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ABSTRACT

Li, Tiancheng Ph.D., Purdue University, August 2010. RaywRreservation in Data Pub-
lishing and Sharing. Major Professor: Ninghui Li.

In this information age, data and knowledge extracted bg dahing techniques repre-
sent a key asset driving research, innovation, and poliakhng activities. Many agencies
and organizations have recognized the need of accelemiciytrends and are therefore
willing to release the data they collected to other parf@spurposes such as research and
the formulation of public policies. However the data pullion processes are today still
very difficult. Data often contains personally identifiableormation and therefore releas-
ing such data may result in privacy breaches; this is thefoaiske examples of microdata,
e.g., census data and medical data.

This thesis studies how we can publish and share microdatapirvacy-preserving
manner. We present an extensive study of this problem aloeg dimensions: (1) design-
ing a simple, intuitive, and robust privacy model; (2) desng an effective anonymization
technique that works on sparse and high-dimensional datea(3 developing a methodol-

ogy for evaluating privacy and utility tradeoff.



1. INTRODUCTION

In the information age, data are increasingly being calé@nd used. Much of such data
are person specific, containing a record for each individe@d example, microdata [1] are
collected and used by various government agencies (e8.,d&nsus Bureau and Depart-
ment of Motor Vehicles) and by many commercial companias. (@ealth organizations,
insurance companies, and retailers). Other examplesda@arsonal search histories col-
lected by web search engines [2, 3].

Companies and agencies who collect such data often neetlislpand share the data
for research and other purposes. However, such data usumaitgins personal sensitive
information, the disclosure of which may violate the indival’s privacy. Examples of re-
cent attacks include discovering the medical diagnosisefjbvernor of Massachusetts [4],
identifying the search history of an AOL searcher [5], aneadenymizing the movie rat-
ings of500, 000 subscribers of Netflix [6].

In the wake of these well-publicized attacks, privacy habe an important problem
in data publishing and data sharing. This thesis focusewntt publish and share data

in a privacy-preserving mannetr.

1.1 Microdata Publishing

In this thesis, we consider microdata such as census datmedidal data. Typically,
microdata is stored in a table, and each record (row) cooredpto one individual. Each

record has a number of attributes, which can be divided heddllowing three categories:

1. Identifier. Identifiers are attributes that clearly identify indivads. Examples in-

cludeSocial Security NumbemdName



Table 1.1
Microdata Table (Example of Microdata)

Name| Zip-code| Age | Disease
Alice | 47677 |29 | Heart Disease
Bob | 47602 |22 | HeartDisease
Carl | 47678 |27 | HeartDisease
David | 47905 43 | Flu
Eva | 47909 |52 | HeartDisease
Frank | 47906 | 47 | Cancer
Glory | 47605 30 | Heart Disease
Harry | 47673 36 | Cancer
lan 47607 32 | Cancer

2. Quasi-ldentifier. Quasi-identifiers are attributes whose values when tabgether
can potentially identify an individual. Examples includg-code Birthdate and
Gender An adversary may already know the QI values of some indadglin the
data. This knowledge can be either from personal contaatoon bther publicly-
available databases (e.g., a voter registration list)itititide both explicit identifiers

and quasi-identifiers.

3. Sensitive Attribute. Sensitive attributes are attributes whose values shatloaas-

sociated with an individual by the adversary. ExamplesideDiseaseandSalary.

An example of microdata table is shown in Table 1.1. As in npostious work, we as-
sume that each attribute in the microdata is associatedonglof the above three attribute

types and attribute types can be specified by the data pehlish



1.1.1 Information Disclosure Risks

When releasing microdata, it is necessary to prevent tha@tsaninformation of the in-
dividuals from being disclosed. Three types of informatisctlosure have been identified

in the literature [7—9]: membership disclosure, identisctbsure, and attribute disclosure.

Membership Disclosure. When the data to be published is selected from a larger pop-
ulation and the selection criteria are sensitive (e.g.,nygblishing datasets about dia-
betes patients for research purposes), it is importanteegmt an adversary from learning

whether an individual’s record is in the data or not.

Identity Disclosure. Identity disclosure (also calle-identificatior) occurs when an
individual is linked to a particular record in the releasedad Identity disclosure is what
the society views as the most clear form of privacy violatidtihone is able to correctly
identify one individual's record from supposedly anonyedzlata, then people agree that
privacy is violated. In fact, most publicized privacy ata@re due to identity disclosure. In
the case of GIC medical database [4], Sweeney re-identlieedhedical record of the state
governor of Massachusetts. In the case of AOL search dat@hjournalist from New
York Times linked AOL searcher NO. 4417749 to Thelma Arn@d;2-year-old widow
living in Lilourn, GA. And in the case of Netflix prize data, searchers demonstrated
that an adversary with a little bit of knowledge about anwdlial subscriber can easily
identify this subscriber’s record in the data. When idgntiisclosure occurs, we also say

“anonymity” is broken.

Attribute Disclosure.  Attribute disclosure occurs when new information about som
individuals is revealed, i.e., the released data makessgipke to infer the characteristics
of an individual more accurately than it would be possiblfkethe data release. Identity
disclosure often leads to attribute disclosure. Once tisedentity disclosure, an individual

is re-identified and the corresponding sensitive valuegarealed. Attribute disclosure

can occur with or without identity disclosure. It has beerognized that even disclosure
of false attribute information may cause harm [8]. An obsewf the released data may

incorrectly perceive that an individual's sensitive e takes a particular value, and



behave accordingly based on the perception. This can hanmthividual, even if the
perception is incorrect.

In some scenarios, the adversary is assumed to know who isvhads not in the
data, i.e., the membership information of individuals ie thata. The adversary tries to
learn additional sensitive information about the indiatiu In these scenarios, our main
focus is to provide identity disclosure protection andiladiie disclosure protection. In
other scenarios where membership information is assumegel toknown to the adversary,
membership disclosure should be prevented. Protectiansigaembership disclosure also
help protect against identity disclosure and attributeldgure: itis in general hard to learn
sensitive information about an individual if you don’t edamow whether this individual’s

record is in the data or not.

1.1.2 Data Anonymization

While the released data gives useful information to re$esis; it presents disclosure
risk to the individuals whose data are in the data. Therefawe objective is to limit the
disclosure risk to an acceptable level while maximizing bleeefit. This is achieved by
anonymizing the data before release. The first step of anayion is to remove explicit
identifiers. However, this is not enough, as an adversary atr@ady know the quasi-
identifier values of some individuals in the table. This kiexlge can be either from per-
sonal knowledge (e.g., knowing a particular individual argon), or from other publicly-
available databases (e.g., a voter registration list)ittthtide both explicit identifiers and
quasi-identifiers. Privacy attacks that use quasi-idensifto re-identify an individual's
record from the data is also callegtidentification attacks

To prevent re-identification attacks, further anonymuais required. A common ap-
proach is generalization, which replaces quasi-identf&ues with values that are less-
specific but semantically consistent. For example, Zgean be generalized to an age
interval [20 — 29]. As a result, more records will have the same set of quasitifir

values. We define @I groupto be a set of records that have the same values for the quasi-



identifiers. In other words, a QI group consists of a set abreés that are indistinguishable
from each other from their quasi-identifiers. In the literat a QI group is also called an

“anonymity group” or an “equivalence class”.

1.2 Anonymization Framework

This section gives an overview of the problems studied i tthésis. (1) Privacy mod-
els: what should be the right privacy requirement for datalipbing? (2) Anonymization
methods: how can we anonymize the data to satisfy the prikegqyirement? (3) Data

utility measures: how can we measure the utility of the anumgd data?

1.2.1 Privacy Models

A number of privacy models have been proposed in the litezaiocludingt-anonymity

and/-diversity.

k-Anonymity. Samarati and Sweeney [1, 4, 10] introdu¢éednonymityas the property
that each record is indistinguishable with at lelslt other records with respect to the
guasi-identifier. In other wordg;-anonymity requires that each QI group contains at least
k records. For example, Table 1.3 is an anonymized versidmeodtiginal microdata table
in Table 1.2. And Table 1.3 satisfidsanonymity.

The protectiork-anonymity provides is simple and easy to understand. Ibke tsatis-
fiesk-anonymity for some valuk, then anyone who knows only the quasi-identifier values
of one individual cannot identify the record correspondiaghat individual with confi-

dence grater thanh/k.

¢-Diversity. While k-anonymity protects against identity disclosure, it doesprovide
sufficient protection against attribute disclosure. Ttdas been recognized by several au-
thors, e.g., [11-13]. Two attacks were identified in [11]e ttomogeneity attack and the

background knowledge attack.



Table 1.2
Original Table (Example of-Anonymity)

ZIP Code| Age | Disease

1| 47677 29 | Heart Disease

2 | 47602 22 | Heart Disease

3147678 27 | Heart Disease

4 | 47905 43 | Flu

5147909 52 | Heart Disease

6 | 47906 47 Cancer

7 | 47605 30 | Heart Disease

81| 47673 36 Cancer

9| 47607 32 Cancer

Example 1.2.1 Consider the original patients table in Table 1.2 and the@gmous table
in Table 1.3. Thdiseaseattribute is sensitive. Suppose Alice knows that Bob is g&ar
old man living in ZIP 47678 and Bob’s record is in the tableorfarTable 1.3, Alice can
conclude that Bob corresponds to one of the first three recamt thus must have heart
disease. This is the homogeneity attack. For an exampleeobdalckground knowledge
attack, suppose that, by knowing Carl's age and zip codeseAdan conclude that Carl
corresponds to a record in the last QI group in Table 1.3.Heamore, suppose that Alice
knows that Carl has very low risk for heart disease. This pemknd knowledge enables

Alice to conclude that Carl most likely has cancer.

To address these limitations éfanonymity, alternative approaches have been pro-

posed. These include discernibility [1L4Hdiversity [11].



Table 1.3

A 3-Anonymous Table (Example @tAnonymity)

1Y

1Y

1Y

ZIP Code| Age | Disease
1| 476** 2* Heart Disease
2| 476* 2* Heart Disease
3| 476** 2* Heart Disease
4 | 4790* > 40 | Flu
5 | 4790* > 40 | Heart Disease
6 | 4790* > 40 | Cancer
7 | 476* 3* Heart Disease
8 | 476** 3* Cancer
9| 476** 3* Cancer

Definition 1.2.1 (The/-diversity Principle) A QI group is said to havé-diversity if there

are at least/ “well-represented” values for the sensitive attribute. abte is said to have

(-diversity if every QI group of the table hésliversity.

A number of interpretations of the term “well-representad® given [11]:

1. Distinct /-diversity. The simplest understanding of “well represented” woulddoe
ensure there are at ledstlistinctvalues for the sensitive attribute in each QI group.
Distinct /-diversity does not prevent probabilistic inference &sad QI group may
have one value appear much more frequently than other vanabling an adversary
to conclude that an entity in the QI group is very likely to bahat value. This

motivated the development of the following stronger natioh/-diversity.

2. Probabilistic ¢-diversity. An anonymized table satisfies probabilistidiversity if
the frequency of a sensitive value in each group is at mo&tThis guarantees that

an observer cannot infer the sensitive value of an indiidith probability greater

than1/¢.



3. Entropy /-diversity. The entropy of an QI group’ is defined to be

Entropy(E) = — Zp(E, s)logp(E, s)

ses
in which S is the domain of the sensitive attribute, apd”, s) is the fraction of

records inE that have sensitive value

A table is said to have entrogldiversity if for every QI groupt, Entropy(E) >

log ¢. Entropy/-diversity is strong than distin¢tdiversity. As pointed out in [11],

in order to have entropgdiversity for each QI group, the entropy of the entire table
must be at leaslbg(¢). Sometimes this may too restrictive, as the entropy of the
entire table may be low if a few values are very common. Ttads$eo the following

less conservative notion éfdiversity.

4. Recursive (¢, ¢)-diversity. Recursive(c, ¢)-diversity makes sure that the most fre-
guent value does not appear too frequently, and the lessdnegalues do not appear
too rarely. Letmn be the number of values in a QI group, andl < i < m be the
number of times that thé" most frequent sensitive value appears in a QI grBup
ThenF is said to have recursive, ¢)-diversity if ry < c(r;+r1+...+7,). Atable
is said to have recursive, ¢)-diversity if all of its equivalence classes have recursive

(¢, 0)-diversity.

There are a few variants of tiiediversity model, including-sensitive:-anonymity [12]
and(«, k)-Anonymity [15].

1.2.2 Anonymization Methods

In this section, we study several popular anonymizatiorhods (also known as recod-
ing techniques).
Generalization and Suppression. In their seminal work, Samarati and Sweeney pro-
posed to use generalization and suppression [1, 4, G&neralizationreplaces a value
with a “less-specific but semantically consistent” valuepl€ suppression removes an en-

tire record from the table. Unlike traditional privacy peotion techniques such as data



Workclass

Government Private  Self-employed Unemployed

State-gov Local-gov Federal-gov Private Inc NotInc  Without Pay Never worked

Fig. 1.1. A VGH for AttributeWork-ClasgExample of VGH)

swapping and adding noise, information irk@nonymized table through generalization
and suppression remains truthful. For example, througlergdéimation, Table 1.3 is an
anonymized version of the original microdata table in Teh® And Table 1.3 satisfies
3-anonymity.

Typically, generalization utilizes a value generalizatlaerarchy (VGH) for each at-
tribute. In a VGH, leaf nodes correspond to actual attribustieles, and internal nodes
represent less-specific values. Figure 1.1 shows a VGH &wtiik-classattribute. Gen-
eralization schemes can be defined based on the VGH thafyspegv the data will be
generalized.

A number of generalization schemes have been proposed litgreure. They can
be put into three categories: global recoding, regionabdatwy, and local recoding. In
global recoding, values are generalized to the same levilleohierarchy. One effective
search algorithm for global recoding is Incognito, due t&][Regional recoding [17, 18]
allows different values of an attribute to be generalizeditierent levels. Given the VGH
in Figure 1.1, one can generali¥éithout Payand Never Workedo Unemployedwhile
not generalizingState-goy Local-goy or Federal-gov [17] uses genetic algorithms to
perform a heuristic search in the solution space and [18]egpa kd-tree approach to find
the anonymization solution. Local recoding [19] allows Hane value to be generalized
to different values in different records. For example, saggowe have three records having
valueState-goythis value can be generalizedWorkclasdor the first recordGovernment

for the second record, rema8tate-govor the third record. Local recoding usually results
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Table 1.4
Original Table (Example of Bucketization)

ZIP Code| Age | Sex Disease

1| 47677 | 29 | F | Ovarian Cance
2| 47602 | 22 | F | Ovarian Cance
3| 47678 | 27 | M | Prostate Cancer
41 47905 | 43 | M Flu

5| 47909 | 52 | F | Heart Disease
6| 47906 | 47 | M | Heart Disease
7| 47605 | 30 | M | Heart Disease
8| 47673 | 36 | M Flu

9| 47607 32 | M Flu

in less information loss, but it is more expensive to find tipgiroal solution due to a

potentially much larger solution space.

Bucketization. Another anonymization method is bucketization (also kneasanatomy
or permutation-based anonymizat)i20, 21]. The bucketization method first partitions
tuples in the table into buckets and then separates the-mleaifiers with the sensi-
tive attribute by randomly permuting the sensitive attrgbualues in each bucket. The
anonymized data consists of a set of buckets with permutesitae attribute values.

For example, the original table shown in Table 1.4 is decaaganto two tables, the
guasi-identifier table (QIT) in Table 1.5(a) and the sewsitable (ST) in Table 1.5(b). The
QIT table and the ST table are then released.

The main difference between generalization and buckatizéies in that bucketization
does not generalize the QI attributes. When the adversayw&mwho are in the table and
their QI attribute values, the two anonymization techngjoecome equivalent.

While bucketization allows more effective data analysi, 21], it does not prevent

the disclosure of individuals’ membership in the datageis $hown that knowing that an
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Table 1.5
A 3-Anonymous Table (Example of Bucketization)

(a) The quasi-identifier table (QIT) (b) The sensitive tald&)
ZIP Code| Age | Sex| Group-ID

1| 47677 29 F 1

2| 47602 29 E 1 Group-ID Disease Count
3| 47678 | 27 | M 1 1 Ovarian Cancer 2
4| 47905 43 | M 2 1 Prostate Cancer 1
5| 47909 | 52 | F 2 2 Flu 1
6| 47906 | 47 | M 2 2 Heart Disease| 2
71 47605 | 30 | M 3 3 Heart Disease| 1
8| 47673 | 36 | M 3 3 Flu 2
9| 47607 | 32 | M 3

individual is in the dataset also poses privacy risks [9}ther studies on the bucketization
method also reveal its limitations. For example, the buz&&bn algorithm [20] is shown

to be particularly vulnerable to background knowledgeckid22].

1.2.3 Data Utility Measures

We can trivially anonymize the data by removing all quasintifiers. This provides
maximum privacy and the data becomes useless. The onlyréapoblish and share data
is to allow research and analysis on the data. It is impotanteasure the utility of the

anonymized data. There are two general approaches to reedesarutility.

General Utility Measure. The first approach measures utility based on properties of
the data. This includeBiscernibility Metric (DM) [23] and Global Certainty Penalty
(GCP)[19]. Other general utility measures inclu@eneralization Heighf10, 16], Classi-
fication Metric[17, 23], andKL-divergencq?24].
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Suppose that the anonymized tabbtecontains- partitionsP;,P,...,P,, the discernibil-

ity metric is computed as:
DM(T*) = |P[?
=1

And the GCP measure is computed as:

GCP(T*) = Z [Pl x NCP(F)

=1
The Normalized Certainty Penaltyy(C' P) measures the information loss for a single par-

tition, which is defined as:

d
NCP(P;,) =) w; x NCPy,(P,)

j=1
wherew; is the weight for attributed; (all w;’s are set to 1 in the experiments). Afis a

numerical attribute,

p; B

NCPA(P,) =

max, — mingy
where the numerator and denominator represent the rangasribfite A in partition P,
and the entire table, respectively. And4fis a categorical attributéy C' P4 (P;) is defined
with respect to the taxonomy tree of attribute

0 if card(u) =1

NCPs(P) =

card(u)/|A| otherwise

whereuw is the lowest common ancestor of allvalues inP;, card(u) is the number of

leaves in the subtree af and|A| is the total number of leaves.

Workload Performance. The second approach is to measure utility in terms of perfor-
mances in data mining and data analysis tasks, such as atgeagery answering. For
aggregate query answering, we consider the “COUNT” opevabere the query predicate
involves the sensitive attribute [20,22]. It is also pokstb compute other aggregate query
operators such as “MAX” and “AVERAGE” on numerical attrilest[21]. Specifically, the

gueries that we consider are of the form:
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SELECT COUNT(*) FROM Tabl e
WHERE v;, € Vi, AND ... v;, € Vi, AND s € V,

wherev;, (1 < j < dim) is the quasi-identifier value for attributg , V;, C D;, where
D;, is the domain for attributelz-j, s is the sensitive attribute value ahgl C D, whereD,
is the domain for the sensitive attribute

A query predicate is characterized by two parameters: glptadicate dimensiodim
and (2) the query selectivityel. The predicate dimensiafim indicates the number of
guasi-identifiers involved in the predicate. The querydeliy sel indicates the number
of values in eactV;,, (1 < j < dim). Specifically, the size o¥;,, (1 < j < dim) is
randomly chosen from0, 1, ..., sel * |D;,|}. For each selected parameter, we generate a
set of NV queries for the experiments.

For each query, we run the query on the original table and lbeyanized table. We
denote the actual count from the original tableiascount. We denote the reconstructed
count from the anonymized table=as:_count. Then the average relative error is computed

over all queries as:

. ﬁ Z [rec_count, — act_count,| 100

= act_conf,

where() is the set of queries generated based on the two paraméterandsel. Smaller
errors indicate higher utility of the data.

Other than aggregate query answering, classification [A8]association rule min-
ing [22] have also been used in workload evaluations for datanymization. In all ex-
periments of this thesis, we use aggregate query answesitigeadefault workload task.
In some experiments, we also use classification (Chaptendiaasociation rule mining
(Chapter 3).
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1.3 Thesis Contributions and Organization

This thesis studies how we can publish and share data in aggrppreserving manner.

We present an extensive study of this problem along theviaig three dimensions.

How to design a simple, intuitive, and robust privacy model? One major challenge in
privacy-preserving data publishing is to define privacyhairst place. The privacy model
should be simple (easy to use), intuitive (easy to unded$t@md robust (effective against
powerful adversaries). In Chapter 2, we develop a simplergndive privacy model called
t-closeness and a more flexible privacy model calted)-closeness. Bottcloseness and
(n,t)-closeness are general privacy models in that they are hoist@against powerful
adversaries with background knowledge. The major chadldigs in how to model the
adversary’s background knowledge. In Chapter 3, we prabennjector framework, the
first approach to modeling and integrating background kedgté. We demonstrate how to
use Injector to design a robust privacy model that defendsagadversaries with various

amounts of background knowledge.

How to design an effective anonymization method that works o sparse and high-
dimensional data? Existing anonymization methods either fail on high-dimenal
data or do not provide sufficient privacy protection. In Cleapt, we present a new
anonymization method called slicing. A major advantageliofrg is that it works on
high-dimensional data. We also demonstrate how slicingocavide both attribute disclo-

sure protection and membership disclosure protection.

How to develop a methodology for evaluating privacy and utity tradeoff? Anonymiza-
tion provides some privacy protection while losing theitytibf the data. Trivial anonymiza-
tion that removes all data provides maximum privacy but flgyrvhile releasing the orig-
inal data provides maximum utility but no privacy. As thealptiblisher hopes to achieve
the desired balance between privacy and utility, it is intgatrto study their tradeoff in
anonymization. In Chapter 5, we illustrate the misconaeithat the research commu-

nity has on privacy and utility tradeoff. We identify threaportant characteristics about
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privacy and utility and present our evaluation framewonkgnalyzing privacy and utility
tradeoff in privacy preserving data publishing.
Finally, in Chapter 6, we review related work on privacy @reation in data publishing,

data sharing, and data mining; and in Chapter 7, we presemheary of this thesis.
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2. CLOSENESS: A NEW PRIVACY MODEL

One problem with/-diversity is that it is limited in its assumption of advetisaknowl-
edge. As we shall explain below, it is possible for an advgrsagain information about
a sensitive attribute as long as she has information abeuglttbal distribution of this
attribute. This assumption generalizes the specific backgt and homogeneity attacks
used to motivaté-diversity. Another problem with privacy-preserving meds in general
is that they effectively assume all attributes to be categbrthe adversary either does or
does not learn something sensitive. Of course, especidhyrmmerical attributes, being
close to the value is often good enough.

In this chapter, we propose a novel privacy notion calledsehess”. We first formalize
the idea of global background knowledge and propose the rhaslelt-closeness which
requires that the distribution of a sensitive attributery &1 group is close to the distri-
bution of the attribute in the overall table (i.e., the dimsta between the two distributions
should be no more than a threshe)d This effectively limits the amount of individual-
specific information an observer can learn. However, arnyarsabn data utility shows that
t-closeness substantially limits the amount of useful imfation that can be extracted from
the released data. Based on the analysis, we propose a manéeff@ivacy model called
(n, t)-closeness, which requires the distribution in any QI grisugose to the distribution
in a large-enough QI group (contains at leastecords) with respect to the sensitive at-
tribute. This limits the amount of sensitive informatioroabindividuals while preserves
features and patterns about large groups. Our analysissshewyn, ¢)-closeness achieves
a better balance between privacy and utility than existingpy models such asdiversity

andt-closeness.
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2.1 Limitations of ¢-Diversity

While the ¢-diversity principle represents an important step beybrahonymity in

protecting against attribute disclosure, it has sevem@tsbmings that we now discuss.

(-diversity may be difficult and unnecessary to achieve.

Example 2.1.1 Suppose that the original data has only one sensitive aittribthe test
result for a particular virus. It takes two values: positared negative. Further suppose
that there ar@0000 records, wittP9% of them being negative, and onl{; being positive.
Then the two values have very different degrees of sertsiti@ne would not mind being
known to be tested negative, because then one is the samé&wasf3Be population, but
one would not want to be known/considered to be tested pesitn this case?-diversity

is unnecessary for a QI group that contains only recordsatetegative. In order to
have a distincR-diverse table, there can be at mago00 x 1% = 100 QI groups and
the information loss would be large. Also observe that beedhe entropy of the sensitive
attribute in the overall table is very small, if one uses @pyr/-diversity,/ must be set to a

small value.

(-diversity is insufficient to prevent attribute disclosure. Below we present two attacks

on /-diversity.

Skewness AttackRiVhen the overall distribution is skewed, satisfyifigiversity does
not prevent attribute disclosure. Consider again Examplel2 Suppose that one QI
group has an equal number of positive records and negatheed® It satisfies distinct
2-diversity, entropy2-diversity, and any recursivg;, 2)-diversity requirement that can be
imposed. However, this presents a serious privacy rislaumeeanyone in the class would
be considered to have 50% possibility of being positive,@spared with the 1% of the
overall population.

Now consider a QI group that has 49 positive records and omgdative record. It
would be distinc2-diverse and has higher entropy than the overall table (ansidatisfies
any Entropy/-diversity that one can impose), even though anyone in therip would

be considered 98% positive, rather than 1% percent. IntlastQI group has exactly the
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Table 2.1
Original Table (Example of-Diversity)

ZIP Code| Age | Salary| Disease

47677 29 | 3K gastric ulcer
47602 22 | 4K gastritis
47678 27 | 5K stomach cancer
47905 43 | 6K gastritis
47909 52 | 11K | flu

47906 47 | 8K bronchitis
47605 30 | 7K bronchitis
47673 36 | 9K pneumonia
47607 32 | 10K | stomach cancer

Ol N OB~ W | DN|PF

Table 2.2
A 3-Diverse Table (Example @tDiversity)

ZIP Code| Age | Salary| Disease

476** 2* 3K gastric ulcer
476** 2* 4K gastritis
476** 2* 5K stomach cancer
4790* > 40 | 6K gastritis
4790* >40 | 11K | flu

4790* > 40 | 8K bronchitis
476** 3* 7K bronchitis
476** 3* 9K pneumonia

476** 3* 10K stomach cancer

© © N[O U B,y N R

same diversity as a class that Hagositive andi9 negative records, even though the two

classes present very differen levels of privacy risks.
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Similarity Attack: When the sensitive attribute values in a QI group are distit
semantically similar, an adversary can learn importamrimation. Consider the following

example.

Example 2.1.2 Table 2.1 is the original table, and Table 2.2 shows an an@gghversion
satisfying distinct and entrop3-diversity. There are two sensitive attribut&zalaryand
Disease Suppose one knows that Bob'’s record corresponds to one &@fshthree records,
then one knows that Bob’s salary is in the range [3K-5K] andio&er that Bob’s salary
is relatively low. This attack applies not only to numeritriutes like “Salary”, but also
to categorical attributes like “Disease”. Knowing that Bolkecord belongs to the first QI
group enables one to conclude that Bob has some stomactber@iaoblems, because all

three diseases in the class are stomach-related.

This leakage of sensitive information occurs because whilersity requirement en-
sures “diversity” of sensitive values in each group, it doestake into account the seman-

tical closeness of these values.

Summary In short, distributions that have the same level of divgmsialy provide very
different levels of privacy, because there are semantitiogiships among the attribute val-
ues, because different values have very different levetepsitivity, and because privacy

is also affected by the relationship with the overall disition.

2.2 Closeness: A New Privacy Model

Intuitively, privacy is measured by the information gainaof observer. Before seeing
the released table, the observer has some prior belief #imsénsitive attribute value of an
individual. After seeing the released table, the obserasrahposterior belief. Information
gain can be represented as the difference between theiposieief and the prior belief.
The novelty of our approach is that we separate the infoomagain into two parts: that

about the population in the released data and that aboufispedividuals.
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2.2.1 t-Closeness: The Base Model

To motivate our approach, let us perform the following thaugxperiment: First an
observer has some prior beliéf, about an individual’'s sensitive attribute. Then, in a
hypothetical step, the observer is given a completely ggized version of the data table
where all attributes in a quasi-identifier are removed (quivalently, generalized to the
most general values). The observer's belief is influencedbyhe distribution of the
sensitive attribute values in the whole table, and charmbsltef B,. Finally, the observer
is given the released table. By knowing the quasi-identifedues of the individual, the
observer is able to identify the QI group that the individsia¢écord is in, and learn the
distribution P of sensitive attribute values in this class. The obsenlelgef changes to
Bs.

The ¢-diversity requirement is motivated by limiting the diféerce betweerB, and
B, (although it does so only indirectly, by requiring tHathas a level of diversity). We
choose to limit the difference betwedsn and B,. In other words, we assume th@,
the distribution of the sensitive attribute in the overadpplation in the table, is public
information. We do not limit the observer’s information gabout the population as a
whole, but limit the extent to which the observer can learditohal information about
specific individuals.

To justify our assumption tha® should be treated as public information, we observe
that with generalizations, the most one can do is to gerzerali quasi-identifier attributes
to the most general value. Thus as long as a version of thasltide released, a distri-
bution Q will be released. We also argue that if one wants to release the table at all, one
intends to release the distributi@) and this distribution is what makes data in this table
useful. In other words, one wan€ to be public information. A large change fromy
to B; means that the data table contains a lot of new informatigp, #he new data table

corrects some widely held belief that was wrong. In someesehe larger the difference

INote that even with suppression, a distribution will sti# beleased. This distribution may be slightly
different from the distribution with no record suppresseadlvever, from our point of view, we only need to
consider the released distribution and the distance abihfthe ones in the QI groups.
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betweenB, and B is, the more valuable the data is. Since the knowledge gaiveles 3,
andB; is about the population the dataset is about, we do not Ihigtgain.

We limit the gain fromB; to B, by limiting the distance betwedn andQ. Intuitively,
if P = Q, thenB; andB, should be the same. B andQ are close, thei®, and B, should

be close as well, even B, may be very different from botl; and Bs.

Definition 2.2.1 (Thet-closeness Principle)A QI group is said to have-closeness if the
distance between the distribution of a sensitive attribntehis class and the distribution
of the attribute in the whole table is no more than a threshold\ table is said to have

t-closeness if all QI groups havecloseness.

Requiring thatP andQ to be close would substantially limit the amount of useful in
formation that is released to the researchers. It might fiiewdt to assess a correlation
between a sensitive attribute (e.g., disease) and someidaasfier attributes (e.qg., zip-
code) because by construction, partitions are selectedetept such correlations from
being revealed. For example, suppose that people livingdar@in community have an
alarmingly higher rate of a certain disease due to healkfaitors in the community, and
the distance between the distribution in this community @ad in the overall population
with respect to the sensitive attribute is greater thaihen requiringt-closeness would
result in records of this community be grouped with otheords to make the distribution
close to the overall distribution. This greatly reducesutilty of the data, as it hides the
very information one wants to discover. This motivates(the )-closeness model that will

be discussed in the rest of this section.

2.2.2 (n,t)-Closeness: A More Flexible Privacy Model

We first illustrate that-closeness limits the release of useful information thiotige

following example.

Example 2.2.1 Table 2.3 is the original data table containirsg00 individuals, and Ta-

ble 2.4 is an anonymized version of it. TDBeseaseattribute is sensitive and there is a



Table 2.3
Original Table (Example of-Closeness Limitations)

ZIP Code| Age | Disease Count

1 | 47673 29 Cancer | 100

2 | 47674 21 | Flu 100

3 | 47605 25 Cancer | 200

4 | 47602 23 | Flu 200

5 | 47905 43 Cancer | 100

6 | 47904 48 | Flu 900

7 | 47906 47 Cancer | 100

8 | 47907 41 | Flu 900

9 | 47603 34 Cancer | 100

10| 47605 30 | Flu 100

11| 47602 36 Cancer | 100

12 | 47607 32 | Flu 100
Table 2.4
An Anonymous Table (Example #fCloseness Limitations)
ZIP Code| Age | Disease Count
1| 476** 2* | Cancer | 300
2| 476 2* Flu 300
3| 479** 4* | Cancer | 200
4| 479** 4* Flu 1800
5| 476** 3* | Cancer | 200
6 | 476** 3* | Flu 200
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column calledCountthat indicates the number of individuals. The probabilifycancer
among the population in the dataseti% = 0.23 while the probability of cancer among
individuals in the first QI group is as high a% = 0.5. Since0.5 — 0.23 > 0.1 (we will
show how to compute the distance in Section 2.3), the anaegniable does not satisfy

0.1-closeness.

To achievel.1-closeness, all tuples in Table 2.3 have to be generalizedairsingle
QI group. This results in substantial information loss. H axamine the original data in
Table 2.3, we can discover that the probability of cancerragmeople living in zipcode
476** is as high as% = 0.5 while the probability of cancer among people living in
zipcode 479** is only2%. — (.1. The important fact that people living in zipcode 476**

2000
have a much higher rate of cancer will be hiddet. i-closeness is enforced.

Let us revisit the rationale of thiecloseness principle: while we want to prevent an
adversary from learning sensitive information about dpeaidividuals, we allow a re-
searcher to learn information about a large population. fFtleseness principle defines
the large population to be the whole table; however, it da¢dave to be so. In the above
example, while it is reasonable to assume that the disioibaif the whole table is public
knowledge, one may argue that the distribution of the seesattribute among individuals
living in zipcode 476** should also be public informatiomse the number of individu-
als living in zipcode 476** (which is 1000) is large. This t=aus to the following more

flexible definition.

Definition 2.2.2 (The(n, t)-closeness Principle)A QI group E; is said to have(n,t)-
closeness if there exists a 96t of records that is a natural superset &% such thatF,
contains at least records, and the distance between the two distributione@tensitive
attribute in £, and E; is no more than a threshold A table is said to havén, t)-closeness

if all QI groups have(n, t)-closeness.

The intuition is that it is okay to learn information about@pplation of a large-enough

size (at least:). One key term in the above definition is “natural supersethi¢h is
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similar to the reference class used in [26]). Assume that aetuo achieveé1000,0.1)-
closeness for the above example. The first QI grélyps defined by (zipcode="476**",
20 <Age< 29) and contain$00 tuples. One QI group that naturally contains it would be
the one defined by (zipcode="476**20 <Age< 39). Another such QI group would be
the one defined by (zipcode="47***20 <Age< 29). If both of the two large QI groups
contain at least000 records, andv;’s distribution is close to (i.e., the distance is at most
0.1) either of the two large QI groups, théh satisfieg1000, 0.1)-closeness.

In the above definition of thén, ¢)-closeness principle, the parametedefines the
breadth of the observer’'s background knowledge. A smallareans that the observer
knows the sensitive information about a smaller group obrés. The parameterounds
the amount of sensitive information that the observer cdrfrgen the released table. A
smallert implies a stronger privacy requirement.

In fact, Table 2.4 satisfied000, 0.1)-closeness. The second QI group satisfi€¥)0,
0.1)-closeness because it conta2t®)0 > 1000 individuals and thus meets the privacy
requirement (by setting the large group to be itself). Tret ind the third QI groups also
satisfy (1000, 0.1)-closeness because both have the same distribution (thiéoafin is
(0.5,0.5)) as the large group which is the union of these two QI groupitiaa large group
containsl000 individuals.

Choosing the parametersandt would affect the level of privacy and utility. The larger
n is and the smallet is, one achieves more privacy, and less utility. By usingcsjoe
parameters fon andt, we are able to show the relationships betwgent)-closeness with

existing privacy models such @asanonymity and-closeness.

Observation 2.2.1 When one sets to the size of the whole table, thén, ¢)-closeness

becomes equivalent tecloseness.

When one sets = 0, (n,0)-closeness can be viewed as a slightly weaker version of

requiringk-anonymity withk set ton.

Observation 2.2.2 A table satisfying:-anonymity also satisfie8:, 0)-closeness. How-

ever, the reverse may not be true.
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The reverse may not be true because, to satisf§)-closeness, one is allowed to break
up a QI groupFE of sizen into smaller QI groups if these small classes have the same
distribution ask.

Finally, there is another natural definition f, ¢)-closeness, which requires the dis-
tribution of the sensitive attribute in each QI group to besel to that of all its supersets
of sizes at least. We point out that this requirement may be too strong to aehand
may not be necessary. Consider a QI group €Age< 60, Sex="Male”) and two of its
supersetsy) <Age< 60) and (Sex="Male”), where the sensitive attribute is “Disea
Suppose that the Age attribute is closely correlated withDisease attribute but Sex is
not. The two supersets may have very different distrib@tioith respect to the sensitive
attribute: the superset (Sex="Male”) has a distributiarsel to the overall distribution but
the supersets() <Age< 60) has a very different distribution. In this case, requirthg
distribution of the QI group to be close to both supersets nmye achievable. Moreover,
since the Age attribute is highly correlated with the Digeattribute, requiring the distri-
bution of the QI groupf0 <Age< 60, Sex="Male”) to be close to that of the superset

(Sex="Male”) would hide the correlations between Age anddase.

2.2.3 Utility Analysis

In this section, we analyze the utility aspect of differentg@gcy measurements. Our
analysis shows thdt, t)-closeness achieves a better balance between privacy iibd ut
than other privacy models such @diversity and:-closeness.

Intuitively, utility is measured by the information gain@li the sensitive attribute of
a group of individuals. To study the sensitive attributeuesl of a group of individual&’,
one examines the anonymized data and classifies the QI ginutiopthree categories: (1)
all tuples in the QI group are &, (2) no tuples in the QI group are i, and (3) some
tuples in the QI group are i¥ and some tuples are not. Query inaccuracies occur only
when evaluating tuples in QI groups of category (3). Thatutdf the anonymized data

is measured by the average accuracy of any arbitrary quethyeadensitive attribute of a
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group of individuals. Any QI group can fall into category (8) some queries. A QI group
does not have any information loss when all sensitive afteivalues in that QI group are
the same. Intuitively, information loss of a QI group can beasured by the entropy of the
sensitive attribute values in the QI group.

Formally, letT" be the original dataset ande,, Es, ..., £,} be the anonymized data
whereE;(1 < i < p) is a QI group. LetH (T") denote the entropy of sensitive attribute
values inT" and H (E;) denote the entropy of sensitive attribute value&jal < i < p).

The total information loss of the anonymized data is meabkase

IL(Fy, B = 3 ‘g“H(Ei)

1<i<p

while the utility of the anonymized data is defined as

U(E,...,E,) = H(T) — IL(Ey, ..., E,)

(-diversity  ¢-diversity requires that each QI group contains at |édstell-represented”
values for the sensitive attribute. This is in contrast todbove definition of utility where
the homogeneous distribution of the sensitive attribués@rves the most amount of data
utility. In particular, the above definition of utility is extly the opposite of the definition
of entropy/-diversity, which requires the entropy of the sensitiveiladite values in each
QI group to be at leadtg ¢. Enforcing entropy-diversity would require the information
loss of each QI group to be at leadsg ¢. Also, as illustrated in [27]/-diversity is neither

necessary nor sufficient to protect against attribute osscke.

t-Closeness We show that-closeness substantially limits the amount of useful imf@+
tion that the released table preservesloseness requires that the distribution of the sensi-
tive attribute in each QI group to be close to the distributbthe sensitive attribute in the
whole table. Therefore, enforcingcloseness would require the information loss of each QI
group to be close to the entropy of the sensitive attributigegin the whole table. In partic-

ular, a0-close table does not reveal any useful information at alltae utility of this table
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is computed a8 (Ey, ..., E,) = H(T) =3, 'FLH(E) = H(T)=Y, o, 'HH(T) =
0. Note that in &-close table H (E;) = H(T) for any QI groupE;(1 < i < p).

(n,t)-closeness The (n,t)-closeness model allows better data utility thacloseness.
Given an anonymized tableZ,, ..., E,} where each¥;(1 < i < p) is a QI group and an-
other anonymized tablg, ..., G} where eaclt?; (1 < j < d) is the union of a set of QI
groups in{ E4, ..., £,} and contains at leastrecords. The anonymized tabl&,, ..., E,}

satisfies thén, t)-closeness requirement if the distribution of the sensiittribute in each
E;(1 <i < p)is close to that inG; containingZ;. By the above definition of data utility,

the utility of the anonymized tablgF,, ..., £,} is computed as:

U(Ey, ... E, Z ‘E‘

1<z<p

=H(T)~ ) I|T| - IGI - |E|

1<j<d 1<]<d 1<7,<p

=U(G1,...Ga)+ Y %'H(Gj)— > |?|H<Ei)

1<5<d 7] 1<i<p 7|
We are thus able to separate the utility of the anonymizelé falo two parts: (1) the
first partU (G, ..., G,) is the sensitive information about the large grodgs, ..., G4} and
(2) the second paiX_, ;. "(;I'H( i) — Zl<2<p IT\ H(E;) is further sensitive information
about smaller groups. By requiring the distribution of teastive attribute in each’; to
be close to that in the correspondifg containingE;, the (n, t)-closeness principle only
limits the second part of the utility function and does natitithe first part. In fact, we

should preserve as much information as possible for theplnst

2.2.4 Anonymization Algorithms

One challenge is designing algorithms for anonymizing thtado achieven,t)-

closeness. In this section, we describe how to adapt the NeoonflL8] multidimensional
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algorithm for our(n, t)-closeness model. Sin¢ecloseness is a special model (of, t)-
closeness, Mondrian can also be used to achi@leseness.

The algorithm consists of three components: (1) choosingreemsion on which to
partition, (2) choosing a value to split, and (3) checkinghié partitioning violates the
privacy requirement. For the first two steps, we use exigtiegristics [18] for choosing
the dimension and the value.

Figure 2.1 gives the algorithm for checking if a partitiogsatisfies thén, ¢)-closeness
requirement. LetP be a set of tuples. Suppose thatis partitioned intor partitions
{P,P,,..,P}, ie,U{P} = PandP, N P; = () for anyi # j. Each partition?; can
be further partitioned and all partitions form a partitisae with P being the root. Let
Parent(P) denote the set of partitions on the path fréhto the root, which is the partition
containing all tuples in the table. (1 < ¢ < r) contains at least records, ther?,
satisfies thén, t)-closeness requirement. (1 < i < r) contains less thanm records, the
algorithm computes the distance betwé&and each partition ivarent(P). If there exists
at least one large partition (containing at least n recard$)arent(P) whose distance to
P, (D[P, Q)) is at mostt, then P; satisfies then, t)-closeness requirement. Otherwise,
P, violates the(n, t)-closeness requirement. The partitioning satisfieq the)-closeness

requirement if allP;’s have(n, t)-closeness.

2.3 Distance Measures

Now the problem is to measure the distance between two piladtigbdistributions.
There are a number of ways to define the distance between tigawen two distribu-
tionsP = (p1,pa, .., Pm), Q = (@1, G2, -, @), two well-known distance measures are as

follows. Thevariational distanceas defined as:

m

DIP, Q)= Sl —ail

i=1

And the Kullback-Leibler (KL) distance [28] is defined as:

szlog——H P) - H(P,Q)
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input: P is partitioned inta- partitions{ P, P, ..., P, }

output: true if (n, t)-closeness is satisfied, false otherwise

1. for everyP,

2. if P, contains less than records

find=false

for every@ € Parent(P) and|Q| > n
if D[P, Q] < t, find=true

if find==false return false

N o o kM W

. return true

Fig. 2.1. The Checking Algorithm fdm, t)-Closeness

where H(P) = > p;logp; is the entropy of® and H(P, Q) = >, p;logg; is the
cross-entropy oP andQ.

These distance measures do not reflect the semantic distammeg values. Recall
Example 2.1.2 (Tables 2.1 and 2.2), where the overall digion of the Income attribute is
Q = {3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k}.2 The first QI group in Table 2.2 has distribution
P, = {3k, 4k, 5k} and the second QI group has distributBg = {6k, 8k,11k}. Our
intuition is thatP, results in more information leakage thRg, because the values I,
are all in the lower end; thus we would like to habéP,, Q] > D[P, Q]. The distance
measures mentioned above would not be able to do so, becansé¢heir point of view
values such a3k and6k are just different points and have no other semantic meaning

In short, we have a metric space for the attribute values abalground distance is
defined between any pair of values. We then have two probadiBtributions over these
values and we want the distance between the two probabibtyilitions to be depen-

dent upon the ground distances among these values. Thiseegunt leads us to the the

2We use the notation{vi,vs,---,v,} to denote the uniform distribution where each value in
{v1,v2, - v} is equally likely.
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Earth Mover’s distance (EMD) [29], which is actually a Morigantorovich transportation
distance [30] in disguise.

We first describe Earth Mover’s Distance (EMD) and how to ustEn ¢-closeness.

We first describe our desiderata for designing the distarezsore and show that ex-
isting distance measures cannot satisfy some of the prepefhen, we define our dis-
tance measure based on kernel smoothing that satisfiestbts# properties. Finally, we
describe Earth Mover’s Distance (EMD) and how to use EMD in@oseness measures.
Note that, although EMD does not satisfy all of the five prdipsr it is still a useful distance
measure in our context because it is simple to understanthandeveral nice properties

(e.g., the generalization property and the subset prgopestgescribed in Section 2.3.3).

2.3.1 Desiderata

From our perspective, a useful distance measure shoulthgigge following proper-

ties:

1. Identity of indiscernibles: An adversary has no information gain if her belief does

not change. Mathematicall[P, P] = 0, for anyP.

2. Non-negativity: When the released data is available, the adversary hasmegative

information gain. Mathematicall(p[P, Q] > 0, for anyP andQ.

3. Probability scaling: The belief change from probability to « + + is more signifi-
cant than that fron® to 8 + v whena < g anda is small. D[P, Q] should consider

reflect the difference.

4. Zero-probability definability: D[P, Q] should be well-defined when there are zero
probability values irP andQ.

5. Semantic awarenessWhen the values il? andQ have semantic meanind3|P, Q|
should reflect the semantic distance among different valtes example, for the

“Salary” attribute, the valu80 K is closer to50K than to80K. A semantic-aware
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distance measure should consider this semantics, e.gdidteece betweeh30K,
40K} and{50K, 60K} should be smaller than the distance betwggdK, 40K} and
{80K, 90K}.

Note that we do not requirB[P, Q] to be a distance metric (the symmetry property
and the triangle-inequality property). Fir§i[P, Q] does not always have to be the same
asD[Q, P]. Intuitively, the information gain fron(0.5,0.5) to (0.9,0.1) is larger than
that from (0.9,0.1) to (0.5,0.5). SecondD[P, Q] can be larger thaD[P, R] + D[R, Q]
whereR is also a probabilistic distribution. In fact, the well-kmo Kullback-Leibler (KL)
divergence [28] is not a distance metric since it is not symicmand does not satisfy the
triangle inequality property.

The KL divergence measut€ L[P, Q] = Zlepi log {IL is undefined whep; > 0 but
¢; = 0 for somei € {1,2,...,d} and thus does not satisfy tkero-probability definability
property. To fix this problem, a variation of KL divergencdled the Jensen-Shannon (JS)

divergence has been proposed. The JS divergence measafmesids:
1

whereavg(P, Q) is the average distributiofP + Q)/2 and KL, ] is the KL divergence
measure.

However, none of the above distance measures satisgethantic awarenegsoperty.
One distance measure that takes value semantics into eoasah is the Earth Mover’s
Distance (EMD) [27,29], as we have described in Sectior823nfortunately, EMD does
not have therobability scalingproperty. For example, the EMD distance between the two
distributions(0.01,0.99) and (0.11,0.89) is 0.1, and the EMD distance between the two
distributions(0.4, 0.6) and (0.5, 0.5) is also0.1. However, one may argue that the belief
change in the first pair is much more significant than that betwthe second pair. In the
first pair, the probability of taking the first value increaseom 0.01 to 0.11, a 1000%

increase. While in the second pair, the probability incedanly25%.
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2.3.2 The Distance Measure

We propose a distance measure that can satisfy all the fiygepires described in
Section2.3.1. Theideaisto apply kernel smoothing [31¢teefising JS divergence. Kernel
smoothing is a standard statistical tool for filtering oughrequency noise from signals
with a lower frequency variation. Here, we use the technigem®ss the domain of the
sensitive attribute value to smooth out the distribution.

Let the sensitive attribute bg and its attribute domain i§s4, ss, ..., s, }. For comput-
ing the distance between two sensitive values, we defimexam distance matrix forS.
The (i, j)-th cell d;; of the matrix indicates the distance betwegands;.

We use the Nadaraya-Watson kernel weighted average:

5 — > i P (dig)
b K(dy)

where K (.) is the kernel function, which is chosen to be the Epanechritesnel, which

is widely used in kernel estimation:

Koo — 4 =G i IE <1
0 otherwise

whereB = (B, Bs, ..., By) is the bandwidth of the kernel function.

We then have a smoothed probability distributBn= (p1,D2, -, Pm) for P. The
distributionP reflects the semantic distance among different sensitivesa

To incorporate semantics into the distance betwi2emdQ, we compute the distance
betweenP andQ as an estimate instea®{P, Q| ~ D[f’, Q]. The distanc@[f’, Q] can
be computed using JS-divergence measure which is welletkeémen when there are zero
probabilities in the two distributions. We can verify thatr@listance measure has all of the
five properties described in Section 2.3.1.

Finally, we define the distance between two sensitive attigilbalues in{sq, so, ..., Sy }-

The attributeS is associated with & x m distance matrix where thg, j)-th cell d;;

(1 <4,7 < m) indicates the semantic distance betweeands;. The distance matrix is
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specified by the data publisher. One way of defining the digtamatrix is as follows. I
is a continuous attribute, the distance matrix can be defsed

Jsi = 541
A
whereR is the range of the attributg, i.e., R = max;{s;} —min;{s;}. If S'is a categorical
attribute, the distance matrix can be defined based on thaiddwerarchy of attributé:
h(si, s;)

dij — TJ
whereh(s;, s;) is the height of the lowest common ancestorspiind s;, and H is the

height of the domain hierarchy of attribute

2.3.3 Earth Mover’s Distance

The EMD is based on the minimal amount of work needed to tocansbne distribution
to another by moving distribution mass between each othaiitively, one distribution is
seen as a mass of earth spread in the space and the otherlas@orobf holes in the same
space. EMD measures the least amount of work needed to fitidles with earth. A unit
of work corresponds to moving a unit of earth by a unit of grdistance.

EMD can be formally defined using the well-studied transgtaoh problem. LeP =
(p1,P2,---Pm), Q = (a1, ¢, --.qm), andd,; be the ground distance between elemeoit P
and elemenj of Q. We want to find a flowr" = [f;;] wheref;; is the flow of mass from

element of P to element of Q that minimizes the overall work:

m m

WORK (P, Q. F)=> Y dyfy

i=1 j=1
subject to the following constraints:

pi_Zfij+ijiZQi 1<i<m (c2)
=1 =1

ZZfij:Zpi: ¢ =1 (c3)

i=1 j=1 i=1 i=1
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These three constraints guarantee tha transformed t&) by the mass flows. Once

the transportation problem is solved, the EMD is defined tthibeotal work® i.e.,

m

D[P,Q] = WORK (P,Q,F)=>_ i dij [

i=1 j=1
We will discuss how to calculate the EMD between two distiims in the later part of

this section. We now observe two useful facts about EMD.
Theorem 2.3.11f 0 < d;; < 1forall 4, j, then0 < D[P, Q] < 1.

The above theorem follows directly from constrajnt) and (¢3). It says that if the
ground distances are normalized, i.e., all distances aweka0 and 1, then the EMD
between any two distributions is betwegand1. This gives a range from which one can

choose the value for¢-closeness.

Theorem 2.3.2 Given two QI groups?; and Es, let Py, P,, andP be the distribution of
a sensitive attribute irts;, E5, and E; U Es, respectively. Then

| Es|

| By |
D[P, Q| < _ ||
P.Q] |E1| + | Es|

<12l pp, Q4+
|E1| + | Ea| 1. Q

D[Pz, Q]

Proof Following from the fact thalP,, P,, andP are the distribution of the sensitive
attribute inE, E,, andE; U E,, we obtain that

| B 23

p—__ 171 P2l
|Er|+ B ' B+ B

One way of transformind@ to Q is to independently transform thé;” part to Q and
the “P,” part to Q. This incurs a cost oEl'ﬁl"EQ'D[Pl, Q| + %D[Pz, Q]. Because
D[P, Q] is the minimum cost of transforming to Q, we have the inequation in the theo-

rem. |

It follows thatD[P, Q] < max(D[P;, Q], D[P2, Q]). This means that when merging

two QI groups, the maximum distance of any QI group from theral distribution can

SMore generally, the EMD is the total work divided by the toftalv. However, since we are calculating
distance between two probability distributions, the téitak is alwaysl, as shown in formuléc3).
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never increase. Thuscloseness is achievable for anyand anyt > 0. Note that this
implies thatt-closeness is achievable for ahy> 0 sincet-closeness is a special case of
(n,t)-closeness where is set to be the size of the whole table.
The above fact entails thaicloseness with EMD satisfies the following two properties.
Generalization Property Let 7 be a table, and led and B be two generalizations
on 7 such thatA is more general tharB If T satisfiest-closeness using, then T also

satisfieg-closeness using.

Proof Since each QI group id is the union of a set of QI groups i and each QI group
in B satisfiest-closeness, we conclude that each QI groug ialso satisfieg-closeness.

Thus7 satisfieg-closeness using. [ |

Subset PropertyLet 7 be a table and leC be a set of attributes ifi. If 7 satisfies
t-closeness with respect 6, then T also satisfiescloseness with respect to any set of
attributesD such thatD c C.

Proof Similarly, each QI group with respect 10 is the union of a set of QI groups with
respect taC' and each QI group with respect €6 satisfiest-closeness, we conclude that
each QI group with respect tb also satisfies-closeness. Thu% satisfiest-closeness

with respect taD. u

The two properties guarantee that theloseness using EMD measurement can be in-
corporated into the general framework of the Incognito athm [16]. Note that the subset
property is a corollary of the generalization property luseeremoving an attribute is equiv-

alent to generalizing all values in that column to the tophefgeneralization hierarchy.
To uset-closeness with EMD, we need to be able to calculate the EMidd®n two

distributions. One can calculate EMD using solutions totthasportation problem, such
as a min-cost flow [32]; however, these algorithms do not idean explicit formula. In
the rest of this section, we derive formulas for calculatiddD for the special cases that

we need to consider.



36

EMD for Numerical Attributes

Numerical attribute values are ordered. Let the attribotean be{v,, vs...v,, }, where
v; is theit* smallest value.

Ordered Distance: The distance between two values of is based on the number of
values between them in the total order, i®dered_dist(v;, v;) = 1‘;_31‘

It is straightforward to verify that the ordered-distanceasure is a metric. It is non-
negative and satisfies the symmetry property and the teangtuality. To calculate EMD
under ordered distance, we only need to consider flows thasport distribution mass
between adjacent elements, because any transportatisadretwo more distant elements
can be equivalently decomposed into several transpanabetween adjacent elements.
Based on this observation, minimal work can be achieved tigfgmg all elements of)
sequentially. We first consider elemdntwhich has an extra amount of — ¢;. Assume,
without loss of generality, that, —¢; < 0, an amount of; —p; should be transported from
other elements to element\We can transport this from elementAfter this transportation,
elementl is satisfied and elemethas an extra amount ¢b; — ¢;) + (p2 — ¢2). Similarly,
we can satisfy elemert by transporting an amount ¢fp; — ¢1) + (p2 — ¢2)| between
element2 and elemenB. This process continues until elementis satisfied and is
reached.

Formally, letr; = p; — ¢;,(i=1,2,...,m), then the distance betweBnand Q can be

calculated as:

DIP,Q] = (|7’1|+|7“1+7’2|+...+|r1+r2+...rm_1|)

%

Il
3

Jj=1i

m — 1

1

.
Il

J=1

EMD for Categorical Attributes

For categorical attributes, a total order often does natteXle consider two distance

measures.
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Equal Distance: The ground distance between any two value of a categoricddwge
is defined to bd. It is easy to verify that this is a metric. As the distancensstn any two
values isl, for each point thap; — ¢; > 0, one just needs to move the extra to some other

points. Thus we have the following formula:

D[PvQ]:%Z‘pi_Qi‘: Z(pi_Qi):_Z(pi_Qi)

Pi>qi Pi<qi

Hierarchical Distance: The distance between two values of a categorical attrilsute i
based on the minimum level to which these two values are géped to the same value
according to the domain hierarchy. Mathematically, #etbe the height of the domain
hierarchy, the distance between two valuggndv, (which are leaves of the hierarchy)
is defined to bdevel(vy,v9)/H, wherelevel(vy, v9) is the height of the lowest common
ancestor node of; andw,. It is straightforward to verify that this hierarchicalstiince
measure is also a metric.

Given a domain hierarchy and two distributidAsandQ, we define theextraof a leaf
node that corresponds to elemenb bep, — ¢;, and theextraof an internal nodeV to be

the sum ofextrasof leaf nodes belowV. Thisextrafunction can be defined recursively as:

extra(N) =
> cecnia €xtra(C) otherwise
whereChild(N) is the set of all leaf nodes below nodé The eztra function has the
property that the sum efrtra values for nodes at the same levedis

We further define two other functions forternal nodes

pos_extra(N) = Z lextra(C)|

CeChild(N)Aextra(C)>0

neg_extra(N) = Z lextra(C)|
CeChild(N)Nextra(C)<0

We usecost(N) to denote the cost of movings betwegis children branches. An

optimal flow moves exactlyxtra(N) infout of the subtree rooted &. Suppose that
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RespiratorySdigestive
system diseases

L e

Respiratory
system diseases

/K

Digestive system
diseases

Respiratory Vascular lung Stomach Colon
infection diseases diseases diseases
I Flu | I Preumonia | |Ernm:hl'lis | Pulmonary || Pulmonary Gastric Colon

edema embolism ulcer cancer cancer

Fig. 2.2. A VGH for AttributeDisease

pos_extra(N) > neg_extra, thenextra(N) = pos_extra(N)—neg_extra(N) andeztra(N)
needs to move out. (This cost is counted in the cosYsfparent node.) In addition, one

has to moveueg_extra among the children nodes to even out all children branches; t

height( N
cost(N) = eng() min(pos_extra(N), neg_extra(N))

Then the earth mover’s distance can be written as:

DIP. Q) = X"y cost(N)

where N is a non-leaf node.

Analysis of t-Closeness with EMD

We now revisit Example 2.1.2 in Section 2.1, to show hesloseness with EMD han-
dles the difficulties of-diversity. Recall thaQ = {3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k},
P, = {3k,4k,5k}, andP, = {6k, 8k, 11k}. We calculateD[P,, Q] andD[P2, Q] us-
ing EMD. Letv, = 3k,v, = 4k,...vg = 11k, we define the distance betweenand
v; to be|i — j|/8, thus the maximal distance is We haveD[P,,Q] = 0.375,* and
D[P,, Q] = 0.167.

40ne optimal mass flow that transforiBs to Q is to movel /9 probability mass across the following pairs:
(5k—11k), (5k—10k), (5k—9k), (4k—8Kk), (4k—7k), (4k—6Kk), (3k—5k), (3k—4k). The cost of this is
1/9x (6+5+4+4+3+2+2+1)/8=27/72=3/8 = 0.375.
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Table 2.5
An Anonymous Table (Example of EMD Calculation)

ZIP Code| Age | Salary| Disease

4767* <40 | 3K gastric ulcer
4767* <40 | 5K stomach cancer
4767* <40 | 9K pneumonia
4790* > 40 | 6K gastritis
4790* >40 | 11K | flu

4790* > 40 | 8K bronchitis
4760* <40 | 4K gastritis
4760* <40 | 7K bronchitis
4760* <40 | 10K stomach cancer

© N MO O~ W R

For the disease attribute, we use the hierarchy in Figuréo2d2fine the ground dis-
tances. For example, the distance between “Flu” and “Bribistlis 1/3, the distance be-
tween “Flu”and “Pulmonary embolism” /3, and the distance between “Flu” and “Stom-
ach cancer” i$/3 = 1. Then the distance between the distribut{gastric ulcer, gastritis,
stomach cancérand the overall distribution is 0.5 while the distance betwthe distribu-
tion {gastric ulcer, stomach cancer, pneumoria0.278.

Table 2.5 shows another anonymized version of Table 2.1ad0h67-closeness w.r.t
Salary and 0.278-closeness w.r.t. Disease. Sihalarity Attackis prevented in Table 2.5.
Let's revisit Example 2.1.2. Alice cannot infer that Bob redow salary or Bob has
stomach-related diseases based on Table 2.5.

We note that both-closeness anh, t)-closeness protect against attribute disclosure,
but do not deal with identity disclosure. Thus, it may be ddsde to use bothn, t)-
closeness antkanonymity at the same time. Further, it should be noted thay-closeness
deals with the homogeneity and background knowledge ataol:-anonymity not by

guaranteeing that they can never occur, but by guarantéeigf such attacks can occur,
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Table 2.6
Description of theAdult Dataset
Attribute Type # of values| Height
1| Age Numeric 74 5
2 | Workclass Categorical 8 3
3 | Education Categorical 16 4
4 | Marital_Status| Categorical| 7 3
5 | Race Categorical 5 3
6 | Gender Categorical 2 2
7 | Occupation | Sensitive | 14 3

then similar attacks can occur even with a fully-generdlitable. As we argued earlier,

this is the best one can achieve if one is to release the dath at

2.4 Experiments

The main goals of the experiments are to study the effeGimilarity Attackson real
data and to investigate the effectiveness of(thé )-closeness model in both privacy pro-
tection and utility preservation.

In the experiments, we compare four privacy measures asibleddn Table 2.7. We
compare these privacy measures through an evaluation eéligrability to similarity at-
tacks; (2) efficiency; and (3) data utility. For each privacgasure, we adapt the Mondrian
multidimensionalk-anonymity algorithm [18] for generating the anonymizeli¢a that
satisfy the privacy measure.

The dataset used in the experiments is the ADULT datasettlertdC Irvine machine
learning repository [33], which is comprised of data caiéetfrom the US census. We used
seven attributes of the dataset, as shown in Table 2.6. $heafeven attributes are treated

as quasi-identifiers and the sensitive attribut®esupation Records with missing values
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Table 2.7
Privacy Parameters Used in the Experiments

privacy measure default parameters
1 distinct/-diversity (=5
2 probabilistic/-diversity (=5
3 k-anonymity witht-closeness k = 5,t=0.15
4 | k-anonymity with(n, t)-closeness k = 5,n=1000{=0.15

are eliminated and there are 30162 valid records in totag. dlgorithms are implemented

in Java and the experiments are run on a 3.4GHZ Pentium 4 newelhith 2GB memory.

2.4.1 Similarity Attacks

We use the first 6 attributes as the quasi-identifier and @eatipationas the sensitive
attribute. We divide the 14 values of ti@ccupationattribute into three roughly equal-
size groups, based on the semantic closeness of the valbheghiee groups argl'ech-
support, Craft-repair, Prof-specialty, Machine-op-inspct, Farming-fishing}, {
Other-service, Handlers-cleaners, T'ransport-moving, Priv-house-serv, Protective-
serv}, and{Sales, Exec-managerial, Adm-clerical, Armed-Forces}. Any QI group
that has all values falling in one group is viewed as vulnkersdothe similarity attacks. We
use the Mondrian multidimension&atanonymity algorithm [18] to generate the distinct
5-diverse table. In the anonymized table, a total of 247 1asiphn be inferred about their
sensitive value classes. We also generate the probabilisiverse table, which contains
720 tuples whose sensitive value classes can be inferreel.eXjerimental results show
that similarity attacks present serious privacy risksé-thverse tables on real data.

We also generate the anonymized table that satisfesonymity and).15-closeness
and the anonymized table that satisfiegnonymity and 1000, 0.15)-closeness. Both ta-
bles do not contain tuples that are vulnerable to similaaitacks. This shows that

closeness anth, t)-closeness provide better privacy protection againstaiity attacks.
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Fig. 2.3. Experiments: Efficiency

Note that similarity attacks are a more general form of hoemegty attacks. Therefore,

our closeness measures can also prevent homogeneitysattack

2.4.2 Efficiency

In this set of experiments, we compare the running timesftdreéint privacy measures.
Results of the efficiency experiments are shown in Figure&Zgain we use th©ccupation
attribute as the sensitive attribute. Figure 2.3(a) shdwestinning times with fixed =

5,4 =15,n=1000,t = 0.15 and varied quasi-identifier size where2 < s < 6. A quasi-
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identifier of sizes consists of the first attributes listed in Table 2.6. Figure 2.3(b) shows the
running times of the four privacy measures with the sameigdaastifier but with different
parameters fok and/. As shown in the figuregy, t)-closeness takes much longer time.
This is because, to check if a partitioning satisfiest)-closeness, the algorithm needs to
check all the parent partitions that have at leasecords. Wherk and/ increases, the
running times decrease because fewer partitioning need tibbe for a stronger privacy
requirement. Finally, the running times fecloseness an(h, t)-closeness are fast enough
for them to be used in practice, usually within one minutetfieradult dataset.

Figure 2.3(c) shows the effect afon the running time ofn, t)-closeness. As we can
see from the figure, the algorithm runs faster wheslarge because a largevalue implies
a stronger privacy requirement. Figure 2.3(d) shows thexetf thet value on the running
time of (n, t)-closeness. Similarly, the algorithms runs faster for allenabecause a small
t represents a stronger privacy requirement. Again, in gleerents, the algorithm takes

less than one minute to generate the anonymized data tisiesdt, ¢)-closeness.

2.4.3 Data Utility

This set of experiments compares the utility of the anongahizables that satisfy each
of the four privacy measures. We again use @wupationattribute as the sensitive at-
tribute. To compare data utility of the six anonymized tablee evaluate the anonymized

data both in terms of general utility measures and accuraaggregate query answering.

General Utility Measures

We first compare data utility based on two general utility sugas:Discernibility Met-
ric (DM) [23] andGlobal Certainty Penalty (GCH)L9]. Figure 2.4(a) shows the DM cost
while Figure 2.4(b) shows the GCP cost for the four anonythiables. In both experi-
ments, we evaluate the utility measure as a functiaft of) for the four privacy measures.
In both figures, thén,t)-close tables have better utility than both probabiligtitiverse

tables and-close tables. Note that the y-axis of both figures are inritigaic format.
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Fig. 2.5. Experiments: Aggregate Query Answering Error

Figure 2.4(c) and Figure 2.4(d) show the DM cost of thet)-close tables with varied
n values and varied values, respectively. Figure 2.4(e) and Figure 2.4(f) stesvGCP
cost. ¢ From these figures, we can see that the anonymizecdtbh larger DM/GCP cost
for a largern value or a smallet value. This is because a largevalue or a smallet
value implies a stronger privacy requirement, which in ttgsults in a larger amount of

information loss.

Aggregate Query Answering

We then evaluate data utility in terms of performance in Waall experiments. We
compare data utility based on the accuracy of aggregatey queswering. Figure 2.5(a)
shows the average relative error as a function of the quengnision. As the query di-
mension increases, average relative error decreases aralotte, the anonymized data
performs better for queries with a larger query dimensioiguie 2.5(b) shows that as
the query selectivity increases, average relative erswr deécreases. This shows that the
anonymized data can answer more accurately on queries Valger selectivity. In all
figures, we can see that tlwe, ¢)-close table can answer queries more accurately than both

the probabilistid-diverse table and thieclose table.
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2.5 Chapter Summary

In this chapter, we proposed a novel privacy notion, calledeness, for privacy pre-
serving data publishing. We presented the base moedelseness and its underlying ra-
tionale. ¢t-Closeness may limit the release of useful information ardowercome this
limitation and proposed a more flexible model ¢)-closeness. We analyzed the utility of
the anonymized data and demonstrated that the family oEokss measure has a solid

foundation in information theory.
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3. MODELING AND INTEGRATING ADVERSARIAL
KNOWLEDGE

We have described several privacy models for attributdalsice protection, including
diversity [11],(«, k)-anonymity [15], and-closeness [27]. A key limitation of the existing
models is that they cannot guarantee that the sensitiibua#rvalues of individuals are
protected when the adversary has additional knowledgé(chbhckground knowledge).
Background knowledge can come from diverse sources, suaklé&nown facts, demo-
graphic information, public records, and information at&pecific individuals.

As an example, consider that a hospital has the originatptablel” in Table 3.1(a),
which contains three attributégge Sex andDisease The hospital releases a generalized
tableT™ in Table 3.1(b) which satisfigsdiversity. Assume that an adversary knows Bob is
a 69-year-old male whose record is in the table, the adwecsar only find out that Bob is
one of the first three records. Without any additional knalgks the adversary’s estimate
of the probability that Bob haBmphysemés 1/3. However, the adversary may know the
correlations betweeBmphysemand the non-sensitive attributdgeand Sex e.g., “the
prevalence of emphysema was appreciably higher fo6irend older age group than the
45-64 age group for each race-sex group” and “the prevalence vgdehin males than
females and in whites than black$"Because Bob is a 69-year-old male, then based on the
above external knowledge, the adversary can infer that Bgtahmuch larger probability
of havingEmphyseméhan the other two tuples in the first group.

In the above example, the adversary knows the correlatietvgdenEmphysemand
the attributeAge(andSej. We call thiscorrelational knowledgeln general, correlational

knowledge describes the relationships between the senaitribute and the non-sensitive

From a data fact sheet published by National Heart, Lung,Biadd Institute fttp : //www.nhlbi.nih
.gov/health/public/lung/ther/copd_fact.pdf).
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Table 3.1
Original/Anonymous Tables (Example of Background Knowledttacks)

(a) Original tablel’ (b) Generalized tablé™*

Age | Sex| Disease Age Sex| Disease
69 | M | Emphysema [45—69] | * | Emphysema
45 | F Cancer [45—69] | * Cancer
52 | F Flu [45—69] | * Flu
43 | F Gastritis [40 —49] | F Gastritis
42 | F Flu [40 —49] | F Flu
47 | F Cancer [40 —49] | F Cancer
50 | M Flu (50 —59] | M Flu
56 | M | Emphysema [50 —59] | M | Emphysema
52 | M Gastritis [50 —59] | M Gastritis

attributes, e.g., male does not haxearian cancer Correlational knowledge is one kind of
adversarial background knowledge.

Integrating background knowledge into privacy quantifmathas been recently stud-
ied [34-36]. They propose different approaches (a formajuage [34, 35] or ME con-
straints [36]) for expressing background knowledge andyaeahe privacy risk when the
adversary has a certain amount of knowledge. These workgJss, are unaware of the
exact background knowledge possessed by the adversary.

In this chapter, we try to remedy this drawback by proposifrgi@ework for system-
atically modeling background knowledge and reasoning epouacy in the presence of
background knowledge. This is a challenging task sinceviery difficult to know exactly
the adversary’s background knowledge and background letmel can vary significantly
among different adversaries. We reduce our scope to baskgimowledge that is consis-

tent with the data itself. We discuss our rationale for tkeduction and present a general
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framework for modeling consistent background knowleddes framework subsumes dif-

ferent types of background knowledge, including correlzdi knowledge.

3.1 Solution Overview

Background knowledge poses significant challenges in defimiivacy for the anonym-
ized data [22, 34-37]. For example, when background knaydes present, we cannot
simply say that no adversary knows any individual’s sevesitittribute value after seeing
the released data, because there may exist an adversaryredudyaknows the value of an
individual. While the adversary still knows the value ateeing the anonymized data, we
cannot say that the anonymized data violates privacy.timély, privacy should mean “no
matter what background knowledge an adversary has, thessdyeannot learn too much
new about the sensitive attribute of any individual”. This, lewsr, cannot be achieved
when an adversary has background knowledge that is ind¢ensiwith the dataset to be
released. Consider an adversary vilorrectly believes tha80% of the population has a
particular disease and has no other more specific informatioreality, only30% of the
population has the disease and this is reflected in the datasthis case, even when one
releases only the distribution of the sensitive attribdtihe table as a whole (without any
potentially identifying information), the adversary wdudlave a significant knowledge gain
about every individual. Such knowledge gain cannot be mtekby data anonymization,
and one can argue that releasing such information is pig¢ismost important utility of
releasing data, namely, to correct widely-held wrong lielie

Thus, we have to limit ourselves to consider only backgrokmolvledge that is con-

sistent with the data to be released. We come to the follodefmition:

Given a datase€l’, we say that an anonymized versionlopreserves privacy
if and only if, for any adversary that has sof@ckground knowledge that is
consistent witly", and for any individual i/, the adversary’knowledge gain

about the sensitive attribute of the individual is limited.
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In this chapter, we formalize the above intuitive definitidtirst, we propose thimjec-
tor framework for modeling and integrating background knowkednjector models back-
ground knowledge that is consistent with the original datantining background knowl-
edge from the original data. The rationale is that if cerfaots or knowledge exist in the
data (e.g., males cannot hawearian cance), they should manifest themselves in the data
and we should be able to discover them using data mining igeés. In Section 3.2, we
present theénjector framework and discuss its rationale and its scope.

Based on the generajector framework, we propose two approaches for modeling
background knowledgerule-based Injectoand distribution-based Injector Rule-based
Injector (Section 3.3) models background knowledge as negativeiasenm rules. A neg-
ative association rule is an implication saying that sommelmoation of the quasi-identifier
values cannot entail some sensitive attribute values. ¥ample, a negative association
rule “Sex=M=- — Disease=ovarian cancésays that “male cannot have ovarian cancer”.
Such negative association rules can be discovered fronrigiea data using data mining
techniques. We also develop an efficient bucketizationrétgo (Section 3.4) to incorpo-
rate these negative association rules in the data anongjomzaocess.

Distribution-based Injecto¢Section 3.5) models background knowledge as probability
distributions (which we calbrobabilistic background knowledyeéNe apply kernel estima-
tion techniques [38] to model background knowledge thabissistent with a dataset. We
model the adversary’s prior belief on each individual as@bgbility distribution, which
subsumes different types of knowledge that exists in tha.dBlhe dataset can be viewed
as samples from such distributions. Our problem of infgrbackground knowledge from
the dataset to be released is similar to the problem of inf@n distribution from sam-
ples, a problem well studied in statistics and machine lagriVe apply the widely used
technique of kernel regression estimation to this probl@rhe bandwidth of the kernel
function provides a good parameter of how much backgrouoeledge an adversary has,
enabling us to model adversaries with different levels akigpound knowledge.

To integrate probabilistic background knowledge in datangmization, we need to

reason about privacy in the presence of such backgroundl&dge (Section 3.6). To this
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end, we propose a general formula for computing the adwesgawsterior belief based on
the background knowledge and the anonymized data. Howtecomputation turns out
to be a hard problem and even known estimation algorithme b@v high a complexity
to be practical. To overcome the complexity of exact infeegrwe generalize the approx-
imation technique used by Lakshmanan et al. [39] and propnsspproximate inference
method called2-estimate. We show th&t-estimate is practical and accurate through ex-
perimental evaluation. We also propose a novel privacy iincalked (B, t)-privacy (Sec-
tion 3.6.4).

The rest of this chapter is organized as follows. We predentnjector framework
for modeling background knowledge and discuss its rat®@aald scope in Section 3.2.
We then propose two approaches for modeling background ledige under thénjector
framework. We presemtile-based Injectom Section 3.3 and describe how to incorporate
negative association rules in data anonymization in Se@id. We presendistribution-
based Injectoiin Section 3.5, reason about privacy in the presence of piliiac back-
ground knowledge in Section 3.6, and propose a privacy measiied(B, t)-privacy for
integrating probabilistic background knowledge in Sat06.4. Experimental results are

presented in Section 3.7.

3.2 The General Framework of Injector

In this section, we propose thejector framework for modeling background knowl-
edge. We first identify the possible sources where an adyersay obtain additional
background knowledge. Then we explain the rationale ofrifextor framework and dis-

cuss its scope and advantages.

3.2.1 Types of Background Knowledge

Since the background knowledge attack is due to additio@atmation that the adver-

sary has, it is helpful to examine how the adversary may plikas additional knowledge.
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In traditional settings of data anonymization, the aduwgrgsmassumed to know certain
knowledge besides the released data, e.g., the quasifielewlues of individuals in the
data and the knowledge of whether some individuals are inldt@. In the following, we
identify a list of additional knowledge that an adversaryrhave.

First, the adversary may know some absolute facts. For ebeammmale can never have
ovarian cancer

Second, the adversary may have partial knowledge of the gepbic information
of some specific groups. For example, the adversary may khatithe probability that
young females of certain ethnic groups haeart diseasés very low. This knowledge can
be represented as patterns or association rules that rexie data.

Third, the adversary may have some adversary-specific lkaumel, which is available
to the adversary for some reason. For example, an adversayknow some targeted
victim in person and have partial knowledge on the sensitahees of that individual (e.g.,
Alice may know that his friend Bob does not hasteort breath problensince she knows
that Bob runs for two hours every day). An adversary may geitiahal information from
other sources (e.g., Bob’s son told Alice that Bob does ne¢ haart disease This type
of knowledge is associated with specific adversaries andtth@nel through which an
adversary obtains this type of knowledge can be varied ardifegent adversaries.

While adversary-specific knowledge is hard to predict, ipdssible to discover the
other two types of background knowledge. Next, we describéntuitive solution for

discovering background knowledge.

3.2.2 Mining Background Knowledge

The main problem of dealing with background knowledge &tds that we are un-
aware of the exact knowledge that an adversary may have arklexe that requiring
the background knowledge as an input parameter is not feassbit places too much a
burden on the user. In this chapter, we propose a novel agptoanodel the adversary’s

background knowledge. Our approach is to extract backgraformation from the data
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to be released. For example, the fact that male can nevermvavian canceishould man-
ifest itself in the data to be released, and thus it shoulddssiple for us to discover the
fact from the data. Also, it is often the case that an advgnsey have access to similar
data, in which case patterns or association rules mined tnoendata can be an important
source of the adversary’s background knowledge on the didter We are aware that we
do not consider adversary-specific knowledge. The speaifbeviedge that an adversary
may have is hard to predict. Also, since the adversary casystematically obtain such
knowledge, itis unlikely that the adversary knows specifiokledge about a large number
of individuals.

With this background knowledge extracted from the data, weeadle to anonymize
the data in such a way that inference attacks using this lbackd knowledge can be ef-
fectively prevented. For example, if one is grouping resdadjether for privacy purposes,
one should avoid grouping a male patient with another rett@thasvarian cancelor at
least recognize that doing so does not help meet attribatdodiure privacy requirements).

One may argue that such an approach over-estimates an agiebmckground knowl-
edge, as the adversary may not possess all knowledge extrfacm the data. We justify
our approach through the following arguments. First, asdifficult for us to bound exactly
what the adversary knows and what she doesn’t know, a catsenapproach of utiliz-
ing all extracted knowledge of a certain kind is approprigdecond, it is often the case
that the adversary has access to similar data and knowletigeted from the data can be
the adversary’s background knowledge on the other datall¥imitilizing such extracted
knowledge in the anonymization process typically resultéat least partial) preservation
of such knowledge; this increases the data utility. Noteph@acy guarantees are still met.

One intriguing aspect about our approach is that one caredtw it improves both
privacy and data utility at the same time. Grouping a malepatith another record that
hasovarian canceilis bad for privacy because it offers a false sense of prateciti is also
bad for data utility, as it contaminates the data. By not gairat, one avoids introducing

false associations and improves data utility. This is gutimg because, in the literature,
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privacy and utility have been viewed as two opposing pragertincreasing one leads to

reducing the other.

3.2.3 The Injector Framework

We now present thimjectorframework for modeling and integrating background knowl-
edge for privacy-preserving data publishing. Thigctor framework consists of two com-
ponents: (1) mining background knowledge from the data @8héh{egrating background
knowledge in the data anonymization process.

We propose two approaches under the gergjattor framework:rule-based Injector
anddistribution-based Injectorin rule-based Injectarwe model background knowledge
as negative association rules, i.e., a certain combinati@uasi-identifier values cannot
entail certain sensitive values. For example, the negasiseciation ruléSex=M=- — Dis-
ease=ovarian cancersays that “male cannot hawearian cancet. Negative association
rules of such forms can be discovered from the data usingli@iag techniques.

In Distribution-Based Injectgrwe model background knowledge as probability distri-
butions. We model the adversary’s prior belief on each inldial as a probability distri-
bution, which subsumes different types of knowledge th&texn the data. We use ker-
nel estimation methods for modeling such probabilistidkigasund knowledge and reason
about privacy in the presence of background knowledge WBaygs inference techniques.

Injector uses permutation-based bucketization as the method ofraotisg the pub-
lished data from the original data, which is similar to #heatomytechnique [20] and
the permutation-based anonymization approach [21]. Thkdiization method first parti-
tions tuples in the table into buckets and then separateguhg-identifiers with the sen-
sitive attribute by randomly permuting the sensitive htité values in each bucket. The

anonymized data consists of a set of buckets with permutegitae attribute values.
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3.3 Rule-Based Injector

In this section, we present thale-based Injectompproach. We model background
knowledge as negative association rules and study thegmobf mining negative asso-
ciation rules from the data. We first formalize our problend artroduce theexpectation
measure in Section 3.3.1. We present techniques for dealthgjuantitative attributes in

Section 3.3.2 and describe the algorithm in Section 3.3.3.

3.3.1 Mining Negative Association Rules

Let 7" be a table which has: quasi-identifier attributes!;(1 < j < m), each with
an attribute domai®;, and a sensitive attributé,,; with a domainD,,,,. We define a
value generalization hierarchy (VGH) for each quasi-idiemtattribute where leaf nodes
correspond to actual attribute values, and internal nogle®sent less-specific values. We
denotet;[;] as thej-th attribute value of tuple,.

Our objective is to discover interesting negative assmiaules [40]. In our setting, a
negative association rule is an implication saying thatesoombination of quasi-identifier
values cannot entail certain sensitive values. Speck¥icalinegative association rule is
an implication of the formX = Y, whereX is a predicate involving only the quasi-
identifiers and” is a predicate involving only the sensitive attribute. Timiliitive meaning
of such a rule is that tuples that satisfydo not satisfyt” with a high confidence. Usually,
Y is a predicate of the form,,,,; = swith s € D,,,; and.X is a conjunction of predicates
each of which is of the forml; = v; (1 < i < m) withv; € D;.

In the rules defined above, only values at the leaf level oMBeéls are involved in the
predicate X. To allow rules to take values from any level & YGH, we define extended
attribute domain®’; = D; U Ej;, whereE; is the set of internal nodes of the VGH for the
j-th attribute forl < j <m, andD,, ., = D,,;:. A generalized negative association rule
is an implication of the formX =- Y, whereY is a predicate of the formd,,,; = s
with s € D) ., and X is a conjunction of predicates each of which is of the fotm= v;

(1 <i<m)withv; € D..
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We now define “interestingness” of a negative associatiten isome traditional inter-
estingness measures are basedupportandconfidenceSpecifically, a rule is interesting
if its support is at leastinSup and its confidence is at leastin Conf whereminSup and
minConf are user-defined parameters. The thile=- —Y has support% if s% of tuples
in T satisfy bothX and—Y. The ruleX = —Y holds with confidence% if ¢% of tu-
ples which satisfyX in T" also satisfy—Y". If we denote the fraction of tuples that satisfy
predicateZ asP(Z), thens% = P(X U-=Y) andc% = P(X U-Y)/P(X).

We observe that setting a singtenSup value for different sensitive values would be
inappropriate for our purpose. A frequent sensitive vatuexipected to occur with a high
probability even in a small number of tuples; when this pholity turns out to be small,
it is an interesting rule. On the other hand, an infrequensisige value is expected to
occur with a low probability even in a large number of tuplegen when this probability
is small, the rule may not be interesting. Intuitively, weshl set a largerminSup value
for a negative association rule involving a frequent seresdttribute value.

Based on this observation, we propose to espectationinstead ofsupportas the
measure of the strength of a negative association rule. n"Giveegative association rule
X = —Y, the number of tuples satisfying is n « P(X) wheren is the total number
of tuples in7. Among these tuples, the probability that the sensitiveieaf Y occurs
at least once i4 — (1 — P(Y))™"X), We define this probability as thexpectatiorof
the rule. The ruleX = —Y is interesting if it hasexpectationat leastminFEzp, i.e.,
1—(1=P(Y))™PX) > minEzp, whichis equivalenttd(X) > Llog, pn)(1—minExp).

We now define our objective as finding all generalized negatssociation rule¥” =
—Y that satisfy the following two requirements whergn FExp is a user-defined parameter

andminConf is fixed to bel.

1. Minimumexpectatiomrequirement:’(X) > Supy, whereSupy = Llog, py(1—

minEzp).

2. MinimumconfidenceequirementP(X U —Y)/P(X) > minConf.
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Note that ininjector, minConf is fixed to bel. A more general approach would allow
us to probabilistically model the adversary’s knowledge Skction 3.5, we present rule-

based Injector that models probabilistic background keoge.

3.3.2 Dealing with Quantitative Attributes

The above definition does not consider the semantics of gatwe attributes. Con-
sider the rule{ Age = 21} = —{Salary = 50K }. Suppose few records with agé in the
table have a salary close 30 K. However, the rulg Age = 21} = —{Salary = 50K}
may not hold if a large number of records with age closglto the table have a salary of
50K. This suggests that while tuples with age exagtlydirectly support the rule, tuples
with age close t@1 have partial support for this rule.

To consider partial support of quantitative attributes,imterpret nodes in the VGH of
a quantitative attribute as a fuzzy set [41]. A value canthglo the node with set member-
ship betweerj0, 1]. We denote the membership of valtie;] in Z[i] as Mem(Z[i], t]a]).
There are two ways to define the supportofrom ¢ (denoted as(Z, t)): (1) the product
of the membership of each attribute value, if&(Z, t) = II,<;<,Mem(Z[i], t[a;]) and (2)
the minimum of the membership of each attribute value,RéZ, t) = min,<,<, Mem(Z]i,
tla;]). We adopt the first method to compu®~,¢). Again, P(Z) = >, P(Z,t). We

are then able to use this support function to define the istiegness measures.

3.3.3 Negative Association Rule Mining Algorithms

As we have discussed in Section 3.3.1, &xpectationrequirement is equivalent to

P(X) > Supy. We defineminSup = mingep, ., Supy whereY is the predicatel,,.; =

m—+1
s. Then the problem of discovering interesting negative @asion rules can be decom-
posed into two subproblems: (1) Discovering all itemseatsithvolve only quasi-identifiers

and have support at leastinSup; (2) Finding all negative association rules satisfying the
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expectation and confidence requirements. We study the tollgms in the rest of this

section.

Discovering Frequent Itemsets. We can efficiently solve this problem by modifying
existing frequent itemset generation algorithm Aprio2]4r the FP-tree algorithm [43].
For each frequent itemseéf, we also record a courdty indicating the support foX and
an array of count€’'x[s| for each sensitive value indicating the number of tuples that
supportX and have sensitive valug(Note thatC'y = > Cx|s]). These counts are used

in solving the second subproblem.

Finding Negative Association Rules. The second subproblem is to generate negative
association rules. For each frequent itemsednd for each sensitive vali€, we check if

the following two conditions hold:
1. CTX > Supy
Cx[Y] ;
2. g—X < 1— minConf

If both conditions are satisfied¥ = —Y is identified as a negative association rule.
The first condition ensures that the negative associatierhas sufficient expectation (Note
that%x = P(X)). The second condition ensures that the negative assurciatie has

sufficient confidence (Note that— Il = p(X U -Y)/P(X)).

3.4 Integrating Background Knowledge in Rule-Based Injeabr

In this section, we study the problem of integrating nega#igsociation rules irule-
based InjectorWe define the privacy requirement for data anonymizatidhemew frame-

work and develop an anonymization algorithm to achieve they requirement.

3.4.1 The Privacy Model

Let g be a group of tupleét,, ..., t,}. We say a tuple cannot takea sensitive attribute

values if there exists a negative association rile=- —s andt satisfiesX .
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A simple privacy requirement would require that each grgugatisfies the condition
that, for every tuplée; in g, g contains at least sensitive attribute values thgtcan take.
This simple privacy requirement is, however, insufficienptevent background knowledge
attack. Suppose that a group contains 1 female record amale records and the values
of the sensitive attribute include dvarian cancerand (¢ other diseases common to both
male and female. This satisfies the simple privacy requitmé&he female record is
compatible with alll + 1 sensitive attribute values while each male record is coiblgat
with ¢ sensitive attribute values. However, when one considertaitt that there must be a
one-to-one mapping between the records and the valuesaongefer that the only female
record must havevarian cancey since no other record can be mapped to this value. This
suggests that a stronger privacy requirement is neededutadibe privacy risk caused by

background knowledge attack.

Definition 3.4.1 (The Matching/-Diversity Requirement) Given a group of tuples, we
say a sensitive value i&glid for a tuple if there exists an assignment for the remaining
tuples in the group. A group of tuples satisfy the matcHuaiversity requirement if every

tuple in the group has at leastvalid sensitive values.

The matching/-diversity requirement guarantees that the adversary battkground

knowledge cannot learn the sensitive value of an indivifhomh a set of at leagt values.

3.4.2 Checking Privacy Breaches

We have defined our privacy requirement, now we study thekihg@roblem: given
a group of tuples, are there at ledsfalid sensitive values for every tuple in the group? To
check whether a sensitive valdgis valid for a tuplet;, we assigns; to ¢; and then check
if there is an assignment for the group of remaining tupgles

Checking the existence of an assignment for a group of tuplesn be reduced to the
maximum bipartite matching problem [44] where @Ik in ¢’ form one set of nodes, all

s;'s in ¢’ form the other set of nodes, and an edge betwgands; represents that can
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1. for everyt; € g
Set =)
for everyt; € ¢
construct a new tupké = (g;, s;)
it MBM (g — {ti,t;} U{t'})==|g| — 1
Set = Set U {s,}

if |Set| < ¢ return false

© N o 00 bk~ 0D

. return true

Fig. 3.1. The Checking Algorithm fat-Diversity

take values;. Specifically, there is an assignment f6iif and only if there is a matching
of size|¢’| in the corresponding bipartite graph.

There are polynomial time algorithms (e.g., path augmentgd4]) for the maximum
bipartite matching (MBM) problem. We denoféBM (g) as the procedure for solving
the MBM problem given the bipartite graph constructed fr@gn©ur algorithm iteratively
invokesMBM procedure.

The algorithm is given in Figure 3.1. The input to the aldamitis a group of tuples.
The algorithm checks if there are at leédstalid sensitive values for every tuple in The
MBM (g) procedure takes tim@(|g|*p) wherep is the number of edges in the constructed
bipartite graph fog. The checking algorithm invokes thiéBM (g) procedure at mosy|?

times. It follows that our checking algorithm takes tif€|g|p).

3.4.3 A Bucketization Algorithm

We present the bucketization algorithm. To describe therdlgn, we introduce the
following notations. Lely be a group of tuple$t,, ..., ¢, } such that; = (g;, s;) whereg;

is the quasi-identifier value af ands; is the sensitive attribute value 6f Let IVS|[¢,]



61

/* Line 1 computes/[s][O] and N [s][S'] */

1.for Vt; € T, incrementN'[s;][O] and N [s;][IVS[t;]]
[* Lines 2-17 groups tuples into buckets/L

2. while |T| > ¢

3. pickatuplet; € T that maximizesVIT[{t,}]

4. g={t}, T =T —{t;}

5. decrementV[s;|[O] and N S[s;|[IVS[t;]]

6. while|g| <¢

7. if not; € T'is compatible withy

8. for everyt; € g

9. increment\V [s;][O] and N [s;][IVS[t;]]
10. insert all tuples iy — {¢;} into T’

11. insertt; into 7., go to line 2

12. elseselectt; € 7' that is compatible witly and
13. minimizesNIT'[g U {t;}]

14. g=9gU{t;}, T =T —{t;}

15. decrementV[s;][O] and N [s;][IVS[¢;]]

16. inserty into L

17. insert all tuples iff” into 7,

/* Lines 18-23 add the remaining tuplé&sto groups*/
18.for everyt; in T,

19. selecy € L having the smallest number of tuples
20. that are incompatible with), setg = g U {¢,}

21. while ¢; has less thah valid sensitive values in
22. selecy’ € L maximizing|SEN (g') — SEN(g)|
23. g =gUg, removey from L

Fig. 3.2. The Bucketization Algorithm for Rule-Based Irij@c
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denote the set of sensitive attribute values thaannot take. LeSEN [¢] denote the set of
sensitive attribute values in
The bucketization algorithm, when given a set of tuglend an/ V'S set for each tuple,

outputs a number of groups of tuples for publication. We §rge the following definition.

Definition 3.4.2 A tuplet; is incompatible with a tuple; if at least one of the following
three conditions holds: (19; = s;, (2) t; cannot take the valug;, and (3)¢; cannot take
the values;. A tuplet; is incompatible with a group of tuplesif ¢; is incompatible with at

least one tuple iny.

Our bucketization algorithm includes three phases. Thegdhiase is the initialization
phase, which initializes the data structures. The secoadeis the grouping phase where
groups are formed. To form a group, the algorithm first cheadeplet; that has the largest
number of incompatible tuples. The groggnitially contains onlyt;. Then additional
tuples are added to the group iteratively. Each time, a tupie selected such tha} is
compatible withg and the new group (formed by addingto g) has the smallest number
of incompatible tuples. If no tuples are compatible wjthwe putt; in the set of remaining
tuples and consider the next tuple. The third phase is thepgassignment phase where
each of the remaining tuples is assigned to a group. Initially; is added to the group
which has the smallest number of tuples that are incomgaith ¢; (i.e.,g = g U {¢;}).
We iteratively merge with the group which has the largest number of sensitiveasthat
are different fromy until ¢; has at least valid sensitive values in (the checking algorithm
is invoked to count the number of valid sensitive valuestfpr One nice property about
the matching/-diversity requirement is that if a group of tuples satidfg requirement,
they still satisfy the requirement when additional tuples added. We thus only need to
consider the remaining tuples in this phase.

The key component of the algorithm is to compute the numberadés that are incom-
patible withg (denoted asvIT'[g¢]). To efficiently computeVIT'[g], we maintain a compact
data structure. For each sensitive vafyeve maintain a list of countd/[s][.S’] which de-

notes the number of tuples whose sensitive valueisd whosd VS setisS’. Note that we
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only maintain positive counts. Le¥[s][O] denote the number of tuples whose sensitive
value iss, i.e., N [s][0] = > Ns][S'], andO is only a special symbol.

We denote/ VS [g] as the set of sensitive values that are incompatible witWe have
IVS[g] = Uy IVS[t], i.e., a sensitive value is incompatible wighf it is incompatible
with at least one tuple ip. We denotel/S[g] = SEN[g] U IVS[g]. We can then partition
the set of tuples that are incompatible witinto two groups: (1)t;|s; € IS[g]} and (2)
{t;|(s; ¢ IS[g]) A (SEN[g] N IVS[t;] # 0)}. Then,NIT[¢] can be computed as follows.

NIT[g]= " N[O+ >0 > Ns|9]

s€IS[g] (séIS[g} (S’NSEN|[g]#0)

The algorithm is given in Figure 3.2. We now analyze its canjty. Let|7| = n and
assumen > |S| andn > (. The initialization phase scans the data once and thus takes
O(n) time. The grouping phase takes at mesbunds. In each round, the algorithm scans
the data once and the computationaf7'[¢] takes timeO(q) wheregq is the number of
positive N[s][S"] entries (note thag < n). The grouping phase thus tak€$qn?) time.

The group assignment phase takBs < n rounds and at most merges, each takeé3(n)

time. Thus, the total time complexity is A(qn?).

3.5 Distribution-Based Injector

In this section, we present thigstribution-based Injectoapproach. We model back-
ground knowledge as probability distributions and study tmextract background knowl-
edge using kernel regression techniques [38]. This apprgable to incorporate different
types of background knowledge that exists in the data. Aetiteof this section, we ana-
lyze the scope of our approach by illustrating the types okgeound knowledge that can

be described in our model.
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3.5.1 Knowledge Representation

Let T = {t1,ts,...,t,} be a microdata table maintained by the data publisher where
each tuplet;(1 < i < n) corresponds to an individuall' containsd quasi-identifier
(QI) attributesA;, A,, ..., A; and a single sensitive attribufe Let D[A;] (1 < i < d)
denote the attribute domain &f; and D[S] denote the attribute domain 6f(let D[S] =
{s1, s2, ..., sm }). For each tuple € T, lett[A;] denote its value on attributé; and¢[QI]
denote its value on the QI attributes, i8Q1] = (t[A1], t[As], ..., t[A4)).

For simplicity of discussion, we consider only one sensitttribute in our model. If
the data contains multiple sensitive attributes, one ctiieeconsider them separately or
consider their joint distribution. Our model can be extahtteconsider multiple sensitive

attributes using any of the above two approaches.

Representation of the Adversary’s Prior Belief. Let D[QI] = D[A;] x D[A3] x ... X
D[Aq4] be the set of all possible QI values ald= {(p1,p2, -, Pm)| D1<icrn Pi = 1} bE
the set of all possible probability distributions on thesewe attributeS. We model the
adversary’s prior belief as a functiaf,.; : D[QI] — X. Therefore, for an individual
whose QI value ig € D[QI], the adversary’s prior belief of the sensitive attributkiea
is modeled as a probability distributid®),;(¢) over D[S].

An example of prior belief on a tupleis P(HIV|t) = 0.05 and P(nonelt) = 0.95.
In other words, the probability thathas HIV is0.05 and the probability that has some

non-sensitive disease suchflasis 0.95. In our representatiort;),,; (t[QI]) = (0.05,0.95).

Representation of the Original Dataset.Each tuplef in tableT” can be represented as a
pair (t{QI],P(t)) whereP(t) € X, all components of the distributidA(¢) is 0 except the
i-th component wher€S] = s,. Formally,P(t) = (pi(t), p2(t), ..., pm(t)) is defined as
follows: foralli = 1,2, ...,m,
Pi(t) = .
0 otherwise

Therefore, the tabl& can be represented as a setqgfairs: {(¢,[Q1], P(t1)),
(t2[QI],P(t2)), ..., (t,|Q1],P(t,))}. Each pair in our representation is a tuple in the orig-
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inal dataset. Thus, we can view each pair in our representas a point describing the
sensitive valu@(¢) that a tuple takes.
Finally, our goal of modeling background knowledge is tccoddte estimations of the

adversary’s prior belief functioR,,.;, which is defined over all possible QI valuesgQ)].

3.5.2 Estimating the Prior Belief Function

The general rationale for modeling background knowleddfegasthe adversary’s back-
ground knowledge about the data should be consistent wetddke in7” and should man-
ifest themselves ifi". For example, if the adversary knows that male cannot haagaywv
cancer, this piece of knowledge should exist in tébland we should be able to discover
it by mining the data irl". We now present a general model for modeling background
knowledge.

The adversary’s prior belief functiof,,; can be considered as the underlying proba-
bility distribution of the sensitive attribute in table. And the data in the original table
{(t1[QI],P(t1)), (t2[QI],P(t2)), ..., (t.[QI],P(t,))} can be considered as a data sample
that is consistent with the unknown prior belief functiBg,;. Our goal is to find the under-
lying prior belief functionP,,; that fits the original data.

One way of constructing an estimate of tRg; function is to use the maximum likeli-
hood estimator (MLE), where the prior belief for each tuglestimated as the distribution
among tuples with that QI value. There are several probleitisthis approach: (1) the
number of distinct QI values can be very large, in which caseMLE estimator is of high
variance and does not provide a reliable estimate; (2) th& kdtimator does not have pa-
rameters to allow estimation of differef},; functions; and (3) the MLE estimator models
each QI value independently and does not consider the senma@anings among the QI
values.

This leads us to the kernel regression estimation methoel k&mel regression method
is a non-parametrical technique in statistics to estimiagecbnditional expectation of a

random variable. Specifically, given a dataset, the kereglassion method tries to find
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the underlying function that is best-fit match to the datehasé data points. The kernel
regression estimator belongs to the smoothing method yatdérnel methods have been
extensively studied in the statistics, machine learning, @ata mining communities. Ex-
isting work has shown that kernel methods have a number afatiés properties: (1) they
can estimate the underlying function very effectively aBgthey are simple and efficient
to compute. We choose to use kernel regression method t@apate the probability

distribution function?,,;.

3.5.3 Kernel Regression Estimator

Kernel estimation includes two components: (1) the kennetfion K" and (2) the band-
width B. The kernel functionk” describes the form of the weight distribution, generally
distributing most of its weight to points that are close tolihe bandwidthB determines
the size of the impact ranges of the data point. The prolbghiistribution at a point is
estimated as the sum of the smoothed distributions of kéunetions associated with each
point in the dataset.

Formally, for one-dimensional data (i.el,= 1), the kernel regression estimation is
defined as follows. Giveg € D[A;] = D[QI], using Nadaraya-Watson kernel weighted

average [45], the probability distribution @is estimated as:

Y, P E (g~ tA)
Forild) = = R~ GA)

Note that the denominator is used to normalize the proltgblistribution.

(3.1)

Thus, the probability distributioR (¢,) of the sensitive attribute for tupte is smoothed
by the function/(.) which peaks at;[A;]. This allows for tailoring the estimation problem
to thelocal characteristics of the data.

For d-dimensional data, the kernel function is chosen to be tloeymt of d kernel
functions K;(.)(: = 1,2,...,d). More formally, given a QI valug = (¢1,42,..-,q4) €

D|QI], the approximate underlying prior belief functidh,; is estimated as:
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Boa) = > tyer P () T<icq Kila — 15[ Ai])
d theT ngigd Ki(qi — t;[Ai])
whereK; is the kernel function for théth attributeA,. Again, note that the denominator

(3.2)

is used to normalized the distribution.

The choice of the kernel functioR is not as important as the choice of the bandwidth
B. It has been shown by [31] that using different kernel fumt$iA” causes only small
effects on the accuracy of the estimator as compared wityingathe bandwidthB. So
preferences are given to the kernels with low computatioomalplexity. We thus choose to

use theEpanechnikov kernel functipwhich is widely used in kernel estimation:

Kow) — 4 G g <
0 otherwise
whereB = (By, B, ..., By) is the bandwidth vector.

The bandwidth provides a good measurement of how much bagikdrknowledge
an adversary can have. Specifically, a lafgieimplies that the adversary does not have
much knowledge about the relationship between the seasitivibuteS and thei-th quasi-
identifier A;. On the contrary, with a smalB;, the adversary is assumed to have more
fine-grained knowledge on the distribution of the sensititigibute with respect tol;.
Therefore, we are able to tune the bandwidth paramddetes model adversaries with
different levels of background knowledge.

Finally, we define the distance between two values of arbatgi Assume the attribute
domain ofA4; is D[A;] = {vi1, ..., vi- } Wherer = |D[A;]|. The attributeA; is associated
with ar x r distance matrix\/; where the (j,k)-th cell;;, (1 < j,k < r) indicates the
semantic distance betweer andv;,. The distance matriX/; is specified by the data
publisher. One way of defining the distance matrix is as ¥adlo If A; is a continuous
attribute, the distance matrix can be defined as:

|Uz'j — Vi
Ao = 2 "W
jk RZ
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where R; is the range of the attributd;, i.e., R = max;{v;;} — min;{v;;}. If 4;is a
categorical attribute, the distance matrix can be defineddban the domain hierarchy of

attributeA;:
h(%‘j, Uz‘k)
H;

whereh(v;;, v;;) is the height of the lowest common ancestovgfandv;;,, andH; is the

djk -

height of the domain hierarchy of attributg.

Given parameter®, let Adv(B) denote the parameterized adversary whose back-
ground knowledge can be modeled by bandwmgthn the following, we denoté,,;,(B, q)
as the prior belief of the parameterized adversédy (B) on the sensitive attribute of an

individual whose quasi-identifier value¢se D[QI].

3.5.4 Scope of the Model

We demonstrate the scope of the kernel estimation model {fne amount of back-
ground knowledge that can be modeled in the model). Our ntaaethree characteristics:
(1) we focus on background knowledge that is consistentthildata; (2) we model back-
ground knowledge as probability distributions; and (3) e kernel regression estimator
to compute background knowledge. We demonstrate the sdomé onodel along these

dimensions.

General Privacy Models. Several existing privacy models, such/agiversity (which re-
quires the sensitive attribute values in each group to bd-wepresented”), do not specif-
ically consider the prior belief that an adversary has (Werrsuch an adversary as the
ignorant adversary). This ignorant adversary can be vieagedn adversary with a prior
belief that every sensitive attribute value is equally gasdor every individual in the data,
i.e., Ppyi(g) = (£, L,...,+) for everyq € QI. This knowledge is inconsistent with the
data, when the sensitive attribute is not uniformly disttdal in the data. Given this back-
ground knowledge, the adversary’s knowledge gain is uciage. Our model does not
model such an adversary. Equation (3.1) and Equation (B&®y ¢hat adversaries modeled

in our model always have the correct belief about the oveliattibution of the sensitive
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attribute in the data. This is consistent with thddoseness model (which requires the distri-
butionP of each group to be analogous to the distributipaf the whole table with respect
to the sensitive attribute}-Closeness considers the adversary who kn@weom the re-
leased data. Our model can model the background knowledgesadversary as follows.
For each tuple,; € T, t; distributes its probability distributioR (¢,) equally to all tuples
in the table and therefore, every tuple in the table recdivessame shargP(t]—). This
type of adversary is a special adversary modeled by Equédi@h In Equation (3.2), the
B;(1 <i < d) is defined as the range of the domaif(1 < i < d) and theK;(1 <i < d)

is defined as the uniform function. In other words,(z) = 1/B; forall 0 < x < B,.
Then, Equation (3.2) reducesf@n(q) = %EtjeTP(tj), which is the distribution of the

sensitive attribute in the whole table.

Knowledge about Specific Individuals and Relationships amuag Individuals. We note
that our model does not model all types of background knogdetiat an adversary may
have. Three types of knowledge have been considered intdratlire [35]: (1) knowl-
edge about the target individual which are negative assoo& e.g., Tom does not have
Cancer (2) knowledge about others which are positive associafiery., Gary has flu; (3)
knowledge about same-value families, e{dlice, Bob, Caro} could belong to the same-
value family (i.e., if one of them has a sensitive value, #ileos tend also to have the same
sensitive value).

Our model models background knowledge as probability ibigions and does not
consider type-3 background knowledge, i.e., knowledgeuatite relationship between
individuals. That is, we make theiple-independerdssumption: the sensitive attribute
values of the tuples in the table are independent of each.offiee first two types of
knowledge can be represented using our prior belief funstid=or example, if tuple;
does not have the sensitive valyethen thei-th component of the probability distribution

P,.i(t;|QI]) is 0.

Knowledge about Algorithms and Optimization Objectives. Knowledge about the al-

gorithms and optimization objectives for anonymizing dzga be used to help adversaries



70

infer the original data, as shown recently by Wong et al. [4®lis kind of knowledge can-
not be modeled using prior belief function about individudk is an interesting research
direction to study this and other kinds of knowledge that magble an adversary to breach

individuals’ privacy.

3.6 Integrating Background Knowledge in Distribution-Based Injector

When we have modeled the adversary’s prior belief aboutehsigve attribute of all
individuals in the table, we now explain how an adversaryngiea her belief when she sees
the released table using Bayesian inference techniques.

Before we present our approach for computing the postegbefp we describe how
the data can be anonymized. We then give an example showimgmadversary changes
her belief when she sees the released table and describertembformula for computing
posterior belief. As exact inference is hard to compute, wip@se an approximation

inference method called-estimate.

Anonymization Techniques Two widely-studied data anonymization techniques are gen-
eralization [4, 10, 47] and bucketization [20, 21, 34]. Imgralization, quasi-identifier val-
ues are replaced with values that are less-specific but smalnconsistent. Bucketi-
zation, on the other hand, first partitions tuples into grangd then separates the sensitive
attribute from the QI attributes by randomly permuting teestive attribute values in each
bucket.

The main difference between the two anonymization tectesdies in that bucketiza-
tion does not generalize the QI attributes. When the admekseows who are in the table
and their QI attribute values, the two anonymization teghas become equivalent. When
these techniques are used to anonymize the data, the agvalksays knows that a group
of individuals take a set of sensitive attribute values,dmés not know the exact mapping.
For example, in the generalized table in Table 3.1(b), tis¢ thiree tuplest,, t,, t3} form
a group and take valud€'mphysema, Cancer, Flu}. But the exact mapping, e.g., which

one of the three tuples h&mphysemais unknown. In this chapter, we assume that the
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adversary knows who are in the table and their QI values.isctse, the adversary’s goal
is to infer the exact mapping between the set of individuatkthe set of sensitive attribute
values.

Most existing works consider every mapping between thesesgis to be equally prob-
able. For example, in the first group of Table 3.1(b), eacthefthree tuples,, t,, andt;
is assumed to have a probability bf3 to takeEmphysemaHowever, armed with back-
ground knowledge, an adversary can make more precisemuiere.g.t; will have a much
larger probability tharl /3 to takeEmphysemaThis section provides a study on how to

compute these probabilities based on the adversary’s baokd knowledge.

3.6.1 An lllustrating Example

Consider the example shown in Table 3.2(a) where we have @pgrbthree tuples
{t1,t2,t3} and their sensitive attribute values gneone, none, HIV'}. Suppose that the
adversary wants to find out the probability thatakes the HIV disease.

Assume that the adversary has some prior beliefs on thetisenaitribute of tuples
in the table as shown in Table 3.2(b). For example, she knbatshiotht; andt, have a
probability of5% to take HIV and a probability 0§5% to have some non-sensitive disease
such adlu.

From Table 3.2(a), the adversary knows that exactly oneeoftitee tuplegt,, to, t5}
takes HIV. With this in mind, the adversary lists the thresgble cases of which tuple
takes HIV as shown in Table 3.2(b). In the following, we U3eob(E) to denote the
probability the event’ occurs.

In casel, t; takes HIV whilet; andt, take the non-sensitive values. Therefore, the

probability that casé occurs is:

P(Case 1) « p1 = P(nonelt;) x P(nonelty) x P(HIV|t3)
=0.95x0.95 x 0.3 =0.271
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Similarly, we obtain:

P(Case 2) x py = P(nonelt;) x P(HIV |ty) x P(nonelts)

=0.95x0.05 x 0.7=0.033
and

P(Case 3) x ps = P(HIV|t;) x P(nonelty) x P(nonelts)

=0.95 x 0.05 x 0.7 = 0.033
We are then able to compuigCase 1) as:

P —08

P(Casel) = ——— =
D1+ P2+ P3

Thus, the posterior probability that takes HIV is:
P(Case 1) x 1+ P(Case2) x 0+ P(Case 3) x 0

= P(Case 1) = 0.8

In summary, the adversary’s belief thtgthas HIV changes from 0.3 to 0.8, which is a
significant increase. This shows that inferences usingaiitibtic background knowledge

can breach individuals’ privacy.

3.6.2 General Formula

We derive the general formula for computing the posteritiebasing Bayesian infer-
ence techniques (the idea is illustrated in the examplegb®Ve consider a group of k
tuples (namelyE = {t, s, ..., tx}). Let the multi-setS denote all sensitive attribute values
in E.

In the following, we usé’(s;|t;) andP*(s;|t;) to denote the prior belief and the poste-
rior belief that tuplet; (1 < j < k) takes the sensitive valug(1 < i < m), respectively.

We denoteP (S| E) as the likelihood that the tuples Kitake the sensitive attribute value

in S, which can be computed as the sum of the likelihood of evesgibte assignments
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3.2

An lllustrating Example (Example of Privacy Reasoning)

(a) A group of three tuples

tuple

t
to
t3

disease

none
none
HIV

(b) The adversary’s prior belief table

t

ta

i3

P(HIV|t;) = .05

P(HIV|t,) = .05 | P(HIV|t;)

P(nonelt;) = .95

=.3
P(nonelty) = .95 | P(nonel|t;) = .7

(c) The three possible cases

i1

to t3

Case 1

none

none| HIV

Case 2

none

HIV | none

Case 3

HIV

none| none

betweenE andS. For example, consider the tuples in Table 3.2(a), theréhaee possible

assignments as shown in Table 3.2(c):

P({none,none, HIV}|{t1,ts,t3})

=P(none|ty) x P(nonelty) x P(HIV |ts)

+ P(nonelt;) x P(HIV|ty) x P(nonelts)

+ P(HIV|t;) x P(nonelty) x P(nonelts)
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Based on Bayes' rule, the posterior beli&f(s;|¢;) is proportional to the product of the
prior belief P(s;|t;) and the normalized likelihood that the- 1 tuples inE£\ {¢; } take the

k — 1 sensitive attribute values i\ {s; }:

) P(silt;) x P(S\{s:}|E\{¢;})
P*(si[tj) o< n; x PGIE) (3.3)
e Plslt) < PSS HEA) -

>y Plsilty) x P(S\{s:}| E\{t;})
wheren; is the frequency of; in the multisetsS.

We can compute the likelihooB(S|E) by enumerating all possible assignments be-
tweenFE andS. In general, assume that in the multi-Sethe values; (1 < i < m) appears
n; times, the total number of possible assignmenﬁiéln—i! where} " n; = k.

This shows that computing the exact formula requires expislecomputation time.
We note that the likelihoo® (S| E) is exactly thgpermanenof the matrix where thé;, j)-
th cell is the prior probabilityP(s;|t;) (note that each sensitive value in the multiset
holds a column and it will be & x k matrix). The problem of computing the permanent is
known to be a# P-complete problem. A number of approximation algorithmegehbaeen
proposed to compute the permanent of a matrix. The statealrths the polynomial-time
randomized approximation algorithm presented in [48]. Eesv, the time complexity is
of order of O(k??). It is thus not feasible for the general formula to work forasgke k.
In the following, we turn to approximation algorithms formaputing the posterior belief.
The approximation algorithm allows us to compute the pastéelief accurately enough

while in time linear to the size of the group.

3.6.3 Approximate Inferences:()-estimate

In the following, we consider a heuristic to estimate thet@asr probabilityP*(s;|t;).
We represent the prior beliefs as a bipartite graph wheresehef nodes consists of tuples
in the group and the other set of nodes consists of sensdivey in the group. Each edge

from tuplet; to sensitive valug; is associated with the probabilify(s;|¢;).
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Our approach is a generalized version of@¢hestimate used by Lakshmanan et al. [39],
where they estimate the number of correct mappings betwegnal items and anonymized
items. In that context, a item either can be linked to an anopngd item or cannot be linked
to the anonymized item. In our context, a tuple can be linkead $ensitive attribute value
with a certain probability.

Based on the prior belief; can be linked ta; with a probability ofP(s;|t;) andt;, can
be linked tos; with a probability of P(s;|t;/) for all 1 < j* < k. Therefore, the probability

thatt; takess; is given by
P(silt;)

Z?’:l P(silty)
We call this heuristic th&-estimate(denoted as$l(s;|t;)). s; appears; times inS and by

summing up this probability across all thesevalues, we get an estimation of the posterior

probability:
P(silt;)
Z?’:l P(silty)
By normalizing the probability ditribution for each, we obtain

Q(Si|t]‘) X n; X

X kP(Sz'ltj)
Zj/:1 P(Si‘tj’)

m P(srlt;)
Ny X ==~
ZT’:l T 251:1 P(S’,-‘tj/)

n

Qsilty) = (35)
The above estimation technique makes the random world gasm{49], where every
reasonable mapping between individuals and sensitivibatier values is equally proba-
ble. Specifically, Equation (3.5) can be directly derivazhirthe formula shown in Equa-
tion (3.4) by assuming’(S — {s;}|E — {t;}) = P(S — {s;}|E — {t;}) forall 1 < j" < k.

In [11], Machanavajjhala et al. studied the problem of clatng the posterior belief
under the framework ofjieneralizationby employing the random world theory. Not sur-
prisingly, the results they obtained fgeneralizationare consistent with our results for
bucketization

We note that thé2-estimate is not exact. Consider the example shown in TaBl@)3
again where we have a group of three tuglast,, t3} and their sensitive attribute values
are{none, none, HIV'}. Now, assume the adversary has different prior beliefs agish

in Table 3.3 and she wants to find out the sensitive valuetthiatkkes. Using the general
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Table 3.3
Prior Belief Table (Example of Privacy Reasoning)

t 2 t3
PHIVIt) =0 | P(HIV|t:) =0 | P(HIV]|ts) = .3
P(nonelt;) =1 | P(none|ty) =1 | P(nonel|ts) =.7

formula for exact inference, the probability can be caltadaas follows. First, we have
P({none,none}|{t1,t2}) = 1 x1 =1landP({none, HIV}|{t1,t2}) = 1x0+0x1=0.
Therefore we have:

P(HIV|ts) x 1

P*(HIV|t3) =
(HIV]ts) P(HIV|t3) x 14 P(nonel|ts) x 0

=1

It is intuitive thatt; must take the HIV disease because nong @ndt, can take the
HIV disease. However, based on tieestimate, the probability is calculated as:

0.3
1 x g3

0.3 0.7
Lx G5 +2x3;

QHIV|t;) = = 0.66

Here, the inexactness of tli&estimate results from the fact th@testimate assigns
a uniform likelihood to the following two events: (¥};,t¢,} take {none,nong and (2)
{t1,t,} take {none,HIV}. However, these two events have very different likelihookths
fact, the second event cannot occur under the prior belrefais in Table 3.3. In general,
the Q-estimate is accurate enough for use in practice. In Se8tionthe accuracy of the

Q-estimate is empirically evaluated with real datasets.

3.6.4 The Privacy Model

The next step is to extend privacy definitions for data pihiohig to consider background
knowledge. We define oyB, ¢)-privacy model. Given the background knowledge param-
eterB and a target individuat whose quasi-identifier value is€ D[QI], the adversary
Adv(B) has a prior belief,,;(B, ¢) onr’s sensitive attribute. When she sees the released

tableT™, she has a posterior beli€},(B, ¢, 7*) onr’s sensitive attribute. The distance of
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the two probabilistic beliefs measures the amount of seesitformation about individual
r that the adversaryldv(B) learns from the released data. Based on this rationale, we

define the(B, t)-privacy principle as follows:

Definition 3.6.1 (the(B, t)-privacy principle) Given two parameter® and¢, an anonym-
ized tableT™ is said to have B, t)-privacy iff the worst-case disclosure risk for all tuples

(with QI value beingp) in T is at most:
max D[P,.;(B, q), Ppos(B, ¢, T")] <t
q
whereD[P, Q] is the distance measure of two distributidAsind Q.

The parameteB determines the profile of the adversary (i.e., how much backgl
knowledge she has)B = { B, Bs, ..., B4} is ad-dimensional vector, which allows the
data publisher to specify values for different componefitthe vector. For example, an
adversary may know more information about attribdtethan about attributed; of the
table. In this case, we would set a smaller valueBpithan for B; to accurately model
the knowledge of the adversary. On the other hand, the pasaimgefines the amount of
sensitive information that is allowed to be learned by tligessary.

The above privacy model only protects the data against adsies with a particular
amount of background knowledd® While this model gives the data publisher the flexi-
bility to specify the parametdB, the main challenge is how to protect the data against all
kinds of adversaries with different levels of backgroundwledge. Of course, the data
publisher can enumerate all possilideparameters and enforce the above privacy model
for all theseB parameters.

In Section 3.7, we empirically show the continuity of the stecase disclosure risk with
respect to the background knowledge parameters, i.ehtgiganges of thd parameter
do not cause a large change of the worst-case disclosurelnigkefore, the data publisher
only needs to define the privacy model for a set of well-chd3grarameters.

The data publisher can define a set of background knowledgengter®8, B,, ..., B..
and enforce the following skylin@, ¢)-privacy principle to protect the data against adver-

saries with all levels of background knowledge.
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Definition 3.6.2 (the skyline(B, t)-privacy principle) Givenaskylind(Bq,t;), (Ba, ts),
-+, (B, t.)}, an anonymized tabl&* satisfies the skylinéB, ¢)-privacy requirement iff
fori = 1 tor, the worst-case disclosure risk for all tuples (with QI valoeingg) in T is
at mostt;:

max D[ Pyri(By, 0), Pos(By 0. 7)) < 1,

In practice, the data publisher specifies a set of backgr&oodledge parametei3;,
together with the,; parameter for eacB;. This allows the data publisher to specify and
enforce privacy requirements for different adversariesufianeously. As we point out
above, the worst-case disclosure risk distributes coatisly with respect to the back-
ground knowledge parameter. This allows the data publighese a set of well-chosen
background knowledge parameters to protect the data againsrsaries with all levels of
background knowledge. Also, the data publisher can seutigfarameters and has the

flexibility to define their own parameters for special cases.

3.7 Experiments

The main goals of the experiments are to study the effectackdround knowledge
attack on existing methods and to study the effectivenefisedhjector approach in both
privacy protection and data utility preservation.

The dataset used in the experiments is the Adult datasettlierC Irvine machine
learning repository [33], which is comprised of data cdiecfrom the US census. We
configured the data as in the experiments reported in SeZ#brAll algorithms are imple-
mented in Java and the experiments are performed3o®@HZ Pentiumd machine with
2.0GB of RAM.

In Section 3.7.1, we evaluate background knowledge attackexisting methods and
show that background knowledge attacks are real threatsitacy in data publishing.
We evaluate Rule-Based Injector in Section 3.7.2 and Distion-Based Injector in Sec-

tion 3.7.3 in terms of both efficiency and utility.
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minEzp | |R| | No N, Ny Ns Ny | N>s
0.75 | 45| 0 | 80.4%| 15.9%| 2.3% | 1.2% | 0.2%
0.80 39| 0 | 84.6%| 12.2%| 2.1% | 1.0% | 0.1%
0.85 32| 0 | 87.5%| 9.2% | 2.0%| 1.0%| O
0.90 22| 0 | 87.9%| 9.2% | 2.5%| 0.4%| O
0.95 15| 0 | 96.2%| 1.8% | 2.0%| O 0

Fig. 3.3. Experiments: Discovered Rule Statistics

3.7.1 Background Knowledge Attacks

We first evaluate background knowledge attacks on existiathods. We show that
both rule-based background knowledge attacks and distsibbbased attacks are real threats
to privacy in data publishing.

Rule-based background knowledge attacks We evaluate the effects of rule-based back-
ground knowledge attacks on a popular anonymization teciesinatomy[20]. Given the
dataset, we compute both the corresponding anatomizezstabt the injected tables. The
anatomized tables are computed using the anatomizingithigodescribed in [20]. To
compute the injected tables, we first find negative assodiatiles in the original dataset
using differentminExp values. In all our experimentsyinConf is fixed to bel.

Figure 3.3 shows the results of negative association rutengion the original data.
|R| indicates the number of discovered negative associati@s.r&v,, Ny, N, N3, and
N, indicate the percentage of tuples that haye, 2, 3, and4 incompatible sensitive val-
ues, respectivelyN-; indicates the percentage of tuples that have at leastompatible
sensitive values. The negative association rules disedveosm the data include, for exam-
ple, {Workclass = Governmeht> —{Occupation = Priv-house-sejvand { Education =
Doctorate= — {Occupation = Handlers-cleanefs We then compute the injected tables

using the bucketization algorithm described in Section 3.4
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Number of vulnerable tuples Number of vulnerable tuples
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400 : 400 + ]
200 - . 200 - 8
0 0
075 08 085 09 095 3 4 5 6
minExp value | value
(a) VariedminFExp values (b) Varied values

Fig. 3.4. Experiments: Rules-based Background Knowledtgchs

We evaluate the performance AhatomyandInjector on two parameters: (kpinEzp
value within the rang@.75, 0.95] (the default value i6.9); (2) ¢ value which ranges from
3 to 6 (the default value i§). Since the anatomizing algorithm is a randomized algorjth
for each set of selected parameters, we run the anatomilgogtam for 10 times and the
average value is reported.

To illustrate the effects of background knowledge attaclAoatomyandInjector, we
count the number of tuples in the anatomized tables and jbetad tables that have less
than/ possible sensitive values using the extracted negative@s®n rules. These tuples
are viewed as vulnerable to background knowledge attack.

The experimental results are shown in Figure 3.5. In all erpents, Injector has
no vulnerable tuples, indicating thhtjector better protects the data against background

knowledge attacks.

Distribution-based background knowledge attacks. We evaluate the effect of proba-
bilistic background knowledge attacks on existing privanydels. Given the dataset, we
use the variations of Mondrian multidimensional algorifif8] to compute the anonymized
tables using different privacy models: (1) distidediversity; (2) probabilistid-diversity;
(3) t-closeness; and (4B, t)-privacy.
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Number of vulnerable tuples Number of vulnerable tuples
50000 50000
45000 - distinct--diversity HEEEE | ,c000 | distinct-l-diversity = _
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35000 - (B,Y)-privacy ===1 35000 |- (B.t)-privacy =1 A
30000 | - 30000 F E
25000 | ~ 25000 - E
20000 | - 20000 - E
15000 - -4 15000 - E
10000 - - 10000 - E
5000 4 5000 F E
0 0
0.2 0.3 04 05 paral para2 para3 para4
b’ value privacy parameter
(a) Variedd' values (b) Varied privacy parameters

Fig. 3.5. Experiments: Distribution-based Background Kiealge Attacks

Table 3.4
Privacy Parameters Used in the Experiments
k|e]| t b
paral| 3 | 3| 0.25| 0.3
para2|| 4 | 4| 0.2 | 0.3
para3|| 5| 5| 0.15] 0.3
parad|| 6 | 6 | 0.1 | 0.3

The variations of Mondrian use the original dimension ggd@@nd median split heuris-
tics, and check if the specific privacy requirement is sa&isfiThe four privacy models
protect the data against attribute disclosure. To protimtity disclosure, we also en-
force k-anonymity (each group contains at leasecords) together with each of the above
privacy models.

For each experiment, we evaluate the performance with cespéour sets of privacy
parameters in Table 3.4. To make the comparisons easiersa¢he samé value for
distinct/-diversity and probabilistié-diversity, the same for ¢-closeness an@B, t), the

sameb value, and: = / for all cases as shown in Figure 3.4.
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We assume that adversary’s background knowledge is modigldlde &’ parameter,
ie.,B = (¥, ¥,..., ). To illustrate the effects of probabilistic background whedge, we
apply the prior belief function computed froB' on each of the four anonymized tables,
compute the posterior beliefs of each tuple, and report timeter of tuples whose privacy
is breached under that privacy requirement. These tupéesiewed as vulnerable to the
probabilistic background knowledge attacks.

Our first set of experiments investigates the effect/gbarameter on the number of
vulnerable tuples. We fix the privacy parametérs= ¢ = 4, ¢t = 0.2, andb = 0.3.
Figure 3.5(a) shows the number of vulnerable tuples in tlve &monymized tables with
respect to different’ values. As we can see from the figure, the number of vulnerable
tuples decreases aSincreases. This is because a largevalue corresponds to a less-
knowledgeable adversary.

The second set of experiment investigates the effect oapyiparameters shown in
Table 3.4 on the number of vulnerable tuples. We fix the adwgisparametet’ = 0.3.
Figure 3.5(b) shows the experimental result.

As we can see from these figures, i ¢)-private table contains much fewer vulner-
able tuples in all cases. This shows that tBet)-privacy model better protects the data

against probabilistic-background-knowledge attacks.

3.7.2 Rule-Based Injector

In this section, we evaluate the performancewé-based Injectoto show that it is

efficient to use and preserves data utility.

Efficiency. We compare the efficiency of computing the anatomized talvidshe injected
tables. The time for computing the injected tables consikta/o parts: (1) the time for
computing the negative association rules and (2) the timedmputing the injected tables
using the bucketization algorithm.

Experimental results are shown in Figure 3.6. The time tomam the injected ta-

bles using the bucketization algorithm is roughly the saméha time to compute the
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Efficiency (min) Efficiency (min)
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Fig. 3.6. Experiments: Efficiency of Rule-Based Injector

anatomized tables using the anatomizing algorithm, ugwathin seconds. The main ef-
ficiency issue of computing the injected tables lies in cotimguthe negative association
rules. However, computing the negative association rusgsgua variation of the FP-tree

algorithm is fast enough for large datasets.

Data utility. We evaluate data utility based on the accuracy of aggregegey @answer-
ing. Experimental results are shown in Figure 3.7. In all légulnjector has smaller
errors, which indicates théjector permits more accurate data analysis in aggregate query

answering thanatomy

3.7.3 Distribution-Based Injector

In this section, we evaluatiistribution-based Injectoto show that it is efficient to use
and preserves data utility. We also evaluate the accuratlyed®-estimate and illustrate
the continuity of the worst-case disclosure risk with respe the background knowledge

parameteiB.

Efficiency. We compare the efficiency of computing the four anonymizéteta We

compare the efficiency with regard to different privacy paegers. Figure 3.8(a) shows the
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Fig. 3.7. Experiments: Utility of Rule-Based Injector

results. As we can see from Figure 3.8(a), the running tineeedeses with increasingly
stringent privacy requirements becabdendrianis a top-down algorithm.

Here, the time to compute th@, ¢)-private table does not include the time to run the
kernel estimation method to compute the background knaydeds we can see from Fig-
ure 3.8(a), without considering the time for estimatingkggound knowledge, the running
time to compute théB, t)-private table is roughly the same as the time to compute the

other tables, usually within seconds.
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Fig. 3.9. Experiments: Utility of Distribution-Based lcjer

We then evaluate the efficiency of computing background kedge using the kernel

estimation method, which is the main efficiency issue of (Bet)-privacy model. Fig-

ure 3.8(b) shows the results. As we can see from the figuredjrtte to compute back-

ground knowledge is larger than the time to anonymize the, =rtially becaus&lon-

drian runs much faster than many other anonymization algoritivireover, computing

background knowledge is still fast enough for large-enadaflasets, usually within several

minutes.



86

Aggregate distance error

0.3

025 b=0.3 - 1
b=0.4
02} b=05 -

015 | b

005k - -

N value

Fig. 3.10. Experiments: Accuracy of theEstimate

Data utility.  To compare data utility of the four anonymized tables, wduata the
anonymized data both in terms of accuracy in aggregate cqueswyering. Figure 3.9(a)
shows the average relative error as a function of the quengnision. As the query di-
mension increases, average relative error decreases aralotte, the anonymized data
performs better for queries with a larger query dimensiomguie 3.9(b) shows that as
the query selectivity increases, average relative erswr deécreases. This shows that the
anonymized data can answer more accurately on queries Valgyer selectivity. In all
figures, we can see that thB, ¢)-private table can answer queries as accurately as all other

anonymized tables.

Accuracy of the 2-estimate. To evaluate the accuracy of theestimate, we randomly
pick a group ofN tuples from the table and apply both exact inference anfthstimate
on theN tuples. Each tuple has a prior distributi®,,;, the exact inference distribution
P..., and theQ-estimate distributio®,,,,.. We then compute thaverage distance error

which is the estimation error averaged over all of Meuples:
1 N
P = N Z ‘D[Pemm Ppri] - D[Pom67 Ppri”
j=1

We run the experimerit00 times and the average is reported. Figure 3.10 depicts the

average distance errowith respect to differenfV values. In all cases, the-estimate is
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Fig. 3.11. Experiments: Continuity of Worst-Case DisclesRisk

within 0.1-distance with the exact inference. The experiments shabtkie()-estimate is

accurate enough to be used in practice.

Continuity of disclosure risk. The goal of this experiment is to show the continuity of the
worst-case disclosure risk with regard to the backgrourmiedge parametds. We first

fix the adversary with the background knowledge parantétehich can be one of the four
values{0.2,0.3,0.4,0.5}. We then generate a set @B, ¢)-private tables with different
parameters. For each anonymized table, we compute the-easstdisclosure risk by the
adversary. The worst-case disclosure risk is computedeastiximum knowledge gain
for all tuples in the tablemax,{D[P,.:(B’, q), Pps(B’, ¢, 7%)]}. Figure 3.11(a) shows the
results. As we can see from the figure, the worst-case dig@ossk increases/decreases
continuously with respect to thieparameter.

We then evaluate the continuity of the disclosure risk wébpect to the background
knowledge parameted8 = (by, by, by, by, bo, by), i.€., the adversary’s background knowl-
edge on the first three attributes is modeledpgnd her background knowledge on the last
three attributes is modeled by. Here, we fix the adversary’s parameier 0.3 and com-

pute the worst-case disclosure risk by the adversary wiberet to differentb,, b,) values.
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Figure 3.11(b) shows the results. As we can see the figuresydhst-case disclosure risks
increases/decreases continuously among the domabn, ¢f).

These experiments show that slight changes of the backdricumwvledge parameters
will not cause a large change of the worst-case disclosske tihne conjecture we made
in Section 3.6.4. This validates our approach of using a seteti-chosen background
knowledge parameters to protect the data against adwessaith all levels of background

knowledge.

3.8 Chapter Summary

In this chapter, we proposed the Injector approach for mogdeind integrating back-
ground knowledge in data anonymization. We presented tyextior models (rule-based
Injector and distribution-based Injector) and demonsttaiow to integrate background

knowledge for both of them.
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4. SLICING: ANONYMIZING HIGH-DIMENSIONAL DATABASES

The two most popular anonymization techniques are gerzateln [1,4,47] and bucketiza-
tion [20,21]. For both of them, one first removes identifieosrf the data and then partitions
tuples into buckets. The two techniques differ in the neapsiGeneralization transforms
the Ql-values in each bucket into “less specific but semalhfyiconsistent” values so that
tuples in the same bucket cannot be distinguished by thewal@ks. In bucketization, one
separates the SAs from the QIs by randomly permuting the 3£esan each bucket. The
anonymized data consists of a set of buckets with permutesitae attribute values.

It has been shown [20, 24, 50] that generalizationkf@nonymity losses considerable
amount of information, especially for high-dimensionaladaThis is due to the following
three reasons. First, generalization feanonymity suffers from the curse of dimensional-
ity. In order for generalization to be effective, record$¢hie same bucket must be close to
each other so that generalizing the records would not lasentech information. However,
in high-dimensional data, most data points have similaadtses with each other, forcing
a great amount of generalization to satisfgnonymity even for relatively smali's. Sec-
ond, in order to perform data analysis or data mining taskbegeneralized table, the data
analyst has to make the uniform distribution assumptiohetiary value in a generalized
interval/set is equally possible, as no other distribuseumption can be justified. This
significantly reduces the data utility of the generalizethd@hird, because each attribute is
generalized separately, correlations between differgribates are lost. In order to study
attribute correlations on the generalized table, the dia#dyat has to assume that every
possible combination of attribute values is equally pdssibhis is an inherent problem of
generalization that prevents effective analysis of aitelzorrelations.

While bucketization [20, 21] has better data utility thamealization, it has several
limitations. First, bucketization does not prevent mersbgr disclosure [9]. Because

bucketization publishes the QI values in their originalnfigy an adversary can find out
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whether an individual has a record in the published data tr As shown in [4], 87% of
the individuals in the United States can be uniquely idesdifising only three attributes
(Birthdate Sex andZipcodg. A microdata (e.g., census data) usually contains margroth
attributes besides those three attributes. This meanshtbahembership information of
most individuals can be inferred from the bucketized taSkcond, bucketization requires
a clear separation between Qls and SAs. However, in mangetatat is unclear which
attributes are Qls and which are SAs. Third, by separatiagémsitive attribute from the
QI attributes, bucketization breaks the attribute cotietes between the Qls and the SAs.

In this chapter, we introduce a novel anonymization teamaicplledslicingto improve
the current state of the art. Slicing partitions the datasét vertically and horizontally.
Vertical partitioning is done by grouping attributes inwumns based on the correlations
among the attributes. Each column contains a subset di#ts that are highly correlated.
Horizontal partitioning is done by grouping tuples into kets. Finally, within each bucket,
values in each column are randomly permutated (or sortedjetak the linking between
different columns.

The basic idea of slicing is to break the association crokswus, but to preserve the
association within each column. This reduces the dimeasigrof the data and preserves
better utility than generalization and bucketization. cidlyj preserves utility because it
groups highly-correlated attributes together, and puesethe correlations between such
attributes. Slicing protects privacy because it breakafiseciations between uncorrelated
attributes, which are infrequent and thus identifying. é\titat when the dataset contains
QIs and one SA, bucketization has to break their correlasificing, on the other hand, can
group some QI attributes with the SA, preserving attributeedations with the sensitive
attribute.

The key intuition that slicing provides privacy protectienthat the slicing process
ensures that for any tuple, there are generally multiplechiagy buckets. Given a tuple
t = (vq1,v,...,v.), Wherec is the number of columns ang is the value for the-th
column, a bucket is a matching bucket faf and only if for eachi (1 < i < ¢), v; appears

at least once in théth column of the bucket. Any bucket that contains the oragjituple
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is a matching bucket. At the same time, a matching bucket eatub to containing other
tuples each of which contains some but notgi.

In this chapter, we present a novel technique calledng for privacy-preserving data
publishing. First, we introduce slicing as a new technigoredrivacy preserving data
publishing. Slicing has several advantages when compaitecgeneralization and buck-
etization. It preserves better data utility than geneadilim. It preserves more attribute
correlations with the SAs than bucketization. It can alsediahigh-dimensional data and
data without a clear separation of QIs and SAs.

Second, we show that slicing can be effectively used forgmremg attribute disclosure,
based on the privacy requirement @tliversity. We introduce a notion calleddiverse
slicing, which ensures that the adversary cannot learnghsitsve value oainyindividual
with a probability greater thahy/ /.

Third, we develop an efficient algorithm for computing thieestl table that satisfies
diversity. Our algorithm partitions attributes into colngs) applies column generalization,
and partitions tuples into buckets. Attributes that arenhlyigcorrelated are in the same
column; this preserves the correlations between suclbatiys. The associations between
uncorrelated attributes are broken; the provides betteaqy as the associations between
such attributes are less-frequent and potentially id@ntit

Fourth, we describe the intuition behind membership dgaie and explain how slicing
prevents membership disclosure. A bucket of ¢izmn potentially matchk* tuples where
c is the number of columns. Because o#lyf the £¢ tuples are actually in the original
data, the existence of the othegr— k tuples hides the membership information of tuples in
the original data.

Finally, we conduct extensive workload experiments. Osuits confirm that slicing
preserves much better data utility than generalizatiomvdrkloads involving the sensitive
attribute, slicing is also more effective than bucketizati In some classification experi-
ments, slicing shows better performance than using thenatiglata (which may overfit
the model). Our experiments also show the limitations ofkbtization in membership

disclosure protection and slicing remedies these linaiteti



92

The rest of this chapter is organized as follows. In Sectidn we formalize the slic-
ing technique and compare it with generalization and buzkedn. We defing-diverse
slicing for attribute disclosure protection in Section 4r#l develop an efficient algorithm
to achieve/-diverse slicing in Section 4.3. In Section 4.4, we explawIslicing prevents
membership disclosure. Experimental results are present8ection 4.5. We present a

summary of the chapter in Section 4.6.

4.1 Slicing: Formalization and Analysis

In this section, we first give an example to illustrate slicilVe then formalize slicing,
compare it with generalization and bucketization, andwis@rivacy threats that slicing
can address.

Table 4.1 shows an example microdata table and its anongnaeasions using various
anonymization techniques. The original table is shown ibl§&.1(a). The three QI at-
tributes are{ Age, Sex, Zipcode}, and the sensitive attribute SA i3isease. A generalized
table that satisfies-anonymity is shown in Table 4.1(b), a bucketized table slasisfies3-
diversity is shown in Table 4.1(c), a generalized table wleach attribute value is replaced
with the the multiset of values in the bucket is shown in Tabld), and two sliced tables
are shown in Table 4.1(e) and 4.1(f).

Slicing first partitions attributes into columns. Each c¢olucontains a subset of at-
tributes. This vertically partitions the table. For examphe sliced table in Table 4.1(f)
contains2 columns: the first column contaidqsige, Sexz } and the second column contains
{Zipcode, Disease}. The sliced table shown in Table 4.1(e) containsolumns, where
each column contains exactly one attribute.

Slicing also partition tuples into buckets. Each bucketams a subset of tuples. This
horizontally partitions the table. For example, both gli¢ables in Table 4.1(e) and Ta-
ble 4.1(f) contairk buckets, each containirggtuples.

Within each bucket, values in each column are randomly ptted to break the link-

ing between different columns. For example, in the first letick the sliced table shown in
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Original/Anonymous Tables (Example of GeneralizatioroBatization/Slicing)

(a) The original table

Age | Sex | Zipcode| Disease
22 | M | 47906 | dyspepsia
22 | F 47906 flu
52 | F | 47905 | bronchitis
54 | M 47302 flu
60 | M | 47302 | dyspepsia
64 | F | 47304 | gastritis

(c) The bucketized table

(b) The generalized table

Age | Sex| Zipcode| Disease
[20-53 | * 4790* | dyspepsia
[20-53 | * | 4790% flu
[20-53 | * 4790* | bronchitis
[54-64 | * | 4730* flu
[54-64 | * 4730* | dyspepsia
[54-64 | * 4730* | gastritis

(d) Multiset-based generalizatio

Age | Sex| Zipcode| Disease Age Sex Zipcode Disease
22 | M | 47906 flu 22:2,52:1 | M:1,F:2 | 47905:1,47906:2 dysp.
22 | F | 47906 | dysp. 22:2,52:1 | M:1,F:2 | 47905:1,47906:2 flu

52 | F | 47905 | bron. 22:2,52:1 | M:1,F:2 | 47905:1,47906:2 bron.
54 | M | 47302 || gast. 54:1,60:1,64:1 M:2,F:1 | 47302:2,47304:1 flu

60 | M | 47302 flu 54:1,60:1,64:1 M:2,F:1 | 47302:2,47304:1 dysp.
64 | F | 47304 | dysp. 54:1,60:1,64:1 M:2,F:1| 47302:2,47304:1 gast.

(e) One-attribute-per-column slicing

Age || Sex || Zipcode|| Disease
22 F 47906 flu
22 || M | 47906 | dysp.
52 F 47905 bron.
54 || M | 47302 | dysp.
60 F 47302 gast.
64 M 47304 flu

(f) The sliced table

(Age,Sex)| (Zipcode,Disease
(22,M) (47905, bron.)
(22,F) (47906,dysp.)
(52,F) (47906, flu)
(54,M) (47304,gast.)
(60,M) (47302, flu)
(64,F) (47302,dysp.)
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Table 4.1(f), the value$§(22, M), (22, F), (52, F')} are randomly permutated and the val-
ues{(47906, dyspepsia), (47906, flu), (47905, bronchitis)} are randomly permutated so

that the linking between the two columns within one buckéiidglen.

4.1.1 Formalization of Slicing

Let 7" be the microdata table to be publishéd.containsd attributes: A = {A;, As,
..., A4} and their attribute domains afé@[A,|, D[As], ..., D[A4]}. Atuplet € T can be
represented als= (t[A,],t[As], ..., t[Aq]) wheret[4;] (1 <i < d) is the A; value oft.

Definition 4.1.1 (Attribute partition and columns) Anattribute partition consists of sev-
eral subsets ofA, such that each attribute belongs to exactly one subseth Eabset of
attributes is called acolumn. Specifically, let there be columnsCi, Cs, ..., C., then

Uleci = A and for anyl <1 7é 19 < ¢, Cil N Cig = @

For simplicity of discussion, we consider only one sensittributeS. If the data
contains multiple sensitive attributes, one can eithesittar them separately or consider
their joint distribution [11]. Exactly one of the columns contains. Without loss of
generality, let the column that contaifge the last colum@’.. This column is also called

the sensitive columpAll other columns{C1, Cs, . .., C._1} contain only QI attributes.

Definition 4.1.2 (Tuple partition and buckets) A tuple partition consists of several sub-
sets ofl’, such that each tuple belongs to exactly one subset. Eadesobtuples is called
abucket. Specifically, let there bebucketsB,, Bs, . . ., By, thenu?_, B; = T and for any
1<y #iy <), B;, N B;, = 0.

Definition 4.1.3 (Slicing) Given a microdata tablg’, a slicing of T" is given by anat-

tribute partition and atuple partition .

For example, Table 4.1(e) and Table 4.1(f) are two slicedetab In Table 4.1(e),
the attribute partition i§{Age}, {Sex}, {Zipcode, {Diseasé} and the tuple partition
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is {{t1,t2, 3,14}, {ts5,t6,t7,1s}}. In Table 4.1(f), the attribute partition is{Age, Sey,
{Zipcode, Diseasg and the tuple partition i§{¢y, to, t3,t4}, {t5, te, t7,ts}}-

Often times, slicing also involves column generalization.

Definition 4.1.4 (Column Generalization) Given a microdata tablé’ and a columrC; =
{An, Apn, ..., A}, acolumn generalizationfor C; is defined as a set of non-overlapping
j-dimensional regions thatompletelycover D[A;;] x D[A;] x ... x D[A;;]. A column

generalization maps each value@fto the region in which the value is contained.

Column generalization ensures that one column satisfigls-#monymity requirement.
It is a multidimensional encoding [18] and can be used as aitiadal step in slicing.
Specifically, a general slicing algorithm consists of thikofeing three phases: attribute
partition, column generalization, and tuple partitioncBese each column contains much
fewer attributes than the whole table, attribute partitearables slicing to handle high-
dimensional data.

A key notion of slicing is that omatching buckets

Definition 4.1.5 (Matching Buckets) Let {C, (s, ..., C.} be thec columns of a sliced
table. Lett be a tuple, and[C;] be theC; value oft. Let B be a bucket in the sliced table,
and B[C;] be the multiset of’; values inB. We say thaB3 is amatching bucketf ¢ iff for
all1 <i <c,t[Cy] € B[Cy].

For example, consider the sliced table shown in Table 4 4(f) considet; = (22, M,
47906, dyspepsia). Then, the set of matching buckets fiis { B, }.

4.1.2 Comparison with Generalization

There are several types of recodings for generalizatiore résoding that preserves
the most information isocal recoding[19]. In local recoding, one first groups tuples into
buckets and then for each bucket, one replaces all valueseoéttribute with a general-
ized value. Such a recoding is local because the same &ttwalue may be generalized

differently when they appear in different buckets.
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We now show that slicing preserves more information tham sutocal recoding ap-
proach, assuming that the same tuple partition is used. We\athis by showing that
slicing is better than the following enhancement of the llseaoding approach. Rather
than using a generalized value to replace more specifibatitrivalues, one uses the mul-
tiset of exact values in each bucket. For example, Tabld}id(@ generalized table, and
Table 4.1(d) is the result of using multisets of exact vahatiser than generalized values.
For theAgeattribute of the first bucket, we use the multiset of exactiesa{22,22,33,52
rather than the generalized interya2 — 52]. The multiset of exact values provides more
information about the distribution of values in each atitébthan the generalized interval.
Therefore, using multisets of exact values preserves mdéoemation than generalization.

However, we observe that this multiset-based generalizasi equivalent to a trivial
slicing scheme where each column contains exactly onéuaiityi because both approaches
preserve the exact values in each attribute but break tloeiaisn between them within
one bucket. For example, Table 4.1(e) is equivalent to Tallél). Now comparing Ta-
ble 4.1(e) with the sliced table shown in Table 4.1(f), weestss that while one-attribute-
per-column slicing preserves attribute distributiondbrmation, it does not preserve at-
tribute correlation, because each attribute is in its owlnroa. In slicing, one groups
correlated attributes together in one column and preséhadscorrelation. For example,
in the sliced table shown in Table 4.1(f), correlations lemAgeandSexand correlations
betweenZipcodeand Diseaseare preserved. In fact, the sliced table encodes the same
amount of information as the original data with regard taelations between attributes in
the same column.

Another important advantage of slicing is its ability to denhigh-dimensional data.
By partitioning attributes into columns, slicing redudes timensionality of the data. Each
column of the table can be viewed as a sub-table with a lowaedsionality. Slicing is
also different from the approach of publishing multipleepeéndent sub-tables [24] in that

these sub-tables are linked by the buckets in slicing.
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4.1.3 Comparison with Bucketization

To compare slicing with bucketization, we first note thatk®ization can be viewed as
a special case of slicing, where there are exactly two cofurane column contains only
the SA, and the other contains all the QIs. The advantagelcofgsover bucketization
can be understood as follows. First, by partitioning atiié!s into more than two columns,
slicing can be used to prevent membership disclosure. Opirea evaluation on a real
dataset shows that bucketization does not prevent mempeliskblosure in Section 4.5.

Second, unlike bucketization, which requires a clear sdjmar of QI attributes and
the sensitive attribute, slicing can be used without suckpamation. For dataset such
as the census data, one often cannot clearly separate @isSAs because there is no
single external public database that one can use to detemtiich attributes the adversary
already knows. Slicing can be useful for such data.

Finally, by allowing a column to contain both some QI atttédsiand the sensitive
attribute, attribute correlations between the sensititrdbate and the QI attributes are pre-
served. For example, in Table 4.1(Bipcodeand Diseaseform one column, enabling
inferences about their correlations. Attribute correlasi are important utility in data pub-
lishing. For workloads that consider attributes in isaatione can simply publish two

tables, one containing all QI attributes and one contaittiegsensitive attribute.

4.1.4 Privacy Threats

When publishing microdata, there are three types of priwisglosure threats. The
first type ismembership disclosureWhen the dataset to be published is selected from
a large population and the selection criteria are sendiéw@g, only diabetes patients are
selected), one needs to prevent adversaries from learrether one’s record is included
in the published dataset.

The second type iglentity disclosurewhich occurs when an individual is linked to
a particular record in the released table. In some situsitione wants to protect against

identity disclosure when the adversary is uncertain of merstiip. In this case, protection
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against membership disclosure helps protect againstigergclosure. In other situations,
some adversary may already know that an individual’s resoirthe published dataset, in
which case, membership disclosure protection either doeapply or is insufficient.

The third type isattribute disclosurewhich occurs when new information about some
individuals is revealed, i.e., the released data makesssipte to infer the attributes of
an individual more accurately than it would be possible befilve release. Similar to
the case of identity disclosure, we need to consider adwessawho already know the
membership information. ldentity disclosure leads toilaite disclosure. Once there is
identity disclosure, an individual is re-identified and tt@eresponding sensitive value is
revealed. Attribute disclosure can occur with or withowntity disclosure, e.g., when the
sensitive values of all matching tuples are the same.

For slicing, we consider protection against membershiglolssire and attribute disclo-
sure. It is a little unclear how identity disclosure shouéddefined for sliced data (or for
data anonymized by bucketization), since each tuple residéhin a bucket and within
the bucket the association across different columns adehidin any case, because iden-
tity disclosure leads to attribute disclosure, protectgainst attribute disclosure is also
sufficient protection against identity disclosure.

We would like to point out a nice property of slicing that isgortant for privacy pro-
tection. In slicing, a tuple can potentially match multipleckets, i.e., each tuple can have
more than one matching buckets. This is different from pmasiwork on generalization
(global recoding specifically) and bucketization, wherehetuple can belong to a unique
equivalence-class (or bucket). In fact, it has been re@eghj51] that restricting a tuple
in a unique bucket helps the adversary but does not improeuddity. We will see that
allowing a tuple to match multiple buckets is important fattb attribute disclosure pro-
tection and membership disclosure protection, when werithesthem in Section 4.2 and

Section 4.4, respectively.
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4.2 Attribute Disclosure Protection

In this section, we show how slicing can be used to prevenbaté disclosure, based

on the privacy requirement @fdiversity and introduce the notion éfdiverse slicing.

4.2.1 An lllustrating Example

We first give an example illustrating how slicing satisfiediversity [11] where the
sensitive attribute is “Disease”. The sliced table shownahle 4.1(f) satisfieg-diversity.
Consider tuple; with QI values(22, M, 47906). In order to determing’s sensitive value,
one has to examing’'s matching buckets. By examining the first colufige, Sex) in
Table 4.1(f), we know that; must be in the first bucke®; because there are no matches
of (22, M) in bucketB,. Therefore, one can conclude thhatannot be in buckeB, andt;
must be in buckeB;.

Then, by examining th&ipcode attribute of the second columi¥ipcode, Disease)
in bucketB;, we know that the column value for must be eithe(47906, dyspepsia) or
(47906, flu) because they are the only values that mat&hzipcode 47906. Note that the
other two column values have zipcode 47905. Without adudi&nowledge, botdyspep-
siaandflu are equally possible to be the sensitive valug off herefore, the probability of
learning the correct sensitive valueigfis bounded by.5. Similarly, we can verify that

2-diversity is satisfied for all other tuples in Table 4.1(f).

4.2.2 (-Diverse Slicing

In the above example, tupte has only one matching bucket. In general, a tuptan
have multiple matching buckets. We now extend the aboveysisab the general case and
introduce the notion of-diverse slicing.

Consider an adversary who knows all the QI values afd attempts to infer's sen-
sitive value from the sliced table. She or he first needs terdehe which buckets may

reside in, i.e., the set of matching buckets offuplet can be in any one of its matching
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buckets. Letp(t, B) be the probability that is in bucketB (the procedure for comput-
ing p(t, B) will be described later in this section). For example, in #®ve example,
p(t1, B1) = 1 andp(ty, By) = 0.

In the second step, the adversary compptess), the probability that takes a sensitive
values. p(t, s) is calculated usinthe law of total probability Specifically, lety(s|t, B) be
the probability that takes sensitive valuegiven thatt is in bucketB, then according to

the law of total probability, the probability(¢, s) is:

p(t,s) =3 plt, B)p(slt. B) (4.1)

In the rest of this section, we shovf how to compute the two abdities: p(¢, B) and
p(slt, B).

Computing p(t, B). Given a tuplet and a sliced buckeB, the probability that is in B
depends on the fraction ¢% column values that match the column valuesinIf some
column value of does not appear in the corresponding colum@otft is certain that is
not in B. In general, buckeB can potentially matchB| tuples, wheréB| is the number
of tuples inB. Without additional knowledge, one has to assume that theraovalues
are independent; therefore each of tBe tuples is equally likely to be an original tuple.
The probability that is in B depends on the fraction of th&| tuples that match.

We formalize the above analysis. We consider the match legtwe column values
{t[C1],t[Cs], - - - ,t[C.]} and B’s column valueg B[C,], B[Cs], - - - , B|C]}. Let fi(t, B)
(1 < i < ¢—1) be the fraction of occurrences ¢f’;] in B[C;] and letf.(t, B) be the
fraction of occurrences afC. —{S}]in B[C.—{S}]). Note thatC. —{S} is the set of QI
attributes in the sensitive column. For example, in Tablgfi. f1(t1, B1) = 1/4 = 0.25
and fy(t1, B1) = 2/4 = 0.5. Similarly, fi(t1, B) = 0 and f»(t1, B2) = 0. Intuitively,
fi(t, B) measures thematching degreen columnC;, between tupleé and buckets.

Because each possible candidate tuple is equally likelyetar original tuple, the
matching degrebetween: and B is the product of the matching degree on each column,
i.e., f(t, B) = [,<i<. fi(t, B). Note thaty_, f(¢t, B) = 1 and whenB is not a matching
bucket oft, f(t, B) = 0.
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Tuple t may have multiple matching bucketss total matching degree in the whole
dataisf(t) = >_ 5 f(t, B). The probability that is in bucketB is:

f(t, B)
()

Computing p(s|t, B). Suppose thatis in bucketB, to determing’s sensitive value, one

p(t,B) =

needs to examine the sensitive column of budketSince the sensitive column contains
the QI attributes, not all sensitive values cantisesensitive value. Only those sensitive
values whose QI values matéls QI values are’s candidate sensitive valuesVithout
additional knowledge, all candidate sensitive valuesl(isiag duplicates) in a bucket are
equally possible. LeD(¢, B) be the distribution of’s candidate sensitive values in bucket
B.

Definition 4.2.1 (D(t, B)) Any sensitive value that is associated wiih. — {S}] in B is
a candidate sensitive valudor ¢ (there aref.(¢, B) candidate sensitive values fon B,
including duplicates). LeD(t, B) be the distribution of the candidate sensitive values in

B andD(t, B)|s] be the probability of the sensitive valuén the distribution.

For example, in Table 4.1(f)D(t1, B1) = (dyspepsia : 0.5, flu : 0.5) and there-
fore D(t1, By)[dyspepsia] = 0.5. The probabilityp(s|t, B) is exactly D(t, B)[s], i.e.,
p(s|t, B) = D(t, B)|[s].

(-Diverse Slicing. Once we have computedt, B) andp(s|t, B), we are able to compute

the probabilityp(t, s) based on the Equation (4.1). We can show whisnin the data, the

probabilities that takes a sensitive value sum upito
Fact 4.2.1 Forany tuplet € D, > _p(t,s) = 1.

Proof

Zp(tv S) = Z Zp(tv B)p(8|t, B)
= Zp(tv B) Zp(5|t7 B)
=Y p(t, B)

=1

(4.2)
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¢-Diverse slicing is defined based on the probabijlity; s).

Definition 4.2.2 (-diverse slicing) A tuplet satisfieg-diversity iff for any sensitive value
Sl

p(t,s) <1/t

A sliced table satisfie&diversity iff every tuple in it satisfigsdiversity.

Our analysis above directly show that from @diverse sliced table, an adversary can-
not correctly learn the sensitive value of any individuahna probability greater thaty /.
Note that once we have computed the probability that a tuigiest a sensitive value, we

can also use slicing for other privacy measures suchkchsseness [27].

4.3 Slicing Algorithms

We now present an efficient slicing algorithm to achiéwdiverse slicing. Given a
microdata tablgd” and two parameteksand/, the algorithm computes the sliced table that
consists of: columns and satisfies the privacy requirement-diversity.

Our algorithm consists of three phasastribute partitioning column generalization

andtuple partitioning We now describe the three phases.

4.3.1 Attribute Partitioning

Our algorithm partitions attributes so that highly-coated attributes are in the same
column. This is good for both utility and privacy. In termsdafta utility, grouping highly-
correlated attributes preserves the correlations amarggthttributes. In terms of privacy,
the association of uncorrelated attributes presents higleatification risks than the as-
sociation of highly-correlated attributes because the@ason of uncorrelated attribute
values is much less frequent and thus more identifiable.€efbie, it is better to break the

associations between uncorrelated attributes, in orderatect privacy.
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In this phase, we first compute the correlations betweers diattributes and then

cluster attributes based on their correlations.

Measures of Correlation

Two widely-used measures of association are Pearson aborekcoefficient [52] and
mean-square contingency coefficient [52]. Pearson coioalaoefficient is used for mea-
suring correlations between two continuous attributesevhean-square contingency coef-
ficientis a chi-square measure of correlation between twegcaical attributes. We choose
to use themean-square contingency coefficibetause most of our attributes are categori-
cal. Given two attributes; and A, with domains{vy1, v12, ..., v14, } @aNd{vay, vog, ..., V2g, }
respectively. Their domain sizes are thlysandd,, respectively. The mean-square contin-

gency coefficient betweeA; and A, is defined as:

dy

fzy z
¢ (A, A2) = min{dj, d2} —1 Z Z fi. f]

=1 j=1

Here, f;. and f.; are the fraction of occurrences of andw,; in the data, respectively.
fi; 1s the fraction of co-occurrences of; andwv,; in the data. Thereforef;. and f.; are
the marginal totals of;;: f. = Y72, f; and f; = S, f;;. It can be shown that <
¢*(Ay, Ag) < 1.

For continuous attributes, we first apuliscretizatiorto partition the domain of a con-
tinuous attribute into intervals and then treat the coilbecof interval values as a discrete
domain. Discretization has been frequently used for deciiee classification, summa-
rization, and frequent itemset mining. We use equal-widslerétization, which partitions
an attribute domain into (sonig equal-sized intervals. Other methods for handling con-

tinuous attributes are the subjects of future work.
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Attribute Clustering

Having computed the correlations for each pair of attributee use clustering to
partition attributes into columns. In our algorithm, eadtrilute is a point in the clus-
tering space. The distance between two attributes in th&tesing space is defined as
d(Ay, Ay) = 1 — ¢*(Aq, Ay), which is in between of) and 1. Two attributes that are
strongly-correlated will have a smaller distance betwédmencorresponding data points in
our clustering space.

We choose thé-medoid method for the following reasons. First, many éxgstlus-
tering algorithms (e.gk-means) requires the calculation of the “centroids”. Betéhis no
notion of “centroids” in our setting where each attributenig a data point in the clustering
space. Second;medoid method is very robust to the existence of outliees, (data points
that are very far away from the rest of data points). Third,dfder in which the data points
are examined does not affect the clusters computed fromthedoid method. We use the
well-known k-medoid algorithm PAM (Partition Around Medoids) [53]. PAdfarts by an
arbitrary selection ok data points as the initial medoids. In each subsequent Bfdy,
chooses one medoid point and one non-medoid point and stvapsas long as the cost of
clustering decreases. Here, the clustering cost is mehssréne sum of the cost of each
cluster, which is in turn measured as the sum of the distaioce €ach data point in the
cluster to the medoid point of the cluster. The time compyeaf PAM is O(k(m — k)?).
Thus, it is known that PAM suffers from high computationatgmexity for large datasets.
However, the data points in our clustering space are atéshuather than tuples in the

microdata. Therefore, PAM will not have computational peois for clustering attributes.

Special Attribute Partitioning

In the above procedure, all attributes (including both (id 8As) are clustered into
columns. The&-medoid method ensures that the attributes are clustet@é columns but
does not have any guarantee on the size of the sensitive n@lunin some cases, we may

pre-determine the number of attributes in the sensitivaralto bea. The parametet
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determines the size of the sensitive colugin i.e., |C.| = a. If o = 1, then|C.| = 1,
which means tha€’. = {S}. And whenc = 2, slicing in this case becomes equivalent
to bucketization. Ifa > 1, then|C.| > 1, the sensitive column also contains some QI
attributes.

We adapt the above algorithm to partition attributes mtmlumns such that the sensi-
tive columnC,. containsa attributes. We first calculate correlations between theitiea
attributeS and each QI attribute. Then, we rank the QI attributes by dueehsing order of
their correlations witht' and select the top — 1 QI attributes. Now, the sensitive column
C. consists ofS and the selected QI attributes. All other QI attributes foheotherc — 1

columns using the attribute clustering algorithm.

4.3.2 Column Generalization

In the second phase, tuples are generalized to satisfy sonr@ahfrequency require-
ment. We want to point out that column generalization is motralispensable phase in
our algorithm. As shown by Xiao and Tao [20], bucketizatiooyides the same level of
privacy protection as generalization, with respect takaite disclosure.

Although column generalization is not a required phaseait be useful in several
aspects. First, column generalization may be required dentity/membership disclo-
sure protection. If a column value is unique in a column ,(itee column value ap-
pears only once in the column), a tuple with this unique colwalue can only have one
matching bucket. This is not good for privacy protection,irashe case of generaliza-
tion/bucketization where each tuple can belong to only anevalence-class/bucket. The
main problem is that this unique column value can be ideinify In this case, it would
be useful to apply column generalization to ensure that ealthmn value appears with at
least some frequency.

Second, when column generalization is applied, to achiegesame level of privacy
against attribute disclosure, bucket sizes can be smaber$ection 4.3.3). While column

generalization may result in information loss, smallerkaiesizes allow better data utility.
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Algorithm tuple-partition( 7', ¢)

1.Q = {T}; SB = 0.

2. while @ is not empty

3. remove the first bucket from Q; @ = Q — { B}.

split B into two bucketsB; and B,, as in Mondrian.
if diversity-check(T', Q U {By, Bo} U SB, /)

Q =QU{B, By}.
elseSB = SBU{B}.

. returnSB.

© N o 0 &

Fig. 4.1. The Tuple-Partition Algorithm

Therefore, there is a trade-off between column generaizaind tuple partitioning. In this
paper, we mainly focus on the tuple partitioning algorithfhe tradeoff between column
generalization and tuple partitioning is the subject ofifatwork. Existing anonymization
algorithms can be used for column generalization, e.g.,dvian [18]. The algorithms
can be applied on the sub-table containing only attributesne column to ensure the

anonymity requirement.

4.3.3 Tuple Partitioning

In the tuple partitioning phase, tuples are partitioned mickets. We modify the Mon-
drian [18] algorithm for tuple partition. Unlike Mondrigrranonymity, no generalization is
applied to the tuples; we use Mondrian for the purpose oftparing tuples into buckets.

Figure 4.1 gives the description of the tuple-partitionoaithm. The algorithm main-
tains two data structures: (1) a queue of buckgtand (2) a set of sliced buckets3.
Initially, @ contains only one bucket which includes all tuples &itis empty (line 1). In
each iteration (line 2 to line 7), the algorithm removes adetirom ) and splits the bucket

into two buckets (the split criteria is described in Mondr[a8]). If the sliced table after
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Algorithm diversity-check(T', T*, /)

1. for each tuple € T', L[t] = 0.

2. for each buckeB in T

3. recordf(v) for each column value in bucketB.
4. foreachtuple € T

5. calculatep(t, B) and findD(t, B).

6. L{t] = L[t} U {(p(t, B), D(t, B))}.

7. foreach tuple € T

8. calculatep(t, s) for eachs based orL|t].

9. ifp(t,s) > 1/¢, return false.

10. return true.

Fig. 4.2. The Diversity-Check Algorithm

the split satisfieg-diversity (line 5), then the algorithm puts the two buckatshe end of
the queud) (for more splits, line 6). Otherwise, we cannot split the kmtanymore and
the algorithm puts the bucket in&B (line 7). When) becomes empty, we have computed
the sliced table. The set of sliced buckets$'is (line 8).

The main part of the tuple-partition algorithm is to checketiter a sliced table satisfies
(-diversity (line 5). Figure 4.2 gives a description of tthgersity-checlalgorithm. For
each tuplet, the algorithm maintains a list of statistiést] aboutt’s matching buckets.
Each element in the ligt[t] contains statistics about one matching budkethe matching
probabilityp(¢, B) and the distribution of candidate sensitive vallig, B).

The algorithm first takes one scan of each budkefline 2 to line 3) to record the
frequencyf(v) of each column value in bucketB. Then the algorithm takes one scan
of each tuplet in the tableT (line 4 to line 6) to find out all tuples that matdk and
record their matching probability(¢, B) and the distribution of candidate sensitive values
D(t, B), which are added to the lidt[t] (line 6). Atthe end of line 6, we have obtained,

for each tuplet, the list of statisticd.[t] about its matching buckets. A final scan of the



108

tuples inT" will compute thep(t, s) values based othe law of total probabilitydescribed
in Section 4.2.2. Specifically,
pt,s)= > ep(t,B)*e.D(t, B)[s]
eeL]i]
The sliced table ig-diverse iff for all sensitive value, p(¢,s) < 1/¢ (line 7 to line 10).

We now analyze the time complexity of the tuple-partitiogaalthm. The time com-
plexity of Mondrian [18] or kd-tree [54] i®)(n log n) because at each level of the kd-tree,
the whole dataset need to be scanned which téKes time and the height of the tree is
O(logn). In our modification, each level také¥n?) time because of the diversity-check
algorithm (note that the number of buckets is at mgst The total time complexity is

thereforeO(n?log n).

4.4 Membership Disclosure Protection

Let us first examine how an adversary can infer membershgunrdtion from buck-
etization. Because bucketization releases the QI valudsein original form and most
individuals can be uniquely identified using the QI valubs, adversary can simply deter-
mine the membership of an individual in the original data kgmeining the frequency of
the Ql values in the bucketized data. Specifically, if thg@iency is 0, the adversary knows
for sure that the individual is not in the data. If the freqeseis greater than 0, the adversary
knows with high confidence that the individual is in the dé@cause this matching tuple
must belong to that individual as almost no other indivichad the same QI values.

The above reasoning suggests that in order to protect mshipanformation, it is
required that, in the anonymized data, a tuple in the orlgliaga should have a similar
frequency as a tuple that is not in the original data. Otheewhy examining their frequen-
cies in the anonymized data, the adversary can differemtigies in the original data from
tuples not in the original data.

We now show how slicing protects against membership disotod_etD be the set of
tuples in the original data and I&2 be the set of tuples that are not in the original data.

Let D° be the sliced data. Giveh® and a tuple, the goal of membership disclosure is to
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determine whether ¢ D ort € D. In order to distinguish tuples ifv from tuples inD,
we examine their differences. ife D, ¢t must have at least one matching bucket®in
To protect membership information, we must ensure thatzat lsome tuples i should
also have matching buckets. Otherwise, the adversary tf@natiitiate betweeh < D and
t € D by examining the number of matching buckets.

We call a tuplean original tupleif itis in D. We call a tuplea fake tupléf it is in D and
it matches at least one bucket in the sliced data. Therefgdave considered two mea-
sures for membership disclosure protection. The first nreasuhe number of fake tuples.
When the number of fake tuples is O (as in bucketization)mbeenbership information of
every tuple can be determined. The second measure is taleotise number of matching
buckets for original tuples and that for fake tuples. If tiaeg similar enough, membership
information is protected because the adversary cannangiissh original tuples from fake
tuples.

Slicing is an effective technique for membership discleqanotection. A sliced bucket
of size k can potentially matcte tuples. Besides the original tuples, this bucket can
introduce as many as" — k tuples inD, which isk°~! — 1 times more than the number
of original tuples. The existence of such tupledirhides the membership information of
tuples inD, because when the adversary finds a matching bucket, shei®nbecertain
whether this tuple is ith or not since a large number of tupleslinhave matching buckets
as well. Since the main focus of this paper is attribute dsate, we do not intend to pro-
pose a comprehensive analysis for membership disclosategbion. In our experiments
(Section 4.5), we empirically compare bucketization aiargy in terms of the number of
matching buckets for tuples that are in or not in the origotatia. Our experimental re-
sults show that slicing introduces a large number of tupid3 and can be used to protect

membership information.
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4.5 Experiments

We conduct two experiments. In the first experiment, we atalthe effectiveness of
slicing in preserving data utility and protecting agairttilaute disclosure, as compared to
generalization and bucketization. To allow direct comgami we use the Mondrian algo-
rithm [18] and/-diversity for all three anonymization techniques: geheasion, bucke-
tization, and slicing. This experiment demonstrates tfiBt:slicing preserves better data
utility than generalization; (2) slicing is more effectithean bucketization in workloads in-
volving the sensitive attribute; and (3) the sliced table lsa computed efficiently. Results
for this experiment are presented in Section 4.5.2.

In the second experiment, we show the effectiveness ohglici membership disclo-
sure protection. For this purpose, we count the number eftiailes in the sliced data. We
also compare the number of matching buckets for origindetipnd that for fake tuples.
Our experimental results show that bucketization does restgmt membership disclosure
as almost every tuple is uniquely identifiable in the budestidata. Slicing provides better
protection against membership disclosure: (1) the numbiake tuples in the sliced data
is very large, as compared to the number of original tuplels(2pthe number of matching
buckets for fake tuples and that for original tuples areekrsough, which makes it difficult
for the adversary to distinguish fake tuples from originglles. Results for this experiment

are presented in Section 4.5.3.

Experimental Data. We use the Adult dataset from the UC Irvine machine learning
repository [33], which is comprised of data collected frdme tJS census. The dataset is
described in Table 4.2. Tuples with missing values are ekted and there ar222 valid
tuples in total. The adult dataset contalBsattributes in total.

In our experiments, we obtain two datasets from the Adulhsiztt The first dataset is
the “OCC-7" dataset, which includésattributes:QI = {Age, Workclass, Education,
Marital-Status, Race, Sex} andS = Occupation. The second dataset is the “OCC-15"
dataset, which includes alb attributes and the sensitive attributeds= Occupation.

Note that we do not us®alaryas the sensitive attribute beca&aaryhas only two values
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Table 4.2
Description of the Completadult Dataset
Attribute Type # of values
1 Age Continuous 74
2 Workclass Categorical 8
3 Final-Weight | Continuous NA
4 Education Categorical 16
5 | Education-Num| Continuous 16
6 | Marital-Status | Categorical 7
7 Occupation | Categorical 14
8 Relationship | Categorical 6
9 Race Categorical 5
10 Sex Categorical 2
11| Capital-Gain | Continuous NA
12| Capital-Loss | Continuous NA
13 | Hours-Per-Week Continuous NA
14 Country Categorical 41
15 Salary Categorical 2

{> 50K, < 50K}, which means that evehdiversity is not achievable when the sensitive
attribute isSalary. Also note that in membership disclosure protection, weatdaifferen-
tiate between the Qls and the SA.

In the “OCC-7” dataset, the attribute that has the closesetation with the sensi-
tive attributeOccupationis Gender with the next closest attribute beirigducation In
the “OCC-15" dataset, the closest attribute is aBnderbut the next closest attribute is
Salary.
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4.5.1 Data Preprocessing

Some preprocessing steps must be applied on the anonynaitzedefore it can be used
for workload tasks. First, the anonymized table computealuthh generalization contains
generalized values, which need to be transformed to sonme float can be understood
by the classification algorithm. Second, the anonymizebktedmputed by bucketization
or slicing contains multiple columns, the linking betweehieh is broken. We need to

process such data before workload experiments can run atathe

Handling generalized values. In this step, we map the generalized values (set/interval) t
data points. Note that the Mondrian algorithm assumes &dadar on the domain values
of each attribute and each generalized value is a sub-segoéthe total-ordered domain
values. There are several approaches to handle generadiiess. The first approach is
to replace a generalized value with threanvalue of the generalized set. For example,
the generalized age [20,54] will be replaced by age 37 anddheralized Education level
{9th,10th,11th will be replaced by 10th. The second approach is to repla@narglized
value by its lower bound and upper bound. In this approacth edribute is replaced
by two attributes, doubling the total number of attributdor example, the Education
attribute is replaced by two attributeswer-EducatiorandUpper-Educationfor the gen-
eralized Education level9th, 10th, 11th, the Lower-Educationvalue would be 9th and
the Upper-Education valugvould be 11th. For simplicity, we use the second approach in

our experiments.

Handling bucketized/sliced data. In both bucketization and slicing, attributes are parti-
tioned into two or more columns. For a bucket that containgples and: columns, we
generate tuples as follows. We first randomly permutate the valueswaheolumn. Then,
we generate théth (1 < i < k) tuple by linking thei-th value in each column. We apply
this procedure to all buckets and generate all of the tupdes the bucketized/sliced table.
This procedure generates the linking between the two catima random fashion. In all
of our classification experiments, we apply this procedutienes and the average results

are reported.
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We compare slicing with generalization and bucketizatiodata utility of the anonym-

ized data for classifier learning. For all three techniques employ the Mondrian algo-

rithm [18] to compute thé-diverse tables. Thévalue can take valugs,8,10 (note that

the Occupationattribute has 14 distinct values). In this experiment, weodea = 2.

Therefore, the sensitive column is alwgyGender, Occupation

Classifier learning. We evaluate the quality of the anonymized data for classéaning,

which has been used in [25, 51, 55]. We use the Weka softwankapa to evaluate the
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Fig. 4.4. Experiments: Learning a QI attribugducation

classification accuracy for Decision Tree C4.5 (J48) and/@&lBayes. Default settings are
used in both tasks. For all classification experiments, veelisfold cross-validation.

In our experiments, we choose one attribute as the targistiad (the attribute on which
the classifier is built) and all other attributes serve asptteglictor attributes. We consider
the performances of the anonymization algorithms in baginnieg the sensitive attribute

Occupationand learning a QI attributeducation

Learning the sensitive attribute. In this experiment, we build a classifier on the sensitive
attribute, which is Occupatiori. We fix ¢ = 2 here and evaluate the effectscofater in

this section. In other words, the target attribut®©iscupationand all other attributes are
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predictor attributes. Figure 4.3 compares the quality efdhonymized data (generated
by the three techniques) with the quality of the originaladathen the target attribute is
Occupation The experiments are performed on the two datasets OCCHT [vattributes)
and OCC-15 (with 15 attributes). Figure 4.3(a) (Figure #)B6hows the classification
accuracy of J48 (Naive Bayes) on the original data and tleetAnonymization techniques
as a function of thé value for the OCC-7 dataset. Figure 4.3(c) (Figure 4.3(dpys the
results for the OCC-15 dataset.

In all experiments, slicing outperforms both generalmatnd bucketization, that con-
firms that slicing preserves attribute correlations betwtbe sensitive attribute and some
QIs (recall that the sensitive column {&ender, Occupatiof). Another observation is
that bucketization performs even slightly worse than galieation. That is mostly due
to our preprocessing step that randomly associates thédigenslues to the QI values in
each bucket. This may introduce false associations whieireralization, the associations
are always correct although the exact associations aremidél final observation is that
when/ increases, the performances of generalization and buekieth deteriorate much
faster than slicing. This also confirms that slicing pressitvetter data utility in workloads

involving the sensitive attribute.

Learning a QI attribute. In this experiment, we build a classifier on the QI attribuel“
ucatiori. We fix ¢ = 2 here and evaluate the effectscdéter in this section. In other words,
the target attribute iEducationand all other attributes including the sensitive attridDte
cupationare predictor attributes. Figure 4.4 shows the experimesults. Figure 4.4(a)
(Figure 4.4(b)) shows the classification accuracy of J48/@Bayes) on the original data
and the three anonymization techniques as a function of th&ue for the OCC-7 dataset.
Figure 4.4(c) (Figure 4.4(d)) shows the results for the sktt®CC-15.

In all experiments, both bucketization and slicing perfarmach better than general-
ization. This is because in both bucketization and slicthg, QI attributeEducationis
in the same column with many other QI attributes: in bucleton, all QI attributes are
in the same column; in slicing, all QI attributes exc&#nderare in the same column.

This fact allows both approaches to perform well in workleawolving the QI attributes.
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Fig. 4.5. Experiments: Classification Accuracy with Variedalues

Note that the classification accuracies of bucketizatich diting are lower than that of
the original data. This is because the sensitive attriluteupationis closely correlated
with the target attribut&ducation(as mentioned earlier in Section 4Bducationis the
second closest attribute wiccupationn OCC-7). By breaking the link betwedtduca-
tion andOccupation classification accuracy daducationreduces for both bucketization

and slicing.

The effects ofc. In this experiment, we evaluate the effectcain classification accuracy.
We fix ¢ = 5 and vary the number of columnsin {2,3,5. Figure 4.5(a) shows the
results on learning the sensitive attribute and Figurebd.8iiows the results on learning
a QI attribute. It can be seen that classification accuracyedses only slightly when we
increase:, because the most correlated attributes are still in thesatumn. In all cases,

slicing shows better accuracy than generalization. Whenaitget attribute is the sensitive

attribute, slicing even performs better than bucketizatio

4.5.3 Membership Disclosure Protection

In the second experiment, we evaluate the effectivenedscofgsin membership dis-

closure protection.
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We first show that bucketization is vulnerable to memberslgglosure. In both the
OCC-7 dataset and the OCC-15 dataset, each combination val@¢s occurs exactly
once. This means that the adversary can determine the mgménformation of any
individual by checking if the QI value appears in the buckedi data. If the QI value does
not appear in the bucketized data, the individual is noténatiginal data. Otherwise, with
high confidence, the individual is in the original data as tfeoindividual has the same
QI value.

We then show that slicing does prevent membership dis@o$Me perform the follow-
ing experiment. First, we partition attributes intoolumns based on attribute correlations.
We setc € {2,5}. In other words, we comparzcolumn-slicing with5-column-slicing.
For example, when we set = 5, we obtain5 columns. In OCC-7{Age, Marriage,
Gender} is one column and each other attribute is in its own columnO@C-15, the
5 columns are:{ Age, Workclass, Education, Education-Num, Capital-Gain, Hours,
Salary}, { Marriage, Occupation, Family, Gender}, { Race,Country}, { Final- Weight},
and{ Capital-Loss}.

Then, we randomly partition tuples into buckets of sizéhe last bucket may have
fewer thanp tuples). As described in Section 4.4, we collect statisttmsut the following
two measures in our experiments: (1) the number of fake sughel (2) the number of

matching buckets for original v.s. the number of matchingkets for fake tuples.

The number of fake tuples. Figure 4.6 shows the experimental results on the number
of fake tuples, with respect to the bucket sizeOur results show that the number of fake
tuples is large enough to hide the original tuples. For exanfipr the OCC-7 dataset, even
for a small bucket size of00 and only2 columns, slicing introduces as many &$36

fake tuples, which is nearly twice the number of originallégid5222). When we increase
the bucket size, the number of fake tuples becomes largeis iltonsistent with our
analysis that a bucket of sizecan potentially matck® — k fake tuples. In particular, when
we increase the number of columasthe number of fake tuples becomes exponentially

larger. In almost all experiments, the number of fake tupdarger than the number of
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Fig. 4.6. Experiments: Number of Fake Tuples

original tuples. The existence of such a large number of fagkes provides protection for

membership information of the original tuples.

The number of matching buckets. Figure 4.7 shows the number of matching buckets for
original tuples and fake tuples.

We categorize the tuples (both original tuples and fakesg)phto three categories: (1)
< 10: tuples that have at most 10 matching buckets](2} 20: tuples that have more than
10 matching buckets but at most 20 matching buckets, and @). tuples that have more
than 20 matching buckets. For example, the “original-tsfstel 0)” bar gives the number
of original tuples that have at most 10 matching buckets hadfake-tuplest 20)” bar
gives the number of fake tuples that have more thématching buckets. Because the
number of fake tuples that have at most 10 matching bucketsrislarge, we omit the
“fake-tuplesK 10)” bar from the figures to make the figures more readable.

Our results show that, even when we do random grouping, neketéiples have a large
number of matching buckets. For example, for the OCC-7 dgtbs a smalp = 100 and
c = 2, there aré325 fake tuples that have more thah matching buckets; the number is
31452 for original tuples. The numbers are even closer for lapgeerdc values. This means
that a larger bucket size and more columns provide bettéegion against membership

disclosure.
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Fig. 4.7. Experiments: Number of Tuples with Matching Buske

Although many fake tuples have a large number of matchingdiscin general, orig-
inal tuples have more matching buckets than fake tuples. é&sam see from the figures,
a large fraction of original tuples have more th@ihmatching buckets while only a small
fraction of fake tuples have more thaf tuples. This is mainly due to the fact that we use
random grouping in the experiments. The results of randaupng are that the number
of fake tuples is very large but most fake tuples have veryreatching buckets. When
we aim at protecting membership information, we can desigrereffective grouping al-
gorithms to ensure better protection against memberskigadiure. The design of tuple

grouping algorithms is left to future work.
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4.6 Chapter Summary

This chapter presents a new approach called slicing togyipeeserving data publish-
ing. Slicing overcomes the limitations of generalizatiomd ducketization and preserves
better utility while protecting against privacy threatse Wustrated how to use slicing to
prevent attribute disclosure and membership disclosure.

The general methodology proposed by this chapter is th&drdbanonymizing the data,
one can analyze the data characteristics and use thesetehigtacs in data anonymization.
The rationale is that one can design better data anonymiztgchniques when we know
the data better. It is also important to note that such dadeacteristics can also be utilized
by the adversary to learn more sensitive information. In 82, we show that attribute

correlations can be used for privacy attacks.
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5. EVALUATING PRIVACY-UTILITY TRADEOFF

Publishing microdata enables researchers and policy4isaik@nalyze the data and learn
important information benefiting the society as a wholehsagthe factors causing certain
diseases, effectiveness of a medicine or treatment, andl-s@monomic patterns that can
guide the formulation of effective public policies. In othgords, publishing microdata
results inutility gain for the society as a whaleHowever, as microdata contains specific
information about individuals, publishing microdata abalso result inprivacy loss for
individualswhose information is published. Hence before the microdatebe made pub-
lic, one must ensure that the privacy loss is limited to areptable level. This is typically
done viaanonymizationwhich transforms the microdata to improve the privacy. &mse
anonymization makes data imprecise and/or distortedsat@huses losses in potential util-
ity gain, when compared with the case of publishing the ungmozed microdata.

A fundamental problem in privacy-preserving data pubhighs how to make the right
tradeoff between privacy and utility. The vast majority pisting work on privacy-preserving
data publishing uses the following approach. First, oneshs a specific privacy require-
ment, such ag-anonymity [4,10]/-diversity [11],(«, k)-anonymity [15]¢t-closeness [27],
andd-presence [9], based on intuitions of what privacy meansoise, one studies the
following problem: after fixing a parameter for the privagquirement (e.g., choosing
k = 10 in k-anonymity), how to generate an anonymized dataset thaimiees a particu-
lar utility measure, which can be the number of equivaletagsd11], or the discernibility
metric [23]. The above approach is limited in considering tfadeoff between utility and
privacy because it is unable to answer two important questibirst, how to choose among
the different privacy requirements? Second, how to chogsartécular parameter for the
particular requirement? For example, one would want to kndwther to choosé = 5
or k = 10 for k-anonymity. In this approach, these issues are considergdirom the

privacy aspect, and independent of the utility aspect. Hewehis is inadequate as often
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times one does not have a clearly defined privacy requiresgtin stone, and may be will-
ing to accept a little more privacy loss to get a large gaintilitys In short, we currently
lack a framework for thinking about the privacy-utility tk@off in data publishing.

In a paper that appeared in KDD 2008, Brickell and Shmatilk ppplied a fresh
angle to the tradeoff between privacy and utility. They disecompared the privacy gain
with the utility gain caused by data anonymization, and lmedcan intriguing conclusion
“even modest privacy gains require almost complete detsdruof the data-mining utility.”

If this conclusion holds, then it would mean that the vastarigj of the work on privacy-
preserving publishing of microdata is meaningless, bexaung might as well publish the
microdata in some trivially anonymized way. A simplified izt of the arguments made
by Brickell and Shmatikov [51] is as follows. (We will pregsghe complete arguments in
Section 5.1.1.) Privacy loss of the published data is defryeckrtain kinds of information
learned by the adversary from the dataset. Utility gain ef pablished data is defined
as the same kinds of information learned by the researclBsEsause both the adversary
and the researchers see the same dataset and try to leaamntbekimds of information,
their knowledge gains are the same. Hence any utility gaithbyanonymized data must
be offset by the same amount of privacy loss. We call the nuetlogy by Brickell and
Shmatikov [51] thedirect comparisormethodology.

In fact, the direct-comparison methodology [51] undereates the seriousness of pri-
vacy loss, as it usesverageprivacy loss among all individuals. When measuring privacy
loss, one has to bound theorst-caseprivacy loss amongll individuals. It is not accept-
able if one individual’s privacy is seriously compromisesen if the average privacy loss
among all individuals is low. This is clearly illustrated @am New York Times reporters
identified asingleuser in the search logs published by AOL, causing AOL to restbe
data immediately and fire two employees involved in pubfigtthe data [5].

The above reasoning seems to suggest that data anonymiageen more doomed
than being concluded in [51]. In this paper, we show thatelee important reasons
why this is not the case. Specifically, we show that argumalusg the lines in [51]

are flawed. It is inappropriate to directly compare privadgthwatility, because of several
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reasons, including both technical and philosophical orldse most important reason is
that privacy is anndividual concept, and utility is aaggregateconcept. The anonymized
dataset is safe to be published only when privacyefachindividual is protected; on the
other hand, utility gain adds up when multiple pieces of kieolge are learned. Secondly,
even if the adversary and the researcher learn exactly the g#ormation, one cannot
conclude that privacy loss equals utility gain. We will edadte this and other reasons why
privacy and utility are not directly comparable in Sectioh.5

If privacy and utility cannot be directly compared, how slibane consider them in
an integrated framework for privacy-preserving data liatig? For this, we borrow the
efficient frontier concept from the Modern Portfolio Theavhich guides financial invest-
ments [56] (see Figure 5.1). When making investments, ongt tmalance the expected
return with the risk (often defined as the degree of volgjilitOne can choose an asset
class with high risk and high expected return (e.g., stamk3hoose an asset class with low
risk and low expected return (e.g., cash), or choose a piortfat combines multiple asset
classes to get more attractive tradeoff between risk amgmretere the risk and expected
return cannot be directly compared against each otheragugtivacy and utility cannot be
compared. One can use points on a two-dimensional planedjorension is risk, and the
other is the expected return) to represent portfolios, bactfficient frontier consists of all
portfolios such that there does not exist another portfeiib both lower risk and higher
expected return (which would be more efficient). The poiefmesenting these efficient
portfolios form the northwest frontier on all points. Onendhaen select a portfolio either
based on the maximum acceptable risk, or the slope of theecwhiich offers the best
risk/return tradeoff.

This chapter studies the tradeoff between privacy andyutii microdata publishing.
First, we identify several important characteristics ofvgcy and utility (Section 5.1).
These observations correct several common misconceplmms privacy and utility. In
particular, we show that the arguments made in the KDD 20@@m&1] are flawed.

Second, we present a systematic methodology for measurivacy loss and utility

loss (Section 5.2). Privacy loss is quantified by the advgis&nowledge gain about the
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Fig. 5.1. Efficient Frontier (from Wikipedia)

sensitive values of specific individuals, where the basdhrthe trivially-anonymized data
where all quasi-identifiers are removed. Ultility loss is swad by the information loss
about the sensitive values of large populations, where éisellme is the original data (we
shall argue that, unlike privacy loss, the utility of the apmized data should be measured
against the original data rather than the trivially-saeiti data, and should be measured as
“utility loss” rather than “utility gain” in Section 5.1.2)

Finally, we evaluate the tradeoff between privacy andtyton the adult dataset from
the UCI machine learning repository (Section 5.3). Our ltssshow the privacy-utility
tradeoff for different privacy requirements and for difat anonymization methods. We
also give quantitative interpretations to the tradeoff ahhcan guide data publishers to

choose the right privacy-utility tradeoff.

5.1 Privacy V.S. Utility

In this section, we discuss thiirect-comparisommethodology used by Brickell and
Shmatikov [51]. We show that the direct-comparison methagipis flawed, and identify
three important characteristics of privacy and utility,igfhlays the foundation for our

methodology described in Section 5.2.
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5.1.1 The Direct Comparison Methodology

Recently, Brickell and Shmatikov [51] applied a fresh angleéhe tradeoff between
privacy and utility. They directly compared the privacydagith the utility gain caused by
data anonymization. To allow such a comparison, one hastthesamemeasurement for
both privacy and utility. In [51], the trivially-anonymidedata, where all quasi-identifiers
are removed, is used as the benchmark for comparing the ampey dataset with. Be-
cause the trivially-anonymized data contains no identifissrmation and thus does not
reveal sensitive information of any individual (i.e., pid&s maximum privacy protection
in the considered framework). When a non-trivial anonyrtidzais applied, information
on quasi-identifiers is revealed, which could cause botrapyiloss and utility gain, com-
paring to the trivially-anonymized data.

In the direct comparison methodology, this privacy loss &asured as the adversary’s
accuracy improvement in guessing the sensitive attribalgevof an individual, and util-
ity gain is measured as the researcher’s accuracy improwambuilding a classification
model for the sensitive attribute. This assumes that batattversary and the researcher
have the same goal, i.e., learning information to predietdénsitive attribute value. Be-
cause whatever information that can be discovered by tlearelser can also be learned
by the adversary, the analysis of privacy-utility traddseffrivialized: privacy loss always
equals utility gain.

This trivialization is resulted from the following assurngpts.
1. Both the adversary and the researcher have the same powtddge about the data.

2. Both the adversary and the researcher use the same appool@arn information

from the anonymized data.
3. Learning the same kinds of information has the same ingraptivacy and utility.

If all of the three assumptions hold, privacy loss would éatidity gain. Because of the
first two assumptions, the adversary and the researchedviawke exactly the same pos-

terior belief about the data. If the third assumption alsli$iathe adversary’s knowledge
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gain would equal the researcher’s knowledge gain, impltiad) privacy loss equals utility
gain.

To avoid such a trivial result, at least one of the three ag$imms must be changed. The
direct comparison methodology in [51] changes the first mgdion. It assumes that the
adversary has less prior knowledge than the researcherifiSally, it is assumed that the
microdata contains sonresutral attributes that are known to the researcher but not to the
adversary; these neutral attributes are not consideretiasiQen the benchmark trivially-
anonymized dataset becomes the dataset with only the hatitibutes and the sensitive
attribute, but not the QI's. For anonymized dataset, onepaoes with this new benchmark
for privacy loss and utility gain. Experiments in [51] leadsthe intriguing conclusion
“even modest privacy gains require almost complete detsbruof the data-mining utility”.
Because this approach gives the apparent impression dinlgrthe adversary (who does
not know the neutral attributes), they further claim that firotect against an adversary
with auxiliary information, the loss of utility must be evgreater”.

We now show that the above conclusions do not hold. Becaegseskearcher knows the
neutral attributes, which often have correlations withgbasitive attribute, the researcher
can already learn information about individuals from the/tenchmark, and can predict
sensitive attributes of individuals quite well. Hence tligliional improvement the re-
searcher can get from any anonymized dataset would be $eathuse the adversary does
not know the neutral attribute values of individuals, theeadary learns little from the new
benchmark, and hence is able to gain more from any anonyndiateget. This naturally
leads to the conclusion that publishing anonymized datasess useful for the researcher
than for the adversary. In fact, one can conclude this witlmooning any experiment.
It essentially follows from the ways privacy loss and wilgain are defined. Assuming
the adversary has less prior knowledge than the researltbes dhe adversary to “gain
more” from the anonymized data. Under the more natural aggans that the adversary
knows more information than the researcher and the benéhimaudes only the sensitive

attribute, the comparison between privacy loss and utiitiyn again becomes a trivial tie.
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5.1.2 Characteristics of Privacy and Utility

From the analysis of the direct-comparison methodologwabone can see that it
essentially says that privacy gain equals utility loss. \&& argue that directly comparing
privacy and utility (as in [51]) is neither reasonable nadible, because privacy and utility

have very different characteristics, as discussed below.

Specific and Aggregate Knowledge

The direct-comparison methodology implicitly assumes lgarning the same piece of
information has theameampact on both privacy and utility; otherwise one cannot pane
them. In fact, this assumption is used quite commonly (thoofgen implicitly) in the
literature. For example, lyengar [17] claims that clasatfan accuracy is maximized when
the sensitive values are homogeneous within each QI groighwdirectly contradicts the
(-diversity requirement [11]. Similarly, privacy [11, 15/Ris quantified byP(SA|QI)
(i.e., how much an adversary can learn about the sensitlue e an individual from the
individual’s QI values) while utility [20] is measured byt@bute correlations between the
QI attributes and the sensitive attribute.

In reality, the same piece of information can have very dgffid impacts on privacy
and utility. More specifically, fodifferent kindsof knowledge, having the adversary and
the researcher learn exactly the same knowledge can be dahiefisome cases and detri-
mental in other cases. For example, suppose that it is lédromn the published data that
people living near a small town have a much higher rate ofrgetancer (say, 50%) than
that among the general population. Learning this piece fofrimation can impact both
privacy and utility. On the one hand, this piece of inforraatbreaches the privacy of the
people in this small town. For example, when they go to pweh#alth/life insurance,
it can adversely affect their ability of getting insuran€&n the other hand, by publishing
this piece of information, people can investigate the caia$¢he problem (e.g., find some

sources of pollution) and deal with the problem (e.g., byoeimg the pollution sources or
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taking precautions). In this case, suafpgregateinformation results in more utility gain
than privacy loss as it benefits the society on the whole, &remon-participants.

Suppose that, in another case, itis learned from the pwgalidhta that an individual has
a 50% probability of having cancer because the individuak®ord belongs to a QI group
containing two records one of which has cancer. Smécificinformation has no utility
value to researchers but causes privacy loss. Again, thenmaition gain by the researcher
and the adversary are the same, but the utility gain and thaqgyrloss are very different.

The above arguments leads to the first characteristic oagyiand utility: specific
knowledge (that about a small group of individuals) has a lager impact on privacy,
while aggregateinformation (that about a large group of individuals) has a larger
impact on utility .

In other words, privacy loss occurs when the adversary seanore information about
specific individuals from the anonymized data. But datatytihcreases when information
about larger-size populations is learned.

Another effect of the aggregate nature of utility is morelgdophical than technical.
When publishing anonymized dataset, only the individudiese data are included have
potential privacy loss, while everyone in the society hatepibal utility gain. In fact,
this principle is implicit in any kind of survey, medical sty etc. While each participant
may loss more than she individually gains, the society as @evbenefit. And everyone
is benefiting from the survey and study that one does notgyaaite. Because benefit to
society is difficult (if not impossible) to precisely compuit is unreasonable to require that
publishing certain anonymized dataset results in highglitjugain” than “privacy loss”

using some mathematical measure.

Individual and Aggregate Concepts

Another important reason why privacy and utility cannot lbrectly compared is as
follows. For privacy protection, itis safe to publish thealanly whereveryrecord satisfies

the privacy parameter (i.e., every individual has a bourm@gcy loss). This implies that
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privacy is anindividual concept in that each individual's privacy is enforcggparately
This characteristic is different from utility gain. When Hiple pieces of knowledge are
learned from the anonymized data, data utility adds up. Trh@ies that utility is an
aggregateconcept in that utilityaccumulatesvhen more useful information is learned
from the data. The above arguments lead to the second chiastictof privacy and utility:
privacyis anindividual concept and should be measuredeparatelyor every individual
while utility is an aggregateconcept and should be measuredccumulativelyfor all
useful knowledge.

This characteristic immediately implies the following otbary on measuring privacy

and utility.

Corollary 5.1.1 For privacy, theworst-caseprivacy loss should be measured. For utility,

theaggregatedutility should be measured.

Hence it is possible to publish anonymized data even if fahaadividual, both the

privacy loss and the utility gain are small, because th&y#adds up.

Correctness of Information

Yet another difference between privacy and utility emergken we consider the cor-
rectness of the information learned from the anonymized.dathen the adversary learns
somefalseinformation about an individual, the individual’s privaisybreached even though
the perception is incorrect. However, when the researdans soméalseinformation,
data utility deteriorates because it may lead to false cmmhs or even misleading public
policies.

In fact, some studies have overlooked this difference betwgivacy and utility. For
example, the direct comparison methodology uses the Iltyramonymized data as the
baseline for both privacy and utility. While the trivialgponymized data is appropriate
as the baseline for privacy [27, 51], it is inappropriate ¢oused as the baseline for utility
gain. Consider using the anonymized data for aggregate qnexwering, e.g., determining

the distribution of the sensitive values in a large popalatiLet the estimated distribution
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be P. Let the distribution of the sensitive values in the triliganonymized data bé).
When the trivially-anonymized data is used as the baselireeanonymized data adds to
utility when P is different fromQ. However,P might be significantly different from the
true distributionP. The estimated false information does not contribute titytin fact,
it worsens the data utility.

This is the third characteristic of privacy and utilitgny information that deviates
from the prior belief, false or correct may causeprivacyloss but onlycorrectinforma-
tion contributes to utility . This characteristics implies the following corollary oeasur-

ing privacy and utility.

Corollary 5.1.2 Privacy should be measured agaihgttrivially-anonymized datahereas

utility should be measured usinige original dataas the baseline.

When the original data is used for measuring utility, we nieecheasure “utility loss”,
instead of “utility gain”. An ideal (but unachievable) paisy-preserving method should
result in zero privacy loss and zero utility loss.

To summarize, privacy cannot be compared with utility disebecause: (1) privacy
concerns information about specific individuals while aggte information about large
populations also contributes to utility, (2) privacy shibble enforced for each individual
and for the worst-case while utility accumulates all us&hdwledge; (3) only participants
have potential privacy loss, while the society as a wholeesbgrand (4) false information
can cause privacy damage but only correct information dmuters to utility gain. All
reasons suggest that the direct-comparison methodoldigwed. These characteristics

also lay the foundation for our proposed methodology iniSe@.2.

5.2 Our Evaluation Methodology

In this section, we present our methodology for analyzireypghvacy-utility tradeoff
in determining how to anonymize and publish datasets. Daldighers often have many
choices of privacy requirements and privacy parametersy Tan anonymize the data

and generate a number of datasets that satisfy differerdqyrrequirements and different
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privacy parameters. Often times, an important questiothfem is “which dataset should
be chosen to publish?”. Our methodology helps data pulskseswer this question.

We observe that the privacy-utility tradeoff in microdatabpshing is similar to the
risk-return tradeoff in financial investment. In financiavéstment, risk of an asset class or
a portfolio is typically defined as volatility of its returate, which can be measured using,
e.g., the standard deviation. Risk cannot be directly coetpwith return, just as privacy
cannot be directly compared with utility. Similarly, difent investors may have different
tolerance of risks and expectation of returns. Differetagaublishers may have different
tolerance of privacy and expectation of utility.

We borrow the efficient frontier concept from the Modern Roid Theory. Given two
anonymized datasefél andﬁg, we say tha@l is more efficienthanf)2 if f)l is as good
asf)2 in terms of both privacy and utility, and is better in at leaisé of privacy and utility.
Two anonymized datasef®, and D, may not be comparable because one may offer better
privacy but worse utility.

Given a number of anonymized datasets, for each of them wesureats privacy
loss P, relative to the case of publishing a trivial anonymized datdhat has no pri-
vacy threat, and its utility los&,,, relative to the case of publishing the dataset without
anonymization. We obtain a set 0P, Uj.ss) pairs, one for each anonymized dataset.
We plot the( P, Usoss) pairs on a 2-dimensional space, where:thexis depicts the pri-
vacy lossP,,,s and they-axis depicts the utility los#;,,s. An ideal (but often impossible)
dataset would havé),,, = 0 andU,,s, = 0, which corresponds to the origin point of the
coordinate. All datasets that are most efficient will formuave, and the data publisher
can choose a dataset based on the desired levels of privdaytifity and the shape of the
curve.

To use our methodology, one must choose a measure for prarattya measure for
utility. Our methodology is independent of the particulapbices for such measures. In
this paper, we usé@, ., to measure the degree of attribute disclosure beyond whabea

learned from publishing the sensitive attributes withoig.QVe introduce a novel utility
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measure, which is based on the intuition of measuring tharacg of association rule

mining results.

5.2.1 Measuring Privacy LosSP,,,;

We propose a worst-case privacy loss measureQUs the distribution of the sensitive
attribute in the overall table. As in [27,51], we use theridisition () as the adversary’s
prior knowledgeabout the data, becau&kis always available to the adversary even if all
guasi-identifiers are suppressed. This is true as long asetigtive attribute is kept intact,
as in most existing methods. Privacy leaks occur only wheratlversary learns sensitive
informationbeyondhe distribution®).

When the adversary sees the anonymized data, the adverpasgerior knowledge
about the sensitive attribute of a tugleeduces to the QI group that contaifisLet the
distribution of the sensitive attribute in the QI group B&). The privacy loss for a tuple
t is measured as the distance betwégeand P(t). We use the JS-divergence distance
measure:

Puss(t) = JS(Q, P(1) = 3{KL(Q, M) + KL(P(t), M)

whereM = 2(Q + P(t)) andK L(,) is the KL-divergence [28]:
4;
KL(Q,P) = log &
(@ P) E ailog >

Note that here we JS-divergence rather than KL-divergeecause KL-divergence is
not well-defined when there are zero probabilities in theosdaistributionP. There-
fore, using KL-divergence would require that for every Qogp, all sensitive attribute
values must occur at least once. However, most existin@@yivequirements such as
(-diversity [11], t-closeness [27], and sematic privacy [51] do not have suctopepty.
Finally, the worst-case privacy loss is measured as themanxiprivacy loss for all tuples
in the data:

Ploss = max Poss(t)
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It should be noted that one has the option to use other distar@asures. Whichever
distance measure one chooses, it should be the case thatilexy loss occurs when the
distance is smaller. Studying which distance measure ooeldlthoose is beyond the

scope of this paper.

5.2.2 Measuring Utility LoSS U,

In general, there are two approaches to measure utilithdritst approach, one mea-
sures the amount of utility that is remained in the anonyohdaga. This includes measures
such as the average size of the QI groups [11] and the dikdé@gnmetric [23]. This also
includes the approach of evaluating data utility in termglafa mining workloads. In
the second approach, one measures the loss of utility duatdoasthonymization. This is
measured by comparing the anonymized data with the origiat. This includes mea-
sures such as the number of generalization steps and thev€tgdnce between the recon-
structed distribution and the true distribution for all pitde quasi-identifier values [24].

It should be noted that, when the utility of the original digtkbow, it should be expected
that the utility of the anonymized data is also low. In thisegahe first approach may con-
clude that data anonymization has destroyed data utilifievulmfact, the low data utility is
due to low utility of the original data. Similarly, the fadtd anonymized data can be used
for a variety of data mining tasks does not imply that the gnaumation method is effective;
another anonymization method may provide even higher ddity with less privacy loss.
Due to these reasons, the first approach provides littleatidin with regard to whether an
anonymization method is effective or not. Our methodoldwréfore adopts the second
approach. This is also consistent with our arguments abatat wtility in Section 5.1.2:
utility should be measured atility lossagainsthe original data

When we measure utility loss, we need to decide which datangitask should be cho-
sen. Previous studies have evaluated data utility in tefnetassification [17, 25, 51, 57].
Because classification can also be used by the adversargriotlee sensitive values of

specific individuals, when the adversary’s knowledge gainaunded, data utility of clas-
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sification is also bounded (see Section 4.2 of [51]). Theegfdata utility of classification
will not constitute a major part of data utility because ib@inded for a safely-anonymized
dataset. Because of this, we do not measure data utilitynmstef classification. Note that,
we do not intend to underestimate the potential use of theyanized data for classification
purposes. In fact, we agree with the previous studies onttliy of classification.

Instead of classification, we use the anonymized data farcasson rule mining [58]
and aggregate query answering [20, 21, 59]. For both wodsloan important task is to
reconstruct the sensitive attribute distribution for &pgppulations. This is also consistent
with our arguments about data utility in Section 5.1.2: rndation on large populations
contributes to utility. A large population can be specifigdatsupport value and a predicate
involving only quasi-identifiers, e.g.,Age > 40&&Sex = Male”. The support value
is the number of records in the data that satisfy the preglic&Ve therefore adopt the
following methodology for measuring utility l104,..

First, we find all large populations whose support valuesaaleastminSup (where
minSup 1S a user-defined threshold value). To allow the large pdjuia to be defined
in terms of generalized predicate such dgé > 40", we use generalized predicates that
involve not only values from the attribute domain of the qudsentifiers but also values
from the generalization hierarchy of the quasi-identifigsese for example [22] and other
data mining literature on generalized association ruleimgin We use the FP-tree [43]
algorithm for discovering large populations.

Next, for each large populatiop, we compute the estimated distributié?) of the
sensitive attribute from the anonymized data and the trstilolition P, of the sensitive
attribute from the original data. We adopt the uniform dlsttion assumption: every value
in a generalized interval is equally possible and everyiseasalue in a QI group is also
equally possible. We measure the difference betwegeand P, as the researcher’s infor-
mation loss when analyzing the the large populagioAgain, we use the JS-divergence as

the distance measure, i.€},,,(y) = JS(P,, P,).
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Finally, because utility is amggregateconcept, we measure the utility l08%,., by

averaging utility los€/,,s,(y) for all large populationy.
Uioss = o S Ut (1)
loss = T~-[ loss
Y]

whereY is the set of all large populations. The anonymized dataigesumaximum utility
whenU,,,; = 0. In our experiments (see Section 5.3), we also empiricalaluate data

utility in terms of aggregate query answering.

5.2.3 Special Cases Analysis

There are two special cases for the privacy-utility tratlebhe first case is to publish
the trivially-anonymized data where all quasi-identifiare completely suppressed. In this
case, the estimated distribution of the sensitive atteitbot every individual equals to the
overall distribution). Because/S[Q, Q] = 0, we haveP,,(t) = 0 for every tuplet.
Therefore,P,,,; = 0, achieving maximal privacy protection.

Similarly, the estimated distribution of the sensitiveiatite for every large population
also equals to the overall populatign Because the overall distributiéghmay be quite dif-
ferent from the true distribution, utility loss could besificant. This trivially-anonymized
dataset is the first baseline that ensufgs, = 0 butU,,,; can be large.

The second special case is to publish the original datasetendll quasi-identifiers
are kept intact. In this case, any estimated informatioroisect and the estimated dis-
tribution equals to the true distribution, i.€?, = P, for every populationy. Because
JS(P,, P,) = 0, we havelU,,(y) = 0 for every populatiory. Therefore,U,; = 0,
achieving maximum utility preservation. However, becatlsesensitive value for every
individual is revealed, which can be quite different frone tbverall distribution, privacy
loss P, Is significant. The original dataset is the second basetiaednsure$/;,,, = 0

but P, can be significant.
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5.2.4 Advantages

Our evaluation methodology has a number of advantages wdrapared with exist-
ing work. First, one can use this methodology to comparesg&taanonymized using
different requirements. E.g., bothdiversity andt-closeness are motivated by protect-
ing against attribute disclosure, by choosing one privasg Imeasure, one can compare
datasets anonymized withdiversity for different/ values and those anonymized with
closeness for differertvalues.

Second, we measure utility loss against the original ddteerdahan utility gain. Util-
ity gain is not well-defined in data publishing. In order toasere utility gain, a baseline
dataset must be defined. Because only correct informatiotribates to utility, the base-
line dataset must contain correct information about la@upations. In [51], Brickell and
Shmatikov used the trivially-anonymized data as the baseih which every distribution
is estimated to be the overall distribution and thereforesea incorrect information.

Third, we measure utility for aggregate statistics, rathan for classification. This is
because, as several studies have shown, the utility of thieyamzed data in classification
is limited when privacy requirements are enforced.

Finally, we measure privacy loss in the worst-case and nmedlsa accumulated utility
loss. Our methodology thus evaluates the privacy loseveryindividual and the utility

loss forall pieces of useful knowledge.

5.3 Experiments

We implemented Mondrian [18] to enforce four requiremeritsanonytmity [4], (-
diversity [11], t-closeness [27], and semantic privacy [51]. We used botlergdination
and bucketization. We used the Adult dataset (which has hagely used in previous
studies) from the UCI Machine Learning Repository [33]. Thefiguration is the same as

described in Section 2.4.
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Fig. 5.2. Experiments/,,s, V.S. Py,

5.3.1 Utility Loss U, V.S. Privacy LOSSP,

For each privacy requirement, we use the Mondrian algortthoompute the anonym-
ized data that satisfies the privacy requirement. ThenagyiVossP,,, and utility loss
U,,ss are measured for the anonymized data.

We plot the privacy loss on theaxis and utility loss on thg-axis. Experimental results
are shown in Figure 5.2. We choose the privacy parametersk(j.¢, t, andé) such that
all privacy requirements span a similar range of privacyg lms ther-axis. Specifically, we
chooset € {10, 50, 100, 200, 500, 1000, 2000, 5000}. For example, whek = 5000, the
evaluated privacy los8,,,, = 0.086 and the evaluated utility logg,,,; = 0.0288, which
corresponds to the leftmost point on the@nonymity curve in Figure 5.2(a). We choose
¢ € {3.0, 3.5, 4.0, 4.25, 4.5, 4.75, 5.0, 5.5}, t € {0.075, 0.10.15, 0.20.25, 0.30.35,
0.4}, andé € {1.0,1.2, 1.4, 1.5, 1.7, 1.9, 2.0, 2.1}. Therefore, we havé points on each
privacy-requirement curve and they span a similar rangéen-axis, from 0 to 0.6 (see
Figure 5.2). Note that we choosée> 1 because the Mondrian algorithm returns one single
QI group whenj < 1. Fort-closeness, we use JS-divergence as the distance measure. F

utility measurel,,., we fix the minimum support value asinSup = 0.05.
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Results. Figure 5.2(a) shows the utility loss v.s. privacy loss wiglspect to different
privacy requirements. We stress that these results aretedféy our choice of measures
for privacy and utility. If one chooses a different measuregdrivacy (or utility), then the
figure may look differently. As we can see from the figur&loseness performs better
than other privacy requirements. Based on the figure, onédymrobably choose one of
the three left-most points farclosenesst(= 0.075,t = 01,¢ = 0.15) to publish, since
they offer the best trade-off between privacy and utilitpiversity does not perform well
because it aims at bounding the posterior belief rather thaulistance between the prior
belief and the posterior belief. Therefore, even whetiversity is satisfied, the posterior
belief can still be far away from the prior belief, thus leaisensitive information, based
on the privacy loss measure, ..

Interestingly, semantic privacy does not perform well @itfSemantic privacy bounds
the ratio of the posterior belief and the prior belief for gveensitive value. Semantic
privacy thus provides a good privacy measure (notedtats to be non-negative in order
for semantic privacy to be achievable). However, semami@py is difficult to achieve in
that the number of QI groups (or buckets) is small, espgciatien the sensitive attribute
domain size is large. In our experiments, there Bresensitive values in the attribute
domain of “Occupation”, and requiring the ratio for eachlhad 14 sensitive values for each
QI group (bucket) to be bounded is very difficult to achieveiactice.

Our results demonstrate the similarity between the privadity tradeoff in data pub-
lishing and the risk-return tradeoff (Figure 5.1) in finaalgnvestment. One difference is
that in data publishing, we measure utility loss rather thi@ity gain. We believe that, as
in financial investment, there exists an efficient frontredata publishing, which consists
of all anonymized datasets such that there does not exitt@nanonymized dataset with
both lower privacy loss and lower utility loss. The data psirs should only consider
those “efficient” anonymized dataset when publishing data.Figure 5.2(a), the efficient

frontier should be somewhere below theloseness line.
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Figure 5.2(b) shows the tradeoff for two anonymization rodth generalization and
bucketization. We use botfrdiversity and¢-closeness for the experiment. The results
show that bucketization provides substantially bettea ddtity than generalization, when

only attribute disclosure is considered.

Interpretation of the privacy loss. We quantitatively illustrate the amount of privacy loss.
Specifically, we want to answer the following question: sag®pan individual’s sensitive
value is revealed, what is the privacy loss for that indial@u

The overall distribution of the sensitive attribute “Ocatipn” is @ = (0.0314, 0.1331,
0.1063, 0.1196, 0.1323, 0.1329, 0.0452, 0.0657, 0.1225, 0.0327, 0.0512, 0.0052, 0.0216,
0.0003). If an individual’s sensitive value is revealed, the privéass (computed through
JS-divergence) is 0.692 when the sensitive value is “Arfreates” (which is the least fre-
guent sensitive value with a frequency of 0.0003) and theapyi loss (computed through
JS-divergence) is 0.488 when the sensitive valu€isft-repair’ (which is the most fre-
guent sensitive value with a frequency of 0.1331). The alsal@ulation shows that when
an individual’s privacy is revealed, the privacy loss is @iveen of 0.488 and 0.692 for the
sensitive attribute “Occupation” of the Adult dataset.

This means that privacy loss cannot be greater than 0.69&ev, when the privacy
loss is larger than 0.488, it does not mean that at least ali@dnal’s sensitive value is
revealed, because it may be the case that there is a largenaifoprivacy loss on the
least-frequent sensitive value “Armed-Forces” even tiaihg QI group (bucket) satisfies
¢-diversity wherel € {3,3.5}, as shown by the rightmost two points on thdiversity
curve shown in Figure 5.2(a). Note thatliversity requires that even the least-frequent

(i.e., the most sensitive) sensitive value must occur wighodbability of at least //.

Interpretation of the utility loss. We also quantitatively illustrate the amount of utility
loss. Specifically, we want to answer the following questiwhat is the utility loss when
all quasi-identifiers are removed? The utility loss is cited by averaging the utility loss
for all large populations, where the estimated distributgoalways the overall distribution
@. Our calculation shows that when all quasi-identifiers amaved, the utility loss is

0.05. In Figure 5.2, utility loss is lower thaf.04 in all cases, and is lower than02 in
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many cases, showing that publishing the anonymized dawidg®ove the quality of data

utility than publishing trivially anonymized dataset.

5.3.2 Aggregate Query Answering

Our second experiment evaluates the utility of the anongthfata in terms of aggre-

gate query answering.

Results. We plot the privacy loss on the-axis and the average relative error on the

y-axis. Figure 5.3(a) shows the tradeoff with respect toeddit privacy requirements.
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Interestingly, the figure shows a similar pattern as thatigufe 5.2(a) where utility is
measured ak,,,;, instead of average relative error. The experiments cotifiatour utility
measurd/,,s; captures the utility of the anonymized data in aggregateygaeswering.
One advantage df),. is to allow evaluating data utility based on the originaledand the
anonymized data, avoiding the experimental overheadsadfiating a large random set of
aggregate queries.

Figure 5.3(b) measures the tradeoff with respect to diffese/ values. We use-
closeness and bucketization anddik= 4. Our experiments show that the average relative
error is smaller whenel is larger. Because a large#/ value corresponds to queries about
larger populations, this shows that the anonymized datbearsed to answer queries about
larger populations more accurately.

Figure 5.3(c) measures the tradeoff with respect to diffegé values. We again use
t-closeness and bucketization and §&{ = 0.05. Interestingly, the results show that the
anonymized data can be used to answer queries more acgwaatgl increases. This is
because when query selectivity is fixed, the number of pairitee retrieved region is larger
whengqd is larger, implying a larger query region. This also shovet the anonymized data

can answer queries about larger populations more accyratel

5.4 Chapter Summary

In this paper, we identified three important charactesstibout privacy and utility.
These characteristics show that the direct-comparisohadetogy in [51] is flawed. Based
on these characteristics, we present our methodology &uating privacy-utility tradeoff.
Our results give data publishers useful guidelines on dhgase right tradeoff between

privacy and utility.
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6. RELATED WORK

In this chapter, we present an overview of relevant work avepy preserving data pub-
lishing. We first review existing work on microdata anonyatian. They can be classified
into two categoriesPrivacy Modelsand Anonymization MethodsWe then describe re-
lated work on anonymizing graph data. Finally, we study soesearch work on privacy

preserving data mining.

6.1 Privacy Models

The first category of work aims at devising privacy requiraiseWe first study several
privacy models for the general setting of data publishinge #h&n discuss a number of
important issues in defining privacy: (1) handling numettitilautes; (2) modeling and

integrating background knowledge; and (3) dealing withaiyiit data re-publication.

6.1.1 General Privacy Models

Samarati and Sweeney [1, 4, 47] first proposedittamonymity model.k-Anonymity
assumes that the adversary has access to some publicdgbdealatabases (e.g., a vote
registration list) from which she obtains the quasi-idegitivalues of the individuals. The
model also assumes that the adversary knows that somedudisiare in the table. Such
external information can be used for re-identifying anwndlial from the anonymized table
andk-anonymity ensures that, in the transformed data, any dezaom not be distinguished
from at least: — 1 other records. Therefore, an adversary cannot link an iithgial with a
record in the anonymized data with probability greater thén

In[11,13,15], the authors recognized that recognizeditfaatonymity does not prevent

attribute disclosure. Machanavajjhala et al. [11] proplasdiversity wherein the original
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data is transformed such that the sensitive values in eagivadgnce class have some
level of “diversity”. Wong et al. [15] proposed the, k)-anonymity requirement which, in
addition tok-anonymity, requires that the fraction of each sensitidaezégs no more than
« in each equivalence class. Xiao and Tao [13] observed/tdatersity cannot prevent
attribute disclosure, when multiple records in the tableesponds to one individual. They
proposed to have each individual specify privacy policiesud his or her own attributes.

In [27], we observed thatdiversity has a number of limitations; it is neither suffict
nor necessary in protecting privacy. We proposedithseness model which requires
the distribution of sensitive values in each equivalenassto be close to the distribution
of sensitive values in the overall table. In [60], we furtlstudied the utility aspects of
t-closeness and proposéd, t)-closeness as a more flexible privacy model. Thet)-
closeness model requires the distribution of sensitiveaegin each equivalence class to be
close to the distribution of sensitive values in a largetgogroup of records (containing at
leastn records). We explained the rationale far, ¢)-closeness and showed that it provides
better data utility.

Membership of an individual in the dataset can also be seasitformation. Nergiz
et al. [9] showed that knowing an individual is in the databpsses privacy risks and they
proposed ther-presence measure for protecting individuals’ memberghithe shared

database.

6.1.2 Numeric Attributes

Numeric attributes present more challenges in measursgadiure risks. In [27], we
showed similarity attacks on sensitive numeric attribugag&en though the exact sensitive
value is not disclosed, a small range of the sensitive vauevealed. We proposed to
use EMD as the distance measure, which captures the semaditngs of the sensitive
values.

Koudas et al. [21] also addressed the problem of dealing atttibutes defined on a

metric space; their approach is to lower bound the rangeloésaf a sensitive attribute in
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a group. They also studied the anonymization problem fragm#rspective of answering
downstream aggregate queries and developed a new privasgrping framework based
not on generalization, but on permutations.

Li et al. [61] further studied privacy risks with numeric rdtutes, which they termed
as “proximity privacy”. The proposed the, m)-anonymity requirement which demands
that, for every sensitive valuein an equivalence class, at mdsin of the records in the
equivalence class can have sensitive values closenioere closeness is controlled by the

parametet.

6.1.3 Background Knowledge

k-Anonymity [1,4,47] assumes that the adversary has acosssie publicly-available
databases (e.g., a vote registration list) from which shaiob the quasi-identifier values
of the individuals. The model also assumes that the adweksanws that some individuals
are in the table. Much of the subsequent work on this topigrass this adversarial model.

In [11, 13, 15], the authors recognized that the adversay has knowledge of the
distribution of the sensitive attribute in each equivakenlass and she may be able to infer
sensitive values of some individuals using this knowledgmce the sensitive values are
preserved exactly, an adversary always knows the sengdives in each equivalence class
once the anonymized data is released. If the sensitivevaluen equivalence class are the
same, the adversary can learn the sensitive value of evdiyidoal in the equivalence
class even though she cannot identify the individuals.

We [27,60] further observed that the distribution of thesstive attribute in the overall
table should be public information and the adversary cagr isénsitive information with
this additional knowledge. As longs as the anonymized dataleased, the distribution
of the sensitive attribute in the overall table is discloséthis information can present
disclosure risks even the anonymized data satisfieé tinersity requirement.

In [34], Martin et al. presented the first formal analysis loé effects of background

knowledge on individuals’ privacy in data publishing. Theypposed a formal language to



145

express background knowledge about the data and quanttdtound knowledge as the
number of implications in their language. They defined (th&)-safety model to protect
the data in the worst-case when the adversary has knowlédgenplications.

Chen et al. [35] extended the framework of [34] and proposeuikidimensional ap-
proach to quantifying an adversary’s background knowleddey broke down the adver-
sary’s background knowledge into three components whiglmeare intuitive and defined a
privacy skyline to protect the data against adversarids thigse three types of background
knowledge.

While these work provided a framework for defining and anialybackground knowl-
edge, they do not provide an approach to allow the data pdli®o specify the exact
background knowledge that an adversary may have. In [22hraosed to mine negative
association rules from the data as knowledge of the adwer$ae rationale is that if cer-
tain facts/knowledge exists, they should manifest thewesah the data and we should be
able to discover them using data mining techniques. In [#€&]applied kernel estimation
techniques for modeling probabilistic background knowled

Recently, Wong et al. [46] showed that knowledge of the meisma or algorithm of
anonymization for data publishing can leak extra sensitif@mation and they introduced
them-confidentiality model to prevent such privacy risks.

Several research works also consider background knowledgener contexts. Yang
and Li [62] studied the problem of information disclosureXNML publishing when the
adversary has knowledge of functional dependencies aheuXML data. In [39], Lak-
shmanan et al. studied the problem of protecting the truetitiles of data objects in the
context of frequent set mining when an adversary has panfiaimation of the items in
the domain. In their framework, the adversary’s prior krenige was modeled asbalief
functionand formulas were derived for computing the number of iterhese identities

can be “cracked”.
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6.1.4 Dynamic Data Publishing

While static anonymization has been extensively invetgdan the past few years, only
a few approaches address the problem of anonymization iandigrenvironments. In the
dynamic environments, records can be deleted or insertédrennew dataset needs to
be anonymized for re-publication. This dynamic nature efdlataset presents additional
privacy risks when the adversary combines several anomgniaeases.

In [4], Sweeney identified possible inferences when newrdscare inserted and sug-
gested two simple solutions. The first solution is that oecerds in a dataset are anonym-
ized and released, in any subsequent release of the ddtesetcords must be the same
or more generalized. However, this approach may suffer framecessarily low data qual-
ity. Also, this approach cannot protect newly inserted résdrom difference attack, as
discussed in [63]. The other solution suggested is that andataset is released, all re-
leased attributes (including sensitive attributes) m@strbated as the quasi-identifier in
subsequent releases. This approach seems reasonableagsiff@ctively prevent linking
between records. However, this approach has a significantdick in that every equiva-
lence class will inevitable have a homogeneous sensitikibate value; thus, this approach
cannot adequately control the risk of attribute disclosure

Yao et al. [64] addressed the inference issue when a singkeitareleased in the form
of multiple views. They proposed several methods to cheostldr or not a given set of
views violates theé:-anonymity requirement collectively. However, they did address
how to deal with such violations.

Wang and Fung [65] further investigated this issue and pega top-down specializa-
tion approach to prevent record-linking across multiplergfmous tables. However, their
work focuses on the horizontal growth of databases (i.&litiad of new attributes), and
does not address vertically-growing databases wheredsewne inserted.

Byun et al. [63] presented a first study of the re-publicatiooblem and identified
several attacks that can breach individuals’ privacy evearweach individual table satisfies

the privacy requirement. They also proposed an approachewtesv records are directly
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inserted to the previously anonymized dataset for comjmmalt efficiency. However, they
focused only on thenference enabling sethat may exist between two tables.

In [66], Byun et al. consider more robust and systematicrarfee attacks in a col-
lection of released tables. Also, the approach is applkcablboth the full-domain and
multidimensional algorithms. It also addressed the issuw®mputational costs in detect-
ing possible inferences and discussed various heuristisghificantly reduce the search
space.

Recently, Xiao and Tao [67] proposed a new generalizatiorcipe m-invariancefor
dynamic dataset publishing. Thme-invarianceprinciple requires that each equivalence
class in every release contains distinct sensitive ategitalues and for each tuple, all
equivalence classes containing that tuple have exactlgdh®e set of sensitive attribute
values. They also introduced tlweunterfeit generalizatiotechnique to achieve tha-

invariancerequirement.

6.2 Anonymization Methods

Another thread of research aims at developing anonymizd&ohniques to achieve
the privacy requirements. One popular approach to anorgy/thie data is generaliza-
tion [1,47] where we replace an attribute value by a lessiBp&at semantically consistent
value. Generalization schemes can be defined that speaiytife®data will be general-
ized. In the first part of this section, we a set of differemepalization schemes. Another
anonymization method is bucketization which separatessémsitive attribute from the
guasi-identifiers without generalization. In the second phthis section, we will briefly
review the bucketization method. Finally, we examine s@vether anonymization meth-

ods in the lieterature.

6.2.1 Generalization Schemes

Many generalization schemes have been proposed in thatliter Most of these

schemes require predefined value generalization hieesr¢hj 10,16,17,55, 68]. Among
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these schemes, some require values be generalized to théesaatof the hierarchy [1, 10,
16]. In [17], lyengar extends previous schemes by allowingenilexible generalizations.
In addition to these hierarchy-based schemes, partitam®dh schemes have been proposed
for totally-ordered domains [23]. These schemes and tk&tionship with our proposed
schemes are discussed in detail in [69].

All schemes discussed above satisfy the “consistency psdpee., multiple occur-
rences of the same attribute value in a table are generahizée same way. There are
also generalization schemes that do not have the consyspeoperty. In these schemes,
the same attribute value in different records may be gemedhto different values. For ex-
ample, LeFevre et al. [18] propose Mondrian multidimenalégranonymity, where each
record is viewed as a point in a multidimensional space arahanymization is viewed as
a partitioning of the space into several regions.

On the theoretical side, optimatanonymity has been proved to be NP-hard #or
3 [70,71], and approximation algorithms for finding the anmmation that suppresses the
fewest cells have been proposed [70, 71].

A serious defect of generalization that has been recogiigg@0, 24,50] is that exper-
imental results have shown that many attributes have tojygressed in order to guarantee
privacy. A number of techniques such as bucketization [2022] have been proposed to

remedy this defect of generalization. We now discuss themdre details.

6.2.2 Bucketization Method

The bucketization method (also calladatomyor Permutation-basethethod) is stud-
ied in [20, 21]. It first partitions tuples in the table intodkets and then separates the
guasi-identifiers with the sensitive attribute by randomdymuting the sensitive attribute
values in each bucket. The anonymized data consists of & beickets with permuted

sensitive attribute values.
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6.2.3 Other Anonymization Methods

Other anonymization methods include clustering [72—74¢roaggregation [75], space
mapping [76], spatial indexing [77], and data perturba(i®9, 78, 79]. Microaggrega-
tion [75] first groups records into small aggregates coimgimat leastt records in each
aggregate and publishes the centroid of each aggregateariagliget al. [72] proposed
clustering records into group of size at leasand releasing summary statistics for each
cluster. Byun et al. [73] presentedkamember clustering algorithm that minimizes some
specific cost metric. Each group of records are then gemethtd the same record locally
to minimize information loss.

Iwuchukwu and Naughton [77] observed the similarity betvsgatial indexing ané-
anonymity and proposed to use spatial indexing techniquasdnymize datasets. Ghinita
et al. [76] first presented heuristics for anonymizing omaahsional data (i.e., the quasi-
identifier contains only one attribute) and an anonymizattgorithm that runs in linear
time. Multi-dimensional data is transformed to one-dimenal data using space mapping
techniques before applying the algorithm for one-dimemsidata.

Data perturbation [59,78-81] is another anonymizatiorhmet It sequentially perturbs
each record in the dataset. Give a record, the algorithnneetes sensitive value with
probabilityp and perturbs its sensitive value to a random value in the doofithe sensitive
attribute with probabilityl — p. The limitation of data perturbation is thahas to be very
small in order to preserve privacy, in which case the datéatos a lot of noises and is not

useful for data analysis [61].

6.3 Graph Data Anonymization

While there is a lot of research works on anonymizing mictadséhe problem of
anonymizing social network data has not received much tagtefrom the research com-
munity until recently. As a pioneer work, Backstrom et aR][8escribe a family of attacks
(both active attacks and passive attacks) on naive anoayioniz In the active attack, the

attacker plants some well-constructed subgraph and agsschis subgraph with targeted
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entities. When the anonymized social network is releadedlattacker can first discover
the planted subgraph and then locates the targeted enf@iese the targeted entities are
located, the edge relations among them are revealed. Irafsve attack, an attacker col-
ludes with a coalition of friends and identifies the coatitaf nodes when the anonymized
data is released. However, this work does not provide aisalt prevent these attacks.

Hay et al. [83] observed that structural characteristiasaafes and their neighborhood
nodes can be used by the adversary to identify individuals fihe social network. They
proposed two types of structural queriegrtex refinement querieghich describe local
expanding structures arsiibgraph knowledge querigghich describe the existence of a
subgraph around a target node. Unlike the attacks descirbj@2], the attack does not
require the adversary to plant some well-constructed sydbginto the social network but
it assumes that the adversary has knowledge of the struatfwamation about the tar-
geted entities. Zhou et al. [84] observed that when the advgthas knowledge of some
neighborhood information about a targeted entity, i.eawthe neighbors are and how they
are connected, the targeted entity may be uniquely idepigfixom the social network.
Liu et al. [85] proposed thé-degree anonymization requirement which demands that for
every nodey, there exists at leagt— 1 other nodes in the graph with the same degree as
This requirement prevents an adversary with backgrounaviaage about exact degrees
of certain nodes from re-identifying individuals from theagh.

Zheleva et al. [86] studid the problem of anonymizing soc&tivorks where nodes are
not labeled but edges are labeled. In this model, some tyjpedges are sensitive and
should be hidden.

6.4 Privacy-Preserving Data Mining

Privacy-preserving data mining tries to strike a balandevéen two opposing forces:
the objective of discovering valuable information and kiexge, verse the responsibility
of protecting individuals’ privacy. Two broad approacheséd been widely studied: the

randomization approach [87—90] and the secure multi-mamyputation approach [91,92].
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In the randomization approach, individuals reveal theidamized information and the
objective is to discover knowledge from the randomized déiide protecting each individ-
ual’s privacy. The randomization approach depends on twedsions: the randomization
operator and the data mining algorithm. One randomizatp@rator that has been widely
studied is data perturbation (e.g., adding noise) [87—B@fta mining algorithms include
classification, association rule mining, and clusteringlet

The problem of building classification models over randa@didata was studied in [87,
88]. In their scheme, each individual has a numerical vajwnd the server wants to learn
the distribution of these values in order to build a clasaiian model. Each individual
reveals the randomized valug + r; to the server where; is a random value drawn from
some distribution. In [87], privacy was quantified by theZ#iness” provided by the sys-
tem, i.e., the size of the interval that is expected to corttee original true value for a given
level of confidence and a Bayesian reconstruction procedaseproposed to estimate the
distribution of the original values. In [88], privacy wasfued as the average amount of
information disclosed based on information theory and greetation maximization (EM)
algorithm for distribution reconstruction was derivedttheovably converges to the maxi-
mum likelihood estimate (MLE) of the original values.

The problem of discovering association rules from randeshidata was studied in [89,
90]. Each individual has a set of items(called atransactior) and the server wants to
discover all itemsets whose support is no less than a thicesieach individual sends
the randomized transactiah (by discarding some items and inserting new items) to the
server. Privacy was quantified by the confidence that an isemthe original transaction
t; given the randomized transactiofh A number of randomization operators have been
studied and algorithms for discovering association rutemfthe randomized data have
been proposed [89, 90].

The privacy issue was addressed in all above works. Theradatiédonal works [81,
93, 94] that mainly focused on the privacy analysis. [81kpreéed a formulation of privacy
breaches and a methodology called “amplification” to lirhigrn. [93] showed that arbi-

trary randomization is not safe because random objects ‘ipagdictable” structures that
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allow the noise to be removed effectively. [94] further séabdthe safety problem of the
randomization approach and showed how data correlationaféect privacy.

In the secure multi-party computation (SMC) approach, gaskored by multiple par-
ties and the objective is to learn knowledge that involvda di@m different parties. Pri-
vacy was defined as that no more information is revealed t@arty other than the mining
results. [91] studied the problem of building a decisicetclassifier from horizontally
partitioned databases without revealing any individuabrds in each database to other
databases. [95] proposed an algorithm for mining assoadiatiles from horizontally par-
titioned databases. [92, 96] proposed solutions to thecadsmn rule mining problem and
the k-means clustering problem for vertically partitiomiedabases, respectively. There are
additional works for the privacy-preserving Bayesian reetproblem [97], the regression
problem [98], and the association rule mining problem igéascale distributed environ-
ments [99].

The above works focused on input privacy, i.e., the raw datg breach privacy. Ad-
ditional works studied output privacy [100-103], i.e., Hygregate data may contain sen-

sitive rules/information.
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7. SUMMARY

In this dissertation, we defended our thesis that with cusefonymization, we can provide
strong and robust privacy protection to individuals in psikd or shared databases without
sacrificing much utility of the data. We proved this thesidlmee dimensions: (1) design-
ing a simple, intuitive, and robust privacy model; (2) desng an effective anonymization
technique that works with real-world databases; and (3¢ldg@ing a framework for evalu-
ating privacy and utility tradeoff.

While this dissertation presents an extensive study ofptoblem, there are a number

of remaining problems and challenges that need to be soBa&ldw are a few of them.

Building rigorous foundations for data privacy. Recent research has demonstrated that
ad-hoc privacy definitions have no formal privacy guarasitéieey cannot protect privacy
against adversaries witlrbitrary background knowledge, leaving them potentially vul-
nerable to unforseen attacks. The ultimate goal is to eshabigorous foundations for
data privacy that give meaningful and practical protectidy previous study has demon-
strated that privacy should be defined based on the behafithhe algorithm rather than
the syntactic properties of the data. This leads to a newlyamhiprivacy notions called
algorithmic privacy An interesting but challenging research problem is togtesifective
and practical algorithmic privacy definitions and devetgpanonymization techniques for

them.

Genome-wide association study (GWAS): privacy implicatios. GWAS aims at dis-
covering associations between genetic variations and aontdiseases. Recent research
has demonstrated that individuals can be re-identified teshstatistics (such asvalue
and coefficient of determinatior?) published by GWAS studies. Existing research consid-
ers only specific attacks using some specific test statishinsnteresting future direction

is to perform a systematic study on the broad privacy impbos of GWAS research.
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It is particularly interesting to use data mining and maehigarning techniques for pri-
vacy analysis and to design effective countermeasuredifomating the privacy threats
of GWAS research. All of these efforts will benefit from reteadvances in data mining,

machine learning, and bioinformatics.

Privacy preserving genomic computation. Research in computational biology aims to
build computational and theoretical tools for modern bggioMany tasks in computational
biology, however, involve operations on individual DNA aptbtein sequences, which
carry sensitive personal information such as genetic marfie certain diseases. Privacy
preserving genomic computation has raised interestingi@nas. Simple anonymization of
genome data may either cause too much information lossldo faievent re-identification
attacks. Cryptographic technigues such as secure mutti-p@amputation (SMC) can only
handle specific tasks and may become quite expensive feg kErgle computation. A
interesting problem is to study privacy preserving mecérasi for genomic computation

so that large scale biocomputing problems can be solved livacy-preserving manner.

Privacy in social networks. The proliferation of social networks has significantly ad-
vanced research on social network analysis (SNA), whicmortant in various domains
such as epidemiology, psychology, and marketing. Howeamial network analysis also
raises concerns for individual privacy. The main challeisge publish anonymized social
network data that preserves graph properties while piiaggthie privacy of the individual
users. An interesting problem is to study the privacy pnoigén social networks and de-
sign effective privacy measures and anonymization teclasdp enable privacy-preserving
analysis over social network data.

With the advancement of technology, privacy and securgyas are becoming more
important than ever before. Privacy and security problexigt aeot only in databases and
data mining, but also in a wide range of other fields such ahoese, genomic computa-
tion, cloud computing, location services, RFID systems, swcial networks. It would be

interesting and challenging to work on the important proiden these emerging fields.
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