

i, as required.

The secure names do not leak information on k or m (the number of nodes in the

tree) either, because each secure name is drawn uniformly from a subset of [1 : U]

132

that is both large (of size approximately 4U/3k) and uniform over all such subsets of

[1 : U], hence indistinguishable from a random choice over [1 : U].

Lemma 7.4.2 (Name-transparency) Under the random oracle hypothesis, secure

names computed by Scheme-2 are name-transparent.

Proof [Sketch] Consider that an adversary A can determine with non-negligible

probability whether a given set of secure names for a subset of siblings Vδ have been

computed as part of the computation of secure names of V (Vδ ⊂ V), or have been

computed afresh. Consider the sets of nodes as output from A: V0 = {x,z} and V1 =

{x,y,z}, x ≺ y ≺ z. b is drawn uniformly and randomly from {0, 1}. The adversary

then receives the challenge (V0,Θ0). Consider that b = 1, and A outputs b′ = 1. A

determines that there are one or more siblings in between x and z. It implies that

the j′th and (j′)’th bit positions for (x,y) pair and/or for (y,z) pair are known to A,

which implies that A has been able to carry out second-preimage attack on H. The

bits of the secure names are assigned using ⊕ operation, and the probability of each

bit being assigned 0 or 1 is 1
2
. R: the number of bits on the ηrw, w is either of x,y, or z,

is a security parameter (λ2). Therefore, H is not a random oracle, which contradicts

our assumption. Otherwise, A has carried out a brute-force attack by enumerating all

possible secure names; however, the number of bits that are never used for any pair of

siblings (L− 2 ∗ k) is a large value - a security parameter (λ1). It implies that A can

carry out such brute force search over an exponential search space, a contradiction to

the assumption that A is a probabilistic-polynomial adversary.

As earlier, let all secure names be in the interval [1 : U]. To prove that a secure

name ηx reveals nothing about its rank i among its siblings, it suffices to prove that

the process for secure-name assignment is such that the probability of a bit in ηx

being either 0 or 1 is 1
2
, and it is true for all the bits in ηx. We give a proof by

induction.

Basis: Case I: x is the left-most child of its parent: ηx is randomly chosen.

Case II: x is the second left-most child of its parent: Let v1 be the left sibling of

133

x. The R bits are randomly chosen. Two out of the remaining bits referred to as b

and b′ are chosen such that (b1 ⊕ b) < (b′1 ⊕ b′) (Step 2 of the scheme). However, b1

and b′1 are bits in the random v1, i.e. the probability that the value of b1 (or b′1) is

either 0 or 1 is 1
2
. Result of the XOR (⊕) of a random number with another (possibly

non-random) number is also a random number [76]. Thus b and b′ are also random

bits. The remaining bits of x are “not used” and randomly chosen. Thus the number

n(x)) is a random.

Inductive step:

If vk is the k’th left-most child of its parent and ηvk
is a random number, then ηx is also

a random number where x is the (k+1)’st leftmost child of its parent. r(vk)+2(k−1)

number of bits in ηx are already “used”. By Step 2 in the scheme, two bits at positions

j and j′ that are still unused in ηvk
are chosen. The r(x) bits are randoms as well

as the two bits at j and j′ leftmost positions in ηx are also randoms. The remaining

bits are “not used” and chosen randomly. Thus ηx is also a pseudo-random.

7.4.2 Trees

Lemma 7.4.3 The signature scheme rΠ ≡ (rGen, rSign, rRedact, rVrfy) for trees

using either the CRSA or BGLS scheme is existentially unforgeable under the adaptive

chosen-message attack over the subset operation.

Proof [Sketch] Unforgeability of the signature is due to the unforgeability of CRSA

or BGLS. If the signature of a tree can be forged by an A, then A has managed to

solve the RSA problem or the Computational Diffie-Hellman problem, which however

are assumed to be hard problems.

Given the correctness of the secure names (scheme-1 or scheme-2), the order be-

tween siblings can be verified. In case the order between siblings or edge relationship

in a tree has been forged, then the hash function H is not a random oracle, which

contradicts our assumption.

134

Lemma 7.4.4 The signature scheme rΠ ≡ (rGen, rSign, rRedact, rVrfy) for trees

using either the CRSA or BGLS scheme is transparent.

Proof [(Sketch)] rΠ is transparent if and only if the secure naming scheme is trans-

parent, which is proven in Lemmas 7.4.1 and 7.4.1.

7.4.3 Graphs

Lemma 7.4.5 The signature scheme rΠ = (rGen, rSign, rRedact, rVrfy) for graphs

using either the CRSA or BGLS scheme is existentially unforgeable under the adaptive

chosen-message attack over the subset operation.

Proof is similar to the proof of Lemma 7.4.3.

Lemma 7.4.6 The signature scheme rΠ = (rGen, rSign, rRedact, rVrfy) for graphs

using either the CRSA or BGLS scheme is transparent.

Proof is similar to the proof of Lemma 7.4.4.

7.4.4 Single Signature Scheme

The following lemmas state the security of the proposed construction rΠ.

Lemma 7.4.7 Under the random oracle hypothesis, and the assumption that the RSA

problem is hard, and that the secure naming scheme Scheme-2 is secure, rΠ is exis-

tentially unforgeable under chosen-message attack over subset (and union) operation

over trees/graphs/forests.

Proof Suppose that rΠ can be forged for a subtree Tδ. In one scenario, either a node

x can be substituted by another node y in the subtree such that θx = θy. It implies

that H has encountered a collision, contradicting the assumption that H is a random

oracle. Similarly, forging a wrong parent-child relationship is not feasible under the

135

random oracle hypothesis. If forging is carried out by forging the signature of a set

(other than subset and union operations), then the JMSW signature scheme has been

broken, which implies that the adversary has solved the RSA problem efficiently [74].

The order between two siblings cannot be forged under the random oracle hypothesis

(because the H involves θx of each node x).

Lemma 7.4.8 Under the random oracle hypothesis, and the assumption that the RSA

problem is hard, then rΠ preserves transparency.

Proof Suppose that rΠ is not transparent for a subtree Tδ of tree T . In other

words, according to Definition 4.4.2, if Tδ and T are given to the rΠ, the signature

that one receives from Tδ leaks the fact whether it was computed from scratch or by

redaction from the signature of T . If existence of a sibling in T , but not in Tδ, is

leaked by the signature of Tδ, then the plaintext values of the position of a sibling

among other siblings has been recovered, i.e., the secure naming scheme Scheme-1 or

2 has computed secure names that are not name-transparent, which however is not

true. If a parent-child (edge) relationship between two nodes x and y in Tδ is leaked,

then θdxy is not distinct, which is a contradiction.

7.5 Performance Results

We carried out experiments over the two schemes proposed in Sections 7.1.1 and

7.1.2. We implemented these two techniques in Java 1.6 and JCA 6.0 (Java Cryptog-

raphy Architecture) APIs. The experiments were carried out on a IBM Thinkpad with

the following specification: Linux (Ubuntu 8.10) on Intel Core 2 Duo CPU 2.2GHz

with 2.98GB RAM. SHA-512 is used as the hash function. We have compared the two

secure naming schemes with respect to: (1) the average number of attempts, and (2)

the average time needed to successfully compute the secure names. We have carried

out performance analysis of signing, distribution and verification.

136

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

N
o.

 o
f A

tte
m

pt
s

Rank of a Node among its Siblings

Scheme 1
Scheme 2

Figure 7.14. Average number of attempts to assign a secure name to
a node; branching factor ≤ 100.

Computing Secure Names: We considered trees of branching factor (the number

of children a non-leaf node can have) ranging from 1 to 100. Considering the upper

limit, a tree that has a breadth of 100 and a height as small as 3, can have as many

as 1 million nodes. In the plots, the rank of a child among its siblings (other children

of the same parent) is i, 0 ≤ i ≤ 99. Figures 7.14 and 7.15 refer to the performance

results with respect to (1) and (2), respectively. Scheme 1 and 2 respectively refer to

the preliminary technique (Sections 7.1.1) and the better technique (Section 7.1.2).

We have also carried out the experiments for branching factor 1 to 300, which

requires modification of the size of the secure names (only in the case of the second

technique) in order to accommodate the breadth of 300, which could not have been

possible with the size of 512-bits for the secure name. 300 is a very large Branching

factor; a tree of a small height 3 and branching factor 300 has as many as 27 million

nodes. The plots in Figures 7.16 and 7.17 refer to the performance results with

respect to the number of attempts to compute a secure name of a node and the time

to compute such a secure name, respectively with respect to the position of a node

among its siblings.

137

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
to

 C
om

pu
te

 a
 S

ec
ur

e
N

am
e

of
 a

 N
od

e
(m

ic
ro

-s
ec

)

Rank of a Node among its Siblings

Scheme 1
Scheme 2

Figure 7.15. Average time in micro-sec to assign a secure name to a
node; branching factor ≤ 100.

138

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

N
o.

 o
f A

tte
m

pt
s

Rank of a Node among its Siblings

Scheme 1
Scheme 2

Figure 7.16. Average number of attempts to assign a secure name to
a node; branching factor ≤ 300.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 50 100 150 200 250 300

T
im

e
to

 C
om

pu
te

 a
 S

ec
ur

e
N

am
e

(m
ic

ro
-s

ec
)

Rank of a Node among its Siblings

Scheme 1
Scheme 2

Figure 7.17. Average time in micro-sec to assign a secure name to a
node; branching factor ≤ 300.

Our performance results corroborate the theoretical analysis and show that the

second technique outperforms the first technique both in the number of attempts and

139

 0

 200

 400

 600

 800

 1000

 1200

 0 10000 20000 30000 40000 50000 60000

T
im

e
 (

s
e
c
)

Number of Integrity Verifiers

Sign using CRSA

Figure 7.18. CRSA: Time to sign a tree.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10000 20000 30000 40000 50000 60000

T
im

e
 (

s
e
c
)

Number of Nodes (out of 65535 nodes)

Distribute using CRSA

Figure 7.19. CRSA: Time to redact a subtree.

the time required to successfully assign a secure name to a node especially when the

breadth of a tree is as high as in the order of hundreds.

7.5.1 CRSA/BGLS-based Schemes

Signing, Distribute, Verify: We have carried out experiments for the efficient

scheme. The performances of these algorithms are similar to the performances of

140

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10000 20000 30000 40000 50000 60000

T
im

e
 (

s
e
c
)

Number of Nodes (out of 65535 nodes)

Verify using CRSA

Figure 7.20. CRSA: Time to verify a subtree.

the algorithms in structural signatures. The dominant cost factor in signing, and

verification is the modular exponentiation (modular multiplication for distribution)

for CRSA, and the bilinear map operation and computation over the elliptic curve

group for BGLS (for distribution as well). Verification of structural relationships is

quite fast (less expensive than the cost of computing the secure names in the efficient

scheme as shown in Figure 7.15), and do not affect the verification cost in any signif-

icant way; such cost is not included in the plot for verification. These performance

results are applicable for forests as well, as the schemes for them are only different

from the tree in the sense of representation of the edges. The BGLS authentication

scheme is much more expensive for trees than the CRSA-based scheme [105] as the

BGLS aggregate signature scheme is based on elliptic curves and bilinear maps.

7.5.2 Single Signature Scheme

We have implemented a prototype of the JMSW redactable signatures of sets

in Java and Java Cryptographic Architecture, and carried out the experiments on

a Lenovo Thinkpad T61 with 3GB RAM, of which 2560MB was specified as the

141

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500000 1e+06 1.5e+06 2e+06

T
im

e
 (

s
e
c
)

Number of Nodes

Signing

Figure 7.21. Computation of signature of a tree.

 0

 2

 4

 6

 8

 10

 12

 0 200000 400000 600000 800000 1e+06

T
im

e
 (

s
e
c
)

Number of Nodes (out of 2 Million nodes)

Redaction

Figure 7.22. Computation of redacted signature of a subtree.

maximum heapsize for the Java Virtual Machine. We used 2-ary trees. Experimental

results corroborate our complexity analysis.

Signing a tree using our scheme (that deals with sibling ordering as well) of 2∗220

(more than 2 Million) nodes requires about 70 seconds (Figure 7.5.2), which is in

fact quite efficient. For a tree with 65535 nodes, computing the RSA signatures for

Brzuska et al’s signature scheme takes more than 1100 seconds (even without sibling

142

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 200000 400000 600000 800000 1e+06

T
im

e
 (

s
e
c
)

Number of Nodes (out of 2 Million nodes)

Verification

Figure 7.23. Computation of verification of a subtree.

ordering). It is significantly expensive than our signing scheme. The time to compute

signatures of redacted subtrees decreases as the size of the redacted subtree increases

(Figure 7.5.2), because the number of nodes to be redacted decreases with the increase

in the size of the subtree. It takes about 5 seconds to compute the redacted signature

of a 1-Million-node subtree (of a 2 Million node tree). It corroborates the fact that

redaction of signatures is more efficient than re-computing them. Verification of

the signature of a redacted subtree of 1 Million nodes (of a 2 Million node tree)

requires about 5 seconds (Figure 7.5.2), which is significantly less expensive than

Brzuska et al’s scheme: that has to verify 1 Million signatures just for parent-child

relationships.

7.6 Discussion

We would now describe how the schemes presented in this chapter can be used

for certain other scenarios.

143

7.6.1 Forests

Our scheme for graphs can be used to sign and authenticate forests, i.e., a set of

dis-connected trees/graphs in a leakage-free manner. The idea is to sign the forest as a

graph (though disconnected). Our scheme for graphs do not depend on connectedness.

7.6.2 Encrypted Trees, Graphs and Forests

In cloud computing, often plaintext data is not delivered to the cloud servers. If

the contents of the nodes are encrypted (but not the structure), out schemes (including

the structural signature schemes) can be used directly to such scenarios. The only

changes that are needed are (1) Share with the server the integrity verifiers, which are

hashed values. (2) use a perfact one-way hash functions [36] to compute the hashes,

which can then be hased again to be converted to full-domain hashes. Perfect one-way

hash functions do not leak contents of the message being hashed, whereas standard

(such as SHA1 pr SHA2) hash functions leak information.

7.6.3 Dynamic Trees, Graphs and Forests

In order to inrementally compute the signature of the updated tree, an insertion

(resp., deletion) of a new node requires a new secure name, and leads to a modular

multiplication (resp., division) in case of CRSA and an group addition (resp., sub-

traction) on the elliptic curve followed by a bilinear operation. In an updated graph,

the signature of immediate ancestors has also to be updated appropriately. Unlike

in the MHT, in our schemes, the updates do not get propagated up in a tree. They

do not affect the secure name of other siblings or nodes in Scheme-1; however, in

Scheme-2, they affect the secure name of other siblings. The single signature scheme

supports both redaction and union of two signatures, which is why, it also supports

dynamic updates on trees, graphs and forests.

144

Computation of a new secure name in the j’th rank among its siblings does not

affect any secure names of other siblings in case of Scheme-1. However, in the case of

Scheme-2, it affects the secure names of all other siblings.

Answer Freshness and Prevention of Replay Attacks: The proposed authentica-

tion schemes prevent replay attacks and guarantee answer freshness by incorporating

timestamps in the signatures as an extra element.

7.6.4 Automatic Recovery from Structural Errors

If the contents of a subtree/subgraph is not compromised, but some or all struc-

tural relationship and/or order among the nodes have been compromised (maliciously

or by communication errors), then the correct parent-child relationship and correct

order can be easily recovered using the secure names. Such a capability helps auto-

matic recovery from structural errors without any interaction with the distributor.

For example, suppose that Bob receives a Gδ and authenticates its contents to be

valid. However, Bob finds that the received order between two siblings y and z, (y≺

z) is incorrect. The correct order between these two siblings can be recovered without

communicating with the distributor (server). Verify for the (x≺ y) order using the

secure names ηx and ηy. If the test succeeds, the correct order is recovered. If such

test also fails, then there is no ordering (that is explicitly) imposed on these two

nodes in the tree. Similarly, parent-child relationships (for graphs instead of parent,

it is immediate ancestor) could be recovered. In order to correct such a relationship

between x and y, it is verified whether x is the parent of yby ηx
?
= ηp̂y

. If it fails, then

the reverse is checked by evaluating ηy
?
= ηp̂x

.

7.6.5 Path Queries

Our scheme for trees can be applied to path queries (XPath query) and leakage-

free authentication of the results of path queries. Such a result is a set of nodes that

form a path in the queried tree. The user should be able to verify that the received

145

nodes indeed lie on a path, but at the same time should not be able to learn any

information extraneous to the received nodes. One important topic in which such

a requirement occurs is privacy-preserving data mining. The ordering property of

secure names for siblings (in the Scheme-1 or Scheme-2), is used for nodes in a path.

Secure names that satisfy such property are assigned to ancestors and descendants

in a path. When the user receives two or more nodes claimed to lie on a path: the

secure names are used to verify whether they are indeed on a path.

Subsequences and Ordered-Set Queries

Paths or lists can also be seen as representation of subsequences and ordered-sets.

The approach for path query verification can be directly applied to the problem of

authenticating the subsequence queries and subsets of ordered sets.

7.7 Summary

In this chapter, we solved the problem of how to authenticate multiple sub-

trees and sub-graphs without leaking. We proposed two leakage-free authentication

schemes: one for trees and another for graphs. The scheme for graphs is a general one:

it can be used to authenticate any form data organization structures: trees, DAGs,

graphs with cycles, forests of trees and graphs. The schemes compute one signature,

irrespective of the number of nodes and edges in the data structure. Our schemes are

highly scalable. It is efficient than the latest scheme proposed by Brzuska et al [64].

146

8 SECURE PUBLISH/SUBSCRIBE OF XML

All parts should go together without forcing. You must remember that
the parts you are reassembling were disassembled by you. Therefore,

if you can’t get them together again, there must be a reason.
By all means, do not use a hammer.

IBM Maintenance Manual (1925)

This chapter proposes an approach to content dissemination that exploits the struc-

tural properties of XML Document Object Model in order to provide efficient dis-

semination by at the same time assuring content integrity and confidentiality. Our

approach is based on the notion of encrypted post-order numbers that support the

integrity and confidentiality requirements of XML content as well as facilitate efficient

identification, extraction and distribution of selected content portions. By using such

notion, we develop a structure-based routing scheme that prevents information leaks

in XML-data dissemination and assures that content is delivered to users according to

the access control policies, that is, policies specifying which users can receive which

portions of the contents. Our proposed dissemination approach further enhances

such structure-based, policy-based routing by combining it with multicast in order

to achieve high efficiency in terms of bandwidth usage and speed of data delivery,

thereby enhancing scalability. Our dissemination approach thus represents an effi-

cient and secure mechanism for use in applications such as publish-subscribe systems

for XML Documents. The publish-subscribe model restricts the consumer and docu-

ment source information to the routers to which they register with. Our framework

facilitates dissemination of contents of varying degrees of confidentiality and integrity

requirements in a mix of trusted and untrusted networks, which is prevalent in cur-

rent settings across enterprise networks and the web. Also it does not require the

routers to be aware of any security policy in the sense that the routers do not need

to implement any policy related to access control.

147

8.1 Some Simple Observations

In this section, we discuss the properties of XML data and post-order numbers.

Figure 8.1. (a) A tree: abstract representation of an XML Document,
(b) Post-order numbers associated with each node and (c) Random-
ized post-order numbers associated with each node.

8.2 XML Data Model

DOM is the commonly used model for representing XML-based languages [5].

DOM organizes data as a rooted tree. In what follows Document refers to such a tree

and DocumentRoot refers to its root. Moreover, Element refers to an intermediate

node in the tree. Content of a node includes Attr, DocumentType, DOMImplementa-

tion [5]. Each node that is one of the following - Text, CDATASection, ProcessingIn-

struction, Comment, is a leaf node in the tree. An Entity refers a non-root node in

the tree.

Let D be an XML data instance organized according to the DOM representation.

Let T (V,E) be a tree representing document D (see Figure 8.1; V and E denote the

set of nodes (vertices) and of edges of D, respectively. Let x be a node in V . Let

Dx denote the subtree of D rooted at x. Some or all the nodes in an XML-data

instance contain content. Content of a node x is referred to as cx. cx contains only

the content specific to x and not of other nodes. The relation between parent-child

nodes is represented as directed edges, with edges directed from parents to children.

In what follows ancestor(x) denotes the set of ancestors of x.

148

Dissemination of a document exploits the following structural properties in order

to meet the requirements of secure and scalable dissemination of XML-data:

• In some scenarios, XML data is order-preserving, that is, nodes x and y have

an order among them in D thus they are modeled as ordered trees. In other

scenarios, XML data is modeled as unordered trees.

• The unit of data access is the sub-tree representation of a sub-document. The

smallest unit is a node.

• Any element and its corresponding sub-document is accessible through by them-

selves or a subtree rooted at any of their ancestors.

These properties are crucial in ensuring that structure-based routing extracts the

correct sub-document and routes it to the correct consumer; they are reflected by post-

order numbers: We can identify and extract a specific sub-document in a document

using a randomized post-order number.

8.3 Document Encoding and Encryption

Each element node in an XML document is signed using structural signatures

defined in Chapter 5. The hash of structural position and content of a node x used

in its structural signature is referred to as Ix. Table 8.3 shows the encoding of each

node in the XML tree in Figure 8.1. For simplicity, the integrity identifier is not

enumerated as it involves a hash value. Encryption of the node contents are carried

if necessary using standard encryption techniques. If contents are encrypted, then

the publisher passes of the perfectly one-way hashes [36] of the nodes to the routers.

Such hashes do not leak information.

149

Table 8.1
Encoding of XML tree in Figure 8.1.

Node Sx : (ex, e
x
lowest) Encoding: 〈Cx, Sz〉

x (11, 11) 〈((11, 11), Ix), (43, 11)〉

y (22, 22) 〈((22, 22), Iy), (43, 11)〉

z (43, 11) 〈((43, 11), Iz), (107, 11)〉

t (64, 64) 〈((64, 64), It), (96, 64)〉

u (75, 75) 〈((75, 75), Iu), (96, 64)〉

v (96, 64) 〈((96, 64), Iv), (107, 11)〉

w (107, 11) 〈((107, 11), Iw)〉

Figure 8.2. Three sub-trees of the content tree are shared with three
consumers: consumer 1, 2 and 3.

8.4 Structure-based Routing

We propose a multicast based approach to disseminate XML-based data among

the consumers. Figure 8.4 shows multiple consumer requests to access an XML tree.

Consumer 1 has access to sub-tree T1, consumer 2 has access to T2 and consumer 3 has

access to T3. For dissemination of the sub-trees among various consumers, a multicast

150

topology based on the structure of the tree is proposed. The multicast topology is

built dynamically and asynchronously using a publish-subscribe methodology. The

publish-subscribe based multicast network uses structure-based routing.

Structure-based routing involves the following entities: the document source is

the document producer or a trusted owner of the document and has full access to

the original document and is the root of the multicast overlay network; the publisher

publishes the data to a set of subscribers; the subscriber subscribes to the data and

sends its request to a router-based publisher; the router routes the specific portion

of the data to consumers and other routers. A router is both a publisher and a

subscriber. The document source is a publisher. A consumer is a subscriber. A

consumer is said to be associated with a router for a specific document if it has

subscribed to that document through that router. For simplicity of discussion, we

assume one document source; however the proposed solution can handle multiple

document sources. A parent router of another router is one from which the latter

receives some content. A child router is defined conversely.

We assume that documents are identified by a valid Uniform Resource Identifier

- URI [4] or any other naming scheme suitable for the enterprise. The owner of the

document can itself carry out publishing or can delegate the publishing functionality

to one or more other entities. The publishing routers propagate this information to

their neighbor routers.

Let Dz and Dq be sub-documents such that q is a descendant of z. Thus, Dq ⊂

Dz. Let R refer to any router that is reachable from another router Rz. Dz is the

maximal structural block at a router Rz if and only if Rz or any router R reachable

from Rz has only those consumers that have access to only Dz or Dq, for any q that is

a descendant of z in D. Each router is aware of the maximal structural block that it

is responsible for routing collectively to all the subscribers - consumers and routers.

Example: Let D be represented by the tree T (T is shown in Figure 8.1). Let R1

be a router. Consumers u1 and u2 have subscribed to R1 for document D. u1 and u2

151

have access to the sub-document represented by Tz and Tx, respectively. Let R2 be a

router reachable from R1. It has a subscriber u3. u3 has access to the sub-document

Tx. Therefore the maximal structural block of R1 is Tz and of R2 is Tx. If a new

consumer subscribes to R1 with an access to T itself, then the maximal structural

block of R1 becomes T .

The multicast topology with root at router Rz disseminates content to a set of

consumers collectively such that none of them has access or has subscribed to a subtree

Dm of D where Dz ⊂ Dm. Dz can be identified through the encrypted post-order

numbers. Let pz and pm be the RPONs of Dz and Dm, respectively; then pz < pm,

by definition of RPON. Router Rz routes (or publishes) only Dz and its sub-trees.

Rz identifies its maximal structural block through its RPON ez, which we call as the

Publishing RPON.

A Publishing RPON (PRPON) is the encrypted post-order number of a maximal

structural block being published from the corresponding router. For router Rz, pz is

a PRPON. Routing is carried on a multicast topology which is of the form: either

a tree or a directed acyclic graph (DAG). In Figure 8.3, the PRPON’s for the two

routers (between the consumer and the producer) are 43 and 96.

Access permissions on the content for a consumer are expressed on a node in the

document. Access permissions for a consumer u on a document d denoted by Lu are

represented as an AllowedSet defined as {ηx | consumer has access to node x and ηx

is the structural signature of x }.

8.4.1 Content Routers

By content routers, we refer to content distributors of brokers. Such a router is an

application level router that routes documents. In what follows, the notation {x+}

or {〈x〉+} denotes a non-empty set of elements of type x. Every router R is aware of

the following information:

152

Figure 8.3. Routing of three sub-trees to consumers using RPONs.

• {〈c-id, c-credentials, document URI, permissions, callback-address〉+}, where

c-id is the id of the consumer subscribed to document accessible at document

URI, c-credentials includes parameters needed for authentication of c-id, and

permissions is the set of the nodes that a consumer has access to in the document

(AllowedSet). The callback-address method provides a mechanism to deliver

content to the consumer in case of asynchronous subscription.

• {〈parent router, {Sx+}〉+}, where x is the root of the maximal structural block

the parent router receives and Sx is its structural position (identifier), px in Sx

is the PRPON of the router.

• {〈child router, {Sy+}〉+}, where a child router is a router that has subscribed

to a sub-document with PRPON Sy from R. The list of child routers with their

specific PRPONs are stored at R.

Example Consider Figure 8.3. The router that routes the tree with PRPON 43

has two consumers consumer 1 and consumer 2. It does not have any parent router

nor any child router. The information stored at this router is shown in Table II.

153

Table 8.2
Information at a router for PEPON 43 in Figure 8.3.

〈consumer 1, credentials1,

URI of T, {11, 22, 43}, callback1〉

〈consumer 2, credentials2,

URI of T, {11, 43}, callback2〉

8.4.2 Dissemination Network

A link in the document dissemination network is between two content routers and

might involve intermediate network routers. In this section, we discuss the develop-

ment of the dissemination network that uses the structural identifier.

Subscription

The subscription process is initiated by a consumer. Upon being successful the

process returns the consumer a set of structural signatures for the nodes in the docu-

ment that the consumer has access to. The set is the AllowedSet for the consumer. A

consumer determines which router to join for a specific document. A router R upon

receiving a request for subscription to a document performs the consumer subscrip-

tion, if the consumer is authorized.

Link Setup

If a router R does not already have a known path to the document publisher to

satisfy the request, it sends subscription requests to some or all other routers it is

aware of (neighbor routers). Among many possible protocols, we propose a three-way

handshake protocol to establish a subscription link between two routers. Suppose

that router R receives positive responses from R1, R2. Based on the document prop-

154

erties, and the path length from document source to each of them, R then determines

which one to choose and notify the router(s) accordingly. Several criteria can be used

for such selection.

Outline of Link Setup Protocol

1. The consumer sends the subscription request for a document including its con-

sumer id, credentials and callback method to a router R.

2. R authenticates the consumer and determines the list of signatures of the con-

tent nodes that the consumer has access to.

3. The router determines the set of sub-documents (sub-trees) from the set of sig-

natures as follows: it sorts the signatures based on the RPON in the signature;

if ηx is the signature for x, then the sorting parameter is px. Let the sorted set

be Q. Let the set of sub-trees be denoted by Γ, initialized as empty. Let the

signature with highest RPON in Q be ηz. Remove each signature ηx from Q

including ηz such that px ≤ pz, assign this set of signature to γx; add γx to Γ

and repeat this process until Q becomes empty.

4. If the list of accessible sub-trees Γ includes a subtree with root having RPON

pz (z being the document element) that is subsumed by the content tree served

by this router, then the request is processed successfully.

5. Otherwise, the router R sends a subscription request for the subtree rooted at

pz to some or all of its neighboring routers. If the access permissions include

multiple sub-trees, the subscription request includes each of these sub-trees.

6. Upon receiving a request from R, a router Ri checks if there exists a PRPON

px. If so, it returns px with success as a response to R, else it recursively repeats

the link setup procedure from Ri for pz to all its neighbors.

7. Upon receiving the responses, the router R selects a parent router; the router

registers the consumer and sends the response back to the client.

155

8. Each router determines if the new node(s) and existing node(s) can be combined

together to form a complete sub-tree of the document. If so, then it replaces

all the nodes stored in the database by the lowest common ancestor of these

sub-trees.

8.4.3 Content Publishing

The document publication process varies based on the recipient - router or con-

sumer. Content is published as follows. Router R receives a set of document nodes

N from its ancestor (topology is a tree) or ancestors (topology is a DAG). If R has a

non-empty set of consumers for the document, it then forwards the document to the

consumers based on the permissions. If there is a non-empty set of routers that are

subscribers for some nodes in this document, then R forwards the document to these

routers based on their requirements.

Content Delivery to Consumers

For each subscribed consumer the router determines its access permissions for the

associated document.

The router identifies to which received content sub-trees, the allowed nodes (in-

cluded in AllowedSet) belong. This is carried out by matching the RPON px of each

ηx ∈ AllowedSet with the RPON of each of the roots of the received sub-trees. The

sub-trees specific for the consumer in Γ are then extracted from the identified content.

The router then forwards the subtree to the consumer after encrypting it using the

encryption technique in place, if any. In our running example, Figure 8.3 shows how

RPONs are used for routing of sub-trees.

156

Content Delivery to Routers

The process of forwarding the document to a router is as follows. For each router in

its subscriber set, a router determines the node(s) it is registered for. It identifies and

extracts these document nodes from the respective sub-trees. They are then encrypted

and sent to the subscribing router. The next section discusses the technique used for

identification and extraction.

Content Identification and Extraction

Content identification and extraction is carried out at each router that has at

least one subscriber. Each router has a list of the content sub-trees it receives for

a given document. The list is essentially a list of signatures of the roots of these

sub-trees (maximal structural blocks) that contain the encrypted post-order numbers

(PRPONs) of these roots. The router also keeps track of the list of signatures of

the roots of the sub-trees each of its subscribers (consumers or routers) has access to

(Section 8.4.1). The identification step determines the belongs-to relation among each

of the content roots accessible to each consumer and the content sub-trees it receives.

An important property of RPONs is reported here from Section 5.2.

Simple RPON Property - any node y that belongs to the subtree rooted at node x is

such that the py < px, where py and px are the RPONs of y and x respectively. The

identification technique uses the Simple RPON Property while verifying the belongs-

to relation among the received content and the subscribed content. The worst case

complexity of the identification step is O(mn), where m is the number of received

content sub-trees and n is the number of subscribers at a given router.

During the extraction step, a depth-first traversal [45] is carried out to determine

the subscribed content root. The RPON of the root of the subscribed content root is

compared to the RPON of the visited node. If these RPON’s match, the correspond-

ing subtree is extracted. The worst case complexity of the extraction procedure is

157

same as that of the depth-first search - O(v + e), where v is the number of nodes in

the received subtree and e is the number of edges in the received subtree.

8.4.4 Document Verification

The security requirements for secure dissemination of XML content are two-fold

(Section I): maintaining confidentiality by not sending extraneous data to a consumer

(preventing information leaks) and facilitating precise verification of integrity. In this

section we focus on integrity verification for the received content at the consumer

side.

In order to precisely detect any integrity violations, the following verification steps

must be executed at the consumer side:

• if nodes have been dropped: aggregate signatures are used to verify if any nodes

have been dropped.

• if the order of the nodes has been changed: using the integrity verification

mechanism of structural signatures.

• if the content of a node has been compromised: using the integrity verification

mechanism of structural signatures.

• if some nodes have been added in an unauthorized manner: if signed hash is used

(in other words H represents a signed hash), then such unauthorized additions

could be verified.

• if the content of one node has been replaced with the content of another node:

using the integrity verification mechanism of structural signatures.

• Non-repudiation: signed hash supports complete non-repudiation.

158

8.4.5 Update Management

This section discusses updates to documents - content and structure in the con-

text of structure-based routing. The updates to the XML tree is carried as per the

procedure specified in Section 5.6.

In case of changes that are structurally-invariant, only the data inside a document

node changes. Thus only the local hash of the node changes. Only the updates of

the changed nodes along with their signatures are forwarded to the routers.

Structural changes have to be reflected in the mapping from user credentials to

accessible nodes and their signatures. Therefore the services that implement the

mapping function from user credential to structural identifiers need to be notified

accordingly with the new EPON’s. If it is a distributed hash table, then the document

source updates the hash table. The routers are also notified of the modifications.

Removal of a subtree is notified to the routers and consumers having the document.

In case of addition of a new subtree, the original structure of the document is not

affected. Therefore the update is propagated to all the routers that have consumers

with access permission to the new subtree. In case of interchanges, the changes need

to be propagated to the routers and consumers that are registered for any updated

node or an ancestor of that updated node.

8.5 Discussion

In this section, we discuss the requirements for document dissemination and show

that our proposed dissemination model addresses all the security requirements of a

dissemination model.

159

Requirements Satisfaction

Integrity: We introduced the notion of encrypted post-order numbers in order

to support all the integrity requirements. In Section 8.4.4, we developed techniques

based on this notion for content verification and validation.

Access Control and Confidentiality: The structure based routing scheme ensures

that a consumer is delivered only the portion of data that it has access to. The

notion of maximal structural blocks at routers ensures that the routers have access

to only that much amount of data that its consumers collectively have access to.

Our post-order numbering based integrity check technique is parallel to the Merkle

Hash algorithm. Such a technique requires the hash values of the subtrees that

are not accessible to the consumer also to be forwarded, so that the consumer can

verify document integrity by computing and matching the final hash value of the

complete original tree. Our technique exploits the properties of post-order numbering

for the same goal and thus avoids sending the hash values of the subtrees that are not

accessible to the consumer, thereby preventing leakage of data. This is an indirect

information leak that is prevented by our framework.

Efficiency of Structure-based Routing

The simple notion of post-order numbers in the context of XML-data provides

powerful and sound principles for content identification and efficient extraction with

linear time complexity. The framework uses an efficient content routing mechanism

based on the content structure. The cost of routing is, in the worst case, linear in the

document size.

The multicast topology based on structure-based routing for the dissemination

model is acyclic. Multicast reduces the network usage, while the cycle-less feature

ensures that the number of router hops is finite and proportional to the height of the

document tree. Using Pigeonhole principle on the number of content nodes and the

160

number of consumers in a large dissemination network, there would be overlaps for

content accessibility and subscription between consumers.

Given that each path from the document source to a consumer contains a mono-

tonically decreasing sequence of RPON’s of the document as PRPON’s of the un-

derlying routers and a parent router never has a less RPON as a given router’s

PRPON, a cycle cannot occur. This makes the multicast topology more efficient in

terms of bandwidth usage and dissemination speed. The path from the source of a

document to a consumer contains a list of routers. Let the sequence of routers be

R1 → R2 → . . . → Ri → R(i+1) → . . . → Rn. Let the publishing RPON for the

consumer at each Ri be βi. The following observations are crucial for the topological

efficiency.

• For each i < j, 1 ≤ i, j ≤ n, βi ≤ βj, that is, the PRPON’s have a monotonically

decreasing order among them in such a path. This is because a router creates

a link to another router during the subscription process, if and only if the

router has access to the required sub-tree or a larger sub-tree from the specific

document.

• Due to the monotonicity property, the sizes of the subtrees being transmitted

along the path R1 → R2 → . . . → Rn, also decrease monotonically. In the

worst case all subscribers along the path have access to the complete document;

however in reality, most subscribers have access to a subset of the document.

Therefore the cost of transmission of the content from the source to a consumer

is less than the cost incurred in a common star/broadcast topology; or is in the

worst case equivalent to such a cost in the latter.

Therefore such a model is efficient in terms of network resource usage, speed of

dissemination and thus is more scalable.

161

8.6 Summary

We showed how the structural properties of the XML Document Object Model can

be exploited in order to address issues in data security and dissemination. We used

randomized post-order numbers as the content routing parameters. The structure-

based routing scheme uses the notion of randomized post-order numbers to prevent

information leaks in XML-data dissemination.

We proposed a dissemination model for XML content that combines multicast and

structure-based routing in order to improve efficiency in terms of bandwidth usage

and speed of data delivery, thereby favoring scalability. The dissemination model

combined with techniques for data integrity verification and confidentiality provides

a secure publish-subscribe paradigm for XML Documents. The publish-subscribe

model restricts the consumer and document source information to the routers to

which they register with. Such an approach to XML content dissemination satisfies

the requirements of integrity, confidentiality and privacy-preservation in a holistic

manner.

Structure-based routing provides a modular and flexible model for security en-

forcements in data distribution. Flexibility in security enforcement is known to be

an important requirement in secure system design and implementation. Depending

on the degree of trust on the network integrity checks may or may not be enforced.

Moreover, the framework facilitates dissemination of contents with varying degrees of

confidentiality and integrity in a mix of trusted and untrusted networks, which is so

prevalent in current settings across enterprise networks and the web.

162

9 AUTHENTICATION OF OBJECTS

There are two kinds of cryptography in this world:
cryptography that will stop your kid sister from reading your files, and
cryptography that will stop major governments from reading your files.

Bruce Schneier [121]

A widely used form for representation, storage, query, management and trans-

mission of data is the object-oriented form. With the advent of cloud computing,

web services, and JSON-type object forms to transfer data, objects are being increas-

ingly being used information units. In this paper, we define the first schemes for

(leakage-free) authentication of objects and of redacted objects.

9.1 Introduction

Authentication of data especially in cloud computing paradigms is an important

problem, and has been widely investigated [54, 66]. Authentication is a stronger se-

curity requirement than integrity assurance. With the advent of cloud computing,

web services, and JSON-type object forms to transfer data between a browser and

a server, objects are increasingly being used for representation, storage, query, man-

agement, and transmission of data. Objects are transferred across organizational and

trust boundaries. In such a context, the development of authentication techniques

specific to (redacted) objects is an important requirement.

An object might contain sensitive information, which need to be redacted when

the object or its copy is sent to another process/service that has a different trust level

or that does not need to know such information [79]. The need for authentication

and redaction of objects arises in the following three scenarios: C ′ is a superclass

of C. Process/service P1 has an object O of class C. Process/service P2 (maybe a

remote or local) provides a service/functionality that P1 requires, for which it needs

163

to have access to an instance of class C ′. (1) Process P1 and Process P2 have the

same level of privilege. (2) Process P2 has a lower privilege level and thus cannot

access the values of all the members in O. (3) O has one or more members (not

inherited from C ′) that are privacy-sensitive, and disclosure of even their existence

would breach privacy. Process P2 has a lower privilege level than P1 and thus should

not learn about the existence of such members. For scenario 1, the object needs to be

authenticated but not redacted. For scenario 2, the object needs to be redacted such

that the values of the sensitive members are hidden/deleted, and the redacted object

should be authenticated. For scenario 3, the object needs to be redacted such that

the names and values of the sensitive members are hidden/deleted, and the redacted

object should be authenticated. Moreover, for the latter two cases, the redacted

objects should of type that is a subclass of C ′ and defines a behavioral subtype, which

is assumed to be satisfied by the process of redaction. P1 might store O, which would

be used by P2 later. Multiple processes and services can also be included in such

scenarios.

In this paper, we define authentication schemes using which the authenticity of

an object can be verified. Moreover, we propose the notion of object redactions and

redactable signatures for objects such that a public redactor (anyone) can compute

the signature of an objectO′ that is redacted fromO. We assume that the redaction of

an object is safe - i.e., the computation with O′ as input would always proceed in the

same manner as it would proceed for O as input (equivalent to behavioral subtyping).

We present two schemes for authentication of objects that can be represented as trees

and objects redacted from them.

9.2 Objects

Member Fields: An object O that is an instance of class C contains a set of

members - that are fields representing the state of the object and methods that

164

represent the messaging constructs. By a member, we denote instance members and

not class-specific members (such as static variables and methods in Java).

Inheritance: Inheritance of classes are used to define subclasses. An instance

of a subclass contains all the members of all the super-classes as well as its own

new members with some exceptions. The exceptions are in the context of methods.

Methods can be overridden (such as virtual methods in C++ and non-static methods

in Java). Let C be the class of the object O. A member belongs to the class where

it is declared. Therefore, if a member was defined in a superclass C ′ of C, then it

belongs to C ′, and is inherited by C. For an instance method m() that is defined in C ′,

that specific definition belongs to C ′. If C overrides the definition of the method m(),

then C contains this new definition of m(), otherwise C inherits the definition of m().

Overloading of methods lead to different method signatures, and thus are treated as

different members. For simplicity, we have not explicitly handled constructors, which

can be handled in a way similar to that of methods (even though they are not exactly

methods).

Example: A class Emp (employees) is a superclass of class RegEmp (regular employees

- eligible for bonuses).

public class Emp {

private int id , pay;

public Emp(int idv , int payv) {id=idv; pay=payv;}

}

public class RegEmp extends Emp {

private float bonus;

public RegEmp(float bonus_pct) {bonus = bonus_pct ;}

}

9.3 Object Trees

Objects can be represented as trees if each member field is referred to by at most

one other member, and it does not have any cyclic references. Each member of such

an object is represented as a tree, as specified below (See the object tree of objRegEmp

- instance of RegEmp class in Figure 9.2(b)).

165

Variable
Name

Class Value

(a)

Array
Name

Type [] Size: n

(b)

Values

Value_1 Value_n…

Primitive
Type Class

Method
Name

Contract DefinitionClass

Precond

Exceptions

Signature

Return
type

Parameters

Instance
Name

Type
Members

Name_1 Name_n…

(d)

Class

(c)

Figure 9.1. Tree representations of members of objects: (a) primitive
data type, (b) array of primitive types, (c) methods, and (d) instances
of user-defined types.)

Primitive Types: A member variable is represented as a tree (Figure 9.1(a)). Root

of the tree specifies the name of the member (e.g., id). The first (left) child specifies

the class name where this member is declared - in this case it is C. (If a superclass

has declared a variable with the same name, then that there would be another entry

in the object tree). Next child specifies the type, and the right child specifies the

value contained in that variable.

Arrays: The tree for arrays (Figure 9.1(b)) contains the name as the root. The

first child is the class name. Next child is the type as “type []” (e.g., int []), the next

child of root contains the size of the array. The next child is the root of another

subtree. The values in the array are represented as the leaf nodes in the subtree.

It can be extended to represent arrays of user-defined types by adding references or

pointers to instances in the nodes representing values.

166

Methods: The tree for methods (Figure 9.1(c)) contains the name of the method

as the root node. The name of the class that defines the method is the first left child.

The contracts (pre-condition and post-condition in this order) are specified as the

next child. The return type and then the definition (method body) are defined as the

next children, in this order.

Instances of User Defined Types: A user-defined type (such as class, structures

and unions) contains member variables, methods (if it is a class), and class-specific

variables and methods. The tree representing an instance of a user-defined type

(Figure 9.1(d)) has the name as the root, the class it belongs to is the first left child,

and then the nodes/subtrees with respect to each other members. If the object is

not contained in another object, then the class name to which it belongs has a value

“NONE”.

9.4 Redaction of Objects

Consider our example. If an object of RegEmp need to be redacted to an instance of

type Emp, and should not contain the bonus information, then the bonus information,

is removed from the object. Notice that if the received process learns that the original

object had “bonus” as a member, then it would infer that the “original” object is an

instance of RegEmp and thus the associated employee is a regular employee. In several

contexts, it may breach privacy, and thus the “bonus” field should be hidden com-

pletely - even its existence. For the scenario 1 (Section 1), the object in Figure 9.2(b)

is sent to the process P2. For scenarios 2 and 3, the objects sent are in Figure 9.2(c)

and (d), respectively.

How Redaction is Carried out: An access control policy P is applied to the object

that specifies the confidentiality levels of each member in-depth in the object, if such

a policy is not already applied on a member. Each process has a specific privilege level

associated with it. Whenever an object O (instance of class C) needs to be passed

to a process of privilege level L, a redaction is carried out. Suppose the process of

167

privilege level L expects an instance of class C ′. The secure clone can then be an

operation of this sort: O′= O.redact(P, L, C ′). The formal method signature is given

later, which also takes the signature of the object and auxiliary information. This

operation creates O′ that contains all members that have a privilege level less than or

equal to L. Moreover, the redact() operation is such that it always creates an object

that conforms to the behavioral subtyping rule by ensuring that O′ is an instance

of a class that is a subclass of C ′. The mechanisms of redaction can be carried out

by a secure clone or selective clone operation on the object. Such operations need

to be supported, especially, when an O′ needs to be passed to a process/service (or

a thread) residing in the same memory. Redaction is also be carried out during the

process of serialization/marshaling. Marshalling is required when the object needs (1)

to be sent to a remote process/service, or one that is in a separate memory, and/or

(3) to be persistently stored.

Secure and Selective Clone: Secure and selective clone operations implement the

redaction logic as well. In secure clone: the secure clone can be used as a redaction

operation: O′= O.clone(P, L, C ′). This operation creates O′ that contains all mem-

bers that have a confidentiality level less than or equal to L. Moreover, the clone()

operation supports behavioral subtyping rules. A selective clone operation does not

specify a privilege level, but specifies only the expected type of the object that is

returned by the clone operation: O′= O.clone(C ′). There are several issues such as

conflicts in confidentiality levels of members and aliasing that need to be addressed

in implementation of policy enforcement on objects and secure clone, which we do

not address here.

Redaction During Serialization: An object can be redacted during its serialization

according to its expected type and access control policies, if any. Java language

supports both standard and custom serialization and deserialization mechanisms

via java.io.Serializable and java.io.Externalizable. The redaction can be implemented in

the WriteObject() and WriteExternal() methods. One way to specify the members that need

to be redacted and whether to redact their existence as well is by populating a vector

168

of such members that would be referred to by these methods during serialization. If

the type of the resultant object is defined by a new class that is dynamically created,

the definition of the class has to be sent to the recipient first; by doing so, it is ensured

that the class is loaded into the memory before deserialization of the actual received

object is carried out successfully. Mechanisms for such dynamic class creation needs

to be in place and should be secure.

9.5 Authentication of Objects

In this section, we have presented our scheme for objects that can be represented

as trees. During serialization, the signature is attached and verification object is

computed for the (redacted) object. During deserialization, (1) the object is deserial-

ized first, and then (2) this object is validated against the signature and verification

object. Serialization and de-serialization of objects are necessary when the P1 and

P2 are either remote (do not reside in the same memory). Such operations are order-

preserving, that is, the order between the members in which they are serialized into

a stream such as file or a network socket connection, is preserved during its de-

serialization. In case it is not, de-serialization may fail. Therefore, the authentication

mechanism should not only preserve the integrity of the contents but also preserve the

order among the members. Moreover, the straightforward scheme of signing nodes

and edges in an object tree would not work.

Cryptographic Notations: H is an one-way collision resistant hash function. (pk,

sk) is a pair of public and secret key respectively. (σO,VOO) ← rSignsk(O) signs

an object O of class C using the secret key. VOO is the auxiliary information for O.

VOO′ ← Redact(O, (σO,VOO),P , C ′) redacts the object O to O′ with respect to class

C ′ and returns the redacted verification object VOO′ . The redacted signature of O′

is (σO′ ,VOO′). Verification rVrfypk((O′, σO,VOO′)) = 1 if the signature (σO′ ,VOO′)

is valid for O′, and 0 otherwise.

169

objRegEmp

id pay bonus
NONE

Emp 10

int
Emp

10000

int
RegEmp

10.5

float

(b)

Class Emp:
int id: 10

Int pay: 10000

Class RegEmp:
float bonus: 10.5

(a)

objRegEmp’

id pay bonus
NONE

Emp 10

int
Emp

10000

int
RegEmp

float

(c)

Members

Hidden

objRegEmp’

id pay
NONE

Emp
10

int
Emp

10000

int
(d)

Non-existent edge

Figure 9.2. (a) Class hierarchy of Emp and RegEmp, (b) Object Tree
of objRegEmp1. (c) Redacted object tree for scenario 2, (d) Redacted
object tree for scenario 3.

9.5.1 Scheme Based on Merkle Hash Technique

rSign: The Merkle hash [100] of an object is computed by by carrying out a

bottom up and left to right traversal of the object tree, and computing the respective

Merkle hashes (MH). The MH of a tree is computed as follows. It computes the hash

of the leaves mi: hi ← H(mi). It then traverses the tree bottom up and left to right

(for children) and computes the MH hij of node mij (j ≥ i), which is the parent of

nodes mi,mi+1, . . . ,mj as follows: hij ←H(hi‖hi+1 . . .‖hj). The MH of the tree is the

MH of its root. The MH of the root of the object tree hO is signed: σO← rSignsk(hO).

Redact(:) Let the redacted object be O′ an instance of class C ′. Redaction only re-

turns the modified object VOO′ is the set of the MH of each of the following node

x: x is an adjacent sibling of a member in O′ in the tree representation of O. For

scenario 2, the member that is redacted is bonus in objRegEmp1. So VOobjRegEmp′ =

170

{MH of the value of bonus: 10.5}. (There are hash schemes available in the literature

that do not leak information (such as [35]) and can be used here).

rVrfy: The receiver computes the MH of the root of the tree for the received object

O′ using the VOO′ , and then verifies the signature using rVrfypk((O′, σO′ ,VOO′)).

For example, the MH of the root of the tree in Figure 9.2(c) is computed as earlier,

but it uses the MH of the value of bonus: 10.5. The Merkle hash technique leaks

information about the existence of the bonus information, and the receiver may infer

that this object is for a regular employee. In order to prevent such leakages, we

present the following scheme.

9.5.2 Leakage-free Scheme

We would use our leakage-free redactable signature scheme for trees based on

JMSW homomorphic signature scheme (Section 7.3). This scheme does not leak any

extraneous information that is not in the subtree/subgraph. We can use the signature

schemes we have developed based on Mykletun et al’s Condensed-RSA or Boneh et

al’s aggregate signature scheme. However, for efficiency, and simplicity, we would use

the single-signature scheme.

rSign: Let V be the set of nodes in the object tree of O. A secure name is assigned

to each node x or the structural position ηx ← (px, rx) is assigned to x in the object

tree, where px and rx are randomized post- and pre-order numbers. Signature of the

object σO is computed as per the signing scheme presented in Section 7.3.

Redact: Let the redacted object be O′ – an instance of C ′, and V ′ be the set of nodes

in the tree of O′. Redaction scheme in Figure 7.12 computes the modified object and

the redacted signature σO′ .

171

rVrfy: The receiver of O′ follows the verification procedure outlined in Figure 7.13.

It first verifies content authenticity, and then verifies the structural relationships.

Efficiency and Security: Distribution of the object and authenticity verification is

carried out without leaking any information. It is important to note that the size of

the signature items is size-oblivious (O(1)) independent of the sizes of the original

and redacted objects. The receiver only receives information about O′ and constant

number of verification objects, i.e., it does not learn existence/absence of the nodes

in O that are not in O′.

Object Graphs: Objects in general form are graphs with cycles involved. We can

directly apply the leakage-free signature for graphs (Section 4.3.2) for authentication

of an object or a sub-object.

9.6 Summary

An authentication scheme is used to verify (1) the integrity of data, and (2) the

fact that whether the received data object O is indeed sent by the claimed sender

from the claimed data source. An authentication mechanism can help in developing

data provenance purposes. A widely used form for representation, storage, query,

management, and transmission of data is the object-oriented form. Object-oriented

databases have been studied almost a decade ago, and such trends would only influ-

ence the revival of such databases and their much more usage.

172

10 CONCLUSIONS

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

Alan M. Turing [131]

In third party data distribution frameworks such as the “cloud”, storage and

distribution of data is carried out by third party infrastructures and servers, which

may not be trusted. Data objects stored, processed and distributed through third-

party architectures are very often organized as trees, graphs or even forests (set of

disconnected trees/graphs); for example, data organized according to XML schemas

and biological graphs. In such cloud-computing paradigms, which are increasingly

being employed in order to store and publish sensitive information, protection of

privacy and assurance of confidentiality are as important as verifying authenticity of

data. Moreover, data authenticity must be assured even when the data that a user

can access is a subset of the signed data, as users maybe authorized to only access a

subset of the data.

Existing solutions such as the Merkle hash technique and the redactable signature

schemes lead to data leakages that can be used to infer sensitive information that is

not part of the received data, which in turn would lead to privacy and confidentiality

breaches. Our contributions have been summarized in the following section.

10.1 Research Contributions

In this work, we demonstrated a connection between structural leakages and their

implications on privacy and confidentiality. We characterized the inference attacks

that can be carried out on the widely used Merkle hash technique. We presented the

173

first formal security model for leakage-free redactable signatures that defines a notion

of unforgeability, privacy and transparency.

In this work, a signature scheme called as “structural signatures” based on the

traversal numbers has been proposed that can be used for authentication of a sub-

tree in a leakage-free manner. For this purpose, we defined the notion of randomized

traversal numbers. We have also presented the structural signature schemes for graphs

– both directed acyclic graphs, and graphs with cycles, that facilitate authentication

of a subgraph in a leakage-free manner. In order to support the leakage-free authen-

tication of multiple subtrees/subgraphs, the formal notion of secure names have been

developed; we have proposed two constructions of such secure names. Based on the

secure names and existing redactable signature scheme for sets, we have defined a

highly efficient and generic leakage-free redactable signature scheme that can be used

not only for trees, but also for graphs and forests. This scheme is highly efficient – it

computes only one signature per tree/graph/forest.

Our schemes for leakage-free authentication can be used for encrypted data (nodes

are encrypted), which plays a significant role in enabling security in cloud computing

solutions and services. We also showed how the structural signatures can be used to

automatically recover from structural errors in tree-structured data. Such a scheme

has several applications especially in satellite-based data transmission and in sensors.

Our schemes can be used for leakage-free authentication of paths, and has applications

in authentication of of XPath query results.

As an application of the structural signatures, we have developed a publish/sub-

scribe scheme for XML distribution known as “structure-based routing”, which uses

randomized traversal numbers not only for verification structural integrity, but also

for efficient routing of contents. In another application scenario, leakage-free authen-

tication of objects is an important requirement. Objects are a primary model of

data representation in object-oriented programs, web services, and object-oriented

databases. Serialized objects are also stored and/or transmitted in environments

that involve untrusted third-party entities. We have developed the first such solution

174

to this problem. Moreover, in financial scenarios, organizations such as credit-card

providers, banks, and tax offices manage, store and process financial information.

Given the sensitive nature of such data, it is essential to facilitate authentication of

financial data without leaking. Our solutions can be applied in order to address such

requirements in the financial domain.

10.2 Open Problems

Completeness verification and leakage-free authentication of query results: The ques-

tion is can we develop a scheme for trees/graphs so that query results from such

databases can be authenticated without leaking, and the completeness of the query

results can be verified. We think it is impossible to provide both completeness and

leakage-free properties together. The question is quite interesting when a single query

results in multiple subtrees/subgraphs; in such a case, what is the lower-bound on

the leakage for an authentication scheme that provides verification of completeness?

Optimality of the single-signature solution: In Section 4.3.2, we presented a leakage-

free signature that computes only one signature, and carries out O(n) modular multi-

plications in the RSA system, where n is the number of nodes and edges. The number

of signatures is optimal. However, is the number of modular multiplications optimal,

or can we find a scheme in which we can compute a leakage-free signature for a tree,

graph and/or a forest, where it would lead to a sub-linear number of such operations?

Leakage-free authentication of paths: As we described earlier, the path relationship

between two nodes in a tree/graph can be authenticated without leaking. However,

when a user receives multiple sub-paths (or sub-sequences) from a path/sequence,

the user can learn about the path relationships between the nodes that are belong to

different sub-paths. A straightforward solution to this problem is to compute O(n2)

number of signatures for a path consisting of n nodes. There are two questions: can

175

we develop a scheme that is more efficient than this one, and what is the lower-bound

on the number of signatures?

Undecidability of random-ness: We needed a scheme to compute randomized traver-

sal numbers, which led us to the following question: how do we know that a given

number is truly a random number or “almost” a random number. There are statisti-

cal techniques towards addressing this question, however, there are no schemes that

can be used to prove whether a given number is truly random or not. We do not have

such a scheme as well. The following conjecture is on this problem.

Conjecture 1. Determining whether an event or number is truly random, is unde-

cidable.

10.3 Future Research Directions

Unforgeability of redactable signatures: Redactable signatures as as been noted by

Johnson et al [74] can only support a notion of unforgeability weaker than the stan-

dard notion - EU-CMA. Johnson et al proposed a redactable signature for sets that is

existentially unforgeable against chosen message attacks under the subset and union

operations (i.e., one can “legally” forge signatures for a subset (or a union) from the

signature of a message (or signatures of messages)). The question is can we have

a redactable signature for sets that is leakage-free, and is existentially unforgeable

against chosen message attacks under only the subset or the union operation, not

both of them. Such a scheme has interesting applications in third-party data distri-

bution. The following conjecture is based on this problem.

Conjecture 2. A redactable signature scheme supports subset operation iff it sup-

ports the union operation.

176

Authenticated databases and privacy-preserving operations: Authenticated databases

are important especially in a third-party cloud context. Do the schemes proposed in

this thesis support any form of authenticity requirements in third-party databases?

Moreover, if there are further security and efficiency requirements in such a context,

then what they are and how they can be addressed. It is essential to develop schemes,

systems and standards towards various levels of security on cloud-based databases.

Moreover, privacy-preserving operations on trees, graphs, and forests are gaining im-

portance in both cloud frameworks and two-party frameworks. Such operations are

useful in query evaluation on encrypted databases, caching such as of XML data, and

in multi-party computation. Solutions to privacy-preserving operations on such data

objects enable cloud-based databases of sensitive data such as healthcare, financial

as well as biological data.

Composite software and their interactions: Composite software and their execution

has three aspects: (1) data, (2) code of the components, and (3) the metadata that

specifies the interaction and makes the software discoverable as a service. In the

emerging models of composite web services, mobile applications, and cloud comput-

ing, each of these aspects should be assured with respect to their integrity and confi-

dentiality. When services/applications from multiple parties are used in developing a

single service, it is essential to verify their integrity and authenticity. Authenticated

UDDI registries are used to discover web services (Bertino et al. [19]). Authenti-

cation of web services is essential towards addressing software-based need-to-know

attacks [79]. The problem of authenticating all the three aspects in both static work-

flows/web services (static – no changes in any of these three aspects), and dynamic

workflows and web services is important towards realizing a trusted third-party com-

puting framework.

LIST OF REFERENCES

177

LIST OF REFERENCES

[1] Amazon Web Services. http://aws.amazon.com.

[2] HIPAA: Healthcare privacy in united states. http://www.hhs.gov/ocr/
privacy.

[3] Implementation of Pairing Based Cryptography. http://crypto.stanford.
edu/pbc.

[4] URI: Uniform Resource Identifier. http://www.w3.org/Addressing/URL/
url-spec.txt.

[5] XML: Extensible Markup Language. http://www.w3.org/XML/.

[6] XPaths. http://www.w3.org/TR/xpath.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia. Above the clouds: A
Berkeley view of cloud computing. Technical report, Technical Report No.
UCB/EECS-2009-28, EECS Department, University of California, Berkeley,
2009.

[8] M. J. Atallah, Y.-S. Cho, and A. Kundu. Efficient data authentication in an
environment of untrusted third-party distributors. In Proceedings of the 24th
IEEE International Conference on Data Engineering (ICDE), pages 696–704,
Washington, DC, USA, 2008. IEEE Computer Society.

[9] M. J. Atallah, G. N. Frederickson, and A. Kundu. A tree-covering problem
arising in integrity of tree-structured data. Information Processing Letters,
109(1):79–82, 2008.

[10] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik. Sanitizable signatures.
In Proceedings of the 10th European Symposium on Research in Computer Se-
curity (ESORICS), volume 3679 of Lecture Notes in Computer Science, pages
159–177, Milan, Italy, September 12-14, 2005. Springer.

[11] G. Banavar, T. Chandra, B. Mukherjee, and J. Nagarajarao. An efficient
multi-cast protocol for content-based publish subscribe systems. In Proceedings
of the 19th IEEE International Conference on Distributed Computing Systems
(ICDCS), pages 262–272, 1999.

[12] F. Bao, C.-C. Lee, and M.-S. Hwang. Cryptanalysis and improvement on batch
verifying multiple RSA digital signatures. Applied Mathematics and Computa-
tion, 172(2):1195–1200, 2006.

178

[13] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Proceedings of the 16th Annual International Confer-
ence on Theory and Application of Cryptographic Techniques (EUROCRYPT),
pages 480–494, Berlin, Heidelberg, 1997. Springer-Verlag.

[14] M. Bellare and G. Neven. Transitive signatures based on factoring and RSA.
In Proceedings of the 8th International Conference on the Theory and Appli-
cation of Cryptology and Information Security (ASIACRYPT), pages 397–414,
London, UK, 2002. Springer-Verlag.

[15] M. Bellare and G. Neven. Transitive signatures: new schemes and proofs. IEEE
Transactions on Information Theory, 51:2133–2151, 2005.

[16] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security (CCS), pages 62–73, New York, NY,
USA, 1993. ACM.

[17] J. Benaloh and M. de Mare. One-way accumulators: a decentralized alterna-
tive to digital signatures. In Proceedings of the Workshop on the Theory and
Application of Cryptographic Techniques on Advances in Cryptology (EURO-
CRYPT), pages 274–285, Secaucus, NJ, USA, 1994. Springer-Verlag New York.

[18] P. Berman, M. Karpinski, and Y. Nekrich. Optimal trade-off for Merkle tree
traversal. Theoretical Computer Science, 372:26–36, March 2007.

[19] E. Bertino, B. Carminati, and E. Ferrari. Merkle tree authentication in UDDI
registries. International Journal of Web Service Research, 1(2):37–57, 2004.

[20] E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta. Selective
and authentic third-party distribution of XML documents. IEEE Transactions
on Knowledge and Data Engineering, 16(10):1263–1278, 2004.

[21] E. Bertino and E. Ferrari. Secure and selective dissemination of XML docu-
ments. ACM Transactions on Information and Systems Security, 5(3):290–331,
2002.

[22] E. Bertino, L.R. Khan, R. Sandhu, and B. Thuraisingham. Secure knowledge
management: confidentiality, trust, and privacy. IEEE Transactions on Sys-
tems, Man and Cybernetics, Part A, 36(3):429–438, May 2006.

[23] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. Clarendon
Press, New York, NY, USA, 1986.

[24] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud computing
research agenda. SIGACT News, 40(2):68–80, 2009.

[25] M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.

[26] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric
encryption. In Proceedings of the 28th Annual International Conference on
Theory and Applications of Cryptographic Techniques (EUROCRYPT), pages
224–241, Berlin, Heidelberg, 2009. Springer-Verlag.

179

[27] A. Boldyreva, A. Palacio, and B. Warinschi. Secure proxy signature schemes
for delegation of signing rights. Technical report, Cryptology ePrint Archive,
Report 2003/096, International Association for Cryptologic Research, received
20 May 2003, last revised 3 Feb 2008.

[28] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably
encrypted signatures from bilinear maps. In Proceedings of the 22nd Annual
International Conference on Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT), 2003.

[29] C. Brzuska, H. Busch, Ö. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser,
M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder. Redactable
signatures for tree-structured data: Definitions and constructions. In Proceed-
ings of the 8th International Conference on Applied Cryptography and Network
Security (ACNS), volume 6123 of Lecture Notes in Computer Science, pages
87–104. Springer Berlin / Heidelberg, June 22-25, 2010.

[30] C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Unlinkability of sanitiz-
able signatures. In Proceedings of the 13th International Conference on Practice
and Theory in Public Key Cryptography (PKC), volume 6056 of Lecture Notes
in Computer Science, pages 444–461. Springer, May 26-28, 2010.

[31] J. Buchmann, L. C. C. Garćıa, E. Dahmen, M. Döring, and E. Klintsevich.
CMSS – An improved Merkle signature scheme. In Proceedings of the 7th In-
ternational Conference on Cryptology in India (INDOCRYPT), pages 349–363,
December 11-13, 2006.

[32] A. Buldas and S. Laur. Knowledge-binding commitments with applications in
time-stamping. In Proceedings of the 10th International Conference on Prac-
tice and Theory in Public Key Cryptography (PKC), pages 150–165, Berlin,
Heidelberg, 2007. Springer-Verlag.

[33] L. Bull, P. Stanski, and D. McG. Squire. Content extraction signatures using
XML digital signatures and custom transforms on-demand. In Proceedings of
the 12th international conference on World Wide Web (WWW), pages 170–177,
New York, NY, USA, 2003. ACM.

[34] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Proceedings of the 22nd Annual
International Cryptology Conference on Advances in Cryptology (CRYPTO),
pages 61–76, London, UK, 2002. Springer-Verlag.

[35] R. Canetti. Towards realizing random oracles: Hash functions that hide all
partial information. In Proceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology (CRYPTO), pages 455–469, London,
UK, 1997. Springer-Verlag.

[36] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic
hash functions (preliminary version). In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing (STOC), pages 131–140, New York, NY,
USA, 1998. ACM.

[37] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notication service. ACM Transactions on Computer Systems,
19(3):332–383, 2001.

180

[38] A. Carzaniga, M. J. Rutherford, and A. L.Wolf. A routing scheme for content-
based networking. In Proceedings of the 23rd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM). IEEE, March 7-
11, 2004.

[39] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In
Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pages 163–174, New
York, NY, USA, 2003. ACM.

[40] D. Catalano, D. Fiore, and M. Messina. Zero-knowledge sets with short proofs.
In Proceedings of the 27th Annual International Conference on Theory and Ap-
plications of Cryptographic Techniques (EUROCRYPT), pages 433–450, Berlin,
Heidelberg, 2008. Springer-Verlag.

[41] E.-C. Chang, C. L. Lim, and J. Xu. Short redactable signatures using random
trees. In Proceedings of the The Cryptographers’ Track at the RSA Conference
on Topics in Cryptology (CT-RSA), pages 133–147, Berlin, Heidelberg, 2009.
Springer-Verlag.

[42] S. Chari, T. Rabin, and R. L. Rivest. An efficient signature scheme for
route aggregation. Manuscript at: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.24.8419, 2002.

[43] S. Chatvichienchai and M. Iwaihara. Detecting information leakage in updating
XML documents of fine-grained access control. In Proceedings of the 17th In-
ternational Conference of Database and Expert Systems Applications (DEXA),
volume 4080 of Lecture Notes in Computer Science. Springer, 2006.

[44] J. Cheng, J. X. Yu, B. Ding, P.S. Yu, and H. Wang. Fast graph pattern match-
ing. In Proceedings of the 24th IEEE International Conference on Data Engi-
neering (ICDE), pages 913–922, Washington, DC, USA, 2008. IEEE Computer
Society.

[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

[46] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. MerkleDamg̊ard revisited:
How to construct a hash function. In Proceedings of the 25th Annual Inter-
national Cryptology Conference (CRYPTO), volume 3621 of Lecture Notes in
Computer Science. Springer, August 14-18, 2005.

[47] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Epidemic algorithms
for reliable content-based publish-subscribe: an evaluation. In Proceedings
of the 24th IEEE Inernational Conference on Distributed Computing Systems
(ICDCS), pages 552–561, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[48] P. Costa and G. P. Picco. Semi-probabilistic content-based publish-subscribe.
In Proceedings of the 25th IEEE International Conference on Distributed Com-
puting Systems (ICDCS), pages 575–585, Washington, DC, USA, 2005. IEEE
Computer Society.

181

[49] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimizing the reconfigu-
ration overhead in content-based publish-subscribe. In Proceedings of the 19th
ACM Symposium on Applied Computing (SAC), pages 1134–1140, New York,
NY, USA, 2004. ACM.

[50] I. Damg̊ard. A design principle for hash functions. In Proceedings of the 9th An-
nual International Cryptology Conference (CRYPTO), pages 416–427, London,
UK, 1990. Springer-Verlag.

[51] S. K. Das, K. B. Min, and R. H. Halverson. Efficient parallel algorithms for
tree-related problems using the parentheses matching strategy. In Proceedings of
the 8th International Symposium on Parallel Processing (ISPP), pages 362–367,
Washington, DC, USA, 1994. IEEE Computer Society.

[52] A. K. Datta, M. Gradinariu, M. Raynal, and G. Simon. Anonymous publish/-
subscribe in p2p networks. In Proceedings of the 17th International Parallel
and Distributed Processing Symposium (IPDPS), pages 74.1–, Washington, DC,
USA, 2003. IEEE Computer Society.

[53] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stub-
blebine. Flexible authentication of XML documents. In Proceedings of the 8th
ACM Conference on Computer and Communications Security (CCS), pages
136–145, New York, NY, USA, 2001. ACM.

[54] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic data
publication over the internet. Journal of Computer Security, 11:291–314, April
2003.

[55] A. K. Dewdney. Computer recreations: Of worms, viruses and core war. Sci-
entific American, page 110, March 1989.

[56] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging merkle-damg̊ard for prac-
tical applications. In Proceedings of the 28th Annual International Conference
on Advances in Cryptology (EUROCRYPT), pages 371–388, Berlin, Heidelberg,
2009. Springer-Verlag.

[57] B. A. Eckman and P. G. Brown. Graph data management for molecular and
cell biology. IBM Journal of Research and Development, 50(6), 2006.

[58] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmen-
tation. International Journal of Computer Vision, 59(2):167–181, September,
2004.

[59] L. Getoor and C. P. Diehl. Link mining: a survey. ACM SIGKDD Explorations
Newsletter, 7(2):3–12, 2005.

[60] S. K. Goel, C. Clifton, and A. Rosenthal. Derived access control specification
for XML. In Proceedings of the ACM workshop on XML security (XMLSEC),
pages 1–14, New York, NY, USA, 2003. ACM.

[61] S. Goldwasser and S. Micali. Probabilistic encryption. Special issue of Journal
of Computer and Systems Sciences, 28(2):270–299, April 1984.

[62] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal of Computing,
17(2):281–308, 1988.

182

[63] M. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip
lists and commutative hashing. Technical Report, Johns Hopkins Information
Security Institute, 2001.

[64] M. T. Goodrich, M. J. Atallah, and R. Tamassia. Indexing information for
data forensics. In Proceedings of the Third International Conference on Applied
Cryptography and Network Security, (ACNS), volume 3531 of Lecture Notes
in Computer Science, pages 206–221. Springer Berlin / Heidelberg, June 7-10,
2005.

[65] M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and dis-
tributed cryptographic accumulator. In Proceedings of the 5th International
Conference on Information Security (ISC), pages 372–388, London, UK, 2002.
Springer-Verlag.

[66] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated
data structures for graph connectivity and geometric search problems. Algo-
rithmica, pages 1–48, 2009. 10.1007/s00453-009-9355-7.

[67] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated
data structures for graph and geometric searching. In Proceedings of the RSA
Conference on the Cryptographers’ Track (CT-RSA), pages 295–313, Berlin,
Heidelberg, 2003. Springer-Verlag.

[68] S. Haber, Y. Hatano, Y. Honda, W. Horne, K. Miyazaki, T. Sander, S. Tezoku,
and D. Yao. Efficient signature schemes supporting redaction, pseudonymiza-
tion, and data deidentification. In Proceedings of the ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS), pages 353–362,
New York, NY, USA, 2008. ACM.

[69] H. Hacigumus, S. Mehrotra, and B. Iyer. Providing database as a service. In
Proceedings of the 18th International Conference on Data Engineering (ICDE),
pages 29–38, Washington, DC, USA, 2002. IEEE Computer Society.

[70] L. Harn. Batch verifying multiple RSA digital signatures. Electronics Letters,
34(12), 1998.

[71] M.-S. Hwang, C.-C. Lee, and Y.-L. Tang. Two simple batch verifying multiple
digital signatures. In Proceedings of the 3rd International Conference on Infor-
mation and Communications Security (ICICS), pages 233–237, London, UK,
2001. Springer-Verlag.

[72] M.-S. Hwang, I.-C. Lin, and K.-F. Hwang. Cryptanalysis of the batch verifying
multiple RSA digital signatures. Informatica, 11(1), 2000.

[73] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo. Fractal Merkle tree repre-
sentation and traversal. In Proceedings of the RSA Conference on the Cryptog-
raphers’ Track (CT-RSA), pages 314–326, Berlin, Heidelberg, 2003. Springer-
Verlag.

[74] R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature
schemes. In Proceedings of the RSA Conference on the Cryptographers’ Track
(CT-RSA), pages 244–262, London, UK, 2002. Springer-Verlag.

183

[75] V. Kamakoti and C. Pandu Rangan. An optimal algorithm for reconstructing
a binary tree. Information Processing Letters, 42(2):113–115, 1992.

[76] J. Katz and Y. Lindell. Introduction to Modern Cryptography: Principles and
Protocols. Chapman & Hall/CRC, first edition, 2007.

[77] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms,
volume 1. Addison-Wesley Professional, 1968.

[78] P. C. Kocher. On certificate revocation and validation. In Proceedings of the
Second International Conference on Financial Cryptography, pages 172–177,
London, UK, 1998. Springer-Verlag.

[79] A. Kundu. SN2K attacks and honest services. In 1st IEEE International Work-
shop on Security Aspects of Process and Services Engineering (SAPSE), pages
445–450. IEEE Computer Society, July 2009.

[80] A. Kundu, M. J. Atallah, and E. Bertino. Leakage-free authentication of trees,
graphs and forests. Under Submission, 2010.

[81] A. Kundu, M. J. Atallah, and E. Bertino. Leakage-free redactable signatures.
Under Submission, 2010.

[82] A. Kundu and E. Bertino. Secure dissemination of XML content using structure-
based routing. In Proceedings of the 10th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC), pages 153–164, Washington,
DC, USA, 2006. IEEE Computer Society.

[83] A. Kundu and E. Bertino. A new model for secure dissemination of xml content.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 38(3):292–301, May 2008.

[84] A. Kundu and E. Bertino. Structural signatures for tree data structures. Pro-
ceedings of the VLDB Endowment, 1(1):138–150, 2008.

[85] A. Kundu and E. Bertino. Authentication of objects. Under Submission, 2010.

[86] A. Kundu and E. Bertino. How to authenticate graphs without leaking. In
Proceedings of the 13th International Conference on Extending Database Tech-
nology (EDBT 2010), volume 426 of ACM International Conference Proceeding
Series. ACM, March 22-26, 2010.

[87] A. Kundu and Elisa Bertino. Privacy-preserving authentication of trees and
graphs. Under Submission, 2010.

[88] B. Lee, H. Kim, and K. Kim. Strong proxy signature and its applications.
In Proceedings of the Symposium on Cryptography and Information Security
(SCIS), pages 603–608, 2001.

[89] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated
index structures for outsourced databases. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data (SIGMOD), pages
121–132, New York, NY, USA, 2006. ACM.

184

[90] J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership
proofs. In Proceedings of the 5th International Conference on Applied Cryptog-
raphy and Network Security (ACNS), pages 253–269, Berlin, Heidelberg, 2007.
Springer-Verlag.

[91] T. Li and N. Li. On the tradeoff between privacy and utility in data publishing.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 517–526, New York, NY, USA,
2009. ACM.

[92] T. Li, X. Ma, and N. Li. Worm-seal: trustworthy data retention and verification
for regulatory compliance. In Proceedings of the 14th European Conference on
Research in Computer Security (ESORICS), pages 472–488, Berlin, Heidelberg,
2009. Springer-Verlag.

[93] D. Lin, E. Bertino, R. Cheng, and S. Prabhakar. Location privacy in moving-
object environments. Transactions on Data Privacy, 2(1):21–46, 2009.

[94] H. Lipmaa. On optimal hash tree traversal for interval time-stamping. In
Proceedings of the 5th International Conference on Information Security (ISC),
pages 357–371, London, UK, 2002. Springer-Verlag.

[95] K. Liu and E. Terzi. Towards identity anonymization on graphs. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 93–106, New York, NY, USA, 2008. ACM.

[96] D. Ma, R. H. Deng, H. Pang, and J. Zhou. Authenticating query results in
data publishing. In Information and Communications Security (ICICS), volume
3783 of Lecture Notes in Computer Science, pages 376–388. Springer Berlin /
Heidelberg, 2005.

[97] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating signing
operation. In Proceedings of the 3rd ACM conference on Computer and com-
munications security (CCS), pages 48–57, New York, NY, USA, 1996. ACM.

[98] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stub-
blebine. A general model for authenticated data structures. Algorithmica,
39(1):21–41, 2004.

[99] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. Ph.D. Disser-
tation, 1979.

[100] R. C. Merkle. A certified digital signature. In Proceedings of the Annual In-
ternational Cryptology Conference (CRYPTO), pages 218–238, New York, NY,
USA, 1989. Springer-Verlag New York, Inc.

[101] S. Micali, M. Rabin, and J. Kilian. Zero-knowledge sets. In Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
page 80, Washington, DC, USA, 2003. IEEE Computer Society.

[102] S. Micali and R. L. Rivest. Transitive signature schemes. In Proceedings of
the The Cryptographer’s Track at the RSA Conference on Topics in Cryptology
(CT-RSA), pages 236–243, London, UK, 2002. Springer-Verlag.

185

[103] K. Miyazaki, G. Hanaoka, and H. Imai. Digitally signed document sanitizing
scheme based on bilinear maps. In Proceedings of the ACM Symposium on
Information, computer and communications security (ASIACCS), pages 343–
354, New York, NY, USA, 2006. ACM.

[104] K. Mouratidis, D. Sacharidis, and H. Pang. Partially materialized digest scheme:
an efficient verification method for outsourced databases. The VLDB Journal,
18(1):363–381, 2009.

[105] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in
outsourced databases. ACM Transactions of Storage, 2(2):107–138, 2006.

[106] M. Naor and K. Nissim. Certificate revocation and certificate update. In Pro-
ceedings of the 7th Conference on USENIX Security Symposium, pages 17–17,
Berkeley, CA, USA, 1998. USENIX Association.

[107] M. Narasimha and G. Tsudik. Authentication of outsourced databases us-
ing signature aggregation and chaining. In Mong Lee, Kian Tan, and Vilas
Wuwongse, editors, Database Systems for Advanced Applications (DASFAA),
volume 3882 of Lecture Notes in Computer Science, pages 420–436. Springer
Berlin / Heidelberg, 2006.

[108] G. Neven. Note: A simple transitive signature scheme for directed trees. The-
oretical Computer Science, 396(1-3):277–282, 2008.

[109] L. Opyrchal, M. Astley, J. S. Auerbach, G. Banavar, R. E. Strom, and D. C.
Sturman. Exploiting IP multicast in content-based publish-subscribe systems.
In IFIP/ACM International Conference on Distributed systems platforms (Mid-
dleware), pages 185–207, Secaucus, NJ, USA, 2000. Springer-Verlag New York.

[110] L. Opyrchal and A. Prakash. Secure distribution of events in content-based
publish subscribe systems. In Proceedings of the 10th Conference on USENIX
Security Symposium, pages 21–21, Berkeley, CA, USA, 2001. USENIX Associ-
ation.

[111] R. Ostrovsky, C. Rackoff, and A. Smith. Efficient consistency proofs on a com-
mitted database. In Proceedings of the 31st International Colloquium on Au-
tomata, Languages and Programming (ICALP), volume 3142 of Lecture Notes
in Computer Science. Springer, July 12-16, 2004.

[112] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying completeness of
relational query results in data publishing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 407–418,
New York, NY, USA, 2005. ACM.

[113] H Pang and K Mouratidis. Authenticating the query results of text search
engines. Proceedings of the VLDB Endowment, 1:126–137, August 2008.

[114] H Pang and K Tan. Authenticating query results in edge computing. In Pro-
ceedings of the 20th International Conference on Data Engineering (ICDE),
Washington, DC, USA, 2004. IEEE Computer Society.

[115] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash
tables. In Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security (CCS), pages 437–448, New York, NY, USA, 2008. ACM.

186

[116] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Proceedings of the 11th Annual International Cryptology Con-
ference on Advances in Cryptology (CRYPTO), pages 129–140, London, UK,
1992. Springer-Verlag.

[117] A. Perrig. The BiBa one-time signature and broadcast authentication protocol.
In Proceedings of the 8th ACM Conference on Computer and Communications
Security (CCS), pages 28–37, New York, NY, USA, 2001. ACM.

[118] C. Quix, L. Ragia, L. Cai, and T. Gan. Matching schemas for geographical in-
formation systems using semantic information. In Proceedings on the Workshop
On the Move to Meaningful Internet Systems (OTM), volume 4278 of Lecture
Notes in Computer Science, pages 1566–1575. Springer Berlin / Heidelberg,
2006.

[119] R. L. Rivest. Two new signature schemes. Presented at Cambridge
Seminar: http://www.cl.cam.ac.uk/Research/Security/seminars/2000/
rivest-tss.pdf, 2001.

[120] C. Sagan. COSMOS. Ballantine Books, 1985.

[121] B. Scheneir. Applied Cryptography. John Wiley & Sons, second edition, 1996.

[122] T. E. Senator. Link mining applications: progress and challenges. ACM
SIGKDD Explorations Newsletter, 7(2):76–83, 2005.

[123] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[124] S. Singh and S. Prabhakar. Ensuring correctness over untrusted private
database. In Proceedings of the 11th International Conference on Extending
Database Technology (EDBT), pages 476–486, New York, NY, USA, 2008.
ACM.

[125] M. Srivatsa and L. Liu. Securing publish-subscribe overlay services with Event-
Guard. In Proceedings of the 12th ACM Conference on Computer and Commu-
nication Security (CCS), pages 289–298, New York, NY, USA, 2005. ACM.

[126] R. Steinfeld, L. Bull, and Y. Zheng. Content extraction signatures. In Proceed-
ings of the 4th International Conference on Information Security and Cryptology
(ICISC), volume 2288 of Lecture Notes in Computer Science, pages 163–205.
Springer Berlin / Heidelberg, 2002.

[127] R. E. Strom, G. Banavar, T. D. Chandra, M. Kaplan, K. Miller, B. Mukherjee,
D. C. Sturman, and M. Ward. Gryphon: An information flow based approach to
message brokering. In Proceedings of the International Symposium on Software
Reliability Engineering, 1998.

[128] B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao. Privacy-
preserving computation and verification of aggregate queries on outsourced
databases. In Proceedings of the 9th International Symposium on Privacy
Enhancing Technologies (PETS), pages 185–201, Berlin, Heidelberg, 2009.
Springer-Verlag.

187

[129] Y. Tian, J. Patel, V. Nair, S. Martini, and M. Kretzler. Periscope/GQ: A
graph querying toolkit. In Proceedings of the VLDB Endowment, volume 1,
pages 1404–1407. VLDB Endowment, August 2008.

[130] A. M. Turing. Intelligent machinery. Technical report, Report for the National
Physical Laboratory, published in Machine Intelligence 7, B. Meltzer and D.
Michie, eds. (1969), 1948.

[131] A. M. Turing. Computing machinery and intelligence. Mind, 59:430–460, 1950.

[132] L. M. Vaquero, Luis R.-M., J. Caceres, and M. Lindner. A break in the clouds:
towards a cloud definition. ACM SIGCOMM Computer Communication Re-
view, 39(1):50–55, 2009.

[133] Swami Vivekananda. The Complete Works of Swami Vivekananda, Volume 6,
Notes Of Class Talks And Lectures. Vedanta Press & Bookshop, 1947.

[134] H. Wang and L. V. S. Lakshmanan. Efficient secure query evaluation over
encrypted XML databases. In Proceedings of the 32nd International Conference
on Very Large Databases (VLDB), pages 127–138. VLDB Endowment, 2006.

[135] J. Xu. On directed transitive signature. Cryptology ePrint Archive, Report
2009/209, 2009. http://eprint.iacr.org/.

[136] X. Yi. Directed transitive signature scheme. In Proceedings of the The Cryptog-
raphers Track at the RSA Conference(CT-RSA), volume 4377 of Lecture Notes
in Computer Science, pages 129–144. Springer Berlin / Heidelberg, 2007.

[137] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree signatures for XML
querying and navigation. In Database and XML Technologies, volume 2824
of Lecture Notes in Computer Science, pages 149–163. Springer, September 8,
2003.

[138] R. Zhang and Y. C. Hu. Hyper: A hybrid approach to efficient content-based
publish/subscribe. In Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 427–436, Washington, DC,
USA, 2005. IEEE Computer Society.

[139] E. Zheleva and L. Getoor. Preserving the privacy of sensitive relationships in
graph data. In Proceedings of the International Workshop on Privacy, Secu-
rity, and Trust in KDD (PinKDD), pages 153–171, Berlin, Heidelberg, 2007.
Springer-Verlag.

VITA

188

VITA

Ashish Kundu was born in Mangalpur in the state of Odisha, India. During

his schooling, Ashish attended the Mangalpur Primary School, the Srima Shiksha

Sadan Middle English School and the Srima Shiksha Sadan High School at the Sri

Aurobindo Nagar near his native place. For higher secondary education (11th and

12th) in science, he studied in the Fakir Mohan College at Balasore in Odisha. During

the schooling and undergraduate, Ashish received a Primary School Scholarship of

Odisha, National Rural Talent Scholarship of India, and National Merit Scholarship

of India. During these years, Ashish has also received several awards for his essay

writing and debating abilities.

After his higher secondary education, Ashish joined the Regional Engineering

College, Rourkela (now known as the National Institute of Technology, Rourkela) in

order to study for the Bachelor of Engineering in Computer Science & Engineering. In

1998, after completing the Bachelor of Engineering with Honors, he went on to study

for the degree of Master of Technology in Computer Science at the Indian Institute

of Technology Bombay. During the master’s program, Ashish worked with Prof. D.

M. Dhamdhere, his advisor, and developed the notion of E-Paths and the scheme of

E-Path-PRE for efficient partial redundancy elimination in the context of optimizing

compilers.

After receiving the master’s degree, Ashish joined the IBM Research Lab in Delhi

as a Research Staff Member, where his focus of research was primarily on distributed

and pervasive systems. During his tenure at IBM Research (2000 − 2005), Ashish

received a First Invention Achievement award, two Plateau Invention Achievement

awards, and a IBM Bravo award.

In 2005, Ashish joined the Department of Computer Science at Purdue University,

West Lafayette, in order to pursue a Ph.D. in Computer Science. Since then he has

189

been affiliated with the Center for Education and Research in Information Assur-

ance and Security (CERIAS) as well. In spring, 2006, he started working with Prof.

Elisa Bertino, his advisor, on the problem of “Authentication of Trees and Graphs

without Leaking”. In his doctoral research, Ashish developed structural signatures

and leakage-free redactable signatures for trees, graphs and forests, that have direct

applications in the context of cloud computing. The first paper he co-authored with

Prof. Bertino on this research topic was adjudged as the Best Student Paper at the

2006 IEEE Enterprise Computing conference. Ashish’s work on information leakage

in the context of trees/graphs and web services, as well as on dishonest software, have

also been recognized as the Best Research Posters at some of the Annual CERIAS

Symposia.

In summer 2008, he interned at Google, Mountain View, California, and developed

a framework for mobile ad delivery on Android-based smart-phones. In spring 2010,

he interned at EMC2, Santa Clara, California, where his works on dynamic perfor-

mance tracing in storage kernels were incorporated in a product. While at Purdue,

he served on technical program committees of the IEEE EDOC, DEXA and IDEAS.

Ashish defended his doctoral dissertation in November 2010, and received the Ph.D.

in December 2010.

