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ABSTRACT

Privacy-preserving microdata publishing currently lagksolid
theoretical foundation. Most existing techniques are kibped to
satisfy syntactic privacy notions such snonymity, which fails
to provide strong privacy guarantees. The recently prapaséon

of differential privacy has been widely accepted as a souivdqy
foundation for statistical query answering. However, noggel
practical microdata publishing techniques are known tisfyedlif-
ferential privacy. In this paper, we start to bridge this .gape
first analyze k-anonymization methods and show how theytdail
provide sufficient protection against re-identificatiorhigh it was
designed to protect. We then prove thiagnonymization methods,
when done “safely”, and when preceded with a random sampling
step, can satisfe, ¢)-differential privacy with reasonable parame-
ters. This result is, to our knowledge, the first to lickanonymity
with differential privacy and illustrates that “hiding irceowd ofk”
indeed offers privacy guarantees. This naturally leadsitiaré re-
search in designing “safe” and practiégahnonymization methods.
We observe that our result gives an alternative approachtfmid
perturbation for satisfying differential privacy: namebdding a
random sampling step in the beginning and pruning resudtsate
too sensitive to changing a single tuple. This approach reagpb
plicable to settings other than microdata publishing. Vée ahow
that adding a random-sampling step can greatly amplify ¢kell
of privacy guarantee provided by a differentially-privatgorithm.
This result makes it much easier to provide strong privacgr-gu
antees when one wishes to publish a portion of the raw data. Fi
nally, we show that current definitions ¢f, §)-differential privacy
required to be very small to provide sufficient privacy protection
when publishing microdata, making the notion impracticadome
scenarios. To address this problem, we introduce a notilbedca
f-smooth(e, §)-differential privacy.

1. INTRODUCTION

In an age where the minute details of our life are recorded and
stored in databases, a clear paradox is emerging betweeedde
to preserve the privacy of individuals and the need to useethe
collected data for research, public policy formulationd ather
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purposes. We consider the scenario where a trusted curator g
ers sensitive information from a large number of resporglefite
curator may then use the data in two different ways. In the firs
way, the curator’s goal is to learn (and release to the pubta-
tistical facts about the underlying population, while pitng the
privacy of respondents. This is known as privacy-presgrdata
analysis, statistical disclosure control, inference aanor privacy-
preserving data mining. In the second way, the curator pabt a
sanitized (or, “anonymized”) version of the dataset so diher
parties can use the data to perform any analysis they arestée
in. This is called privacy-preserving microdata publighin

There are two settings for privacy-preserving data ansilyis-
teractive and non-interactive. In the interactive settthg curator
provides a mechanism with which users may pose queries about
the data, and get (possibly noisy) answers. This settingewizs-
sively studied in the 1980's and 1990's. This field, howesegs a
renewed and growing interest in recent years, fueled by ¢leld
opment ofe-Differential Privacy and its variants [10, 11]. These
notions are intuitive and have been proven to provide semant
privacy; they are currently widely accepted as the privaaom
of choice in the interactive setting. In the non-interaetsetting,
the curator computes and publishes some statistics of thectza
dataset.

In this paper, we focus on privacy-preserving microdata-pub
lishing, where sanitization or anonymization is appliedhe in-
put dataset before publishing. Traditionally, sanitizatemployed
perturbation and data modification techniques, and may ialso
clude some accompanying synopses and statistics. Oveashe |
decade or so, there has been extensive work in database cityymu
on various data anonymization methods. Many techniquesoymp
generalization (or recoding), i.e., replacing a data valiik a less
precise value that is semantically consistent, and supioresi.e.,
removing tuples that stand out.

Despite the number of anonymization techniques proposed, t
field of privacy-preserving microdata publishing currgrticks a
solid theoretical foundation. Sweeny and Samarati [30, 20,
28] introduced the well-know#k-anonymity notion. It is a syntac-
tic property on anonymized datasets: when only certairbates,
known as quasi-identifiers (QIDs) are considered, eactetupl
the anonymized dataset should appear at lgattnes. Thek-
anonymity notion has generally be considered too weak. Niairy
vacy notions have been introduced since then, edjversity [22]
andt-closeness [20]. We often see that a paper introduces a new
privacy definition motivated by weaknesses of existing digdins,
only to be attacked by a later paper.

Given this current state of the art, one may argue that given t
difficulties in establishing a strong privacy definition iniacy-
preserving microdata publishing, we should give up the @ggn



and focus on interactive private data analysis. We arguetiiea
interactive setting cannot replace microdata publisharghie rea-
sons given below, and privacy-preserving microdata phisigsre-
mains necessary.

First, the interactive setting is unsuitable when the nundfe
data users is large. In an interactive mechanism, the agiprica
satisfy differential privacy is to add an appropriate legEhoise
to each query result. With each query, the overall level of pr
vacy for the dataset decreases as more information is beahgd.
Hence, the standard approach is to have a privacy budgettiarpo
of which is used by answering each new query. When the privacy
budget is used up after answering a number of queries, tlaozur
can no longer effectively answer any new queries. This wbeld
unacceptable in situations where a dataset needs to sergeth
eral public such as when the census bureau provides thescgatsu
to the public. Because the curator cannot be sure whethemany
data users are colluding or not, the privacy budget has torelIf
users When there are many users, the issue of dividing the privacy
budget among them becomes a thorny problem in itself. In any
case, each user can get only a very small budget that is iyntike
be sufficient.

privacy. We argue that the answer is yes. Privacy breaches-do
cur and have serious consequences. A number of attacks éare b
publicized as a result of failed anonymization attempts.e ©h
the most widely publicized was the AOL's release of seargs ia
2006. Two New York Time journalists [4] were able to re-idgnt
Thelma Arnold, a 62 year old women living in Lilburn, Ga. from
the supposed anonymized search logs. This was deemed by CN-
NMoney to be one of the “101 Dumbest Moments in Business”
and landed the company in a class action lawsuit. We show that
existing data anonymization privacy notions fail to pravemilar
disclosures that are recognized as serious privacy conipesm

While it is natural to apply differential privacy also to thrécro-
data publishing domain, the existing results remain lichitSome
are computationally expensive, such as [25, 6]. Other apmy
noise-addition techniques to specific domains where oneness
tially publishes counts of certain items, such as keywandsearch
logs [23, 15, 18].

In this paper, we aim at developing sound theoretical fotiods
for microdata anonymization methods. We start by careferlym-
ining the k-anonymity notion to find out why it fails to provide
strong privacy protection. We first observe that #rxanonymity

Second, even when a data user has a generous privacy budnotion, even when all attributes are treated as quasiifiast is

get, perhaps because there are few data users, this phuaget
paradigm can become a hinderance to creative research.rbn a p
duction setting where the queries one wants answered ate wel
known, this paradigm may be satisfactory. However, when one
wants to explore the data and test various hypothesis, thacpr
budget can become a serous limitation. For many analysks,tas
effective mechanisms that satisfy differential privacyni yet ex-

ist. Even when one uses only queries where effective mestmani
exist, privacy budgets become a finite and non-replaceabtairce
that will be consumed by each query, essentially limiting’srmc-
cess to the data. The research value of data shared undeaeypri
budget is significantly diminished.

Furthermore, the interactive approach puts lots of regocon-
straints on the curator and requires a close coupling betlee
curator and data users. The curator must run all the cliesrieg
and algorithms on its servers, which represents a signtfimeer-
head. The data users, on the other hand, must reveal to th®icur
the queries they want to make, which may be considered confide
tial or sensitive by the data users.

Finally, there are many situations in which answering stati
cal queries simply does not achieve the purpose of shariag th
data. One example is Netflix’s release of movie rating data fo
researchers to develop algorithms based on the data. Givah a
gorithm, it is possible to make it differentially privates ahown
in [24]. However, the purpose here is to let researcherslojgve
new algorithms. It is unclear how this can be done without ac-
cess to some data. Another example comes from a real-waald ch
lenge that was introduced by the Chief Information OfficelQC
of a large supermarket chain in the United States. The Cl@iide
fied the problem of generating production-like data for theppse
of testing systems under development as a major challemggyfa
CIOs today. The test data must be as close to production data a
possible, yet one cannot use production data because lidel
sensitive customer information that must be protected rdaog
to laws and regulations. Privacy-preserving microdatdighing
techniques can help in these situations.

Given these reasons, we argue that privacy-preservingdata
publishing should be studied as a complementary technijire o
teractive private query answering. Another question ong ask
is whetherit really matters in practicef existing data anonymiza-
tion techniques satisfy only, salzanonymity, but not differential

unable to prevent re-identification. For example, theatimethod

of randomly choosing some tuples from the input dataset apti-d
cating each chosen tuplgimes satisfieg-anonymity, even though

it publishes a significant portion of the input tuples unded
enabling easy re-identification of them. Furthermore, alradl
k-anonymization methods that have been proposed in thediter
ture are vulnerable because the way they compute the gemerat
scheme to be applied to the input tuples makes the gendratiza
overly dependent on tuples that contain extreme valudsinigan-
formation about these tuples.

One way to avoid the above vulnerability of existirig
anonymization methods is to use a generalization schentéstha
independent of the input dataset. That is, the algorithniiepp
fixed generation scheme to the input tuples and then sugsresy
tuple that appears less thatimes. Such a “safet-anonymization
algorithm has no apparent privacy weaknesses, and irglyigpro-
vides some level of privacy protection, as each tuple iseddaid-
ing in a crowd of at least”. Unfortunately, the algorithm still does
not satisfy differential privacy, simply because the aitdon is de-
terministic. The desire to understand and formalize whad kaif
privacy protection is offered by such an algorithm is théiahimo-
tivation for this research.

The contributions of this paper are as follows:

e We prove that by adding a random sampling step, the
above “safe” k-anonymization algorithm provideée, §)-

differential privacy with reasonable parameters.

In the literature k-anonymity and differential privacy have
been viewed as very different privacy guarantees-
anonymity is syntactic and weak, and differential privacy
is algorithmic and provides semantic privacy guarantees.
Ours is, to our knowledge, the first result that links
anonymization with differential privacy. It illustratefét
“hiding in a crowd ofk” indeed offers privacy guarantees.

We also observe that existing techniques for satisfyinfgdif
ential privacy rely almost exclusively on output pertuibaf

that is, adding noise to the query outputs. Our result sug-
gests an alternative approach to satisfy differentialgmyv
Rather than adding noises to the output, one can add a ran-
dom sampling step in the beginning and prune results that are
too sensitive to changes of individual tuples (i.e., tuphest



violate k-anonymity).

We show that random sampling has a big privacy ampli-
fication effect fore-differential privacy. For example, ap-
plying an algorithm that achieve#(2)-differential privacy

on dataset sampled with1 probability can achieve overall
(In 1.1)-differential privacy. This result applies in interativ
query answering as well as in microdata publishing.

We note that random sampling is a step that is either already
undertaken or can be naturally added in many microdata pub-
lishing scenarios. For example, the census bureau publishe
a 1-percent microdata sample. Netflix can also use random
sampling to select which tuples to be released.

Finally, we note that the notion ¢t, §)-differential privacy,
when applied to microdata publishing, is somewhat problem-
atic, because the probability that a privacy breach ocaurs i
not bounded by, but rather bydn, wheren is the num-
ber of tuples in the output dataset. While one can always
choose a very smali, this may result in datasets of poor
quality. To address this problem, we introduce the notion
of f-smooth (e, §)-differential privacy, wheref is a func-
tion such thatf(1) = 1 and f is monotonically decreasing.
This notion essentially requires an algorithm to sat{sfy )-
differential privacy for many pairs df, ¢)’s, and whilee in-
creasesy decreases. We show that this notion is composable
and that it is satisfied by the approach of sampling + safe
k-anonymization.

The rest of the paper is organized as follows. We give a hmief i
troduction of different privacy in Section 2, and analyze gitfalls
of k-anonymity in Section 3. In Section 4 we prove our main re-
sult that random sampling + safeanonymization satisfieg, §)-
differential privacy and discuss its implications. We @xpl the
privacy amplification benefit of random sampling in Secticarl
introduce our notion of-smooth(e, §)-differential privacy in Sec-
tion 6. Finally, we discuss related work in Section 7 and amhe
in Section 8.

2. DIFFERENTIAL PRIVACY

Differential privacy formalizes the following protectiarbjec-
tive: if a disclosure occurs when an individual particigaie the
database, then the same disclosure also occurs with sipndar
ability (within a small multiplicative factor) even whenetindi-
vidual does not participate. More formally, differentialiacy
requires that, given two input datasets that differ only e du-
ple, the output distributions of the algorithm on these twatadets
should be close. There are two ways to interpret the notianttio
datasets differ in only one tuple. The standard interpiaetas that
one dataset contains one more tuple than the other. An aftezn
is to have the two datasets contain the same number of tuyilds,

all but one being the same. In this paper we adopt the standard

interpretation.

DEFINITION 1. [e-Differential Privacy [10, 12] (e-DP)]: A
randomized algorithmA gives e-differential privacy if for any
datasetD, any tuplet € D, and anyS € Range(A),

PrAD) = 5] _
- Pl"[.A(th) = S] -

—€ €

@)

Note that in this paper we always assume that datasets su¢h as
are multisets, i.e., the same tuple may appear multiplestiniée

useD_; to denote the dataset with one copyt@&émoved fromD,
and definé /0 to bel, andp/0 to beco whenp > 0.

We point out that because inequality 1 bounds the ratio oh bot
sides, Definition 1 also ensures that for any tuglethe ratio

Pr[A(D)=S] H —€ _e€
BrAD,)=5] IS bounded infe™¢, e], where D, denotes the

dataset resulted from addingto D.

Intuitively, e-DP offers strong privacy protection. i satisfies
e-DP, one can claim that publishind (D) protects the privacy of
every tuplet in D, because even if one leavesut of the dataset,
in which case the privacy aof can be considered to be protected,
one may still publisht with a similar probability.

Differential privacy provides worst-case privacy guaegnin at
least two senses. First, inequality (1) must holddeerydatasetD
andeverytuplet in D, meaning that the privacy for every tuple in
every dataset is protected. Second, inequality (1) resjuirat the
e® bound holds foeverypossible outcom&, even if.S occurs only
with very low probability. These are desirable featurescsias we
have seen in past privacy incidents, compromising the gyieh a
single individual may already be viewed unacceptable, odils
be avoided [4, 26].

In practicee-DP can be too strong to be satisfiable in some sce-
narios. A commonly used relaxation is to allow the outfigtthat
violate inequality (1) to occur with a small error probatyild. We
use the following formulation.

DEFINITION 2 ((¢,0)-DIFFERENTIAL PRIVACY ((¢, 6)-DP)).
A randomized algorithmA satisfies (e, §)-differential privacy,
if for any datasetD and anyt € D, the following holds with
probability at leastl — 4:

Pr[A(D) = 5] .
~ Pr[A(D-¢)=S] —
More precisely, leO denote the set of alf’s in Range(.A) such

that the above does not hold. Thée[A(D) € O] < § and
Pr[A(D-:) € O] < 6.

—€ €

Some papers use another slightly weaker version of retaxati
which is implied by Definition 2. See, for example, [17] for rao
details.

The (¢, §)-DP notion allows that for some outpuft, the ratio

Priis5=k does not need to be bounded. In fact, it is possible
that for someS, Pr[A(D) = S] > 0 andPr[A(D_;) = S] = 0.

If any suchS occurs as output, one can immediately tell that the tu-
pletisinthe input. In other wordge, §)-DP gives up one aspect of
e-DP’s worst-case protection. Undét, §)-DP, total privacy com-
promises for some tuples can occur; however, the total piltitya
that these “bad” outputs occur is boundeddyln Section 6, we
will explore the potential problem with this relaxation gmebpose

a way to strengthen it.

3. AN ANALYSIS OF xk-ANONYMITY

In this section, we examink-anonymity and explore its limita-
tions and potential merits as a principle for privacy protec

3.1 Difficulties of Choosing QIDs

The development of-anonymity was motivated by an early
and well publicized privacy incident [30]. The Group Insuca
Commission (GIC) published a supposedly anonymized datase
recording the medical visits of patients managed under the. p
While the obvious personal identifiers were removed, the- pub
lished data included zip code, date of birth, and genderchvhi



are sufficient to uniquely identify a significant fractiontok pop-
ulation. Sweeney [30] showed that by correlating this daith w
the publicly available Voter Registration List for Camlg@&Mas-
sachusetts, medical visits for many individuals can belyeatgn-
tified, including those of William Weld, a former governorMgs-
sachusetts. We note that even without access to the puliic vo
registration list, the same privacy breaches can occur. yNian
dividuals’ birthdate, gender and zip code are public infation.
This is especially the case with the advent of social medidyd-
ing Facebook, where users share seemingly innocuous ieen
formation to the public. The GIC re-identification attackeditly
motivated the development of theanonymity privacy notion.

DEFINITION 3. [k-Anonymity] [30]: A published table satis-
fies k-anonymity relative to a set of QID attributes if and only if
when the table is projected to include only the QIDs, evepyetu
appears at leask times.

A first problem with this definition is that it requires the dilon
of all attributes into quasi-identifiers (QIDs) and sensitattributes
(SA), where the adversary is assumed to know the QIDs, but not
SAs. This separation, however, is very hard to obtain intarec
Even though only some attributes are used in the GIC incident
is difficult to assume that they are the only QIDs. Other ftes
in the GIC data include visit date, diagnosis, etc. There maly
exist an adversary who knows this information about somiiishd
uals, and if with this knowledge these individuals’ recoeh de
re-identified, it is still a serious privacy breach. The satifféculty
is true for publishing any kind of census, medical, or tratisaal
data. When publishing anonymized microdata, one has taxdefe
against all kinds of adversaries, some know one set of at&#)
and others know a different set. An attribute about one idds
may be known by some adversaries, and unknown (and thusdshoul
be considered sensitive) for other adversaries.

This separation of QIDs and SAs has indirectly led to criti-
cisms of k-anonymity and the development of privacy concepts
that focus on attribute disclosure, such/adiversity [22] andt-
closeness [20].

In this paper we consider a strengthened verside-afonymity
by treating all attributes as QIDs. This is stronger thamgisi
any subset of attributes as QIDs. This strengthened verdign
anonymity avoids making assumption about the adversaack-b
ground knowledge in terms of which attributes are known ahdtw
are not. This has been used in the context of anonymizingdan
tion data [16].

3.2 k-Anonymity Does Not
identification

The notion ofk-anonymity is motivated by re-identification at-
tacks, and intuitively it should provide some protectiomiagt re-
identification, especially if we use the strengthened wershat
treats all attributes as QIDs. When satisfying this noteatch tuple
in the output is blended in a group of at leastuples that are the
same. This follows the appealing principle that “privacyamehid-
ing in a crowd”. The intuition is that as there are at |gast1 other
tuples that look exactly the same, one cannot re-identifichvtu-
ple in the output corresponds to an individual with protiabdver
1/k. Unfortunately, this intuition turns out to be wrong. Catesi
the following class of algorithms.

Prevent Re-

ALGORITHM 1. [k-Duplication]: First, selectl/k’'th portion
of the input tuples by some method. For example, one method is
group the tuples into clusters bftuples each, and randomly select
one tuple in each cluster as the representative for thatefug hen,
duplicate each selected tupletimes.

Obviously the outputs of ang-Duplication algorithm satisfies
k-anonymity. However, it is very difficult to claim that it primes
privacy protection, as it essentially publishes a portibthe input
dataset unchanged. One can point to a group idientical tuples
and say which individual these tuples are from. One may objec
that the above algorithm is too artificial, and argue thattical k-
anonymization algorithms are not subject to such re-ifieation
attacks. To illustrate the weaknesseanonymity more clearly,
consider the following anonymization scheme, which repnes
several proposed algorithms feranonymity [7, 19].

ALGORITHM 2. [Clustering and Local Recoding (CLR)]:
First, group input tuples into clusters such that each @dudtas
at leastk tuples. For example, one method of grouping is the Mon-
drian algorithm [19]. One could also use some clustering moeit
based on some distance measurement (e.g., [7]). Then, &r ea
tuple, replace each attribute value with a generalized eatloat
represents all values for that attribute in the cluster.

CLR algorithms are vulnerable when some tuples contain ex-
treme values. Even if the output satisfiesnonymity, the gener-
alized value depends on the extreme values of some tuplesehe
from the output an adversary can infer that one’s tuple ishen t
dataset and can thus infer these values. For example, ®ippos
the dataset records the net worth of some individuals in atow
Further suppose that it is known that only one individualhe t
town has net worth over $10 million. When given/a = 20)-
anonymized output dataset containing one group of tupkesath
have [900K, 35M] as the generalized net worth value, what can
one conclude? At least the following: the rich individuainghe
dataset; the individual's tuple is in the group; and thevitial's
net worth is $35 million. It would be difficult to say that berse in
the output dataset, there are at lesbther tuples that are exactly
the same, then the individual cannot be re-identified withbpr
bility 1/20. The same attack applies to almost every existing
anonymization algorithm.

We hope that these arguments are convincing enough for the co
clusion thatk-anonymity (even when all attributes are treated as
QID) does not provide adequate protection. One naturaltigues
is: Is this because the intuition “hidden in a crowd of sizéeast
k" fails to provide privacy protection, or is it because théinidon
of k-anonymity fails to correctly capture “hidden in a crowd s
at leastc™?

We believe that the answer is the latter. And we now explain
why. The notion ofé-anonymity implicitly assumes that there is a
one-to-one relationship between the input tuples and the output
tuples, i.e., given inpuD, the output dataset iSg(¢t) | t € D}.
When there aré output tuples that are the same, there must be
k input tuples; hence any input tuple is hidden within a grofip o
k input tuples. However, while almost dltanonymization algo-
rithms do have an implicit association relation betweeminpples
and output tuples, this association relation itself can\elp de-
pendent on a few input tuples. For instance, consider thegbea
above with the extreme value. All tf2® output tuples in the group
with [900K, 35M ] obviously depend on the single input tuple with
value 35M. Hence it is not jusy(¢,) that contains information
aboutt;, but so doeg(t2), g(t3), etc. As a result, satisfying only
k-anonymity in the output does not prevent re-identification

Another way to look at this limitation of the notion of-
anonymity is that it issyntactic in that one only needs to check
the syntactic properties of each output individually towrasthat
it is satisfied; one does not need consider the behavior afakee
anonymization algorithm on other inputs. Hence an outpat th
satisfiesk-anonymity can still reveal information about individual



tuples.

A natural conjecture is that if B-anonymization algorithm uses
a mapping that does not overly depends on any individuaktupl
then such an algorithm provides some level of privacy ptaec
Indeed, trying to formalize this intuition was the origimabtiva-
tion of the results reported in the current paper.

3.3 A*“Safe” k-Anonymization Algorithm

We now consider a “safek-anonymization algorithm, in which
the mapping from input tuples to output tuples does not de:joen
the input dataset at all.

ALGORITHM 3. [Data-independent_Generalization + k-
Suppression (k-DGS)]: This algorithm uses a global recoding
scheme (i.e., a generalization scheme) that does not depend
the particular input dataseD. It has two steps. In the first step,
one applies this recoding scheme to each tuple in the inpaot. |
the second step, one suppresses any tuple that appear &ss th
times.

The k-DGS algorithm’s outputs satisfi~anonymity. Intuitively
this algorithm provides some level of privacy protectiondahe
level of privacy protection increases with larger valueg off any
individual’s tuple is published, there must be at lelast 1 other

Below, we show that this algorithm satisfiés ¢)-differential
privacy for a smally with reasonable values éf and 3. We use
f(3;n, B) to denote the probability mass function for the binomial
distribution; that is,f(j; n, ) gives the probability of getting ex-
actly j successes in trials where each trial succeeds with proba-
bility 5. And we useF'(j;n, ) to denote the accumulative proba-

bility mass function; that isF(j; n, 8) = 3>7_, f(4;n, B).

THEOREM 1. The(k, 8)-SDGS algorithm (whefi < 5 < 1)
satisfies(e, §)-differential privacy for anye > —In(1 — 8), and
0 = d(k, B8, €), where the functior is defined as

max

x> fm. B,

nin2[E 1] ;55

d(k, B, €) =

wherey = (£=108),

PROOF Let A denote the algorithm, and be the data-
independent generalization procedure in the algorithmr gfy
datasetD, any tuplet € D, and for any outputS. For any
e > —In(1 — ), we want to compute the probability by which

PrAD) =] _ .
SPAD ) =5 =

—€

@)

tuples in theinput database that are the same under the recoding s violated.

scheme; furthermore, the recoding scheme does not depethé on
dataset, and one only sees the results of the recoding. Hietiie
input dataset, the individual is hidden in a crowd of at ldast

Can one formally show that the DGS algorithm offers privacy
protection? The fact that this algorithm satisfieanonymity is not
helpful, since algorithms that obviously do not protectacy also
satisfyk-anonymity. At the same time, thHeDGS algorithm does
not satisfy(e, §)-DP for anyd < 1. The reason is simple. Letbe
the global recoding scheme. Chod3esuch that it containg > k
tuplest’ such thatg(t') = g(¢). Then, thek-DGS algorithm will
output different numbers @f(¢) for D andD_.. For D, the output
would containn copies ofg(t), and for D_;, the output would
containn — 1 copies ofg(t). Thus, the ratio of probabilities for an
output withn copies ofg(t) is unbounded.

We note that an adversary is able to tell whether an oufput
is resulted fromD or D_; because the adversary knows exactly
how many copies of are in D such thalg(t') = g(¢). A natural
consideration is: “Can we make the adversary’s knowledgeitab
this less certain?” Observing an output that contains,Zagppies
of tuplesg(¢), an adversary would be unable to tell whether the
input is D or D_; if he is uncertain whetheP contains 25 or 26
copies oft’ such thay(t') = g(t).

4. K-ANONYMITY MEETS DIFFEREN-
TIAL PRIVACY
We have shown that-DGS does not satisfi, )-DP, because

Let n be the number of in D such thay(t') = g(¢). Letj be
the number of times thaf(t) appears inS. Note that as the only
difference betweer and D_; is that D has one extra copy df
we have.

PrlA(D) =S] _ Pr[A(D) hasj copies of g)]
Pr[A(D_;)) = S]  Pr[A(D-.) hasj copies of g{)]

Because any tuple that appears less thaimes is suppressed,

eitherj > k, orj = 0. Whenj = 0, we have

PrlAD) = S| _
PrilA(D_,) =S|

i (i, B)
Sio fin —1,8)
Clearly, F(k — 1;n, B) is always less thad#'(k — 1;n — 1, 8);

PriAD)=5] - c¢ Fyrthermore, we note thei ¢ [0..k—

e—

ene ans) ) ali—s) [A(D)=5]
fGnB) . n(1-8 PiA(D)=S

1, Tt s = - = (1 —pB). Hencegms—yy=g =

(1 — B). Because > —In(1 — ), we havee™© < 1 — ; hence
under the case wheh= 0, inequality (2) is satisfied.
Whenj; > k, we have

PriA(D) =8] _ _ f(Gin.B) :{
PrlA(D—:))=S]  f(jimn—1,8)

The choice ofz can be arbitrary because it is determined by the
choice ofD. The value ofj is determined by the choice 6f. For
some values of, inequality (2) is violated. We want to compute
the probabilities of these bagls occurring. From the above, we

2P >

1 n<j

(e,0)-DP assumes an adversary that knows precise knowledge of know when; > n, the outcome is good. We now consider the bad

what other tuples are iv. A method to add uncertainty to what
an adversary knows about the dataset is to first perform amand
sampling step. This leads us to the following algorithm:

ALGORITHM 4. [3-Sampling + Data-independent
_Generalization + k-Suppression (k,3)-SDGS] The algo-
rithm has three steps. In the first step, it samples from thetin
dataset with probability3, that is, each tuple in the input dataset
is chosen with probability3. In the second step, it applies a
data-independent generalization procedure to each tuptethe
third and final step, it suppresses any tuple that appears tlean
k times.

outcomes whep < n.
Note that because > —In(1 — 3), we have—e < In(1 — 3),

and
n(l—B)

—~Z >1-8>e "
n—j

Hence we only need to consider whiat make"(rj—jf) > ¢f. This

9Let X;’s be random variables that take the valusith proba-
bility 8, and0 with probabilityl— 3. F(k—1;n—1, B) is the prob-
ability that the sum oft — 1 suchX’s < k— 1, andF'(k — 1; n, 3)
is the probability that the sum of suchX's is < k — 1.



occurs whery > (=107 ) ety = (=188 then this occurs
whenj > yn.

So far our analysis has shown that a bad outcéhfier an input
D would satisfy the conditiop > k andn > j > yn. Now we
need to compute the probability that( D) gives a bad outcome,
and the probability thatl(D_;) gives a bad outcome. The former
is given below:

n

max E
n

J:(GZkAG>n)

f(Gin, B) (©)

And the latter is

n—1

ax D

max
J:(G=kAj>n)

As the latter is smaller than the former, we only need to bahed
former.

Let n,, = [% — lw, we now show that whem < n.,,

> (i>knj=any f (Jim, B) increases whem increases. Note
that the choice ofn,, satisfies the condition thajn,, < k
and y(nm + 1) > k. Observe that whem < n.,,, the
condition (5 > kA j > yn) becomesj > k. The function
Z;ﬁpk f(j; n, B) is monotonically increasing with respectsio

Whenn > n,,, the condition(j > k A j > yn) becomesi >
~vn. (In fact, whemn = n,, + 1, the smallesj to satisfy; > yn is
k + 1.) Hence the error probability is bounded by

(e—1+8)

e€

> fGin, B), wherey =

i>yn

§=d(k,B,c) =

max
nin>[E_1
-y

O

The formula for the functiod(k, 3, €) is quite complicated. We
now examine it in more details. We want to find> | £

that maximizeszggw f(3;n, B). We first observe thay >
because

Y= ETIHD) g (oh0m) o

Thatis,>>7 _, f(j;n, 8) sums up the tail binomial distribution
probabilities for the portion of the tail beyongh, as shown in Fig-
ure 1. Following the intuition behind the law of large nuntehe
larger the value of:, the smaller this tail probability. Note that
the Chernoff bound of this tail probability decreases expdially
with respect tor. Hence intuitively, choosing the smallest value of

n,i.e.,n =nm, = [% — lw should maximize the formula. Unfor-

tunately, due to the discrete nature of the binomial distiim, the
maximum value may not be reachedat, but instead at one of the

next few local maximal point%% - 1}, k+2 W ---. Thus

-
we are unable to further simplify the representation of tirefion
d(k, B, ).

Below we show the numerical values of the functidfk, 3, €)
for different parameters. The functiairelates the four parameters
€, B, k,d by requiringd = d(k, 8, ¢). Note that the other require-
ment is that > —In(1 — 8). Among the four parameters,and
¢ define the level of privacy protection, whileand 8 affect the
quality of anonymized data.

In Table 1, we fixk = 20 and report the values @f under dif-
ferente and 3 values. The table shows that the value$ acfin be
very small, which is what we need. We note that with fixednd
3, § decreases asincreases, which states that the error probabil-
ity gets smaller when one relaxes thddound on the probability
ratio. In other words, the more serious a privacy breachnptbee

pnyn

Figure 1: A graph showing the relationship betweensn and yn
on a binomial curve

unlikely it occurs. We exploit this phenomenon in Sectio @lé-
fine f-smooth(e, 8)-DP. The table also shows that with fixéd
ande, ¢ decreases as$ decreases, meaning that a smaller sampling
probability improves the privacy protection. In Sectionag will

see another instance of the effect of smaller sampling jititya
means better privacy protection.

In Figure 2, we show the results from examining the relatigms
betweere andé when we varyk € {5, 10, 20, 30, 50} under fixed
B =0.2. We pIot% againste for values ofe > —1In(1 — 3). The
figure indicates a negative correlation betweesnd §. Further-
more, increasing: has a close to exponential effect of improving
privacy protection. For example, when= 2, increasings by 10
roughly decreasesby 1075,

In Figure 3, we show the results from examining the effect
of varying 8 € {0.05,0.1,0.2,0.3,0.4} under a fixed value of

= 20. This shows that decreasirjalso dramatically improve
the privacy protection. The two figures indicate the intiéceela-
tionship between privacy and utility.

In Figure 4, we explore this phenomenon that increagirand
decreasing both improve privacy protection. Starting frofh =
15, 8 = 0.05), each time we doublg and find a valué: that gives
a similar level of privacy protection. We finds thaincreases from
15 to 22 (for 8 = 0.1), 35 (for 8 = 0.2), and60 (for 8 = 0.4).

In Figure 5, we examine the quality of privacy protectionvery
small k's (from 1 to 5). We choose a very small sampling proba-
bility of 8 = 0.025. Not surprisingly, wherk = 1, the privacy
protection is entirely from the sampling effect, as the oigd §
value is less thafs. However, wherk > 2, we start seeing privacy
protection effect fromk-anonymization, withy (< 0.001) signifi-
cantly smaller tha® = 0.025 whene = 2.

Finally, in figure 6 we show the relationship between thegayw
parametetk and the utility parametek if we set the requirement
thats < 107¢. The figure shows that smaller valueseotan be
satisfied for larger values of k. Furthermore, the effect aiver e
is quite substantial.

Implications of Our Result. Theorem 1 shows thak-
anonymization using a data-independent generalizatipnoagh,
when preceded by a random sampling step, can sdiisfy)-DP
with reasonable parameters. In the literatér@nonymity and dif-
ferential privacy have been viewed as very different prvguoar-
anteesk-anonymity is syntactic and weak, and differential privacy
is algorithmic and provides semantic privacy guarantees: ré&-
sult is, to our knowledge, the first to link-anonymization with
differential privacy. This suggests that the “hiding in awd of k"
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Table 1: A table showing the relationship betweerg and ¢ in determining the value of § when k is fixed. In the abovek = 20, and
each cell in the table reports the value ob under the given values of3 and ¢
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privacy principle indeed offers some privacy guaranteesmirsed
correctly. We note that this principle is used widely in exis
other than privacy-preserving publishing of relationaldanclud-
ing location privacy and publishing of social network datetwork
packets, and other types of data.

We also observe that existing techniques for satisfyinfgdin-
tial privacy rely almost exclusively on output perturbatiehat is,
adding noises to the query outputs. Our result suggeststan al
native approach to satisfy differential privacy. Rathearttadding

columns, and each segment is published in a different ozl
with each segment treated as a new tuple. This reduces tlendim
sionality of the data. If the grouping of attributes intowmins can

be done in a way that satisfies differential privacy, eacletaffects

at most a small number of columns, and each column is publishe
in a way that satisfies differential privacy, then the oJeoatput
can satisfy differential privacy.

5. DIFFERENTIAL PRIVACY WITH UN-
CERTAIN BACKGROUND KNOWL-
EDGE

In the previous section, we illustrated how adding a sargplin
step can make a deterministicanonymization algorithm satisfy
differential privacy, as it adds uncertainty to the adversaback-
ground knowledge. Intuitively, if an algorithm satisfigs d)-DP
with a random sampling step, it should provide privacy prtts
without the sampling step, when it is reasonable to assuatdtth
adversaries do not have precise knowledge about all tupldsei
dataset. We note that otheranonymization techniques would not
satisfy(e, §)-DP, even with the random sampling step.

In this paper, we introduce a new privacy definition, called
(8, €, 0)-Uncertain Differential Privacy ({3, ¢, §)-UDP for short)
and show that it is composable. An algorithm satisfiése, §)-
UDP, if preceding it with a sampling step with probabilifyit can
satisfy(e, 6)-DP. We allowé = 0, in which case one gets a variant
of e-DP. We believe that this notion can serve as a starting point
for developing privacy notions when it is reasonable to amsthe
adversaries do not have precise knowledge of the datasgheFu
development along this direction is future work we plan tespe.

In this section, we prove one result related to the €, 6)-UDP

noises to the output, one can add a random sampling step in thenotion, that is, sampling can amplify privacy protectiom &odif-

beginning and prune results that are too sensitive to clsanfie
individual tuples (i.e., tuples that violate-anonymity); this also
achieves differential privacy. In Section 5, we show furtappli-
cation of this random sampling step for differential prigzacAn
intriguing question is whether other input perturbatiochtg@ques
can be used to satisfy differential privacy as well.

Towards practical k-Anonymization. While Theorem 1 gives a
microdata anonymization method that satisfies differéptigacy,
one may argue that the algorithm is impractical. Requiriveyus-
age of a data-independent global generalization scheméetmp
restrictive. Furthermore, it is well known thatanonymity suffers
from the curse of dimensionality [1]. We now discuss how ¢hes
issues can be addressed. The comprehensive developmbasef t
ideas is beyond the scope of this paper.

First, rather than having to use a data-independent glabadrg
alization scheme, one could compute a generalization seham
ing the dataset. One just needs to ensure that the genémaliza

scheme does not depend too much on any individual tuple. idere

the sketch of an algorithm that satisfigsd)-DP. Given a dataset

ferentially private mechanism.

DEFINITION 4. An algorithm A gives (3, ¢, )-UDP if and
only if the algorithmA”? gives(e, §)-DP, whereA® denotes the al-
gorithm to first sample with probabilitg, and then apply4. And
whené = 0, we say the algorithm satisfi€¢s, €)-UDP.

We show that this notion df3, €, §)-UDP is composable.

THEOREM 2. GivenA; that satisfieg3, €1, 61)-UDP and A
that satisfieg 3, €2, d2)-UDP. Then(A;; A2), where; denotes con-
catenation, satisfie§3, e1 + €2, 91 + d2)-UDP.

PrRooFr For anyD,t, S = S1; 52, (A1,A2)(D) = 51;5%
whenA(D) = S1 and Az (D) = S2. We have

Pr[(A% (D); A5 (D))=(51;52)]
Pr[(A] (D_¢);A5(D_))=(51;52)]
Pr[A(D)=51] Pr[AS(D)=53]
Pr[A](D_;)=51] PrlAf(D_¢)=53)]

Pr[(A;;42)# (D)=5]
Pr[(A1;A42)8(D_¢)=5]

The above follows from the fact that? and.A5 are conditionally

D, one first computes a generalization scheme in a way that sat-independent give®. Hence with probability at leagt— (81 +62),

isfiese-DP. One then samples fro» with probability 3, apples
the generalization scheme to the sampled tuples, and fisafly
presses any tuple that appears less thimes. Our proof of The-
orem 1 can be extended to show that the overall algorithrefisi
(e,0)-DP for suitable parameters.

Second, the curse of dimensionality can be dealt with byi-vert
cal partitioning high-dimensional data [21]. The idea iggtoup
attributes into columns based on the correlations amongathe
tributes. Each column contains a subset of attributes teatighly
correlated. One can anonymize and publish the differenincos
separately. Thatis, one tuple is divided into several segs1igy the

we have

B _
—(e1tea) Pr[A”(D) = S] < pleitez)
¢ SPiAP(D_)=5] = ¢

An interesting feature of thés3, ¢)-UDP notion is that there is
a connection between the privacy parametemd the sampling
rate 3. The following theorem shows that by employing a smaller
sampling rate, one can achieve a strong privacy protectien &
smaller privacy parametej.



THEOREM 3. Any algorithm that satisfie$5:,¢)-UDP also
satisfies(32, €')-UDP for any3» < 31, where

€ =In (1 + (@(6E - 1)))

PROOF Let g = '6'2. The algorithm.4”2 can be viewed as
first sampllng with probabllltyﬂ then followed by applying the
algorithm A%t

We useAB(D) to denote the process of sampling frathwith
sampling rate3. For anyD, t, S, we have

Pr[A%(D)= 5] _ S, PrAs(D)=TIPHA* (T)=5] _ Z

Pr[AP2(D_y)=S] S, Pr[Ag(D_y) =T]Pr[AP1(T)=5S] X

To analyzeZ, we note that all thd™s that resulted from sam-
pling from D with probability 5 can be divided into those that do
not contairt (i.e., ¢ is not sampled), and those that containe., ¢
is sampled). For & in the former case, we have

Pr[Ag(D) =T] = (1-p)Pr[Ag(D) = T|t not sampled ifT’]
= (1= pB)Pr[As(D—:) = T]
For aT in the latter case, we have

Pr[Ag(D) =T] = BPr[Ag(D) = T|t sampled irl]
= BPr[Ag(D—t) = T-]
Hence we have
Z = Y quer(1—B)Pr[As(D—;) = T]Pr[A”(T) = 5]
+ ZTteT ﬂPr[AB( —t) = 7t] PT[A61 (T) = S]
(1=B)X + B 7 Pr[As(D—) = T'| Pr[A” (T4,) = 5]
(1-8)X+pY

Next, we bound the following ratio:

Y S PrlAs(D_y) = T'|Pr[A% (T},) = 9]

X T Ty, PiAs(D_y) = T]Pr[APL(T) = 9]

That A satisfies (f1,¢)-UDP means thatVrVie © <

B1 — _
PrA™ (T4 0)=5] < ¢ Hence we have < % < ef, and there-

Pr[APL(T)=5] —
fore
€ Z €
L=B(l—e )< T <1+ —1)
Hence we have ™ < £ < e for

We now show that’ = In(1 + B(e — 1)).
In(1+8(ef—1)>—-In(1—8(1—¢e"°)
& 148 —1) > W
& (14 -1)0 - (1—66))—120
& (e =2)(B-F%) 2
O

A natural corollary of the above theorem is the following.

COROLLARY 4. Given an algorithmA that satisfies-DP, it
satisfies(3, €')-UDP for ¢’ = In(1 + B(e® — 1)).

An equivalent way to write’ = In(1 + 8(e€ — 1)) is

6/
es —1

e —1 =5

To see the effect of this. Consider the case with samplingaro
bility 8 = 0.1, ande® = 2, thene = 1.1. Hence, when one

publishes a randomly sampled dataset, then one can use mwuch r
laxed parameters. With@1 sample rate, then an algorithm that
achieveqIn 2)-DP can achieve overa(ln 1.1)-DP.

Discussions. We have shown that using random sampling as a
preprocessing step can amplify the privacy protection pafiany
algorithm that satisfies-DP, or equivalently, reduce the potential
information leakage. This can be very useful in the intévaciet-
ting as well as non-interactive setting. When one samplas f
very large dataset and uses the sampled dataset to anstigticsia
queries, such as in the case of using sensus data, one caruadd m
less noise to satisfy the same privacy requirements beadubke
sampling step.

We are unable to prove the result in Theorem 3 for the case that
0 # 0, because of the difficulty in dealing with how the error proba
bility § changes. How reducing the sample probability would boost
the privacy protection with an error probabilifythus remains an
open question.

6. SMOOTH ERROR BOUND

So far in this paper we have adopted the relaxatione-of
differential privacy by allowing an error probability. A natural
question is how small does suéhneed to be? It is known that
in order for (¢, §)-DP to provide strong-enough privacy protec-
tion, it must be that < %, wheren is the number of records
in the dataset. In particular, when applying an algorithiat gat-
isfies(e, §)-DP, the probability that a privacy breach occurs is not
bounded by, and depends on the size of dataset. In this section,
we analyze this issue. To achieve very snaallone has to choose
large k's, small 5’s, or both, which result in low-quality outputs.
To avoid having to use very smalls, we introduce an approach
to make thge, ) relaxation more robust by providing a smoother
bound on the probability of bad outcomes.

Consider the following algorithm.

ALGORITHM 5. [§-Sampling]: The é-sampling algorithm
goes through each tuplein the input dataset. For each it pub-
lishest with probability §, and suppress with probability 1 — 4.

The above algorithm satisfief), §)-DP. However, given a
database of tuples, each corresponding to one individual, this
algorithm will publish on averaged tuples unchanged. Suppose
thatn is 50 million, and = 10~ 7, then the algorithm publishes on
average 5 tuples unchanged, completely compromising thacyr
of these tuples. This example illustrates that satisfying)-DP
alone does not guarantee that a privacy breach can occupreith
ability at mostd. In fact, it guarantees that for any tuple, a privacy
breach can occur with probability at mastHowever, when there
are many tuples, it may be that with high probability the aciy of
sometuple will be breached.

We note that this issue @t, §)-DP is because when a violation

of the inequalitye ¢ < % < ¢ oceurs, no bound is
Pr[A(D)=S5]

placed ON5 X5 =5 In fact, there could be a8 such that
Pr[A(D:) = S] = ¢ andPr[A(D2) = S] = 0, causing complete
privacy compromise whef occurs. In many cases, when an algo-
rithm outputsS that violates the=* bound, thg rati(%;gz%
often does not shoot up teo, but rather climb gradually, with
higher ratios increasingly unlikely.

We use this observation to propose a better method of regaxin
e-DP. In particular, we need a better bound on the error probabil-
ity, 4, in order to ensure that a disclosure like the one previously
mentioned does not occur. We thus introduce a smoother tfound
o as follows.



DEFINITION 5. [f-smooth (e, §)-Differential Privacy] A ran-
domized algorithmA gives f-smooth(eo, do)-differential privacy
for a function f such thatf(1) = 1 and f is monotonically de-

creasing, if and only if for any > €, A satisfies(e, dof (5))
differential privacy.

Whenj is a constant function, we gét, ¢)-DP. Ideally, we want
f(x) to decrease fast and goesitavhenz goes toso.

That an algorithmA4 satisfiersf-smooth(eo, oo )-differential pri-
vacy means thatd provides(e, d)-differential privacy simultane-
ously for an infinite number ofe, §) pairs, including(eo, do),
(1.1€0,d0f(1.1)), (1.2€0, 0 f(1.2)), and so on.

A benefit of f-smooth(e, §)-differential privacy is that it avoids
total privacy disclosure when the functigiy) — 0 wheny — co.
In fact, the§-sampling method in Algorithm 5 does not satigfy
smooth(e, §)-differential privacy for any suclf.

The following theorem shows that the notionfemooth differ-
ential privacy is composable.

THEOREM 5. Given A; that satisfiesf;-smooth(e;, §1)-DP,
and A, that satisfiesf2-smooth(e1,d1)-DP, (A1;.A2) satisfies
I“IlELX(f17 fz)-SmOOth(El + €2,01 + (52)-DP.

PrROOF For anyD andt € D, we say thafS; is a bad outcome
for Ay if e7%1 < % < 1 is violated, and define
bad outcomes farl, similarly. We have,

Vzr > 1Pr [A] (D) S {S] : S1 bad forA, }] < 01 f1 (I)
and

Vx > 1Pr [AQ(D) S {52 : S5 bad fOI’AQ}] < 82 f2 (:E)

Note that for anyD andt € D, anyz > 1, and any(S1, S2):

Pr[Ay;A5(D)=(S1;52)]
Pr[Ay;A2(D_+)=(51;52)]

Pr[ Ay (D)=S;1] Pr[A3(D)=S3]
Pr[A5(D)=S2] Pr[Az(D_)=52]
_ Pr[A;(D)=S;] Pr[Ax(D)=55]
T Pr[Ax(D)=52] Pr[Az(D_+)=52]

For anyD andt € D, and anyz > 1, we say(S1, S2) is a bad
outcome when the following is violated

owlerten) o Prl(A A2)(D) = (51552)]  _ a(erten)
~ Pr[(As; A2)(D—t) = (513 82)] —

Observe thatSi, S2) is a bad outcome only when eithéi is a
bad outcome for;. Therefore,

Pr[(A1; A2)(D) € {(S1;S2) : (S1; S2) is a bad outcomg
1 — Pr[A:(D)is not bad Pr[A2(D) is not bad

1— (1= 61/ (2)) (1 - 82f2 ()

d1f1(z) + d2f2 ()

(61 + 02) max(f1, f2)(x)
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In what follows, we show that thg3, k)-SDGS algorithm satis-
fies f-smooth(e, §)-DP.

THEOREM 6. The (k,3)-SDGS algorithm satisfies thg-
smooth boundeo, do)-differential privacy, for any
- (n(4) 252
€0 >—In(l1—08),00=c¢e B 7/, and
f(z) = %e*k(l"(%)ﬂ(w?;)ﬁ),Wherew(z) = (1)
ProoF Recall that th€k, 3)-SDGS algorithm satisfieg, §)-
differential privacy with

§=d(k,B,€) =

wherey = =18

Note that we are overloading to also be a functiony(z) =

%, since we want to study the behavior dfvith differ-

(e0-14p) e —14p) _
€0 oc =

ent values. Note thaf(1) = ,andy = {

1(3)
In order to prove thg-smooth bound for a functiofi, we cannot
just use numerical methods to compute the functidar different
values. Instead, we use the following Chernoff bound as an up
perbound of the above. Givel to be the sum of: independent
binary random variables (i.e. for the binomial distribufipand let

w = E[X], then the Chernoff bound states that we have
Pr[X > (1 +d)y] < e~ n0+d)—d)

To make it more convenient to use the Chernoff bound, we note
that

§~ max Yy f(jin,B).

m>=
S jzan

We use the Chernoff bound to bounth) = 37" f(j;n, 8),
in which case we havg = fn: B

) =Y. fGin,

Note that (7 In (%) —(y- 6)) > 0 for all positivey and

B's. (See, for example, http://www.wolframalpha.com/.) ride
the above function is monotonically decreasing whencreases.
Hence
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In order to better understand the above functif(x), we plot it
for various values oéy. The resulting graph is shown in Figure 7.
The value ofé was chosen to makg(1) = 1. As expected, the
function decays exponentially fast when> 1. As e increases, the
decay of the function is slower. We note that this obserabioly
holds for values ot > 0.5. Fore = 0.25, the curve cuts through
the other curves. We are unsure of the exact reason undgthis
behavior. However, given the complexity of tifefunction, this
does not seem too strange.

7. RELATED WORK

The vast majority of the literature on privacy-preserviragad
publishing consider privacy notions that are weaker thdferdi
ential privacy. These approaches typically assume an saer
that knows only some aspects of the dataset (backgroundlknow
edge) and tries to prevent it from learning some other aspect
One can always attack such a privacy notion by changing ei-
ther what the adversary already knows, or changing what the
adversary tries to learn. The most prominent among these no-
tions is k-anonymity [30, 29]. Some follow-up notions include
I-diversity [22] andt-closeness [20]. In this paper, we analyze
the weaknesses df-anonymity in detail, and argue that a sepa-
ration between QIDs and sensitive attributes are diffieuthtain
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Figure 7: A graph showing the relationship betweenf(z) and
z for (k = 20, 8) — SDGS under the smooth bound

in practice, undermining the foundation of privacy notimugh as

mechanism [25] and therefore also suffers from the comiaunait
constraints. Recently, Dwork et al. [13] obtained a numidehe-
oretical results on the boundary between computationaitigity
and unfeasibility for different utility measures. Our waskmore
practical oriented, as we prove a class of anonymizatioorizhgns
satisfy(e, §)-DP.

There exists some work on publishing microdata while satisf
(e,0)-DP or its variant. Machanavajjhala et al. [23] introduced a
variant of (¢, §)-DP called (¢, §)-probabilistic differential privacy
and showed that it is satisfied by a synthetic data genenaté&shod
for the problem of releasing the commuting patterns of thaufm
tion in the United States. Korolova et al. [18] consideredlistning
search queries and clicks that achieie®)-differential privacy. A
similar approach for releasing query logs with differehtiavacy
was proposed by Gotz et al. [15]. These approaches es$ential
apply the output perturbation technique in differentiavacy to
microdata publishing scenarios that can be reduced togneto
publishing at their core. Our work differs in the followingirst,
we do not use output perturbation. Second, we directly knk
anonymization to differential privacy.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we take a major step towards practical salatio

[-diversity,t-closeness, and other ones centered on attribute disclo-for publishing microdata while providing rigorous privagyo-

sure prevention. Differential privacy and similar algbnitic pri-
vacy notions offer a more sound foundation for privacy-presg
data publishing.

From 2003 to 2006, the notion of differential privacy was de-

tection. In this research, we take the approach of startiog f
both k-anonymization and differential privacy and trying to meet
in the middle. On the one hand, we identify weaknesses irkthe
anonymity notion and existing-anonymization methods and fix

veloped in a series of works [9, 14, 5, 12, 10]. It represents a these weaknesses. On the other hand, we try to relax diffefen

major breakthrough in privacy-preserving data analysiastvte-
sults on differential privacy are for answering statidtigaeries,
rather than publishing microdata. A survey on these resats
be found in [11]. The seminal work of Dwork et al. [12] is based
on output perturbation, i.e., adding noises to query restihis ap-
proach lends itself rather nicely to statistical resultg,its does not
solve the general microdata publishing problem. Our apprean
be seen as complimenting this approach by considering aasheth
of input perturbation rather than output perturbation td aedcer-
tainty.

privacy so that it can be satisfied by the improwednonymization
method. The key insight underlying our result is that ranciam-
pling can be used to bridge this gap betwé&eanonymization and
differential privacy. This resultis, to our knowledge, fivst to link
k-anonymity with differential privacy. A natural directidior fu-

ture work is to develop more practidalanonymization techniques
that can be proven to satisfy differential privacy. One pising
approach is to make existiriganonymization algorithm “safe” so
that they satisfy(3, €, )-UDP. Then they satisfye, §)-DP when

a random sampling step is added. One open problem is how to

In an attempt to make differential privacy more amenable t0 compute a global recoding scheme that works well for a datase

more sensitive queries, several relaxations have beeroped:
including (e, ¢)-differential privacy [9, 14, 5, 12]. We usg, §)-
differential privacy in our paper. Moreover, we also point @s
pitfalls when being applied in microdata publishing, andpmse
f-smooth(e, §)-differential privacy.

a differentially privacy way. Alternatively, we are alsooking at
the problem of how to make partitioning-based schemes (aach
Mondrian [19]) safe.

We also observe that existing techniques for satisfyinfgdin-
tial privacy rely almost exclusively on output perturbatichat is,

Random sampling [2, 3] has been studied as a method for pri- adding noise to the query outputs. Our result suggests émat r

vacy preserving data mining, where privacy notions othen tthif-

dom sampling could play an important role in satisfying eliff

ferential privacy were used. To our knowledge, the only work ential privacy as well. Not only it can enable a determinigti

that considered sampling as a method for differential pyivis
that of Chaudhuri et al. [8]. In this work, however, sampling
is used by itself, rather than as a pre-processing step tafa™s
k-anonymization algorithm or another differentially ptieealgo-
rithm. Therefore, in their results the disclosure proligbib is
lower-bounded by the sampling probability, Our results show

anonymization algorithm to satisfy, §)-DP, it can also amplify
the privacy protection for algorithms that already satisfyP. We
believe that the effect of random sampling, and perhaps athe
put perturbation methods, on differential privacy shouégdflrther
investigated.

Finally, we observe that current definitions (@f ¢)-differential

that sampling when combined with other methods can be much privacy require to be very small to provide sufficient privacy pro-

more powerful.

Another approach to privacy-preserving microdata pubiiglis
data synthesizing. In [25], McSherry and Talwar propose@xan
ponential mechanism for releasing data with differentiaazy.
However, their mechanism is not feasible in practice bezaus
takes time exponential to the size of the possible outputsimB
et al. [6] considered synthetic data generation that isulidef a
particular class of queries. Their approach uses the expiahe

tection when publishing microdata, making the notion insfical
in some scenarios. We have introduced a notion caflsthooth
(e, 0)-differential privacy and showed that it can be satisfieddny r
dom sampling plus safe-anonymization. It would be interesting
to examine whether other methods that satfsfy )-DP satisfy this
smooth version ofe, §)-DP.
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