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ABSTRACT 

Khanna, Nitin Ph.D., Purdue University, December, 2009. Forensic Characterization 
of Image Capture Devices. Major Professor: Edward J. Delp. 

Forensic characterization of sensors or devices is important in many applications 

such as establishing the trust and verifying authenticity of data produced by a sensor 

or device and the sensor or device that created it. Recently there has been a great deal 

of interest using features intrinsic to a data-generating sensor for the purpose of source 

identification. Numerous methods have been proposed for various problems related to 

sensor forensics in general and image forensics in particular. Although a considerable 

amount of work has been done in forensic identification of digital cameras, more work 

needs to be done in forensic characterization of scanners, video cameras and other 

audio devices. 

This thesis is aimed at developing tools for forensic characterization of devices 

or sensors, in particular image capture devices. Statistical feature based classifiers 

are designed for imaging sensor classification and for source scanner identification 

for images acquired using flatbed desktop scanners. The methods are based on us­

ing imaging sensor pattern noise for scanned photographs and texture features for 

scanned documents, as device fingerprints. The statistical feature vector based meth­

ods provide high accuracies, both for native resolution and lower resolution scanned 

images. The proposed method perform well with images that have undergone JPEG 

compression with low quality factors, image sharpening, and contrast stretching. The 

proposed features are also robust to the scan area used for a particular scan so knowl­

edge of the exact location of scanner’s bed used for scanning is not needed. 

The sensor noise based source scanner identification scheme is extended for forgery 

detection in scanned photographs scanned at native resolution of the scanners. This 



xviii 

method can be an effective tool for forgery detection in scanned images if used in 

co-ordination with other existing methods for forgery detection. 

The techniques used for both camera and scanner identification are dependent on 

having prior knowledge of the class of devices (cameras or scanners) that generated 

the image. If the image was generated by a digital camera, then the digital camera 

identification methods must be used. Similarly if the image was generated by a scan­

ner, the scanner identification methods must be used to obtain the best identification 

results. Use of the sensor pattern noise for classifying digital images based on their 

originating mechanism, a scanner or a digital camera or the use of computer graphics, 

is investigated. To achieve this, differences in the characteristics of the sensor noise 

are used. These differences arise between the two classes due to inherent mechan­

ical differences between their respective sensors and image generation mechanisms. 

As shown by our results, the proposed scheme does not need the availability of the 

actual source device for training purposes. Thus, images generated by a completely 

unknown scanner or digital camera can be classified properly. 
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1. INTRODUCTION 

Advances in digital imaging technologies have led to the development of low-cost and 

high-resolution digital cameras and scanners, both of which are becoming ubiquitous. 

Digital images generated by various sources are widely used in a number of appli­

cations from medical imaging and law enforcement to banking and daily consumer 

use [1–5]. The increasing functionality of image editing tools allows even an ama­

teur to easily manipulate images. In some cases a digitally scanned image can meet 

the threshold definition requirements of a “legal duplicate” if the document can be 

properly authenticated [6]. There has also been tremendous growth in the areas of 

computer graphics and computer vision. Growth in these fields combined with the 

availability of less costly and faster computers have led to the development of software 

tools which are not only capable of generating photo-realistic images but which can 

be easily used by a novice. As these technologies advance, it will become easier to 

create computer generated images which are almost impossible to differentiate from 

real photographs. These advancements in the area of digital imaging have direct 

impact on the way our society perceives and uses digital images. 

Forensic tools that help establish the origin, authenticity, and chain of custody of 

digital images are essential to a forensic examiner. These tools can prove to be vital 

whenever questions of digital image integrity are raised. Some major applications are 

in, the use of scanned checks [6], use of digital images as evidence in the court [7] or 

application of child pornography prevention act and its modification [8]. Therefore, 

a reliable and objective way to examine digital image authenticity is needed. This 

is different from simply securing the data being sent across the network because we 

are also authenticating the sensor that is creating the data. One technique that is 

used to authenticate a device involves embedding information, or a watermark, into 

the signal generated by the device. This strategy has potential problems in that 
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the watermark could be attacked, allowing untrusted data to appear authentic. The 

chances of attack further increase with increase in delay between generation of sensor 

data and embedding of watermark, which is controlled by the user in most situations. 

Digital cameras, scanners, and software tools (such as “3D studio max” and 

“Maya”) are three main sources of digital images. A digital image can originate 

from a single source or it can be a mosaic made by combining images from more 

than one source. An image generated by merging a digital photo of a person with a 

background generated in Photoshop [9] is an example of image belonging to a mixed 

class: cameras + computers. Similarly, other classes of forged images exist. There 

are various levels at which the image forensic problems can be addressed. One may 

want to find the particular device (digital camera or scanner) which generated the 

image or one might be interested in knowing only the make and model of the device 

or one may just want to know which source class (camera, scanner or computer gen­

erated) the image comes from. In other applications one is interested to know the 

confidence level with which an image belongs to a claimed source. As summarized 

in [10, 11], a number of robust methods have been proposed for source camera iden­

tification [12–21]. In [22–24], techniques for classification of images based on their 

sources: scanner, camera and computer generated images, are presented. There have 

been advances in source scanner identification using sensor noise in the past year. 

In [25], a direct extension of the sensor noise based source camera identification algo­

rithm [15] was used for source scanner identification. Another approach for scanner 

model identification using sensor pattern noise is presented in [26]. This method is 

aimed at classifying images depending upon the scanner model that generated it and 

not the exact scanner. 

The techniques used for both source camera and scanner identification are depen­

dent upon having prior knowledge of the class of device (cameras or scanners). If the 

image was generated by a digital camera, then the digital camera identification meth­

ods must be used. Similarly, if the image was generated by a scanner, the scanner 

identification methods must be used to obtain the best identification results. Present 



3 

day computer generated photo-realistic images are difficult to distinguish from digital 

camera images if we rely only on human visual system. Hence, in this dissertation, we 

target two problems. First is that of source scanner identification for scanned images. 

The second problem is that of ascertaining the class of an image before the source 

identification appropriate for that class of images is done. The three classes are: 

1. Digital Camera Generated (CG) images, 

2. Scanner Generated (SG) images, and 

3. Photo-Realistic Computer Generated (PRCG) images 

We will first define the area of device forensics followed by a description of the 

image formation systems discussed in this thesis. A brief overview of the state of the 

art in this area and our approach to the problem is then presented. 

1.1 Device Forensics 

Device forensics deals with identifying the type, make, model, configuration, and 

other characteristics of a sensor or device based on observation of the data that the 

sensor or device produces [27]. The characteristics that uniquely identify the device 

are known as device signatures. 

Given a digital image, the goal of image forensics is to determine the device that 

created it, whether the image is authentic, or whether the image has been tampered. 

Determination of regions of manipulations for counterfeit images is also desired. There 

are various levels at which the image source identification problem can be addressed. 

One may want to find the particular device (digital camera or scanner) which gener­

ated the image or one might be interested in knowing only the make and model of 

the device. 
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1.2 Image Generation Systems 

There are three primary ways in which digital images can be generated: a digital 

camera, a scanner and computer graphics tools. In this section, a high level overview 

of these image generation systems is presented. This is critical in understanding how 

to distinguish between different image sources. 

1.2.1 Digital Camera Architecture 

Demosaicing 

Color Correction 

Gamma Correction 

...................... 

Original Scene Lens Captured Image 

Fig. 1.1. Imaging Pipeline For a Digital Camera. 

Basic elements of the digital camera imaging pipeline are shown in Figure 1.1. 

Even though the exact design details change from manufacturer to manufacturer or 

model to model, the basic structure of a digital camera pipeline remains the same [28, 

29]. 

First, light from a scene enters the camera through a lens and passes through 

a set of filters including an anti-aliasing filter. Next the light is “captured” by a 

sensor. These sensors, typically CCD or CMOS imaging sensors, are color blind in 

the sense that each pixel captures only intensity information from the light hitting it. 

To capture color information, the light first passes through a color filter array (CFA) 

which assigns each pixel on the sensor one of the three (or four) colors. Shown in 

Figure 1.2 are CFA patterns using RGB and YMCG color spaces, respectively, for a 

4×4 block of pixels. The individual color planes are filled in by interpolation using the 

sampled pixel values. There are a number of different interpolation algorithms which 
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may be used, depending on the manufacturer. There are also Foveon X3 sensor based 

cameras (such as the Sigma SD9, Sigma DP1, Polaroid x530) which independently 

capture all three colors at each pixel location. 
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Fig. 1.2. CFA Patterns. 

Next, a number of operations are performed by the camera which include white 

point correction and gamma correction. The image is finally written into the camera 

memory in a user-specified image format (e.g. RAW, TIFF or JPEG). Although these 

operations and stages are standard in a digital camera pipeline, the exact processing 

details in each stage vary from one manufacturer to another, and even between differ­

ent camera models from the same manufacturer. These variations from one camera 

to another can be used to determine the camera used to acquire a specific image and 

the common characteristics of image formation system can be used to differentiate 

camera generated images from other two classes of images. 

1.2.2 Scanner Architecture 

The basic architecture of a typical flatbed scanner is shown in Figure 1.3 [30, 

31]. A hard copy document is placed face-down on a glass window of the scanner 

bed and the acquisition process starts. The imaging pipeline for a typical flatbed 

scanner is shown in Figure 1.4. Using a series of mirrors and lenses, light reflected 

by the printed patterns are reflected to a photosensitive element that converts it 

into electrical signals. To complete the process, electrical signals produced by the 
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Fig. 1.3. Flatbed Scanner Architecture.
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Fig. 1.4. Flatbed Scanner Imaging Pipeline.
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sensor are digitized by an analog-to-digital converter (ADC) and are sent to the host 

computer (Figure 1.5) [1]. 

Fig. 1.5. Block Diagram of Operations for a Typical Scanner. 

The lamp used to illuminate the document is either a cold cathode fluorescent lamp 

(CCFL), xenon lamp, or LEDs, while older scanners may use a standard fluorescent 

lamp. Using a stabilizer belt and a stepper motor, the scan head slowly translates 

linearly to capture the image. The purpose of the stabilizer bar is to ensure that 

there is no wobble or deviation in the scan head with respect to the document. 

Velocity fluctuations in the constant speed portion of the motor’s motion may lead 

to color registration errors in the scanned document [32]. The scan head includes 

a set of lenses, mirrors, filters, and the imaging sensor. Most desktop scanners use 

charge-coupled device (CCD) imaging sensors. Other scanners use complementary 

metal-oxide semiconductor (CMOS) imaging sensors, contact image sensors (CIS), or 

photomultiplier tube (PMTs) [30, 31]. 
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The native resolution of the scanner is determined by the horizontal and vertical 

resolution. The number of elements in the linear CCD sensor determines the hori­

zontal optical resolution. The step size of the motor controlling the scan head and 

the sensor data retrieval time determines the vertical resolution. There are two basic 

methods for scanning an image at a resolution lower than the hardware resolution of 

the scanner. One approach is to sub-sample the imaging sensor and read measure­

ments at required pixels only. For example, to produce a 600 DPI scan on a 1200 

DPI scanner, the scanner would only sample every other sensor pixel. Another ap­

proach involves scanning at the full resolution of the sensor and then down-sampling 

the results in the scanner’s memory. Most good quality scanners adopt the second 

method since it yields far more accurate results. 

1.2.3 Photo-Realistic Computer Generated (PRCG) Images 

Realistic image synthesis is important for applications such as simulation, design 

and advertising [3]. Ferweda et al. [33] define three types of realism for computer 

graphics: physical realism (the same visual stimulation as the scene), photorealism 

(same visual response as the scene) and functional realism (same visual information as 

the scene such as an object’s shape and depth). Of the three, photorealistic computer 

graphics is of special interest to the image forensics community. Photorealism results 

from various visual effects contained within a 3-D scene, such as those arising from 

complexity in the scene and object geometry, illumination and the object reflectance 

of the scene. The two important components of photorealistic graphics synthesis are 

1) scene modeling, which includes the modeling of the illumination, object reflectance, 

and object geometry in a scene; and 2) scene rendering. With realistic scene mod­

eling and correct light-transport simulation, photorealistic computer graphics can be 

generated. 
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Scene and Object Modeling 

Image-based models are currently used for scene modeling because they can ac­

curately capture the complexity of a real-world scene. Realistic scene illumination 

can be measured as an environment map using a mirror sphere [34]. This environ­

ment map can then be used to model a complex light source in computer graphics 

rendering. Complex reflectance of real-world surfaces can be modeled by measur­

ing the reflectance from real surface samples. For instance, spatially varying surface 

reflectance (texture) can be measured from multiple-view photographs [35]. In com­

puter graphics pipeline, the geometry of objects is often represented as a polygonal 

mesh. This can be obtained via range scanning. 

Computer Graphics Rendering 

Computer graphics rendering is the process that simulates the light transport be­

tween the illumination sources and object surfaces. This light transport may involve 

multiple bounces of light from one location of the scene to the others that give rise 

to visual effects such as soft shadows, color bleeding and so on. Current PRCG ren­

dering methods such as ray tracing and radiosity simulate the multiple light bounces 

between surfaces to produce the global illumination effects of ten features now-a-days 

in 3D rendering software such as Autodesk 3D Max Studio. Finally, after an image 

is rendered, it may be processed via a simplified camera model (e.g. only gamma 

correction) in order to produce a photographic appearance [3]. 

1.2.4 Sensor Noise 

The process of manufacturing imaging sensors introduces various defects which 

create noise in the pixel values [28, 36]. Sensor noise, which is of interest for use in 

forensic characterization, can be described in three forms, depending upon its impact 

on final pixel values and procedures employed to correct it. The first type of noise is 
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caused by array defects. These include point defects, hot point defects, dead pixels, 

pixel traps, column defects, and cluster defects. These defects cause pixel values 

in the image to deviate greatly. For example, dead pixels show up as black in the 

image and hot point defects show up as very bright pixels in the image, regardless of 

image content. The second type of noise is pattern noise, which refers to any spatial 

pattern that does not change significantly from image to image. Pattern noise is 

caused by dark current and photoresponse nonuniformity (PRNU). Dark currents are 

stray currents from the sensor substrate into the individual pixels. This varies from 

pixel to pixel and the variation is known as fixed pattern noise (FPN). FPN is caused 

by differences in detector size, doping density, and foreign matter trapped during 

fabrication. PRNU is the variation in pixel responsivity and is present when the device 

is illuminated. This noise is caused by variations between pixels such as detector size, 

spectral response, thickness in coatings and other imperfections created during the 

manufacturing process. The third type of noise is random noise components which 

vary from frame to frame. This random noise is inevitable and cannot be removed 

by calibration. However, its statistical characteristics may give some clues about the 

source imaging device. The first type of noise leads to large deviations in pixel values 

and is easily corrected in most of the devices available in market. The second type of 

noise does not lead to large variations in pixel values, and algorithms (such as flat-

fielding) used to correct it are difficult to implement in-device. Due to the difficulties 

in achieving a uniform sensor illumination inside the camera, most consumer cameras 

do not flat-field their images [2, 15, 17]. 

The pattern noise can be used for imaging sensor identification. But, it is ex­

tremely difficult to obtain the fixed component of the sensor noise by direct methods 

such as flat fielding. This is due to the fact that in most of the general purpose 

cameras and scanners, the raw sensor data is unavailable. Also, transforming voltage 

sensed by the imaging sensor to the output image in JPEG or TIF format requires 

many complex (non-linear) image processing operations. So, in absence of any direct 

method, indirect methods of estimating the sensor noise are used. 
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1.3 Overview of The Dissertation 

1.3.1 Contributions 

In this dissertation, we studied several new approaches for source scanner identifi­

cation and image source classification [1,10,11,21–23,37–45]. The main contributions 

of this dissertation are: 

• Verification of Sensor Noise-based Camera Identification Scheme: As a 

first step towards development of new methods for different problems in scanner 

forensics, we performed extensive experiments for verification of sensor noise 

based camera forensic method [2, 15, 17]. The results of these independently 

conducted experiments on a completely different set of cameras, were similar to 

those reported in earlier papers. 

• Source Scanner Identification from Scanned Images: We investigated 

the use of imaging sensor pattern noise for source scanner identification and 

compared the end-to-end system performance with other existing methods. Our 

results show that the statistical feature vector based method gives high accuracy 

for source scanner identification, both for native resolution and lower resolution 

scanned images. Also, it is possible to discriminate between scanners of the 

same make and model for images scanned at native scanning resolution. For 

images scanned at lower non-native resolutions such as 200 DPI, the proposed 

scheme successfully identifies the scanner make and model, and groups scanners 

of the same make and model into a single class. The proposed scheme performs 

well even with images that have undergone JPEG compression with low quality 

factors, image sharpening, and contrast stretching. 

• Forgery Detection in Scanned Images: We also extended the use of sta­

tistical features of image sensor pattern noise for forgery detection in scanned 

images and show the efficacy of this method for identifying forgeries in images 

scanned at native resolution of the scanners. The limitation on minimum size 
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of forged regions that can be identified with this approach depends upon the 

size of sliding window. To maintain the statistical significance of the features 

used for classification, we can not use window sizes below a certain threshold, 

which was experimentally determined for our datasets. The proposed method 

identifies the forgeries independent of the image content and fails for the forg­

eries made by copying and pasting regions within the same image. It can be an 

effective tool for forgery detection in scanned images, if used in co-ordination 

with other existing methods for forgery detection. 

• Source Scanner Identification from Scanned Documents: We proposed 

methods for source scanner identification for scanned text documents using 

texture features. The proposed method is robust to JPEG compression and 

successfully classifies text documents. The proposed features are also robust to 

the scan area used for a particular scan so we do not need to know which exact 

location of scanner’s bed was used for scanning. 

• Imaging Source Classification: Use of the sensor pattern noise for classify­

ing digital images based on their originating mechanism: a scanner or a digital 

camera or a computer graphics algorithm, is investigated. The proposed scheme 

utilizes statistical properties of the residual noise and the difference in the ge­

ometry of the imaging sensors and demonstrates promising results. It does not 

need the availability of the actual source device for training purposes. Thus, 

even images generated by a completely unknown scanner or digital camera can 

be classified properly. 

1.3.2 Organization 

The primary objective of this dissertation is to develop signal processing tools 

for image forensics and use them for source scanner identification and image source 

classification. 
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Chapter 1 motivates the area of image forensics followed by a brief description of 

three specific research problems addressed in this dissertation. Each of these is pre­

sented in a separate chapter. Each chapter is self-contained with problem statement, 

methods and results. 

Chapter 2 surveys the previous work on image source identification and image 

source classification. Since our proposed techniques for scanned images are based on 

sensor noise characterization, therefore we also present detailed experimental results 

of verification of sensor noise based camera forensic method [2,15,17] (Section 2.1.3). 

Chapter 3 focuses on source scanner identification for scanned photographs and 

describes correlation-based and statistical feature-based approaches for this problem. 

Then extensive experimental results for these two approaches are presented. This 

is followed by the description of and experimental results for a forgery detection 

algorithm for scanned images. 

Chapter 4 describes the source scanner identification techniques to text docu­

ments. We describe the Graylevel Co-Occurrence Matrix (GLCM) features and how 

the edge color transitions are modeled for text characters. 

Chapter 5 describes image source classification and the selection of features rel­

evant for this problem. We provide experimental results on native and non-native 

resolution scanned images and also analyze the effect of JPEG compression on the 

classification performance. The main conclusions of this research and future work are 

finally discussed in Chapter 6. 
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2. LITERATURE REVIEW 

This chapter surveys the existing literature on image source identification and image 

source classification. Our proposed techniques for scanned images are based on sen­

sor noise characterization, therefore we also present detailed experimental results of 

verification of state-of-the-art sensor noise-based camera forensic method [2, 15, 17] 

(Section 2.1.3). 

2.1 Image Source Identification 

This section presents a brief overview of existing techniques for image source iden­

tification. Since there is not much in the literature on source scanner identification, 

and solutions for source camera identification are closely related to the former, differ­

ent camera identification techniques are described. These techniques for image source 

identification can be broadly divided into three sub-categories depending upon the 

type of features used for the device fingerprint. 

2.1.1 Image Features 

In [18] and [46], techniques are proposed which use classifiers to determine the 

source camera using a set of content independent features extracted from the image. 

The feature vector is constructed from average pixel values, RGB pair correlations, 

center of mass distributions, RGB pair energy ratios, wavelet based features, and a 

blind image quality metric. This technique is shown to provide close to 90% classi­

fication accuracy across 5 different cameras [18]. Similar results were later reported 

by Tsai et al. [47] by implementing this scheme on a different set of cameras. Fur­

ther experiments need to be done to determine whether this method is capable of 
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distinguishing between similar camera models or between cameras of the exact same 

model. Also, the large number of images needed to train a classifier for each camera 

may not always be available. Similar feature based classifiers are applied for source 

cell phone camera identification in [48, 49]. 

2.1.2 CFA and Demosaicing Artifacts 

Most of the consumer quality digital cameras use a single imaging sensor (either 

CCD or CMOS) with a color filter array (Figure 1.2) for capturing the image. At each 

pixel location, the sensor captures information for only one of the colors. To obtain 

the full color image, the other two (or three in case of YMCG color filters) colors 

have to be estimated by interpolation or demosaicing techniques. This interpolation 

introduces correlations between the samples of a color image. The non-interpolated 

samples are unlikely to be correlated in the same way as the interpolated samples. 

There are a number of interpolation algorithms which may be used. The interpola­

tion artifacts produced are dependent on the interpolation technique used. Suitable 

features can be designed to capture these differences in interpolation artifacts. Hence, 

the features based on detection of demosaicing artifacts can be used for image source 

identification. One common difficulty faced by these methods is that many of the 

interpolation techniques used are non-linear and image content dependent. After the 

CFA interpolation, non-linear (such as gamma correction) and lossy (such as JPEG 

compression) operations are performed to produce the final image and in general one 

does not have access to the raw images. 

In [20,50], a method is proposed based on the observation that both the size of the 

interpolation kernel and the demosaicing algorithm vary from camera to camera. The 

source camera of a digital image is identified based on the estimation of the color in­

terpolation parameters used by the camera. This method is limited to images that are 

not highly compressed since the compression artifacts suppress and remove the spatial 

correlation between the pixels created by the CFA interpolation [20,50]. Furthermore, 
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the interpolation operation is highly non-linear, making it strongly dependent on the 

nature of the scene. These methods are fine-tuned to prevent visual artifacts such as 

over-smoothed edges or poor color transitions in busy parts of the image. In smooth 

regions of the image these algorithms exhibit a more linear characteristic. Therefore, 

smooth and nonsmooth regions of images are treated separately [20]. Since no a pri­

ori information is assumed on the size of interpolation kernel, probability maps are 

obtained for varying sizes of kernels. When viewed in the frequency domain, these 

probability maps show peaks at various frequencies with varying magnitudes indi­

cating the structure of correlation between the spatial samples. The classifier relies 

on two sets of features: the set of weighting coefficients used for interpolation, and 

the peak locations and magnitudes in the frequency spectrum. A Support Vector 

Machine (SVM) classifier is used to test the effectiveness of the proposed features. 

A similar technique, presented in [19], assumes a linear model for the periodic 

correlations introduced by CFA interpolation. The assumption is that each interpo­

lated pixel is correlated to a weighted sum of pixels in a small neighborhood centered 

about itself. While perhaps overly simplistic when compared to the highly nonlinear 

nature of most CFA interpolation algorithms, this simple model is both easy to pa­

rameterize and can reasonably approximate the CFA interpolation algorithms. Note 

that most CFA algorithms estimate a missing color sample from neighboring samples 

in all three color channels. For simplicity, however this technique ignores these inter 

channel correlations and treats each color channel independently. In practice, neither 

the specific form of the correlations (that is, the parameters of the linear model) nor 

which samples are correlated to their neighbors are known. To estimate these both 

simultaneously, the expectation maximization (EM) algorithm is used [51]. 

2.1.3 Sensor Based Characterization 

Other methods for digital camera identification are based on characterizing the 

imaging sensor used in the device. In [12], it is shown that defective pixels can be used 
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for reliable camera identification even from lossy compressed images. This type of 

noise, generated by hot or dead pixels, is typically more prevalent in cheap cameras. 

The noise can be visualized by averaging multiple images from the same camera. 

These errors can remain visible after the image is compressed. Many cameras post-

process the captured image to remove these types of noise, so this technique cannot 

always be used. 

Fridrich et al. did pioneering work in developing source camera identification 

techniques using the imaging sensor’s pattern noise [2, 13–17]. The identification 

is based on pixel nonuniformity noise which is a unique stochastic characteristic of 

both charge coupled device (CCD) and complementary metal oxide semiconductor 

(CMOS) imaging sensors. Reliable identification is possible even from images that 

are resampled and JPEG compressed. The pattern noise is caused by several factors 

such as pixel non-uniformity, dust specks on the optics, optical interference, and 

dark current [28, 36]. The high frequency part of the pattern noise is estimated by 

subtracting a denoised version of the image from the original. This is performed using 

a wavelet-based denoising filter [52]. A camera’s reference pattern is determined by 

averaging the noise patterns from multiple images obtained from the camera. The 

reference pattern serves as an intrinsic signature of the camera. To identify the source 

camera, the noise pattern from an image is correlated with known reference patterns 

from a set of cameras, and the camera corresponding to the reference pattern giving 

maximum correlation is chosen to be the source camera. In [16, 17], an improved 

method for source camera identification based on joint estimation and detection of the 

camera photo-response non-uniformity (PRNU) in images is presented. This scheme 

is extended in [53] for detection of forgery in digital camera images. Some assumptions 

made in this technique are open for questioning. The wavelet denoising filter [52], for 

example, assumes that the image in the wavelet domain is a non-stationary Gaussian 

process and that the pattern noise is a stationary Gaussian process. Since these 

assumptions are satisfied only approximately, the pattern noise extracted using the 

denoising filter is not Gaussian. Another problem is that the filter is applied to the 
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image on slightly overlapping blocks and it pads image borders with zeros. This leads 

to a small residual dependence between all extracted noise patterns. Furthermore, 

reference patterns from different cameras are often slightly correlated due to the use 

of similar or even the same image processing methods. 

There have been advances in source scanner identification using sensor noise in 

the past year. In [25], a direct extension of the sensor noise based source camera 

identification technique [15] was used for source scanner identification. Experiments 

were performed on five scanners of three different models and four digital cameras. 

Images were scanned at the native scanner resolution (1200 DPI) as well as at a lower 

non-native resolution (200 DPI) and stored as uncompressed (TIFF) color images. 

The reference patterns were generated by averaging noise patterns from 100 training 

images. All the experiments performed on scanned images have shown lower classi­

fication accuracy compared to similar experiments for source camera identification. 

It has been shown that using a 1-dimensional reference pattern gives better classifi­

cation accuracy on images scanned at non-native resolution while the 2-dimensional 

reference pattern gives better results on images scanned at native resolution of the 

scanners. This is due to the predominance of local disturbances such as dust specs 

and scratches on the glass plate in the 2-dimensional reference patterns of the scan­

ners which are suppressed in the 1-dimensional reference pattern through averaging 

over multiple scan lines. Further experiments are needed to determine the robustness 

of this scheme when such local disturbances are present for two reasons. First, the 

dust specs or other temporary disturbances on the glass plate are easily changed due 

to cleaning and other factors. Second, the presence of other permanent disturbances 

such as scratches on the glass plate will vary depending upon which portion of the 

scanner bed is used for scanning the image. Further experiments show that one possi­

ble reason for the observed decline in performance is post-processing operations such 

as better denoising techniques including flat-fielding and heavy down-sampling [25]. 

Another approach for scanner model identification using sensor pattern noise de­

scribed in [26] uses three sets of features extracted from each scanned image. This 
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method is aimed at classifying images depending upon the scanner model that gener­

ated it and not the exact scanner. Experiments were performed on 26 images scanned 

at 150 DPI from seven different scanners. Training on 13 images and testing on 13 im­

ages gives a 90% average classification accuracy, and the leave-one-out scenario gives 

a 96% average classification accuracy. Since the dimensionality of the feature vectors 

used with the SVM classifier is 25, further testing on a larger database need to be 

performed to obtain more conclusive results. The performance of this scheme has to 

be further tested on images obtained from multiple scanners of the same model. Fur­

thermore, it has been shown that the classification scheme using statistical features of 

the sensor noise performs much better than those using high-order wavelet statistics 

or image quality metrics, which give an average classification accuracy of 77% and 

68% respectively. Again, further experiments need to be performed on a larger im­

age database to test the effectiveness of image quality metrics based and high-order 

wavelet statistics based schemes, which have 45-dimensional and 216-dimensional fea­

ture vectors respectively. 

The next three sections describe our study for verification of sensor noise based 

source camera identification [13]. This study on an independent dataset and imple­

mentation was done as a first step towards designing sensor noise based approaches 

for source scanner identification. 

Correlation based approaches 

Figures 2.1 and 2.2 show the training and testing protocols used in [13] for source 

camera identification using sensor pattern noise. As in [15] a wavelet based denois­

ing filter [52] is used for denoising the image. This denoising filter needs standard 

deviation of the noise as an input parameter, which is chosen to be 5. A camera’s 

reference pattern is determined by averaging the noise patterns from multiple images 

captured by the camera. This reference pattern serves as an intrinsic signature of the 

camera (Figure 2.1). To identify the source camera, the noise pattern from an image 
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is correlated with known reference patterns from a set of cameras (Figure 2.2). The 

camera corresponding to the reference pattern with highest correlation is chosen to 

be the source camera [15]. 

Fig. 2.1. Classifier Training for Correlation-Based Approach.
 

Fig. 2.2. Source Camera Identification Using a Correlation-Based 
Detection Scheme. 
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Let Ik denote the kth input image of size M ×N pixels (M rows and N columns). 

Let Ik be the noise corresponding to the original input image Ik and let Ik 
noise denoised 

be the output of the denoising filter. Then as in [15], 

Ik Ik − Ik = (2.1)noise denoised 

Let K be the number of images used to obtain the reference pattern of a particular 

digital camera. Then the 2-dimensional array reference pattern is obtained as 

K
1 

Iarray 
K 

Ik(i, j) = (i, j); 1 ≤ i ≤ M , 1 ≤ j ≤ N (2.2)noise noise
J

K 
k=1 

Correlation is used as a measure of the similarity between the camera reference 

patterns and the noise pattern of a given image [15]. Correlation between two vectors 

X,Y ∈ RN is defined as 

¯(X − X̄) · (Y − Y )
C(X,Y ) = (2.3) ¯||X − X̄|| . ||Y − Y || 

This correlation is used for source camera identification from an unknown image. 

The camera corresponding to the reference pattern giving highest correlation is de­

cided as the source camera. An experimental threshold can also be determined, then 

camera corresponding to the reference pattern giving correlation value higher then 

the threshold will be decided as the source camera. 

Experimental Results 

Table 2.1 lists the digital still cameras used in our experiments. Each of these 

cameras are used to capture images at various resolutions and image quality settings, 

with all other settings left to default, such as auto focus, red eye correction and white 

balance. Images taken by these cameras have similar as well as dissimilar contents. 

Figure 2.3 shows a sample of the images used in this study. 
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Table 2.1
 
Camera Set Used for Evaluation of Method for Camera Identification
 

Device Sensor Size 

(inch) 

Sensor 

Resolution 

Maximum 

Picture Size 

Image Format 

c1 Canon PowerShot SD200-1 1/2.5 3.2 MP 2048 x 1536 JPEG 

c2 Canon PowerShot SD200-2 1/2.5 3.2 MP 2048 x 1536 JPEG 

c3 Nikon Coolpix 7600 1/1.8 7.1 MP 3072 x 2304 JPEG 

c4 Panasonic DMC-FZ20 1/2.5 5 MP 2560 x 1920 JPEG/TIFF 

c5 Nikon Coolpix 4100 1/2.5 4 MP 2288 x 1712 JPEG 

c6 Nokia 6630(3G smartphone) 1280 x 960 JPEG 

c7 Olympus E-10 2/3 4 MP 2240 x 1680 JPEG/TIFF 

c8 Olympus D-360L 1280 x 960 JPEG/TIFF 

c9 Panasonic Lumix DMC-FZ4-1 1/2.5 4 MP 2304 x 1728 JPEG/TIFF 

c10 Panasonic Lumix DMC-FZ4-2 1/2.5 4 MP 2304 x 1728 JPEG/TIFF 

Fig. 2.3. Sample Images Used in Our Study. 

Reference Camera Pattern Generation 

Reference Camera patterns are obtained by averaging the noise extracted from 

multiple images from the same camera 3.2. To achieve this it is not necessary to 

have that camera in our possession as only the training images are needed and no 
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internal design parameters need to be accessed. To determine the optimal number 

of training images needed to generate the camera reference pattern, 20 randomly 

chosen images are used as test images and the average correlations (ρavg ) between the 

camera reference pattern generated from Np training images and these testing images 

are plotted in Figure 2.4. 

Fig. 2.4. Average correlation ρavg as a Function of the Number of 
Images Np Used for Estimating the Reference Pattern. 

As the correlation detector is highly sensitive to geometrical transformations such 

as rotation and given an unknown image one does not know in which way the user held 

the camera, we need to incorporate these causes of desynchronization before obtaining 

the correlation. After estimating the noise, it is rotated both +/- 90 degrees and then 

higher of the two correlations is used. 
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Image Identification from Unprocessed Images 

In these experiments for source camera identification using images of unknown 

origin, camera reference patterns are estimated using 200 randomly chosen training 

images. Figures 2.5, 2.6, 2.7, 2.8 and 2.9 show the correlations for various images 

from a camera with the reference patterns from all other cameras. Eleven reference 

patterns corresponding to nine different source cameras are used. For camera c3, 

two reference patterns are used, one obtained from images captured at resolution 

3072 ×2304 and second one obtained from images captured at resolution 2048 ×1536. 

This is to examine the effect of sizes of the reference patterns on source camera 

identification. In estimating the correlation between noise patterns of different size, 

the larger of the two is always cropped from the top left corner to match the size 

of the smaller one. In Section 2.1.3, experiments are done by resizing the image 

patterns to match the size of the reference patterns. The source camera is chosen 

based on the reference pattern with the highest correlation value. In all cases the 

classification accuracy is greater than 98%. The first 200 images correspond to those 

used for estimation of the reference pattern and rest are used for testing. It is to 

be noted that even though the correlation between noises from test images and the 

correct reference pattern is comparatively less than correlation between noises from 

images used for estimating the reference pattern and the correct reference pattern, the 

correlation with the correct reference pattern is much higher than with the incorrect 

reference patterns. The correlation with correct reference pattern is much lower for 

the images of night sky or those obtained by closing the lid of the camera lens. This 

observation is consistent with all the cameras. 

Effect of JPEG Compression on Image Identification 

In this set of experiments, effect of JPEG compression on source camera identifi­

cation is analyzed. Since the noise extracted using the wavelet based denoising filter 

corresponds to the high spatial frequencies, the correlation between image noise and 
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Fig. 2.5. Correlation of Noise from c1 with 11 Reference Patterns. 
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Fig. 2.6. Correlation of Noise from c2 with 11 Reference Patterns.
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Fig. 2.7. Correlation of Noise from c5 with 11 Reference Patterns. 

 

c1 
c2 
c3−1

Average Classification Accuracy = 98%0.2 c3−2 
c4 
c5 

0.15 

C
or

re
la

tio
ns

 ρ c6 
c7 
c8 

0.05 

0.1 c9 
c10 

0 

0−0.05  

50 100 150 200 
Pictures from c9_Panasonic_DMC_FZ4−1, N 

250 

Fig. 2.8. Correlation of Noise from c9 with 11 Reference Patterns. 

the reference patterns is expected to decrease. The experiments on different cameras 

show that this is indeed true. At the same time, correlation with the wrong reference 

patterns also decreases and accurate source camera identification is still possible. 
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Fig. 2.9. Correlation of Noise from c10 with 11 Reference Patterns. 

Figures 2.10, 2.11, 2.12 and 2.13 show the variation in mean and variance of 

correlation between test images for different JPEG quality factors and the reference 

patterns from correct and incorrect cameras. 
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Fig. 2.10. Mean and Standard Deviation of ρ as a Function of the 
JPEG Quality Factor. 
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Fig. 2.11. Mean and Standard Deviation of ρ as a Function of the 
JPEG Quality Factor. 
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Fig. 2.12. Mean and Standard Deviation of ρ as a Function of the 
JPEG Quality Factor.
 

Effect of Resampling On Image Identification 

This section investigates the possibility of identifying images obtained at a lower 

resolution than the maximal resolution. Three hundred fifty images were captured 
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Fig. 2.13. Mean and Standard Deviation of ρ as a Function of the 
JPEG Quality Factor. 

using camera c1 Canon SD200 − 1 at a resolution 1024 × 768. Assuming that these 

images have been captured at lower resolution or rescaled in computer but has not 

been cropped. For source camera identification, the camera patterns estimated earlier 

from images at maximum resolution of the camera has been used. For the cases when 

the size of the noise pattern of an unknown image does not match with the size of a 

reference camera pattern, corresponding image has been resampled using “bicubic” 

interpolation and then noise extracted from this resampled image is correlated with 

the known camera reference patterns to decide about the source camera. 

As the Figure 2.14 shows, source camera identification is possible even from im­

ages captured at a resolution smaller than the maximum allowed by a camera. In 

Figure 2.14, the reference pattern c1−1 is estimated by averaging the first 200 images 

captured at resolution 1024 × 768, while the reference pattern c1− 2 is estimated by 

averaging 200 images captured at resolution 2048 × 1536. Since most of the digital 

cameras do not use simple resampling methods such as “bicubic” interpolation to 

obtain a lower resolution image, the correlation of noise extracted from a 1024 × 768 

size image is expected to be higher with the reference pattern c1 − 1 (especially for 

first 200 images as they are used to obtain the reference pattern) than with reference 
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pattern c1− 2. This is indeed true in Figure 2.14. The correlation with the reference 

pattern c1−2 is consistently higher than correlation with any other reference pattern 

and thus classification accuracy is 100%, though with a smaller tolerance and thus 

less reliable. 

Experiments to see the effect of simultaneous application of JPEG compression 

and resampling show a similar decline in the correlation, and maintain 100% classifi­

cation accuracy. 
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Fig. 2.14. Identification of Low Resolution (1024 × 768) c1 Canon SD200-1 Images. 

Effect of Malicious Processing 

The issue of “preventing” source camera identification by removing the pattern 

noise from an image is addressed in this section. In the experiments performed here, 

noise extracted from the denoised image is correlated with the reference patterns ob­

tained from initial training images (as used in the earlier sections). Figures 2.15, 2.16 

and 2.17 show the correlations for various denoised images from a camera with the 
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reference patterns from all other cameras. Comparing with Figures 2.6, 2.8 and 2.9, 

the correlations for images undergone malicious processing of removing the noise is 

less than the correlations with non-processed images. Even then the classification 

accuracy remains greater than 98%. 
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Fig. 2.15. Correlation of Denoised c2 Canon SD200-2 Images with 
Reference Patterns from all the Cameras. 

2.2 Image Source Classification 

The techniques for source identification uniquely assign an image of unknown 

origin to it’s originating device and need training images from that particular device 

to make appropriate classifier. In some situations, one may not have access to the 

training images from a particular device and one may just be interested to know the 

class of image generating system. This section presents a brief overview of existing 

techniques for image source classification. The aim of these techniques is to classify an 

image of unknown source as: digital camera generated, scanner generated or photo­
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Fig. 2.16. Correlation of Denoised c9 Panasonic DMC-FZ4-1 Images 
with Reference Patterns from all the Cameras. 

realistic computer generated. These techniques can be broadly divided into three 

sub-categories depending upon the type of features used as the class fingerprint. 

2.2.1 Image Features 

Even though many computer generated images are very similar to real images 

that a human observer will fail to differentiate between the two [54], there are still 

subtle differences between their statistical properties such as color distribution and 

wavelet coefficients. These differences can be exploited to extract features which will 

differentiate real images from PRCG. One common limitation expected with these 

methods is their inability to identify scanned images since most of the features are 

image content dependent and not generative process dependent. 

In [55] a statistical model based on first and higher-order wavelet statistics is 

used to differentiate between photo realistic and real images. The features used by 
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Fig. 2.17. Correlation of Denoised c10 Panasonic DMC-FZ4-2 Images 
with Reference Patterns from all the Cameras. 

the proposed method are based on the observation that wavelet subband coefficients 

for natural images typically follow a distribution which is modeled by a generalized 

Laplacian. Corresponding coefficients of PRCG images are not expected to have 

similar distribution. Instead of fitting the generalized Laplacian, the first four order 

statistics are used for statistical modeling. The statistical model consists of two sets 

of statistics. The first set consists of the first four order statistics (mean, variance, 

skewness, and kurtosis) of the subband coefficient histograms at each orientation, 

scale, and color channel (12 values per scale, per color channel). The second set 

of statistical features is based on the errors in inter-subband linear predictors of 

coefficient magnitudes at each orientation, scale, and color channel. First four order 

statistics of each of these error distributions is also taken (12 values per scale, per 

color channel). Hence, in total for a multi-scale decomposition with scales i = 1, ..., n, 

the total number of coefficient statistics is 36(n−1) (12(n−1) per color channel), and 

the total number of error statistics is also 36(n−1), yielding a grand total of 72(n−1) 
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statistics. In [55], n is chosen to be 4 and thus for each image a 216-dimensional feature 

vector is obtained. A non-linear SVM trained on 32,000 photographic images and 4800 

PRCG images, and tested on 8000 photographic images and 1200 PRCG images, 

correctly classifies 66.8% of the photographic images with a 1.2% false negative rate. 

Physical differences in the generation of photographic and PRCG images can be 

modeled using a geometry based approach [56]. A geometry-based image description 

by means of the fractal geometry is used at the finest scale and differential geometry 

at the intermediate scale. Further, local patches of the image intensity function are 

sampled to form a patch distribution. This method extracts a 192-dimensional feature 

vector from analysis on local patch statistics, local fractal dimension, surface gradient, 

quadratic geometry and Beltrami flow. The proposed features successfully work on 

recaptured images as well by incorporating sample recaptured images in the training 

phase. A SVM classifier built for these features gives an average accuracy of 83.5% 

as compared to an accuracy of 80.3% for wavelet features on same dataset [56]. 

The observation that wavelet coefficients of real images and PRCG follow different 

models is utilized in [57] to discriminate between CG and PRCG images. It is ob­

served that while wavelet coefficients of real images (CG) are modeled by generalized 

Gaussian distribution (GGD), those of a not-so photo realistic image (image with 

few objects and lacking visual artifacts and noise generally present in photographic 

images) are modeled by sum of a Dirac delta function and a GGD. Corresponding 

coefficients of photorealistic-yet noisy image are modeled by a Cauchy distribution. 

Similar analysis is earlier used for differentiating real images from steganographic 

images generated by “adding” information bearing noise to the original images. A 

three-level wavelet decomposition is performed and the first diagonal band is also de­

composed into four parts. Thus, each color image has a total of 48 subbands. Three 

features are extracted from each of these 48 subbands, resulting in a 144-dimensional 

feature vector for each of the color image. Feature vector estimation is done by first 

taking DFT of the normalized histograms of each of the subbands and than filtering 

these DFTs with two high-pass and one band-pass filter. These three features lie in 
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different ranges for photographic and PRCG images, for example, the feature obtained 

from applying band-pass filter have much smaller value for photographic images than 

for PRCG images and so on. Experiments conducted using a Fisher linear discrimi­

nant trained on approximately 2000 images from each of the two classes and tested 

on different 2000 images from each class, shows the efficacy of the proposed scheme. 

Images are compressed at JPEG quality 80 or higher. These features not only have 

slightly better performance, they also take almost half the time than 216-dimensional 

features used in [55] and almost 1/30th of time than physics motivated features used 

in [56]. 

Another classifier based approach for detecting differences between CG and PRCG 

images using visual features derived from color, edge and saturation and texture 

features extracted with Gabor filters is proposed in [58]. Four visual features used 

are: the number of unique colors, spatial variation of color, pixel saturation and 

intensity edges. The use of the number of unique colors is based on the observation 

that computer generated images tend to have fewer unique colors than real images. 

Even though present image generation tools on computers provide a large color pallet, 

as does a real pallet, still computer generated images generally have lesser number 

of colors intrinsic to the mechanism of image generation. For example, generally an 

edge line in a natural image is not of exactly the same color while a line generated 

using a computer graphics tool maintains the exact same color along the complete 

line unless we do something to change it subsequently. The richness of the color 

pallet of a image is measured as a ratio of total number of unique RGB triplets 

in the image to the total number of pixels. The effect of noise can be reduced by 

counting only those pixels which appear in more than a threshold number of pixels. 

Spatial variation of color in PRCG images is expected to be less than that in the 

real image and so it is used as another feature. Pixel saturation is also used as a 

feature based on the observation that mean and variation of pixel saturation of PRCG 

are more than those of real images [58]. The number of saturated and unsaturated 

pixels is obtained by counting the highest bin and the lowest bin in the saturation 
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histogram. Since the real images generally have more intensity edges than do PRCG, 

the ratio of number of pure intensity edges to the total number of edge pixels is 

used as another feature to differentiate real images from PRCG. To represent the 

homogeneous texture features, mean and standard deviation of the magnitude of the 

transformed coefficients obtained by applying multi-level Gabor filters are used. The 

performance analysis is done for three different classifiers, non-linear SVM, weighted 

k-nearest neighbors and fuzzy k-nearest neighbors on a dataset of around thousand 

images of each of the two classes; CG and PRCG (with around 200 images for testing 

and rest of them used for training). Accuracy of 99% for CG and 91.5% for PRCG 

images is reported for Gabor filter based texture features. Other visual features also 

show some abilities to perform differentiation [58]. 

Another method based on statistical features of wavelet coefficients is proposed 

in [59]. This method uses HSV Color model and statistical moments of characteristic 

function of the image and wavelet subbands for identifying computer graphics. Al­

though this feature extraction process have some similarities with that in [57]. Two 

major differences are, 1) the extraction of features in HSV color space instead of RGB 

color space and 2) using similar features from prediction error image as well. The first 

three moments of the characteristic function of the histograms of wavelet coefficients 

(12 subbands obtained from three level decomposition) and the original image, give 

a 39-dimensional feature per color channel. Similar 39-dimensional features per color 

channel are also extracted from the prediction error image. Hence for every color im­

age, a 234-dimensional feature vector is obtained. Using a non-linear SVM with the 

proposed 234-dimensional features extracted from HSV color space, an accuracy of 

82.1% is reported on Columbia Image Dataset. This is slightly better than the 80.8% 

accuracy obtained by [55] on the same database. To obtain further improvements in 

performance, this method is extended in [60] to use genetic algorithm for selecting 

the optimal set of features. By using a genetic algorithm, a reduced 100-dimensional 

feature set is found which performs slightly better than the original 234-dimensional 
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features. Fractal geometry can also be used for discriminating between PRCG and 

CG images [61]. 

2.2.2 CFA and Demosaicing Artifacts 

Most consumer digital cameras use a single imaging sensor (either CCD or CMOS) 

with a color filter array (Figure 1.2) for capturing the image while most of the flatbed 

scanners either use three different imaging sensors or three different light sources 

in conjunction with a single imaging sensor. Thus, while for scanned images, at 

each pixel, each color channel is independently captured, for digital camera images 

interpolation or demosaicing technique are used to obtain the full color image. This 

interpolation introduces correlations between the samples of a color image. The non-

interpolated samples are unlikely to be correlated in the same way as the interpolated 

samples. Although, there are a number of different interpolation methods, suitable 

features can be designed to capture the common artifacts produced by all of these 

interpolation techniques. PRCG images are not expected to have these demosaicing 

artifacts. Hence, the features based on detection of demosaicing artifacts can be used 

for image source classification. 

In [62], traces of demosaicing and chromatic aberration are used to differentiate 

CG from PRCG. Demosaicing features work well for high quality images while chro­

matic aberration features work well for wide range of compression qualities. The first 

set of features is based on the detection of the existence of color filter interpolation 

in the images. Existence of a Bayer pattern is based on measuring the mean squared 

error (MSE) between the image and re-interpolated versions with different types of 

CFAs. After taking the minimum over the group of possible CFA patterns, the PRCG 

images are expected to have significantly larger mean squared error as compared to 

corresponding error for CG images. For the measurement of mean squared error, 

an image is divided into D × D blocks and only the non-smooth blocks (those hav­

ing standard deviation larger than a certain threshold) are used. Based on the mean 
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squared error, the CFA pattern giving minimum error for different blocks are selected. 

The pattern number which yields the second minimum MSE is also used for feature 

extraction. In the presence of CFA interpolation, these values will not be uniformly 

distributed. Thus, a measure of uniformity of these two pattern numbers over all 

non-smooth sub-blocks of image, are the first two CFA features. Next two features 

are derived from the error metric averaged over all the blocks. The feature set corre­

sponding to chromatic aberration is aimed at detecting misalignment between color 

channels. This misalignment occurs due to chromatic aberration, variations in reflec­

tive index of the optical glass formulation used for manufacturing lenses. The mutual 

information between color channels is used as a measure of the misalignment between 

the color channels. When this mutual information is obtained for different values of 

shift vectors, then the mutual information will attain its maximum for that shift vec­

tor which aligns the color channels. Assuming that there is no misalignment between 

the color channels of PRCG images, the mutual information will be maximized for 

no shift and will reduce suddenly. For real images, the mutual information will be 

close to constant for a range of shifts. Hence, the variance of mutual information in 

a range of shifts is used as the chromatic aberration feature. This feature will have a 

comparatively high value for PRCG images than for real images. Using a SVM clas­

sifier, with 900 images from each of the two classes used for training and another 900 

images used for testing, the CFA feature gives an accuracy of 98.1% on high quality 

images (JPEG quality 95 and 90) as compared to an accuracy of 89.33% achieved by 

chromatic aberration feature and 99.6% achieved by wavelet features under similar 

setting. The combination of Bayer features and wavelet features has an accuracy of 

99.9%. While the chromatic aberration feature does not give a very high accuracy 

as compared to other features, it’s performance is consistent over a wide range of 

compressed images. For the combined set compressed at JPEG quality 50 to 100, 

chromatic aberration feature has an accuracy of 90%. 
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2.2.3 Sensor Based Characterization 

Imaging sensor pattern noise is used as fingerprints of both classes of image capture 

devices, digital cameras [2, 15, 17] and flatbed scanners [26, 37, 43]. These techniques 

for source camera or source scanner identification utilize the observation that differ­

ent image capture devices (cameras or scanners) have unique fingerprints of pattern 

noise. Although these fingerprints vary from device to device, they may have com­

mon statistical properties as the underlying device model, imaging sensor technologies 

and post-processing operations remain same. Similarly even though a large number of 

computer graphics tools exists for creating PRCG images, there are similarities among 

these generative algorithms. Therefore, the residuals of PRCG images share common 

statistical structures which are different from the statistical structures present in the 

pattern noises from digital camera and scanner generated images. Hence, this class 

of methods are based on searching some features of pattern noise which remain same 

for images from a class of devices and vary amidst different source classes. 

The method proposed in [63] is aimed at differentiating digital camera images 

from computer generated images. Due to the differences in the image generation 

processes, the residuals obtained from digital camera images exhibit some common 

characteristics which is lacking in other types of images. The estimation of pattern 

noise is done in the same way as in [15]. Three reference patterns are estimated from 

300 training images of different classes, images from multiple cameras, images created 

using “Maya” and images created using “3D studio max”. Correlation between the 

reference patterns and residual noise from an unknown image is used for deciding the 

class of the image. Although there are some differences in reference patterns for the 

two classes, this method does not give high accuracies. 

In [24], statistical properties of noise residuals are jointly used with estimated 

color interpolation coefficients and corresponding errors to differentiate between im­

ages produced by cameras, cell phone cameras, scanners and computer graphics. For 

extracting the color interpolation based features, assuming the use of a specific color 
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filter array, the image pixels are divided into three types of regions; region with high 

vertical gradient, region with high horizontal gradient and smooth region. Linear 

interpolation coefficients are estimated for each of these three regions. These steps 

are repeated for different CFA patterns and features are extracted from the CFA 

pattern giving lowest error. Residual noise features are obtained from image de-

noising, wavelet analysis and neighborhood prediction. On an image dataset of 100 

images from each of the four classes, an average accuracy of 94% is obtained using 

the leave-one-out method [24]. 
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3. SOURCE SCANNER IDENTIFICATION 

FROM SCANNED IMAGES 

In this chapter we present methods for authenticating images that have been captured 

by flatbed desktop scanners, using sensor pattern noise. We extend the correlation-

based approach used for authenticating digital cameras [15] by using a reference 

pattern that is one-dimensional instead of two-dimensional. To improve classification 

accuracy, we incorporate special features of the scanning system, such as the use of 

one-dimensional image sensor and resulting complexities in using direct extension of 

digital camera forensic methods. This is done by using a set of statistical features of 

the sensor noise as scanner signature. The proposed technique uses a SVM classifier 

to classify the images based upon statistical features obtained from the sensor pattern 

noise and results in significantly higher accuracy in comparison to correlation-based 

approaches. Since the sensor pattern noise is estimated using a simple averaging 

method, further improvements in results may be obtained by using the improved 

method for sensor noise estimation presented in [16, 17]. 

In our initial experiments, the proposed set of statistical features are extracted 

from the pattern noise estimated using a single denoising filter [37]. This scheme gave 

high classification accuracy for images scanned at native resolution of the scanner but 

did not work well for heavily down-sampled and post-processed images. Therefore, we 

extended this scheme to use a denoising filterbank with four denoising filters [43]. This 

extended scheme works very well for heavily down-sampled and post-processed images 

also. Our proposed statistical features differ from features used in the sensor noise 

based scheme of [26], in utilizing special characteristics of the scanner system such as 

the use of a one dimensional sensor for image capture. Extensive experimentation on 

a large set of scanners and many different scanning scenarios show the effectiveness of 
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our proposed scheme. Experiments on images that have undergone post-processing 

operations such as sharpening and contrast-stretching show that the chosen statistical 

features survive these operations and allow source scanner identification even after 

these post-processing operations. 

3.1 Correlation Based Approaches 

First the high frequency part of the noise is estimated by subtracting a denoised 

version of an image from the original image [15]. The denoising filter is based on an 

anisotropic local polynomial estimator [64]. 

After estimating the noise, the scanner’s reference pattern is determined by aver­

aging the noise patterns from multiple scanned images. This reference pattern serves 

as a signature of the scanner (Figure 3.1). To identify the source scanner of a given 

image, its estimated noise pattern is correlated with known reference patterns from a 

set of scanners (Figure 3.2). The scanner corresponding to the reference pattern with 

the highest correlation is chosen to be the source scanner. 

Images from 

same scanner 

Noise 

extraction & 

averaging 

Scanner 

reference pattern 

Fig. 3.1. Source Scanner Identification: Classifier Training for Corre­
lation Based Approach. 
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Image from 

unknown 
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Correlation 

detector 

Scanner 

patterns 

Source 

scanner 

Fig. 3.2. Source Scanner Identification: Classifier Testing for Corre­
lation Based Approach. 

In contrast to digital cameras, flatbed scanners use a linear one-dimensional sensor 

array. Using a one-dimensional version of the two-dimensional array reference pattern, 

as described in [15], is more appropriate in this case. The linear sensor noise pattern 

is obtained by averaging all the rows of the noise estimated from an image. The linear 

sensor reference pattern for a particular scanner is obtained by taking the average 

of linear sensor noise patterns from multiple images scanned by the same scanner 

(Figure 3.3). This linear row reference pattern serves as an intrinsic signature of 

the scanner. To identify the source scanner of an image, its linear noise pattern 

is correlated with known reference patterns from a set of scanners. The scanner 

corresponding to the reference pattern with highest correlation is chosen to be the 

source scanner. 

Let Ik denote the kth input image of size M ×N pixels (M rows and N columns). 

Let Ik be the noise corresponding to the original input image Ik and let Ik 
noise denoised 

be the result of applying a denoising filter on I. Then, as in [15], 

Ik Ik − Ik = (3.1)noise denoised 
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Fig. 3.3. Source Scanner Identification: Correlation Based Detector 
Using 1-D Row Reference Pattern. 

Let K be the number of images used to obtain the reference pattern of a particular 

scanner. Then the two-dimensional array reference pattern is obtained as 

K
1 

Iarray (i, j) = 
K 

Ik (i, j); 1 ≤ i ≤ M , 1 ≤ j ≤ N (3.2)noisenoise
J

K 
k=1 

The linear row reference pattern is obtained as 

M
1 

I linear Iarray (1, j) = 
K 

(i, j); 1 ≤ j ≤ N (3.3)noise noise
J

M 
J

i=1 

As explained above, correlation is used as a measure of the similarity between the 

scanner reference patterns and the noise pattern of a given image [15]. Correlation 

between two vectors X,Y ∈ RN is defined as 

¯(X − X̄) · (Y − Y )
C(X,Y ) = (3.4) ¯||X − X̄||||Y − Y || 

This correlation is used to classify scanners. The scanner corresponding to the ref­

erence pattern giving highest correlation is chosen as the source scanner. An experi­

mental threshold can also be determined, in which case the scanner corresponding to 

the reference pattern giving a correlation value higher than the threshold is chosen 

as the source scanner. 
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3.2 Statistical Features Based Approach 

One of the main differences between the image capturing processes for digital cam­

eras and flatbed scanners is in the usage of sensor elements when capturing an image. 

Digital cameras use the entire sensor to capture an image, whereas scanners use only 

a portion of the sensor array determined by location of image on the scanner bed. 

To correctly estimate scanner reference patterns for correlation-based source scanner 

identification, all scanned images used for training and testing must be scanned at 

the exact same location on the scanner bed. Failure to do so will result in comparing 

noise values from two different sensor locations. This is referred as desynchronization 

problem faced by correlation detectors. This desynchronization problems comes both 

in the estimation and the detection of reference patterns. However, this requirement 

is not typically met in real world scanning scenarios. Hence, the simple approach of 

correlation detection as used in [15] may not work for flatbed scanners. This is demon­

strated in [37] where small images scanned from random locations on the scanner bed 

are used to estimate the scanner reference pattern. 

One way to solve the desynchronization problem for the correlation-based tech­

nique is to estimate the scanner reference pattern for the entire scan area. This can be 

accomplished by using large images, or multiple smaller images tiled across the scan­

ner bed. Detection of the reference pattern in any given image can then be performed 

using normalized cross correlation (NCC) [65]. The highest value of NCC among all 

known scanners determines the source scanner as well as the scanning location on the 

scanner bed. 

Implementation of this NCC technique requires storage of large reference patterns, 

as well as long data-acquisition and computation times. The reference pattern for a 

flatbed scanner with a native resolution 1200 DPI will be approximately 10800 × 

14400 pixels ( 500 MBytes) in size. Practical constraints on storage, computation, 

and data acquisition time motivate the search for alternative techniques for source 

scanner identification which can make use of smaller training images. Furthermore, 
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estimation of reference patterns for the complete scanner bed requires possession of all 

the training devices. A method capable of using a limited number of smaller training 

images from the same scanner would be ideal. The following sections describe a 

statistical feature-based technique using support vector machine (SVM) classification 

which is shown to overcome the stated problems with correlation-based techniques. 

Selection of relevant features from the sensor noise is the key to accurate and 

robust source scanner identification. The features selected should satisfy the following 

requirements: 

• Independent of image content 

• Characteristic of the scanner: Features should capture the characteristics 

of given scanner, and preferably should differentiate among different scanners 

of the same make and model 

• Independent of scan area: Features should be able to characterize the source 

scanner even if images are placed at different positions on the scanner’s glass 

plate 

Scan area independence of proposed features is justified because of following rea­

son. An image scanned twice from different non-overlapping locations on the same 

scanner will contain different PRNU because the PRNU originates from variations in 

manufacturing process. The proposed scheme uses sensor noise-based scanner finger­

prints. The fixed component of sensor noise is caused by PRNU as well as noise-like 

characteristics left after post processing steps which include a number of non-linear 

operations on the values read by sensor array. Thus, the statistical properties of the 

fixed component of noise are expected to remain same irrespective of the image place­

ment on scanner bed. This is the reason behind using the statistical features of the 

fixed component of sensor noise for source scanner identification. Our experimental 

results suggest that this is true. 
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3.2.1 Statistical Feature Extraction 

The scanner scans an image by translating a linear sensor array along the length 

of its scanning bed. Each row of the resulting digital image is generated by the same 

set of sensor pixels. Thus, for scanned images the average of all the rows of sensor 

noise will give an estimate of the fixed “row-pattern”. Averaging will reduce the 

random component and at the same time enhance the fixed component of the noise. 

In addition to the statistical features along the row direction, features are extracted 

along the column direction also. This is done in order to compare the two statistics. 

Let I denote the input image of size M × N pixels (M rows and N columns) and 

Inoise be the noise corresponding to the image. Let Idenoised be the result of applying 

a denoising filter on I. Then, as in [15], 

Inoise = I − Idenoised (3.5) 

The procedure to extract features from a single color channel is described below. 

The same procedure is applied to all the three channels separately to get a complete 

feature vector. 

Let IJr and IJc denote the average of all the rows and columns of the noise noise noise 

(Inoise ) respectively (Equations 3.6 and 3.7). 

M
1 

Ir (1, j) = 
K 

Inoise (i, j); 1 ≤ j ≤ N (3.6)noise
J

M 
i=1 

N
1 

Ic (i, 1) = 
K 

Inoise (i, j); 1 ≤ i ≤ M (3.7)noise
J

N 
j=1 

Let ρrow(i) denote the correlation value between the average of all the rows (IJr )noise 

and ith row of the noise (Inoise ) (Equation 3.8). Similarly, ρcol(j) denotes the value 

of correlation between the average of all the columns (IJc ) and jth column of the noise 

noise (Inoise ) (Equation 3.9). 

Irρrow(i) = C(Jnoise , Inoise (i, .)) (3.8) 



48 

Icρcol(j) = C(Jnoise , Inoise (., j)) (3.9) 

ρrow is expected to have larger values than ρcol since there is a periodicity between 

rows of the fixed component of the sensor noise of a scanned image (Section 1.2). The 

statistical properties of ρrow, ρcol, IJr and Ic capture the essential properties noise noise
J

of an image which are useful for discriminating between different scanners. As an 

example, for a low-quality scanner having large amount of random noise, such as 

that due to fluctuations in lighting conditions, values of ρrow will be comparatively 

small and close to the values of ρcol. On the other hand, a high-quality scanner is not 

expected to have large amount of random noise and thus the values of ρrow is usually 

much larger than the values of ρcol. Furthermore, for a low-quality scanner, IJr noise 

and IJc will have much higher energy than corresponding values for a high-quality noise 

scanner. The mean, standard deviation, skewness and kurtosis of ρrow and ρcol are 

the first eight features extracted from each color channel of the input image. The 

standard deviation, skewness and kurtosis of IJr and IJc correspond to features noise noise 

9 through 14. The last feature for every channel is given by Equation 3.10 which is 

a representative of the relative difference in periodicity between the row and column 

directions of sensor noise. Since we expect ρrow to be large for high-quality scanners 

and small for low-quality scanners, f15 will have a high positive value for all. A few 

exceptions are the very low-quality scanners and images which have undergone post­

processing operation such as very heavy down-sampling or JPEG compression which 

have a large impact on the sensor noise. 

1  N 
�� 

N j=1 ρcol(j)
f15 = 1 − × 100 (3.10)

1  M (i)
M i=1 ρrow

By extracting these 15 features from each of the three color channels, a 45 dimen­

sional feature vector is obtained for each scanned image. To capture the three color 

channels, some scanners use three different linear sensors while others use a single 

imaging sensor in coordination with a tri-color light source. To capture this differ­

ence among scanners of different make and models, six additional features are used. 
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These features are obtained by taking mutual correlations of IJr from different color noise 

channels (same for IJc ). Hence, in total each scanned image has a 51 dimensional noise 

feature vector associated with it. 

In our previous work [37] on source scanner identification from images scanned at 

native scanner resolution, a recently developed anisotropic local polynomial estimator 

for image restoration based on directional multiscale optimizations [64] was used for 

denoising. In this study, a denoising filter bank comprising of four different denoising 

algorithms: LPA-ICI (Local polynomial approximation - intersection of confidence 

intervals) denoising scheme [64], median filtering (size 3 × 3) and Wiener adaptive 

image denoising for neighborhood sizes 3 × 3 and 5 × 5, is used. Using a set of 

denoising algorithms helps to better capture different types of sensor noise [26]. These 

denoising algorithms are chosen based on the performance of the complete filter bank 

in scanner identification. Initial experiments on different linear filtering algorithms 

such as those using an averaging filter and a Gaussian filter demonstrated that the 

linear filtering algorithms are not as effective in scanner identification as those used in 

the proposed scheme. Each denoising algorithm is independently applied to each color 

band in an image. The features extracted from individual blocks of the filter bank 

are concatenated to create the final feature vector for each scanned image. Hence, 

each scanned image has a 204 dimensional feature vector associated with it. 

To reduce the dimensionality of the feature vectors, linear discriminant analysis 

(LDA) [66] is used and a ten dimensional feature vector is obtained for each image. 

Each component of the ten dimensional feature vector is then a linear combination of 

the original 204 features. Finally a Support Vector Machine (Appendix A) classifier 

is used to classify these ten dimensional feature vectors. 

3.3 Experimental Results - Correlation Based Methods 

Table 3.1 lists the scanners used in our experiments. Experiments are performed 

on images scanned at the native resolution of the scanners as well as on images scanned 
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at a lower non-native resolution, such as 200 DPI. Images are generally scanned at a 

lower resolution to meet constraints on storage space, scanning time, and transmission 

bandwidth. This adds further complexity to the task of source scanner identification 

since images scanned at a lower resolution go through heavy down sampling which 

changes the sensor noise characteristics (Section 1.2). 

Table 3.1 
Scanner Set Used for Evaluation of Method for Scanner Identification 
from Scanned Images. 

Make/Model Sensor Native Resolution 

(DPI) 

S1 Epson Perfection 4490 Photo CCD 4800 

S2 HP ScanJet 6300c-1 CCD 1200 

S3 HP ScanJet 6300c-2 CCD 1200 

S4 HP ScanJet 8250 CCD 4800 

S5 Mustek 1200 III EP CCD 1200 

S6 Visioneer OneTouch 7300 CIS 1200 

S7 Canon LiDE 25 CIS 1200 

S8 Canon LiDE 70 CIS 1200 

S9 OpticSlim 2420 CIS 1200 

S10 Visioneer OneTouch 7100 CCD 1200 

S11 Mustek ScanExpress A3 CCD 600 

3.3.1 2-D Reference Pattern 

To evaluate the effectiveness of the sensor noise based source camera identification 

technique for source scanner identification, experiments are performed for images 

scanned at the native resolution of the scanners. These experiments use smaller sub-

images of size 1024 × 768 pixels for taking source scanner identification decisions. 
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This is done primarily for two reasons: 1) To deal with the large sizes (of the order 

of 10800 × 14400 pixels) of images scanned at native resolution and 2) To take into 

account the lack of information about exact location on the scanner-bed which is used 

for scanning a particular image. The images scanned at native resolution are sliced 

into blocks of size 1024×768 pixels. This block size is arbitrarily chosen to provide for 

statistical significance of features used for classification, reasonable processing time 

and memory usage. In this experiment, approximately 300 sub-images from each 

of the four scanners (S1, S2, S3, S4) are used. One hundred randomly chosen sub-

images (from each scanner) are used to estimate the two dimensional array reference 

patterns. Testing is performed using the remaining sub-images. The anisotropic local 

polynomial estimator based denoising method (LPA-ICI) [64] is used to estimate the 

noise in the images and the source scanner is determined using correlation between 

the estimated 2-D noise and the known reference patterns. 

Tables 3.2 and 3.3 show the confusion matrices for classification between pairs 

of scanners. The (i, j)th entry of the confusion matrix denotes the percentage of 

sub-images which belong to the ith scanner but are classified as coming from the 

jth scanner. Using the two dimensional array reference pattern gives an average 

classification accuracy of 72% and 84.5%, for the scanner pairs (S1 , S2) and (S2 , S4) 

respectively. 

Confusion Matrices for Correlation 2D Reference Pattern (pair­
wise performance, S1 vs. S2). 

Table 

Predicted 

Actual S1 66.8 

S2 22.5 77.5 
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Confusion Matrices for Correlation 2D Reference Pattern (pair­
wise performance, S2 vs. S4). 

3.3.2 1-D Reference Pattern 

The same images used in Section 3.3.1 are used in this experiment. One hundred 

randomly chosen sub-images from each scanner used to estimate the one dimen­

Table 

Predicted 

Actual S2 69.4 

S4 0.4 99.6 

are 

sional row reference patterns. The source class in this case is determined through 

correlation of the 1-D noise and reference patterns. Tables 3.4 and 3.5 show the con­

fusion matrix for classification between pairs of scanners. Using the one dimensional 

row reference pattern gives an average classification accuracy of 71% and 92.5%, for 

the scanner pairs (S1 , S2) and (S2 , S4) respectively. Other pairs have similar accu­

racies. 

Table 
Confusion Matrices for Correlation 1D Reference Pattern (pair­
wise performance, S1 vs. S2). 

Tables 3.6 and 3.7 show the confusion matrices for source scanner identification 

among three scanners by using the two dimensional array reference patterns and one 

dimensional row reference patterns respectively. For classification among these three 

Predicted 

Actual S1 63.7 

S2 21.6 78.4 
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Confusion Matrices for Correlation 1D Reference Pattern (pair­
wise performance, S2 vs. S4). 

scanners, using the array reference pattern gives an average classification accuracy of 

74% while using the row reference pattern gives an average classification acuracy of 

77.6%. 

Table 

Predicted 

Actual S2 85.1 

S4 0.0 100.0 

Table 3.6
 

Confusion Matrix for Correlation Using 2D Reference Pattern (over 
three scanners). 

As discussed in Section 3.1, the results presented in this section imply that the 

row reference pattern provides better results scanner identification than 

the two dimensional array reference pattern. But both of them fall short of achieving 

Predicted 

S1 63.3 

Actual S2 11.7 59.5 

S4 0.4 0.0 99.6 

for source 

our objective of reliable scanner identification.
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Table 3.7 

Confusion Matrix for Correlation Using 1D Reference Pattern (over 
three scanners). 

Predicted 

S1 63.3 

Actual S2 10.8 69.4 

S4 0.0 0.0 100.0 

3.4 Experimental Results - Statistical Features Based Method 

The experimental procedure for source scanner identification using statistical fea­

tures of the sensor noise is shown in Figure 3.4. The LIBSVM package [67, 68] is used 

in this study. Before using the SVM classifier, the features are scaled to the range 

[−1, 1]. The mapping is decided by the values of the features in the training set and 

the same mapping is applied to the features in the testing set. A radial basis function 

(RBF) is chosen as the kernel function and a grid search is performed to select the 

best parameters for the kernel. To generate the final confusion matrices, SVM train­

ing and testing steps are repeated multiple times using a random selection of images 

for the training and testing sets. 

3.4.1 Scan Area Independence 

Out of the eleven scanners, seven scanners that are representative of the complete 

set, S1, S2, S3, S4, S6, S7, S9 four CCD and three CIS, with two of the exact same make 

and model, are used in experiments performed at native resolution. Approximately 

40 images are scanned from each of these seven scanners at their respective native 

scanning resolutions. The scanned images are then sliced into blocks of size 1024×768 
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Fig. 3.4. Block Diagram of Statistical Features Based Scanner Iden­
tification Method. 

pixels. This block size is arbitrarily chosen to provide for statistical significance of 

features used for classification, reasonable processing time and memory usage. For 

each of the seven scanners we have 200 sub-images from each column of the sliced 

images corresponding to that scanner. Figure 3.6 shows a sample of the images used 

in this study. As shown in Figure 3.5 the image blocks such as B0 and B5 from 

the same column will be scanned by the same sensor elements and can therefore be 

treated as originating from the same source. Unless stated otherwise, for experiments 

on native resolution images, 50% of the sub-images are randomly chosen for training 

of the SVM classifier and the remaining sub-images are used for testing. 

First a set of experiments are performed to investigate the scan-area independence 

of the proposed statistical features. In the first experiment a classifier is designed by 

placing the sub-images from the first two columns of a scanner into two different 
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B0 B1 B2 B3 B4 

B5 B6 B7 B8 B9 

... ... 

Fig. 3.5. Scanned Images Sliced into Sub-images.
 

Fig. 3.6. Sample Images Used for Source Scanner Identification. 

classes. For example, image blocks such as B0 and B5 are in one class and image 

blocks B1 and B6 are in another class (Figure 3.5). Table 3.8 shows the confusion 

matrix for training and testing on 14 different classes, treating sub-images coming 

from two columns of the same scanner as two different classes. Sub-images used for 

generating this confusion matrix were stored in TIF format. In this table the class 

Sj
c denotes sub-images from the cth column of the jth scanner. A similar classifier 

for sub-images stored in JPEG format at quality factor 70 has the confusion matrix 

shown in Table 3.9. The results in these tables suggest that the proposed features for 
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sub-images from different columns of the same scanner differ from each other. For 

some scanners, this difference is enough to reliably differentiate sub-images from the 

two columns. Different columns from several scanners such as S1, S2, and S7 have 

classification accuracies of only 75% for TIFF images, and the overall classification 

accuracy for JPEG images is even lower for all the scanners. This indicates that these 

features fall into overlapping clusters. Possible reasons for the poor classification ac­

curacies are that both classes contain noise caused by similar mechanical fluctuations 

and post-processing algorithms. 

Another experiment to investigate the scan-area independence of the proposed sta­

tistical features is designed to show scan-area independence by training the classifier 

on sub-images from the first column of the scanned images and testing on sub-images 

from the second column of the scanned images. Table 3.10 shows the confusion ma­

trix for this classifier which has an average classification accuracy of 95%. A similar 

experiment, designed by training the classifier on sub-images from second column of 

the scanned images and testing on sub-images from the first column of the scanned 

images, has an average classification accuracy of 92%. Similar classifiers designed 

for images saved in JPEG format (Q=70) have classification accuracies close to 95% 

except for scanners S2 and S3 which are of the same make and model. These re­

sults indicate that even though the features from sub-images of different columns 

are somewhat differentiable, features from different columns of the same scanner are 

clustered closer to one another than to those of other scanners. Therefore for the 

purpose of source scanner identification, the proposed feature set can be assumed to 

be independent of scan-area. 

For scanning at native resolutions of the scanners, the following observations may 

be drawn from the results of the above experiments: 

• The proposed features for images scanned from different locations on the same 

scanner bed fall into over-lapping or non-overlapping clusters which are much 

closer to each other than to clusters corresponding to features for sub-images 

from other scanners. 
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S1
1 S2

1 S1
2 S2

2 3 3

74.0 26.0 0 0 0 0

0 0 0 0

74.6 22.4 2.6 0.4 0 0

1.9 2.0 0 0

78.1 20.4 0 0 0 0

0 0 0 0

100 0 0 0 0 0

0 0 0 0

98.7 1.0 0 0 0.1 0.2

0.3 0 0.0 0.2

76.7 23.3 0 0

0 0

81.9 17.7
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Table 3.8
 
Using Statistical eatures (treating TIFF sub-images from different horizontal locations as separate classes).
 

Predicted 

S1 S2 S1 
4 S2 

4 S1 
6 S2 

6 S1 
7 S2 

7 S1 
9 S2 

9 

Actual 

S1 
1 0 0 0 0 0 0 0 0 

S2 
1 30.0 70.0 0 0 0 0 0 0 0 0 

S1 
2 0 0 0 0 0 0 0 0 

S2 
2 0 0 20.1 76.0 0 0 0 0 0 0 

S1 
3 0 0 0.7 0.8 0 0 0 0 

S2 
3 0 0 0.0 1.9 18.6 79.4 0 0 0 0 

S1 
4 0 0 0 0 0 0 0 0 

S2 
4 0 0 0 0 0 0 0 100 0 0 

S1 
6 0 0 0 0 0 0 0 0 

S2 
6 0 0 0 0 0 0 0 0 0.7 98.8 

S1 
7 0 0 0 0 0 0 0 0 0 0 

S2 
7 0 0 0 0 0 0 0 0 0 0 25.1 74.9 

S1 
9 0 0 0 0 0 0 0 0 0.3 0.1 0 0 

S2 
9 0 0 0 0 0 0 0 0 0.4 1.3 0 0 15.7 82.6 



S1
1 S2

1 S1
2 S2

2 3 3

88.8 10.3 0 0.3 0.1 0.0

0 0 0.0 0.3

64.8 24.9 5.5 3.6 0.0 0.1

7.4 12.2 0.5 0

60.0 26.5 0 0.3 1.3 0.5

0.0 0 0.2 0

88.5 11.0 0 0 0 0

0 0 0 0

73.2 20.2 0.3 0 3.8 0.9

0.8 0.3 1.4 0.9

72.2 22.0 1.5 2.1

0.3 3.4

72.3 19.1
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Table 3.9
 
Using Statistical Features (treating JPEG (Q=70) sub-images from different horizontal locations as separate classes).
 

Predicted 

S1 S2 S1 
4 S2 

4 S1 
6 S2 

6 S1 
7 S2 

7 S1 
9 S2 

9 

Actual 

S1 
1 0.1 0 0 0 0.1 0.3 0 0.0 

S2 
1 22.8 76.1 0 0 0 0 0.0 0.7 0 0 

S1 
2 0 0 0.2 0 0.8 0 0.1 0 

S2 
2 0.3 0 20.2 57.9 0.2 0 0.3 0.5 0.5 0 

S1 
3 0.7 0.1 2.2 7.2 0.0 0 1.0 0.2 

S2 
3 0.4 0.0 4.9 11.2 18.7 60.1 1.3 0.5 1.7 0.8 

S1 
4 0.5 0 0 0 0 0 0 0 

S2 
4 0 0 0.0 0 0.1 0 8.9 91.0 0 0 

S1 
6 0 0 0 0.1 1.3 0.2 0 0 

S2 
6 0 0 0 0.1 0.2 0.3 0 0 31.6 64.5 

S1 
7 0 0 0.7 0.1 0.2 1.2 0 0 0.1 0 

S2 
7 1.0 0.7 0 0.3 0.2 2.0 0 0 0 0 20.0 71.9 

S1 
9 0 0 0.0 0.1 0.7 0.9 0.0 0 3.5 1.9 1.0 0.5 

S2 
9 0 0 0 0 0.3 1.2 0 0 2.0 1.7 1.8 2.1 23.0 67.9 



S1 S2 S3 S4

0 0 0 0

6.6 0 3.3 0

0 2 0 0.5

6 0 0

0.4 9.2

0
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Table 3.10
 

Using Statistical Features: Native Resolution TIFF Sub-images, 
Trained on Sub-images from Column-1 and Tested on Sub-images 
from Column-2. 

Predicted 

S6 S7 S9 

S1 100 0 0 

S2 0 89.6 0.5 

S3 0 6.5 91 

Actual S4 0 0.5 0 93.5 

S6 0 0 0 0 90.4 

S7 0 0 0 0 0 100 

S9 0 0 0 0 1 0 99 

• Features for images scanned from different scanners fall into separate clusters. 

• For some scanners it may be possible to distinguish between images scanned 

from different locations on scanner bed. In all cases, features for images scanned 

from the same scanner (independent of the scanning location) lie much close to 

each other than to features for images scanned from a different scanner. 

• With the degradation in image quality due to heavy JPEG compression, separa­

tion between scanners of the same make and model decreases and the proposed 

features may be able to identify only the make and model of the source scanner 

and not the unique scanner. 

These experiments show the scan-area independence of the proposed scheme. In 

the following experiments on native resolution images, sub-images from the first two 

columns of the sliced images are placed into a single class corresponding to that 
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scanner. This results in 400 sub-images for each of the seven scanners. Sub-images 

from the first two columns of the jth scanner are denoted by class Sj. 

3.4.2 Native Resolution Images 

Native Resolution TIFF Images 

Table 3.11 shows the confusion matrix corresponding to source scanner identifi­

cation among seven scanners using the proposed scheme. Using 200 randomly cho­

sen sub-images for training and the remaining 200 for testing, 100% classification is 

achived over seven scanners. The final decision about the source scanner of a na­

tive resolution image is taken by majority voting over the decisions corresponding to 

the individual sub-images. The underlying sub-image classification accuracies are less 

than 100% due to the fact that several sub-images may contain only saturated regions 

(completely black or white)s of the image in which sensor noise is not detectable. 

Table 3.11 
Using Statistical eatures: Native Resolution, TIFF Sub-images. 

Predicted 

S6 S7 S9 

S1 100 0 0 

S2 0 96.6 0 

S3 0 0.6 99.4 

Actual S4 0 0 0 100 

S6 0 0 0 0 99.6 

S7 0 0 0 0 0 100 

S9 0 0 0 0 0.8 0 99.2 

To compare the performance of the proposed scheme with other existing fea­

ture vector based forensic classification schemes, the Image Quality Measures (IQM) 
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based source camera identification method [18] and the source scanner identification 

method proposed by Gou et al. [26] are implemented. In [18] features such as IQM 

and wavelet-based features are used. In our implementation of the IQM based clas­

sifier, a 28-dimensional feature vector is extracted from each input image and LDA 

is performed to reduce the dimensionality of the feature space to ten. A SVM clas­

sifier using a RBF kernel is used for classification. Gou et al.’s method for source 

scanner identification uses three sets of features extracted from each scanned image. 

This method is aimed at classifying images depending upon the scanner model that 

generated it and not the exact scanner. The first set of features includes the mean 

and standard deviation of the log-absolute transformed noise estimated using five 

different denoising filters. The denoising filters used in this scheme are: 1) linear 

filtering with an averaging filter (3 × 3 kernel), 2) linear filtering with a Gaussian 

filter (3 × 3 kernel), 3) median filtering (3× 3 kernel), and 4) Wiener adaptive image 

denoising with kernel sizes 3 × 3 and 5× 5. This gives a total of 30 features from the 

image noise. The second set of features are based on the observation that the high­

frequency wavelet coefficients of the scanned images approach a Gaussian distribution 

and that different scanner models fit the Gaussian model differently. The absolute 

value of the area under the difference of the Gaussian curve and the histogram of 

the high-frequency wavelet coefficients of the scanned images makes up the second 

set of features. The smooth regions of the scanned images may be contaminated by 

noise and result in non-trivial error in the neighborhood prediction. The difference 

in prediction error will capture the variation of scanning noise among different scan­

ner models. The third set of features includes the mean and standard deviation of 

the prediction errors in smooth regions. This gives a 60-dimensional feature vector 

for each image. In [26] principle component analysis (PCA) is applied to reduce the 

dimensionality of the feature space to 25-dimensions. In our implementation of Gou 

et al.’s scheme we perform LDA on the 60-dimensional feature space to reduce the 

dimensionality of the feature space to ten. This is to ensure that we are comparing 

the effectiveness of different features and not the differences between classifiers such 
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as PCA, LDA and SVM. From the results of our implementation of these methods, 

it is clear that using LDA instead of PCA improves the performance of the scheme 

proposed by Gou et al. [26]. Our goal is to compare the end-to-end performance of 

different scanner identification systems and not the individual components of each 

system. 

The experiments described earlier in Section 3.4.1 to analyze the scan-area inde­

pendence were also conducted for the two existing schemes. They show similar results 

that indicate scan-area independence. 

The confusion matrix for classifying sub-images scanned from seven different scan­

ners at their respective native resolutions using the IQM based scheme is shown in 

Table 3.12. The IQM based scheme has an average sub-image classification accuracy 

of 89.5%. Table 3.13 shows the confusion matrix for Gou et al.’s scheme. This scheme 

has an average sub-image classification accuracy of 95.2%. These classification accu­

racies indicate that the noise based features may be better than IQM based features 

for source scanner identification. 

Table 3.12 
Using IQM: Nativ Resolution, TIFF Sub-images. 

Predicted 

S6 S7 S9 

S1 94.7 0 3.2 

S2 0.0 93.6 0.3 

S3 1.7 6.6 86.6 

Actual S4 0.1 2.0 1.0 91.0 

S6 0.7 0.9 1.8 0.3 84.8 

S7 0.3 0 0.0 2.9 0.5 93.9 

S9 3.2 0.1 2.4 0.2 10.1 2.1 82.0 



S1 S2 S3 S4

0 0 0 0

12.4 0.3 0.4 0

0.0 0.0 0 0.2

0.0 0.1 0.0

0 1.3

0.1
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Table 3.13 
Gou. et al.’s Scheme: Native Resolution, TIFF Sub-images. 

Predicted 

S6 S7 S9 

S1 99.6 0 0.4 

S2 0.0 86.8 0 

S3 0.0 15.3 84.4 

Actual S4 0.1 0.0 0.1 99.7 

S6 0.1 0.0 0.1 0.0 98.5 

S7 0 0.0 0 0.1 0.5 99.3 

S9 0.2 0.0 0.2 0 1.5 0 98.1 

Effect of JPEG Compression 

To further examine the robustness of the proposed approach, experiments are
 

conducted on JPEG compressed images. A dedicated SVM classifier used for this 

experiment is trained and tested using only JPEG compressed images. All the scanned 

images are JPEG compressed with quality factor Q = 70 after which feature extraction 

is performed. The dedicated SVM classifier is trained using randomly chosen 50% of 

the compressed images and tested on the remaining compressed images. 

Table 3.14 shows the confusion matrix for classifying sub-images from JPEG com­

pressed images with Q = 70. An average sub-image classification accuracy of 92% 

is achieved in this case. Tables 3.15 and 3.16 show the confusion matrices for the 

IQM based scheme and Gou et al.’s scheme respectively. For this experiment the 

IQM based scheme has an average sub-image classification accuracy of 68.6% while 

Gou et al.’s scheme has an average sub-image classification accuracy of 80.8%. These 

results also show that the separation between scanners of the same make and model 

decreases with degradation in the noise pattern due to JPEG compression. The lower 
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3.4.3 

decline in performance due to JPEG compression for the proposed scheme suggests 

that the proposed features are more robust to JPEG compression. 

Table 3.14 

Using Statistical Features: Native Resolution Sub-images, JPEG 
Compressed (Q=70), Dedicated Classifier. 

Predicted 

S6 S7 S9 

S1 99.2 0.4 0 

S2 0.1 83.3 0.1 

S3 0.7 10.1 85.3 

Actual S4 0.5 0 0 99.5 

S6 0 0.3 0.9 0 93.9 

S7 1.1 0.7 1.1 0 0.0 92.9 

S9 0 0 1.8 0 5.2 3.0 90.0 

Non-native Resolution Images 

In the next few experiments, the effectiveness of the proposed scheme is shown 

for heavily sub-sampled (200 DPI) images. These experiments have a broad prac­

tical impact since most scanned images are at lower non-native resolutions due to 

limitations on storage space and transmission speed. The scheme proposed here has 

good performance on 200 DPI images (which corresponds to scaling by 17% to 4% 

for native resolutions of 1200 DPI to 4800 DPI, respectively). 
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Table 3.15 

Using IQM: Nativ Resolution Sub-images, JPEG Compressed 
(Q=70), Dedicated Classifier. 

Predicted 

S6 S7 S9 

S1 91.0 1.4 0.7 

S2 0.9 50.7 7.5 

S3 2.3 32.7 48.0 

Actual S4 8.5 3.8 4.4 78.7 

S6 1.1 2.1 1.0 0.7 83.1 

S7 2.0 5.9 6.8 1.6 2.6 68.9 

S9 2.5 8.7 4.6 3.3 10.6 10.5 59.9 

Table 3.16 

Gou et al.’s Scheme: Native Resolution Sub-images, JPEG Com­
pressed (Q=70), Dedicated Classifier. 

Predicted 

S6 S7 S9 

S1 94.7 0.8 0.6 

S2 2.7 61.3 1.5 

S3 1.6 29.5 59.3 

Actual S4 1.5 1.2 2.1 91.8 

S6 0.6 0.5 1.4 0.3 92.7 

S7 5.1 1.9 2.7 0.3 0.3 85.9 

S9 2.8 2.1 3.8 1.6 6.4 3.3 80.0 
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Non-native Resolution TIFF Images 

For performing the experiments on lower resolution images, 108 images are scanned 

at 200 DPI using each of the eleven scanners shown in Table 3.1. Each scanned im­

age is saved as an uncompressed TIFF image. It is not necessary to divide these low 

resolution images into smaller blocks because they are small enough to process in a 

reasonable amount of time. Therefore, feature extraction and classification is per­

formed over an entire image and not multiple sub-images. Unless stated otherwise, 

for each experiment on 200 DPI images, 80 randomly selected images from each class 

are used for training and the remaining images are used for testing. 

Figure 3.7 shows a scatter plot of the first two features obtained after application 

of LDA on the 204 dimensional feature vectors corresponding to the uncompressed 

TIFF images from six scanner classes. These six scanner classes S1, (S2 +S3), S4, S5, 

S10 and S11 have the largest separation in this two dimensional feature space. This 

scatter plot gives an indication of the high accuracy of the proposed scheme since 

even in the two dimensional feature space six scanner classes can be easily separated. 

In this two dimensional feature space the features for images from S2 and S3 are non­

separable, however, together they form one cluster which is separate from all other 

classes. This is due to S2 and S3 both being of the same make and model. 

Degradation in the characteristics of sensor noise due to heavy down-sampling 

prevents successful separation of images scanned from the two scanners of exact same 

make and model as demonstrated by our initial experiments (Tables 3.17 and 3.18). 

In the training and testing phases of these experiments the images from scanners 

S2 and S3 are treated as images coming from two different sources. It appears that 

the low resolution images from scanners of the same make and model are not clearly 

separable using the proposed features. As shown in Table 3.17, only 90% of the 200 

DPI TIFF images from scanners S2 and S3 are classified correctly. This separation 

further decreases to 75% with JPEG compression (Table 3.18). Image classification 

accuracies for all other scanners are close to 100% for TIFF images and 90% for 
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Fig. 3.7. Scatter Plot of First Two Features of the Proposed Scheme 
(for six classes having the best separation in 2D projected feature 
space). 

JPEG compressed images. Therefore, the following experiments performed on images 

scanned at 200 DPI are focused on classifying images based on the scanner make and 

model and treat scanners S2 and S3 as a single class. The scatter plot shown in 

Figure 3.7 also supports a similar conclusion. 

Table 3.19 shows the confusion matrix for classifying images from eleven scanners 

of ten different make and models using the proposed scheme. Note that scanners S2 

and S3 of the same make and model are treated as one class. The proposed algorithm 

has an average classification accuracy of 99.9% among ten scanner models. Table 3.20 

shows the corresponding confusion matrix for eleven scanners using the IQM based 

scheme, which has an average classification accuracy of 88.4%. Table 3.21 shows the 

confusion matrix for classifying TIFF images from eleven scanners using the scheme 

proposed by Gou et al. Gou et al.’s scheme has an average classification accuracy 
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Table 3.17
 

Using Statistical Features: 200 DPI TIFF Images, Treating S2 and 
S3 as Distinct Classes (training set: 80 images from each class). 

Predicted 

S5 S6 S7 S8 S9 S10 S11 

S1 100 0 0 0 0 0 0 

S2 0 0 0 0 0 0 

S3 0 10.1 89.9 0 0 0 0 

S4 0 0 0 100 0 0 0 

S5 0 0 0 0 100 0 0 

Actual S6 0 0 0 0 0 100 0 

S7 0 0 0 0 0 0 100 

S8 0 0 0 0 0 0 0 100 

S9 0 0 0 0 0 0 0 0 100 

S10 0.3 0 0 0 0 0 0 0.2 0 99.5 

S11 0 0 0 0 0 0 0 0 0 0 100 

of 96.6%. The proposed scheme based on the statistical features of the sensor noise 

performs better for source scanner identification than the IQM based scheme and Gou 

et al.’s scheme. 

At this point it is interesting to compare the classification accuracies for classifying 

native resolution images with those for classifying non-native resolution images (Ta­

ble 3.11 vs. Table 3.19). The reason for the differences in classification performances 

between native and non-native resolution images (Table 3.11 vs. Table 3.19) lies in 

the way experiments are designed and the fact that the pattern noise is not detectable 

in saturated (completely black or white) regions of the image. For the experiments 

on native resolution images the original scanned image is first divided into smaller 

blocks of size 1024 × 768, then a feature vector is generated for each block and the 

classification decisions are taken for each block separately. These block wise decisions 

have false classifications for the sub-images corresponding to saturated (completely 
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Table 3.18
 

Using Statistical Features: 200 DPI JPEG Images (Q=90,80,70),
 
Treating S2 and S3 as Distinct Classes , (training set: 80 images 
from each class consisting of all three quality factors). 

Predicted 

S5 S6 S7 S8 S9 S10 S11 

S1 88.6 0 1.7 1.9 1.1 1.0 0.3 

S2 0.6 0 1.9 1.5 0.2 0.4 

S3 1.2 16.5 77.3 2.4 1.7 0.3 0.1 

S4 1.3 0.4 0.4 97.2 0 0.2 0 

S5 1.9 0.2 0.2 0 93.5 0.9 0 

Actual S6 0 0.1 0 0 0.8 97.3 0 

S7 0.6 0.3 0.6 0 0.3 1.3 87.1 

S8 0.3 1.7 3.3 0 0.1 0 6.7 86.0 

S9 2.7 0.7 1.3 0.1 0.6 0.7 1.5 2.5 89.7 

S10 3.0 0.1 0.7 0.3 2.1 0.8 0.5 1.6 0.9 90.0 

S11 0.0 0 0 0 0.1 0.1 0.3 0 0 0 99.5 

black or white) regions [37]. The final decision about the source scanner of a native 

resolution image is determined by majority voting over the decisions corresponding 

to the individual sub-images. Thus even with a classification accuracy close to 95% 

for sub-images (Table 3.11), the final classification accuracy for the complete native 

resolution image remains 100%. For non-native resolution images, feature extraction 

and classification is performed over an entire image and not multiple sub-images. 

This avoids misclassification due to saturation of pixel values unless the entire image 

is black or white. Hence, the proposed scheme gives 100% classification accuracy for 

classifying the native resolution images as well as the non-native resolution images. 

To further check the robustness of the proposed scheme for scanner model iden­

tification, a SVM classifier is trained without images from scanner S3 and tested on 

only images from the scanner S3. Table 3.22 shows the confusion matrix for this case, 
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Table 3.19
 

Using Statistical eatures: 200 DPI TIFF Images, (training set: 80 
images from eac class). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 100 0 0 0 0 0 

S2 + S3 0 100 0 0 0 0 

S4 0 0 100 0 0 0 

S5 0 0 0 100 0 0 

Actual S6 0 0 0 0 100 0 

S7 0 0 0 0 0 100 

S8 0 0 0 0 0 0 100 

S9 0 0 0 0 0 0 0 100 

S10 0.3 0 0 0 0 0 0.3 0 99.4 

S11 0 0 0 0 0 0 0 0 0 100 

which has a classification accuracy of 95%. A similar experiment designed by training 

the classifier without images from scanner S2 and testing only on images from S2, 

gives a classification accuracy of 97%. These results imply that even in the absence 

of the training data from a particular scanner, the proposed scheme can identify the 

scanner model as long as training data from another scanner of the same make and 

model is available. 

Another aspect of robustness is independence from scanning location. In other 

words, even when the image is placed at a random unknown location on the scanner 

bed, source scanner identification should still be possible. The images used in all 

the earlier experiments were scanned from the “default” scanning location (generally 

marked at the top right corner) of the scanner. For this experiment another 108 

images are scanned from scanner S11, with their location on the scanner’s bed slightly 

translated horizontally and vertically between each scan. A SVM classifier is trained 
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Table 3.20 
Using IQM: 200 DPI TIFF Images, (training set: 80 images from each class). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 70.9 1.1 0.6 18.1 0.5 0 

S2 + S3 3.3 83.8 4.7 3.1 0 0 

S4 0.4 0.5 97.8 0 0 0 

S5 1.9 0 0 94.8 1.7 0 

Actual S6 0 0 0 0 100 0 

S7 0.8 10.9 0 0 0 80.8 

S8 0.7 10.9 0 0 0 5.1 82.9 

S9 7.3 5.3 0 4.8 0 4.0 0.4 78.3 

S10 0 0.8 0 2.4 0 0 0 1.0 95.8 

S11 0 0 0 0.3 0 0 0 0 0 99.7 

using the images scanned from the “default” location and tested using images from 

the “random” locations only. Table 3.23 shows the classification results for scanner 

S11 which has a classification accuracy of 100% for “randomly” placed images. This 

suggests that the proposed scheme for scanner model identification is independent of 

the scanning location. 

3.4.4 Effect of Post Processing 

The following experiments are aimed at investigating the influence of post-processing 

operations such as JPEG compression, contrast stretching and brightness enhance­

ment, on source scanner identification. To test whether sensor noise survives these 

operations, two types of classifiers are used. First is a dedicated classifier which is 

trained and tested only on a particular class of post-processed images. Second is 

a general classifier which is trained on both the original and post-processed images 
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Table 3.21 

Gou et al.’s Scheme: 200 DPI TIFF Images, (training set: 80 images 
from each class). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 96.0 0 0 1.9 0 0 

S2 + S3 0.5 98.4 0 0 0 0 

S4 0 0 100 0 0 0 

S5 0.2 0 0 96.5 2.8 0 

Actual S6 0 0 0 0 99.2 0 

S7 0 2.0 0 0 0.2 94.4 

S8 0 0.6 0 0 0 3.8 94.8 

S9 7.7 0.5 0 1.3 0 0.5 0 90.0 

S10 0.2 0 0 3.0 0 0 0 0 96.8 

S11 0 0 0 0 0 0 0 0 0 100 

Table 3.22 

Using Statistical Features: 200 DPI TIFF Images, (training set: 80 
images from each class, image from S3; testing set: 108 images 
from S3). 

Predicted 

S1 S4 S5 S6 S7 S8 S9 S10 S11 

Actual S3 0 95 0 1 0 0 0 1 3 0 

and tested only on the post-processed images. Unless stated otherwise, in these ex­

periments 80 randomly selected images from each scanner class are used for training 

and the remaining images are used for testing. Since the proposed features are based 

on sensor noise, if a post-processing or malicious attack involves subtraction of the 

noise from the original image or addition of a spurious noise pattern, classification 
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Table 3.23
 

Using Statistical Features: Effect of Changing Scanning Location, 
DPI TIFF Images, (training set: 80 images from each class, t
set: 108 images from random locations on S11). 

esting 

Predicted 

S1 S2 + S3 S4 S5 S6 S7 S8 S9 S10 

Actual S11 0 0 0 0 0 0 0 0 0 100 

are expected to decrease, similar to the performance decline noticed with accuracies 

JPEG compression. 

Effect of JPEG Compression 

To investigate the robustness of the proposed scheme under JPEG compression, 

TIFF images from all the scanners are compressed at three different quality factors 

Q = 90, 80 and 70. This gives a total of 11 × 108 × 3 = 3564 JPEG images. To see 

the effect of JPEG compression on the proposed statistical features, one dedicated 

classifier is trained for each quality factor. For designing these dedicated classifiers, 

80 images are randomly chosen (compressed at that quality factor) from each scanner 

model for training. The remaining images at that quality factor are used for testing. 

This training and testing is repeated multiple times to generate the final confusion 

matrices. Similar dedicated classifiers are designed for the IQM based scheme and for 

the scheme proposed by Gou et al. 

The bar graph shown in Figure 3.8 shows the comparative performance of these 

three methods for source scanner model identification using images stored in uncom­

pressed TIFF and JPEG format at different quality factors. The average classification 

accuracies over ten scanner models for the proposed scheme are 97.4%, 95.7% and 

93.3% for dedicated classifiers at quality factors 90, 80 and 70 respectively. Thus, the 
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proposed features survive low quality factor JPEG compression. Even though there 

is a slight decay in the performance with decrease in JPEG quality factor, the pro­

posed scheme maintains an average classification accuracy of 93.3% at quality factor 

70. Furthermore, as is clear from the bar graph in Figure 3.8, the proposed features 

perform consistently better than the other two schemes. 
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Fig. 3.8. Comparative Performance of Dedicated Classifiers for Different Schemes. 

To use a dedicated classifier on post-processed images, we need to know the par­

ticular post-processing that was applied to the image. In some cases, this a priori 

information is available or can be obtained by using other forensic methods. For 

example, it may be possible o obtain the JPEG quality factor through analysis of 

quantization tables embedded in the JPEG image. But in general, an image of un­

known origin is provided for forensic examination without reliable knowledge of the 

post-processing operations applied to it. Thus, there is need for a general classifier 

which does not need to know the JPEG quality factors of training and testing images. 
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To design a robust general classifier, the JPEG images compressed at three quality 

factors are grouped together and 80 randomly chosen images from each scanner class 

are used for training the classifier. The remaining 3564 − 10 × 80 = 2764 images 

are used for testing of the classifier. A similar general classifier is also designed for 

the IQM based scheme and the method proposed by Gou et al. Table 3.24 shows 

the confusion matrix for the general classifier for the proposed scheme, which has 

an average classification accuracy of 92.3%. Table 3.25 shows the confusion matrix 

for the corresponding general classifier for the IQM based scheme, which has an 

average classification accuracy of 75%. Table 3.26 shows the confusion matrix for 

the corresponding general classifier for the scheme proposed by Gou et al., which has 

an average classification accuracy of 57.7%. The previous schemes in their present 

form can be used when the JPEG quality factor of the test image is known or can 

be accurately estimated. However, in the general scenario considered here when the 

JPEG quality factor is unknown, they do not perform well. The proposed scheme 

gives high classification accuracy even without knowledge of the JPEG quality factors 

of training or testing images. 

Effect of Image Sharpening and Contrast Stretching 

To investigate the robustness of the proposed scheme on images that have under­

gone image sharpening and contrast stretching, TIFF images from all the scanners 

are independently sharpened and contrast stretched. A sharpening algorithm based 

on weighted median filtering is used (with sharpening parameter τ = 0.2) [69]. The 

contrast stretching curve used here is depicted in Figure 3.9 and a threshold T = 20 

is used. The set of images used for these experiments consists of 108 TIFF images 

from each of the 11 scanners, and their contrast stretched and sharpened versions, 

for a total of 11 × 108 × 3 = 3564 images. 

Figure 3.8 shows the comparative performance of dedicated classifiers for sharp­

ened and contrast stretched images. These classifiers are trained and tested only on 
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Table 3.24
 

Using Statistical Features: General Classifier, 200 DPI JPEG 
(Q=90,80,70) Images, (training set: 80 images from each class con­
sisting of all factors; remaining images for testing). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 89.4 1.5 1.3 0.7 0.6 0.3 

S2 + S3 0.6 96.9 1.1 0.9 0.1 0.1 

S4 1.0 1.0 97.4 0.1 0.3 0 

S5 2.3 0.8 0.1 92.9 1.0 0 

Actual S6 0.0 0.0 0 0.9 97.2 0 

S7 1.2 1.4 0.0 0.4 1.5 85.2 

S8 0.5 6.5 0.1 0.3 0.0 5.6 85.5 

S9 2.5 1.9 0.1 0.7 0.7 1.5 2.7 89.5 

S10 3.6 1.0 0.5 1.9 0.9 0.5 1.7 0.8 89.2 

S11 0.0 0 0 0.0 0.1 0.3 0 0 0 99.5 

images that have undergone that particular post-processing. This shows that only im­

age sharpening has a significant effect on the performance of the IQM based scheme 

and that the sensor noise based schemes are unaffected by image sharpening and 

contrast stretching if the type of post-processing is known. 

For building a general classifier, all the TIFF images (original and post-processed) 

are grouped together and 80 randomly chosen images from each scanner class are used 

for training of the classifier. The remaining sharpened and contrast stretched images 

are used for testing of the classifier, i.e. only post-processed images are used for 

testing. This general classifier is also designed for the IQM based scheme and the 

method proposed by Gou et al.Table 3.27 shows the confusion matrix for the gen­

eral classifier for the proposed scheme which has an average classification accuracy of 

99.8%. Table 3.28 shows the confusion matrix for the corresponding general classifier 
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Table 3.25
 

Using IQM: General Classifier, 200 DPI JPEG Images(Q=90,80,70), 
(training set: images from each class consisting of all three quality 
factors; remaining for testing). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 67.9 1.9 4.8 11.2 1.5 0.6 

S2 + S3 1.4 79.8 7.1 1.8 0.3 2.2 

S4 0.4 2.2 94.0 1.5 0.5 0 

S5 5.5 6.9 0.4 78.1 3.9 0.1 

Actual S6 1.6 2.1 0.2 0.7 85.0 0.5 

S7 1.5 15.7 0.1 0.8 0.7 57.4 

S8 5.4 19.8 0 0.3 0.8 9.6 53.9 

S9 8.5 9.5 1.0 0.8 3.8 7.3 9.3 57.2 

S10 1.3 1.4 0.2 3.6 3.0 1.2 1.6 2.7 84.7 

S11 0.0 0.7 0 0.0 0.2 2.2 1.1 0.6 0.3 94.9 

for the IQM based scheme, which has an average classification accuracy of 79.7%. 

Table 3.29 shows the confusion matrix for the corresponding general classifier for the 

scheme proposed by Gou et al., which has an average classification accuracy of 95.4%. 

The average classification accuracy of methods based on sensor noise is not affected 

by image sharpening and contrast stretching while the IQM based scheme shows a 

significant drop in performance. The proposed scheme gives high classification accu­

racy, even on images that have undergone image sharpening and contrast stretching, 

without any knowledge of the post-processing performed on the training or testing 

images. 
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Table 3.26
 

Gou et al.’s Scheme: General Classifier, 200 DPI JPEG Images 
(Q=90,80,70), (training set: 80 images from each class consisting of 
all three qualit factors; remaining images for testing). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 43.5 4.0 3.9 9.6 7.4 2.3 

S2 + S3 2.5 74.8 2.5 3.7 1.9 3.9 

S4 4.3 4.1 68.6 6.2 3.8 0.3 

S5 2.5 12.9 3.8 68.2 5.9 0 

Actual S6 8.7 1.9 1.2 1.4 70.3 2.2 

S7 2.8 9.8 1.5 1.7 3.1 40.5 

S8 6.3 9.2 0.8 0.2 4.5 15.2 44.7 

S9 13.4 11.6 5.0 3.1 9.4 5.8 5.9 38.0 

S10 11.7 9.0 5.5 9.3 10.0 3.2 3.8 5.1 40.3 

S11 0.4 3.2 0.1 0 1.3 4.2 2.7 0.3 0.1 87.7 

3.4.5 Effect of Number of Training Images 

The classifier for original TIFF images and the general classifiers designed for 

JPEG compressed images are the most relevant for practical applications. The next 

series of experiments are designed to determine the effect that the number of available 

training images has on the average classification accuracy. The number of training 

images from each scanner class varies from 10 to 90. Figure 3.10 shows the effect of 

the number of training images on average classification accuracy for general classifiers 

for different training and testing sets and different schemes. 

Figure 3.11 shows the effect of changing the size of training dataset on average 

classification accuracy when classifying native-resolution sub-images from seven scan­

ners. High classification accuracy is achieved even with just 20 sub-images from each 

scanner. These classification accuracies are for classifying 1024 × 768 sub-images and 
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Fig. 3.9. Contrast Stretching Curve. 

not the complete scanned images. Thus, even with classification accuracies close to 

90% for sub-images, the final classification accuracies for classifying the complete 

images will remain 100%. The sub-images containing completely dark regions are 

generally mis-classified due to suppression of noise in dark regions. The total number 

of sub-images used is 1600. Similarly, varying the training size for source scanner 

identification among seven scanners shows that the average classification accuracy 

remains close to 90% for training sizes varying from 160 to 360 sub-images from each 

scanner. 

3.4.6 Effectiveness of Different Denoising Algorithms 

To investigate the source of the high accuracy achieved by our proposed scheme, 

the next set of experiments use the proposed noise features from each of the four 

denoising algorithms independently to design four separate classifiers. Average clas­

sification accuracies given by these four classifiers are compared with the average 

classification accuracy achieved using the denoising filter bank. For example, LDA 
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Table 3.27
 

Using Statistical Features: General Classifier, 200 DPI TIFF Images
 
(original, sharpened, contrast stretched), Proposed Scheme, (training 
set: 80 images each class consisting of all three types; remaining 
post-processed images testing). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 99.6 0.1 0.0 0 0.3 0 

S2 + S3 0 100 0 0 0 0 

S4 0 0 99.8 0 0.2 0 

S5 0 0 0 100 0 0 

Actual S6 0 0 0 0 100 0 

S7 0 0 0 0 0 100 

S8 0 0 0.1 0 0 0 99.7 

S9 0 0 0 0 0 0 0 100 

S10 0.6 0 0 0.1 0 0 0.2 0 99.1 

S11 0 0 0 0 0 0 0 0 0 100 

is applied on 51 features extracted using the LPA-ICI denoising algorithm [64] and 

ten dimensional feature vectors are obtained for each TIFF image. A dedicated clas­

sifier trained using 80 images from each scanner class gives an average classification 

accuracy of 97.5%, as shown by the first bar in Figure 3.12. Similar steps are applied 

to design dedicated classifiers using noise features from the three other denoising al­

gorithms and for different levels of JPEG compression. With the decrease in JPEG 

quality factor, the average classification accuracy decreases rapidly for all four denois­

ing algorithms, however the average classification accuracy achieved by the combined 

filter bank remains greater than 90% even at JPEG quality factor 70. Hence, the 

design of suitable noise features and use of a denoising filter bank which can capture 

different types of scanning noise results in the consistently high classification accuracy 

achieved by the proposed scheme. 
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Table 3.28
 

Using IQM: General Classifier, 200 DPI TIFF Images (original, sharp­
ened, contrast stretched), (training set: 80 images from each class con­
sisting of all three t remaining post-processed images for testing). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 66.6 0.7 0.5 13.8 3.3 0.1 

S2 + S3 3.2 84.9 1.9 2.9 0.1 0.3 

S4 1.3 2.6 93.5 0.2 1.6 0 

S5 5.4 0.6 0.5 82.7 9.6 0 

Actual S6 5.4 4.3 1.0 0.1 81.4 0 

S7 3.5 9.7 0.0 3.1 10.2 59.7 

S8 1.9 13.6 0.2 0.3 2.3 8.3 65.2 

S9 11.8 2.3 0.5 2.2 5.5 1.8 0.9 71.5 

S10 2.1 0.0 0.1 6.0 0 0 0 0 91.8 

S11 0 0.7 0 0 0 0 0 0 0 99.3 

Forgery Detection in Scanned Images 

The statistical feature based method for source scanner identification (Chap­

ter 3 [22,23,37]) can be extended to obtain a digital forensic tool for forgery detection 

in scanned images [39]. Given an image from one of the scanners in our training 

database, the aim is to determine the authenticity of the image and to identify the 

source scanner. Further, if the image is tempered by changing the image content 

then the algorithm should identify the manipulated regions. It is assumed that the 

manipulator did not have knowledge of or access to the actual source scanner and 

thus the changed image content is coming from images obtained from other sources. 

Applicability of this method is limited to copy-paste forgeries created by copying 

a portion of one scanned image and pasting it into another image scanned using a 

different scanner. If some forgery is created by copying and pasting certain regions 
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Table 3.29
 

Gou et al.’s Scheme: General Classifier: 200 DPI TIFF Images (origi­
nal, sharpened, contrast stretched) (training set: 80 images from each 
class consisting all three types; remaining post-processed images for 
testing). 

Predicted 

S6 S7 S8 S9 S10 S11 

S1 91.3 0.8 0 1.0 0.7 0 

S2 + S3 0.6 98.6 0.0 0.4 0.0 0.1 

S4 0 0.1 98.1 0.6 0.2 0 

S5 0.8 0 0.5 94.8 3.8 0 

Actual S6 0 0 0.4 0 98.7 0.1 

S7 3.2 0.7 0 0 0.5 92.6 

S8 0 0 0 0 0.6 2.4 96.3 

S9 8.4 0.4 0.1 0.1 0.4 0.9 0 89.1 

S10 0.4 0 0.8 2.3 0 0 0 0.1 96.4 

S11 0 0 0 0 0 0 1.3 0 0 98.7 

from the images scanned using the same scanner, then proposed algorithm will fail to 

identify those manipulation and will instead declare these images as non-manipulated 

images. This is because the selected features are independent of image content and 

scan area and remain fixed with a particular scanner. For this class of forgeries the 

methods presented in [70, 71] can be used. 

3.5.1 Forgery Detection Method 

The proposed method detects forged regions by using image sensor pattern noise 

which is a unique fingerprint of the imaging sensor and was used earlier in [53] for 

detecting tempered regions in digital camera images. The basic idea is to divide 

the unknown image into smaller blocks and classify each block separately for finding 
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Fig. 3.10. Effect of Training Size on Average Classification Accuracy 
(for non-native resolution images). 

out its source scanner. If all the blocks in an image are declared as coming from 

a single source scanner, the image is declared as an authentic image coming from 

that source scanner. Otherwise, different regions are coming from different sources 

and thus the image is a forged image. This division of the image into smaller blocks 

can be done either by sliding a non-overlapping window or by sliding an overlapping 

window. The first approach will have much lower complexity compared to the second 

approach, while giving a much coarser result. In second approach, feature vectors 

will be extracted for each pixel (except some boundary pixels depending upon the 

size of sliding window) of the image by using a window centered on that pixel. The 

sliding window dimensions impose limitations on the lower bound of the dimensions of 

forged regions detected. Thus, similar to [72], in the decision map obtained in second 

approach connected components smaller than half the window size are removed. Next 
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Fig. 3.11. Effect of Training Size on Average Classification Accuracy 
(for native resolution images). 

this decision map is dilated with a small kernel to accommodate the fact that a 

decision about entire window is assigned only to the central pixel which may result 

in missing the portions of the forged boundary regions. 

Statistical features of sensor noise for each instance of a sliding window are ex­

tracted and these blocks are independently classified for source scanner using a Sup­

port Vector Machine (SVM) classifier. The image is declared to be an authentic image 

coming from scanner Si if all the blocks are classified as originating from scanner Si. 

If the image contains regions from more than one source it is declared as forged im­

age and the forged regions are also identified. This method is applicable whenever we 

have access to the scanner (or authentic images scanned using that scanner) claimed 

as the source of the test image. 
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Fig. 3.12. Effectiveness of Different Denoising Algorithms Used by 
the Proposed Scheme. 

3.5.2 Experimental Results 

This section describes the details of experiments conducted to examine the efficacy 

of the proposed algorithm for forgery detection in scanned images. Table 3.30 shows 

the scanners used in our experiments. For training the classifier, approximately 25 

images are scanned with each of the 5 scanners (a total of approximately 125 images) 

at the native resolution of the scanners. These images are then sliced into blocks of 

size 384 ×512 pixels. Thus, in total, we have approximately 2000 scanned sub-images. 

A SVM classifier is trained using the feature vectors for the sub-images from au­

thentic images of known origin. Several forged images were created by copymove 

within the same image and adding or covering objects using images from two dif­

ferent scanners. Representative forgery detection results for each type of forgeries is 

presented here, along with the description of the forgeries. 
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Table 3.30
 
Scanner Set Used for Evaluation of Forgery Detection Method.
 

Make/Model Type Sensor Native Resolution 

(DPI) 

S1 HP ScanJet 6300c-1 Flatbed CCD 1200 

S2 HP ScanJet 6300c-2 Flatbed CCD 1200 

S3 Visioneer OneTouch 7300 Flatbed CIS 1200 

S4 Canon LiDe 25 Flatbed CIS 1200 

S5 OpticSlim 2420 Flatbed CIS 1200 

Since the proposed algorithm uses features of sensor noise, it should be able to 

identify the forgeries irrespective of the image-content. To examine this, the same 

image is scanned by using two different scanners S4 and S5. The forged image shown 

in Figure 3.13(c) is then generated by joining right half of S4’s image with left half of 

S5’s image . Figure 3.13(e) shows the result of applying the proposed forgery detection 

algorithm. The image is identified as coming from scanner S4 with the region masked 

in red as the forged region. Thus the algorithm looks for differences in how the regions 

of an image are generated and not on the image content. One limitation with this 

approach is that for a similar forgery made by copying and pasting regions within the 

same image, the algorithm declared it as authentic image even though the forgery 

was visibly evident. 

Figures 3.13(d), 3.14(c) and 3.14(d) show four other forgeries made by manipulat­

ing the contents of images scanned using scanner S4. The original images correspond­

ing to these forgeries are shown in Figures 3.13(b), 3.14(a) and 3.14(b), respectively. 

Figures 3.13(f), 3.14(e) and 3.14(f) show the results of applying the proposed forgery 

detection algorithm on these images. 

Forgeries shown in Figures 3.15(c) and 3.15(d) are made by manipulating the 

contents of images scanned using scanner S3. The original images corresponding to 
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(a) Original image (b) Original image 

(c) Forged Image (d) Forged Image 

(e) Result of Forgery Detection (f) Result of Forgery Detection 

Fig. 3.13. Results of Proposed Forgery Detection Algorithm (images 
in left column correspond to original image-1 and those in right col­
umn correspond to image-2). 

these forgeries are shown in Figures 3.15(a) and 3.15(b), respectively. Corresponding
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(a) Original image (b) Original image 

(c) Forged Image (d) Forged Image 

(e) Result of Forgery Detection (f) Result of Forgery Detection 

Fig. 3.14. Results of Proposed Forgery Detection Algorithm (images 
in left column correspond to original image-3 and those in right col­
umn correspond to image-4). 

results obtained after applying the proposed scheme are shown in Figures 3.15(e) 

and 3.15(f). 
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(a) Original image (b) Original image 

(c) Forged Image (d) Forged Image 

(e) Result of Forgery Detection (f) Result of Forgery Detection 

Fig. 3.15. Results of Proposed Forgery Detection Algorithm (images 
in left column correspond to original image-5 and those in right col­
umn correspond to image-6). 
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The limitations in identifying forged regions due to the use of finite non-overlapping 

window are clear from these results. Further, most of the wrong classification is in 

the heavily textured or saturated regions. 



92 

4. SOURCE SCANNER IDENTIFICATION 

FROM TEXT DOCUMENTS 

In the previous chapter, techniques for source scanner identification from scanned 

photographs were presented. These were based on using statistical features of sensor 

pattern noise [43] which were estimated by using a set of denoising filters. These 

methods for source scanner identification focused on scanned versions of images and 

not on scanned versions of printed text documents. Scanned documents generally 

lack presence of continuous tones and are dominated by “saturated” pixels. Two 

principle reasons which prevent direct application of this method (Chapter 3) to 

scanned documents are: 

• The methods utilizing sensor pattern noise for source identification mainly 

use Photo-Response Non-uniformity (PRNU) as the sensor’s signature and the 

PRNU is almost absent in “saturated” (completely dark or white) regions of an 

image [17], while the printed documents are expected to mainly have black or 

white pixels. 

• For documents scanned at low resolution such as 200 DPI (which is generally 

the case for normal office usage), each character is very small, about 15 × 20 

pixels and is non-convex, so it is difficult to filter the image in either the pixel 

or transform domain if we are interested only in the printed region of each 

character. 

This chapter presents methods for authenticating scanned text documents, that 

have been captured by flatbed desktop scanners. Given a digital image of a text 

document scanned with an unknown source, henceforth referred to as the unknown 

scanned document, the goal is to identify the scanner used for generating a scanned 
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Fig. 4.1. System Diagram of Scanner Identification System. 

(digital) version of the printed (hard-copy) document. Texture analysis based features 

are used to identify the source scanner. 

4.1 System Overview 

The block diagram of the proposed scanner identification system is shown in Fig­

ure 4.1. Two sets of features: character-level and block-level, are extracted for each 

scanned document. The first step is to extract all the letters “e” in the document. 

Letter “e” is the most frequently occurring character in the English language. A set 

of features are extracted from each group of ne characters (“e”s) forming a feature 

vector for each group of ne “e”s in the document. Further, block level features are 

obtained by dividing the unknown scanned document into non-overlapping blocks of 

size Nb ×Nb. A different set of features are extracted from each of these blocks. Each 

of these feature vectors are then classified independently using different classifiers 
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for each feature set. The classifiers used are a combination of Linear Discriminant 

Analysis (LDA) for dimensionality reduction and Support Vector Machine (SVM) for 

final class labeling. Let Ψ be the set of all scanners {S1, S2, · · · , Sn} (in this study 

Ψ is the set of 5 scanners shown in Table 4.1). For any φ ǫ Ψ, let c(φ) be the 

number of feature vectors obtained from a particular scanned document and classi­

fied as generated by scanner φ. The final classification is done by choosing φ such 

that c(φ) is maximum. In other words, a majority vote is performed on the resulting 

classifications from the SVM classifier. 

4.2 Graylevel Co-Occurrence Matrix (GLCM) Features 

In contrast to scanned images, scanned documents generally lack presence of con­

tinuous tones and are dominated by “saturated” pixels. In other words, most of the 

pixel values are either close to zero or to 255. This makes it very difficult to accu­

rately use the type of signatures earlier used for source camera forensics [17] or for 

scanner identification from images [43]. For example, pattern noise (such as Photo-

Response Non-uniformity, PRNU) can not be used due to it’s absence in “saturated” 

image regions [17]. Thus, a different set of features is needed to describe each scanner 

uniquely. 

The proposed features are based on the observation that depending upon the 

quality of the scanner, (i.e., it’s sensitivity to sudden changes in gray-levels), the 

quality of edges in scanned documents will vary. More specifically, for a higher quality 

scanner, characters will be represented by “more” solid black lines and the transition 

from black to white will be sharper; and on the other hand, for a lower quality 

scanner, the black lines representing the characters will have more variations within 

them from black to lower gray levels and the transitions from black to white pixels 

will also be more gradual. This will result in changes in the texture features. These 

differences are quantified by extracting features from individual scanned characters, 

in particular “e”s. The graylevel fluctuation in the scanned characters in the process 
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direction can be modeled as textures [73]. The proposed scheme uses graylevel co­

occurrence texture features as described in [73] as well as two pixel based features. 

This class of features are very robust for identifying printed documents [73]. Further, 

to alleviate problems due to the very small size of individual characters and gather 

sufficient statistics to estimate the Gray-Level Co-occurrence Matrix (GLCM), these 

matrices are generated from a group of ne “e”s at a time. In our experiments, ne is 

chosen to be 100. 

Graylevel co-occurrence texture features assume that the texture information in 

an image is contained in the overall spatial relationships among the pixels in the 

image [73]. This is done by first determining the Graylevel Co-occurrence Matrix 

(GLCM), which is an estimate of the second order probability density function of the 

pixels in the image. The features are then the statistics obtained from the GLCM. 

We assume that the texture in a document is predominantly in the process direc­

tion (that is, scan direction) as the same linear sensor is translated horizontally by 

a mechanical system to generate the complete scan. Figure 4.2 shows an idealized 

character, Img(i, j), from which features are extracted. The region of interest (ROI) 

is the set of all pixels within the rectangular bounding box around the character. The 

determination of these bounding boxes is done by using the open source OCR system 

Ocrad [74]. 

The Gray-Level Co-occurrence Matrix (GLCM), defined in Equation 4.1, has en­

tries glcm(n, m, dr, dc) which are equal to the number of occurrences of pixels with 

graylevels n and m respectively with a separation of (dr, dc) pixels (Figure 4.2). If 

the GLCM is normalized such that its entries sum to one, the entries then represent 

the probability of occurrence of pixel pairs with graylevels n and m with separation 

(dr,dc). For generating features from each character (character level features), dc and 

dr are chosen to be 0 and 1 respectively. 

glcm(n, m, dr, dc) = 
(4.1) 

(i,j),(i+dr,j+dc)ǫROI 1{Img(i,j)=n,Img(i+dr,j+dc)=m} 
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Fig. 4.2. Idealized Character for generation of glcm(n,m). 

The details of extracting GLCM based features is described in Appendix B. Using 

the equations described there, we obtain a twenty two dimensional feature vector for 

each input image block for specified dr and dc. 

These GLCM metrics are estimated for each of the extracted “e”s and average 

GLCM is obtained for each group of ne “e”s. The twenty two statistical features 

extracted from each of these average GLCMs are same as those used for printer 

identification [73]. For printer identification, hard-copy document is available to the 

forensic examiner. Thus, for printer identification the test document is scanned at 

very high resolution (such as 4800 DPI) [73]. In contrast to printer identification 

application [73], due to very small of size characters for 200 DPI scans, using features 

from GLCM’s corresponding to each character separately does not provide good clas­

sification results as demonstrated by our initial experiments. 

These twenty two features from the anisotropic GLCM (corresponding to dr =1, 

and dc =0) are extracted from each group of ne “e”s and separately from each non-

overlapping block of Nb × Nb pixels. 
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4.3 Modeling Edge Color Transitions 

To quantify the edge transitions from 0 (black) to 255 (white), isotropic gray-level 

difference histogram (GLDH) are used. For each non-overlapping block of Nb × Nb 

pixels, in addition to 22-dimensional GLCM features, 246-dimensional isotropic gray-

level difference histogram (GLDH) is also used as scanner signature. The isotropic 

GLDH with d = 1 is defined in Equations 4.2 and 4.3 (where glcm(n, m, dr, dc) is 

in Equation 4.1). Note that in defining the isotropic GLDH, lower values of k are 

not used and so range of k is [10, 255]. These lower values of k will correspond to 

completely black or completely white regions and so are not useful as scanner signature 

and will also vary from block to block depending upon what percentage of block’s 

area corresponds to the background. The isotropic GLDH defined in Equation 4.3 is 

normalized to have sum equal to one before using it as scanner signature. 

glcmisotropic (n, m) = 
1K 1K 

glcm(n, m, dr, dc) (4.2) 
dr=−1 dc=−1 

(dr,dc) =(0,0) 

gldhisotropic (k) = 
K 

glcmisotropic (n, m), k ∈ [0, 255] (4.3) 
0≤n≤255 
0≤m≤255 
|n−m|=k 

Hence, corresponding to an unknown scanned document with Ne “e”s and of size 

N×M pixels, 
ne

l
Ne 

J 
22-dimensional GLCM based features are obtained for each group 

of “e”s. Furthermore, 
l 

(N×M) 
J 

22-dimensional GLCM-based features and 
l 

(N×M) 
J

(Nb×Nb) (Nb×Nb) 

246-dimensional GLDH based features are obtained for each block of size Nb × Nb 

pixels. The final decision about source scanner is taken by majority voting over l 
(N×M) 

J 
+ 2
l 

(N×M) 
J 

individual decisions. 
(Nb×Nb) (Nb×Nb) 

4.4 Experimental Results 

For generating testing and training datasets, the Forensic Monkey Text Generator 

(FMTG) (described in [75]) is used to create random documents with known statistics. 

Using the FMTG, it is estimated that in a page of English text printed at 10-point font 
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there are on average 630 “e”s [75]. For our experiments, 25 test documents (generated 

using FMTG, at 10-point Times New Roman font) are printed with a consumer 

quality laser printer (HP Laserjet 3800dn). All the documents are printed on similar 

quality paper and using the same printer to make sure that we are addressing the 

variability due to the scanners rather than the variation in paper quality or printer. 

The 25 test documents are scanned at 200 DPI using each of the five scanners shown 

in Table 4.1. To meet the requirements of most common usage, the pages are scanned 

at low resolution (200 DPI) with 8 bits/pixel (grayscale). In the experiments, ne is 

chosen to be 100 and Nb is chosen to be 512. Thus for each of these documents of A4 

size, scanned at 200 DPI, there are approximately 6 character-level feature vectors 

and approximately 2 × 12 block-level feature vectors. 

Three separate classifiers (LDA + SVM) are trained for each class of features, 

namely GLCM features from groups of “e”s, GLCM features from each of the blocks 

of size Nb ×Nb and isotropic GLDH features from each of the blocks of size Nb ×Nb. 

The character-level classifier (using 22-dimensional feature vector from each group of 

ne “e”s) is trained with randomly chosen 375 known feature vectors and tested over 

a different set of 375 feature vectors. The training and testing sets are made up of 75 

feature vectors from each of 5 scanners listed in Table 4.1. Two block level classifiers 

(one using 22-dimensional GLCM feature and another using 246 dimensional isotropic 

GLDH) are trained with randomly chosen 750 known feature vectors and tested over 

a different set of 750 feature vectors. The training and testing sets are made up of 

150 feature vectors from each of 5 scanners listed in Table 4.1. The classifiers for each 

of these feature vectors are independent of one another. The classifier training and 

testing phases are repeated 100 times to obtain the final performance measures. 

Figure 4.3 shows portions of the sample images scanned with different scanners. 

It can be seen that in some cases these images are visually differentiable due to 

changes in brightness and contrast settings. An unknown document might not be 

scanned at default scanner settings and the used brightness and contrast settings 

might be unknown. Therefore, before source scanner identification, the images are 
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Table 4.1 
Scanner Set Used for Evaluation of Method for Scanner Identification 
using Scanned Documents. 

Make/Model Sensor Native Resolution 

(DPI) 

S1 Epson 4490 Photo CCD 4800 

S2 OpticSlim 2420 CIS 1200 

S3 Canon LiDE 25 CIS 1200 

S4 Canon LiDE 70 CIS 1200 

S5 Canon LiDE 100 CIS 2400 

pre-processed to be visually more similar by adjusting the parameters of a linear 

intensity transform. This will help to ensure that the proposed system will work even 

when the documents are scanned with different brightness and contrast settings or 

latter post-processed by linear intensity transformations. 

S 1 

D
o
c
u
m

e
n
ts

 

S
c
a
n
n
e
e
d
 

w
it
h
 

D
e
fa

u
lt
 S

e
tt
in

g
s
 

P
o
s
t-

p
ro

c
e
s
s
e
d
 

Im
a
g
e
 -

 C
o
n
tr

a
s
t

 a
n
d
 B

ri
g
h
tn

e
s
s
 

A
d
ju

s
te

d
 

S 2 S 5 S 3 S 4 

Fig. 4.3. Portions of Sample Documents from Different Scanners. 

To demonstrate the efficacy of proposed features in source scanner identification, 

we plotted two-dimensional scatter plots showing the separability of these five scanner 
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Fig. 4.4. Scatter Plot for Two Manually Chosen Character Level 
Features (giving best separation in 2-D feature space) of TIFF Images. 

classes in low-dimensional feature space. Figure 4.4 shows the scatter plot for two 

manually chosen character-level features of scanned images saved in TIF format. Even 

though all the classes do not separate completely, the two features still have good 

discrimination capability. The efficacy is more evident after using Linear Discriminant 

Analysis (LDA) on 22-dimensional character level features and projecting them into 

a 7-dimensional feature space. Figure 4.5 shows scatter plots for the two projected 

features with maximum discrimination. 

Table 4.2 shows the average accuracy of the dedicated classifiers for scanned doc­

uments saved in different formats. The classifiers are trained and tested on feature 

vectors coming from scanned documents saved in the same format. Note that the 

accuracy values pertain to classification of individual feature vectors and not the 

complete document. In all these cases, the accuracy for classifying complete docu­
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Fig. 4.5. Scatter Plot for Two Manually Chosen Character Level 
Features (after performing LDA) of TIFF Images, (green symbols 
correspond to the feature vectors used for training LDA and red cor­
responds the feature vectors used for testing). 

ments is 100%. To see the effectiveness of the proposed scheme in scenarios where 

the JPEG quality factor may not be reliably known or estimated, another set of 

three general classifiers are trained and tested on randomly chosen feature vectors 

from images saved with two different JPEG quality factors (Q =80 and 60). Both 

training and testing sets include features from documents saved at different quality 

factors. Table 4.3 shows the confusion matrix for block-level isotropic GLDH features 

which has average classification accuracy of 98%. Similar general classifiers for the 

character-level GLCM statistics and block-level GLCM statistics have average accu­

racy values of 99.7% and 99.4% respectively. In all our experiments, after majority 
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voting the source scanner amongst five scanners is found with 100% classification 

accuracy. 

Table 4.2 

Average Accuracies of Dedicated Classifiers for Scanner Identification 
Using Scanned Documents. 

Image Format Feature Type Average Accuracy 

Character Level GLCM 99.9 

TIFF Block Level GLCM 99.9 

Block Level GLDH 96.4 

Character Level GLCM 99.7 

JPEG Block Level GLCM 99.7 

(Q =80) Block Level GLDH 98 

Character Level GLCM 99.6 

JPEG Block Level GLCM 99.5 

(Q =60) Block Level GLDH 95.2 
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Table 4.3
 

Confusion Matrix for General Classifier (testing and training on JPEG 
images with Q =80 and 60). 

Predicted 

S5 

S1 96.9 

S2 3.4 96.6 

Actual S3 0 0 98.2 

S4 0 0 0.4 99.5 

S5 0 0 0.3 0.2 99.5 
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5. IMAGE SOURCE CLASSIFICATION 

This chapter presents methods for image source classification for forensic applications. 

That is, given a digital image of unknown origin, the aim is to assign it to one of the 

three classes: 

• Digital Camera Generated (CG) images, 

• Scanner Generated (SG) images, and 

• Photorealistic Computer Generated (PRCG) images 

In this dissertation, the term PRCG is used for computer generated images which 

appear to be real images (photographs). This implies that it excludes other com­

puter graphics such as icons, buttons, graphs, which are easily distinguished from 

photographs. These image classes are decided in terms of “last” system in the pro­

cessing/creation chain of an image and not on the basis of image content. So, a pho­

tograph of a printed version of computer generated image falls within the class CG. 

Similarly, the scanned versions of either printed real scenes or printed PRCG images 

belong to class SG. In the algorithms that we developed, it is assumed that the im­

ages are from single source and are not a mosaic of sub-images from different sources. 

Research work on related problems in other fields of image classification include dif­

ferentiating city images from landscape images [76], indoor images from outdoor im­

ages [77], photographs from paintings [78], photographs from (non-realistic) graphical 

icons [79] and techniques for evaluating the photo-realism of computer graphics ren­

dered images from a human perception point of view [80]. 

There are a number of methods proposed for solving the image source classifica­

tion problem (Section 2.2). Although all these methods differ in details, extraction 

of suitable features and use of a classifier for recognizing common pattern amongst 
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these features is the common fabric behind all these methods. The features used for 

classification vary from method to method and in one sense the search for optimal 

feature set is the aim of this branch of image forensics. A classifier trained from the 

features of images with known origin is used to classify an image of unknown origin. 

Most of these methods use SVM for classification, some of them also use LDA to 

improve the performance and visualization of features. These features are derived 

from differences in image generation techniques used by the three systems and from 

the gross or subtle differences in the image content of a real and computer generated 

image. Hence, accuracy and reliability of various methods depends upon characteri­

zation of source class dependent features, features common amongst all scanners or 

all cameras or all computer rendering softwares. These features are expected to be 

“orthogonal” to the features which are successfully used for source camera identifi­

cation [2, 15, 17] or source scanner identification [26, 37, 43]. This is because, in case 

of source camera identification or source scanner identification, we are interested in 

features which differ from camera to camera or from scanner to scanner and for the 

present problem we need to identify the features common to all the cameras or all the 

scanners. The common limitation of this class of methods is that given the knowledge 

of the features used by a particular method, it is almost always possible to come up 

with suitable post-processing steps which will prevent the successful source classifica­

tion. For example, to prevent correct detection by color filter array and demosaicing 

based methods, one can re-sample and re-interpolate a given image using another 

demosaicing algorithm. 

5.1 Feature Vector Selection 

Both digital cameras and scanners work on a similar principle in terms of the 

imaging pipeline. However, digital cameras use a two dimensional sensor array while 

most scanners use a one dimensional linear array. In the case of flatbed scanners, 

the same linear array is translated to generate the entire image. It is expected to 
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find periodic correlation between rows of the fixed component of the sensor noise 

(Section 1.2.4) of a scanned image. There is no reason to find a similar periodic 

correlation between columns of the sensor noise of a scanned image. Neither the rows 

nor the columns of the fixed component of the sensor noise of an image generated by 

a digital camera are expected to exhibit such periodicity. This difference can be used 

as a basis for discriminating between the two source classes, SG and CG. Further, due 

to the fundamental differences in the image generation process, the residual noise in 

computer generated images may not have properties similar to those of images from 

the other two classes. 

Inspired by the success of statistical features of pattern noise for source scanner 

identification (Chapter 3), the 204-dimensional features mentioned in Section 3.2.1 

are used here for image source classification.To reduce the dimensionality of the fea­

ture vectors, LDA [66] is used and a five dimensional feature vector is obtained for 

each image. Each component of the five dimensional feature vector is then a linear 

combination of the original 204 features. Finally a SVM classifier is used to classify 

these five dimensional feature vectors. 

5.2 Experimental Design 

Table 5.1 shows the sources of different classes of digital images used in our experi­

ments. Computer generated images include images from number of different methods 

such as 3ds max, Maya, Softimage and Lightwave. Computer generated images, in 

JPEG format, were downloaded from publicly available websites listed in Table 5.1. 

For computer generated images of varying sizes, a central 1024 × 768 or 512 × 512 

block is used for feature extraction depending upon the size of the image. 350 images 

were captured from each of the three cameras at 1024 × 768 resolution and stored 

in the best quality JPEG format supported by each camera. Some of the scanners 

have CCD sensor while others have CIS sensor. Scanned images are generated at 

two different scanning scenarios. Under first scenario, approximately 30 images are 

http:classification.To
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Table 5.1
 
Image Sources Used for Evaluation of Image Source Classification Method.
 

Image Class Devices Used 

Digital Camera 

CG 

Canon PowerShot SD200, Nikon Coolpix 4100, 

Nikon Coolpix 7600 

Computer Generated 

PRCG 

www.3dlinks.com, www.irtc.org, www.raph.com, 

www.digitalrep ose.com, www.maxon.net, www.realsoft.com 

Flatbed Scanners 

SG 

Epson Perfection 4490 Photo, HP ScanJet 6300c-1, 

HP ScanJet 6300c-2, HP ScanJet 8250, 

Mustek 1200 III EP, Visioneer OneTouch 7300, 

Canon LiDe 25, Canon Lide 70, OpticSlim 2420, 

Visioneer OneTouch 7100, Mustek ScanExpress A3 

scanned from each of the 11 scanners (2 out of 11 are of the same model) at the native 

resolution of the scanners. That gives us images at 1200 DPI or 4800 DPI. The images 

are then sliced into blocks (sub-images) of size 1024 ×768 pixels and sub-images from 

the first two columns of the scanned images are used. Under second scenario, from 

each of the 11 scanners 108 images were scanned at 200 DPI resolution and stored in 

TIF format (1024 × 768 pixels). Hence in total, we have 1000 PRCG images, 1050 

CG images, 1800 SG sub-images (from images scanned at native resolution) and 1000 

SG images (scanned at 200 DPI). Figure 5.1 shows a sample of the images used in 

this study. 

The LIBSVM package [67,68] is used in this study for the SVM classifier. A radial 

basis function is chosen as the kernel function and grid search is performed to select 

the best parameters for the kernel. Unless stated otherwise, randomly chosen 80% 

of the images are used for training the classifier and rest of the images are used 

for testing. This training and testing is repeated multiple times to obtain the final 

average classification results. 
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(a) CG (b) CG 

(c) SG (d) SG 

(e) PRCG (f) PRCG 

Fig. 5.1. Sample Images Used in Experiments on Image Source Classification. 
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Fig. 5.2. Block Diagram of Image Source Classification Method. 

The complete experimental protocol is shown in Figure 5.2. To check the effective­

ness of our proposed scheme in classifying images based on their sources, a number of 

experiments are performed by varying the type of images and the number of features 

used for classification. 

5.3 Experimental Results: Native Resolution Scanned Images 

In our initial experiments on differentiating images scanned at native resolution of 

the scanners from the digital camera images, we used selected statistical features ob­

tained from noise estimated by “LPA-ICI” based denoising filter, instead of complete 

204-dimensional features from the denoising filterbank. 

5.3.1 Training Using the Complete Dataset 

In this experiment 1800 sub-images from three scanners and 1050 images from 

three digital cameras are used. Out of the 2850 images, half are randomly chosen 
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to train the SVM and rest are used for testing. Initially, the feature vectors are 

generated using only mean, median, mode and ratio of average values of ρrow and ρcol 

(7-dimensional feature vectors for each image). 

An average classification accuracy of 98.1% is obtained over multiple runs in this 

case, and the confusion matrix is shown in Table 5.2. To improve the classification 

accuracy, another SVM model is generated using feature vectors containing the first 

as well higher order statistics of ρrow and ρcol. In this case, an average classification 

accuracy of 98.6% is obtained. The corresponding confusion matrix is shown in Table 

5.3. 

Table 
Native Resolution TIFF Sub-images Dimensional Feature Vector 

Predicted 

Actual 
Scanner 97.9 

Camera 1.6 98.4 

Table 
Native Resolution TIFF Sub-images Dimensional Feature Vector 

Predicted 

Actual 
Scanner 98.4 

Camera 1.2 98.8 
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5.3.2 Training Without “Saturated” Images 

In completely white or completely black images (henceforth referred to as “satu­

rated” images) the sensor noise is highly suppressed [28, 36]. Because the proposed 

method of imaging sensor classification utilizes features from the fixed component of 

the sensor noise, such saturated images are likely to be mis-classified. The images 

mis-classified in Section 5.3.1 show that this is indeed the case. In this experiment, 

the saturated images are removed from the dataset, which leaves a total of 2000 

scanned and non-scanned images. Many sub-images from the scanned images come 

under this excluded category because they are portions of bright areas (sky) and dark 

areas (roads) of the full images. 

As before, half the images are chosen randomly for training and the other half for 

testing. Using only the first order statistics of ρrow and ρcol, an average classification 

accuracy of 98.9% is obtained with the confusion matrix shown in Table 5.4. Using the 

first as well higher order statistics of ρrow and ρcol, an average classification accuracy 

of 99.3% is obtained. The corresponding confusion matrix is shown in Table 5.5. 

Table 5.4 

Native Resolution TIFF Sub-images Using 7 Dimensional Feature 
Vector (excluding the “saturated” 

Predicted 

Scanner 98.7 
Actual 

Camera 0.9 99.1 
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Table 5.5 

Native Resolution TIFF Sub-images 17 Dimensional Feature 
Vector (excluding the “saturated” 

Predicted 

Scanner 99.2 
Actual 

Camera 0.6 99.5 

5.3.3 Restricted Training 

To evaluate the robustness of the proposed scheme in a situation when the imaging 

device to be tested is unavailable for training, SVM classifier is trained using features 

from images captured by the HP ScanJet 6300c-1, HP ScanJet 6300c-2, Canon Pow­

ershot SD200 and Nikon Coolpix 4100, while the testing set includes images from the 

Epson Perfection 4490 and the Nikon Coolpix 7600 as well. Using first as well as 

higher order statistics of ρrow and ρcol, an average classification accuracy of 93.5% is 

obtained with the corresponding confusion matrix shown in Table 5.6. In a similar 

experiment in which the HP Scanjet 6300c-1 and Canon Powershot SD200 are not 

used for training, an average classification accuracy of 93.67% is obtained with the 

corresponding confusion matrix shown in Table 5.7. 

5.3.4 Effect of JPEG Compression 

The efficacy of the proposed scheme is also tested on images that have been JPEG 

compressed. An average classification accuracy of 93.5% is obtained for JPEG images 

compressed using quality factor 90, as shown by the confusion matrix in Table 5.8. 

Both the training and testing images are JPEG compressed at quality factor 90. 
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TIFF Sub-images 

Predicted 

Actual 
Scanner 98.1 

Camera 10.9 89.1 

Table 5.7 

Table 5.6
 

Native Resolution 17 Dimensional Feature 
Vector, Trained Without Images from Epson Nikon Coolpix 
7600 

Native Resolution TIFF Sub-images 17 Dimensional Feature 
Vector, Trained Without Images from Scanjet 6300c-1 and Canon 
Powershot SD200 

Predicted 

Actual 
Scanner 98.5 

Camera 11.2 88.8 

Table 
Native Resolution JPEG (Q=90) Sub-images Using Dimensional Feature Vector 

Predicted 

Actual 
Scanner 97.6 

Camera 7.1 92.9 

5.4 Experimental Results: Non-native Resolution Scanned Images 

After seeing the efficacy of proposed method in classifying sub-images from images 

scanned at native resolution of the scanners, detailed experiments are conducted using 
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complete 204 dimensional features from the denoising filterbank to show the efficacy 

of proposed method for solving three class classification problem. These experiments 

differentiate images scanned at 200 DPI from digital camera images and computer 

generated images. 

In the first set of experiments three separate SVM classifiers are designed for 

distinguishing between three possible pairs of image source classes: SG, CG and 

PRCG. Tables 5.9, 5.10 and 5.11 show the confusion matrices for classifying these pair 

of classes. The average classification accuracy for distinguishing scanner images from 

camera images is 97.6%. The average classification accuracy for distinguishing PRCG 

images from camera images is 91.5%. While the average classification accuracy for 

distinguishing camera images from scanner images is 89.4%, the lowest among three 

pairs. 

Table 
Using Statistical Features: Scanner vs. images at 200 DPI) 

Predicted 

Actual 
Scanner 98.2 

Camera 3.1 96.9 

Table 
Using Statistical Features: CG Camera 

Predicted 

Actual 
PRCG 88.3 

Camera 5.2 94.8 
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Table 
Using Statistical Features: Camera vs. images at 200 DPI) 

The average classification accuracy images from all three 

classes is 94.7%. Corresponding confusion matrix is shown in Table 5.12. Thus, by 

training an SVM classifier on the 204 dimensional feature vectors from each image, 

Predicted 

Camera 89.5 
Actual 

Scanner 10.7 89.3 

for classifying TIFF 

using randomly chosen 800 images from each class for training and separate 200 images 

for testing, proposed method achieves average classification accuracy of 94.7%. 

Table 5.12 

Using Statistical Features: Scanner PRCG vs. Camera (scanned 
images at 200 DPI), TIFF 

Predicted 

Camera 94.3 

Actual PRCG 6.4 91.9 

Scanner 0.6 1.0 98.4 

5.4.1 Restricted Training 

To check the robustness of the proposed scheme when the imaging device to be 

tested is unavailable for training, a SVM classifier is trained without images from
 

scanners Epson Perfection 4490 and Visioneer OneTouch 7100 and tested on scanned
 



Camera,
at

Scanner
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5.4.2 

images from these scanners only. This classifier has an average classification accuracy 

of 94% with the corresponding confusion matrix shown in Table 5.13. All the training 

and testing images used by this classifier are saved in JPEG format with Q = 90. This 

result shows that the proposed method will classify an image scanned at 200 DPI as 

scanned image even if the images from that particular scanner are not available for 

training. 

Table 5.13 

Predicted 

200 DPI). ages 
. PRCG vsUsing Statistical Features: Scanner vs. 

90), (training without S1 and S10, scanned im

Camera PRCG 

Actual Scanner 1.9 4.2 94 

Effect of JPEG Compression 

JPEG (Q 
= 

The efficacy of the proposed method is also tested on images that have been JPEG 

compressed. First two dedicated classifiers are trained and tested for images saved 

in JPEG format, with quality factors Q = 90 and Q = 70. An average classification 

accuracy of 94.6% is obtained when all the scanned images are saved as JPEG (Q=90) 

before feature extraction for classifier training and testing. Corresponding confusion 

matrix is shown in Table 5.14. The average classification accuracy for dedicated 

classifier for images saved at quality factor 70, is 92.5%. 

Further, a general classifier is designed by training and testing on a combined set 

of images saved at JPEG quality factors Q=90 and Q =70. This general classifier 

has a classification accuracy of . Corresponding confusion matrix is shown in Ta­

ble 5.16. This slight decrease in performance is as expected since the pattern noise 



vs.
DPI).

Camera PRCG Scanner

3.6 3.7

3.4

vs.
DPI).

Camera PRCG Scanner

2.7 5.4
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Table 5.14
 

Using Statistical Features: Scanner PRCG vs. Camera, JPEG (Q 
= 90) (scanned images at 200 

Predicted 

Camera 92.8 

Actual PRCG 3.4 93.1 

Scanner 1.1 1.1 97.9 

Table 5.15 

Using Statistical Features: Scanner PRCG vs. Camera, JPEG (Q 
= 70) (scanned images at 200 

Predicted 

Camera 91.9 

Actual PRCG 6.1 87.8 

Scanner 1 1.1 97.8 

degrades with JPEG compression and down-sampling, as observed for source camera 

identification [15] and source scanner identification [25]. 

Further experiments by varying the size of training dataset show that average 

classification accuracy remains close to 80% even when only 40% images (400 images 

from each source class) are used for training the classifier. 



images at 200

Scanner PRCG Camera

1.7 11.9

17.6
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Table 5.16
 

Using Statistical Features: Confusion Matrix for Classifying JPEG 
Compressed Images (scanned DPI). 

Predicted 

Scanner 86.4 

Actual PRCG 11.8 70.6 

Camera 13.4 4.2 82.4 



119 

6. SUMMARY AND FUTURE WORK 

This thesis focused on forensic fingerprinting methods for image source classification 

and scanner identification (Figure 6.1). These methods can be used for any scanning 

scenario as long as training images from the concerned devices are available. This 

chapter briefly summarizes the salient contributions of this dissertation and proposes 

some directions for future developments. 

6.1 Summary 

Fig. 6.1. Image Forensics using Statistical Features of Sensor Noise. 

Selection of proper features is the key to achieve accurate results for image forensic 

applications. None of the existing forensic methods, including those presented here, 

are independently capable of solving the image forensic problem in its entirety and 

under all circumstances and it is possible to design suitable attacks to prevent them 
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from correct classification. But, when combined together as a set of tools, they can 

achieve a high degree of accuracy in a wide range of scenarios. The main contributions 

of this dissertation are as follows: 

• Verification of Sensor Noise-based Camera Identification Scheme: As a 

first step towards development of new methods for different problems in scanner 

forensics, we performed extensive experiments for verification of sensor noise 

based camera forensic method [2, 15, 17]. The results of these independently 

conducted experiments on a completely different set of cameras, were similar to 

those reported in earlier papers. 

• Source Scanner Identification from Scanned Images: We investigated the 

use of imaging sensor pattern noise for source scanner identification and com­

pared the end-to-end system performance with other existing methods. These 

results presented in Section 3.4 show that the statistical feature vector based 

method gives high accuracy for source scanner identification, both for native 

resolution and lower resolution scanned images. The results in Table 3.11 indi­

cate that it is possible to discriminate between scanners of the same make and 

model for images scanned at native scanning resolution. On the other hand, 

for images scanned at lower non-native resolutions such as 200 DPI, the pro­

posed scheme successfully identifies the scanner make and model, and groups 

scanners of the same make and model into a single class (Table 3.19). For 

scanner model identification among eleven scanners of ten different models, an 

average classification accuracy of 99.9% is obtained. Table 3.24 and 3.27 show 

that the proposed scheme performs well even with images that have undergone 

JPEG compression with low-quality factors, image sharpening, and contrast 

stretching. 

• Forgery Detection in Scanned Images: We extended the use of statistical 

features of image sensor pattern noise for forgery detection in scanned images. 

Results shown in Figures 3.13, 3.14, and 3.15 show the efficacy of this method 
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for identifying forgeries in images scanned at native resolution of the scanners. 

The limitation on minimum size of forged regions that can be identified with this 

approach depends upon the size of sliding window. To maintain the statistical 

significance of the features used for classification, we can not use window sizes 

below a certain threshold. This threshold is experimentally determined to be 

384 × 512 pixels for images scanned at 1200DPI, i.e. approximately 0.4 × 0.5 

inches. Further, results show that the proposed algorithm identifies forgeries 

independent of image content, but fails to identify them when made by copying 

and pasting regions within the same image. Thus, the proposed scheme can be 

an effective tool for forgery detection in scanned images, if used in co-ordination 

with other existing methods for forgery detection. 

• Source Scanner Identification from Documents: We proposed meth­

ods for source scanner identification for scanned text documents using texture 

features (Chapter 4). As shown by the experiments (Section 4.4, Tables 4.2 

and 4.3), the proposed method is robust to JPEG compression and gives 100% 

classification accuracy for classifying A4 size text documents and more than 

95% classification accuracy for classifying smaller blocks of size 512 × 512 or a 

group of 100 “e”s. 

• Imaging Source Classification: Use of the sensor pattern noise for classifying 

digital images based on their originating mechanism, a scanner or a digital 

camera or a computer graphics algorithm, is investigated (Chapter 5). The 

proposed scheme utilizes statistical properties of residual noise and difference 

in the geometry of imaging sensors, and demonstrates promising results. As 

shown by results (Sections 5.3.3 and 5.4.1), the proposed scheme does not need 

the actual source device for training purposes. Thus, images generated by even 

a completely unknown scanner or digital camera can be classified properly. 
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6.2 Future Work 

The research problems addressed in this dissertation are currently of active interest 

in sensor forensics. Some specific ideas for extending the present work are as follows: 

• For source scanner identification different classifiers need to be designed for 

different scanning resolutions. In other words, to test an image scanned at 

200 DPI, we need to train a classifier with known images scanned at 200 DPI; 

another classifier trained on images scanned at 1200 DPI can not be used. It is 

an interesting problem to remove this constraint by modeling the relationship 

between the statistical features and scanning resolution. A universal classifier 

can then be designed to work with all the scanning resolutions. This will also 

reduce the requirements on training image dataset. 

• Presently classifiers designed for source scanner identification using scanned 

documents are dependent on font type and size. Modeling the relationship 

between proposed features, and font type and size will be very useful. Extensive 

experimentation can be done to see the effect of variation in font type and size. 

Scalability of these forensic techniques need to be tested on bigger datasets. 

• Forgery detection currently determines whether an image is authentic and also 

identifies the source scanners of different portions of a scanned image. It requires 

training images from different scanners to build the classifier. It would be 

interesting to modify this method in such a way that it does not need to train 

a classifier. Instead, user input can be obtained for portions of an image which 

are definitely authentic and then unsupervised learning techniques can be used 

to make decisions regarding authenticity of other image regions. 

• Presently the forgery detection scheme searches the entire image for forged 

regions. User interactivity to select a region of interest which has questionable 

authenticity, will also reduce the computation time and improve the accuracy. 

http:scannedimage.It


123 

• Extensive experiments on post-processed images should be performed to exam­

ine the robustness of image source classification methods. 

• Robustness Analysis and Spoofing Image Forensic Techniques: Although a num­

ber of image forensic methods have been proposed in last few years, a system­

atic framework to analyze them for their robustness against intentional as well 

as unintentional post-processing operations is lacking. Some of these opera­

tions, such as saving the image at a lower JPEG quality, are content-preserving 

and are harmless in most scenarios. While other operations such as changing 

regions in an image by copy pasting or changing the background are content-

changing and their occurrence must be detected. We would like to develop 

mathematical models for commonly occurring image manipulation operations 

and investigate possible spoofing scenarios for different detection tools. For ex­

ample, the method for source camera identification using sensor pattern noise 

as proposed in [15] uses a correlation detector for detecting the source camera. 

Rotating/cropping or shifting the image even by one pixel will lead to desyn­

chronization and thus failure of this detection method. Removing the noise 

by using the same denoising filter is another alternative to avoid detection us­

ing this method. Similarly image forensic methods based on Color Filter Array 

(CFA) and demosaicing artifacts will fail if the image is resampled on a different 

Bayer lattice and is interpolated using different interpolation scheme, without 

making any change in the image content or it’s appearance to human eye. 

• Characterization of Video Cameras and Audio Devices: By designing suitable 

features, the proposed framework can be extended for source identification from 

video clips and audio files as well. In many situations, a video is first captured 

in analog form and later transfered and coded into a digital form. Features 

have to be designed to model the properties of the capturing device and not 

the encoder or analog-to-digital converter. Audio capture devices pose similar 

problem because the quality of audio files produced depends on the method 
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of recording signal from the audio device. For example, most of the audio 

recording systems allow a user to set a threshold for noise or to simultaneously 

add a background signal to the captured signal. 
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A: SUPPORT VECTOR MACHINE (SVM) 

Suppose we are given training data (x1, y1), ..., (xn, yn) where yi ∈ {1,−1}. The 

vectors xi,∀i represent the feature vectors input to the SVM classifier and yi represent 

the corresponding class labels. Assuming that the class represented by the subset 

yi = 1 and the class represented by yi = −1 are “linearly separable”, the equation of 

a decision surface in the form of a hyperplane that does the separation is wTx+b = 0; 

where, x is an input vector, w is an adjustable weight vector, and b is a bias. 

For a given weight vector w and bias b, the separation between the hyperplane 

and the closest data point is known as the margin of separation, denoted by M . The 

goal of a support vector machine is to find the particular hyperplane for which the 

margin of separation M is maximized [68, 81, 82]. Under this condition the decision 

surface is referred to as the optimum separating hyperplane (OSH) (wo
Tx + bo = 0). 

The pair (wo, bo) with appropriate scaling, must satisfy the constraint: 

w o
T x + bo ≥ 1 ∀yi = +1 (A.1) 

w o
T x + bo ≤ −1 ∀yi = −1 (A.2) 

The particular data points (xi, yi) for which yi[w
Txi+b] = 1 are known as support 

vectors, hence the name “Support Vector Machine.” The support vectors are the data 

points that lie closest to the decision surface and are therefore the most difficult to 

classify. As such they have the direct bearing on the optimum location of the decision 

surface. Since the distance to the closest point is 
�w

1 
�
, finding the OSH amounts to 

1 w �2minimizing � w � with the objective function: min φ(w) = 
2 � subject to the 

constraints shown in Equations A.1 and A.2. 

If (α1, α2..., αN ) are the N non-negative Lagrange multipliers associated with con­

straints in Equations A.1 and A.2, the OSH can be uniquely constructed by solving 
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a constrained quadratic programming problem. The solution w has an expansion 

w = i αiyixi in terms of a subset of training classes, known as support vectors, 

which lie on the margin. The classification function can thus be written as 

Tf(x) = sgn(
K 

αiyixi x + b) (A.3) 
i 

If the data is not linearly separable, SVM introduces slack variables and a penalty 

factor such that the objective function can be modified as 

N
1 

φ(w) = � w �2 +C(
K 

ζi) (A.4)
2 

i=1 

Additionally, the input data can be mapped through some nonlinear mapping 

into a higher-dimensional feature space in which the optimal separating hyperplane 

is constructed. Thus the dot product required in Equation A.3 can be represented by 

k(x,y) = (φ(x).φ(y)), when the kernel k satisfy Mercer’s condition [82]. Finally, the 

classification function is obtained as 

f(x) = sgn(
K 

αiyik(xi,x) + b) (A.5) 
i 

Because the SVM can be analyzed theoretically using concepts from statistical 

learning theory, it has particular advantage in problems with limited training samples 

in high-dimensional space. 
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B: GRAYLEVEL CO-OCCURRENCE MATRIX 

(GLCM) BASED FEATURES 

This appendix describes the process of (GLCM) based feature extraction from a block 

of an image and specified dr and dc. These features model image texture [73]. Feature 

extraction is done by first determining the Graylevel Co-occurrence Matrix (GLCM), 

which is an estimate of the second order probability density function of the pixels in 

the image. The features are the statistics obtained from the GLCM and two pixel 

based features. 

Figure B.1 shows an example block of a graylevel image, Img(i, j), for which 

GLCM features are extracted. The region of interest (ROI) is the set of all pixels 

within the rectangular bounding box around the image. 

Img(i,j) = n

Im
g
(i
+

d
r,
j+

d
c
) 

=
 m

dr 

dc

e 
j 

W 

i 

H 

Fig. B.1. Example Image Block for Generation of GLCM Features.
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The number of pixels R, in the ROI is defined as
 

R = 
K 

1. (B.1) 
(i,j)ǫROI 

The Gray-Level Co-occurrence Matrix (GLCM), defined in Equation B.2, has 

entries glcm(n, m, dr, dc) which are equal to the number of occurrences of pixels with 

graylevels n and m respectively with a separation of (dr, dc) pixels (Figure B.1). The 

number of pixels for which this estimate is obtained is given by Equation B.3. If 

the GLCM is normalized such that its entries sum to one, the entries then represent 

the probability of occurrence of pixel pairs with graylevels n and m with separation 

(dr,dc). 

glcm(n, m, dr, dc) = 
(B.2) 

(i,j),(i+dr,j+dc)ǫROI 1{Img(i,j)=n,Img(i+dr,j+dc)=m} 

Rglcm = 
K 

1 (B.3) 
(i,j),(i+dr,j+dc)ǫROI 

1 
pglcm(n,m) = glcm(n,m) (B.4)

Rglcm 

We now describe twenty features which are obtained from the GLCM. The first 

four are the marginal means and variances defined by Equations B.7-B.10 which are 

estimated from the marginal probability densities defined by Equations B.5 and B.6. 

255

pr(n) = 
K 

pglcm(n,m) (B.5) 
m=0 

255

pc(n) = 
K 

pglcm(n,m) (B.6) 
m=0 

255

µr = 
K 

pr(n) (B.7) 
n=0 

255

µc = 
K 

pc(m) (B.8) 
m=0 

http:B.7-B.10
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255

σ2 
K 

2 2 = n	 (n) − µ (B.9)r pr r 

n=0 

255

2 2σc 
2 = 
K 

m pc(m) − µc (B.10) 
m=0 

The next seven features are the energy of the normalized GLCM, three entropy 

measurements, the maximum entry in the GLCM, and two correlation metrics. These 

are defined by Equations B.11- B.17. 

255 255

2Energy = 
KK 

pglcm(n,m) (B.11) 
n=0 m=0 

255 255

hxy1 = −	
KK 

pglcm(n,m) log2(pr(n)pc(m)) (B.12) 
n=0 m=0 

255 255

hxy2 = −	
KK 

pr(n)pc(m) log2(pr(n)pc(m)) (B.13) 
n=0 m=0 

255 255

hglcm = −	
KK 

pglcm(n,m) log2 pglcm(n,m) (B.14) 
n=0 m=0 

MaxProb = max{pglcm(n,m)}	 (B.15) 
n,m 

255 255
(n − µr)(m − µc)pglcm(n,m)

ρnm = 
KK 

(B.16) 
σrσc 

n=0 m=0 

255 255

diagcorr = 
KK 

|n − m|(n + m − µr − µc)pglcm(n,m) (B.17) 
n=0 m=0 

Four features, Equations B.19- B.22, are obtained from the difference histogram 

defined by Equation B.18. They are the energy, entropy, inertia, and local homogene­

ity of D(k) respectively. 

D(k) =	 
K 

pglcm(n,m) (B.18) 
0≤n≤255 
0≤m≤255 
|n−m|=k 

http:B.19-B.22
http:B.11-B.17
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255

Denergy = 
K 

D(k) (B.19) 
k=0 

255

hD = −
K 

D(k) log2 D(k) (B.20) 
k=0 

255

ID = 
K 

k2D(k) (B.21) 
k=0 

255

hD = 
K D(k) 

(B.22) 
1 + k2 

k=0 

The last five features, Equations B.25- B.29, are obtained from the sum histogram 

defined by Equation B.23. They are the energy, entropy, variance, cluster shade, and 

cluster prominence of S(k) respectively. 

S(k) = 
K 

pglcm(n,m) (B.23) 
0≤n≤255 
0≤m≤255 
n+m=k 

510

µS = 
K 

kS(k) (B.24) 
k=0 

510

Senergy = 
K 

S(k) (B.25) 
k=0 

510

hS = −
K 

S(k) log2 S(k) (B.26) 
k=0 

510

σS 
2 = 
K

(k − µS)2S(k) (B.27) 
k=0 

510
)3S(k)(k − µr − µc

AD = 
K 

3 (B.28) 
(σ2 − σ2 + 2rσrσc) 2 

k=0 r c 

510
k − µr − µc)

4S(k)
BD = 

K 
(B.29)

(σ2 − σc 
2 + 2rσr )2 

k=0 r σc

http:B.25-B.29
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In addition to the twenty graylevel features above, two simple features are also 

included and defined in Equations B.31 and B.33. These are the variance and entropy 

of the pixel values in the ROI. 

1 K 
Img(i, j) (B.30)µImg = 

R 
(i,j)ǫROI 

1
(Img(i, j) − µImg)

2σ2 
K 

(B.31)Img = 
R 

(i,j)ǫROI 

1 K
pImg(α) = 1{Img(i,j)=α} (B.32)

R 
(i,j)ǫROI 

255

hImg = −
K 

pImg(α) log2 pImg(α) (B.33) 
α=0 

These twenty two features from anisotropic GLCM are extracted for each input 

image block for specified dr and dc. 
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