
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CERIAS Tech Report 2010-06 

 

DATA IN THE CLOUD: AUTHENTICATION OF TREES, GRAPHS, AND 

FORESTS WITHOUT LEAKING 

 

by Ashish Kundu, Mikhail Atallah, Elisa Bertino 

 

Center for Education and Research in  

Information Assurance and Security, 

Purdue University, West Lafayette, IN 47907-2086 

 



Data in the Cloud: Authentication of Trees, Graphs, and
Forests Without Leaking

Ashish Kundu, Mikhail Atallah, Elisa Bertino
Department of Computer Science & CERIAS

Purdue University
{ashishk,mja,bertino}@cs.purdue.edu

ABSTRACT
In this paper, we address the problem of how to authenti-
cate sub-trees (sub-graphs) without leakage of information.
Previous schemes for tree (graph)-organized data, such as
XML documents, authenticate information recorded in tree
(graph) nodes, but leak structural information that the data
receiver is not entitled to access.

This is often unacceptable, as the value of a tree (graph)-
organized data is not only in the contents of the tree (graph)
nodes but also in the tree (graph) structure (such as in
healthcare and military data). A possible approach would
be to store a pre-signed hash for each subset of the tree
(graph). Such an approach is however not suitable even
for moderate-size trees (graphs) because of the exponential
number of such subsets. This paper proposes authentication
schemes for trees and graphs (with or without cycles). The
schemes are provably secure and efficient in that the num-
ber of signatures computed for trees is O(1) and for graphs
is O(m), where m is the number of nodes. The schemes
are highly scalable - they accommodate trees and graphs
with high branching factors and extremely large numbers of
nodes, such as in the order of millions. The efficiency is cor-
roborated by our experimental results. Branching factors of
100 and 300 (which result in trees with nodes as many as
1 million and 27 millions, respectively, with the height be-
ing 3) are handled by the proposed schemes quite efficiently.
We also describe how our scheme for graphs can be used to
authenticate forests without leaking.

1. INTRODUCTION
In the emerging cloud computing paradigms, the hosting

and distribution of data is carried out by third party in-
frastructures and servers, which may not be trusted (e.g.,
Amazon EC2, Amazon Web Services AWS, “Database as a
Service”[10]). In such third-party data distribution setting,
an important requirement is to assure data authenticity.
Authenticity is typically assured by message authentication
codes and signatures computed by the owner of the data,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

which in third-party distribution setting, are different from
the party distributing the data (referred to as distributor).
Data authenticity must be assured even when the data that
a user can access is a subset of the signed data, as users
maybe authorized to only access a subset of the data. A
crucial requirement is however to ensure that the techniques
are used for signing the data do not result in data leakages.
In the cloud-computing paradigms, which are increasingly
being employed in order to store and publish sensitive in-
formation belonging to individuals (such as healthcare) and
enterprises, protection of privacy and confidentiality are as
important as verifying authenticity of data [1].

Such leakages can be used to infer sensitive information
that is not part of the received data, which in turn would
lead to privacy and confidentiality breaches (A healthcare-
specific illustration is given in [12]). Some applications of
leakage-free authentication of data are in cloud computing
and database-as-a-service, in assuring healthcare data while
protecting privacy and confidentiality (for HIPAA compli-
ance), and in authenticating XPath query results.

Data published and distributed through third-party archi-
tectures is very often organized as trees or graphs. This is
for example the case of data organized according to XML
schemas. The question is thus how does Alice (the data
owner) sign the data (which is basically, a tree or a graph)
once, so that the authenticity of a portion of the data (sub-
tree or a subgraph) received by a user can be verified with-
out leaking any information about the remaining part of the
data. In what follows, “tree” and “graph” refer to a rooted
directed tree and a directed graph (with or without cycles),
respectively.

An authentication scheme for a tree or a graph must al-
low one to verify the integrity of its content as well as its
structure. Integrity of the relationships represented by the
edges and ordering, if any, between nodes is referred to as
structural integrity, and the integrity of the contents of the
nodes is referred to as content integrity. A leakage-free au-
thentication scheme must make it possible for the receiver
of a subtree/subgraph to verify its integrity with the fol-
lowing additional requirement: the receiver should neither
receive nor should be able to infer any information about the
content and presence (for that matter absence) of nodes and
structural relationships that are not in its subtree/subgraph.

Consider the tree in Figure 1(a) and suppose that the user
receives the subtree Tδ. The user should neither receive nor
should be able to infer anything about the nodes b, f, g and
h, and edges e(d, b), e(h, d), e(h, g), and e(g, f). Further,
when there is an ordering between the nodes, the user should

1



Figure 1: (a) Tree T and subtree Tδ. (b) Graph G
and subgraph Gδ.

not be able to infer the ordering between any pair of nodes,
when at least one such node is not in the subtree received
by the user. This is the case, for example, of the node pairs:
(a, b), (b, c) (d, g), and (c, f). Information that should not be
leaked is referred to as extraneous information. In the case
of graphs, another basic form of leakage is about immediate
ancestors of a node. For example, assume that the user
receives Gδ, subgraph of G in Figure 1(b). The user should
not learn that node c has another immediate ancestor other
than d (which is h), which is in Gδ. For nodes a, b and
d, the user should not learn whether they have any other
immediate ancestors in the graph.

One of the most widely applied and extended authen-
tication techniques for tree-structured data is the Merkle
hash technique [15] (MHT). The MHT is binding (that is,
integrity-preserving) but it has a major drawback in that it
is not hiding (i.e., it leaks information) [5]. The MHT (and
thus the techniques derived from it, e.g., [6][7][17][18]) leaks
not only the Merkle hash of the nodes that the user does not
have access to, but also the structural relationships, such as
the parent-child relationships, and the sibling relationships
as well as the structural ordering pertaining to nodes that
the user does not have access to. The recent “structural sig-
nature scheme”for trees proposed by Kundu and Bertino [12]
overcomes such drawback of the MHT. However, this scheme
computes a signature for each node (hence very inefficient),
and is also not suitable for applications to cyclic graphs be-
cause such graphs cannot be topologically ordered.

A straightforward scheme for graphs (including trees) is
to sign each node as well as each edge. When a user has
access to a subgraph (including a subtree), the signatures
of the nodes and edges in the subgraph are also sent to the
user. However, such a scheme has two major problems - (1)
If the graph has an ordering between the siblings, it would
not be possible for the user to verify such ordering, (2) the
total number of signatures computed and stored in the worst
case is m + m2 (O(m2)), where m is the number of nodes
in the graph. For a graph of even medium size such as one
thousand nodes, about a million signatures need to be stored
and managed by the distributor, which is quite large. For a
tree, it would have 2m − 1 signatures. The question is can
we support (1) while using less number of signatures? For
trees, our scheme achieves m (O(m)) number of signatures
for all cases while providing leakage-free verification of or-
dering between siblings and parent-child relationships. For
graphs, our scheme achieves 2m (O(()m)) number of signa-
tures for all cases while providing leakage-free verification
of ordering between siblings and parent-child relationships.
For trees, our scheme requires about a 50% less number of
signatures. For graphs, our scheme requires linear number
of signatures against the quadratic number of signatures in

the straightforward scheme.

Our Contributions. In this paper, we propose two prov-
ably secure and efficient leakage-free authentication schemes:
one for directed rooted trees and another for directed graphs.
To that end we define the concept of “leakage-free signa-
tures” for trees and graphs. We defined two security no-
tions for such signatures: (1) existential unforgeability under
adaptive chosen-message attack, and (2) indistinguishability
under the adaptive “chosen-signature” attack (leakage-free
property). Both schemes are secure with respect to these
two properties, and efficient in that the number of signa-
tures computed for trees is O(1) and for graphs is O(n)
where n is the number of nodes. Our schemes are highly
scalable. The scheme for trees is able accommodate trees
with a high branching factors and extremely large numbers
of nodes in the order of millions, which is corroborated by
our experimental results. Branching factors of 100 and 300
(which result in trees with nodes as many as 1 million and 27
millions, respectively, with the height being 3) are handled
by the proposed scheme quite efficiently. We also show how
replay attacks can be prevented, how dynamic modifications
to trees and graphs are handled, and how forests (e.g., a set
of databases) can be authenticated without leaking using
the proposed scheme for graphs.

2. SECURITY MODEL
Data Model. A tree T (V, E) (or a directed graph G(V, E))
is a data object with V and E as the sets of vertices and
edges, respectively. Tδ or Gδ refer to T (V, E) or Gδ(Vδ, Eδ),
respectively. A node x represents an atomic unit of the con-
tent denoted by cx. Throughout this paper, unless otherwise
stated, a tree is a rooted directed tree T (V, E); a graph is a
general directed graph. The notation x ≺ y denotes that x
is a left sibling of y. Such an ordering may exist in a tree or
in a directed acyclic graph (DAG). A subtree of T (V, E) is
denoted by Tδ(Vδ, Eδ),(Tδ(Vδ, Eδ) ⊆ T (V, E)). Similarly, a
subgraph of G(V, E) is denoted by Gδ(Vδ, Eδ).

Other Common Notations: Υ(V, E) refers to either a tree

T (V, E) or a graph G(V, E). The notation eT (eV , E) (or sim-

ply, eT ) refers to the structure of the tree T (V, E), i.e., if the
content cx of each node x in T is removed, then the resultant
tree structure is referred to by eT (eV , E); edges in eT remain

as they are in T . Similarly, eG(eV , E) is defined. We use m
to denote the number of nodes in T . The parent of a node
v is denoted by p̂v. The concatenation operator is denoted
by ‖, and the bitwise XOR operation is denoted by ⊕.

In what follows, whenever we say “generate a random” we
mean a cryptographically secure random number. The nota-
tion H(v) denotes a cryptographically secure one-way hash
of a value v.

Distribution Model. The trusted owner Alice signs a data ob-
ject organized as a tree/graph Υ; the signature is referred
to as ΨΥ(V,E). After signing Υ, Alice may delegate the job
of publishing Υ or processing queries over Υ to a third-party
distributor D. The distributors are moderately untrusted
in the sense that they do not have signature authority on
behalf of Alice. The data object that a user receives as a
result of its query or access request on a tree or a graph is

2



a subtree or a subgraph, respectively. D computes a veri-
fication object VOΥδ(Vδ,Eδ) (or VOΥδ ) for Υδ(Vδ, Eδ), and
sends both Υδ and VOΥδ to the user Bob.

Threats. We assume a probabilistic polynomial adversary [8]
throughout the paper. There are two types of attacks. (1)
Data tampering attack by an adversary over the communica-
tion channel or at the distributor: the adversary tampers the
content, the structural order and/or the type of structural
relation (edge) between two or more nodes of a tree/subtree;
(2) Inference attack: a user, who has access to Υδ, which is
a portion of the data object Υ, attempts to infer informa-
tion from the signature ΨΥ(V,E) and the verification object
VOΥδ that it receives from D.

Security Definitions. As part of the authentication process,
a user Bob can verify the authenticity, i.e., integrity and
origin of Υδ(Vδ, Eδ) using the signature ΨΥ and the verifi-
cation object VOΥδ . Definition A.1 gives the formal defini-
tion of leakage-free signatures of trees and graphs. We de-
fine two experiments and two respective notions of security
for signatures of trees/graphs: Sig-Forgecma

A,Γ (n) and Sig-
Privcsa

A,Γ(n). The notion of integrity of a subtree/subgraph
captured in these definitions is: a subtree or subgraph is
not compromised as long as neither the content of any node
nor any structural relationship and ordering among siblings
has been compromised. Leakage-free notion is about “not
leaking any extraneous information in a tree/graph”: Ex-
traneous information in a tree/graph Υ(V, E) with respect
to its subtree Υδ(Vδ, Eδ) comprises of the nodes and edges
that are in Υ but not in Υδ.The auxiliary information used
by the MHT in order to authenticate a subtree also com-
prises of extraneous information [15].

In the appendix, we define two experiments and two se-
curity definitions of the signature scheme in an adverserial
model based on a probabilistic polynomial-time adversary
A: (1) one for the existentially unforgeable under adaptive
chosen-message attack property (Definition A.2), and (2)
another for the indistinguishable under the adaptive chosen-
signature attack (leakage-free) property (Definition A.3) of
the signature and the verification object. The “adaptive
chosen-signature attack” is analogous to “adaptive chosen-
ciphertext attack”. In this form of attack, a probabilistic
polynomial-time adversary A learns one or more messages
(trees or graphs) and the respective signatures as well as the
verification objects (instead of ciphertexts).

3. TREES
In this section, we propose a leakage-free signature scheme

Γ for trees. It relies on the notion of “secure names” that
are assigned to the nodes in a tree. The purpose of secure
names is to convey the order of siblings (which node is to the
left of which other node) without leaking anything else (e.g.,
whether they are adjacent siblings, how many other siblings
are between them, etc). For example, in Figure 1(a), a, b,
and c are siblings such that a ≺ b ≺ c. Secure names θa,
θb, and θc are assigned to a, b, and c, respectively. Given θa,
and θc, alongwith a and b, a user can establish the fact that
a ≺ c. But it cannot learn anything about b, or its existence
(extraneous information).

The signing procedure traverses a tree T (V, E) bottom-up,
and assigns an N -bit secure name θx to each node x in the
tree, and then computes the signature ΨT of the tree using

these secure names. Using the secure names of the nodes in a
tree, an “integrity verifier” for each node is computed, which
in turn is used to define the signature of the tree ΨT (V,E). A
user that receives a subtree Tδ also receives the signature of
the tree, and a verification object (VO) in order authenticate
the integrity and the origin of this subtree. VO is computed
using the integrity verifiers of those nodes that are not in the
subtree Tδ. The user verifies the signature of the tree using
the VO and the received subtree together. The structural
relationships between the nodes and the order between the
siblings in Tδ are verified using their secure names.

In the following sections, we have shown how to compute
the signature of a tree, and distribute, and how to authenti-
cate a subtree. To ease the exposition, we first introduce a
preliminary approach for naming the nodes, which is easier
to understand and is secure but is not efficient - it has an
exponential complexity. We then present the efficient so-
lution that is both secure and efficient for trees with large
branching factor.

3.1 Preliminary Scheme

3.1.1 Secure Names
Our approach for generating secure names follows a bottom-

up strategy. Let v1, . . . , vk be a list of siblings listed in left
to right order. Let lsb(s) denote the least significant bit of
the bit-string s. The secure names of siblings vi and vi+1

are computed such that the least significant bits of the hash
of θvi‖θvi+1 and the hash of θvi+1‖θvi are 1 and 0, respec-
tively. We call this as the ordering property of secure names.

Scheme-1: Algorithm to Compute Secure Names for T (V, E):

1. For the root node root of T , assign a random to θp̂root
.

2. Repeat the following statements for each x ∈ V . Let v1, v2, . . . , vk
be the set of the children of x.

3. Generate a random permutation π of the integers {1, . . . , k}.
4. Set θvπ(1) to be any random.

5. For i = 2, . . . , k, compute θvπ(i) as follows.

(a) Choose a random r.

(b) For j = 1, . . . , i− 1, do the following:

i. λ≺ ← H(θvπ(j) ‖ r).

ii. λ" ← H(r ‖ θvπ(j) ).

iii. If vπ(i) is to the left (resp., right) of vπ(j), then
check whether lsb(λ≺) is 1 (resp., 0) and lsb(λ")
is 0 (resp., 1).

iv. If the answer is “yes” for all j, then θvπ(i) ← r.

v. Else go back to Sub-step 3(a).

Example: In the tree in Figure 1(a), N -bit secure names
θa, and θb, are assigned to a, and b, respectively. θa is a
assigned as a random. θb is computed such that lsb(H(θa ‖
θb)) = 1 and lsb(H(θb ‖ θa)) = 0. This process is repeated
for each set of siblings.

3.1.2 Complexity
Scheme-1 takes O(n) time, where n is the number of nodes

in the tree. The probability that a particular choice of r is
found suitable for θvπ(i)) is 4−i+1, and the average number

of r values generated for the selection of such an θvi is 4i−1.
The expected time to compute the secure names all k siblings
is therefore:

Pk
i=1 4i−1 = (4k−1)/3, and the average time to

3



Figure 2: Secure names θVi and θx of siblings Vi and
x in the context of the efficient naming scheme.

compute all secure names is (n− ") ∗ (4k − 1)/3. Note that,
although it is quite unlikely to happen, it is nevertheless
possible that two non-sibling nodes receive the same secure
name. In such a case, step 5(a) should be repeated.

3.2 Efficient Scheme
The main drawback of the Scheme-1 is the fact that the

worst-case time to compute an θx, when x is the (j + 1)’th
leftmost child of its parent, is exponential in j (Step 3 in
Section 3.1.1). This section describes an improved scheme
that does not suffer from this drawback. As earlier, a non-
leaf node in a tree has k number of children.

3.2.1 Secure Names
The idea is, as before, to compute the θx’s (secure names)

bottom-up and, within a set of siblings, in left-to-right order.
The main difference is how a secure name θx is computed.

In this approach, we split the N -bit long secure name θx of
a node x into two disjoint parts: θl

x and θr
x of sizes L and R

refer to the left and right parts of θx, respectively (Figure 2).
If x is the leftmost child (i.e., the first child) of its parent
then θx is selected randomly. If x is (m+1)’th leftmost child
of its parent, then θx depends on the secure names of its left
siblings. Let w be a left sibling of x: w ≺ x. Two bits (bw

and b′w) in θl
w and two bits (bx and b′x) in θl

x are selected and
their values are set such that bw ⊕ bx < b′w ⊕ b′x. bw and
bx are the j’th leftmost bit in w and x, respectively, where
j is computed using θr

w and θr
x in this order (because w ≺

x). Similarly b′w and b′x are the (j′)’th leftmost bit in w and
x, respectively, where j′ is computed using θr

w and θr
x in the

reverse order. This is the ordering property of secure names
computed in this fashion. Alongwith N , (L− 2 ∗ k), and R
are sufficiently large as security parameters.

Algorithm to Compute Secure Names (Scheme-2):

1. Choose a sufficiently large N . Choose L and R are such
that (a) N = L + R, (b) R ≥ log(L), and (c) (L − 2 ∗ k)
and R are sufficiently large as security parameters.

2. Assign random values to the R bits of θr
x, and zero values

to the L bits of θl
x.

3. Associate with each bit of θl
x a status that is initially set

to not-used.

4. Let v1, . . . , vk be the siblings to the left of x, where vi is
the ith leftmost one. Note that each of the θvi ’s of these k
siblings of x have already been computed (due to the above
mentioned left-to-right order of computing the new names).

5. For i = 1 to k do the following.

(a) λ≺ ← H(θr
vi
‖ θr

x),

(b) λ" ← H(θr
x ‖ θr

vi
).

(c) j ← 1 + (λ≺ mod L).

(d) Let bi (resp., b) denote the jth leftmost bit of θl
vi

(resp., θl
x).

(e) If the status of b is not-used then continue with the
next step, else go back to step (3).

(f) j′ ← 1 + (λ" mod L).

(g) Let b′i (resp., b′) denote the (j′)’th leftmost bit of θl
vi

(resp., θl
x).

(h) If (j '= j′) and the status of b′ is not-used then pro-
ceed to the next step, else go back to step (3).

(i) Set b and b′ such that bi ⊕ b < b′i ⊕ b′.

(j) Change the status of b and b′ from not-used to used.

Example: For N = 512, choose L=360 for k ≤ 100, and
R=152 in the context of current computational power. In
the tree in Figure 1(a), secure names θa, and θb, are assigned
to a, and b, respectively. θa is an N -bit random and each
bit of θl

a is marked as not-used. θb is computed as follows.
θr

b is an R-bit random and θl
b is initialized to 0. Each bit

of θl
b is marked as not-used. j is computed as (1 + H(θr

a ‖
θr

b ) mod L). Since j’th leftmost bits of θl
a and θl

b referred
to as bi and b, respectively, are marked as not-used, j′ is
computed as (1 + H(θr

b ‖ θr
a) mod L). If (j (= j′) and

the (j′)’th leftmost bits of θl
a and θl

b referred to as b′i and
b′, respectively, are marked as not-used, then proceed as
follows. Assign either (0,0) or (1,1) to (bi,b

′
i) in θl

a, and
(0,1) or (1,0) to (b,b′) in θl

b. Such an assignment assures
that bi ⊕ b(= 0) < b′i ⊕ b′(= 1). The j’th and (j′)’th bits of
θa and θb are marked as used. θc depends on both θa and
θb. This process is repeated for each set of siblings.

3.2.2 Complexity
Note that the above algorithm translates into a simple

and constant-time test of which of two given siblings is to
the left of the other. But we need to analyze the expected
number of re-starts. Suppose that the size L of the left part
(θl

x) of a secure name is 500.
The probability of a “collision” and re-start at Step (1) is

the probability that 2k numbers drawn randomly from the
500 choices [1, 500] are not all distinct, i.e., that at least
2 of them are equal. This is the classic birthday problem,
and the probability of a re-start is (assuming 2k ≤ 500):
1−

Q2k−1
j=1 {(1−(j/500))} ≈ 1−e−(2k)(2k−1)/1000. For 2k = 50

this probability is 0.91, hence the expected number of re-
starts is (1/(1 − 0.91) = 11, which is much better than the
preliminary scheme where the expected number of re-starts
would have been proportional to 425. Scheme-2 incurs linear
cost O(n) in terms of the number of nodes in the tree.

3.3 Leakage-free Signatures of Trees (Sign)
In this section, we describe the signature, distribution and

verification protocols for trees. Prior to computing the sig-
natures, a dummy node is inserted by splitting an edge: if
e(x, y) is an edge in the original tree, add a node w such
that e(x, w) and e(w, y) are the new edges in the modified
tree. Secure name θw of each inserted node w is a random.
Such node w when given to a user only when the user has
access to both x and y. The ordering between them is not
needed to be verified by secure names.

3.3.1 Integrity Verifiers
An integrity verifier (IV ) of a node is the hash of the se-

cure name of its parent, its secure name and its contents.

4



In case of inserted nodes, no contents is used in IV . Using
the IV s, we define a signature ΨT (V,E) (also referred to as
ΨT ) for T (V, E). In cases when “the received subtree (sent
to the user) is the same as the original tree” is a sensitive
information, the signature of a tree may be salted using a
random value in order to protect this fact. The (salted) tree
signature is publicly available or passed to the user along-
with the subtree that the user has access to. ΨT (V,E) is an
aggregate signature, computed over the IV s of its nodes.
We define two types of signatures for trees: one based on
the condensed-RSA signatures [16] and the other based on
bilinear maps [4].

Definition 3.1 (Integrity Verifier). Let x be a node in
tree T (V, E), and cx be the content of node x. Its integrity verifier
(IV ) denoted by ξx, is defined as: ξx ← H(θp̂x

‖θx‖cx).

3.3.2 Signatures using Condensed-RSA
In this section, we define the signature of a tree based

on Condensed-RSA (CRSA, in short) signature scheme [16].
First, a review of this scheme.

Review of Condensed-RSA Signatures
The public key and private keys of an RSA scheme are
(n̄, ē), and d̄, respectively [16], where n̄ is the product of
two large random primes p̄ and q̄. ē, d̄ ∈ Z∗

n, such that
ēd̄ ≡ 1 mod (p̄ − 1)(q̄ − 1). A message M is signed
using RSA signature as follows: Signature of M ΨM ←
H(M)d̄ mod n̄. A RSA signature ΨM is verified as fol-

lows: ΨM
ē ?

= H(M) mod n̄. Let M1, M2, . . . , Mm refer
to m messages. The condensed signature of these m mes-
sages is computed as follows: first compute the RSA sig-
nature Ψi for each message i, 1 ≤ i ≤ m; then compute
the product of these signatures Ψ1,m ←

Qm
i=1 Ψi mod n̄.

The Condensed-RSA signature Ψ1,m is verified as follows:

(Ψ1,m)ē ?
=

Qm
i=1 H(Mi) (mod n̄). The definitions are sim-

plified versions of RSA with no padding. Condensed-RSA is
unforgeable against an adaptive chosen-message attack un-
der the assumption that RSA is a one-way function [16][2].

Definition 3.2 (Signature of Trees using CRSA). Let T (V, E)
be a tree. Let H denote a random oracle. Let the RSA signa-
ture Ψx of each node x be defined as follows Ψx ← ξd̄

x mod n̄,
where ξx is the IV of x. Let the salt be ωT be a random, and
let ΩT ← ωT

d̄ mod n̄. The signature of T , denoted by ΨT , is
defined as

ΨT = ΩT

Y

x∈V

Ψx mod n̄. (1)

3.3.3 Signatures using Aggregate Signatures
In this section, we define the structural signature of a tree

based on aggregate signatures (BGLS, in short)[4]. First, a
review of the same.

Review of Aggregate Signatures
Let G1 = 〈P〉 be an additively-written group of prime or-
der p, and let G2 be a multiplicatively written group of the
same prime order p. A mapping e : G1 × G1 → G2 is a
bilinear map if (i) E(aX, bY ) = E(X, Y )ab for all X, Y ∈ G1

and a, b ∈ Z∗p; and (ii) G2 = 〈E(P, P)〉. The mapping E is
efficiently computable, but given only P, aP, and X (but not
a) it is computationally infeasible to compute aX (i.e., the
Computational Diffie-Hellman problem is difficult in G1).
This difficulty is what enables the signature and aggregate
signature schemes based on bilinear pairings.

In this paper, we use the aggregate signature scheme by
Boneh at al. [4]. In such scheme, the signer’s secret key
is sk ∈ Z∗

p , Q = skP ∈ G1 is public (i.e., pk), and the
signature for a message m is skM with M = H(m) ∈ G1,
where H is a cryptographic one-way hash function. In the
aggregate signatures, given the public P and Q, and given
k message-signature pairs Mi, Ψi = skMi, 1 ≤ i ≤ k, the
signature is verified by checking that the following equality
holds: E(Q,

Pk
i=1 Mi) = E(P,

Pk
i=1 Ψi).

Definition 3.3 (Signature of Trees using BGLS). Let T (V, E)
be a tree. Let H denote a random oracle. Let the salt be ωT ←
H(a distinct random). The signature Ψx of each node x is de-
fined as Ψx ← skξx. The signature of T , denoted by ΨT , is
defined as

ΨT ← E(P, sk(ωT +
X

x ∈ V

ξx)). (2)

Algorithm for Signing a Tree T (V, E):
1. For each node x∈ V , compute its secure name θx, and com-

pute its IV : ξx←H(θp̂x
‖θx‖cx).

2. Assign a salt ωT to T .

3. If CRSA is used, compute the“signature of the tree”ΨT (V,E)
as follows:

(a) For each x ∈ V , Ψx ← (ξx)d̄ mod n̄.

(b) Compute the signature ΨT by evaluating Eq. 1, where

ΩT ← ωT
d̄ mod n̄.

4. If BGLS is used, compute the signature of each node, and
compute “signature of the tree” ΨT by evaluating Eq. 2.

3.4 Distribution (Dist)
The distributor D sends the following items to Bob, who

has access to Tδ(Vδ, Eδ), a subtree of tree T (V, E):
(Tδ(Vδ, Eδ),VOTδ ,ΨT ), where VOTδ(Vδ,Eδ) (also referred to
as VOTδ ) is the verification object of Tδ, and ΨT the signa-
ture of the T (V, E). The following steps show how to com-
pute VOTδ . D computes two collective integrity verifiers
ΨTδ and ∆Tδ as part of VOTδ over the integrity verifiers of
all the nodes that are not in the subtree and also includes
the salt.

1. VOTδ
← 〈ΨTδ

, ∆Tδ
, ΘTδ

〉, computed as follows.

2. ΘTδ
is the set of all secure names of the nodes and their

respective parents in Tδ : ΘTδ
← {(θx,θp̂x

)| x∈Vδ}.
3. Compute the collective integrity verifier ∆Tδ

as follows.

(a) CRSA: ∆Tδ
← ωT

Q
x∈(V−Vδ) ξx mod n̄;

ΨTδ
←

Q
x∈Vδ

Ψx mod n̄.

(b) BGLS: ∆Tδ
← ωT +

P
x∈(V−Vδ) ξx;

ΨTδ
← E(P,

P
x∈Vδ

Ψx).

∆Gδ is used to verify the signature of the tree, and is
used to detect if any node(s) has been dropped form Tδ in
an unauthorized manner. ΨTδ is used to verify the signature
of al the nodes in the subtree in an aggregate manner, and
is used to detect if any node(s) has been injected form Tδ in
an unauthorized manner. θx is the secure name of x.

3.5 Authentication (Vrfy)
Bob receives the subtree Tδ(Vδ, Eδ), the signature of the

tree ΨT , and the verification object VOTδ . As part of the
content authentication process, Bob computes the integrity
verifiers of the nodes in Vδ and combines them with the
received collective integrity verifier ∆Tδ . If the contents of
the nodes are valid, the structural integrity is verified with
the help of secure names: the parent-child relationship, and
the order among the siblings.

5



3.5.1 Authentication of Contents
Authentication of contents and structural positions of the

subtree received includes (1) verification of integrity and, (2)
verification of the source of the subtree.

1. For each node y in the set of received nodes Vδ , compute
ξy ← H(θp̂y

‖θy‖cy).

2. CRSA: Verify (a) and (b):

(a) (ΨTδ
)ē ?

=
Q

y∈Vδ
ξy (mod n̄) and,

(b) (ΨT )ē ?
= ∆Tδ

Q
y∈Vδ

ξy (mod n̄).

3. BGLS: Verify (a) and (b):

(a) (ΨTδ
)

?
= E(Q,

P
y∈Vδ

ξy)), and,

(b) (ΨT )
?
= E(Q,(∆Tδ

+
P

y∈Vδ
ξy)).

4. If (a) and (b) are valid, then the contents and secure names
of Tδ are authenticated. Otherwise, if (b) is invalid and
(a) is valid, then the received nodes are authenticated, but
either some nodes have been dropped, ∆Tδ

and/or ΨT have
been tampered with.

3.5.2 Verification of Structural Relations
The integrity verification of structural relations in a tree

involves traversing the tree and using the secure-name of two
siblings of its parent or its sibling. The user can carry out
verification of integrity of a n′-node subtree in O(n′)-time.
The steps are as follows:

1. Carry out a depth-first traversal on Tδ .

2. Parent-child relationship: Let x be the parent of y in Tδ ; if
(θx '= θp̂y

), then this relationship is incorrect.

3. Order among siblings: For ordered trees, in Tδ , let y and z
are children of x, and let y ≺ z.

(a) For scheme-1 (Section 3.1): y ≺ z ⇔(lsb(H(θy ‖
θz)) = 1) ∧ (lsb(H(θz ‖ θy)) = 0).

(b) For scheme-2 (Section 3.2):

i. j ← 1 + (H(θr
y ‖ θr

z) mod L)

ii. j′ ← 1 + (H(θr
z ‖ θr

y) mod L)

iii. by and bz are the j’th, and b′y and b′z are the
(j′)’th bits in θy and θz respectively.

iv. y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z .

4. GRAPHS
Our proposed authentication scheme for graphs is a gen-

eral one. It can be used for trees, DAGs, as well as graphs
with cycles. However, for trees, it is recommended to use
the scheme specifically developed for trees (in Section 3),
especially when the fact that the data is organized as trees
need not be kept as a secret from users. The scheme for
trees computes only one signature and is more efficient than
that for the graphs (described below). Moreover, as we will
see later (Section 6), the scheme for graphs can be used for
signing forests of trees and graphs as well as authenticate
such forests in a leakage-free manner.

Consider a simple graph G shown in Figure 1(b). It is a
directed acyclic graph (DAG) with node c having two im-
mediate ancestors - d and h (this DAG can be turned into
a cyclic graph, by adding a back-edge such as one from f to
h). Our solution for trees described earlier, does not work
for graphs. In case of graphs, a node may have multiple
incoming edges (i.e., multiple immediate ancestors such as
c), whereas in case of trees, a node has only one parent
(immediate ancestor) except for the root, which does not
have any parent. Therefore, in the context of graphs, we

cannot use the notion of integrity verifiers that is used for
trees (Definition 3.1). The challenge in designing leakage-
free signatures for graphs arises from the fact that the set
αδ(x) of immediate ancestors of a node x in a subgraph Gδ

is a (possibly empty) subset of the set α(x) of immediate
ancestors of x in G. The question is how to verify the au-
thenticity of αδ(x) without leaking any information about
(α(x)−αδ(x)): whether it is empty or non-empty, what is
its size, etc? For example, c has only d as its immediate
ancestor Gδ, whereas it has d and h as the immediate an-
cestors in G. How to authenticate the fact that d in fact is a
correct immediate ancestor of c in Gδ, without leaking any
information about h.

To that end, we define a notion of “signature of the imme-
diate ancestors” of a node. Recall that in the case of trees,
the integrity verifier of a node involves the secure name of its
parent (Definition 3.1). In case of graphs, the signature of
the immediate ancestors of a node x play the role of the “se-
cure name of the parent of a node”. Such a signature is com-
puted as an aggregate signature so that it facilitates the au-
thentication of a (possibly empty) subset αδ(x) (⊆ α(x)) of
immediate ancestors without leaking any information about
the remaining immediate ancestors (α(x) - αδ(x)).

The signature of the immediate ancestors of a node x de-
noted by Ψα

x is computed over the set of all immediate an-
cestors α(x) of x. Such a signature of a node c can be used
by a user to authenticate its immediate ancestors without
leaking. For example, if a user has access to c and h but not
f (such as in Gδ), then the following can be used to authen-
ticate the fact that h indeed is an immediate ancestor of c,
without leaking any information about f : Ψα

c , c, h, e(c, h)
and a item ∆α

c (part of VOGδ ).
The computation of such a signature Ψα

x is dependent on
the contents of all its immediate ancestors but not on the
structural order between them, if any. In order to compute
Ψα

x , we define an integrity verifier ξα
x of a node with respect

to its set of immediate ancestors α(x). The signature is
salted and the salt is referred to by ωα

x (in order to hide the
facts that x (such as h) does not have any immediate ances-
tor or a user has access to all the immediate ancestors). ξα

x

is a hash of a distinct random ηx and the content cx of x. Ψα
x

is either a CRSA-based or BGLS-based aggregate signature
computed using the integrity verifiers ξα

y of all of its imme-
diate ancestors (y ∈ α(x)). The following sections describes
how to compute the signature of immediate ancestors and
the secure name of a node in a subgraph.

4.1 Secure Names and Immediate Ancestors
Let us define the integrity verifiers and the signatures of

immediate ancestors first.

Definition 4.1 (IV of imm. ancestors). Let x be a node
in graph G(V, E). Let ηx be a random assigned to x, and let cx

be the contents of x. The integrity verifier ξα
x of x in the context

of its immediate ancestors of x is defined as: ξα
x ← H(ηx‖cx).

Definition 4.2 (CRSA-Signature of imm. ancestors). Let
x be a node in graph G(V, E). Let ωα

x be a salt defined as: ωα
x

← H(distinct random). Let Ωα
x ← (ωα

x )d̄ mod n̄. Let Ψα
x ←

(ξα
y )d̄ mod n̄. The signature Ψα

G(V,E) of G(V, E) based on CRSA

is defined as:

Ψα
x ← Ωα

x

Y

y∈α(x)

Ψα
y mod n̄. (3)

6



In the computation of CRSA-based signature, we reduce
the number of modular exponentiations by applying the op-
timization described in the context of trees in Section 3.3.

Definition 4.3 (BGLS-Signature of imm. ancestors). Let
x be a node in graph G(V, E). Let ωα

x be a random. The signature
Ψα

G(V,E) of G(V, E) based on BGLS is defined as:

Ψα
x ← E(P, sk(ωα

x +
X

y∈α(x)

ξα
x )). (4)

Algorithm for Computation of Secure Names for Graphs:

1. Let G(V, E) be a graph and x ∈ V .

2. Let α(x) denote the set of immediate ancestors of x in graph
G(V, E).

3. Let Ψα
x denote the “signature of the immediate ancestors”

of x (to be computed in the following steps).

4. For each node x,

(a) Assign a distinct random ηx.

(b) Assign a salt ωα
x to x with respect to the ancestors of

x.

(c) Compute the integrity verifier ξα
x ← H(ηx‖cx).

(d) If CRSA is used, compute the “signature of the imme-
diate ancestors” Ψα

x as follows:

i. Ωα
x ← (ωα

x )d̄ mod n̄.

ii. For each y ∈ α(x), Ψα
y ← (ξα

y )d̄ mod n̄.
iii. Compute the signature Ψα

x by applying Eq. 3.

(e) If BGLS is used, compute the “signature of the imme-
diate ancestors” Ψα

x by applying Eq. 4.

5. If G does not have any ordering between the siblings, then:
for each node x, assign a random θx (or as an optimization,
use ηx as θx).

6. Else (i.e., G is an ordered DAG - it has structural order
among sibling nodes), compute the secure names θx for
each node x as follows.

(a) If Scheme-1 (Section 3.1) is used to compute θx, then
use Scheme-1 as it is except the way λ≺ and λ" are
computed, which is given below.

i. Let the notations r, vπ(j), x, λ≺, λ" have the
same meaning as they do in the context of Scheme-
1.

ii. Compute λ≺ as follows (instead of as in Step
5(b)(i) in Scheme-1): λ≺ ← H(θvπ(j) ‖ r ‖ Ψα

x )

iii. Compute λ" as follows (instead of as in Step
5(b)(ii) in Scheme-1): λ" ← H(r ‖ θvπ(j) ‖ Ψα

x ).

(b) If Scheme-2 (Section 3.2) is used to establish the struc-
tural order among siblings, then use Scheme-2 as it is
except the way λ≺ and λ" are computed, which is
given below.

i. Let the notations vi, x, θr
vi

, and θr
x have the same

meaning as they do in the context of Scheme-2.
ii. Compute λ≺ as follows (instead of as in Step 6(a)

in Scheme-2): λ≺ ← H(θr
vi
‖ θr

x ‖ Ψα
x )

iii. Compute λ" as follows (instead of as in Step 6(b)
in Scheme-2): λ" ← H(θr

x ‖ θr
vi
‖ Ψα

x ).

4.2 Leakage-free Signatures of Graphs (Sign)
Now let us discuss how to compute the signature ΨG(V,E)

(also referred to as ΨG) of the actual graph G(V, E). An
integrity verifier ξx for each node x in the graph is computed
using θx, contents cx (as in the case of trees) as well as
Ψα

x , and ηx. The signature ΨG of the graph is computed
using the integrity verifiers of its nodes and are of two types:
CRSA-based or BGLS-based.

Definition 4.4 (Integrity Verifier). Let x be a node in
tree G(V, E), and cx be the content of node x. Its integrity verifier
(IV ) denoted by ξx, is defined as: ξx ← H(θx‖ηx‖Ψα

x‖cx).

Definition 4.5 (Signature of Graphs using CRSA). Let
H denote a random oracl, and ωG be a random. The RSA signa-
ture of each node x in a graph G(V, E) is Ψx ← ξd̄

x mod n̄. Let
the salt ωG be a random. The signature of G, denoted by ΨG, is
defined as

ΨG ← (ωG

Y

x∈V

ξx)d̄ mod n̄. (5)

Definition 4.6 (Signature of Graphs using BGLS). Let H
denote a random oracle, and ωG be a random. The signature Ψx

of each node xis defined as:Ψx ← skξx. The signature of G,
denoted by ΨT (V,E), is defined as

ΨG ← E(P, sk(ωG +
X

x ∈ V

ξx)). (6)

Algorithm for Signing a Graph G(V, E):

1. For each node x∈ V ,

(a) Compute the signature of its immediate ancestors Ψα
x

(either CRSA or BGLS).

(b) For each node x, compute its secure name θx.

(c) For each node x, compute its integrity verifier
ξx ← H(θx‖ηx‖Ψα

x‖cx).

2. Assign a salt ωG to G: ωG ← H(a distinct random).

3. If CRSA is used, compute the “signature of the graph” ΨG:

(a) For each x ∈ V , Ψx ← (ξx)d̄ mod n̄.

(b) Evaluate Eq. 5, where ΩG ← ωG
d̄ mod n̄.

4. If BGLS is used, compute ΨG by evaluating Eq. 6.

The signature scheme (including the scheme for comput-
ing secure names for signatures of immediate ancestors) has
a complexity of O(|V |+ |E|).

4.3 Distribution of Graphs (Dist)
The distributor D sends the following items to Bob, who

has access to Gδ(Vδ, Eδ), a subgraph of graph G(V, E):
(Gδ,VOGδ ,ΨG), where VOGδ (also referred to as VOGδ ) is
a verification object, and ΨG is the signature of G.

Computation of the verification object VOGδ(Vδ,Eδ):

1. For each node x ∈ Vδ , compute ∆α
x as follows.

(a) Let αδ(x) be the set of all immediate ancestors of x
that are in Gδ (Note that αδ(x) ⊆ α(x)).

(b) CRSA: ∆α
x ← ωα

x

Q
w∈(α(x)−αδ(x)) ξα

w mod n̄.

(c) BGLS: ∆α
x ← ωα

x +
P

w∈(α(x)−αδ(x)) ξα
w.

2. Compute ΨGδ
and ∆Gδ

as follows.

(a) CRSA: (a)ΨGδ
←

Q
y∈Vδ

Ψy mod n̄.

(b) ∆Gδ
← ωG

Q
y∈V−Vδ

ξy mod n̄.

(b) BGLS: (a)ΨGδ
← E(P,

P
y∈Vδ

Ψy).

(b) ∆Gδ
← ωG +

P
y∈V−Vδ

ξy .

3. ΘGδ
←{(θx,ηx,Ψα

x , ∆α
x ) | x∈Vδ}).

4. VOGδ
←〈ΨGδ

, ∆Gδ
, ΘGδ

〉.

7



∆Gδ is used to verify the signature of the graph, and is
used to detect if any node(s) has been dropped form Gδ in an
unauthorized manner. ΨGδ is used to verify the signature of
al the nodes in the subgraph in an aggregate manner, and is
used to detect if any node(s) has been injected form Gδ in an
unauthorized manner. θx is the secure name of x, ηx is the
random used to compute the integrity verifier for immediate
ancestors, Ψα

x is the signature of the immediate ancestors
of x. ∆α

x is used to verify the signature of the immediate
ancestors of x.

Example: D has to send Gδ in our example to Bob. ΨG is
a CRSA-signature. For the nodes a, b, c and d, D computes
the ∆α

a , ∆α
b , ∆α

c , and ∆α
d , respectively. ∆α

c is the modular
multiplication of the salt ωα

c and the “integrity verifier for
immediate ancestors” of h, because h is not an immediate
ancestor of c in Gδ. For b, ∆α

b is just the ωα
a (mod n̄) because

all the immediate ancestors of b (i.e., a and d) are in Gδ.
Next, D computes the ∆Gδ as a modular multiplication of
the salt ωG, and the integrity verifiers of f , g, and h, because
f , g, and h are not in Gδ. Now VOGδ is the tuple consisting
of ΨGδ , ∆Gδ and a set consisting of an element for each node
in Gδ. Such an element for a consists of the secure name θa,
ηa, signature of its immediate ancestors Ψα

a , and ξα
a . D then

sends the signature of the graph ΨG and VOGδ alongwith
Gδ, to the user.

4.4 Authentication (Vrfy)
Bob receives the subgraph Gδ(Vδ, Eδ), the secure name θx

of each node x, verification object VOGδ , and the signature
of the graph ΨG. It verifies the authenticity of the contents;
if they are authentic then the structural integrity is verified.

4.4.1 Authentication of the contents of subgraph Gδ

By contents we mean the contents of each node x as well
as the following items: θx, ηx, Ψα

x , ∆α
x . They are used for

computing the integrity verifier of x (according to Defini-
tion 4.4). In order to authenticate contents of Gδ(Vδ, Eδ),
Bob first computes the integrity verifiers ξx for each node,
and then combines them appropriately with ∆Gδ in order
to verify the signature ΨG. If the signature verifies, the
contents are also verified. Authentication of contents of
Gδ(Vδ, Eδ) has a complexity of O(|Vδ|+ |Eδ|).

Verification of Contents in a Subgraph:

1. For each node x ∈ Vδ in a subgraph Gδ(Vδ , Eδ), compute
its integrity verifier: ξx ← H(θx‖ηx‖Ψα

x‖cx).

2. CRSA: Compute (a) ((ΨGδ
)ē ?

=
Q

x∈Vδ
ξx (mod n̄)) and,

(b) ((ΨG)ē ?
= ∆Gδ

Q
x∈Vδ

ξx (mod n̄)).

3. BGLS: (a) (ΨGδ

?
= E(Q,

P
x∈V ′ ξx)) and,

(b) (ΨG
?
= E(Q, ∆Gδ

+
P

x∈V ′ ξx)).

4. If (a) and (b) are valid, then the contents and secure names
of Gδ are authenticated. Otherwise, if (b) is invalid and
(a) is valid, then the received nodes are authenticated, but
either some nodes have been dropped, ∆Gδ

and/or ΨG have
been tampered with.

Example: Bob computes the integrity verifiers of a, b, c
and d in Gδ in our example. Consider CRSA signatures.
Bob computes a modular multiplication of these integrity
verifiers together with ∆Gδ received as part of VOGδ . Then
Bob applies the signature verification process of CRSA on
the result of this multiplication and the received signature

ΨG of the graph. If the verification turns out to be valid,
the contents are authenticated.

4.4.2 Authentication of the structural relationships
In order to verify whether Bob has the correct set of im-

mediate ancestors αδ(x) of each node x, Bob verifies the
signature of the set of immediate ancestors Ψα

x . The verifi-
cation process first computes the integrity verifier ξα

y of each
node y ∈ αδ(x) using ηx and cx, which are part of ΘGδ . In
order to verify the signature Ψα

x with respect to the received
set of immediate ancestors of x, the integrity verifiers of each
such y (for x) are combined in the same manner as in Sec-
tion 4.4.1 with the respective collective integrity verifier for
∆α

x . If the signature is verified to be valid, x has the correct
set of immediate ancestors in the subgraph.

In order to verify the integrity of the ordering among sib-
lings (in ordered DAGs), Step 4(a) or 4(b) in Section 3.5.2
can be used for Scheme-1 or Scheme-2, respectively. Verifica-
tion of immediate ancestors and the structural order between
siblings in Gδ(Vδ, Eδ) has a complexity of O(|Vδ|+ |Eδ|).

Verification of Immediate Ancestors in a Subgraph:

1. For each node x ∈ Vδ in a subgraph Gδ(Vδ , Eδ),

(a) Let αδ(x) be the set of immediate ancestors of x in
Gδ . Verify the signature of the graph.

(b) CRSA: If (Ψα
x )ē ≡ ∆α

x

Q
y∈αδ(x) ξα

y (mod n̄)) , then

αδ(x) is authenticated.

(c) BGLS: If (Ψα
x == E(Q,∆α

x+
P

y∈αδ(x) ξα
y )), then αδ(x)

is authenticated.

Example: Bob computes the “integrity verifiers for im-
mediate ancestors” of a, b, c and d in Gδ in our example.
Consider CRSA signatures. For c, Bob computes a mod-
ular multiplication of the integrity verifier ξα

d and the ∆α
c

received as part of ΘGδ , because d is the immediate ances-
tor of c in Gδ. Then Bob applies the signature verification
process of CRSA on the result of this multiplication and the
received signature Ψα

c of immediate ancestors of c. If the
verification turns out to be valid, d is authenticated to be
the immediate ancestor of c.
Optimization: Batch Verification of Immediate Ancestors in
a Subgraph: The above scheme for verification of immedi-
ate ancestors of each x in Gδ can be carried out in constant
(O(1)) time. We can use CRSA or BGLS aggregation to-
wards this in the same manner as we batch verify the signa-
ture of the subgraph and the graph. The distributor com-
putes an aggregate of Ψα

x for all x in Vδ (which is denoted by
Ψα

Gδ
), and the aggregate of ∆α

x (which is denoted by ∆α
Gδ

).
The user Bob batch verifies the signature Ψα

Gδ
by ∆α

Gδ
and

the received nodes.

5. SECURITY ANALYSIS
This section analyzes the soundness of the structural au-

thentication scheme in terms of its authenticity and con-
fidentiality guarantees with respect to information leakage
defined earlier. The proofs are given in the Appendix.

5.1 Trees

Lemma 5.1. Under the Random Oracle Model, the signature
scheme Γ = (Gen, Sign, Dist, Vrfy) for trees using either CRSA
or BGLS is existentially unforgeable under the adaptive chosen-
message attack, i.e., Pr(Sig-Forgecma

A,Γ (n)=1) ≤ 1
2+ negl(n).

8



Lemma 5.2. Under the Random Oracle Model, the signature
scheme Γ ≡ (Gen, Sign, Dist, Vrfy) for trees using either CRSA
or BGLS is indistinguishable under the adaptive chosen-signature
attack, i.e., Pr(Sig-Privcsa

A,Γ(n)=1) ≤ 1
2+ negl(n).

The proposed signature schemes for trees and graphs are
also secure against the leakage of “absence”of extraneous in-
formation (indistinguishability). For example, the fact that
a leaf node in a subtree is also a leaf node in the tree, cannot
be inferred with non-negligible probablity by an adversary
A. With respect to an appropriate definition of signature
indistinguishability for such a notion, it can be (formally)
shown that the proposed signatures for trees and graphs are
secure. Definition A.3 deals with the “presence” of extrane-
ous information.

5.2 Graphs
Lemma 5.3. Under the Random Oracle Model, the signature

scheme Γ = (Gen, Sign, Dist, Vrfy) for graphs using either
CRSA or BGLS is existentially unforgeable under the adaptive
chosen-message attack, i.e., Pr(Sig-Forgecma

A,Γ (n)=1) ≤ 1
2+ negl(n).

Lemma 5.4. Under the Random Oracle Model, the signature
scheme Γ = (Gen, Sign, Dist, Vrfy) for graphs using either
CRSA or BGLS is indistinguishable under the adaptive chosen-
signature attack, i.e., Pr(Sig-Privcsa

A,Γ(n)=1) ≤ 1
2+ negl(n).

6. DISCUSSION

Forests of Trees and Graphs. Our scheme for graphs can
be used to sign and authenticate forests, i.e., dis connected
graphs (including trees) in a leakage-free manner. There are
two approaches: (1) assign a dummy node and connect all
the disconnected components to this dummy node. Since
our scheme is provably leakage-free, signing such a trans-
formed graph is also provabyly leakage-free. (2) treat each
non-dis-connected (or weakly connected) component of the
forest as a super-node, assign a salt to each such super-node,
compute the signature of each super-node using the scheme
for graphs, and then compute the signature of the forest as
in the same manner as the signature of the immediate ances-
tors in a graph is computed, where each immediate ancestor
is essentially one of the super-nodes (Section 4.1).

Dynamic Trees and Graphs. In order to inrementally com-
pute the signature of the updated tree, an insertion (resp.,
deletion) of a new node requires a new secure name, and
leads to a modular multiplication (resp., division) in case of
CRSA and an group addition (resp., subtraction) on the el-
liptic curve followed by a bilinear operation. In an updated
graph, the signature of immediate ancestors has also to be
updated appropriately. Unlike in the MHT, in our schemes,
the updates are local in nature, and do not get propagated
up in a tree.

Answer Freshness and Prevention of Replay Attacks: The
proposed authentication schemes prevent replay attacks and
guarantee answer freshness by incorporating timestamps in
the signatures as an extra element.

7. RELATED WORK
Integrity assurance of tree-structured data is primarily

carried by the Merkle hash technique [15]. This scheme re-
quires knowledge of certain extraneous information in order

to verify the integrity of a subtree. It has been used in
many scenarios such as: integrity assurance of XML [6], se-
lective dissemination of XML data [3], integrity assurance
of DAGs [14], verifying completion of query results [18], and
authentication of text search results [17]. Merkle hash tech-
nique is integrity-preserving, but at the same time leaks [5].
Such a technique is not suitable for integrity assurance in
high assurance environment and in privacy-preserving envi-
ronments. For example, even a small amount of leakage of
healthcare information may prove to be quite disastrous for
a healthcare provider or the patient. Use of one-way accu-
mulators [9] cannot also prevent leakage due to Merkle hash
techniques and techniques derived from it.

There is little work concerning the problem of leakage-
free integrity verification of trees and graphs. Kundu and
Bertino [12] have investigated this problem and have pro-
posed a notion of structural signatures for trees. However,
the structural signature scheme for graphs proposed by them [13]
is more expensive than the one proposed here in terms of the
number of integrity verifiers (per node and back-edges): it
requires more than one depth first-traversals of graphs with
cycles (proportional to the number of back-edges), where as
the proposed scheme requires only one depth-first traver-
sal of the graph (irrespective of the number of back-edges).
Moreover, the scheme proposed in this paper can be applied
to implement privacy-preserving sets.

8. CONCLUSION AND FUTURE WORKS
In this paper, we solve the problem of how to authenticate

trees and graphs without leaking. Such a problem has im-
portant applications such as in third party data distribution
environments, cloud computing, and in privacy-preserving
data mining. The proposed schemes are important in au-
thenticating integrity of data as well as in protecting confi-
dentiality of data and privacy of associated users.

We proposed two leakage-free authentication schemes: one
for trees and another for graphs. The scheme for graphs is
a general one - it can be used to sign as well as authenticate
(at the user side) any form data organization structures -
trees, DAGs, graphs with cycles, forests of trees and graphs.
As part of the signature schemes, we also proposed to an
efficient secure naming schemes; secure names are used to
establish the sibling order between the nodes in case of or-
dered trees and ordered DAGs. The scheme for trees com-
pute only one signature (based on CRSA or BGLS), whereas
the scheme for graphs compute O(m) number of signatures,
where m is the number of nodes. Our schemes are highly
scalable. Complexity analysis as well as performance results
show that not only the scheme for trees but also the scheme
for graphs incur linear cost. We also proved the security
of the authentication schemes. To that end, we defined a
notion of indistinguishability for signatures. How dynamic
modifications of trees and graphs are authenticated are de-
scribed. We also show how forests (e.g., a set of databases)
can be authenticated without leaking.

The proposed authentication schemes have applications
such as in healthcare databases, and in authentication of
query results of biological and scientific databases. In future,
we plan to apply this scheme to some of those domains, as
well as in leakage-free assurance of data authenticity in cloud
computing.

9. REFERENCES

9



[1] Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D. Joseph, Randy H. Katz, Andrew
Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, and Matei Zaharia. Above the clouds: A
berkeley view of cloud computing. Technical report,
University of California, Berkeley, 2009.

[2] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast
batch verification for modular exponentiation and
digital signatures. In EUROCRYPT, 1998.

[3] E. Bertino, B. Carminati, E. Ferrari,
B. Thuraisingham, and A. Gupta. Selective and
authentic third-party distribution of XML documents.
IEEE TKDE, 16(10):1263–1278, 2004.

[4] D. Boneh, C. Gentry, H. Shacham, and B. Lynn.
Aggregate and verifiably encrypted signatures from
bilinear maps. In EUROCRYPT, 2003.

[5] A. Buldas and S. Laur. Knowledge-binding
commitments with applications in time-stamping. In
Public Key Cryptography, pages 150–165, 2007.

[6] P. Devanbu, M. Gertz, A. Kwong, C. Martel,
G. Nuckolls, and S. G. Stubblebine. Flexible
authentication of xml documents. J. Comput. Secur.,
12(6), 2004.

[7] P. T. Devanbu, M. Gertz, Ch. U. Martel, and S. G.
Stubblebine. Authentic data publication over the
internet. J. Comput. Secur., 11(3), 2003.

[8] Shafi Goldwasser and Silvio Micali. Probabilistic
encryption. Special issue of Journal of Computer and
Systems Sciences, 28(2):270–299, April 1984.

[9] M. T. Goodrich, R. Tamassia, and J. Hasic. An
efficient dynamic and distributed cryptographic
accumulator. In ISC, 2002.

[10] H. Hacigumus, S. Mehrotra, and B. Iyer. Providing
database as a service. In ICDE, 2002.

[11] J. Katz and Y. Lindell. Introduction to Modern
Cryptography: Principles and Protocols. Chapman &
Hall/CRC, 2007.

[12] A. Kundu and E. Bertino. Structural signatures for
tree data structures. In VLDB, 2008.

[13] A. Kundu and E. Bertino. How to authenticate graphs
without leaking. In EDBT, 2010.

[14] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz,
A. Kwong, and S. G. Stubblebine. A general model for
authenticated data structures. Algorithmica,
39(1):21–41, 2004.

[15] R. C. Merkle. A certified digital signature. In
CRYPTO, 1989.

[16] Einar Mykletun, Maithili Narasimha, and Gene
Tsudik. Authentication and integrity in outsourced
databases. ACM Trans. of Storage, 2(2):107–138, 2006.

[17] HweeHwa Pang and Kyriakos Mouratidis.
Authenticating the query results of text search
engines. In VLDB, 2008.

[18] Hweehwa Pang and Kian-Lee Tan. Verifying
completeness of relational query answers from online
servers. ACM TISSEC, 11(2):1–50, 2008.

APPENDIX
A. SIGNATURE SECURITY

Definition A.1 (Leakage-free Signature Scheme Γ).
Let Υ(V, E) refer to either a tree or a graph, and Υδ(Vδ, Eδ)
⊆ Υ(V, E). A leakage-free signature scheme Γ for a tuple of
three probabilistic polynomial algorithms and one determin-
istic algorithm (Vrfy) Γ ≡ (Gen, Sign, Dist, Vrfy) satisfy-
ing the following requirements:

1. A key generation algorithm Gen takes as input a se-
curity parameter 1n and outputs a pair of keys (pk,
sk), where pk and sk are the public and private keys,
respectively. We assume for convention that each of
these keys has length n, and that n can be determined
from pk and sk.

2. The signing algorithm Sign takes as input a private key
sk and tree/graph Υ, where the content cx of each node
x ∈ V is such that cx ∈ {0, 1}∗. It (i.e., Signsk(Υ(V, E)))
outputs a signature ΨΥ and a verification object VOΥ .

3. The distribution algorithm Dist takes as input Υ(V, E),
its signature ΨΥ , the verification object VOΥ , and sub-
tree/subgraph (depending on whether Υ is a reference
to a tree or a graph) Υδ(Vδ, Eδ) ⊆ Υ(V, E).
Dist(Υ, ΨΥ ,VOΥ , Υδ) outputs a verification object VOΥδ

for Υδ.

4. The deterministic verification algorithm Vrfy takes as
input a public key pk, a subtree/subgraph Υδ(Vδ, Eδ),
whose integrity needs to be verified, a signature ΨΥ , and
a verification object VOΥδ . Vrfypk(Υδ(Vδ, Eδ),VOΥδ , ΨΥ)
outputs a bit b, with b = 1 meaning valid (i.e., Υδ has
not been tampered with) and b = 0 meaning invalid
(i.e., Υδ has been tampered with).

Existentially unforgeable under adaptive chosen-
message attack:

Definition A.2 (Signature: Integrity). Consider the
signature-forging experiment Sig-Forgecma

A,Γ (n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Probabilistic polynomial-time (or simply, poly-time) ad-
versary A is given pk, and oracle access to Signsk(·),
and Dist(·), which in turn have oracle access to H(·).
A then outputs the signature ΨΥ for Υ. A also outputs
one or more distinct pairs (Υδ,VOΥδ ), where VOΥδ is
a verification object for Υδ ⊆ Υ. Let Q be the set con-
sisting of Υ’s (and α(x)’s for a node x in a graph Υ),
whose signatures were requested by A from Sign during
its execution.

3. The output of the experiment is defined to be 1 if either
(a), (b) or (c) holds, otherwise the output is 0:

(a) Υ (∈Q, Υδ⊆Υ: Vrfypk(Υδ,VOΥδ , ΨΥ)=1.

(b) Υδ⊆Υ, Υ′
δ (=Υδ: Vrfypk(Υδ,VOΥ′

δ
, ΨΥ)=1. (This

is equivalent to the following: Vrfypk(Υ
′
δ,VOΥδ , ΨΥ)=1.)

(c) Υ′
δ (⊆Υ: Vrfypk(Υ

′
δ,VOΥ′

δ
, ΨΥ)=1.

The signature scheme Γ ≡ (Gen, Sign, Dist, Vrfy) is exis-
tentially unforgeable under adaptive chosen-message attack
if
Pr(Sig-Forgecma

A,Γ (n)=1) ≤ 1
2+ negl(n).1

1negl(n) denotes a negligible function defined as follows: if
for every polynomial p(.), an integer N exists such that for
all integers n > N it holds that negl(n) < 1

p(n) ([11]:Defini-

tion 3.4).

10



Indistinguishable under the adaptive chosen-signature
attack (leakage-free):

Definition A.3 (Signature: Indistinguishability). Consider
the signature-indistinguishability experiment Sig-Privcsa

A,Γ(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Probabilistic polynomial-time adversary A is given pk and
oracle access to Signsk(·), Dist(·) and Vrfypk(·), which in

turn have oracle access to the H(·). A outputs an object
Υ0(V0, E0), which is a tree or a graph. Draw a random a
from {0,1}. If a is 0, Υ1(V1, E1) refers to Υ0(V0, E0), else
create Υ1(V1, E1) such that Υ0 ⊂ Υ1, and if Υ0 is a tree,
then Υ1 is also a tree. A signature ΨΥ1 and VOΥ1 are com-
puted by Signsk(Υ1(V1, E1)). Dist(Υ1, ΨΥ1 ,VOΥ1 , Υ0) com-
putes VOΥ0 for Υ0(V0, E0), and the challenge
(Υ0(V0, E0),VOΥ0 ,ΨΥ1) is given to A.

3. The adversary A continues to have oracle access to Signsk(·),
Dist(·), and Vrfypk(·), which in turn have oracle access to

the H(·). Eventually, A outputs a structure (i.e., with no

content in any node) eΥ′(eV ′, E′).

4. The output of the experiment is 1 if
fΥ0(eV0, E0)⊂eΥ′(eV ′, E′)⊆fΥ1(eV1, E1) holds, and 0 otherwise.

The signature scheme Γ ≡ (Gen, Sign, Dist, Vrfy) is indistin-
guishable under the adaptive chosen-signature attack (leakage-
free) if Pr(Sig-Privcsa

A,Γ(n)=1) ≤ 1
2 + min(negl(n), negl(m)),

where the number of nodes in Υ1 be m.

B. PROOFS FOR TREES
Proof (Sketch) of Lemma 5.1. Let us first consider the

authentication of contents of the nodes. In Γ with CRSA,
the authentication of the contents in the nodes of Tδ ⊆ T ,
Vrfy computes ∆Tδ

Q
y∈Vδ

ξy. Substituting ωT
Q

x∈(V−Vδ) ξx

for ∆Tδ , we get ∆Tδ

Q
y∈Vδ

ξy = (ωT
Q

x∈(V−Vδ) ξx)
Q

y∈Vδ
ξy

= ωT
Q

x∈V ξx = (ΨT (V,E))
ē (mod n̄) (by Definition 3.2).

Similarly, when BGLS is used, the signature works be-
cause, Vrfy computes: E(Q,(∆Tδ+

P
y∈Vδ

ξy))
= E(Q,(ωT +

P
x∈(V−Vδ) ξx+

P
y∈Vδ

ξy)) = E(Q,(ωT +
P

x∈V ξx))
= ΨT (V,E) (by Definition 3.3).

Now consider the conditions in which the experiment Sig-
Forgecma

A,Γ (n) would output 1 with a non-negligible probabil-
ity. Forger F is a polynomial time algorithm that invokes
adversary A in order to forge the signature of a tree:

1. Forger generates a T (V, E), and sends it to A.

2. If T (V, E) has not been signed by Sign·(, ) A computes
ΨT and sends (T (V, E),VOT ,ΨT ) back to F .

Suppose that the condition Step 3(a) in this experiment
holds. for T (∈ Q, and for Tδ(Vδ, Eδ) ⊆ T (V, E),
Vrfypk(Tδ(Vδ, Eδ),VOTδ , ΨT ) = 1. Note that ∆T (in VOT )
is same as ωT . If F is capable of coming up with a signature
ΨT for T in polynomial time, then Condensed-RSA can been
forged in polynomial time, which in turn implies that the
batch RSA signature can be broken. However, Condensed-
RSA is known to be existentially unforgeable under adap-
tive chosen-message attack [16] due to the fact that batch-
RSA is also existentially unforgeable under adaptive chosen-
message attack [2]. Therefore, the probability for the exper-
iment Sig-Forgecma

A,Γ (n) to return 1 is negligible: Pr(Sig-
Forgecma

A,Γ (n)=1) ≤ negl(n). Similarly, if BGLS is used, and
F is capable of forging ΨT for some tree, then the BGLS
aggregate signature scheme is broken by the polynomial-
time algorithm F . However, BGLS is existentially unforge-
able under adaptive chosen-message attack [4]. Therefore,
Pr(Sig-Forgecma

A,Γ (n)=1) ≤ negl(n).

Next, consider that the condition Step 3(b) in the exper-
iment holds: for Tδ(Vδ, Eδ) ⊆ T (V, E), T ′

δ (= Tδ,
Vrfypk(Tδ(Vδ, Eδ),VOT ′

δ
, ΨT ) = 1. The signature ΨT is re-

turned by Signsk(T (V, E)). The forger F implements a poly-
nomial time algorithm that invokes A in order to authenti-
cate a genuine subtree Tδ(Vδ, Eδ) with the verification object
VOT ′

δ
of some other subtree T ′

δ, i.e., either

Dist(T (V, E), ΨT ,VOT , Tδ) was not invoked by A or the
verification object that it returned is not same as VOT ′

δ
.

Vrfypk((Tδ(Vδ, Eδ),VOT ′
δ
, ΨT )) computes ∆T ′

δ

Q
y∈Vδ

ξy. Sub-

stituting ∆T ′
δ

= ωT ′
Q

x∈(V ′−V ′
δ ) ξx, where T ′ may or may not

be the same tree as T , we get ∆T ′
δ

Q
y∈Vδ

ξy =

(ωT ′
Q

x∈(V ′−V ′
δ ) ξx)(

Q
y∈Vδ

ξy). In case, T ′ is same as T ,

then the above translates to (ωT
Q

x∈(V−V ′
δ ) ξx)(

Q
y∈Vδ

ξy).

Since the forgery by F succeeds, this computation in fact
leads to ΨT : (ωT

Q
x∈(V−V ′

δ ) ξx) (
Q

y∈Vδ
ξy) = ΨT . Note

that V ′
δ (= Vδ, since T ′

δ (= Tδ. Therefore, a forgery on Condensed-
RSA has been successful. In case, T ′ is a different tree than
T , the fact that (ωT ′

Q
x∈(V ′−V ′

δ ) ξx)(
Q

y∈Vδ
ξy) translates to

ΨT implies that a forgery on Condensed-RSA has been suc-
cessful. Therefore, for the condition (b) in the context of
CRSA, Pr(Sig-Forgecma

A,Γ (n)=1) ≤ negl(n). Similar argu-
ments can be applied for BGLS to show that the probability
for Sig-Forgecma

A,Γ (n)=1 is negligible.
Now consider that the condition Step 3(c) in Sig-Forgecma

A,Γ (n)
holds: for T ′

δ(V
′

δ , E′
δ) (⊆ T (V, E), Vrfypk(T

′
δ(V

′
δ , E′

δ),VOT ′
δ
, ΨT )

= 1. Vrfypk(T
′
δ(V

′
δ , E′

δ),VOT ′
δ
, ΨT ) computes ∆T ′

δ

Q
y∈V ′

δ
ξy.

Substituting ωT ′
Q

x∈(V ′−V ′
δ ) ξx for ∆T ′

δ
, where T ′ is not the

same tree as T , we get ∆T ′
δ

Q
y∈Vδ

ξy

=(ωT ′
Q

x∈(V ′−V ′
δ ) ξx)(

Q
y∈V ′

δ
ξy) = ΨT ′(V ′,E′). Since the forgery

by F succeeds, the signature ΨT ′(V ′,E′) of tree T ′(V ′, E′) is
in fact same as the signature ΨT of a different tree T (V, E).
This in turn means we have broken the CRSA scheme. Sim-
ilar arguments for BGLS can show that if a forger succeeds,
then the BGLS scheme is broken. Therefore, the probability
for Sig-Forgecma

A,Γ (n) to be successful is negligible (negl(n)).
The Vrfy procedure verifies the structural integrity after

the contents of all the nodes in Tδ as well as the secure
names (in VOTδ ) are authenticated. Suppose that a forger F
successfully modifies the relationship that x is the parent of
y to “y is the parent of x”. In order to achieve this, F cannot
modify the secure name of x, and y, which otherwise would
lead to the failure of authentication of contents. This is
because, signature of T is dependent on the integrity verifier
of x and y, which in turn are dependent on the secure names
θx, θp̂x

, and θy. Another way in which F can be successful is
as follows: Let ξx

′ = H(θx‖θy‖cx) (y is parent of x), and ξy
′

= H(θy‖θp̂x
‖cx) (the old parent of x p̂x is the parent of y,

after F modifies the relationship). Therefore F ensures that
ξx
′ = H(θx‖θp̂x

‖cx), which is same as the integrity verifier
ξx; and ξy

′ = H(θy‖θx‖cx), which is same as the integrity
verifier ξy. This leads to a collision for H, which is not
feasible under the Random Oracle Model.

If F succeeds in modifying the order between two siblings
x and y, then F needs to modify θx or θy, which however is
a hard problem.

Proof (Sketch) of Lemma 5.2. Inferrer F is a poly-
nomial time algorithm that invokes adversary A in order to
infer extraneous information from the signature and verifica-
tion objects of a tree using the experiment Sig-Privcsa

A,Γ(n):

11



1. F generates a T0(V0, E0), and sends it to A.

2. A invokes Sign′sk(T0), which outputs ΨT1 and VOT1 ;

3. A then invokes Dist(T1, ΨT1 ,VOT1 , T0), which returns
(T0, VOT0 , ΨT1) to A.

4. A sends a tree structure eT ′(eV ′, E′) to F .

In order to satisfy the condition in Step 5 of the experi-
ment Sig-Privcsa

A,Γ(n), A outputs a tree structure eT ′(eV ′, E′)

such that T0 ⊂ eT ′ ⊆ T1. eT ′(eV ′, E′) is minimal as follows: a

node w is in both V1 and eV ′ but not in V0, an edge e(x, w) is

in both E1 and eE′, but not in E0, and x is in V1, eV ′, as well
as in V0. The following cases describe the possible positions
of x in eT ′ with respect to T0:

1. x is a leaf in T0, and w is child of x in eT ′.

2. x is the root of T0, and w is the parent of x in eT ′.

3. x is an intermediate node in T0, and w is the leftmost
child of x in eT ′.

4. x is an intermediate node in T0, and w is the rightmost
child of x in eT ′.

5. x is an intermediate node in T0 and y and z are children
of x in T0, and w is a child of x in eT ′ such that y ≺ w
≺ z.

In all these cases, computation of ∆T0 (in VOT0=〈∆T0 , ΘT0〉)
(by Dist(·)) involves θw, because w is in T1, but not in T0.
That is, ∆T0 = ωT1

Q
z∈(V1−V0) ξz (mod n̄). The fact that A

claims that w is in T1 but not in T0 (by incorporating w in
eT ′) implies that it has determined in polynomial time that
other than ωT1 , there is at least one more value ξw (which
is pseudorandom due to Definition 3.1) involved in the com-
putation of ∆T0 , which however is hard. For Cases 1 to 4, it
is not possible to infer the existence of w from ΘT0 , which is
the following set: {(θx,θp̂x

)|x∈V0}. For Case 5, the adver-
sary A uses the knowledge of the secure names of the nodes
in T0 in order to show that w exists in eT ′ as described in
Case 5 (and in turn T1, because eT ′ ⊆ fT1). However, as we
show in the next paragraphs, θy of each node y with a rank i
among its siblings (the leftmost and rightmost siblings have
ranks 1 and k, resp.), reveals something about i with only
a negligible probability. Therefore, Sig-Privcsa

A,Γ(n) = 1 oc-
curs with negligible probability negl(n), assuming that the
size of the secure names is n-bits.

Scheme-1: Let all secure names be in the interval [1 : U ].
Let y be a node with rank i among its siblings and be re-
ferred to as vi (to remain consistent with the terminology
used in the scheme). To prove that a secure name θvi re-
veals nothing about i, it suffices to prove that the proposed
process for secure-name computation is such that the proba-
bility of an θvi being equal to any u ∈ [1 : U ] is independent
of i. We write the event {θvi = u} as the union of k dis-
joint events E1, . . . , Ek where Ej = {π(i) = j, θvi = u}. We
thus have: Pr(θvi = u) =

Pk
j=1 Pr(π(i) = j, θvi = u) =

Pk
j=1(1/k)(1/U)(1/4j−1)

where we used the facts that: (i) Pr(π(i) = j) = 1/k; (ii)
θvi is u iff Sub-step 3(a) selects u out of the U choices (with
probability 1/U) and that choice is not discarded in Sub-step
3(b), i.e., the choice is admissible relative to the j − 1 other
already assigned secure names (probability of non-discard is
4−j+1). Because

Pk
j=1 1/4j−1 = (4/3)(1 − 4−k) we obtain:

Pr(θvi = u) = (4/3kU)(1− 4−k), which is independent of i,
as required.

The secure names do not leak information on k or m (the
number of nodes in the tree) either, because each secure
name is drawn uniformly from a subset of [1 : U ] that is
both large (of size approximately 4U/3k) and uniform over
all such subsets of [1 : U ], hence indistinguishable from a
random choice over [1 : U ].

Scheme-2: As earlier, let all secure names be in the inter-
val [1 : U ]. To prove that a secure name θx reveals noth-
ing about its rank i among its siblings, it suffices to prove
that the process for secure-name assignment is such that the
probability of a bit in θx being either 0 or 1 is 1

2 , and it is
true for all the bits in θx. We give a proof by induction.
Basis: Case I: x is the left-most child of its parent: θx is
randomly chosen.
Case II: x is the second left-most child of its parent: Let v1

be the left sibling of x. The R bits are randomly chosen.
Two out of the remaining bits referred to as b and b′ are
chosen such that (b1⊕ b) < (b′1⊕ b′) (Step 2 of the scheme).
However, b1 and b′1 are bits in the random v1, i.e. the proba-
bility that the value of b1 (or b′1) is either 0 or 1 is 1

2 . Result
of the XOR (⊕) of a random number with another (possibly
non-random) number is also a random number [11]. Thus
b and b′ are also random bits. The remaining bits of x are
“not used” and randomly chosen. Thus the number n(x)) is
a random.
Inductive step:
If vk is the k’th left-most child of its parent and θvk is a ran-
dom number, then θx is also a random number where x is the
(k+1)’st leftmost child of its parent. r(vk)+2(k−1) number
of bits in θx are already “used”. By Step 2 in the scheme,
two bits at positions j and j′ that are still unused in θvk are
chosen. The r(x) bits are randoms as well as the two bits
at j and j′ leftmost positions in θx are also randoms. The
remaining bits are “not used” and chosen randomly. Thus
θx is also a random.

B.1 Proofs for Graphs
Proof (Sketch) of Lemma 5.3. Like in the case of the

trees, the forger F who invokes the adversary A from a poly-
nomial time algorithm can attack the signature scheme Γ by
(1) forging the signature of the graph, and /or (2) forging
a signature of the immediate ancestors for a node x. The
proof thatA can successfully carry out (1) has only a negligi-
ble probability, is analogous to the proof of unforgeability in
case of trees (Lemma 5.1). In order to prove the unforgeabil-
ity of Γ, the only thing we need to prove, which we provide
here, is about (2): the probability of forging a signature of
the immediate ancestors for a node x is negligible.

Let F forge the signature Ψα
x for node x in G(V, E). Sup-

pose that the condition (a) (Step 3(a)) in Sig-Forgecma
A,Γ (n)

holds. For α(x) (∈ Q, and for αδ(x) ⊆ α(x),
Vrfypk(αδ(x), ∆α

x , Ψα
x ) = 1. Note that ∆α

x is same as ωα
x .

If F is capable of coming up with a signature Ψα
x for α(x)

in polynomial time, then Condensed-RSA can been forged
in polynomial time, which however is hard. Therefore, the
probability for the experiment Sig-Forgecma

A,Γ (n) to return 1
is negligible: Pr(Sig-Forgecma

A,Γ (n)=1) ≤ negl(n). Similarly,
(and in the line of the proofs for (b) and (c) in Lemma 5.1)
it can be shown that the probability for Sig-Forgecma

A,Γ (n)
to output 1 for each of (b) and (c) is negligible. Since the

12



Ψα
x for any x does not involve the order between x and its

siblings, if such an order exists, the signature of immediate
ancestors is unforgeable. Thus the lemma is proven.

Proof (Sketch) of Lemma 5.4. The claim that
Pr(Sig-Privcsa

A,Γ(n)=1) ≤ negl(n) for graphs G(V, E) can be
shown to be true as is done in the case of trees.

13


