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ABSTRACT

Idika, Nwokedi C. Ph.D., Purdue University, August, 2010. Characterizing and
Aggregating Attack Graph-based Security Metrics. Major Professor: Bharat K.
Bhargava.

An attack graph is an abstraction that represents the ways an attacker can vio-

late a security policy by leveraging interdependencies among discovered vulnerabili-

ties. Attack graph analyses that extract security-relevant information from the attack

graph are referred to as attack graph-based security metrics. Although a number of

attack graph-based security metrics have been proposed in the literature, there has

been no analysis of how these security metrics behave in response to security in-

cidents. In this dissertation, we examine how attack graph-based security metrics

behave in response to increased network vulnerabilities under heterogeneous network

models. From this analysis, we identify opportunities for using equations that char-

acterize particular attack graph-based security metrics avoiding the costly processing

of attack graphs.

Security is recognized to be a multidimensional entity. However, all proposed

attack graph-based security metrics have been unidimensional. In this dissertation,

we provide an approach for aggregating the capabilities of existing attack graph-based

security metrics with our proposed suite of attack graph-based security metrics.

Lastly, we specify an algorithm for network hardening given a limited budget.

Given a set of network vulnerabilities and a set of candidate countermeasures to

implement, a network administrator is to choose the set of countermeasures that

optimize security given a limited budget. Our algorithm produces sets of counter-

measures that optimize security with respect to a set of attack graph-based security

metrics while staying within budget.



1

1. INTRODUCTION

Security metrics produce assessments of an entity’s ability to provide itself with con-

fidentiality, integrity, and availability. These assessments are values derived from

measuring security-relevant entity attributes. A security-relevant attribute is one

that affects an entity’s ability to provide itself confidentiality, integrity, or availabil-

ity. When the entity being measured is an organization, the values produced can be

referred to as enterprise security metrics.

INFOSEC affirms that enterprise security metrics is a top 8 security research

priority [1]. This ranking is due, in part, to the compelling promise of enterprise

security metrics. With these security metrics, an organization could (1) determine

whether its security is improving over time, (2) determine its return on investment on

implemented security controls, and (3) determine how well its security compares to

other similar organizations [2]. Although there are no universally accepted security

metrics for addressing issues (1) - (3), progress has been made toward this end [3].

In general, security metrics are used to help achieve security goals. The goals of

security are to prevent, detect, and recover from attacks [4]. Attacks, which are ac-

tions that violate some security policy, are inextricably linked to the goals of security.

Given the importance of attacks to security, a means for representing the ways an

attacker can successfully attack a system is invaluable to security evaluation.

The attack graph represents the possible ways an attacker can violate a security

policy. An attack graph can be generated from network configuration details and

known vulnerabilities within the network. The attack graph depicts how an attacker

could leverage dependencies among vulnerabilities to violate a security policy. If an

attacker violates a security policy by first exploiting a Secure Shell Daemon (sshd)

vulnerability on machine m1 and then exploits a Remote Shell Daemon (rshd) vulner-

ability on machine m2, the attacker would be taking advantage of the interdependency
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between the sshd vulnerability on m1 and the rshd vulnerability on m2. The attack-

ers sequence of actions would constitute an attack path. In one type of attack graph

where nodes correspond to hosts and edges corresponds to vulnerability exploits, this

attack path could be represented by three nodes and two edges. The third node would

represent the machine from which the attacker initiated the attack on m1. Thus, an

attack graph is a collection of attack paths.

Because the attack graph is derived from a network, analyzing the attack graph

can reveal security-relevant properties about the network. An analysis designed to

extract these security-relevant properties are referred to as attack graph-based secu-

rity metrics. Although a number of attack graph-based security metrics have been

proposed, we assert that no one proposed security metric fully describes a network’s

security. Despite having an array of attack graph-based security metrics that mea-

sure different attributes of a network’s security, there are no techniques for combining

these metrics to obtain a more comprehensive view of a network’s security.

1.1 Thesis Statement

Attack graph-based security metrics can be characterized and aggregated to assist

network security evaluation and enhancement.

1.1.1 Characterization of Attack Graph-based Security Metrics

To characterize attack graph-based security metrics, we identify their distinguish-

ing attributes. We are interested in three questions. Two questions are (1) how and

when should attack graph-based security metrics be used, and (2) are there equations

that explain the behavior of attack graph-based security metrics. These questions are

derived from how attack graph-based security metrics respond to security relevant

events. The security relevant events of concern in this dissertation are those that

result in increased vulnerabilities in the network. The third question of interest is

what type of attack graphs attack graph-based security metrics can evaluate. Some
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attack graph-based security metrics have implicit requirements on the type of attack

graphs they analyze.

When evaluating a network with these security metrics, a security engineer can

use these attributes to avoid pitfalls and to improve network security. The process

of improving network security is referred to as network hardening. Knowledge of

attack graph-based security metrics’ attributes can inform network hardening. We

exemplify this proposition by demonstrating how attack graph-based security metrics

can be used in network hardening to maximize security given a budget constraint.

1.1.2 Aggregation of Attack Graph-based Security Metrics

Although researchers have recognized that security is multidimensional [3,5], pro-

posed attack graph-based security metrics have been unidimensional. Because these

security metrics can measure uniquely relevant aspects of network security, our ap-

proach combines their capabilities and respects the multidimensional nature of secu-

rity. Using our characterization of attack graph-based security metrics, we specify an

algorithm for determining between two network configurations which is most secure.

We also demonstrate how multiple attack graph-based security metrics may be used

with our network hardening approach.

1.1.3 Contributions of this Dissertation

The contributions of this dissertation are the following:

• Provide a characterization of attack graph-based security metrics that is based

on the metrics’ responses to security-relevant network events

• Propose a novel suite of attack graph-based security metrics

• Develop an algorithm for combining attack graph-based security metrics for

evaluating two network configurations
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• Design an algorithm for maximizing network security with respect to attack

graph-based security metrics given a limited budget

1.2 Organization of this Dissertation

In chapter 2, we explain the various types of attack graphs and identify the attack

graphs used in this dissertation. Chapter 3 reviews previously proposed network

security metrics. In chapter 4, we propose our novel set of attack graph-based security

metrics in this chapter. We also specify our algorithm for combining multiple security

metrics to evaluate two network configurations in this chapter. In chapter 5, we

present results from simulation studies that provide justification for characterizations

of attack graph-based security metrics in chapter 3. We also present the results of

our algorithm on synthetic attack graphs. In chapter 6, we specify our algorithm

for performing network hardening given a limited budget. We conclude with our

conclusions and future work in chapter 7.
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2. THE ATTACK GRAPH

An attack graph is an abstraction that divulges the ways an attacker may use inter-

dependencies among vulnerabilities to violate a security policy. The attack graph is

derived from a network model description. This description includes extant vulnera-

bilities on hosts, host connectivity, and a security policy.

One question a security engineer contemplating the use attack graph analyses will

confront is “what attack graph representation should be used?” This chapter provides

the background needed to answer this question. Table 2.1 succinctly summarizes the

analysis given below.

2.1 Related Work

In this section we give an overview of attack graph representations that have

been reported in the literature. An attack graph is a collection of attack paths that

are composed of conditions, exploits, or some combination of conditions and ex-

ploits. Based on these possible combinations, we classify the attack graphs into three

broad categories: condition-oriented attack graphs, exploit-oriented attack graphs,

and condition-exploit-oriented attack graphs. It is possible to convert one attack

graph representation into another representation when all conditions and exploits are

known.

2.1.1 Condition-oriented Attack Graph

In a condition-oriented attack graph, a node represents a subset of the network

state, and an edge represents an exploit (or group of exploits) that moves the net-

work from one state to another state. An exploit is a realized vulnerability. A
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vulnerability specifies only its preconditions and consequences. An exploit details the

specific network machines or software involved in realizing a vulnerability. A state

is a network attribute or a set of network attributes. Network attributes include

hosts, host connectivity, available software at hosts, access rights at hosts, and any

other network characteristic deemed relevant to the modeler. State may be repre-

sented at various abstraction levels. Abstraction levels include the following: a single

condition [6], a host [7], a host and privilege level [8], groups of hosts (e.g., sub-

network) [9], and the entire network [10]. Each abstraction level is represented by

one or more predicates. In condition-oriented attack graphs predicates are used to

describe vulnerabilities. That is, vulnerabilities are described by their preconditions

and postconditions. When the preconditions for a vulnerability are satisfied, exploits

cause more conditions (i.e., postconditions) to become true. These postconditions

become available as preconditions for other vulnerabilities. We now examine specific

instances of condition-oriented attack graphs.

Finite State Machine (FSM) Attack Graph

In a FSM attack graph (e.g., [10]), a node represents the state of the entire network.

Transitions in the graph are made by attacker actions. Because this attack graph is an

FSM, it avails itself to automatic generation with tools such as a model checker [10].

Although automatic generation is useful, the time to generate an attack graph for

a practical network may be impractical [11]. This representation also suffers from

redundant paths [12]. Moreover, the verbosity of the FSM representation makes

human comprehension of the attack graph difficult [12].

Coordinated Attack Graph

A coordinated attack graph was proposed by Braynov and Jadliwala in [13]. A

coordinated attack graph is an FSM attack graph where transitions into some states

may require concurrent actions of multiple attackers. To represent this possibility, a
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joint attack space is proposed. The joint attack space can represent the concurrent

actions required to move from one state to another as well as the single attack actions

that cause state transitions in the traditional FSM attack graph. The coordinated

attack graph is unique in its ability to represent concurrent attacks. For instance,

the coordinated attack graph can specify a symbolic link race condition vulnerability

[13,14] involving two attackers. However, despite the flexibility of this representation,

the coordinated attack graph suffers from the same disadvantages of the FSM attack

graph.

Full Attack Graph

The full attack graph [7] shows all possible sequences of hosts and vulnerabilities

an attacker can use from an entry point. In other words, the full attack graph shows all

the paths an attacker can use to compromise hosts in a network. A host is represented

by a node in the full attack graph. When generated, the full attack graph shows how

the attacker can compromise any reachable host. Hence, the full attack graph is not

inherently goal oriented. Thus, if an analyst wants to determine an attacker’s ability

to reach a target host, the analyst may prune or ignore attack paths that do not

lead to the target host. The major drawback of the full attack graph is that it scales

poorly [7]. Another drawback of this approach is that the full attack graph may have

redundant paths [7].

Host-compromised Attack Graph

The host-compromised attack graph [7, 8] represents all hosts that an attacker

may reach. This representation reveals what machines may be compromised without

necessarily revealing the steps required to reach the hosts. The host-compromised

attack graph acknowledges that an attacker may use a series of exploits to violate

a security policy, but does not capture the exploits used to compromise hosts. A

node represents a host in a host-compromised attack graph. Each edge in the graph
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represents potentially many sequences of exploits that may be used to compromise

a given host. An edge between two hosts represent the highest access level that the

source host can obtain on the destination host via the exploit(s). A host-compromised

attack graph is constrained to having hosts appear in the attack graph once. Like the

full attack graph, the host-compromised attack graph is not a goal oriented approach.

However, unlike the full attack graph, an analyst may not determine all the ways an

attack may compromise a target host.

Predictive Attack Graph

In the predictive attack graph [7], a node represents a host and an edge represents

a vulnerability. The predictive attack graph representation accurately forecasts the

effect of removing vulnerabilities (i.e., edges) from the attack graph. The predic-

tive attack graph is the full attack graph with redundant paths removed. A path is

considered redundant if the path contains the same vulnerability-host pair in two or

more places along the same attack path. This process of removing redundant paths,

is referred to as “dynamic pruning.” This process results in an attack graph that can

be generated efficiently in practice [7]. A predictive attack graph may grow exponen-

tially with respect to the number of hosts in the network. This growth may occur

when firewalls cause an attacker’s actions to take place in two steps: compromising

hosts within a subnet directly, and then compromising other hosts in the same sub-

net that were not directly compromised through the firewall. This phenomenon is

referred to as “firewall explosion.” The predictive graph is not goal-oriented like the

full attack graph. Moreover, there is no way of using only the predictive attack graph

to determine all the attack paths an attacker may use to reach the goal state.

Node Predictive Attack Graph

In node predictive attack graph [7], a node can be host or a group of hosts, and

an edge can be a vulnerability or a group of vulnerabilities. The node predictive
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attack graph is a simplified version of the predictive attack graph. The node predic-

tive attack graph’s purpose is to mitigate the effects of “firewall explosion.” Firewall

explosion causes redundancy in the predictive graph. Thus, the node predictive at-

tack graph mitigates this issue by merging nodes of the attack graph. Two nodes are

merged if the attacker can compromise the two hosts from all hosts the attacker has

already compromised. The generation of this graph has performed well in practice [7],

however, Lippmann et al. admit that the generation process has many opportunities

to “underperform.” The method has many opportunities to underperform because

the algorithm uses an optimistic approach for merging nodes together. Thus, in the

worse case, all the merged nodes would have to be split. Because the node predictive

attack graph is a simplification of the predictive graph, it too is not goal oriented.

2.1.2 Exploit-oriented Attack Graph

An exploit-oriented attack graph is the reverse of a condition-oriented graph with

respect to nodes and edges. State is represented in the edges of the graph and the

exploits are represented in nodes of the graph [12]. Exploit-oriented attack graphs

may be referred to as exploit dependency graphs. A common representation of exploit-

oriented attack graphs is to have unlabeled edges. The exploit-oriented attack graph’s

initial state(s) and the goal state(s) of the network are special nodes. Initial states

are exploit nodes with null preconditions and true postconditions. Goal states are

exploit nodes with true preconditions and null postconditions.

2.1.3 Condition-exploit-oriented Attack Graph

In a condition-exploit-oriented attack graph, state and exploits are represented

by nodes [12]. An edge may relate a state and an exploit, or an exploit and a state.

An edge may not relate a state and another state directly or relate an exploit and

another exploit directly. When a state precedes an exploit in the attack graph, it
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is considered a precondition for the exploit. When a state follows an exploit in the

attack graph, it is considered a postcondition of the exploit.

Multiple Prerequisites Attack Graph

The multiple prerequisites attack graph is an attack graph where there are three

types of nodes: states, prerequisites, and vulnerabilities [15]. State nodes represent

the host and the access level obtained by the attacker. Prerequisite nodes represent

the preconditions required for the attacker to realize a vulnerability, which is repre-

sented by a vulnerability node. The Multiple Prerequisite attack graph may be used

with or without goal-orientation. This attack graph has been shown to have efficient

run times in practice [15].

Logical Attack Graph

The logical attack graph [16] is a goal-oriented attack graph that has two types

of nodes: fact nodes and derivative nodes. Also, there are two types of fact nodes:

primitive fact nodes and derivative fact nodes. Primitive fact nodes have no precondi-

tions and are unconditionally true (facts). Derivative fact nodes have preconditions.

However, derivative fact nodes are not directly connected to primitive fact nodes.

Derivative fact nodes connect directly to derivative nodes. Derivative nodes connect

directly to primitive fact nodes. The set of primitive fact nodes making a derivative

node true form a conjunction. The set of derivative nodes that make a derivative fact

node true form a disjunction. Also, because edges represent the “depends on” rela-

tion, an edge appears between two nodes if the source node requires the destination

node to be true in order for the source node to be realized. Thus, the source node

“depends” on the destination node. The logical attack graph has been shown to have

efficient run times for practical use [16].
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Hybrid-oriented Attack Graph

The hybrid-oriented attack graph is described in [12]. A node represents a single

condition. When multiple preconditions precede an exploit, the conjunction of these

preconditions are required to realize the exploit. When state follows an exploit in

the attack graph, it is considered a postcondition of the exploit. If an exploit pro-

vides multiple postconditions, it may provide any one postcondition; that is, exploits

provide a disjunction of postconditions. This attack graph may or may not be used

in a goal-oriented manner. The hybrid-oriented attack graph is expected to scale for

hundreds of hosts [11].

2.2 Attack Graphs Used in this Work

In this dissertation we use condition-oriented attack graph, exploit-oriented attack

graph, and the condition-exploit-oriented attack graphs. We use different attack

graph representations based on what representation best helps convey our aim. If we

do not explicitly state the representation being used, the representation will be clear

from the context.
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Table 2.1: Attack graphs and their respective disadvantages and advantages

Attack Graph Drawbacks Advantages

FSM Verbosity, Impractical Gen-

eration Times

None

Coordinated Verbosity, Impractical Gen-

eration Times

Can represent attacker col-

laboration

Full Verbosity, Impractical Gen-

eration Times

The higher level of abstrac-

tion for nodes may enhance

human comprehension

Host-compromised Provides little information

for network analysis

Practical generation times

Predictive Suffers from ”firewall explo-

sion”

Practical generation times

(generally)

Node-predictive May underperform during

attack graph generation, de-

creases information avail-

able for network analysis

Practical generation times

and representation for hu-

mans

Multiple Prerequisites May degenerate, requires

worst case assumption

Practical generation times

Logical Verbosity Practical generation times

Hybrid-oriented Verbosity, generation times

for large networks

Generation times for mod-

erately sized networks
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3. NETWORK SECURITY METRICS

In this chapter, we begin by defining security metrics. We then detail classes of secu-

rity metrics–identifying where attack graph-based security metrics reside within the

classification scheme. We then review previously proposed network security metrics.

In our review, we provide a detailed analysis of previously proposed attack graph-

based security metrics. Table 3.1 shows how the reviewed network security metrics

may be classified.

3.1 Security Metrics

The first word in “security metric” is security. Security is the process of providing

confidentiality, integrity and availability to an entity according to some policy. With

respect to an organization, security may be split into four domains: physical security,

personnel security, information technology (IT) security, and operational security

[17]. Physical security refers to providing protection for hardware, software, and

information against physical threats. Personnel security refers to the policies and

procedures used to ensure that an organization’s staff is properly prescreened, trained,

and later monitored. IT security refers to the technical features and functionality that

contribute to an IT infrastructure’s security. Operational security refers to the policies

and procedures that are enacted to govern how and when users can securely interact

with systems and system resources.

The second word in “security metric” is metric. A metric is a value that facilitates

decision making and is derived from measurement. Metrics measure the attributes of

entities [18, 19]. Generally, there are two types of attributes: internal and external.

Internal attributes are characteristics that are inherent to the entity itself. External

attributes are the actions performed by the entity while in operation in some envi-
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ronment. For instance, a network can be considered an entity. The existence of a

network-based intrusion detection system (NIDS) in the network can be considered an

internal attribute. The NIDS’s performance on real network traffic can be considered

an external attribute.

Deriving inspiration from the Systems Security Engineering Capability Maturity

Model [20] and Herrmann in [21], we define security metrics as values produced

from measuring identifiable entity attributes that effect physical, personnel, IT, or

operational security. Security metrics can be classified into the following categories:

Return on investment (ROI) metrics, Resiliency metrics, and Compliance metrics [17].

ROI metrics measure an organization’s monetary benefit from dedicating resources

toward security controls. Resiliency metrics measure an organization’s ability to

maintain acceptable service in the presence of attacks or failures. Compliance metrics

measure how well an organization conforms to existing regulations and standards.

In this dissertation, we are concerned with network security metrics. By focusing

on attack graph-based security metrics, we have focused our contribution to security

metrics that measure the internal attributes of networks.

3.2 Classes of Network Security Metrics

In this section, we detail four classes of network security metrics we have devel-

oped based on the literature. There are two primary classes and three secondary

classes. The two primary classes of network security metrics are architectural-based

metrics and performance-based metrics. The three secondary classes of network secu-

rity metrics are time-based metrics, probability-based metrics, and complexity-based

metrics. All metrics belong to a primary class but not necessarily a secondary class.

In describing each security metric class, we also detail associated drawbacks.
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3.2.1 Primary Security Metric Classes

The primary security metric classes are architectural-based security metrics and

performance-based security metrics. The difference in the two classes stems from

the type of attributes they measure. Architectural-based metrics measure internal

attributes. Performance-based metrics measures external attributes.

Architectural-based

Architectural-based network security metrics measure the internal attributes of

a network. Internal attributes may include, for example, services available on a

network, connectivity of hosts on the network, or extant vulnerabilities. If a metric is

measuring an attribute of a network that is not a behavior or action, then the metric

is measuring an internal attribute. Such measuring may be done through a static

analysis of the entity.

The primary drawback of architectural-based network security metrics is that

they do not measure external attributes. External attributes give the most accurate

view of how a network will perform in a real-world environment. When measuring

internal attributes, inferences must be made about how the network will perform. If

a false inference is made, then conclusions drawn about a network’s security may be

erroneous. Although inferences must be made when measuring external attributes,

the inferences are dependent upon whether the measured entity will perform the same

in the future. Because the entity is measured on a specific data set, the inference is

usually narrowed to “the entity will perform the same in the future on the same

data set.” For instance, a data set could be comprised of various forms of malicious

software. Thus, if a security engineer has malicious software that accurately models

what the network will encounter in the future, the security engineer can be fairly

confident that the entity will react consistently in the future with prior evaluations.

Whether this narrowed inference is useful depends on what is being measured and the
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goals of the security engineer. In general, identifying data sets that allow for more

general claims remains an open problem.

Attack Graph-based

Attack graph-based security metrics is a type of architectural metric. An attack

graph-based security metric is a value produced from measuring the internal attributes

of a network that affect IT security or operational security. The values are derived

from generating an attack graph and subsequently deploying an analysis over the

attack graph. This analysis is the measurement that produces the attack graph-based

security metric.

Although attack graph-based security metrics may be interpreted as a compli-

ance metric [21], we believe it is more useful and accurate to classify them as “Non-

compliance metrics.” In general, non-compliance metrics specify to what degree an en-

tity is non-compliant with respect to some security policy. Measuring non-compliance

provides in-depth perspective of security policy violations. This perspective allows

for addressing security issues at a finer granular level.

The reasons for non-compliance are many. With respect to attack graphs, non-

compliance exists because vulnerabilities persist in organizations. Given the primary

objectives of an organization (e.g., profitability), a security engineer may be unable to

remove certain vulnerabilities. This inability may be the result of a lack of resources to

remove the vulnerabilities. Alternatively, offered solutions that fix the vulnerabilities

may be deemed unsuitable. This situation may arise when before a patch is run

on production level systems, an organization requires the patch pass certain tests to

ensure the patch does not adversely effect other parts of the system. If the patch does

not pass these requisite tests, it will be unable to run on the production level systems.

In the case where the patch does not pass, the production level systems would have to

continue running with the known vulnerabilities. Another scenario where a solution

for removing vulnerabilities may be deemed unsuitable is when the solution requires

coarse action (e.g., shutting down ports) that the organization is unable to take
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because of its primary organizational objectives. Aside from offered solutions that

are inviable, a reason for persistent vulnerabilities may be no available solution for

the vulnerability at the time of discovery. Thus, until a solution is released, the

organization may need to run its systems with known vulnerabilities.

When a system is not 100% compliant for a given set of security policies, a non-

compliant metric is applicable. For instance, a security policy may state that “an

unauthorized user should not gain root privilege on an administrator machine.” If

this security policy can be violated through the network, then the attack graph-based

security metric, the Number of Paths metric, can be used to identify the number of

ways an attacker can violate this policy. This examination of how egregious non-

compliance is in an organization improves the granularity at which security degra-

dations or improvements can be assessed. Continuing the previous example, if the

initial number of attack paths is 8, and after instrumenting some countermeasures

the Number of Paths metric goes down to 3, then one would have evidence that the

security controls put in place were effective at improving security. However, at the

level of the security policy, whether the number of attack paths was 8 or 3, the se-

curity policy is violated with no distinctions between the two networks. Because no

system can be 100% secure with any certainty, the development of non-compliance

security metrics appears to be a promising direction.

When an attack graph-based security metric classifies one network as more secure

than another network, it is actually stating that the more secure network is less

non-compliant with the observed security policy. Full security policy conformance

suggests that a network is secure with respect to the given security policy. An attack

graph-based security metric does not suggest this about a security policy. An attack

graph-based security metric can specify only that a network is non-compliant and

that one network is more or less non-compliant than another network. An attack

graph-based security metric makes no assertions about how compliant a network is

with a security policy unless the security policy is designed for the attack graph

(e.g., “no attack paths should be generated by the attack graph for any network
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security policy”). This limitation exists because attack graph-based security metrics

are capable of partially addressing only two of the four security domains: IT security

and operational security.

IT security deals with all aspects of the IT infrastructure of an organization. Ev-

erything from the network media being used to the software running on the network

hosts is considered a part of an organization’s IT infrastructure. Because an attack

graph is based on the description of the network model, a security metric that mea-

sures the attack graph provides some insight into the security of the IT infrastructure

underlying the attack graph. Operational security deals with all the ways users may

interact with the system. Because an attack graph represents a chain of exploits an

attacker can leverage to violate a security policy, a security metric based on the attack

graph gives some insight into how a user (authorized or unauthorized) may interact

with a network in insecure ways which is relevant to operational security.

Because attack graphs focus exclusively on vulnerabilities in the network which

may or may not be the result of inappropriate use of software and hardware, personnel

and physical security is not captured by the attack graph. An interesting area of

research may be determining how the attack graph can be repurposed for these other

two domains of security.

While attack graph-based security metrics attempt to measure IT security and

operational security, they do so only partially. There are three primary reasons for

this shortcoming.

• There is no guarantee that the description of the network model is completely

correct. The level of detail that a modeler can use is dependent on the attack

graph generator being used and the modeler’s knowledge of the system being

assessed. The most pervasive issue is that the modeler can never be assured

that all vulnerabilities are accounted for when modeling the system. Even

when the attack graph generator provides sufficient flexibility and the modeler

has enough knowledge about the network to model it accurately, issues may

still arise in the modeling of vulnerabilities. Since vulnerabilities are specified
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in terms of their preconditions and postconditions in an attack graph, a modeler

must know the exact conditions that allow the vulnerabilities to be realized and

their exact consequences. Obtaining the exact conditions for vulnerabilities is

difficult in general, especially if the vulnerabilities are not listed at an online

resource such as MITRE CVE [22]. Even if the vulnerability is found, human

error in transcribing discovered vulnerabilities that are written in vague terms

to a form amenable for an attack graph generator could produce faulty network

models that would subsequently produce faulty analyses.

• IT and operational security include the processes that were used to build and

maintain a network and attack graphs do not. The attack graph does not take

into account the processes that were used to develop the network resources.

Systems which undergo the Common Criteria [23] are believed to be more secure

than systems that do not adhere to the Common Criteria development process.

If patches that are added to a network undergo rigorous testing and code review

before being instrumented into the network, then this network would be believed

to provide higher assurance than a network that does not perform any structured

testing of new patches applied to the network.

• Attack graph-based security metrics cannot assess the performance of security

controls. Attack graph-based security metrics measure internal attributes of

a network. The number of hosts that are involved in some attack scenario is

an example of an internal attribute. The performance of security controls are

external attributes of a network. To truly assess the performance of security

controls, a dynamic environment is required and attack graph-based security

metrics are static analyses.

Performance-based

Performance-based network security metrics measure a network’s external at-

tributes. Human performance may be included as part of the external attributes of a
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network. This assertion is intuitive as a network typically requires human intervention

to operate properly on a continuing basis. An issue that pervades performance-based

metrics is choosing an appropriate data set to evaluate an external attribute. Infer-

ences made about specific data sets may only be marginally useful. For instance, if

an intrusion detection system (IDS) demonstrates that it has the ability to prevent

a specific attack, then this is all that can be inferred. If the attack changes form in

some way, the IDS may or may not be able to detect the attack. The ability to come

up with variant forms of an attack is a function of the resourcefulness and creativity

of the security engineer evaluating the IDS.

3.2.2 Secondary Security Metric Classes

The secondary security metric classes are probability-based security metrics, com-

plexity-based security metrics and time-based security metrics. These metrics can be

applied to internal and external attributes of a network.

Probability-based & Complexity-based

Probability-based network security metrics use probabilities to arrive at results.

Probabilities may be the likelihood of a network being attacked, an attacker choosing

an action, an attacker successfully violating a security policy, or an attacker exploit-

ing specific vulnerabilities. Such probabilities may take into account the difficulty

associated with exploiting a vulnerability. This possibility is why we discuss prob-

ability and complexity together. Moreover, there is much overlap in the drawbacks

of probability-based and complexity-based network security metrics. The drawbacks

of these type of metrics can be classified into historical data, assumptions, expert

opinion, and qualitative values.

Historical Data

Probability values are usually obtained from historical data. Historical data really
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refers to detected security incidents from the past. The sole usage of recorded histori-

cal data indicates that there could be a relevant number of attacks that occur, that go

undetected, and do not factor into probability estimates. One has no assurance that

the sample set of detected security incidents infers the set of all security incidents.

Furthermore, if a company has little to no historical data, probabilistic approaches

would be unavailable to them. A probabilistic approach is difficult to implement

when a security metric requires probabilities to be assigned individually. In order

to accomplish this task, appropriate investments would need to be made to ensure

precise finely tuned audit data is created, processed and pursued. These activities

are not performed by many organizations [24].

When complexity values are being assigned, one must ensure that historical val-

ues correspond to present day values. For instance, if a vulnerability was generally

accepted to be extremely difficult to exploit three months ago, this perspective may

no longer be true today. The change in difficulty associated with exploiting the vul-

nerability may have decreased because new knowledge has become publicly available

regarding the vulnerability (e.g., the release of a script that allows novices to exploit

the vulnerability). Having a consistent representation of what potential attackers

know about vulnerabilities is an arduous task.

Assumptions

A common method assumes that vulnerabilities are independent although these vul-

nerabilities exists within a dependency graph where previous exploits may decrease

the difficulty of exploiting later attacks [25]. For instance, when an attacker manages

to read a “shadow” file on a Unix-based system, the attacker may be able to use these

hashed value passwords to assist in compromising other hosts on the network.

Another common assumption is that an attacker’s success probability can be cap-

tured by a single value. Since attackers vary in tenacity, motivation, skill, and money,

these probabilities can be vastly different for each vulnerability [26]. Hence, multi-

ple probabilities would be needed to represent the probability of attack of a specific
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vulnerability which is an arduous task. An issue which supersedes the above prob-

lem is that quantifying things such as tenacity, motivation, and skill can be just as

challenging as assigning probabilities to vulnerabilities.

Expert Opinion

Another approach for obtaining probabilities or complexity values is through expert

opinion. It is unclear to the community what constitutes a qualified expert in the

domain of recommending probabilities or complexity values for vulnerabilities or at-

tack actions. What experiences should an expert have in order to predict the success

of an attacker compromising a set vulnerabilities? Even if a “white hat” (an ethical

hacker), has experience with hacking, there is no guarantee that the hacker has ex-

perience with hacking into a network system similar to the one of interest. Moreover,

any probability/complexity estimates the hacker could provide would be consistent

with the hacker own beliefs not statistically valid probabilities. In referring to the

Annual Loss Expectancy approach, which relies heavily on knowing the probability

of a particularly threat becoming realized, Schneier calls the approach “a lot of guess-

work,” and Schneier would likely be considered an expert by many [27]. Others have

noted the impracticality of obtaining reliable probability estimates [2].

The issue of an expert pontificating from a single frame of reference applies equally

to the process of assigning complexity values to vulnerabilities. What is difficult for

one attacker, can be easy for another attacker. The difficulty in assigning complexity

values to attacks mirrors the difficulty of assigning probabilities to vulnerabilities.

Generally, the amount of data needed to make such a determination is impractical.

Experts are not immune to the cognitive pitfalls that are associated with mak-

ing assessments [28]. The pitfalls include: availability heuristic, anchoring heuristic,

framing effects, blind obedience, and premature closure. The examples explaining the

above pitfalls, are given within the context of the medical field in [28]; however, they

can be extended for the security field. The availability heuristic causes an individual

to come to a conclusion based on the ease of recalling past events. If trying to assign
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a likelihood to a vulnerability, the expert may assign the vulnerability a probability

value based on the number of times he has seen the vulnerability on online forums or

in MITRE CVE [22], Bugtraq [29], or CERT [30]. The anchoring heuristic relies on

initial impressions to make decisions. An expert may assign an attack to be the easi-

est attack, and then modify his viewpoints about other attacks to ensure the initially

chosen attack is the “easiest” attack. Framing effects is having a decision affected by

subtle wording. If an expert reads that a new zero-day vulnerability caused an “an-

noyance” versus a “catastrophe” for an organization, the expert may be more prone

to underestimate the potential impact of such a vulnerability. Blind obedience is the

act of giving undue deference to authority or technology. An example would be an ex-

pert that defers completely to Common Vulnerabilities Scoring System (CVSS) [31].

Premature closure is the act of focusing on a single idea without pursuing alternative

ideas. An example would be an expert that assigns success probabilities to vulnera-

bilities without consulting with alternative sources (e.g., CVSS). With the problems

associated with assigning complexity or probability values, using expert opinion to

secure may produce misleading results.

Qualitative Values

In [32], IEEE defines failure as “the inability of a system or component to perform

its required functions within specified performance requirements.” A security failure

is a failure that negatively effects confidentiality, integrity or availability. In [33], the

International Electrotechnical Commission (IEC) stipulates quantitative likelihoods

should be used with random failures, whereas qualitative likelihoods should be used

with systematic failures. The security failures that arise from a series of vulnerability

exploits in an attack graph are decidedly systematic. This observation would suggest

that using success probabilities in attack graph-based security metrics are actually

qualitative likelihoods and not quantitative likelihoods placing such values onto an

ordinal scale. No arithmetic or algebra could be performed on these values as this
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would be mathematically unsound. This assertion holds for qualitative complexity

values as well.

Despite the difficulties of deriving complexity, we attempt to provide approaches

reasoning about the difficulty associated with attack paths (see section 4.1). Having

a systematic way of approaching attack path complexity would provide consistency

in how complexity values are assigned to attack paths.

Time-based

Time-based network security metrics yield time values as their result. Time-based

network security metrics are used to measure how quickly an network or organization

can be penetrated or how quickly an network or organization can respond to attacks

or proactively preempt attacks. These metrics may also include measuring changes

in internal attributes (e.g., TVM see section 3.3.10). When the measuring process

involves assessing the actions of humans, the repeatability and reproducibility of

experiments becomes more difficult.

3.3 Related Work

In this section we describe network security metrics that have been proposed in

the literature. Although the contribution of this dissertation deals with attack graph-

based security metrics, we review other types of network security metrics to provide

context. At the end of this section, we provide a table that classifies each metric

discussed in this section.

3.3.1 Security Vulnerability Index (SVI) Metric

Alves-Foss and Barbosa [34] propose the use of a System Vulnerability Index

(SVI). The SVI value represents the system’s vulnerability to common attacks on a

scale from 0 to 1. A higher SVI represents higher vulnerability. A value of 0 to .15
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indicates low vulnerability. A value between 0.15 and 0.3 equates to a moderate level

of vulnerability. A value of 0.3 to 0.6 suggests the system is vulnerable to common

attacks. A value greater than 0.6 is classified as extremely vulnerable. SVI is com-

posed of rules that belong to one of the following 3 categories: system characteristics,

potentially neglectful acts, and potentially malevolent acts. Rules takes the form if

“antecedent” then “consequent”. The “antecedent” contains the conditions required

to obtain the value given in the “consequent”. Conditions indicating a high vulner-

ability in the antecedent solicit high certainty indices (CIs) in the consequent. A

certainty index is the degree of belief in a hypothesis and is a value between 0 and 1.

Once all rules have been developed to describe the three aforementioned vulnerability

categories, the SVI is calculated as:

SVI = CI[h, ri AND rj] = CI[h, ri] + CI[h, rj] × (1 - CI[h, ri]).

The above formula is to be read as the “measure of belief in hypothesis h given

that rules ri and rj are true is equal to the degree of certainty from the first rule

ri, summed with the degree of certainty from the second rule, rj, scaled by the lack

of supporting evidence from the first rule.” Combining more than two rules involves

using values already computed as a single value. This new single value would take

the place of ri in the above formula.

SVI is an architectural-based metric and a complexity-based metric. The ap-

proach involves the static assessment of existing system components. This static

assessment makes SVI an architectural-based metric. Because hypotheses regarding

the vulnerability of system components must be made, SVI is also a complexity-based

metric.

3.3.2 Mean-Time-To-Breach (MTTB) Metric

Jonsson and Olovsson use Mean-Time-To-Breach (MTTB) as a security metric

in [35]. Hours are used as the time unit. Let tr be the total amount of time the red

team r spent attempting to breach a system. tr is comprised of preparation time and
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attack time. Let NumBtr be the total number of breaches the red team r was able

to successfully accomplish over tr. Then MTTB is given by the following equation:

MTTB := tr
NumBtr

This metric implicitly favors the quantity of breaches over the quality of breaches.

For instance, a successful attack could cause a single breach that is more severe (e.g.,

provides root-level access) than ten other breaches (e.g., provides user-level access),

and this metric considers the former scenario more secure. McDermott in [36] notes

that little information can be gleaned from the MTTB metric. A CSO examining a

system’s MTTB is given little information as to how to improve the system based

on the MTTB metric. Any information obtained would be from the red team’s

documentation.

MTTB is a performance-based metric and a time-based metric. Since this metric

measures human performance, this metric is performance-based. Also, because this

metric measures human performance with respect to time, this metric is also time-

based.

3.3.3 Work Factor (WF) Metric

Work factor [37] is a security metric proposed by Schudel and Wood. This metric

is based on the hypothesis that adversary work factor is quantifiable and yields the

relative strengths and weaknesses of complex information systems. Work factor is

given by trsec , where trsec is the amount of time the red team r needed to compromise

the system by violating security policy sec. This distinction gives the CSO more

information than the MTTB metric because it specifies the security policy being

violated. However, this technique does not capture cases where the red team may

exploit the same vulnerability different ways. This information would be expected to

be found in the red team’s documentation.
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WF is a performance-based metric and a time-based metric. WF measures human

performance using time units. Therefore, WF is both performance-based and time-

based.

3.3.4 Mean-Time-To-Recovery Metric

Mean time to Recovery (MTTR) refers to the average amount of time an ally

requires, in the event of an attack, to bring a system out of a compromised state to a

state that is not compromised [2]. Faster MTTRs correspond to more favorable secu-

rity. If this metric is applied to an intrusion-tolerant system [38], it will measure how

quickly the system’s software and/or hardware can recover from being compromised.

In the absence of intrusion-tolerant systems, the MTTR is based primarily on the

ability of the system’s stakeholders to restore the system to an uncompromised state.

The uncompromised state may be some alternate operable state and not necessar-

ily the original uncompromised state the system was in before being moved into the

compromised state. A definition for MTTR is given in [39]. Let T represent the total

recovery time for each incident over some period of time. Let R represent the total

number of repairs done over this time period. Then MTTR is given by the equation

below.

MTTR = T
R

MTTR is a performance-based metric and a time-based metric. MTTR measures

how quickly a system can be transitioned from a compromised state to a safe state.

Therefore, this metric is both performance-based and time-based.

3.3.5 Mean-Time-to-First-Failure (MTFF) Metric and Mean-Time-To-

Failure (MTTF) Metric

Sallhammar et al. [40] propose the use of Markov Chain analysis to predict a sys-

tem’s security level over time. Two measures used include: the Mean Time to First

Failure (MTFF) and the Mean Time To Failure (MTTF) metrics. MTFF corresponds
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to the first time the system enters a failed state from the point of system initialization.

MTTF corresponds to the first time the system enters a failed state from some ran-

domly chosen uncompromised state. The system is given as a state transition model.

Events trigger state transitions. These events correspond to attack actions that move

the system into a failed state. An attacker may have a number of actions available in

a given state. Each action from a state has an associated probability of transitioning

into every other state. These probabilities are obtained using a two-player zero-sum

game theoretic approach. This approach also requires choosing accumulated attack

intensities which predicts failure over some time period of time t.

There are states S1 through Sn in the system. Let SG correspond to good states

S1 through Sk. Let SF correspond to failed states Sk+1 through Sn. Let Q be an

n × n state transition matrix. Split the matrix into four quadrants such that Q1 is

a k × k matrix, Q2 is a k × n − k matrix, Q3 is a n − k × k matrix, and Q4 is a

n− k × n− k matrix. Let T = {T1, T2, ...Tk}. Once the following equation is solved,

−TQ1 = {1, 0, ..., 0} MTFF is given by:

MTFF =
∑k

i Ti

The equation for MTTF is given below.

MTTF = XG(−Q1)−1hk
XGhk

XG corresponds to steady-state probabilities for states in SG. hk is vector of k

ones.

MTFF and MTTF are architectural-based metrics and probability-based metrics.

Also, these metrics require that probabilities for states be discovered. This require-

ment makes these metrics probability-based. Identification of appropriate states re-

quire examining internal attributes of the system. This property makes these metrics

architectural-based metrics.
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3.3.6 Mean-Time-Between-Failures (MTBF) Metric, Mean-Time-Between-

Maintenance-Actions (MTBMA) Metric, Mean Downtime (MDT)

Metric, and Mean Maintenance Time (MMT) Metric

The Mean-Time-Between-Failures (MTBF) metric differs from the MTTF met-

ric in that MTBF refers to components that can be fixed–whereas MTTF may or

may not refer to fixable components. The Mean-Time-Between-Maintenance-Actions

(MTBMA) metric measures the time used to perform corrective and preventive main-

tenance on the network. The Mean Downtime (MDT) metric measures the average

downtime for a network over some period of time. The Mean-Maintenance-Time

(MMT) metric refers to the average amount of time required to perform maintenance

actions. The equations for these metrics follow from [21].

MTBF = T/F , where T is the duration of the period of interest, and F is the

number of failures experienced over T .

MTBMA = T/M , where T is the duration of the period of interest, and M is

the number of maintenance actions performed over T .

MDT = DT/NT , where DT is the sum of all the downtime experienced over T ,

and NT is the number of times downtime occurred over T .

MMT = C1000×MTTRC+P1000×MTTRP

C+P
, where C1000 refers to the number of corrective

maintenance actions performed per 1000 hours, MTTRC refers to the MTTR for

corrective maintenance, P1000 refers to the number of preventive maintenance actions

performed per 1000 hours, MTTRP refers to the MTTR for preventive maintenance,

C refers to the number of corrective maintenance actions carried out, and P refers to

the number of preventive maintenance actions taken.

From these metrics, we may obtain other metrics [39, 41].

Traditional availability [21] is given by [41]:

Atraditional = MTBF/(MTBF +MTTR)

Operational availability, which is the availability observed after system deployment

[39] is given by:
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Aoperational = MTBMA/(MTBMA+MDT )

Achieved availability which refers to the observed availability once the system

reaches steady state is given by [39]:

Aachieved = MTBMA/(MTBMA+MMT )

Each of the abovementioned metrics are performance-based metrics and time-

based metrics. This classification is due to these metrics measuring human perfor-

mance over some duration.

3.3.7 False Positive Rate (FPR) Metric and False Negative Rate (FNR)

Metric

False positive rates (FPR) and false negative rates (FNR) are used to assess in-

trusion detection systems and firewalls. An IDS produces a false positive when it

classifies network activity as an attack when the activity is not an attack. A firewall

produces a false positive when it classifies benign network traffic as malicious. An

IDS produces a false negative when it is fails to detect an attack. A firewall produces

a false negative when it fails to block connectivity from an unauthorized address and

or port. The quality of these measures is directly related to the quality of the data

set used to evaluate the IDS or firewall.

Let D be the data set used to evaluate an IDS or firewall. Let B ⊆ D be data

items that should be detected as malicious by an IDS or should be blocked by a

firewall. Let X be the elements that IDS detected as malicious or the elements that

a firewall blocked. Let X1 ⊆ X such that each x ∈ X1 is also x ∈ D − B Then, the

false positive rate is given by:

FPR = |X1|
|D−B|

Let X2 ⊆ X such that each x ∈ X2 is also x ∈ B. Then the false negative rate is

given by:

FNR = 1− |X2|
|B|
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Both metrics are performance-based metrics. Since these metrics measure how

a security control behaves on a data set, the external attributes of these security

controls are being assessed. Their classification stems from this assessment of external

attributes.

3.3.8 Accumulated Coupling Coefficient (ACC) Metric

To develop a framework for predicting and mitigating software attackability in the

early stages of the development process, Liu et al. [42] studied the empirical relation-

ship between design and attackability. In this framework, the software services are

represented using the User-System Interaction Effect model (USIE). A USIE model is

a graph U = (N,E,<), where N is a set of nodes, E is a set of edges and < is a partial

order relation over E. The USIE model involves two kinds of nodes namely Interac-

tionStart and RoleEntity nodes. InteractionStart nodes represent the starting-point.

RoleEntity represent the role entity of a user-system interaction. A RoleEntity node

is identified by a name and has a set of security characteristics. Edges in a USIE

model are directed from a source role entity to a target role entity. The edges are ac-

companied with attributes that describe the privileges underlying the communication.

For example, a basic set of attributes consists of {read, write, execute, create, delete}.

Given two software services ci and cj their coupling coefficient CoupCoef(ci, cj) can

be computed by counting the number of shared persistent entities between the two

services, which can be derived from their USIE models. Liu et al. [42] define the

coupling coefficient metric as follows:

Given two USIE models U1 = (N1, E1, <) and U2 = (N2, E2, <), the number of

shared persistent entities between U1 and U2 is defined as:

CoupCoef(U1, U2) =
∑

ni∈N1∩N2
p(ni)

where p(ni) =

 1 , if ni is a persistent RoleEntity node.

0 , if ni is a transient RoleEntity node.
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Furthermore, Liu et al. [42] provided the accumulated coupling coefficient to mea-

sure the coupling between two sets of services. Given two service sets Ci and Cj,

the accumulated coupling coefficient is between the two sets Ci and Cj is defined as

follows:

AccCoupCoef(Ci, Cj) =

∑
ck∈Ci

∑
cl∈Cj

CoupCoef(ck,cl)

|Ci|×|Cj |

By comparing the attackability of systems with different coupling coefficient val-

ues, Liu et al. [42] concluded that the attackability of a system increases as the cou-

pling increases for its software services. This correlation has been shown for Denial

of Service (DoS) attacks.

ACC is an architectural-based metric, because it assesses system components, and

these components do not need to be in operation to compute ACC.

3.3.9 Langweg (LW) Metric

Langweg [43] proposes a metric for determining the resistance of an application

to malware attacks. Since it is infeasible to prove that a system is 100 percent secure,

Langweg posits that there must exist a spectrum of secureness between completely in-

secure and completely secure. The security requirements of an application A1 define

what degree of security is acceptable for A1. Without understanding the standards

of security applications must adhere to, the comparison of two applications can be

nonsensical if the applications have different standards of security. To deal with

the issue of varying standards of security, Langweg proposes a classification scheme

that provides a partial ordering on security requirements. Security requirements are

ranked along three dimensions. The dimensions relate to the degree the requirements

mandate the limitation of damage on code integrity, data integrity, and data confi-

dentiality. Similarly, an attacker’s capability is measured along four dimensions: the

ability to initiate an attack, the ability to carry out attack over time, the ability

to customize the attack while it is in progress, and the ability to influence the user.

Henceforth, a system Sys1 is more secure than another system Sys2 if Sys1 ’s security
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requirement srSys1 ≥ srSys2 and Sys1 can successfully resist an attacker of attack ca-

pability acSys1 ≥ acSys2. Thus, if a higher attack capability level is required to breach

Sys1 then Sys1 is more secure than Sys2. The assumption is that weaker security

requirements suggests a weaker system.

Because LW does not require any dynamic analysis to obtain its value, this metric

is an architectural metric. All that is required is a static analysis.

3.3.10 Total Vulnerabilities Measure (TVM) Metric

In [44], Abedin et al., propose a metric called the Total Vulnerability Measure

(TVM). TVM is the sum of two other proposed metrics called the Existing Vul-

nerabilities Measure (EVM) and the Aggregated Historical Vulnerability Measure

(AHVM). The equation is given as

TVM(A) = NP1EVM(A) +NP2AHVM(A).

NP1 and NP2 represent weights a user would want to give the two vulnerability

measures. EVM is given by the following equation:

EVM(A) = NCP1 ln
∑

vi∈EVMs(A) e
SS(vi) +NCP2 ln

∑
vi∈EVMu(A) e

SS(vi).

EVMu(A) corresponds to vulnerabilities that are not patched in systemA. EVMs(A)

corresponds to vulnerabilities that have known solutions in system A. SS(vi) is the

Severity Score (SS) assigned to vulnerability vi. The higher a vulnerability’s severity

score is, the more severe the vulnerability is to a system.

The authors use exponential averages (instead of arithmetic or geometric averages)

because they wanted to ensure that average scores are at least as high as the highest

vulnerability score in the set. The authors suggest that two factors (Exposure and

Traffic Rate) be taken into account when considering the severity a vulnerability

may have on a service S. These factors should be multiplied with the Severity Score

determined for the vulnerability. One factor is the Exposure Factor (EF). Its equation

is given as follows,

EF (S) = 1 + log2(IP (S)PORTS(S))
log2(232216)

.
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The numerator corresponds to the IP addresses and ports that S services. The

denominator refers to the total IP address and port number space. The other relevant

factor is the Traffic Rate Factor (TRF). Its equation is given as follows,

TRF (S) = 1 + Traffic volume of S
Total traffic volume

.

Another metric proposed in a related paper [45] is the Historical Vulnerabilities

Measure (HVM). Its equation is given as the following:

HVM(S) = ln(1 +
∑

X∈H,M,LwX
∑

vi∈HVx(S) DV (vi)).

The set of vulnerabilities for a service are determined and divided into groups

based on the following risk levels: High, Medium, and Low. HVM is modeled as

a exponential decay function. The equation for the decay function is given by the

following:

DV (vi) = SS(vi)e
−βAge(vi)

The Aggregated Historical Vulnerabilities Measure (AHVM) the average of all

services’ HVM score in a system. This is given by the following equation:

AHVM(A) = ln(
∑

si∈SERV ICES(A) e
HVM(si))

Through setting parameters of the HVM equation appropriately and looking at

services listed in National Vulnerabilities Database [46], the authors obtained results

that suggests that a service S1 that has a higher HVM score than another service S2

will have more vulnerabilities than S2 in the next time period (6 months to 2 years)

being examined. The authors in [45] show that with appropriate parameter tuning

of HVM that an prediction accuracy up to 83 percent with NVD may be obtained.

TVM is architectural metric. It requires the static assessment of the network

being measured.

3.3.11 Probabilistic Vulnerability Measure Metric and Attack Propaga-

tion Metric

In [45], Ahmed et al. propose two metrics: a Probabilistic Vulnerability Measure

(PVM) and Attack Propagation Metric (AP). PVM is used for determining how
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likely a vulnerability will be released for a service over some time period and the

vulnerability’s expected severity. The equation is given by the following

PVM(S) = ln
∑

si∈S e
ER(si)

ER(si) is the Expected Risk (ER) of a service si. ER is given by the following

equation,

ER(si) = PsiE[Xsi ]

Psi is the probability service si will experience a vulnerability over some time

period T . E[Xsi ] is the expected severity a vulnerability will have on a service si.

The authors used an exponential distribution and an empirical distribution to attempt

to determine the appropriate distribution for Psi . Empirical results suggested that

the exponential distribution provided more accurate results.

AP attempts to capture the damage that may result from any host in the network

that the attacker can reach. The AP metric is given by the following equation,

AP (D) =
∑

d∈D P (d)SBEd.

D represent all hosts that may be entry points for an attacker. P (d) is the proba-

bility that a vulnerability exists on host d. SBEd represents the Service Breach Effect

(SBE) for an entry point node d. This value is derived from a Service Connectivity

Graph (SCG) that connects hosts to other hosts via services. Hosts are represented

by nodes. Edges represent the different services that connect one host to another

host. The equation for SBE is given by the following,

SBEd =
∑

n∈N(
∏

m∈nodes from d to m psdm)Costn

The authors do not provide an explicit definition for ps, but state that ps represents

a decreasing function of EVM and HVM. SBE represents the effect of a host d reaching

every other reachable host. The effect, or damage, is captured in Costn.

PVM and AP are architectural-based metrics and probability-based metrics be-

cause they require static analysis of the network being measured and the assignment

of probability values.
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3.3.12 Attack Surface (AS) Metric

The idea of an attack surface was first proposed by Michael Howard in [47]. The

idea was formalized by Howard et al. in [48]. That version of the attack surface

formulation was composed of three dimensions: targets and enablers, channels and

protocols, and access rights. Each dimension represents a different type of resource

found on a system. The calculation is performed by summing up all instances (with

their corresponding weights) of relevant resources found in the system resulting in a

single value for the system attack surface measure.

An issue with this approach is that there is no systematic way for assigning weights

to various resource instances. Another drawback was that there was no systematic

way for identifying the relevant resource instances. Lastly, there was no justification

in adding together calculations obtained across dimensions.

The aforementioned issues are addressed by Manadhata and Wing in [49,50]. The

dimensions are changed to: methods, data, and channels. Methods refer to the API

available to the environment. Data refers to persistent data that can be accessed by

the environment. Channel refers to the communication channels that can be used to

access methods and data.

A total ordering is imposed on access right levels, privilege levels, types of data and

open channels. Higher values are assigned to levels/types that could cause more dam-

age. For example, a process, p1, with root privilege could cause more damage than

another process, p2, with non-root privileges, and therefore, p1 would be assigned a

higher numerical value than p2. This scheme addresses the issue of assigning weights

to resource instances. Relevant resource instances for all dimensions are identified by

Manadhata and Wing’s entry point and exit point framework. Entry point analysis

refers to the ways that data may flow into a system from the environment. Exit point

analysis refers to the ways that data flows out of the system to the environment. Since

there is no justification for adding values across dimensions, the measures obtained
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are not added across dimensions. This change in calculation yields a 3 dimensional

value. The calculation for attackability of a system is given by [51]:

(Method =
∑

m∈M derm(m),

Data =
∑

d∈I derd(d),

Channel =
∑

c∈C derc(c)),

where derm(m) is the damage potential-effort ratio of method m, derd(d) is the

damage potential-effort ratio of the untrusted data d, and derc(c) is the damage

potential-effort ratio of a channel c.

One of the drawbacks of this method is that the source code must be available in

order to be utilized. Another drawback with this technique is because the value is 3

dimensional, two systems may be incomparable (i.e., one system will not dominate

another system on every dimension, only on one or two dimensions). This issue is

captured by Schneider [5] in general comments about measuring security. Schneider

states that security is multidimensional and consequently makes comparing systems

difficult as one system may be stronger than another system in one dimension and

not others. Furthermore, this method does not consider all possible system resources

to define the attack surfaces instead it focuses on only the relevant subset of resource

types which are more likely to be used in attacks.

AS can be computed via static analysis of a network and is therefore an architectural-

based metric. Because a damage potential-effort ratio is being used, effort must be

estimated. This property makes AS a complexity-based metrics as well.

3.3.13 Shortest Path (SP) Metric

The Shortest Path metric represents the length of the smallest attack path [9,52].

The smallest attack path has the shortest distance from an attacker’s initial state

to the attacker desired goal state (i.e., where the security violation occurs). The

length function that determines the distance is dependent on the security engineer
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performing the attack graph analysis. The length of an attack path may be the

number of conditions, the number of exploits, or the number of conditions and exploits

that start from the attacker’s initial state and proceeds in series to the attacker’s

goal state. In this work, length is defined to be the number of exploits an attacker

encounters en route to the goal state. The intuition underlying the Shortest Path

metric is that from the perspective of the attacker, given the option of different steps

the attacker can take to violate a security policy, the attacker will choose the series

of steps that require the least amount of effort. In other words, the Shortest Path

metric assumes the attacker is interested only in using the least amount of effort to

reach the goal state. Effort exerted by an attacker has been represented by assigning

an estimated amount of time or resources it may take to exploit vulnerabilities [35,

37]. Resources of an attacker may include, but are not limited to, tenacity, skills,

and money [26]. These resources affect an attacker’s ability to penetrate a network.

However, a sound mechanism for deriving attacker effort, in terms of time or resources,

remains an open problem. The formalization of the Shortest Path metric is presented

in equation 3.1.

SP (G) = min(l(p1), l(p2), ..., l(pk)) (3.1)

Each pi is an attack path from the attack graph G. The function l gives the

length of the attack path pi. l is what the security engineer defines in the analysis

process. When comparing two networks, the network with the shortest attack path

is the network that is less secure.

There are drawbacks to this security metric. In [52], Ortalo et al., denotes short-

comings of the Shortest Path metric. A noted major shortcoming is that this metric

gives no indication of the number of shortest paths that may exist in a network.

This shortcoming’s implication is that by using the Shortest Path metric, a security

engineer may arrive at an erroneous result. Assume there are two potential network

configurations Si and Sj that a security engineer is considering deploying, and the se-

curity engineer wants to assess the security of these two systems to determine which
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network to deploy. Let the attack graphs Gi and Gj in Figure 3.1 and Figure 3.2

correspond to the attack graphs generated for Si and Sj respectively. These examples

were carefully chosen to obviate the differences in security between the two under-

lying networks. This choice is essential because it illuminates the expected outcome

of comparing the two attack graphs: Gj is more secure than Gi. If the conditions in

attack graphs are taken to represent hosts in a network, given our definition of com-

plexity, Gi is intuitively less secure than Gj. When conditions correspond to hosts, Gi

corresponds to a network where the attacker has 7 different way of directly violating a

security policy in a single attack step. The network corresponding to Gj has a single

path where the attacker may directly violate a security policy. Every other attack

path in Gj requires the attacker to compromise at least one machine in the network

prior to violating a security policy. The attacker’s goal is to obtain condition g by

exploiting the vulnerabilities from condition s to condition g. Any of the paths of Gi

produces a shortest path value of 1 exploit. Gj shows that the path s, v1, g produces

its shortest path value. Thus, SP (Gi) = SP (Gj) = 1 exploit. However, structurally,

these attack graphs are relevantly distinct, and we maintain that the security of the

two represented systems are also relevantly distinct.

With the exception of its shortest path, Gj has paths that are strictly longer than

those in Gi. Recursive application of the Shortest Path metric on subgraphs (i.e.,

attack paths ordered by path lengths) of the attack graphs being compared suggests

that Si is less secure and not equivalent to Sj. Hence, the traditional application of

the Shortest Path metric could lead to an erroneous result. Erroneous results of this

form highlight the coarseness of the Shortest Path metric.

The Shortest Path metric is effective for determining coarse degradation of a

network’s security. Such degradation corresponds to the path of least resistance

becoming even less resistant. This effect could be the result of a new vulnerability that

allows an attacker to violate a network’s security in fewer steps. Because the Shortest

Path metric lacks sensitivity, a security engineer could have difficulty determining

the effect countermeasures can have on a network’s security. For instance, if Gj
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Fig. 3.1.: Attack Graph Gi with vulnerabilities 14 through 20

Fig. 3.2.: Attack Graph Gj with vulnerabilities 1 through 13

gradually transformed intoGi, due to improper countermeasure selection, the Shortest

Path metric would indicate that over this entire period the security of the system

represented by these attack graphs is unchanged, even though the security of Gj is

degrading to the security level of Gi. Similarly, the Shortest Path metric does not

detect subtle improvements in security either. If Gi gradually transforms into Gj

the Shortest Path metric would suggest the security of the represented system is the

same over the entire transformation. This drawback suggests that this metric is not

sensitive enough to be used for real-time network security evaluation independently.
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A corollary of the Shortest Path metric is that longer attack paths are more secure

than shorter attack paths. While this corollary suggests that paths requiring more

effort is more secure, it also suggests that, under certain circumstances, having more

vulnerabilities in a network could be more secure than having less vulnerabilities.

Such a counterintuitive perspective is useful when completely removing certain vul-

nerabilities is an inviable option. In this situation, a security engineer’s goal changes

from removing vulnerabilities to increasing the number of vulnerabilities in the net-

work to effectively increase the effort an attacker must expend to reach the target.

For instance, if a security engineer has to decide between two Web servers WS1 and

WS2 to deploy, the security engineer may choose the server that has more vulnerabil-

ities. Assume that WS1 allows full access to the administrator panel if the attacker,

through forceful browsing, can identify the administrator directory. WS2 may be sus-

ceptible to forceful browsing as well; however, it may require authentication to access

the administrator panel. Now, further assume that the authentication routine also

has a known vulnerability that allows an attacker to provide special credentials that

will provide the attacker with full access to the administrator panel. If the security

engineer must pick from WS1 and WS2, the security engineer should choose WS2

according to the Shortest Path metric. This choice stems from an attacker needing

to execute two actions to be successful: having to discover the administrator panel

through forceful browsing and having to find out the special credentials needed to ac-

cess the administrator panel. With WS1, the attacker could obtain this access using

only forceful browsing.

Because SP is to deployed in an attack graph, SP is an attack graph-based security

metric. SP is also a complexity-based metric because it attempts to capture attack

difficulty.
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3.3.14 Number of Paths (NP) Metric

The Number of Paths metric is a value that represents the number of ways an

attacker can violate a network’s security policy [52]. This security metric expresses

the number of attack paths that exist within a given attack graph. The Number of

Paths metric is designed to express how exposed a network is to attack. A larger

Number of Paths metric suggests a more exposed network. The intuition is that

if the attacker has more ways to achieve the goal of violating a network’s security

policy, the attacker has a better chance of accomplishing this objective without being

detected. The equation for this metric is given in equation 3.2.

NP (G) = |p1, p2, ..., pk| (3.2)

Each pi is an attack path of G. If P is the set of all attack paths in G, then

the Number of Paths metric is the cardinality of this set. If we compare two attack

graphs of two network systems, the attack graph with the larger number of paths is

considered less secure.

A drawback of this approach is that attacking effort is not included in this metric.

While one network may have fewer attack paths than another network, it may not

be more secure. For instance, if one attack graph has 20 attack paths and another

attack graph has 1 attack path, the latter attack graph may not necessarily be more

secure than the former attack graph. While the former attack graph has 20 attack

paths, each attack path could require effort that is 25 times greater than the effort

required for the single attack path in the latter attack graph. However, there is no

known way for making such quantitative assertions regarding effort in practice.

In [52], Ortalo et al. notes that the Number of Paths metric is overly sensitive

and unreliable. Although, the sensitivity of the Number of Paths metric is nega-

tively regarded in [52], we maintain that this metric’s sensitivity makes it useful for

real-time network evaluation. This metric’s sensitivity has the ability to detect fine

granular changes in network security that the Shortest Path metric fails to detect. We
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assert that the Number of Paths metric can be made more reliable (see Section 4.4).

When the number of paths greatly outnumbers the number of hosts in a network, to

enhance human comprehension, a security engineer could benefit from reducing the

attack graph complexity before performing analysis on the attack graph [12,15,53,54].

However, under such reductions care should be taken when performing hardening. A

common attack graph reduction method is to treat all hosts in the same protection

domain with the same reachability as a single node. If all hosts in the same protection

domain are appropriately hardened, then the number of paths would decrease as a

result of implementing this countermeasure. However, if countermeasures are applied

to a proper subset of the hosts in the domain, then the effect of the countermeasures

will leave the attack graph unchanged.

Because NP is deployed on an attack graph, NP is an attack graph-based security

metric.

3.3.15 Mean of Path Lengths (MPL) Metric

In [53], Li and Vaughn mention the Average Path Length metric. No detailed

analysis of the metric is given. Moreover, no guidance is provided for how to use this

metric. We therefore, provide our own interpretation and refer to the metric as the

Mean of Path Lengths metric.

The Mean of Path Lengths metric represents the typical path length by obtaining

the arithmetic mean for all path lengths. It gives an expected effort an attacker

must expend to violate a network security policy. This metric is relevant because

an attacker may not have the same view of the known vulnerabilities as the security

engineer. This lack of knowledge could cause the attacker to choose a path that

is not the shortest path. Alternatively, an attacker may take a path different from

the shortest path because the attacker could assume that the security engineer is

using a shortest path analysis. With this knowledge, the attacker would avoid the

shortest path because the path is likely to receive attention in the form of monitoring
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security controls. Another reason an attacker may take a path that is not the shortest

path is because the attacker’s skill set may be better suited for a path that requires

more effort. For instance, if the attacker is an experienced Windows hacker, but an

inexperienced Linux hacker, and the network has machines of both types, the attacker

may choose a seemingly circuitous route to avoid Linux machines in order to violate

a security policy.

The Mean of Path Lengths metric has the ability to capture changes that occur in

the network that either increase or decrease security levels. Because this mean value

is computed over the entire attack graph, any degradation that results in shorter path

lengths will effect the mean path length (if no other path increases in length to offset

the degradation). Given its attributes, the Mean of Path Lengths metric is useful for

monitoring network security as well network hardening. The equation is given below.

MPL(G) =
Σil(pi)

NP (G)
(3.3)

Despite the benefits this metric provides, there are some shortcomings in its use.

If vulnerabilities 15 through 20 are removed from the attack graph in Figure 3.1, the

resulting attack graph would produce the same mean of path lengths as the original

attack graph. In short, the improvements to the network are not being captured by

the Mean of Path Lengths metric. And, given our definition of attack path length, the

mean attack path length for a network may increase as the number of vulnerabilities

increase in the network. This phenomenon arises because the attacker, via increased

vulnerabilities, is provided with more circuitous routes to reaching the target.

Because MPL is deployed on an attack graph, MPL is an attack graph-based

security metric. Also, since MPL attempts to capture typical effort or difficulty

required by an attacker, this metric is also a complexity-based metric.
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3.3.16 Network Compromise Percentage (NCP) Metric

The Network Compromise Percentage (NCP) metric is a security metric that

Lippmann et al. proposed in [55]. This metric indicates the percentage of network

assets an attacker can compromise. While the definition of compromise can be flexible

to suit one’s situation, Lippmann et al. defined a host compromise as the attacker

attaining user-level or administrator-level access on a host. The more machines that

are compromised, the higher the NCP value. Hence, the security engineer’s goal is to

minimize the NCP metric. The equation for the NCP metric is given below.

NCP (G) = 100×
∑

c∈C⊆H c.v∑
h∈H h.v

(3.4)

Let C be the subset of total hosts H that the attacker is able to compromise. The

data member v represents the asset value associated with a host c. NCP integrates

coarse changes in network security. That is, if there is an increase or decrease in

the number of hosts that are deemed compromised, the NCP metric will reflect this

change in security. However, if vulnerabilities increase at the host level, the NCP

metric will be unable to detect this change. That is to say, whether an attacker

can exploit a host with a single vulnerability or 10 different vulnerabilities, the NCP

metric will represent these two scenarios as the same provided that the attacker can

reach the exact same set of hosts with no additional new hosts added to the set. The

host with more vulnerabilities in the above example should constitute to a less secure

network assuming all other elements of the network remain unchanged. This example

indicates how this metric may lead to ineffective usage of resources as countermeasure

effects may not be captured by this metric.

Because NCP is deployed on an attack graph, NCP is an attack graph-based

security metric.
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3.3.17 Weakest Adversary (WA) Metric

Pamula et al. propose the Weakest Adversary metric in [56]. The Weakest Ad-

versary metric is similar to the Shortest Path metric in that it attempts to express

the security of the network in terms of some permutation of the weakest part of the

network. The intuition of the metric is that one’s network is no stronger than the

weakest adversary, (i.e., the adversary with the weakest set of capabilities). Weakness

of an adversary is correlated with the initial attributes of an attack graph. Each at-

tack graph has some set of initial attributes that allows for the realization of a security

policy violation. If comparing the security of two networks, the network requiring a

weaker set of initial attributes to compromise the network is deemed less secure. A

set of initial attributes is deemed weaker than another set of initial attributes if it is

a proper subset of the other set of initial attributes. The weakest adversary metric is

given in the equation below.

WA(G) = {W |W ⊆ A ∧ γ(W ) ≤ γ(W ′)} (3.5)

A represents the set of initial conditions that give rise to the successful attack

paths. A corresponds to potential nodes that could exist at depth 0 in G. The set

W corresponds to the actual nodes at depth 0 of G. γ is the function the security

engineer would have to implement in order to have a ≤ relation between subsets of

A. W ′ corresponds to every other possible set of actual initial conditions that is not

the same as W .

An issue with this approach, is that this metric may not pick up on changes

that happen to internal nodes in the attack graph. Initial attacker conditions give

little insight about vulnerabilities that must be exploited within a network to reach

a target. Moreover, in our analysis, we assume that attacker initial conditions are

known and set by the security engineer.

Because WA is deployed on an attack graph, WA is an attack graph-based security

metric.
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3.3.18 Attack Resistance (AR) Metric

In [25], Wang et al. propose the use of the Attack Resistance metric. The authors

state that a metric should have certain qualities. One is that the security metric for

the network should never be larger than its attack path of least effort. Another quality

is that a security metric should recognize that different attacks require different levels

of time and effort (difficulty). Another quality is that the security of an attack graph

with multiple attack paths is less secure than one with only one of the paths. The last

observation made is that the realization of one exploit could affect another exploit’s

resistance value. The authors provide a general framework that has disjunctive and

conjunctive operators. The operators are to be defined so as to adhere to the four

qualities mentioned above. An example with real numbers defined the disjunction

operator as the reciprocal of the sum of the reciprocal of individual resistance values.

The conjunctive operator was defined as the sum of individual resistance values.

Below is the equation for the attack resistance metric using real numbers. Let nodes

ej, ek, and el (when present) be nodes that are incident on ei.

R(ei) =


r(ei) if no edges are incident on ei;

r(ei) +R(ej) if nodes eiand ej are conjunctive;

r(ei) + 1/(R(ek)
−1 +R(el)

−1) if nodes ekand el are disjunctive.

The function r represents the difficulty associated with an exploit em. The higher

the value of r, the more difficult the exploit is for an attacker to exploit. R represent

the cumulative resistance of an exploit em by taking into account all resistance values

for ancestors of em.

The following example illustrates why it is difficult to assess the values produced

by the attack resistance metric. Let Figure 3.3 and Figure 3.4 be attack graphs

for two distinct network configurations for the same network. The attack resistance

of each exploit e1, e2, e3, e4, and e5 is 1. The attack graph in Figure 3.3 and the

attack graph in Figure 3.4 have an attack resistance of 2. According to the attack

resistance metric, these two network configurations have the same ability to resist
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Fig. 3.3.: A single-path exploit dependency attack graph

attack and more specifically have the same level of security. However, this conclusion

is erroneous. The attack graph in Figure 3.3 only requires two exploits to be realized

in order for the attacker to reach his goal state. However, in the attack graph in

Figure 3.4, the attacker in either attack path would have to realize three exploits in

order to reach his target state.

In [57] Wang et al. extends the framework with parameters for node significance

and reconfiguration costs. No guidance is given as to how resistance values should be

assigned. Because the security metric is reduced to a single number, making decisions

or taking actions based on a provided attack resistance value may be difficult.

Because AR is deployed on an attack graph, AR is an attack graph-based security

metric. Also, because this metric requires the assignment of complexity values to

vulnerabilities, this metric is also a complexity-based metric.
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Fig. 3.4.: A two-path exploit dependency attack graph

3.3.19 Probabilistic Reliability Analysis (PRA) Metric

In [10], Sheyner et al. propose the Probabilistic Reliability Analysis metric. As-

suming that a security engineer knows the transition probabilities of the attack graph,

a Markov Decision Process (MDP) value iteration algorithm can be used to identify

the optimal path for the attacker (or the path of least resistance for the attacker).

In this approach, goal states are assigned a benefit value of 1 and every other node

is a assigned a value of 0. The MDP algorithm is then applied and yields the most

probable path the attacker will take: the attack path of least resitance. In [58], Jha

proposed the use of probabilistic attack graphs that have probabilistic states and non-

deterministic states. Hence, decisions are made at nondeterministic nodes by choosing

the transition that will result in the optimal path for the attacker. If
∑

s∈S0
V ∗(s)

represents the attacker’s optimal path, then worst case reliability of the network is
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1 -
∑

s∈S0
V ∗(s). This worst case reliability serves as the security metric. There is

also a notion of a cumulative score for exploits and conditions. The cumulative score

represents that the likelihood that the attacker can reach an exploit or conditions

from an entry point. The equation is given below.

P (e) = p(e)× Πc∈Pre(e)P (c)

p(e) refers to the probability of exploit e being exploited. P (c) refers to the cumu-

lative probability of condition c being exploited. Pre(e) refers to the preconditions

of exploit e.

Because PRA is deployed on an attack graph, PRA is an attack graph-based

security metric. Because this metric requires the assignment of probabilities, this

metric is also a probability-based metric.

Bayesian Network (BN) Metric

In [26], Dantu and Kolan propose using Bayesian networks to calculate the vul-

nerability level of important assets. Given an attack graph, the authors posit that

attackers of different profiles will possess different characteristics (e.g., skill, tenacity,

cost) that will enable them to only be able to attack different portions of the network.

Hence, each profile will have an attack graph that looks different. Given the condi-

tional probabilities of the nodes in the subgraphs, some evidence, and the Bayesian

theorem, probabilities for the attack subgraph can be updated.

Because BN is deployed on an attack graph, BN is an attack graph-based security

metric. Also, because BN requires the assignment of likelihoods, this metric is a

probability-based metric.

3.3.20 Attack Graph-based Probabilistic (AGP) Metric

In [59], Wang et al. propose an the Attack Graph-based Probabilistic security

metric. Each exploit or condition in the attack graph is assigned a score. The score

associated with exploits represents the likelihood of an attacker exploiting the exploit
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given that all prerequisite conditions are satisfied. This expression is represented by

p(e), where e is the exploit. Scores for conditions are assigned a value 1, to show

that they are always satisfied. This expression is represented by p(c), where c is the

condition. There is also a cumulative score for exploits and conditions. Cumulative

scores corresponds to the likelihood of an attacker reaching an exploit or condition

from an entry point. The equation for this is given below.

P (e) = p(e)× Πc∈Pre(e)P (c)

P (c) =

p(c) if c ∈ Init

p(c)×⊕e∈R(c)P (e) otherwise

Pre(e) corresponds to the preconditions for an exploit e. Init corresponds to the

set of initial conditions in the attack graph. ⊕ is notation to capture the recursive

nature of the calculation. ⊕P (e) = P (e). For two sets E1 and E2 that are subsets of

the total set of exploits E, we have ⊕(E1 ∪ E2) = ⊕E1 +⊕E2 −⊕E1 ×⊕E2.

Because AGP is deployed on an attack graph, AGP is an attack graph-based

security metric. Because AGP uses probabilities to obtain its value, it is also a

probability-based metric.

3.3.21 Exploitability (EX) Metric

Balzarotti et al. [60] propose the Exploitability metric. After an attack tree is

generated, an exploit dependency graph is created. Exploitability values between

0 and 10 are assigned to the different exploits. A value of 0 means that the vul-

nerability cannot be exploited. Note that the value range is artificially restricted.

An exploitability value is assigned to each vulnerability independent of any other

vulnerability. This notion is represented by the following expression E(v1). The ex-

ploitability values are assigned to exploits that are conditioned on some other exploit.

This notion is represented by the following expression: E(v1|v2). Once these values

have been assigned, the following formula is to be applied iteratively:

∀v1 ∈ V, (v1, v2) ∈ D : E(v) = max(E0(v1),min(E(v1), E(v1|v2)))
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Table 3.1: Classification of network security metrics proposed in the literature

Classification Metric

Architectural-based SVI, ACC, LW, TVM,

PVM, AP, AS

MTTF, MTFF

Attack Graph-based SP, NP

MPL, NCP

WA, AR, PRA

BN, AGP, EX

Performance-based FPR, FNR, WF, MTTR

MTBF, MDT, MTBMA, MMT

Time-based MTTB, WF, MTTR,

MTTF, MTFF, MTBF,

MDT, MTBMA, MMT

Probability/Complexity-based SVI, MTTF, MTFF

PVM, AP, AR, PRA,

BN, AGP, EX, AS

D represents the edges in the exploit-dependency graph. This formula says

that the attacker will choose the vulnerability that is easiest to exploit. However,

min(E(v1), E(v1|v2)) constrain attack paths that use dependencies by the vulnera-

bility that is harder to exploit. This metric differs from other metrics that we have

examined in this section because it does not produce a value for the network that is

being evaluated. Thus, in later analyses of attack graph-based security metrics, we

exclude this metric.

Because EX is deployed on an attack graph, EX is an attack graph-based security

metric. This metric is also a complexity-based metric because vulnerabilities must be

assigned difficulty values.
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4. ATTACK GRAPH-BASED SECURITY METRIC

AGGREGATION

In this chapter, we outline our method for aggregating attack graph-based security

metrics to evaluate networks. However, before specifying our algorithm for combining

multiple security metrics, we propose approaches for handling attack path complexity

and propose a suite of attack graph-based security metrics. Because some attack

graph-based security metrics use the complexity associated with an attack path in

their measurements, we must provide a consistent model of complexity. We use

difficulty and complexity synonymously in this dissertation. We present the model

of difficulty used in this dissertation in the next section. In section 4.2, we detail

five attack graph-based security metrics that compliment previously proposed attack

graph-based security metrics. We detail how these metrics can be used together in

section 4.4 where we specify our algorithm for attack graph-based security metric

combination.

4.1 Addressing Attack Path Complexity

Attack graph-based security metrics that require the assignment of complexity

values to vulnerabilities, in practice, default to assigning qualitative values to vulner-

abilities. When such values are used, we lose the ability to leverage mathematical

algebra to manipulate subsequent vulnerability complexity values. In this section, we

propose two approaches to obtaining complexity values for an attack path. The first

approach is the Limiting Factor method. The Limiting Factor method holds that

what determines whether an attacker reaches a desired goal state is the most difficult

vulnerability to exploit along that path. The second method for addressing complex-

ity is the Kolmogorov Complexity approach. The Kolmogorov Complexity approach
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provides a flexible framework that allows for creating qualitative or quantitative vul-

nerability complexity values. If a qualitative interpretation is taken, then the metrics

used should not use any algebra or arithmetic operators. Because our (and others’)

attack graph-based security metrics use algebraic and arithmetic operators, we use a

quantitative Kolmogorov complexity approach in this dissertation.

4.1.1 Limiting Factor Approach

The Limiting Factor approach posits that the complexity of an attack path is

the difficulty associated with the vulnerability that is most difficult to exploit. This

method makes the assumption that if an attacker can exploit the most difficult vul-

nerability on an attack path, the attacker should be able to the exploit the other less

complicated vulnerabilities on the attack path. This approach makes a worst case

assumption that the attacker can exploit all vulnerabilities in a network. However,

the effort the attacker will have to exert or the skill level required will commensurate

with the most difficult vulnerability the attacker must exploit along the chosen attack

path.

The Limiting Factor approach decreases the amount of effort a security engineer

would have to exert in assigning complexity values. This approach also decreases

the computation load of computing complexity values at each node along a path.

Using the Limiting Factor approach, any attack graph-based security metric that

uses complexity would need to examine, at most one value per attack path.

The limiting factor method is given by the following:

Diff(p) = max(∪Diff(vp)) (4.1)

Diff(vp) produces the difficulty value assigned to exploiting vulnerability v that

belongs to attack path p. The maximum difficulty value of the union of all such

vulnerability assignments is assigned to Diff(p). Diff(p) corresponds to the length

function that attack graph-based security metrics using complexity-based approach
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use to measure attack paths (e.g., Shortest Path metric, Mean of Path Lengths met-

ric). The drawback of this approach is that it assumes that skill level is linear, where

higher skill level subsumes lower skill level. This assumption implies that an attacker

with high skill level can exploit every vulnerability deemed requiring medium or low

skill level. However, an attacker may have high knowledge of one area (e.g., network

protocols) and poor knowledge of another area (e.g., Windows operating systems).

This difference in knowledge could cause an attacker to fail to exploit a vulnerability

that is considered to require low or medium skill level.

Fig. 4.1.: An attack graph with complexity values C(vi) assigned to vulnerabilities

If we apply the Limiting Factor to the attack graph in Figure 4.1, the Limiting

Factor produces complexity values that correspond to the most complex vulnerability

on each path. C(vi) represents the complexity value the security engineer assigned

vulnerability vi. Higher values correspond to more difficult vulnerabilities that are

more difficulty to exploit. Because the Limiting Factor approach takes the largest

complexity value on each path, the Limiting Factor approach would produce the
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following complexity values for the attack paths in Figure 4.1: 3, 5, and 1. The

values would then be treated as the path lengths of the attack graph.

4.1.2 A Kolmogorov Complexity Approach

Kolmogorov Complexity determines the string complexity using the size of the

smallest program that can produce the string [61]. Let K represent the Kolmogorov

Complexity function. In comparing two strings, x1 and x2, if K(x1) < K(x2), then

x1 is less complex than x2 because a smaller program can be used to describe x1. The

concept of using Kolmogorov Complexity to monitor security was first promulgated by

Evans et al. in [62]. We use Kolmogorov Complexity to provide a systematic approach

to determine complexity of attack paths in an attack graph. Although it is impossible

to determine a lower bound K [61], a formal approach to determine complexity of

attack paths is useful as it provides consistency in comparing measurements. Below

we provide a language inspired by the language of regular expressions.

Alphabet

A corresponds to the exploits found in all attack graphs being considered.

Constants

ε corresponds to the empty string.

ei ∈ A denotes an exploit from one of the attack graphs being considered.

∅ corresponds to the empty set.

Operations

Let S and T be two strings comprised of characters from A. Also, let E1 and E2

be expressions of the language.
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ST evaluates to the concatenation of string S and T .

() provides priority ordering of evaluation.

(S)+ the expression S may repeat more than one time but must appear once

Sk repeat S k times.

E
[k]
1 E2 evaluates to inserting E1 at index k in E2, where the first character in E2

corresponds to the zeroth index. This can be generalized to E
[k1],[k2],[k3],...,[kn−1],[kn]
1 E2.

This rule would not be used independently. It would only be used as part of the

following two rules.

E
l,[k]
1 E2 evaluates to concatenating El

1 to E2, and inserting E1 into index k of E2.

E
l[k]
1 E2 evaluates to inserting El

1 into index k of E2.

This language allows for expressive ways for representing the complexity of at-

tack paths. The attack path in Figure 4.2 can be represented a number of ways.

Hi, Attacker, and Target in Figure 4.2 correspond to hosts, and vj corresponds to

vulnerability j. Based on the last two operations (i.e., E
l,[k]
1 E2 and E

l[k]
1 E2) a qual-

itative representation of this path can be represented as v
3,2[2]
1 v2v3. An equivalent

representation would be v
3,[2],[2]
1 v2v3. In both representations, E1 corresponds to v1

and E2 corresponds to v2v3. The path length of either representation is 3 nodes. This

representation suggests that once the attacker exploits H1, attacking hosts H2, H3,

H6, and Target is trivial because they require the same credentials to have their vul-

nerabilities exploited (e.g., these hosts use the same username and password). Such

a representation may also be used if known scripts can be used to exploit vulnera-

bilities in the system. Ultimately the qualitative representation used depends on the

decision of the security engineer. For instance, the attack path can alternatively be

represented as v
3,[2]
1 v2v3v1. The path length of this representation is 4 nodes. This

representation suggests that the attack path in Figure 4.2 is more secure than the

representation initially described. The semantics of this latter representation suggest

that while the same information can be used in exploiting hosts H2, H3, H4, and H6,

different information is required to exploit Target. If the attack path is represented as
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v1v1v1v2v3v1v1, then this would suggest that different credentials are required for com-

promising each host. This representation corresponds to the quantitative approach

used in this dissertation.

In this dissertation, we use only the concatenation operator to construct attack

paths. This representation is equivalent to counting the number of exploits that exists

along an attack path.

Our Kolmogorov Complexity approach to representing attack path complexity has

the ability to represent cycles in the the attack graph. Figure 4.3 shows a infinite

number of attack paths because there is a cycle in the nodes displayed. Typically,

cycles in the attack graph are ignored. Our approach is robust enough to capture

cycles in the graph. This infinite number of attack paths can be captured with

v2
1(v1v2v3)+v2

1. Instead of ignoring cycles, they can be captured by this representation.

4.2 A Complimentary Suite of Attack Graph-based Security Metrics

While the attack graph-based security metrics mentioned thus far can be useful if

used appropriately, our analysis suggests they should be used together. For instance,

the Shortest Path metric can be too coarse. The Number of Paths metric does not

capture attacker effort. The Mean of Path Lengths metric does not detect changes

that do not effect the mean path length. If these metrics are used together (along

with our metrics), they can give a more comprehensive measure of security. We detail

how in section 4.4. In this section, we propose our metrics that are designed to assist

a network administrator in determining more relevant properties of the network to

determine its security. We propose the following metrics: the Normalized Mean of

Path Lengths metric, the Standard Deviation of Path Length metric, the Mode of

Path Lengths metric, the Median of Path Lengths metric, and the K-step Capability

Accumulation metric.
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Fig. 4.2.: A single attack path with Attacker, Hi, and Target corresponding to hosts

and vj corresponding to vulnerabilities

4.2.1 Normalized Mean of Path Lengths (NMPL) Metric

The NMPL metric is the Mean of Path Lengths (MPL) metric divided by the

Number of Paths (NP) metric. This normalization is critical when comparing two
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Fig. 4.3.: An attack path containing a cycle

attack graphs to determine which underlying network is more or less secure. Given

the attack graphs shown in Figure 4.4 and Figure 4.5, the Mean of Path Lengths

metric would conclude that both underlying networks have the same level of security.

Both attack graphs have a mean path length of 1 edge. However, by the NMPL

metric the attack graph in Figure 4.5 is less secure than the attack graph in Figure

4.4. The NMPL for the attack graph in Figure 4.5 has a NMPL of 0.20 edges, while
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the NMPL for the attack graph in Figure 4.4 has a NMPL of 1 edge. Further support

for usage of the NMPL is provided in section 5.1.3. The equation is given below.

NMPL(G) =
MPL(G)

NP (G)
(4.2)

Fig. 4.4.: A single path attack graph where the attacker has direct access to the

target

Fig. 4.5.: An attack graph where the attacker has 5 ways of directly access the target
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4.2.2 Standard Deviation of Path Lengths (SDPL) Metric

The Standard Deviation of Path Lengths metric, when added and subtracted from

the Mean of Path Lengths metric, gives the range containing typical attack path

lengths. Typical attack path lengths have path lengths that are within one standard

deviation of the mean path length. The Standard Deviation of Path Lengths metric

may also reveal attack paths of interest. If a path length is two standard deviations

below the Mean of Path Lengths metric, this path may deserve the attention of

the security engineer. However, if a path length is two standard deviations above

the mean path length, this finding may suggest that this path may not require the

attention other attack paths may require. The equation for this metric is given below.

SDPL(G) =

√
Σi(l(pi)−MPL(G))2

NP (G)
(4.3)

l is the length function that returns the length of an attack path p. The length

function we use is simply the number of vulnerabilities encountered along an attack

path. The standard deviation for Figure 4.6 and Figure 4.7 are 1.29 edges and 1.41

edges respectively. The attack graph in Figure 4.7 varies more widely about its mean

than Figure 4.6. This variation suggests regardless of what the mean attack path

length is, there are paths relevantly lower than mean path length. Nonetheless, in

determining the security of the network more analysis is required to know where most

of this variability exists (see section 4.4).

4.2.3 Mode of Path Lengths (MoPL) Metric

The Mode of Path Lengths metric gives the attack path length that occurs most

frequently. This metric represents another meaning of “typical.” In this context,

typical refers to “most frequent.” If the security engineer is unable to determine the

likelihood of an attacker traversing any attack path, the security engineer may rely on

the principle of insufficient reason [63] to assign an equal probability to each attack

path. The Mode of Path Lengths metric suggests a likely amount of effort an attacker
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Fig. 4.6.: A condition oriented attack graph with intermediate hosts H1 through H7

may encounter. The Mode of Path Lengths metric is not as dynamic as the Mean

of Path Length metric in response to security events. However, unlike the Mean of

Path Lengths metric, the Mode of Path Lengths metric may not be as prone to being

affected by outlier values. In the equation below, f is a function that identifies the

l(pi) that occurs most frequently of the k = NP (G) values.

MoPL(G) = f(l(p1), l(p2), ..., l(pk)) (4.4)
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Fig. 4.7.: A condition oriented attack graph with intermediate hosts H1 through H12

The mode for Figure 4.6 and Figure 4.7 are (3) and (2, 4) respectively. In attempt-

ing to understand the security of the system with this metric, a security engineer has

many options. However, any option would require that more analysis be done. That

is, inherently, the mode does not reveal much about the security of the network.

However, if the frequency of the of the modes in both attack graphs are known, then

better assessments can be made (see section 4.4).
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4.2.4 Median of Path Lengths (MePL) Metric

The Median of Path Lengths metric identifies the path length that is at the middle

of all the path length values. This value is useful because the path lengths can

be skewed and, therefore, the Mean of Path Lengths metric may not appropriately

indicate the typical path lengths in the attack graph. A very large path length, and

similarly a very small path length in an attack graph can affect the Mean of Path

Lengths metric. The median path length helps the security engineer determine how

close the mean attack path length is to the middle of all attack path lengths. The

Median of Path Lengths metric may also provide a guide for where to focus network

hardening efforts for the security engineer. For instance, the security engineer may

choose to pay close attention to attack paths with path lengths equal to or below the

median path length. Note that l(pi)q ≤ l(pj)q+1, which states that the path length of

path pi at position q is shorter than pj and precedes pj, which is at position q + 1.

MePL(G) =

 l(pi)d k
2
e : k is odd

1
2
(l(pi) k

2
+ l(pj) k

2
+1) : k is even

(4.5)

k in the above equation is the number of attack paths in the attack graph G.

In determining the security of the system, the median provides a point to perform

further analysis. In Figure 4.6 and Figure 4.7 the median is 3. In general, the Median

of Path Lengths metric will correspond to the path length that represents the 50th

percentile of all path length values. Hence, an analyst should have keen interest in the

values that fall below the median. More specifically, if comparing two attack graphs,

the one that has more longer paths below the median may be deemed more secure.

4.2.5 K-step Capability Accumulation (KCA) Metric

The K-step Condition Accumulation (KCA) metric specifies the “power” the at-

tacker can obtain on a network in K steps. Practically, “power” represents the capa-

bility an attacker attains. Capabilities are controlled by access controls. Therefore,
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power may be represented by the privilege(s) the attacker attains on a machine.

Therefore, if an attacker can obtain more capabilities on Sys1 in K steps, than the

attacker can on Sys2 in K steps, then Sys2 is more secure than Sys1. More generally,

if an attacker can obtain strictly more power in Sys1 than in Sys2 in K or less steps,

then Sys2 is more secure than Sys1. The formalization of this metric is given below.

Caph(G) = ∪hcapabilities(n) (4.6)

KCAk(G) = ∪ki=0Capi(G) (4.7)

capabilities(n) returns the set of capabilities available at node n. If more granular-

ity is desired, the capabilities function may be extended with a set of vulnerabilities

as an input parameter. Different vulnerabilities may provide different capabilities

for an attacker. Thus to provide this granularity, capabilities can be extended as

capabilities({v1, v2, v3..., vm−1, vm}, n). Vulnerabilities v1 through vm correspond to

the vulnerabilities that an attacker may exploit to violate a security policy at node

n.

Caph(G) represents the capabilities obtained at level h in attack graph G. h

represents the distance from the attacker’s initial state. If we were to apply the KCA

metric to the attack graph in Figure 4.8 we would obtain different values at each level

of the attack graph. The nodes of the attack graph correspond to hosts and access

levels. The labels have the format of host:access level. U corresponds to user level

access. A refers to administrator-level access. Thus, Cap1 = user level access on H1

and H2, administrator level access on H3. Cap2 = Cap1 and administrator level access

on H1 and H2, and administrator level access on H4. Cap3 = Cap2 and administrator

level access on the Target host. The attacker can accumulate all privileges in the

network in 3 levels. If we wanted to examine two network configurations using KCA,

then we could examine KCA at each level. Observe the attack graph in Figure 4.9.

The KCA at level 1 for the attack graph in Figures 4.8 and 4.9 is the same. However,

we can see that in Figure 4.9 that the Target can be reached in two steps. Assuming
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Fig. 4.8.: A 3 path attack graph

that this is the most important host to protect, then the attack graph in Figure 4.9 is

less secure because the attacker is able to obtain more power in fewer steps. Although

there is a goal state in the attack graphs evaluated in the above example, this metric

can be applied to attack graphs with no goal states.

When there is a goal state and the semantics of the attack graph are such that it

has all of the weight, or all the valuable power, the K-step Capability Accumulation

metric may degenerate to the Shortest Path metric. For instance, observing the attack

graphs in Figure 4.6 and 4.7, both have the attacker reaching the goal state in single

step. If the non-attacker nodes do not matter with respect to the target node, then

using the Shortest Path metric would be sufficient to attain this result. However, if

other nodes are perceived as being relevant to the network’s security, then the KCA

metric can be used to obtain more information about security of the network.
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Fig. 4.9.: A 4 path attack graph where nodes correspond states that give the host

name and access level and as formatted as host:access level

4.3 Attack Graph-based Security Metrics and Their Applicable Attack

Graphs

Table 4.1 shows what attack graph-based security metrics can be applied to the

various types of attack graphs. The only types of attack graphs that cannot be

used with all attack graph-based security metrics are the Host Compromise Attack

Graph, the Predictive Attack Graph, and the Node-predictive Attack Graph. One

commonality among each of these attack graphs is that they are all not goal-oriented

and cannot be converted into a goal-oriented representation.

4.4 Using Multiple Security Metrics

We propose a methodology for using attack graph-based security metrics together

harmoniously. We assert that there is no one security metric that will divulge all
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Table 4.1: What security metrics can be applied to which attack graphs

Attack Graph Applicable Security Metrics

NuSMV All AG-based Security Metrics

Coordinated All AG-based Security Metrics

Full All AG-based Security Metrics

Host-compromised Network Compromise Percentage

Predictive Shortest Path Metric, K-Step Capability Accumulation

Metric, Network Compromise Percentage Metric

Node-predictive Shortest Path Metric, Network Compromise Percentage

Metric

Multiple Prerequisites All AG-based Security Metrics (double check)

Logical All AG-based Security Metrics

Hybrid-oriented All AG-based Security Metrics
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there is to know about a network’s security. Given this assertion, an important

goal in evaluating network security is having a method for combining the usage of

appropriate metrics to reach a decision about the security of a network. In this

section, we describe decision metrics and assistive metrics and provide the algorithm

for combining these metrics.

4.4.1 Decision Metrics

Decision metrics are the security metrics that when comparing two attack graphs

of two networks, makes a determination about which network is more secure. Decision

metrics are security metrics that should be applied first. They should be applied first

in case all decision metrics agree regarding the network’s security. If they agree there

is no need to involve other metrics. The decision metrics discussed in this paper are:

the Shortest Path metric, the Number of Paths metric, the Normalized Mean of Path

Lengths metric, the Network Compromise Percentage metric, the K-step Condition

Accumulation metric, the Weakest Adversary metric. These metrics are also shown

in the top row of Table 4.2. We further distinguish these metrics by whether they are

path analysis metrics or not. Path analysis metrics factor in attack path complexity

into its resulting value. Of the decision metrics in Table 4.2, the only metrics that

are not path analysis metrics are the Network Compromise Percentage metric and

the Weakest Adversary metric. We explain how these metrics can be used in the

next section. For remainder of this section, when referring to decision metrics, we are

referring the path analysis-based security metrics.

When evaluating two attack graphs, G1 and G2 to determine which is most secure,

G1 is strictly less secure than G2 if G1 has the shortest attack path length, the most

number of attack paths, and the smaller normalized mean of path lengths. In other

words, G2 strictly dominates G1.
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In the cases where G2 cannot be determined to be strictly more secure than G1 and

vice versa via decision metrics, an approach for reaching a decision may be creating

a total ordering of priority on questions a security engineer would like to answer:

• Which attack graph produces the shortest attack path requiring the most effort?

• Which attack graph gives the attacker the least number of ways of violating a

security policy?

• Which attack graph produces attack paths that typically require more effort to

violate a security policy given the number of ways of doing so?

The three questions correspond to the Shortest Path metric, the Number of Paths

metric, and the Normalized Mean of Path Lengths metric respectively. Once this

priority structure is established, the security engineer could use an evaluation ap-

proach where the attack graph satisfying the question deemed most important is

considered more secure. Alternatively, the security engineer could assume each ques-

tion is equally important, the attack graph satisfying the most questions above is

deemed more secure. The security engineer could also vary the weights of importance

associated with these questions.

An approach to network security evaluation is specified in compareGraphs in

Algorithm 1. The security engineer would supply algorithm 1 with the two attack

graphs to compare, the set of metrics deemed most important to evaluate the attack

graphs, and a minimum frequency value t (detailed later in Section 4.4.2) in case

assistive metrics are required (line 17). The algorithm starts by examining each metric

of interest, and applying the metric to the attack graphs being compared (lines 1-9).

The applyMetric function (lines 3, 5, 7) uses a decide function to determine which

attack graph is most secure (line 1, Algorithm 2). In the decide function, Algorithm

3, a sanity check is done initially (lines 1-3, Algorithm 3). The decide function then

determines which attack graph is most secure with respect to metric m (lines 4-9).

When assistive metrics are not being used in compareGraphs, the m2 parameter

of applyMetric will be null (lines 3, 5, 7, Algorithm 1). Once the for loop completes
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in algorithm 1, the algorithm determines whether an attack graph strictly dominates

the other attack graph on each metric (lines 10-11). It then determines whether an

attack graph dominates the other attack graph on a majority of the metrics used

(lines 12-13, algorithm 1). The last check performed is to determine if the two attack

graphs are equal (lines 14-15). The isStrictlyDominated and isMajorityDominated

functions are specified in Algorithms 4 and 5 respectively. Otherwise further analysis

is obtained from assistive metrics (line 15).

In the cases where conclusions cannot be drawn from examining the Number of

Paths metric and the Shortest Paths metric alone, the Normalized Mean of Path

Lengths metric will usually provide a conclusive answer (see section 5.2). However,

in the cases when this conclusion cannot be achieved, assistive metrics are required.

4.4.2 Assistive Metrics

Assistive metrics serve as “drill down” metrics. These metrics discover more

security-relevant information from the attack graph. Unlike decision metrics, these

metrics are not used independently to make determinations regarding which attack

graph is most secure when comparing two attack graphs.

Assistive metrics mentioned in this paper include: the Mean of Path Lengths, the

Standard Deviation of Path Lengths metric, the Mode of Path Lengths metric, and

the Median of Path Lengths metric. These metrics are listed in the bottom row of

Table 4.2. We have specified our approach to using assistive metrics in Algorithm 6.

If the Shortest Path metric was used previously, then the Shortest Path metric will

be applied to subsets of attack paths of the two attack graphs being compared (lines

3-9). The subset of attack paths function s creates an attack graph G with subsets

of attack paths based on a metric m. s is specified in Algorithm 7. If s is passed

an optional parameter t and the attack graph G does not have enough path lengths

equal to the Mode of Path Lengths metric, the empty set is returned to indicate that

G does satisfy the threshold (lines 1-3, algorithm 7).
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Algorithm 1 compareGraphs function: Algorithm for Using Multiple Metrics to

Evaluate Two Attack Graphs

Require: G1, G2 {attack graphs to be compared}, M {the set of security metrics to

be used for attack graphs}, t {threshold value for Mode of Path Lengths metric},

Rd {the set of results from applying decision metrics to both attack graphs}

1: for all m ∈M do

2: if m equals SP then

3: Rd ← applyMetric(G1, G2, Rd,m, null, >)

4: else if m equals NP then

5: Rd ← applyMetric(G1, G2, Rd,m, null, <)

6: else if m equals NMPL then

7: Rd ← applyMetric(G1, G2, Rd,m, null >)

8: end if

9: end for

10: if isStrictlyDominated(Rd, G1, G2) then

11: return (Rd, {“strictly dominated”})

12: else if isMajorityDominated(Rd, G1, G2) then

13: return (Rd, {“majority dominated”})

14: else if isEqual(Rd) then

15: return (Rd, {“all are equal”})

16: end if

17: return enlistAssistiveMetrics(G1, G2, Rd, t)
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Algorithm 2 applyMetric function

Require: G1, G2 {attack graphs to be compared}, R {result set}, m1 {metric to

apply to the two attack graphs}, m2 {assistive metric}, c {relational operator}

1: r0 ← decide(G1, G2,m1, c)

2: r1 ← m1

3: if m2 does not equal null then

4: r2 ← m2

5: end if

6: return R.add(r) {r is compromised of r0, r1 and r2}

Algorithm 3 decide function

Require: G1, G2 {attack graphs to be compared}, m {security metric to apply to

G1 and G2}, c {relational operator}

1: if G1 equals ∅ or G2 equals ∅ then

2: return “incomparable”

3: end if

4: if m(G1) c m(G2) then

5: return G1.name

6: else if m(G1) equals m(G2) then

7: return “”

8: end if

9: return G2.name

Algorithm 4 isStrictlyDominated function

Require: R {result set}, G1, G2 {attack graphs to be compared}

1: v1 ← countFrequency(G1.name,R)

2: v2 ← countFrequency(G2.name,R)

3: if (v1 equals R.size) or (v2 equals R.size) then

4: return true

5: end if

6: return false
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Algorithm 5 isMajorityDominated function

Require: R {result set}, G1, G2 {attack graphs to be compared}

1: v1 ← countWeightedFrequency(G1.name,R)

2: v2 ← countWeightedFrequency(G2.name,R)

3: if (v1 > v2) or (v2 > v1) then

4: return true

5: end if

6: return false
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In the s function, the keepPathsEqualTo function returns an attack graph with

paths that have path lengths equal to the Mode Path Length metric (lines 6-7).

The keepPathsInRange function returns an attack graph with paths that have

path lengths that are within the range specified by the Mean of Path Lengths met-

ric and the Standard Deviation of Path Lengths metric (lines 8-9). The function

keepPathsBelowOrEqualTo returns an attack graph with paths that have path

lengths equal to or below the modified Median of Path Lengths metric (lines 10-

11). We explain the modification to the Median of Path Lengths metric later in this

section.

In the enlistAssistiveMetrics function in algorithm 6, when the Shortest Path

metric is used to compare s(G1,MoPL) and s(G2,MoPL), the result of this ex-

pression captures the comparison of one notion of the most common amount of at-

tack effort. The attack graph having the typical amount of attack effort that is

greater is considered most secure. When the Shortest Path metric is used to compare

s(G1, SDPL) and s(G2, SDPL), the result of the expression captures the identifica-

tion of the attack graph having the path of least resistance requiring the most effort

among another notion of the “typical” attack effort.

If the Number of Paths metric was initially used to determine which attack graph

was most secure (line 10), the metric will be applied to the subgraphs yielded from

applying the Standard Deviation of Path Lengths metric, and a modified Median of

Path Lengths metric to the attack graphs using s (lines 11-12). When the Number of

Paths metric is applied to the s(G1, SDPL) and s(G2, SDPL), the resulting expres-

sion captures the number of typical paths exist in the attack graph for one meaning

of typical. MePL′, the modified Median of Path Lengths metric, is the minimum

median of two attack graph being compared. Because low resistance paths are un-

desirable from the security engineer’s perspective, these are the paths most worthy

of attention. When the Number of Paths metric is applied to s(G1,MePL′) and

s(G2,MePL′), the expression captures which attack graph has the least number of

paths of “low” resistance.



77

If the Normalized Mean of Path Lengths metric was initially used to determine

which attack graph was most secure, the metric will be applied to the subgraphs

yielded from applying the Mode of Path Lengths metric, the Standard Deviation of

Path Lengths metric, and the modified Median of Path Lengths metric (lines 15-21).

The application of the Normalized Mean of Path Lengths metric on s(G1,MoPL) and

s(G2,MoPL) takes into the account the effort and the number of paths that is asso-

ciated with the most frequently occurring attack path lengths. When the Normalized

Mean of Path Lengths metric is used to compare s(G1, SDPL) and s(G2, SDPL),

the expression captures the attack effort associated with a notion of common attack

paths in the attack graph. When the Normalized Mean of Path Lengths metric is

used to compare s(G1,MePL′) and s(G2,MePL′), the expression captures the attack

effort associated with the weakest set of attack paths.

To come to a decision about which attack graph is most secure, a total order-

ing for the values in Ra may be established. The attack graph that is determined

to be most secure for the element in Ra deemed most important would be consid-

ered most secure. Alternatively, an equal or varied weighting scheme could be used.

isStrictlyDominated, isMajorityDominated, and/or isEqual will be called with the

attack graphs being compared and Ra to reach a determination of which attack graph

is most secure. The security engineer could then apply the NCP or the WA metrics

to the full attack graphs of the two attack graphs being compared in order to reach

a decision about which network is most secure. However, if the usage of decision

and assistive metrics fails to produce any conclusions, then a security engineer would

be relegated to experience and expert opinion in determining what network is most

secure.

4.5 Assessing Two Attack Graphs

Table 4.3 gives the result of applying our network security evaluation approach

to attack graphs Gi and Gj. It is evident from the table that by simply looking
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Table 4.2: Classification of attack graph-based security metrics

Type Metric

Decision SP Shortest Path

NP Number of Paths

NMPL Normalized Mean of Path Lengths

NCP Network Compromise Percentage

WA Weakest Adversary

KCA K-step Condition Accumulation

Assistive MPL Mean of Path Lengths

SDPL Standard Deviation of Path Lengths

MoPL Mode of Path Lengths

MePL Median of Path Lengths
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Algorithm 6 enlistAssistiveMetrics function

Require: G1, G2 {attack graphs to be compared}, Rd {results set from applying de-

cision metrics on G1 and G2}, Ra {the set of results from using assistive metrics},

t {threshold value for Mode of Path Lengths metric}

1: for all r.r1 ∈ Rd do

2: if r.r1 equals SP then

3: for all m ∈ {MoPL, SDPL} do

4: if m equals MoPL then

5: Ra ← applyMetric(s(G1,m, t), s(G2,m, t), Ra, r.r1, m,>)

6: else

7: Ra ← applyMetric(s(G1,m), s(G2,m), Ra, r.r1, m,>)

8: end if

9: end for

10: else if r.r1 equals NP then

11: for all m ∈ {MePL′, SDPL} do

12: Ra ← applyMetric(s(G1,m), s(G2,m), Ra, r.r1, m,>)

13: end for

14: else if r.r1 equals NMPL then

15: for all m ∈ {MePL′,MoPL, SDPL} do

16: if m equals MoPL then

17: Ra ← applyMetric(s(G1,m, t), s(G2,m, t), Ra, r.r1, m,>)

18: else

19: Ra ← applyMetric(s(G1,m), s(G2,m), Ra, r.r1, m,>)

20: end if

21: end for

22: end if

23: end for{check for strict domination, majority domination, and equality in Ra,

returning (Rd, Ra) if any one check is true otherwise return (Rd, Ra)}
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Algorithm 7 s function

Require: G {attack graph to create a subgraph from}, m {metric that will be used},

t {optional parameter that is used for the Mode of Path Lengths metric}

1: if t is passed in as a parameter then

2: if isBelowThreshold(t,m(G), G) then

3: return ∅

4: end if

5: end if

6: if m equals MoPL then

7: return G′ ← keepPathsEqualTo(m(G), G)

8: else if m equals SDPL then

9: return G′ ← keepPathsInRange(χ(G)−m(G), χ(G) +m(G), G)

10: else if m equals MePL′ then

11: return G′ ← keepPathsBelowOrEqualTo(m(G), G)

12: end if
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Table 4.3: Security metric evaluation of Gi and Gj

Metric Gi Gj

SP Shortest Path 1 exploit 1 exploit

NP Number of Paths 7 paths 7 paths

MPL Mean of Path Lengths 1 exploit 2.5 exploits

NMPL Normalized Mean of Path Lengths 0.14 0.35

SDPL Standard Deviation of Path Lengths 0 exploits 1.1 exploits

MoPL Mode of Path Lengths 1 exploit 2 exploits

MePL Median of Path Lengths 1 exploit 2 exploits

at the Shortest Path metric or the Number of Paths metric, one may end up at a

potentially wrong conclusion. However, by using more security metrics, we can make

greater distinctions about the two underlying networks and arrive at a more reasoned

conclusion. By looking at the Median Path Length metric for Gj and inspecting the

path lengths above and below it, the security engineer can ascertain that it has at

least 3 different values (1, 2, and 5 exploits). This reveals that half of the attack paths

are equal to the the shortest path or are a single exploit away from being considered a

shortest path. This may suggest that if the network represented by Gj is chosen, the

segment of the network producing the attack paths below the median may warrant

special attention. The Standard Deviation of Path Lengths metric also reveal the

homogeneity of the path lengths in Gi. However, for Gj, the Standard Deviation of

Path Lengths metric suggests that typical path lengths are approximately within the

range of 1 exploit and 3 exploits. These values are obtained by adding or subtracting

the Standard Deviation metric from Mean of Path Lengths metric. The result of

applying the compareGraphs to Gi and Gj is shown in Table 4.4. Hence, according

to compareGraphs, Gj is more secure than Gi.
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Table 4.4: The result of applying decision and assistive metrics to Gi and Gj

Security Metric Value Result

SP on Gi and Gj Gi and Gj are equally secure

NP on Gi and Gj Gi and Gj are equally secure

NMPL on Gi and Gj Gj is more secure

SP on s(Gi,MoPL, t) and s(Gj,MoPL, t) Gj is more secure

SP on s(Gi, SDPL) and s(Gj, SDPL) Gj is more secure

NP on s(Gi,MePL′) and s(Gj,MePL′) Gj is more secure

NP on s(Gi, NMPL) and s(Gj, NMPL) Gj is more secure

NP on s(Gi,MoPL, t) and s(Gj,MoPL, t) Gj is more secure

NMPL on s(Gi,MePL′) and s(Gj,MePL′) Gj is more secure

NMPL on s(Gi, NMPL) and s(Gj, NMPL) Gj is more secure

NMPL on s(Gi,MoPL, t) and s(Gj,MoPL, t) Gj is more secure
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5. SIMULATION STUDIES

This chapter describes the simulation studies conducted to assess the behavior of

various attack graph-based security metrics. More specifically these studies seeks

to provide evidence to support characterizations of the attack graph-based metrics

discussed in chapters 3 and 4. Recall that assistive metrics (i.e., the Mean of Path

Lengths metric, the Standard Deviation of Path Lengths metric, the Median of Path

Length metric, the Mode of Path Lengths metric) are used to help the decision metrics

reach a decision about which of two network configurations is most secure. As shown

in the previous chapter, by identifying relevant subsets of attack paths, these assistive

metrics can help resolve conflicts. Nonetheless, these metrics are not to be used as

decision metrics and our simulation studies provide further evidence to support our

claim. We also show how Algorithm 1 (from the previous chapter) performs on a

series of artificial attack graphs.

5.1 Characterization of Attack Graph-based Security Metrics

In this section we provide simulated data that supports the classification used for

metrics previously proposed. We initially describe the network model used and then

describe how we set up our experiments. We then begin our assessment of attack

graph-based security metrics. Where applicable, we specify associated equations that

explain the behavior of the metrics being evaluated.

5.1.1 Network Models

In this section, we describe the network models used in our simulation studies. We

chose a set of base network models: the Flat network, External-Internal network, and
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the External-Demilitarized Zone (DMZ)-Internal network. More sophisticated net-

works models can be decomposed into these basic network models. For each network

we use in our experiments, host A refers to the attacker’s host. Thus the attacker

is modeled as having an account on host A with connectivity that is dictated by the

network model being used. We assume the attacker has the ability to exploit all

discovered vulnerabilities in a network. Hosts B through D are intermediate hosts.

Host V is the victim host. Thus, users are modeled as having accounts on hosts B

through D and V. These machines are assessed under various vulnerability densities

(explained later). The victim host is the attacker’s target in each scenario. While

these network models use hosts, these could also be viewed as subnetworks.

Flat Network

In the Flat network, each host can connect to any other host. If the attacker

and target are in the same network then the attacker has direct access to the target

host. Any subnetwork of an organization where such connectivity is allowed can be

classified as a Flat network. For instance, there may be wireless access points that

allow members of the organization to connect to a particular internal subnetwork.

An instance of a Flat network model is given below in Figure 5.1.

Fig. 5.1.: Flat network model

External-Internal Network

In the External-Internal network, a filtering device disallows connectivity to a

subset of addresses and ports in either direction (from the external network to the
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internal network or from the internal network to the external network). An orga-

nization may put up any number of these filtering devices within a given network.

Understanding what happens in the presence of a single filtering device will assist us

in understanding larger more complex network models. An example of this model is

shown in Figure 5.2. In our experiments, host A can connect directly only to host B.

Hosts B, C, D, and V can connect to each other.

Fig. 5.2.: External-internal network model

External-DMZ-Internal Network

In the External-DMZ-Internal network, there are at two filtering devices: a DMZ

filtering device and an internal filtering device. The DMZ filtering device is respon-

sible for filtering connections aimed toward the network. This network model filters

connections that come from the external network and are destined for the DMZ or

internal networks. The internal filtering device filters connections that come from

the DMZ network destined for the internal network. These connections could have

ultimately originated from the external network or the DMZ network. An example

of the network model is shown in Figure 5.3. This network model can be seen as two

External-Internal network models M1 and M2. The internal network of M1 would

correspond to the external network of M2. In other words, the internal network of

M1 would be the same as the external network of M2. In our experiments, host A

can connect directly only to host B. Host B can connect directly to host C. Host C
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can connect directly to Hosts B, D, and V. Host D can connect directly to host V.

Host V can connect directly to hosts C and D.

Fig. 5.3.: External-DMZ-internal network model

5.1.2 Experiment Setup

The experiment setup is depicted in Figure 5.4. The Input Generator creates

input files for MulVal [64] that creates the corresponding attack graphs. We chose

to use MulVal to generate attack graphs because it has the ability to produce attack

graphs efficiently and was made accessible by its author [64]. The Input Generator

assigns vulnerabilities to hosts in the network. The Attack Graph-based Security

Metric Engine uses attack graph-based security metrics to measure attack graphs.

For each of attack graph measured, the result of applying each attack graph-based

security metric to the attack graph is stored to a database.

We use goal-oriented attack graphs. When machines can connect to each other,

they connect on a single port (port 80). When the number of vulnerabilities are

modified, they are modified for this port. We assume the vulnerabilities are remotely

exploitable. Reachability is the precondition for the vulnerabilities. That is, if an

attacker can connect to a machine, the attacker can exploit any vulnerabilities present

on the machine. The consequence for the vulnerabilities is that the attacker has the
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ability to execute arbitrary code on the compromised machine. We leave the issue of

locally exploitable vulnerabilities to future work.

Fig. 5.4.: Experiment framework

5.1.3 Attack Graph-based Security Metric Analysis

In this section, we evaluate attack graph-based security metrics on the afore-

mentioned network models. In the following charts, “Flat” corresponds to the Flat

network model; “E-I” corresponds to the External-Internal network model; “E-D-

I” corresponds to the External-DMZ-Internal network model. Along the x-axes of

the of these charts, there is an assignment of remotely exploitable vulnerabilities to

hosts. The assignment is given by the following format: iH, where i is the number

of remotely exploitable vulnerabilities assigned to host H.
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We evaluate the networks’ security incrementally. That is, after host V is evaluated

with a vulnerability, we evaluate the security level of the network with hosts V and

B having vulnerabilities. Then we evaluate the security level after we add another

vulnerable host C. Then we evaluate network security after we add a last vulnerable

host D. Once host D is added to the network, we increase the number of vulnerabilities

for each host. At each increase, we reevaluate the the attack graph for all attack graph-

based security metrics. Figures 5.1, 5.2, and 5.3 correspond to the scenario when all

hosts have joined the network in the Flat network, External-Internal network, and

External-DMZ-Internal network. We increase the number of remotely exploitable

vulnerabilities at host V first. This initial vulnerability assignment is done because

there can be no attack graph if host V has no vulnerabilities.

There are two decision path analysis attack graph-based security metrics we do

not include in our analysis. The first is the Attack Resistance metric. We do not

include the AR metric in this study because the metric is unable to handle all types of

attack graphs. Namely, the AR metric cannot deal with scenarios where an attacker

may exploit multiple vulnerabilities that exists on a single attack path directly. The

second decision path analysis attack graph-based security metric excluded from this

analysis is the K-step Condition Accumulation metric. We do not include KCA metric

in this study either. This exclusion is due to the granularity of the study. In this

study, we are looking at the effects of vulnerabilities at the host level. Thus, the

KCA metric would show the hosts compromised as the conditions accumulatd by the

attacker. Because of this perspective, the data that would be produced by the KCA

metric would be the same as the data produced by the NCP metric. And in this

study, we do evaluate the NCP metric.

Shortest Path Metric Assessment

Observing the graph in Figure 5.5, reveals why the Shortest Path metric should

not be used for monitoring the security of a network. In each type of network,
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as the network increases in the number of remotely exploitable vulnerabilities, the

Shortest Path metric remains constant. This data provides further support for our

recommendations for appropriate usage of the Shortest Path metric in section 3.3.13.

Fig. 5.5.: The effect of vulnerability increase on the shortest path metric under

different network models

The usage of a firewall(s) before the target increases the length of the path an

attacker must traverse to achieve the goal. Thus, this metric provides quantitative

support for the well-known defense in depth network protection strategy. Moreover,

by looking at the values for External-Internal and the External-DMZ-Internal network

models, the values are not defined until the attacker can exploit enough vulnerabilities

to reach the target. This observation suggests another strategy for protecting vul-

nerable hosts. The strategy is if a host is known to be vulnerable or more vulnerable

than other hosts in the network and susceptible to attack, then access to the machine

should be reduced. This countermeasure can be accomplished by shutting the service

down on the port or instrumenting the service to increase the effort required to access

the service.



90

Number of Paths Metric Assessment

Because hosts existing in the same protection domain can reach each other, cycles

emerge in the attack graph. However, if there is a single cycle in an attack graph,

then the Number of Paths metric would produce a value of infinity, as there would

be infinite paths in the attack graph. To deal with this issue, the Number of Paths

metric breaks cycles in the attack graph when performing measurements.

In our Number of Paths metric measurement, we compute the metric by deter-

mining the number of paths at each node in a breadth-first-search manner. We start

the measurement from the attacker’s target state progressing toward the attacker’s

initial state. Edges that point to previously discovered nodes are ignored.

Irrespective of the network model, the trend of the Number of Paths metric is

to increase exponentially as the number of vulnerabilities in the network increases

linearly in Figure 5.6. This phenomenon results from hosts being in the same pro-

tection domain and having the ability to start an attack from any other host in the

same protection domain. This metric is sensitive to increase or decrease in exploitable

vulnerabilities or vulnerable hosts. Because of this sensitivity, the Number of Paths

metric can serve as a useful tool in monitoring the security of a network.

In the Flat network, this metric inherently weights the host designated as the

target more weight than the other hosts in the network. In the Flat network, when

the target host increases in vulnerabilities, its effect on the Number of Paths metric

is greater than the effect of another host in the network increasing its exploitable

vulnerabilities by a commensurate number of vulnerabilities. Table 5.1 shows the

Number of Paths metric for different vulnerability distributions in the network. It can

be observed from Table 5.1 that when new hosts stop joining the attack graph and the

target host V increases in its number of vulnerabilities, no other host that increases

by the same amount of vulnerabilities produces a larger change in the Number of

Paths metric. This occurs because each host in the network is adjacent to V and

therefore changes in V affect every path in the attack graph.
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Table 5.1: Number of paths for different vulnerability distributions in the Flat

network

Number of Vulnerabilities to Host Assignment Number of Paths

1V 1

1B1V 2

1C1B1V 4

1D1C1B1V 8

1D1C1B2V 16

1D1C2B2V 24

1D2C2B2V 36

2D2C2B2V 54

2D2C2B3V 81

2D2C3B3V 108

2D3C3B3V 144

3D3C3B3V 192

3D3C3B4V 256

3D3C4B4V 320

3D4C4B4V 400

4D4C4B4V 500
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Fig. 5.6.: The effect of vulnerability increase on the number of paths metric under

different network models

These findings suggest that new hosts that want to join a protection domain

should be scrutinized more closely than hosts that have already been accepted into

the protection domain. Looking at Table 5.1, the increase in the Number of Paths

metric is most dramatic when a new host is discovered. When host B, C, and then

D have a vulnerability first discovered, the Number of Paths metric increases 100%

above its previous value.

When the E-I or E-D-I model is used, then the hosts that the attacker must use

to reach the host have more dramatic effects on the networks security than the target

machine. This result suggests that the target machine may not need as much fortifi-

cation if its perimeter is secure. More specifically, the first host (from a dependency

persepective) that the attacker can reach that has direct access to the victim host.

By examining Table 5.2 and Table 5.3 we can observe that the path with the most

dramatic effect is host B and host C respectively. Each of these hosts, in the E-I and

E-D-I models respectively have the largest effect on the Number of Paths metric.
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Table 5.2: Number of paths for different vulnerability distributions in the E-I

network

Number of Vulnerabilities to Host Assignment Number of Paths

1V N/A

1B1V 1

1C1B1V 2

1D1C1B1V 4

1D1C1B2V 8

1D1C2B2V 16

1D2C2B2V 24

2D2C2B2V 36

2D2C2B3V 54

2D2C3B3V 81

2D3C3B3V 108

3D3C3B3V 144

3D3C3B4V 192

3D3C4B4V 256

3D4C4B4V 320

4D4C4B4V 400
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Table 5.3: Number of paths for different vulnerability distributions in the E-D-I

network

Number of Vulnerabilities to Host Assignment Number of Paths

1V N/A

1B1V N/A

1C1B1V 1

1D1C1B1V 2

1D1C1B2V 4

1D1C2B2V 8

1D2C2B2V 16

2D2C2B2V 24

2D2C2B3V 36

2D2C3B3V 54

2D3C3B3V 81

3D3C3B3V 108

3D3C3B4V 144

3D3C4B4V 192

3D4C4B4V 256

4D4C4B4V 320
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Characterizing the Number of Paths (NP) Metric Through experiments,

we have extracted an equation to characterize the behavior the Number of Paths

metric in response to changes in the number of vulnerabilities and hosts in the Flat

network.

NP (Gt) =

vt if t = 1,

vtNP (Gt−1) +NP (Gt−1) t > 1.

(5.1)

The input parameter t corresponds to the event when a new host with a remotely

exploitable vulnerability joins the network. The analysis assumes that once a machine

joins the network with a given number of vulnerabilities, the number of vulnerabilities

remains constant. If it changes then the equation would have to be recomputed. The

proof of the above relation may be done for a family of general functions but not all

general functions that the recurrence relation represents. The term vt is actually a

nondeterministic parameter. This parameter corresponds to the number of vulner-

abilities that a host has when event t occurs, where vt > 0. This flexibility makes

this recurrence relation nondeterministic. Since nondeterministic functions cannot be

described as a function of its inputs, we provide a proof for when the nondeterministic

parameter is fixed to demonstrate the correctness of the above recurrence relation.

When vt = c, we claim that NP (Gt) = c(c+ 1)t−1 for t ≥ 1.

Base case t = 1: NP (G1) = c(c+ 1)1−1

= c(c+ 1)0

= c(1)

= c.

Base case holds because vt = c.

The inductive hypothesis is that NP (Gt) = c(c+ 1)t−1 for all t ≤ k.

Prove claim holds for t = k + 1.

NP (Gk+1) = cNP (Gk+1−1) +NP (Gk+1−1)

= cNP (Gk) +NP (Gk)

= c[c(c+ 1)k−1] + c(c+ 1)k−1 by the inductive hypothesis

= c(c+ 1)k−1[c+ 1]
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= c(c+ 1)k QED.

The ramifications of this equation suggest that once an initial number of paths

is known for an attack graph, we no longer need to recompute the entire attack

graph in order to determine the Number of Paths metric. If the initial number of

paths can be determined without an attack graph, then attack graph is not necessary

for determining the Number of Paths metric. This computation scales linearly with

respect to the number of hosts in the same protection domain.

There is alternative way of computing this metric for the different network mod-

els. Let ntarget correspond to the number of remotely exploitable vulnerabilities at the

target host. Let ngatewayi correspond to the number of remotely exploitable vulnera-

bilities at a host that serves as a gateway to the attacker for reaching a new protection

domain. Let nj correspond to the number of remotely exploitable vulnerabilities that

exist at some host that is not the attacker’s, the target’s, or a gateway.

For the Flat network model, the Number of Paths metric can be computed as the

following: ntarget

m∏
i=2

(ni + 1), where m is the number of hosts in the network.

For the External-Internal network model, the Number of Paths metric can be

computed as the following: ntarget × ngateway1
m∏
i=3

(ni + 1).

For the External-DMZ-Internal network model, the Number of Paths metric can

be computed as the following: ntarget × ngateway1 × ngateway2
m∏
i=4

(ni + 1).

The External-Internal network model and the External-DMZ-Internal network

model computation can be generalized as the following: ntarget

p∏
j=1

ngatewayj

m∏
i=p+2

(ni +

1), where p is the number of gateways between the attacker and the target.

Mean of Path Lengths (MPL) Metric Assessment

A salient issue with the Mean of Path Lengths metric is revealed in Figure 5.7. As

the vulnerabilities in the network increases, the mean path increases. The increase in

path length indicates that the network’s security is actually improving as a result of

increasing the number of vulnerabilities in the network. This interpretation is clearly
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erroneneous. The MPL value increase is caused by increasing the number of circuitous

routes an attacker can take to reach a target host.

Fig. 5.7.: The effect of vulnerability increase on the mean path length metric under

different network models

Although, there is no clear interpretation of the Mean of Path Lengths metric

alone in Figure 5.7, computing this metric will be useful for computing the Normalized

Mean of Path Length metric.

Characterizing the Mean of Path Lengths Metric

Let z = MPL(Gt−1)
′
(NP (Gt)−NP (Gt−1)).

Let y = MPL(Gt−1)NP (Gt−1).

MPL(Gt) =

l if t = 1;

1
NP (Gt)

[z + y] otherwise.

(5.2)

Note that MPL(Gt−1)′ = MPL(Gt−1) + l, where l is the path length between

two hosts on the same network. If all lengths between hosts are treated the same,
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then the length will be treated as the unit length between two hosts. If the path

length corresponds to some alternative function of complexity, then the path length

will correspond to the average complexity associated with the vulnerabilities vt.

Normalized Mean of Path Lengths (NMPL) Metric Assessment

Given our defintion of attack path length, the Mean of Path Lengths metric does

not support the interpretation of the typical attack effort associated with an attack

graph and for the reasons outlined in section 3.3.15, the Normalized Mean of Path

Lengths metric (in Figure 5.8) is proposed. We see, as expected, that the Flat network

model is the least secure network model. The External-Internal network model is

the more secure than the Flat network model. The External-DMZ-Internal network

model is more secure than the than External-Internal network model. However, as

the network becomes more and more saturated with vulnerabilities, the difference in

security levels of the different networks models become negligible.

Fig. 5.8.: The effect of vulnerability increase on the normalized mean path length

metric under different network models
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Standard Deviation of Path Lengths (SDPL) Metric Assessment

Based on the data in Figure 5.9, we can see that the variability in attack path

lengths increase more dramatically when new vulnerable hosts join the network. The

variability in path length begins to decrease once new vulnerable hosts stop joining

the network. However, as the vulnerabilities increase on the hosts already involved in

some attack path, the variability of the path lengths decrease. This occurs because

as the vulnerabilities on these hosts are incremented, the mean path length changes

more slowly than when a new vulnerable host joins the network. This observation

suggests that scrutinizing hosts attempting to join a network is warranted.

Fig. 5.9.: The effect of vulnerability increase on the standard deviation of path

lengths metric under different network models

Although this data shows that increasing the access control of the network de-

creases variability in the path length, these values indicate little about the security

of the system by themselves. Because these values cannot be used to decide which

of two networks are most secure, this data supports our rationale for why we classify

the Standard Deviation of Path Lengths metric as an Assistive metric. If desired,
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this metric can be normalized in the same way the MPL metric can be normalized in

order to be used with NMP instead of the MPL.

Median of Path Lengths (MePL) Metric Assessment

The chart in Figure 5.10 shows that there is a general trend of the median in-

creasing. Given the results of the Standard Deviation of Path Lengths metric above,

there is little surprise that there are more changes in the median in the Flat net-

work than any other network, and that there are more changes in the median in the

External-Internal network than in the External-DMZ-Network.

Fig. 5.10.: The effect of vulnerability increase on the median path length metric

under different network models

The data shows why we do not classify the Median of Path Lengths metric as a

decision metric. At various points in Figure 5.10, the Median of Path Lengths metric

shows the different network models as being equally secure when they are actually

not. This data, by itself, is insufficient to determine what network is most secure. As

a tool for determining the security level of a network it provides a point of interest.
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More specifically it provides the location of the 50th percentile, which may be useful

in other anlayses (see section 4.2.4).

Mode of Path Lengths (MoPL) Metric Assessment

The Mode of Path Lengths metric in Figure 5.11 exemplifies why we do not classify

the Mode of Path Lengths metric as a decision metric. With the exception of the

flat network model, the mode stays constant as the number of vulnerabilities in the

network increase and access controls are increased. By the flat network having some

mode values that are below the other network models do suggest that the system is

not as secure as the other network models. In order to use this is as a tool to determine

the level of security of the system, one would need to know the frequencies associated

with the mode(s). Thus, when comparing modes of two networks, an analyst would

need to identify the network that corresponded to the mode with a lower frequency

if the mode values are equal. The system with the lower mode frequencies would

be considered more secure. Otherwise the analyst could take the higher of the two

(or more) mode values. However, this approach cannot be relied on for deciding the

security of a network, and is classified as an assistive metric.

Network Compromise Percentage (NCP) Metric Assessment

The NCP for the studied network models is shown in Figure 5.12. As can be

seen, all that is required to compute this metric is knowledge of which hosts in the

network are involved in some attack. Therefore, once there is at least one exploitable

vulnerability on each host, the NCP will stop changing in value as it will be at its

maximum value (100%). This reveals why this metric may not be useful in deter-

mining vulnerability changes in the network. This metric’s level of granularity is at

the host level. In Figure 5.12, as the number of vulnerabilities increase for any one

host, NCP does not change. While this metric may be used to monitor the ongoing
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Fig. 5.11.: The effect of vulnerability increase on the mode path length metric under

different network models

security of a network, its value depreciates if hosts can be exploited by more than one

vulnerability.

Fig. 5.12.: The effect of vulnerability increase on the network compromise

percentage metric under different network models
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5.2 Aggregation of Attack Graph-based Security Metrics Approach Eval-

uation

In this section, we show the results of using compareGraphs for two sets of ran-

domly generated attack graphs. We generate this data randomly because obtaining

real data would require organizations to divulge the ways attackers may be able to

attack them. Even if the attack graph corresponds to a network configuration that is

no longer valid, the attack graph may reveal intimate details about an organization’s

network that would be better kept confidential. First, we explain the experiment

setup. Afterward, we present the results of performing our experiment.

5.2.1 Experiment Setup

The number of paths in the attack graphs are uniformly distributed between 1

and 2000 attack paths. The path lengths is uniformly distributed between 1 and 50.

1000 randomly generated attack graphs are assigned to set Ga, and a disjoint set of

1000 randomly generated attack graphs are assigned to set Gb. compareGraphs is

called for the 1000000 pairs of attack graphs belonging to distinct sets. The value 2

is used for the parameter t for compareGraphs. The results are shown in Table 5.4.

5.2.2 Results

In Table 5.4, DMs and AMs refer to Decision Metrics and Assistive Metrics re-

spectively. Table 5.4 shows that the combination of decision metrics used to evaluate

attack graphs under consideration affect whether compareGraphs will be able to reach

a conclusion about which attack graph is most secure. Regardless of what combina-

tion of decision metrics are used, assistive metrics help reach conclusions regarding

which attack graph is most secure.
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Table 5.4: The percentage of compared attack graphs for which compareGraphs

reaches a decision

SP,NP SP,NMPL NP,NMPL SP,NP,NMPL

% Overall 48.4 78 99.9 99.9

% Strictly (DMs) 4 4 99 4

% Majority (DMs) 0 0 0 95

% Equal (DMs) .4 0 0 0

% Strictly (AMs) 10 10 .1 .1

% Majority (AMs) 34 64 .8 .8

% Equal (AMs) 0 0 0 0
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6. ATTACK GRAPH-BASED NETWORK HARDENING

In this chapter, we discuss how to use attack graph-based security metrics to protect

a network with multiple options for countermeasures given a limited budget. We

frame the problem as a combinatorial optimization problem and propose a dynamic

programming solution. We exemplify how to use our method with a detailed example.

We end this chapter with a specification of an approach for maximizing security across

multiple security metrics.

6.1 Motivation

Network administrators fulfill the duty of preventing network attacks by identi-

fying vulnerabilities in the network and then systematically removing the identified

vulnerabilities. The removal of an identified vulnerability from a network may be

referred to as a patch or a countermeasure.

A countermeasure is any action performed to remove at least one vulnerability

from a system. Subsequently, the set of all countermeasures is infinite. However,

practically, a network administrator will only consider a finite set of countermeasures

for possible application to the network being protected. General countermeasures

include, for example, modifying firewall rules, updating software on networked hosts,

shutting down system services, or modifying an authentication routine.

The identification of vulnerabilities is critical to the effective use of countermea-

sures. A commonly used method to identify vulnerabilities is scanning the network for

vulnerabilities via vulnerability scanners [65, 66]. A weakness of this method is that

vulnerability scanners do not reveal the interdependencies that may exist between

vulnerabilities found on different hosts of the same network. In order to compensate

for this shortcoming, automated attack graphs can be used (e.g., [10]).
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We purport that attack graph analyses providing network hardening recommen-

dations could be enhanced to help network administrators be more effective at the

countermeasures choosing problem (CCP). Informally, CCP is the following: given

a limited budget, choose from a finite set of available countermeasures a subset of

countermeasures that provide the highest security possible without going over bud-

get. We propose to provide this analysis by modeling the CCP as a binary knapsack

problem. We suggest the use of dynamic programming to solve the binary knapsack

problem. Hence, our contribution includes:

• a novel approach for combining budget constraints and hardening recommen-

dations into attack graph analysis

• specification of how security metrics can be used to choose hardening measures.

6.2 Related Work

In attack graphs, the application of countermeasures is simulated by removing

some subset of vulnerabilities or exploits from its representation. The literature

discussed in this section propose analyses that provide the network administrator

with network hardening suggestions that, if implemented, produce a safe network or

a more secure network with respect to a security metric.

In [58], Jha et al. attempt to find the smallest subset of measures that are needed

to make the network safe. Jha et al. note that finding such a subset is equivalent to the

minimum hitting set problem which is NP-complete [67]. The authors approximate a

solution using a greedy approach where the measures preventing the most attacks are

chosen in descending order. A drawback of this approach is that it is an approximation

and yields potentially suboptimal solutions.

In [68], Noel et al. propose a minimum-cost network hardening method. Noel et

al. propose the use of algebraic backwards substitution from an attack graph’s goal

state to its initial state. This backwards substitution yields the goal state in terms

of the initial conditions. The boolean expression obtained for the initial conditions
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is converted into conjunctive normal form yielding maxterms that are then evaluated

on a lattice. Maxterms represent hardening suggestions that will preserve the safety

of the network. Maxterms lower in the lattice correspond to hardening suggestions

requiring the least cost or effort. The primary drawback of this approach is that it is

binary. That is, the effectiveness of this approach hinges on the ability of the network

administrator to implement all hardening suggestions for a given recommendation.

In [58,68], the assumption is made that the network administrator has all the re-

sources the network administrator needs to implement hardening recommendations.

However, a network administrator’s ability to safeguard a network is often times con-

strained by a limited budget [69]. Neither of the aforementioned approaches address

this real domain challenge. Our approach deals with this challenge by incorporat-

ing the network administrator’s funding constraint into the attack graph analysis to

discover hardening recommendations.

Phillips and Swiler incorporate a budget into their attack graph analysis to gen-

erate hardening suggestions [9]. However, their algorithm follows a greedy approach

that does not guarantee optimality. Furthermore, their analysis is based on know-

ing attacker costs or attacker success probabilities, which are difficult to ascertain in

practice. Our approach guarantees optimality and does not rely on knowing attacker

costs or attacker success probabilities.

In [55], Lippmann et al. describe a method for generating hardening recommenda-

tions that are derived from removing edges from the attack graph and observing its

effect on the system’s Network Compromise Percentage (NCP). A NCP of 0 percent

would suggest a safe network. A NCP of 100 percent would suggest a network that

is completely compromised. All hardening recommendations affects the NCP of the

modeled system. When the analysis is done, the network administrator is presented

with recommendations in ascending order of NCP. Although this approach takes large

strides to assist the network administrator in making hardening decisions, the net-

work administrator still has no assurance that the recommendations offered represent

optimal usage of available resources.
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Our approach compliments and enhances the above hardening recommendation

method. Coupling our method with the one in [55] gives the network administrator

the assurance that optimal recommendations are being received with respect to the

network administrator’s budget. We offer an algorithm for generating recommen-

dations that are guaranteed to optimize network security with respect to a security

metric (e.g., NCP) for the budget specified by the network administrator.

In [70], Chen et al. use the System Quality Requirements Engineering (SQUARE)

methodology to perform a detailed case study. Although this work is not specifically

for attack graph analysis, the work remains germane to our approach. The researchers

were tasked with helping to secure a client’s assets. The researchers used linear

programming to determine the best set of countermeasures to choose given the budget

their client allocated for security. The word “best” has a narrow definition in [70].

Best is defined as removing the most vulnerabilities from the network. However, this

may not always be the case based on the metric being used.

Solving the problem of choosing countermeasures as a combinatorial optimiza-

tion is consistent with our approach; however, there are important differences. Our

method maintains all discovered optimal solutions, whereas a single optimal solution

is provided in [70]. When considering hardening options, there are factors that are

not easily parameterized that are better left to the judgment of the network admin-

istrator (e.g., difficulty of implementing certain countermeasures, long-term viability

of a hardening recommendation). If a network administrator is presented with mul-

tiple optimal solutions, the network administrator can choose the best hardening

recommendation based on past experience. Chen et al. use attack trees primarily

for ancillary documentation purposes whereas in our approach attack graphs are in-

tegral. The network administrator can obtain a visual representation of the effect

each countermeasure has on the attack graph and subsequently the network. These

visual representations could serve as more effective documentation, communication,

and forensic tools for the network administrator. Because our approach explicitly

incorporates the use of security metrics, using a security metric such as the one sug-
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gested in [25], our approach can capture the effect of making the exploitation of a

particular vulnerability more difficult by removing some other vulnerability. The

approach offered in [70] does not capture this form of vulnerability interdependence.

6.3 Maximizing Security Given a Limited Budget

The removal of security flaws is performed by implementing one or more coun-

termeasures; however, the selection of the appropriate set of countermeasures is non-

trivial. For example, discovering the “best” way of removing vulnerabilities could

require the manual analysis of many combinations of countermeasures. Moreover,

there may be overlap in the vulnerabilities that countermeasures remove. Let there

be vulnerabilities v1, v2, v3, v4, v5, and v6 in a network net. There are the following

countermeasures for net: c1, c2, and c3. c1 removes vulnerabilities v1, v5, and v6. c2

removes vulnerability v1 and v4, and c3 removes v1 and v3. If only two countermea-

sures can be chosen of the three, which two countermeasures should be chosen? This

issue not only exemplifies the difficulty of choosing countermeasures, but it highlights

the importance of the security metric being used.

6.3.1 The Countermeasures Choosing Problem (CCP)

Due to the potentially many combinations of countermeasures to choose from and

the countermeasures’ possible overlap in protection, the selection of an optimal set of

countermeasures is difficult. The problem of choosing the appropriate combination of

countermeasures such that the security of the network is optimized and constrained

to a given budget is called the Countermeasures Choosing Problem (CCP). The CCP

formulation is inspired by the classic Binary Knapsack Problem.
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The Binary Knapsack Problem

The Binary Knapsack Problem is a well-known optimization problem where the goal is

to maximize a quantity subject to some constraint [71]. The problem can be formally

defined as [72]: given a set of n items and a knapsack with

pj = profit of item j,

wj = weight of item j, and

c = capacity of knapsack,

select a subset of items so as to

maximize z =
n∑
j=1

pjxj

subject to
n∑
j=1

wjxj ≤ c,

xj =

1 if item j is selected;

0 otherwise.

The CCP Formulation

We model the CCP, similarly, as follows:

The countermeasures are labeled 1...n.

mj = security benefit of countermeasure j,

qj = cost of implementing countermeasure j, and

B = budget of network administrator,

select a subset of hardening countermeasures so as to

maximize v =
n∑
j=1

mjxj

subject to
n∑
j=1

qjxj ≤ B,

xj = 0 or 1,

xj =

1 if countermeasure j is selected;

0 otherwise.
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There are requirements associated with our model of the CCP. First, the model

implicitly assumes that there exists a security metric to derive mj. A countermea-

sure’s mj is calculated with respect to the countermeasures that are already being

used. The rationale for this calculation constraint stems from the possible overlapping

in the countermeasures’ ability. For example, assume there are two countermeasures

being considered. When either countermeasure is used in isolation, protection is pro-

vided to half the network. However, if both countermeasures are used at the same

time, then it is not necessarily the case that the network is completely protected. The

two countermeasures may overlap in what network assets they protect. Hence, mj

may take on different values depending on what countermeasures are already in place

within the network. Our model also assumes that the network administrator is able

to assign costs to the hardening measures in terms of money or time.

6.3.2 Solving the CCP

By giving the theory of dynamic programming, Bellman provided an exact solution

for the binary knapsack problem [73]. We adopt the dynamic programming approach

to solving the CCP. We define variables as the following:

Let Rj
l = maximum security possible using x ⊆ {1, 2, 3..., j} which yields cost l;

Rj
0 = 0;

Rj
l = max{Rj−1

l , Rj−1
l−qj +mj};

Rj
l = Rj−1

l , if Rj−1
l is defined and Rj−1

l−qj is undefined;

Rj
l = Rj−1

l−qj +mj, if Rj−1
l−qj is defined and Rj−1

l is undefined;

Rj
l = undefined, if Rj−1

l and Rj−1
l−qj are undefined.

The necessary steps to leverage our approach are: (1) determine the budget, (2)

determine the security metric of interest, (3) generate the attack graph, (4) determine

what countermeasures are available to safeguard the network and assign them costs,

and (5) apply our dynamic programming algorithm to the inputs given above.
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Step 1 will vary based on who within an organization sets the defense budget. Step

2 could be fulfilled by exploring the literature (e.g., [9, 25, 56, 58]). Step 3 could be

achieved by using any of the tools or techniques discussed in [6, 10, 55, 64, 74] among

other work. Step 4 could be accomplished by identifying all the exploits from the

attack graph and associating each exploit with any countermeasure that removes the

exploit from the attack graph. The cost categories specified in [70] could be used to

come up with costs for the identified countermeasures. Algorithm 8 gives the dynamic

programming algorithm that is to be applied in step 5.

The algorithm shown in Algorithm 8 maintains all discovered optimal solutions

in R and AG, giving the network administrator the ability to choose from alternative

optimal solutions. If there is an optimal value entry found in R there is a correspond-

ing entry in AG. The modify function ensures that the countermeasure decision made

by the algorithm is reflected in the corresponding attack graph in AG by removing

the corresponding exploit edge(s) or node(s) depending on the type of attack graph

being used. If V and E are the vertices and edges of the attack graph respectively,

modify ’s time complexity is O(H) where H = |V | + |E|. The time complexity of ζ

is contingent on the security metric chosen. However, if we assume that the security

metric value can be obtained from a depth-first search of the attack graph (e.g., total

number of attack paths), then the dynamic programming algorithm’s time complexity

is O(nH2B), otherwise the algorithm has a time complexity of O(nHKB) where K

is the time complexity of ζ. The countermeasures chosen for an optimal hardening

recommendation can be determined by backtracking through R. We will give such

an approach in section 6.3.3.

A Detailed Example

In this section, we will carry out an example on a network where 4 different

countermeasures are being considered for application to the network. The cost of

implementing countermeasures 1, 2, 3, and 4 is $20K, $20K, $20K, and $30K respec-
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Algorithm 8 DP Algorithm for CCP

Require: n {the number of countermeasures under consideration} , B {the budget

in money or time} , G {original unaltered attack graph under consideration} ,

AG {(n+ 1)× (B + 1) attack graph entries} , R {(n+ 1)× (B + 1) matrix} , S

{the security benefit function}

1: initialize the zeroth row and column of R to 0s

2: initialize the zeroth row and column of AG to Gs

3:

4: for i← 1 to n do

5: for b← 0 to B do

6: if cost(i) ≤ b then

7: δ ← b− cost(i)

8: if mi ← S(AG, i, δ) +Ri−1
δ ≥ Ri−1

b then

9: Ri
b ← mi +Ri−1

δ

10: AG← modify(AG, i, b, δ))

11: else

12: Ri
b ← Ri−1

b

13: AG← modify(AG, i, b)

14: end if

15: else

16: Ri
b ← Ri−1

b

17: AG← modify(AG, i, b)

18: end if

19: end for

20: end for
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tively. In this example, there is no goal state for the attacker. What is of primary

interest is what machines can be compromised by the attacker. Based on this flex-

ibility, we choose to use the predictive attack graph. Because the predictive attack

graph may only have certain attack graph-based security metrics applied to it, we

apply the NCP metric. When storing the values obtained from the NCP we subtract

it from 100% to attain the values used in the R matrix. We also assume that the

connectivity of the hosts in the network is static–that is, hosts are not leaving and

joining autonomously.

Figures 6.1(a) and 6.1(b) correspond to the R matrix and the AG matrix when

first initialized. The attack graphs in the AG matrix correspond to the attack graph

that was initially generated for the network under inspection.

The algorithm finds that countermeasure 1 becomes affordable at $20K. This

finding is depicted in Figure 6.2. The corresponding value is derived from applying

countermeasure 1 to the network such that host E’s vulnerability can no longer be ex-

ploited. The directed edges identify the cells that are responsible for values produced

at the heads of the edges.

Similarly, the algorithm finds that countermeasure 2 becomes affordable at $20K.

This finding is depicted in Figure 6.3. Countermeasure 2 hardens the network such

that the vulnerability at host D can no longer be exploited. Once the countermeasures

are considered for a budget of $40K, the benefit of using countermeasures 1 and 2 is

captured by the matrices.

The final R and AG matrices in Figure 6.4 show the result of evaluating counter-

measures 3 and 4. By examining the AG matrix, we can observe that countermeasure

3 provides benefit equivalent to countermeasure 2. Similarly, countermeasure 4 pro-

vides protection equivalent to countermeasure 1. The optimal attack graph for the

given set of countermeasures can be found in cells (2,4), (2,5), (3,4), (3,5), (4,4), and

(4,5). Algorithm 8 ensures that an optimal attack graph appears in the right-bottom-

most cell.
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(a) Initial R matrix

(b) Initial attack graph matrix

Fig. 6.1.: Initial matrices

6.3.3 Finding All Optimal Countermeasures

In this section, we detail our algorithm for finding all optimal countermeasures.

After detailing this algorithm, we specify the result of applying this algorithm to

Figure 6.4(a).
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(a) The result of applying countermeasure “1” in the R Matrix

(b) The result of applying countermeasure “1” in the AG Matrix

Fig. 6.2.: Matrices after considering countermeasure “1”

Algorithm for Finding All Optimal Countermeasures

Algorithm 9 begins by setting the indices i and j to refer to the right-most-bottom

corner of the R matrix. S is the Stack abstract data type. C is the Collection abstract

data type. Collections may hold multiple lists.

The cell in the right-most-bottom corner of R will be the first cell to be evaluated

once in the while loop (line 6). The first if statement determines whether multiple
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(a) The result of considering applying countermeasures “2” in the

R Matrix

(b) The result of considering applying countermeasure “2” in the

AG Matrix

Fig. 6.3.: Matrices after considering countermeasure “2”

optimal sets exists that can produce Rij. The “matches” relation is to be interpreted

as testing whether the arithmetic difference between its two operand values is equal

to i’s security benefit. When matches produces true, then i is in some optimal list

of countermeasures. If matches is false (or “does not match” is true) then i is not in

some optimal list of countermeasures.
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Algorithm 9 Finding All Optimal Countermeasures Algorithm

Require: R {(n+ 1)× (B + 1) matrix of R values}

1: i← n+ 1

2: j ← B + 1

3: Stack S

4: Collection C

5: S.push(Rij)

6: while i is not equal to 0 do

7: δ ← cost(i)

8: if Rij matches Ri−1δ and Rij does not match Ri−1j then

9: C ′ ← copy(C)

10: C ′.addCountermeasureToAll(i)

11: C.combine(C ′)

12: S.pop()

13: S.push(Ri−1j)

14: S.push(Ri−1δ)

15: else if Rij matches Ri−1δ then

16: C.addCountermeasureToAll(i)

17: S.pop()

18: S.push(Ri−1δ)

19: else if Rij matches Ri−1j then

20: S.pop()

21: S.push(Ri−1j)

22: end if

23: if j equals 0 and i does not equal 0 then

24: S.pop()

25: end if

26: end while

27: return prune(C)
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(a) The R Matrix with all of its values computed

(b) The AG Matrix with all of its graphs computed

Fig. 6.4.: Matrices after considering countermeasures “3” and “4”

When the first if statement in Algorithm 9 is true, two collections are created. One

collection will include countermeasure i in all of its list, and the other collection will

not include countermeasure i in all of its lists. The union of these two lists are obtained

to create a new single collection C. The next cells to be evaluated are pushed onto

the stack after removing the Rij cell. The second if statement (line 15) tests whether

the current countermeasure is apart of all optimal lists. The last else-if statement
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(line 19) tests whether the algorithm should discard the current countermeasure and

advance to the next countermeasure. The addCountermeasureToAll method only

adds a countermeasure i if adding countermeasure i does not exceed the budget. The

method prune removes any lists that are suboptimal (i.e., does not provide maximal

security benefit). When this algorithm is applied to the Figure 6.4(a), all distinct

pairs of two countermeasures is produced. Because this algorithm finds all optimal

countermeasures and there can n choose 2 of them at most, this algorithm is O(n!)

6.4 Optimizing Security for Multiple Metrics

To incorporate multiple metrics in our network hardening approach, we utilize an

Aggregated Objective Function (AOF). The AOF consists of all attack graph-based

security metrics a network administrator may be interested in using. The network

administrator may use any subset of attack graph-based security metrics discussed in

this dissertation. We now provide equations that translate each metric into the same

unit. Once the metrics are in the same unit, a network administrator can weight the

metrics as desired.

6.4.1 Attack Graph-based Security Metric Translation

In this section we translate decision metrics so that they are of the same unit.

We create translations so that larger values correspond to better security. Let G

correspond to an attack graph in the equations below. We append the subscript r to

each metric to signify that it is the translated version of the original security metric.

Shortest Path (SP) Metric Translation

SP (G) produces the shortest path in attack graph G. A shorter attack path

correlates to weaker security. Thus, as SP (G) increases the security of the system

should be improving. These semantics are captured in the equation below.
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SP (G)r = SP (G)
maxLength(G)

maxLength(G) is a function that returns the longest path in attack graph G.

Provided that maxLength(G) is satisfactorily long, SP (G)r can provide a relevant

indicator of the network’s security with respect to the SP (G).

Number of Paths (NP) Metric Translation

NP (G) produces higher values when the security of the network is decreasing.

Thus, the inverse of this value produces the desired effect of a value between 1 and

0, with better security being closer to 1 than 0.

NP (G)r = NP (G)−1

Normalized Mean of Path Lengths (NMPL) Metric Translation

NMPL(G) represents the typical effort an attacker can expend given the number

of attack paths in the network. Thus, to obtain a value on a scale we desire, we

normalize NMPL(G) by the product of the maxLength(G) and NP (G)r.

NMPL(G)r =


NMPL(G)

maxLength(G)×NP (G)r
if NMPL(G) and maxLength(G) 6= 1

0 otherwise

If maxlength(G) is 1 and NMPL(G) is also 1, then a misleading value can be

produced by NMPL(G)r. Thus, we handle this case by inversing the result obtained

from the general case.

Network Compromise Percentage (NCP) Metric Translation

NCP (G) represents the percent of hosts that are compromised in a network. As

this metric increases, the network security of the system decreases. Thus, to translate

this metric, we transform the metric from a percentage to a fraction and subtract it

from 1 to discover the assets that have not been compromised by the attacker.

NCP (G)r = 1− NCP (G)
100
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Weakest Adversary (WA) Metric Translation

WA(G) purports that the security of a network corresponds to the capabilities

required to violate a security policy. Thus, the system is as secure as the weakest

set of attacker capabilities needed to violate a security policy. Assuming the attacker

attributes to be equally weighted, the translation for this metric is given below.

WA(G)r = C
M

C corresponds the weakest set of attacker capabilities required to violate a security

policy. M corresponds the total attacker capabilities considered during attack graph

generation. Thus, under this interpretation, the more capabilities that an attacker

requires to violate a network’s security policy, the better the network’s security is

with respect to WA(G)r.

Attack Resistance (AR) Metric Translation

AR(G) produces higher values when network security improves and lower values

when the network security degrades. Thus, to translate this metric, we subtract the

inverse of AR(G) from 1. The equation for the translation is given below.

AR(G)r = 1− AR(G)−1

K-step Capability Accumulation Metric Translation

The K-step Capability Accumulation metric states that if an attacker can accu-

mulate more capabilities in a network in a few steps, then the security of the network

is poor. However, if the attacker requires more steps to obtain the same number of

capabilities then the associated network is stronger than the aforementioned network.

Thus, we are interested in identifying what percentage of capabilities the attacker is

unable to attain. This notion is captured in the translation below.

KCA(G)r = 1− C
M

, where C corresponds to the capabilities that the attacker can

obtain, and M corresponds to the total number of capabilities in the network.
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6.4.2 The Aggregated Objective Function

The objective function may include use any subset of decision metrics the network

administrator deems useful for the evaluation. Let f correspond to the aggregated

objective function. Let wi correspond to a weight that the network administrator

associates with a security metric. Then the aggregated objective function is given by

the following equation.

mj = w1SP (Gj−1
l−qj)r + w2NP (Gj−1

l−qj)r + w3NMPL(Gj−1
l−qj)r + w4NCP (Gj−1

l−qj)r +

w5WA(Gj−1
l−qj)r + w6AR(Gj−1

l−qj)r + w7KCA(Gj−1
l−qj)r, where j corresponds to counter-

measure j, and qj corresponds to the cost of implementing countermeasure j.

This AOF may be used within our objective function S(AG, i, δ) in our dynamic

programming approach specified in Algorithm 8.
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7. CONCLUSION AND FUTURE WORK

In this dissertation, we have examined a specific class of security metrics called attack

graph-based security metrics. In describing the derivation of these metrics, we have

identified the limitations of this class of security metrics. We have proposed a set

of attack graph-based security metrics to compliment existing attack graph-based

security metrics. We have provided a categorization scheme for attack graph-based

security metrics that prescribe how these metrics should be applied independently

and in combination in evaluating network security.

We conducted two simulation studies. In our first simulation study, we provided

evidence that supports our classification of attack graph-based security metrics. This

simulation study also provided insights regarding how and when these security met-

rics should be used to evaluate network security. From this simulation study, we

discovered equations for two previously proposed attack graph-based security met-

rics: the Number of Paths metric, and the Mean Path Length metric. Equations for

these security metrics provides another equation for a security metric we propose in

this dissertation: the Normalized Mean Path metric.

In our second simulation study, we evaluated our algorithm for network security

evaluation of two networks using synthetic attack graphs. The simulation showed that

our approach for combining attack graph-based security metrics reaches a decision in

determining the most secure network (i.e., least non-compliant network) between two

networks in most cases. We assert that because our attack graphs were generated

independently of an underlying network, our results hold for any pair of networks

that generate attack graphs where the number of paths in the attack graph greatly

outnumber the attack path lengths.

In stating where attack graph-based security metrics can be applied in an or-

ganization’s security program, this dissertation has removed a barrier to adopting
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these metrics in the practice. Also, in providing the limitations of these security met-

rics, this dissertation provides a guide that will help prevent security analysts from

inappropriately using attack graph-based security metrics.

By providing equations for the Number of Paths metric, Mean Path Length metric,

and subsequently the Normalized Mean Path Length metric, this dissertation has

provided an efficient mechanism for computing these metrics by avoiding traversing

the attack graph to derive these metrics. Such efficient computation of these metrics

can make them viable for real-time monitoring of a network’s security.

Lastly, we have provided an algorithm for network hardening recommendations.

We model and solve the problem of providing network hardening recommendations as

a combinatorial optimization problem. We have also shown how to combine metrics

into an aggregated objective function for solving this optimization problem. With this

approach, an organization can ensure that, with respect to the attack graph-based

security metrics used, it has maximized its security given the budget it has allocated

to hardening its network.

Future work consists of developing a formalized model for applying the attack

graph to individual hosts. There is nothing inherent in attack graphs that make

them exclusively useful for networks. Providing such a model has the important

benefit of making evaluation of attack graph-based security metrics on real systems

easier to accomplish. By assessing a single host, researchers would have the ability to

assess how well different attack graph-based security metrics correspond to security

incidents without putting in the effort to build an entire network.
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