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Abstract

Dynamic kernel memory is difficult to analyze due to its volatile status; mumseédernel objects are frequently
allocated or freed in a kernel’s heap, and their data types are missing in émeary systems of current commodity
operating systems. Since the majority of kernel data is stored dynamib&lynemory has been a favorite target
of many malicious software and kernel bugs. In order to analyze dgri@mel memory, a global technique that
systematically translates a given memory address into a data type is essential.

Previous approaches had a limited focus in the analysis of either a makwexetution or a snapshot of kernel
memory. We present here a new memory interpretation system calldaMLitheat can automatically translate
dynamic kernel memory addresses into data typ&his system enables the accurate memory analysis of the
entire kernel execution, ranging from malware activity to legitimate kerneééaxecution, over a period of time
beyond the instant of a snapshot by using these two novel techniglie$hg system identifies an individual
dynamic kernel object with its systematically-determined runtime identifieptiats to the code where the object
is allocated. (2) The data type then can be automatically extracted from tleeusinly static code analysis offline.

We have implemented a prototype of LiveDM that supports three Linuelkenhere LiveDM dynamically
tracks tens of thousands of dynamic kernel memory objects that caccbeately translated into data types in
the offline process. We have evaluated and validated its general appticand effectiveness in extensive case
studies of kernel malware analysis and kernel debugging.

1 Introduction

Dynamic memory is an essential but complicated mechanism to handle data iampsogin user programs
such memory is placed in the heap, and the heap memory is notorious for satjomefault errors. In spite of
today’s state-of-the-art debugging technology, it is difficult to undeics this memory due to the lack of accurate
information as to the locations and data types of dynamic memory objects.

This situation can worsen in the kernel side, where higher reliability is éggdmt less monitoring and de-
bugging support is provided compared to the user space. Operatbiegnsysrnels manage the majority of kernel
data in dynamic memory, thus many security or reliability issues begin there. $tanag, an increasing number
of kernel malware programs target dynamic kernel objects [1, 2, 8],4nd many kernel bugs are caused by
dynamic memory errors [6, 7, 8].

Accurate analysis of dynamic kernel memory faces the following challen@pgrating system kernels fre-
guently allocate or deallocate numerous dynamic objects. Hence, maintairaicgumate view of dynamic kernel

ILiveDM is the acronym for th&ive Dynamic kernel memor ap.



objects requires fine-grained capturing of memory allocation activitiegh&umore, a mechanism is needed to
systematically identify the types of objects because current kernel meysignss do not store type information
for dynamic objects. A type-enabled kernel memory tracking system wiligeecan improved semantic view that
illustrates how the kernel heap is organized and explains the purposeindigidual dynamic object, thereby
greatly assisting the investigators of kernel attacks or bugs.

Two approaches generally can be utilized to implement such a system. éhtunemory systems can be
extended to support types [9, 10], not only the memory management éthébe wodified but also all allocation
code will require changes to assign a type for each allocation (recalinbsit current kernel memory allocators
obtain a size but not a type). The other approach, which we will shorédgemt, is applicable to commodity
operating system kernels without any change by tracking the type informatia virtual machine monitor and
offline analysis.

Previous approaches could infer dynamic data types using Bayesiapamised learning [11] or point-to
analysis that resolves generic pointers and type ambiguity [12]; but thaiyses were focused on the instant
when the snapshot was taken so their use was limited to deriving signatymexycams or analyzing persistent
memory manipulation. These approaches cannot be applied to analyze rketmeeexecution where temporal
memory errors (e.g., buffer overflow) occur or to investigate sophisticeeenel attacks that avoid persistent
manipulation (e.g., DKOM [2, 5]).

Another closely related work is PoKeR [4], a kernel rootkit profilerjchhtraces a rootkit’s instructions and
translates the manipulated memory targets under assumptions about the rattikitsbehavior. However, as
we will show in Section 4.3, such assumptions can be violated to elude PoKeRldition, the analysis focus
of PoKeR is limited to a number of kernel objects manipulated by kernel rootkiis, this technique cannot be
applied to inspect ordinary dynamic kernel objects accessed by legitinraiel kede.

In this paper we will present LiveDM, a new dynamic kernel memaory intgtion system that addresses these
problems. LiveDM overcomes the limitations of previous approaches lpirkgérack of the address range of an
individual dynamic object and its allocation code position from which its typeised. The contributions of this
system can be summarized as follows.

e LiveDM systematically identifies an individual dynamic kernel object with itgime identifier pointing to
the code where the object is allocated. This object’s type can be extraatedhe designated code offline.
Since LiveDM handles dynamic kernel memory by capturing the activity ofddanemory allocators, this
approach extends the coverage of memaory analysis to the dynamic kbjeelsoaccessed lthe entire
kernel executioteyond the scope of dynamic memory targeted by kernel rootkits [4].

¢ In order to ensure the correct analysis of the volatile dynamic kernel méstayus, LiveDM updates the
kernel memory map in the virtual machine monitor (VMM) whenever a memory ditotand deallocation
occurs in the guest kernel. This mechanism enables the accurate transfatimamically changing mem-
ory over a period of timgwhich is not possible in snapshot-based approaches [11, 12] enesgpshot is
taken for each memory access.

¢ In the offline process, a runtime identifier for each dynamic memory objadbeautomatically translated
into a data type by usingtatic code analysisSpecifically, the memory type is captured from the source
code that handles the allocated memory. By following the dependencies dhsoingernal representations
of kernel code generated by compilers, the type information can be autaityadietermined.

We have implemented a prototype of LiveDM that can translate the dynamid®bjabree off-the-shelf Linux
distributions and have evaluated it in the analysis of malware and kergsltbushow its general applicability.
LiveDM targets the environments that investigate internal kernel activitiesy as honeypots or kernel debugging
setups, that can trade an incremental performance overhead for m-uepth analysis capability of dynamic
kernel memory.
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Figure 1. Overview of LiveDM.

2 Design of LiveDM

In this section we will first introduce our approach to determine the data bffggsamic memory objects, then
we will present the specific techniques of LiveDM in three phases.

2.1 Call-site-based Dynamic Data Type Identification

LiveDM determines the data type of a dynamic kernel object by usirajldsation code When a new memory
is allocated in the kernel, the allocation code can be designated loplirsite of a memory allocation functiof.
By recording this call site as a runtime identifier, we can enable a dynamielkexmory object to point to
the code used to derive its type. Once the code is identified, the type catirbeted by traversing the code.
For instance, if a newly allocated memory address is assigned to a variabtgpéhof this variable is extracted
because it can represent the type of the allocated object. In a correcthiled program, such as a running kernel,
a declaration and its type definition must precede the use of the variabldtstndependencies among those code
elements are checked during the compilation. By instrumenting the compilergnafellow such dependencies
and identify the type of the allocated memory. In this paper we call this identifigreal D.

Definition (Type ID). Given a dynamic memory object, a type ID, denoted a§,,, is the call site of the dynamic
memory allocation functiot executed to allocaten. In other words,I,, is the program counter of the call
instruction that invokes to allocatem.

Figure 1 illustrates a high level view of our approach in three phaseselfirgt phase, for a newly allocated
dynamic kernel object in a guest kernel, its type ID is systematically determltedddress range and type ID
are recorded in a shadow memory space in VMM callerlkernel memory majiveDM uses this map for three
purposes. First, for a given address, LiveDM determines whetheffar idynamic memory by looking up the
designated object using the address. Second, LiveDM maintains tygerRernel objects transparently to the
guest kernel by storing them in this map; and finally this map is used for a meciis interpretation to a field
within an object as described below.

A dynamic memory is often used as an instantiation of a composite data type (i.grtimotive type such as
struct ) that has fields, and it will be informative to point to a specific field in the imtggtion in such cases.
In the low level view, a field is represented as an offset in the chunk of meuosed for the data structure. The
kernel memory map provides the address range of an object, from wieicdamdetermine the offset within the

2A call site for a function is the program counter of a call instruction for thefion.
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object, in order to identify a field during runtime. This identification is interpréténla field name in the offline
analysis. In this paper, we define this identifier as follows.

Definition (Field ID). Given a memory addregghat belongs to the address range of a dynamic memory object
m, a field ID ofi, is the offset within the range.

The second phase shows how a type ID and a field ID are determinadif@sected dynamic memory address,
which are translated to a data type and a field in the offline interpretation. fimgh@hase, first we convert a type
ID into the position of the corresponding code by using debugging informatising the instrumented compiler,
we then traverse the code structures and derive the data type of thefobjibe given address. In the following
sub-sections, we present the techniques for each phase in detail.

2.2 Phase 1: Transparent Capture of Dynamic Objects and Runtime Identificatio

Before runtime monitoring begins, we instruct the VMM which kernel memory atloa/deallocation func-
tions to intercept. The functions can be identified by using debugging infammand the kernel symbol table.
In Section 3, the implementation details such as the scope of the captured menwtigrfsl and the handling of
wrapper functions will be presented. When kernel code is about iadlariVMM intercepts the control with the
fetched address. If the code matches either an allocation function otlacag¢ian function, a respective VMM
capture function is called. The allocated memory range can be exprested iaitial address and the size, and
such information can be obtained from a memory allocation function call. Thel imitiess is the return value of
the function and the size is given as a parameter. In order to free a meamg, the initial address is sufficient
information to search the block to be freed, and it is given as a parametex déallocation function call.

Leveraging the standard rules about the delivery of such valuesd ¢aiietion call conventiond.iveDM can
capture these memory operations without modifying a guest kernel’cdélmction parameters are delivered
through the stack or registers, and we can capture them by inspectindottadions at the callee. The return
value can be captured by determining the location and the time when it is pd$setbcation is determined by
the function call convention. The integers up to 32 bits and the pointersliveregd via theEAXregister and all
values that we would like to capture are either of those types. The retumigaavailable in this register when the
function returns to the caller, and this moment can be recognized usingtine aeldress extracted at the callee.
The VMM stores such return addresses in the shadow stack. Thentiaheade that the CPU is about to execute
is matched with the code in this stack, the VMM captures the return value fro®Atkeegister. LiveDM does
this match by searching the stack with the address in LIFO order becaustuitresequence of kernel functions
may not be the exact reverse order of the call sequence due to nonidétc execution of multiple contexts.

There can be multiple approaches to capture a type ID (a call site of a fametip such as instrumenting call
instructions in VMM. LiveDM approximates the call site with the return addoéssfunction call and captures it
when a kernel memory function is about to run. This approximation is usedyntaisimplify the implementation
and to minimize the interception. The captured address is the next addtes<ail site in the instruction stream.
In the source code analysis, this approximated call site will point to the sathe oext non-comment line of the
allocation call. This trivial offset can be easily handled in the offline amalyocedure. The captured type ID is
stored in the kernel memory map along with the memory address range.

2.3 Phase 2: Determining the Scope of Interpretation

The previous phase introduced the technique to track down the typesdyfrthmic objects. In the application
scenarios, we will collect a set of memory addresses to be investigatede ate generally two ways to set the
scope of the kernel memory addresses to be interpreted.

3A function call convention is a scheme to pass function parameters atdra value. We use the ones for x86 architecture and GNU
Compiler Collection §cc ) compilers [13].
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Figure 3. Cases of analyzed code. C: a call site, A: an assignm  ent, D: a variable declaration, T: a type
definition, R: a return, and F: a function declaration.

First, if the diagnosis of the entire dynamic kernel memory status is desiredpalsot of the kernel memory
map can be taken to interpret the whole. Unlike a conventional memory durhghisnapshot has the address
ranges of dynamic kernel objects and their type IDs to derive their tyfieexefore, it provides significantly im-
proved semantic information to understand kernel memory status. Sndyasteat-approaches [12] infer memory
graphs by following pointers and mapping the dereferenced memorysagdréo pointers’ types. Our approach
construct the kernel memory map not by using contents (pointer valuggrabry but by using allocation events,
thus it is more tolerant to invalid pointer addresses or memory casting to geoerter types.

Second, the scope of instructions can be set to trace the list of dynamic ynebjects accessed by kernel
memory instructions. This mechanism enables the diagnosis of dynamicallgichanemory status over a pe-
riod of time with accurate type information. Because the dynamic status cancagitlyichange in any moment,
the snapshot-based approaches can only achieve similar accurackibg manapshot for an individual memory
access, which requires significant CPU and storage overheaddén tor define the tracing focus with policies,
LiveDM has a memory address space calleate mapwhich is checked for each code fetch to select the instruc-
tion to be traced. We can also define complicated taint rules to track a malveat®/ity based on its code and
the overwritten memory. In Section 5, we will present case studies usingetitisré and the tracing policies are
respectively defined.

When a memory access is traced, the identification of the accessed dyngecid®betrieved from the kernel
memory map and logged to reflect the accurate dynamic memory status at rurittntznmic memory object
corresponding to the address is found, its type ID is retrieved and théDiedccalculated as the offset within the
address range. The kernel memory map is built with a page table structlieghesh table for efficient lookups.

2.4 Phase 3: Offline Data Type Interpretation

In this step, the kernel object type IDs collected in the previous step argldtad into data types via static
kernel code analysis. The intuition behind this technique is that the typeyfandc object can be found from



the source code that handles the object’s allocation. Figure 2 illustrates deliig view of our mechanism.
First, the type ID (allocation call site) (C) of a dynamic object is mapped to theceacodeork.c:610  using
debugging information. This code assigns the allocated memory to a poinialeaat the left-hand side (LHS)
of the assignment (A). In this case, this variable’s type can represeiypb of the allocated memory. Thus, the
declaration of this pointer (D) and the definition of its type (T) are consatyjusearched by traversing the code.
Specifically, during the compilation, the parser sets the dependencies &neointgernal representations (IRs) of
such code elements; therefore, the type can be found by generatirRsthad following their dependencies.

For object type resolution, there are various patterns in the allocationasdbown in Figure 3. Case 1 is
the typical pattern (EG:A—D—T) that we previously explainegicc recognizes the pattern of Case 2 differently
as an initialized declaration. However, the instrumented code generatdRdtieriboth of an assignment and
a declaration at the same line, thereby treating this case similar to the firstldaliiee the first two cases, the
third pattern does not use a variable to handle the allocated memory addthses,it directly returns the value
generated from the allocation call. When a call site (C) is converted to anrstiatiement (R), we determine the
type of the allocated memory using the type of the returning function (F). lur&ig(c), this pattern is presented
as GC-R—F-T.

Prior to static code analysis, we generate the sets of information aboutdbestmments to be traversed by
compiling the kernel source code with tigec compiler [13] that we instrumented. This compiler generates
several internal representations for the compiled code, such as éttfSynrstax Tree (AST) and Register-Transfer
Language (RTL). We choose AST because the type information, suttteafefinitions of composite types, is
available in this representation.

3 Implementation

In our prototype, LiveDM supports three off-the-shelf Linux opermgtiystems of different kernel versions:
Fedora Core 6 (Linux 2 6.18), Debian Sarge (Linux 2.6.8), and Regilfhinux 2.4.18). Our mechanism is
general enough to work with any operating system that follows the strfidaction call conventions. LiveDM
can be easily implemented on any software virtualization system, such as éMWarkstation, Server, and
Player) [15], VirtualBox [16], and Parallels [17]. We chose QEMU \aitmachine 0.9.0 [18] with the KQEMU
optimizer for implementation convenience. We note that the QEMU-based implaroantath relatively high
performance overhead can indirectly benefit production workloaaisimg on another high-performance VMM
by taking the outsourced replay approach such as the decouplediaira[i9].

In the kernel source code, many wrappers are used for kernel menaoragement, some of which are defined
as macros or inline functions and others as regular functions. Macdaslare functions are resolved as the core
memory function calls at compile time by the preprocessor; thus, their call sgemptured in the same way as
core functions. However, in the case of allocations through regulgperaunctions, the call sites will belong to
the wrapper code.

In order to solve this problem, we take two approaches. If a wrapperadlyaesed only in a few code, we
consider that the type from the wrapper can indirectly imply the type used imrtpgper’s caller due to its limited
use. If a wrapper is widely used in many places (d&ugemcache _alloc — a slab allocator), we treat such wrap-
pers as memory allocation functions. Operating systems, which have a matierguality, have a well defined
set of memory wrapper functions that the kernel and driver code cofgnuge. In our experience, capturing
such wrappers, in addition to the core memory functions, can cover theitpabthe memory allocation and
deallocation operations.

We categorized the captured functions into four classes: (1) pagetalvéae functions, (2kmalloc/kfree
functions, (3)kmemcache _alloc/free functions (slab allocators), and (djnalloc/viree functions (con-
tiguous memory allocators). These sets include the well defined wrappetidios as well as the core memory
functions. In general, we captured about 20 functions in each gaastlko capture the dynamic memory ranges.
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Figure 4. The usage of dynamic kernel objects during the boot ing stage (OS: Debian Sarge).

The memory functions in an OS can be determined from the design specifitagonthe Linux Kernel API) or
source code.

Automatic translation of a call site to a data type requires a kernel binary thatripiled with a debugging
flag (e.g.,-g to gcc) and whose symbols are not stripped. Modern operating systems, slutbuatu, Fedora,
and Windows, generate kernel binaries of this form. Upon distributioncalip the stripped kernel binaries are
shipped; however, unstripped binaries (or symbol information in Winjlanesoptionally provided for kernel de-
bugging purposes. The experimented kernels of Debian Sarge ahdtReare not compiled with this debugging
flag. Therefore, we compiled the distributed source code and genéhnatddbug-enabled kernels. These kernels
share the same code with the distributed kernels, but the code offsets shghtly different due to the additional
debugging information.

For static analysis, we compiled the source code of the experimented kasirgsthegcc [13] compiler
(version 3.2.3) that we instrumented. We placed hooks in the parser aadtes the ASTs for the code elements
necessary in the static code analysis, which are described in Section 2.4.

4 Evaluation

We first evaluate the core properties of LiveDM especially its accunagy@bustness against stealthy malware.
We then present a number of case studies that use LiveDM for kermebneaanalysis in Section 5. The guest
systems are configured with 256MB RAM and the host machine has a 3.Z8ltinfA D CPU and 2GB RAM.

4.1 Identifying Dynamic Kernel Objects

In order to evaluate the core feature of LiveDM that captures dynangctdhwe measured the number of active
dynamic kernel objects over the booting process. The total number ofolgkdts varied over the booting period
as shown in Figure 4. After the system was fully booted, LiveDM for Del3arge was tracking 22765 dynamic
kernel memory blocks. In Figure 4, the number of blocks allocated byrtteencache _alloc/free functions
and thekmalloc/kfree functions were merged becaugealloc/kfree functions calkmemcache _alloc/free
functions internally and were therefore considered to be a similar kindeMrere a limited number afnalloc
objects, which were mainly used for kernel modules. So we denoted thesranoaded kernel modules instead
of depicting their numbers.

We present a list of core kernel data structures that LiveDM capatiresitime in Table 1. These data structures
manage the core operating system status such as process informationymeapping of each process, and the



_ | Type ID (A/IR) Declarations (D/F) Case || Data Type #Objects
% kernel/fork.c:248 kernelffork.c:243 1 task _struct 66
o | kernelffork.c:801 kernel/fork.c:795 1 sighand _struct 63
% fslexec.c:601 fs/exec.c:587 1 sighand _struct 1
& | kernelffork.c:819 kernel/fork.c:813 1 signal _struct 66
arch/i386/mm/pgtable.c:229 arch/i385/mm/pgtable.c:229 2 pgd _t 54
kernel/fork.c:433 kernel/fork.c:431 1 mmstruct 47
> | kernel/fork.c:559 kernel/fork.c:526 1 mrostruct 7
g kernel/fork.c:314 kernel/fork.c:271 1 vm.area _struct 149
g mm/mmap.c:923 mm/mmap.c:748 1 vm.area _struct 1004
mm/mmap.c:1526 mm/mmap.c:1521 1 vmarea _struct 5
mm/mmap.c:1722 mm/mmap.c:1657 1 vm.area _struct 48
fs/exec.c:402 fs/exec.c:342 1 vm.area _struct 47
kernel/fork.c:677 kernel/fork.c:654 1 files _struct 54
kernel/fork.c:597 kernel/fork.c:597 2 fs _struct 53
fsffile _table.c:76 fs/file _table.c:69 1 file 531
£ | fs/buffer.c:3062 fs/buffer.c:3062 2 buffer _head 828
% fs/block _dev.c:233 fs/block  _dev.c:233 2 bdev _inode 5
@ | fsidcache.c:692 fs/dcache.c:689 1 dentry 4203
% fs/inode.c:112 fs/inode.c:107 1 inode 1209
fs/Inamespace.c:55 fs/namespace.c:55 2 vfsmount 16
fs/proc/inode.c:93 fs/proc/inode.c:90 1 proc _inode 237
drivers/block/Il _rw _blk.c:1405 drivers/block/Il _rw _blk.c:1405 2 request _queue_t | 18
drivers/block/Il _rw _blk.c:2950 drivers/block/Il _rw_blk.c:2945 1 io _context 10
net/socket.c:279 net/socket.c:278 1 socket _alloc 12
x | net/core/sock.c:617 net/core/sock.c:613 1 | sock 3
g net/core/dst.c:125 net/core.dst.c:119 1 dst _entry 5
g net/core/neighbour.c:265 net/core/neighbour.c:254 1 neighbour 1
net/ipvéa/tcp _ipv4.c:134 net/ipvéa/tcp _ipv4.c:133 2 tcp _bind _bucket | 4
net/ipv4/fib _hash.c:586 net/ipv4/fib _hash.c:461 1 fib _node 9

Table 1. Dynamic kernel objects identified by using allocati
ements (Declarations). A/R: an assignment or a return, D/F:
declaration. (OS: Debian Sarge).

on code (Type ID) and related code el-
a variable declaration or a function

status of file systems and network which are often targeted by kernel neadwwd kernel bugs [4, 20, 21, 22, 1, 8,
6, 7]. Kernel objects are recognized using runtime identifiers in coftypa ID during runtime. In offline, these
IDs are translated into data types shown in colubata Type by traversing the allocation code and the declarations
(shown in columrDeclarations) used for the allocation in the kernel source code. Col@aseshows the case
of allocation code in static analysis presented in Section 2.4. The numbementfietl objects are presented in
column#Objects

4.2 The Accuracy of LiveDM

We evaluate the accuracy of LiveDM in kernel object type resolutionekperimental purposes, we instrument
the kernel memory functions described in Section 3 and generate a log aditadlo and deallocation events of
dynamic kernel objects. We observed that the active dynamic object®ddrom such events accurately match
the live dynamic kernel objects systematically captured by LiveDM usingalimachine techniques.

The type derivation accuracy is checked by traversing the kernets@mode and translating the call sites
from the instrumented code as done by related approaches [12, ld HeFived types at the allocation code are
completely matched with the results from our automatic static code analysis teehniqu



if (__this_module.next) struct dentry * adore_lookup(struct inode *1,

__this_module.next = __this_module.next->next; struct dentry *d, struct nameidata *nd)
struct task_struct * tsk;
if (strncmp(d->d_iname, "pr-", 3) == 0) {
Figure 5. The cleaner rootkit of the adore-ng tsk = find_task_by_pid(adore_atoi(d->d_iname + 3));
e . , - tsk->uid = tsk->suid = tsk->euid = tsk->fsuid =\
rootkit distribution can void PoKeR’s profiling. tsk->gid = tsk->egid = tsk->fsgid = O;
tsk->cap_effective = tsk->cap_inheritable = \
tsk->cap_permitted = "OUL;
unsigned int * pgd; }
__asm__("movl %%cr3,%0":"=r" (pgd)); }
pgd = _ va(pgd) + pmd_offset;

(*pgd) = manipulated_pmd,;

Figure 7. A modified adore-ng for Linux 2.6. The
targeted process is assumed to be a temporarily
suspended user shell that is forked before this
rootkit is loaded.

Figure 6. REGIKIT: A rootkit that obtains the at-
tack target from a hardware register.

4.3 Profiling Resistant Attacks

In this section, we demonstrate the robustness of LiveDM against steatiltiits that can elude an existing
kernel malware profiler, PoKeR [4]. PoKeR assumes the attack behhwab(1) starts scanning static objects
and proceeds following pointers until the intended target is found. PdHeRtifies the targets by following
the accessed memory in the same way as rootkits. The data types of static atgdatewn, and the types of
subsequently accessed objects can be inferred using the derefépmionter types. In addition, once PoKeR is
activated, (2) it then tracks the addresses of the scheduled PTBss the attack target on the current PCB can
be identified even though the rootkit's behavior does not follow the figiraption. However, rootkits may well
violate these assumptions. We found that at least two existing rootkits cahtasiag profiled by PoKeR and
more techniques to elude PoKoR are presented below.

Using Dynamic Module Symbols: Figure 5 presents the attack code of the cleaner rootkit included in the
adore-ng rootkit distribution. In the code, this rootkit locates the cumamlule structure using thehis _module
symbol. This symbol is a dynamic module symbol locally defined for each keradule; the kernel module
loader dynamically maps the current module’s address to this symbol whemaithéle is loaded. Since neither
this symbol is reached from static objects nor the manipulated memory is paheafided PCBs, both of PoKeR'’s
assumptions are not followed; thus PoKeR cannot identify this manipulation.

Using Registers: This technique violates the first assumption by obtaining the attack targetiyireen a
hardware register. For example, thB3register is used to load a page table directory and a page table directory
can be manipulated using this register as shown in Figure 6. As anotherlex#impmodhide rootkit in the knark
rootkit distribution uses thEBXregister to locate the current module structure in Linux 2.2 kernels. Similaty, a
hardware register (other than tE8Pregister that points to a scheduled PCB) can be used to find the attack target
that can evade PoKeR.

Using Kernel Functions: PoKeR can identify types of dynamic objects based on the way that a rootkit
manipulates it, so the other objects that are used by legitimate kernel exeagtiontaunderstood by PoKeR.
For instance, in Linux 2.6 kernels there is a functifing _task _by _pid that returns the address of the PCB
for a given process identification number (PID). Any other function tbatrns the address of a dynamic object
likewise can be used to elude PoKeR.

Turning a Real World Rootkit into a PoOKeR Resistant Rootkit: By applying the presented techniques

4A process control block (PCB) is a kernel data structure containingrastnative information for a particular process and its data type
istask _struct in Linux.



Rootkit Runtime Identification Offline Interpretation Operating
Name | Type ID Field ID Type Field/Offset System (OS)
cleaner | kernel/module.c:314 0x4 module next RedHat 8
modhide | kernel/module.c:314 0x4 module next (Linux 2.4)
REGIKIT | arch/i386/mm/pgtable.c:229 offsetpmd.offset pad _t offsetpmd.offset
kernel/fork.c:248 0x1d0,1d4,1d8,1dc task _struct uid,euid,suid,fsuid
PoKeR | kernel/fork.c:248 0x1e0,1e4,lec task _struct gid,eguid,fsgid Debian Sarge
resistant | kernel/fork.c:248 0x1f4 task _struct cap _effective (Linux 2.6)
adore-ng | kernel/fork.c:248 0x1f8 task _struct cap _inheritable
kernel/fork.c:248 Ox1fc task _struct cap _permitted

Table 2. The dynamic kernel objects manipulated by PoKeR res istant rootkits.

together, we can turn an existing kernel rootkit inté’@KeR resistant rootkiin which the targeted dynamic
memory cannot be understood by PoKeR. For instance, we can makeregdarotkit resistant to PoKeR. One of
the functions of this rootkitadore _lookup , isinvoked by alookup onth@oc file system. By taking a command
as a directory name, this function works as a backdoor that controls thelk&he original code gives the root
privilege to the current user by manipulating the current user's PCGledwl, we uséind _task _by_pid to look
up a non-current process with a given PID. In particular, this modifetkit assumes to handle a suspended user
shell that is forked before the rootkit is loaded. The combination of thebmitgues therefore violates both of the
assumptions by PoKeR. The attacker can triggeatiuee _lookup with the PID of the sleeping shell. Then the
rootkit sets its PCB with the root credentials. The attacker can wake up #llsasly time to become a root.
Analyzing PoKeR Resistant Rootkits: Unlike PoKeR, LiveDM has no assumption regarding how the ma-
nipulated address should be obtained. Therefore, it can interpreldaess regardless of the rootkit behavior that
finds the target. Table 2 summarizes the attack targets of the PoKeR registhitslidentified by LiveDM. First,
we can confirm that the cleaner and modhide rootkits both manipulate the mudgteies. The modhide rootkit
is written for Linux 2.2 kernels so we slightly modified it to use B&Pregister instead of thEBXin order to run
it in the Redhat 8 system (Linux 2.4). LiveDM identified that the REGIKIdtkat manipulates a dynamic object
of pgd t type. A page table directory is a dynamic object of this type, thereby confirthm attack target. The
memory manipulated by the modified adore-ng matches the data targeted by tkeattashown in Figure 7.
The manipulated object is a PCB (@abk _struct type) and specific fields under attack are also matched to the
code.

5 Case Studies

LiveDM provides new aspects of kernel memory analysis by interpretingrmic kernel memory addresses into
data types. In this section, we first will present an attack case thatuggam code overwrites kernel memory by
triggering kernel bugs. Since LiveDM manages the kernel memory magm iinterpret the manipulated memory
just based on memory instructions that overwrite kernel memory. Next, w@ngslent the attack targets by real
world kernel rootkits, in particular on dynamic kernel memory using Livé®Memory interpretation. We then
will present a new aspect of kernel rootkit behavior that allocateothi&it's own memory, revealing how rootkits
use this flexible runtime storage to store attack code or their own data. Finally;o@den our application to the
memory analysis of kernel bugs. By using LiveDM’s type translation, areabtain the types of dynamic kernel
objects accessed by kernel code statements; therefore we can identi#y knemory accesses to abnormal kernel
objects triggered by kernel bugs.

5.1 User Level Root Exploit Attack Analysis
Vmsplice root exploit (CVE-2008-0009, CVE-2008-0010, CVE-2@®®0) is a notorious user level attack

leveraging critical bugs of recent Linux kernels. It allowed an ordinger to easily obtain the root privilege by
running a simple proof-of-concept code widely available. The effekéedels span on multiple kernel versions
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Type ID Field ID Data Type Field Value
kernel/fork.c:164 0x158,154,150,14c task _struct fsuid,suid,euid,uid 0x0
kernel/fork.c:164 0x168,164,160,15¢c task _struct fsgid,sgid,egid,gid 0x0
kernel/fork.c:164 0x178 task _struct cap _permitted Oxffffffff
kernel/fork.c:164 0x174 task _struct cap _inheritable Oxffffffff
kernel/fork.c:164 0x170 task _struct cap _effective Oxffffffff

Table 3. Kernel memory victims overwritten by vmsplice root exploit attack. (OS: Fedora Core 6)

void kernel_code()
{. .
int i;
uint  *p = get_current(); / * The pointer of current task_struct is obtained */
/= from the ESP register. */
for (i = 0; i < 1024-13; i++) {
if (p[0] == uid && p[1] == uid &&
p[2] == uid && p[3] == uid &&
p[4] == gid && p[5] == gid &&
p[6] == gid && p[7] == gid) {

p[0] = p[1] = p[2] = p[3] = O; / * fsuid, suid, euid, and uid are initialized as 0 (root ID). */
pl4] = p[5] = p[6] = p[7] = O; / * fsgid, sgid, egid, and gid are initialized as 0 (root ID). */
p = (uint *) ((char *)(p + 8) + sizeof(void *));

p[0] = p[1] = p[2] = "0; / * cap_permitted, cap_inheritable, and cap_effective */

break; [+ are initialized as Oxffffffff (full capability). */

i)++;

}

exit_kernel();

}

Figure 8. The attack code of the vmsplice root exploit. The co mments are not part of the exploit code.

from 2.6.17 to 2.6.24.1, therefore many Linux distributions were vulnerableding one of famous distributions,
Fedora Core 6, that is tested here.

Tracing Policies: In order to analyze this attack we use simple tracing policies. If user codeimkernel
mode, its execution is traced; If a memory access occurs, the accessedsaand the value are traced as well.
Typically the execution of user code in kernel mode should be prohibiteslise a potentially malicious user code
can subvert the entire system by overwriting kernel code or data. lattaisk example, it occurs by exploiting
vulnerable kernel code.

Identifying Kernel Memory Victims:  In this section, we show the effectiveness of LiveDM by identifying
the attack victims of the vmsplice root exploit. We run a widely available exploie doain [23], and Table 3
summarizes the manipulated kernel memory. Note that we do not assume angdgwabout the attack, instead
we only use the memory accesses captured by the above policies.

Let us illustrate how LiveDM identifies the first kernel memory victim shown mfilst row of Table 3. When
user code overwrites kernel memory, LiveDM searches the kernel myameyp for the overwritten address and
retrieves the runtime identifier (type ID) of the matched dynamic memory blocks type ID is as shown in
columnType ID, and the field ID is determined as the offset of the address in the block {ahgwn in column
Field ID). This pair of identifiers is stored in the trace and further translated intdeatgpe and a field name
offline. Using debugging information, the type ID is converted to a sourde positionkernel/fork.c:164
In the code, the address of the allocated memory is assigned to the poinadtesan the left hand side of the
statement. This variable has the pointer typaek _struct as shown in columbata Type. This is the type that
the allocated memory block has. Using its data type definition, the field®b8 ) is converted to a fieldsuid
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Rootkit

Runtime Identification

Offline Interpretation

Name T Type ID Field ID Type (D) / Module Object (M) Field / Offset
adore-ng 0.53| D | fs/proc/generic.c:436 0x20 proc _dir _entry get _info
(adore-ng.c | D | kernelffork.c:610 0x4,12¢,130 task _struct flags,uid,euid
for Linux 2.4) | D | kernel/fork.c:610 0x134,138,13c task _struct suid,fsuid,gid
D | kernel/fork.c:610 0x140,144,148 task _struct egid,sgid,fsgid
D | kernel/fork.c:610 0x1d0 task _struct cap _effective
D | kernelffork.c:610 0x1d4,1d8 task _struct cap _inheritable,cap _permitted
M| - - ext3:ext3 _dir _operations readdir
M| - - ext3:ext3 file _operations write
knark 0.59 | D | fs/proc/generic.c:436 0x38 proc _dir _entry read _proc
D | kernel/fork.c:610 Ox4 task _struct flags
kbdv3 D | kernel/fork.c:610 0x12c,130 task _struct uid,euid
D | kernel/fork.c:610 0x13c,140 task _struct gid,eqgid
adore 0.42 | D | fs/namespace.c:44 0x28 vfsmount mnt _count
D | fs/dcache.c:619 0x0 dentry d_count
D | kernel/fork.c:610 0x4,12¢,130 task _struct flags,uid,euid
D | kernel/fork.c:610 0x134,138,13c task _struct suid,fsuid,gid
D | kernel/fork.c:610 0x140,144,148 task _struct egid,sgid,fsgid
D | kernel/fork.c:610 0x1d0 task _struct cap _effective
D | kernel/fork.c:610 0x1d4,1d8 task _struct cap _inheritable,cap _permitted
linuxfu D | kernel/fork.c:610 0x50,54 task _struct next _task,prev _task
hp 1.0.0 D | kernel/fork.c:610 0x50,54,9¢ task _struct next _task,prev  _task,p _ysptr
D | kernel/fork.c:610 0x98,a0,ac task _struct p_cptr,p _osptr,pidhash _next
D | kernel/fork.c:610 0xb0,78 task _struct pidhash _pprev,pid
SucKIT 1.3a | D | kernel/fork.c:610 0x4,c task _struct flags,addr  _limit
superkit D | kernel/fork.c:610 0x4,c task _struct flags,addr  _limit
adore-ng 0.53| D | kernel/fork.c:248 0Oxc,1d0,1d4 task _struct flags,uid,euid
(adore-ng-2.6.¢ D | kernel/fork.c:248 0x1d8,1dc,1e0 task _struct suid,fsuid,gid
for Linux 2.6) | D | kernel/fork.c:248 Oxle4,lec,1f4 task _struct eguid,fsguid,cap _effective
D | kernel/fork.c:248 0x1f8,1fc task _struct cap _inheritable,cap _permitted
M| - - ext3:ext3 _dir _operations readdir
M| - ext3:ext3 file _operations write
M| - unix:unix _dgram _ops rcvmsg
M| - ipv6:__this _module offset0x8

Table 4. Dynamic objects manipulated by rootkits. T: The kin
(OS: Redhat 8 for Linux 2.4 rootkits and Debian Sarge for Linu

d of memory (D: dynamic and M: module).
X 2.6 rootkits).

(shown in columrField). The rest victims in Table 3 are interpreted in the same way. From this resuttamw
understand that this exploit aims at obtaining the root privilege by manipuldiéngser credential information in

the kernel memory.

In order to confirm the correctness of this result, a snippet of the attatkis presented in Figure 8. This code
first obtains the address of current process’ PCB by callingyé¢hecurrent
identify specific fields for user credentials using a pattern of valuese @y are found, this function overwrites

IDs with 0x0 (root ID) and capabilities with-0 (=0xffffffff

This is exactly matched with the result presented in Table 3.

5.2 Dynamic Kernel Objects Manipulated by Real World Kernel Rootkits

function. Then it scans memory to

, full capability) to make the attacker a root user.

Kernel rootkits target dynamic objects to conceal their activities becaadedations and types of such objects
are comparatively difficult to identify compared to static objects whose infliomé&s available at compile time.
In this section LiveDM exposes the types of dynamic kernel objects martdgoulyy real world kernel rootkits.
LiveDM can perform accurate translation of dynamically changing kememory because the kernel memory
map is accurately updated with memory allocation/deallocation events in the gugshena

Tracing Policies:

LiveDM recognizes rootkit activity using previously proposed techesjior kernel rootkit

detection [20] and prevention [24, 25]. Any execution of rootkit codgdased along with the memory access
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Rootkit Kernel Memory Function Call Allocated Memory
Name Call Type | Caller Extracted Caller Name Size (Bytes)| Use
Rial Allocation | Rial:0x17f new_open:0x5b 14 Data: string
Allocation | Rial:0x2e6,2fe new_read:0x56,6e 25 Data: string
Free Rial:0x234 new_open:0x110 - -
Free Rial:0x73c,74a new_read:Ox4ac,4ba - -
knark 0.59 | Allocation | knark:0x1341,1371,1396 init _module:0x2d,5d,82 8,12,20 Data: rootkit data, string
Free knark:0x16af,16c0,16dc cleanup _module:0xf7,108,124 - -
Freé knark:Oxela knark _execve:0x62 - -
kbdv3 Allocation | kbdv3:0x8a bd _utime:0x2a 256 Data: string
adore 0.42 | Allocation | adore:0x568 n_getdents64:0x8c 704 Data: rootkit data
Allocation | adore:0xaa6 fp _get:0x4a 4096 Data: string
Free adore:0x5d8 n_getdents64:0xfc - -
Free adore:0Oxa55 fp _put:0x2d - -
Freé adore:0xaf9,b78 fp _get:0x9d,11c - -
SucKIT 1.3a| Allocation | KernelOxc010910f system _call:0x33 13044 Code: rootkit installation
superkit Allocation | Kernel0Oxc010910f system _call:0x33 12735 Code: rootkit installation
Synapsys-0.4 Allocation | Synapsys:0x79 hack _open:0x19 256 Data: string
Allocation | Synapsys:0x872,8da hack _write:0x156,1be 2000 Data: string
Free Synapsys:0x16b hack _open:0x10b - -
Free Synapsys:0x8c1,92d hack _write:0x1a5,211 - -
override Allocation | override:0x357,368 my_getdents64:0x42,53 64~1024 Data: rootkit data, string
Free override:0x414,41d my_getdents64:0xff,108 - -
phalanx-p6 | Allocation | KernelOxc0124375 sys _setdomainname:0x1le 4096 Data: buffer

Table 5. Dynamic memory allocation and free by rootkits. Ker nel memory functions: kmalloc (Allo-
cation), kfree (Free), kmem _cache _free (Free T). (OS: Redhat 8 for Linux 2.4 rootkits and Debian Sarge
for Linux 2.6 rootkits).

targets. If invariant system components (e.g., kernel code, systerabld| and interrupt descriptor table) are
manipulated, such events are traced as well.

Identifying Kernel Memory Victims:  Table 4 presents the list of dynamic kernel memory victims manipu-
lated by real world kernel rootkits. We experimented with 13 rootkits in Lindxahd 2.6 kernels, and 9 rootkits
exhibited the behavior that manipulates dynamic or module objects. Most efribeikits target static kernel data
as well, however they are not presented because the translation ofdtiesses is straightforward by using the
kernel symbol table (i.e., System.map in Linux). We focus on the cases afdgkernel objects whose addresses
are dynamically determined during the execution of the guest OS.

LiveDM uses the kernel memory map that contains the address ranggsaohit objects and their IDs. Thus, it
can instantly retrieve the runtime ID of the accessed object (shown in catuntime Identification) by searching
the map with the address. In the offline process, the type ID and field Iapainterpreted into a data type and a
field name, and the result is presented in colufitine Interpretation . Module objects are interpreted by mapping
their offsets within the module memory to the module symbols, which are extracted iatalga@fter the loading
of the module. Based on these victims, we can understand the system cortsgorvehich the rootkits aim during
attacks and the potential impact to users. The details of this kind of interpretagcexplored in a related work

[4].
5.3 Dynamic Rootkit Memory

The dynamic kernel objects identified in the previous section are allocateditiynate kernel code. However,
it is not the only code that can allocate or free dynamic objects. Rootkitslsanrstantiate dynamic objects.
We analyzed 13 real world rootkits, 9 of which use own dynamic kernel mgnidentifying this memory is
difficult because it has a dynamically determined address out of the laadédt memory. In addition, such
memory does not exhibit different characteristics from legitimate kernel mejust based on their content or
addresses; therefore it is challenging to differentiate rootkit memory giisg kernel memory layout. Dynamic
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rootkit memory has not been previously well addressed in related apmed24, 4]; however, this memory is
important to understanding rootkit behavior because it serves as staaitime storage that can contain code or
data.

Tracing Policies: LiveDM uses the policies of the previous section to recognize rootkitidesy If a memory
allocation function is called from the rootkit code, the allocated memory is cerezido be rootkit memory. In
addition, any anomaly in the memory allocation or deallocation call site is chetikedy code that is not used
for allocation in normal execution is used during rootkit experiments to alldeatesl memory, it is traced and
inspected. This execution patten is observed from rootkits that call lkexemory allocation function using a
system call indirectly.

Capturing Dynamic Rootkit Memory:  Table 5 presents a summary of the dynamic kernel memory allo-
cation and deallocation performed by 9 real world kernel rootkits. Thamnmdition about the invoked dynamic
kernel memory functions is presented in colukemnel Memory Function Call. For example, the first row in Table
5 shows that the code at the offset 383th bytes (»e.7f ) of the RAL rootkit code allocates 14 bytes of dynamic
memory by calling thé&malloc  function. This code is placed in the 91st (i@5b ) byte in thenew_open rootkit
function as shown in columiBxtracted Caller Name. We extract these symbols by parsing the rootkit binary of the
ELF format when it is loaded. These names are required to exist in theylimérad the rootkit into the kernel
(for the code relocation), but they have no relevance other than aantbhgdn names that rootkit authors use in
the code.

An interesting result is shown by a group of rootkits that manipulate kernefs fiser space: SucKIT, su-
perkit, and phalanx-p6. SucKIT and superkit replace one of therays#d table entries with the code address
of kmalloc , then call thekmalloc function through a system call. This call is invoked by an unmodified call
instruction in thesystem _call function. However, this activity is still captured because the call sitenafloc
used by the rootkits is not part of thenalloc callers in the kernel binary. Interestingly enough, the call in-
struction is indeed modified later (not shown in Table 4 since kernel codst&tia target), but the modification
occurs after the memory allocation. In contrast, phalanx4p@aloc call is invoked by the injected code in the
sys _setdomainname function and is therefore easily captured. This behavior previouslicmt be analyzed
in PoKeR [4] because the executed memory activities are part of legitimatel keerde execution, which PoKeR
does not trace to understand rootkit behavior. However, LiveDMiges a unique opportunity to observe this
new aspect of rootkit behavior since it captures memory allocation actifatiese entire kernel execution.

Following is the analysis of how the allocated memory is used by rootkits. Thigmiation is presented in
columnAllocated Memory. We classify the use of this memory depending on whether it is used forecedation
or data. SucKIT and superkit load the allocated memory with the hookingamdiexecute it. Most rootkits use
the memory to store data. Since we cannot assume the availability of sousc®codotkits, our type derivation
method is not applicable to this memory. Instead we use derivatives of thesapies [26, 11] that infer the layout
of memory. If we obtain a layout, we mark the memory as rootkit data. Howgvarany cases the memory is
used as an array involved with string functions. In such cases, wédeorise memory as being used as a string.
We confirm our inference is matched with the actual use by manual inspettioatkit code.

In general, dynamic kernel memory is a useful resource for rootkit¢aliie flexible handling of storage. The
knark rootkit uses dynamic memory to create its gwwc device objects installed in the kernel, which provide
a convenient backdoor mechanism to the attacker. More importantly, thef tlsis memory for code enables
a sophisticated attack vector to bootstrap kernel mode execution withogtaisimnventional LKM mechanism
[27]. For example, SucKIT and superkit use dynamic memory for thisqaerpThese rootkits are user programs
that do not have kernel memory space available, unlike LKM-basediteofherefore they use dynamic kernel
memory to place and execute the rootkit installation code in the kernel modeadymg the dynamic memory
allocated by kernel rootkits, LiveDM can conveniently uncover suchpicated behaviors.
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Figure 9. The control flow of vmsplice exploit attack: from do _vmsplice to the Attack code going

through get _iovec _page _array, get _user _pages, and splice _to_pipe. (OS: Fedora Core 6).

5.4 Interpreting Dynamic Memory Targets in Kernel Execution

In this section, we will present a microscopic kernel debugging scemasdsted with LiveDM’s dynamic
memory interpretation. As we diagnose kernel execution over a traced peiveDM reveals the dynamic data
structures that have been dereferenced at runtime for given caagy, iTherefore, kernel developers can validate
whether each code accesses the correct object meant in the coddicerarunusual memory object that is
dereferenced for any reason, such as an overflow, can bernedfsince its type will be identified by LiveDM.
Note that the dynamic memory status can be inaccurate at any moment otherehemetiof the access; thus,
shapshot-based approaches [12, 11] are required to make asnapshch access to achieve similar accuracy.
LiveDM effectively extends the coverage of accurate dynamic keneshory analysis from a snapshot to a period
of time.

Following is an example that shows how LiveDM can assist a generatk#ebugging procedure. This scenario
diagnoses the vulnerable kernel code that allowed a vmsplice root eaftbaik CVE-2008-0009CVE-2008-0010
andCVE-2008-060). This attack is launched by a user program that has a limited privilegesvaowit turns the
current user into a super-user by triggering kernel bugs and oiiegvthe user’s credentials stored in the kernel
memory.

Tracing Policies: In order to analyze this case, we set the tracing scope as the list of kenogons in
the kernel call stack when user-level exploit code manipulates keatelia the kernel mode. The traced kernel
functions includeput _compound _page, sys .vmsplice , splice _to _pipe , get _user _page, andput _page.
Static functions such a® _vmsplice andget _iovec _page _array appear as part afys _vmsplice

Checking Memory Dereferences with Dynamic Memory Interpretaion: We track down the problem by
starting from the attack code, then browsing the execution in reverseaibgical order. An example of the
attack code sequence is denoted with dotted arrows in Figure 9 and thmidydsa types accessed by this code
are shown in Table 6. In order to highlight the unique assistance of Nei® placed numbers in parentheses in
Figure 9, Table 6, and the description.

Before the attack code is launcheulit _compound _page is the last kernel function executed. This function
deallocates memory using a given custom deallocator. The attack codecigezkas this deallocator, which
explains why untrusted user-level code is permitted to run in the kernel.nelery of the attack code to this
function is the art of this attack and it is enabled by the vulnerable code imibplice system call.

In splice _to _pipe , one of the functions of which the vmsplice call is composed, there are tmae &f read
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Case Traced Code Accessed Data Type | Accessed Data Type
Number Function File Line on Normal Workload | on Exploit Execution
1) do_vmsplice fs/splice.c 1234 file file

1) do_vmsplice fs/splice.c 1234 dentry dentry

1) do_vmsplice fs/splice.c 1234 inode inode

2 get _iovec _page _array | fs/splice.c 1162 task _struct task _struct

3), @ get _user _pages mm/memory.c | 1069-1070, 1119 vm.area _struct vm.area _struct

5) get _iovec _page _array fs/splice.c 1175-1176 t hread.i nf of page*

(6), (7), (8) | splice _to _pipe fs/splice.c 185, 189, 247 pipe _inode _info pipe _inode _info

Table 6. Data types of dereferenced memory by the kernel code in Figure 9. Most code use the kernel
stack (type: thread _info), but they are omitted except the case marked with . The code in case (5)
accesses an anomalous data type (marked with ~ *) on exploit execution. (OS: Fedora Core 6).

accesses on dynamic objects other than the kernel stack. Such objec®cly are of thepipe _inode _info

type and their field IDs are respectively translated into the field®¢des , (7) readers , and (8)inodes . This
result is exactly matched with the code at the fiilsplice.c in the lines 185, 189, and 247. The trace shows

a specific execution path that tife statement at the line 189 has taken. The read value at this line is 0, and it
confirms this control flow since the if conditigipipe->readers) is satisfied with it.

LiveDM correctly identifies dynamic objects dereferenced in the prograon.example, the code at the line
1234 of thedo_vmsplice function has the expression comprised of three consecutive pointfedsices. As
we see in Table 6, (1) LiveDM accurately identifies three different cinabjects described in the code.

In the trace ofjet _iovec _page _array , we found an excessive loop count returned frongiite user _pages
function call. We could confirm this number of loops by counting the numbacoésses on the dynamic kernel
objects inside the loop. Among several dynamic objects from the trace,jact ibrepeatedly accessed along
with the loop code. (4) LiveDM identifies its type and field are respectivelyrea _struct andvmend, and
this is matched with the object in the loop condition.

The loop count is consistently around 48 when the attack is successfutiei®anined it was enabled by a
combination of several kernel bugs. dat _iovec _page _array , an unsigned long variablepages , is setto 0
due to an integer overflow. This number is passed to a loop variablen theget _user _pages function. This
variable of a (signedipt type is expected to have a positive value and it is decreased in the do-wdplefrior
to the check of the loop conditiorefr # 0). However, due to an early decrement of the overflowed value (0), the
loop conditions continuously hold for negative values, thus an exeaesgswber of loops occur.

This abnormal loop count directly influences the access of the followirighla; a local arrapartial  placed
in the stack is initialized in the loop &t/splice.c:1172-1181 . Due to the excessive loop count, this loop
code overwrites the memory placed beyond this array at runtime. In o@riexgnts the manipulation went
beyond the current stack; therefore (5) the code overwrites thetdbh@happens to be adjacent to the stack. This
example highlights the capability of LiveDM, which can also identify the targktsld memory accesses.

After the analysis, we determined that sanity checks were necessé#ng f@alues passed from user space. First,
one of theget _iovec _page _array ’'s argumentsov is directly passed from the vmsplice system call and used to
fill local variablesbase andlen so it should be checked. Secomdse andlen should be carefully inspected as
well after they are filled with the values of user space because they ad@diotinputs that caused the overflow
of npages . We confirmed that such vulnerabilities are patched in the later kernebrsrs

6 Discussion
Since LiveDM operates in the VMM beneath the hardware interface ekenalware cannot directly access

LiveDM code or data. However, it can exhibit potential obfuscatingalvr to confuse the view seen by LiveDM.
Here we describe several scenarios in which malware can affesiDMvand our counter-strategies to detect them.
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First, malware can implement its own custom memory allocators and not use iti@dég kernel memory
allocators that LiveDM observes. This behavior can be detected lmgs#te intuition that memory allocators
themselves use internal kernel data to maintain free and active memoryschuveDM can check which kernel
functions access such core memory structures. If LiveDM identifiesualicode other than the regular memory
allocators that manipulate such data, it can be concluded that a custom nalocayor is present.

Another case is that malware manipulates a regular kernel control flinvraturn-to-kernel/libc attacks [28,
29]. For example, malware can jump into the body of a memory allocator wittessing the function entry. One
way to determine this attack is to check the control flow integrity [30] of theederrecution, which ensures that
function calls occur to the function entries, thereby not allowing this kindtatk.

It may seem that a similar result to LiveDM can be achieved by setting boa@kygn a kernel debugger and
manually browsing code. This process in fact describes part of witaDM accomplishes in an automated
method, but it is not sufficient to achieve the goal that we target. The migsethere is that while such method
manually obtains a mapping from a given code statement (breakpoint) to &ltgpe may be tens of thousands
of runtime memory instances allocated from the code. Moreover, when meatargets one of a vast number of
memory instances allocated by many different code statements, we needezicthre memory to its allocation
code to identify the memory’s type. LiveDM provides this critical mapping fraimemory instance to a code
statement in addition to the mapping from a code statement to a type in order tate#angiven kernel address
into a data type completely.

7 Related Work

PoKeR [4] is a kernel rootkit profiler that analyzes multiple aspects aikenotkit behavior. PoKeR can
identify the attack targets of kernel rootkits on static and dynamic kernel nyerdotike LiveDM, it assumes a
rootkit behavior (i.e., it starts to access static objects first, then progebssillows pointers to find the targets).
We demonstrated in Section 4.3 that this assumption can be violated by sétzratechniques and rootkits can
thus elude this profiler. In addition, since it relies on the rootkit activity tordgte types, its analysis focus
is limited to the memory manipulated by rootkits. In contrast, LiveDM can be usedailyze dynamic kernel
memory accessed by legitimate kernel code as well as rootkit code withautisutations.

K-Tracer [31] can analyze the malicious behaviors of kernel rootkitemsitive events using dynamic slicing
techniques. Its algorithm requires determination of the sensitive data so hecdifficult to analyze DKOM
attacks [2, 5] whose targets may not be predetermined. LiveDM, on tleg b#nd, can derive the type of a
dynamic object for a given address and is therefore applicable to a sddpe of problems, such as the analysis
of legitimate kernel code execution as well as the interpretation of DKOM atiatikns.

Several approaches have been proposed to infer data structureseémary snapshot based on the memory
analysis and static analysis. Laika [11] used Bayesian unsupervisaahtgto infer the layouts of data structures.
KOP [12] improved the inference quality and achieved advanced r@tmgof generic pointers, type ambigui-
ties, and arrays using the static analysis technigue in addition to memory an&lsie these approaches use
pointer values in the memory to construct a memory graph and map objects toltiyeE3M uses the allocation
events to recognize kernel objects. So LiveDM is more tolerant to invalittgroaddresses or memory casting to
generic types. In addition, when diagnosing a trace of dynamic kereeli&rn, it will be a challenge to reflect
dynamically changing memory status for snapshot-based approachses thdg generate a memory graph for
each dynamic memory change.

WIT [32] is an inline reference monitor that can check the validity of memocgsses. WIT assigns colors to
newly allocated memory objects using memory wrapper functions. Theses @idrtype IDs both serve as the
names of dynamic objects. WIT uses static analysis to determine these nathiestamentation is necessary to
manage them in the system. In LiveDM, names (i.e., type IDs) are systematixtfigted using standard rules
about runtime context called function call conventions, so no changeéssary inside the guest system. Another
difference is that WIT targets user memory while LiveDM targets kernel nmgmo

17



To recognize the activity of rootkits, LiveDM relies on previously pragebgpproaches in kernel rootkit de-
fense [20, 24, 25]. We developed techniques to capture an indivitju@mic kernel object along with runtime
information to derive its type, which can be described as a fine-graineddheftvirtual machine introspection,
originally introduced by Livewire [33].

8 Conclusion

In this paper, we presented a memory interpretation system that can autdign&iigeslate dynamic kernel
memory addresses into data types. LiveDM can analyze the dynamic kbjaets accessed by the entire kernel
execution because LiveDM identifies the types of the dynamic objects by it memory allocation code. This
approach significantly expands the analysis coverage, which waspsgvlimited to the targets of rootkits with
assumptions on attack mechanisms [4]. Also it enables an accurate anblyaliatite dynamic kernel memory
over a continuous period of time, which previously was not possible bgsémd-based approaches [12, 11].
LiveDM is based on two novel techniques: (1) systematic identification afidimidual dynamic object with the
allocation code address (a type ID) and (2) static code analysis that dig@iigaonverts a type ID to a data type.
Our prototype supports three off-the-shelf Linux distributions and vesvdhiveDM’s general applicability and
effectiveness in extensive case studies analyzing kernel malwaiesamel bugs.
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