
CERIAS Tech Report 2010-12
A Platform for Creating Efficient, Robust, and Resilient Peer-to-Peer Systems

 by David Zage
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

A PLATFORM FOR CREATING EFFICIENT, ROBUST, AND RESILIENT

PEER-TO-PEER SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

David J. Zage

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2010

Purdue University

West Lafayette, Indiana

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . viii

1 Introduction . 1
1.1 Motivation . 3
1.2 Thesis Focus and Contributions . 4
1.3 Thesis Roadmap . 5

2 System and Attacker Model . 7
2.1 Peer-to-peer Systems . 7
2.2 Attacker Model . 8

3 Creating Robust Adaptive Components 10
3.1 Adaptive Peer-to-peer Multicast . 12

3.1.1 End System Multicast(ESM) 13
3.2 Attacks Targeting Adaptation . 15
3.3 Preventing Adversarial-Induced Adaptation 18
3.4 Using Information to Add Robustness 18

3.4.1 Discussion . 22
3.4.2 Experimental Evaluation . 23

3.5 Preventing Malicious Adaptation Using Outlier Detection 35
3.5.1 Spatial Outlier Detection . 37
3.5.2 Temporal Outlier Detection 38
3.5.3 Spatio-temporal Outlier Detection 39
3.5.4 Potential Limitations of Outlier Detection 40
3.5.5 Experimental Evaluation . 40

3.6 Summary . 44

4 Creating Robust Solutions for Network Awareness 45
4.1 Decentralized Virtual Coordinate Systems 47

4.1.1 Vivaldi Virtual Coordinate System 49
4.2 Vulnerability of Virtual Coordinate Systems 50
4.3 Adding Robustness to Virtual Coordinate Systems 53

4.3.1 Spatial Outlier Detection . 54
4.3.2 Temporal Outlier Detection 55

iii

Page
4.3.3 Spatio-temporal Outlier Detection 56

4.4 Experimental Evaluation . 57
4.4.1 Evaluation Methodology . 58
4.4.2 Node Placement in a Virtual Coordinate System 60
4.4.3 Impact of Attacks Against Distributed Virtual Coordinate Sys-

tems . 60
4.4.4 Threshold Selection for Spatial-Temporal Outlier Detection . 66
4.4.5 Mitigating Attacks Against Virtual Coordinate Systems . . . 68

4.5 Summary . 72

5 Responding to Identified Threats . 87
5.1 Reputation Systems . 88

5.1.1 The Dimensions of the EigenTrust Reputation System . . . 90
5.2 Vulnerabilities of Reputation Systems in Adversarial Environments 93

5.2.1 Self-promoting . 94
5.2.2 Whitewashing . 95
5.2.3 Slandering . 96
5.2.4 Orchestrated . 97
5.2.5 Denial of Service . 98
5.2.6 EigenTrust Defense Mechanisms 99

5.3 Mitigating Identified Threats Based on Local and Global Reputation 99
5.3.1 Isolating Malicious Nodes in ESM 100
5.3.2 Global Response . 102

5.4 Experimental Evaluation . 103
5.4.1 Mitigating Identified Threats 104
5.4.2 Overhead and System Performance 110

5.5 Summary . 110

6 Maintaining Application Performance Using Robust System Components 112
6.1 Distributed Hash Tables . 114
6.2 The Kademlia Distributed Hash Table 114

6.2.1 Utilizing Latency Estimation to Improve Kademlia Performance 115
6.2.2 Draining the Performance of Kademlia 117
6.2.3 Kademlia Discussion . 123

6.3 The Chord Distributed Hash Table 124
6.3.1 Utilizing Latency Estimation to Improve Chord Performance 124
6.3.2 Experimental Evaluation . 126

6.4 Summary . 131

7 Related Work . 133
7.1 Attacks Exploiting Adaptivity . 133
7.2 Use of Spatial and Temporal Correlations 134
7.3 Robust BGP Using Data-Plane Information 135
7.4 Defense Mechanisms in Virtual Coordinate Systems 135

iv

Page
7.5 Coordinate System Error Minimization and Landmark Selection . . 136
7.6 Secure Localization in Sensor Networks 137
7.7 Secure Routing . 138
7.8 Reputation Systems . 139

8 Conclusions . 140

LIST OF REFERENCES . 142

VITA . 155

v

LIST OF TABLES

Table Page

3.1 ESM probe response components . 19

3.2 ESM system stability under attack . 27

3.3 ESM system stability when augmented with control-plane and data-plane
information defense mechanism . 30

3.4 The effectiveness of outlier detection at improving parent selection for an
ESM overlay of 100 nodes on PlanetLab over 60 minutes 43

4.1 Internet data sets characteristics . 58

4.2 Probability of a reference set having at least one malicious node for the
King topology . 64

4.3 Probability of a reference set having at least 30% malicious nodes for the
King topology . 65

4.4 False positive rate and median prediction error for different spatial outlier
thresholds . 67

4.5 False positive rate and median prediction error for different data sets using
a spatial outlier threshold of 1.5 . 70

4.6 Number of colluding nodes tolerated by spatial outlier detection for dif-
ferent data sets using a spatial outlier threshold of 1.5 72

5.1 System settings for the reputation-based response mechanism 106

vi

LIST OF FIGURES

Figure Page

3.1 Illustration of the ESM overlay multicast system 14

3.2 Graph representation of the aggregation of data-plane and control-plane
information used to improve adaptation decision quality. 20

3.3 Illustration of the physical location of a subset of the PlanetLab nodes
used for experimental evaluations. 24

3.4 System bandwidth for an ESM deployment under attack 26

3.5 System instability for an ESM deployment under attack 28

3.6 Attack strength for different percentages of malicious nodes 29

3.7 ESM average system bandwidth when augmented with control-plane and
data-plane information defense mechanism 31

3.8 Attack strength when ESM is augmented with our control-plane and data-
plane information defense mechanism 32

3.9 Distribution of the duration a node is connected to its parent under various
conditions . 33

3.10 Resilience of our control-plane and data-plane information defense mech-
anism to malicious coalitions . 34

3.11 Average bandwidth over time for an ESM overlay under attack 42

4.1 Example of the Vivaldi coordinate update process 74

4.2 Example inflation attack scenarios . 75

4.3 Node placement chosen by Vivaldi for various data sets 76

4.4 Victim node error and placement for a deflation and inflation attack (King) 76

4.5 Virtual coordinate system node placement under an oscillation attack
(King) . 77

4.6 System prediction error under different percentages of attackers (King) 78

4.7 Relative error under under different percentages of attackers (King) . . 79

vii

Figure Page

4.8 Median relative error under different reference set size with varying per-
centages of malicious nodes (King) . 80

4.9 Relative error under under different percentages of attackers (Meridian) 81

4.10 Relative error under under different percentages of attackers (AMP) . . 82

4.11 Relative error using different spatial outlier thresholds when 10% of the
network is malicious (King) . 83

4.12 Relative error using different spatial outlier thresholds when 20% of the
network is malicious (King) . 84

4.13 Relative error using different spatial outlier thresholds when 30% of the
network is malicious (King) . 85

4.14 Relative error under different percentage of attackers using a spatial outlier
threshold of 1.5 with three real-life Internet latency data sets 86

5.1 Effectiveness of different scoped responses in mitigating attacks against
ESM . 105

5.2 The effectiveness of global response only in mitigating attacks against ESM 107

5.3 Attack effectiveness against different response mechanisms on an ESM
overlay of 100 nodes. Tau represents the amount of damage an attack
created in the system. 108

5.4 Malicious node location for an ESM overlay of 100 nodes with 30% mali-
cious nodes on PlanetLab under different response mechanisms 109

6.1 Using latency estimation with the Kademlia DHT 116

6.2 Kademlia lookup latency under different percentages of attackers perform-
ing a deflation attack on the underlying virtual coordinate system. . . . 119

6.3 Kademlia lookup latency under different percentages of attackers perform-
ing an inflation attack on the underlying virtual coordinate system. . . 120

6.4 Kademlia lookup latency under different percentages of attackers perform-
ing an oscillation attack on the underlying virtual coordinate system. . 122

6.5 Key lookup in the Chord DHT . 125

6.6 Chord lookup latency under different percentages of attackers targeting
the Vivaldi virtual coordinate system over the King topology 128

6.7 Normalized lookup delay for Chord under different percentages of attackers 129

6.8 Distribution of the normalized lookup delay for Chord under different per-
centages of malicious nodes . 132

viii

ABSTRACT

Zage, David J. Ph.D., Purdue University, May 2010. A Platform for Creating Ef-
ficient, Robust, and Resilient Peer-to-Peer Systems. Major Professor: Cristina
Nita-Rotaru.

The rapid growth of communication environments such as the Internet has spurred

the development of a wide range of systems and applications based on peer-to-peer

ideologies. As these applications continue to evolve, there is an increasing effort to-

wards improving their overall performance. This effort has led to the incorporation of

measurement-based adaptivity mechanisms and network awareness into peer-to-peer

applications, which can greatly increase peer-to-peer performance and dependability.

Unfortunately, these mechanisms are often vulnerable to attack, making the entire

solution less suitable for real-world deployment. In this dissertation, we study how to

create robust systems components for adaptivity, network awareness, and respond-

ing to identified threats. These components can form the basis for creating efficient,

high-performance, and resilient peer-to-peer systems.

1

1 INTRODUCTION

The rapid growth of communication networks such as the Internet and ad hoc wireless

mesh networks has spurred the development of numerous collaborative peer-to-peer

(P2P) systems. These systems employ distributed resources to achieve some end

goal in a distributed manner. The nodes in the system act as equals, simultaneously

functioning as both clients and servers. Each node provides part of its own resources

(storage, network bandwidth, etc.) in order to facilitate the goal of the overall system

such as providing video content or creating shared collaborative spaces. As more

nodes arrive in the system, greater demands are made of the system, but further

total capacity is also added by the sharing of individual node resources. This allows

the systems to efficiently scale to hundreds or even thousands of users and support

a wide variety of usage patterns. This scalability, flexibility, and power drives the

growth of peer-to-peer systems and the desire to identify further applications which

can effectively use this computational model.

In order to understand the current popularity of peer-to-peer systems, one just has

to examine the applications which they make possible. The following applications,

while just a subset of the myriad of possible peer-to-peer applications, have been

identified as some of the most useful and promising:

• File Download and Distribution Currently, one of the most common uses

of peer-to-peer applications is sharing files between network participants. Each

participant has the ability to download files and is expected to provide files for

download, distributing the cost and system load over multiple users. Besides

load balancing, the applications provide robustness against nodes leaving the

network and node failure as multiple copies of the data are often stored across

the system. Example systems include BitTorrent [1], Emule [2], Gnutella [3],

2

Direct Connect [4], and OpenNap [5]. Each of these systems claims user mem-

bership in the millions, with thousands of active users per day.

• Voice over IP Systems such as Skype [6] utilize a peer-to-peer model in order

to efficiently scale to millions of nodes (customers) without the need for fixed

infrastructure.

• Video Broadcasting and Real Time Television These applications pro-

vide the ability to efficiently multicast video on demand to a large number of

users. The use of peer-to-peer technology allows the systems to scale by dis-

tributing processing and bandwidth loads. Moreover, some of these systems are

adaptable to network conditions, providing increased throughput and connectiv-

ity over a traditional server-client model. There has been a considerable amount

of research and commercial interest in video multicasting, resulting in systems

such as End System Multicast (ESM) [7], Scribe [8], SplitStream [9], Nice [10],

Overcast [11], Bullet [12], Chainsaw [13] and CoolStreaming/DONet [14]. Along

with on-demand video, there recently has been an explosion of interest in real-

time peer-to-peer streaming of audio and video, resulting in systems such as

SOPCast [15], PPLive [16], PPStream [17], TVAnts [18], QQLive [19], Feid-

ian [20], Mysee [21], Pdbox [22], PPMate [23], UUSee [24], VGO [25], CTV [26],

StreamerOne [27], TVUnetworks [28], Joost [29], Veoh [30], and Zattoo [31].

• Distributed Computation and Data Processing Projects such as Fold-

ing@home [32] utilize the unused resources of each node to study computation-

ally and storage intensive applications such as protein folding, DNA sequencing,

and star analysis. Computing power previously realized only in high cost su-

percomputing centers can now be harnessed for a fraction of the cost using

individuals’ personal computers.

As the number of networked devices is forecasted to reach 15 billion by 2010 [33],

peer-to-peer systems will only continue to grow in importance.

3

1.1 Motivation

As peer-to-peer systems continue to evolve, there is an increasing focus on creating

high-performance systems. This desire for performance has led to the incorporation

of adaptivity mechanisms and network awareness into current systems. Adaptiv-

ity mechanisms allow the systems to satisfy changes in user requirements or fulfill

performance guarantees under changing conditions by dynamically changing the sys-

tem structure. This fluidity allows the application to improve suboptimal system

structure resulting from random initial neighbor selection, aggressive partition re-

pair, group membership changes, and transient conditions in the underlying physical

network. Additionally, an increasing number of peer-to-peer applications are designed

to be network aware and not blindly choose neighbor nodes at random. In order to

avoid excessive network measurements or the overhead of reactive routing protocols,

applications depend on accurate and efficient services that allow hosts on the Inter-

net to determine network properties such as the latency between nodes. The use

of virtual coordinate systems to enable peer-to-peer applications to accurately and

efficiently select the best nodes for a desired task is one concrete example of such

a service. Both adaptivity and network awareness have been shown to significantly

improve peer-to-peer system performance.

In contrast to great deal of research that has resulted in the rapid creation of

high-performance peer-to-peer solutions, little work has focused on creating robust

and resilient peer-to-peer systems. While the inclusion of adaptivity and network

awareness can greatly increase the performance and dependability of peer-to-peer

applications, care must be taken not to introduce new attack vectors in which the

attacker is able to target these system components. Unfortunately, in many of the

proposed systems, these mechanisms are vulnerable to attack, making the system un-

suitable for real-world deployment. For example, one single malicious node attacking

the adaptation mechanism of the system can significantly impact the performance of

the system.

4

Additionally, many of the current peer-to-peer systems and components were de-

signed without security principles in mind [34]. This has left gaps in current system

design, leaving the systems vulnerable to attack. This is especially troublesome as

many of the peer-to-peer systems are designed to operate in open environments and

have open memberships. Traditional security mechanisms, such as digital signatures

and access control, are either not applicable or ineffective since the attackers have

the necessary credentials to be a part of the system and cannot be mitigated using

these mechanisms. It is therefore critical that integrating high-performance compo-

nents into peer-to-peer applications leads to improved performance while remaining

resilient to malicious activity.

1.2 Thesis Focus and Contributions

This thesis constitutes an effort to reconcile the performance and security of peer-

to-peer systems through the development of robust system components. We identify

and characterize three critical components we envision will form the basis for creating

efficient, high-performance, resilient peer-to-peer systems: robust adaptation mecha-

nisms, robust network awareness, and responsiveness to identified threats. For each

component, we identify its associated security risks, provide techniques to make each

component robust to malicious activity, and demonstrate how to effectively integrate

it into current systems. Along with real-world experimentation, we provide analy-

ses of the components in order to reason about their security and integration into

peer-to-peer applications.

We summarize our key contributions:

• We demonstrate the vulnerability of adaptive system components and propose

multiple solutions designed to prevent adversarially-induced mis-adaptation.

We demonstrate the effectiveness of our solutions in the context of the unstruc-

tured multicast system, ESM [35], by incorporating robust adaptation tech-

5

niques into the system. In addition to real-world experimentation, we provide

a theoretical analysis of the robustness achieved by our proposed design.

• We create a viable solutions for robust network awareness through the creation

of a robust virtual coordinate system. We classify and demonstrate the vulner-

abilities of decentralized virtual coordinate systems and create a robust solution

by using spatial and temporal correlations to perform context-sensitive outlier

analysis. In keeping with the design goals of virtual coordinate systems, our

solution is efficient, distributed, and contain no trusted network components.

• We provide a viable solution for responding to threats once they have been

identified in the peer-to-peer system. Through the aggregation of local infor-

mation on malicious behavior, we utilize a robust reputation system to build a

global reputation for each system node. Using this global reputation, the peer-

to-peer system can take appropriate reactive steps to the malicious activity. We

demonstrate the effectiveness of utilizing reputation systems in the context of

the unstructured multicast system, ESM [35].

• We elucidate the impact malicious attacks against lower-level system compo-

nents have on higher-level applications, showing how the system is only as strong

as its “weakest link”. We demonstrate how the inclusion of components for ro-

bust network awareness into distributed information retrieval applications can

optimize system performance in both non-attack and attack scenarios.

1.3 Thesis Roadmap

The rest of the thesis is organized as follows: We provide an overview of peer-

to-peer systems and our adversarial model in Chapter 2. We demonstrate the vul-

nerability of adaptive mechanisms in peer-to-peer systems to malicious activity and

provide solutions to mitigate this activity in Chapter 3. We identify virtual coordinate

systems as one method to provide network awareness and demonstrate techniques to

6

increase their robustness to attack in Chapter 4. We provide a viable solution for

responding to malicious activity through the integration of reputation systems into

peer-to-peer applications in Chapter 5. We examine and experimentally demonstrate

how peer-to-peer applications can benefit from our system components in Chapter 6.

We review related work in Chapter 7. Finally, we present our conclusions in Chap-

ter 8.

7

2 SYSTEM AND ATTACKER MODEL

In this chapter, we describe our basic system model and present the adversarial model

under which we study the vulnerabilities of peer-to-peer systems and their compo-

nents.

2.1 Peer-to-peer Systems

A peer-to-peer system constitutes a set of N nodes connected via a set of bi-

directional virtual network links to form an overlay network. Each virtual link is

composed of one or more physical links on the underlying network. Such networks

offer properties such as functionality, performance, robustness, anonymity, or isolation

that are not typically possible with the existing infrastructure.

Overlay networks can be divided into two basic categories: unstructured overlay

networks and structured overlay networks. In unstructured overlay networks, there

are no constraints in the selection of the neighbor set and no imposed constraints

in the resulting overlay [36]. On the other hand, structured overlay networks create

an overlay topology which offers pre-defined bounds and organizational invariants by

constraining the set of nodes eligible to become neighbors of a given node [37, 38].

Unstructured overlay networks are often easier to maintain (as any network node

can be chosen as a neighbor) and allow for greater flexibility and adaptability than

structured overlays. However, the constraints imposed by the structured variant can

guarantee average case performance and can make structured overlay networks easier

to secure. In the end, the type of overlay network employed by a peer-to-peer system is

highly dependent on the desired performance bounds and envisioned network stability.

In our work, we assume the overlay construction is completely self-organized,

forming unstructured networks. No node has complete knowledge of the system

8

topology. While nodes can be connected through a variety of manners, we assume

traditional wired links unless otherwise noted. In order to join the overlay network, a

node n contacts a membership server and receives a small set of network nodes with

which to communicate. This set of network nodes is known as a neighbor, reference,

or peer set of n. Also, depending on the application, the overlay often includes a

dedicated source or seed which creates the initial data or traffic being disseminated

through the network. Each of the nodes has similar functionality and often plays the

role of both a server and a client.

2.2 Attacker Model

In general, attackers fall into two categories: outsiders and insiders. An out-

side attacker does not possess the credentials (e.g., secret keys, digital certificates,

etc.) necessary for passing the imposed authentication process and is prevented from

accessing system resources. Inside attackers are those entities who have legitimate

access to the system and can participate according to the system specifications (i.e.,

authenticated entities within the system). As peer-to-peer application design often

pushes functionality to end-nodes to achieve better scalability and performance, it

makes these systems vulnerable to attack as trust is pushed to the fringes of the net-

work where end-nodes are more likely to be compromised than core routers [39]. The

open nature of peer-to-peer applications leads us to assume all attackers are insider

as it is straightforward for an outsider to obtain legitimate credentials.

Examining insider attackers, we can further classify them based on their motiva-

tions: rational attackers performing egoistic actions designed to maximize their own

benefit [40, 41] versus Byzantine attackers performing arbitrary actions from which

they may not directly benefit [42, 43]. A common goal in the construction of many

peer-to-peer systems is that of incentivizing nodes to faithfully follow system specifi-

cations and not manipulate protocols at the expense of system performance [44]. To

achieve this adherence to the design specifications, systems employee various mea-

9

sures, such as the tit-for-tat schemes [45] or creating balanced messaging patterns

in which all nodes share the same burden [46]. While it often achievable to obtain

faithful participation from rational nodes, it is difficult to improve or repair systems

that are vulnerable to Byzantine attackers as they do not respond to incentives [47].

Additionally, even if rational nodes are present, the presence of Byzantine nodes will

exasperate their effect and exert a greater detrimental effect on the performance and

stability of the overall system [47,48].

Due to these motivations, unless otherwise noted, we consider a constrained-

collusion Byzantine adversary model similar to that proposed by Castro et al. [49],

with a system size of N and a bounded percentage of malicious nodes f (0 ≤ f < 1).

The malicious nodes behave arbitrarily and are only limited by the constraints of the

cryptographic methods deployed [50]. The set of malicious nodes may collude. We

assume a malicious adversary has access to all data at a node as any legitimate user

would (insider access), including cryptographic keys stored at a node. This access can

be the result of the adversary bypassing the authentication mechanisms or compro-

mising a node through other means. As malicious nodes have insider access, nodes

cannot be completely trusted although they are authenticated.

10

3 CREATING ROBUST ADAPTIVE COMPONENTS

With the tremendous growth of the Internet, a wide range of applications taking

advantage of peer-to-peer technologies have emerged in recent years. In fact, recent

studies indicate that over 60% of all Internet traffic is generated by peer-to-peer sys-

tems [51]. As these application are often deployed in rapidly changing environments,

adaptive components have become critical building blocks, enabling them to satisfy

system requirements under changing conditions.

To provide increased performance and fault tolerance to benign failures, many

peer-to-peer applications are built utilizing adaptive overlay networks [14,35,52–54].

In general, the adaptation improves suboptimal performance conditions experienced

in many peer-to-peer applications. Each node monitors its performance and that of a

subset of the network known as a peer set. When the measured performance becomes

inadequate, the node will change its upstream node(s) in the network. We refer

to this process as adaptation and the mechanisms used to achieve it as adaptation

mechanisms. There are no restrictions in the selection of the peer set nor in the

adaptation process, resulting in an unstructured overlay network.

The proliferation of peer-to-peer applications using adaptive mechanisms raises

questions about how to design and deploy these applications in a secure and ro-

bust manner [55]. In particular, attacks that exploit the adaptivity mechanisms

employed by many overlay networks can be extremely dangerous because they target

the overlay construction and maintenance while requiring no additional communica-

tion bandwidth on the attacker side. Such attacks can allow an adversary to control

a significant part of the traffic and further facilitate other attacks such as selective

data forwarding, cheating, traffic analysis, network partitioning, and disconnecting

victim nodes. Not only are the attacks damaging from an end-user perspective, but

they also have a large economic impact, potentially costing businesses millions of

11

dollars in lost revenue [56]. As the number of Internet businesses grow and compete

for the same niche markets, such as streaming video using peer-to-peer overlays, the

risk of subversive attack will only increase. In fact, reports of such attacks designed

to disrupt the service provided by Internet businesses are starting to appear in the

media [57].

In this chapter, we focus on insider attacks against adaptation mechanisms in

unstructured overlay networks. We make the following contributions:

• We demonstrate the benefit for the attacker to subvert adaptation mechanisms

over other methods of attack such as simple data dropping by showing the

susceptibility of adaptation mechanisms to malicious attacks through real-life

deployments on the PlanetLab [58] Internet testbed using the End System Mul-

ticast (ESM) [35] system.

• We propose to increase the resiliency of the system to attacks and mitigate the

effect of malicious adversaries by aggregating and correlating data-plane and

control-plane information to determine the reliability and utility of received

information. This information is incorporated into the adaptation process of

the overlay network, constraining the ability of the attacker to lie to honest

nodes and increasing the robustness and stability of the network. Network

topology has previously been used to detect data-dropping attacks [59]. In our

approach, we use network topology to detect and mitigate a more general set

of attacks against the adaptation process used to augment other attacks such

as data-dropping.

• We propose techniques to reduce incorrect or unnecessary adaptations by using

spatial and temporal correlations to perform context-sensitive outlier analysis.

A key component of our solution is based on the observation that several es-

timated metrics are dependent variables and the overlay and multicast logical

networks share overlapping physical links.

12

• We demonstrate the effectiveness of the identified attacks and the benefits of

both of our defense mechanisms through deployments of ESM on the PlanetLab

Internet testbed.

The rest of this chapter is organized as follows: We provide an overview of adap-

tive peer-to-peer multicast systems in Section 3.1 and attacks targeting adaptation

in Section 3.2. We propose and demonstrate the effectiveness of aggregating and cor-

relating data-plane and control-plane information at increasing the robustness of the

system in Section 3.4. We demonstrate the utility of context-sensitive outlier analysis

at preventing unnecessary adaptation in Section 3.5. Finally, Section 3.6 concludes

this chapter.

3.1 Adaptive Peer-to-peer Multicast

Multicast functionality was initially envisioned to run on the IP layer [60]. How-

ever, limited deployment and other limitations have driven the need to provide an

alternative architecture where multicast functionality is implemented by end systems

and not by the infrastructure supporting routers. Peer-to-peer multicast is designed

to efficiently disseminate information to a set of distributed nodes connected to an

overlay network of logical links across an actual physical infrastructure. Recently,

a great deal of research and interest has been generated in this area by the estab-

lishment of increasingly popular peer-to-peer streaming sites [15–31]. To deal with

different demands placed on the multicast system by the varying environments and

requirements, many different peer-to-peer multicast overlay networks have been cre-

ated [7–14].

For our research, we consider an overlay network providing support for single-

source broadcasting applications that are high-bandwidth (hundreds of kilobits to

megabits per second) and real-time. The system consists of a set of nodes and a data

source communicating via unicast links. All nodes receive data and contribute to the

routing process by forwarding data. The overlay construction is self-organized and

13

distributed. No node has complete knowledge of the dissemination topology. Each

node maintains a peer set, a routing table, and the upstream node forwarding the

data, referred to as the node’s parent. The peer set is a subset of nodes that are

currently reachable in the overlay from which performance information is gathered.

This set is bootstrapped at join time by contacting the source and is continually

updated via a membership protocol. There are no constraints placed on the members

of a node’s peer set. The routing table represents a set of nodes that the node is

responsible for routing data to, also referred to as children. The size of this set

is limited by a system characteristic termed the saturation degree, representing the

number of concurrent data streams the node is able to support before saturating the

allocated bandwidth of the underlying physical network link.

3.1.1 End System Multicast(ESM)

ESM [7] is a multicast system used for broadcasting live events such as academic

conferences, including major computer science conferences such as SIGCOMM and

INFOCOM. We provide a high-level description below. For further details, the reader

is referred to the work by Chu et al. [7].

As seen in Figure 3.1, ESM forms a peer-to-peer overlay tree over the physical

infrastructure for distributing multicast content. One key idea behind the construc-

tion of the ESM overlays is the use of adaptivity mechanisms to dynamically change

the multicast tree to improve application performance or maintain it when network

conditions change. More specifically, this adaptivity serves to improve suboptimal

overlay meshes that can occur as a result of random initial neighbor selection, aggres-

sive partition repair, multicast group membership changes, and the transient nature

of underlying physical network conditions.

In order to make the adaptation decisions, each node maintains a set of perfor-

mance variables for each member of its peer set collected through passive observation

and probing of peers. These variables consist of bandwidth (throughput), latency

14

Figure 3.1. Illustration of the physical network and the two logical
networks of the ESM overlay multicast system: the adaptive overly
network and the multicast tree.

15

(one-way delay), and round-trip-time (RTT). As ESM uses TCP as the data trans-

port protocol, loss rate is not considered. Once the data has been received at a node,

the node must decide if it needs to change its parent in the overlay to improve the

application performance. To improve the quality of the data and subsequent adapta-

tion decision, an extensive set of mechanisms is employed, including but not limited

to data sampling, data smoothing, decision randomization, and hysteresis.

Once the performance of a node has become inadequate, it uses the collected

metrics to select a new parent from its peer set. The parent selection algorithm

used in ESM is presented in Algorithm 1. In order to select a new parent, a node

first computes a list of potential candidates from its neighbor set. Nodes which are

currently saturated, descendants, or did not respond when recently probed are not

considered. If there is no utility gain, no node is selected and the process will be

repeated in the next cycle. If several nodes are candidates, then the first candidate

is selected as the new parent. The selection process uses hysteresis to generate a

negative bias against nodes that have performed poorly in the past.

We selected ESM as a representative peer-to-peer multicast system because of

its maturity, extensive deployment, and the advanced set of adaptation techniques it

employs.

3.2 Attacks Targeting Adaptation

Any adaptive network protocol based on measurements involves periodically ob-

serving and estimating the network conditions, followed by making an adaptation

decision. For unstructured multicast overlays, the adaptation decision consists of

a node selecting a new parent based only on weighing the associated costs versus

benefits quantified through a utility function.

Previous work studied the quality of the data observation and estimation, as well

as the ability of the metrics to accurately reflect the state of the network. Examples of

factors that influence data quality include data freshness, variability and noise. Mech-

16

Algorithm 1: Parent Selection Algorithm Used in ESM
Input: Set of probe responses tuples (<bandwidth, latency, RTT>)

Output: New Parent Node

Create list of potential parent candidates, PCL, excluding nodes: 1) currently saturated, 2)1

descendant of this node, and 3) unresponsive

foreach rnode in PCL do2

// Combined Metrics Component

if (utilityGain(throughput, latency) ≥ currentUtility*1.1) then3

keep rnode in PCL;4

else5

remove rnode from PCL;6

end7

end8

foreach rnode in PCL do9

// Hysteresis Component

if (rnode has performed well in the past) then10

// Dampening Component

if (local node has not switched parents recently) then11

// Randomization Component

if (node switch probability > rand()) then12

Select rnode as next parent;13

return rnode14

end15

end16

end17

end18

return no change19

17

anisms proposed to address these issues are data sampling [61], data smoothing [62],

metric construction [63], as well as data summarization and aggregation [64]. Previ-

ous work also studied instabilities [65–67], such as the oscillatory behavior referred

to as flapping, occurring when nodes rapidly switch between seemingly equal alter-

natives. New techniques such as utility discretization [67,68], randomization [67,69],

damping [66], and hysteresis [61,69] were deployed to mitigate these phenomena and

provide a tradeoff between responsiveness to change and instability.

None of mechanisms described above take into account adversarial environments.

While adaptivity can greatly increase the performance and dependability of peer-to-

peer applications, care must be taken not to introduce new attack vectors in which

the attacker is able to target the adaptivity mechanism.

In an adversarial network, compromised overlay nodes can take advantage of the

adaptation process to gain control over overlay traffic by lying about their observed

performance metrics to manipulate the path selection of the overlay topology. We

classify three types of attacks:

• Attraction attacks are a form of “bait-and-switch” attack in which a malicious

node manipulates the observed data in order to persuades a victim to attach to

a malicious parent in the tree.

• Repulsion attacks seek to reduce the attractiveness of other nodes or mis-

represent their ability, with the ultimate goal of free-loading, traffic pattern

manipulation, or augmenting attraction attacks.

• Disruption attacks target the availability of the network by using the adapta-

tion process to turn the system against itself causing a state of constant change.

Each of the attacks cause undesired changes in the overlay network which can lead

to further attacks such as manipulating data, performing traffic analysis, performing

man-in-the-middle attacks, causing disruption for specific nodes by isolating them, or

selectively dropping packets for a particular destination. For detailed information on

each attack, we direct the reader to [70].

18

3.3 Preventing Adversarial-Induced Adaptation

When a node in a peer-to-peer system makes an adaptive decisions, there are two

types of information used to reach this decision: performance metrics collected locally

and performance metrics obtained from neighboring nodes. By blindly accepting in-

formation reported by potentially malicious nodes, a benign node may make incorrect

decisions. In order to increase the chances of making “good” decisions, we propose

two methods to improve the decision process and prevent incorrect adaptations:

• Correlation of data-plane and control-plane information We increase

the resiliency of peer-to-peer systems to attacks by improving the decision pro-

cess through the aggregation and correlation of data-plane and control-plane

information. This information is incorporated into the adaptation process of

the overlay network to determine the reliability of received information, con-

straining the ability of the attacker to lie to honest nodes and increasing the

robustness and stability of the network.

• Outlier detection We prevent incorrect adaptations by detecting and filtering

out outliers in the metrics reported by probed nodes. We detect inconsistencies

in reported metrics by performing outlier analysis which evaluates the temporal

and spatial correlations on the information received from probed nodes used in

the adaptation decision process.

Each of the techniques can be used individually or in conjunction with one another.

They are also widely applicable as many peer-to-peer systems exchange similar per-

formance metrics.

3.4 Using Information to Add Robustness

The impetus behind the attacker’s ability to subvert the overlay networks is the

fact the attacker can influence the adaptation process by manipulating the perfor-

mance metrics. This stems from the assumption that peer nodes are altruistic and

19

respond with correct metrics to queries from any node. We propose to increase the

resiliency of the system by aggregating and correlating both data-plane and control-

plane information, allowing each node to use the derived information to make better

adaption decisions.

The control-plane information pertains to the metrics necessary to manage con-

nectivity while the data-plane metrics are derived from overlay data and are often

used to improve application performance. In general, the data-plane information re-

ported by a node was measured by that node while control-plane information was

received from external sources (such as parents or the source). One important facet

of our solution is that it uses information already present in the system, avoiding

extra link stress. It should also be noted that many adaptive protocols utilize similar

metrics for adaptation, to which our solution can readily be applied.

Table 3.1
ESM probe response components

Metric Data Origin

Bandwidth received from parent Data-Plane

Latency from the parent Data-Plane

Latency from the source Data-Plane

Time connected to parent (stay time) Data-Plane

Current parent in the overlay structure Control-Plane

Number of children Control-Plane

Path to the source of the data Control-Plane

During the system lifetime, each node periodically performs a probe cycle in which

it sends requests for system metrics to its peer set and subsequently receives responses

for a fixed interval of time. The contents of each probe response along with the origin

of the data are listed in Table 3.1. Once the time interval expires, a node uses this

gathered information, along with locally measured performance, to determine if it

20

Figure 3.2. The aggregation of data-plane and control-plane infor-
mation into a graph structure used to improve adaptation decision
quality. The square nodes represent peers from which data has been
received while the ellipses are placeholders used to complete the graph
structure. The highlighted node represents a malicious node reporting
it has no children.

should change parents. If a malicious insider responds with falsified information, it

can bias the adaptation decision and cause incorrect choices.

As part of this solution, a node receives probe responses and aggregates this

information into a new, in-memory graph structure called the path graph. Pictured in

Figure 3.2, the root of the path graph is the data source and all other vertices contain

information pertaining to a specific node. Each of the edges represent a connection

in the overlay topology. Since only a subset of the entire overlay is contacted by each

node, nodes for which information is not directly obtained are represented by named

placeholders. For example, in Figure 3.2, the ellipses depict nodes whose existence

were discovered by examining the path to the source used by other probed nodes.

The location of the probing node in the path graph (if it close to the source, is a leaf,

etc.) will vary depending on the node. The path graph is reset after each adaptation

attempt.

21

The intuition behind our solution is that while each node makes adaptation de-

cisions independently, many of the choices can be ameliorated by having data-plane

and control-plane information associated with a partial view of the network topol-

ogy. Even though unstructured overlays have no tight topological invariants such as

those present in structured overlays, the system forms a stable topology which can

be examined for inconsistencies. By correlating data from multiple sources into a

path graph at each node, it becomes possible to check the consistency of the reported

information and constrain the attackers ability to lie about system metrics.

Using this path graph, benign nodes can prevent many unnecessary adaptations

by avoiding the use of falsified data in adaptation decisions. During a node n’s

adaptation process, when n is considering a new potential parent p, n will check the

sanity of p’s contextual information contained in the path graph. A node p will be

avoided if the number of children graphed is inconsistent with what is reported by

p or is greater than the system saturation degree, if the bandwidth reported by a

current child is inconsistent with what is reported by the parent, the reported path

is inconsistent with the graph, or if the time multiple children are connected to a

parent is small. The more often these inconsistencies occur, the more often a node

will be avoided as a parent. For example, if the highlighted node in Figure 3.2 reports

having no children while the path graph has two children for the same node, the node

is malicious and should not be consider for a parent change. Using the path graph, a

benign node is able to augment its adaptation decision using Algorithm 2, allowing

for more robust decisions.

22

Algorithm 2: Procedure to exclude malicious nodes from the adaptation pro-

cess.
Input: Potential Adaptation Candidates List (PACL) and the Path Graph PG

Output: Updated PACL

foreach rnode in PACL do1

// Inconsistent number of children

if (rnode.numChildren != PG.rnode.numChildren) then2

remove rnode from PACL;3

// Too many children

else if (PG.rnode.numChildren > SystemSaturationDegree) then4

remove rnode from PACL;5

// Inconsistent bandwidth reported

else if (rnode.BW - PG.rnode.children.ActualBW > (SourceRate*.1)) then6

remove rnode from PACL;7

// Inconsistent path to the source

else if (rnode.path != PG.rnode.path) then8

remove rnode from PACL;9

// Too many small stay times

else if (PG.rnode.children.stayTimes < 100 sec) then10

remove rnode from PACL;11

else12

keep rnode in PACL;13

end14

end15

3.4.1 Discussion

It should be noted that the goal of our defense technique is not to create a “per-

fect” solution, but to provide improved robustness in a lightweight solution that can

be readily incorporated into a variety of overlay networks. While the effect of the ma-

licious nodes can be greatly diminished, there may still be some degradation in the

system performance. This technique should be considered one useful tool in the tool-

23

box of system designers for enhancing the robustness of the system without adding

extra overhead or excess complexity.

3.4.2 Experimental Evaluation

To study the effects of the attacks and our defense technique under real-world

conditions, we conducted experiments on the widely-used PlanetLab [58,71] Internet

testbed. As we can see from Figure 3.3, Planetlab is a global research network

that currently consist of over 1000 nodes distributed across 487 sites located on six

continents. It provides a research platform for large-scale distributed experimentation

of peer-to-peer systems over the Internet [72]. To mitigate the possible limitations of

using a testbed, such as those discussed by Spring et al. [72], multiple experiments

were conducted at different times of the day and different days of the week. Further,

experimental nodes were selected randomly for different experiments to validate the

statistical significance of results and nodes were chosen to span multiple operational

and administrative domains. Each experiment was conducted multiple times and the

results were averaged.

The baseline configuration for the following experiments consists of a 30 minute

deployment of 100 nodes in which the nodes join after the experiment begins and

leave before it ends, with an average participation time of 26 minutes. Each node

is probed every seven seconds, each node probes 30 peers, the saturation degree of

benign nodes is four, and the source streaming rate is 480Kbps. We use a bit rate of

480 Kbps as it is sufficient to transmit video at two different qualities of audio. All

of the following experiments use these parameters unless otherwise noted.

The ESM System Under Attack

We study the effect different percentages of malicious nodes have on the overlay

topology if they lie about their performance metrics to gain beneficial positions in

the tree. As mentioned in Section 3.1.1, ESM uses several techniques designed to

24

Figure 3.3. Illustration of the physical location of a subset of the
PlanetLab nodes used for experimental evaluations.

tolerate benign errors, it has no built-in mechanisms to defend against malicious

nodes and is thus prone to instability and poor performance when under attack. For

the experiments that incorporate our defense technique, we integrate it into the ESM

decision process prior to the preexisting data cleansing techniques. As our defense

and the existing techniques are orthogonal, they do not conflict with each other.

Additionally, using our technique first allows for the removal of much of the malicious

data during an adaptation decision, allowing the existing data cleansing techniques

to take place in a environment similar to that of a benign system.

To determine the efficacy of subverting the adaptivity of the system, we examine

the following attack scenarios in our experiments:

• Naive Attack: This is a naive attack method in which the malicious coalition

of nodes simply obtain random positions in the overlay and, after an initial starting

period, drop a percentage of the data.

25

• Attraction Attack: This is the attraction attack discussed in Section 3.2, in

which the malicious nodes lie about their performance metrics. In this attack, the

malicious nodes report having the best bandwidth (480Kbps), smallest latency (0ms),

and no saturation. After an initial starting period which the malicious nodes use to

optimize their positions in the overlay network, they drop 90% of the data as this

percentage bypasses ESMs mechanisms for tolerating benign errors.

In both attack scenarios, other secondary actions besides dropping data could be

performed. However, dropping data visibly demonstrates the severity of the attacks.

Impact of Percentage of Malicious Nodes. Figure 3.4 demonstrates the

impact different percentages of malicious nodes can exert on the bandwidth of benign

nodes for the two attack methods. In the experiments, malicious nodes start dropping

90% of the data traffic received through the data dissemination tree five minutes after

joining the overlay and continue to drop data for the next fifteen minutes. The nodes

only drop data for the specified interval to demonstrate the system bandwidth returns

to the source rate and the degradation is caused solely by the attack. We vary the

percentage of malicious nodes to 10%, 20%, and 30% of the overlay size to demonstrate

the performance degradation that results when more nodes behave maliciously. As

can be seen from the graphs of Figure 3.4, the naive attack has little effect on the

bandwidth of the system. Even when 30% of the network is comprised of malicious

nodes (Figure 3.4(c)), the average bandwidth only drops by 20Kbps to 460Kbps. This

is not the case for the attraction attack, in which the average bandwidth of the system

markedly decreases as more malicious nodes are introduced. For example, when 30%

of the network is malicious (Figure 3.4(c)), the average bandwidth is reduced by over

50%, from 480Kbps to 220Kbps.

The difference between the two attacks is due to the fact that without the supple-

mentary mechanism of attacking the adaptivity of the system, most of the malicious

coalition is unable to obtain advantageous locations (positions with many children) in

the overlay and are rendered ineffective. This insight elucidates not only the potential

26

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Naive Attack
Attraction Attack

(a) 10% Malicious

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Naive Attack
Attraction Attack

(b) 20% Malicious

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Naive Attack
Attraction Attack

(c) 30% Malicious

Figure 3.4. Average system bandwidth for a 100 node ESM overlay
deployed on PlanetLab under different percentages of attackers. The
graphs depict a naive data-dropping attack and more powerful attrac-
tion attack which drops data and lies about performance variables.

27

harm malicious nodes can cause by attacking the adaptivity of the system, but the

need to makes these mechanisms more robust.

Table 3.2
System instability as represented by the number of adaptations of an
ESM overlay of 100 nodes on PlanetLab

Experiment Changes to Total Parent

Malicious Parents Changes

No lying 0 411

10% Naive 74 488

10% Attraction 392 1507

20% Naive 148 711

20% Attraction 674 1671

30% Naive 235 717

30% Attraction 931 1634

System Instability. Not only does the malicious activity decrease the system

utility, it also leads to system instability and unnecessary adaption. Under benign

conditions, when a node determines the advertised performance metrics do not match

the actual performance, the node will attempt to connect to a new, better-performing

parent. In the presence of adversaries, this change may actually result in performance

loss, necessitating further adaptation and causing excess churn in the network. We

can visually see the instability caused by the malicious nodes in Figure 3.5(b), where

the number of adaptations caused by an attraction attack is four times higher than

in Figure 3.5(a). Table 3.2 presents the average number of adaptations for different

percentages of malicious nodes. As the percentage of malicious nodes increases, so

does the number of adaptations. Also, we note that the naive attack causes far less

instability in the system due to its inability to gain advantageous locations in the

dissemination structure.

28

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Bandwidth
Good Parent Changes

(a) 0% Malicious

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Bandwidth
Good Parent Changes

Bad Parent Changes

(b) 20% Malicious

Figure 3.5. The average system bandwidth and number of parent
changes for for a 100 node ESM overlay deployed on PlanetLab with
0% and 20% malicious nodes. The short, black impulses represent
changes to benign parents while the taller, red impulses represent
changes to malicious parents.

Attack Strength. To quantitatively compare experiments with different per-

centages of malicious nodes and possible defense techniques, we utilize an augmented

form of the relative strength of attack measure τ [73].

The relative strength of a particular attack as is defined as:

τ =
Bnorm − Badv

Bnorm × Nadv

× 100 (3.1)

where Bnorm and Badv represent the average throughput in the absence and presence

of adversaries respectively, and Nadv is the number of adversaries. Intuitively, τ

represents the amount of damage an attack created in the system normalized by the

number of adversaries. The greater the performance degradation observed in the

system (the difference between Bnorm and Badv), the higher the value of τ and the

more damage an attack inflicts on the overlay.

Figure 3.6 depicts τ varying over the percentage of attackers for both attacks. As

expected, the naive attacks resulted in very low τ values as they were largely ineffec-

29

Naive Attack
 Attraction Attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 20 30

T
au

% of attackers

Figure 3.6. Attack strength for different percentages of malicious
nodes for ESM deployments of 100 nodes on PlanetLab using the
naive and attraction attacks.

tive. However, we can see the attack focusing on the adaptivity of the system, the

attraction attack, has significant impact on the performance of the system for even a

small percentage of malicious nodes (10%) and thus has a high τ value. Increasing the

percentage of malicious nodes yields higher τ values, with the maximum effectiveness

for the attacker occurring when 20% of the network was malicious. With percentages

greater than 20%, the average system bandwidth continues to decrease, but relative

measures like τ experience diminishing returns as each individual malicious node is

less effective.

The Utility of Control-Plane and Data-Plane Information

To demonstrate the effectiveness of aggregating and correlating network topology

and metrics to improve the adaptation decision quality and mitigate the effects of

malicious activity, we use the following scenarios:

30

• Smart Attack: We use this name to denote a scenario in which a percentage

of the nodes was malicious and performed a smarter version of the attraction attacks

(as described in Section 3.4.2). Specifically, not only do the nodes report incorrect

performance data, but they also try to attack the defense scheme itself by lying about

the data collected in our path aggregation scheme (e.g., reporting longer connectivity

times than in actuality).

• With Defense: We use this name to denote a scenario in which an attacker

performs the Smart Attack, but the defense technique presented in Algorithm 2 are

also enabled.

As the naive attacks were ineffective, they are not included.

Table 3.3
Number of system adaptation and the percent improvement over an
undefended system for an ESM overlay of 100 nodes on PlanetLab
under different percentages of attackers

Experiment Changes to Total Parent

Malicious Parents Changes

No lying 0 411

10% Using Paths 82 (79%) 644 (57%)

20% Using Paths 139 (79%) 658 (60%)

30% Using Paths 423 (55%) 926 (43%)

Attack Mitigation. Figure 3.7 shows both the severity of the attacks and the

ability of our solution to mitigate much of their effect. As can be seen from each

of the graphs, the bandwidth of the original system is greatly reduced when the

malicious nodes are dropping data. However, through the utilization of data-plane

and control-plane information to improve adaptation decisions, the systems main-

tains performance (average bandwidth) much closer to the optimal source rate of

480Kbps. For example, with the system using our defense technique, we can see from

31

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800
B

an
dw

id
th

 (
K

bp
s)

Time (seconds)

With Defense
Smart Attack
Source Rate

(a) 10% Malicious

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

With Defense
Smart Attack
Source Rate

(b) 20% Malicious

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

With Defense
Smart Attack
Source Rate

(c) 30% Malicious

Figure 3.7. Average system bandwidth for 100 node ESM overlay
deployed on PlanetLab under different percentages of attackers. The
graphs show the degradation of the system performance and the utility
of using our defense technique to mitigate the effects of the attack.

Figure 3.7(c) the average system bandwidth is 428Kbps, over 200Kbps higher than

the undefended deployment. While there is still some degradation in the system per-

formance, as previously discussed in Section 3.4.1, this is in accordance with our goal

of creating a lightweight solution that is applicable to a broad range of systems.

Along with helping maintain system performance, our defense technique helps

to increase the stability of the overlay by avoiding unnecessary adaptations. From

Table 3.3, we can see our solution greatly improves the stability of the system under

attack. On average, the total number of parent changes is halved and the changes to

malicious nodes are reduced by a factor of 4 over deployments with no defense. This

32

reduction comes from the fact fewer malicious nodes are chosen as parents, which

induces fewer instances of multiple adaptations.

Smart Attack
With Defense

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 20 30

T
au

% of attackers

Figure 3.8. Attack strength for different percentages of malicious
nodes for ESM deployments of 100 nodes on PlanetLab using our
control-plane and data-plane information defense mechanism.

Figure 3.8 presents the effect of the Algorithm 2 on the relative strength of the

attacks, τ , as defined in Equation 3.1. It confirms the intuition that constraining the

ability of the attacker to subvert the adaptation of the system diminishes the strength

of the attack for all percentages of malicious nodes. For the smaller percentages of

malicious nodes, τ is reduced to levels near those of the naive attacks, demonstrating

our solution greatly increases the robustness of the adaption mechanism and the

system as a whole.

Potential False Positives. As each node performs its own probe cycle indepen-

dently and the overlay topology may change as result, inconsistencies occasionally

occur in nodes’ path graphs which will cause them to avoid otherwise valid parents (a

false positive). As the majority of the overlay is stable, nodes have multiple choices

33

for parents, and no node is permanently banned from overlay, the system is able to

tolerate these occasional false positives without detrimental effect.

Impact on Nodes Stability. To determine the effects our solution has on

individual nodes, we also analyzed the time nodes were connected to their parent,

known as stay time. Stay time is a good indication of system stability. As can be

seen from Figure 3.9, the stay times in a benign environment are biased towards long

durations, with an average of approximately 400 seconds. As malicious nodes are

introduced into the system, the number of short stay times dramatically increases.

Irrespective of the percentage of malicious nodes, the resulting average stay for the

overlay drops to 100 seconds. Using our solution, while we are unable able to match

the performance of the benign case, we are able to increase the number of longer stay

times seen in the system and achieve a better average stay time of 220 seconds.

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Time (s)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Smart Attack
With Defense
Normal System Operation

Figure 3.9. Distribution of the length of time a node is connected to
its parents under the attraction attack and defense scenarios for an
ESM deployment of 100 nodes containing 20% malicious nodes

Malicious Coalitions

All defense techniques and protocols resilient to insiders have limitations regarding

the number of attackers they can tolerate. We now consider the constrained collusion

34

model presented in Section 2.2 in which the faulty nodes are part of the same coalition.

We use the following scenario:

• Malicious Coalition. We use this name to denote the scenario in which a

coalition of colluding attackers attempts to bypass the defense mechanism itself by

strategically lying about system metrics to have members of the malicious coalition

selected as parents high in the dissemination structure.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Malicious Coalition
Source Rate

Figure 3.10. Resilience of our control-plane and data-plane informa-
tion defense mechanism to malicious coalitions attempting to bypass
the defense mechanism through coordinated lying while conducting an
attraction attack on a representative ESM deployment of 100 nodes
containing 20% malicious.

To subvert our defense mechanism, the attacker must control multiple nodes in

the same section of the overlay, allowing for coordinated lying between parents and

children. Each malicious parent attempts to have several malicious children so they

can report good metrics (such as high throughput and low latency). This allows the

parent node to attract benign nodes with less chance of inconsistencies appearing in

the benign node’s path graph. However, the greater the number of malicious nodes

35

that must be connected to each other, the fewer the number of benign children can be

connected to a malicious node without creating inconsistencies in the path graph (e.g.,

more children than the saturation degree), thereby lessening the effectiveness of the

malicious nodes. Also, the malicious children are constrained to accurately reporting

their path or they risk identifying themselves or their parent as being malicious. For

example, from Figure 3.10 we can see that our solution is able to mitigate the attack,

even when malicious collectives are actively trying to bypass the path graph detection.

In fact, the relative attack strength τ is reduced by one-third of that seen in Figure 3.8

to 0.19. This implies that for maximum effectiveness in bypassing our solution, the

malicious nodes should work alone or in small groups. However, from Section 3.4.2,

we have seen our solution mitigates much of the effect of this strategy.

Overhead and System Performance

Our defense technique introduces minimal link stress since it uses information

already being exchanged between nodes, with the exception of adding the stay time

to the gossip messages. The memory utilization for the aggregation of information

into the path graph lasts for the span of one probe cycle and requires maintaining

the address, number of children, stay time, reported latency, reported bandwidth,

and path from the node to the source for each of the probed neighbors. On average,

each node receives 60 Bytes of information per node from 30 nodes per probe cycle,

requiring 1.8KB of extra storage at any given time. There is negligible computational

complexity associated with the aggregation of node information into the path graph.

3.5 Preventing Malicious Adaptation Using Outlier Detection

In this section, we examine our second solution to mitigating attacks aimed at

the adaptation process of the system. We propose to detect inconsistent metrics by

performing outlier analysis on the information received from probed nodes that is

used in the decision process. An outlier is a data point that is significantly different

36

(greater than a threshold) from the rest of the data in the observation space based

on a measure of distance.

As mentioned in Section 3.4, during the system lifetime, each node periodically

performs probe cycles in which it receives information from remote its neighboring

nodes. The outlier detection is performed locally by each node at the end of the probe

cycle using spatial and temporal correlations. The spatial outlier detection compares

the reported metrics received from each node in the set of probed nodes. The temporal

outlier detection examines the consistency in the metrics received from an individual

probed node over time. Our outlier detection does not affect the link stress in the

system, as it uses the metrics already reported by nodes: latency, bandwidth, and

RTT. Both latency and RTT are utilized because they are highly correlated metrics

collected in different manners (one is probed, while the other is measured). In order

to avoid being suspected by benign nodes, a malicious node must insure that any

lie it tells: (1) is consistent with what the other peers are reporting during a probe

cycle about current network conditions, (2) ensures consistency between the different

dependent metrics (bandwidth, latency, and RTT), and (3) is consistent with metrics

it reported in the past. The spatial outlier detection targets the first and second

aspects of consistency, while the temporal outlier detection targets the second and

third aspects. Spatial and temporal data correlations have been previously shown

effective in detecting network attack scenarios [74]. Unlike the general approach

proposed by Jiang and Cybenko [74], our work does not look for correlations but

exploits the fact that they exist to detect suspicious nodes.

The intuition behind our solution is that the dependency existent in the measured

variables requires attackers to make sure the “fake” metrics vary in a consistent

manner. Lying is made more difficult by the fact that, in most cases, attackers can

only make the RTT worse, because it is a measured attribute, and yet, at the same

time, the RTT must remain consistent with both the bandwidth and latency. Our

solution also forces an attacker to lie consistently with other peers. This is difficult

to achieve as an attacker does not have perfect knowledge of the observation space,

37

must accurately predict the random subset of nodes that will be probed, and only

has a finite amount of time (the probe period) to coordinate with other attackers.

Our approach uses the Mahalanobis [75] distance to detect outliers. We selected

this distance function because it has been shown effective at detecting outliers with

multiple attributes [76], scales each variable based on its standard deviation and

covariance, and takes into account how the measured attributes change in relation to

each other [73]. These features make it appropriate for our environment where there

is a dependency between several of the attributes reported by each node.

3.5.1 Spatial Outlier Detection

The outlier detection is performed by a node as follows. Each probe cycle, the

node first computes the centroid of the data over the three dimensional space formed

by the observation tuples from all probed nodes. An observation tuple is represented

by bandwidth, latency, and RTT. The node then computes the Mahalanobis distance

between the observation tuple from each probed node and the centroid as follows [75]:

d(a, b̄) =
√

((a − b̄)T C−1(a − b̄)) (3.2)

where a and b̄ are two feature vectors whose elements consist of an observation tuple.

a is the value from the from the probe response and b̄ is the averaged feature vector

(the centroid) computed from all of the recently received observation tuples. C−1 is

the inverse sample covariance matrix computed from the observation tuples.

If there are not enough tuples during a probe cycle, the tuples are compared with

the most recent centroid. If there is no variance between the received observation

tuples, the Mahalanobis distance cannot be computed since the determinant of the

covariance matrix becomes zero. In this case, a node is randomly selected from that

probe set of observation tuples and compared to the most recent centroid. If no

centroid is available, the decision is postponed to the next probe cycle.

38

Spatial Threshold Selection

The threshold for our outlier detection can be mathematically derived as by Smith

and Cheeseman [77] and Ribeiro [78], assuming a multivariate Gaussian distribution

for the metrics vector. The contours of equal probability of this distribution create

a 3-dimensional ellipsoid and the outlier threshold reflects the probability of a vector

being within the ellipsoid whose semi-axes are determined by k . The probability that

a random vector lies within the ellipsoid increases with the value of k . Thus, for a

given value of k the probability that a probed tuple lies within the ellipsoid can be

computed as:

P = − 1√
2π

+ 2

(

1√
2π

∫ k

0

e
y2

2 dy

)

−
√

2

π
ke

−k2

2 (3.3)

We initially selected a k of 2.37, creating a threshold which half of the probes

would successfully pass. Through testing in over 539,739 probe responses during

19,465 probe cycles, we found an ellipsoid determined by a threshold of k equal to

1.5 will contain approximately 80% of the nodes. Thus, we selected a threshold of

1.5 for our experiments. This variation from the mathematically derived value can

be attributed to the fact that the used metrics do not form a perfect normalized

distribution and have a smaller variance than assumed in Equation 4.4. A node may

select smaller threshold distances for stronger security guarantees, with the drawback

that it may find itself isolated due to aggressive filtering.

3.5.2 Temporal Outlier Detection

We use temporal correlations to detect inconsistencies in the performance metrics

reported over time by a node. We develop models for the peers of a given node

during the course of a multicast session by using incremental learning. Our technique

is based on the “simplified Mahalanobis distance” presented by Wang and Stolfo [75]:

d(x, ȳ) =

n−1
∑

i=0

(|xi − ȳi|/(σ̄i + α)) (3.4)

39

where n is the number of metrics, three in our case (bandwidth, latency, and RTT),

σ̄i is the standard deviation, and α is a smoothing factor empirically set to .001 to

help to avoid over-fitting and reduce false positives [75]. We trade-off accuracy of the

distance function to minimize the amount of data a node must store by assuming that

the metrics are statistically independent. Thus, a node does not need to maintain the

whole history. Instead, a node maintains a temporal centroid for each peer consisting

of the mean, standard deviation, and sample count computed from the observation

tuples received over time. The centroid for each peer is incrementally updated with

observations received during each probe cycle, similar to Wang and Stolfo [75], using

the technique described by Knuth [79]. At the end of the probe cycle, the latest

observation tuple for each peer is compared with the corresponding temporal centroid

using the simplified Mahalanobis distance.

Temporal Threshold Selection

We used a threshold of 3.0 for our temporal outlier detection, to allow each of the

three features to vary within one standard deviation from their temporally developed

mean. The value was chosen based on the formula of the simplified Mahalanobis

distance as presented by Wang and Stolfo [75].

3.5.3 Spatio-temporal Outlier Detection

We combine the two outlier detection mechanisms described above by using a

codebook technique similar to Jiang and Cybenko [74]. The peer nodes are ranked

according to their spatial outlier distance from the spatial centroid and traversed from

the closest to the farthest node. The node that is the closest to the spatial centroid

and it is not a spatial or temporal outlier is chosen as the new parent. If no peer is

found meeting these criteria or if there are a large number of temporal outliers, no

adaptation is performed during that probe cycle.

40

3.5.4 Potential Limitations of Outlier Detection

While outlier detection is an extraordinarily powerful tool, it has potential lim-

itations that must be addressed. First, the system must start in a clean state free

from attack, allowing the system to establish a correct centroid and correct running

averages of historical data [80]. Next, without a proper response to the attacks iden-

tified by outlier detection, the attack data may eventually become incorporated in

the corpus of data used to create the view of normal system functionality, allowing

the attacks to go unnoticed and rendering the system ineffective [81]. One possible

response method is the removal of nodes identified as malicious through the use of

a reputation or consensus protocol, such as that proposed by Chapter 5. Finally, an

adversary can attempt to bypass the outlier detection by reporting metrics that are

marginally incorrect [81]. However, there are several techniques that can be employed

in conjunction with our solution, such as using regularization to bias hypothesis test-

ing, dynamically adapting thresholds of the system, introducing randomization into

data collection and hypothesis calculations, and providing disinformation to poten-

tially malicious nodes that create solutions robust to attackers specifically targeting

the defense mechanisms [80].

3.5.5 Experimental Evaluation

To study the effects of using our defense solution under real-world conditions, we

conducted experiments on the PlanetLab [58, 71] Internet testbed. We conducted

multiple experiments at different times of the day and different days of the week.

Further, experimental nodes were selected randomly for different experiments to val-

idate the statistical significance of results and nodes were chosen to span multiple

operational and administrative domains. Each experiment was conducted multiple

times and the results were averaged.

The baseline configuration for the following experiments consist of 60 minute long

ESM deployments of 100 nodes in which the nodes join after the experiment begins

41

and leave before it ends, with an average participation time of 45 minutes. Each node

is probed every seven seconds, each node probes 30 peers, the saturation degree of

benign nodes is six, and the source streaming rate is 480Kbps. We use a bit rate of

480 Kbps as it is sufficient to transmit video at two different qualities of audio. The

experimental time and saturation degree were increased over the previous section in

order to validate the trends observed occur in longer duration experiments and under

different system configurations. All of the following experiments use these parameters

unless otherwise noted.

Effect of Malicious Nodes on Average Bandwidth

We studied the effect multiple malicious nodes can have on the overlay topology

if they decide to selectively drop data. In Figure 3.11, we demonstrate the impact

malicious nodes that use their position in the tree can exert on the bandwidth of

benign nodes. The graphs plot the bandwidth averaged over all receivers as a function

of time. Malicious nodes start dropping 90% of the data traffic received through the

data dissemination tree fifteen minutes after they joined the overlay. We vary the

percentage of malicious nodes to 10%, 30%, and 50% of the overlay size to demonstrate

the performance degradation that results when more nodes behave maliciously.

Effectiveness of Outlier Detection

To demonstrate the effectiveness of our outlier detection at improving the parent

selection process and the stability of the system, we considered one malicious attacker

and recorded the number of parent changes that took place for the duration of the

experiment considering two cases, one when only the spatial outlier is used, and one

when the temporal-spatial outlier is enabled. The outcome of these experiments is

shown in Table 3.4. The results indicate that using the spatial outlier detection

scheme has dramatically reduced the likelihood of choosing a malicious parent since

the number of times the malicious node was selected as a new parent is reduced from

42

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500
B

an
dw

id
th

 (
K

bp
s)

Time (seconds)

Average Bandwith as a Function of Time

10% malicious nodes
Source nominal rate

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500
B

an
dw

id
th

 (
K

bp
s)

Time (seconds)

Average Bandwith as a Function of Time

10% malicious nodes
Source nominal rate

(a) 10% Malicious

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Average Bandwith as a Function of Time

30% malicious nodes
Source nominal rate

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Average Bandwith as a Function of Time

30% malicious nodes
Source nominal rate

(b) 30% Malicious

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Average Bandwith as a Function of Time

50% malicious nodes
Source nominal rate

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Average Bandwith as a Function of Time

50% malicious nodes
Source nominal rate

(c) 50% Malicious

Figure 3.11. The average bandwidth over time for an ESM overlay of
100 nodes on PlanetLab for a duration of 60 minutes with different
percentages of malicious nodes.

172 to 70. The addition of the temporal outlier detection further reduces this to only

35 times.

Our method also dramatically improved the stability of the overlay in spite of the

presence of the malicious node, as measured by the decrease in total parent changes

denoted in third column of Table 3.4. In fact, the number of adaptations is comparable

to the number of adaptations that would occur when no malicious nodes are present

in the overlay.

43

Table 3.4
The effectiveness of outlier detection at improving parent selection for
an ESM overlay of 100 nodes on PlanetLab over 60 minutes

Experiment Changes to Total Parent

Malicious Parents Changes

No lying 5 833

Lying 172 1032

Spatial 70 800

Spatial/Temp 35 604

44

Overhead and System Performance

Our outlier detection does not introduce any extra link stress since it uses infor-

mation that is already being exchanged between nodes. The memory utilization for

spatial correlation only lasts for the span of a probe cycle and requires maintaining

the observation tuple associated with each of the probed nodes, while the storage

requirements consist of three additional values in the route table for the peer set

maintained by each node. In the case of the temporal outlier detection, the memory

usage consists of maintaining the temporal centroid. By incrementally updating the

centroid, we do not need to maintain the entire history for each probed node. The

temporal outlier detection also requires modifying the route table entries to store nine

additional values: mean, standard deviation, and count for each of the three metrics.

3.6 Summary

In this chapter, we demonstrated the utility for an attacker in subverting adap-

tation mechanisms over other methods of attack and we proposed two separate tech-

niques to mitigate the impact of these attacks. First, we proposed a lightweight

solution which aggregates and correlates network topology and application metrics at

each node, allowing the nodes to use the derived information to make better adapta-

tion decisions and to constrain the actions of malicious nodes. Second, we proposed

the use of context sensitive anomaly detection to detect spatial and temporal outliers

of measured and probed metrics, allowing nodes to avoid malicious data and unnec-

essary adaptations. Our experiments conducted on the PlanetLab Internet testbed

using the mature, unstructured overlay multicast system ESM showed that although

ESM employs an advanced set of adaptation mechanisms, it was unable to mitigate

the attacks posed by a malicious adversary. The experiments demonstrated that

both of our techniques improved the adaptation process and the overall stability of

the system by limiting the effect of malicious nodes.

45

4 CREATING ROBUST SOLUTIONS FOR NETWORK AWARENESS

As noted in Chapter 3, many peer-to-peer applications optimize their structure based

on network topology. For example, the construction of multicast trees or the selection

of a replica for file sharing applications can be greatly improved by taking advantage

of network locality. One basic approach to obtain this network locality information

is to probe all hosts in the network to determine attributes such as latency. The cost

associated with active monitoring to estimate such attributes is non-negligible [35,82]

and is further exacerbated by the presence of multiple applications performing this

task on a common network infrastructure.

Virtual coordinate systems provide an efficient network service that allows hosts on

the Internet to determine the latency to arbitrary hosts without actively monitoring

all nodes in the network. The accuracy and stability of virtual coordinate systems

relies on the assumption that peer nodes on which the coordinate computation relies

are altruistic and correctly participate in the system. However, this assumption may

be violated by compromised nodes acting maliciously to degrade the accuracy of the

coordinate system. While this violation may be prevented for landmark-based virtual

coordinate systems by securing the small set of infrastructure nodes, it is not easily

mitigated for decentralized systems where any node can act as a reference node for

other nodes in the system. As a result, decentralized virtual coordinate systems are

vulnerable to insider attacks conducted by attackers that infiltrate such systems or

compromise some of their nodes [83,84]. Since virtual coordinate systems are designed

to be network services providing latency estimation for a wide variety of peer-to-peer

applications, such as distributed hash tables (DHTs) [54] and routing [85], they are

likely to be prime candidates for attack. It is critical that virtual coordinate systems

are designed to be robust to attackers that influence the accuracy of the coordinates

in order to maintain upper-level application performance.

46

In this chapter, we demonstrate the vulnerability of decentralized virtual coor-

dinate systems to inside attackers. We propose techniques to make the coordinate

assignment robust to malicious attackers. We use both spatial and temporal corre-

lations to perform context-sensitive outlier analysis to reject malicious updates and

prevent unnecessary and erroneous coordinate changes. Our solution does not induce

extra communication in the system or use trusted components, complying with the

virtual coordinate system design goals of flexibility and low communication overhead.

We summarize our key contributions:

• We classify three types of attacks against virtual coordinate systems based

on their impact on the coordinates: coordinate inflation, coordinate deflation,

and coordinate oscillation. The attacks are conducted by insiders that have

infiltrated the system or compromised some of the nodes. The low-rate nature

of the attacks (i.e., they do not require the attacker to generate a noticeable

amount of traffic) makes them difficult to detect, while their epidemic nature

makes them very dangerous, as a small number of attackers can significantly

influence the accuracy of the entire system.

• We propose techniques to reduce incorrect coordinate mappings by using spatial

and temporal correlations to perform context-sensitive outlier analysis. A key

component of our solution is based on the observation that the behavior of

attackers can be constrained by correlating dependent metrics.

• We demonstrate the impact of the attacks and the effectiveness of our defense

mechanisms through p2psim [86] simulations, in the context of the well-studied

Vivaldi virtual coordinate system [87] using three representative real-world

topologies of hosts and corresponding RTTs: King [88], Meridian [89], and

AMP [90]. We found through analytical and empirical studies that a spatial

threshold of 1.5 and a temporal threshold of 4.0 provided a low system error

under attack while maintaining an low false positive rate. Our experiments also

47

show that the method starts to degrade when a coalition of malicious nodes in

the reference set of a node increases over 30% of the reference set size.

The rest of the chapter is organized as follows: We provide an overview of virtual

coordinate systems in Section 4.1 and of the attacks against them in Section 4.2. We

propose our solution in Section 4.3. We present experimental results demonstrating

the impact of the attacks and the effectiveness of our solution in Section 4.4. Finally,

Section 4.5 concludes this chapter.

4.1 Decentralized Virtual Coordinate Systems

Virtual coordinate systems [87,88,91–99] have been proposed as a low communica-

tion cost service to accurately predict latencies between arbitrary hosts in a network.

These systems allow a node to map itself to a virtual coordinate based on a small

number of actual network distance estimates to a subset of reference nodes. By com-

paring virtual coordinates, nodes can trivially estimate the latency between them.

Two main architectures for virtual coordinate systems have emerged: landmark-

based and decentralized. Landmark-based systems rely on infrastructure components

(such as a set of landmark servers) to predict distance between any two hosts. The set

of landmarks can be pre-determined [91,94,98] or randomly selected [93,99]. Decen-

tralized virtual coordinate systems do not rely on explicitly designated infrastructure

components, requiring any node in the system to act as a reference node. Exam-

ples of decentralized virtual coordinate systems include PIC [95], Vivaldi [87], and

PCoord [97, 100].

The design goal of decentralized virtual coordinate systems is to efficiently create

and maintain a stable set of virtual coordinates that accurately predict the latency

between nodes without using fixed infrastructure nodes. Although each specific vir-

tual coordinate system differs in some details, most of them follow a common design.

The most important characteristics that define decentralized coordinate systems are

48

(1) the reference or neighbor set, (2) the latency prediction mechanism, and (3) the

error minimization technique.

In a decentralized virtual coordinate system, each node calculates its coordinates

based on the information obtained from a small set of nodes in the network, which we

refer to as the reference set. There are several methods used to select the reference set.

One of the most promising methods identifies a set of close and a set of distant network

nodes and selects a random subset of each [87,95]. Nodes may have different reference

sets. Different systems use different sizes of the reference set due to the frequency of

actual network measurements, the number of nodes queried per measurement interval,

and the error minimization technique utilized. For example, Vivaldi uses a reference

set size of 64 nodes [84], PCoord uses 10 nodes [100], and PIC uses 32 nodes [95].

Once a reference set has been selected, a node determines its coordinate based on a

predefined latency prediction mechanism, such as the Euclidean distance. Each system

typically maintains coordinates in either low dimensional (usually 2 to 8 dimensions)

Euclidean space [95], an augmented Euclidean space [87], or a non-Euclidean (e.g.,

hyperbolic) space [101]. In general, it has been shown that none of the embedding

spaces dominates the others in performance [102] and lower dimensionality Euclidean

spaces are often sufficient [87]. A node determines its position and then successively

refines it by periodically querying nodes in its reference set. Queried nodes respond

with metrics that can include local error, perceived system error, local coordinates,

and RTT.

Virtual coordinate systems provide accurate latency prediction, achieved through

error minimization techniques of a chosen latency error function. Examples include:

• Generic multi-dimensional minimization designed to minimize a relative system

error measure (such as logarithmic transformed error) using techniques such as

the downhill simplex method [95].

• Minimizing coordinate error by simulating Newtonian mechanics. Each node

in the system is simulated as a particle influenced by the field force induced

49

between nodes. Each pair of particles (nodes) either pulls or repulses each

other, thereby reducing the total system error [101].

• Minimizing system error by simulating spring relaxation, where the state of the

springs at rest is the optimal embedding. The system minimizes the squared

system latency estimation error by iteratively finding the low-energy point of

the spring-based system [87].

While each technique has benefits, systems based on multi-dimensional minimiza-

tion are often slow to converge, sensitive to initial system conditions, and sensitive to

high-error measurements. Simulation techniques such as spring relaxation are com-

putationally inexpensive, less sensitive to high-error nodes, and more amenable to

general decentralized system design.

In general, virtual coordinate systems achieve the overall goals of accuracy and

stability while reducing traffic by as much as two orders of magnitude when com-

pared with active monitoring to estimate RTT [95]. Systems such as Vivaldi [87],

PCoord [97], and PIC [95] stabilize at an average system latency estimation error of

ten milliseconds for large scale simulations and deployments.

4.1.1 Vivaldi Virtual Coordinate System

Vivaldi is a fully decentralized virtual coordinate system which assigns each host

synthetic coordinates in a multi-dimensional Euclidean coordinate space. Conceptu-

ally, Vivaldi attaches a spring between each pair of neighbor nodes, where the length

of the spring is the estimated RTT between the nodes. By minimizing the tension

on these springs across the entire network, the protocol minimizes the error in the

system.

When a node joins the system, it establishes its reference set and initializes its

coordinates to the origin of the Euclidean coordinate space. As seen in Figure 4.1(a),

each node i then periodically probes a reference set member j to obtain j’s current

coordinate and perceived error. As i receives the coordinate (xj), the remote error

50

Algorithm 3: Vivaldi Coordinate Update

Input: Remote node observation tuple (〈xj , ej , RTTij〉)
Output: Updated Node Coordinate

w = ei/(ei + ej);1

es = |‖xi − xj‖ − RTTij|/RTTij;2

α = ce × w;3

ei = (α × es) + ((1 − α) × ei);4

δ = cc × w;5

xi = xi + δ × (RTTij − ‖xi − xj‖) × u(xi − xj);6

estimate (ej), and measured RTT from j, i uses this information to update its coor-

dinates using Algorithm 3. First, node i calculates the reliability of the observation

based on the local and remote error (line 1) and relative error of the observation tuple

(line 2). Next, node i updates its local error (line 4) and the movement dampening

factor (line 5). Finally, as depicted in Figure 4.1(c), node i updates its coordinate in

the last line of the algorithm. As the Vivaldi virtual coordinate system stabilizes, the

average system error is on the order of a few percent. Once the coordinate system

has stabilized, the latency between two nodes is trivially estimated by computing the

Euclidean distance between their coordinates.

We selected Vivaldi as a representative example since it is a mature system, con-

ceptually easy to understand and visualize, and has been shown to produce low error

embeddings. For further details of the protocol, we refer the reader to the work by

Dabek et al. [87].

4.2 Vulnerability of Virtual Coordinate Systems

The correct operation of virtual coordinate systems is dependent on the assump-

tion that the reference set nodes are altruistic and respond with correct metrics to

queries from any node computing its corresponding coordinates. An attacker con-

51

trolling reference set nodes has the ability to influence the coordinate maintenance

process by manipulating the information, such as remote node error and coordinates,

returned in response to a query. By blindly accepting this malicious information, a

correct node computes incorrect coordinates. While we examine the attacks in the

context of the Vivaldi virtual coordinate system, the attacks generalize to any virtual

coordinate system which uses external information to maintain the correctness of the

system.

A malicious node is able to indirectly take advantage of the error minimization

techniques and chosen error function by manipulating the metrics it reports as a

reference set node. In doing so, an attacker is able to make a victim node move away

from its correct position by either pulling it closer or pushing it towards a location

specified by the attacker. For example, as depicted in Figure 4.2(b), a malicious node

can pull a victim node towards a designated location in quadrant slowromancapi@

and away from the victim’s correct position. As we can see from Algorithm 3, if

the malicious node reports a low error (used to calculate the movement dampening

factor in Lines 1 and 5) in conjunction with an actual RTT less than the estimated

RTT (the Euclidean distance between the victim node’s coordinates and the reported

location), a node will move towards the reported location. Similarly, if a malicious

node reports a position close to the victim node that is in the opposite direction of

the desired malicious location along with an artificially high RTT (caused by delaying

probe responses) the node will be pushed towards the desired location (Figure 4.2(b)).

The larger the induced delay, the farther the victim node will re-calculate its positions

away from the reported position. We refer to such attacks that result in coordinate

mappings farther from the correct location as coordinate inflation.

An attacker may cause a victim node to remain immobile by reporting positions

that minimize the difference between the actual and estimated RTT. Examining line

6 of Algorithm 3, if the attacker is able to force (RTTij − ‖xi − xj‖) = 0, the victim

node will remain stationary. To achieve this, the malicious node can either report

coordinates which cause the difference between the measured and estimated RTT to

52

be zero or influence the measured delay so that it matches the delay estimated by the

coordinates. In addition, since the difference between the actual and estimated RTTs

is used to update the victim’s local error estimate, the estimate will be artificially low.

We refer to such attacks in which the victim nodes are prevented from performing

necessary, correct coordinate changes as coordinate deflation.

The final type of attack we examine is the coordinate oscillation attack, which

results in nodes continuously changing their positions and not converging to stable

coordinates. The attack consists of each malicious node attempting to maximize

system error by randomly reporting erroneous coordinates, low, random local error,

and actively delaying probe responses. Depending on the attack, each time a malicious

node is used as a reference set node, it can report the same random coordinates or

an entirely new position.

While we have described in detail each of the attacks against individual nodes,

any attack against the coordinate system may actually target one or more nodes,

a subset of nodes, or a region of the coordinate space. Also, as each node reports

false information, it attempts to lie within the normal operating characteristics of

the system. That is, the attacker reports positions selected over the coordinate area

where the majority of nodes are located and it reports a low error in line with low-error

benign nodes to minimize the risk of being identified as malicious.

The final goal of manipulating the coordinate system can include isolating subsets

of nodes from the network, creating general disorder in the system, or rendering

the coordinate system unusable due to high estimation error. While each of these

goals serves a different purpose, in the end they all distort the coordinate space

and can make using the computed coordinates worse than using randomly assigned

coordinates. Even short-lived, localized attacks have a long-lasting effect on the

overall system. For example, even when a single victim node is displaced from its

correct position, this has an epidemic, detrimental effect on the system as the victim

node will push/pull other nodes away from their correct coordinates by reporting its

now incorrect coordinates. This occurs since the victim node will serve as a reference

53

set member for other nodes in the system, negatively influencing their coordinate

computation. Besides degrading the accuracy of the coordinate system, the attacks

will also adversely impact any application using the coordinate system to estimate

network measurements. Additionally, as the attacks exploit the semantics of the

information contained on the packet, they do not add a noticeable change in traffic

load and thus are difficult to detect by traditional mechanisms.

4.3 Adding Robustness to Virtual Coordinate Systems

We leverage techniques from outlier detection to identify malicious behavior and

take defensive actions to mitigate its effects. Instead of allowing malicious coordinate

mappings to occur and then trying to detect them, we focus on reducing the likeli-

hood of a node computing incorrect coordinates by filtering out malicious updates

using statistical outlier detection. Each node independently performs outlier detec-

tion before updating its coordinates in order to identify and filter out outliers in the

received metrics.

Since the evidence of malicious activity is distributed across space and time, we

detect malicious activity using both temporal and spatial correlations among metrics

in the system. Spatial outlier detection identifies observations which are inconsistent

with their surrounding neighbors, forcing nodes to report metrics consistent with

what other reference peers are reporting. Temporal outlier detection identifies incon-

sistencies in the metrics over time, forcing a node to report metrics consistent with

what it has reported in the past.

To minimize communication cost and maintain a low-overhead system, we focus

on utilizing metrics used by nodes to update their coordinates using Algorithm 3. We

use the 3-tuple of 〈RTT, eremote, ∆remote〉 to generate the spatial outlier statistics and

the 5-tuple of 〈RTT, eremote, ∆remote, elocal, ∆local〉 to generate the temporal outlier

statistics. Here, RTT is the measure of the actual two-way latency between the nodes,

eremote is the remote error estimate received in the observation tuple, and elocal is the

54

most recent error estimate calculated at the local node using Algorithm 3. ∆remote

is the Euclidean distance the remote node has moved due to its last update. For

example, if node j’s location prior to an update was located at (4, 5) and moved to

(4, 3) after the update, then ∆remote is 2. ∆local is the analogous measure at the local

node. Both ∆remote and ∆local are the only metrics used in addition to the original

Vivaldi update algorithm. ∆remote is incorporated as part of the observation tuple

and ∆local is easily calculated at the local node.

Each metric was chosen on the basis that while each of them represents a different

measure of system performance, changes in one measure will result in a correlated

change in other metrics. For example, as the system stabilizes to low overall error,

the local error reported by each node and magnitude of the change in coordinates will

both decrease. An attacker must therefore report a high error with greatly changing

coordinates in order to not be identified as malicious. Our solution also forces an

attacker to lie consistently with other peers. This is difficult to achieve since an

attacker does not have perfect knowledge of the observation space, must accurately

predict the random subset of reference nodes that will be queried, and only has a

finite amount of time to coordinate with other attackers.

4.3.1 Spatial Outlier Detection

We use spatial outlier detection to examine the consistency of recently received

metrics from queried nodes. A node queries a random node from its reference set

and receives an observation tuple which consists of 〈RTT, eremote, ∆remote〉. The node

records this response and tracks the most recent u updates in a queue, where the

oldest responses are replaced by newer ones. The size of the history queue, u, is

equal to the size of the reference set which allows the queue, on average, to contain

one entry from each reference set nodes. Unlike more message-intensive distributed

systems where a new set of responses from all nodes queried (in this case nodes in the

reference set) are collected in response to one query [35], virtual coordinate systems

55

collect these responses sequentially. Our approach requires a node to perform outlier

detection every time it receives a new tuple, considering the most recent u updates.

We note that this technique is an instance of spatial outlier detection since we examine

metrics across various system nodes and not time.

Once a node receives an observation tuple, the node first computes the centroid

of the data set consisting of observation tuples from the stored u updates. The node

then computes the Mahalanobis distance between the received observation tuple and

the centroid as follows [75]:

d(a, b̄) =
√

((a − b̄)T C−1(a − b̄)) (4.1)

where a and b̄ are two feature vectors whose elements consist of an observation tuple.

a is the feature vector representing the newly received observation tuple from a remote

node and b̄ is the averaged feature vector (the centroid) computed from the u most

recently received observation tuples which have been used to update the current

node’s coordinates. C−1 is the inverse sample covariance matrix computed from the

u most recent tuples. After the distance is calculated, it is compared against a spatial

threshold. We discuss the spatial threshold selection in Section 4.4.4.

4.3.2 Temporal Outlier Detection

We use temporal correlations to detect inconsistencies in the metrics reported

over time by a reference set node. We use the 5-tuple consisting of 〈RTT, eremote,

∆remote, elocal, ∆local〉. Using incremental learning, we compute a temporal centroid

for each of the members of a node’s reference set. We assume each of the reported

metrics is statistically independent, necessitating the storage of just the mean, stan-

dard deviation, and sample count computed from the received query responses over

time. The stored values for a reference set member are incrementally updated with

metrics received from its query response, similar to Wang and Stolfo [75], using the

technique described by Knuth [79]. In order to compare newly received values with

56

the temporal centroid, we use the “simplified Mahalanobis distance” presented by

Wang and Stolfo [75]:

d(x, ȳ) =
n−1
∑

i=0

|xi − ȳi|
σ̄i + α

(4.2)

where n is the number of metrics, five in our case (remote error, local error, latency,

change in remote coordinates, and change in local coordinates), σ̄i is the standard

deviation, and α is a smoothing factor empirically set to .001 to help to avoid over-

fitting and reduce false positives [75]. Once a query response is received, the latest

observation tuple is compared with the corresponding temporal centroid using the

simplified Mahalanobis distance, based on a temporal threshold that decides if the

tuple is an outlier or not. We discuss temporal threshold selection in Section 4.4.4.

4.3.3 Spatio-temporal Outlier Detection

As seen in Algorithm 4, we combine the two outlier detection mechanisms de-

scribed above by using a codebook technique similar to Jiang and Cybenko [74]. As

a node receives observation tuples from its reference set members, it checks each one

to ensure that it is not a spatial or temporal outlier. If the reference node is found to

be an outlier, the query response will not be used in future temporal centroid calcu-

lations since it will not be incorporated into the temporal mean, temporal standard

deviation, or sample count. Also, it will not be used in future spatial centroid calcu-

lations since it will not be added to the queue of the most recent u updates. If the

observation tuple is not an outlier, it is used to update the receiver node’s coordinates

using Algorithm 3.

57

Algorithm 4: Procedure to exclude malicious observation tuples from the co-

ordinate update process.

Input: xj , RTT, eremote, ∆remote, elocal, ∆local

Output: Updated coordinate if the observation tuple was not malicious

// Calculate the centroid of the most recent tuples and check

spatial consistency using the using the Mahalanobis distance

centroid = calcCentroid(u observation tuples);

if (spatialOutlier(centroid, RTT, eremote, ∆remote) == true) then

return false;

// Check temporal consistency using the using the simplified

Mahalanobis distance

if (temporalOutlier(RTT, eremote, ∆remote, elocal, ∆local) == true) then

return false;

// Data is not malicious, perform update operations using

Algorithm 3

updateCoordinates(xj , ej , RTTij);

store 〈RTT, eremote, ∆remote〉 tuple in the queue of u most recent tuples;

update stored temporal statics for RTT, eremote, ∆remote, elocal, ∆local;

return true;

4.4 Experimental Evaluation

In this section, we demonstrate the impact of attacks against virtual coordinate

systems through simulations using actual Internet topologies. In addition, we demon-

strate that our proposed mechanisms enhance the robustness of decentralized virtual

coordinate systems to such attacks. We examine their effect on the Vivaldi virtual

coordinate system which is simulated in the p2psim simulator [86].

58

Table 4.1
Internet data sets characteristics

Data Set # Nodes Avg. Max. Std. Dev.

RTT RTT RTT

King 1740 180ms 800ms 66ms

Meridian 2500 80ms 1000ms 69ms

AMP 90 70ms 453ms 51ms

4.4.1 Evaluation Methodology

For our simulations, we use three different RTT data sets collected from real-life

Internet topologies. Table 4.1 summarizes the characteristics of each data set:

• King: The King data set contains the pair-wise RTT of 1740 nodes measured

using the King method [88].

• Meridian: The Meridian data set, obtained from the Cornell Meridian project

[89], contains the pair-wise RTT of 2500 nodes measured using the King method.

• AMP: The AMP data set, collected from the NLANR Active Measurement

Project [90] on March 1, 2007, contains complete information for 90 high-speed

nodes contained mostly in North America.

We selected the King and Meridian data sets because they are representative of

larger scale peer-to-peer systems and were used in validating many peer-to-peer and

virtual coordinate systems. The King data set contains a variety of link latencies

while the Meridian data set is more homogeneous, containing many nodes close to

each other in terms of network latency. Due to this homogeneity, the average RTT

of the Meridian data set is approximately half that of the King data set. The final

data set, AMP, is used since it represents a smaller, high speed system, such as a

corporate network. In AMP, links with latency of 100ms or less account for nearly

59

90% of all of the links. We did not consider synthetic topologies since they do not

capture important network properties such as violations of the triangle inequality.

In order to quantitatively compare the effect of attacks on the accuracy of the

system, we evaluate two error metrics:

• System prediction error is defined as

Errorpred = |RTTAct − RTTEst|

where the RTTAct is the measured RTT between two nodes and RTTEst is

the predicted RTT by the virtual coordinate system. This metric provides

an intuition of how the overall system is performing. The lower the system

prediction error, the more accurate are the predicted RTTs.

• Relative error is defined as

Errorrel =
Errorattack

Errorno attack

where Errorattack is the system prediction error measured in the presence of ma-

licious nodes and Errorno attack is the system prediction error without malicious

nodes. This metric captures the impact an attacker has on the coordinate sys-

tem. A relative error greater than one indicates a degradation in accuracy and

a value less than one indicates a better estimation accuracy than the baseline.

For each of the error measures, the 5th, 50th, and 95th percentile error are analyzed.

These values are obtained by selecting the corresponding entries from a sorted array

of prediction error and are averaged over multiple simulation runs. Intuitively, the

5th percentile represents low error nodes, the 50th percentile corresponds to average

or median error nodes, and the 95th percentile represents high error nodes.

Each simulation was run for 200 time units, where each time unit is 500 seconds in

length. The nodes join in a flash-crowd scenario in which all nodes join simultaneously

and are each initially placed at the origin of the logical coordinate space. All nodes

that join the network are physically stationary and are present for the duration of the

60

experiment. Each node proceeds independently of other nodes in the network and

chooses a reference set of 64 nodes using the Vivaldi method where half of the nodes

are selected as the closest nodes based on network latency and the rest are selected at

random. All other Vivaldi parameters were initialized to the optimal values discussed

by Dabek et al. [87] unless otherwise noted. Each of the experiments utilizes a two-

dimensional coordinate space {(x, y)|x, y ∈ [−300000, 300000]}. Every experiment

was run ten times with the reported metrics averaged over all of the simulation. In

each of the figures, only the first 50 time unit steps are displayed since the virtual

coordinate system has converged to a stable state by that point.

4.4.2 Node Placement in a Virtual Coordinate System

In Figure 4.3, we present graphical representations of the typical operation of

the Vivaldi virtual coordinate system using the King, Meridian, and AMP data sets.

The King data set contains a variety of link latencies, allowing nodes in the virtual

coordinate system to form a structure in which nodes with small RTTs between them

converge into clusters, as seen in Figure 4.3(a). As the Meridian data set contains

many nodes close to each other in terms of network latency, we visually observe in

Figure 4.3(b) that the system forms fewer, but larger clusters. The final data set,

AMP forms one main cluster, as seen in Figure 4.3(c).

4.4.3 Impact of Attacks Against Distributed Virtual Coordinate Systems

In this section we demonstrate several attacks against the Vivaldi coordinate sys-

tem. Vivaldi was designed to tolerate high-error, benign nodes, but it has no built-in

mechanisms to defend against malicious nodes.

61

Inflation and Deflation Attacks

We first demonstrate how a coalition of f=30% malicious nodes can target one

particular victim node and conduct an inflation or a deflation attack. Figure 4.4

presents the location and associated prediction error of a single victim node under

non-attack conditions and under the two attacks. The correct location of the victim

node is represented by the triangle in quadrant slowromancapi@. Under the defla-

tion attack, all of the attackers send the victim node coordinates that minimize the

difference between the actual RTT and estimated RTT (minimizing the Euclidean

distance between the attacker and victim). As a result, since the attackers force

the estimated RTT to artificially match the actual RTT, the victim node remains

stationary at the origin of the cartesian space while believing it has low estimation

error. Figure 4.4(b) also depicts an inflation attack, where all of the attackers send

the victim node coordinates from a small chosen area along with RTTs influenced by

delaying query responses, causing the node to move rapidly towards the desired area.

Note the square in the quadrant slowromancapii@ representing the victim node was

forced towards the area chosen by the attackers. As can be seen in the Table 4.4(a),

the different attacks greatly increase the prediction error of the victim node from

10ms to 60ms for the deflation attack and 10ms to 70ms for the inflation attack.

Oscillation Attacks

We demonstrate an oscillation attack in Figure 4.5. In this scenario, the malicious

nodes work together to cause general disorder in the system by sending the victim

nodes erroneous random positions selected over the coordinate space with a low error

value, causing the victim nodes to make multiple incorrect coordinate changes. As

seen in Figure 4.5(a), the system under non-attack conditions has an easily identifiable

structure in which nodes with small RTTs between them converge into clusters in the

coordinate space. When the system is under attack as seen in Figure 4.5(b), the

virtual coordinate system loses its structure and hence also loses its ability to yield

62

a low error embedding. This attack also exemplifies the epidemic nature of such

attacks. As correct nodes computing incorrect coordinates are later used as reference

nodes for other nodes, the entire system destabilizes.

Impact of the Percentage of Malicious Nodes

We investigate the effect of the number of malicious nodes on the accuracy of

the system, by varying the percentage of malicious nodes. Each queried malicious

node returns erroneous metrics in the form of a random position selected over the

coordinates {(x, y)|x, y ∈ [−100000, 100000]} and a low, non-zero error value. A

malicious node also randomly delays its response between 100ms and 1000ms in order

to induce greater variability in its responses in an attempt to expand the coordinate

space.

Figure 4.6 presents the prediction error for the King data set for several percent-

ages of malicious nodes. Under non-attack conditions, a node joining the coordinate

system is initially placed at the origin of the logical coordinate space. As time passes,

each node receives query responses from its reference set and is able to refine its

position, allowing the system as a whole to achieve lower prediction error. Once the

system stabilizes about halfway through the simulation, the system prediction error

remains roughly constant. After this point, each of the nodes continues to refine its

position, but the overall sum of these movements yields little change in the prediction

error. While the system under attack may initially start with similar prediction errors

since nodes are initially placed at the origin, it is never able to effectively refine its

coordinates and achieve the desired low estimation error found in the non-attack sce-

nario. As the percentage of attackers increases, the ability of the system to accurately

estimate latency significantly degrades.

Similar trends are also evident in Figure 4.7, where the system can be seen to

stabilize at a much higher relative error than the baseline of one. Having even a small

percentage of attackers incurs double or triple the estimation error when compared

63

with the non-malicious scenario. Malicious nodes have a greater negative impact on

the lower-error nodes, as can been seen from the higher relative errors in Figure 4.7(a)

and Figure 4.7(b) as compared to Figure 4.7(c). When a low error node moves in

response to malicious data, it is prone to make large, erroneous changes to its own

position and experience a higher estimation error.

The results presented in Figure 4.6 and Figure 4.7 are not a product of system

randomness. To validate this claim, we formulate the null hypothesis H0 : µattack =

µnormal, which states that system error under non-attack and attack conditions have

the same mean and distribution, implying the virtual coordinate system behaves

similarly under both conditions. Using a two-sample t-test with pooled variance [103],

we disproved H0, finding with high probability (nearly 100%) that the error results

come from distributions with different means. We conclude that malicious nodes can

cause the system to have a much higher estimation error and to stabilize at a higher

error than a system under non-attack conditions and that the error increases with

the size of the malicious set.

Impact of Reference Set Size on System Performance

Next, we explore the effect different reference set sizes has on the overall accu-

racy of the Vivaldi virtual coordinate system under normal operation and malicious

settings using the King data set. While many virtual coordinate systems choose an

arbitrary power of two for the reference set size, from Figure 4.8 we can see the impact

this selection has on the ability of the system to tolerate malicious nodes and overall

system error, with larger reference set sizes minimizing the impact of the malicious

node comparatively to the smaller reference sets. To further understand this effect,

we look at the effect malicious nodes have on an individual victim node.

It is interesting to note that the actual number of attackers which directly influence

a victim node is the number of malicious nodes that are selected to be in the reference

set of the victim node. We can analyze the probability of having malicious neighbors

64

and better understand the design choice of having a smaller or larger reference set

using the hypergeometric distribution. If we let k represent the number of malicious

nodes in a reference set, N be the number of nodes in the system, D is the total

number of malicious nodes, and n is the size of the reference set, then the probability

of having exactly k malicious nodes in a reference set is given by

f(k; N, D, n) =

(

D

k

)(

N−D

n−k

)

(

N

n

) (4.3)

By summing the discrete probability distributions for values from 0 to k, we can

determine the probability of having a certain percentage of malicious nodes in the

reference set. From Table 4.2, we can see the intuitive notion that the greater the

size of the neighbor set or greater the percentage of malicious nodes, the more likely a

benign node is to have at least one malicious neighbor. For example, we can see that a

reference set of 16 nodes has an 82% chance of containing at least one malicious node

when 10% of the total nodes are malicious while there is a 97% chance for a reference

set of 32 nodes. However, as seen in Figure 4.8, this initial intuition does not hold as

the larger reference set sizes are able to minimize the impact of the malicious node

comparatively to the smaller reference sets.

Table 4.2
Probability of a reference set having at least one malicious node for
the King topology

Neighbor Set Size

4 8 16 32 64

% of

Nodes

Lying

10 34% 57% 82% 97% 99.9%

20 59% 83% 97% 99.9% 99.9%

30 76% 94% 99.7% 99.9% 99.9%

This discrepancy is due to the fact that as the reference set size grows and more

nodes can be queried for information, the density of malicious information at the

65

benign nodes decreases. For example, if we look at Table 4.3, we can see that with

10% of the nodes being malicious with larger reference set sizes (32 and 64), there is

minimal chance for a node to have more than thirty percent or more of the nodes to

be malicious. However, as the reference set size decreases, the probability of having

a significant number of malicious neighbors increases. Once the reference set reaches

a significant size (32-64), the additional nodes do not convey extra resiliency.

Table 4.3
Probability of a reference set having at least 30% malicious nodes for
the King topology

Neighbor Set Size

4 8 16 32 64

% of

Nodes

Lying

10 34% 19% 2% .07% .000006%

20 59% 50% 20% 9% 4%

30 76% 75% 55% 51% 57%

Impact of Attacks on Different Network Topologies

We examine the impact of the attacks on different network topologies with different

sizes and variabilities by using three representative data sets. Figure 4.7, Figure 4.9,

and Figure 4.10 shows the relative error for these data sets for various percentages of

malicious nodes. Each of the topologies is adversely effected, with the King data set

(Figure 4.7) showing the greatest degradation in accuracy due to the fact it has more

variation in RTT and is prone to excessive over and under estimation in response to

an attack. Meridian (Figure 4.9) shows less degradation due to the fact that it has

less variation in its link latencies. AMP (Figure 4.10) shows more variability in the

relative error due to its small size and frequent, large-scale node coordinate changes.

As previously noted, as the percentage of attackers increases, the ability of the system

to accurately estimate latency significantly degrades regardless of the topology.

66

4.4.4 Threshold Selection for Spatial-Temporal Outlier Detection

An important aspect of our approach is selecting the temporal and spatial thresh-

olds that allow for the identification of potentially malicious query responses and elim-

inate them from the coordinate computation process. We consider the same attack

scenario with a percentage of attackers as in Section 4.4.3 to experimentally deter-

mine our outlier detection thresholds since this scenario is one of the most difficult in

which to identify malicious responses. When a malicious node selects a coordinate to

respond with, this coordinate is selected from an area in which many altruistic nodes

reside. The malicious nodes also report low but variable error inline with low-error

altruistic nodes. These factors help disguise the malicious nodes actions and make

them much harder to detect.

We use a slightly modified version of the method proposed in Section 4.3. Specif-

ically, we do not use latency in the outlier detection due to the fact that the latencies

are predetermined in the simulator and thus show little variability.

Temporal Threshold Selection

We used a threshold of 4.0 for our temporal outlier detection to allow for the

four features: remote error, local error, change in remote coordinates, and change

in local coordinates to vary at most one standard deviation over each feature from

their temporally developed mean. The value was chosen based on the formula of the

simplified Mahalanobis distance as discussed by Wang and Stolfo [75].

Spatial Threshold Selection

The threshold for our outlier detection can be mathematically derived as by Smith

and Cheeseman [77] and Ribeiro [78], assuming a multivariate Gaussian distribution

for the metrics vector. The contours of equal probability of this distribution create

a 2-dimensional ellipse and the outlier threshold reflects the probability of a vector

67

Table 4.4
False positive rate (percentage) and median prediction error for dif-
ferent spatial outlier thresholds (King data sets)

% Mal.

Nodes

Spatial Outlier Threshold

1.25 1.50 1.75 2.00

0 28, 16ms 21, 16ms 17, 16ms 13, 16ms

10 17, 17ms 13, 18ms 10, 19ms 5, 20ms

20 21, 18ms 15, 21ms 7, 23ms 6, 26ms

30 27, 20ms 11, 22ms 10, 33ms 9, 36ms

being within the ellipse whose semi-axes are determined by k. The probability that

a random vector lies within the ellipse increases with the size of k. Thus, for a given

value of k the probability that a probed tuple lies within the ellipse can be computed

as:

P = 1 − e
−k2

2 (4.4)

We initially analytically selected k = 1.5, in theory creating a threshold through

which 53% of the coordinate updates would successfully pass. Through empirical

testing of over 200,000 coordinate updates over multiple simulations, we found an

ellipse determined by this threshold will allow approximately 79% of the updates to

pass. This variation from the mathematically derived value can be attributed to the

fact that the used metrics do not form a perfect normalized distribution and have a

smaller variance than assumed in Equation 4.4. A node may select smaller spatial

threshold values for stronger security guarantees, with the drawback that it may find

its coordinate less accurate due to discarding valid updates.

Figure 4.11, Figure 4.12, and Figure 4.13 present the relative error for the King

data set in which the temporal outlier threshold was set to 4.0 and various spa-

tial outlier detection thresholds were tested. Table 4.4 presents the corresponding

false positive rate and median system prediction error for the different thresholds.

68

Although higher thresholds provide a smaller false positive rate, they do induce a

higher error rate. For example, as malicious nodes are introduced into the system,

a threshold of 2.00 maintains a low false positive rate with the trade-offs that the

prediction error raises to 36ms, with 14ms more than the threshold of 1.5 which

maintains a prediction error of 22ms when 30% of the nodes are malicious. We note

that virtual coordinate systems are designed to be long-running services and hence

the presence of a small percentage of false positive will not hinder the system. Based

on the results in the three figures and Table 4.4 we conclude that a spatial threshold

of 1.5 worked well for different percentages of attackers while having an acceptable

false positive rate.

4.4.5 Mitigating Attacks Against Virtual Coordinate Systems

In this section we demonstrate the effectiveness of our defense mechanisms at

mitigating the effects of malicious nodes and sustaining the usability of the system.

Inflation and Deflation Attacks

We begin by reexamining the inflation and deflation attacks against a victim node,

this time with a system using our defense mechanisms. The victim node is able to

identify and mitigate the effect of the malicious nodes, achieving a prediction error

of 11ms, as shown in Figure 4.4. The error is similar to a system under non-attack

conditions (10ms), and nearly six times less than the unprotected system.

Different Percentage of Malicious Nodes

Figure 4.11, Figure 4.12, and Figure 4.13 present the relative error for the King

data set for different percentages of malicious nodes. Note that for a spatial threshold

of 1.5, our solution mitigates the system instability caused by the malicious nodes and

even helps the system to stabilize at a more accurate local minimum than the initial

69

protocol design to tolerate benign errors. While each node may occasionally accept

erroneous data from malicious nodes due to a short temporal history or a skewed

spatial history with updates from only a few nodes (as can be seen by the brief rise in

error before coming back down), over time the system is able to avoid many malicious

updates.

Different Network Topologies

Figure 4.14 and Table 4.5 show the results for the King, Meridian and AMP

topologies with and without outlier detection, where the attack scenario is the same

as the coalition attack in Section 4.4.3. Applying the spatial threshold of 1.5 which

was tested on the King data set, we find our solution is able to mitigate the system

instability in all three data sets.

The King data set (Figure 4.14(a)), previously seen in Figure 4.12(b) and Fig-

ure 4.13(b)), maintains a low relative error for various percentages of the attackers.

We also note it is able to maintain a low system prediction error and low number of

false positives (Table 4.5). In Table 4.5, the less the system prediction error increased

with the number of attackers, the more resiliently the system performed under attack.

Similar trends can also be observed for the Meridian data set (Figure 4.14(b)). While

our solution is able to offer protection to the smaller scale AMP data set from mali-

cious nodes, it can be seen from Figure 4.14(c) that larger percentages of malicious

nodes begin to overwhelm the system. This occurs since the percentage of malicious

nodes is high (≥ 30%) and each benign node will have many malicious reference set

members. For example, given that 30% of the total nodes are malicious, the prob-

ability that at least 30% of the nodes in a reference set of AMP are also malicious

is about 67%. This is nearly double the probability for King or Meridian under the

same conditions due to AMP’s much smaller size.

We validate that the difference between the system under attack using our defense

mechanisms and the system operating under non-attack conditions are not statisti-

70

Table 4.5
False positive rate (percentage) and median prediction error for dif-
ferent data sets using a spatial outlier threshold of 1.5

% Mal.

Nodes

Topology

Meridian AMP King

0 23, 30ms 21, 18ms 21, 16ms

10 13, 30ms 15, 20ms 13, 18ms

20 12, 32ms 14, 25ms 15, 21ms

30 11, 40ms 12, 36ms 11, 22ms

71

cally significant, meaning the attacks had little effect. For a smaller numbers of

attackers (<30%), we test the null hypothesis H0 : µdefense = µnormal using the two-

sample t-test with pooled variance. Unexpectedly, we disprove H0, concluding with

high probability (nearly 100%) that the error results come from distributions with

different means. Upon closer inspection, with high confidence, the actual mean of the

system with defense is below that of the system under non-attack conditions, showing

our defense mechanisms improves the operation of the system even under attack. For

larger number of attackers (≥30%), the actual mean of the system with defense is

slightly greater than that of the system under non-attack conditions. From this, we

conclude our technique degrades gracefully and is still able to prevent much of the

damage attackers would be able to cause on an unprotected system.

Malicious Coalition Size Tolerated by Outlier Detection

All defense mechanisms and protocols resilient to insiders have limitations regard-

ing the number of attackers they can tolerate. We analyze the number of malicious

colluding nodes that can be tolerated by our outlier detection mechanism using a ref-

erence set size of 64. Table 4.6 presents the number of malicious nodes in a reference

set which by colluding can influence the spatial centroid calculation enough to allow

the attack types discussed in Section 4.2 to bypass the detection mechanism. Nearly

twenty malicious nodes (or 30% of the reference set size) are required for nearly all

of the identified attack types across the three data sets. The deflation attack is more

successful for AMP since the RTTs are less variable and the virtual coordinate system

creates one main cluster (Figure 4.3(c)) that contains all of the nodes. This also ex-

plains why high percentages of malicious nodes (≥ 30%) were able to overwhelm our

solution in the AMP scenarios. In these cases, the benign nodes were likely to have

twenty or more malicious nodes in their reference set, which could cause the spatial

centroid to shift and allow malicious updates to pass undetected. We conclude that

our defense method works well when the size of the malicious coalition is smaller than

72

Table 4.6
Number of colluding nodes tolerated by spatial outlier detection for
different data sets using a spatial outlier threshold of 1.5

Data Set

Attack Type King Meridian AMP

Inflation 19.7 21.6 19.8

Deflation 20.2 19.8 12.6

Oscillation 19.6 20.3 19.3

one third of the total number of nodes in the reference set. This bound is inline with

the performance of other methods that tolerate malicious insiders (e.g., [43]).

System Overhead

Our defense mechanisms adds minimal link stress as it uses one additional nu-

merical value in addition to the information already being exchanged between nodes.

The memory utilization for spatial correlation requires maintaining the most recent

u updates. In the case of the temporal outlier detection, the memory usage consists

of maintaining the temporal centroid. By incrementally updating the centroid, we do

not need to maintain the entire history for each probed node but only need to store

the mean, standard deviation, and count for each of the metrics. The additional com-

putational complexity is bounded by the number of nodes in the reference set which

is constant. The computation of the temporal and spatial outliers is a constant time

calculation performed at each node when it updates its coordinate.

4.5 Summary

In this chapter, we studied attacks against the accuracy of virtual coordinate

systems, classifying three types of attack: coordinate inflation, coordinate deflation,

73

and coordinate oscillation. We showed that even a small number of attackers can

severely degrade coordinate accuracy due to the epidemic nature of the attacks. We

proposed spatial-temporal correlation to perform outlier detection on updates received

from malicious nodes and eliminate them from the coordinate computation process

and experimentally demonstrated the utility of our technique. Finally, we examined

the limitations of our defense technique and found that the method starts degrading

when more than 30% of the nodes in a reference set form a malicious coalition.

74

20

50

(a) Beginning Coordinate Up-

date

20

20

(b) Coordinate Change

20

30

(c) Coordinate Change with

Dampening

Figure 4.1. Example of the Vivaldi coordinate update process where
the highlighted node is updating its location by querying the refer-
ence set node denoted by the anchor. The grayed-out nodes and links
are part of the coordinate system but not the current update proce-
dure. In Figure 4.1(a) the highlighted node exchanges information
with anchor reference node. Figure 4.1(b) and Figure 4.1(c) depict
the change in location of the highlighted node (and the estimated
latency) when the node updates its coordinate using Algorithm 3.
Figure 4.1(c) highlights the use of the dampening factor to minimize
excess movement.

75

(a) No Attack (b) Coordinate Inflation, Pull

(c) Coordinate Inflation, Push

Figure 4.2. Example inflation attack scenarios against an individual
victim node. Figure 4.2(a) represents the system in a benign scenario
where the tension on the logical spring connecting the two nodes is
at a minimum and not inducing movement. Figure 4.2(b) represents
the coordinate inflation attack in which the malicious node is pulling
the victim away from its correct position. Similarly, Figure 4.2(c)
represents the coordinate inflation attack in which the malicious node
is pushing the victim away from its correct coordinates.

76

(a) King (b) Meridian

(c) AMP

Figure 4.3. Node placement chosen by Vivaldi for various data sets

Attack Pred. Error

None 10 ms

Deflation 60 ms

Inflation 70 ms

w/defense 11 ms

(a) Prediction Error
(b) Node Placement

Figure 4.4. Victim node error and placement for a deflation and
inflation attack (King)

77

(a) No attack (b) Oscillation attack

Figure 4.5. Virtual coordinate system node placement under an os-
cillation attack (King)

78

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50

S
ys

te
m

 P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Malicious Nodes
10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(a) 5th Percentile Prediction

Error

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

S
ys

te
m

 P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Malicious Nodes
10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(b) 50th Percentile Prediction

Error

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

S
ys

te
m

 P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Malicious Nodes
10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(c) 95th Percentile Prediction

Error

Figure 4.6. System prediction error under different percentages of attackers (King)

79

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(a) 5th Percentile Relative Er-

ror

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(b) 50th Percentile Relative

Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(c) 95th Percentile Relative

Error

Figure 4.7. Relative error under under different percentages of attackers (King)

80

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

4 neighbors
8 neighbors

16 neighbors
32 neighbors
64 neighbors

(a) 10% Malicious

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

4 neighbors
8 neighbors

16 neighbors
32 neighbors
64 neighbors

(b) 20% Malicious

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

4 neighbors
8 neighbors

16 neighbors
32 neighbors
64 neighbors

(c) 30% Malicious

Figure 4.8. Median relative error under different reference set size
with varying percentages of malicious nodes (King)

81

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5% system error
50% system error
95% system error

(a) Meridian, 10% Mal.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5% system error
50% system error
95% system error

(b) Meridian, 20% Mal.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5% system error
50% system error
95% system error

(c) Meridian, 30% Mal.

Figure 4.9. Relative error under under different percentages of attackers (Meridian)

82

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5% system error
50% system error
95% system error

(a) AMP, 10% Mal.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5% system error
50% system error
95% system error

(b) AMP, 20% Mal.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5% system error
50% system error
95% system error

(c) AMP, 30% Mal.

Figure 4.10. Relative error under under different percentages of attackers (AMP)

83

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(a) 5th Pct. Relative Error

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.

1.5 Thresh.
1.75 Thresh.

(b) 50th Pct. Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.

1.5 Thresh.
1.75 Thresh.
2.00 Thresh.

(c) 95th Pct. Relative Error

Figure 4.11. Relative error using different spatial outlier thresholds
when 10% of the network is malicious (King)

84

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(a) 5th Pct. Relative Error

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.

1.5 Thresh.
1.75 Thresh.

(b) 50th Pct. Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.

1.5 Thresh.
1.75 Thresh.
2.00 Thresh.

(c) 95th Pct. Relative Error

Figure 4.12. Relative error using different spatial outlier thresholds
when 20% of the network is malicious (King)

85

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(a) 5th Pct. Relative Error

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.

1.5 Thresh.
1.75 Thresh.

(b) 50th Pct. Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.

1.5 Thresh.
1.75 Thresh.
2.00 Thresh.

(c) 95th Pct. Relative Error

Figure 4.13. Relative error using different spatial outlier thresholds
when 30% of the network is malicious (King)

86

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

20% Malicious No Detection
20% Malicious w/ Detection
30% Malicious No Detection
30% Malicious w/ Detection

(a) King

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

20% Malicious No Detection
20% Malicious w/ Detection
30% Malciouis No Detection
30% Malicious w/ Detection

(b) Meridian

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

20% Malicious No Detection
20% Malicious w/ Detection
30% Malciouis No Detection
30% Malicious w/ Detection

(c) AMP

Figure 4.14. Relative error under different percentage of attackers
using a spatial outlier threshold of 1.5 with three real-life Internet
latency data sets

87

5 RESPONDING TO IDENTIFIED THREATS

As peer-to-peer applications are deployed in unsecured environments such as the In-

ternet, they will often be the target of malicious activity. Even though designing

peer-to-peer protocols based on security principles such as those identified by Saltzer

and Schroeder [34] will prevent many attacks from being successful, some attack-

ers will still prevail and degrade the quality of service provided by the application.

With this mind, peer-to-peer applications need an effective and efficient mechanism

to respond to malicious nodes that interfere with the applications. A considerable

amount of research has focused on the development of trust and reputation systems

for peer-to-peer systems that help users make beneficial decisions assuming the exis-

tence of detection mechanisms for malicious behavior [104, 105]. It has been shown

by Aberer and Despotovic [106], Damiani et al. [107], and Xiong and Liu [108] that

these systems can provide an effective way to mitigate the effects of malicious nodes

in decentralized distributed systems.

In order for reputation systems to become an important component of current

and next generation peer-to-peer systems, it is critical that we understand the fun-

damental strengths and weaknesses of different reputation system design choices and

how to integrate them with other system components. These choices will dictate the

resiliency of the reputation system to attack and its ability to provide an accurate

representation of trust in the network.

In this section, we provide an overview of reputation systems, analyze their possi-

ble vulnerabilities to malicious behavior, and provide a concrete solution utilizing the

EigenTrust [105] reputation system to respond to malicious behavior in the context

of the adaptive multicast system, ESM [35]. We summarize our key contributions:

88

• We provide an overview of an analytical framework by which reputation systems

can be decomposed, analyzed, and compared using a common set of metrics.

This framework facilitates insights into the strengths and weaknesses of dif-

ferent systems and comparisons within a unified framework. Additionally, we

classify attacks against reputation systems, analyzing what system components

are exploited by each attack type. We elucidate the relevance of the framework

and the attacks by providing specific examples to the EigenTrust reputation

system.

• We propose techniques to isolate malicious nodes by aggregating the local sus-

picious behavior derived from local observations (based on outlier detection) to

build a global reputation for each overlay node using the EigenTrust reputation

system [105]. We demonstrate the benefits of our response mechanism through

deployments of ESM on the PlanetLab [58] Internet testbed.

The rest of the chapter is organized as follows: We provide an overview of rep-

utation systems in Section 5.1 and their vulnerability to attack in Section 5.2. We

present our two-part approach for responding to malicious behavior which uses local

observed behavior to generate an immediate local bias against misbehaving nodes

and subsequently allows the overlay to construct and share global knowledge about

the malicious nodes in Section 5.3. We present experimental results demonstrating

the attacks and the utility of the response technique in Section 5.4 and conclude this

chapter in Section 5.5.

5.1 Reputation Systems

Reputation and trust play a pivotal role in peer-to-peer applications by enabling

multiple parties, whether human or automated, to establish relationships that achieve

mutual benefit. In general, reputation is the opinion of the public toward a person,

a group of people, or an organization. In the context of peer-to-peer applications,

reputation represents the opinions nodes in the system have about their peers. Repu-

89

tation allows parties to build trust , or the degree to which one party has confidence

in another within the context of a given purpose or decision. By harnessing the

community knowledge in the form of feedback, reputation-based trust systems help

participants decide who to trust, encourage trustworthy behavior, and deter dishon-

est participation by providing a means through which reputation and ultimately trust

can be quantified and disseminated [109]. Without such mechanisms, opportunism

can erode the foundations of these collaborative applications and lead to peer mistrust

and eventual system failure [110].

Due to their common purpose, reputation systems naturally share similar struc-

tural patterns. Understanding these similarities and developing an analysis framework

serves a twofold purpose. First, it provides greater insight into prior research, facil-

itating common ground comparison between different systems. Second, it provides

insights into the fundamental strengths and weaknesses of certain design choices, con-

tributing to the future design of attack-resilient reputation systems. We identify the

following three dimensions as being fundamental to any reputation system:

• Formulation The ideal mathematical underpinnings of the reputation metric

and the sources of input to that formulation. For example, a system may accept

positive and negative feedback information, weighted as +1 and −1 and define

an identity’s reputation to be the summation of all of its corresponding feedback.

• Calculation The algorithm to calculate the mathematical formulation for a

given set of constraints (physical distribution of participants, type of communi-

cation substrate, etc.). For example, the algorithm to calculate the formulation

could specify that a random set of peers is queried and the feedback received

for each identity tallied.

• Dissemination The mechanism that allows system participants to obtain the

reputation metrics resultant from the calculation. Such a mechanism may in-

volve storing the values and disseminating them to the participants. For exam-

90

ple, a system might choose to use a distributed hash table to store the calculated

reputation values and a gossip protocol to distribute new information.

Realizing each reputation system is composed of these dimensions provides a basis

for comparison between different systems and provides insights into the fundamental

strengths and weaknesses of design choices with respect to malicious behavior. By

analyzing a reputation system based on the composition of these dimensions, we can

determine the vulnerabilities to which it is susceptible and which system will operate

the best in a given environment.

5.1.1 The Dimensions of the EigenTrust Reputation System

One of the most well known and widely studied reputation systems is Eigen-

Trust [105]. The EigenTrust reputation system was motivated by the need to filter

out inauthentic content in peer-to-peer file sharing networks. EigenTrust calculates

a global reputation value for each peer in the system based on the local opinions of

all of the other peers.

Formulation

The input to the EigenTrust formulation consists of the information derived from

the direct experience a peer has with other peers in the network and indirect infor-

mation about the perception of neighboring peers about each other. To acquire the

direct information, users provide manual feedback about each peer-to-peer transac-

tion. A user ranks each transaction using the binary scale of positive or negative and

the summation of these values is used as input into the formulation. The indirect in-

formation is automatically exchanged between peers and is what gives the system the

ability to develop transitive trust. The system considers both positive and negative

information and is biased towards positive information.

91

The formulation does not take into consideration the effects of how reputations

change over time. While it is true that the local trust values are a summation of all

votes ever cast for a particular identity, the formulation itself makes no attempt to

distinguish between votes cast today vs. votes cast a year ago.

The intuition behind EigenTrust formulation is that a node i forms a broader trust

value (tik) in node k by asking its neighbors to report their trust in k and weighting

those opinions by i’s trust in its neighbor: tik =
∑

j cijcjk, where cij is the normalized

local trust value of node i in node j. The value cij is calculated as follows:

cij =

max(sij ,0)
P

j max(sij ,0)
if

∑

j max(sij , 0) > 0

pj otherwise
(5.1)

where sij represents the non-normalized local trust value at node i in node j and pj

represents the default trust value for the node j. As the only trusted node for our

application is the source, pj = 1 if the node is the source and pj = 0, otherwise.

A node will have a local trust value of zero with all nodes it has not interacted

with and initially only trust the source. When a node i first interacts with another

node j, it forms a new non-zero local trust value, sij , based on the “goodness” of

the interaction. The reputation metric is formulated deterministically and produces

values on a continuous spectrum between 0.0 and 1.0.

Calculation

Algorithm 5: Basic EigenTrust Algorithm

~t0 = ~p;

while δ > ǫ do

~tk+1 = CT~tk;

~tk+1 = (1 − λ)~tk+1 + λ~p;

δ =
∥

∥~t(k+1) − ~t(k)
∥

∥

end

92

Given the formulation of trust in EigenTrust is based on the summation of obser-

vations and indirect data, it naturally lends itself to calculation using matrix oper-

ations. Using the basic EigenTrust Algorithm presented by Kamvar et al. [105] and

reproduced in Algorithm 5, the idea of transitive trust can be extended to formulate a

system wide trust ranking by formulating the summation of local trust values as a ma-

trix multiplication. Through each iteration of multiplying the global trust vector ~t by

the aggregated local trust values contained in C, the algorithm intuitively represents

asking successively further nodes opinions of their neighbors. After each iteration,

each of the trust values stored at source in ~t is normalized to guarantee that meaning-

ful comparisons between values can be performed, but not that all trust values add

up to one. The calculation continues until the convergence of δ =
∥

∥~t(k+1) − ~t(k)
∥

∥ < ǫ,

where ǫ is empirically set to .0001. To guarantee that the calculation will converge,

the pre-trusted nodes trust vector, ~p, is used as the starting vector (t0 = ~p). To

mitigate the effects of malicious coalitions of nodes cooperating to subvert the repu-

tation system, the pre-trusted nodes are favored with a certain weight, λ, after each

iteration.

While the formulation lends itself naturally to a centralized calculation based upon

matrix operations, this is not desirable in the peer-to-peer file sharing environment.

Instead, each peer calculates the global trust values by using a randomized algorithm

which guarantees that each participant will converge to the same value within some

error bounds. For the original distributed algorithm, the cost to calculate the global

trust value for one identity is O(n) in the worst case since (a) the number of iterations

needed to converge can be viewed as constant and (b) it will need to potentially

communicate with all other identities. Through optimization this bound can be

reduced to O(log n) without compromising accuracy [105].

93

Dissemination

EigenTrust uses a deterministic dissemination framework which is dictated by the

underlying application.

5.2 Vulnerabilities of Reputation Systems in Adversarial Environments

The success of a reputation system is measured by how accurately the calculated

reputations predict the quality of future interactions. This is difficult to achieve

in an environment where any party can attempt to exploit the system for its own

benefit. The impact of attacks against reputation systems reaches beyond just the

manipulation of virtual numbers and turns into dollars fraudulently lost and ruined

business reputations [111].

We classify attacks against reputation systems based on the goals of the reputation

systems targeted by attacks. The goal of a reputation system is to ensure that the

reputation metrics correctly reflect the actions taken by participants in the system

and cannot be maliciously manipulated. This is not achieved if participants can

falsely improve their own reputation or degrade the reputations of others. As a result

of the attacks, misbehaving participants can obtain unwarranted service or honest

participants can be prevented from obtaining service.

We identify several classes of attacks:

• Self-Promoting - Attackers manipulate their own reputation by falsely in-

creasing it.

• Self-Serving or Whitewashing - Attackers escape the consequence of abus-

ing the system by using some system vulnerability to repair their reputation.

Once they restore their reputation, the attackers can continue the malicious

behavior.

• Slandering - Attackers manipulate the reputation of other nodes by reporting

false data to lower their reputation.

94

• Orchestrated - Attackers orchestrate their efforts and employ several of the

above strategies.

• Denial of Service - Attackers may cause denial of service by either lowering

the reputation of victim nodes so they cannot use the system or by preventing

the calculation and dissemination of reputation values.

Each of these attacks can damage the reputation system and must be considered

when selecting a system to secure and utilize. Besides degrading the utility of the

reputation system, the attacks adversely impact any application using the reputation

system to augment decisions. We must carefully analyze the goals of the peer-to-peer

application and the environment in which the reputation system will be deployed in

order to choose the best reputation system for the purpose.

5.2.1 Self-promoting

In self-promoting attacks, attackers seek to falsely augment their own reputation.

Such attacks are only possible in systems that consider positive feedback in the for-

mulation. Fundamentally, this is an attack against the formulation, but attackers

may also exploit weaknesses in the calculation or dissemination dimensions to falsely

increase reputation metric values.

Self-promotion attacks can be performed by a lone identity or organized in groups

of collaborating identities. One very basic form of the attack occurs when an attacker

fabricates fake positive feedback about itself or modifies its own reputation during

the dissemination. Systems lacking mechanisms to provide data authentication and

integrity are vulnerable to such attacks as they are not able to discern between fab-

ricated and legitimate feedbacks.

However, even if source data is authenticated using cryptographic mechanisms,

self-promotion attacks are possible if disparate identities or a single physical identity

acquiring multiple identities through a Sybil attack [112] collude to promote each

other. Systems that do not require participants to provide proof of interactions which

95

result in positive reputations are particularly vulnerable to this attack. To perform the

attack, colluding identities mutually participate in events that generate real feedback,

resulting in high volumes of positive feedback for the colluding participants. Because

the colluders are synthesizing events that produce verifiable feedback at a collective

rate faster than the average, they are able to improve their reputations faster than

honest participants or counter the effects of possible negative feedback. Such patterns

of attack have been observed in the Maze file sharing system [113]. Attackers that

are also interacting with other identities in honest ways are known as moles [114].

Colluding attackers can also contribute further to the self-promotion of each other by

manipulating the computation dimension when aggregating reputation values.

5.2.2 Whitewashing

Whitewashing attacks occur when attackers abuse the system for short-term gains

by letting their reputation degrade and then escape the consequences of abusing the

system by using some system vulnerability to repair their reputation. Often attackers

will attempt to re-enter the system with a new identity and a fresh reputation [115].

The attack is facilitated by the availability of cheap pseudonyms and the fact that

reciprocity is much harder to maintain with easily changed identifiers [116].

This attack fundamentally targets the reputation system’s formulation. Formula-

tions that are based exclusively on negative feedback are especially vulnerable to this

type of behavior since newcomers have equal reputation metric values to participants

which have shown good long-term behavior. Separately, a reputation system using

either type of feedback (positive and/or negative) is vulnerable if the formulation

relies exclusively on long-term history without discriminating between old and recent

actions. If an attacker is able to generate a beneficial reputation based solely on

history, it can perform short duration malicious attacks with little risk of negative

consequences as the previous history will heavily outweigh current actions. This can

have a large impact on the system as the malicious node will continue to have a

96

high reputation for a substantial period of time during which the system is slow to

identify the malicious behavior and unable to sufficiently lower the reputation of the

malicious node. In systems with formulations that include positive feedback, attack-

ers may have to behave honestly for an initial period of time to build up a positive

reputation before starting the self-serving attack. Attackers that follow this pattern

are also known as traitors [117].

Whitewashing attacks may be combined with other types of attacks to make

each attack more effective. For example, in systems with both positive and negative

feedback, concurrently executing a self-promoting attack will lengthen the duration of

effectiveness of a whitewashing attack. Likewise, whitewashing identities may slander

those identities that give negative feedback about the attacker so that their negative

feedback will appear less reputable since many systems weight the opinions of an

identity by its current level of trustworthiness. In this case, slandering minimizes the

amount of whitewashing an attacker must perform to maintain a good reputation.

5.2.3 Slandering

In slandering attacks, one or more identities falsely produce negative feedback

about other identities. As with self-promoting attacks, systems that do not authenti-

cate the origin of the feedback are extremely vulnerable to slander. In general, these

attacks target the formulation dimension of a reputation system.

The attack can be conducted both by a single attacker and a coalition of attackers.

As typically the effect of a single slandering node is small, especially if the system

limits the rate at which valid negative feedback can be produced, slandering attacks

primarily involve collusion between several identities. Depending on the application

of the system, slandering attacks may be more or less severe than self-promotion

attacks. For example, in high-value monetary systems, the presence of even small

amounts of negative feedback may severely harm an identity’s reputation and ability

to conduct business [118].

97

The lack of authentication and high sensitivity of the formulation to negative

feedback are the main factors that facilitate slandering attacks. Reputation systems

must consider the inherent trade-offs in the sensitivity of the formulation to negative

feedback. If the sensitivity is lower, then the formulation is robust against malicious

collectives falsely slandering a single entity, but it allows entities to exhibit bad be-

havior for a longer time, for the same decrease in reputation. On the other hand, if

sensitivity is higher, the bad behavior of a single identity can be punished quickly,

but honest identities are more susceptible to attacks from malicious collectives. If

malicious collectives are well-behaved except to slander a single identity it may be

difficult to distinguish that slander from the scenario where the single identity actually

deserved the bad feedback that was received.

5.2.4 Orchestrated

Unlike the previously described attacks that employ primarily one strategy, in

orchestrated attacks, colluders follow a multifaced, coordinated attack. These attacks

utilize multiple strategies, where attackers employ different attack vectors, change

their behavior over time, and divide up identities to target. While orchestrated at-

tacks fundamentally target a system’s formulation, these attacks also may target the

calculation and dissemination dimensions. If the colluding attackers become a sig-

nificant part of the calculation or dissemination of reputation within an area of the

system, they can potentially alter reputation metric values to their benefit.

One example of an orchestrated attack, known as an oscillation attack [119], is

where colluders divide themselves into teams and each team plays a different role at

different times. At one point in time, some teams will exhibit honest behavior while

the other teams exhibit dishonest behavior. The honest teams serve to build their own

reputations as well as decrease the speed of decline of the reputation of the dishonest

teams. The dishonest teams attempt to gain the benefits of dishonest behavior for as

long as possible, until their reputation is too low to obtain benefit from the system. At

98

this point, the roles of the teams switch, so that the dishonest teams can rebuild their

reputation and the previously honest teams can begin exhibiting dishonest behavior.

Even more complex scenarios are possible where there are more than two roles. For

example, one team of nodes may self-promote, another may slander benign nodes, and

the final team misbehaves in the context of the peer-to-peer system, such as dropping

maintenance messages used to maintain the system structure and connectivity.

Orchestrated attacks are most effective when there are several colluders for each

role. Larger numbers allow each colluder to be linked less tightly to other colluders,

which makes detection much more difficult. Colluders performing orchestrated attacks

balance between maximizing selfish or malicious behavior and avoiding detection.

Robust formulations increase the number of colluders that must participate in order

to achieve the desired effect.

5.2.5 Denial of Service

Finally, attackers may seek to subvert the mechanisms underlying the reputation

system itself, causing a denial of service. Such attacks are conducted by malicious

nonrational attackers, making them difficult to defend against. Systems using central-

ized approaches and lacking any type of redundancy are typically vulnerable to denial

of service attacks. Attackers can attempt to cause the central entity to become over-

loaded (e.g. by overloading its network or computational resources). These attacks

target the calculation and dissemination dimensions of a system and are performed

by groups of colluding attackers.

Preventing a reputation system from operating properly with a denial of service

attack may be as attractive to attackers as corrupting the reputation values, especially

if the application employing the reputation system is automated and needs to make

decisions in a timely fashion. For example, consider a peer-to-peer data dissemination

application where data is routed along the most trustworthy paths. If the reputation

system is inoperable, the system relying on reputation may need to continue to route

99

data even if reputation information is unavailable, allowing malicious identities to

participate for periods of time without their negative reputations being known (or

without being punished for their negative behavior).

5.2.6 EigenTrust Defense Mechanisms

The EigenTrust formulation has foundations in statistics, as the global trust vector

can be formulated as the stationary distribution of a Markov chain. The formulation

is designed so nodes give greater weight to information obtained from their neighbors

or nodes they have interacted with in the past to mitigate malicious manipulations.

Pre-trusted identities are used to bias reputation values towards known good nodes

and ensure that the randomized calculation will converge quickly. Redundancy is

employed during the calculation and dissemination stages to prevent benign data

loss and malicious data tampering. Each of the score managers for an identity is

randomly selected, making it less likely that a single malicious collective will be

responsible for the reputation value for any one identity. The combination of these

defense techniques makes EigenTrust robust to all of the previously mention attacks

except for the whitewashing attacks.

5.3 Mitigating Identified Threats Based on Local and Global Reputation

In order to demonstrate how to analyze and integrate reputation into peer-to-peer

applications, we designed a response mechanism based on a reputation system for the

adaptive multicast system we explored in Chapter 3, ESM [35]. By analyzing local

information at each node in ESM, we are able to detect possible malicious activity.

Once this activity has been detected, corrective measures must be taken to isolate the

malicious nodes and minimize their effect on the overlay network. Without appropri-

ate response mechanisms, the overall system performance may suffer as the malicious

nodes continue to interfere with the system. We propose a two-prong approach which

uses local observed behavior to generate an immediate local bias against misbehaving

100

nodes and subsequently allows the overlay to construct and share global knowledge

about the malicious nodes.

5.3.1 Isolating Malicious Nodes in ESM

Once malicious nodes are detected, corrective measures must be taken to isolate

them and minimize their effect on the overlay network. Without appropriate response

mechanisms, the overall system performance may suffer as the malicious nodes con-

tinue to interfere with the system. We propose a two-prong approach which uses local

observed behavior to generate an immediate local bias against misbehaving nodes and

subsequently allows the overlay to construct and share global knowledge about the

malicious nodes. Each node creates and maintains a local suspects list. The list is

periodically sent to the trusted source which uses the collected information to con-

struct a global list of nodes that must be banned due to their malicious behavior. The

source periodically sends the generated global black list to all nodes in the overlay

structure via a gossip-based protocol. Building and disseminating the global list has

a higher cost than maintaining just the local list at each node. However, it has the

advantage that it allows the overlay to quickly converge to a stable equilibrium point

and achieve higher throughput as malicious nodes are more quickly removed from the

overlay. This is because each node does not have to experience the malicious nodes’

actions before being able to avoid them. Nodes are informed through the global black

list and consequently are able to select beneficial parents.

Local Response

Each node takes immediate action based on a local suspects list created by tracking

the behavior of neighbor nodes. This is achieved by recording any inconsistent metrics

detected when performing outlier analysis on the information from the probed nodes.

Every node computes a suspicion value for each neighbor based upon how far away

the reported metrics were from the spatial and temporal centroids. The computation

101

of the suspicion value also takes into account each node locally sharing information

with the other nodes about its suspects list.

qij =

qij + α(
|Uj−U|

σU
) + β(

|Vj−V |
σV

) + Nr if j is outlier

3qij

4
− 1 otherwise

(5.2)

The suspects list is updated at the end of each probe cycle after the system

has performed outlier detection. Equation 5.2 presents the computation of a single

suspicion value during a probe cycle: qij is the suspicion value of node i for peer j, U is

the list containing the Mahalanobis distances measuring spatial distance for i’s peers,

V is the list containing the temporal distance for i’s peers, U and V are the averages

of each list, σU and σV are the standard deviations of U and V respectively, and Nr is

a counter representing how many other nodes reported j as suspicious. Each measure

is weighted independently (α, β, and γ) to allow the response to be tailored to the

application or network conditions. Intuitively, our scheme assigns suspicion such that

the greater the distance between the observed data for a node and the centroid of

the entire data set, the greater the local suspicion value a node is assigned. We also

assign more weight to the direct observations (i.e., how far a node’s distance is from

the centroid) than to indirect observation (i.e., how many nodes reported a node as

suspicious). The suspicion value is increased every probe cycle if the probed node is

an outlier. Otherwise, as seen in the second part of Equation 5.2, the suspicion values

undergoes decay to accommodate transient network conditions and allow nodes to be

removed from the suspects list, eventually enabling a node that behaves well to be

reconsidered as a parent.

Once a node is placed on the suspects list, it can be displaced as a child node, it

will not be chosen as a parent, its gossiped information will not be propagated, and

it may eventually be reported to the source as being malicious. A node will decide

if it considers a neighbor node malicious by comparing the suspicion value against a

threshold, ∆. If the value is higher than the threshold, then the node is reported as

malicious to the other nodes and the source.

102

Malicious nodes may collude and send false information causing non-malicious

nodes to incorrectly suspect their peers. To prevent this, even if node i has a positive

suspicion value for node j, i will not report a negative reputation for j to the source

unless i has directly experienced suspicious/malicious behavior from j. This approach

still allows honest nodes to build up a strong negative reputation through indirect

observations, but holds global-response at bay until the malicious node directly treats

the honest node badly. Even if a node is marked as suspicious, it will still receive

service from the overlay and will remain a member of the topology. In this manner

an honest node cannot be isolated from the overlay unless every overlay node peer it

attempts to use as a parent is malicious and drops all traffic to the honest node.

5.3.2 Global Response

Our global response mechanism creates a global representation of the trust in each

node in the overlay by using a reputation system to aggregate the individual suspicion

values from the local suspects list at the source. The nodes with a trust value below a

specified threshold are added to a global black list disseminated to all nodes. We adapt

a well-known distributed reputation system, EigenTrust [105], to the trust model of

our application in which the source node is trusted. We selected the EigenTrust

algorithm because its trust value aggregation method is robust to malicious nodes

and coalitions as discussed in Section 5.2.6. We make several modifications to the

EigenTrust algorithm to tailor it to our application.

Using the EigenTrust algorithm presented in Algorithm 5 our solution creates a

formulation of the system wide trust ranking for each node. Since the source is the

only trusted node in the system, it is the only node to start out with a positive repu-

tation. The source’s pre-trusted weight, λ, was empirically set at 0.3 to minimize the

convergence time of the EigenTrust algorithm while still providing valuable feedback.

Once the trust values drop below a specified threshold, Ψ, the system will consider

the identified node as being malicious.

103

In addition to tailoring the EigenTrust algorithm to our environment, we also take

into account that while EigenTrust was designed to use and create positive reputation,

our outlier detection produces only negative reputation about a node. We convert

the local suspicion values into a positive form suitable for the EigenTrust algorithm.

5.4 Experimental Evaluation

We demonstrate the effects of the identified attacks and our response techniques

under real-world conditions by conducting experiments on the PlanetLab [58, 71]

Internet testbed. We conducted multiple experiments at different times of the day and

different days of the week. Further, experimental nodes were selected randomly for

different experiments to validate the statistical significance of results and nodes were

chosen to span multiple operational and administrative domains. Each experiment

was conducted multiple times and the results were averaged.

The baseline configuration for the following experiments consist of 60 minute long

ESM deployments of 100 nodes in which the nodes join after the experiment begins

and leave before it ends, with an average participation time of 45 minutes. Each node

is probed every seven seconds, each node probes 30 peers, the saturation degree of

benign nodes is six, and the source streaming rate is 480Kbps. We use a bit rate of

480 Kbps as it is sufficient to transmit video at two different qualities of audio. All

experiments use these parameters unless otherwise noted.

104

5.4.1 Mitigating Identified Threats

Algorithm 6: Procedure to exclude malicious nodes as possible parents. The

code is invoked after line 8 in the ESM parent selection pseudo-code presented

in Algorithm 1
Input: Potential Parent Candidates List (PCL)

Output: Updated PCL

foreach rnode in PCL do1

// Ignore Known Malicious Nodes

// Resulted from Global Response

if (rnode is on BlackList) then2

remove rnode from PCL;3

else4

keep rnode in PCL;5

end6

// Detect Malicious Behavior

// Resulted from Local Response

if (outlierDetection(rnode) == false) then7

keep rnode in PCL;8

else9

remove rnode from PCL;10

end11

end12

To demonstrate the effectiveness of our response mechanisms at mitigating the ef-

fects of malicious nodes and sustaining the average bandwidth of the system, we con-

ducted experiments in which a percentage of the nodes were malicious and recorded

the average bandwidth for the duration of the experiment. The system was using

both spatial and temporal outlier detection discussed in Section 3.5 to generate the

local suspicion values. The additional steps which occur during the the parent selec-

tion process to mitigate the effects of malicious nodes are presented in Algorithm 6,

which is executed between lines 8 and 9 of the original parent selection algorithm

presented in Algorithm 1.

105

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600
B

an
dw

id
th

 (
K

bp
s)

Time (seconds)

Average Bandwidth as a Function of Time

Mal. Parent Change
Average Bandwidth

Source Rate
 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600
B

an
dw

id
th

 (
K

bp
s)

Time (seconds)

Average Bandwidth as a Function of Time

Mal. Parent Change
Average Bandwidth

Source Rate

(a)

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Average Bandwidth as a Function of Time

No response
Global Threshold of .9

Global Threshold of .92
Global Threshold of .94

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Average Bandwidth as a Function of Time

No response
Global Threshold of .9

Global Threshold of .92
Global Threshold of .94

(b)

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Average Bandwith as a Function of Time

0% Malicious Nodes
Source Rate

(c)

Figure 5.1. (a) The effectiveness of local response only in mitigating
attacks on an ESM overlay of 100 nodes on PlanetLab for a duration
of 30 minutes. (b) The effectiveness of local and global response in
mitigating attacks on an ESM overlay of 100 nodes on PlanetLab for
a duration of 30 minutes. (c) The average bandwidth over time for
an ESM overlay of 100 nodes on PlanetLab for a duration of 30 using
both response mechanisms under non-attack conditions.

Figure 5.1(a) and Figure 5.1(b) present results for the local and global response

mechanisms when 30% of the nodes are malicious. Each malicious node joins the

network and lies about having the best bandwidth (480Kbps), latency (0ms), and no

saturation. Once the malicious nodes have had a chance to optimize their position

in the overlay, fifteen minutes after they joined the overlay, they start dropping 90%

of the data traffic received through the data dissemination tree. We also present as

a reference the average bandwidth under non-attack conditions, with the response

106

Table 5.1
System settings for the reputation-based response mechanism

Variable Description Value

α Spatial (Horizontal) Outlier Weighting 10

β Temporal (Vertical) Outlier Weighting 7

γ Gossip Response Weighting 1

∆ Local Reporting Threshold 14

Ψ Global Trust Value Threshold Variable

mechanisms enabled in Figure 5.1(c). Figure 5.1(a) shows that using only a local

response does decrease the effect of the malicious nodes. However, the average band-

width of the system converges to a value below the one obtained in the absence of ma-

licious nodes and the system takes longer to stabilize. Next, we explored the effect of

the global response mechanism on the bandwidth and system stability. Figure 5.1(b)

demonstrates that the addition of the global response mechanism in combination

with the local response further decreases the effect of the malicious nodes, bringing

the average bandwidth of the system close to the value when no malicious nodes exist

in the system. When using only the local response, over one third of the identified

malicious nodes were actually false positives. By using the global reputation system,

we were able to reduce the number of false positives to zero. We also evaluated the

use of only the global response mechanism, which we can see in Figure 5.2 resulted in

performance similar to the combination of the local and global response mechanisms

but showed greater variation in bandwidth.

The system settings for the response mechanism can be found in Table 5.1. In-

tuitively, the settings were designed to place more weight on being consistent with

the current state of the system as measured by the spatial outlier while allowing

nodes to have small inconsistencies in reported metrics and not be considered mali-

cious. Each value was determined empirically through experimentation. As shown

107

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600

B
an

dw
id

th
 (

K
bp

s)

Time (seconds)

Average Bandwidth as a Function of Time

Global Threshold of .92
Source Rate

Figure 5.2. The effectiveness of global response only in mitigating
attacks on an ESM overlay of 100 nodes on PlanetLab for a duration
of 30 minutes.

108

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

Ps
i o

f
.9

4

Ps
i o

f
.9

2

Ps
i o

f
.9

L
oc

al

N
on

e

T
au

Response Mechanism

Attack Effectiveness Against Various Response Mechanisms

Figure 5.3. Attack effectiveness against different response mechanisms
on an ESM overlay of 100 nodes. Tau represents the amount of dam-
age an attack created in the system.

in Figure 5.1(b), even a very conservative response mechanism greatly increases the

resiliency of the network to a large percentage of malicious attackers. While the con-

servative approach was only able to black list approximately one third of the malicious

nodes (no non-malicious nodes were black listed), the remaining malicious nodes were

pushed towards the fringes of the overlay, allowing the system to sustain near-optimal

bandwidth. As the response mechanism is tuned to the application and network con-

ditions, it is able to identify and quarantine higher percentages of malicious nodes.

It was identified during testing that the local suspects list could be optimized to only

include nodes that had been considered as a parent. This allowed each node to track

a much smaller set of suspicious nodes and resulted in a homogenous set of suspicion

values at the source. We were able to set cutoff thresholds much tighter without black

listing poor performing non-malicious nodes, thereby improving the effectiveness of

our response mechanism.

Figure 5.3 presents the effect of the response mechanisms on the relative strength

of the attacks, τ , as defined in previously in Equation 3.1. It confirms the intuition

109

that when the response mechanisms act quickly, the strength of the attack will be di-

minished as the malicious nodes are more quickly eliminated from the list of potential

parents. As expected, the local response mechanism can partially mitigate the effects

of the attackers, while the faster convergence of the global mechanism results in a

smaller damage on the overall system. The higher the cut-off threshold, the smaller

the damage on the system.

Figure 5.4. Malicious node location for an ESM overlay of 100 nodes
with 30% malicious nodes on PlanetLab under different response
mechanisms

Figure 5.4 presents the effectiveness of the response mechanisms at moving the

malicious nodes towards the fringes of the tree to locations of less influence. Without

a response mechanism, the majority of malicious nodes (18 out of 30) occupy interior

positions in the multicast tree, with the rest being leaves in the tree. The greater the

number of interior positions the malicious nodes control, the greater the effect they

will have on the system performance since they can affect all nodes downstream of

them. By utilizing the local response only, the system is able to push more of the

malicious nodes towards the fringe of the network, with only 11 being interior nodes

and 19 now being leaf nodes. Note that the local response does not ban nodes from the

110

network since they can only be banned when the global mechanism is activated. With

the addition of the global response and the ability to remove malicious nodes from

the network, the system is more effective in responding to the malicious nodes. For

example, with a global response threshold of .92, only 4 malicious nodes are interior

nodes, 6 nodes are leaf nodes, and the remaining 20 are removed from the network

entirely. By removing malicious nodes from locations of influence, our solution is able

to maintain the performance of the system.

5.4.2 Overhead and System Performance

Our response mechanisms introduce minimal link stress since the reputation in-

formation for each individual node is combined with the pre-existing membership

protocol. Additional messages are required to disseminate the global black list to

member nodes through the multicast tree and suspect information from each mem-

ber node to the source. On average, the source receives an extra 83(N
t
) Bytes of

network traffic per second, where N is the size of the overlay and t is the reporting

interval. In our experiments, t was set to 20 seconds, resulting in the source receiving

approximately 413 Bytes of suspect data per second. Every node in the tree receives

4B Bytes of black list information every t seconds, where B is the number of nodes

on the black list. The memory utilization per node is up to 8N Bytes for the suspects

list and up to 4N for the black list. The difference is due to each node storing a local

reputation for every other node on the suspects list. During calculations of trust at

the source, an extra 4N2 Bytes for matrix operations are temporarily required. As can

be seen, the additional messaging and storage overhead for our response mechanism

is minimal.

5.5 Summary

In this chapter, we identified reputation systems as one mechanism for responding

to malicious threats in peer-to-peer systems. We provided an overview of reputation

111

systems, detailing their basic structural components and potential vulnerabilities to

malicious behavior. We created a concrete solution to respond to identified threats

utilizing the EigenTrust reputation system to respond to malicious behavior identi-

fied in ESM. The solution has a two-prong approach, using local observed behavior

to generate an immediate local bias against misbehaving nodes and subsequently ag-

gregating these local observations into a global trust value for each node through the

use of an augmented version of the EigenTrust reputation system. Our experiments

demonstrated that our technique improves the resiliency and overall stability of the

system by isolating the malicious nodes.

112

6 MAINTAINING APPLICATION PERFORMANCE USING ROBUST

SYSTEM COMPONENTS

The ability to efficiently manage large amounts of data, now commonly stored across

multiple locations, has led to increased interest in distributed information retrieval. A

common form of a distributed information retrieval system is the distributed hash ta-

ble (DHT), which provides the nodes in a network with the ability to efficiently store

and locate 〈key, value〉 pairs. Given the general applicability of DHTs, recent research

has focused on improving the lookup performance of these systems [54, 120–124].

Many of these improvements hinge on optimizing DHT routing and node selection

based on measured network latency (e.g., contacting the peer node with the lowest

latency). One popular method for obtaining estimates of network latency while avoid-

ing the cost associated with direct measurement is through the use of decentralized

virtual coordinate systems [54, 124–126].

While these optimizations increase the performance of the system, they also open

new attack vectors to malicious nodes. The optimization techniques use system com-

ponents, such as virtual coordinate systems, under the assumption that the informa-

tion provided by the underlying system is correct. As has been noted in previous

work [127], this assumption is not valid for the open environments in which peer-to-

peer systems are routinely deployed. If malicious attackers are able to subvert the

underlying virtual coordinate system, then they can adversely impact the performance

of the overlying application. In this chapter, we make the following contributions:

• We demonstrate the impact malicious attacks against lower-level system com-

ponents have on higher-level applications through p2psim [86] simulations of the

Kademlia DHT [128] using the Vivaldi virtual coordinate system [87] to pro-

vide latency estimations for the King topology [88]. We show the performance

113

of Kademlia is detrimentally effected by various attacks against the underlying

virtual coordinate system and continues to degrade as the number of malicious

nodes increases.

• We elucidate the hidden tradeoff between optimizing the DHT performance

and stability versus the resiliency of the DHT to attack based on real-world

implementation and parameters [129]. For example, we find that a Kademlia

bucket size of 10 peers provides improved lookup performance and maintains

robustness to attack, even when 30% of the network is malicious.

• We demonstrate how the identified attacks detrimentally effect the overlying

application, regardless of its construction, through p2psim simulations of the

Chord DHT [130] utilizing the Vivaldi virtual coordinate system to provide

latency estimations for the King topology. We show that the higher-level ap-

plication performance severely degrades as the number of attackers increases.

We also demonstrate the effectiveness of deploying a robust network awareness

component (a robust virtual coordinate system) at mitigating the effects of the

attack. We found through empirical studies that our robust implementation of

the Vivaldi virtual coordinate system is able to preserve the upper-level appli-

cation performance, even when 30% of the network is malicious.

The rest of the chapter is organized as follows: We provide an overview of DHTs

in Section 6.1. In Section 6.2, we examine the Kademlia DHT and experimentally

validate the impairment of the overlying DHT caused by attacks against the Vivaldi

virtual coordinate system used to provide latency estimation in Section 6.2. Next, in

Section 6.3, we examine the attacks in the context of the Chord DHT and demonstrate

how these effects can be mitigated by incorporating a robust virtual coordinate system

conferring resiliency to attack. Finally, Section 6.4 concludes this chapter.

114

6.1 Distributed Hash Tables

Distributed hash tables are a class of distributed application which provide the

nodes in a network with the ability to efficiently store and retrieve 〈key, value〉 pairs.

Over the past few years, DHTs have generated a great deal of research interest,

resulting in the creation of a myriad of systems such as Chord [130], Kademlia [128],

Pastry [131], and Tapestry [82]. Along with the creation of multiple DHTs with

differing properties, they are employed as building blocks in a variety of systems,

ranging from file distribution protocols such as BitTorrent, secure communications

platform such as CSpace [132], to content distribution networks such as Coral [133].

6.2 The Kademlia Distributed Hash Table

The Kademlia DHT [128] is a 〈key, value〉 store in which each node (and value)

is assigned a 160-bit identifier i ∈ {0, 1}160 when it enters the system. In order to

determine the distance between two identifiers x and y, Kademlia defines an XOR

metric where the distance is simply the integer representation of the bitwise exclusive

or (x ⊕ y). Conceptually, the length of the common prefix of the identifier increases

as the distance between identifiers decreases.

As part of the Kademlia protocol, for each bit b of the node id i, a node stores

a list, known as a bucket, of contact information about peers who have an XOR

distance between 2i and 2i+1 from i. Up to k peers are stored in each bucket in order

to provide resiliency to node failure. As nodes receive Kademlia routing and lookup

messages, they update their buckets with the sender’s identifier until each bucket has

k peers. If there are already k peers in the bucket, a non-responsive node (or the

least-recently seen node if all nodes are responsive) is removed from the bucket and

the new identifier is appended, keeping the list ordered by the time last seen.

The most important component of Kademlia is the 〈key, value〉 lookup. While

it has been shown that recursive lookups can provide performance gains in terms of

latency [54], Kademlia uses iterative lookups as they provide greater fault tolerance

115

and easier debugging. To find the value associated with a key key, a node n selects k

nodes that are closest to key and sends α of these nodes concurrent request for key.

If the receivers of the request possesses the value, it is returned to the n. Otherwise,

the receivers reply with the k nodes that are closet to key. If any replies n receives

contain the value, n terminates the lookup process. Otherwise, n will aggregate the

peers received from the remote peers, selecting a new set of α closet peers to query.

If at any point one of the concurrent requests experiences a timeout, the receiver is

removed from the n′s bucket and a new request to the next closest node is sent. The

procedure to iterate through the identifier space terminates when the value is found

or n has queried all of the closest neighbors it received during its search.

6.2.1 Utilizing Latency Estimation to Improve Kademlia Performance

In the original design of Kademlia, each of the buckets contains up to k values

order by the time a node was last seen. While maintaining the list in terms of stay

time is beneficial in terms of resiliency to churn, the Kademlia protocol can also be

augmented to utilize latency information to improve the lookup performance while

maintaining resiliency and preserving the DHT invariants. This flexibility allows the

system to use latency estimation provided by network services such as the Vivaldi

virtual coordinate systems as depicted in Figure 6.1 to optimize peer selection and

retention, reducing the average lookup time by fifty percent [123].

This latency information provided by the virtual coordinate system is utilized in

two manners. First, as each node fills the buckets associated with each bit b of the

identifier space with peers, it also tracks the network latency to each peer. In order

to estimate the latency between any two nodes in the network, each node maintains

a coordinate in a decentralized virtual coordinate system. These coordinates are

appended to each message a node disseminates and are used to estimate the latency

between nodes. If an identifier is being added to a bucket with ≥ k responsive peers,

the peer with the highest (estimated) latency is evicted.

116

Core IP networkCore IP networkCore IP networkInternet

Kademlia

Vivaldi

Figure 6.1. An depiction of Kademlia DHT using the latency estima-
tion provided by a virtual coordinate system to optimize its perfor-
mance. Low-rate network latency measurements are provided by the
virtual coordinate system component, which provides virtual coordi-
nates to the higher-level Kademlia DHT to be used to estimate the
latency between arbitrary nodes.

In addition to augmenting the maintenance of the buckets, the 〈key, value〉 lookup

is updated to utilize the latency information. Normally, during each lookup, Kademlia

selects the k nodes that are closest in terms of the XOR distance to the key key

and subsequently randomly selects α of these nodes to contact. This selection of α

random nodes is performed multiple times as the lookup initiator iterates through

the identifier space in the search for the desired value. Instead of randomly selecting

117

α out of k peers, the lookup protocol is updated to contact the α nodes closest in

terms of estimated latency. This allows the protocol to maintain a worst case lookup

performance of log(n) hops while decreasing the average time required for lookups.

6.2.2 Draining the Performance of Kademlia

If new system components such latency estimations provided by virtual coordinate

systems are not robust to malicious compromise, the operation of the overlying DHT

can be significantly impaired. We demonstrate the impact various attacks against

virtual coordinate systems have on the overlying Kademlia DHT by varying the per-

centage of malicious nodes and attack type.

Experimental Methodology

We use the King data set [88] in conjunction with the p2psim simulator [86].

We utilize the King data set since it is representative of larger scale peer-to-peer

systems for which most DHTs are designed and the data set was used to validate

several virtual coordinate system and DHT designs. We ran each simulation for 200

time units, where each time unit is 500 seconds in length. Every simulation was run

ten times with the lookup latency averaged over all of the simulation. We enable

the system to quickly form and stabilize by having the nodes join the DHT in a

flash-crowd scenario in which all nodes join simultaneously, allowing us to focus on

the lookup performance of the DHT. While previous research [129, 134] has shown

that α = 3 concurrent lookups and buckets containing k = 20 peers provide good

tradeoffs between performance, consistency, and overhead, we analyze a range of

lookup options and bucket sizes to determine their impact on the susceptibility of the

system to attack. We let the number of concurrent lookups range from 1 ≤ α ≤ 8 and

found α ∈ {2, 4} to be representative of the system performance in our simulations

and present the corresponding results below. All other Kademlia parameters were

118

initialized to the optimal values discussed by Maymounkov et al. [128] or established

empirically by the authors of p2psim [86].

In order to quantitatively compare the effect of attacks on the overlying DHT, we

evaluate the system metric:

• Lookup Latency is defined as the time required to find the address of the node

holding a key k in the DHT and return the location to the requestor. Note,

the time required to actually retrieve the data from the remote node is not

considered.

Coordinate Deflation Attacks

The first set of attacks we examine are those based on coordinate deflation, as

described in Section 4.2. In such attacks, the malicious nodes induce the victim

to move towards the origin of the coordinate space and then remain immobile by

reporting positions near the origin with low error. In this manner, malicious node

are able to trick the benign node into assuming their positions are correct and have

low error, causing the correct nodes to avoid updating their coordinates and resisting

future coordinate adjustment attempts.

As we can see from Figure 6.2, the deflation attack on the underlying virtual

coordinate system greatly increases the lookup latency for Kademlia. If we examine

the case when k = 20 nodes (e.g., the most commonly suggested value), we can see

that the lookup performance is approximately 2.5 time higher with 10% malicious

nodes in the network, 3 times higher for 20% malicious, and 3.5 times higher with

30%. We also note that the effect of the attack is observable even for smaller values

of k. This is due to the fact that many of the coordinates converge to points near

the origin, with the malicious nodes being some of the exception. Differentiation

between nodes based on latency becomes increasingly random, with nodes selecting

high latency peers that would normally reside in distant parts of the coordinate space.

119

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35
Lo

ok
up

 T
im

e
(m

s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(a) 10% Malicious

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35

Lo
ok

up
 T

im
e

(m
s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(b) 20% Malicious

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35

Lo
ok

up
 T

im
e

(m
s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(c) 30% Malicious

Figure 6.2. Kademlia lookup latency under different percentages of
attackers performing a deflation attack on the underlying virtual co-
ordinate system.

Coordinate Inflation Attacks

The next set of attacks we analyze are those based on coordinate inflation de-

scribed in Section 4.2. In order to influence the coordinate construction of the nodes,

the malicious nodes utilize two tactics. First, the malicious nodes attract victim

nodes towards random positions away from the victims’ correct position by reporting

coordinates in remote parts of the coordinate space and a low error. Additionally, if

the attacker node is located near the origin of the coordinate space, the attacker will

induce delay by delaying query responses, pushing the victim node further out in the

coordinate space.

120

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35
Lo

ok
up

 T
im

e
(m

s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(a) 10% Malicious

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35

Lo
ok

up
 T

im
e

(m
s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(b) 20% Malicious

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35

Lo
ok

up
 T

im
e

(m
s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(c) 30% Malicious

Figure 6.3. Kademlia lookup latency under different percentages of
attackers performing an inflation attack on the underlying virtual co-
ordinate system.

As can be seen in Figure 6.3, the combination of these tactics leads to a reduc-

tion in the accuracy of the virtual coordinate system and can severely degrade the

performance of the overlying Kademlia DHT. Initially, for smaller values of k, the per-

formance of the system is minimally affected, maintaining performance similar to that

of the system under no attack. However, as the value of k increases, the lookup time

begins to degrade. This is due to the fact that as the number of potential nodes at

each step in the routing processes increases, a benign node has more possible chances

to inaccurately select nodes with faulty coordinates by selecting malicious nodes or

nodes who have been induced to move away from their correct position. When the

values of k are smaller, the routing process utilizes fewer optimization decision based

121

on latency, minimizing the impact of the attack on the underlying virtual coordi-

nate system. Additionally, we note that as the percentage of attackers increases, the

degradation of the lookup latency time for larger number of neighbors also increases.

For example, with k = 32, the lookup time increases by approximately 200ms for

each additional 10% malicious nodes in the network over the initial 10%.

Coordinate Oscillation Attacks

The final set of attacks from Section 4.2 are the coordinate oscillation attacks,

in which the attacker attempts to prevent the coordinate system from converging to

stable embedding by creating general disorder in the system. In order to conduct this

attack, the attackers reports different, random coordinates associated with a random

low estimation error for each new query. Additionally, the attackers will delay query

responses by tdms, where td ∈ [100, 1000]. The combination of these tactics causes

benign nodes to continually update their coordinates, often moving large distances in

a random direction in the coordinate space, maintaining a high estimated error. The

fact that nodes maintain high estimated errors actually aggravates the attack as the

high error, benign updates are given less importance when updating the coordinates,

giving malicious updates more weight.

While it is not as severe as the previous attacks, we can see from Figure 6.4 that the

oscillation attack still impacts the performance of the optimized Kademlia DHT. The

reduction in severity is due to the random nature of the coordinate updates caused by

attack. Over the lifetime of the system, the benign nodes will receive random updates

from malicious nodes that actually move them towards their appropriate locations in

the coordinate space. As the number of peers (k) in each bucket increases, so does the

degradation in the lookup time. For instance, when each bucket has k = 20 peers,

regardless of the percentage of malicious nodes, the lookup time is approximately

double that of a system under no attack. Similar to the inflation attacks, the smaller

values are more resilient to the attack as there are less choices for each optimization

122

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

Lo
ok

up
 T

im
e

(m
s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(a) 10% Malicious

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

Lo
ok

up
 T

im
e

(m
s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(b) 20% Malicious

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

Lo
ok

up
 T

im
e

(m
s)

of Neighbors

Malicious, 2 Lookup
Benign, 2 Lookup

Malicious, 4 Lookup
Benign, 4 Lookup

(c) 30% Malicious

Figure 6.4. Kademlia lookup latency under different percentages of
attackers performing an oscillation attack on the underlying virtual
coordinate system.

123

decision, with a node likely to choose the same path as when the system simply used

the XOR metric. It is also interesting to note that unlike the other attacks, the most

damaging oscillation attacks occur when a smaller percentage (10%) of the nodes are

malicious. This is also due in part to the random nature of the oscillation attack. As

more malicious nodes are added to the network, the greater the number of changes

the benign nodes will make based on the malicious updates, with a percentage of

these updates send the node in the correct direction and effectively canceling out

other malicious updates.

6.2.3 Kademlia Discussion

As shown in the previous subsection (Section 6.2.2, each of the attacks against

the underlying Vivaldi virtual coordinate system greatly affects the performance of

the overlying Kademlia DHT. While previous work [122, 129] has suggested a larger

bucket size improves the performance and stability of Kademlia, there is a hidden

tradeoff between the bucket size and the resiliency of the system to attack. We can

see from Figure 6.2, Figure 6.3, and Figure 6.4 that smaller bucket sizes (k ≤ 10),

are actually more resilient to attack. As Kademlia is an important component of

many peer-to-peer systems including BitTorrent [1], system architects must take this

tradeoff into consideration. For deployed systems, a bucket size of 10 provides a good

tradeoff between performance enhancement and resiliency to attack.

We also note that while attacking the virtual coordinate system has a significant

impact on the lookup latency of Kademlia, other system performance metrics such

as lookup success rate are unaffected by these attacks. At the level of the overlying

system, the attacks against the subcomponent will produce very little visible effects,

making them difficult to detect. This insight motivates the need to deploy robust

virtual coordinate systems to protect the performance of both the virtual coordinate

system and the overlying DHT.

124

6.3 The Chord Distributed Hash Table

In the Chord DHT, every node is assigned a n-bit identifier based on the hash

of its IP address and every 〈key, value〉 pair is assigned a n-bit identifier based on

the hash of the key. When a node joins the DHT, it is placed into a logical ring

based upon its identifier, connected to the node with the pervious identifier and the

next highest identifier (the predecessor and successor, respectively). For example, in

Figure 6.5, the predecessor of node 211 is 205 and the successor of node 211 is 230.

In addition, a node with an identifier a maintains a table of neighbors known as a

finger table, where the ith finger points to the node closest to the identifier a + 2i.

These fingers can logically be thought of as “shortcuts” across the ring, allowing for

shorter, more efficient lookup paths. As these values are assigned at join time and

may change due to churn, a node will periodically run a maintenance protocol to

ensure its predecessor, successor, and fingers are accurate and reachable.

When a 〈key, value〉 pair is added to the system, it is assigned to the first node

with an identifier greater than or equal to the hash of the key k. When a client

attempts to locate the key k in the DHT, it can query any node in the DHT to start

the lookup process. In Figure 6.5, node 100 has been queried for a key k = 228. The

query will be iteratively forwarded through the finger and successor links around the

ring until the query reaches the node 230 which holds the key k. For further details

on the protocol, we refer the reader to [130].

6.3.1 Utilizing Latency Estimation to Improve Chord Performance

In the original design of Chord, the selection of the node with which to fill the ith

position of the finger table of node a is restricted to the node closest to the identifier

a+2i. However, it has been realized that this “requirement” is not fundamental to the

correct operation of the protocol and any node which falls in the range [a+2i, a+2i+1]

will satisfy the system requirements [135]. As seen in Figure 6.5, the lookup originator

has multiple choices for each finger node. This flexibility allows the system to utilize

125

Lookup
Originator

Finger Nodes

Legend

Path Nodes

Key Holder

Potential
Finger Nodes

100

128

156

197

205

211

230

Figure 6.5. An example lookup for the key 228 in the Chord DHT
using an 8-bit (28 = 256) identifier space. The square represents
the origin of the lookup while the large, filled diamond nodes are
entries in its finger table. The smaller, unfilled diamonds represent
possible finger choices in the identifier range denoted by the dotted
arcs, which are both described in further detail in Section 6.3.1. The
unfilled circles represent nodes on the lookup path and the final filled
circle represents the node that holds the desired key k. The lookup
path is denoted by the arrows.

the latency estimation provided by virtual coordinate systems such as Vivaldi to

optimize the finger selections, reducing the average lookup time by nearly one-half

[54].

126

When a node updates the ith finger, it will check up to x nodes, where x is

some small constant defined by the system, in the desired range of [a + 2i, a +

2i+1] to determine which one has the lowest latency and will thus result in the best

performance for lookups. It has been shown in previous work that x = 16 provides

near optimal results [54].

6.3.2 Experimental Evaluation

While the inclusion of the Vivaldi virtual coordinate system as a component of

Chord can significantly improve the performance of the system, it also opens it up to

a new avenue of attack. If the latency estimations provided by the virtual coordinate

system are not robust to malicious compromise, the operation of the DHT can be

significantly impaired. In essence, the system is only as strong as its “weakest link”.

We demonstrate the impact attacks against the virtual coordinate system have on an

overlying DHT and how these effects can be mitigated by adding robustness to the

underlying virtual coordinate system.

Evaluation Methodology

In order to quantitatively compare the effect of attacks on the overlying DHT, we

evaluate two system metrics:

• Lookup Latency is defined as the time required to find the address of the node

holding a key k in the DHT and return the location to the requestor.

• Normalized Lookup Delay is defined as

Latnorm =
Latattack

Latno attack

where Latattack is the difference between the optimal and actual lookup latency

measured in the presence of malicious nodes and Latno attack is the difference be-

tween the optimal and actual lookup latency measured without malicious nodes.

127

The optimal lookups occurs when nodes fill their finger table with the lowest

latency nodes from the specified range, as discussed in Section 6.3.1. This met-

ric captures the impact of malicious activity on the performance of the DHT.

A normalized lookup delay greater than one indicates a degradation in perfor-

mance (larger lookup times) while a value less than one indicates performance

closer to optimal.

We use the King data set [88] in conjunction with the p2psim simulator [86]. We

present the results for the King data set as they are representative of the results

experienced with the other data sets. We ran each simulation for 200 time units,

where each time unit is 500 seconds in length. Every simulation was run ten times

with the lookup latency averaged over all of the simulation. We enable the system

to quickly form and stabilize by having the nodes join the DHT in a flash-crowd

scenario in which all nodes join simultaneously, allowing us to focus on the lookup

performance of the DHT. We used a finger table with the optimal size of x = 16, as

shown by Dabek et al. [54]. All other Chord parameters and were initialized to the

optimal values discussed by Gummadi et al. [135] and Dabek et al. citeDabek2004.

Utilizing a Non-Robust Virtual Coordinate System for Latency Estimation

We investigate the effect of malicious nodes attacking the underlying Vivaldi vir-

tual coordinate system has on the lookup latency of Chord by varying the percentage

of malicious nodes using the attacks described in Section 4.2.

Figure 6.6 presents the average lookup latencies for the Chord DHT over Vivaldi

being attacked by several percentages of malicious nodes. As the number of malicious

nodes increase, the average lookup performance of the system degrades. Under non-

attack conditions, the DHT has an average lookup latency of 418ms. When 30% of

the nodes in the network are attacking the virtual coordinate systems, the lookup

latency increase to 600ms. In this case, an average lookup for the DHT utilizing a

non-robust virtual coordinate system took nearly 50% longer when attackers were

128

5th Percentile
50th Percentile
95th Percentile

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1,000

0 10 20 30

L
oo

ku
p

L
at

en
cy

percentage of attackers

Figure 6.6. Chord lookup latency under different percentages of at-
tackers targeting the Vivaldi virtual coordinate system over the King
topology

present. Lookups in the 5th percentile are less affected as these lookups have shorter

lookup path lengths (< 3 hops) while lookups in the average and 95th percentile cases

have longer paths (≥ 5 hops), increasing the chances the path will traverse a higher

latency hop.

Adding Robustness to the Virtual Coordinate System to Maintain DHT Performance

As noted previously in Section 6.2.3, a robust virtual coordinate system is needed

to protect the performance of both the virtual coordinate system and the overlying

DHT. We further motivate the need to protect the virtual coordinate system subsys-

tem and not just the higher level DHT. We also demonstrate the effectiveness of our

defense mechanisms employed at the level of the Vivaldi virtual coordinate system at

mitigating the effects of malicious nodes as seen by the higher-level application, the

Chord DHT.

129

If defense mechanism are only placed at the high-level application, both the de-

tection and efficient response to attacks targeting specific subsystems become much

more difficult. First, while attacking the virtual coordinate system has a significant

impact on the lookup latency of Chord, other system performance metrics such as

lookup success rate and hops per lookup are unaffected by these attacks. Under both

benign and attack conditions, a random key lookup succeeded on average 97% of the

time with an average path length of 5 hops, with almost no variation seen between

different scenarios. This suggests that attacks against the underlying components

produce little “visible” effect at the upper-level of the system, making them difficult

to identify. Secondly, even if an attack is detected, the upper-level system is unable

to take preventative actions against the malicious nodes since the system implicitly

trusts the underlying components and is unable to determine which nodes are incor-

rectly using the virtual coordinate system. These reasons necessitate that the virtual

coordinate system itself be robust to attack.

0% malicious
10% malicious
20% malicious
30% malicious

 0

 0.5

 1

 1.5

 2

 2.5

None 1.25 1.5 1.75

N
or

m
liz

ed
 L

oo
ku

p
D

el
ay

Spatial Outlier Threshold Values

Figure 6.7. Normalized lookup delay for Chord under different per-
centages of attackers

130

Figure 6.3.2 presents the normalized lookup delay for different percentages of

malicious nodes. As the underlying system is attacked, the ability of the overlying

DHT to choose optimal finger nodes degrades, causing the normalized lookup delay

to greatly increase. For example, with just 10% malicious nodes, the normalized

lookup delay is 1.93 times greater than that of the system not under attack. A

detailed explanation of the drop in attack strength under 20% malicious attackers

is provided later in this section. Any user or application storing and fetching data

from the DHT will notice a marked increase in the average response time no matter

the percentage malicious, thus degrading the performance of the system and user

experience. However, with the addition of robustness through the use of outlier

detection to the virtual coordinate system, the effect of the attack on the DHT has

been greatly decreased. For example, utilizing a spatial outlier threshold of 1.5, the

normalized lookup delay for a system experiencing attack by 10% of its nodes is .93,

or 7% better than prior to our solution. his allows the DHT to more accurately assess

and choose the optimal finger nodes.

In order to determine if the decline in performance of the DHT under attack is

due to a select group of high error nodes or a general system decline, we look at the

effect of the attack on individual nodes in the network. We can see from the CDFs

presented in Figure 6.8, analogous to the increase in the average lookup latency error,

as the number of attackers increases, the number of nodes able to maintain low lookup

latency error decreases. For example, under non-attack conditions, 67% of the nodes

have a lookup latency error of less than or equal to one (which indicates performance

equal to or better than average) while over 95% have a lookup latency error less than

2. However, as seen in Figure 6.8(a), with a network containing just 10% malicious

nodes, only 22% of the nodes are able to maintain a lookup latency error of less than

one and only 66% have a lookup latency error less than 2. Using a spatial outlier

detection threshold of 1.5 and a temporal threshold of 4.0, the system is able to return

to functioning at non-attack scenario levels, while 66% of the nodes have a lookup

latency error of less than one and over 94% have a lookup latency error less than 2.

131

For both Figure 6.3.2 and Figure 6.8, it at first appears that the attacks with

20% malicious nodes are detrimental but less effective than other percentages of

malicious attackers. Upon further inspection, we determined that the random node

movement caused by the attack forced a number of optimal finger node selections

to have artificially low latency estimations and thus be chosen as fingers while many

higher latency nodes (which would be avoided by the optimal selection) had markedly

higher latency estimations. In other attack scenarios, these two cases were reversed,

with many higher latency nodes having their latency estimation artificially reduced

and thus being chosen as finger nodes. This artifact of virtual coordinate system

caused the normalized lookup delay in the 20% malicious nodes scenario to be lower

than the other attack percentages.

By using a robust virtual coordinate system to estimate network latency, the DHT

is able to optimize its performance in both non-attack and attack scenarios.

6.4 Summary

In this chapter, we demonstrated the susceptibility of higher-level applications to

malicious attack against their supporting components. Through simulations based on

real-life topologies, we showed that multiple attack types performed against the Vi-

valdi virtual coordinate system severely impact the performance of an overlying DHT,

irrespective of the DHT formulation. In some cases, the lookup latency of the system

was triple that of the system not under attack. We elucidated the need to understand

how the design parameters of protocols like Chord and Kademlia, such as the number

of peers per bucket, impacts their resiliency to malicious attack. For example, we

found that a bucket size of 10 peers provides a good balance between performance

enhancement and resiliency to attack, even when 30% of the network is malicious.

Finally, our simulation demonstrated how the use of a robust virtual coordinate sys-

tem to estimate network latency allows the DHT to optimize its performance in both

non-attack and attack scenarios.

132

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
er

ce
nt

ag
e

of
 N

od
es

Normalized Lookup Delay

Benign Conditions
No Response

Threshold of 1.5

(a) 10% Malicious

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
er

ce
nt

ag
e

of
 N

od
es

Normalized Lookup Delay

Benign Conditions
No Response

Threshold of 1.5

(b) 20% Malicious

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
er

ce
nt

ag
e

of
 N

od
es

Normalized Lookup Delay

Benign Conditions
No Response

Threshold of 1.5

(c) 30% Malicious

Figure 6.8. Cumulative distribution functions of the normalized
lookup delay for Chord under different percentages of malicious nodes
in three different scenarios. The red upright triangle line plots the con-
ditions experienced when no malicious nodes are present, the green
downward triangle plots the conditions experienced when using a non-
robust virtual coordinate system, and the black square line plots the
conditions experienced when using a robust virtual coordinate system.
The solid blue vertical line represents a normalized lookup delay of
1, at which point nodes are experiencing performance similar to the
average optimal delay.

133

7 RELATED WORK

This chapter provides a review of relevant related work that has influenced the re-

search we have presented. We look at previous attacks exploiting adaptive systems

and how techniques from anomaly detection such as using spatial and temporal cor-

relation in conjunction with the Mahalanobis distance could be used to effectively

constrain attackers. We review previous research in areas such as BGP, which also

utilize data-plane information similar to path graph solution and helped to moti-

vate some of our solutions. We delve into attacks against virtual coordinate systems

and demonstrate how previous methods to mitigate them differ from our solution.

We review interesting work in error minimization techniques which could be used in

conjunction with our solutions to create even more robust systems. We examine pre-

vious solutions from the domains of secure localization in sensor networks and secure

routing which provide insights into how to secure peer-to-peer systems. Finally, we

present an overview of previous work in reputation systems that helped to motivate

our response mechanism.

7.1 Attacks Exploiting Adaptivity

Previous work showed the vulnerability of the TCP adaptation mechanisms (i.e.,

the congestion control mechanism) to malicious attacks [136]. The authors showed

that by manipulating the end-system’s perception of network congestion, the adap-

tivity mechanism could be used to perform a low-rate DOS attack with severe effects

on TCP throughput. The attack was generalized in [137], as a form of low-rate ROQ

attack targeting point-to-point adaptive control loops that drive resource allocation

and affect perceived service of a system (bandwidth, jitter, etc). Our work assumes

a stronger adversarial model in an overlay network. The nature of the attacks, appli-

134

cation and deployment environment allows us to use a context sensitive observation

space and correlated information associated with the same information that drives

the adaptation to detect and limit the effect of malicious behavior.

7.2 Use of Spatial and Temporal Correlations

Recently, the benefits of the Mahalanobis distance for statistical anomaly detection

have been demonstrated in the context of network intrusion detection [75,138]. In the

work by Lazarevic et al. [138], the authors present a comparative study of detection

schemes based on data mining techniques for network based intrusion detection. Wang

and Stolfo [75] discuss an unsupervised, payload-based network anomaly detector

based on the Mahalanobis distance which was used to detect attacks like worms.

Spatial and temporal correlations were previously used in the context of network

security. A notable work in this aspect by Jiang and Cybenko [74] uses temporal and

spatial correlations to detect attack scenarios using a large amount of information

from intrusion detection systems, firewalls, and different software logs. Unlike this

more general approach, our work focuses on virtual coordinate systems and overlay

networks and does not look for correlations, but exploits the fact that they exist to

detect inconsistent metrics and find suspicious nodes.

Correlations have also been used in wireless networks for the detection of at-

tacks [139, 140]. The work by Huang et al. [139] uses correlations between different

features to identify attacks against wireless ad hoc routing protocols while the work

by Tanachaiwiwat and Helmy [140] shows how to augment sensor networks with

spatio-temporal correlations to detect misinformation being injected into the sensor

streams. In our work, the correlation is incorporated with each system and analysis

is performed on real deployments and Internet data sets.

135

7.3 Robust BGP Using Data-Plane Information

A popular area of research has been securing BGP routing. Several proposed se-

curity mechanisms make use of the data-plane information present in BGP to make it

more robust to misconfiguration and attack. Listen and Whisper [141] are protocols

based on anomaly-detection designed to secure BGP by detecting inconsistences in

the reported data-plane information. Hu and Mao [142] examine methods for detect-

ing prefix hijacking attacks in real-time by examining collected routing updates for

inconsistencies and comparing these with data-plane fingerprints of suspicious prefixes

to reduce false positives. Stealth Probing [143] uses data-plane information combined

with encryption and multipath routing to detect and prevent attacks on BGP routing.

While each of these solutions for threats to BGP are not directly applicable to the

peer-to-peer environment, they helped inspire some of this work and lend credibility

to our belief in using lightweight information-driven techniques to add robustness to

peer-to-peer systems.

7.4 Defense Mechanisms in Virtual Coordinate Systems

Research has demonstrated the susceptibility of Vivaldi to attacks [83, 84]. To

address these vulnerabilities, there have been several proposed methods to maintain

virtual coordinate system accuracy [95,144–146]. The PIC virtual coordinate system

[95] uses a security test based on the triangle inequality in which any node that

violates the triangle inequality above some margin of error is ignored and designated

as malicious. However, it has been shown that RTT measurements often violate this

inequality [147–149] and thus solutions based solely on such inequalities may degrade

system performance when no attack is occurring.

Recent work by Kaafar et al. [144] utilizes a solution which employs a set of trusted

nodes as a reference set by which to analyze all node behavior for malicious patterns

and behavior. In a similar vein, the reputation-based work by Saucez et al. [145]

uses a priori trusted nodes to rank and detect malicious nodes. The key difference

136

between these techniques and our method is we do not necessitate the need for a

trusted component in the network. The work by Sherr et al. [146] uses a verification

set of nodes for a node n, where n’s update is considered malicious if a certain

percentage of the verification set perceives the error of the update to be greater than

a predetermined threshold. The main differences between this technique and our

solution for securing virtual coordinate systems is we do not necessitate the need

for extra node sets nor network communication and we utilize outlier detection over

multiple metrics. One interesting research avenue to further increase the robustness

of virtual coordinate systems is through the combination of techniques such as those

suggested by Sherr et al. [146] with our solution. Under such a system, each node

would reach independent decisions about the data it is receiving which are augmented

using the group decisions reached by the verification set.

7.5 Coordinate System Error Minimization and Landmark Selection

An important area of research orthogonal to the security of the virtual coordinate

system is the minimization of error in the system. The accuracy of such systems is

greatly effected by landmark placement for centralized schemes and neighbor selection

in decentralized schemes. In the work by Zhang et al. [150], it is shown that a hierar-

chical approach can lead to better performance over non-hierarchical solutions. Works

by Lua et al. [148], Zhang et al. [151], and Narayanan and Shim [152] demonstrate

shortcomings of current systems and propose possible new metrics and measurements

to more accurately embed the latency in the coordinate system. These areas provide

interesting opportunities for further research since our work could possibly leverage

these new metrics to place further constraints on the attackers and create a more

robust, accurate, and fault-tolerant system.

137

7.6 Secure Localization in Sensor Networks

There have been many solutions proposed to secure localization in sensor networks.

While these provide insight into securing virtual coordinate systems, the majority of

the solutions rely on assumptions that are not applicable in the peer-to-peer domain.

Defense mechanisms such as SPINE [153], LAD [154], and TCSD [155] as well as those

proposed by Lazos et al. [156] and Mathews et al. [157] rely heavily on pre-defined set

of reference nodes to identify potentially malicious activity. ROPE [158], SLA [159],

and the work by Mathews et al. [157] require the reference nodes to be trusted. As

decentralized virtual coordinate systems do not have such infrastructure components,

the proposed solutions are not applicable. Additionally, solutions such as ROPE [158]

and HiRLoc [160] rely on secure communication based on cryptography to mitigate

outside attackers. Our defense mechanisms are designed to mitigate insider attacks

which are not prevented by such schemes.

Recently, there has been growing interest in utilizing anomaly detection to mit-

igate attacks in sensor network localization [155, 161, 162]. DRBTS [161] creates a

distributed reputation-based trust protocol to detect malicious reference nodes and

TCSD [155] detects temporal and spacial inconsistences in reported data caused by

malicious tampering. Based on the broadcast nature of the wireless medium, both

solutions require nodes to overhear each other which is not possible in our environ-

ment. Li et al. [162] utilize statistical methods to secure sensor localization. The

authors developed an attack resilient location estimator based on Least Median of

Squares (LMS) designed to tolerate malicious nodes as opposed to removing them.

Their technique generates random subsets of data from the original data pool for

individual estimations and then combines these estimations based on their quality.

While Li et al. [162] holds similarities to ours in that it filters out outliers in the range

estimates to improve sensor location estimates, our technique utilizes multiple, corre-

lated attributes over the observation space and over time to improve the performance

of the system.

138

7.7 Secure Routing

Our research has ties to secure wired and wireless routing. A large number of so-

lutions have been proposed to secure wired routing, with particular focus on securing

interdomain routing [142, 163–167]. Many of these solution rely solely on the use of

cryptographic constructions [163–165]. These techniques are often expensive in terms

of complexity and do not offer protection from malicious insider who have compro-

mised a machine and have access to all information on it, including the cryptographic

keys.

Previous work in wireless routing has examined defending against malicious in-

siders [168–171]. Ariadne [168] and SDT [169] utilize multiple routes through the

network to prevent malicious nodes from dropping data. Watchdog [170] relies on

properties of the wireless medium to overhear packets sent between nodes to ensure

nodes are functioning correctly. ODBSR [171] identifies malicious links through the

use of probes and acknowledgments along the faulty path. These works use different

environmental assumptions (a broadcast medium) and have much higher communi-

cation overhead then our proposed solution.

Other research has examined the use of anomaly detection to identify and avoid

suspicious routing behavior [142,166,167,172,173]. PHAS [166] allows the owners of

routing prefixes to collect information about current and past BGP routing updates

and check the validity of anomalous route updates based on expected patterns, similar

to signature-based anomaly detection. Hu and Mao [142] combine anomaly detection

based on control-plane information with host fingerprints to detect route hijacking

attempts. Zheng et al. [167] utilize path monitors to determine if the current routing

path is within some a threshold distance of the expected routing path through the

network. Huang and Lee [172] and Patwardhan et al. [173] detect malicious actions in

wireless networks based on deviances from predefined patterns. Our work differs in the

fact it does not require extra infrastructure components and is based on statistical

anomaly detection which does not require sequences of events to detect malicious

139

activity. Additionally, we use a variant of statistical anomaly detection that utilizes

multiple, correlated attributes and is not based on differences determined by finite

automata.

Another interesting approach for securing interdomain routing is SBone [174], in

which autonomous systems improve their security by creating collaborative overlays of

a small numbers of systems. One possible avenue for further research is to enable the

collaboration of virtual coordinate system nodes similar to that of SBone to increase

the efficacy of the system.

7.8 Reputation Systems

A considerable amount of research has focused on the development of trust and

reputation systems for peer-to-peer systems [104, 105] and ad hoc networks [175],

which help users make beneficial decisions assuming the existence of detection mech-

anisms for malicious behavior. It has been shown in [106–108] that these systems

provide an effective way to mitigate the effects of malicious nodes in a decentralized

distributed system. In [119], the authors provide techniques for improving the se-

curity of reputation systems which could be used in conjunction with our approach.

Our work presents concrete solutions for the detection mechanisms that reputation

can be built on.

To the best of our knowledge, our work is one of the few implementations of a

reputation system in overlay applications that has been tested in a operational system

over the Internet and not just simulated. Credence [176] is one other system that we

are aware of which uses a reputation system to deal with the file pollution problem

in a file-sharing application. Unlike Credence, we focus on multicast applications and

consider malicious insiders. Although our work has the advantage of having a point of

trust (i.e., the source), it faces the challenge that it can not rely on human interaction

to generate reputation. Instead, it achieves its goals in an autonomic fashion.

140

8 CONCLUSIONS

Peer-to-peer applications will only continue to grow in importance as the world be-

comes increasingly connected. Given the open nature of these applications and their

susceptibility to attack, creating systems that maintain their performance while be-

ing resilient to attack will be key to their continued success. In this thesis, we have

developed a framework of robust system components which can be used to construct

the next generation of peer-to-peer systems. We identify and characterize three crit-

ical components (robust adaptability, robust network awareness, and responsiveness

to identified threats), identify their associated security risks, provide techniques to

make each component robust to malicious activity, and demonstrate how to effectively

integrate them into current systems.

For robust adaptation, we focused on insider attacks against adaptation mech-

anisms. First, we proposed a lightweight solution which aggregates and correlates

network topology and application metrics at each node, allowing the nodes to use the

derived information to make better adaptation decisions and to constrain the actions

of malicious nodes. Second, we proposed the use of context sensitive anomaly detec-

tion to detect spatial and temporal outliers of measured and probed metrics, allowing

nodes to avoid malicious data and unnecessary adaptations. Our experiments con-

ducted using the adaptive, unstructured overlay multicast system ESM showed that

although ESM employs an advanced set of adaptation mechanisms, it was unable to

mitigate the attacks posed by a malicious adversary. The experiments also demon-

strated that our techniques improved the adaptation process and the overall stability

of the system while limiting the effect of malicious nodes.

To enable efficient network awareness, we turned to virtual coordinate systems.

We studied attacks against the accuracy of virtual coordinate systems, classifying

three types of attack: coordinate inflation, deflation, and oscillation. We showed that

141

even a small number of attackers can severely degrade coordinate accuracy due to

the epidemic nature of the attacks. We proposed to use spatial-temporal correlation

to perform outlier detection on updates received from malicious nodes and eliminate

them from the coordinate computation process and experimentally demonstrated the

utility of our technique. Finally, we examined the limitations of our defense technique

and found that the method starts degrading when more than 30% of the nodes in a

reference set form a malicious coalition.

In order to create solutions that are responsiveness to identified threats, we ex-

amine the incorporation of a reparation system as a basic system building block. We

identified their basic structural components and their possible vulnerabilities to ma-

licious behavior. We provided a concrete solution utilizing the EigenTrust reputation

system to respond to malicious behavior identified in ESM. We proposed a two-prong

approach which uses local observed behavior to generate an immediate local bias

against misbehaving nodes and subsequently allows the overlay to construct global

knowledge about the malicious nodes through the use of a global reputation system.

Our experiments demonstrated that our technique improves the resiliency and overall

stability of the system while limiting the effect of malicious nodes.

Reinforcing the need for creating secure system components, we looked at the

susceptibility of higher level applications to malicious attack against their supporting

components. Through simulations based on real-life topologies, we showed that mul-

tiple attack types performed against the Vivaldi virtual coordinate system severely

impact the performance of an overlying DHT, irrespective of the DHT formulation.

In some cases the lookup latency of the system was triple that of the system not under

attack. We demonstrated through simulation how the use of a robust virtual coordi-

nate system to estimate network latency allows the DHT to optimize its performance

in both non-attack and attack scenarios.

LIST OF REFERENCES

142

LIST OF REFERENCES

[1] BitTorrent. http://www.bittorrent.com/.

[2] Yoram Kulbak and Danny Bickson. The eMule Protocol Specification. eMule
project, http://sourceforge.net/.

[3] Gnutella. http://www.gnutella.com/.

[4] Direct Connect. http://adc.sourceforge.net/ADC.html.

[5] OpenNap. http://opennap.sourceforge.net/.

[6] Skype. http://www.skype.com/.

[7] Yang Chu, Aditya Ganjam, T.S. Eugene Ng, Sanjay G. Rao, Kunwadee Sri-
panidkulchai, Jibin Zhan, and Hui Zhang. Early Experience with an Internet
Broadcast System Based on Overlay Multicast. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2004.

[8] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.
SCRIBE: A Large-scale and Decentralized Application-level Multicast Infras-
tructure. IEEE Journal on Selected Areas in Communications, 20:1489–1499,
2002.

[9] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. SplitStream: High-bandwidth Multicast
in Cooperative Environments. In Proceedings of the ACM Symposium on Op-
erating Systems Principles (SOSP), 2003.

[10] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scal-
able Application Layer Multicast. In Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications (SIGCOMM), 2002.

[11] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and
James W. O’Toole, Jr. Overcast: Reliable Multicasting with an Overlay Net-
work. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2000.

[12] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High Band-
width Data Dissemination Using an Overlay Mesh. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[13] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy, and
Alexander E. Mohr. Chainsaw: Eliminating Trees from Overlay Multicast. In
Proceedings of the International Workshop on Peer-to-peer Systems (IPTPS),
2005.

143

[14] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter Yum. Cool-
Streaming/DONet: A Data-driven Overlay Network for Peer-to-peer Live Me-
dia Streaming. In Proceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM), 2005.

[15] SOPCast. http://www.sopcast.org/.

[16] PPLive. http://www.pplive.com/.

[17] PPStream. http://www.ppstream.com/.

[18] TVAnts. http://www.tvants-ppstream.com/.

[19] QQLive. http://tv.qq.com/.

[20] Feidian. http://www.feidian.com/.

[21] Mysee. http://www.mysee.com/.

[22] Pdbox. http://www.pdbox.co.kr/.

[23] PPMate. http://www.ppmate.com/.

[24] UUSee. http://www.uusee.com/.

[25] VGO. http://vgo.21cn.com/.

[26] CTV. http://www.tvoon.de/ctv/.

[27] StreamerOne. http://www.streamerone.com/.

[28] TVUnetworks. http://www.tvunetworks.com/.

[29] Joost. http://www.joost.com/.

[30] Veoh. http://www.veoh.com/.

[31] Zattoo. http://zattoo.com/.

[32] Folding@home. http://folding.stanford.edu/.

[33] International Data Corporation. http://www.idc.com/.

[34] Jerome Saltzer and Michael Schroeder. The protection of information in com-
puter systems. Proceedings of the IEEE, 63:1278–1308, 1975.

[35] Yang Chu, Sanjay G. Rao, and Hui Zhang. A Case For End System Multicast.
In Proceedings of the International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), 2000.

[36] Miguel Castro, Manuel Costa, and Antony Rowstron. Should we Build Gnutella
on a Structured Overlay? In Proceedinsg of the ACM Workshop on Hot Topics
in Networks (HotNets), 2003.

[37] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim.
A Survey and Comparison of Peer-to-peer Overlay Network Schemes. IEEE
Communications Surveys & Tutorials, 7:72–93, 2005.

144

[38] Miguel Castro, Manuel Costa, and Antony Rowstron. Debunking Some Myths
About Structured and Unstructured Overlays. In Proceedings of the USENIX
Symposium on Networked Systems Design & Implementation (NSDI), 2005.

[39] E-Crime Watch Survey. http://www.cert.org/archive/pdf/
ecrimesurvey07.pdf, 2007.

[40] Jeffrey Shneidman, David C. Parkes, and Laurent Massoulié. Faithfulness in
Internet Algorithms. In Proceedings of the SIGCOMM Workshop on Practice
and Theory of Incentives and Game Theory in Networked Systems (PINS),
2004.

[41] Jeffrey Shneidman and David C. Parkes. Specification Faithfulness in Networks
with Rational Nodes. In Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2004.

[42] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems, 4:382–
401, 1982.

[43] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In
Proceedings of the USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 1999.

[44] Seth James Nielson, Scott A. Crosby, and Dan S. Wallach. A taxonomy of
rational attacks. Lecture Notes in Computer Science, 3640:36–46, 2005.

[45] Bram Cohen. Incentives Build Robustness in BitTorrent. In Proceedings of the
ACM SIGCOMM Workshop on Economics of Peer-to-peer Systems (P2PEcon),
2003.

[46] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe
Martin, and Carl Porth. BAR Fault Tolerance for Cooperative Services. In
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),
2005.

[47] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When Selfish
Meets Evil: Byzantine Players in a Virus Inoculation Game. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), 2006.

[48] Allen Clement, Harry Li, Jeff Napper, Jean-Philippe Martin, Lorenzo Alvisi,
and Mike Dahlin. BAR Primer. In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2008.

[49] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S.
Wallach. Secure Routing for Structured Peer-to-peer Overlay Networks. In
Proceedings of the USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 2002.

[50] Danny Dolev and Andrew C. Yao. On the Security of Public Key Protocols.
IEEE Transactions on Information Theory, 29:198–208, 1983.

[51] Kenjiro Cho, Kensuke Fukuda, Hiroshi Esaki, and Akira Kato. The Impact
and Implications of the Growth in Residential User-to-user Traffic. In Proceed-
ings of the ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), 2006.

145

[52] Long Vu, Indranil Gupta, Jin Liang, and Klara Nahrstedt. Measurement and
Modeling of a Large-scale Overlay for Multimedia Streaming. In Proceed-
ings of the International Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks (QShine), 2007.

[53] Shahzad Ali, Anket Mathur, and Hui Zhang. Measurement of Commercial Peer-
to-peer Live Video Streaming. In Proceedings of the ACM Workshop on Recent
Advances in Peer-to-peer Streaming (WRAIPS), 2006.

[54] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek,
and Robert Morris. Designing a DHT for Low Latency and High Throughput.
In Proceedings of the USENIX Symposium on Networked Systems Design &
Implementation (NSDI), 2004.

[55] Muhammad Sher and Thomas Magedanz. A vulnerabilities analysis and corre-
sponding middleware security extensions for securing NGN applications. Com-
puter Networks, 51:4697–4709, 2007.

[56] Codenomicon. IPTV Security and Reliability Challenge. Technical report,
Codenomicon, 2008.

[57] Jim Louderback. Inside the Attack that Crippled Revision3, May 2008. http:
//revision3.com/blog/2008/05/29/.

[58] PlanetLab. http://www.planet-lab.org/.

[59] Liang Xie and Sencun Zhu. Message Dropping Attacks in Overlay Networks:
Attack Detection and Attacker Identification. ACM Transactions on Informa-
tion and System Security, 11:1–30, 2008.

[60] Stephen Deering. Multicast Routing in Internetworks and Extended LANs. In
Proceedings of the ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM), 1988.

[61] David G. Andersen. Resilient Overlay Networks. Master’s thesis, Department
of EECS, MIT, 2001. http://nms.lcs.mit.edu/projects/ron/.

[62] Daniel Bauer, Sean Rooney, Paolo Scotton, Sonja Buchegger, and Ilias Iliadis.
The Performance of Measurement-based Overlay Networks. In Proceedings of
the International Workshop on Quality of Future Internet Services (QofIS),
2002.

[63] Yang Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. Enabling Confer-
encing Applications on the Internet Using an Overlay Multicast Architecture.
In Proceedings of the ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM), 2001.

[64] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP 4), March 1995.

[65] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed In-
ternet Routing Convergence. IEEE/ACM Transactions on Networking, 9:293–
306, 2001.

146

[66] Zhuoqing Morley Mao, Ramesh Govindan, George Varghese, and Randy H.
Katz. Route Flap Damping Exacerbates Internet Routing Convergence. In
Proceedings of the ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM), 2002.

[67] Mukund Seshadri and Randy H. Katz. Dynamics of Simultaneous Overlay Net-
work Routing. Technical Report UCB//CSD-03-1291, University of California,
Berkeley, 2003.

[68] Chunqiang Tang and Christopher Ward. GoCast: Gossip-enhanced Overlay
Multicast for Fast and Dependable Group Communication. In Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2005.

[69] Ben Y. Zhao, Ling Huang, John D. Kubiatowicz, and Anthony D. Joseph.
Exploiting Routing Redundancy Using a Wide-area Overlay. Technical Report
UCB//CSD-02-1215, University of California, Berkeley, 2002.

[70] AAron Walters, David Zage, and Cristina Nita-Rotaru. A Framework for Se-
curing Measurement-based Adaptation Mechanisms in Unstructured Multicast
Overlay Networks. IEEE/ACM Transactions on Networking, 16:1434–1446,
2008.

[71] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay Testbed for
Broad-coverage Services. SIGCOMM Computer Communication Review, 33:3–
12, 2003.

[72] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab
for Network Research: Myths, Realities, and Best Practices. ACM SIGOPS
Operating Systems Review, 40:17–24, 2006.

[73] AAron Walters, David Zage, and Cristina Nita-Rotaru. Mitigating Attacks
Against Measurement-based Adaptaion Mechanisms in Unstructured Multicast
Overlay Networks. In Proceedings of the IEEE International Conference on
Network Protocols (ICNP), 2006.

[74] Guofei Jiang and George Cybenko. Temporal and Spatial Distributed Event
Correlation for Network Security. In Proceedings of the American Control Con-
ference (ACC), 2004.

[75] Ke Wang and Salvatore J. Stolfo. Anomalous Payload-based Network Intrusion
Detection. In Proceedings of the International Symposium on Recent Advances
in Intrusion Detection (RAID), 2004.

[76] Chang-Tien Lu, Dechang Chen, and Yufeng Kou. Multivariate Spatial Outlier
Detection. International Journal on Artificial Intelligence Tools, 13:801–812,
2004.

[77] Randall C. Smith and Peter Cheeseman. On the Representation and Estimation
of Spatial Uncertainty. International Journal of Robotics Research, 5:56–68,
1986.

147

[78] Maria Isabel Ribeiro. Gaussian Probability Density Functions: Properties and
Error Characterization. Technical Report 1049-001, Instituto Superior Tcnico,
Lisboa, Portugal, 2004.

[79] Donald Ervin Knuth. The Art of Computer Programming, 2nd Ed. Addison-
Wesley Longman Publishing Co., Inc., 1978.

[80] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Ty-
gar. Can Machine Learning be Secure? In Proceedings of the ACM Symposium
on Information, Computer & Communication Security (ASIA CCS), 2006.

[81] Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and Yongdae Kim. The
Frog-boiling Attack: Limitations of Anomaly Detection for Secure Network
Coordinate Systems. In Proceedings of the International Conference on Security
and Privacy in Communication Networks (SecureComm), 2009.

[82] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,
and John Kubiatowicz. Tapestry: A Resilient Global-scale Overlay for Service
Deployment. IEEE Journal on Selected Areas in Communications, 22:41–53,
2004.

[83] Mohamed Ali Kaafar, Laurent Mathy, Thierry Turletti, and Walid Dabbous.
Virtual Networks Under Attack: Disrupting Internet Coordinate Systems. In
Proceedings of the ACM International Conference on emerging Networking EX-
periments and Technologies (CoNext), 2006.

[84] Mohamed Ali Kaafar, Laurent Mathy, Thierry Turletti, and Walid Dabbous.
Real attacks on virtual networks: Vivaldi out of tune. In Proceedings of the
ACM SIGCOMM Workshop on Large-scale Attack Defense (LSAD), 2006.

[85] Jonathan Ledlie, Peter Pietzuch, Michael Mitzenmacher, and Margo Seltzer.
Wired Geometric Routing. In Proceedings of the International Workshop on
Peer-to-peer Systems (IPTPS), 2007.

[86] p2psim: A Simulator for Peer-to-peer Protocols. http://pdos.csail.mit.
edu/p2psim/.

[87] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A De-
centralized Network Coordinate System. In Proceedings of the ACM Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM), 2004.

[88] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimating
Latency between Arbitrary Internet End Hosts. In Proceedings of the ACM
SIGCOMM Workshop on Internet Measurment (IMW), 2002.

[89] Bernard Wong, Aleksandrs Slivkins, and Emin Sirer. Meridian: A Lightweight
Network Location Service without Virtual Coordinates. In Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), 2005.

[90] NLANR Active Measurement Project. http://amp.nlanr.net/.

[91] T.S. Eugene Ng and Hui Zhang. A Network Positioning System for the Internet.
In Proceedings of the USENIX Annual Technical Conference (ATC), 2004.

148

[92] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and
Ion Stoica. Geographic Routing Without Location Information. In Proceedings
of the ACM International Conference on Mobile Computing and Networking
(MobiCom), 2003.

[93] Liying Tang and Mark Crovella. Virtual Landmarks for the Internet. In Pro-
ceedings of the ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), 2003.

[94] Eugene Ng and Hui Zhang. Predicting Internet Network Distance with
Coordinates-based Approaches. In Proceedings of the IEEE International Con-
ference on Computer Communications (INFOCOM), 2002.

[95] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. PIC: Practical
Internet Coordinates for Distance Estimation. In Proceedings of the Interna-
tional Conference on Distributed Computing Systems (ICDCS), 2004.

[96] Hyuk Lim, Jennifer C. Hou, and Chong-Ho Choi. Constructing Internet Co-
ordinate System Based on Delay Measurement. In Proceedings of the ACM
SIGCOMM Conference on Internet Measurement (IMC), 2003.

[97] LiWei Lehman and Steven Lerman. A Decentralized Network Coordinate Sys-
tem for Robust Internet Distance. In Proceedings of the International Confer-
ence on Information Technology: New Generations (ITNG), 2006.

[98] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt,
and Lixia Zhang. IDMaps: A Global Internet Host Distance Estimation Service.
IEEE/ACM Transactions on Networking, 9:525–540, 2001.

[99] Marcelo Pias, Jon Crowcroft, Steve Wilbur, Tim Harris, and Saleem Bhatti.
Lighthouses for Scalable Distributed Location. In Proceedings of the Interna-
tional Workshop on Peer-to-peer Systems (IPTPS), 2003.

[100] LiWei Lehman and Steven Lerman. PCoord: Network Position Estimation
Using Peer-to-peer Measurements. In Proceedings of the IEEE International
Symposium on Network Computing and Applications (NCA), 2004.

[101] Yuval Shavitt and Tomer Tankel. Big-bang Simulation for Embedding Net-
work Distances in Euclidean Space. IEEE/ACM Transactions on Networking,
12:993–1006, 2004.

[102] Cristian Lumezanu and Neil Spring. Playing Vivaldi in Hyperbolic Space.
In Proceedings of the ACM SIGCOMM Conference on Internet Measurement
(IMC), 2006.

[103] David S. Moore and George P. McCabe. Introduction to the practice of statistics.
WH Freeman and Company, 2003.

[104] Roberto Aringhieri, Ernesto Damiani, Sabine De Capitani Di Vimercati, Ste-
fano Paraboschi, and Pierangelo Samarati. Fuzzy Techniques for Trust and
Reputation Management in Anonymous Peer-to-peer Systems. Journal Of The
American Society For Information Science And Technology, 57:528–537, 2006.

[105] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
Eigentrust Algorithm for Reputation Management in P2P Networks. In Pro-
ceedings of the International Conference on World Wide Web (WWW), 2003.

149

[106] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-to-peer Infor-
mation System. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), 2001.

[107] Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi, Pierangela
Samarati, and Fabio Violante. A Reputation-based Approach for Choosing
Reliable Resources in Peer-to-peer Networks. In Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS), 2002.

[108] Li Xiong and Ling Liu. A Reputation-based Trust Model for Peer-to-peer Ecom-
merce Communities. In Proceedings of the IEEE Conference on Commerce and
Enterprise Computing (CEC), 2003.

[109] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputa-
tion Systems. Communications of the ACM, 43:45–48, 2000.

[110] George Akerlof. The Market for “Lemons”: Quality Uncertainty and the Market
Mechanism. The Quarterly Journal of Economics, 84:488–500, 1970.

[111] Tapan Khopkar, Xin Li, and Paul Resnick. Self-selection, Slipping, Salvaging,
Slacking, and Stoning: the Impacts of Negative Feedback at eBay. In Proceed-
ings of the ACM Conference on Electronic Commerce (EC), 2005.

[112] John R. Douceur. The Sybil Attack. In Proceedings of the International Work-
shop on Peer-to-peer Systems (IPTPS), 2002.

[113] Qiao Lian, Zheng Zhang, Mao Yang, Ben Zhao, Yafei Dai, and Xiaoming Li. An
Empirical Study of Collusion Behavior in the Maze P2P File-sharing System. In
Proceedings of the International Conference on Distributed Computing Systems
(ICDCS), 2007.

[114] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust Incentive
Techniques for Peer-to-peer Networks. In Proceedings of the ACM Conference
on Electronic Commerce (EC), 2004.

[115] Kevin Lai, Michal Feldman, Ion Stoica, and John Chuang. Incentives for Co-
operation in Peer-to-peer Networks. In Proceedings of the ACM SIGCOMM
Workshop on Economics of Peer-to-peer Systems (P2PEcon), 2003.

[116] Eric J. Friedman and Paul Resnick. The Social Cost of Cheap Pseudonyms.
Economics and Management Strategy, 10(2):173–199, 2001.

[117] Sergio Marti and Hector Garcia-Molina. Taxonomy of Trust: Categorizing P2P
Reputation Systems. Computer Networks, 50:472–484, 2006.

[118] Sulin Ba and Paul Pavlou. Evidence of the Effect of Trust Building Technol-
ogy in Electronic Markets: Price Premiums and Buyer Behavior. Management
Information Systems Research Center Quarterly, 26:243–268, 2002.

[119] Mudhakar Srivatsa, Li Xiong, and Ling Liu. TrustGuard: Countering Vul-
nerabilities in Reputation Management for Decentralized Overlay Networks.
In Proceedings of the International Conference on World Wide Web (WWW),
2005.

150

[120] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Topologically-aware Overlay Construction and Server Selection. In Proceedings
of the IEEE International Conference on Computer Communications (INFO-
COM), 2002.

[121] Sushant Jain, Ratul Mahajan, and David Wetherall. A Study of the Perfor-
mance Potential of DHT-based Overlays. In Proceedings of the USENIX Sym-
posium on Internet Technologies and Systems (USITS), 2003.

[122] Daniel Stutzbach and Reza Rejaie. Understanding Churn in Peer-to-peer Net-
works. In Proceedings of the ACM SIGCOMM Conference on Internet Mea-
surement (IMC), 2006.

[123] Sebastian Kaune, Tobias Lauinger, Aleksandra Kovacevic, and Konstantin
Pussep. Embracing the Peer Next Door: Proximity in Kademlia. In Proceedings
of the International Conference on Peer-to-peer Computing (P2P), 2008.

[124] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling
Churn in a DHT. In Proceedings of the USENIX Annual Technical Conference
(ATC), 2004.

[125] Azureus BitTorrent Client. http://azureus.sourceforge.net/.

[126] Haiyong Xie, Y. Richard Yang, Arvind Krishnamurthy, Yanbin Grace Liu, and
Abraham Silberschatz. P4P: Provider Portal for Applications. In Proceedings
of the ACM Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications (SIGCOMM), 2008.

[127] James Cowling, Dan R. K. Ports, Barbara Liskov, Raluca Ada Popa, and Ab-
hijeet Gaikwad. Census: Location-aware Membership Management for Large-
scale Distributed Systems. In Proceedings of the USENIX Annual Technical
Conference (ATC), 2009.

[128] Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-peer Information
System Based on the XOR Metric. In Proceedings of the International Workshop
on Peer-to-peer Systems (IPTPS), 2002.

[129] Jarret Falkner, Michael Piatek, John P. John, Arvind Krishnamurthy, and
Thomas Anderson. Profiling a Million User DHT. In Proceedings of the ACM
SIGCOMM Conference on Internet Measurement (IMC), 2007.

[130] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications. IEEE/ACM Transactions on
Networking, 11:17–32, 2003.

[131] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-scale Peer-to-peer Systems. Lecture Notes In
Computer Science, 2218:329–350, 2001.

[132] CSpace. http://cspace.in/.

[133] Michael Freedman, Eric Freudenthal, and David Mazières. Democratizing Con-
tent Publication with Coral. In Proceedings of the USENIX Symposium on
Networked Systems Design & Implementation (NSDI), 2004.

151

[134] Daniel Stutzbach and Reza Rejaie. Improving Lookup Performance Over a
Widely-deployed DHT. In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), 2006.

[135] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble,
Henry M. Levy, and John Zahorjan. Measurement, Modeling, and Analysis
of a Peer-to-peer File-sharing Workload. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP), 2003.

[136] Aleksandar Kuzmanovic and Edward W. Knightly. Low-rate TCP-targeted
DOS attacks: The Shrew vs. the Mice and Elephants. In Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), 2003.

[137] Mina Guirguis, Azer Bestavros, and Ibrahim Matta. Exploiting the Transients
of Adaptation for RoQ Attacks on Internet Resources. In Proceedings of the
IEEE International Conference on Network Protocols (ICNP), 2004.

[138] Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep
Srivastava. A Comparative Study of Anomaly Detection Schemes in Network
Intrusion Detection. In Proceedings of the SIAM International Conference on
Data Mining (SDM), 2003.

[139] Yian Huang, Wei Fan, Wenke Lee, and Philip S. Yu. Cross-feature Analysis
for Detecting Ad-hoc Routing Anomalies. In Proceedings of the International
Conference on Distributed Computing Systems (ICDCS), 2003.

[140] Sapon Tanachaiwiwat and Ahmed Helmy. Correlation Analysis for Alleviating
Effects of Inserted Data in Wireless Sensor Networks. In Proceedings of the
International ICST Conference on Mobile and Ubiquitous Systems (MobiQui-
tous), 2005.

[141] Lakshminarayanan Subramanian, Volker Roth, Ion Stoica, Scott Shenker, and
Randy Katz. Listen and Whisper: Security Mechanisms for BGP. In Proceed-
ings of the USENIX Symposium on Networked Systems Design & Implementa-
tion (NSDI), 2004.

[142] Xin Hu and Z. Morley Mao. Accurate Real-time Identification of IP Prefix
Hijacking. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2007.

[143] Ioannis Avramopoulos and Jennifer Rexford. Stealth Probing: Efficient Data-
plane Security for IP Routing. In Proceedings of the USENIX Annual Technical
Conference (ATC), 2006.

[144] Mohamed Ali Kaafar, Laurent Mathy, Chadi Barakatand Kave Salamatian,
Thierry Turletti, and Walid Dabbous. Securing Internet Coordinate Embed-
ding Systems. In Proceedings of the ACM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIGCOMM),
2007.

[145] Damien Saucez, Benoit Donnet, and Olivier Bonaventure. A Reputation-based
Approach for Securing Vivaldi Embedding System. Lecture Notes In Computer
Science, 4606:78–85, 2007.

152

[146] Micah Sherr, Boon Thau Loo, and Matt Blaze. Veracity: A Fully Decentral-
ized Service for Securing Network Coordinate Systems. In Proceedings of the
International Workshop on Peer-to-peer Systems (IPTPS), 2008.

[147] Han Zheng, Eng Keong Lua, Marcelo Pias, and Timothy G. Griffin. Internet
routing policies and round-trip-times. In Proceedings of the Passive and Active
Measurement Workshop (PAM), 2005.

[148] Eng Keong Lua, Timothy Griffin, Marcelo Pias, Han Zheng, and Jon Crowcroft.
On the Accuracy of Embeddings for Internet Coordinate Systems. In Proceed-
ings of the ACM SIGCOMM Conference on Internet Measurement (IMC), 2005.

[149] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network Coordinates in the
Wil. In Proceedings of the USENIX Symposium on Networked Systems Design
& Implementation (NSDI), 2007.

[150] Rongmei Zhang, Charlie Hu, Xiaojun Lin, and Sonia Fahmy. A Hierarchical
Approach to Internet Distance Prediction. In Proceedings of the International
Conference on Distributed Computing Systems (ICDCS), 2006.

[151] Rongmei Zhang, Chunqiang Tang, Y. Charlie Hu, Sonia Fahmy, and Xiaojun
Lin. Impact of the Inaccuracy of Distance Prediction Algorithms on Internet
Applications – An Analytical and Comparative Study. In Proceedings of the
IEEE International Conference on Computer Communications (INFOCOM),
2006.

[152] Sathya Narayanan and Eunsoo Shim. Performance Improvement of a Dis-
tributed Internet Coordinates System. In Proceedings of CCNC, 2007.

[153] Srdan Čapkun and Jean-Pierre Hubaux. Secure Positioning of Wireless Devices
with Application to Sensor Networks. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2005.

[154] Wenliang Du, Lei Fang, and Peng Ning. LAD: Localization Anomaly Detection
for Wireless Sensor Networks. Journal of Parallel and Distributed Computing,
66:874–886, 2006.

[155] Honglong Chen, Wei Lou, Junchao Ma, and Zhi Wang. TSCD: A Novel Se-
cure Localization Approach for Wireless Sensor Networks. In Proceedings of the
International Conference on Sensor Technologies and Applications (SENSOR-
COMM), 2008.

[156] Loukas Lazos and Radha Poovendran. SeRLoc: Robust Localization for Wire-
less Sensor Networks. ACM Transactions on Sensor Networks, 1:73–100, 2005.

[157] Mary Mathews, Min Song, Sachin Shetty, and Rick McKenzie. Detecting Com-
promised Nodes in Wireless Sensor Networks. In Proceedings of the ACIS Inter-
national Conference on Software Engineering, Artificial Intelligence, Network-
ing and Parallel/Distributed Computing (SNPD), 2007.

[158] Loukas Lazos, Radha Poovendran, and Srdjan Čapkun. ROPE: Robust Position
Estimation in Wireless Sensor Networks. In Proceedings of the International
Conference on Information Processing in Sensor Networks (IPSN), 2005.

153

[159] Farooq Anjum, Santosh Pandey, and Prathima Agrawal. Secure Localization
in Sensor Networks using Transmission Range Variation. In Proceedings of the
IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS),
2005.

[160] Loukas Lazos and Radha Poovendran. HiRLoc: High-resolution Robust Lo-
calization for Wireless Sensor Networks. IEEE Journal on Selected Areas in
Communications, 24:233–246, 2006.

[161] Avinash Srinivasan, Joshua Teitelbaum, and Jie Wu. DRBTS: Distributed
Reputation-based Beacon Trust System. In Proceedings of the International
Conference on Dependable, Autonomic and Secure Computing (DASC), 2006.

[162] Zang Li, Wade Trappe, Yanyong Zhang, and Badri Nath. Robust Statistical
Methods for Securing Wireless Localization in Sensor Networks. In Proceedings
of the International Conference on Information Processing in Sensor Networks
(IPSN), 2005.

[163] Russ White. Securing BGP through secure origin BGP (soBGP). Business
Communications Review, 33:47–53, 2003.

[164] Yih-Chun Hu, Adrian Perrig, and Marvin Sirbu. SPV: Secure Path Vector
Routing For Securing BGP. SIGCOMM Computer Communication Review,
34:179–192, 2004.

[165] P.C. van Oorschot, Tao Wan, and Evangelos Kranakis. On Interdomain Routing
Security and Pretty Secure BGP (psBGP). ACM Transactions on Information
and System Security, 10:11, 2007.

[166] Mohit Lad, Dan Massey, Dan Pei, Yiguo Wu, Beichuan Zhang, and Lixia Zhang.
PHAS: A Prefix Hijack Alert System. In Proceedings USENIX Security, 2006.

[167] Changxi Zheng, Lusheng Ji, Dan Pei, Jia Wang, and Paul Francis. A Light-
weight Distributed Scheme for Detecting IP Prefix Hijacks in Real-time. SIG-
COMM Computer Communication Review, 37:277–288, 2007.

[168] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A Secure On-
demand Routing Protocol for Ad Hoc Networks. Wireless Networks, 11:21–38,
2005.

[169] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure Data Transmission in
Mobile Ad Hoc Networks. In Proceedings of the ACM workshop on Wireless
security (WiSe), 2003.

[170] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating Routing Mis-
behavior in Mobile Ad Hoc Networks. In Proceedings of the ACM International
Conference on Mobile Computing and Networking (MobiCom), 2000.

[171] Baruch Awerbuch, Reza Curtmola andDavid Holmer, Herbert Rubens, and
Cristina Nita-Rotaru. On the Survivability of Routing Protocols in Ad Hoc
Wireless Networks. In Proceedings of the International Conference on Security
and Privacy in Communication Networks (SecureComm), 2005.

[172] Yian Huang and Wenke Lee. Attack analysis and detection for ad hoc routing
protocols. Lecture Notes in Computer Science, 3224:125–145, 2004.

154

[173] Anand Patwardhan, Jim Parker, Anupam Joshi, Michaela Iorga, and Tom Kary-
giannis. Secure routing and intrusion detection in ad hoc networks. In Pro-
ceedings of the IEEE International Conference on Pervasive Computing and
Communications (PerCom), 2005.

[174] I. Avramopoulos, M. Suchara, and J. Rexford. How small groups can secure
interdomain routing. Technical Report 808-07, Princeton CS Department, 2007.

[175] Sonja Buchegger and Jean-Yves Le Boudec. Robust Reputation System for
P2P and Mobile Ad-hoc Networks. In Proceedings of the ACM SIGCOMM
Workshop on Economics of Peer-to-peer Systems (P2PEcon), 2004.

[176] Kevin Walsh and Emin Gn Sirer. Experience with an Object Reputation System
for Peer-to-peer Filesharing. In Proceedings of the USENIX Symposium on
Networked Systems Design & Implementation (NSDI), 2006.

VITA

155

VITA

Contact Information

Voice: +1 (765) 228-7469

E-mail: zage@purdue.edu

WWW: http://www.cs.purdue.edu/homes/zagedj/

Citizenship

United States of America

Research Interests

Secure and fault-tolerant protocols, insider-resilient overlay networks, routing, ge-

ographical routing, peer-to-peer systems, adaptive systems, wireless mesh net-

works, virtual coordinate systems

Education

Purdue University, West Lafayette, IN USA

Ph.D, Computer Science, May 2010

• Advisor: Professor Cristina Nita-Rotaru

• Thesis Topic: A Platform for Creating Efficient, Robust, and Resilient Peer-

to-Peer Systems

The rapid growth of communication networks such as the Internet and ad hoc

wireless mesh networks has spurred the development of numerous collabora-

tive peer-to-peer (P2P) systems. It is necessary to provide components and

methodologies for creating efficient P2P systems that can tolerate changes in

network conditions and are resilient to malicious activity. A characterization of

156

the necessary components, their associated security risks, techniques to make

each component robust to malicious activity, and a demonstration of how to

effectively integrate the components into current systems will be provided.

B.S., Honors Computer Science and Mathematics, May 2004

• Graduated with distinction

Work Experience

Research Assistant January 2005 - May 2010

Center for Education and Research in Information Assurance and Security (CE-

RIAS) and Department of Computer Science, Purdue University, West Lafayette,

IN

• Member of the Dependable and Secure Distributed Systems Laboratory. Cur-

rently conducting research in distributed systems and security. Published re-

search in scaling Byzantine fault-tolerant protocols, securing position services

for wireless routing, securing adaptive mechanisms of distributed protocols,

robust virtual coordinate systems, and using trust in distributed networks.

Research Intern June-September 2008, January- September 2009

Intel Corporation, Santa Clara, CA

• Research and development of a framework to provide scalability, robustness,

and security for distributed detection and inference systems. Proposed and

demonstrated the utility of a network-aware, distributed membership pro-

tocol to improve the performance of overlay networks by biasing neighbor

selection towards beneficial nodes based on multiple system metrics. The

work includes the analysis of real enterprise data sets and topologies, includ-

ing node churn statistics, offering a new distribution to accurately model

enterprise churn.

Teaching Assistant August-December 2004

Department of Computer Science, Purdue University, West Lafayette, IN

• Assisted and evaluated students in undergraduate security course

157

Tool Developer May-August 2004

Baker Hill Corporation, Indianapolis, IN

• Research and development of next generation banking data conversion tool

using the Visual Studio .Net that is currently used by all support staff and

customers needing data migration from old databases to SQL2000.

Development Intern May-August 2003

Motorola Corporation, Schaumburg, IL

• Research and development of end-user applications to seamlessly fuse data

from multiple security sensors (video, motion, vibration) into three applica-

tions: an easy to use standalone application, a web interface, and a mobile

interface to be used by security personnel to monitor remote radio towers.

Remote data transfer and sensor manipulation tools were implemented to

support the end-user application

Software Development Engineer in Test May-August 2002

Microsoft Corporation, Redmond, WA

• Development of a testing framework and automated tests for a new Visual

Studio .Net add-in designed to allow the use of .Net code logic behind office

documents. Research and creation of initial test plan and test case outlines

used by the development group.

Software Development Engineer in Test May-August 2001

Microsoft Corporation, Redmond, WA

• Development of regression tests for Office Developer, development of test

cases and automated tests for Visual Studio .Net, and product research into

possible desired extensions facilitating ease of use in Visual Studio .Net.

Development Intern May-August 2000

Tivoli Systems (subsidiary of IBM), Indianapolis, IN

• Development of an internal error reporting tool using Java Servlets

158

Publications

Journal Articles:

1. “Robust Decentralized Virtual Coordinate Systems in Adversarial Environ-

ment”, David Zage and Cristina Nita-Rotaru. To appear in the ACM Trans-

actions on Information and System Security.

2. “A Framework for Securing Measurement-Based Adaptation Mechanisms in

Unstructured Multicast Overlay Networks”, AAron Walters, David Zage,

Cristina Nita-Rotaru. IEEE/ACM Transactions on Networking, Volume 16,

Issue 6, December 2008.

3. “A Survey of Attack and Defense Techniques for Reputation Systems”, Kevin

Hoffman, David Zage and Cristina Nita-Rotaru. To appear in ACM Com-

puting Surveys, Volume 41, Issue 4, December 2009. Also Technical Report

CSD TR 07-013.

4. “STEWARD: Scaling Byzantine Fault-Tolerant Replication to Wide Area

Networks”, Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch,

John Lane, Cristina Nita-Rotaru, Josh Olsen, David Zage. To appear in

IEEE Transactions on Dependable and Secure Computing.

Conference Papers:

1. “A Network-Aware Distributed Membership Protocol for Collaborative De-

fense”, David Zage, Carl Livadas, and Eve Schooler. Proceedings of the 12th

IEEE International Conference on Computational Science and Engineering

(CSE), 2009.

2. “Experimental Comparison of Peer-to-Peer Streaming Overlays: An Appli-

cation Perspective”, Jeff Seibert, David Zage, Sonia Fahmy, Cristina Nita-

Rotaru. Proceedings of the 33rd IEEE Conference on Local Computer Net-

works (LCN), 2008.

3. “On the Accuracy of Decentralized Network Coordinate Systems in Adver-

sarial Networks”, David Zage and Cristina Nita-Rotaru. Proceedings of the

159

14th ACM Conference on Computer and Communications Security (CCS),

2007.

4. “Mitigating Attacks Against Measurement-Based Adaptation Mechanisms in

Unstructured Multicast Overlay Networks”, AAron Walters, David Zage and

Cristina Nita-Rotaru. Proceedings of the IEEE International Conference on

Network Protocols (ICNP), 2006.

5. “Scaling Byzantine Fault-Tolerant Systems to Wide Area Networks”, Yair

Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina

Nita-Rotaru, Josh Olsen, David Zage. Proceedings of the International Con-

ference on Dependable Systems and Networks (DSN), 2006.

Extended Abstracts:

1. “Robust Virtual Coordinate Systems with Byzantine Participants”, David

Zage PhD Student Forum - Proceedings of the 37th International Conference

on Dependable Systems and Networks (DSN), June 2007.

2. “Byzantine Resilient Distributed Position Service”, Josh Olsen, David Zage

and Cristina Nita-Rotaru. Extended Abstract in the Proceedings of the In-

ternational Conference on Dependable Systems and Networks (DSN), 2006.

Software

• ADAPT: A security module than enables attacker-resilient parent selection in

ESM, a well-known broadcast overlay system. The mechanism combines spatial-

temporal outlier detection with reputation mechanisms to prevent malicious

nodes from controlling the overlay topology through the membership and parent

selection protocols.

• S-VIVALDI: An extension to the P2P simulator implementation of the Vivaldi

virtual coordinate systems. The code provides the capability to simulate Byzan-

tine attackers in the P2P simulator and enables each system node to track the

current performance and the performance history of its neighboring node. Com-

160

bining this information with outlier detection, nodes are able to filter out po-

tentially harmful virtual coordinates, preserving the integrity of the system.

Professional Services

Conference Chair Positions:

• Web and Proceedings Chair, STC 2009

• Web and Proceedings Chair, NPSec 2007

Journal Referee:

• ACM Transactions on Computing (2009)

• ACM Transactions on Information and System Security (2009)

• Elsevier Journal of Systems and Software (2009)

• Elsevier Journal of Computer Networks (2009)

Conference Referee:

• International Symposium on Reliable Distributed Systems (SRDS 2009)

• IEEE Conference on Computer Communications (INFOCOM 2006, 2008)

• ACM Conference on Computer and Communications Security (CCS 2008,

2009)

• IEEE International Conference on Security and Privacy for Emerging Areas

in Communication and Networks (SecureComm 2005, 2006)

• Workshop on Secure Network Protocols (NPSec 2006)

• IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN 2005, 2006)

• IEEE International Conference on Distributed Computing Systems (ICDCS

2007, 2009)

• ACM Workshop on Scalable Trusted Computing (STC 2007)

• IEEE High Assurance Systems Engineering Symposium (HASE 2007)

• ACM Conference on Wireless Network Security (WiSec 2008)

• ACM International Workshop on Network and Operating System Support

for Digital Audio and Video (NOSSDAV 2009)

161

Memberships

• Association for Computing Machinery (ACM)

• Institute of Electrical and Electronics Engineers (IEEE)

• Upsilon Pi Epsilon

• Phi Beta Kappa

• Alpha Lambda Delta

Awards

• Travel grant to participate in the Wireless Summer School held at UIUC (2009)

• Second place poster at the 10th annual CERIAS Information Security Sympo-

sium, “Removing the Blinders: Utilizing Data-Plane Information to Mitigate

Adversaries in Unstructured Multicast Networks” (2009)

• Travel grant from ACM to participate in the ACM Conference on Computer and

Communications Security (2007)

• Third place poster at the 8th annual CERIAS Information Security Symposium,

“On the Accuracy of Decentralized Network Coordinate Systems in Adversarial

Networks” (2007)

• Travel grant from IEEE and NSF to participate in the IEEE International Con-

ference on Network Protocols (2006)

• Scholarship from Northrop Grumman for high academic achievement (2003)

• Scholarship from Raytheon for high academic achievement (2003)

• Purdue Outstanding Freshman (2001) and Sophomore (2002) in Computer Sci-

ence

• Lilly Endowment Community Scholarship (2000)

• Corporate Partners Council Scholarship from the Purdue University Computer

Science Department (2000)

• Scholarship from Purdue University for academic excellence (2002-2004)

