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ABSTRACT 

Chen, Hong Ph.D., Purdue University, December 2009. Analysis of Access Control Poli­
cies in Operating Systems . Major Professor: Ninghui Li. 

Operating systems rely heavily on access control mechanisms to achieve security goals 

and defend against remote and local attacks. The complexities of modern access control 

mechanisms and the scale of policy configurations are often overwhelming to system ad­

ministrators and software developers. Therefore, mis-configurations are common, and the 

security consequences are serious. It is critical to have models and tools to analyze thor­

oughly the effectiveness of access control policies in operating systems and to eliminate 

configuration errors. 

In this dissertation, we propose an approach to systematically analyze access control 

policies in operating systems. The effectiveness of a policy can be evaluated under attack 

scenarios. An attack scenario consists of the initial resources an attacker has and the at­

tacker’s objective. Attacks under an attack scenario are encoded in a host attack graph. 

Compared to existing solutions, our approach is more comprehensive and does not rely on 

manually defined attack patterns. 

Based on the model, a tool called VulSAN is implemented to analyze policies in Linux 

systems, and a tool called WACCA is implemented to analyze policies in Windows systems. 

We analyze policies in Ubuntu, Fedora, SUSE Linux and Windows Vista. We discuss the 

results and show the possibilities to improve the quality of protection. The results are 

also used to compare the effectiveness of SELinux and AppArmor policies in a version of 

Ubuntu Linux. 
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1 INTRODUCTION 

Access control is a critical part of a secure operating system which “provides security 

mechanisms that ensure that the system’s security goals are enforced despite the threats 

faced by the system” [1]. Many of the security goals of operating systems are related to the 

CIA triad of information security: confidentiality, integrity and availability. For example, 

when a computer is shared by multiple users, the operating system needs to protect data 

privacy (confidentiality) of each individual user such that other users cannot view the user’s 

data without her consent. An operating system usually needs to protect the integrity of its 

critical system files such that all changes to these files are desirable. A Linux server shared 

by multiple remotely connected users may want to ensure that a user cannot disrupt the 

availability of the computing resources, e.g., a non-administrator cannot shut down the 

server. 

Three important concepts in access control are subject, object and operation. In op­

erating systems, subjects are usually processes, which are instances of running programs. 

Typical objects include files, sockets, etc. For each type of objects, there are a number of 

operations defined upon them, e.g., a process can read, write or execute a file. The ac­

cess control mechanism in an operating system specifies a framework to authorize requests 

by processes to perform operations on objects. For example, a simplified mechanism to 

protect system integrity might be: every process has an integrity label with value low or 

high, and every object has an integrity label with value low or high; a “high” process can 

access all objects and a “low” process can only access “low” objects; a process’s label is 

defined by the label of the program it runs. Under this mechanism, the integrity of “high” 

objects are protected against “low” processes. An access control policy (or configuration) 

in an operating system consists of information that can be used by the mechanism to make 

authorization decisions. In the above mechanism, a policy comprises the values of all the 

labels of processes and objects. The access control mechanisms of all computers that use 
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a same operating system product are the same. Usually the policy on each computer can 

be configured and policies on different computers are different. Given a security goal, an 

access control mechanism decides the maximum protection an access control system can 

provide, which is offered by the “best” configuration of the access control policy. The 

actual level of protection a system receives is determined by the policy deployed in the 

system. 

The access control enforcement component in an operating system enforces access con­

trol policies. To ensure the effectiveness of the enforcement, it is critical that all access 

requests are received by the enforcement component and all the authorizations are made by 

the enforcement component. This principle is referred to as complete mediation [2]. 

Conceptually, an access control policy describes a Lampson access matrix [3]. The 

rows of the matrix represent processes, and the columns of the matrix represent objects. 

The element of row i and column j contains the allowed operations by process i to object 

j. When a process requests to access an object, the enforcement component authorizes the 

access if the requested operation is in the corresponding element of the matrix. There are 

two ways to implement an access matrix. The first one is based on capabilities [4]. In 

capability-based systems, the subjects (processes) hold credentials which enable the access 

to various objects. When a request is made, the access control enforcement component 

examines the credentials of the subject to make the decision. The second approach is based 

on access control lists (ACL). In this approach the information is stored on the objects. 

Each object is associated with a list which specifies what subjects can access it. When a re­

quest is made, the access control enforcement component examines the ACL of the object 

to make the decision. It is natural to implement Discretionary Access Control (DAC) using 

access control lists. In DAC, each object has an owner and the owner of an object decides 

who can access the object. In other words, the accesses to the object is at the discretion of 

the object owner. To implement DAC with ACL approach, the access control enforcement 

component can give the permission to the owner of an object to modify the ACL of the 

object. Most of today’s commercial off-the-shelf operating systems, e.g., Microsoft Win­
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dows, Linux and Mac OS, adopt the access control list approach as the main mechanism. 

DAC is usually a major part of the access control mechanisms of these operating systems. 

An access control policy is configured by different parties. When an operating system is 

newly installed, the access control policy is the default policy that is shipped with the oper­

ating system. The vendor of the operating system configures the default policy. The default 

policy protects the integrity of critical system objects and provides a framework for further 

configurations. When software products are installed in the system, the access control pol­

icy is usually augmented by the software vendor to control the access to newly installed 

applications. For example, a newly installed browser can set up critical executables to be 

modified only by system administrators, and set up per-user data (cookies, browser cache, 

etc) to be accessed only by the owner of the data. System administrators may configure the 

access control policy to achieve various goals, e.g., to share files among a group of users. 

Normal users can configure the policy of their own files. For example, they can change the 

configuration to share files with others. 

In the DAC mechanisms in operating systems, a process is usually associated with an 

account. When a user executes a program, a process is created and is associated with the 

user’s account. The user account is a security principal. The process thus acts on behalf of 

the user, and the process has all the privileges of the user when it accesses objects. The sce­

nario is well supported by DAC, since the ACL of each object specifies who can access the 

object. This scenario works perfectly if the user fully understands the functionalities of the 

program and the program reflects the user’s intention faithfully. However this assumption 

does not always hold. DAC is vulnerable to Trojan horse attacks. A Trojan horse (or trojan) 

is a computer program that appears to be benign and perform useful functions, but actually 

contains some hidden and usually malicious actions. When a trojan is executed by a user, 

the trojan program runs with the user’s privileges. It can do a variety of malicious things, 

e.g., to steal the user’s bank accounts. It is a common practice for some desktop users to 

always use an administrator account for daily tasks [5]. If a system administrator executes 

a trojan program, the trojan can compromise the integrity of the whole system. Another 

attack to DAC is by exploitations of software vulnerabilities. When a program contains 
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vulnerabilities, an attacker may exploit the program and control the process which runs the 

program. The exploitation essentially turns the program into a Trojan horse. Given the 

fact that many processes that are associated with high privileged accounts, such as some 

Linux daemon programs and Windows service programs, are connected to the network and 

receive remote data, remote exploitations can incur great damage. 

To protect host systems from Trojan horse attacks and exploitations of buggy software, 

and to strengthen the DAC mechanisms in general, many security enhancement mecha­

nisms have been proposed. The enhancement mechanisms include Windows User Account 

Control [6], Security-Enhanced Linux [7], AppArmor [8], Systrace [9], etc. The mecha­

nisms improve the security of operating systems and usually increase the complexity of the 

protection systems. 

Access control in operating systems faces new challenges today, when a large number of 

new applications emerge, computers become highly connected, and attacks become more 

sophisticated. These challenges, especially the ones to analyze access control policies, 

motivate the works in this dissertation. 

1.1 Problems and Challenges 

The threat model of access control in operating systems is dynamic and constantly 

changing. The attack surfaces of systems constantly become larger. Intuitively, a system’s 

attack surface denotes “the set of ways in which an adversary can attack the system. Hence 

the larger the attack surface, the more insecure the system” [10]. One source of enlarged at­

tack surfaces is the ever-growing complexity of web browsers. A web browser has become 

a powerful application, with the ability to execute code of several scripting languages, with 

a large number of available browser plugins and with many browser extensions. A web 

browser itself also becomes complicated to support various features. Several types of at­

tacks can be based on browsers. Attackers can use malicious scripts to initiate attacks, e.g., 

to trick the users into downloading Trojan horses. They can compromise a browser plugin, 

such as a multimedia player, by providing malicious content and exploiting a bug in the 
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plugin. They can distribute malicious browser extensions to steal sensitive information in 

web applications. They can even directly exploit browse vulnerabilities. Given the fact that 

many end users use web browsers intensively for everyday task and the existence of several 

ways to attack, web browsers have become a major target of attackers. New access con­

trol mechanisms are applied to strengthen web browser security. One of the mechanisms 

is the Mandatory Integrity Control (MIC) [11], which is introduced in Windows Vista and 

Windows Server 2008. In MIC, each process is assigned an access level and each secur­

able object is assigned a protection level. There are four access or protection levels: low, 

medium, high and system (from lower ones to higher ones). By configuration, policies can 

restrict the accesses from processes with lower levels to objects with higher levels. For 

example, processes with “low” level may be restricted from reading, writing, or execut­

ing files with “medium” level, hence the confidentiality and integrity of “medium” level 

files can be preserved. In Windows Vista, Internet Explorer can run in protected mode, in 

which the browser process is labeled with “low” integrity level, therefore the damage of a 

compromised browser can be mitigated. 

Besides using new mechanisms, operating systems also fight threats by fine-grained 

policy configuration. In Windows versions before Windows Server 2003, many service 

programs run under Local System account which is highly privileged. Windows services 

are objects that are used to manage long-running programs. Service programs usually run 

with privileged accounts and interact with network traffic or local processes. For example, 

an ftp/http server program or an antivirus scanner can be configured as a service program. 

While it is convenient to give these programs a privileged account so they can access any 

object in the system, this practice violates the principle of least privilege [2] because many 

such programs do not need the Local System account. Many of these programs receive net­

work traffic. An attacker can take over a host completely by remotely compromising one 

such service program. To strengthen security of service programs, account Network Service 

and Local Service are introduced in Window Server 2003 [12]. The two accounts are as­

signed less privileges than Local System. Several service programs run under these two 
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accounts in Windows Server 2003 and later versions of Windows. If the programs are 

compromised, the attacker only gets restricted privileges. 

When access control mechanisms and policies constantly expand according to the threat 

model, they also become more complicated. Another reason that the policies are compli­

cated is due to the typical large number of applications installed in an operating system 

and the dynamic security goals they want to achieve. For example, in Windows there are 

about 15 types of securable objects [13], and each type is associated with up to 32 access 

rights which correspond to different operations to access a type of objects [14]. Virtually 

every object in the system, such as a file, a registry key, a service, a process, a pipe, etc, is a 

securable object and is guarded by a security descriptor [15]. The security descriptor of an 

object contains an access control list which defines what accounts can access the object and 

by what operations. Understanding the effects of a security descriptor is nontrivial [16,17], 

since different entries in the access control list may conflict with each other. The policy of 

the operating system is comprised of security descriptors of all securable objects in the sys­

tem, which is a large number in a typical Windows host. Therefore the number of possible 

configurations of the policy is usually large. 

It is important to know what protection can the mechanisms and policies provide. For 

example, one question might be asked is what are the actual effects by the introduction of 

NetworkService and LocalService to reduce the attack surface. However, the complexity 

often makes the mechanisms and policies difficult to understand by normal users, system 

administrators and software developers. Given the scale of possible configurations and 

the difficulty to thoroughly understand the mechanisms, host systems can easily be mis­

configured [18]. Since access control is a major mechanism to provide user isolation and 

to protect operating systems against local privilege escalation attacks and remote attacks, 

access control mis-configurations could lead to serious security consequences. An attack to 

Windows services is described in [18]. As discussed before, Windows services are objects 

that are used to manage long-running programs. Services can be started, stopped, paused, 

queried, configured, etc. In the attack, a Windows service is mis-configured such that 

unprivileged users have the “SERVICE CHANGE CONFIG” access right over the service. 
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This access right is required to call the ChangeServiceConfig function, which changes the 

configuration parameters of a service. An unprivileged user, e.g., a guest user, can therefore 

get control of a privileged process by providing his own executable and configuring the 

service to run the executable under accounts such as Local System. 

A number of studies have been conducted to analyze the effectiveness of access control 

policies in operating system, for both Linux systems [19–25] and Windows systems [5, 

18, 26–32]. Most of the existing works first formalize and identify a security goal of the 

policy, and then use various techniques to verify whether a policy complies with the goal. 

The security goals and the models of access control mechanisms are usually targeted on 

a particular platform and mechanism. The lack of a generic approach makes it difficult 

to generalize existing solutions and to compare policies of different access control mech­

anisms. For example, there are several approaches that aim to strengthen the traditional 

Linux access control [8, 9, 33], and there are debates on which mechanism is better [34]. 

However, such debates often center on the mechanisms and lack the actual comparison of 

the securities offered by the policies shipped with the protection systems. Some existing 

solutions provide policy analysis over several mechanisms. However, to analyze the policy 

one usually needs not only to manually define a high level security goal, but also to man­

ually define the details of a violation of the goal, e.g., by giving the pattern of a type of 

attacks. 

1.2 An Approach to Analyze Access Control Policies 

In this dissertation, we provide a generic approach to analyze access control policies 

in operating systems. Intuitively, we try to find attacks to answer questions such as: What 

does it take for an attacker to penetrate the defense of the system, e.g., to install a rootkit 

on the host? Can the attacker leave a Trojan horse program on the host such that when the 

program is later accidentally executed by a user, the host is taken over by the attacker? We 

analyze the policies in the context of attack scenarios. An attack scenario is defined by an 

attack objective and the attacker’s initial resources. For example, “remote to full control” is 
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an attack scenario in which a remote attacker wants to fully control the system. A “remote” 

attacker can access the host through network. “Full control” of a system means the attacker 

can obtain the privileges of an administrator. Other attack scenarios can be “remote to 

leaving a trojan”, “local to full control”, etc. 

In the analyses, we assume the assurance of access control systems. We assume that 

the access control systems faithfully enforce the access control policies. In general soft­

ware assurance is another open and challenging problem. Particularly in access control, 

some systems employ the approach called reference monitor [35] to improve assurance. A 

reference monitor is a module in the system that is responsible to control all accesses in 

the system. The module is usually small enough so it is relatively easy to test, verify and 

protect the module. An implicit part of our assurance assumption is complete mediation, by 

which all relevant accesses are intercepted by the access control enforcement component. 

Given an attack scenario, an attack consists of a series of actions that can realize the 

attack scenario. In other words, when an attacker has the initial resources, the attack ob­

jective can be achieved if the actions can be taken. In the previously discussed attack to 

Windows services, there are two actions: configure service and start service. To automate 

the reasoning of attack discovery, we model the effects of actions as the change of system 

states. The system state represents the attacker’s control of the system. For example, in 

SELinux proc(uid, gid, domain) denotes that the attacker controls a process that has user id 

uid, group id gid and domain domain. By taking actions, an attacker can change the current 

state. For example, by launching utility tool insmod, an attack can change the process state 

from proc(0, 51, sendmail t) to proc(0, 51, procmail t) (if defined by the policy). At some 

states, the attacker’s objective is achieved. For example, in SELinux the attacker may want 

to control a process with the root user id, group id and the unconfined domain, which can 

be represented as proc(0, 0, unconfined t). 

An action can be taken when all the pre-conditions of the actions are satisfied. A pre­

condition can be a system state or a system fact. A system fact can be a policy rule or 

some information of the system. The pre-conditions to configure a service are as follows: 

(1) the attacker controls a certain process (a system state) and (2) there exists a service 
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(system information) such that (3) the ACL of the service allows the process to configure 

the service. 

After manually defining the form of system states, the pre-conditions to carry out each 

action, and the effects of each action, we propose a methodology to automatically generate 

all possible attacks under an attack scenario. We use a host attack graph to represent all the 

attacks found. A host attack graph is a directed graph. Each node of the graph represents a 

system state. If the attacker can take an action to change a state a to another state b, there 

is an edge from a to b. The edge is marked by the corresponding action. The attacker’s 

initial resources correspond to some nodes (called initial nodes) that do not have incoming 

edges. The attacker’s objective corresponds to some nodes (called objective nodes) that 

do not have outgoing edges. An attack corresponds to a path from an initial node to an 

objective node. Such a path is called an attack path. 

After building a host attack graph, we can perform a variety of analyses on the graph. 

For example, we can find all the (minimal) attack paths in the graph. We can also extract 

all attack patterns in the graph. An attack pattern represents a set of similar attacks. These 

attacks consist of a same sequence of actions, but actions in different attacks target on 

different objects. 

Based on the model, we build the Vulnerability Surface ANalyzer (VulSAN) to analyze 

Linux systems, and Windows Access Control Configuration Analyzer (WACCA) to analyze 

Windows systems. Both tools have similar components: a component to collect access 

control policy and system information, a component to generate the host attack graph, and a 

component to analyze the host attack graph. VulSAN has been used to analyze SELinux and 

AppArmor policies in several Linux distributions (including Ubuntu, RedHat and SUSE 

Linux). We analyze the standard policies shipped with these Linux distributions, and the 

analysis shows possibilities to improve the policies. The model we use is generic such 

that we can compare the policies between different mechanisms. We compare the policies 

of SELinux and AppArmor in a version of Ubuntu Linux. WACCA is used to analyze a 

Windows Vista system. WACCA categorizes attacks found in a configuration into different 

attack patterns. Several attack patterns are found in the analyses. 
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1.3 Structure of the Dissertation 

The rest of the dissertation is organized as follows. Chapter 2 discusses basic access 

control mechanisms and enhancements under Unix systems and Windows systems. DAC in 

Unix systems and Windows systems, User Account Control, SELinux and AppArmor are 

discussed. Chapter 3 presents related work. Some approaches are solutions to analyze the 

effectiveness of access control policies, some are proposals of various access control mech­

anisms. Chapter 4 gives details of the design, implementation and evaluation of VulSAN, 

a tool to analyze Linux policies. Chapter 5 presents the design, implementation and case 

studies of WACCA, a tool to analyze Windows policies. Chapter 6 summarizes the disser­

tation. 
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2 OPERATING SYSTEM ACCESS CONTROL MECHANISMS 

In this chapter, we discuss some state-of-the-art access control mechanisms and enhance­

ments under Unix systems and Windows systems. 

2.1 Unix Access Control 

One of the best known and most widely used access control mechanisms in operating 

systems is the file system access control in Unix-based systems (including Linux, Solaris, 

OpenBSD, and others). It implements a type of discretionary access control (DAC). Be­

sides the simplicity of its basic form, this mechanism also has many intricate details. 

Three most important concepts in Unix access control are users, subjects, and objects. 

From the computer’s point of view, each account is a user. Each user is uniquely identified 

by a numerical identifier called user id. A user can correspond to a human user who has an 

account on the machine. A user account can also be create for an application. For example, 

a common practice to configure Apache on Debian/Ubuntu Linux is to run the web server 

as user www-data. The account is given privileges to access web server related resources. 

There is a special user called root or superuser which has user id 0. The root user is for 

administrative purposes and has full privileges in the system. A group contains a set of 

users. A user can be a member of several groups. Every group has a numerical identifier 

called group id. Each subject is a process, which is an instance of a running program. A 

process is a basic unit to issue requests to access resources. Many protected resources are 

modeled as files, which we call objects. As it is a DAC system, each object has a owner. 

The owner of an object can specify which users are allowed to access the files by what 

operations. For non-file privileges, the access policy is generally fixed by the system. In 

most systems, only the root user has these privileges. In the descriptions below, we use 

subjects and processes interchangeably, and objects and files interchangeably. We dissect 
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the Unix access control into two components: the policy specification component and the 

enforcement component. 

The policy component determines which users are allowed to access what objects. Each 

object has an owner (which is a user) and an associated group. In addition, each object has 

12 permission bits. These bits are: 

•	 three bits for determining whether the owner of the file can read/write/execute the 

file, 

•	 three bits for determining whether users in the associated group (other than the 

owner) can read/write/execute the file, 

•	 three bits for determining whether all other users can read/write/execute the file, 

•	 the SUID (set user id) bit, the SGID (set group id) bit, and the sticky bit. Only the 

SUID bit is relevant for our discussions below. 

The file owner, group and permission bits are part of the metadata of a file, and are 

stored on the inode of a file. The owner of a file and the root user can update these permis­

sion bits, which is the discretionary feature. In most modern Unix-based systems, only the 

root can change the owner of a file. The DAC policy of a Unix-based system is defined as 

the collection of the owner, associated group and permission bits of all the objects in the 

system. 

The policy component specifies only which users are authorized, whereas the actual 

requests are generated by subjects (processes) but not users. The enforcement component 

fills in this gap. It tries to determine on which users’ behalf a process is executing. Each 

process has an effective user id (euid), which determines the access privileges of the pro­

cess. The first process in the system has euid 0 (root). When a user logs in, the process’s 

euid is set to the id corresponding to the user. When a process loads a binary through the 

execve system call, the new euid is unchanged except when the binary file has the SUID 

bit set, in which case the new euid is the owner of the file. 

The SUID bit is needed for two reasons. First, the granularity of access control using 

files is not fined-grained enough. For example, the password information of all the users 
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is stored in the file /etc/shadow. A user should be allowed to change her password. How­

ever, we cannot allow normal users to write the shadow file, as they can then change the 

passwords of other users as well. To solve this problem, the system has a special utility 

program (passwd), through which a user can change her password. The program is owned 

by the root user and has its SUID bit set. When a user runs the passwd program, the new 

process has euid root and can change /etc/shadow to update the user’s password. Note that 

this process (initiated by a user) can perform anything the root user is authorized to do. By 

setting the SUID bit on the passwd program, the system administrator (i.e., the root user) 

trusts that the program performs only the legitimate operations. That is, it will authenti­

cate a user and change only that user’s password in /etc/shadow. Any program with SUID 

bit set must therefore be carefully written so that they do not contain vulnerabilities to be 

exploited. Second, non-root users often need to use the non-file privileges. For example, 

a user may need to mount a CD, which requires a non-file privilege that is available only 

to the root user. This requires the mount utility program to be owned by root and has the 

SUID bit set. For historical reasons, there are different versions of system calls related to 

SUID bit, and the semantics of them are sometimes conflicting and confusing [36]. 

2.2 Windows Access Control 

In Windows, there are a variety of objects, such as files, services, registry keys, pipes, 

etc. A process can access a type of objects in a number of ways. For example, a process 

can read/write/execute a file, and a process can start/stop/configure a service. The per­

missions that are needed to carry out the accesses are called access rights. For example, 

FILE WRITE DATA is the access right to write a file and SERVICE CHANGE CONFIG 

is the access right to configure a service. Some access rights are common to all types 

of objects, and these permissions are called standard access rights. For example, the 

DELETE standard access right, which is required to delete an object, is applicable to most 

types of objects. Some access rights are applicable to a specific type of objects, e.g., the 
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PROCESS VM READ access right is required to read memory in a process, hence it is a 

process-specific access right. 

Each process runs on behalf a user, and each user may be a member of several groups. 

For example, a user account john may be a member of groups Administrators, Everyone, 

AuthenticatedUsers, etc. Each user or group corresponds to a unique identifier called Se­

curity Identifier, or SID. For example, the group Administrators corresponds to the SID 

S-1-5-32-544. Users and groups are represented by SIDs in internal data structures. 

Each process is assigned an Access Token, which is issued and maintained by the oper­

ating system. The access rights of a process depend on its access token. An access token 

contains the SID of the process user, the SIDs of the groups that the user is a member of, 

and a list of privileges held either by the user or by the groups. Privileges enable the pro­

cess to perform some system operations, e.g, SeDebugPrivilege is required to debug other 

processes and SeShutdownPrivilege is required to shut down the machine. 

The basic Windows access control mechanism is a type of discretionary access control 

(DAC). The owner of an object decides which accounts can access the object. The access 

information of an object is stored in the object’s security descriptor. A security descriptor 

contains the owner’s SID, a discretionary access control list (DACL) and a system access 

control list (SACL). DACL is used to guard the accesses to an object. It consists of a num­

ber of access control entries (ACEs), each of which either grants or denies a set of access 

rights to an SID. For example, the security descriptor may contain an ACE that grants 

the BackupOperators group the access rights FILE READ DATA, FILE WRITE DATA, 

FILE APPEND DATA, etc. The owner of an object by default has READ CONTROL and 

WRITE DAC access rights to the object, which allows the owner to read/write the DACL. 

Any access right is implicitly denied to any SID, if there is no ACE that grants the right to 

the SID. When an allowing ACE and a denying ACE conflict with each other, the denying 

ACE overrides the allowing one. Similar to a DACL, an SACL consists of a list of ACEs, 

each of which triggers the logging system to audit a set of accesses carried out by an SID. 

To summarize, when a process wants to access an object, the operating system decides 

whether to grant the access by (1) the object type (2) the access rights that are requested 
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(3) the access token of the process (4) the security descriptor of the object. The operating 

system checks if the requested rights are allowed by the security descriptor to the access 

token. 

A common practice makes it difficult to secure a Windows system using above mecha­

nism. Given the popularity of windows system in end-user desktops, the users are often the 

administrators of their system. In order to make it easy to perform tasks such as installing 

software or changing system settings, users often log in using an administrative account [5]. 

As a result, if an attacker is able to launch a Trojan horse attack, or exploit some programs 

of the user, the attacker is able to acquire full privileges. The attacker can thus change the 

critical parts of the operating system and take over the system silently. 

In order to provide enhanced security for users, Windows Vista features an access con­

trol mechanism called User Access Control (UAC) [6]. In UAC, when an administrator 

logs in, the user’s processes are granted two access control tokens instead of just one: an 

administrator access token that has full privileges and a standard user access token. When 

the user performs normal tasks, e.g., browsing the web, reading emails, only the standard 

user access token is involved in access control decisions. When the user wants to perform 

some administrative tasks, e.g., install a program or a driver, Vista will prompt to ask for 

user’s consent and the administrator access token is used afterwards. Therefore the user is 

alerted when the privileges are used, and a Trojan cannot take over the system silently. This 

mechanism requires a user to be able to correctly tell whether extra privileges is required 

for a particular activity and not to blindly click through (or enter the password) each time. 

While securing the system, this feature also introduces usability problems as a user is often 

required to confirm critical operations. 

2.3 Security-Enhanced Linux 

Security-Enhanced Linux (SELinux) is a security mechanism in Linux that has been 

developed to support a wide range of security policies. SELinux is an enhancement to 

the DAC mechanism in Linux. When SELinux is enabled, a request of access is granted 
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only when both DAC and SELinux authorize the access. SELinux was first implemented 

as kernel patches and currently it is implemented using the Linux Security Module (LSM) 

framework. The architecture of SELinux separates policy decision-making logic from the 

policy enforcement logic. SELinux policies include features as Type Enforcement, Role-

Based Access Control, Multi-Level Security, etc. We discuss the architecture of SELinux 

and some policies as follows. 

In SELinux, every subject (process) and object (resources like files, sockets, etc) is 

given a security context, which includes a type. Every process has a domain, which is 

a type, and every object (e.g., files) has a type. All processes with a same domain are 

treated identically. The objects (resources) are categorized into object security classes. 

Each object security class represents a particular kind of objects, e.g., regular files, folders, 

TCP sockets, etc. For every object security class, there is a set of access operations that can 

be performed, e.g., the operations to a file include read/write/execute, lock, create, rename, 

getattr/setattr, link/unlink, etc. All objects with the same type and the same class are treated 

identically. When an access attempt is made by a process, the enforcement part will decide 

whether to grant the access based on the security context of the process, the security context 

of the object being accessed, and the object security class of the resource. 

An SELinux policy consists of following types of rules (TE is short for Type Enforce­

ment): 

•	 A TE access vector rule defines what operations a process with a particular domain 

can perform on an object of a particular security class with a particular a type. For 

example, the rule 

allow sshd t sshd exec t:file read execute entrypint; 

says a process with the sshd t domain can perform three operations on a file with the 

sshd exec t type: read, execute, and entrypoint. The meaning of read and execute 

is the same as in the DAC policies of Unix. The entrypoint permission means that 

the sshd exec t type is a legitimate entrypoint for the sshd t domain, i.e., a process is 

allowed to enter sshd t domain by executing a file with sshd exec t type. 
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An access vector can also start with auditallow, auditdeny, or dontaudit, in addition 

to allow. Operations are denied unless there is an explicit allow rule. When an access 

request is granted, it is not logged unless it is authorized by an auditallow. And when 

an access request is denied, it is logged unless it is authorized by a dontaudit rule. 

•	 A TE transition rule for a process defines which new domain a process should enter 

after executing a program, based on the current process domain and the type of the 

program. For example, the following rule 

type transition initrc t sshd exec t:process sshd t; 

says when a process with the initrc t domain executes a program with the sshd exec t 

type, the process should transit to the sshd t domain. The domain transition can occur 

only if two additional conditions are met: (1) the initrc t domain is allowed to execute 

files of the sshd exec t type; (2) the sshd exec t type is a legitimate entrypoint for the 

sshd t domain. Both conditions are specified by TE access vector rules. 

•	 A TE transition rule for an object defines the type of a newly created object. For 

example, the rule 

type transition sshd t tmp t:dir file sshd tmp t; 

says when a process with the sshd t domain creates a file or a directory in a directory 

with the tmp t type, the newly created file or directory should be with the sshd tmp t 

type. 

Current SELinux policies are complicated. There are 42 kernel object classes , 14 

userland object classes, hundreds of possible permissions [37]. A typical policy contains 

thousands of policy rules. To reduce the size of policies, macros are used to make templates 

for frequent used patterns that group permissions together. 
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2.4 AppArmor 

AppArmor is an access control enhancement to Linux that confines the access permis­

sions on a per program basis. It follows the principle of least privilege. Similar to SELinux, 

AppArmor works on parallel with the Linux DAC. For every protected program, AppArmor 

defines a list of permitted accesses, including file accesses and capabilities. The list for a 

program is called the program’s profile. The profiles of all protected programs constitute an 

AppArmor policy. A program’s profile contains all possible file reads, file writes, file exe­

cutions and capabilities that may be performed by a protected program. Under AppArmor, 

a process that executes a protected program can only perform accesses in the program’s 

profile. 

By following the principle of least privilege, AppArmor makes local and remote ex­

ploits more difficult. Consider a system that runs an FTP server using the root account. 

If an attacker exploits a vulnerability in the server and injects her own code, under nor­

mal Linux DAC protection, the attacker is able to gain full privileges in the system. The 

attacker can, e.g., install a rootkit by loading a kernel module. However, if the system is 

protected by AppArmor, there will not be a kernel module loading capability in the FTP 

server’s profile because a FTP server wouldn’t need that. Therefore even if the attacker 

controls the server process, she cannot directly install a rootkit. 

An excerpt of a profile for passwd [38] is shown in Figure 2.1. The profile confines the 

program such that if a local user exploits this setuid root program, the user cannot get full 

privileges of root. In the profile, there are 2 rules for capabilities (line 4 and 5) and 11 rules 

for file accesses (line 6 through line 16). A file rule consists of a file name and one or more 

permitted access modes. There are 9 access modes in total: read mode, write mode, link 

mode, and six other modes for executing the file. For details of these access modes, please 

refer to [8]. 

A profile can be created using AppArmor utilities. One can run a program in the “learn­

ing mode”. In this mode, all the requests of a program are permitted and logged. The user 

makes the program perform as many accesses as possible. Later the user can use the logs 
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1. . . . 
2. /usr/bin/passwd {
3. . . . 
4. capability chown, 
5. capability sys resource, 
6. /etc/.pwd.lock w, 
7. /etc/pwdutils/logging r, 
8. /etc/shadow rwl, 
9. /etc/shadow.old rwl, 
10. /etc/shadow.tmp rwl, 
11. /usr/bin/passwd mr, 
12. /usr/lib/pwdutils/lib*.so* mr, 
13. /usr/lib64/pwdutils/lib*.so* mr, 
14. /usr/share/cracklib/pw dict.hwm r, 
15. /usr/share/cracklib/pw dict.pwd r, 
16. /usr/share/cracklib/pw dict.pwi r, 
17. } 

Figure 2.1. A Sample AppArmor Policy for /usr/bin/passwd 

to create the profile of the program. For each access, an AppArmor utility asks the user 

whether to allow the access; and if the access is a file access, the user can choose to gener­

alize the access by using wildcards in the permitted filename (globbing). 

AppArmor also provides finer-grain access control than process level, by the “Change-

Hat” feature. ChangeHat-aware programs can use this feature to have part of a program 

use a different profile. 

AppArmor identifies a number of programs that could be major targets of attackers. 

These programs are confined and protected by profiles. If a program has no policy associ­

ated with it, then it is by default not confined. If a program has a policy, then it can access 

only the objects specified in the policy. This approach remains vulnerable to Trojan horse 

attacks. As most programs, such as shells, obtained through normal usage channels are 

unconfined, a user would mostly operate in an unconfined environment, and the execution 

of a Trojan horse program will not be under the control of any policy rules. 

http:usr/lib64/pwdutils/lib*.so
http:usr/lib/pwdutils/lib*.so
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3 RELATED WORK 

To tackle the challenges to configure access control policies, there are generally two types 

of approaches. The first type of approaches aim to provide better models and tools to ana­

lyze existing policies, especially ones that are widely used. The second type of approaches 

create access mechanisms other than the prevailing DAC mechanisms, aiming to offer bet­

ter usability, better protection, etc. In this chapter we present related works of the two types 

of approaches. 

3.1 Analyses of Access Control Policies 

The access control of Unix-like systems has been studied in many works. Existing 

approaches for analyzing SELinux security policies include Gokyo [21, 22], SLAT [23], 

PAL [39], APOL [20, 40], SELAC [41], NETRA [26], and PALMS [24]. Gokyo [21, 22] 

identifies a set of domains and types as the implicit Trusted Computing Base (TCB) of a 

SELinux policy. Integrity of the TCB holds if no type in it can be written by a domain 

outside the TCB. SLAT [23] verifies if a SELinux policy satisfies certain information flow 

goals. It answers questions such as: Is it true that all information flow paths in a system 

from a starting security context to a final security context go through a series of specific 

steps? PAL [39] provides similar functionalities to SLAT. It differs in that it is implemented 

in XSB, a logic programming system. This enables PAL to handle other kinds of queries. 

APOL [20] is a tool to analyze the relationships between domains and types in a SELinux 

policy. In [40] the authors augment APOL to find paths from susceptible domains to se­

curity sensitive domains. The selection of susceptible and security sensitive domains is 

manually done. The query language is less flexible than SLAT or PAL, but it provides a 

graphical user interface to display the results. SELAC [41] is a formal model to describe 

the semantics of a SELinux policy. The authors develop an algorithm based on SELAC 
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to verify if a given subject can access a given object in a given mode. NETRA [26] is a 

another tool for analyzing explicit information flow relationships in access control config­

urations. It has been applied to analyze Windows XP and SELinux policies. PALMS [24] 

is a tool for analyzing SELinux MLS policy, and was used to verify that the SELinux MLS 

reference policy satisfies the simple security property and the *-property defined by Bell 

and LaPadula [42]. 

Our work is different in the following ways. First, VulSAN supports analyzing AppAr­

mor in addition to SELinux. Second, VulSAN utilizes the current system state (such as 

which files exist in the system) as well as DAC policies (such as which users can write to 

a file according to the DAC permission bits) in addition to the MAC policies. As shown 

in Section 4.3.2, considering DAC is necessary to obtain accurate analysis results. Third, 

our goal, which is to compute the vulnerability surface under different attack scenarios, is 

different from that of existing tools. In particular we need to be concerned with more than 

just providing a policy analysis tool; we need to also come up with appropriate ways of 

querying the tool and analyzing the result. 

Comparing the Quality of Protection (QoP) offered by different systems is challenging 

because different policy models are used. For example, SELinux uses Type Enforcement 

(TE), and AppArmor confines security-critical programs with profiles. Currently there 

exists no tool to compare the security of systems protected using different technologies. 

There is an ongoing debate about which of SELinux and AppArmor is a better system, but 

such debate often centers on the mechanism and lacks actual comparison of the security 

offered by the standard policies shipped with these protection systems. As a result, such 

comparison tends to become rhetoric wars. In [34] Cowan from Novell and Riek from Red 

Hat debated about usability, simplicity, and policy implementation (labels vs. pathnames) 

between AppArmor and SELinux. QoP is not discussed in details. We believe that com­

parisons involving actual deployed policies are necessary. It may be theoretically possible 

to configure a MAC system to offer very strong protection, but it is the shipped standard 

policy that determines the QoP in reality, since very few people change the shipped policy. 
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In our approach, we perform a concrete measurement of QoP for both mechanisms using 

shipped policies. 

Windows access control has been studied in several research works [5, 18, 26–28]. 

Govindavajhala and Appel use a logical model to study Windows XP [18]. A scanner 

reads access control information from the host, and a vulnerability analysis framework 

MulVAL [43] is used to discover privilege escalation attacks. The two-layer structure of 

NETRA [26] makes it suitable to analyze different operating systems. NETRA is used to 

study both Windows systems and Linux systems. WACCA differs from them in that: (1) 

WACCA can automatically discover attack patterns, while attack scenarios are manually 

defined in [18, 26]; (2) our model considers potential software vulnerabilities. 

Data flows between accounts that are allowed by security descriptors of objects un­

der Windows are studied in [28]. These data flows define the trust boundaries and can be 

used to study potential threats and elevation paths. EON [27] is a logic-programming lan­

guage and tool to study dynamic access control systems. Windows Vista security policies 

is studied in EON. EON is focused on the general security mechanism, and does not have 

a scanner to consider specific configurations of a host. Chen et al. [5] study least-privilege 

incompatibilities that cause many windows users to run with administrator privileges. This 

exposed another aspect of misconfiguration: access rights are sometimes unnecessarily 

given to only privileged accounts. 

Attack surface [29–32] defines a metric to measure how secure a system is. It is defined 

by a system’s interfaces and channels that are exposed to unauthorized users. Intuitively a 

larger attack surface indicates a less secure system. In addition to the interfaces exposed 

to the attacker, WACCA also studies the follow-up steps of an attacker after the initial 

compromises. 

Attack graph [44–48] is usually used to study the vulnerabilities of network config­

urations. An attack comprises a set of exploitations, and there are certain dependencies 

between exploitations. An attack graph is used to express the dependencies and to repre­

sent possible exploit combinations. Sheyner et al. [44] propose an approach to construct 

attack graphs automatically using symbolic model checking. The authors present two ways 
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to analyze an attack graph: (1) to generate a minimal set of atomic attacks to thwart the 

attacker’s goal (2) to determine the likelihood that the attacker will succeed based on proba­

bility. In [45], it is proved that the minimization problem of critical attacks is polynomially 

equivalent to the minimum hitting set problem and a greedy algorithm is presented. Markov 

decision process is used to model the attack graph and the probability of the intruder’s 

success is calculated. In [46], monotonicity is assumed such that the pre-condition of a 

given exploit is never invalidated by the successful application of another exploit. Based 

on monotonicity a scalable solution with polynomial time complexity is provided. Given 

an attack graph, the set of hardening measures that guarantee the safety of given critical 

resources is computed in [47]. Logical attack graphs are proposed in [48] to provide a scal­

able and efficient way to generate attack graphs. Based on MulVAL [43], the generation 

of a logical attack graph is in quadratic time. WACCA uses attack graphs to analyze the 

privilege escalation attacks in operating systems, and the analysis is based on attack pattern 

discovery. 

Expandable Grid is proposed in [16, 17] to visualize access control policies. This ap­

proach provides a graphical interface for users to better understand access control policies 

which are usually presented in the form of rules or texts. 

3.2 Design of Access Control Mechanisms 

The limitations of DAC have been discussed in many sources, e.g., [49, 50]. Tradition­

ally, people deal with the weaknesses of DAC by replacing or enhancing it with Mandatory 

Access Control (MAC). There are three classes of approaches to add MAC to operating 

systems: confidentiality-based, confinement-based, and integrity-based. 

A well known example of confidentiality-based MAC is the Bell-LaPadula (or BLP) 

model [42]. Systems that implement protection models similar to BLP include Trusted 

Solaris and IX [51]. In BLP model, each subject has a clearance label and each object 

has a classification label. The values of clearance or classification labels are organized 

in a lattice. A system is called secure if accesses satisfy security properties. The Simple 



24 

Security Property (no read-up) states that a subject at a certain security level should not read 

an object at a higher security level. The *-Property (no write-down) states that a subject at 

a certain security level should not write an object at a lower security level. Some subjects 

are trusted such that they can violate security properties and the system is still secure. 

These subjects can perform tasks such as transferring data from a high classification level 

to a low classification level. BLP model mainly focuses on confidentiality, which is part 

of the security goals of a modern operating system. It is difficult to directly apply BLP 

model to today’s commercial off-the-shelf operating systems, since it may require a lot of 

components to be trusted. 

Confinement-based MAC systems include SELinux [33], AppArmor [8,52], systrace [9], 

LIDS [53], PACL [54]. These approaches develop an access control system completely 

separate from DAC to offer additional protection. Some of them have been discussed in 

Chapter 2. Jaeger et al. [21] analyzed the SELinux example policy to separate the domains 

and types into those in a Trusted Computing Base (TCB), i.e., high integrity, and those are 

not, i.e., low integrity. They found many information flow channels from low to high, due 

to the nature of Linux. The approaches in AppArmor, systrace, and PACL are to identify 

a number of programs that, when compromised, could be dangerous, and confine them by 

a policy. Systrace [9] defines policies for programs at a finer granularity. Instead of defin­

ing allowed accesses to files and capabilities, systrace defines allowed system calls with 

parameter values for each program to confine the operations of processes. 

The Biba model [55] is perhaps the earliest mandatory integrity protection model. It 

provides five integrity policies, which offer important insights into integrity protection and 

contamination tracking. LOMAC [56] is based on the subject low-water mark policy in 

Biba. IFEDAC can be viewed as an approach that integrates Biba’s integrity tracking and 

DAC’s policy specification and enforcement. Microsoft Vista introduced a security feature 

called Mandatory Integrity Control (MIC) [57], which has been discussed in Chapter 1. 

The approach partitions files and programs into four different integrity levels: low, medium, 

high, and system. A program running at one level cannot update objects that are at a higher 
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level. A subject’s integrity level is fixed. This can be viewed as a simplified version of 

SELinux, where there are only four types. 

Another well-known integrity model is the Clark-Wilson model [58], with follow-up 

work by Karger [59] and Lee [60], among others. The key idea of Clark-Wilson model is 

well-formed transactions. A well-form transaction changes a consistent system state and 

results in another consistent system state. These integrity-protection approaches have not 

been applied to operating systems and do not support user-specific integrity, e.g., separating 

one user from another. 

UMIP [61] and IFEDAC [62] uses information flow to enhance discretionary access 

control policies in operating systems. It is argued that the vulnerabilities of DAC to Trojan 

attacks are due to the enforcement component rather than the policy component. The reason 

that DAC enforcement component is incompetent is that a single principal is responsible 

for any request. In reality, a process is initiated and controlled by different principals. 

UMIP and IFEDAC use information flow tracking to infer the actual principals behind 

access requests. A request is granted only when all principals responsible for the request 

are allowed to access a resource. UMIP is an approximation of IFEDAC, where a set of 

principals collapse into a value of high or low. Therefore IFEDAC is able to provide better 

user separation while UMIP treats users alike. 

Language-based information flow security has been studied extensively in the program­

ming language context [63–65]. The CW-Lite work [66] addresses the issue of trust by ex­

plicitly analyzing source code of programs. This line of work mainly focuses on analyzing 

and controlling information flow within a program. It is a slightly different context from 

the ones that apply to operating systems. Hicks et al. [67] proposed an architecture for 

an operating system service that integrates a security-typed language with MAC in operat­

ing systems, and built SIESTA, an implementation of the service that handles applications 

developed in Jif running on SELinux. 
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4 ACCESS CONTROL POLICY ANALYSIS UNDER LINUX 

In this chapter, we demonstrate how to apply the analysis methodology to analyze access 

control policies in Linux systems. The motivation to analyze the policy is to better under­

stand the effectiveness of the policies and to compare between policies, which is important 

to fight against host compromise. 

Host compromise is one of the most serious computer security problems today. A 

key reason why hosts can be easily compromised is that the Discretionary Access Control 

(DAC) mechanism in today’s operating systems is vulnerable to Trojan horses and the ex­

ploitation of buggy software. Recognizing this limitation of existing DAC mechanisms, 

in the past decade there have been a number of efforts aiming at adding some form of 

Mandatory Access Control (MAC) to Commercial-Off-The-Shelf (COTS) operating sys­

tems. Examples include Low Water-Mark Access Control (LOMAC) [56, 68], Security 

Enhanced Linux (SELinux) [33], AppArmor [8, 52], and Usable Mandatory Integrity Pro­

tection (UMIP) [61]. Some of these systems have been widely deployed. For example, 

SELinux is supported in a number of Linux distributions, including Fedora, Debian, Gen­

too, EnGarde and Ubuntu [69], and AppArmor is supported in Linux distributions including 

SUSE, PLD, Pardus Linux, Annvix, Ubuntu and Mandriva [70]. 

Given the existence of these protection systems, a natural desire is to understand and 

compare the quality of protection (QoP) offered by them. A system administrator would 

want to know the QoP offered by the MAC system he is using. Note that by an MAC 

system, we mean both the mechanism (e.g., SELinux or AppArmor) and the specific policy 

being used in the system, because the QoP is determined by both. More specifically, it 

would be very useful for an administrator to know: What kinds of attacks are prevented by 

the MAC system my host is using? What does it take for an attacker to penetrate the defense 

of the system, e.g., to install a rootkit on my host? Can the attacker leave a Trojan horse 

program on my host such that when the program is later accidentally executed by a user, my 
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host is taken over by the attacker? Would it be more secure if I use a competing distribution 

which either has a different MAC mechanism or or has different policy settings? 

Based on the framework discussed in Chapter 1, we develop a tool called Vulnerability 

Surface ANalyzer (VulSAN) for answering these questions. We analyze the QoP by mea­

suring the vulnerability surface for attack scenarios. An attack scenario is defined by an 

attack objective and the attacker’s initial resources. For example, “remote to full control” 

is an attack scenario in which a remote attacker wants to fully control the system. Other 

attack scenarios can be “remote to leaving a trojan”, “local to full control”, etc. A vulnera­

bility surface of a system is a list of minimal attack paths. Each attack path consists of a set 

of programs such that by compromising those programs the attack scenario can be realized. 

Vulnerability surface is related to attack surface [30] which is a concept in the Microsoft 

Security Development Lifecycle (SDL). Attack surface uses the resources that might be 

used to attack a system to measure the attackability of the system. They are different in 

that vulnerability surface provides potential multi-step attack paths of a system while at­

tack surface considers potential entrypoints of attacks. VulSAN computes the vulnerability 

surfaces for attack scenarios under SELinux and AppArmor. To do this, VulSAN encodes 

the MAC policy, the DAC policy and the state of the host into Prolog facts, and generates 

a host attack graph for each attack scenario, from which it generates minimal attack paths 

which constitute the vulnerability surface. 

VulSAN can be used by Linux system administrators as a system hardening tool. A sys­

tem administrator can use VulSAN to compute the host attack graphs for attack scenarios 

that are of concern. By analyzing these graphs, the administrator can try to harden the sys­

tem by tweaking the system and policy configurations. For example, the administrator can 

disable some network deamon programs, remove some unnecessary setuid-root programs, 

or tweak the MAC (SELinux or AppArmor) policies to better confine these programs. Af­

ter making these changes, the system administrator can re-run the analysis to see whether 

it achieves the desired objective. Because VulSAN uses intermediate representation of the 

system state and policy, it is possible to make the changes in the representation and to per­

form analysis, before actually deploying the changes to the real system. Because VulSAN 
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can handle both SELinux and AppArmor, which are the two MAC systems used by major 

Linux distributions, it can be used for most enterprise Linux distributions and home user 

distributions. 

VulSAN can also be used to compare the QoP of policies between different systems. 

Such comparisons help system administrators to select which Linux distributions to use. 

In addition, they also help system hardening. If an administrator knows that another Linux 

distribution with the same services does not have a particular vulnerability path, then the 

administrator knows that it is possible to remove such a path while providing the necessary 

services, and can invest the time and effort to do so. 

We have applied VulSAN to analyze the QoP of several Linux distributions with SELinux 

and AppArmor. Comparing the default policies of SELinux and AppArmor for the same 

Linux distribution (namely Ubuntu 8.04 Server Edition), we find that AppArmor offers 

significantly smaller vulnerability surface, while the SELinux policy with Ubuntu 8.04 

offers only slightly smaller vulnerability surface compared with the case when no MAC 

is used. More specifically, when no MAC is used, the system has seven length-1 attack 

paths in the scenario when a remote attacker wants to install a rootkit. They correspond 

to the seven network-facing daemon programs running as root, namely apache2, cupsd, 

nmbd, rpc.mountd, smbd, sshd, and vsftpd. Among them, the SELinux policy confines 

only cupsd. This shows that the often claimed strong protection of SELinux is not realized, 

at least in some popular Linux distributions. We also note policies in different distributions 

offer different levels of protection even when they use the same mechanism. For example, 

the SELinux policy in Fedora 8, which is a version of the targeted policy, offers tighter 

protection than that in Ubuntu 8.04, which is a version of the reference policy. We also ob­

serve that Ubuntu 8.04 and SUSE Linux Enterprise Server 10 expose different vulnerability 

surfaces when they both use AppArmor. Also, one attack scenario that neither SELinux nor 

AppArmor offers strong protection is when a remote attacker leaves a malicious executable 

program somewhere in the system and waits for it to be accidentally executed by users, at 

which point the process would not be confined by the MAC system. This attack is possible 

for two reasons. First, both SELinux and AppArmor confine only a subset of the known 
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programs and leave any program not explicitly identified as unconfined. Second, as nei­

ther SELinux nor AppArmor performs information flow tracking, the system cannot tell a 

program left by a remote attacker from one originally in the system. 

4.1 Overview of the Approach 

To analyze and compare the QoP of MAC systems, we need a way to define the QoP 

first. Lacking such a definition prevents debates about the virtues of different systems to go 

beyond subjective and rhetoric arguments. 

The MAC systems are motivated by the threats and attacks facing today’s operating 

systems, thus they should be evaluated by their ability to defend against these attacks. 

Our approach generates all possible attack paths that can lead an attacker to control of the 

system. We analyze the QoP under multiple attack scenarios. Each attack scenario has two 

aspects. One is the objective of the attacker (e.g., load a kernel module or plant a trojan 

horse). The other is the initial resources the attacker has (e.g., can connect to the machine 

from network, or has a local account). Based on the scenario, VulSAN gives all possible 

attack paths. 

Our approach consists of following steps: 

1. Establish a running server as the analysis target. 

2. Translate policy rules and system state information into Prolog facts.	 We write 

parsers for SELinux and AppArmor policies. We write scripts to collect informa­

tion of the file system and running services. 

3. Encode what the attacker can do to break into a system and escalate privileges in one 

or more steps. For each security-enhanced mechanism, we define the notion of attack 

states to describe the attacker’s current privileges. For each MAC system we write 

a library of system rules that describe how an attacker exploits a program to cause 

state transition under the MAC system. 
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














  

Figure 4.1. Solution Overview of VulSAN 

4. Encode an attack scenario into a query, and use the query to generate the host attack 

graph. A host attack graph is a directed graph. The graph nodes are attack states, and 

graph edges correspond to state transitions. Edges are marked by programs, and by 

compromising marked programs the attacker can cause state transitions. We call the 

nodes of the graph that represent the attacker’s initial resources initial attack states, 

and we call the nodes of the graph that represent the attack objective goal attack 

states. 

5. Analyze the host attack graph. What we care about are the paths from initial attack 

states to goal attack states. The most interesting paths are the ones that are “minimal”. 

VulSAN generates all the minimal attack paths. 

Figure 4.1 shows the overview of our approach. 

The interesting result from the host attack graph is the attack paths. An attack path is a 

path that starts from an initial attack state and ends with a goal attack state. Suppose there 

are two attack paths p1 and p2, and we have V (p1) ⇢ V (p2) (V (p) represents the set of 

edge labels along the path). Then we are not interested in p2 since it is easier to realize p1 

than to realize p2. An attack path p is desirable when there does not exist another attack 

path p0 such that V (p0) ⇢ V (p). We call such paths minimal paths. 

We define the vulnerability surface of a protection system as the set of all minimal 

attack paths. Each path includes the programs that must be exploited to realize the attack 

objective. 
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When we compare two protection systems A and B under the same attack scenario, we 

first generate the sets of all minimal attack paths of the two protection systems, called PA 

and PB. For any path p 2 PA, we say: 

• p is a strong path if there exists a path p0 2 PB such that V (p) ⇢ V (p0). 

• p is a weak path if there exists a path p0 2 PB such that V (p) � V (p0). 

• p is a common path if there exists a path p0 2 PB such that V (p) = V (p0). 

• p is a unique path otherwise. 

When comparing A and B, a common path shows a common way to exploit both sys­

tems. A strong path p of system A suggests that, if the attacker compromises the same 

programs in p under system B, she will need to compromise more programs to achieve the 

attack objective in B. A weak path p of A suggests that, compromising a subset of the 

programs in p under B already helps the attacker to achieve the objective in B. A unique 

path p of A suggests that A is more vulnerable than B because by realizing p, an attacker 

can compromise A but not B. By examining the strong, weak, common, and unique attack 

paths in details, we can better understand the differences of QoP between two systems. 

There are two approaches to use the sets of minimal attack paths to compare the QoP 

of two systems. In one approach, one makes no assumption about whether one program is 

easier to compromise than another program. In this approach, one could only partially order 

the QoP as measured by the host vulnerability surfaces of different systems. PA has higher 

QoP than PB when all minimal attack paths for PA are either common paths or weak paths. 

That is, for every minimal attack path p for PA, either PB has the same path, or there exists 

a path p0 for PB that contains a strict subset of the programs in p, which means that p0 is 

easier to exploit than p. The strength of this approach is that the comparison result remains 

valid even when some programs are significantly easier to exploit than other programs. The 

drawback is that often times two protection systems are not directly comparable. Most of 

the analysis in this chapter use this approach. 
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In the second approach, one views each program as one unit, implicitly assuming that 

all programs are equal. By making this assumption, it is possible to come up with a total 

order among all protection systems. However, the drawback is that the validity of the 

assumption is questionable. In a few head-to-head comparisons in this chapter, we use this 

approach. Whenever we do so, we will explicitly state the assumption that all programs are 

considered equal. 

The ideal solution is to be able to quantify the efforts needed to exploit different pro­

grams. However, this is a challenging open problem that appears unlikely to be solved 

anytime soon. 

4.2 Implementation of VulSAN 

VulSAN consists of the following components: the Fact Collector, the Host Attack 

Graph Generator, and the Attack Path Analyzer. 

4.2.1 Fact Collector 

Fact Collector retrieves information about the system state and security policy, and 

encodes the information as facts in Prolog. 

The information about file system consists of facts of all relevant files, system users, 

system groups and running processes. Several sample Prolog facts are depicted in Fig­

ure 4.2. We only consider system facts that are relevant to our security analysis. Irrelevant 

information, like CPU/memory consumption of a process, is not considered. Whether a 

piece of system information is relevant to our analysis depends on the system rules (which 

will be discussed later), and the MAC system to be analyzed. Some facts are security-

relevant under all protection mechanisms, like uid/gid of a process; while some facts are 

unique to a particular mechanism, like security contexts in SELinux and process profiles in 

AppArmor. 

The encoding of Prolog facts for security policies vary for different security mecha­

nisms. For example, in SELinux policies, there are several kinds of statements, e.g., Type 
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(1) file_info(path(’/usr/bin/passwd’), 
type(regular), owner(0), group(0), 
uper(1,1,1), gper(1,0,1), oper(1,0,1), 
setuid(1), setgid(0), sticky(0), 
se_user(’system_u’), se_role(’object_r’), 
se_type(’bin_t’)). 

(2) user_info(’root’, 0, 0). 
(3) group_info(’mail’, 8, [dovecot]). 
(4) process_running(4412, 0, 0, 

’/usr/lib/postfix/master’, 
system_u, system_r, initrc_t). 

(5) process_networking(4412). 

(1) is the fact for file /usr/bin/passwd. The fact encodes the file name, type, owner, group, 
user/group/world permissions, setuid/setguid/sticky bit, and security context of the file. (2) 
is the fact for root user, which includes the user name, user id and group id. (3) is the fact 
for mail group, which includes the group name, group id and group members. (4) is the 
fact for the postfix master process. The fact contains the process id(pid), user id(uid), group 
id(gid), executed program, and the security context of the process. (5) is the fact for the 
same process as (4), denoting that the process is open to network. 

Figure 4.2. Sample Facts of System State 

(1) dom_priv(’user_ssh_t’, ’bin_t’, ’file’, 
[’ioctl’, ’read’, ’getattr’, ’lock’,
 
’execute’, ’execute_no_trans’]).
 

(2) se_typetrans(old_dom(’user_ssh_t’), 
new_dom(’user_xauth_t’), 
type(’xauth_exec_t’)). 

(3) se_domain(’user_ssh_t’). 
(4) se_type(’bin_t’). 

(1) says a process running under domain ‘user ssh t’ has the following permissions over 
a file with type ‘bin t’: ioctl, read, getattr, etc. The fact is derived from a TE Access 
Vector Rule. (2) says if a process running under domain ‘user ssh t’ executes an exe­
cutable file with type ‘xauth exec t’, the domain of the process should transition to domain 
‘user xauth t’. The fact is derived from a TE Type Transition Rule. (3) says ‘user ssh t’ is 
a SELinux domain. (4) says ‘bin t’ is a SELinux type. Facts like (3) and (4) are used to 
enumerate SELinux domains and types. 

Figure 4.3. Sample Facts of SELinux Policy 
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(1) aa_capability(’/usr/lib/postfix/master’, 
’net_bind_service’). 

(2) aa_access_mode(’/usr/lib/postfix/master’, 
’/etc/samba/smb.conf’, r(1), w(0), 
ux(0), px(0), ix(0), m(0), l(0)). 

(1) says the program /usr/lib/postfix/master has the capability of net bind service. (2) says 
the program can read samba configure file /etc/samba/smb.conf. Facts like (2) define the 
privileges of a program over a certain file or file pattern. 

Figure 4.4. Sample Facts of AppArmor Policy 

Enforcement Access Vector Rules and Type Enforcement Transition Rules. We also define 

all the domains and types. Figure 4.3 gives several sample Prolog facts which are generated 

based on a SELinux policy. Our parser for SELinux policy is based on the tool checkpolicy. 

In AppArmor, a profile defines the privileges of a certain program. A privilege can 

be a capability, or a set of permissions over a file or file pattern. Figure 4.4 gives some 

sample Prolog facts of an AppArmor policy. Our parser for AppArmor policy is based on 

apparmor parser. 

4.2.2 Host Attack Graph Generator 

Host Attack Graph Generator takes system facts, a library of system rules and the attack 

scenario as input, and generates the host attack graph. We first discuss how to define attack 

states. 

In our analysis, the basic unit is a process. The attack state of a process consists of 

process attributes that are related to access control enforcement. Uid and gid of a process 

are used in Linux DAC mechanism, which is the default mechanism. MAC systems give 

additional process attributes. In SELinux, the current domain of a process is a security 

related attribute. Hence the attack state of a process is described as proc(uid, gid, domain). 

In AppArmor, an attack state is represented as proc(uid, gid, profile) where profile is the 

profile that confines the process. 
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Given the attack state of a process controlled by the attacker, the privileges available to 

the attacker is defined by the policy. For example, under SELinux, a process with a certain 

domain can only have a certain set of permissions. Permissions also depend on the uid and 

gid. Following are some relevant predicates to describe such enforcement: 

•	 dac can execute(Uid, Gid, Program) : Decide if a process with certain uid and gid 

can execute a program. 

•	 dac execve(Uid, Gid, NewUid, NewGid, Program) : Decide the new uid and gid 

of a process after executing a program. 

•	 se can execute prog(Domain, Program, NewDomain) : Decide if a process with 

certain domain can execute a program, and what the new domain is after execution. 

•	 aa file privilege(Profile, File, Mode) : Decide if a process with a certain profile can 

access a file with a certain mode, e.g., read, write, execute. 

•	 aa new profile(Profile, Program, NewProfile) : Get the new profile of a process af­

ter executing a program. A profile can be ‘none’ meaning there is no profile confining 

the process. 

Suppose the attacker controls a process p, she may exploit or launch a program prog to 

further control another attack state. We are interested in all the potential attack states that 

might be controlled by an attacker. 

In SELinux, we represent the fact that the attacker can control a certain attack state 

as se node(proc(uid, gid, domain)). If the attacker controls attack state s1, and after ex­

ploiting a program prog she can control attack state s2, the transition is represented as 

se edge(s1, s2, prog). Here se node(·) and se edge(·, ·, ·) are both dynamic predicates in 

Prolog. The state transition depends on the current attack state, the compromised program 

and the policy. 

As one example of system rules, we now discuss how to encode domain transition 

under SELinux. The logic to decide domain transition is described in [7], and is non­
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trivial. Suppose the current domain is OldDom, the type of the executable is Type and the 

new domain is NewDom. We summarize the logic as follows: 

1. If OldDom doesn’t have file execute permission on Type, the access is denied. 

2. If there is a type transition rule: ‘type transition OldDom Type: process NewDom’, 

the access is granted only when OldDom has process transition permission on Type 

and NewDom has file entrypoint permission on Type. Otherwise the access is denied. 

If the access is granted, the process runs on the domain NewDom after executing the 

program. 

3. If there isn’t such a type transition rule, the access is granted only when OldDom 

has file execute no trans permission on Type. Otherwise the access is denied. If the 

access is granted, the process runs on the original domain OldDom after executing 

the program. 

Using logic programming the domain transition logic can be encoded naturally. Related 

Prolog code is shown in Figure 4.5. 

The initial resources of the attacker can be represented as a set of initial attack states. 

Suppose the attacker can connect to the machine from the network, the initial attack states 

are encoded in Figure 4.6(a). Similarly, we use a set of goal attack states to represent the 

objective of the attacker. The encoding of the objective to load a kernel module is depicted 

in Figure 4.6(b). 

Given the initial attack states and the goal attack states, we can generate the host attack 

graph that contains all the potential states that the attacker can control. The pseudo code is 

depicted in Figure 4.7. 

4.2.3 Attack Path Analyzer 

Attack Path Analyzer finds all the minimal attack paths in a host attack graph. Figure 4.8 

describes the iterative algorithm used by Attack Path Analyzer. The algorithm repeatedly 

updates a set of paths for each node until all the sets are stablized. 
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se_can_execute_type(Domain, Type, NewDomain) :­
se_typetrans(old_dom(Domain), 

new_dom(NewDomain), type(Type)), 
!, 
se_domain_privilege(domain(Domain), 

type(Type), class(file), op(execute)), 
se_domain_privilege(domain(Domain), 

type(NewDomain), class(process), 
op(transition)), 

se_domain_privilege(domain(NewDomain), 
type(Type), class(file), op(entrypoint)). 

se_can_execute_type(Domain, Type, NewDomain) :­
se_domain_privilege(domain(Domain), 

type(Type), class(file), op(execute)), 
se_domain_privilege(domain(Domain), type(Type), 

class(file), op(execute_no_trans)), 
NewDomain = Domain. 

Figure 4.5. Rules for Domain Transition 

net_init(proc(Uid,Gid,Domain), [Program]) :­
process_networking(Pid), 
process_running(Pid, Uid, Gid, Program, 

_, _, Domain). 

(a) Initial resources: the attacker can connect to the machine from network 

load_module_goal(proc(0, _Gid, Domain)) :­
se_domain_privilege(domain(Domain), _, 

class(capability), op(sys_module)). 

(b) Attack objective: to load a kernel module 

Figure 4.6. Predicates for Initial Attack States and Goal Attack States 
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1: function GENERATE GRAPH NODE(s) 
2: if s is already a graph node then 
3: return 
4: Add s as a graph node 
5: if s is a goal attack state then 
6: return 
7: for all program prog that s can execute do 
8: s0 the attack state after executing prog 
9: Add (s, s0) as a graph edge with label prog 

10: Generate Graph Node(s0) 

1: function GENERATE HOST ATTACK GRAPH 

2: for all Initial attack state s do 
3: Generate Graph Node(s) 

Figure 4.7. Algorithm for Host Attack Graph Generation 

4.3 Evaluation 

We use three attack scenarios to evaluate our approach. The first is for a remote attacker 

to install a rootkit. We assume the rootkit is installed by loading a kernel module. The 

second is for a remote attacker to plant a Trojan horse. We use two definitions of trojan 

attacks: (1) the attacker can create an executable in a folder on the executable search path 

or user’s home directory (2) the attacker can create an executable in any folder such that 

a normal user process (with a user’s uid and runs under unconfined domain in SELinux or 

is not confined by any profile in AppArmor) can execute. In both cases, after the trojan 

program is executed the process should be unconfined. We call (1) a strong trojan case and 

(2) a weak trojan case. The third is for a local attacker to install a rootkit. 

We analyze the QoP under several configurations: 

1. Ubuntu 8.04 (we use the Server Edition for all the test cases) with SELinux and 

Ubuntu 8.04 with AppArmor. To understand what additional protection MAC offers 

on top of DAC, we also evaluate Ubuntu 8.04 with DAC protection only (without 

MAC protection). 
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1: function GENERATE MINIMAL ATTACK PATHS 

2: V V [ vg 

3: for all goal attack state node v do 
4: add an edge from v to vg, 
5: the exploited program for the edge is empty 

6: for all v 2 V do 
7: MP(v) ¢ 

8: for all initial attack state node v do 
9: MP(v) {¢}

10: repeat 
11: stable true 
12: for all e 2 E do 
13: for all p 2 MP(e.v1) do 
14: p0 append(p, e) 
15: if 9p0 2 MP(e.v2) s.t. V (p0) ⇢ V (p0) then 
16: Remove all such paths from MP(e.v2) 

17: if not 9p1 2 MP(e.v2) s.t. V (p0) � V (p1) then 
18: MP(e.v2) MP(e.v2) [ {p0}
19: stable false 
20: until stable 
21: return MP(vg) 

Symbols Meaning 
V 
E 
vg 

MP 
e.v1, e.v2 

V (p) 
append(p, e) 

The set of host attack graph nodes 
The set of host attack graph edges 
The virtual “goal” node added such that each goal attack 
state has an edge to vg 

MP(v) stores the set of minimal attack paths to node v 
The starting node and ending node of an edge e 
The set of all exploited programs along the path p 
Append edge e to the end of path p 

Figure 4.8. Minimal Attack Paths Generation 

http:2MP(e.v2
http:2MP(e.v2
http:2MP(e.v1
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2. Fedora 8 with SELinux and SUSE Linux Enterprise Server 10 with AppArmor. We 

compare the results with Ubuntu 8.04/SELinux and Ubuntu 8.04/AppArmor to show 

that different distributions with the same mechanism provide different levels of pro­

tection. 

3. Ubuntu 8.04 with SELinux. In the evaluation, we only analyze the SELinux policy. 

We use the result to show that only considering MAC policy without DAC policy and 

system state is not sufficient. 

The active services include: sshd, vsftp, apache2, samba, mysql-server, postfix, nfsd, 

named, etc. In Fedora 8, the SELinux policy is the targeted policy that shipped with the 

distribution. In Ubuntu 8.04, the SELinux policy is the reference policy that comes with the 

selinux package. The AppArmor policy is the one that comes with the apparmor-profiles 

package. 

4.3.1 SELinux vs. AppArmor vs. DAC only on Ubuntu 8.04 

Ubuntu 8.04 Server Edition supports both SELinux and AppArmor. This offers an 

opportunity for us to compare the QoP of SELinux and AppArmor head to head. We also 

include the case in which only DAC is used in the comparison. 

A Remote Attacker to Install a Rootkit In this attack scenario, the attacker has network 

access to the host, and the objective is to install a rootkit via loading a kernel module. 

The host attack graphs for DAC only, AppArmor and SELinux are shown in Figure 4.9, 

Figure 4.10 and Figure 4.11, respectively. The comparison of minimal attack paths between 

SELinux and AppArmor is shown in Table 4.1. 

Among the three cases, AppArmor has the smallest vulnerability surface. SELinux 

has all the minimal attack paths AppArmor has and some additional ones. The DAC only 

case has all the attack paths SELinux has, and has one additional minimal attack path. More 

specifically, AppArmor has 3 length-1 minimal attack paths and 34 length-2 minimal attack 

paths. In addition to these, SELinux has 3 more length-1 minimal attack paths and 63 more 

length-2 minimal attack paths. 
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Figure 4.9. Host Attack Graph for a Remote Attacker to Install a Rootkit 
(Ubuntu 8.04 with DAC only) 

Attack paths common to all three cases are mainly due to daemon programs that run 

in unconfined domain under SELinux (meaning that the program is not constrained by 

SELinux) and are not confined by profiles under AppArmor. The length-1 paths are due to 

the daemon programs apache2, rpc.mountd and sshd which run as root. (Although sshd is 

running in sshd t under SELinux and confined by a profile in AppArmor, the domain and 

the profile both allow the process to load a kernel module directly or indirectly). The length­

2 paths are due to unprivileged daemon programs mysqld and named. After compromising 

one of them, the attacker needs to do another local privilege escalation. 

The minimal attack paths that SELinux has but AppArmor doesn’t have are due to three 

reasons: (1) Some programs are running in the unconfined t domain under this version of 

SELinux policy, while AppArmor has profiles for them; these include, e.g., nmbd, smbd, 

vsftpd, portmap, and rpc.statd. (2) Some programs are confined by SELinux domains, but 
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init

proc(0, 0, none)

/usr/sbin/apache2
/usr/sbin/rpc.mountd proc(0, 0, /usr/sbin/sshd)

/usr/sbin/sshd
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/usr/sbin/mysqld

proc(109, 118, none)

/usr/sbin/named
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/bin/mount
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/bin/umount
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/usr/bin/arping
/usr/bin/chfn
/usr/bin/chsh

/usr/bin/gpasswd
/usr/bin/mtr

/usr/bin/newgrp
/usr/bin/sudo
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/usr/bin/chfn
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/usr/bin/gpasswd
/usr/bin/mtr

/usr/bin/newgrp
/usr/bin/sudo

/usr/bin/sudoedit
/usr/bin/traceroute6.iputils

/usr/lib/eject/dmcrypt-get-device
/usr/lib/openssh/ssh-keysign
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Figure 4.10. Host Attack Graph for a Remote Attacker to Install a Rootkit 
(Ubuntu 8.04 with AppArmor) 

the confinements are not as tight as corresponding AppArmor profiles. Two programs, 

cupsd and dhclient, fall into this category. For example, domain dhcpc t is allowed to 

load a kernel module while the profile /sbin/dhclient doesn’t allow kernel module loading. 

(3) Some programs (named and mysqld) are not confined either in SELinux or AppArmor. 

However, because they run with unprivileged accounts (as opposed to the root) under DAC, 

compromising them do not enable the attacker to load a kernel module. There are unique 

attack paths for SELinux because of the confinement of some setuid root programs. Ping 

and passwd are unconfined in SELinux but confined in AppArmor, therefore they can be 

used to further escalate the attackers’ privileges after compromising named or mysqld. 

Somewhat surprisingly, the DAC only case has only one additional (strong) length-1 

minimal attack path compared to SELinux. The path is /usr/sbin/cupsd. The cupsd daemon 

runs as root and is confined by the cups t domain of SELinux. When the attacker ex­

ploits cupsd with SELinux enabled, she has to additionally exploit the setuid root program 

/bin/unix chkpwd to gain the privilege to install a rootkit. 
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Table 4.1 
Minimal Attack Paths Comparison for a Remote Attacker to Install a Rootkit 

SELinux compared to AppArmor 
common /usr/sbin/apache2 

/usr/sbin/rpc.mountd 
/usr/sbin/named SUID* 
/usr/sbin/mysqld SUID* 
/usr/sbin/sshd 

unique /usr/sbin/nmbd 
/usr/sbin/smbd 
/usr/sbin/vsftpd 
/sbin/portmap SUID** 
/sbin/rpc.statd SUID** 

/usr/sbin/cupsd /sbin/unix chkpwd 
/sbin/dhclient SUID** 
/sbin/dhclient /lib/dhcp3­
client/call-dhclient-script 

/usr/sbin/named /bin/ping 
/usr/sbin/named /usr/bin/passwd 
/usr/sbin/mysqld /bin/ping 
/usr/sbin/mysqld /usr/bin/passwd 

SUID* represents a set of setuid root 
programs: 
/bin/ping6 
/bin/su 
/sbin/mount.nfs 
/usr/bin/arping 
/usr/bin/chfn 
/usr/bin/chsh 
/usr/bin/gpasswd 
/usr/bin/mtr 
/usr/bin/newgrp 
/usr/bin/sudo 
/usr/bin/sudoedit 
/usr/bin/traceroute6.iputils 
/usr/lib/eject/dmcrypt-get-device 
/usr/lib/openssh/ssh-keysign 
/usr/lib/pt chown 
/bin/mount 
/bin/umount 

SUID** includes all programs in SUID* 
and also /bin/ping and /usr/bin/passwd 

Our analysis shows that among the seven network-facing programs running as root in 

Ubuntu 8.04 Server Edition, namely apache2, cupsd, nmbd, rpc.mountd, smbd, sshd, and 

vsftpd, only one of them is confined in any meaningful way by the SELinux policy. Hence 

one can argue that the additional protection provided by the SELinux reference policy in 

Ubuntu 8.04 is quite limited. 

Remote Attacker to Leave a Trojan Horse 

We consider a scenario in which the attacker is remote and wants to leave a Trojan 

horse. We consider both the strong Trojan horse case and the weak Trojan horse case. We 

observe that performing a strong trojan attack is always not more difficult than installing a 

kernel module. 
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For Ubuntu 8.04 with AppArmor, compared to loading kernel module, there is one extra 

attack path in strong trojan attack: /usr/sbin/smbd. For Ubuntu 8.04 with SELinux, the host 

attack graph is the same as the graph for a remote attacker to install a rootkit. 

It’s significantly easier to perform weak trojan attacks. Figure 4.12 shows the host 

attack graph to leave a weak trojan in Ubuntu 8.04 with SELinux. Every network faced 

program, if compromised, can be used directly to leave a weak Trojan horse. This is so 

due to two reasons. First, both SELinux and AppArmor confine only a subset of the known 

programs and leave any program not explicitly identified as confined. Second, as neither 

SELinux nor AppArmor performs information flow tracking, the system cannot tell a pro­

gram left by a remote attacker from one originally in the system. 
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Figure 4.12. Host Attack Graph for a Remote Attacker to Leave a Weak 
Trojan (Ubuntu 8.04 with SELinux) 

A Local Attacker to Install a Rootkit 

In the third attack scenario, the attacker has a local account. The objective is to install 

a rootkit (load a kernel module). Figure 4.13 and Figure 4.14 shows the host attack graphs 

for Ubuntu 8.04 with SELinux and AppArmor, respectively. 

Again, AppArmor has a smaller vulnerability surface. All minimal exploit paths in 

AppArmor also occur in SELinux, which has some additional exploit paths. There are 19 

common minimal attack paths, they are all of length 1. They are due to 19 setuid root 

programs that have sufficient privileges. These programs are as follows: 
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Figure 4.13. Host Attack Graph for a Local Attacker to Install a Rootkit 
(Ubuntu 8.04 with SELinux) 
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/bin/fusermount, /bin/ping6, /bin/su, /sbin/mount.nfs, /usr/bin/arping 

/usr/bin/chfn, /usr/bin/chsh, /usr/bin/gpasswd, /usr/bin/mtr, /usr/bin/newgrp 

/usr/bin/sudo, /usr/bin/sudoedit, /usr/bin/traceroute6.iputils 

/usr/lib/eject/dmcrypt-get-device, /usr/lib/openssh/ssh-keysign 

/usr/lib/pt chown, /usr/sbin/pppd, /bin/mount, /bin/umount 

The programs in the common paths are setuid root programs. The result shows that the 

way for a local user to load a kernel module is to exploit one of the setuid root programs. 

SELinux has 2 unique minimal attack paths for SELinux: /bin/ping and /usr/bin/passwd. 

They are due to the same reason in the first scenario, that SELinux does not confine ping 

and passwd while AppArmor confines them. 

4.3.2 Other Comparisons 

In this subsection we compare the QoP offered by different Linux distributions with a 

same MAC mechanism. We also discuss why considering MAC policy alone is not enough. 

Different Versions of SELinux 

We have found that the SELinux policy in Fedora 8, which is the SELinux targeted pol­

icy, offers significantly better protection than the SELinux in Ubuntu 8.04 Server Edition, 

which uses a version of the SELinux reference policy. In addition, the most current version 

of the SELinux reference policy is also tighter than the policy shipped with Ubuntu 8.04. 

Figure 4.15 shows the host attack graph for a remote attacker to install a rootkit in 

Fedora 8 with SELinux. The vulnerability surface is not directly comparable with that 

of Ubuntu 8.04 (shown in Figure 4.11) because each has some unique attack paths. If 

we assume that all programs are equal, the vulnerability surface of Fedora 8/SELinux is 

smaller because there is 1 length-1 minimal attack path and 13 length-2 minimal attack 

paths in Fedora 8/SELinux, while there are 6 length-1 minimal attack paths and 97 length­

2 minimal attack paths in Ubuntu 8.04/SELinux. 
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Figure 4.15. Host Attack Graph for a Remote Attacker to Install a Rootkit 
(Fedora 8 with SELinux) 

Figure 4.16 shows the host attack graph for a remote attacker to leave a strong trojan 

in Fedora 8 with SELinux. Compared to the kernel module loading scenario, trojan attack 

scenario has three additional minimal attack paths: 

/usr/sbin/rpc.mountd 

/usr/sbin/smbd 

/usr/sbin/sendmail /usr/bin/procmail 

Two paths are related to file sharing and the other is due to sendmail. Those programs are 

confined, but they have privileges to write to the user’s home directory or directories in the 

executable search path. Under the assumption that all programs are equal, the vulnerability 

surface of Fedora 8/SELinux is smaller than that of Ubuntu 8.04/SELinux for the remote 

trojan attack scenario. 

Different Versions of AppArmor 

We have analyzed the vulnerability surface of SUSE Linux Enterprise Server 10, or 

SLES 10, with AppArmor protection. To keep the services in SLES 10 the same as in 

Ubuntu 8.04, some services that are up by default in SLES 10 are turned off, e.g., slpd and 

zmd. 
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Figure 4.16. Host Attack Graph for a Remote Attacker to Leave a Strong 
Trojan (Fedora 8 with SELinux) 

The vulnerability surface of SLES 10/AppArmor under the scenario that a remote at­

tacker wants to install a rootkit (as shown in Figure 4.17) is not directly comparable with 

that of Ubuntu 8.04/AppArmor. The two distributions expose different vulnerability sur­

faces. 

The common attack paths are through sshd and rpc.mountd (NFS mount daemon). The 

unique paths for Ubuntu 8.04 are through apache2, mysqld and named, due to that those 

programs are not confined. The unique paths for SLES 10 are through cupsd since cupsd 

is not confined. Sshd also contributes to some unique paths since there are more shells 

installed in SLES 10. 

In SLES 10, the host attack graph for a remote attacker to plant a strong Trojan horse is 

the same as the graph for a remote attacker to install a rootkit. For a local attacker to install 

a rootkit, the host attack graph for SLES 10 is shown in Figure 4.18. There are 10 common 

attack paths due to unconfined set uid root programs. There are 9 unique attack paths for 

Ubuntu 8.04 and 20 unique attack paths for SLES 10. 

The Need to Consider DAC Policy 

Our approach considers both the MAC policy and the DAC policy. If we only con­

sider MAC policy, e.g., SELinux policy, the result may not be accurate. Figure 4.19 shows 

the host attack graph for a remote attacker to install a rootkit, when we only consider 
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Figure 4.17. Host Attack Graph for a Remote Attacker to Install a Rootkit 
(SUSE Linux Enterprise Server 10 with AppArmor) 

SELinux policy but not DAC policy. Compared to the host attack graph that considers both 

DAC and MAC policy (shown in Figure 4.11), we observe that without considering DAC 

policies, there are following extra length-1 attack paths: /sbin/portmap, /sbin/rpc.statd, 

/usr/sbin/mysqld, /usr/sbin/named, /sbin/dhclient. They are not accurate. For example, 

mysqld is running with uid 110 and unconfined t. By compromising mysqld the attacker 

can control unconfined t, but she still cannot load a kernel module because the uid is un­
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Figure 4.18. Host Attack Graph for a Local Attacker to Install a Rootkit 
(SUSE Linux Enterprise Server 10 with AppArmor) 

privileged. To control root uid the attacker needs to do another exploit, e.g., by exploiting 

a setuid root program. 
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Figure 4.19. Host Attack Graph for a Remote Attacker to Install a Rootkit 
(Ubuntu 8.04 with SELinux – only Considering SELinux Policy) 

4.3.3 Performance 

In our experiments, the targeted operating systems (Ubuntu, Fedora and SUSE Linux) 

are installed in virtual machines using VMWare. The host attack graph generation and 

attack path analysis are performed on a laptop with Intel(R) Pentium(R) M processor 

1.80GHz and 1G memory. The Prolog engine is swi-prolog 5.6.14. 

The running time for the fact collector is less than 10 minutes for every test case. The 

running time for the host attack graph generation and analysis is less than 10 minutes for 

every test case. 

4.4 Summary 

In this chapter, we introduce the notion of vulnerability surfaces under attack scenarios 

as the measurement of the QoP offered by Mandatory Access Control systems for Linux. 

A vulnerability surface consists the set of minimal exploit paths that are necessary and 
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sufficient for an attack scenario to be realized. The surface depends on the MAC mech­

anism, the specific MAC policy, the DAC policy settings, and the system configuration 

information. We have implemented a tool called VulSAN for computing such vulnerability 

surfaces for Linux systems with SELinux or AppArmor. VulSAN generates the host at­

tack graph for a given attack scenario and compute the vulnerability surface from an attack 

graph. VulSAN can be used to compare the QoP of different Linux distributions. It can 

also be used as a system hardening tool, enabling the system administrator to analyze the 

vulnerability surface of the system and tweaking the policy to reduce it. Because VulSAN 

can handle both SELinux and AppArmor, which are the two MAC systems used by major 

Linux distributions, it can be used for most enterprise Linux distributions and home user 

distributions. We have evaluated VulSAN by analyzing and comparing SELinux and Ap­

pArmor in several recent Linux distributions, and showed that there are opportunities to 

tighten the policy settings in several popular Linux distributions. 
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5 ACCESS CONTROL POLICY ANALYSIS UNDER WINDOWS 

Among different operating systems, the study of Windows systems is critical given its 

popularity and complexity. Windows access control is an example of complicated access 

control systems. For example, in Microsoft Windows there are about 15 types of securable 

objects [13], and each type is associated with up to 32 access mask bits. Virtually every 

object in the system, such as files, registry keys, services, processes, pipes, etc, is guarded 

by a security descriptor which contains an access control list and other security informa­

tion. The complexity often makes the mechanisms difficult to understand by normal users, 

system administrators and software developers. Given the scale of possible configurations 

and the difficulty to thoroughly understand the mechanisms, host systems can easily be 

mis-configured [18]. 

Since access control is a major mechanism to provide user isolation and to protect op­

erating systems against local privilege escalation attacks and remote attacks, access control 

mis-configurations could have serious security consequences. For example, if the right to 

write a critical system file is accidentally given to unprivileged users, a normal user can 

easily gain the privileges of a system administrator. Even if configurations are correct, an 

attacker might exploit software vulnerabilities to compromise the system. There are always 

legitimate reasons for a privileged process to interact with untrusted and potentially mali­

cious data. For example, a privileged server program might receive network traffic. It can 

be compromised if, say, the input validation is not done properly. 

There are a number of existing research works that study Windows access control [5, 

18, 26–32]. Most of existing approaches for Windows are based on known attack patterns. 

With these approaches, attack scenarios are defined manually, and corresponding attacks 

are captured automatically. Given the complexity and the amount of possible attacks, it is 

difficult to manually enumerate all attack scenarios. Another issue of existing solutions is 
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that they usually do not consider software vulnerabilities therefore some potential attacks 

are ignored. 

In this chapter, we present a tool called Windows Access Control Configuration Ana­

lyzer (WACCA) to automatically discover attack patterns in a Windows host. Here an at­

tack pattern represents a set of similar attacks. An attack consists of one or several actions 

by the attacker. WACCA can be used to find various privilege escalation attacks through 

the access control subsystem in Windows. Such a tool is useful for software vendors that 

the configurations of software packages can be tested thoroughly. It also benefits system 

administrators that the potential vulnerabilities of the systems they manage can be better 

understood. Our contributions are as follows: 

1. We propose a model to analyze Windows access control configurations. The model 

is centered on the abilities of the attackers over system objects. An attacker can 

take actions to gain additional abilities from the abilities he already has. Given the 

attacker’s initial abilities and attack goals, an attack graph is used to represent all 

possible attacks by the attacker. 

2. We implement WACCA based on the model. WACCA consists of a scanner to scan 

the configurations, an attack graph generator to generate the attack graph, and a pat­

tern analyzer to automatically discover attack patterns and their instances. Logic pro­

gramming is used to describe the interaction rules within the system, which makes 

the rules highly declarative and intuitive. 

3. We study the configurations of a Windows Vista host. A remote attack case and a 

local attack case are analyzed. WACCA found 8 attack patterns totally. The attack 

subgraph and instances of each pattern were also generated. 

5.1 Design of WACCA 

We aim to develop a tool for reasoning privilege escalation attacks through the access 

control subsystem in Windows. 
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WACCA can find such privilege-escalation attacks for a Windows host. It takes inputs 

that include two parts: (1) system facts, and (2) specified interaction rules. The system 

facts include access control configurations, such as access tokens of processes, security 

descriptors of files, etc. The interaction rules define how an attacker can interact with 

the system, e.g., by writing files, launching processes, etc. The tool answers a fundamental 

question of all privilege escalation attacks: what can an unprivileged user do? For example, 

can the user acquire a privileged process which has an access token of an administrator? 

An attack graph is generated to answer the question. 

Due to the size of a typical such attack graph, simply presenting the graph to an admin­

istrator may be overwhelming. WACCA addresses this by extracting attack patterns from 

the graph. An attack pattern essentially represents a particular type of attack paths in the 

attack graph. 

5.1.1 Attacker’s Abilities 

Our model is centered on analyzing the attacker’s abilities over objects in the system. 

There are different types of objects, such as processes, files, services, etc. The privileges 

an attacker acquires in the system are expressed by his abilities over objects. We consider 

the following abilities 

•	 control process code(AccessToken). The attacker controls the code that a process 

runs with AccessToken being its access token. This may happen because the attacker 

has a local account with AccessToken, or because the attacker exploits a vulnerability 

of a process and hijacks the control flow of the process. 

•	 control network input(PortNum). The attacker can access the host machine remotely 

through the port number PortNum. This happens when the machine’s port number is 

open to the network. 

•	 control file data(FileName). The attacker controls the data of the file with name 

FileName. 
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•	 control file dacl(FileName). The attacker controls the discretionary access control 

list of the file with the name FileName. 

•	 control service config(ServiceName). The attacker controls the configuration param­

eters of the service with the name ServiceName. 

•	 control service dacl(ServiceName). The attacker controls the discretionary access 

control list of the service with the name ServiceName. 

To denote an object, we sometimes use the object’s attributes that are relevant to access 

control, rather than a unique identifier. For example, if an attacker controls the code of a 

process, what matters to the attacker is the access token of the process. 

5.1.2 Actions and Deriving Rules 

To achieve privilege escalation, the attacker carries out various actions to gain new 

abilities. An attacker may perform a wide range of actions. For example, he may write 

a critical file to control the data of the file or he may compromise a program to control a 

process. Some actions are simply Win32 API function calls, e.g., ChangeServiceConfig. 

Some actions require other users’ involvement, e.g., Trojan attacks in which the attacker 

replaces a binary file with a malicious program and waits for a user to launch a Trojan 

program. We consider two types of such Trojan attacks. The first type is represented by 

the action WaitExecute, which means that in the current snapshot, some process is already 

executing the binary file. Then we know it is very likely that in the future a process with the 

same access token will execute this binary file. The other type is represented by the action 

HopeExecute, which means that the attacker hopes that some user might execute the binary. 

The latter type has a lower likelihood of succeeding. Some actions require compromising 

some programs. The action CompromiseRead represents the action to compromise a buggy 

program by maliciously crafting the content of a file that is read by the program. The action 

CompromiseNetwork represents the action of sending maliciously crafted data to a buggy 

program through network. 
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When carrying out an action, there are pre-conditions that must be satisfied. After suc­

cessfully carrying out an action, the attacker acquires new abilities. We call these derived 

abilities, and use a deriving rule to define the pre-conditions, the action, and the derived 

ability. For example, the deriving rule of file writing is as follows: 

control process code(access token) 

file security descriptor(filename, security descriptor) 

access token has right(access token, right, security descriptor) 

(here right 2 {FILE APPEND DATA, FILE WRITE DATA, 

GENERIC WRITE, GENERIC ALL}) 

=) WriteFile(filename) =) 

control file data(filename) 

There are 3 pre-conditions in the rule: (1) The attacker controls a process with a certain 

access token (2) The file has a certain security descriptor (3) The security descriptor allows 

the access token to write to the file. 

Table 5.1 shows different deriving rules and actions considered in our model. Note 

that the difficulties to carry out different actions vary. The action ChangeServiceConfig 

can be easily carried out once the pre-conditions are satisfied: the attacker just needs to 

call the corresponding API function. On the other hand, to exploit a bug of a network 

server program might require a lot more efforts. It is discussed in Section 5.2.3 how to 

differentiate between actions. 

5.1.3 Initial Abilities and Goals 

The attacker has some initial abilities. In our case studies, we consider two scenarios, 

a remote attacker and a local attacker. The remote attacker can access the host remotely 

through the network. Let PortNum be any valid port number of the host, the attacker’s 

initial ability is control network input(PortNum). 
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Table 5.1
 
Deriving Rules
 

Ability Pre-conditions Action 

control service config(·) 

control process code(access token) 
SCM security descriptor(sd) 
access token has right(access token, right, sd) 
right 2 {SC MANAGER CREATE SERVICE, 
GENERIC WRITE, GENERIC ALL} 

CreateService(service) 

control service config(·) 

control process code(access token) 
service security descriptor(service, sd) 
access token has right(access token, right, sd) 
right 2 { SERVICE CHANGE CONFIG, 
GENERIC WRITE, GENERIC ALL } 

ChangeServiceConfig(service) 

control service config(·) control service dacl(service) ChangeServiceConfig(service) 

control service dacl(·) 

control process code(access token) 
service security descriptor(service, sd) 
access token has right(access token, right, sd) 
right 2 { WRITE DAC, WRITE OWNER, 
GENERIC ALL } 

SetServiceObjectSecurity(service) 

control file dacl(filename) 

control process code(access token) 
file security descriptor(filename, sd) 
access token has right(access token, right, sd) 
right 2 { WRITE DAC, WRITE OWNER, 
GENERIC ALL } 

SetNamedSecurityInfo(filename) 

control file data(filename) 

control process code(access token) 
file security descriptor(filename, sd) 
access token has right(access token, right, sd) 
right 2 { FILE APPEND DATA, 
FILE WRITE DATA, 
GENERIC WRITE, GENERIC ALL } 

WriteFile(filename) 

control file data(filename) control file dacl(filename) WriteFile(filename) 
control process code(⇤) control service config(service) WaitStartService(service) 

control process code(access token) 
control file data(filename) 
process running(pid, filename) 
process token(pid, access token) 

WaitExecute(filename) 

control process code(*) 
control file data(filename) 
is executable(filename) 

HopeExecute(filename) 

control process code(access token) 

control file data(filename) 
process reading(pid, filename) 
process running(pid, binary) 
process token(pid, access token) 

CompromiseRead(binary, filename) 

control process code(access token) 

control network input(port) 
receiving data(pid, port) 
process running(pid, binary) 
process token(pid, access token) 

CompromiseNetwork(binary, port) 

Two types of wildcards are used here. If a value is irrelevant to access control, it is 
replaced with the wildcard of ·. For example, if the attacker can control the configu­
ration parameters of a service, the name of the service is not important. Therefore the 
ability is represented as control service config(·). 
If the value can be manipulated by the attacker to any relevant value, it is replaced 
with the wildcard of ⇤. For example, if the attacker can configure a service, she can 
thus manipulate the account that the service runs with. Therefore after the service is 
started the access token of the process is ⇤. 
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The local attacker has an unprivileged local account TestNormalUser, and has the ability 

control process code(SecurityDescriptor(sidTestNormalUser, ...)) 

The attacker’s goals can also be expressed by abilities. A typical goal is to acquire an 

administrator’s SID. The corresponding ability is 

control process code(SecurityDescriptor(sidadministrator, ...)) 

Intuitively, an attack is realized by carrying out actions (or, applying deriving rules) to 

augment the attacker’s abilities from initial abilities to goals. We study a host configuration 

in the context of the attacker’s initial abilities and goals. 

5.1.4 Attack Graph and Attacks 

An attack graph is used to demonstrate all possible attacks within the model. There are 

three types of nodes in an attack graph: ability nodes, fact nodes and deriving nodes. Each 

ability node represents an attacker’s ability. Each fact node represents some system facts or 

information that is implied by system facts. Each deriving node corresponds to a deriving 

rule. We call ability nodes and fact nodes graph nodes. A deriving node is connected to 

several graph nodes which correspond to the pre-conditions. It is also connected to one 

ability node which corresponds to the derived ability. A deriving node is labeled by the 

action of the corresponding deriving rule. 

Nodes representing initial abilities are called initial nodes. Nodes representing goals 

are called goal nodes. Goal nodes do not serve as pre-conditions for any deriving nodes. 

Figure 5.1 is a simple example of attack graph. The attacker’s initial ability is control­

ling an unprivileged process with access token at0. The goal is to control some processes 

with privileged access tokens. With at0 the attacker can change the configuration of two 

services, service1 and service2. By configuring the services, the attacker can wait for the 

services to be started, and control corresponding processes with access tokens at5 and at6. 

With at0 the attacker can also write to a binary file, which is executed by some process in 

the current snapshot. By writing to the file and controlling the data of the file, the attacker 
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































































    

In the graph, at? is an access token; sd? is a security descriptor; service? is a 
service name; file is a file name; pid is a process ID. 

Figure 5.1. An Example of Attack Graph 

can wait for the file to be executed and control the new process with access token at6. 

at4 � at6 are all privileged access tokens. 

An attack can be expressed as a (minimal) subgraph of the attack graph such that 

(1) at least one goal node is in the subgraph (2) any ability node in the subgraph is ei­

ther an initial node or can be derived from ability nodes and fact nodes in the subgraph. 

In Figure 5.1, three attacks can be identified. The first one is expressed by the sub­

graph with nodes {0, 1, 2, 7, 10, 15, 18}. The second one is expressed by the subgraph 

with nodes {0, 3, 4, 8, 11, 16, 19}. The third one is expressed by the subgraph with nodes 

{0, 5, 6, 9, 12, 13, 14, 17, 20}. 
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5.1.5 Attack Patterns 

There could be many attacks in an attack graph. We categorize attacks into attack 

patterns. Every attack can be abstracted into an attack pattern, which represents all attacks 

that use the same actions. In general, an attack pattern is defined by the deriving rules 

involved and the structure of the deriving rules. Particularly, since all the driving rules 

currently considered in our model has exactly one ability in the pre-conditions, an attack 

pattern can be represented as a sequence of deriving rules. For example, in Figure 5.1, there 

are 2 attack patterns (to save space the fact nodes are elided): 

P1 =control process code 

! (ChangeServiceConfig) ! control service config 

! (WaitStartService) ! control process code 

P2 =control process code ! (WriteFile) ! control file data 

! (WaitExecute) ! control process code 

An attack pattern represents the set of all the attacks that can be carried out by follow­

ing the same deriving rules. Different attacks may use different parameters to instantiate 

the objects and actions in the deriving rules. Attacks of a same attack pattern are called 

instances of the attack pattern. There are two instances of P1 and one instance of P2 in 

Figure 5.1. 

Attack patterns and their instances constitute an important part of the analysis results. 

Attack patterns give an overview of the (potential) vulnerabilities of a Windows system. 

All the attacks provide a comprehensive list of possible ways to compromise a system (as 

per the deriving rules in our model). 

5.2 Implementation 

WACCA consists of three components. Fact Collector collects system facts, Attack 

Graph Generator generates the attack graph, and Pattern Analyzer produces attack pat­
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terns and their instances by analyzing the attack graph. Attack Graph Generator encodes 

deriving rules into Prolog rules and enlists the Prolog reference engine to conduct the graph 

generation, therefore the output of Fact Collector are in the form of Prolog facts. 

The sets of attacker’s abilities, attacker’s actions and deriving rules are manually de­

fined. Fact collection, attack graph generation and attack pattern analysis are performed 

automatically. 

5.2.1 Fact Collector 

The Fact Collector retrieves information that is related to our analysis. Any system fact 

that serves as a pre-condition of a deriving rule (or is needed to evaluate a pre-condition) 

in Table 5.1 needs to be collected. The facts are then encoded into Prolog facts. Table 5.2 

gives an overview of the systems facts. Examples of system facts are given in Figure 5.2. 

Table 5.2
 
System Facts Overview
 

Prolog Encoding System Fact 
scm sd(SD) The security descriptor of Service Control Manager is SD. 
network(Pid, Protocol, Port) The process with ID Pid is using a port Port with protocol 

Protocol. 
is executable(FileName) The file FileName is an executable file. 
service sd(ServiceName, SD) The security descriptor of the service with the name 

ServiceName is SD. 
process access token(Pid, AT) The process with ID Pid has the access token AT. 
process info(Pid, FileName) The process with process ID Pid is running the executable with 

the name FileName. 
system handle(Pid, Handle, HType, ObjName) The handle Handle is owned by the process with ID Pid, is of 

type HType and the name of the object is ObjName. 
file sd(FileName, SD) The file with the name FileName has the security descriptor SD. 
account(Sid, Account) The user or group account Account corresponds to the SID Sid. 

In the encoding, SD is a Prolog term that encodes a security descriptor and AT is a Prolog 
term that encodes an access token. An example of each is given in Figure 5.2. Pid, Port 
and Handle are numbers. Protocol 2 {tcp, udp}. HType 2 {file, directory, ...}. FileName, 
ObjName, ServiceName, Sid and Account are strings. 

The Fact Collector is implemented using Python 2.6 with Windows extension [71]. 

Most facts are collected by calling relevant Win32 API functions. The files that processes 
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file_sd(’c:\\Windows\\regedit.exe’, 
sd(’S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464’, 

’S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464’, 
[ace(’allowed’, 0, 

’S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464’, 
[’DELETE’, ’WRITE_OWNER’, ’READ_CONTROL’, ’WRITE_DAC’, 

’FILE_WRITE_EA’, ...]), ... 
ace(’allowed’, 0, ’S-1-5-18’, [’READ_CONTROL’, ’FILE_READ_DATA’, 

’FILE_EXECUTE’, ...]), 
...], 
[ace(’audit’, 192, ’S-1-1-0’, [ ’DELETE’, ’WRITE_OWNER’, ’WRITE_DAC’, 

... ])] )). 

(a) The security descriptor of executable file regedit.exe 

process_access_token(732, access_token(0, primary, ..., 
’S-1-5-18’, ’S-1-5-32-544’, 

[ [’S-1-5-32-544’, enabled_by_default, enabled, owner], 
[’S-1-1-0’, enabled_by_default, enabled, mandatory], 
[’S-1-5-11’, enabled_by_default, enabled, mandatory], ... ], 

..., 
[ [’SeCreateTokenPrivilege’, enabled], 
[’SeAssignPrimaryTokenPrivilege’], 
[’SeLockMemoryPrivilege’, enabled_by_default, enabled], ...], 

’S-1-5-18’, ’S-1-16-16384’, no_write_up)). 

(b) The access token of the process which runs lsass.exe 

Figure 5.2. Examples of System Facts 

are currently reading are retrieved by examining all the handles in the current system snap­

shot. The handles are collected by the Windows Sysinternals tool Handle [72]. The Fact 

Collector consists of about 1700 lines of Python scripts and 250 lines of C++ code (includ­

ing comments and blank lines). 

5.2.2 Attack Graph Generator 

The input of the Attack Graph Generator is a collection of system facts in the form of 

Prolog facts. The attacker’s abilities are also encoded into Prolog facts. For example, the 

ability to control the data of a file is encoded into the Prolog fact 

control file data(file(FileName, SecurityDescriptor)) 
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Here FileName is the name of the file and SecurityDescriptor is the Prolog term to represent 

the security descriptor of the file, which is similar to the one shown in Figure 5.2(a). 

The initial ability of the attacker is declared using a Prolog clause that does not have 

other abilities as pre-conditions. Suppose the attacker initially has an unprivileged local 

account named “TestNormalUser”, the initial ability is declared as follows: 

control_process_code(AccessToken) :­

account(Sid, ’TestNormalUser’), 

sid_access_token(Sid, AccessToken). 

The predicate account(Sid, AccountName) means that the SID Sid represents the account 

named AccountName. The predicate sid access token(Sid, AccessToken) gives an access 

token whose user SID is Sid. 

The deriving rules can be naturally encoded using Prolog rules. Each such rule contains 

two parts: (1) an evaluation part that evaluates the pre-conditions (2) a logging part that logs 

the evaluation if the evaluation succeeds. For example, the deriving rule to compromise a 

program by manipulating its input file can be encoded as follows: 

control_process_code(AccessToken) :­

%% evaluation part 

process_reading(Pid,FileName), 

control_file_data(FileName), 

process_access_token(Pid,AccessToken), 

process_info(Pid,Binary), 

%% logging part 

get_node_id(control_process_code(AccessToken),Id0), 

get_node_id(control_file_data(FileName),Id1), 

get_node_id(process_reading(Pid,FileName),Id2), 

get_node_id(process_access_token(Pid,AccessToken), Id3), 

get_node_id(process_info(Pid,Binary),Id4), 

assert(proof_node(control_process_code_4,Id0, 

[Id1,Id2,Id3,Id4], 

[compromiseRead(Binary,FileName)])). 
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The predicate get node id(Term, Id) returns a unique identifier for Term. proof node is a 

dynamic term. By asserting a proof node, a deriving node is created and thus logged. The 

deriving node contains the information of pre-conditions, post-condition and the action. 

Therefore the whole attack graph can be reconstructed by logged deriving nodes. This 

technique is inspired by [48]. 

The following Prolog rule jump starts the attack graph generation: 

search :- control_process_code(_AccessToken), fail. 

To speed up the execution, we use tabling evaluation provided by Prolog implementa­

tion XSB [73]. All the predicates to represent the attacker’s abilities are declared as tabled 

predicates. This also makes our Prolog program highly declarative. Note that without 

tabling, constructing deriving rules like the above may cause an infinite loop if a standard 

Prolog evaluation is used. 

Attack Graph Generator consists of about 800 lines of Prolog code (including comments 

and blank lines). To achieve better loading and execution time, system facts are declared 

as dynamic predicates. 

5.2.3 Pattern Analyzer 

As discussed previously, the deriving rules we consider share a common property that 

there is exactly one ability in their pre-conditions. Our pattern analyzer is tailored ac­

cording to this property. If we treat all the ability nodes in an attack graph as vertices, 

and deriving nodes as edges connecting the pre-condition node (ability node) and the post-

condition node, the attack graph is reduced to a directed graph. An attack is reduced to 

a path in the graph. The pattern analyzer uses a depth-first search (DFS) to enumerate 

all paths from the initial ability nodes to goal nodes. Paths are categorized into different 

attack patterns on the fly. A pruning is used in the DFS: suppose a path contains nodes 

v1, . . . , vi, vi+1, . . . , vj , . . . , if vj can be derived directly from vi, the path is pruned. This 

pruning avoids unnecessary actions of the attacker which make an attack not interesting. 
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To differentiate between different actions, one can assign a “cost” for each action. The 

cost of an attack pattern is the sum of the costs of all actions involved. Attack patterns can 

therefore be prioritized by their costs. 

Another solution of attack generation is to calculate the shortest paths from initial nodes 

to goal nodes. This method generates a subset of attacks by the above method. We tried 

this approach originally and did not adopt it because the costs assigned to actions affect 

the attacks generated, which makes the cost assignment very tricky, e.g., some interesting 

paths might be ignored if they have slightly higher costs than that of the shortest paths. 

5.3 Case Studies 

We did two case studies on a machine with Windows Vista Ultimate installed. Some 

common software products are installed for evaluation, such as web browser, email client, 

word processor, multimedia player, photo editor, instant messenger, etc. The programs are 

all running when the fact collector collects system facts. 

The first attack scenario is that a remote attacker who can access the targeted host 

through network wants to control a privileged process. The second attack scenario is that 

an attacker with an unprivileged local account wants to control a privileged process. The 

goal of both cases can be represented as the control of a process such that (1) the access 

token is “*”, or (2) the access token contains the SID of account Administrators, or (3) the 

access token contains the SID of account System. 

To prioritize attack patterns, the following costs are assigned to different actions: 

createService 1 changeServiceConfig 1 

setServiceObjectSecurity 1 setNamedSecurityInfo 1 

writeFile 1 waitStartService 1 

waitExecute 2 hopeExecute 5 

compromiseRead 10 compromiseNetwork 10 

Note that the costs only affect the order of the attack patterns. The costs assignments 

do not affect what attack patterns and attacks are generated. 
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The system facts of both cases were collected together. The fact collecting took about 

10 minutes, with most of the time spent on file system scanning. For case 1, the attack 

graph generation took about 100 seconds, and the pattern analysis took about 15 seconds. 

For case 2, the attack graph generation took about 35 seconds, and the pattern analysis took 

about 5 seconds. 

5.3.1 Case 1: Remote Attack 

The initial ability is that the attacker can access the host remotely. The attack graph 

consists of 2469 graph nodes and 5223 deriving nodes. Figure 5.3 shows the 5 attack 

patterns in the attack graph. The costs and numbers of instances of attack patterns are 

shown in Table 5.3. 

P1 =control network input ! (compromiseNetwork) 

! control process code 

P2 =control network input ! (compromiseNetwork) 

! control process code ! (writeFile) ! control file data 

! (waitExecute) ! control process code 

P3 =control network input ! (compromiseNetwork) 

! control process code ! (writeFile) ! control file data 

! (hopeExecute) ! control process code 

P4 =control network input ! (compromiseNetwork) 

! control process code ! (writeFile) ! control file data 

! (compromiseRead) ! control process code 

P5 =control network input ! (compromiseNetwork) 

! control process code ! (writeFile) ! control file data 

! (compromiseRead) ! control process code 

! (writeFile) ! control file data ! (compromiseRead) ! control process code 

Figure 5.3. Attack Patterns of Remote Attacks 
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Table 5.3 
Costs and Numbers of Instances for Attack Patterns of Case 1 & 2 

P1 P2 P3 P4 P5 P6 P7 P8 

cost 10 13 16 21 32 3 6 11 
number of instances 45 60 8562 211 6 4 573 14 

P1 represents attacks that compromise a privileged process which receives network 

traffic. Once the process is compromised, the goal is achieved. Such privileged processes 

receive traffic from about 40 ports in the target system. For example, several service pro­

grams run with the System account, and web browsers, instant messengers, etc, run with 

the user’s account which belongs to the group Administrators. 

P2 represents attacks that compromise an unprivileged process, and then write to an ex­

ecutable file that is being executed by a privileged process at the collecting snapshot. Then 

the attacker can mount a Trojan attack. The unprivileged processes run with unprivileged 

user accounts, LocalService and NetworkService. LocalService and NetworkService were 

introduced from Windows XP and Windows Server 2003 to run less privileged services. 

Before they were introduced, services ran mostly with the System account, which means 

by compromising any service an attacker can take over the entire host. There are 3 exe­

cutables that are running and can become Trojans. By examining the security descriptors 

of these executables, we found that they all grant the right of writing the executable files to 

AuthenticatedUsers, a SID almost every access token has. 

P3 is similar to P2. The difference is that the Trojan attacks involve executables that 

are not running at the collecting snapshot. P3 is more difficult to realize than P2, since 

there is uncertainty in the executables’ being executed by privileged accounts. There are 

574 executables (including dlls) that can be written in this pattern. These executables are 

within 6 software packages from 5 vendors. 

Attacks of P4 comprise two steps: (1) similar to P1 to P3, to compromise an unprivi­

leged process that receives network traffic, (2) write to a file that a process is reading and 

exploit a bug to compromise the process. As an example, Figure 5.4 shows the subgraph 
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of the attack graph that is related to P4. Figure 5.5 shows the attack pattern in details. For 

better visualization, we only show ability nodes in the attack subgraph. The actions are 

shown as edges. From left to right, there are 4 stages and ability nodes belong to the same 

stage are aligned vertically. We call them stage 1 to stage 4, from left to right. There are 

15 nodes on stage 1 and each represents the ability to send data to a port. After taking the 

action CompromiseNetwork, the attacker can control some processes and thus acquire the 

abilities on stage 2. There are 7 unique access tokens on stage 2. The attacker can then 

write to one of the 15 different files to advance to stage 3, with the ability to control the 

content of the corresponding file. After compromising privileged processes which read the 

files, the attacker achieves the goal at stage 4. There are 2 possible privileged access tokens 

the attacker can control at the final stage. 

Attacks of P5 comprise three steps. The first two steps are similar to P4, the attacker 

compromises a process pnet through network and compromises another process pfile through 

file manipulation. pfile is unprivileged therefore the goal has not been achieved, however 

it has some SID that pnet does not have which can be used to write to another data file 

f . By writing to f , the attacker can finally compromise a privileged process which reads 

f , and this is the third step. To realize P5 the attacker needs to exploit 3 vulnerabilities. 

Intuitively this makes P5 more difficult to succeed than the other patterns. This is reflected 

by its highest cost among the 5 patterns. 

5.3.2 Case 2: Local Attack 

The initial ability is the control of an unprivileged process which runs with the account 

of a normal user TestNormalUser. The attack graph consists of 1970 graph nodes and 1216 

deriving nodes. Figure 5.6 shows the 3 attack patterns found in the attack graph. The costs 

and numbers of instances of attack patterns are shown in Table 5.3. 

P6 is a Trojan attack. The attacker writes an executable and mounts a Trojan attack. 

P7 is another Trojan attack, the difference is that the executables (dlls) are not running 
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


































































































































































































 














































































 























































































 

 

 

 

 

































































 






























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Figure 5.4. The Subgraph of the Attack Graph of Case 1 for Attack Pattern P4 

at the collecting snapshot. P8 is realized by manipulating the input file of a process and 

compromising the process by exploiting some vulnerabilities. 
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 









 





 







Figure 5.5. Attack Pattern P4 with Details 

P 6 =control process code ! (writeFile)! control file data 

! (waitExecute)! control process code 

P 7 =control process code ! (writeFile)! control file data 

! (hopeExecute)! control process code 

P 8 =control process code ! (writeFile)! control file data 

! (compromiseRead)! control process code 

Figure 5.6. Attack Patterns of Local Attacks 

P6, P7 and P8 share some similarities with P2, P3 and P4, respectively. The differ­

ence is that in local attacks, the attacker has already controlled a local process, therefore a 

compromising through network is not necessary. 

5.3.3 Discussions on Attacks 

Since WACCA models software vulnerabilities, the success of some attacks depends on 

the success of identifying and exploiting vulnerabilities. The actions that require software 

exploitation are CompromiseRead and CompromiseNetwork. Some common practices for 

system administration can help reduce these attacks, e.g., only enable necessary server 

programs, patch software regularly to eliminate known bugs, etc. 
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Some attacks are Trojan attacks. The success depends on two factors (1) The attacker 

can write to an executable (2) Users, especially privileged users, will execute the Trojan. 

To prevent (1), one solution is to strengthen the security descriptors of the executables. 

For example, it might be unnecessary to give AuthenticatedUsers the right to write to the 

executables in patterns P2 and P6. 

There are certain issues we didn’t consider in our model. For example, there are several 

dll files that can be used in Trojan attacks of pattern P3 and P7. We contacted the software 

vendor about these files and were informed that they have employed digital signature to 

make sure that, even when these dll files are changed by an attacker, the malicious code 

will not be executed since the attacker will not be able to forge a valid digital signature. 

Services are related to several deriving rules in WACCA. However in both case stud­

ies there are no attacks related to services. By examining the security descriptors of the 

services on the host, we found that only highly privileged accounts have critical rights on 

services, such as WRITE DAC, WRITE OWNER, SERVICE CHANGE CONFIG, etc. If 

considering other initial abilities or goals, there might be attacks related to services. Also 

the case studies are on the particularly configured host, there could be service-related at­

tacks if other software products are installed, or existing software packages are configured 

improperly. 

5.4 Discussions 

WACCA can find attacks based on the abilities and deriving rules that we consider in 

the model. There are certain things not currently in the tool. For example, interprocess 

communications such as pipes and RPC are not considered. To consider more system in­

teractions, new deriving rules should be added. More abilities will have to be included, 

when we have new attack goals in mind. For example, concerning data privacy, the ability 

to read files should be included. New objects should be included, when we want to model 

new types, e.g., registry keys. WACCA serves as a prototype to demonstrate the effective­
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ness of our analysis model, therefore we include the most important and well known object 

types and attacker’s abilities. 

There are possibilities to further refine some abilities. For example, the ability to control 

the code of a process is on a 0 or 1 basis, i.e., the attacker can either completely control a 

process or not at all. It’s possible that some vulnerability can let the attacker influence the 

process without completely control the process. For example, the attacker might be able to 

manipulate a buffer that is used for a process to write to some critical file, but he cannot 

command the process to execute arbitrary code. 

Another issue is the completeness of the information. As discussed in Subsection 5.1.2, 

to consider the deriving rule of compromising a buggy program by crafting content of its 

input files, one needs the list of all possible input files of the target program. This might not 

be practical and we use the approximate approach as discussed previously. This technique 

is inspired by [26]. 
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6 SUMMARY 

This dissertation introduces a generic methodology to analyze access control policies in 

operating systems. We analyze the effectiveness of access control policies under attack 

scenarios. An attack scenario consists of two parts: (1) the resources that an attacker ini­

tially has (2) the attack objective of the attacker. Under an attack scenario, the effectiveness 

of a policy is evaluated by the possible attacks that can be carried out to achieve the attack 

objective. An attack is defined by a series of attack actions that change system state. We 

use the state of a system to represent the control an attacker has on the system. All possible 

attacks are encoded in a host attack graph, in which each node is a system state and each 

edge represents an attack action that can incur a state change. Analyses can be performed 

on a host attack graph, e.g., to group similar attacks into attack patterns, or to find the list 

of minimal attack paths. 

We apply the approach to analyze access control policies in Linux systems and Win­

dows systems. The tool under Linux is called Vulnerability Surface ANalyzer (VulSAN) 

and the tool under Windows is called Windows Access Control Configuration Analyzer 

(WACCA). Both tools have similar components: (1) a fact collector that collects system 

facts and policy configuration, (2) an attack graph generator that generates a host attack 

graph, and (3) an attack graph analyzer that analyzes the host attack graph. Both tools run 

automatically after we manually define the attack scenario and the rules of attacker’s ac­

tions, which include the pre-conditions and effects of each action. System facts are encoded 

using Prolog facts, and the rules of attacker’s actions are encoded using Prolog rules. The 

attack graph generator uses the Prolog reference engine to generate the host attack graph. 

We use VulSAN to analyze the default policies that shipped with Ubuntu, Fedora and 

SUSE Linux. Several opportunities to strengthen the protection are found. We also use 

the results to compare policies of SELinux and AppArmor on a version of Ubuntu, and 

discuss the comparison results. We use WACCA to analyze the policy configuration on a 
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Windows Vista host, and find several attack patterns. The results suggest that the security 

configurations of several software products could be improved. 

The models and tools discussed in this dissertation can help normal users, system ad­

ministrators and software developers to better understand the effectivenesses and weak­

nesses of access control configurations in operating systems. It is especially helpful given 

the complexities of typical access control policies in operating systems. 
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