
LiveDM: Temporal Mapping of Dynamic Kernel Memory for
Dynamic Kernel Malware Analysis and Debugging

Junghwan Rhee Dongyan Xu
Department of Computer Science, Purdue University

{rhee,dxu }@cs.purdue.edu

Abstract

Dynamic kernel memory is difficult to analyze due to its volatile status; numerous kernel objects are frequently
allocated or freed in a kernel’s heap, and their data types are missing in the memory systems of current commodity
operating systems. Since the majority of kernel data is stored dynamically,this memory has been a favorite target
of many malicious software and kernel bugs. In order to analyze dynamic kernel memory, a global technique that
systematically translates a given memory address into a data type is essential.

Previous approaches had a limited focus in the analysis of either a malware’s execution or a snapshot of kernel
memory. We present here a new memory interpretation system called LiveDM that can automatically translate
dynamic kernel memory addresses into data types.1 This system enables the accurate memory analysis of the
entire kernel execution, ranging from malware activity to legitimate kernel code execution, over a period of time
beyond the instant of a snapshot by using these two novel techniques. (1) The system identifies an individual
dynamic kernel object with its systematically-determined runtime identifier that points to the code where the object
is allocated. (2) The data type then can be automatically extracted from the code using static code analysis offline.

We have implemented a prototype of LiveDM that supports three Linux kernels where LiveDM dynamically
tracks tens of thousands of dynamic kernel memory objects that can beaccurately translated into data types in
the offline process. We have evaluated and validated its general applicability and effectiveness in extensive case
studies of kernel malware analysis and kernel debugging.

1 Introduction

Dynamic memory is an essential but complicated mechanism to handle data in programs. In user programs
such memory is placed in the heap, and the heap memory is notorious for segmentation fault errors. In spite of
today’s state-of-the-art debugging technology, it is difficult to understand this memory due to the lack of accurate
information as to the locations and data types of dynamic memory objects.

This situation can worsen in the kernel side, where higher reliability is expected but less monitoring and de-
bugging support is provided compared to the user space. Operating system kernels manage the majority of kernel
data in dynamic memory, thus many security or reliability issues begin there. For instance, an increasing number
of kernel malware programs target dynamic kernel objects [1, 2, 3, 4,5], and many kernel bugs are caused by
dynamic memory errors [6, 7, 8].

Accurate analysis of dynamic kernel memory faces the following challenges. Operating system kernels fre-
quently allocate or deallocate numerous dynamic objects. Hence, maintaining anaccurate view of dynamic kernel

1LiveDM is the acronym for theLive Dynamic kernel memoryMap.

1

objects requires fine-grained capturing of memory allocation activities. Furthermore, a mechanism is needed to
systematically identify the types of objects because current kernel memory systems do not store type information
for dynamic objects. A type-enabled kernel memory tracking system will provide an improved semantic view that
illustrates how the kernel heap is organized and explains the purpose of an individual dynamic object, thereby
greatly assisting the investigators of kernel attacks or bugs.

Two approaches generally can be utilized to implement such a system. If current memory systems can be
extended to support types [9, 10], not only the memory management code will be modified but also all allocation
code will require changes to assign a type for each allocation (recall thatmost current kernel memory allocators
obtain a size but not a type). The other approach, which we will shortly present, is applicable to commodity
operating system kernels without any change by tracking the type information via a virtual machine monitor and
offline analysis.

Previous approaches could infer dynamic data types using Bayesian unsupervised learning [11] or point-to
analysis that resolves generic pointers and type ambiguity [12]; but their analyses were focused on the instant
when the snapshot was taken so their use was limited to deriving signatures of programs or analyzing persistent
memory manipulation. These approaches cannot be applied to analyze runtimekernel execution where temporal
memory errors (e.g., buffer overflow) occur or to investigate sophisticated kernel attacks that avoid persistent
manipulation (e.g., DKOM [2, 5]).

Another closely related work is PoKeR [4], a kernel rootkit profiler, which traces a rootkit’s instructions and
translates the manipulated memory targets under assumptions about the rootkit’sattack behavior. However, as
we will show in Section 4.3, such assumptions can be violated to elude PoKeR. In addition, the analysis focus
of PoKeR is limited to a number of kernel objects manipulated by kernel rootkits,thus this technique cannot be
applied to inspect ordinary dynamic kernel objects accessed by legitimate kernel code.

In this paper we will present LiveDM, a new dynamic kernel memory interpretation system that addresses these
problems. LiveDM overcomes the limitations of previous approaches by keeping track of the address range of an
individual dynamic object and its allocation code position from which its type is derived. The contributions of this
system can be summarized as follows.

• LiveDM systematically identifies an individual dynamic kernel object with its runtime identifier pointing to
the code where the object is allocated. This object’s type can be extracted from the designated code offline.
Since LiveDM handles dynamic kernel memory by capturing the activity of kernel memory allocators, this
approach extends the coverage of memory analysis to the dynamic kernel objects accessed bythe entire
kernel executionbeyond the scope of dynamic memory targeted by kernel rootkits [4].

• In order to ensure the correct analysis of the volatile dynamic kernel memory’s status, LiveDM updates the
kernel memory map in the virtual machine monitor (VMM) whenever a memory allocation and deallocation
occurs in the guest kernel. This mechanism enables the accurate translation of dynamically changing mem-
ory over a period of time, which is not possible in snapshot-based approaches [11, 12] unlessa snapshot is
taken for each memory access.

• In the offline process, a runtime identifier for each dynamic memory object can be automatically translated
into a data type by usingstatic code analysis. Specifically, the memory type is captured from the source
code that handles the allocated memory. By following the dependencies amongthe internal representations
of kernel code generated by compilers, the type information can be automatically determined.

We have implemented a prototype of LiveDM that can translate the dynamic objects of three off-the-shelf Linux
distributions and have evaluated it in the analysis of malware and kernel bugs to show its general applicability.
LiveDM targets the environments that investigate internal kernel activities,such as honeypots or kernel debugging
setups, that can trade an incremental performance overhead for a newin-depth analysis capability of dynamic
kernel memory.

2

Figure 1. Overview of LiveDM.

2 Design of LiveDM

In this section we will first introduce our approach to determine the data typesof dynamic memory objects, then
we will present the specific techniques of LiveDM in three phases.

2.1 Call-site-based Dynamic Data Type Identification

LiveDM determines the data type of a dynamic kernel object by using itsallocation code. When a new memory
is allocated in the kernel, the allocation code can be designated by thecall siteof a memory allocation function.2

By recording this call site as a runtime identifier, we can enable a dynamic kernel memory object to point to
the code used to derive its type. Once the code is identified, the type can be extracted by traversing the code.
For instance, if a newly allocated memory address is assigned to a variable, the type of this variable is extracted
because it can represent the type of the allocated object. In a correctly compiled program, such as a running kernel,
a declaration and its type definition must precede the use of the variable sincethe dependencies among those code
elements are checked during the compilation. By instrumenting the compilers, we can follow such dependencies
and identify the type of the allocated memory. In this paper we call this identifier atype ID.

Definition (Type ID). Given a dynamic memory objectm, a type ID, denoted asIm, is the call site of the dynamic
memory allocation functionk executed to allocatem. In other words,Im is the program counter of the call
instruction that invokesk to allocatem.

Figure 1 illustrates a high level view of our approach in three phases. In the first phase, for a newly allocated
dynamic kernel object in a guest kernel, its type ID is systematically determined. Its address range and type ID
are recorded in a shadow memory space in VMM calledthe kernel memory map. LiveDM uses this map for three
purposes. First, for a given address, LiveDM determines whether it isfor dynamic memory by looking up the
designated object using the address. Second, LiveDM maintains type IDsfor kernel objects transparently to the
guest kernel by storing them in this map; and finally this map is used for a more specific interpretation to a field
within an object as described below.

A dynamic memory is often used as an instantiation of a composite data type (i.e., non-primitive type such as
struct) that has fields, and it will be informative to point to a specific field in the interpretation in such cases.
In the low level view, a field is represented as an offset in the chunk of memory used for the data structure. The
kernel memory map provides the address range of an object, from which we can determine the offset within the

2A call site for a function is the program counter of a call instruction for the function.

3

object, in order to identify a field during runtime. This identification is interpretedinto a field name in the offline
analysis. In this paper, we define this identifier as follows.

Definition (Field ID). Given a memory addressi that belongs to the address range of a dynamic memory object
m, a field ID ofi, is the offset within the range.

The second phase shows how a type ID and a field ID are determined for an inspected dynamic memory address,
which are translated to a data type and a field in the offline interpretation. In thefinal phase, first we convert a type
ID into the position of the corresponding code by using debugging information. Using the instrumented compiler,
we then traverse the code structures and derive the data type of the object for the given address. In the following
sub-sections, we present the techniques for each phase in detail.

2.2 Phase 1: Transparent Capture of Dynamic Objects and Runtime Identification

Before runtime monitoring begins, we instruct the VMM which kernel memory allocation/deallocation func-
tions to intercept. The functions can be identified by using debugging information and the kernel symbol table.
In Section 3, the implementation details such as the scope of the captured memory functions and the handling of
wrapper functions will be presented. When kernel code is about to run, the VMM intercepts the control with the
fetched address. If the code matches either an allocation function or a deallocation function, a respective VMM
capture function is called. The allocated memory range can be expressed as the initial address and the size, and
such information can be obtained from a memory allocation function call. The initial address is the return value of
the function and the size is given as a parameter. In order to free a memory range, the initial address is sufficient
information to search the block to be freed, and it is given as a parameter ofthe deallocation function call.

Leveraging the standard rules about the delivery of such values, called function call conventions, LiveDM can
capture these memory operations without modifying a guest kernel code.3 Function parameters are delivered
through the stack or registers, and we can capture them by inspecting theirlocations at the callee. The return
value can be captured by determining the location and the time when it is passed.The location is determined by
the function call convention. The integers up to 32 bits and the pointers are delivered via theEAXregister and all
values that we would like to capture are either of those types. The return value is available in this register when the
function returns to the caller, and this moment can be recognized using the return address extracted at the callee.
The VMM stores such return addresses in the shadow stack. Then whenthe code that the CPU is about to execute
is matched with the code in this stack, the VMM captures the return value from theEAX register. LiveDM does
this match by searching the stack with the address in LIFO order because thereturn sequence of kernel functions
may not be the exact reverse order of the call sequence due to nondeterministic execution of multiple contexts.

There can be multiple approaches to capture a type ID (a call site of a function call) such as instrumenting call
instructions in VMM. LiveDM approximates the call site with the return addressof a function call and captures it
when a kernel memory function is about to run. This approximation is used mainly to simplify the implementation
and to minimize the interception. The captured address is the next address ofthe call site in the instruction stream.
In the source code analysis, this approximated call site will point to the same orthe next non-comment line of the
allocation call. This trivial offset can be easily handled in the offline analysis procedure. The captured type ID is
stored in the kernel memory map along with the memory address range.

2.3 Phase 2: Determining the Scope of Interpretation

The previous phase introduced the technique to track down the types of thedynamic objects. In the application
scenarios, we will collect a set of memory addresses to be investigated. There are generally two ways to set the
scope of the kernel memory addresses to be interpreted.

3A function call convention is a scheme to pass function parameters and a return value. We use the ones for x86 architecture and GNU
Compiler Collection (gcc) compilers [13].

4

Figure 2. A high level view of static code analysis

(a) Case 1 (b) Case 2 (c) Case 3

Figure 3. Cases of analyzed code. C: a call site, A: an assignm ent, D: a variable declaration, T: a type
definition, R: a return, and F: a function declaration.

First, if the diagnosis of the entire dynamic kernel memory status is desired, a snapshot of the kernel memory
map can be taken to interpret the whole. Unlike a conventional memory dump [14], this snapshot has the address
ranges of dynamic kernel objects and their type IDs to derive their types.Therefore, it provides significantly im-
proved semantic information to understand kernel memory status. Snapshot-based approaches [12] infer memory
graphs by following pointers and mapping the dereferenced memory addresses to pointers’ types. Our approach
construct the kernel memory map not by using contents (pointer values) ofmemory but by using allocation events,
thus it is more tolerant to invalid pointer addresses or memory casting to genericpointer types.

Second, the scope of instructions can be set to trace the list of dynamic memory objects accessed by kernel
memory instructions. This mechanism enables the diagnosis of dynamically changing memory status over a pe-
riod of time with accurate type information. Because the dynamic status can significantly change in any moment,
the snapshot-based approaches can only achieve similar accuracy by making a snapshot for an individual memory
access, which requires significant CPU and storage overhead. In order to define the tracing focus with policies,
LiveDM has a memory address space calledTrace map, which is checked for each code fetch to select the instruc-
tion to be traced. We can also define complicated taint rules to track a malware’s activity based on its code and
the overwritten memory. In Section 5, we will present case studies using this feature and the tracing policies are
respectively defined.

When a memory access is traced, the identification of the accessed dynamic object is retrieved from the kernel
memory map and logged to reflect the accurate dynamic memory status at runtime. If a dynamic memory object
corresponding to the address is found, its type ID is retrieved and the fieldID is calculated as the offset within the
address range. The kernel memory map is built with a page table structure and a hash table for efficient lookups.

2.4 Phase 3: Offline Data Type Interpretation

In this step, the kernel object type IDs collected in the previous step are translated into data types via static
kernel code analysis. The intuition behind this technique is that the type of a dynamic object can be found from

5

the source code that handles the object’s allocation. Figure 2 illustrates a high level view of our mechanism.
First, the type ID (allocation call site) (C) of a dynamic object is mapped to the source codefork.c:610 using
debugging information. This code assigns the allocated memory to a pointer variable at the left-hand side (LHS)
of the assignment (A). In this case, this variable’s type can represent the type of the allocated memory. Thus, the
declaration of this pointer (D) and the definition of its type (T) are consequently searched by traversing the code.
Specifically, during the compilation, the parser sets the dependencies amongthe internal representations (IRs) of
such code elements; therefore, the type can be found by generating the IRs and following their dependencies.

For object type resolution, there are various patterns in the allocation codeas shown in Figure 3. Case 1 is
the typical pattern (C→A→D→T) that we previously explained.gcc recognizes the pattern of Case 2 differently
as an initialized declaration. However, the instrumented code generates the IRs for both of an assignment and
a declaration at the same line, thereby treating this case similar to the first case.Unlike the first two cases, the
third pattern does not use a variable to handle the allocated memory address,rather it directly returns the value
generated from the allocation call. When a call site (C) is converted to a return statement (R), we determine the
type of the allocated memory using the type of the returning function (F). In Figure 3(c), this pattern is presented
as C→R→F→T.

Prior to static code analysis, we generate the sets of information about the code elements to be traversed by
compiling the kernel source code with thegcc compiler [13] that we instrumented. This compiler generates
several internal representations for the compiled code, such as Abstract Syntax Tree (AST) and Register-Transfer
Language (RTL). We choose AST because the type information, such asthe definitions of composite types, is
available in this representation.

3 Implementation

In our prototype, LiveDM supports three off-the-shelf Linux operating systems of different kernel versions:
Fedora Core 6 (Linux 2 6.18), Debian Sarge (Linux 2.6.8), and Redhat8 (Linux 2.4.18). Our mechanism is
general enough to work with any operating system that follows the standard function call conventions. LiveDM
can be easily implemented on any software virtualization system, such as VMware (Workstation, Server, and
Player) [15], VirtualBox [16], and Parallels [17]. We chose QEMU virtual machine 0.9.0 [18] with the KQEMU
optimizer for implementation convenience. We note that the QEMU-based implementation with relatively high
performance overhead can indirectly benefit production workloads running on another high-performance VMM
by taking the outsourced replay approach such as the decoupled analysis in [19].

In the kernel source code, many wrappers are used for kernel memory management, some of which are defined
as macros or inline functions and others as regular functions. Macros and inline functions are resolved as the core
memory function calls at compile time by the preprocessor; thus, their call sites are captured in the same way as
core functions. However, in the case of allocations through regular wrapper functions, the call sites will belong to
the wrapper code.

In order to solve this problem, we take two approaches. If a wrapper is locally used only in a few code, we
consider that the type from the wrapper can indirectly imply the type used in thewrapper’s caller due to its limited
use. If a wrapper is widely used in many places (e.g.,kmemcache alloc – a slab allocator), we treat such wrap-
pers as memory allocation functions. Operating systems, which have a mature code quality, have a well defined
set of memory wrapper functions that the kernel and driver code commonly use. In our experience, capturing
such wrappers, in addition to the core memory functions, can cover the majority of the memory allocation and
deallocation operations.

We categorized the captured functions into four classes: (1) page allocation/free functions, (2)kmalloc/kfree

functions, (3)kmemcache alloc/free functions (slab allocators), and (4)vmalloc/vfree functions (con-
tiguous memory allocators). These sets include the well defined wrapper functions as well as the core memory
functions. In general, we captured about 20 functions in each guest kernel to capture the dynamic memory ranges.

6

 0

 5000

 10000

 15000

 20000

 25000

5 10 15 20

T
he

 N
um

be
r

of
 C

ap
tu

re
d

M
em

or
y

B
lo

ck
s

The Number of Executed Instructions (in Billions)

unix, ide_core, pdc202xx_new, aec62xx, alim15x3
amd74xx, atiixp, cmd64x, cs5520, cs5530, cy82c693
generic

hpt34x, ide_disk, hpt366, ns87415, opti621
pdc202xx_old, piix, rz1000, sc1200, serverworks
siimage, sis5513, slc90e66, triflex, trm290, via82cxxx
ide_generic
jbd, ext3

cdrom
ide_cd

psmouse

evdev
mousedev

tsdev
8390, ne2k_pci

usbcore

ehci_hcd, ohci_hcd, uhci_hcd

ipv6

Total number of blocks
Page frame blocks

Kmalloc/kfree blocks

Figure 4. The usage of dynamic kernel objects during the boot ing stage (OS: Debian Sarge).

The memory functions in an OS can be determined from the design specification(e.g., the Linux Kernel API) or
source code.

Automatic translation of a call site to a data type requires a kernel binary that iscompiled with a debugging
flag (e.g.,-g to gcc) and whose symbols are not stripped. Modern operating systems, such as Ubuntu, Fedora,
and Windows, generate kernel binaries of this form. Upon distribution, typically the stripped kernel binaries are
shipped; however, unstripped binaries (or symbol information in Windows) are optionally provided for kernel de-
bugging purposes. The experimented kernels of Debian Sarge and Redhat 8 are not compiled with this debugging
flag. Therefore, we compiled the distributed source code and generatedthe debug-enabled kernels. These kernels
share the same code with the distributed kernels, but the code offsets can be slightly different due to the additional
debugging information.

For static analysis, we compiled the source code of the experimented kernelsusing thegcc [13] compiler
(version 3.2.3) that we instrumented. We placed hooks in the parser and extracted the ASTs for the code elements
necessary in the static code analysis, which are described in Section 2.4.

4 Evaluation

We first evaluate the core properties of LiveDM especially its accuracy and robustness against stealthy malware.
We then present a number of case studies that use LiveDM for kernel malware analysis in Section 5. The guest
systems are configured with 256MB RAM and the host machine has a 3.2Ghz Pentium D CPU and 2GB RAM.

4.1 Identifying Dynamic Kernel Objects

In order to evaluate the core feature of LiveDM that captures dynamic objects, we measured the number of active
dynamic kernel objects over the booting process. The total number of validobjects varied over the booting period
as shown in Figure 4. After the system was fully booted, LiveDM for Debian Sarge was tracking 22765 dynamic
kernel memory blocks. In Figure 4, the number of blocks allocated by thekmemcache alloc/free functions
and thekmalloc/kfree functions were merged becausekmalloc/kfree functions callkmemcache alloc/free

functions internally and were therefore considered to be a similar kind. There were a limited number ofvmalloc

objects, which were mainly used for kernel modules. So we denoted the names of loaded kernel modules instead
of depicting their numbers.

We present a list of core kernel data structures that LiveDM capturesat runtime in Table 1. These data structures
manage the core operating system status such as process information, memory mapping of each process, and the

7

Type ID (A/R) Declarations (D/F) Case Data Type #Objects
Ta

sk
/S

ig
na

l
kernel/fork.c:248 kernel/fork.c:243 1 task struct 66
kernel/fork.c:801 kernel/fork.c:795 1 sighand struct 63
fs/exec.c:601 fs/exec.c:587 1 sighand struct 1
kernel/fork.c:819 kernel/fork.c:813 1 signal struct 66

M
em

or
y

arch/i386/mm/pgtable.c:229 arch/i385/mm/pgtable.c:229 2 pgd t 54
kernel/fork.c:433 kernel/fork.c:431 1 mmstruct 47
kernel/fork.c:559 kernel/fork.c:526 1 mmstruct 7
kernel/fork.c:314 kernel/fork.c:271 1 vm area struct 149
mm/mmap.c:923 mm/mmap.c:748 1 vm area struct 1004
mm/mmap.c:1526 mm/mmap.c:1521 1 vm area struct 5
mm/mmap.c:1722 mm/mmap.c:1657 1 vm area struct 48
fs/exec.c:402 fs/exec.c:342 1 vm area struct 47

F
ile

sy
st

em

kernel/fork.c:677 kernel/fork.c:654 1 files struct 54
kernel/fork.c:597 kernel/fork.c:597 2 fs struct 53
fs/file table.c:76 fs/file table.c:69 1 file 531
fs/buffer.c:3062 fs/buffer.c:3062 2 buffer head 828
fs/block dev.c:233 fs/block dev.c:233 2 bdev inode 5
fs/dcache.c:692 fs/dcache.c:689 1 dentry 4203
fs/inode.c:112 fs/inode.c:107 1 inode 1209
fs/namespace.c:55 fs/namespace.c:55 2 vfsmount 16
fs/proc/inode.c:93 fs/proc/inode.c:90 1 proc inode 237
drivers/block/ll rw blk.c:1405 drivers/block/ll rw blk.c:1405 2 request queue t 18
drivers/block/ll rw blk.c:2950 drivers/block/ll rw blk.c:2945 1 io context 10

N
et

w
or

k

net/socket.c:279 net/socket.c:278 1 socket alloc 12
net/core/sock.c:617 net/core/sock.c:613 1 sock 3
net/core/dst.c:125 net/core.dst.c:119 1 dst entry 5
net/core/neighbour.c:265 net/core/neighbour.c:254 1 neighbour 1
net/ipv4/tcp ipv4.c:134 net/ipv4/tcp ipv4.c:133 2 tcp bind bucket 4
net/ipv4/fib hash.c:586 net/ipv4/fib hash.c:461 1 fib node 9

Table 1. Dynamic kernel objects identified by using allocati on code (Type ID) and related code el-
ements (Declarations). A/R: an assignment or a return, D/F: a variable declaration or a function
declaration. (OS: Debian Sarge).

status of file systems and network which are often targeted by kernel malware and kernel bugs [4, 20, 21, 22, 1, 8,
6, 7]. Kernel objects are recognized using runtime identifiers in columnType ID during runtime. In offline, these
IDs are translated into data types shown in columnData Typeby traversing the allocation code and the declarations
(shown in columnDeclarations) used for the allocation in the kernel source code. ColumnCaseshows the case
of allocation code in static analysis presented in Section 2.4. The numbers of identified objects are presented in
column#Objects.

4.2 The Accuracy of LiveDM

We evaluate the accuracy of LiveDM in kernel object type resolution. For experimental purposes, we instrument
the kernel memory functions described in Section 3 and generate a log of allocation and deallocation events of
dynamic kernel objects. We observed that the active dynamic objects derived from such events accurately match
the live dynamic kernel objects systematically captured by LiveDM using virtual machine techniques.

The type derivation accuracy is checked by traversing the kernel source code and translating the call sites
from the instrumented code as done by related approaches [12, 11]. The derived types at the allocation code are
completely matched with the results from our automatic static code analysis technique.

8

if (__this_module.next)
__this_module.next = __this_module.next->next;

Figure 5. The cleaner rootkit of the adore-ng
rootkit distribution can void PoKeR’s profiling.

unsigned int * pgd;
__asm__("movl %%cr3,%0":"=r" (pgd));
pgd = __va(pgd) + pmd_offset;
(* pgd) = manipulated_pmd;

Figure 6. REGIKIT: A rootkit that obtains the at-
tack target from a hardware register.

struct dentry * adore_lookup(struct inode * i,
struct dentry * d, struct nameidata * nd)

{
struct task_struct * tsk;
if (strncmp(d->d_iname, "pr-", 3) == 0) {

tsk = find_task_by_pid(adore_atoi(d->d_iname + 3));
tsk->uid = tsk->suid = tsk->euid = tsk->fsuid = \
tsk->gid = tsk->egid = tsk->fsgid = 0;
tsk->cap_effective = tsk->cap_inheritable = \
tsk->cap_permitted = ˜0UL;

}
}

Figure 7. A modified adore-ng for Linux 2.6. The
targeted process is assumed to be a temporarily
suspended user shell that is forked before this
rootkit is loaded.

4.3 Profiling Resistant Attacks

In this section, we demonstrate the robustness of LiveDM against stealthy rootkits that can elude an existing
kernel malware profiler, PoKeR [4]. PoKeR assumes the attack behavior that (1) starts scanning static objects
and proceeds following pointers until the intended target is found. PoKeRidentifies the targets by following
the accessed memory in the same way as rootkits. The data types of static objectsare known, and the types of
subsequently accessed objects can be inferred using the dereferenced pointer types. In addition, once PoKeR is
activated, (2) it then tracks the addresses of the scheduled PCBs.4 Thus the attack target on the current PCB can
be identified even though the rootkit’s behavior does not follow the first assumption. However, rootkits may well
violate these assumptions. We found that at least two existing rootkits can avoid being profiled by PoKeR and
more techniques to elude PoKoR are presented below.

Using Dynamic Module Symbols: Figure 5 presents the attack code of the cleaner rootkit included in the
adore-ng rootkit distribution. In the code, this rootkit locates the currentmodule structure using thethis module

symbol. This symbol is a dynamic module symbol locally defined for each kernel module; the kernel module
loader dynamically maps the current module’s address to this symbol when themodule is loaded. Since neither
this symbol is reached from static objects nor the manipulated memory is part of scheduled PCBs, both of PoKeR’s
assumptions are not followed; thus PoKeR cannot identify this manipulation.

Using Registers: This technique violates the first assumption by obtaining the attack target directly from a
hardware register. For example, theCR3register is used to load a page table directory and a page table directory
can be manipulated using this register as shown in Figure 6. As another example, the modhide rootkit in the knark
rootkit distribution uses theEBXregister to locate the current module structure in Linux 2.2 kernels. Similarly, any
hardware register (other than theESPregister that points to a scheduled PCB) can be used to find the attack target
that can evade PoKeR.

Using Kernel Functions: PoKeR can identify types of dynamic objects based on the way that a rootkit
manipulates it, so the other objects that are used by legitimate kernel execution are not understood by PoKeR.
For instance, in Linux 2.6 kernels there is a function,find task by pid that returns the address of the PCB
for a given process identification number (PID). Any other function thatreturns the address of a dynamic object
likewise can be used to elude PoKeR.

Turning a Real World Rootkit into a PoKeR Resistant Rootkit: By applying the presented techniques

4A process control block (PCB) is a kernel data structure containing administrative information for a particular process and its data type
is task struct in Linux.

9

Rootkit Runtime Identification Offline Interpretation Operating
Name Type ID Field ID Type Field/Offset System (OS)
cleaner kernel/module.c:314 0x4 module next RedHat 8

modhide kernel/module.c:314 0x4 module next (Linux 2.4)
REGIKIT arch/i386/mm/pgtable.c:229 offsetpmd offset pgd t offsetpmd offset

kernel/fork.c:248 0x1d0,1d4,1d8,1dc task struct uid,euid,suid,fsuid
PoKeR kernel/fork.c:248 0x1e0,1e4,1ec task struct gid,eguid,fsgid Debian Sarge
resistant kernel/fork.c:248 0x1f4 task struct cap effective (Linux 2.6)
adore-ng kernel/fork.c:248 0x1f8 task struct cap inheritable

kernel/fork.c:248 0x1fc task struct cap permitted

Table 2. The dynamic kernel objects manipulated by PoKeR res istant rootkits.

together, we can turn an existing kernel rootkit into aPoKeR resistant rootkitin which the targeted dynamic
memory cannot be understood by PoKeR. For instance, we can make adore ng rootkit resistant to PoKeR. One of
the functions of this rootkit,adore lookup , is invoked by a lookup on theproc file system. By taking a command
as a directory name, this function works as a backdoor that controls the kernel. The original code gives the root
privilege to the current user by manipulating the current user’s PCB. Instead, we usefind task by pid to look
up a non-current process with a given PID. In particular, this modified rootkit assumes to handle a suspended user
shell that is forked before the rootkit is loaded. The combination of these techniques therefore violates both of the
assumptions by PoKeR. The attacker can trigger theadore lookup with the PID of the sleeping shell. Then the
rootkit sets its PCB with the root credentials. The attacker can wake up this shell any time to become a root.

Analyzing PoKeR Resistant Rootkits: Unlike PoKeR, LiveDM has no assumption regarding how the ma-
nipulated address should be obtained. Therefore, it can interpret an address regardless of the rootkit behavior that
finds the target. Table 2 summarizes the attack targets of the PoKeR resistant rootkits identified by LiveDM. First,
we can confirm that the cleaner and modhide rootkits both manipulate the module structures. The modhide rootkit
is written for Linux 2.2 kernels so we slightly modified it to use theEBPregister instead of theEBXin order to run
it in the Redhat 8 system (Linux 2.4). LiveDM identified that the REGIKIT rootkit manipulates a dynamic object
of pgd t type. A page table directory is a dynamic object of this type, thereby confirming the attack target. The
memory manipulated by the modified adore-ng matches the data targeted by the attack code shown in Figure 7.
The manipulated object is a PCB (oftask struct type) and specific fields under attack are also matched to the
code.

5 Case Studies

LiveDM provides new aspects of kernel memory analysis by interpreting dynamic kernel memory addresses into
data types. In this section, we first will present an attack case that user program code overwrites kernel memory by
triggering kernel bugs. Since LiveDM manages the kernel memory map, it can interpret the manipulated memory
just based on memory instructions that overwrite kernel memory. Next, we willpresent the attack targets by real
world kernel rootkits, in particular on dynamic kernel memory using LiveDM’s memory interpretation. We then
will present a new aspect of kernel rootkit behavior that allocates the rootkit’s own memory, revealing how rootkits
use this flexible runtime storage to store attack code or their own data. Finally, we broaden our application to the
memory analysis of kernel bugs. By using LiveDM’s type translation, we can obtain the types of dynamic kernel
objects accessed by kernel code statements; therefore we can identify kernel memory accesses to abnormal kernel
objects triggered by kernel bugs.

5.1 User Level Root Exploit Attack Analysis

Vmsplice root exploit (CVE-2008-0009, CVE-2008-0010, CVE-2008-0600) is a notorious user level attack
leveraging critical bugs of recent Linux kernels. It allowed an ordinary user to easily obtain the root privilege by
running a simple proof-of-concept code widely available. The effectedkernels span on multiple kernel versions

10

Type ID Field ID Data Type Field Value
kernel/fork.c:164 0x158,154,150,14c task struct fsuid,suid,euid,uid 0x0
kernel/fork.c:164 0x168,164,160,15c task struct fsgid,sgid,egid,gid 0x0
kernel/fork.c:164 0x178 task struct cap permitted 0xffffffff
kernel/fork.c:164 0x174 task struct cap inheritable 0xffffffff
kernel/fork.c:164 0x170 task struct cap effective 0xffffffff

Table 3. Kernel memory victims overwritten by vmsplice root exploit attack. (OS: Fedora Core 6)

void kernel_code()
{

int i;
uint * p = get_current(); / * The pointer of current task_struct is obtained * /

/ * from the ESP register. * /
for (i = 0; i < 1024-13; i++) {

if (p[0] == uid && p[1] == uid &&
p[2] == uid && p[3] == uid &&
p[4] == gid && p[5] == gid &&
p[6] == gid && p[7] == gid) {

p[0] = p[1] = p[2] = p[3] = 0; / * fsuid, suid, euid, and uid are initialized as 0 (root ID). * /
p[4] = p[5] = p[6] = p[7] = 0; / * fsgid, sgid, egid, and gid are initialized as 0 (root ID). * /
p = (uint *) ((char *)(p + 8) + sizeof(void *));
p[0] = p[1] = p[2] = ˜0; / * cap_permitted, cap_inheritable, and cap_effective * /
break; / * are initialized as 0xffffffff (full capability). * /

}
p++;

}

exit_kernel();
}

Figure 8. The attack code of the vmsplice root exploit. The co mments are not part of the exploit code.

from 2.6.17 to 2.6.24.1, therefore many Linux distributions were vulnerable including one of famous distributions,
Fedora Core 6, that is tested here.

Tracing Policies: In order to analyze this attack we use simple tracing policies. If user code runs in kernel
mode, its execution is traced; If a memory access occurs, the accessed address and the value are traced as well.
Typically the execution of user code in kernel mode should be prohibited because a potentially malicious user code
can subvert the entire system by overwriting kernel code or data. In thisattack example, it occurs by exploiting
vulnerable kernel code.

Identifying Kernel Memory Victims: In this section, we show the effectiveness of LiveDM by identifying
the attack victims of the vmsplice root exploit. We run a widely available exploit code from [23], and Table 3
summarizes the manipulated kernel memory. Note that we do not assume any knowledge about the attack, instead
we only use the memory accesses captured by the above policies.

Let us illustrate how LiveDM identifies the first kernel memory victim shown in the first row of Table 3. When
user code overwrites kernel memory, LiveDM searches the kernel memory map for the overwritten address and
retrieves the runtime identifier (type ID) of the matched dynamic memory block. This type ID is as shown in
columnType ID, and the field ID is determined as the offset of the address in the block range (shown in column
Field ID). This pair of identifiers is stored in the trace and further translated into a data type and a field name
offline. Using debugging information, the type ID is converted to a source code position,kernel/fork.c:164 .
In the code, the address of the allocated memory is assigned to the pointer variable on the left hand side of the
statement. This variable has the pointer type oftask struct as shown in columnData Type. This is the type that
the allocated memory block has. Using its data type definition, the field ID (0x158) is converted to a field,fsuid

11

Rootkit
T

Runtime Identification Offline Interpretation
Name Type ID Field ID Type (D) / Module Object (M) Field / Offset

adore-ng 0.53 D fs/proc/generic.c:436 0x20 proc dir entry get info
(adore-ng.c D kernel/fork.c:610 0x4,12c,130 task struct flags,uid,euid

for Linux 2.4) D kernel/fork.c:610 0x134,138,13c task struct suid,fsuid,gid
D kernel/fork.c:610 0x140,144,148 task struct egid,sgid,fsgid
D kernel/fork.c:610 0x1d0 task struct cap effective
D kernel/fork.c:610 0x1d4,1d8 task struct cap inheritable,cap permitted
M - - ext3:ext3 dir operations readdir
M - - ext3:ext3 file operations write

knark 0.59 D fs/proc/generic.c:436 0x38 proc dir entry read proc
D kernel/fork.c:610 0x4 task struct flags

kbdv3 D kernel/fork.c:610 0x12c,130 task struct uid,euid
D kernel/fork.c:610 0x13c,140 task struct gid,egid

adore 0.42 D fs/namespace.c:44 0x28 vfsmount mnt count
D fs/dcache.c:619 0x0 dentry d count
D kernel/fork.c:610 0x4,12c,130 task struct flags,uid,euid
D kernel/fork.c:610 0x134,138,13c task struct suid,fsuid,gid
D kernel/fork.c:610 0x140,144,148 task struct egid,sgid,fsgid
D kernel/fork.c:610 0x1d0 task struct cap effective
D kernel/fork.c:610 0x1d4,1d8 task struct cap inheritable,cap permitted

linuxfu D kernel/fork.c:610 0x50,54 task struct next task,prev task
hp 1.0.0 D kernel/fork.c:610 0x50,54,9c task struct next task,prev task,p ysptr

D kernel/fork.c:610 0x98,a0,ac task struct p cptr,p osptr,pidhash next
D kernel/fork.c:610 0xb0,78 task struct pidhash pprev,pid

SucKIT 1.3a D kernel/fork.c:610 0x4,c task struct flags,addr limit
superkit D kernel/fork.c:610 0x4,c task struct flags,addr limit

adore-ng 0.53 D kernel/fork.c:248 0xc,1d0,1d4 task struct flags,uid,euid
(adore-ng-2.6.c D kernel/fork.c:248 0x1d8,1dc,1e0 task struct suid,fsuid,gid
for Linux 2.6) D kernel/fork.c:248 0x1e4,1ec,1f4 task struct eguid,fsguid,cap effective

D kernel/fork.c:248 0x1f8,1fc task struct cap inheritable,cap permitted
M - - ext3:ext3 dir operations readdir
M - - ext3:ext3 file operations write
M - - unix:unix dgram ops rcvmsg
M - - ipv6: this module offset0x8

Table 4. Dynamic objects manipulated by rootkits. T: The kin d of memory (D: dynamic and M: module).
(OS: Redhat 8 for Linux 2.4 rootkits and Debian Sarge for Linu x 2.6 rootkits).

(shown in columnField). The rest victims in Table 3 are interpreted in the same way. From this result, we can
understand that this exploit aims at obtaining the root privilege by manipulatingthe user credential information in
the kernel memory.

In order to confirm the correctness of this result, a snippet of the attack code is presented in Figure 8. This code
first obtains the address of current process’ PCB by calling theget current function. Then it scans memory to
identify specific fields for user credentials using a pattern of values. Once they are found, this function overwrites
IDs with 0x0 (root ID) and capabilities with∼0 (=0xffffffff , full capability) to make the attacker a root user.
This is exactly matched with the result presented in Table 3.

5.2 Dynamic Kernel Objects Manipulated by Real World Kernel Rootkits

Kernel rootkits target dynamic objects to conceal their activities because the locations and types of such objects
are comparatively difficult to identify compared to static objects whose information is available at compile time.
In this section LiveDM exposes the types of dynamic kernel objects manipulated by real world kernel rootkits.
LiveDM can perform accurate translation of dynamically changing kernel memory because the kernel memory
map is accurately updated with memory allocation/deallocation events in the guest machine.

Tracing Policies: LiveDM recognizes rootkit activity using previously proposed techniques for kernel rootkit
detection [20] and prevention [24, 25]. Any execution of rootkit code istraced along with the memory access

12

Rootkit Kernel Memory Function Call Allocated Memory
Name Call Type Caller Extracted Caller Name Size (Bytes) Use
Rial Allocation Rial:0x17f new open:0x5b 14 Data: string

Allocation Rial:0x2e6,2fe new read:0x56,6e 25 Data: string
Free Rial:0x234 new open:0x110 - -
Free Rial:0x73c,74a new read:0x4ac,4ba - -

knark 0.59 Allocation knark:0x1341,1371,1396 init module:0x2d,5d,82 8,12,20 Data: rootkit data, string
Free knark:0x16af,16c0,16dc cleanup module:0xf7,108,124 - -
Free† knark:0xe1a knark execve:0x62 - -

kbdv3 Allocation kbdv3:0x8a bd utime:0x2a 256 Data: string
adore 0.42 Allocation adore:0x568 n getdents64:0x8c 704 Data: rootkit data

Allocation adore:0xaa6 fp get:0x4a 4096 Data: string
Free adore:0x5d8 n getdents64:0xfc - -
Free adore:0xa55 fp put:0x2d - -
Free† adore:0xaf9,b78 fp get:0x9d,11c - -

SucKIT 1.3a Allocation Kernel:0xc010910f system call:0x33 13044 Code: rootkit installation
superkit Allocation Kernel:0xc010910f system call:0x33 12735 Code: rootkit installation

Synapsys-0.4 Allocation Synapsys:0x79 hack open:0x19 256 Data: string
Allocation Synapsys:0x872,8da hack write:0x156,1be 2000 Data: string
Free Synapsys:0x16b hack open:0x10b - -
Free Synapsys:0x8c1,92d hack write:0x1a5,211 - -

override Allocation override:0x357,368 my getdents64:0x42,53 64∼1024 Data: rootkit data, string
Free override:0x414,41d my getdents64:0xff,108 - -

phalanx-p6 Allocation Kernel:0xc0124375 sys setdomainname:0x1e 4096 Data: buffer

Table 5. Dynamic memory allocation and free by rootkits. Ker nel memory functions: kmalloc (Allo-
cation), kfree (Free), kmem cache free (Free †). (OS: Redhat 8 for Linux 2.4 rootkits and Debian Sarge
for Linux 2.6 rootkits).

targets. If invariant system components (e.g., kernel code, system calltable, and interrupt descriptor table) are
manipulated, such events are traced as well.

Identifying Kernel Memory Victims: Table 4 presents the list of dynamic kernel memory victims manipu-
lated by real world kernel rootkits. We experimented with 13 rootkits in Linux 2.4 and 2.6 kernels, and 9 rootkits
exhibited the behavior that manipulates dynamic or module objects. Most of these rootkits target static kernel data
as well, however they are not presented because the translation of their addresses is straightforward by using the
kernel symbol table (i.e., System.map in Linux). We focus on the cases of dynamic kernel objects whose addresses
are dynamically determined during the execution of the guest OS.

LiveDM uses the kernel memory map that contains the address ranges of dynamic objects and their IDs. Thus, it
can instantly retrieve the runtime ID of the accessed object (shown in columnRuntime Identification) by searching
the map with the address. In the offline process, the type ID and field ID pairare interpreted into a data type and a
field name, and the result is presented in columnOffline Interpretation . Module objects are interpreted by mapping
their offsets within the module memory to the module symbols, which are extracted immediately after the loading
of the module. Based on these victims, we can understand the system components to which the rootkits aim during
attacks and the potential impact to users. The details of this kind of interpretation are explored in a related work
[4].

5.3 Dynamic Rootkit Memory

The dynamic kernel objects identified in the previous section are allocated bylegitimate kernel code. However,
it is not the only code that can allocate or free dynamic objects. Rootkits can also instantiate dynamic objects.
We analyzed 13 real world rootkits, 9 of which use own dynamic kernel memory. Identifying this memory is
difficult because it has a dynamically determined address out of the loadedrootkit memory. In addition, such
memory does not exhibit different characteristics from legitimate kernel memory just based on their content or
addresses; therefore it is challenging to differentiate rootkit memory just using kernel memory layout. Dynamic

13

rootkit memory has not been previously well addressed in related approaches [24, 4]; however, this memory is
important to understanding rootkit behavior because it serves as stealthyruntime storage that can contain code or
data.

Tracing Policies: LiveDM uses the policies of the previous section to recognize rootkit activities. If a memory
allocation function is called from the rootkit code, the allocated memory is considered to be rootkit memory. In
addition, any anomaly in the memory allocation or deallocation call site is checked.If any code that is not used
for allocation in normal execution is used during rootkit experiments to allocatekernel memory, it is traced and
inspected. This execution patten is observed from rootkits that call a kernel memory allocation function using a
system call indirectly.

Capturing Dynamic Rootkit Memory: Table 5 presents a summary of the dynamic kernel memory allo-
cation and deallocation performed by 9 real world kernel rootkits. The information about the invoked dynamic
kernel memory functions is presented in columnKernel Memory Function Call . For example, the first row in Table
5 shows that the code at the offset 383th bytes (i.e.,0x17f) of the RIAL rootkit code allocates 14 bytes of dynamic
memory by calling thekmalloc function. This code is placed in the 91st (i.e.,0x5b) byte in thenew open rootkit
function as shown in columnExtracted Caller Name. We extract these symbols by parsing the rootkit binary of the
ELF format when it is loaded. These names are required to exist in the binary to load the rootkit into the kernel
(for the code relocation), but they have no relevance other than as the function names that rootkit authors use in
the code.

An interesting result is shown by a group of rootkits that manipulate kernels from user space: SucKIT, su-
perkit, and phalanx-p6. SucKIT and superkit replace one of the system call table entries with the code address
of kmalloc , then call thekmalloc function through a system call. This call is invoked by an unmodified call
instruction in thesystem call function. However, this activity is still captured because the call site ofkmalloc

used by the rootkits is not part of thekmalloc callers in the kernel binary. Interestingly enough, the call in-
struction is indeed modified later (not shown in Table 4 since kernel code is astatic target), but the modification
occurs after the memory allocation. In contrast, phalanx-p6’skmalloc call is invoked by the injected code in the
sys setdomainname function and is therefore easily captured. This behavior previously could not be analyzed
in PoKeR [4] because the executed memory activities are part of legitimate kernel code execution, which PoKeR
does not trace to understand rootkit behavior. However, LiveDM provides a unique opportunity to observe this
new aspect of rootkit behavior since it captures memory allocation activitiesfor the entire kernel execution.

Following is the analysis of how the allocated memory is used by rootkits. This information is presented in
columnAllocated Memory. We classify the use of this memory depending on whether it is used for codeexecution
or data. SucKIT and superkit load the allocated memory with the hooking codeand execute it. Most rootkits use
the memory to store data. Since we cannot assume the availability of source code for rootkits, our type derivation
method is not applicable to this memory. Instead we use derivatives of the approaches [26, 11] that infer the layout
of memory. If we obtain a layout, we mark the memory as rootkit data. However,in many cases the memory is
used as an array involved with string functions. In such cases, we consider the memory as being used as a string.
We confirm our inference is matched with the actual use by manual inspectionof rootkit code.

In general, dynamic kernel memory is a useful resource for rootkits dueto its flexible handling of storage. The
knark rootkit uses dynamic memory to create its ownproc device objects installed in the kernel, which provide
a convenient backdoor mechanism to the attacker. More importantly, the useof this memory for code enables
a sophisticated attack vector to bootstrap kernel mode execution without using a conventional LKM mechanism
[27]. For example, SucKIT and superkit use dynamic memory for this purpose. These rootkits are user programs
that do not have kernel memory space available, unlike LKM-based rootkits. Therefore they use dynamic kernel
memory to place and execute the rootkit installation code in the kernel mode. By tracking the dynamic memory
allocated by kernel rootkits, LiveDM can conveniently uncover such complicated behaviors.

14

Figure 9. The control flow of vmsplice exploit attack: from do vmsplice to the Attack code going
through get iovec page array, get user pages, and splice to pipe. (OS: Fedora Core 6).

5.4 Interpreting Dynamic Memory Targets in Kernel Execution

In this section, we will present a microscopic kernel debugging scenarioassisted with LiveDM’s dynamic
memory interpretation. As we diagnose kernel execution over a traced period, LiveDM reveals the dynamic data
structures that have been dereferenced at runtime for given code, ifany. Therefore, kernel developers can validate
whether each code accesses the correct object meant in the code semantic. An unusual memory object that is
dereferenced for any reason, such as an overflow, can be confirmed since its type will be identified by LiveDM.
Note that the dynamic memory status can be inaccurate at any moment other than the time of the access; thus,
snapshot-based approaches [12, 11] are required to make a snapshot at each access to achieve similar accuracy.
LiveDM effectively extends the coverage of accurate dynamic kernelmemory analysis from a snapshot to a period
of time.

Following is an example that shows how LiveDM can assist a general kernel debugging procedure. This scenario
diagnoses the vulnerable kernel code that allowed a vmsplice root exploitattack (CVE-2008-0009, CVE-2008-0010,
andCVE-2008-0600). This attack is launched by a user program that has a limited privilege; however, it turns the
current user into a super-user by triggering kernel bugs and overwriting the user’s credentials stored in the kernel
memory.

Tracing Policies: In order to analyze this case, we set the tracing scope as the list of kernel functions in
the kernel call stack when user-level exploit code manipulates kernel data in the kernel mode. The traced kernel
functions includeput compound page , sys vmsplice , splice to pipe , get user page , andput page .
Static functions such asdo vmsplice andget iovec page array appear as part ofsys vmsplice .

Checking Memory Dereferences with Dynamic Memory Interpretation: We track down the problem by
starting from the attack code, then browsing the execution in reverse chronological order. An example of the
attack code sequence is denoted with dotted arrows in Figure 9 and the dynamic data types accessed by this code
are shown in Table 6. In order to highlight the unique assistance of LiveDM, we placed numbers in parentheses in
Figure 9, Table 6, and the description.

Before the attack code is launched,put compound page is the last kernel function executed. This function
deallocates memory using a given custom deallocator. The attack code is executed as this deallocator, which
explains why untrusted user-level code is permitted to run in the kernel mode. Delivery of the attack code to this
function is the art of this attack and it is enabled by the vulnerable code in the vmsplice system call.

In splice to pipe , one of the functions of which the vmsplice call is composed, there are three kinds of read

15

Case Traced Code Accessed Data Type Accessed Data Type
Number Function File Line on Normal Workload on Exploit Execution
(1) do vmsplice fs/splice.c 1234 file file
(1) do vmsplice fs/splice.c 1234 dentry dentry
(1) do vmsplice fs/splice.c 1234 inode inode
(2) get iovec page array fs/splice.c 1162 task struct task struct
(3), (4) get user pages mm/memory.c 1069-1070, 1119 vm area struct vm area struct
(5) get iovec page array fs/splice.c 1175-1176 thread info‡ page∗

(6), (7), (8) splice to pipe fs/splice.c 185, 189, 247 pipe inode info pipe inode info

Table 6. Data types of dereferenced memory by the kernel code in Figure 9. Most code use the kernel
stack (type: thread info), but they are omitted except the case marked with ‡. The code in case (5)
accesses an anomalous data type (marked with ∗) on exploit execution. (OS: Fedora Core 6).

accesses on dynamic objects other than the kernel stack. Such objects commonly are of thepipe inode info

type and their field IDs are respectively translated into the fields (6)inodes , (7) readers , and (8)inodes . This
result is exactly matched with the code at the filefs/splice.c in the lines 185, 189, and 247. The trace shows
a specific execution path that theif statement at the line 189 has taken. The read value at this line is 0, and it
confirms this control flow since the if condition(!pipe->readers) is satisfied with it.

LiveDM correctly identifies dynamic objects dereferenced in the program.For example, the code at the line
1234 of thedo vmsplice function has the expression comprised of three consecutive pointer dereferences. As
we see in Table 6, (1) LiveDM accurately identifies three different dynamic objects described in the code.

In the trace ofget iovec page array , we found an excessive loop count returned from theget user pages

function call. We could confirm this number of loops by counting the number ofaccesses on the dynamic kernel
objects inside the loop. Among several dynamic objects from the trace, an object is repeatedly accessed along
with the loop code. (4) LiveDM identifies its type and field are respectivelyvm area struct andvm end , and
this is matched with the object in the loop condition.

The loop count is consistently around 48 when the attack is successful. Wedetermined it was enabled by a
combination of several kernel bugs. Inget iovec page array , an unsigned long variable,npages , is set to 0
due to an integer overflow. This number is passed to a loop variable,len , in theget user pages function. This
variable of a (signed)int type is expected to have a positive value and it is decreased in the do-while loop prior
to the check of the loop condition (len 6= 0). However, due to an early decrement of the overflowed value (0), the
loop conditions continuously hold for negative values, thus an excessive number of loops occur.

This abnormal loop count directly influences the access of the following variable; a local arraypartial placed
in the stack is initialized in the loop atfs/splice.c:1172-1181 . Due to the excessive loop count, this loop
code overwrites the memory placed beyond this array at runtime. In our experiments the manipulation went
beyond the current stack; therefore (5) the code overwrites the object that happens to be adjacent to the stack. This
example highlights the capability of LiveDM, which can also identify the targets of wild memory accesses.

After the analysis, we determined that sanity checks were necessary forthe values passed from user space. First,
one of theget iovec page array ’s argumentsiov is directly passed from the vmsplice system call and used to
fill local variablesbase andlen so it should be checked. Second,base andlen should be carefully inspected as
well after they are filled with the values of user space because they are thedirect inputs that caused the overflow
of npages . We confirmed that such vulnerabilities are patched in the later kernel versions.

6 Discussion

Since LiveDM operates in the VMM beneath the hardware interface, kernel malware cannot directly access
LiveDM code or data. However, it can exhibit potential obfuscating behavior to confuse the view seen by LiveDM.
Here we describe several scenarios in which malware can affect LiveDM and our counter-strategies to detect them.

16

First, malware can implement its own custom memory allocators and not use the legitimate kernel memory
allocators that LiveDM observes. This behavior can be detected basedon the intuition that memory allocators
themselves use internal kernel data to maintain free and active memory chunks. LiveDM can check which kernel
functions access such core memory structures. If LiveDM identifies unusual code other than the regular memory
allocators that manipulate such data, it can be concluded that a custom memoryallocator is present.

Another case is that malware manipulates a regular kernel control flow asin return-to-kernel/libc attacks [28,
29]. For example, malware can jump into the body of a memory allocator without passing the function entry. One
way to determine this attack is to check the control flow integrity [30] of the kernel execution, which ensures that
function calls occur to the function entries, thereby not allowing this kind of attack.

It may seem that a similar result to LiveDM can be achieved by setting breakpoints in a kernel debugger and
manually browsing code. This process in fact describes part of what LiveDM accomplishes in an automated
method, but it is not sufficient to achieve the goal that we target. The missedpoint here is that while such method
manually obtains a mapping from a given code statement (breakpoint) to a type, there may be tens of thousands
of runtime memory instances allocated from the code. Moreover, when malware targets one of a vast number of
memory instances allocated by many different code statements, we need to connect the memory to its allocation
code to identify the memory’s type. LiveDM provides this critical mapping froma memory instance to a code
statement in addition to the mapping from a code statement to a type in order to translate a given kernel address
into a data type completely.

7 Related Work

PoKeR [4] is a kernel rootkit profiler that analyzes multiple aspects of kernel rootkit behavior. PoKeR can
identify the attack targets of kernel rootkits on static and dynamic kernel memory. Unlike LiveDM, it assumes a
rootkit behavior (i.e., it starts to access static objects first, then progressively follows pointers to find the targets).
We demonstrated in Section 4.3 that this assumption can be violated by several attack techniques and rootkits can
thus elude this profiler. In addition, since it relies on the rootkit activity to determine types, its analysis focus
is limited to the memory manipulated by rootkits. In contrast, LiveDM can be used to analyze dynamic kernel
memory accessed by legitimate kernel code as well as rootkit code without such limitations.

K-Tracer [31] can analyze the malicious behaviors of kernel rootkits in sensitive events using dynamic slicing
techniques. Its algorithm requires determination of the sensitive data so it can be difficult to analyze DKOM
attacks [2, 5] whose targets may not be predetermined. LiveDM, on the other hand, can derive the type of a
dynamic object for a given address and is therefore applicable to a widerscope of problems, such as the analysis
of legitimate kernel code execution as well as the interpretation of DKOM attackvictims.

Several approaches have been proposed to infer data structures in amemory snapshot based on the memory
analysis and static analysis. Laika [11] used Bayesian unsupervised learning to infer the layouts of data structures.
KOP [12] improved the inference quality and achieved advanced recognition of generic pointers, type ambigui-
ties, and arrays using the static analysis technique in addition to memory analysis. While these approaches use
pointer values in the memory to construct a memory graph and map objects to types, LiveDM uses the allocation
events to recognize kernel objects. So LiveDM is more tolerant to invalid pointer addresses or memory casting to
generic types. In addition, when diagnosing a trace of dynamic kernel execution, it will be a challenge to reflect
dynamically changing memory status for snapshot-based approaches unless they generate a memory graph for
each dynamic memory change.

WIT [32] is an inline reference monitor that can check the validity of memory accesses. WIT assigns colors to
newly allocated memory objects using memory wrapper functions. These colors and type IDs both serve as the
names of dynamic objects. WIT uses static analysis to determine these names, and instrumentation is necessary to
manage them in the system. In LiveDM, names (i.e., type IDs) are systematically extracted using standard rules
about runtime context called function call conventions, so no change is necessary inside the guest system. Another
difference is that WIT targets user memory while LiveDM targets kernel memory.

17

To recognize the activity of rootkits, LiveDM relies on previously proposed approaches in kernel rootkit de-
fense [20, 24, 25]. We developed techniques to capture an individualdynamic kernel object along with runtime
information to derive its type, which can be described as a fine-grained method of virtual machine introspection,
originally introduced by Livewire [33].

8 Conclusion

In this paper, we presented a memory interpretation system that can automatically translate dynamic kernel
memory addresses into data types. LiveDM can analyze the dynamic kernelobjects accessed by the entire kernel
execution because LiveDM identifies the types of the dynamic objects by using their memory allocation code. This
approach significantly expands the analysis coverage, which was previously limited to the targets of rootkits with
assumptions on attack mechanisms [4]. Also it enables an accurate analysis of volatile dynamic kernel memory
over a continuous period of time, which previously was not possible by snapshot-based approaches [12, 11].
LiveDM is based on two novel techniques: (1) systematic identification of anindividual dynamic object with the
allocation code address (a type ID) and (2) static code analysis that automatically converts a type ID to a data type.
Our prototype supports three off-the-shelf Linux distributions and we show LiveDM’s general applicability and
effectiveness in extensive case studies analyzing kernel malware and kernel bugs.

References

[1] N. L. Petroni and M. Hicks, “Automated Detection of Persistent Kernel Control-Flow Attacks,” inProceed-
ings of the 14th ACM Conference on Computer and Communications Security(CCS’07), 2007.

[2] J. Butler, “DKOM (Direct Kernel Object Manipulation),” http://www.blackhat.com/
presentations/win-usa-04/bh-win-04-butler.pdf .

[3] G. Hoglund, “Kernel Object Hooking Rootkits (KOH Rootkits).,” http://www.rootkit.com/
newsread.php?newsid=501 .

[4] R. Riley, X. Jiang, and D. Xu, “Multi-Aspect Profiling of Kernel Rootkit Behavior,” in Proceedings of the
4th European Conference on Computer Systems (Eurosys’09), April 2009.

[5] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Defeating Dynamic Data Kernel Rootkit Attacks via VMM-
Based Guest-Transparent Monitoring,” inInternational Conference on Availability, Reliability and Security
(ARES’09), 2009.

[6] MITRE Corporation, “Common Vulnerabilities and Exposures,”http://cve.mitre.org .

[7] US-CERT, “US-CERT Vulnerability Notes Database,”http://www.kb.cert.org/vuls .

[8] “The Month of Kernel Bugs (MoKB) archive.”http://projects.info-pull.com/mokb .

[9] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-Safe Retrofitting of Legacy Code,” inProceedings
of the 29th ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages (POPL’02), 2002.

[10] D. Evans, “Static Detection of Dynamic Memory Errors,”ACM SIGPLAN Notices, vol. 31, no. 5, pp. 44–53,
1996.

[11] A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging For Data Structures,” inProceedings of the 8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI’08), December 2008.

18

[12] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping Kernel Objects to Enable Sys-
tematic Integrity Checking,” inProceedings of the 16th ACM Conference on Computer and Communications
Security (CCS’09), 2009.

[13] Free Software Foundation, “GCC, the GNU Compiler Collection,”http://gcc.gnu.org/ .

[14] V. Goyal, E. W. Biederman, and H. Nellitheertha, “Kdump, A Kexec-based Kernel Crash Dumping Mecha-
nism,” in Proceedings of The Linux Symposium 2005 (OLS 2005). http://lse.sourceforge.net/
kdump.

[15] VMware, Inc., “VMware Virtual Machine Technology.,”http://www.vmware.com .

[16] Sun Microsystems, Inc, “VirtualBox,”http://www.virtualbox.org .

[17] Parallels, “Parallels,”http://www.parallels.com .

[18] F. Bellard, “QEMU: A Fast and Portable Dynamic Translator.,” inProceedings of the USENIX Annual Tech-
nical Conference, FREENIX Track, pp. 41–46, 2005.http://www.qemu.org .

[19] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling Dynamic Program Analysis from Execution in Virtual
Environments,” inProceedings of 2008 USENIX Annual Technical Conference (USENIX’08), 2008.

[20] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot- A Coprocessor-based Kernel Runtime
Integrity Monitor,” in Proceedings for the 13th USENIX Security Symposium, August 2004.

[21] N. L. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh, “An Architecture for Specification-Based Detection
of Semantic Integrity Violations in Kernel Dynamic Data,” inProceedings for the 15th USENIX Security
Symposium, (Vancouver, B.C., Canada), July 2006.

[22] N. L. Petroni, A. Walters, T. Fraser, and W. A. Arbaugh, “FATKit: A Framework for the Extraction and
Analysis of Digital Forensic Data from Volatile System Memory,” inDigital Investigation Journal 3(4):197-
210, 2006.

[23] qaaz, “Linux Kernel 2.6.17 - 2.6.24.1 vmsplice Local Root Exploit,”http://milw0rm.com/
exploits/5092 .

[24] R. Riley, X. Jiang, and D. Xu, “Guest-Transparent Prevention of Kernel Rootkits with VMM-based Memory
Shadowing,” inProceedings of 11th International Symposium on Recent Advances in Intrusion Detection
(RAID’08), 2008.

[25] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel
Code Integrity for Commodity OSes,” inProceedings of 21st Symposium on Operating Systems Principles
(SOSP’07), ACM, 2007.

[26] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic Protocol Format Reverse Engineering Through Context-
Aware Monitored Execution,” inProceedings of the 15th Annual Network and Distributed System Security
Symposium (NDSS’08).

[27] K. J. Jones, “Loadable Kernel Modules,”;login: The Magazine of USENIX and SAGE, 26(7), November
2001.

[28] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits: Bypassing kernel code integrity protection
mechanisms,” inProceedings for the 18th USENIX Security Symposium, 2009.

19

[29] H. Shacham, “The geometry of innocent flesh on the bone: return-into-libc without function calls (on the
x86),” in Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS’07),
(New York, NY, USA), pp. 552–561, ACM, 2007.

[30] M. Abadi, M. Budiu,Úlfar Erlingsson, and J. Ligatti, “Control-flow integrity: Principles, implementations,
and applications,” inProceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’05), 2005.

[31] A. Lanzi, M. Sharif, and W. Lee, “K-Tracer: A System for Extracting Kernel Malware Behavior,” inPro-
ceedings of the 16th Annual Network and Distributed System Security Symposium (NDSS’09), 2009.

[32] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing Memory Error Exploits with WIT,”
in Proceedings of IEEE Symposium on Security and Privacy, 2008 (SP 2008), May 2008.

[33] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection Based Architecture for Intrusion Detec-
tion,” in Proceedings of the 10th Annual Network and Distributed Systems SecuritySymposium (NDSS’03),
February 2003.

20

