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ABSTRACT
Privacy-preserving microdata publishing currently lacksa solid
theoretical foundation. Most existing techniques are developed to
satisfy syntactic privacy notions such ask-anonymity, which fails
to provide strong privacy guarantees. The recently proposed notion
of differential privacy has been widely accepted as a sound privacy
foundation for statistical query answering. However, no general
practical microdata publishing techniques are known to satisfy dif-
ferential privacy. In this paper, we start to bridge this gap. We
first analyze k-anonymization methods and show how they failto
provide sufficient protection against re-identification, which it was
designed to protect. We then prove that,k-anonymization methods,
when done “safely”, and when preceded with a random sampling
step, can satisfy(ǫ, δ)-differential privacy with reasonable parame-
ters. This result is, to our knowledge, the first to linkk-anonymity
with differential privacy and illustrates that “hiding in acrowd ofk”
indeed offers privacy guarantees. This naturally leads to future re-
search in designing “safe” and practicalk-anonymization methods.
We observe that our result gives an alternative approach to output
perturbation for satisfying differential privacy: namely, adding a
random sampling step in the beginning and pruning results that are
too sensitive to changing a single tuple. This approach may be ap-
plicable to settings other than microdata publishing. We also show
that adding a random-sampling step can greatly amplify the level
of privacy guarantee provided by a differentially-privatealgorithm.
This result makes it much easier to provide strong privacy guar-
antees when one wishes to publish a portion of the raw data. Fi-
nally, we show that current definitions of(ǫ, δ)-differential privacy
requireδ to be very small to provide sufficient privacy protection
when publishing microdata, making the notion impractical in some
scenarios. To address this problem, we introduce a notion called
f -smooth(ǫ, δ)-differential privacy.

1. INTRODUCTION
In an age where the minute details of our life are recorded and

stored in databases, a clear paradox is emerging between theneed
to preserve the privacy of individuals and the need to use these
collected data for research, public policy formulation, and other
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purposes. We consider the scenario where a trusted curator gath-
ers sensitive information from a large number of respondents. The
curator may then use the data in two different ways. In the first
way, the curator’s goal is to learn (and release to the public) sta-
tistical facts about the underlying population, while protecting the
privacy of respondents. This is known as privacy-preserving data
analysis, statistical disclosure control, inference control, or privacy-
preserving data mining. In the second way, the curator publishes a
sanitized (or, “anonymized”) version of the dataset so thatother
parties can use the data to perform any analysis they are interested
in. This is called privacy-preserving microdata publishing.

There are two settings for privacy-preserving data analysis: in-
teractive and non-interactive. In the interactive setting, the curator
provides a mechanism with which users may pose queries about
the data, and get (possibly noisy) answers. This setting wasexten-
sively studied in the 1980’s and 1990’s. This field, however,sees a
renewed and growing interest in recent years, fueled by the devel-
opment ofǫ-Differential Privacy and its variants [10, 11]. These
notions are intuitive and have been proven to provide semantic
privacy; they are currently widely accepted as the privacy notion
of choice in the interactive setting. In the non-interactive setting,
the curator computes and publishes some statistics of the collected
dataset.

In this paper, we focus on privacy-preserving microdata pub-
lishing, where sanitization or anonymization is applied tothe in-
put dataset before publishing. Traditionally, sanitization employed
perturbation and data modification techniques, and may alsoin-
clude some accompanying synopses and statistics. Over the last
decade or so, there has been extensive work in database community
on various data anonymization methods. Many techniques employ
generalization (or recoding), i.e., replacing a data valuewith a less
precise value that is semantically consistent, and suppression, i.e.,
removing tuples that stand out.

Despite the number of anonymization techniques proposed, the
field of privacy-preserving microdata publishing currently lacks a
solid theoretical foundation. Sweeny and Samarati [30, 29,27,
28] introduced the well-knownk-anonymity notion. It is a syntac-
tic property on anonymized datasets: when only certain attributes,
known as quasi-identifiers (QIDs) are considered, each tuple in
the anonymized dataset should appear at leastk times. Thek-
anonymity notion has generally be considered too weak. Manypri-
vacy notions have been introduced since then, e.g.,l-diversity [22]
andt-closeness [20]. We often see that a paper introduces a new
privacy definition motivated by weaknesses of existing definitions,
only to be attacked by a later paper.

Given this current state of the art, one may argue that given the
difficulties in establishing a strong privacy definition in privacy-
preserving microdata publishing, we should give up the approach



and focus on interactive private data analysis. We argue that the
interactive setting cannot replace microdata publishing for the rea-
sons given below, and privacy-preserving microdata publishing re-
mains necessary.

First, the interactive setting is unsuitable when the number of
data users is large. In an interactive mechanism, the approach to
satisfy differential privacy is to add an appropriate levelof noise
to each query result. With each query, the overall level of pri-
vacy for the dataset decreases as more information is being leaked.
Hence, the standard approach is to have a privacy budget, a portion
of which is used by answering each new query. When the privacy
budget is used up after answering a number of queries, the curator
can no longer effectively answer any new queries. This wouldbe
unacceptable in situations where a dataset needs to serve the gen-
eral public such as when the census bureau provides the census data
to the public. Because the curator cannot be sure whether anytwo
data users are colluding or not, the privacy budget has to be for all
users. When there are many users, the issue of dividing the privacy
budget among them becomes a thorny problem in itself. In any
case, each user can get only a very small budget that is unlikely to
be sufficient.

Second, even when a data user has a generous privacy bud-
get, perhaps because there are few data users, this privacy-budget
paradigm can become a hinderance to creative research. In a pro-
duction setting where the queries one wants answered are well-
known, this paradigm may be satisfactory. However, when one
wants to explore the data and test various hypothesis, the privacy
budget can become a serous limitation. For many analysis tasks,
effective mechanisms that satisfy differential privacy donot yet ex-
ist. Even when one uses only queries where effective mechanisms
exist, privacy budgets become a finite and non-replaceable resource
that will be consumed by each query, essentially limiting one’s ac-
cess to the data. The research value of data shared under a privacy
budget is significantly diminished.

Furthermore, the interactive approach puts lots of resource con-
straints on the curator and requires a close coupling between the
curator and data users. The curator must run all the client queries
and algorithms on its servers, which represents a significant over-
head. The data users, on the other hand, must reveal to the curator
the queries they want to make, which may be considered confiden-
tial or sensitive by the data users.

Finally, there are many situations in which answering statisti-
cal queries simply does not achieve the purpose of sharing the
data. One example is Netflix’s release of movie rating data for
researchers to develop algorithms based on the data. Given an al-
gorithm, it is possible to make it differentially private, as shown
in [24]. However, the purpose here is to let researchers develop
new algorithms. It is unclear how this can be done without ac-
cess to some data. Another example comes from a real-world chal-
lenge that was introduced by the Chief Information Officer (CIO)
of a large supermarket chain in the United States. The CIO identi-
fied the problem of generating production-like data for the purpose
of testing systems under development as a major challenge facing
CIOs today. The test data must be as close to production data as
possible, yet one cannot use production data because it includes
sensitive customer information that must be protected according
to laws and regulations. Privacy-preserving microdata publishing
techniques can help in these situations.

Given these reasons, we argue that privacy-preserving microdata
publishing should be studied as a complementary technique of in-
teractive private query answering. Another question one may ask
is whetherit really matters in practiceif existing data anonymiza-
tion techniques satisfy only, say,k-anonymity, but not differential

privacy. We argue that the answer is yes. Privacy breaches dooc-
cur and have serious consequences. A number of attacks have been
publicized as a result of failed anonymization attempts. One of
the most widely publicized was the AOL’s release of search logs in
2006. Two New York Time journalists [4] were able to re-identify
Thelma Arnold, a 62 year old women living in Lilburn, Ga. from
the supposed anonymized search logs. This was deemed by CN-
NMoney to be one of the “101 Dumbest Moments in Business”
and landed the company in a class action lawsuit. We show that
existing data anonymization privacy notions fail to prevent similar
disclosures that are recognized as serious privacy compromises.

While it is natural to apply differential privacy also to themicro-
data publishing domain, the existing results remain limited. Some
are computationally expensive, such as [25, 6]. Other applythe
noise-addition techniques to specific domains where one essen-
tially publishes counts of certain items, such as keywords in search
logs [23, 15, 18].

In this paper, we aim at developing sound theoretical foundations
for microdata anonymization methods. We start by carefullyexam-
ining the k-anonymity notion to find out why it fails to provide
strong privacy protection. We first observe that thek-anonymity
notion, even when all attributes are treated as quasi-identifiers, is
unable to prevent re-identification. For example, the trivial method
of randomly choosing some tuples from the input dataset and dupli-
cating each chosen tuplek times satisfiesk-anonymity, even though
it publishes a significant portion of the input tuples unchanged,
enabling easy re-identification of them. Furthermore, almost all
k-anonymization methods that have been proposed in the litera-
ture are vulnerable because the way they compute the generation
scheme to be applied to the input tuples makes the generalization
overly dependent on tuples that contain extreme values, leaking in-
formation about these tuples.

One way to avoid the above vulnerability of existingk-
anonymization methods is to use a generalization scheme that is
independent of the input dataset. That is, the algorithm applies a
fixed generation scheme to the input tuples and then suppresses any
tuple that appears less thank times. Such a “safe”k-anonymization
algorithm has no apparent privacy weaknesses, and intuitively pro-
vides some level of privacy protection, as each tuple is indeed “hid-
ing in a crowd of at leastk”. Unfortunately, the algorithm still does
not satisfy differential privacy, simply because the algorithm is de-
terministic. The desire to understand and formalize what kind of
privacy protection is offered by such an algorithm is the initial mo-
tivation for this research.

The contributions of this paper are as follows:

• We prove that by adding a random sampling step, the
above “safe”k-anonymization algorithm provides(ǫ, δ)-
differential privacy with reasonable parameters.

In the literature,k-anonymity and differential privacy have
been viewed as very different privacy guarantees.k-
anonymity is syntactic and weak, and differential privacy
is algorithmic and provides semantic privacy guarantees.
Ours is, to our knowledge, the first result that linksk-
anonymization with differential privacy. It illustrates that
“hiding in a crowd ofk” indeed offers privacy guarantees.

We also observe that existing techniques for satisfying differ-
ential privacy rely almost exclusively on output perturbation,
that is, adding noise to the query outputs. Our result sug-
gests an alternative approach to satisfy differential privacy.
Rather than adding noises to the output, one can add a ran-
dom sampling step in the beginning and prune results that are
too sensitive to changes of individual tuples (i.e., tuplesthat



violatek-anonymity).

• We show that random sampling has a big privacy ampli-
fication effect forǫ-differential privacy. For example, ap-
plying an algorithm that achieves (ln 2)-differential privacy
on dataset sampled with0.1 probability can achieve overall
(ln 1.1)-differential privacy. This result applies in interactive
query answering as well as in microdata publishing.

We note that random sampling is a step that is either already
undertaken or can be naturally added in many microdata pub-
lishing scenarios. For example, the census bureau publishes
a 1-percent microdata sample. Netflix can also use random
sampling to select which tuples to be released.

• Finally, we note that the notion of(ǫ, δ)-differential privacy,
when applied to microdata publishing, is somewhat problem-
atic, because the probability that a privacy breach occurs is
not bounded byδ, but rather byδn, wheren is the num-
ber of tuples in the output dataset. While one can always
choose a very smallδ, this may result in datasets of poor
quality. To address this problem, we introduce the notion
of f -smooth(ǫ, δ)-differential privacy, wheref is a func-
tion such thatf(1) = 1 andf is monotonically decreasing.
This notion essentially requires an algorithm to satisfy(ǫ, δ)-
differential privacy for many pairs of(ǫ, δ)’s, and whileǫ in-
creases,δ decreases. We show that this notion is composable
and that it is satisfied by the approach of sampling + safe
k-anonymization.

The rest of the paper is organized as follows. We give a brief in-
troduction of different privacy in Section 2, and analyze the pitfalls
of k-anonymity in Section 3. In Section 4 we prove our main re-
sult that random sampling + safek-anonymization satisfies(ǫ, δ)-
differential privacy and discuss its implications. We explore the
privacy amplification benefit of random sampling in Section 5and
introduce our notion off -smooth(ǫ, δ)-differential privacy in Sec-
tion 6. Finally, we discuss related work in Section 7 and conclude
in Section 8.

2. DIFFERENTIAL PRIVACY

Differential privacy formalizes the following protectionobjec-
tive: if a disclosure occurs when an individual participates in the
database, then the same disclosure also occurs with similarprob-
ability (within a small multiplicative factor) even when the indi-
vidual does not participate. More formally, differential privacy
requires that, given two input datasets that differ only in one tu-
ple, the output distributions of the algorithm on these two datasets
should be close. There are two ways to interpret the notion that two
datasets differ in only one tuple. The standard interpretation is that
one dataset contains one more tuple than the other. An alternative
is to have the two datasets contain the same number of tuples,with
all but one being the same. In this paper we adopt the standard
interpretation.

DEFINITION 1. [ǫ-Differential Privacy [10, 12] (ǫ-DP)]: A
randomized algorithmA gives ǫ-differential privacy if for any
datasetD, any tuplet ∈ D, and anyS ∈ Range(A),

e−ǫ ≤
Pr[A(D) = S]

Pr[A(D−t) = S]
≤ eǫ (1)

Note that in this paper we always assume that datasets such asD
are multisets, i.e., the same tuple may appear multiple times. We

useD−t to denote the dataset with one copy oft removed fromD,
and define0/0 to be1, andp/0 to be∞ whenp > 0.

We point out that because inequality 1 bounds the ratio on both
sides, Definition 1 also ensures that for any tuplet′, the ratio

Pr[A(D)=S]
Pr[A(D+t′ )=S]

is bounded in[e−ǫ, eǫ], whereD+t′ denotes the

dataset resulted from addingt′ toD.
Intuitively, ǫ-DP offers strong privacy protection. IfA satisfies

ǫ-DP, one can claim that publishingA(D) protects the privacy of
every tuplet in D, because even if one leavest out of the dataset,
in which case the privacy oft can be considered to be protected,
one may still publishS with a similar probability.

Differential privacy provides worst-case privacy guarantee in at
least two senses. First, inequality (1) must hold foreverydatasetD
andeverytuplet in D, meaning that the privacy for every tuple in
every dataset is protected. Second, inequality (1) requires that the
eǫ bound holds foreverypossible outcomeS, even ifS occurs only
with very low probability. These are desirable features, since as we
have seen in past privacy incidents, compromising the privacy of a
single individual may already be viewed unacceptable, and should
be avoided [4, 26].

In practice,ǫ-DP can be too strong to be satisfiable in some sce-
narios. A commonly used relaxation is to allow the outputS’s that
violate inequality (1) to occur with a small error probability δ. We
use the following formulation.

DEFINITION 2 ((ǫ, δ)-DIFFERENTIAL PRIVACY ((ǫ, δ)-DP)).
A randomized algorithmA satisfies(ǫ, δ)-differential privacy,
if for any datasetD and anyt ∈ D, the following holds with
probability at least1− δ:

e−ǫ ≤
Pr[A(D) = S]

Pr[A(D−t) = S]
≤ eǫ

More precisely, letO denote the set of allS’s in Range(A) such
that the above does not hold. ThenPr[A(D) ∈ O] < δ and
Pr[A(D−t) ∈ O] < δ.

Some papers use another slightly weaker version of relaxation,
which is implied by Definition 2. See, for example, [17] for more
details.

The (ǫ, δ)-DP notion allows that for some outputS, the ratio
Pr[A(D)=S]

Pr[A(D−t)=S]
does not need to be bounded. In fact, it is possible

that for someS, Pr[A(D) = S] > 0 andPr[A(D−t) = S] = 0.
If any suchS occurs as output, one can immediately tell that the tu-
plet is in the input. In other words,(ǫ, δ)-DP gives up one aspect of
ǫ-DP’s worst-case protection. Under(ǫ, δ)-DP, total privacy com-
promises for some tuples can occur; however, the total probability
that these “bad” outputs occur is bounded byδ. In Section 6, we
will explore the potential problem with this relaxation andpropose
a way to strengthen it.

3. AN ANALYSIS OF K-ANONYMITY

In this section, we examinek-anonymity and explore its limita-
tions and potential merits as a principle for privacy protection.

3.1 Difficulties of Choosing QIDs
The development ofk-anonymity was motivated by an early

and well publicized privacy incident [30]. The Group Insurance
Commission (GIC) published a supposedly anonymized dataset
recording the medical visits of patients managed under the plan.
While the obvious personal identifiers were removed, the pub-
lished data included zip code, date of birth, and gender, which



are sufficient to uniquely identify a significant fraction ofthe pop-
ulation. Sweeney [30] showed that by correlating this data with
the publicly available Voter Registration List for Cambridge Mas-
sachusetts, medical visits for many individuals can be easily iden-
tified, including those of William Weld, a former governor ofMas-
sachusetts. We note that even without access to the public voter
registration list, the same privacy breaches can occur. Many in-
dividuals’ birthdate, gender and zip code are public information.
This is especially the case with the advent of social media, includ-
ing Facebook, where users share seemingly innocuous personal in-
formation to the public. The GIC re-identification attack directly
motivated the development of thek-anonymity privacy notion.

DEFINITION 3. [k-Anonymity] [30]: A published table satis-
fiesk-anonymity relative to a set of QID attributes if and only if
when the table is projected to include only the QIDs, every tuple
appears at leastk times.

A first problem with this definition is that it requires the division
of all attributes into quasi-identifiers (QIDs) and sensitive attributes
(SA), where the adversary is assumed to know the QIDs, but not
SAs. This separation, however, is very hard to obtain in practice.
Even though only some attributes are used in the GIC incident, it
is difficult to assume that they are the only QIDs. Other attributes
in the GIC data include visit date, diagnosis, etc. There maywell
exist an adversary who knows this information about some individ-
uals, and if with this knowledge these individuals’ record can be
re-identified, it is still a serious privacy breach. The samedifficulty
is true for publishing any kind of census, medical, or transactional
data. When publishing anonymized microdata, one has to defend
against all kinds of adversaries, some know one set of attributes,
and others know a different set. An attribute about one individual
may be known by some adversaries, and unknown (and thus should
be considered sensitive) for other adversaries.

This separation of QIDs and SAs has indirectly led to criti-
cisms ofk-anonymity and the development of privacy concepts
that focus on attribute disclosure, such asℓ-diversity [22] andt-
closeness [20].

In this paper we consider a strengthened version ofk-anonymity
by treating all attributes as QIDs. This is stronger than using
any subset of attributes as QIDs. This strengthened versionof k-
anonymity avoids making assumption about the adversary’s back-
ground knowledge in terms of which attributes are known and what
are not. This has been used in the context of anonymizing transac-
tion data [16].

3.2 k-Anonymity Does Not Prevent Re-
identification

The notion ofk-anonymity is motivated by re-identification at-
tacks, and intuitively it should provide some protection against re-
identification, especially if we use the strengthened version that
treats all attributes as QIDs. When satisfying this notion,each tuple
in the output is blended in a group of at leastk tuples that are the
same. This follows the appealing principle that “privacy means hid-
ing in a crowd”. The intuition is that as there are at leastk−1 other
tuples that look exactly the same, one cannot re-identify which tu-
ple in the output corresponds to an individual with probability over
1/k. Unfortunately, this intuition turns out to be wrong. Consider
the following class of algorithms.

ALGORITHM 1. [k-Duplication]: First, select1/k’th portion
of the input tuples by some method. For example, one method isto
group the tuples into clusters ofk tuples each, and randomly select
one tuple in each cluster as the representative for that cluster. Then,
duplicate each selected tuplek times.

Obviously the outputs of anyk-Duplication algorithm satisfies
k-anonymity. However, it is very difficult to claim that it provides
privacy protection, as it essentially publishes a portion of the input
dataset unchanged. One can point to a group ofk identical tuples
and say which individual these tuples are from. One may object
that the above algorithm is too artificial, and argue that practicalk-
anonymization algorithms are not subject to such re-identification
attacks. To illustrate the weakness ofk-anonymity more clearly,
consider the following anonymization scheme, which represents
several proposed algorithms fork-anonymity [7, 19].

ALGORITHM 2. [Clustering and Local Recoding (CLR)]:
First, group input tuples into clusters such that each cluster has
at leastk tuples. For example, one method of grouping is the Mon-
drian algorithm [19]. One could also use some clustering method
based on some distance measurement (e.g., [7]). Then, for each
tuple, replace each attribute value with a generalized value that
represents all values for that attribute in the cluster.

CLR algorithms are vulnerable when some tuples contain ex-
treme values. Even if the output satisfiesk-anonymity, the gener-
alized value depends on the extreme values of some tuples; hence
from the output an adversary can infer that one’s tuple is in the
dataset and can thus infer these values. For example, suppose
the dataset records the net worth of some individuals in a town.
Further suppose that it is known that only one individual in the
town has net worth over $10 million. When given a(k = 20)-
anonymized output dataset containing one group of tuples that all
have [900K, 35M ] as the generalized net worth value, what can
one conclude? At least the following: the rich individual isin the
dataset; the individual’s tuple is in the group; and the individual’s
net worth is $35 million. It would be difficult to say that because in
the output dataset, there are at least19 other tuples that are exactly
the same, then the individual cannot be re-identified with proba-
bility 1/20. The same attack applies to almost every existingk-
anonymization algorithm.

We hope that these arguments are convincing enough for the con-
clusion thatk-anonymity (even when all attributes are treated as
QID) does not provide adequate protection. One natural question
is: Is this because the intuition “hidden in a crowd of size atleast
k” fails to provide privacy protection, or is it because the definition
of k-anonymity fails to correctly capture “hidden in a crowd of size
at leastk”?

We believe that the answer is the latter. And we now explain
why. The notion ofk-anonymity implicitly assumes that there is a
one-to-one relationshipg between the input tuples and the output
tuples, i.e., given inputD, the output dataset is{g(t) | t ∈ D}.
When there arek output tuples that are the same, there must be
k input tuples; hence any input tuple is hidden within a group of
k input tuples. However, while almost allk-anonymization algo-
rithms do have an implicit association relation between input tuples
and output tuples, this association relation itself can be overly de-
pendent on a few input tuples. For instance, consider the example
above with the extreme value. All the20 output tuples in the group
with [900K, 35M ] obviously depend on the single input tuple with
value35M . Hence it is not justg(t1) that contains information
aboutt1, but so doesg(t2), g(t3), etc. As a result, satisfying only
k-anonymity in the output does not prevent re-identification.

Another way to look at this limitation of the notion ofk-
anonymity is that it issyntactic, in that one only needs to check
the syntactic properties of each output individually to ensure that
it is satisfied; one does not need consider the behavior of thedata
anonymization algorithm on other inputs. Hence an output that
satisfiesk-anonymity can still reveal information about individual



tuples.
A natural conjecture is that if ak-anonymization algorithm uses

a mapping that does not overly depends on any individual tuple,
then such an algorithm provides some level of privacy protection.
Indeed, trying to formalize this intuition was the originalmotiva-
tion of the results reported in the current paper.

3.3 A “Safe” k-Anonymization Algorithm
We now consider a “safe”k-anonymization algorithm, in which

the mapping from input tuples to output tuples does not depend on
the input dataset at all.

ALGORITHM 3. [Data-independent_Generalization + k-
Suppression (k-DGS)]: This algorithm uses a global recoding
scheme (i.e., a generalization scheme) that does not dependon
the particular input datasetD. It has two steps. In the first step,
one applies this recoding scheme to each tuple in the input. In
the second step, one suppresses any tuple that appear less than k
times.

Thek-DGS algorithm’s outputs satisfyk-anonymity. Intuitively
this algorithm provides some level of privacy protection, and the
level of privacy protection increases with larger values ofk. If any
individual’s tuple is published, there must be at leastk − 1 other
tuples in theinput database that are the same under the recoding
scheme; furthermore, the recoding scheme does not depend onthe
dataset, and one only sees the results of the recoding. Hencein this
input dataset, the individual is hidden in a crowd of at leastk.

Can one formally show that thek-DGS algorithm offers privacy
protection? The fact that this algorithm satisfiesk-anonymity is not
helpful, since algorithms that obviously do not protect privacy also
satisfyk-anonymity. At the same time, thek-DGS algorithm does
not satisfy(ǫ, δ)-DP for anyδ < 1. The reason is simple. Letg be
the global recoding scheme. ChooseD such that it containsn > k
tuplest′ such thatg(t′) = g(t). Then, thek-DGS algorithm will
output different numbers ofg(t) for D andD−t. ForD, the output
would containn copies ofg(t), and forD−t, the output would
containn− 1 copies ofg(t). Thus, the ratio of probabilities for an
output withn copies ofg(t) is unbounded.

We note that an adversary is able to tell whether an outputS
is resulted fromD or D−t because the adversary knows exactly
how many copies oft′ are inD such thatg(t′) = g(t). A natural
consideration is: “Can we make the adversary’s knowledge about
this less certain?” Observing an output that contains, say,25 copies
of tuplesg(t), an adversary would be unable to tell whether the
input isD or D−t if he is uncertain whetherD contains 25 or 26
copies oft′ such thatg(t′) = g(t).

4. K-ANONYMITY MEETS DIFFEREN-
TIAL PRIVACY

We have shown thatk-DGS does not satisfy(ǫ, δ)-DP, because
(ǫ, δ)-DP assumes an adversary that knows precise knowledge of
what other tuples are inD. A method to add uncertainty to what
an adversary knows about the dataset is to first perform a random
sampling step. This leads us to the following algorithm:

ALGORITHM 4. [β-Sampling + Data-independent
_Generalization + k-Suppression (k, β)-SDGS] The algo-
rithm has three steps. In the first step, it samples from the input
dataset with probabilityβ, that is, each tuple in the input dataset
is chosen with probabilityβ. In the second step, it applies a
data-independent generalization procedure to each tuple.In the
third and final step, it suppresses any tuple that appears less than
k times.

Below, we show that this algorithm satisfies(ǫ, δ)-differential
privacy for a smallδ with reasonable values ofk andβ. We use
f(j;n, β) to denote the probability mass function for the binomial
distribution; that is,f(j;n, β) gives the probability of getting ex-
actly j successes inn trials where each trial succeeds with proba-
bility β. And we useF (j;n, β) to denote the accumulative proba-
bility mass function; that is,F (j;n, β) =

∑j

i=0 f(j;n, β).

THEOREM 1. The(k, β)-SDGS algorithm (when0 < β < 1)
satisfies(ǫ, δ)-differential privacy for anyǫ ≥ − ln(1 − β), and
δ = d(k, β, ǫ), where the functiond is defined as

d(k, β, ǫ) = max
n:n≥

⌈

k
γ

−1
⌉

n
∑

j>γn

f(j;n, β),

whereγ = (eǫ−1+β)
eǫ

.

PROOF. Let A denote the algorithm, andg be the data-
independent generalization procedure in the algorithm. For any
datasetD, any tuplet ∈ D, and for any outputS. For any
ǫ ≥ − ln(1− β), we want to compute the probability by which

e−ǫ ≤
Pr[A(D) = S]

Pr[A(D−t) = S]
≤ eǫ (2)

is violated.
Let n be the number oft′ in D such thatg(t′) = g(t). Let j be

the number of times thatg(t) appears inS. Note that as the only
difference betweenD andD−t is thatD has one extra copy oft,
we have.

Pr[A(D) = S]

Pr[A(D−t)) = S]
=

Pr[A(D) hasj copies of g(t)]
Pr[A(D−t) hasj copies of g(t)]

Because any tuple that appears less thank times is suppressed,
eitherj ≥ k, or j = 0. Whenj = 0, we have

Pr[A(D) = S]

Pr[A(D−t)) = S]
=

F (k − 1;n, β)

F (k − 1;n− 1, β)
=

∑k−1
i=0 f(i;n, β)

∑k−1
i=0 f(i;n− 1, β)

Clearly,F (k − 1;n, β) is always less thanF (k − 1;n − 1, β);1

hence Pr[A(D)=S]
Pr[A(D−t))=S]

< eǫ. Furthermore, we note that∀i ∈ [0..k−

1], f(i;n,β)
f(i;n−1,β)

= n(1−β)
n−i

≥ (1 − β). Hence Pr[A(D)=S]
Pr[A(D−t))=S]

≥

(1− β). Becauseǫ ≥ − ln(1− β), we havee−ǫ ≤ 1− β; hence
under the case whenj = 0, inequality (2) is satisfied.

Whenj ≥ k, we have

Pr[A(D) = S]

Pr[A(D−t)) = S]
=

f(j;n, β)

f(j;n− 1, β)
=

{

n(1−β)
n−j

n ≥ j

1 n < j

The choice ofn can be arbitrary because it is determined by the
choice ofD. The value ofj is determined by the choice ofS. For
some values ofj, inequality (2) is violated. We want to compute
the probabilities of these badj’s occurring. From the above, we
know whenj > n, the outcome is good. We now consider the bad
outcomes whenj ≤ n.

Note that becauseǫ ≥ − ln(1 − β), we have−ǫ ≤ ln(1 − β),
and

n(1− β)

n− j
> 1− β ≥ e−ǫ.

Hence we only need to consider whatj’s maken(1−β)
n−j

> eǫ. This

91LetXi’s be random variables that take the value1 with proba-
bility β, and0 with probability1−β. F (k−1;n−1, β) is the prob-
ability that the sum ofn−1 suchX ’s ≤ k−1, andF (k−1;n, β)
is the probability that the sum ofn suchX ’s is≤ k − 1.



occurs whenj > (eǫ−1+β)n
eǫ

. Let γ = (eǫ−1+β)
eǫ

, then this occurs
whenj > γn.

So far our analysis has shown that a bad outcomeS for an input
D would satisfy the conditionj ≥ k andn ≥ j > γn. Now we
need to compute the probability thatA(D) gives a bad outcome,
and the probability thatA(D−t) gives a bad outcome. The former
is given below:

max
n

n
∑

j:(j≥k∧j>γn)

f(j;n, β) (3)

And the latter is

max
n

n−1
∑

j:(j≥k∧j>γn)

f(j; n− 1, β)

As the latter is smaller than the former, we only need to boundthe
former.

Let nm =
⌈

k
γ
− 1

⌉

, we now show that whenn ≤ nm,
∑n

j:(j≥k∧j>γn) f(j;n, β) increases whenn increases. Note
that the choice ofnm satisfies the condition thatγnm < k
and γ(nm + 1) ≥ k. Observe that whenn ≤ nm, the
condition (j ≥ k ∧ j > γn) becomesj ≥ k. The function
∑n

j:j≥k f(j;n, β) is monotonically increasing with respect ton.
Whenn ≥ nm, the condition(j ≥ k ∧ j > γn) becomesj >

γn. (In fact, whenn = nm +1, the smallestj to satisfyj > γn is
k + 1.) Hence the error probability is bounded by

δ = d(k, β, ǫ) = max
n:n≥

⌈

k
γ

−1
⌉

n
∑

j>γn

f(j;n, β), whereγ =
(eǫ − 1 + β)

eǫ
.

The formula for the functiond(k, β, ǫ) is quite complicated. We

now examine it in more details. We want to findn ≥
⌈

k
γ
− 1

⌉

that maximizes
∑n

j>γn f(j;n, β). We first observe thatγ > β
because

γ − β = (eǫ−1+β)
eǫ

− β = (eǫ−1)(1−β)
eǫ

> 0

That is,
∑n

j>γn f(j; n, β) sums up the tail binomial distribution
probabilities for the portion of the tail beyondγn, as shown in Fig-
ure 1. Following the intuition behind the law of large numbers, the
larger the value ofn, the smaller this tail probability. Note that
the Chernoff bound of this tail probability decreases exponentially
with respect ton. Hence intuitively, choosing the smallest value of

n, i.e.,n = nm =
⌈

k
γ
− 1

⌉

should maximize the formula. Unfor-

tunately, due to the discrete nature of the binomial distribution, the
maximum value may not be reached atnm, but instead at one of the

next few local maximal points
⌈

k+1
γ

− 1
⌉

,
⌈

k+2
γ

− 1
⌉

, · · · . Thus

we are unable to further simplify the representation of the function
d(k, β, ǫ).

Below we show the numerical values of the functiond(k, β, ǫ)
for different parameters. The functiond relates the four parameters
ǫ, β, k, δ by requiringδ = d(k, β, ǫ). Note that the other require-
ment is thatǫ ≥ − ln(1 − β). Among the four parameters,ǫ and
δ define the level of privacy protection, whilek andβ affect the
quality of anonymized data.

In Table 1, we fixk = 20 and report the values ofδ under dif-
ferentǫ andβ values. The table shows that the values ofδ can be
very small, which is what we need. We note that with fixedk and
β, δ decreases asǫ increases, which states that the error probabil-
ity gets smaller when one relaxes theǫ-bound on the probability
ratio. In other words, the more serious a privacy breach, themore

βn γn

Figure 1: A graph showing the relationship betweenβn andγn
on a binomial curve

unlikely it occurs. We exploit this phenomenon in Section 6 to de-
fine f -smooth(ǫ, δ)-DP. The table also shows that with fixedk
andǫ, δ decreases asβ decreases, meaning that a smaller sampling
probability improves the privacy protection. In Section 5,we will
see another instance of the effect of smaller sampling probability
means better privacy protection.

In Figure 2, we show the results from examining the relationship
betweenǫ andδ when we varyk ∈ {5, 10, 20, 30, 50} under fixed
β = 0.2. We plot 1

δ
againstǫ for values ofǫ > − ln(1 − β). The

figure indicates a negative correlation betweenǫ and δ. Further-
more, increasingk has a close to exponential effect of improving
privacy protection. For example, whenǫ = 2, increasingk by 10
roughly decreasesδ by 10−5.

In Figure 3, we show the results from examining the effect
of varying β ∈ {0.05, 0.1, 0.2, 0.3, 0.4} under a fixed value of
k = 20. This shows that decreasingβ also dramatically improve
the privacy protection. The two figures indicate the intricate rela-
tionship between privacy and utility.

In Figure 4, we explore this phenomenon that increasingk and
decreasingβ both improve privacy protection. Starting from(k =
15, β = 0.05), each time we doubleβ and find a valuek that gives
a similar level of privacy protection. We finds thatk increases from
15 to 22 (for β = 0.1), 35 (for β = 0.2), and60 (for β = 0.4).

In Figure 5, we examine the quality of privacy protection forvery
smallk’s (from 1 to 5). We choose a very small sampling proba-
bility of β = 0.025. Not surprisingly, whenk = 1, the privacy
protection is entirely from the sampling effect, as the obtained δ
value is less thanβ. However, whenk ≥ 2, we start seeing privacy
protection effect fromk-anonymization, withδ (< 0.001) signifi-
cantly smaller thanβ = 0.025 whenǫ = 2.

Finally, in figure 6 we show the relationship between the privacy
parameterǫ and the utility parameterk if we set the requirement
that δ ≤ 10−6. The figure shows that smaller values ofǫ can be
satisfied for larger values of k. Furthermore, the effect ofβ over ǫ
is quite substantial.

Implications of Our Result. Theorem 1 shows thatk-
anonymization using a data-independent generalization approach,
when preceded by a random sampling step, can satisfy(ǫ, δ)-DP
with reasonable parameters. In the literature,k-anonymity and dif-
ferential privacy have been viewed as very different privacy guar-
antees.k-anonymity is syntactic and weak, and differential privacy
is algorithmic and provides semantic privacy guarantees. Our re-
sult is, to our knowledge, the first to linkk-anonymization with
differential privacy. This suggests that the “hiding in a crowd ofk”



ǫ

β

0.25 0.5 0.75 1.0 1.5 2.0
0.05 6.83×10−10 2.50×10−14 3.19×10−17 1.76×10−19 3.97×10−22 2.00×10−24

0.1 4.19×10−06 1.61×10−09 3.44×10−12 4.07×10−14 3.22×10−16 1.89×10−18

0.2 2.16×10−03 8.02×10−06 1.89×10−07 6.03×10−09 4.79×10−11 1.59×10−12

Table 1: A table showing the relationship betweenβ and ǫ in determining the value of δ when k is fixed. In the abovek = 20, and
each cell in the table reports the value ofδ under the given values ofβ and ǫ
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Figure 2: A graph showing the relationship betweenǫ and 1
δ

if
we vary the values ofk under fixed β
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Figure 3: A graph showing the relationship betweenǫ and 1
δ

if
we vary the values ofβ under fixed k.
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Figure 4: A graph showing the relationship between the values
of k needed to achieve roughly the sameδ if we doubleβ.
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Figure 5: A graph showing the relationship betweenǫ and 1
δ

with small k’s, varying k and fixing β.
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Figure 6: A graph showing the value ofǫ satisfied by a givenk
if δ ≤ 10−6 with varying sampling probabilities.

privacy principle indeed offers some privacy guarantees when used
correctly. We note that this principle is used widely in contexts
other than privacy-preserving publishing of relational data, includ-
ing location privacy and publishing of social network data,network
packets, and other types of data.

We also observe that existing techniques for satisfying differen-
tial privacy rely almost exclusively on output perturbation, that is,
adding noises to the query outputs. Our result suggests an alter-
native approach to satisfy differential privacy. Rather than adding
noises to the output, one can add a random sampling step in the
beginning and prune results that are too sensitive to changes of
individual tuples (i.e., tuples that violatek-anonymity); this also
achieves differential privacy. In Section 5, we show further appli-
cation of this random sampling step for differential privacy. An
intriguing question is whether other input perturbation techniques
can be used to satisfy differential privacy as well.

Towards practical k-Anonymization. While Theorem 1 gives a
microdata anonymization method that satisfies differential privacy,
one may argue that the algorithm is impractical. Requiring the us-
age of a data-independent global generalization scheme maybe too
restrictive. Furthermore, it is well known thatk-anonymity suffers
from the curse of dimensionality [1]. We now discuss how these
issues can be addressed. The comprehensive development of these
ideas is beyond the scope of this paper.

First, rather than having to use a data-independent global gener-
alization scheme, one could compute a generalization scheme us-
ing the dataset. One just needs to ensure that the generalization
scheme does not depend too much on any individual tuple. Hereis
the sketch of an algorithm that satisfies(ǫ, δ)-DP. Given a dataset
D, one first computes a generalization scheme in a way that sat-
isfiesǫ-DP. One then samples fromD with probabilityβ, apples
the generalization scheme to the sampled tuples, and finallysup-
presses any tuple that appears less thank times. Our proof of The-
orem 1 can be extended to show that the overall algorithm satisfies
(ǫ, δ)-DP for suitable parameters.

Second, the curse of dimensionality can be dealt with by verti-
cal partitioning high-dimensional data [21]. The idea is togroup
attributes into columns based on the correlations among theat-
tributes. Each column contains a subset of attributes that are highly
correlated. One can anonymize and publish the different columns
separately. That is, one tuple is divided into several segments by the

columns, and each segment is published in a different outputtable,
with each segment treated as a new tuple. This reduces the dimen-
sionality of the data. If the grouping of attributes into columns can
be done in a way that satisfies differential privacy, each tuple affects
at most a small number of columns, and each column is published
in a way that satisfies differential privacy, then the overall output
can satisfy differential privacy.

5. DIFFERENTIAL PRIVACY WITH UN-
CERTAIN BACKGROUND KNOWL-
EDGE

In the previous section, we illustrated how adding a sampling
step can make a deterministick-anonymization algorithm satisfy
differential privacy, as it adds uncertainty to the adversary’s back-
ground knowledge. Intuitively, if an algorithm satisfies(ǫ, δ)-DP
with a random sampling step, it should provide privacy protection
without the sampling step, when it is reasonable to assume that the
adversaries do not have precise knowledge about all tuples in the
dataset. We note that otherk-anonymization techniques would not
satisfy(ǫ, δ)-DP, even with the random sampling step.

In this paper, we introduce a new privacy definition, called
(β, ǫ, δ)-Uncertain Differential Privacy ((β, ǫ, δ)-UDP for short)
and show that it is composable. An algorithm satisfies(β, ǫ, δ)-
UDP, if preceding it with a sampling step with probabilityβ, it can
satisfy(ǫ, δ)-DP. We allowδ = 0, in which case one gets a variant
of ǫ-DP. We believe that this notion can serve as a starting point
for developing privacy notions when it is reasonable to assume the
adversaries do not have precise knowledge of the dataset. Further
development along this direction is future work we plan to pursue.

In this section, we prove one result related to the ((β, ǫ, δ)-UDP
notion, that is, sampling can amplify privacy protection for a dif-
ferentially private mechanism.

DEFINITION 4. An algorithm A gives (β, ǫ, δ)-UDP if and
only if the algorithmAβ gives(ǫ, δ)-DP, whereAβ denotes the al-
gorithm to first sample with probabilityβ, and then applyA. And
whenδ = 0, we say the algorithm satisfies(β, ǫ)-UDP.

We show that this notion of(β, ǫ, δ)-UDP is composable.

THEOREM 2. GivenA1 that satisfies(β, ǫ1, δ1)-UDP andA2

that satisfies(β, ǫ2, δ2)-UDP. Then(A1;A2), where; denotes con-
catenation, satisfies(β, ǫ1 + ǫ2, δ1 + δ2)-UDP.

PROOF. For anyD, t, S = S1;S2, (A1;A2)(D) = S1;S2

whenA(D) = S1 andA2(D) = S2. We have

Pr[(A1;A2)
β(D)=S]

Pr[(A1;A2)β(D−t)=S]
=

Pr[(A
β
1 (D);A

β
2 (D))=(S1;S2)]

Pr[(A
β
1 (D−t);A

β
2 (D−t))=(S1;S2)]

=
Pr[A

β
1 (D)=S1]

Pr[A
β
1 (D−t)=S1]

Pr[A
β
2 (D)=S2]

Pr[A
β
2 (D−t)=S2]

The above follows from the fact thatAβ
1 andAβ

2 are conditionally
independent givenD. Hence with probability at least1−(δ1+δ2),
we have

e−(ǫ1+ǫ2) ≤
Pr[Aβ(D) = S]

Pr[Aβ(D−t) = S]
≤ e(ǫ1+ǫ2)

An interesting feature of the(β, ǫ)-UDP notion is that there is
a connection between the privacy parameterǫ and the sampling
rateβ. The following theorem shows that by employing a smaller
sampling rate, one can achieve a strong privacy protection (i.e., a
smaller privacy parameterǫ).



THEOREM 3. Any algorithm that satisfies(β1, ǫ)-UDP also
satisfies(β2, ǫ

′)-UDP for anyβ2 < β1, where

ǫ′ = ln
(

1 +
(

β2
β1

(eǫ − 1)
))

.

PROOF. Let β = β2
β1

. The algorithmAβ2 can be viewed as
first sampling with probabilityβ, then followed by applying the
algorithmAβ1 .

We useΛβ(D) to denote the process of sampling fromD with
sampling rateβ. For anyD, t, S, we have

Pr[Aβ2 (D) = S]

Pr[Aβ2(D−t) = S]
=

∑

T Pr[Λβ(D) = T ] Pr[Aβ1(T ) = S]
∑

T Pr[Λβ(D−t) = T ] Pr[Aβ1 (T ) = S]
=

Z

X

To analyzeZ, we note that all theT ’s that resulted from sam-
pling fromD with probabilityβ can be divided into those that do
not containt (i.e.,t is not sampled), and those that containt (i.e.,t
is sampled). For aT in the former case, we have

Pr[Λβ(D) = T ] = (1− β) Pr[Λβ(D) = T |t not sampled inT ]
= (1− β) Pr[Λβ(D−t) = T ]

For aT in the latter case, we have

Pr[Λβ(D) = T ] = β Pr[Λβ(D) = T |t sampled inT ]
= β Pr[Λβ(D−t) = T−t]

Hence we have

Z =
∑

T :t 6∈T (1− β) Pr[Λβ(D−t) = T ] Pr[Aβ1(T ) = S]

+
∑

T :t∈T β Pr[Λβ(D−t) = T−t] Pr[A
β1(T ) = S]

= (1− β)X + β
∑

T ′ Pr[Λβ(D−t) = T ′] Pr[Aβ1(T ′
+t) = S]

= (1− β)X + βY

Next, we bound the following ratio:

Y

X
=

∑

T ′ Pr[Λβ(D−t) = T ′] Pr[Aβ1 (T ′
+t) = S]

∑

T Pr[Λβ(D−t) = T ] Pr[Aβ1 (T ) = S]

That A satisfies (β1, ǫ)-UDP means that∀T∀te
−ǫ ≤

Pr[Aβ1 (T+t)=S]

Pr[Aβ1 (T )=S]
≤ eǫ. Hence we havee−ǫ ≤ Y

X
≤ eǫ, and there-

fore

1− β(1− e−ǫ) ≤
Z

X
≤ 1 + β(eǫ − 1)

Hence we havee−ǫ′ ≤ Z
X

≤ eǫ
′

for

ǫ′ = max(ln(1 + β(eǫ − 1)),− ln(1− β(1− e−ǫ)))

We now show thatǫ′ = ln(1 + β(eǫ − 1)).

ln(1 + β(eǫ − 1) ≥ − ln(1− β(1− e−ǫ)
⇔ 1 + β(eǫ − 1) ≥ 1

1−β(1−e−ǫ)

⇔ (1 + β(eǫ − 1))(1− β(1− e−ǫ))− 1 ≥ 0
⇔ (eǫ + e−ǫ − 2)(β − β2) ≥ 0

A natural corollary of the above theorem is the following.

COROLLARY 4. Given an algorithmA that satisfiesǫ-DP, it
satisfies(β, ǫ′)-UDP for ǫ′ = ln(1 + β(eǫ − 1)).

An equivalent way to writeǫ′ = ln(1 + β(eǫ − 1)) is

eǫ
′

− 1

eǫ − 1
= β.

To see the effect of this. Consider the case with sampling proba-
bility β = 0.1, andeǫ = 2, theneǫ

′

= 1.1. Hence, when one

publishes a randomly sampled dataset, then one can use much re-
laxed parameters. With a0.1 sample rate, then an algorithm that
achieves(ln 2)-DP can achieve overall(ln 1.1)-DP.

Discussions. We have shown that using random sampling as a
preprocessing step can amplify the privacy protection power of any
algorithm that satisfiesǫ-DP, or equivalently, reduce the potential
information leakage. This can be very useful in the interactive set-
ting as well as non-interactive setting. When one samples from a
very large dataset and uses the sampled dataset to answer statistical
queries, such as in the case of using sensus data, one can add much
less noise to satisfy the same privacy requirements becauseof the
sampling step.

We are unable to prove the result in Theorem 3 for the case that
δ 6= 0, because of the difficulty in dealing with how the error proba-
bility δ changes. How reducing the sample probability would boost
the privacy protection with an error probabilityδ thus remains an
open question.

6. SMOOTH ERROR BOUND
So far in this paper we have adopted the relaxation ofǫ-

differential privacy by allowing an error probabilityδ. A natural
question is how small does suchδ need to be? It is known that
in order for (ǫ, δ)-DP to provide strong-enough privacy protec-
tion, it must be thatδ ≪ 1

n
, wheren is the number of records

in the dataset. In particular, when applying an algorithm that sat-
isfies(ǫ, δ)-DP, the probability that a privacy breach occurs is not
bounded byδ, and depends on the size of dataset. In this section,
we analyze this issue. To achieve very smallδ’s one has to choose
largek’s, smallβ’s, or both, which result in low-quality outputs.
To avoid having to use very smallδ’s, we introduce an approach
to make the(ǫ, δ) relaxation more robust by providing a smoother
bound on the probability of bad outcomes.

Consider the following algorithm.

ALGORITHM 5. [δ-Sampling]: The δ-sampling algorithm
goes through each tuplet in the input dataset. For eacht, it pub-
lishest with probabilityδ, and suppresst with probability1− δ.

The above algorithm satisfies(0, δ)-DP. However, given a
database ofn tuples, each corresponding to one individual, this
algorithm will publish on averagenδ tuples unchanged. Suppose
thatn is 50 million, andδ = 10−7, then the algorithm publishes on
average 5 tuples unchanged, completely compromising the privacy
of these tuples. This example illustrates that satisfying(ǫ, δ)-DP
alone does not guarantee that a privacy breach can occur withprob-
ability at mostδ. In fact, it guarantees that for any tuple, a privacy
breach can occur with probability at mostδ. However, when there
are many tuples, it may be that with high probability the privacy of
sometuple will be breached.

We note that this issue of(ǫ, δ)-DP is because when a violation
of the inequalitye−ǫ ≤ Pr[A(D)=S]

Pr[A(D−t)=S]
≤ eǫ occurs, no bound is

placed on Pr[A(D)=S]
Pr[A(D−t)=S]

. In fact, there could be anS such that

Pr[A(D1) = S] = δ andPr[A(D2) = S] = 0, causing complete
privacy compromise whenS occurs. In many cases, when an algo-
rithm outputsS that violates theeǫ bound, the ratioPr[A(D1)=S]

Pr[A(D2)=S]

often does not shoot up to∞, but rather climb gradually, with
higher ratios increasingly unlikely.

We use this observation to propose a better method of relaxing
ǫ-DP. In particular, we need a better bound on the error probabil-
ity, δ, in order to ensure that a disclosure like the one previously
mentioned does not occur. We thus introduce a smoother boundfor
δ as follows.



DEFINITION 5. [f -smooth (ǫ, δ)-Differential Privacy] A ran-
domized algorithmA givesf -smooth(ǫ0, δ0)-differential privacy
for a functionf such thatf(1) = 1 and f is monotonically de-

creasing, if and only if for anyǫ ≥ ǫ0, A satisfies
(

ǫ, δ0f
(

ǫ
ǫ0

))

-

differential privacy.

Whenf is a constant function, we get(ǫ, δ)-DP. Ideally, we want
f(x) to decrease fast and goes to0 whenx goes to∞.

That an algorithmA satisfiersf -smooth(ǫ0, δ0)-differential pri-
vacy means thatA provides(ǫ, δ)-differential privacy simultane-
ously for an infinite number of(ǫ, δ) pairs, including(ǫ0, δ0),
(1.1ǫ0, δ0f(1.1)), (1.2ǫ0, δ0f(1.2)), and so on.

A benefit off -smooth(ǫ, δ)-differential privacy is that it avoids
total privacy disclosure when the functionf(y) → 0wheny → ∞.
In fact, theδ-sampling method in Algorithm 5 does not satisfyf -
smooth(ǫ, δ)-differential privacy for any suchf .

The following theorem shows that the notion off -smooth differ-
ential privacy is composable.

THEOREM 5. GivenA1 that satisfiesf1-smooth(ǫ1, δ1)-DP,
and A2 that satisfiesf2-smooth(ǫ1, δ1)-DP, (A1;A2) satisfies
max(f1, f2)-smooth(ǫ1 + ǫ2, δ1 + δ2)-DP.

PROOF. For anyD andt ∈ D, we say thatS1 is a bad outcome
for A1 if e−xǫ1 ≤ Pr[A1(D)=S1]

Pr[A1(D−t)=S1]
≤ exǫ1 is violated, and define

bad outcomes forA2 similarly. We have,

∀x ≥ 1Pr [A1(D) ∈ {S1 : S1 bad forA1}] < δ1f1 (x)

and

∀x ≥ 1Pr [A2(D) ∈ {S2 : S2 bad forA2}] < δ2f2 (x)

Note that for anyD andt ∈ D, anyx ≥ 1, and any(S1, S2):

Pr[A1;A2(D)=(S1;S2)]
Pr[A1;A2(D−t)=(S1;S2)]

= Pr[A1(D)=S1] Pr[A2(D)=S2]
Pr[A2(D)=S2] Pr[A2(D−t)=S2]

= Pr[A1(D)=S1]
Pr[A2(D)=S2]

Pr[A2(D)=S2]
Pr[A2(D−t)=S2]

For anyD andt ∈ D, and anyx ≥ 1, we say(S1, S2) is a bad
outcome when the following is violated

e
−x(ǫ1+ǫ2) ≤

Pr[(A1;A2)(D) = (S1; S2)]

Pr[(A1;A2)(D−t) = (S1;S2)]
≤ e

x(ǫ1+ǫ2)

Observe that(S1, S2) is a bad outcome only when eitherS1 is a
bad outcome forA1. Therefore,

Pr [(A1;A2)(D) ∈ {(S1;S2) : (S1;S2) is a bad outcome}]
≤ 1− Pr [A1(D)is not bad] Pr [A2(D) is not bad]
≤ 1− (1− δ1f1 (x)) (1− δ2f2 (x))
≤ δ1f1 (x) + δ2f2 (x)
≤ (δ1 + δ2)max(f1, f2)(x)

In what follows, we show that the(β, k)-SDGS algorithm satis-
fiesf -smooth(ǫ, δ)-DP.

THEOREM 6. The (k, β)-SDGS algorithm satisfies thef -
smooth bound(ǫ0, δ0)-differential privacy, for any

ǫ0 ≥ − ln(1− β), δ0 = e
−k

(

ln
(

γ(1)
β

)

−
γ(1)−β

γ(1)

)

, and

f(z) = 1
δ0
e
−k

(

ln
(

γ(z)
β

)

−
γ(z)−β

γ(z)

)

, whereγ(z) = (eǫ0z−1+β)
eǫ0z .

PROOF. Recall that the(k, β)-SDGS algorithm satisfies(ǫ, δ)-
differential privacy with

δ = d(k, β, ǫ) = max
n:n≥

⌈

k
γ
−1

⌉

n
∑

j>γn

f(j; n, β),

whereγ = (eǫ−1+β)
eǫ

.
Note that we are overloadingγ to also be a functionγ(z) =

(eǫ0z−1+β)
eǫ0z , since we want to study the behavior ofδ with differ-

ent values. Note thatγ(1) = (eǫ0−1+β)
eǫ0

, andγ = (eǫ−1+β)
eǫ

=

γ
(

ǫ
ǫ0

)

.

In order to prove thef -smooth bound for a functionf , we cannot
just use numerical methods to compute the functiond for different
values. Instead, we use the following Chernoff bound as an up-
perbound of the above. GivenX to be the sum ofn independent
binary random variables (i.e. for the binomial distribution), and let
µ = E[X], then the Chernoff bound states that we have

Pr[X ≥ (1 + d)µ] ≤ e−µ((1+d) ln(1+d)−d)

To make it more convenient to use the Chernoff bound, we note
that

δ ≈ max
n:n≥ k

γ

n
∑

j≥γn

f(j;n, β).

We use the Chernoff bound to boundτ (n) =
∑n

j≥γn f(j;n, β),
in which case we haveµ = βn:

τ (n) =
∑n

j≥γn f(j; n, β)

≤ Pr
[

X ≥
(

1 +
(

γ

β
− 1

))

βn
]

≤ e
−βn

(

γ
β

ln
(

γ
β

)

−
(

γ
β
−1

))

= e
−n

(

γ ln
(

γ
β

)

−(γ−β)
)

Note that
(

γ ln
(

γ

β

)

− (γ − β)
)

> 0 for all positive γ and

β’s. (See, for example, http://www.wolframalpha.com/.) Hence
the above function is monotonically decreasing whenn increases.
Hence

δ = d(k, β, ǫ) =

≤ e
− k

γ

(

γ ln
(

γ
β

)

−(γ−β)
)

= e
−k

(

ln
(

γ
β

)

−
(γ−β)

γ

)

In order to better understand the above function,f(z), we plot it
for various values ofǫ0. The resulting graph is shown in Figure 7.
The value ofδ was chosen to makef(1) = 1. As expected, the
function decays exponentially fast whenz > 1. As ǫ increases, the
decay of the function is slower. We note that this observation only
holds for values ofǫ > 0.5. For ǫ = 0.25, the curve cuts through
the other curves. We are unsure of the exact reason underlying this
behavior. However, given the complexity of thef function, this
does not seem too strange.

7. RELATED WORK
The vast majority of the literature on privacy-preserving data

publishing consider privacy notions that are weaker than differ-
ential privacy. These approaches typically assume an adversary
that knows only some aspects of the dataset (background knowl-
edge) and tries to prevent it from learning some other aspects.
One can always attack such a privacy notion by changing ei-
ther what the adversary already knows, or changing what the
adversary tries to learn. The most prominent among these no-
tions is k-anonymity [30, 29]. Some follow-up notions include
l-diversity [22] andt-closeness [20]. In this paper, we analyze
the weaknesses ofk-anonymity in detail, and argue that a sepa-
ration between QIDs and sensitive attributes are difficult to obtain
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Figure 7: A graph showing the relationship betweenf(z) and
z for (k = 20, β)− SDGS under the smooth bound

in practice, undermining the foundation of privacy notionssuch as
l-diversity,t-closeness, and other ones centered on attribute disclo-
sure prevention. Differential privacy and similar algorithmic pri-
vacy notions offer a more sound foundation for privacy-preserving
data publishing.

From 2003 to 2006, the notion of differential privacy was de-
veloped in a series of works [9, 14, 5, 12, 10]. It represents a
major breakthrough in privacy-preserving data analysis. Most re-
sults on differential privacy are for answering statistical queries,
rather than publishing microdata. A survey on these resultscan
be found in [11]. The seminal work of Dwork et al. [12] is based
on output perturbation, i.e., adding noises to query results. This ap-
proach lends itself rather nicely to statistical results, but its does not
solve the general microdata publishing problem. Our approach can
be seen as complimenting this approach by considering a method
of input perturbation rather than output perturbation to add uncer-
tainty.

In an attempt to make differential privacy more amenable to
more sensitive queries, several relaxations have been developed,
including (ǫ, δ)-differential privacy [9, 14, 5, 12]. We use(ǫ, δ)-
differential privacy in our paper. Moreover, we also point out its
pitfalls when being applied in microdata publishing, and propose
f -smooth(ǫ, δ)-differential privacy.

Random sampling [2, 3] has been studied as a method for pri-
vacy preserving data mining, where privacy notions other than dif-
ferential privacy were used. To our knowledge, the only work
that considered sampling as a method for differential privacy is
that of Chaudhuri et al. [8]. In this work, however, sampling
is used by itself, rather than as a pre-processing step to a “safe”
k-anonymization algorithm or another differentially private algo-
rithm. Therefore, in their results the disclosure probability δ is
lower-bounded by the sampling probability,β. Our results show
that sampling when combined with other methods can be much
more powerful.

Another approach to privacy-preserving microdata publishing is
data synthesizing. In [25], McSherry and Talwar proposed anex-
ponential mechanism for releasing data with differential privacy.
However, their mechanism is not feasible in practice because it
takes time exponential to the size of the possible outputs. Blum
et al. [6] considered synthetic data generation that is useful for a
particular class of queries. Their approach uses the exponential

mechanism [25] and therefore also suffers from the computational
constraints. Recently, Dwork et al. [13] obtained a number of the-
oretical results on the boundary between computational feasibility
and unfeasibility for different utility measures. Our workis more
practical oriented, as we prove a class of anonymization algorithms
satisfy(ǫ, δ)-DP.

There exists some work on publishing microdata while satisfy
(ǫ, δ)-DP or its variant. Machanavajjhala et al. [23] introduced a
variant of(ǫ, δ)-DP called(ǫ, δ)-probabilistic differential privacy
and showed that it is satisfied by a synthetic data generationmethod
for the problem of releasing the commuting patterns of the popula-
tion in the United States. Korolova et al. [18] considered publishing
search queries and clicks that achieves(ǫ, δ)-differential privacy. A
similar approach for releasing query logs with differential privacy
was proposed by Gotz et al. [15]. These approaches essentially
apply the output perturbation technique in differential privacy to
microdata publishing scenarios that can be reduced to histogram
publishing at their core. Our work differs in the following.First,
we do not use output perturbation. Second, we directly linkk-
anonymization to differential privacy.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we take a major step towards practical solutions

for publishing microdata while providing rigorous privacypro-
tection. In this research, we take the approach of starting from
both k-anonymization and differential privacy and trying to meet
in the middle. On the one hand, we identify weaknesses in thek-
anonymity notion and existingk-anonymization methods and fix
these weaknesses. On the other hand, we try to relax differential
privacy so that it can be satisfied by the improvedk-anonymization
method. The key insight underlying our result is that randomsam-
pling can be used to bridge this gap betweenk-anonymization and
differential privacy. This result is, to our knowledge, thefirst to link
k-anonymity with differential privacy. A natural directionfor fu-
ture work is to develop more practicalk-anonymization techniques
that can be proven to satisfy differential privacy. One promising
approach is to make existingk-anonymization algorithm “safe” so
that they satisfy(β, ǫ, δ)-UDP. Then they satisfy(ǫ, δ)-DP when
a random sampling step is added. One open problem is how to
compute a global recoding scheme that works well for a dataset in
a differentially privacy way. Alternatively, we are also looking at
the problem of how to make partitioning-based schemes (suchas
Mondrian [19]) safe.

We also observe that existing techniques for satisfying differen-
tial privacy rely almost exclusively on output perturbation, that is,
adding noise to the query outputs. Our result suggests that ran-
dom sampling could play an important role in satisfying differ-
ential privacy as well. Not only it can enable a deterministic k-
anonymization algorithm to satisfy(ǫ, δ)-DP, it can also amplify
the privacy protection for algorithms that already satisfyǫ-DP. We
believe that the effect of random sampling, and perhaps other in-
put perturbation methods, on differential privacy should be further
investigated.

Finally, we observe that current definitions of(ǫ, δ)-differential
privacy requireδ to be very small to provide sufficient privacy pro-
tection when publishing microdata, making the notion impractical
in some scenarios. We have introduced a notion calledf -smooth
(ǫ, δ)-differential privacy and showed that it can be satisfied by ran-
dom sampling plus safek-anonymization. It would be interesting
to examine whether other methods that satisfy(ǫ, δ)-DP satisfy this
smooth version of(ǫ, δ)-DP.
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