
CERIAS Tech Report 2009-36
Improving real-world access control systems by identifying the true origins of a request

 by Ziqing Mao
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



 
       

  

       
                                           

       

       

       

        

      

                                                     

   
          

Graduate School ETD Form 9 
(Revised 12/07) 

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

Ziqing Mao By 

Entitled Improving Real-World Access Control Systems by Identifying the True Origins of a 
Request 

For the degree of   Doctor of Philosophy 

Is approved by the final examining committee: 

Ninghui Li 

   Chair 

Elisa Bertino 

Dongyan Xu 

Xiangyu Zhang 

To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. 

Ninghui Li Approved by Major Professor(s): ____________________________________

  ____________________________________ 

William J. Gorman 17 November, 2009 Approved by: 
Head of the Graduate Program Date 



 
   

   

   

   

               
       

          
      

        
      

         
             

 

______________________________________ 
      

______________________________________ 
 

 

Graduate School Form 20 
(Revised 6/09) 

PURDUE UNIVERSITY 

GRADUATE SCHOOL 


Research Integrity and Copyright Disclaimer 

Title of Thesis/Dissertation: 

Improving Real-World Access Control Systems by Identifying the True Origins of a Request 

Doctor of Philosophy For the degree of ________________________________________________________________ 

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.* 

Further, I certify that this work is free of plagiarism and all materials appearing in this 
thesis/dissertation have been properly quoted and attributed. 

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with 
the United States’ copyright law and that I have received written permission from the copyright 
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save 
harmless Purdue University from any and all claims that may be asserted or that may arise from any 
copyright violation. 

Ziqing Mao 
Printed Name and Signature of Candidate 

11/28/2009 
Date (month/day/year) 

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html 

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html


IMPROVING REAL-WORLD ACCESS CONTROL SYSTEMS BY
 

IDENTIFYING THE TRUE ORIGINS OF A REQUEST
 

A Dissertation
 

Submitted to the Faculty
 

of
 

Purdue University
 

by
 

Ziqing Mao
 

In Partial Fulfillment of the
 

Requirements for the Degree
 

of
 

Doctor of Philosophy
 

December 2009
 

Purdue University
 

West Lafayette, Indiana
 



 
 
 
 

 
 
 
 
 
 

 
 

  

 

 
 
 
 
 
 

 

 

 
 

 

 
 

 
 
 

UMI Number: 3403124
 

All rights reserved
!

INFORMATION TO ALL USERS
!
The quality of this reproduction is dependent upon the quality of the copy submitted. 


In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if material had to be removed, 


a note will indicate the deletion.
!

UMI 3403124 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 

789 East Eisenhower Parkway 


P.O. Box 1346 

Ann Arbor, MI 48106-1346 




ii 

To my dear dad. 



iii 

ACKNOWLEDGMENTS 

First and foremost, I oÆer my sincerest gratitude to my advisor, Prof. Ninghui 

Li, who has guided and supported me throughout my Ph.D. study with his patient, 

knowledge and wisdom whilst allowing me the room to work in my own way. He is 

always willing to help, both on academic development and on personal issues. One 

simply could not wish for a better or friendlier advisor, and I consider it a work of 

providence that I found him as my advisor and friend. 

Hong Chen, for contributing extensively to the operating system security project 

and a wide variety of other assistances. 

Dr. Shuo Chen, for mentoring me through the HTTPS security project and in­

troducing me to the interesting area of web security. 

I would also like to thank my thesis committee, Prof. Dongyan Xu, Prof. Xiangyu 

Zhang, Prof. Elisa Bertino and Prof. Sam WagstaÆ for their direction, dedication, 

and invaluable advice for this dissertation. 

I am also indebted to Prof. Cristina Nita-Rotaru, Tiancheng Li, Qun Ni and 

Qihua Wang. Many thanks for your kind help and support during my Ph.D. study. 

My parents, Xuan Chen and Zuzhang Mao, and my sister, Yilan Mao, receive my 

deepest gratitude. I attribute the level of my Ph.D. degree to their encouragements 

and eÆorts and without them I would not be able to pursue a Ph.D. degree. 

Last, but certainly not least, I thank my wife, Ling Tong, for her understanding 

and love. I would like to share this with her. 



iv 

TABLE OF CONTENTS 

Page
 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii
 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  viii
 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix
 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
 
1.1 Operating System Access Control . . . . . . . . . . . . . . . . . . .  3
 

1.1.1	 The Traditional Discretionary Access Control . . . . . . . .  4
 
1.1.2	 Defeating Remote Exploits: Mandatory Usable Integrity Pro­

tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
 
1.1.3	 Defeating Trojan Horses: Information Flow Enhanced Discre­

tionary Access Control . . . . . . . . . . . . . . . . . . . . .  7
 
1.2 Browser Access Control . . . . . . . . . . . . . . . . . . . . . . . . .  9
 

1.2.1	 Pretty-Bad-Proxy Adversary against HTTPS . . . . . . . .  10
 
1.2.2	 Cross-Site Request Forgery . . . . . . . . . . . . . . . . . . .  11
 

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
 

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
 
2.1 Related Works in Operating System Access Control . . . . . . . . .  14
 

2.1.1	 Unix Access Control . . . . . . . . . . . . . . . . . . . . . .  14
 
2.1.2	 Windows Access Control . . . . . . . . . . . . . . . . . . . .  16
 
2.1.3	 Security Enhanced Linux (SELinux) . . . . . . . . . . . . .  17
 
2.1.4	 AppArmor . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
 
2.1.5	 Other Related Works in Operating System Access Control . 22
 

2.2 Related Works in Browser Security and HTTPS Security . . . . . .  25
 
2.3 Existing CSRF Defenses . . . . . . . . . . . . . . . . . . . . . . . .  28
 

3 Usable Mandatory Integrity Protection . . . . . . . . . . . . . . . . . . .  31
 
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
 
3.2 Design Principles for Usable Access Control Systems . . . . . . . .  32
 
3.3 The UMIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
 

3.3.1	 An Overview of the UMIP Model . . . . . . . . . . . . . . .  36
 
3.3.2	 Dealing with Communications . . . . . . . . . . . . . . . . .  40
 
3.3.3	 Restricting Low-Integrity Processes . . . . . . . . . . . . . .  42
 
3.3.4	 Contamination through Files . . . . . . . . . . . . . . . . . .  45
 
3.3.5	 Files Owned by Normal User Accounts . . . . . . . . . . . .  47
 
3.3.6	 Other Integrity Models . . . . . . . . . . . . . . . . . . . . .  47
 



v 

Page 
3.4 An Implementation under Linux . . . . . . . . . . . . . . . . . . . .  49
 

3.4.1	 Implementation . . . . . . . . . . . . . . . . . . . . . . . . .  49
 
3.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
 

4 Trojan Horse Resilient Discretionary Access Control . . . . . . . . . . . .  57
 
4.1 An Overview of IFEDAC . . . . . . . . . . . . . . . . . . . . . . . .  57
 
4.2 The IFEDAC Model . . . . . . . . . . . . . . . . . . . . . . . . . .  59
 

4.2.1	 Elements in the IFEDAC Model . . . . . . . . . . . . . . . .  59
 
4.2.2	 Access Control Rules in IFEDAC . . . . . . . . . . . . . . .  60
 
4.2.3	 Exceptions to the Rules . . . . . . . . . . . . . . . . . . . .  65
 

4.3 Security Properties of IFEDAC . . . . . . . . . . . . . . . . . . . .  67
 
4.3.1	 Defining Integrity . . . . . . . . . . . . . . . . . . . . . . . .  67
 
4.3.2	 Integrity Protection Properties . . . . . . . . . . . . . . . .  69
 
4.3.3	 Confidentiality Protection in IFEDAC . . . . . . . . . . . .  71
 

4.4 Deployment and Usability . . . . . . . . . . . . . . . . . . . . . . .  71
 
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
 

5	 Pretty-Bad-Proxy: An Overlooked Adversary in Browsers’ HTTPS Deploy­
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79
 
5.1 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . .  79
 
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
 

5.2.1	 Same Origin Policy . . . . . . . . . . . . . . . . . . . . . . .  81
 
5.2.2	 Basics of HTTPS and Tunneling . . . . . . . . . . . . . . . .  82
 

5.3 Script-Based PBP Exploits . . . . . . . . . . . . . . . . . . . . . . .  83
 
5.3.1	 Embedding Scripts in Error Responses . . . . . . . . . . . .  84
 
5.3.2	 Redirecting Script Requests to Malicious HTTPS Websites . 86
 
5.3.3	 Importing Scripts Into HTTPS Contexts Through “HPIHSL”
 

Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
 
5.4 Static-HTML-Based PBP Exploits . . . . . . . . . . . . . . . . . .  90
 

5.4.1	 Certifying a Proxy Page with a Real Certificate . . . . . . .  91
 
5.4.2	 Stealing Authentication Cookies of HTTPS Websites by Faking
 

HTTP Requests . . . . . . . . . . . . . . . . . . . . . . . . .  93
 
5.5 Feasibility of Exploitation in Real-World Network Environments . .  95
 

5.5.1	 A Short Tutorial of TCP Hijacking . . . . . . . . . . . . . .  97
 
5.5.2	 PBP Exploits by a Sni±ng Machine . . . . . . . . . . . . . .  98
 
5.5.3	 Attack Implementations . . . . . . . . . . . . . . . . . . . .  100
 

5.6 Mitigations and Fixes . . . . . . . . . . . . . . . . . . . . . . . . . .  101
 
5.6.1	 Fixes of the Vulnerabilities . . . . . . . . . . . . . . . . . . .  101
 
5.6.2	 Mitigations by Securing the Network . . . . . . . . . . . . .  103
 

6	 Defeating Cross-Site Request Forgery Attacks with Browser-Enforced Au­
thenticity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
 
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
 
6.2 Understanding CSRF Attacks and Existing Defenses . . . . . . . .  107
 



vi 

Page 
6.2.1 The CSRF Attack . . . . . . . . . . . . . . . . . . . . . . .  108
 
6.2.2 Real-world CSRF vulnerabilities . . . . . . . . . . . . . . . .  110
 
6.2.3 A variant of CSRF attack . . . . . . . . . . . . . . . . . . .  111
 

6.3 Browser-Enforced Authenticity Protection (BEAP) . . . . . . . . .  113
 
6.3.1 Inferring the User’s Intention . . . . . . . . . . . . . . . . .  114
 
6.3.2 Inferring the Sensitive Authentication Tokens . . . . . . . .  117
 

6.4 Security Analysis and Discussions . . . . . . . . . . . . . . . . . . .  120
 
6.4.1 Compared with IE’s Cookie Filtering for Privacy Protection 122
 

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
 

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
 

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
 



vii 

LIST OF TABLES 

Table	 Page 

3.1 The four forms of file exceptions in UMIP. . . . . . . . . . . . . . . . .  50
 

3.2 A sample exception policy of UMIP . . . . . . . . . . . . . . . . . . . .  52
 

3.3 The Unixbench 4.1 benchmark results of UMIP. . . . . . . . . . . . . .  55
 

3.4 The Lmbench 3 benchmark results of UMIP (in microseconds). . . . . .  56
 

4.1 The 17 access control and label maintenance rules of IFEDAC. . . . . .  61
 

4.2	 Exception privileges for network programs in IFEDAC . . . . . . . . .  76
 

4.3	 Exception privileges for setuid-root program in IFEDAC . . . . . . . .  77
 

5.1	 HTTPS domains compromised because HPIHSL pages import HTTP scripts
 
or style-sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
 

5.2	 Insecure HTTPS websites due to the improper cookie protection . . .  94
 

5.3	 Vulnerability reporting and browser vendors’ responses. . . . . . . . .  102
 

6.1	 The CSRF vulnerabilities discovered in real world websites. . . . . . . .  110
 

6.2	 The default policy of BEAP enforced by the browser . . . . . . . . . .  118
 

6.3	 The default policy for cookie filtering for privacy protection in IE6 . .  123
 



viii 

LIST OF FIGURES 

Figure Page 

3.1 The summary of the UMIP model . . . . . . . . . . . . . . . . . . . . .  37
 

5.1 The basic idea of the PBP adversary . . . . . . . . . . . . . . . . . . .  80
 

5.2 The attack embedding scripts in 4xx/5xx error messages . . . . . . . .  85
 

5.3 The attack using 3xx redirection message . . . . . . . . . . . . . . . . .  87
 

5.4 The attack certifies a faked login page as https://www.paypal.com . . .  92
 

5.5 A typical TCP hijacking . . . . . . . . . . . . . . . . . . . . . . . . . .  97
 

5.6 Proxy setting options for IE and Chrome . . . . . . . . . . . . . . . . .  98
 

6.1 The ClickJacking attack against Facebook . . . . . . . . . . . . . . . .  112
 

6.2 Links to cross-site requests in Youtube . . . . . . . . . . . . . . . . . .  120
 

http:https://www.paypal.com


ix 

ABSTRACT 

Mao Ziqing Ph.D., Purdue University, December 2009. Improving Real-World Ac­
cess Control Systems by Identifying the True Origins of a Request. Major Professor: 
Ninghui Li. 

Access control is the traditional center of gravity of computer security. In order 

to make correct access control decisions, a critical step is to identify the origins of 

an access request. The origins of a request are the principals who cause the request 

to be issued and the principals who aÆect the content of the request. Therefore, the 

origins are responsible for the request. The access control decision should be based 

on the permissions of the origins. 

In this dissertation, we examined two real-world access control systems, operating 

system access control and browser access control. They are vulnerable to certain at­

tacks because of their limitations in identifying the origins of a request. In particular, 

the discretionary access control (DAC) in the operating system is vulnerable to Trojan 

horses and vulnerability exploits, while the same origin policy (SoP) in the browser is 

vulnerable to the malicious proxy adversary against HTTPS and the cross-site request 

forgery attack. We proposed enhancements of both systems by identifying the true 

origins of a request. We discussed the design details, the prototype implementations, 

and the experimental evaluations of the enhancements. 



1 

1 INTRODUCTION 

In computer systems the functionality of the access control is to control which princi­

pals (persons, processes, machines, ...) have access to which resources in the system 

— which files they can read, which programs they can execute, and how they share 

the data with other principals, and so on [1]. Access control is critical to the security 

of real-world computer systems. For example, the host security heavily relies on the 

access control enforced by the operating system. The Firewall, which is essentially 

an access control system, plays an important role in the security of an Enterprise 

network. In Database systems, the access control restricts which users are allowed to 

access which tables. In browsers, the access control enforces the same-origin-policy 

(SoP) model to ensure that user sessions with diÆerent websites are properly isolated. 

The key functionality of an access control system is to perform the access control 

check. When an access request happens in the computer system, the access control 

check makes an access control decision based on the access control policy specified by 

the administrator. Typically, the access control decision is either allow or deny. 

Traditionally, an access request is comprised of three components: the subject, 

the object and the access mode. The subject is the entity that issues the request. In 

computer systems, the subject is typically a piece of running code, e.g., a process in 

the operating system. The object is the resource the subject wants to access, e.g., a 

file in the operating system and a table in the database system. Examples of access 

modes include read, write, etc. Given a request, the access control check needs to 

determine whether the subject has the privilege to access the object in the access 

mode based on the policy. 

However, in real-world access control systems, the policy does not grant the priv­

ileges to the subjects. Instead, the privileges are granted to principals in the policy. 

For example, in the operating system, privileges are granted to user accounts. In the 



2 

browser, privileges are granted to domains (e.g., https://www.bank.com). Therefore, 

when checking a request against the policy, the access control mechanism has to fill 

the gap between the subjects in the requests and the principals in the policy. To do 

that, we introduce the notion of origins of a request. 

At any time, a subject is executing on the behalf of one or more principals. The 

origins of a request are defined as the set of principals on whose behalf the subject 

is executing at the time the request is issued. In this way, the origins of a request 

are actually the principals that cause the subject to issue the request and the origins 

should be responsible for the request. As a result, the access control check is to check 

the request against the privileges of the origins of the request. 

To properly identify the origins of a request is essential to making a correct access 

control decision. Many real-world access control systems are vulnerable to certain 

attacks because of their limitations in identifying the origins. In particular, we target 

two real-world access control systems, operating system access control and browser 

access control. The discretionary access control (DAC) used in operating systems is 

vulnerable to Trojan horses and vulnerability exploits, whilst the same-origin policy 

(SoP) model used in browsers is vulnerable to the pretty-bad-proxy adversary against 

HTTPS and the cross-site request forgery attack. We show that these access con­

trol systems are vulnerable because they do not correctly identify the origins of the 

requests. 

•	 First, in DAC the origin of a request is defined as the user account who invokes 

the subject process. However, if the program is malicious or contains vulnera­

bilities that have been exploited, it may perform malicious activities that are 

not intended by the invoker. As a result, DAC is vulnerable to the vulnerability 

exploits and Trojan horses. 

•	 Second, the SoP model protects the integrity of web session whilst relying on 

the browser to correctly identify the origins of the web objects and documents. 

The HTTPS deployments in major browsers fail to identify the true origins of 

http:https://www.bank.com


3 

web messages. They mistakenly accept the web messages transmitted over an 

insecure connection into an HTTPS session. As a result, a malicious man-in­

the-middle is able to corrupt the integrity of an HTTPS session. 

•	 Third, the cross-site request forgery attack is feasible because the SoP model 

does not restrict an HTTP request to carry the user’s authentication token 

based on the origin of the request. As a result, a malicious website is able to 

forge a cross-site request addressing a sensitive website on the user’s behalf, 

using the user’s authentication token associated with the sensitive website. 

Based on the analysis on the existing access control systems and their weaknesses, we 

propose enhancements to make them resilient to those attacks. 

In this chapter, we first describe the basic access control models that are cur­

rently used in the operating system and the browser. Then we analyze why they are 

vulnerable to certain attacks. Finally, we introduce the basic idea of the proposed 

enhancements. 

1.1 Operating System Access Control 

The general goal of the operating system access control is to prevent the adversary 

from compromising the host system. Host compromise is one of the most serious 

computer security problems today. Computer worms propagate by first compromising 

vulnerable hosts and then propagate to other hosts. Compromised hosts may be 

organized under a common command and control infrastructure, forming botnets. 

Botnets can then be used for carrying out attacks, such as phishing, spamming, 

distributed denial of service, and so on. These threats can be partially dealt with at 

the network level using valuable technologies such as firewalls and network intrusion 

detection systems. However, to eÆectively solve the problem, one has to also deal 

with the root cause of these threats, namely, the vulnerability of end hosts. One 

key reason why hosts can be easily compromised is because the discretionary access 



4 

control mechanism in today’s operating systems is insu±cient for protecting hosts 

against vulnerability exploits and malicious software. 

1.1.1 The Traditional Discretionary Access Control 

Modern commercial-oÆ-the-shelf (COTS) operating systems use Discretionary Ac­

cess Control (DAC) to protect files and other operating system resources. According 

to the Trusted Computer System Evaluation Criteria (TCSEC) (often referred to as 

the Orange Book) [2], Discretionary Access Control is “a means of restricting access 

to objects based on the identity of subjects and/or groups to which they belong. The 

controls are discretionary in the sense that a subject with a certain access permission 

is capable of passing that permission (perhaps indirectly) on to any other subject (un­

less restrained by mandatory access control).” It has been known since early 1970’s 

that DAC is vulnerable to Trojan horses. A Trojan horse, or simply a Trojan, is a 

piece of malicious software that in addition to performing some apparently benign 

and useful actions, also performs hidden, malicious actions. Such Trojans may come 

from email attachments, programs downloaded from the Internet, or removable me­

dia such as USB thumb drives. By planting a Trojan, an attacker can get access to 

resources the attacker is not authorized under the DAC policy, and is often able to 

abuse such privileges to take over the host or to obtain private information. DAC is 

also vulnerable when one runs buggy programs that receive malicious inputs. For ex­

ample, a network-facing server daemon may receive packets with mal-formed data, a 

web browser might visit malicious web pages, and a media player can read malformed 

data stored on a shared drive. An attacker can form the input to exploit the bugs in 

these programs and take over the processes running them, e.g., by injecting malicious 

code. In essence, a buggy program that takes malicious input can become a Trojan 

horse. 

For existing DAC mechanisms to be eÆective in achieving the specified protection 

policies, one has to assume that all programs are benign (be functional as intended 



5 

and free of malicious side eÆects) and correct (won’t be exploited by malicious inputs). 

This assumption does not hold in today’s computing environments. This weakness of 

DAC is a key reason that today’s computer hosts are easily compromised. 

Even though DAC’s weaknesses is widely known since early 1970’s, DAC is to­

day’s dominant access control approach in operating systems. We believe that this 

is because DAC has some fundamental advantages when compared with mandatory 

access control (MAC). DAC is easy and intuitive (compared with MAC) for users to 

configure, many computer users are familiar with it, and the discretionary feature 

enables desirable sharing. Given the DAC’s advantages in usability, we would like to 

further analyze why DAC is vulnerable to Trojan horse and vulnerable software. In 

fact, it has been asserted that “This basic principle of discretionary access control 

contains a fundamental flaw that makes it vulnerable to Trojan horses.” [3]. We first 

show this assertion is inaccurate. 

We dissect a DAC system into two components: the discretionary policy compo­

nent and the enforcement component. Take the access control system in UNIX-based 

systems as an example. The policy component consists of the following features: 

each file has an owner and a number of permission bits controlling which users can 

read/write/execute the file. The owner of a file can update these permission bits, 

which is the discretionary feature of DAC. The policy component specifies only which 

users are authorized, whereas the actual request are generated by processes (subjects) 

and not users. The enforcement component fills in this gap. In enforcement, each 

process has an associated user id (the eÆective user id) that is used to determine this 

process’s privileges, and there are a number of rules that determine how the eÆective 

user id is set. In short, the policy part specifies which users can access what resources 

and the enforcement part tries to determine on which user’s behalf the process is 

running. 

In DAC, the eÆective user id corresponds to our concept of origin. In the default 

case, the eÆective user id is inherited from the parent process. The login process 

will set the eÆective user id to be the user account corresponding to the logon user. 



6 

As a result, the eÆective user id in DAC is actually the user who starts the process. 

In other words, DAC identifies the origin of a process to be the user who starts the 

process. 

In DAC, each program is associated with a SETUID bit. When the bit is set, 

the eÆective user id of the process running the program will be assigned to be the 

owner of the program. In that case, DAC identifies the origin of the process to be 

the program owner. 

1.1.2 Defeating Remote Exploits: Mandatory Usable Integrity Protection 

DAC is vulnerable to remote exploits because by default DAC identifies the origin 

of a process to be the user who starts the process. Such an assumption is not true 

given the software contain vulnerabilities. 

Let’s consider a typical scenario of the remote exploitation attack. The adversary 

first exploits a vulnerability (e.g., buÆer overflow) in a running server daemon (e.g., a 

Apache web server) and successfully injects a piece of malicious code. The malicious 

code spawns a shell, which in turn loads a kernel-mode RootKit by invoking the com­

mand insmod. Usually the Apache web server is started by the system administrator 

and has all system privileges. In this way, the adversary has enough privilege to load 

the kernel module and successfully takes over the system. 

In the above example, the process insmod is started by the administrator, but is 

controlled by the adversary. A server daemon that has received network tra±cs may 

have been exploited and controlled by an attacker and may no longer behave as its 

design. As a result, when the shell spawned by the server daemon wants to load a 

kernel module, the real origin behind this request could be the remote adversary if 

the server is possibly vulnerable. 

The analysis above illustrates that, when software contain exploitable vulnerabil­

ities, to determine the real origin of the requests issued by the current process, one 

has to consider the history information of the current process, the parent process 



7 

who created the current process, the process who created the parent process, and so 

on. For example, if insmod is started by a series of processes that have never com­

municated with the network, then this means that this request is from a user who 

logged in through a local terminal. Such a request should be authorized, because 

it is almost certainly not an attacker, unless an attacker gets physical access to the 

host, in which case not much security can be provided anyway. On the other hand, if 

insmod is started by a shell that is a descendant of the HTTP daemon process, then 

this is almost certainly a result from an attack; the HTTP daemon and its legitimate 

descendants have no need to load a kernel module. 

To capture those history information in identifying the origins of the requests, 

we propose the Usable Mandatory Integrity Protection (UMIP) model. In the UMIP 

model, we associate each process with an integrity level, which is either high or low. If 

a process is likely to be exploited and controlled by an attacker, then the process has 

low integrity. If a process may be used legitimately for system administration, then 

the process needs to be high-integrity. By adding the integrity level to the origins of 

a process, we can make the DAC resistent to the remote exploitation attacks. 

The security goal of the UMIP model is to preserve system integrity in the face 

of network-based attacks. UMIP assumes that programs contain bugs and can be 

exploited, but the attacker does not have physical access to the host to be protected. 

UMIP partitions the processes into high-integrity and low-integrity using dynamic 

information flow and the default policy disallow the low-integrity processes to perform 

sensitive operations. We discuss the design and implementation details of UMIP in 

Chapter 3. 

1.1.3	 Defeating Trojan Horses: Information Flow Enhanced Discretionary Access 

Control 

UMIP is designed to protect the host integrity against the remote adversary. 

However, UMIP cannot defend against the Trojan horse attacks launched by the 



8 

malicious local users because the local users are trusted in UMIP. In order to enhance 

DAC to be resilient to the Trojan horses, we first consider a typical scenario of the 

attack. 

In a Trojan horse attack, a malicious local user (Bob) plants a Trojan by leaving 

a malicious executable in the local file system. The malicious executable pretends to 

be a benign utility program, which is later executed by another local user (Alice). 

In DAC, the process running the Trojan program will have Alice as the origin. As a 

result, the Trojan horse will carry Alice’s identity and has all the privileges associated 

with Alice. In this example, when Alice executes a program controlled by Bob, DAC 

identifies the origin to be Alice (the invoker); this is true only when the program is 

benign and acts as intended by the invoker. When the program is possibly malicious, 

both Alice and Bob may aÆect the requests made by the process. That is, the origin of 

the process should be a set containing both Alice (the invoker) and Bob (the controller 

of the program). 

Besides planting a Trojan horse, a malicious local user could exploit the vulnera­

bilities contained in the setuid-root programs to gain root privileges. The same idea 

above can be applied to defeat local exploits. After reading data, the program may 

have been exploited by the potentially maliciously formed data. If the program is not 

assumed to be correct, the controllers of the input data must be added to the set of 

origins. 

This idea is actually an extension of that adds a one-bit integrity-level to the 

origins in UMIP. In UMIP, to defend against the network adversary, only the network 

communication is considered as a contamination source to be tracked in identifying 

the true origins. Similarly, to defend against the malicious local users, we can treat 

each local user account as a separate contamination source. The origin of a process 

becomes a set of user accounts that may aÆect the requests made by the process. 

To implement this idea, we propose the Information-Flow Enhanced Discretionary 

Access Control (IFEDAC) model. IFEDAC keeps the discretionary policy component, 

but change the enforcement component. In the enforcement component, one should 



9 

maintain a set of principals as the origins, rather than a single one, for each process. 

When a request occurs, it is authorized only when every principal in the set is autho­

rized according to the DAC policy, since any of those principals may be responsible 

for the request. The origins of a process is tracked using dynamic information flow. 

IFEDAC is the first DAC model that can defend against Trojan horses and attacks 

exploiting buggy software. This is achieved by precisely identifying and fixing what 

makes DAC vulnerable to Trojan horses and buggy programs. IFEDAC can signifi­

cantly strengthen end host security, while preserving to a large extent DAC’s ease of 

use. The design and implementation details of IFEDAC is presented in Chapter 4. 

1.2 Browser Access Control 

The access control in the browser has two goals: (1) to protect the browser and the 

underlying operating system from being compromised by the adversary (2) to protect 

the session with one (sensitive) website from being interfered by another (malicious) 

website. The first goal can be partially addressed by the access control enforced in 

the operating system. We focus on addressing the second goal. 

Modern browsers support tab-browsing. When browsing the Internet, a user typ­

ically visits multiple websites simultaneously or sequentially within a single browser 

session. The websites visited by the user may include both sensitive websites (e.g., on­

line banking, online shopping) and malicious websites. It is critical for the browser to 

appropriately isolate the browsing sessions with diÆerent websites in order to prevent 

cross-site interference. This is enforced by the same-origin policy (SoP) model [4], 

which prevents the scripts downloaded from one website from accessing the HTML 

documents downloaded from another website. However, with today’s web architec­

ture, the SoP model implemented in major browsers is not su±cient to ensure the 

integrity of user sessions. In particular, we consider two types of attacks, the pretty-

bad-proxy adversary against HTTPS and the cross-site request forgery attack. 



10 

1.2.1 Pretty-Bad-Proxy Adversary against HTTPS 

HTTPS is an end-to-end cryptographic protocol for securing web tra±c over in­

secure networks. Authenticity and confidentiality are the basic promises of HTTPS. 

When a client communicates with a web server using HTTPS, we expect that: i) no 

HTTPS payload data can be obtained by a malicious host on the network; ii) the 

server indeed bears the identity shown in the certificate; and iii) no malicious host 

in the network can impersonate an authenticated user to access the server. These 

properties should hold as long as the end systems, i.e. the browser and the server, 

are trusted. 

In other words, the adversary model of HTTPS is simple and clear: the network is 

completely owned by the adversary, meaning that no network device on the network is 

assumed trustworthy. The protocol is rigorously designed, implemented and validated 

using this adversary model. If HTTPS is not robust against this adversary, it is broken 

by definition. 

This work is motivated by our curiosity about whether the same adversary that 

is carefully considered in the design of HTTPS is also rigorously examined when 

HTTPS is integrated into the browser. In particular, we focus on an adversary called 

“Pretty-Bad-Proxy” (PBP), which is a man-in-the-middle attacker that specifically 

targets the browser’s rendering modules above the HTTP/HTTPS layer in order to 

break the end-to-end security of HTTPS. 

With a focused examination of the PBP adversary against various browser be­

haviors, we realize that PBP is indeed a threat to the eÆectiveness of HTTPS de­

ployments. We have discovered a set of PBP-exploitable vulnerabilities in IE, Firefox, 

Opera, Chrome browsers and many websites. By exploiting the vulnerabilities, a PBP 

can obtain the sensitive data from the HTTPS server. It can also certify malicious 

web pages and impersonate authenticated users to access the HTTPS server. The 

existence of the vulnerabilities clearly undermines the end-to-end security guarantees 

of HTTPS. 



11 

The underlying reason that makes the PBP attacks feasible is because the browsers 

do not correctly identify the origins of web messages in implementing the same-origin 

policy. To ensure the integrity of an HTTPS session, we need to ensure the integrity of 

every web message involved in the session. However, with the current deployment of 

the HTTPS protocol in major browsers, a PBP adversary is able to inject a malicious 

web message into an HTTPS session and the browser will accept the malicious message 

as it comes from the target HTTPS domain. These vulnerabilities should be fixed 

by correctly identifying the origin of every web message in the HTTPS sessions and 

only accepting those coming from the target HTTPS domain and transmitted over 

a secure connection. We have reported the vulnerabilities to major browser venders 

and all vulnerabilities are acknowledged by the vendors. Some of the vulnerabilities 

have been fixed in the latest versions and other fixes are proposed for next versions. 

The details about the vulnerabilities we discovered is presented in Chapter 5. 

1.2.2 Cross-Site Request Forgery 

Cross-site request forgery, also known as one-click attack or session riding and ab­

breviated as CSRF or XSRF, is an attack against web users [5–7]. In a CSRF attack, 

a malicious web page instructs a victim user’s browser to send a request to a target 

website. If the victim user is currently logged into the target website, the browser 

will append authentication tokens such as cookies to the request, authenticating the 

malicious request as if it is issued by the user. Consequences of CSRF attacks are 

serious, e.g., an attacker can use CSRF attacks to perform financial transactions with 

the victim user’s account, such as sending a check to the attacker, purchasing a stock, 

purchasing products and shipping to the attacker. A detailed description of the attack 

is given in Section 6.2. 

The CSRF attack is an attack that leads to the interference of the browsing 

sessions with diÆerent websites. By browsing a malicious webpage, an unintended 

operation is performed in the sensitive website without the user’s knowledge. The 



12 

CSRF attack cannot be prevented by the SoP model. The SoP model does not 

restrict a website to send a request to a diÆerent website, because cross-site request 

is a common feature in the web design (e.g., considering advertisements contained in 

webpages). However, when the cross-site request leads to sensitive consequence (e.g., 

financial consequence) the request may be malicious. 

Because the sensitive requests typically occur in authenticated sessions, these 

requests have authentication tokens attached. The reason that makes the CSRF 

attack feasible is because the browser always attaches the user’s authentication token 

to every request. Such a design assumes every request sent by the browser reflects 

the user’s intention. However, the reality is that the browser can be easily tricked 

into sending a sensitive request that does not reflect the user’s intention. When the 

authentication token is attached to an unintended sensitive request, the CSRF attack 

happens. 

To defeat the CSRF attack, we propose a browser-side solution to enhance the 

access control in browsers to ensure that all sensitive requests sent by the browser 

should reflect the user’s intention. Instead of blindly attaching authentication tokens 

to every request, the browser infers whether the request reflects the user’s intention 

by considering how the request is triggered and crafted in the browser and which 

website(s) should be responsible for the request. Sensitive authentication tokens 

are only attached to the requests that are considered to reflect the user’s intention. 

The design and implementation details of the protection mechanism is discussed in 

Chapter 6. 

1.3 Organization 

In the next chapter, we review the related works in operating system access control, 

HTTPS security and CSRF defenses. We describe the design and implementation of 

the UMIP model in Chapter 3. The IFEDAC model is described in Chapter 4. In 

Chapter 5, we present the PBP vulnerabilities we discovered in the major browsers 



13 

and the suggested mitigation. We discuss the design and implementation of the 

browser-side defense against the CSRF attack in Chapter 6. Last, we conclude in 

Chapter 7. 



14 

2 LITERATURE REVIEW 

In this chapter, we review the related works in operating system access control and 

browser access control. 

2.1 Related Works in Operating System Access Control 

In this section, we review the related works in operating system access control. We 

first describe the traditional DAC mechanisms implemented in UNIX and Windows. 

After that, we discuss the research eÆorts that add mandatory access control (MAC) 

to operating systems, such as SELinux [8] and AppArmor [9]. Last, we present other 

works that are related to our works on enhancing DAC. 

2.1.1 Unix Access Control 

Perhaps the best known DAC mechanism is the DAC system in the Unix fam­

ily of operating systems (including Linux, Solaris, and the OpenBSD). This DAC 

mechanism has many intricate details. Because of the space limit, we can cover only 

the features that are most relevant to its security and usability here. Three most 

important concepts in this DAC system are users, subjects, and objects. From the 

computer’s point of view, each account is a user. Each user is uniquely identified 

by a user id. There is a special user called root; it has user id 0. A user can be a 

member of several groups, which of which contains a set of users has its members. 

Every group has a numerical id call group id. Each subject is a process; it issues 

requests to access resources. Many protected resources are modeled as files, which we 

call objects. Users can configure the DAC system to specify which users are allowed 

to access the files. For non-file resources, the access policy is generally fixed by the 



15 

system. In the descriptions below, we use subjects and processes interchangeably, 

and objects and files interchangeably. We dissect this DAC into two components: the 

policy specification component and the enforcement component. 

The policy component determines which users are allowed to access what objects. 

Each object has an owner (which is a user) and an associated group. In addition, 

each object has 12 permission bits. These bits include: three bits for determining 

whether the owner of the file can read/write/execute the file, three bits for determin­

ing whether users in the associated group can read/write/execute the file, three bits 

for determining whether all other users can read/write/execute the file, the SUID (set 

user id) bit, the SGID (set group id) bit, and the sticky bit. They will be discussed 

later. The file owner, file group and permission bits are part of the metadata of a 

file, and are stored on the inode of a file. The owner of a file and the root user can 

update these permission bits, which is the discretionary feature. In most modern 

UNIX-based systems, only the root can change the owner of a file. 

The policy component specifies only which users are authorized, whereas the ac­

tual requests are generated by subjects (processes) and not users. The enforcement 

component fills in this gap; it tries to determine on which users’ behalf a process is 

executing. Each process has several users and groups associated with it. The most 

important one is the eÆective user id (euid), which determines the access privileges 

of the process. The first process in the system has euid 0 (root). When a user logs 

in, the process’s euid is set to the id corresponding to the user. When a process loads 

a binary through the execve system call, the new euid is unchanged except when the 

binary file has the SUID bit set, in which case the new euid is the owner of the file. 

The SUID bit is needed mainly because of the granularity of access control using 

files is not fined-grained enough. For example, the password information of all the 

users is stored in the file /etc/shadow. A user should be allowed to change her 

password; however, we cannot allow normal users to write the shadow file, as they 

can then change the passwords of other users as well. To solve this problem, the 

system has a special utility program (passwd), through which a user can change her 



16 

password. The program is owned by the root user and has its SUID bit set. When 

a user runs the passwd program, the new process has euid root and can change 

/etc/shadow to update the user’s password. Note that this process (initiated by a 

user) can perform anything the root user is authorized to do. By setting the SUID 

bit on the passwd program, the system administrator (i.e., the root user) trusts that 

the program performs only the legitimate operations. That is, it will authenticate a 

user and change only that user’s password in /etc/shadow. Any program with SUID 

bit set must therefore be carefully written so that they do not contain vulnerabilities 

to be exploited. 

2.1.2 Windows Access Control 

In windows [10], the privileges of a process are determined by the access token 

the process possesses. When a user logs in windows, either locally or remotely, the 

operating system will create an access token for the user’s processes. The token 

includes a security id (SID) representing the user, and several SIDs representing the 

user’s groups. The token also includes the privileges of the user, and other access 

control information. When a process attempts to access some resource, the operating 

system will decide if the access is granted based on the access token of the process. 

A problem with this access control mechanism is that the user’s processes are 

given the full privileges when the user is logged in. Given the popularity of windows 

system in end-user desktops, the users are often the administrators of their system. In 

order to make it easy to, e.g., install software and change system setting, the common 

practice is that the users are often logged in as administrator. This practice exposes 

a common security hole in the windows operating system. If an attacker is able to 

launch a Trojan horse attack, or exploit some programs of the user, he/she is able to 

acquire virtually all the privileges. Then the attacker can change the critical part of 

the operating system and take over the system silently. 



17 

In order to provide both the convenience and security to users, Windows Vista 

features a access control mechanism called User Access Control (UAC) [10]. In UAC, 

when an administer logs in, the user is granted two access control tokens instead 

of just one: an administrator access token with full privileges and a standard user 

access token. When the user performs normal tasks, e.g., browsing web, reading 

emails, only the standard user access token is involved in access control decisions. 

When the user wants to perform some administration tasks, e.g., install a program 

or a driver, Vista will prompt to ask for user’s consent and the administrator access 

token is used afterwards. Therefore the administrator has more control of when the 

privileges are used, and a Trojan that can not just take over the system silently, while 

the attempts to compromise the system will be interposed by the user. 

Microsoft Vista introduced a security feature called Mandatory Integrity Control 

(MIC) [10]. The purpose of MIC is to protect critical system objects from attacks 

and user errors. MIC assigns an integrity level to each object. When a subject is to 

access an object, the access is granted only when the caller has a higher or equal level 

as the object. While described in many articles about new security features in Vista 

before its release, it appears that only a limited form of it is enabled, and only for 

Internet Explorer, under the name Internet Explorer Protection Mode (IEPM). 

2.1.3 Security Enhanced Linux (SELinux) 

Security-Enhanced Linux (SELinux) [11] is a security mechanism in Linux that 

has been developed to support a wide range of security policies especially Manda­

tory Access Control policies. The development involved several parties including 

National Security Agency. The mechanism was first implemented as kernel patches 

and currently it is implemented within the Linux Security Module (LSM) framework. 

The architecture of SELinux separates policy decision-making logic from the pol­

icy enforcement logic. DiÆerent security policies can be defined to enforce diÆerent 

high-level security requirements. To date, SELinux policies include features as Type 



18 

Enforcement, Role-Based Access Control, Multi-Level Security, etc. We discuss the 

architecture of SELinux and some policies in this section. 

In SELinux, every subject (process) and object (resources like files, sockets, etc) is 

given a security context, which is a set of security attributes. The objects (resources) 

are categorized into object security classes. Each object security class represents a 

specific kind of object, e.g., regular files, folders, TCP sockets, etc. For every object 

security class, there is a set of access operations that can be performed, e.g., the 

operations to a file include read/write/execute, lock, create, rename, getattr/setattr, 

link/unlink, etc. When an access attempt is made by a process, the enforcement 

part will decide whether to grant this access based on the security contexts of the 

process, the resource being accessed and the object security class of the resource. The 

security policy defines whether a process with a particular security context can access 

an object of a particular security class with a particular security context; if it can, 

what operations are permitted upon this object. The security policy also defines how 

the security context changes after some accesses are performed, or how to label the 

security context of a newly created object. 

We use the Type Enforcement (TE) to illustrate how SELinux policy works. In TE 

every process has a domain and every object (e.g., files) has a type. All processes with 

a same domain are treated identically, and all objects with a same type are treated 

identically. The SELinux policy defines what types can be executed by each domain. 

Also, for each domain the policy defines several types as entrypoint programs, and 

processes can enter a domain only by executing those entrypoint programs for this 

domain. 

To have fine-grain control of the accesses, there are several types of rules in the 

policy: 

•	 A TE access vector rule defines the access vector for combination of a domain, 

a type and an object security class. For example, the following rule 

allow sshd_t sshd_exec_t:file read execute entrypint; 



19 

says a process with domain sshd t domain can read a file with sshd exec t type, 

and a process can enter sshd t domain by executing a file with sshd exec t type. 

Besides the allow access vector, access vectors can also be defined for auditallow, 

auditdeny and dontaudit. Operations are denied unless in the policy there is an 

explicit allow rule. When an operation is granted, it is always not logged unless 

there is an auditallow. And when an operation is denied, it is logged less there 

is a dontaudit rule. 

•	 A TE transition rule for a process defines what new domain a process will enter 

after executing a program, based on the current process domain and the type 

of the program. For example, the flowing rule 

type_transition initrc_t sshd_exec_t:process sshd_t; 

says when a process with domain initrc t executes a program with the type 

sshd exec t, the process transitions to domain sshd t. 

•	 A TE transition rule for an object defines the type for a new created object. 

For example, the following rule 

type_transition sshd_t tmp_t:dir file shsd_tmp_t; 

says when a process with domain sshd t creates a file or a directory in a directory 

with type tmp t, the newly created file or directory should be with the type 

sshd tmp t. 

SELinux adopts the approach that MAC information is independent from DAC. 

For example, the users in SELinux are unrelated with the users in DAC, each file 

needs to be given a label. This requires the file system to support additional la­

beling, and limits the applicability of the approach. Furthermore, labeling files is a 

labor-intensive and error-prone process. Each installation of a new software requires 

update to the policy to assign appropriate labels to the newly added files and possibly 



20 

add new domains and types.SELinux policies are di±cult to understand by human 

administrators because of the size of the policy and the many levels of indirection 

used, e.g., from programs to domains, then to types, and then to files. 

2.1.4 AppArmor 

AppArmor [9,12] is an access control system that confines the access permissions 

on a per program basis. The basic idea is following: for every protected program, 

AppArmor defines a list of permitted accesses, including file accesses and capabilities. 

The list for a program is called the program’s profile. And the profiles of all protected 

programs constitute a AppArmor policy. A program’s profile contains all possible file 

reads, file writes, file executions and capabilities that may be performed by a protected 

program. Under AppArmor, a process that executes a protected program can only 

perform accesses in the program’s profile. By confining program accesses, AppArmor 

makes local and remote exploits more di±cult. Suppose a system is running an 

FTP server with root account. If an attacker exploits a vulnerability in the server 

and injects her own code, under normal Linux DAC protection, the attacker is able 

to gain the full privileges in the system. The attacker can, e.g., install a rootkit by 

loading a kernel module. However, if the system is protected by AppArmor, there will 

not be a kernel module loading capability in the FTP server’s profile because a FTP 

server wouldn’t need that. Then even if the attacker controls the server process, she 

cannot directly install a rootkit. Following is an excerpt from a profile for passwd [9]. 

The profile guarantees that if a local user exploits this setuid root program, the user 

cannot get full privileges of root. 

1. . . . 

2. /usr/bin/passwd { 

3. . . . 

4. capability chown, 

5. capability sys_resource, 



21 

6. /etc/.pwd.lock w, 

7. /etc/pwdutils/logging r, 

8. /etc/shadow rwl, 

9. /etc/shadow.old rwl, 

10. /etc/shadow.tmp rwl, 

11. /usr/bin/passwd mr, 

12. /usr/lib/pwdutils/lib*.so* mr, 

13. /usr/lib64/pwdutils/lib*.so* mr, 

14. /usr/share/cracklib/pw_dict.hwm r, 

15. /usr/share/cracklib/pw_dict.pwd r, 

16. /usr/share/cracklib/pw_dict.pwi r, 

17. } 

In the profile, there are 2 rules for capabilities (line 4 and 5) and 11 rules for file 

accesses (line 6 through line 16). A file rule consists of a file name and several per­

mitted access modes. There are totally 9 access modes: read mode, write mode, dis­

crete profile execute mode, discrete profile execute mode - clean exec, unconstrained 

execute mode, unconstrained execute mode (clean exec), inherit execute mode, Allow 

PROT EXEC with mmap(2) calls, link mode. For details of the semantics of the 

access modes, please refer to [9]. 

A profile can be created by the program developer and ships with the program. 

Also, the user can create a profile by AppArmor utilities. A user can run a program 

in a “learning mode”. In this mode, all the permissions of a program is permitted 

and logged. The user makes the program perform as many accesses as possible. Later 

the user can use the logs to create the profile of the program. For each access, an 

AppArmor utility asks the user whether to allow the access; and if the access is a 

file access, the user can choose to generalize the access by using wildcards in the 

permitted filename (globbing). 

http:usr/lib64/pwdutils/lib*.so
http:usr/lib/pwdutils/lib*.so


22 

AppArmor also provides finer-grain access control than process level, by the 

“ChangeHat” feature. ChangeHat-aware programs can use this feature to have part 

of a program using a diÆerent profile. For more details please refer to [9]. 

The approach in AppArmor identifies a number of programs that, when compro­

mised, could be dangerous, and confine them by a policy. If a program has no policy 

associated with it, then it is by default not confined, and if a program has a policy, 

then it can access only the objects specified in the policy. This approach remains vul­

nerable to Trojan horse attacks. As most programs, such as shells, obtained through 

normal usage channels are unconfined, the execution of a trojan horse program will 

not be subject to the control of the system. 

Regarding policy design, AppArmor uses the same approach as the Targeted Pol­

icy in Fedora Core Linux, i.e., if a program has no policy associated with it, then 

it is by default not confined, and if a program has a policy, then it can access only 

the objects specified in the policy. This approach violates the fail-safe defaults prin­

ciple [13], as a program with no policy will by default run unconfined. AppArmor 

does not maintain integrity levels for processes or files, and thus cannot diÆerentiate 

whether a process or a file is contaminated or not. For example, without tracking con­

tamination, one cannot specify a policy that system administration through X clients 

are allowed as long as the X server and other X clients have not communicated with 

the network. Also, AppArmor cannot protect users from accidentally downloading 

and executing malicious programs. 

2.1.5 Other Related Works in Operating System Access Control 

The limitations of DAC have been discussed in many sources, e.g., [3, 14]. Tradi­

tionally, people deal with the weaknesses of DAC by replacing or enhancing it with 

Mandatory Access Control (MAC). There are three classes of approaches to add MAC 

to operating systems: confidentiality-based, confinement-based, and integrity-based. 



23 

Perhaps the best known example of confidentiality-based MAC is the Bell La-

Padula (BLP) model [15]. Systems that implement protection models similar to BLP 

include Trusted Solaris and IX [16]. The BLP model assumes that programs are ei­

ther trusted or untrusted. This results in a strict security policy rule (the *-property) 

that will break today’s COTS operating systems, unless almost all components are 

declared to be trusted. 

Confinement-based MAC systems include SELinux, systrace [17], securelevel [18] 

and LIDS [19], while flexible and powerful, require extensive expertise to configure. 

These systems focus on mechanisms, whereas our approach focuses on providing a 

policy model that achieves a high degree of protection without getting in the way of 

normal operations. Systrace [17] defines policies for programs at a finer granularity. 

Instead of defining allowed accesses to files and capabilities, systrace defines allowed 

system calls with parameter values for each program to confine the operations of 

processes. PACL [20] also uses the idea of limiting the programs that can access 

certain objects. It uses an access control list for each file to store the list of programs 

that are allowed to access the file. Securelevel [18] is a security mechanism in *BSD 

kernels. When the securelevel is positive, the kernel restricts certain tasks; not even 

the superuser (i.e., root) is allowed to do them. Any superuser process can raise 

securelevel, but only the init process can lower it. The weakness of securelevel is 

clearly explained in the FreeBSD FAQ [18]: “One of its biggest problems is that 

in order for it to be at all eÆective, all files used in the boot process up until the 

securelevel is set must be protected. If an attacker can get the system to execute their 

code prior to the securelevel being set [...], its protections are invalidated. While this 

task of protecting all files used in the boot process is not technically impossible, if it is 

achieved, system maintenance will become a nightmare since one would have to take 

the system down, at least to single-user mode, to modify a configuration file.” 

These systems require the specification of a new access matrix (typically with 

programs as one axis and files as another axis) separately from the existing DAC 

mechanism. While being flexible, it is often overwhelming for end users to configure 



24 

them. We aim at achieving the protection objective in the DAC mechanism and thus 

reuse the DAC information. 

Another approach to introduce MAC to operating systems is to protect the in­

tegrity of critical system objects. The Biba model [21] is perhaps the earliest manda­

tory integrity protection model. In the model each subject and each object has an 

integrity level. Biba defines five policies for permission checking and label updating. 

For example, one policy is the strict integrity policy, in which subject and object 

integrity labels never change, and a subject can read only objects with a higher (or 

equal) integrity level and can write only objects whose integrity level with a lower 

(or equal) integrity level. LOMAC [22] is an implementation in operating systems 

of a policy from Biba called subject low-water mark policy. Each object is assigned 

an integrity level. Once assigned, an object’s level never changes. A subject’s in­

tegrity level drops when it reads a low-integrity objects. It aims at protecting system 

integrity and places emphasis on usability. 

The approaches in AppArmor, systrace, and PACL are to identify a number of 

programs that, when compromised, could be dangerous, and confine them by a policy. 

These techniques require a large policy, because they do not have default policy rules 

to allow some accesses and must explicitly specify every access. Furthermore, these 

approaches remain vulnerable to trojan horse attacks. As most programs, such as 

shells, obtained through normal usage channels are unconfined, the execution of a 

trojan horse program will not be subject to the control of the system. 

Another well-known integrity model is the Clark-Wilson model [23], with follow-

up work by Karger [24] and Lee [25], among others. These integrity-protection ap­

proaches have not been applied to operating systems and do not support user-specific 

integrity, e.g., separating one user from another. 

McCollum et al. [26] discussed new forms of access control other than MAC and 

DAC, which combines the information flow mechanism used in MAC and the at­

tributes and identity based privileges in DAC. The approach in [26] assigns attributes 

labels and owner information to both objects and subjects. The labels propagate 



25 

based on information flow. [26] was designed to protect confidentiality and aimed at 

the special requirements of the DoD/intelligence for automated information analysis. 

This work introducing new kinds of policy beyond DAC and MAC, whereas our work 

applies MAC techniques to strengthen DAC in operating systems, 

Hicks et al. [27] proposed an architecture for an operating system service that inte­

grates a security-typed language with MAC in operating systems, and built SIESTA, 

an implementation of the service that handles applications developed in Jif running 

on SELinux. 

Dynamic information flow tracking within programs has been used to detect at­

tacks and generate signatures of attacks. Examples include TaintCheck [28] and taint-

enhanced policy enforcement [29]. These techniques provide protections orthogonal to 

ours. They defend particular programs against being exploited by attackers. We focus 

on general operating system access control techniques that apply to all processes. The 

idea that a request may represent the intention of one of many principals appeared 

also in the work of Adabi et al. on access control in distributed systems [30]. There 

are several recent works on developing new operating system access control models 

that use information flow. Asbestos [31], HiStar [32], and Fluke [33] use decentralized 

information flow control, which allows application writers to control how data flows 

between pieces of an application and the outside world. We have a diÆerent goal of 

fixing DAC without aÆecting application programmers. 

2.2 Related Works in Browser Security and HTTPS Security 

In this section, we review the related works in browser security in general, with a 

focus on HTTPS security. 

Violations of the same-origin policy are one of the most significant classes of se­

curity vulnerabilities on the web. Classic examples include cross-site scripting (aka, 

XSS) and browser’s domain-isolation bugs: (1) XSS is commonly considered as a web 

application bug. Vulnerable web applications fail to perform sanity checks for user 



26 

input data, but erroneously interpret the data as scripts in the web application’s own 

security. Many researchers have proposed techniques to address XSS bugs. A compiler 

technique is proposed by Livshits and Lam to find XSS bugs in Java applications [34]. 

Based on the observation that XSS attacks require user-input data be executed at 

runtime, Xu et al proposed using taint tracking to detect the attacks [35]. There 

are many other research eÆorts in the area of XSS that we cannot cite due to space 

constraints. (2) Historically all browser products had bugs in their domain-isolation 

mechanisms, which allow a frame tagged as evil.com to access the document in an­

other frame tagged as victim.com on the browsers. Security vulnerability databases, 

including SecurityFocus.com, have posted many bugs against IE, Firefox, Opera, etc. 

These vulnerabilities are discussed in [36]. 

People already understand that HTTPS security is contingent upon the security 

of clients, servers and certificate authorities. Binary-executable-level threats, such 

as buÆer overruns, virus infections and incautious installations of unsigned software 

from the Internet, allow malicious binary code to jump out of the browser sandbox. 

In particular, when a malicious proxy or router is on the communication path, the 

binary-level vulnerabilities can be exploited even when the browser visits legitimate 

websites. Unsurprisingly, once the browser’s executable is contaminated, HTTPS 

becomes ineÆective. In addition to the binary-level vulnerabilities, XSS bugs and 

browser’s domain-isolation failures may compromise HTTPS. Furthermore, some cer­

tificate authorities use questionable practices in certificate issuance, undermining the 

eÆectiveness of HTTPS. For example, despite the know weaknesses of MD5, some 

certificate authorities have not completely discontinued the issuance of MD5-based 

certificated. Sotirov, Stevens, et al have recently shown the practical threat of the 

MD5 collision by creating a rogue certificate authority certificate [37]. In contrast to 

these known weaknesses, the contribution of our work is to emphasize that the high-

level browser modules, such as the HTML engine and the scripting engine, is not 

thoroughly examined against the PBP adversary, and PBP indeed has its uniqueness 

in attacking the end-to-end security. 

http:SecurityFocus.com
http:victim.com
http:evil.com


27 

HTTPS has usability problems because of its unfriendliness to average users. Us­

ability studies have shown that most average users do not check the lock icon when 

they access HTTPS websites [38]. They are willing to ignore any security warning 

dialog, including the warning of certificate errors. Logic bugs in browsers’ GUI im­

plementations can also aÆect HTTPS eÆectiveness. In [39], we show a number of 

logic bugs that allow an arbitrary page to appear with a spoofed address and an SSL 

certificate on the address bar. 

The HPIHSL vulnerability described in Section 5.3.3 is related to the “mixed con­

tent” vulnerability in [40] by Jackson and Barth. Jackson/Barth and we exchanged 

the early drafts of [40] and this paper in October 2007 to understand the findings 

made by both parties, which are distinguishable in the following aspects: (1) the sce­

nario in [40] is that the developer of an HTTPS page accidentally embeds a script, an 

SWF movie or a Java applet using HTTP, while our main perspective is about loading 

an HTTP-intended page through HTTPS; (2) we discover that the warning message 

about an HTTP script in an HTTPS frame can be suppressed by placing the HTTPS 

frame in a HTTP top-level window, while [40] argues that such a warning is often 

ignored by users; (3) we found twelve concrete e-commerce and e-service sites that we 

sampled where the vulnerability based on HPIHSL pages exists. This suggests that 

this vulnerability may currently be pervasive. In [40], there is no argument about 

the pervasiveness of the accidental HTTP-embedding mistakes made by developers. 

Karlof, Shankar, et al envision an attack called “dynamic pharming” to attack 

HTTPS sessions by a third-party website. The attack is based on the assumption that 

the victim user accepts a faked certificate [41]. Because HTTPS security crucially 

relies on valid certificates, accepting a faked certificate is a su±cient condition to 

void HTTPS guarantees. To address dynamic pharming, the authors propose locked 

same-origin-policies to enhance the current same-origin-policy. These policies do not 

cover PBP attacks discussed in Sections III.B, III.C, IV.A and IV.B. For the attack 

in Section III.A, if developers understand that 4xx/5xx pages from the proxy cannot 

bear the context of the target server, then the current same-origin-policy is already 



28 

secure; if they overlook this, as all browser vendors did, it is unlikely that the mistake 

can be avoided in the implementations of the locked same-origin-policies. 

Researchers have found vulnerabilities in DNS and WPAD protocol implementa­

tions. Kaminsky showed the practicality of the DNS cache poisoning attack, which 

can eÆectively redirect the victim machine’s tra±c to an IP address specified by the 

attacker [42]. This attack can be used to fool the user to connect to a malicious 

proxy. Researchers also found security issues about WPAD, e.g., registering a host-

name “wpad” in various levels of the DNS hierarchies can result in the retrievals of 

PAC scripts from problematic or insecure PAC servers [43,44]. Unlike these findings, 

our work does not attempt to show any vulnerability in WPAD. It is unsurprising that 

the communication over an unencrypted channel is insecure when the attacker can 

sniÆ and send packets on the network - several possibilities of maliciously configuring 

the browser’s proxy settings were documented in [45]. We discuss PAC, WPAD and 

the manual proxy setting only as a feasibility argument of the PBP vulnerabilities. 

2.3 Existing CSRF Defenses 

Several defense mechanisms have been proposed for CSFR attacks, we now discuss 

their limitations. 

Filtering authentication tokens from cross-site requests. Johns et al. [46] 

proposed a client-side proxy solution, which stripes all authentication tokens from a 

cross-site request. The proxy intercepts web pages before they reach the browser and 

appends a secret random value to all URLs in the web page. Then the proxy removes 

the authentication tokens from the requests that do not have a correct random value. 

The solution breaks the auto-login feature and content sharing websites (such as Digg, 

Facebook, etc.) because it does not distinguish legitimate cross-site requests from 

malicious cross-site requests. In addition, it does not support HTML dynamically 

created in the browser and cannot work with SSL connections. 



29 

Authenticating web forms. The most popular CSRF defense is to authenticate 

the web form from which an HTTP request is generated. This is achieved by having 

a shared random secret, called a as a secret validation token, between the web form 

and the web server. If a web form provides a sensitive service, the web server em­

beds a secret validation token in an invisible field or the POST action URL of the 

form. Whenever form data is submitted, the request is processed only if it contains 

the correct secret value. Not knowing the secret, the adversary cannot forge a valid 

request. One drawback of this approach is it requires nontrivial changes to the web 

applications. Moreover, as pointed out by Barth et al. [47], although there exist sev­

eral variants of this technique they are generally complicated to implement correctly. 

Many frameworks accidentally leak the secret token to other websites. For example, 

NoForge proposed in [48] leaks the token to other websites through the URL and the 

HTTP Referer header. 

Referer-checking. In many cases, when the browser issues an HTTP request, it 

includes a Referer header that indicates which URL initiated the request. A web ap­

plication can defend itself against CSRF attacks by rejecting the sensitive requests 

with a Referer of a diÆerent website. A major limitation with this approach is that 

some requests do not have a Referer header. There does not exist a standard specifica­

tion on when to and when not to send the Referer header. DiÆerent browser vendors 

behave diÆerently. Johns and Winter [46] give a summary on when browsers do not 

send the Referer header in major browsers. As a result, both a legitimate request and 

a malicious request may lack the Referer header. The adversary can easily construct a 

request lacking the Referer header. Moreover, because the Referer header may contain 

sensitive information that impinges on the privacy of web users, some users prohibit 

their browsers to send Referer header and some network proxies and routers suppress 

the Referer headers. As a result, simply rejecting the requests lacking a Referer header 

incurs a compatibility penalty. Barth et al. [47] suggested a new Origin header that 

includes only the hostname part of the Referer header, to alleviate the privacy concern. 



30 

It remains to be seen whether this will be adopted. In conclusion, using a server-side 

referer-checking to defeat the CSRF attacks has a dilemma in handling the requests 

that lack a Referer header. 



31 

3 USABLE MANDATORY INTEGRITY PROTECTION 

3.1 Motivation 

Host compromise is one of the most serious computer security problems today. 

Two key reasons why hosts can be easily compromised are: (1) software are buggy, 

and (2) the discretionary access control mechanism in today’s operating systems is 

insu±cient for defending against network-based attacks. A traditional approach to 

address DAC’s weaknesses is to add mandatory access control (MAC) to the exist­

ing DAC in operating systems. There are a lot of research eÆorts on making com­

puter systems more secure by adding MAC1 to operating systems, e.g., Janus [49], 

DTE Unix [50,51], Linux Intrusion Detection System (LIDS) [19], LOMAC [22], sys­

trace [17], AppArmor [9,12], and Security Enhanced Linux (SELinux) [8]. Several of 

these systems are flexible and powerful. Through proper configuration, they could 

result in highly-secure systems. However, they are also complex and intimidating to 

configure. 

For example, SELinux has 29 diÆerent classes of objects, hundreds of possible 

operations, and thousands of policy rules for a typical system. The SELinux policy 

interface is daunting even for security experts. While SELinux makes sense in a setting 

where the systems run similar applications, and sophisticated security expertise is 

available, its applicability to a more general setting is unclear. 

In this chapter, we tackle the problem of designing and implementing a usable 

MAC system to protect end hosts. We start by identifying several principles for 

designing usable access control mechanisms in general. We then introduce the Usable 

1In this dissertation, we use MAC to refer to the approach where a system-wide security policy 
restricts the access rights of processes. This is a wider interpretation of MAC than that in the 
TCSEC [2], which focuses on multi-level security. 



32 

Mandatory Integrity Protection (UMIP) model, which was designed following these 

principles. 

3.2 Design Principles for Usable Access Control Systems 

While it is widely agreed that usability is very important for security technologies, 

how to design an access control system that has a high level of usability has not been 

explored much in the literature. In this section we present six principles for designing 

usable access control systems. Some of these principles challenge established common 

wisdom in the field, because we place an unusually high premium on usability. These 

principles will be illustrated by our design of UMIP in Section 3. 

Principle 1 Provide “good enough” security with a high level of usability, rather than 

“better” security with a low level of usability. 

Our philosophy is that rather than providing a protection system that can theo­

retically provide very strong security guarantees but requires huge eÆort and expertise 

to configure correctly, we aim at providing a system that is easy to configure and that 

can greatly increase the level of security by reducing the attack surfaces. Sandhu [52] 

made a case for good-enough security, observing that “cumbersome technology will 

be deployed and operated incorrectly and insecurely, or perhaps not at all.” Sandhu 

also identified three principles that guide information security, the second of which 

is “Good enough always beats perfect”2 . He observed that the applicability of this 

principle to the computer security field is further amplified because there is no such 

thing as “perfect” in security, and restate the principle as “Good enough always beats 

‘better but imperfect’.” 

There may be situations that one would want stronger security guarantees, even 

though the cost of administration is much more expensive. However, to defend against 

threats such as botnets, one needs to protect the most vulnerable computers on the 

2The first one is “Good enough is good enough” and the third one is “The really hard part is deter­
mining what is good enough.” 



33 

Internet, i.e., computers that are managed by users with little expertise in system 

security. One thus needs a protection system with a high level of usability. 

One corollary following from this principle is that sometimes one needs to tradeoÆ 

security for simplicity of the design. Below we discuss five other principles, which 

further help achieve the goal of usable access control. 

Principle 2 Provide policy, not just mechanism. 

Raymond discussed in his book [53] the topic of “what UNIX gets wrong” in 

terms of philosophy, and wrote “perhaps the most enduring objections to Unix are 

consequences of a feature of its philosophy first made explicit by the designers of the 

X windowing system. X strives to provide ‘mechanism, not policy’. [...] But the cost 

of the mechanism-not-policy approach is that when the user can set policy, the user 

must set policy. Nontechnical end-users frequently find Unix’s profusion of options 

and interface styles overwhelming.” 

The mechanism-not-policy approach is especially problematic for security. A se­

curity mechanism that is very flexible and can be extensively configured is not just 

overwhelming for end users, it is also highly error-prone. While there are right ways 

to configure the mechanism to enforce some desirable security policies, there are of­

ten many more incorrect ways to configure a system. And the complexity often 

overwhelms users so that the mechanism is simply not enabled. 

This mechanism-not-policy philosophy is implicitly used in the design of many 

MAC systems for operating systems. For example, systems such LIDS, systrace, and 

SELinux all aim at providing a mechanism that can be used to implement a wide 

range of policies. While a mechanism is absolutely necessary for implementing a 

protection system, having only a low-level mechanism is not enough. 

Principle 3 Have a well-defined security objective. 

The first step of designing a policy is to identify a security objective, because only 

then can one make meaningful tradeoÆs between security and usability. To make 



34 

tradeoÆs, one must ask and answer the question: if the policy model is simplified 

in this way, can we still achieve the security objective? A security objective should 

identify two things: what kind of adversaries the system is designed to protect against, 

i.e., what abilities does one assume the adversaries have, and what security properties 

one wants to achieve even in the presence of such adversaries. Often times, MAC 

systems do not clearly identify the security objective. For example, achieving multi­

level security is often identified together with defending against network attacks. They 

are very diÆerent kinds of security objectives. History has taught us that designing 

usable multi-level secure systems is extremely di±cult, and it seems unlikely that one 

can build a usable access control system that can achieve both objectives. 

Principle 4 Carefully design ways to support exceptions in the policy model. 

Given the complexity of modern operating systems and the diverse scenarios in 

which computers are used, no simple policy model can capture all accesses that need 

to be allowed, and, at the same time, forbid all illegal accesses. It is thus necessary to 

have ways to specify exceptions in the policy model. The challenges lie in designing 

the policy model and the exception mechanisms so that the number of exceptions 

is small, the exceptions are easy and intuitive to specify, the exceptions provide the 

desired flexibility, and the attack surface exposed by the exceptions is limited. Little 

research has focused on studying how to support exceptions in an MAC model. As 

we will see, much eÆort in designing UMIP goes to designing mechanisms to support 

exceptions. 

Principle 5 Rather than trying to achieve “strict least privilege”, aim for “good­

enough least privilege”. 

It is widely recognized that one problem with existing DAC mechanisms is that it 

does not support the least privilege principle [13]. For example, in traditional UNIX 

access control, many operations can be performed only by the root user. If a program 

needs to perform any of these operations, it needs to be given the root privilege. 



35 

As a result, an attacker can exploit vulnerabilities in the program and abuse these 

privileges. Many propose to remedy the problem by using very-fine-grained access 

control and to achieve strict least privilege. For example, the guiding principles for 

designing policies for systems such as SELinux, systrace, and AppArmor is to identify 

all objects a program needs to access when it is not under attack and grants access 

only to those objects. This approach results in a large number of policy rules. We 

believe that it is su±cient to restrict privileges just enough to achieve the security 

objective; and this enables one to design more usable access control systems. This 

principle can be viewed as a corollary of Principle 1. We state it as a separate principle 

because of the popularity of the least privilege principle. 

Principle 6 Use familiar abstractions in policy specification interface. 

Psychological acceptability is one of the eight principles for designing security 

mechanisms identified by Salzer and Schroeder [13]. They wrote “It is essential 

that the human interface be designed for ease of use, so that users routinely and 

automatically apply the protection mechanisms correctly. Also, to the extent that the 

user’s mental image of his protection goals matches the mechanisms he must use, 

mistakes will be minimized. If he must translate his image of his protection needs into 

a radically diÆerent specification language, he will make errors.” This entails that the 

policy specification interface should use concepts and abstractions that administrators 

are familiar with. This principle is violated by systems such as systrace and SELinux. 

3.3 The UMIP Model 

While the description of the UMIP model in this section is based on our design 

for Linux, we believe that the model can be applied to other UNIX variants with 

minor changes. While some (but not all) ideas would be applicable also to non-Unix 

operating systems such as the Microsoft Windows family, investigating the suitability 

of UMIP or a similar model for Microsoft Windows is beyond the scope of this thesis 

work. 



36 

We now identify the security objective of our policy model. We aim at protecting 

the system integrity against network-based attacks. We assume that network server 

and client programs contain bugs and can be exploited if the attacker is able to feed 

input to them. We assume that users may make careless mistakes in their actions, 

e.g., downloading a malicious program from the Internet and running it. However, we 

assume that the attacker does not have physical access to the host to be protected. 

Our policy model aims at ensuring that under most attack channels, the attacker can 

only get limited privileges and cannot compromise the system integrity. For example, 

if a host runs privileged network-facing programs that contain vulnerabilities, the host 

will not be completely taken over by an attacker as a bot. The attacker may be able to 

exploit bugs in these programs to run some code on the host. However, the attacker 

cannot install rootkits. Furthermore, if the host reboots, the attacker does not control 

the host anymore. Similarly, if a network client program is exploited, the damage 

is limited. We also aim at protecting against indirect attacks, where the attacker 

creates malicious programs to wait for users to execute them, or creates/changes files 

to exploit vulnerabilities in programs that later read these files. 

The usability goals for UMIP are twofold: First, configuring a UMIP system 

should not be more di±cult than installing and configuring an operating system. 

Second, existing applications and common usage practices can still be used under 

UMIP. Depending on the needs of a system, the administrator of the system should 

be able to configure the system in a less-secure, but easier-to-user manner. 

One constraint that we have for UMIP is that it can be implemented using an 

existing mechanism (namely the Linux Security Modules framework). 

3.3.1 An Overview of the UMIP Model 

An important design question for any operating system access control system is: 

What is a principal? That is, when a process requests to perform certain operations, 

what information about the process should be used in deciding whether the request 



37 

Figure 3.1. The summary of the UMIP model 

should be authorized. The traditional UNIX access control system treats a pair of 

(uid,gid) as a principal. The eÆective uid and gid together determine the privileges 

of a process. As many operations can be performed only when the eÆective uid 

is 0, many programs owned by the root user are designated setuid. One problem 

with this approach is that it does not consider the possibility that these programs 

may be buggy. If all privileged programs are written correctly, then this approach is 

fine. However, when privileged programs contain bugs, they can be exploited so that 

attackers can use the privileges to damage the system. 

As having just uid and gid is too coarse-granulated, a natural extension is to 

treat a triple of uid, gid, and the current program that is running in the process as a 

principal. The thinking is that, if one can identify all possible operations a privileged 

program would do and only allows it to do those, then the damage of an attacker 

taking over the program is limited. This design is also insu±cient, however. Consider 

a request to load a kernel module3 that comes from a process running the program 

insmod with eÆective user-id 0. As loading a kernel module is what insmod is supposed 

3A loadable kernel module is a piece of code that can be loaded into and unloaded from kernel upon 
demand. LKMs (Loadable Kernel Modules) are a feature of the Linux kernel, sometimes used to add 



38 

to do, such access must be allowed. However, this process might be started by an 

attacker who has compromised a daemon process running as root and obtained a root 

shell as the result of the exploits. If the request is authorized, then this may enable the 

installation of a kernel rootkit, and lead to complete system compromise. One may 

try to prevent this by preventing the daemon program from running certain programs 

(such as shell); however, certain daemons have legitimate need to run shells or other 

programs that can lead to running insmod. In this case, a daemon can legitimately 

run a shell, the shell can legitimately run insmod, and insmod can legitimately load 

kernel modules. If one looks at only the current program together with (uid,gid), 

then any individual access needs to be allowed; however, the combination of them 

clearly needs to be stopped. 

The analysis above illustrates that, to determine what the current process should 

be allowed to do, one has to consider the parent process who created the current 

process, the process who created the parent process, and so on. We call this the 

request channel. For example, if insmod is started by a series of processes that have 

never communicated with the network, then this means that this request is from a 

user who logged in through a local terminal. Such a request should be authorized, 

because it is almost certainly not an attacker, unless an attacker gets physical access 

to the host, in which case not much security can be provided anyway. On the other 

hand, if insmod is started by a shell that is a descendant of the ftp daemon process, 

then this is almost certainly a result from an attack; the ftp daemon and its legitimate 

descendants have no need to load a kernel module. 

The key challenge is how to capture the information in a request channel in a 

succinct way. The domain-type enforcement approach used in SELinux and DTE 

Unix can be viewed as summarizing the request channel in the form of a domain. 

Whenever a channel represents a diÆerent set of privileges from other channels, a new 

domain is needed. This requires a large number of domains to be introduced. 

support for new hardware or otherwise insert code into the kernel to support new features. Using 
LKMs is one popular method for implementing kernel-mode rootkits on Linux. 



39 

The approach we take is to use a few fields associated with a process to record 

necessary information about the request channel. The most important field is one bit 

to classify the request channel into high integrity or low integrity. If a request channel 

is likely to be exploited by an attacker, then the process has low integrity. If a request 

channel may be used legitimately for system administration, then the process needs 

to be high-integrity. Note that a request channel may be both legitimately used for 

system administration and potentially exploitable. In this case, administrators must 

explicitly set the policy to allow such channels for system administration. The model 

tries to minimize the attack surface exposed by such policy setting when possible. 

When a process is marked as low-integrity, this means that it is potentially con­

taminated. We do not try to identify whether a process is actually attacked. The 

success of our approach depends on the observation that with such an apparently 

crude distinction of low-integrity and high-integrity processes, only a few low-integrity 

processes need to perform a small number of security critical operations, which can 

be specified using a few simple policies as exceptions. 

Basic UMIP Model: Each process has one bit that denotes its integrity 

level. When a process is created, it inherits the integrity level of the parent 

process. When a process performs an operation that makes it potentially 

contaminated, it drops its integrity. A low-integrity process by default 

cannot perform sensitive operations. 

The basic UMIP model is then extended with exceptions to support existing soft-

wares and system usage practices. Figure 3.1 gives an overview of UMIP. A high-

integrity process may drop its integrity to low in one of three ways. There are two 

classes of exceptions that can be specified for programs. The first class allows a 

program binary to be identified as one or more of: RAP (Remote Administration 

Point), LSP (Local Service Point), and FPP (File Processing Program). Such excep­

tions allow a process running the binary to maintain its integrity level when certain 

events that normally would drop the process’s integrity occur. In the second class, 



40 

a program binary can be given special privileges (e.g., using some capabilities, read­

ing/writing certain protected files) so that a process running the program can have 

these privileges even in low integrity. 

In the rest of this section, we describe the UMIP model in detail. Section 3.3.2 

discusses contamination through network and interprocess communications. Sec­

tion 3.3.3 discusses restrictions on low-integrity processes. Section 3.3.4 discusses 

contamination through files. Section 3.3.5 discusses protecting files owned by non-

system accounts. Comparison of UMIP with closely related integrity models is given 

in Section 3.3.6. 

3.3.2 Dealing with Communications 

When a process receives remote network tra±c (network tra±c that is not from 

the localhost loopback), its integrity level should drop, as the program may contain 

vulnerabilities and the tra±c may be sent by an attacker to exploit such vulnera­

bilities. Under this default policy, system maintenance tasks (e.g., installing new 

softwares, updating system files, and changing configuration files) can be performed 

only through a local terminal. Users can log in remotely, but cannot perform these 

sensitive tasks. While this oÆers a high degree of security, it may be too restrictive 

in many systems, e.g., in a collocated server hosting scenario. 

In the UMIP model, a program may be identified as a remote administration point 

(RAP). The eÆect is that a process running the program maintains its integrity level 

when receiving network tra±c. If one wants to allow remote system administration 

through, e.g., the secure shell daemon, then one can identify /usr/sbin/sshd as a remote 

administration point. (Note that if a process descending from sshd runs a program 

other than sshd and receives network tra±c, its integrity level drops.) Introducing 

RAP is the result of trading oÆ security in favor of usability. Allowing remote adminis­

tration certainly makes the system less secure. If remote administration through sshd 

is allowed, and the attacker can successfully exploit bugs in sshd, then the attacker 



41 

can take over the system, as this is specified as a legitimate remote administration 

channel. However, note that in this case the attack surface is greatly reduced from all 

daemon programs, to only sshd. Some daemon programs (such as httpd) are much 

more complicated than sshd and are likely to contain more bugs. Moreover, firewalls 

can be used to limit the network addresses from which one can connect to a ma­

chine via sshd; whereas one often has to open the httpd server to the world. Finally, 

techniques such as privilege separation [54, 55] can be used to further mitigate at­

tacks against sshd. The UMIP model leaves the decision of whether to allow remote 

administration through channels such as sshd to the system administrators. 

We also need to consider what happens when a process receives Inter-Process 

Communications (IPC) from another local process. UMIP considers integrity con­

tamination through those IPC channels that can be used to send free-formed data, 

because such data can be crafted to exploit bugs in the receiving process. Under 

Linux, such channels include UNIX domain socket, pipe, fifo, message queue, shared 

memory, and shared file in the tmpfs filesystem. In addition, UMIP treats local 

loopback network communication as a form of IPC. When a process reads from one 

of these IPC channels which have been written by a low-integrity process, then the 

integrity level of the process drops, even when the process is a RAP. 

Similar to the concept of RAP, a program may be identified as a Local Service 

Point (LSP), which enables a process running the program to maintain its integrity 

level after receiving IPC communications from low-integrity processes. For example, 

if one wants to enable system administration and networking activities (such as web 

browsing) to happen in one X Window environment, the X server and the desktop 

manager can be declared as LSPs. When some X clients communicate with network 

and drop to low-integrity, the X server, the desktop manager and other X clients can 

still maintain high integrity. 



42 

3.3.3 Restricting Low-Integrity Processes 

Our approach requires the identification of security-critical operations that would 

aÆect system integrity so that our protection system can prevent low-integrity pro­

cesses from carrying them out. We classify security-critical operations into two cate­

gories, file operations and operations that are not associated with specific files. 

Examples of non-file administrative operations include loading a kernel module, 

administration of IP firewall, modification of routing table, network interface configu­

ration, rebooting the machine, ptrace other processes, mounting and unmounting file 

systems, and so on. These operations are essential for maintaining system integrity 

and availability, and are often used by malicious code. In modern Linux, these oper­

ations are controlled by capabilities, which were introduced since version 2.1 of the 

Linux kernel. Capabilities break the privileges normally reserved for root down to 

smaller pieces. As of Linux Kernel 2.6.11, Linux has 31 diÆerent capabilities. The 

default UMIP rule grants only two capabilities CAP SETGID and CAP SETUID 

to low-integrity processes; furthermore, low-integrity processes are restricted in that 

they can use setuid and setgid only in the following two ways: (1) swapping among 

eÆective, real, and saved uids and gids, and (2) going from the root account to another 

system account. (A system account, with the exception of root, does not correspond 

to an actual human user.) We allow low-integrity processes to use setuid and setgid 

this way because many daemon programs do them and they do not compromise our 

security objective. Note that by this design, a low-integrity process running as root 

cannot set its uid to a new normal user. 

It is much more challenging to identify which files should be considered sensitive, 

as a large number of objects in an operating system are modeled as files. DiÆerent 

hosts may have diÆerent softwares installed, and have diÆerent sensitive files. The list 

of files that need to be protected is quite long, e.g., system programs and libraries, 

system configuration files, service program configuration files, system log files, kernel 

image files, and images of the memory (such as /dev/kmem and /dev/mem). We 



43 

cannot ask the end users to label files, as our goal is to have the system configurable 

by ordinary system administrators who are not security experts. Our novel approach 

here is to utilize the valuable information in existing Discretionary Access Control 

(DAC) mechanisms. 

Using DAC info for MAC All commercial operating systems have built-in DAC 

mechanisms. For example, UNIX and UNIX variants use the permission bits to 

support DAC. While DAC by itself is insu±cient for stopping network-based attacks, 

DAC access control information is nonetheless very important. For example, when one 

installs Linux from a distribution, files such as /etc/passwd and /etc/shadow would 

be writable only by root. This indicates that writing to these files is security critical. 

Similarly, files such as /etc/shadow would be readable only by root, indicating that 

reading them is security critical. Such DAC information has been used by millions 

of users and examined for decades. Our approach utilizes this information, rather 

than asking the end users to label all files, which is a labor intensive and error-

prone process. UMIP oÆers both read and write protection for files owned by system 

accounts. A low-integrity process (even if having eÆective uid 0) is forbidden from 

reading a file that is owned by a system account and is not readable by world; such a 

file is said to be read-protected. A low-integrity process is also forbidden from writing 

to a file owned by a system account and is not writable by world. Such a file is said 

to be write-protected. Finally, a low-integrity process is forbidden from changing the 

DAC permission of any (read- or write-) protected file. 

Exception policies: least privilege for sensitive operations Some network-

facing daemons need to access resources that are protected. Because these processes 

receive network communications, they will be low-integrity, and the default policy 

will stop such access. We deal with this by allowing the specification of policy ex­

ceptions for system binaries. For example, one policy we use is that the binary 

“/usr/sbin/vsftpd” is allowed to use the capabilities CAP NET BIND SERVICE, 

CAP SYS SETUID, CAP SYS SETGID, and CAP SYS CHROOT, to read the file 

/etc/shadow, to read all files under the directory /etc/vsftpd, and to read or write 



44 

the file /var/log/xferlog. This daemon program needs to read /etc/shadow to authen­

ticate remote users. If an attacker can exploit a vulnerability in vsftpd and inject 

code into the address space of vsftpd, this code can read /etc/shadow file. However, 

if the attacker injects shell code to obtain an shell by exploiting the vulnerabilities, 

then the exception policy for the shell process will be reset to NULL and the attacker 

loses the ability to read /etc/passwd. Furthermore, the attacker cannot write to any 

system binary or install rootkits. Under this policy, an administrator cannot directly 

upload files to replace system binaries. However, the administrator can upload files to 

another directory and login through a remote administration channel (e.g., through 

sshd) and then replace system binary files with the uploaded files. 

When a high integrity process loads a program that has an exception policy, the 

process has special privileges as specified by the policy. Even when the process later 

receives network tra±c and drops integrity, the special privileges remain for the pro­

cess. However, when a low integrity process loads a program that has an exception 

policy, the process is denied the special privileges in the policy. The rationale is as 

follows. Some network administration tools (such as iptables) must perform network 

communications and will thus drop its integrity, so they need to be given capabil­

ity exceptions for CAP NET ADMIN. However, we would not want a low-integrity 

process to invoke them and still have the special privileges. On the other hand, 

some programs need to invoke other programs when its integrity is low, and the in­

voked program needs special privilege. For example, sendmail needs to invoke procmail 

when its integrity is low, and procmail needs to write to the spool directory which 

is write-protected. We resolve this by defining executing relationships between pro­

grams. If there is an executing relationship between the program X to the program 

Y , then when a process running X executes Y , even if the process is in the state of 

low-integrity, the process will have the special permissions associated with Y after ex­

ecuting. In the example, we define an executing relationship from sendmail to procmail 

and give procmail the special permission to write to the spool directory. 



45 

3.3.4 Contamination through Files 

As an attacker may be able to control contents in files that are not write-protected, 

a process’s integrity level needs to drop after reading and executing files that are not 

write-protected. However, even if a file is write-protected, it may still be written 

by low-integrity processes, due to the existence of exception policies. We use one 

permission bit to track whether a file has been written by a low-integrity process. 

There are 12 permission bits for each file in a UNIX file system: 9 of them indicate 

read/write/execute permissions for user/group/world; the other three are setuid, set­

gid, and the sticky bit. The sticky bit is no longer used for regular files (it is still useful 

for directories), and we use it to track contamination for files. When a low-integrity 

process writes to a file that is write-protected as allowed by an exception, the file’s 

sticky bit is set. A file is considered to be low-integrity (potentially contaminated) 

when either it is not write-protected, or has the sticky bit set. 

When a process reads a low-integrity file, the process’s integrity level drops. We 

do not consider reading a directory that was changed by a low-integrity process as 

contamination, as the directory is maintained by the file system, which should handle 

directory contents properly. When a file’s permission is changed from world-writable 

to not world-writable, the sticky bit is set, as the file may have been contaminated 

while it was world-writable. 

A low-integrity process is forbidden from changing the sticky bit of a file. Only 

a high-integrity process can reset the sticky bit by running a special utility program 

provided by the protection system. The requirement of using a special utility program 

avoids the problem that other programs may accidentally reset the bit without the 

user intending to do it. This way, when a user clears the sticky bit, it is clear to 

the user that she is potentially raising the integrity of the file. The special utility 

program cannot be changed by low-integrity processes, so that its integrity level is 

always high. 



46 

Similar to the concept of RAP, we introduce file processing programs (FPP). A 

process running an FPP maintains its integrity level even after reading a low-integrity 

file. Programs that read a file’s content and display the file on a terminal (e.g., vi, 

cat, etc.) need to be declared to be FPP. 

We observe that our approach for handling file integrity is diÆerent from existing 

integrity models (such as Biba [21]), in which an object has one integrity level. 

The integrity level of an object can be used to indicate two things: (1) the im­

portance level of the object as a container (i.e., whether the object is used in some 

critical ways), and (2) the quality (i.e., trustworthiness, or, alternatively, contamina­

tion level) of information currently in the object. These two may not always be the 

same. When only one integrity level is used, one can keep track of only one of the 

two, which is problematic. Consider, for example, the system log files and the mail 

files. They are considered to be contaminated because they are written by processes 

who have communicated with the network. However, it is incorrect not to protect 

them, as an attacker who broke into the system through, say, httpd, would be able 

to change the log. 

UMIP handles this by using a file’s DAC permission to determine the importance 

level of the file, and using the sticky bit to track the contamination level. Even if a 

file has the sticky bit set (i.e., considered contaminated), as long as the file’s DAC 

permission is not writable by the world, a low-integrity process still cannot write to 

the file (unless a policy exception exists). In other words, the set of write-protected 

files and the set of contaminated files intersect. This way, files such as system logs 

and mails are protected. This is diÆerent from other integrity models such as Biba, 

where once an object is contaminated, every subject can write to it. UMIP’s design 

reduces the attack surface. 



47 

3.3.5 Files Owned by Normal User Accounts 

Not all sensitive files are owned by a system account. For example, consider a 

user account that has been given privileges to sudo (superuser do) all programs. The 

startup script files for the account are sensitive. We follow the approach of using DAC 

info in MAC. If a file is not writable by the world, then it is write-protected. UMIP 

allows exceptions to be specified for specific users. DiÆerent users may have diÆerent 

exception policies. An account’s exception policy may specify global exceptions that 

apply to all processes with that user’s user-id. For example, a user may specify that a 

directory can be written by any low-integrity process and uses the directory to store 

all files from the network. 

If the system administrator does not want to enable integrity protection for a user, 

so that the user can use the system transparently (i.e., without knowing the existence 

of UMIP), then the policy can specify a global exception for the home directory of 

the user with recursion so that all low-integrity processes with the user’s user-id can 

access the user’s files. We point out that even with such a global exception, UMIP 

still oÆers useful protection. First, the exception will be activated only if the process’s 

eÆective user id is that user. Recall that we disallow a low-integrity process from using 

setuid to change its user id to another user account. This way, if an attacker breaks in 

through one daemon program owned by account A, the attacker cannot write to files 

owned by account B, even if a global exception for B is in place. Second, if the user is 

attacked while using a network client program, and the users’ files are contaminated. 

These files will be marked by the sticky bit, and any process that later accesses them 

will drop its integrity level; the overall system integrity is still protected. 

3.3.6 Other Integrity Models 

The UMIP model borrows concepts from classical work on integrity models such 

as Biba [21] and LOMAC [22]. Here we discuss UMIP’s novel features. 



48 

The Biba [21] model has five mandatory integrity policies: (1) the strict integrity 

policy, in which subject and object integrity labels never change; (2) the subject 

low-water mark policy, in which a subject’s integrity level drops after reading a low-

integrity object; (3) the object low-water mark policy, in which an object’s integrity 

level drops after being written by a low-integrity subject; (4) the low-water mark 

integrity audit policy, which combines the previous two and allow the integrity levels 

of both subjects and objects to drop; (5) the ring policy, which allows subjects to 

read low-integrity objects while maintaining its integrity level. LOMAC [22] is an 

implementation of the subject low-water mark policy for operating systems. Each 

object is assigned an integrity level. Once assigned, an object’s level never changes. 

It aims at protecting system integrity and places emphasis on usability. Compared 

with Biba and LOMAC, UMIP has the following novel features. 

First, UMIP supports a number of ways to specify some programs as partially 

trusted to allow them to violate the default contamination rule or the default restric­

tions on low-integrity processes in some limited way. This enables one to use existing 

applications and administration practices, while limiting the attack surfaces exposed 

by such trust. 

Second, in UMIP a file essentially has two integrity level values: whether it is 

protected and whether it is contaminated. The former is determined by the DAC 

permission, and does not change unless the file’s permission changes. The latter is 

tracked using the sticky bit for protected files, and may change dynamically. The 

advantages of our approach is explained in Section 3.3.4. 

Third, UMIP’s integrity protection is compartmentalized by users. Even if one 

user has an exception policy that allows all low-integrity processes to access certain 

files owned by the user, another user’s low-integrity process is forbidden from such 

access. 

Fourth, UMIP allows low-integrity files to be upgraded to high-integrity. (This 

feature also exists in LOMAC.) This means that low-integrity information (such as 

files downloaded from the Internet) can flow into high-integrity objects (such as sys­



49 

tem binaries); however, such upgrade must occur explicitly, i.e., by invoking a special 

program in a high-integrity channel to remove the sticky bit. Allowing such channels 

is necessary for patching and system ungrade. 

Fifth, UMIP oÆers some confidentiality protection, in addition to integrity pro­

tection. For example, low-integrity processes are forbidden from reading files owned 

by a system account and not readable by the world. 

Finally, UMIP uses DAC information to determine integrity and confidentiality 

labels for objects, whereas in LOMAC each installation requires manual specification 

of a mapping between existing files and integrity levels. 

3.4 An Implementation under Linux 

We have implemented the UMIP model in a prototype protection system for Linux, 

using the Linux Security Module (LSM) framework. We have been using evolving 

prototypes of the system within our group for a few months. 

3.4.1 Implementation 

The basic design of our protection system is as follows. Each process has a security 

label, which contains (among other fields) a field indicating whether the process’s 

integrity level is high or low. When a process issues a request, it is authorized only 

when both the Linux DAC system and our protection system authorize it. A high-

integrity process is not restricted by our protection system. A low-integrity process by 

default cannot perform any sensitive operation. Any exception to the above default 

policy must be specified in a policy file, which is loaded when the module starts. 

The Policy Specification The policy file includes a list of entries. Each entry 

contains four fields: (1) a path that points to the program that the entry is associated 

with; (2) the type of a program, which includes three bits indicating whether the 

program is a remote administration point (RAP), a local service point (LSP), and 



50 

Table 3.1
 
The four forms of file exceptions in UMIP.
 

Syntax Meaning 

(f , read) f is a regular file or  a directory  Allowed to read f 

(f , full) f is a regular file or  a directory  Allowed to do anything to f 

(d, read, R) d is a directory  Allowed to read any file in d recursively. 

(d, full, R) d is a directory.  Allowed to do anything to any file in d recursively. 

a file processing point (FPP); (3) a list of exceptions; and (4) a list of executing 

relationships, which is a list of programs that can be executed by the current program 

with the exception policies enabled, even if the process is low integrity. If a program 

does not have a corresponding entry, the default policy is that the program is not an 

RAP, a LSP or an FPP, and the exception list and the executing relationship list are 

empty. An exception list consists of two parts, the capability exception list and the 

file exception list, corresponding to exceptions to the two categories of security critical 

operations. A file exception takes one of the four forms shown in the Table 3.1. 

The authorization provided by file exceptions includes only two levels: read and 

full. We choose this design because of its simplicity. In this design, one cannot specify 

that a program can write a file, but not read. We believe that this is acceptable 

because system-related files that are read-sensitive are also write-sensitive. In other 

words, if the attacker can write to a file, then he can pose at least comparable damage 

to the system as he can also read the file. A policy of the form “(d, read, R)” is used 

in the situation that a daemon or a client program needs to read the configuration 

files in the directory d. A policy of the form “(d, full, R)” is used to define the working 

directories for programs. 

3.4.2 Evaluation 

We evaluate our design of the UMIP model and the implementation under Linux 

along the following dimensions: usability, security, and performance. 



51 

Usability One usability measure is transparency, which means not blocking legiti­

mate accesses generated by normal system operations. Another measure is flexibility, 

which means that one can configure a system according to the security needs. A third 

usability measure is ease of configuration. Several features of UMIP contribute to a 

high level of usability: the use of existing DAC information, the existence of RAP, 

LAP, and FPP, and the use of familiar abstractions in the specification of policies. 

To experimentally evaluate the transparency and flexibility aspects, we established 

a server configured with Fedora Core 5 with kernel version 2.6.15, and enabled our 

protection system as a security module loaded during system boot. We installed some 

commonly used server applications (e.g., httpd, ftpd, samba, svn) and have been pro­

viding services to our research group over the last few months. The system works 

with a small and simple policy specification as given in Table 3.2. With this policy, 

we allow remote administration through the SSH daemon by declaring sshd as RAP. 

In this setting, one can also do remote administration through X over SSH tunneling 

and VNC over SSH tunneling. If one wants to allow remote administration through 

VNC without SSH tunneling, then he can declare the VNC Server as a RAP. 

Security Most attack scenarios that exploit bugs in network-facing daemon pro­

grams or client programs can be readily prevented by our protection system. Suc­

cessful exploitation of vulnerabilities in network-facing processes often results in a 

shell process spawned from the vulnerable process. After gaining shell access, the 

attacker typically tries downloading and installing attacking tools and rootkits. As 

these processes are low-integrity, the access to sensitive operations is limited to those 

allowed by the exception. Furthermore, if the attacker loads a shell or any other 

program, the new process has no exception privileges. 

In our experiments, we use the NetCat tool to oÆer an interactive root shell to the 

attacker in the experiment. We execute NetCat in “listen” mode on the test machine 

as root. When the attacker connects to the listening port, NetCat spawns a shell 

process, which takes input from the attacker and also directs output to him. From 



52 

Table 3.2 
A sample exception policy of UMIP 

Services and 

Path of the Binary 

Type File Exceptions Capability Exceptions  Executing 

Relationships 

SSH Daemon 

/usr/sbin/sshd 

RAP 

Automated Update: 

/usr/bin/yum 

RAP 

/usr/bin/vim FPP 

/usr/bin/cat FPP 

FTP Server 

/usr/sbin/vsftpd 

NONE (/var/log/xferlog, full) 

(/etc/vsftpd, full, R) 

(/etc/shadow, read) 

CAP SYS CHROOT 

CAP SYS SETUID 

CAP SYS SETGID 

CAP NET BIND SERVICE 

Web Server 

/usr/sbin/httpd 

NONE (/var/log/httpd, full, R) 

(/etc/pki/tls, read, R) 

(/var/run/httpd.pid, full) 

Samba Server 

/usr/sbin/smbd 

NONE (/var/cache/samba, full, R) 

(/etc/samba, full, R) 

(/var/log/samba, full, R) 

(/var/run/smbd.pid, full) 

CAP SYS RESOURCE 

CAP SYS SETUID 

CAP SYS SETGID 

CAP NET BIND SERVICE 

CAP DAC OVERRIDE 

NetBIOS name server 

/usr/sbin/nmbd 

NONE (/var/log/samba, full, R) 

(/var/cache/samba, full, R) 

Version control server 

/usr/bin/svnserve 

NONE (/usr/local/svn, full, R) 

Name Server for NT 

/usr/sbin/winbindd 

NONE (/var/cache/samba, full, R) 

(/var/log/samba, full, R) 

(/etc/samba/secrets.tdb, full) 

SMTP Server 

/usr/sbin/sendmail 

NONE (/var/spool/mqueue, full, R) 

(/var/spool/clientmqueue, 

full, R) 

(/var/spool/mail, full, R) 

(/etc/mail, full, R) 

(/etc/aliases.db, read) 

(/var/log/mail, full, R) 

(/var/run/sendmail.pid, full) 

CAP NET BIND SERVICE /usr/sbin/procmail 

Mail Processor 

/usr/bin/procmail 

NONE (/var/spool/mail, full, R) 

NTP Daemon 

/usr/sbin/ntpd 

NONE (/var/lib/ntp, full, R) 

(/etc/ntp/keys, read) 

CAP SYS TIME 

Printing Daemon 

/usr/sbin/cupsd 

NONE (/etc/cups/certs, full, R) 

(/var/log/cups, full, R) 

(/var/cache/cups, full, R) 

(/var/run/cups/certs, full R) 

CAP NET BIND SERVICE 

CAP DAC OVERRIDE 

System Log Daemon 

/usr/sbin/syslogd 

NONE (/var/log, full, R) 

NSF RPC Service 

/sbin/rpc.statd 

NONE (/var/lib/nfs/statd, full, R) 

IP Table 

/sbin/iptables 

NONE CAP NET ADMIN 

CAP NET RAW 



53 

the root shell, we perform the following three attacks and compare what happens 

without our protection system with what happens when our protection system is 

enabled. 

1. Installing a rootkit : rootkits can operate at two diÆerent levels. User-mode rootkits 

manipulate user-level operating system elements, altering existing binary executables 

or libraries. Kernel-mode rootkits manipulate the kernel of the operating system by 

loading a kernel module or manipulating the image of the running kernel’s memory 

in the file system (/dev/kmem). 

We use two methods to determine whether a system has been compromised after 

installing a rootkit. The first method is to try to use the rootkit and see whether 

it is successfully installed. The second method is to calculate the hash values for 

all the files (content, permission bits, last modified time) in the local file system 

before and after installing the rootkit. For the calculation we reboot the machine 

using an external operating system (e.g., from a CD) and mount the local file system. 

This ensures that the running kernel and the programs used in the calculation are 

clean. A comparison between the hash results can tell whether the system has been 

compromised. 

We tried two well-known rootkits. The first one is Adore-ng, a kernel-mode rootkit 

that runs on Linux Kernel 2.2 / 2.4 / 2.6. It is installed by loading a malicious kernel 

module. The supported features include local root access, file hiding, process hiding, 

socket hiding, syslog filtering, and so on. Adore-ng also has a feature to replace an 

existing kernel module that is loaded during boot with the trojaned module, so that 

adore-ng is activated during boot. When our protection was not enabled, we were 

able to successfully install Adore-ng in the remote root shell and activat it. We were 

also able to replace any existing kernel module with the trojaned module so that the 

rootkit module would be automatically loaded during booting. When our protection 

system was enabled, the request to load the kernel module of Adore-ng from the 

remote root shell was denied, getting an “Operation not permitted” error. We got 

the same error when trying to replace the existing kernel module with the trojaned 



54 

module. When trying to use the rootkit, we received a response saying “Adore-ng 

not installed”. We checked the system integrity using the methods described above. 

The result showed that the system remained clean. 

The second is Linux Rootkit Family (LRK). It is a well-known user-mode rootkit 

and replaces a variety of existing system programs and introduce some new programs, 

to build a backdoor, to hide the attacker, and to provide other attacking tools. When 

our protection was not enabled, we were able to install the trojaned SSH daemon and 

replace the existing SSH daemon in the system. After that we successfully connected 

to the machine as root using a predefined password. When our protection was enabled, 

installation of the trojaned SSH daemon failed, getting the “Operation not permitted” 

error. The system remained clean. 

2. Stealing the shadow File: Without our protection system, we were able to steal 

/etc/shadow by send an email with the file as an attachment, using the command 

“mutt -a /etc/shadow alice@haker.net < /dev/null”. When our protection was 

enabled, the request to read the shadow file was denied, getting an error saying 

“/etc/shadow: unable to attach file” . 

3. Altering user’s web page files : Another common attack is to alter web files after 

getting into a web server. In our experiment, we put the user’s web files in a sub 

directory of the user’s home directory “/home/Alice/www/”. That directory and 

all the files under the directory were set as not writable by the world. When our 

protection was enabled, from the remote root shell, we could not modify any web 

files in the directory “/home/Alice/www/”. We could not create a new file in that 

directory. Our module successfully prevented user’s protected files from being changed 

by low-integrity processes. 

Performance We have conducted benchmarking tests to compare performance 

overhead incurred by our protection system. Our performance evaluation uses the 

Lmbench 3 benchmark and the Unixbench 4.1 benchmark suites. These microbench­

mailto:alice@haker.net


55 

Table 3.3
 
The Unixbench 4.1 benchmark results of UMIP.
 

Benchmark Base Enforcing Overhead (%) SELinux(%) 

Dhrystone 335.8 334.2 0.5 

Double-Precision 211.9 211.6 0.1 

Execl Throughput 616.6 608.3 1 5 

File Copy 1K 474.0 454.2 4 5 

File Copy 256B 364.0 344.1 5 10 

File Copy 4K 507.5 490.4 3 2 

Pipe Throughput  272.6 269.6 1 16 

Process Creation 816.9 801.2 2 2 

Shell Scripts 648.3 631.2 0.7 4 

System Call 217.9 217.4 0.2 

Overall 446.6 435.0 3 

mark tests were used to determine the performance overhead incurred by the protec­

tion system for various process, file, and socket low-level operations. 

We set up a PC configured with RedHat Linux Fedora Core 5, running on Intel 

Pentium M processor with 1400Hz, and having 120 GB hard drive and 1GB memory. 

Each test was performed with two diÆerent kernel configurations. The base kernel 

configuration corresponds to an unmodified Linux 2.6.11 kernel. The enforcing con­

figuration corresponds to a Linux 2.6.11 kernel with our protection system loaded as 

a kernel module. 

The test results are given in Table 3.3 and Table 3.4. We compare our performance 

result with SELinux. The performance data of SELinux is taken from [56]. For most 

benchmark results, the percentage overhead is small (∑ 5%). The performance of our 

module is significantly better than the data for SELinux. 



56 

Table 3.4
 
The Lmbench 3 benchmark results of UMIP (in microseconds).
 

Microbenchmark Base Enforcing Overhead (%) SELinux(%) 

syscall 0.6492 0.6492 0 

read 0.8483 1.0017 18 

write 0.7726 0.8981 16 

stat 2.8257 2.8682 1.5 28 

fstat 1.0139 1.0182 0.4 

open/close 3.7906 4.0608 7 27 

select on 500 fd’s 21.7686 21.8458 0.3 

select on 500 tcp fd’s 37.8027 37.9795 0.5 

signal handler installation 1.2346 1.2346 0 

signal handler overhead 2.3954 2.4079 0.5 

protection fault 0.3994 0.3872 -3 

pipe latency  6.4345 6.2065 -3 12 

pipe bandwidth  1310.19 MB/sec 1292.54 MB/sec 7 

AF UNIX sock stream latency 8.2 8.9418 9 19 

AF UNIX sock stream bandwidth 1472.10 MB/sec 1457.57 MB/sec 9 

fork+exit 116.5581 120.3478 3 1 

fork+execve 484.3333 500.1818 3 3 

for+/bin/sh-c 1413.25 1444.25 2 10 

file write bandwidth 16997 KB/sec 16854 KB/sec 0.8 

pagefault 1.3288 1.3502 2 

UDP latency 14.4036 14.6798 2 15 

TCP latency 17.1356 18.3555 7 9 

RPC/udp latency 24.6433 24.8790 1 18 

RPC/tcp latency 29.7117 32.4626 9 9 

TCP/IP connection cost 64.5465 64.8352 1 9 



57 

4 TROJAN HORSE RESILIENT DISCRETIONARY ACCESS CONTROL 

UMIP enhances DAC to protect the host integrity against the remote adversary. How­

ever, UMIP is still vulnerable to the Trojan horse attacks launched by the malicious 

local users because the local users are trusted in UMIP. In this chapter, we propose 

the IFEDAC model, which extends the UMIP model to defend against the Trojan 

horses and local exploits. We present the design and implementation details of the 

IFEDAC model. 

4.1 An Overview of IFEDAC 

One key concept in IFEDAC is the contamination source. Each contamination 

source represents a channel potentially controlled by a diÆerent entity who may com­

promise the system integrity. Each DAC user account that has a login shell and is not 

root is viewed as a separate contamination source. Remote network communication is 

another contamination source (denoted as net), which represents the remote attackers 

who do not have a local account. In the following description, we use subject and 

process interchangeably, and object and file interchangeably. 

IFEDAC maintains an integrity level for each subject and object. The value of an 

integrity level is a set of contamination sources that indicate who may have gained 

control over the subject or who may have changed the content stored in the object. 

The integrity level is tracked using information flow technique, which is presented in 

Section 4.2. 

In IFEDAC, the access control policy is specified by associating each object with 

a read protection class (rpc) and a write protection class (wpc); each is a set of 

contamination sources that indicates which entities are authorized to read from and 

write to the object. When a subject requests to read (write) an object, the access is 



58 

allowed if the subject’s integrity level is a subset of the object’s rpc (wpc), i.e., all of 

the contamination sources of the subject are allowed to access the object. In most 

cases, the rpc and wpc contain the entities who are authorized determined by the 

DAC policy. 

Most real-world attacks are prevented by the default policy model of IFEDAC we 

have introduced so far. For example, if a remote attacker breaks in by exploiting a 

vulnerability in a network server, the server process controlled by the attacker will 

have net in the integrity level, and hence cannot access the system core files and the 

files that are authorized only to local users. Similarly, if a careless administrator exe­

cutes a trojan horse downloaded from a malicious site or opens an email attachment 

that is a mal-formed file exploiting a vulnerable application, these files will have net 

in their integrity levels, as will the processes running and reading these files. Last, if 

a malicious local user u exploits a vulnerability in a setuid-root program to gain root 

privilege, the exploited process will have u in its integrity level, and hence it cannot 

access the system core files and other files that are not authorized to u. 

While the default policy model of IFEDAC provides strong security guarantees 

to protect both core system files and user-owned files against trojan horses and vul­

nerability exploiting attacks, the model will disallow some legitimate operations, i.e., 

some processes need to access files that they are not authorized to access according 

to the policy. The same problem also exists in the DAC system and is handled by 

the setuid feature, which impose unlimited trust on these programs. IFEDAC handle 

this problem by specifying exceptions for programs. Exceptions imply trusts over 

programs and such trusts are strictly limited and can be clearly specified. We give a 

definition of exceptions in Section 4.2, analyze the underlying security assumptions for 

exceptions in Section 4.3, and discuss the exception policy configuration in practice 

in Section 4.4. 

DAC oÆers adequate protection when all programs are benign and correct. IFEDAC 

can enforce the same policy without relying on this unrealistic assumption. We ana­

lyze the security properties IFEDAC can provide in Section 4.3. In short, IFEDAC 



59 

weakens the assumption to be (1) the programs that are explicitly identified as benign 

are benign (2) the programs that have exceptions are correct in processing input data. 

4.2 The IFEDAC Model 

We now give a formal definition of the IFEDAC model for Linux. 

4.2.1 Elements in the IFEDAC Model 

The IFEDAC model has the following elements: 

•	 S denotes the set of all subjects (i.e., processes). 

•	 O denotes the set of all objects (i.e., files). 

•	 U denotes the set of users. The set U [ {net} is the set of all contamination 

sources. 

The users are partitioned into two subsets: U = A[N , where A denotes system 

administrators and N denotes non-administrators. The users in A are trusted 

to perform system administration through certain limited channels, whereas 

the users in N are not. The administrators in A are similar to the notion of 

“sudoer” in the traditional DAC system in Linux. 

• L = 2U[{net} is the set of all security labels that are used for integrity levels and 

protection classes. These labels form a lattice under a partial order ∏ such that 

` 1 ∏ ` 2 if and only if ` 1 µ ` 2. The meet (i.e., greatest lower bound) of ` 1, ̀  2 in 

the poset hL, ∏i is therefore ` 1 [ ̀  2. The greatest element in hL, ∏i is ;, which 

we use > to denote; it means the subject or object has not been contaminated 

by any source. The least element is U [ {net}, which we use ? to denote. 

•	 A function int : S [ O ! L assigns an integrity level to each subject and each 

object. 



60 

•	 Each object  o has three protection classes. 

–	 A function rpc : O ! L assigns a read protection class to each object. 

The value rpc(o) can be explicitly set. If it is not explicitly set, then rpc(o) 

is inferred from DAC as follows: If o is world-readable, then rpc(o) =  

?. Otherwise, rpc(o) =  U
r

(o), where U
r

(o) is the set of users in U who 

are authorized to read o. If  o is group-readable, then U
r

(o) may change 

when group membership changes. IFEDAC uses the group membership 

information at the time of access to determine rpc(o). 

–	 A function wpc : O ! L assigns a write protection class to each object. 

Unless explicitly set, the value wpc(o) is inferred from DAC similarly to 

rpc(o). We expect that for the vast majority of objects, rpc(o) and wpc(o) 

are inferred from DAC. 

–	 A function apc : O ! L assigns an admin protection class to each object. 

This function determines which subject can change the rpc(o) and wpc(o) 

either directly or indirectly, through changing its DAC permission bits. As 

the Linux DAC mechanism allows only root or the owner of an object to 

change the permission bits, in IFEDAC we choose apc(o) =  {owner(o)}. 

•	 A function spc : S ! L assigns a subject protection class to each subject. 

The value spc(s) determines which subjects can send signals or use ptrace to 

interrupt or control the subject s. The rules for determining spc is described in 

next subsection. 

4.2.2 Access Control Rules in IFEDAC 

IFEDAC has 17 rules for access control and label maintenance(See Table 4.1). 

They are separated into four parts: subject integrity tracking, object integrity track­

ing, file system protection, and inter-process communications (IPC) protection. These 



61 

Table 4.1 
The 17 access control and label maintenance rules of IFEDAC. The 
last column indicate whether the rule can have an exception. 

condition or eÆect exceptions 

Subject Integrity Tracking 

After creating the first subject s0 int(s0) √ > (m1) no 

After s creates s0 int(s0) √ int(s) (m2) no 

After s executes o int(s) √ int(s) [ int(o) (m3) no 

After s reads from the network int(s) √ int(s) [ {net} (m4) yes 

After s reads from o int(s) √ int(s) [ int(o) (m5) yes 

After s logs in a non-administrator u int(s) √ int(s) [ {u} (m6) no 

After s1 receives IPC data from s2 int(s1) √ int(s1) [ int(s2) (m7) yes 

Object Integrity Tracking 

When o is created by s int(o) √ int(s) (o1) no 

When int(o) is not previously assigned int(o) √ wpc(o) (o2) no 

After o is written by s int(o) √ int(s) [ int(o) (o3) yes 

Object Protection 

For s to read o require int(s) ∏ rpc(o) (a1) yes 

For s to write o require int(s) ∏ wpc(o) (a2) yes 

For s to change rpc(o) or  wpc(o) require int(s) ∏ apc(o) (a3) yes 

For s to change apc(o) require int(s) ∏ > (a4) no 

For s to change int(o) to  ̀ 0 require int(s) ∏ apc(o) ^ int(s) ∏ `0 (a5) no 

IPC Protection 

For s1 to interrupt s2 require int(s1) ∏ spc(s2) (i1) no 

For s1 to ptrace s2 require int(s1) ∏ spc(s2) ^ int(s1) ∏ int(s2)a (i2) no 

aIf int(s1) 6 >, s2 cannot have any exception privileges. All these conditions should be satisfied = 
during the whole tracing period. A violation will stop the tracing. 

rules are summarized in Table 4.1. Some of these rules can have exceptions. We de­

scribe them in Section 4.2.3. We point out that end users do not need to know these 

rules to use a Linux system with IFEDAC, just as they do not need to know the 

intricacies of setuid-related system calls to use current Linux. 

Subject Integrity Tracking The subject’s integrity level is determined as follows. 

• (m1). The first process, init, has integrity level >. 



62 

•	 (m2). When a new process is created, it inherits the parent process’s integrit 

level. 

•	 (m4). When a process receives network tra±c, its integrity level is updated 

to include net as an additional contamination source. This represents that the 

attacker who controls the network may have gained control over the subject by 

exploiting vulnerabilities in the subject. 

•	 (m3), (m5). When a process s executes or reads an object o, its integrity level is 

contaminated by o, that is, int(s) √ int(s) [ int(o). This represents whichever 

source that may have contaminated the object o now may have gained control 

1over s . 

•	 (m6). When a process logs in a user u, the process is contaminated according 

to the type of the user. If u is an administrator, then the process’s integrity 

level remains unchanged. Otherwise, if u is a non-administrator, the process’s 

integrity level is updated to include u as an additional contamination source, 

which represents that the user u has gained control over the process. We use 

the fact that a login in Linux triggers an event wherein all three uids (real uid, 

eÆective uid, saved uid) of a process are changed to a new user. This event 

occurs whether the login is through a terminal and the X desktop (the “login” 

process), via an ssh or ftp server, or by the execution of the “su” command. 

Object Integrity Tracking For subject integrity tracking to be eÆective, we also 

need object integrity tracking. 

•	 (o1). When a new object is created by a process, the object’s integrity level is 

initialized to be the process’s integrity level. 

1In our subject integrity racking rules, the integrity levels of processes can only go down and can 
never go up. One may worry that the whole system converges to ? after a time. This is not the 
case. It is true that the integrity level of any individual process can never go up after it goes down. 
However, as some processes, e.g., the root process of the system (i.e., init), are high, there are always 
new processes coming up that are also high. One can use a tree as an analogy. Once a leaf is dead, 
it does not become alive again. However, because the root is alive, new leaves keep coming up. 



63 

•	 (o2). For an object that is created before IFEDAC is deployed, its integrity 

level is initialized as its write protection class, because the write protection 

class is derived from the DAC permissions which can indicate how the object is 

protected before deploying IFEDAC. 

•	 (o3). When an object o is modified by a process s, the object’s integrity level 

is contaminated by s, that is int(o) √ int(o) [ int(s). 

File System Protection The access control rules for file system protection are as 

follows. 

•	 (a1), (a2). For a subject s to read o, we require that int(s) ∏ rpc(o). Similarly, 

we require that int(s) ∏ wpc(o) for  s to write to o. 

•	 (a3). For s to change the rpc (o) and wpc (o), we require int(s) ∏ apc(o). 

•	 (a4). Linux DAC allows only root to change the owner of a file; thus IFEDAC 

adopts the policy that for s to change apc(o), we require int(s) =  >. 

•	 (a5). An object’s integrity level can be updated explicitly. This is necessary, for 

example, to allow system updates. The integrity level of downloaded updates 

will include net, and needs to be upgraded to > before the updates can be 

installed. However, for s to update o’s integrity level to `, we require both 

int(s) ∏ apc(o) and int(s) ∏ `. The former requires that s represents the owner 

of o, and the latter prevents malicious upgrading beyond one’s own integrity 

level. 

Inter-process Communications Modern Linux supports various mechanisms for 

inter-process communication (IPC). IFEDAC handles IPC by categorizing the IPC 

mechanisms into three types. 

•	 (m7). We call the first type Data Sending. The IPC mechanisms that belong 

to this type include pipes, FIFO, message queues, shared memory, local sockets 



64 

and loopback network communication. They can be used to send free-formed 

data, and such data can be crafted to exploit bugs in the receiving process. 

Therefore after s1 receives IPC tra±c from s2, int(s1) √ int(s1) [ int(s2). 

IFEDAC does not apply additional control to these IPCs, because they require 

active participation of both the sender and the receiver. Without the receiver’s 

active participation, the sender cannot force the receiver to receive data. 

•	 (i1). We call the second type Interrupting. The IPC mechanisms that belong to 

this type include sending signals and changing scheduling parameters of another 

process (through the sys set priority() and sys set scheduler() system calls). For 

most signals, the default behavior of the receiving process is to terminate, core-

dump, or stop, unless the process registers its own signal handlers to overwrite 

the default actions. We do not want the attacker to be able to terminate a 

critical system service or change the execution state of a process that belongs 

to another user. In other words, a user can only interrupt his own processes 

and only system administrators can do so to the system processes. IFEDAC 

achieves that by defining the subject protection class to indicate the “owner” of 

a process. The spc value is determined as follows. Initially when a new process 

is created, it inherits the parent process’s protection class. When a process logs 

in a user u, its protection class is updated to {u}. Then, for s1 to deliver an 

interrupting IPC to s2, we require int(s1) ∏ spc(s2). If succeed, unlike the data 

sending IPCs, the receiver’s integrity level does not change because it is di±cult 

to use signaling to exploit a vulnerable process. 

•	 (i2). We call the third type Controlling. The only IPC mechanism that belongs 

to this type is ptrace. It enables the tracing process to observe and control 

the traced process and is used primarily for debugging. The tracing process can 

arbitrarily manipulate the memory and registers of the traced process, and even 

inject code into the traced process. As with interrupting IPCs, IFEDAC requires 

int(s1) ∏ spc(s2) for  s1 to ptrace s2. In addition, because the tracing process 



65 

can easily abuse the privileges of the traced process, IFEDAC requires s2 does 

not have any privileges that are not available to s1. That is, int(s1) ∏ int(s2), 

and s2 does not have any exceptions if int(s1) 6 These conditions should be = >. 

satisfied during the whole tracing period. Any violation will stop the tracing 

immediately. 

4.2.3 Exceptions to the Rules 

The information flow tracking is a restricted enforcing mechanism and the default 

policy described above would break some applications that need to access the files that 

they are not authorized to access. The same problem also exists in the DAC system 

and is handled by the setuid feature, which impose unlimited trust on the setuid 

programs. IFEDAC handle this problem by introducing exceptions. The exceptions 

are associated with program binaries, and imply that these programs are trusted 

in certain ways. When a program binary that has exceptions is loaded (through 

the execve system call), if the current process’s integrity level satisfies the minimal 

integrity restriction and the program binary has the integrity level >, the exceptions 

are enabled. Once a new binary is loaded, the old exceptions are gone. 

Exceptions to the subject integrity tracking Exception to the network con­

tamination rule ((m4) in Table 4.1) is by the notion of a remote administration point 

(RAP). A process running a RAP program maintains its integrity level when receiv­

ing network tra±c. If one wants to allow remote system administration through, for 

example, the secure shell daemon, then one can identify the SSH daemon as a RAP. 

The trust assumption underlying a RAP declaration is that when the program is 

started in a benign environment it will process the network input correctly and the 

attacker cannot gain control of it by sending malformed network packets. We stress 

that whether to declare a program as RAP is a decision made by the local system 

administrator. 



66 

Similarly, exceptions to the file reading and IPC contamination rules ((m5) and 

(m7) in Table 4.1) are done under the notion of a local service point (LSP). The 

process running a LSP program maintains its integrity level when reading from files 

or receiving IPC data from other processes. The trust assumption underlying the 

LSP declaration is that the program will process file and IPC input correctly. 

The concepts of RAP and LSP are similar to the ring policy in the Biba model, in 

which a subject can read objects of an arbitrary integrity level without dropping its 

own integrity level. This is also similar to the notion of well-formed transactions in 

the Clark-Wilson model, which can read low integrity unconstrained data items and 

write to high integrity constrained data items. 

Exceptions to object protection and integrity tracking For some programs, 

the integrity level at which it is normally running does not dominate the protection 

class of some objects it needs to access. For example, the ftp daemon will be running 

at the integrity level {net}, but it needs to read from the /etc/shadow file to authen­

ticate users. However, the shadow file has the read protection class >, and thus the 

default policy will stop the access. We deal with this by allowing exceptions to object 

protection rules ((a1) and (a2) in Table 4.1). One can specify a set of file access 

exceptions for a program. Each exception enables a process running the program 

to read from or write to a file while violating the object protection rules. For the 

example of ftp server, one can specify the ftp daemon program to have a file access 

exception to read from the file /etc/shadow. 

A file write exception contains an additional field to enable an exception to the 

object integrity tracking rule ((o3) in Table 4.1). When that field is set, after the 

program writes to the file, the file’s integrity level remains unchanged. For example, 

the program /etc/passwd needs an exception to write to the file /etc/shadow when it 

is executed by a non-administrator u at the integrity level {u}. Moreover, the shadow 

file’s integrity level should remain as > after being modified by passwd. 



67 

Note that since the old exception privileges are gone after a new binary is loaded, 

even if a vulnerable program is granted some exception privileges and the process 

running that program is exploited by the attacker, a shell (or other programs) spawned 

from the exploited process won’t have any exception privileges. 

4.3 Security Properties of IFEDAC 

Recall that for DAC to be eÆective, all programs need to be assumed to be benign 

and correct. By introducing information flow techniques, IFEDAC aims at weakening 

this unrealistic assumption. We now analyze what the security properties IFEDAC 

can provide and what are the necessary assumptions to achieve them. The high-level 

security goal of IFEDAC is that confidentiality and integrity properties of a system 

are preserved under attacks. 

4.3.1 Defining Integrity 

Defining integrity in the context of operating systems is a di±cult task. One can 

start by defining integrity as the property that key components do not change. This 

definition is too strong, as key files (e.g., /etc/shadow) and the kernel data structures 

need to change. As key components must change, one may modify the property to 

state that the resulting state after a change must satisfy certain constraints that can 

be precisely specified and checked. However, it is infeasible (and often impossible) 

to characterize these constraints. Next, one could refine the definition of integrity as 

the property that key components are changed only through certain programs. This 

property, though, is insu±cient. Text editors must be allowed to modify key system 

script files. Yet, one cannot say these files have integrity solely because all updates are 

performed only through these editors. Finally, one can define integrity by declaring 

that key components are changed only by certain users. We believe this last choice 

most accurately reflects the intuition. If the change is intended by authorized users, 

then integrity is preserved; otherwise, it is violated. 



68 

We thus define integrity informally as
 

Integrity means all updates reflect authorized users’ intentions.
 

To formalize this, we must identify two things: (1) who is authorized to perform an 

update, and (2) whose intention a subject (process) reflects. In IFEDAC, the former 

is specified by the write and administration protection classes. Any user in wpc(o) (as  

well as root) is authorized to update o. For the latter, we observe that an integrity 

label has a natural interpretation as a representation of intentions. A label of > 

means the intention of the root user. A label of {u1, u2} means the intention of u1, 

u2, or root. If we have int(s) =  {u1, u2} and wpc(o) =  {u1, u3}, then s cannot update 

o, because the update may reflect the intention of u2, who is not authorized to do so. 

Therefore, a key property we need to show is that IFEDAC maintains the integrity 

levels for subjects correctly. That is, if a subject has integrity level ` according to 

IFEDAC, then the subject is benign for integrity level ` in the sense that any operation 

performed by the subject reflects the intention of only those users in `. 

To achieve this goal, we start by noting that integrity protection requires some 

degree of trust that programs do not introduce bad data. We can contrast this with 

confidentiality protection, for which if an untrusted subject never reads any secret 

information, it can not later write or leak secret information. For integrity, it is not 

enough to control what the subject reads, as it can create bad data without reading 

bad data. This observation suggests that integrity is not simply an information flow 

property. The strict integrity policy in the Biba model allows a subject at integrity 

level ` to read objects at ` or higher and write objects at level ` or lower. This 

implicitly requires that one trusts a subject at integrity level ` to be able to generate 

data at integrity level ` when reading data only at level ` or higher. Therefore, the 

code executed in the subject must be both functional and not malicious for integrity 

level `. We say such a program is assumed to be benign for integrity level `. Intuitively, 

the behavior of a benign program reflects the users’ intention. For example, the basic 

utilities on a system such as editors and file manipulation tools are considered benign, 



69 

not because they cannot be used to do bad things, but because they reflect the users’ 

intentions. 

We still need to translate the benign property of a static program file to the benign 

property of a running process. To do this, we assume the following axiom. 

Axiom 1 If a program is benign for an integrity level `, then when it is executed by 

a subject that is benign at integrity level ` or higher, and the subject reads only input 

at integrity level ` or higher, the subject is benign for integrity level `. 

We note that assuming that a program is benign is a weaker assumption than that 

the program is both benign and correct. A benign program is not trusted to handle 

malicious input. In short, a benign program mostly works as expected. But when it 

is exposed to malicious input, it may not do so anymore. 

4.3.2 Integrity Protection Properties 

We now show that IFEDAC achieves the integrity goal that all updates reflect 

authorized users’ intentions, under a number of assumptions. It su±ces to show that 

IFEDAC maintains the following three invariants: (1) Every subject with integrity 

level ` is benign for that integrity level. (2) The content of every file with integrity 

level ` is only controlled by the users in `. (3) For every file o, wpc(o) correctly 

identifies the authorized users. 

These are maintained by IFEDAC under the following assumptions. (1) When 

IFEDAC is enabled, the integrity levels of files are correct. For example, a program 

labeled with integrity level ` is benign for that level. (2) When IFEDAC is enabled, 

files are labeled with the correct write and administration protection classes. (3) The 

hardware has not been compromised. (4) The kernel and the programs that have 

exceptions are trusted either to process input correctly or not to fail in a way that 

the attacker can directly exploit the exceptions. (5) When a legitimate user intends to 

upgrade a file’s integrity level, the decision is correct. When a legitimate user intends 

to change the write or admin protection class of an object, the decision is correct. 



70 

Assumptions (1) and (2) say that the initial labels are correct. IFEDAC cannot 

defend against physical attacks such as changing the BIOS settings to boot from the 

attacker’s media; hence assumption (3). Assumption (5) means that the system must 

trust the legitimate user’s intentions. Rather than assuming all programs are benign, 

assumptions (1) and (5) indicate that IFEDAC requires only the programs that are 

explicitly identified as benign (by setting the program’s integrity level) to be benign. 

Assumption (4) requires more examination. First, as IFEDAC works within the 

kernel, we must assume the kernel has no vulnerabilities the attacker can exploit. This 

assumption is also needed for similar protection systems, such as Security Enhanced 

Linux (SELinux) or AppArmor. IFEDAC extends this assumption so that a process 

running a program specified as RAP cannot be compromised by receiving network 

tra±c, as the program is assumed to process network data correctly. Similarly, any 

program specified as LSP is assumed to process IPC inputs correctly. Read exceptions 

do not aÆect integrity, as it does not involve an update. If a program has a write 

exception, it is assumed that (1) the program correctly handles bad input (similar 

to the previous discussion of RAP and LSP), or (2) if the program is exploited, the 

attacker is unable to inject malicious code directly into the address space to take 

advantage of the exception. In a typical exploit, the attacker injects the shell code 

into the vulnerable process, then runs malicious code in the spawned shell. Under 

IFEDAC, the spawned shell loses the write exceptions. The other possibility is for 

the attacker to inject all of the malicious code directly into the address space, but 

this task is more di±cult than getting a shell, and is more easily defended against 

(e.g., with a non-executable stack). 

Almost all exceptions we have are also allowed in the SELinux Targeted policy. 

Each of our exception specifications makes the underlying security assumption ex­

plicit, which is not the case in, for example, SELinux. 



71 

4.3.3 Confidentiality Protection in IFEDAC 

As in integrity protection, DAC assumes all programs to be benign for confiden­

tiality. For example, when one uses /bin/cat to view a file’s contents, one implicitly 

trusts that it will not secretly send the file through an email, or create a world-readable 

copy of the file. Some programs will also write to, for example, files readable by others 

while reading files readable only by the user. Those programs are trusted to correctly 

declassify information. In IFEDAC, if we assume that a subject that is benign at 

integrity level ` can correctly declassify information at level `, then confidentiality is 

also preserved by IFEDAC, under similar assumptions for integrity protection. Of 

course, we need to assume that the initial read protection classes of objects are set 

correctly. Also, when a program has a read exception, we assume that the program 

either (1) can handle malicious input, or (2) cannot be exploited in a way that the 

attacker injects malicious code into the address space and takes advantage of the 

exceptions. 

4.4 Deployment and Usability 

We established a server and a personal workstation with the IFEDAC module 

loaded during system boot. On the server machine, we installed some commonly 

used server applications (e.g., httpd, ftpd, samba, svn) and provided services to our 

research group. Multiple user accounts exist on the server, some of which are allowed 

to perform system administration (specified as a sudoer and a member of A, the set 

of administrators). On the personal workstation, we perform everyday jobs on the 

Gnome desktop. The jobs we tested include web browsing, emailing, file downloading, 

instant-messaging and normal system administration. We report some interesting 

experiences of deploying, configuring and using the IFEDAC module. 

A Usage Case  We use the email client ThunderBird as a usage case to describe how 

to configure and use IFEDAC in practise. When a local user u launches the application 



72 

of ThunderBird, the process inherits the parent’s integrity level and runs at {u}. 

After the process receives network tra±c from remote servers, its integrity level is 

updated to {u, net}. The process needs to read from and write to the configuration 

files and the files storing the downloaded messages, which are located in the directory 

$HOME/.thunderbird by default ($HOME refers to u’s home directory). In DAC, 

those files are writable only by u; hence in IFEDAC they have the write protection 

class {u}, which is higher than the process’s integrity level. To enable the access, 

we grant the binary executable of ThunderBird an exception privilege to read from 

and write to the directory $HOME/.thunderbird/ recursively. In this way, the email 

client can function normally. 

If the user wants to save a file from an email attachment to the file system, this 

is achieved by the Internet Directory. The user u can create an Internet directory 

and set its write protection class to be {u, net}. When he wants to save an email 

attachment, he first saves the file to the Internet directory. The saved file’s integrity 

is initialized as the process’s integrity level, {u, net}, which can be manually upgraded 

later if the user has confidence in the file and wants to use it with a higher integrity 

level. The Internet Directory is not only used by the email client; in fact the user may 

create multiple Internet directories and can store all downloaded files (e.g., through 

a web browser, ftp client, instant messenger) to those directories and later upgrade 

their integrity levels if he wants to. The Internet directory is an example where the 

write protection class is lower than that inferred from DAC permission. In DAC, that 

directory is writable only by the owner. 

Possible attack channels exposed by the email client include executing a mal-ware 

in an email attachment, opening an attachment that is a mal-formed file exploiting 

a vulnerable application and a vulnerability in the email client being exploited by a 

remote attacker. In all these attacks, the process controlled by the attacker will have 

the integrity level {u, net} and can only access the files writable by the world and 

the user’s Internet directories. See the security evaluation for details about testing 

against attacks. 



73 

System Administration and Automatic Update Many modern Linux systems 

allow normal user accounts to perform system administration through the sudo tool. 

One benefit is better accountability. With IFEDAC we can still use this common 

usage practise with better security property. These accounts should be in A, the set of 

administrators. Even though users in A are trusted, each of them still corresponds to a 

contamination source. This separation helps to enforce the DAC policy. Additionally, 

most tasks these users perform are user-level jobs that do not need full privileges. 

Viewing these users as separate contamination sources limits any errors made for a 

user-level job to that particular user. 

For a user u 2 A, most of his files have the write protection class and integrity level 

at {u} or lower, except for some startup files (e.g., the startup script of the shell) 

that are used during login. When making u an administrative user, one upgrades 

the write protection class and integrity level of the user’s startup files to >. For  

example, the startup scripts for Bash Shell include: /.bash rc, /.bash profile and 

/.bash logout. When he logs in, he gets a shell at >, where he can perform system 

administration tasks. However, any descendant process that reads his normal files 

will drop to the integrity level {u}. He can also downgrade the shell’s integrity level to 

{u} by executing a utility program provided by IFEDAC, when he starts performing 

user-level jobs. To perform system administration later, he needs to obtain a fresh 

channel with at > by logging in again. 

The startup files owned by users in A provide an example where the write pro­

tection class is higher than that inferred from DAC permissions. In DAC, those files 

are owned by normal users, rather than root. Assigning those files with the write 

protection class > helps protecting system integrity, because those files are critical 

and should only be modified at level >. 

Remote administration through a secure shell daemon is expected in some situ­

ations. As mentioned in Section 4.2, one can allow that by specifying the program 

/usr/sbin/sshd to be a remote administration point (RAP). Also, automatic updates 

are commonly used in today’s commercial operating systems. These programs down­



74 

load updated packages and automatically install them. To enable automatic updates 

in IFEDAC, the administrator can specify the update program as a RAP, trusting 

that it is not vulnerable. For example, the automatic update programs in Fedora 

Core include /usr/bin/yum and /usr/share/rhn/rhn applet/applet.py. 

Exception Policy Configuration Most programs can work with IFEDAC with­

out any modification and policy configuration. Two kinds of programs need exceptions 

in IFEDAC: network programs and setuid root programs. 

Network Programs Like the email client described before, network programs run at 

the integrity level {net} or {u, net}, but need to access configuration and log files that 

have higher protection class. See Table 4.2 for a sample policy for some commonly 

used server and client programs. For each program, only a small number of exception 

privileges are needed. The policy can be easily understood. 

Setuid Root Programs The setuid-root programs run at integrity levels {u} when 

they are executed by a non-administrator u. The default policy will forbid them from 

performing system critical operations that require the integrity level >. However, 

most of these programs need to perform such high-integrity tasks. A sample exception 

policy for setuid-root programs and network programs in Fedora Core 5 is shown in 

Table 4.3. Those exceptions will be activated only from an integrity level {u}. That 

is, if a process has integrity level {u1, u2} or {u1, net}, it does not get any exceptions 

when loading the setuid root programs. 

IFEDAC provides better protection for setuid-root programs than DAC in three 

aspects. First, in IFEDAC the privileges gained by those programs are restricted 

based on the least privilege principle. For example, the program “ping” needs to 

be setuid-root only because it performs raw socket operations (controlled by the 

capability CAP NET RAW). IFEDAC grants only that exception privilege to “ping”, 

whereas DAC allows “ping” to perform any critical operation. IFEDAC significantly 

reduces the damage caused by an exploit in “ping”. Second, the shell spawned from 

an exploit loses the exception privileges. In order to abuse the exception privileges, 

http:applet/applet.py


75 

the attacker must inject all malicious code into the address space of the vulnerable 

process, which is more di±cult. Third, with IFEDAC, only malicious local users are 

able to take advantage of buggy setuid-root programs. Remote attackers breaking in 

through network programs cannot use setuid-root program to elevate their privileges, 

because they cannot use the exception privileges if the integrity level contains net. 

What end-users need to know about IFEDAC? In practice, the exception 

policies should be specified and distributed by the software and OS vendor (e.g., 

included in the installation packages). System administrators only need to make 

high-level decisions such as whether to allow remote administration or not. Similarly, 

administrator only need to specify which users are allowed to perform system ad­

ministration; the configurations are done automatically by the system. Normal users 

should understand the basic meaning of read protection class and write protection 

class for objects (which are similar to ACL). In most situations, the protection classes 

are derived from the DAC policy and configuring them are achieved by changing the 

permission bits. In our experiments, the only case that a normal user need to ex­

plicitly manage the protection class is to setup the Internet directory, which can be 

done automatically by the system when a new user is created. Normal users should 

also understand the integrity level for objects and, in a few situations, users need to 

manually upgrade an object’s integrity level. For example, when a user wants to use 

a downloaded program to manage his own files, he need to upgrade the program’s 

integrity level from {u, net} to {u}. 

4.5 Discussion 

Compare IFEDAC with Traditional DAC Compared with traditional DAC, 

IFEDAC provides much stronger security guarantee. The traditional DAC has two 

goals: (1) protect system resources from local users. Both malicious behavior and 

careless mistakes performed by local users won’t compromise the system. (2) provide 

user separation. User-owned resources are protected against other malicious users. 



76 

Table 4.2 
Exception privileges for network programs in IFEDAC 

Programs File Exceptions Capability Exceptions  

Servers 

FTP Server 

/usr/sbin/vsftpd 

read /etc/shadow; 

write to /etc/vsftpd, /var/log/xferlog; 

CAP SYS CHROOT 

CAP NET BIND SERVICE 

Web Server, 

/usr/sbin/httpd 

read /etc/pki/tls, /var/www; 

write to /var/log/httpd, /var/run/httpd.pid 

Samba Server 

/usr/sbin/smbd 

write to /var/cache/samba, /etc/samba, 

/var/log/samba, /var/run/smbd.pid 

CAP SYS RESOURCE 

CAP NET BIND SERVICE 

NetBIOS Server, 

/usr/sbin/nmbd 

write to /var/cache/samba, /var/log/samba 

Version Control Server 

/usr/bin/svnserve 

write to /usr/local/svn 

SMTP Server 

/usr/sbin/sendmail 

read /etc/aliases.db; 

write to /var/spool/mqueue, /var/spool/mail, 

/var/spool/clientmqueue, /etc/mail, /var/log/mail 

CAP NET BIND SERVICE 

Clients 

Browser, 

/usr/lib/.../firefox-bin 

write to /tmp, $HOME/.mozilla/firefox 

Email, 

/usr/lib/.../thunderbird 

write to /tmp, $HOME/.thunderbird 

In achieving the two security goals, traditional DAC makes a strong assumption: all 

programs are benign and correct. This assumption is far from the reality today due to 

the large amount of malware and software vulnerabilities. IFEDAC achieves the same 

security goals as the traditional DAC by enforcing the discretional policy specified 

in the existing DAC system. However, IFEDAC eliminates the unrealistic trust over 

the programs. By using the information flow techniques to track the principal of a 

running process, IFEDAC is able to defend against Trojan horse and vulnerability 

exploitation. 

In terms of usability, certainly the policy enforcement mechanism in IFEDAC is 

more complicated than that in traditional DAC. However, the end users generally do 

not need to understand or even know about those rules. Most of IFDEAC policy 

is derived from the existing DAC policy, the user can specify IFEDAC policy in the 



77 

Table 4.3 
Exception privileges for setuid-root program in IFEDAC 

Usage Types Setuid Root Programs Exception Privileges a b  , 

User information 

updates 

passwd, chage: change user password and 

expiry information 

create files in /etc; 

write to /etc/passwd, /etc/shadow; 

chsh, chfn: change user login shell and finger 

information 

create files in /etc; 

write to /etc/passwd; 

PAM (Pluggable unix chkpwd: check user password read /etc/shadow 

Authentication 

Module) utilities 

userhelper: update user information create files in /etc; 

write to /etc/passwd, /etc/shadow; 

read from /var/run/sudo; 

Group 

configuration 

gpasswd create files in /etc; 

write to /etc/gshadow, /etc/group, 

/var/run/utmp; 

User identity 

switches 

newgrp: login to a new group read /etc/group, /etc/passwd, 

/etc/shadow, /etc/gshadow; 

write to /var/run/utmp 

su, sudo, sudoedit: run a shell or other com­

mands as another user 

read /etc/shadow, /etc/sudoer 

Network utilities ping, ping6: ping network hosts use CAP NET RAW 

Mounting utilities mount, umount create files in /etc; read /etc/fstab; 

write to /etc/mtab, /etc/filesystems; 

r-commands rlogin, rcp, rsh: remote login, copy and shell write to /etc/krb5.conf, /etc/krb.conf; 

use CAP NET BIND SERVICE 

Job scheduling 
at: schedule a command write to /var/spool/at, 

/var/run/utmp; 

read /etc/at.allow, /etc/at.deny 

crontab: edit the regular job schedule write to /var/spool/cron; 

read /etc/cron.allow, /etc/cron.deny; 

aThe write privilege over a file infers the read privilege over the same file. 
bAll write exceptions keep the integrity level of the written files. 

same ways as they administer traditional DAC systems, which is believed to be easy 

and intuitive. Information flow tracking is a more restricted enforcing mechanism and 

would break some applications that can run in traditional DAC. IFEDAC address this 

issue by introducing exceptions to the default policy. The fundamental concept is 

similar to the setuid feature in traditional DAC. However, as discussed in Section 4.3, 



78 

the assumptions implied by exceptions are strictly limited and the attack surface 

exposed by the trusted programs are significantly reduced. 

Compare IFEDAC with MAC The traditional approach to address the weak­

ness of DAC is to build a MAC system on top of the existing DAC system. Several 

MAC systems have been deployed in real-world commercial operating systems, such 

as SELinux [11] and AppArmor [9]. Such MAC systems are flexible and powerful. 

Through proper configuration, they could result in highly-secure systems. However, 

they are also complex and intimidating to configure. For example, SELinux has 29 

diÆerent classes of objects, hundreds of possible operations, and thousands of pol­

icy rules for a typical system. The SELinux policy interface is daunting even for 

security experts. Besides the complexity in policy configuration, the MAC systems 

are also di±cult to use when configured with a policy providing comprehensive secu­

rity. For example, the strict policy shipped with SELinux in Fedora Core 2 used a 

disallow-by-default approach. The policy has to be kept updated with every change 

to the operating system. In particular, any newly installed application won’t operate 

without specifying a policy. 

To overcome the usability issues, the policy actually enforced in the real-world 

MAC systems only confine tens of sever daemons and about a dozen of setuid-root 

programs. All other programs remain unconfined and are trusted to be benign and 

correct. Exploiting any of those programs would lead to system compromise. In 

addition, the real-world policy make the MAC systems vulnerable to Trojan horse, 

because all new installed applications that do not have corresponding policies are 

treated as unconfined. 



79 

5 PRETTY-BAD-PROXY: AN OVERLOOKED ADVERSARY IN BROWSERS’ 

HTTPS DEPLOYMENT 

The DAC mechanism used in operating systems is vulnerable to vulnerability exploits 

and Trojan horses because DAC fails to identify the true origins of the processes. 

Similar design mistakes occur in the same-origin policy (SoP) model implemented in 

major browsers. In this chapter, we discuss the pretty-bad-proxy adversary against 

HTTPS and present the vulnerabilities we discovered in the HTTPS deployments in 

major browsers. In the next chapter, we discuss the cross-site request forgery attack 

and propose a browser-side defense mechanism. 

5.1 Motivation and Overview 

HTTPS is an end-to-end cryptographic protocol for securing web tra±c over in­

secure networks. This work is motivated by our curiosity about whether the same 

adversary that is carefully considered in the design of HTTPS is also rigorously exam­

ined when HTTPS is integrated into the browser. In particular, we focus on an adver­

sary called ”Pretty-Bad-Proxy” (PBP), which is a man-in-the-middle attacker that 

specifically targets the browser’s rendering modules above the HTTP/HTTPS layer in 

order to break the end-to-end security of HTTPS. Figure 5.1 illustrates this adversary: 

PBP can access the raw tra±c of the browser (encrypted and unencrypted), but it is 

unable to decrypt the encrypted data on the network. Instead, the PBP’s strategy is 

to send malicious contents through the unencrypted channel into the rendering mod­

ules, attempting to access/forge sensitive data (which flow in the encrypted channel 

on the network) above the cryptography of HTTPS. 

With a focused examination of the PBP adversary against various browser behav­

iors, we realize that PBP is indeed a threat to the eÆectiveness of HTTPS deploy­



80 

Figure 5.1. PBP attacks the encrypted data after they are decrypted 
above the HTTPS layer 

ments. We have discovered a set of PBP-exploitable vulnerabilities in IE, Firefox, 

Opera, Chrome browsers and many websites. They are due to a number of subtle 

behaviors of the HTML engine, the scripting engine, the HTTP proxying, and the 

cookie management. By exploiting the vulnerabilities, a PBP can obtain the sensitive 

data from the HTTPS server. It can also certify malicious web pages and imperson­

ate authenticated users to access the HTTPS server. Although all attacks fool the 

HTTP/HTTPS layer and above, the manifestations of the vulnerabilities are diver­

sified: some require the scripting capability of the browser while others use static 

HTML contents entirely; some require the HTTP-proxy mechanism enabled in the 

browser while others do not need this requirement. The existence of the vulnerabilities 

clearly undermines the end-to-end security guarantees of HTTPS. 

People who are less familiar with HTTPS sometimes argue that the HTTPS se­

curity inherently depended on the trust on the proxy, and thus the assumption about 

a malicious proxy was inappropriate. This argument is conceptually incorrect since 

HTTPS’ goal is to achieve the end-to-end security. Also, we show that in practice 

the trust on the proxy is too brittle for HTTPS to depend on. We constructed two 

versions of attack programs to show two levels of threats: (1) the first level, which 

is already serious, is due to the wide use of proxies for web access. The integrity 

of proxies is generally di±cult to ensure. For instance, malware and attackers may 

take over legitimate proxies in many hotels and Internet cafes, because they are not 



81 

well managed. Many free third-party open proxies are also essentially unaccount­

able, etc; (2) the second level, which is more severe, is due to the fact that browsers’ 

proxy-configuration mechanisms and browsers’ communications with proxies are of­

ten unencrypted in many network environments. This makes a user vulnerable even 

when he/she is not knowingly connected to an untrusted proxy, as long as an at­

tacker has the MAC layer access to the victim’s network. In our Ethernet and WiFi 

experiments, the attacker simply needs to connect to the same Ethernet local area 

network (LAN) or wireless access point (AP) to launch the attacks. The damages 

of such attacks are the same as those caused by physically taking over a legitimate 

proxy. With the PBP vulnerabilities in browsers, the end-to-end security guarantees 

promised by HTTPS are lost because users basically need to trust the network in 

order to trust HTTPS. 

5.2 Background 

5.2.1 Same Origin Policy 

Browsers support the functionality of downloading contents and executing scripts 

from diÆerent websites at the same time. Given some websites may contain malicious 

contents, it is crucial that browsers isolate the contents and scripts of diÆerent websites 

in order to prevent cross-domain interference. In addition, browser should allow 

scripts to access the contents of the same websites in order to perform normal web 

functionalities. This access-control policy is referred to as the same-origin policy. 

Scripts and static contents are rendered and composed into webpages. The same-

origin policy is enforced by isolating webpages according to their own security contexts 

derived from their URLs. A typical URL is represented in the format of protocol: 

//serverName:port/path?query and the corresponding security context is a three-

tuple <protocol,serverName,port>. As an example, the protocol can be HTTP or 

HTTPS, the serverName can be www.ebay.com, and the port can be 80, 443, or 8080, 

etc. 

http:www.ebay.com


82 

Each webpage is hosted in a frame or an inline frame. A browser window is a top 

level frame, which hosts the webpage downloaded from the URL shown in the address 

bar. A webpage can create multiple frames and inline frames to host webpages from 

diÆerent URLs. The access control mechanism between these webpages conforms to 

the same-origin policy described above. For example, suppose frame w1 loads a web-

page from https://bank.com and frame w2 loads a webpage from http://bank.com 

or https://evil.com. If the script running in w2 attempts to access an HTML ob­

ject inside w1, the access will be denied by the browser’s security mechanism because 

of the same-origin policy. Without the same-origin policy, the document content of 

https://bank.com would be accessible to a script embedded in the webpage from 

http://bank.com (which could be faked by proxies and routers because it is not 

encrypted) or fromhttps://evil.com, which would defeat the purpose of HTTPS. 

Similar to frame, other objects, such as XML and XMLHTTPRequest, rely on the 

same-origin policy to protect their documents as well. Also, webpages can be attached 

with a type of plain-text data called cookies. Cookies have a slightly diÆerent same-

origin policy, which will be described in Section 5.4.2. 

5.2.2 Basics of HTTPS and Tunneling 

HTTPS is the protocol for HTTP communications over Secure Sockets Layer 

(SSL) or Transport Layer Security (TLS) [57]. For simplicity, in the rest of the paper, 

we use “SSL” to refer to both SSL and TLS. HTTPS is widely used to protect sensitive 

communications, such as online banking and online trading, from eavesdropping and 

man-in-the-middle attacks. At the beginning of an HTTPS connection, the browser 

and the web server go through an SSL handshake phase to ensure that: 1) the browser 

receives a legitimate certificate of the website issued by a trusted Certificate Authority 

(CA); and 2) the browser and the server agree on various cryptographic parameters, 

such as the cipher suite and the master key, in order to secure their connection. Once 

the handshake succeeds, encrypted data flow between the browser and the server. A 

http:fromhttps://evil.com
http:http://bank.com
http:https://bank.com
http:https://evil.com
http:http://bank.com
http:https://bank.com


83 

malicious proxy or router may disrupt the communication by dropping packets, but 

it should not be able to eavesdrop or forge data. 

All major browsers support HTTPS communications through HTTP proxy. The 

mechanism is referred to as “tunneling”. Before starting the SSL handshake, the 

browser sends an HTTP CONNECT request to the proxy, indicating the server name 

and port number. The proxy then maintains two TCP connections, with the browser 

and with the server, and serves as a forwarder of encrypted data. To tunnel the 

HTTPS packets between the two TCP connections, the proxy needs to set diÆerent 

values in the IP and TCP headers, such as IP addresses and port numbers. But 

it is not able to manipulate the encrypted payload besides copying it byte-by-byte. 

Therefore, the proxy does not have any additional information about HTTPS tra±c 

beyond the IP and TCP headers. Normally an adversary must break the crypto­

graphic schemes used by HTTPS in order to access the actual HTTPS contents. 

Note that a proxy is not a trusted entity in HTTPS communications. By design, 

confidentiality and authenticity of HTTPS should be guaranteed when the tra±c is 

tunneled through an untrusted proxy; in reality, as we will show in Section 5.5, prox­

ies are widely used in many network environments where proxies are not expected to 

be trustworthy. Being merely an interconnecting host on the network, the proxy is 

not a trusted entity that the HTTPS security relies on. 

In the next two sections, we describe PBP attack scenarios. The versions of the 

browsers in our discussion are IE 7, IE 8, Firefox 2, Firefox 3, Opera 9, Chrome Beta 

and Chrome 1. 

5.3 Script-Based PBP Exploits 

Scripting is a critical capability of modern browsers. However, they impose more 

risks than static HTML contents if the scripting mechanism is not carefully designed 

and evaluated against diÆerent types of adversaries. Cross-site scripting [58] and 

browser cross-domain attacks [36] are the representative examples of vulnerabilities 



84 

exposed by scripting. While these attacks have provoked many discussions in the 

web security community, so far there has been less attention on the possibility of 

script-based attacks against HTTPS when the proxy is assumed the adversary. 

In this section, we will describe several script-based attacks, some of which are 

because of executing regular HTTP scripts in the HTTPS context while others are 

because of executing scripts from unintended HTTPS websites in the context of target 

HTTPS websites. These attacks raise a concern that browsers’ scripting mechanisms 

have not been thoroughly examined under the PBP adversary. 

5.3.1 Embedding Scripts in Error Responses 

We explained earlier that the browser sends an HTTP CONNECT request to 

the proxy when it tries to access an HTTPS server through the proxy. Some­

times the proxy may fail in connecting to the target server, in which case the proxy 

should send an HTTP error message back to the browser. For instance, when the 

browser requests https://NonExistentServer.com, the proxy will return an HTTP 

502 Proxy Error message to the browser because the proxy cannot find a valid IP 

address associated with the server name NonExistentServer.com. Note that the 

communication between the browser and the proxy still uses plain-text up to this 

point. Interestingly enough, the browser renders the error response in the context of 

https://NonExistentDomain.com, although the server does not exist. We observed 

this behavior on all browsers that we studied. In addition to HTTP 502, other HTTP 

4xx and 5xx messages are treated in a similar way. 

The attack is illustrated in Figure 5.2. Since the browser completely relies on the 

proxy for the tunneling, the proxy can arbitrarily lie to the browser, which leads to 

the compromise of HTTPS confidentiality and authenticity. We now use an example 

to illustrate how a PBP adversary can steal the sensitive data from the browser when 

it is visiting an HTTPS server. Suppose the browser is accessing https://myBank. 

com, upon receiving the HTTP CONNECT request from the browser, the proxy 

https://myBank
http:https://NonExistentDomain.com
http:NonExistentServer.com
http:https://NonExistentServer.com


85 

Figure 5.2. The attack embedding scripts in 4xx/5xx error messages 

may pretend that the server did not exist by returning an HTTP 502 error message. 

The error message also includes an iframe (inline frame) and a script. When the 

browser renders the error message, the iframe will cause the browser to send another 

CONNECT request for https://myBank.com. The proxy will behave normally this 

time by tunneling the communication to the server. Thereafter, user’s banking data 

will be loaded into the iframe (abbreviated as ifr). However, the script embedded in 

the original error message has been running in the context of https://myBank.com. 

This allows the script to reference ifr.document and send the user’s banking data (e.g., 

body.innerHTML) to a third party machine, circumventing the same-origin policy of 

the browser. Besides peeking the user’s banking data, the attacker can also transfer 

money from the bank on behalf of the user. 

The attack does not depend on which authentication mechanism is used between 

the victim and the server. For instance, if the server uses password authentication, 

the proxy can behave benignly until the victim successfully logs on, and then launch 

the attack. The situation is much worse if the server uses Kerberos authentication 

http:https://myBank.com
http:https://myBank.com


86 

(similarly, NTLM authentication), in which case the authentication happens auto­

matically without asking the user for the password. The attack can be launched even 

when the victim does not intend to visit the HTTPS server: whenever the victim 

visits a website http://foo.com, e.g., a popular search engine, the proxy may insert 

the following invisible iframe into the webpage of foo.com to initiate the same attack. 

<iframe src="https://SiteUsingKerberos.com" style="display:none"> 

</iframe> 

Kerberos is typically used in enterprise networks. This vulnerability allows the 

proxy to steal all sensitive information of the victim user stored on all HTTPS servers 

in the enterprise network, once the user visits an HTTP website. 

5.3.2 Redirecting Script Requests to Malicious HTTPS Websites 

After describing the PBP attacks based on the mishandling of HTTP 4xx and 

5xx error messages in browsers, we now turn to another security flaw that can be 

exploited when browsers are dealing with HTTP 3xx redirection messages. 

A benign redirection scenario is: when the user makes a request to https://a.com, 

the proxy can return a response, such as “302 Moved temporarily. Location: https: 

//b.com”, to redirect the browser to https://b.com. Similar to the previous scenario, 

the redirection message is in plain-text. The redirection is explicitly processed by the 

browser, so there is no confusion about the security context of the page – the page 

of the redirection target will be rendered in the context of https://b.com. In other 

words, a request redirected to https://b.com is equivalent to a direct request to 

https://b.com. There seems no security issue here. 

However, the ability for a proxy to redirect HTTPS requests can be harmful when 

we consider the following scenario(see Figure 5.3): many webpages import scripts 

from diÆerent servers. For instance, a page of https://myBank.com may include 

a script https://scriptDepot.myBank.com/foo.js or a third-party script https: 

//x.akamai.net/foo.js. According to the HTML specification, a script element 

https://scriptDepot.myBank.com/foo.js
http:https://myBank.com
http:https://b.com
http:https://b.com
http:https://b.com
http:https://b.com
http:https://a.com
http:src="https://SiteUsingKerberos.com
http:http://foo.com


87 

Figure 5.3. The attack using 3xx redirection message 

does not have its own security context but instead runs in the context of the frame 

that imports it. To launch an attack, a proxy may simply use a 3xx message to redirect 

an HTTP CONNECT request for https://scriptDepot.myBank.com or https:// 

x.akamai.net to https://EvilServer.com. This will cause the script https:// 

EvilServer.com/foo.js to be imported and run in the context of https://myBank. 

com. Once the script runs, it can compromise the confidentiality and authenticity of 

the communication in a similar manner as described previously. 

This attack aÆects Firefox and Opera. IE and Chrome are immune because they 

only process HTTP 3xx messages after the SSL handshake succeeds. In other words, 

3xx messages from the proxy are ignored by the browser for HTTPS requests. 

5.3.3 Importing Scripts Into HTTPS Contexts Through “HPIHSL” Pages 

Many web servers provide services of HTTP and HTTPS simultaneously. Nor­

mally, sensitive webpages, such as user login, personal identification information, and 

o±cial announcement, are accessible only via HTTPS to prevent information leak 

and forgery. Less critical webpages are accessible via HTTP for reduced process­

ing overhead. Webpages often need to import additional resources, such as images, 

scripts, and cascade style sheets. When a page is intended for HTTP, the resources 

https://myBank
http:https://EvilServer.com
http:x.akamai.net
http:https://scriptDepot.myBank.com


88 

are usually fetched using HTTP as well, because the page is not intended to be secure 

against the malicious network anyway. 

However, the reality is that although less-sensitive webpages are intended to be 

accessed via HTTP, most of them actually can also be accessed via HTTPS. We refer 

to these pages as HTTP-Intended-but-HTTPS-Loadable pages, or ”HPIHSL pages”. 

When a HPIHSL page loaded in the HTTPS context imports resources using HTTP, 

browsers display diÆerent visual warnings: 1) IE pops up a yes/no dialog window. If 

user clicks no, the resources retrieved via HTTP will not be rendered and the lock 

icon will stay in the address bar. Otherwise, the resources will be rendered but the 

lock icon is removed; 2) Firefox pops up a warning window with an OK button. After 

user clicks it, the HTTP resources are rendered and a broken lock icon is displayed on 

the address bar. 3) Opera and Chrome automatically remove the lock icon (or replace 

it with an exclamation mark) to indicate that HTTP resources have been imported. 

We found that the code logic for detecting HTTP contents in HTTPS pages is 

triggered only when the browser needs to determine whether to invalidate/remove 

the lock icon on the address bar, which is only correspondent to the top-level frame 

of the browser. Therefore, when the top-level frame is an HTTP page, the detection 

is bypassed even when this HTTP page contains an HTTPS iframe that loads an 

HPIHSL page. 

This turns out to be a fatal vulnerability for many real websites. For example, 

a PBP can steal the user’s login information from the HTTPS checkout page of j­

Store.com (the first row of Table 5.1): when the user visits an HTTP merchandise 

page on j-Store.com, the proxy can insert the following invisible iframe into the page: 

<iframe src="https://www.j-Store.com/men-shoes.html" 

style="display:none"> 

</iframe> 

Without users’ awareness, the invisible iframe loads the HPIHSL page men­

shoes.html via HTTPS. Because this page requests a script from http://switch. 

http://switch
http:j-Store.com
http:Store.com


89 

Table 5.1 
HTTPS domains compromised because HPIHSL pages import HTTP 
scripts or style-sheets 

Compromised HTTPS domain 

(the domain names are obfuscated) 

The HPIHSL page that imports 

scripts or CSS 

Domain and path of the HTTP 

script or CSS imported by the 

HPIHSL page 

https://www.j-store.com 

The checkout service is in this domain 

The “men’s shoes” page in 

www.j-store.com 

http://switch.atdmt.com/jaction/ 

https://www.OnlineServiceX.com 

The checkout service is in this domain 

The account help page at 

www.OnlineServiceX.com/support 

/account 

http://www.OnlineServiceX.com/ 

support/accounts/ bin/resource/ 

https://www.s-store.com The check­

out service is in this domain 

The ”Appliances” page in www.s­

store .com 

http://content.s-store.com/js/ 

https://www.CertificateAuthorityX.com 

A leading  certificate  authority  

The ”repository” page in www. 

CertificateAuthorityX.com 

imports a CSS 

http://www.CertificateAuthorityX 

.com/css/ 

https://www.eCommerceX.com The 

checkout and user profiles are in this 

domain 

The homepage of www. eCom­

merceX.com 

http://images.eCommerceX.com 

/media/ 

https://www.sb-store.com The check­

out service is in this domain 

The ”Furniture” page in www.sb­

store.com 

http://graphics.sb-store.com 

/images/ 

https://www.CreditCardX.com 

A credit  card  company  

The homepage of 

www.CreditCardX.com 

http://switch.atdmt.com/jaction/ 

COF Homepage/v3/ 

https://www.b-bank.com 

A bank  in  the  Midwest  

The page www.b­

bank.com/ford.asp 

http://www.google-analytics 

.com/ 

https://CodeRepositoryX.net Open 

source projects management system. 

User logins are in this domain. 

The homepage of 

CodeRepositoryX.net 

http://pagead2.googlesyndication 

.com/ 

https://uboc.MortgageCompanyX.com 

A California  mortgage  company  

The homepage of 

uboc.MortgageCompanyX.com 

http://uboc.MortgageCompanyX 

.com/Include/Utilities/ClientSide/ 

https://cs.University1.edu, the login 

system is in this domain 

The homepage of 

cs.University1.edu 

http://tags.University1.edu/ 

https://www.eecs.University2.edu a student’s homepage 

www.eecs. University2.edu/ ax 

codice.shinystat.com/cgi-bin/ 

atdmt.com/jaction/ via HTTP, the proxy can provide a malicious script to serve 

the request. Since the script is in the inserted iframe, it will run in the context of 

https://www.j-Store.com. The PBP also overwrites the “checkout” button on the 

HTTP merchandise page so that when the user clicks on it, the HTTPS checkout 

http:https://www.j-Store.com


90 

page opens in a separate tab. The personal data entered by the user therefore can be 

easily obtained by the proxy’s script in the invisible iframe. In addition, the proxy 

can impersonate the logon user to place arbitrary orders. We believe that this is a 

significant browser weakness: as long as any HPIHSL imports scripts or style-sheets 

(usually via HTTP as we explained), the entire HTTPS domain is compromised. 

To get a sense about the pervasiveness of vulnerable websites, one of the authors 

of this paper used HTTPS to visit HPIHSL pages for a few hours. Table I shows 

twelve websites that we confirmed vulnerable (the exact names of the websites are 

obfuscated). Each row also shows the problematic HPIHSL page and the domain of 

the imported script. The vulnerable websites covered a wide range of services such as 

online shopping, banking, credit card, open source projects management, academic 

information, and certificate issuance. In particular, even the homepage domain of 

a leading certificate authority was aÆected. It is a reasonable concern that many 

websites simultaneously opening HTTP and HTTPS ports are vulnerable. 

5.4 Static-HTML-Based PBP Exploits 

We just described a number of script-based attacks that violate the same-origin 

policy. By running malicious scripts in the context of victim HTTPS domains, these 

attacks can access or alter sensitive data that are supposed to be protected by HTTPS. 

Nevertheless, in order to better understand the potential threat of PBP, thinking 

beyond script-based attacks is very important. Typically, for script-based security is­

sues, the defense solutions are along the line of disabling, filtering, or guarding scripts. 

When a class of security problems is not always script-related, defense solutions should 

be explored more broadly. 

In this section, we show two attacks that can be accomplished entirely by static 

HTML contents. They target the authentication mechanisms in browsers. In the 

first attack, the proxy’s own page can be certified with the trusted certificate of the 



91 

HTTPS server that the browser intends to communicate. In the second attack, the 

proxy can authenticate to the HTTPS server as a logon user. 

5.4.1 Certifying a Proxy Page with a Real Certificate 

In Section 5.3.1, we have seen that the PBP proxy can supply a script in an 

error-response. The script will run in the HTTPS context of the victim server and 

compromise the confidentiality. When we reported this issue to a browser vendor, one 

of the vendor’s proposed fixes was to disable scripts in any 4xx/5xx error-response 

pages, and only render static HTML contents. The proposal was based on the con­

sideration that benign proxy error messages are valuable for users to troubleshoot 

communication problems, but there is no compelling reason to allow scripts in error 

messages. 

This fix would not block the attack that we describe below, which does not involve 

any script. Figure 5.4 illustrates how a proxy certifies a fake login page by taking 

advantage of a cached certificate of https://www.paypal.com from a previous SSL 

handshake. (Note that it is a browser bug. PayPal represents an arbitrary website.) 

IE, Opera and Chrome, but not Firefox, are vulnerable to this attack. 

The attack works as follows: when a browser issues a request for https://www. 

paypal.com (step 1), the proxy returns an HTTP 502 message (or any other 4xx/5xx 

message) that contains a meta element and an img element (step 2). The meta 

element will redirect the browser to https://www.paypal.com after one second. But 

before the redirection, the following steps happen subsequently: the img element 

requests an image from https://www.paypal.com/a.jpg (step 3). In order to get 

a.jpg, the browser initiates an SSL handshake with the HTTPS server. The request is 

permitted by the proxy at this time. After the browser receives a legitimate certificate 

from the HTTPS server (step 4), it will try to retrieve a.jpg, which may or may not 

exist on the server (not shown in the figure). But its existence is not important here 

because the purpose of the img element is to acquire a legitimate certificate, which 

https://www.paypal.com/a.jpg
http:https://www.paypal.com
http:paypal.com
https://www
http:https://www.paypal.com


92 

Figure 5.4. The attack certifies a faked login page as https://www.paypal.com 

has been cached in the browser now. The certificate cache is designed to enhance the 

performance of HTTPS by avoiding repetitive re-validation for each SSL session. 

When the one-second timer is expired, the browser will be redirected to https: 

//www.paypal.com (step 5). This time, the proxy returns another HTTP 502 message 

(or any other 4xx/5xx message) that contains a fake login page (step 6). When the 

browser renders this page, it picks up the cached certificate of PayPal and displays 

it on the address bar as if the fake page was retrieved from the real https://www. 

paypal.com. 

While the attack described here and the one described in Section 5.3.1 both take 

advantage of the fact that browsers render proxy’s error messages in the context of 

HTTPS servers, these two attacks are distinguishable - In terms of the technique, 

this is a perfect GUI spoofing attack. Even when the user starts a fresh browser 

and uses a bookmark to access the HTTPS URL, he/she still gets the certified faked 

page. The attack is conducted in only one window and does not execute any script, 

therefore bypasses the pop-up blockers in today’s browsers that will otherwise thwart 

the spoofing attack. No other attack that we describe can achieve the same result. 

http:paypal.com
https://www
http:www.paypal.com
http:https://www.paypal.com


93 

In terms of the root cause, the proxy-page-context problem in Section 5.3.1 alone 

does not necessarily enable this attack, e.g., we have confirmed that Firefox is not 

vulnerable to the attack although it has the problem in Section 5.3.1. A key enabler 

of the GUI spoofing attack is the interaction between the graphic interface and the 

certificate cache: for IE, Opera and Chrome, the certificate is displayed as long as it 

is available in the cache. 

5.4.2	 Stealing Authentication Cookies of HTTPS Websites by Faking HTTP Re­

quests 

The attack in Section 5.4.1 is to impersonate a legitimate HTTPS website. We 

now describe an attack that allows the PBP to impersonate victim users to access 

HTTPS servers by stealing their cookies. 

Cookies are pieces of text that browsers receive from web servers and store locally. 

They are used to maintain the states of HTTP transactions, such as items in con­

sumer’s shopping carts and personalized settings of user webpages. In addition, they 

are used as an important mechanism for web servers to authenticate individual users. 

After a user successfully logs on a server, the server sends some cookies to be stored 

in the user’s browser, which uniquely identify the session between the server and the 

user. Next time when the user accesses the server, these cookies are presented to the 

server as a proof of the identity of the user. 

Browsers use the same-origin policy to determine whether cookies can be attached 

to requests or accessed by scripts. The policy specifies that: 1) Cookies of a domain 

can only be attached to the requests to the same domain; 2) Cookies of a domain are 

only accessible to scripts that run in the context of the same domain. However, unlike 

the same-origin policy of script and DOM, the same-origin policy of cookies does not 

make a distinction between HTTP and HTTPS by default. In the default scenario, 

cookies of http://a.com may be accessed by pages or scripts of https://a.com, and 

vice versa. Optionally, a SECURE attribute [59] can be set to ensure that cookies 

http:https://a.com
http:http://a.com


94 

Table 5.2 
Insecure HTTPS websites due to the improper cookie protection 

Website (names are ob­

fuscated) 

URL (obfuscated) Description 

StockTrader https://trading.StockTrader.com A leading stock brokerage company 

eCommerce X https://www.eCommerceX.com A leading online store 

V-Bank https:// online.vbank.com Online banking 

Manuscript Manager https://mc.ManuscriptManager.com The submission and review system of an 

academic/engineering society 

Travel Company https://www.TravelCompany.com A leading Internet travel company 

GMail (not obfuscated 

as it is publicly known) 

https://mail.google.com Google’s email service 

Mortgage Company Y https://MortgageCompanyY.com Mortgage lender 

Utility Company X  https://www.UtilityCompanyX.com A utility company in the west coast of the 

United States 

Goverment Service X https://egov.GovermentServiceX.gov A web service for U.S. immigration cases 

can only be read by pages in the HTTPS context and be attached to the HTTPS 

requests (of course, after the SSL handshake). 

We found that many websites do not set the SECURE attribute for cookies that 

identify HTTPS sessions . As an example, an author of the paper investigated about 

30 websites in which he owns an account. About one-third of the websites used 

cookies for authentication but did not set the SECURE attribute for them. Every 

website was verified individually to show that the stolen cookie was su±cient to 

allow the attacker to get into the logon session from an arbitrary machine and to 

perform arbitrary operations on behalf of the victim user. These nine websites are 

listed in Table 5.2, with their names and URLs obfuscated. They cover a wide range 

of services such as stock broker, online shopping, online banking, academic paper 

reviewing, email service, mortgage payment, utility billing, government service, and 

traveling. They aÆect many diÆerent aspects of a person’s online security. 

It is straightforward to launch the attack: the proxy waits until the user logs 

into the server (usually after seeing a few CONNECT requests), e.g., the stock trad­

ing website https://trading.StockTrader.com. After that, once the browser re­

http:https://trading.StockTrader.com


95 

quests any HTTP page (including a page requested from another browser tab or any 

tool bar), the proxy embeds an iframe of http://trading.StockTrader.com in the 

HTTP response. When the browser renders the iframe, it makes an HTTP request 

for http://trading.StockTrader.com, exposing the authentication cookie in plain 

text to the proxy. 

Given that a significant fraction (one-third) of the HTTPS websites that we exam­

ined have this problem and many of them are reputable, we believe this vulnerability 

exists in many other HTTPS websites as well. Although it is possible that inexpe­

rienced developers do not have knowledge about the SECURE attribute of cookies, 

the fact that reputable websites also make this mistake suggests that the concept of 

the SECURE attribute is commonly misconceived. The SECURE attribute is often 

vaguely defined as a mechanism to prevent malicious HTTP pages. It is never made 

clear that when the network is assumed untrusted, the SECURE attribute should be 

considered as a mechanism to prevent malicious proxies and routers. Without this 

clear interpretation, a developer might have a misconception: my HTTP pages are 

very secure (or “my website does not run HTTP at all”). Why bother to prevent my 

own HTTP pages from stealing cookies of the HTTPS sessions on my website? 

5.5 Feasibility of Exploitation in Real-World Network Environments 

By definition, the security of communications over HTTPS should not rely on 

the integrity of any intermediate node in network path, such as proxies and routers. 

As described in the previous sections, however, the guarantees of HTTPS can be 

subverted when a malicious or compromised proxy is being used. There are many cir­

cumstances where proxies are commonly used and therefore the PBP vulnerabilities 

can be easily exploited: (1) Mobile environments such as conference rooms, airports, 

hotels and hospitals [60]; (2) Corporate and university networks, e.g., Microsoft’s 

corporate network and the campus networks in Berkeley and UCSD [61]; (3) Free 

third-party proxies on the Internet [62]. In these cases, proxies may be used for 

http:http://trading.StockTrader.com
http:http://trading.StockTrader.com


96 

various legitimate reasons, such as billing, tra±c regulation, and tra±c anonymiza­

tion. However, if they are infected by viruses, hijacked by attackers, or configured by 

malicious insiders, the PBP attacks can be launched. 

In this section, we will show that in real-world network environments, the PBP 

vulnerabilities can be exploited more easily than hacking into the proxy machine. An 

attacker can exploit the vulnerabilities even when the victim is not knowingly using an 

untrusted proxy. The attacker only needs the capability of sni±ng users’ tra±c and 

sending fake packets back to browsers. An attacker can easily do this by sitting in the 

vicinity of victim users in a wireless environment or connecting to the same local area 

network (LAN) of victim users in a wired environment. Note that the attack scenarios 

to be described do not show any additional vulnerability, but demonstrate that the 

PBP vulnerabilities described earlier result in serious consequences for people’s online 

security. 

The tactic of our attacks is to impersonate a legitimate proxy or insert an un­

wanted proxy into the communication path without the user’s awareness. We will 

discuss a few basic elements in this tactic: (1) TCP hijacking - It is a known fact that 

anyone who can sniÆ IP packets can hijack the TCP connections, and thus imperson­

ate clients and servers; (2) Proxy-Auto-Config (PAC) mechanism [63] - Alternative 

to manual configuration, browsers use the PAC mechanism to obtain a script from 

a server and configure proxy settings by the script; (3) Web-Proxy-Auto-Discovery 

protocol (WPAD) [64] - All browsers support WPAD. WPAD makes the proxy con­

figuration completely under the hood: it attempts to discover a proxy, and automat­

ically falls back to the ”no-proxy” setting if the attempt fails. Using WPAD, the 

same browser machine can access the web at o±ce, hotel and home without changing 

any setting. Since TCP, PAC and WPAD are not cryptographic protocols, they are 

not expected to be resilient against an attacker who can access the network tra±c. 

However, combining these facts with PBP vulnerabilities, HTTPS’ properties become 

very easy to break in reality. 



97 

Figure 5.5. A typical TCP hijacking 

We have built Ethernet and wireless testbeds to show various attack scenarios. 

The details are provided in the following subsections. 

5.5.1 A Short Tutorial of TCP Hijacking 

It is well known that an attacker who can sniÆ TCP tra±c can impersonate the 

sender or the receiver of a TCP connection. This technique is referred to as TCP 

hijacking and is shown in Figure 5.5. The attacker is at a location where he can 

sniÆ the TCP packets between the browser machine and the server. To simplify 

description, we assume that the attacker connects to the same Ethernet hub as the 

user machine. When the browser tries to establish a TCP connection with the server, 

the attacker does nothing but wait for the completion of TCP three-way handshake. 

When the attacker receives the packet which contains an HTTP request sent by the 

browser, it parses the packet to extract the IP addresses, the port numbers, and 

the current sequence numbers of both the browser and the server. It then uses this 

information to fake a server response packet with appropriate IP and TCP headers 

and payload data. The fake packet is immediately sent back to the browser. 

Since the attacker can only sniÆ but not intercept packets, the server will still 

return a legitimate response packet to the browser. Given that the distance between 

the attacker and the browser is equal or shorter than the distance between the browser 

and the server, the fake response packet generated by the attacker almost always 



98 

Figure 5.6. Proxy setting options for IE and Chrome 

arrives before the legitimate response packet from the server. Although this is a race 

between the attacker and the server, because the attacker has already prepared most 

of the faked response and only waits to fill in a few header fields, it is easy to win the 

race. The browser will accept the fake packet and discard the legitimate packet as a 

duplicate, because both packets have the same TCP sequence number. 

5.5.2 PBP Exploits by a Sni±ng Machine 

As we stated earlier, connecting to a proxy is necessary in many circumstances, 

such as corporate networks, hotels, and conferences, for the purpose of billing or au­

diting [60–62]. Browsers’ proxy settings can be configured manually, or by specifying 

the URL of the PAC script, or by WPAD. The attacker has several options accord­

ingly. Figure 5.6 shows the user interface of proxy settings for IE and Chrome. Other 

browsers’ user interfaces are almost functionally identical. 

Browsers with manual proxy-settings. Manual configuration requires the (ad­

vanced) user to enter the hostname/IP address and the port number of the specific 

proxy server. The attacker needs to hijack the TCP connection between the browser 

and the proxy to impersonate the proxy. Browsers configured by PAC scripts [63]. A 

browser can fetch a PAC (Proxy Auto-Config) script from a server by specifying the 

URL, such as http://config.myOrg.org/proxy.pac. The script contains a special 

function FindProxyForURL(url,host), which returns a string containing one or more 

http://config.myOrg.org/proxy.pac


99 

proxy specifications given a URL and a hostname. In practice, proxy settings are nor­

mally cached for better performance. To attack this browser, the attacker can hijack 

the TCP connection to impersonate the PAC server config.myOrg.org. The following 

PAC script is served to the browser. The browser will use“proxy.evil.com:80” as  

its proxy. 

function FindProxyForURL(url,host) return "PROXY proxy.evil.com:80"; 

The advantage of impersonating the PAC server, compared to impersonating the 

proxy server, is that the hijacking only needs to be done once and the browser’s proxy 

setting will be changed permanently. 

Browsers enabling WPAD [64]. WPAD (Web Proxy Auto Discovery) is the only 

option for users to browse the web from diÆerent networks without changing the 

configuration. When WPAD is enabled, the browser does not initially know the URL 

of the PAC script, but asks the DHCP server for it. If DHCP server does not have the 

information or does not respond, the browser asks the DNS servers. Once the URL 

of the PAC script is obtained, the browser fetches the script and configures its proxy 

settings. If the browser cannot find any proxy configuration script, it automatically 

falls back to the ”no-proxy” state, in which the browser does not access the web 

through any proxy. Our attack program sniÆs browser packets. When there is a 

WPAD query for DHCP or DNS server, the program replies immediately with the 

URL of a malicious PAC script on the attacker machine. 

Home networks typically have no HTTP proxy servers, so it may be an expectation 

that online banking at home is secure. It is worth noting that whether there is a 

proxy in a home network does not aÆect the security. The security is only aÆected 

by whether the browser has any one of the proxy settings enabled. For example, 

if a laptop sets the WPAD capability in the o±ce hours in a corporate network, it 

will be insecure to do online banking at home in the evening with the proxy setting 

unchanged, because the attacker can fake a WPAD response to convince the browser 

that there is a proxy. 

http:config.myOrg.org


100 

If a user does disable proxy service in browsers, the vulnerabilities described in 

Section 5.3.1, 5.3.2 and 5.4.1 are no longer exploitable because the browser will di­

rectly establish HTTPS connections with servers instead of tunneling the connections 

through proxies, evading the code paths that trigger the vulnerabilities. However, the 

remaining two vulnerabilities described in Section 5.3.3 and 5.4.2 can be exploited 

as they only require attackers to sniÆ HTTP requests and forge HTTP responses. 

The default proxy settings of the browsers. If a user has never modified any 

proxy settings since the installation of the browser, the default settings vary in dif­

ferent browsers: (1) Firefox does not enable any proxy setting by default; (2) IE 

enables and uses WPAD in its very first run after the installation. If this first use is 

successful, the WPAD setting is checked, otherwise it is unchecked. Chrome always 

uses IE’s setting; (3) After the installation, Opera’s initial setting is the same as IE’s 

setting. Therefore, even in a fresh IE, Opera or Chrome at home, the proxy setting 

will be enabled if the attacker responds to all WPAD requests that he/she receives. 

5.5.3 Attack Implementations 

We implemented all attack scenarios in both the Ethernet and wireless environ­

ment. In the Ethernet, we used WinPcap [65] to sniÆ and inject packets in Windows 

platform. WinPcap is a network monitoring library; it provides a set of APIs which 

allow us to capture all raw packets received by network interface card (NIC) and send 

raw packets through NIC. These raw packets include link layer headers, IP headers, 

TCP headers, and full payload data. While a NIC normally discards packets whose 

physical (MAC) addresses do not match that of the NIC, WinPcap can set the NIC 

in the promiscuous mode such that all packets received by the NIC will be passed up. 

Wireless environments are more dangerous. Given the nature of wireless networks, 

attackers can sniÆ wireless packets in the air when they are in the vicinity of the 

wireless access points which victims are using (unless per-user encryption schemes 

WPA and WPA2 are deployed, which will be discussed in Section 5.6). Conceptually, 



101 

the attacks in a wireless network are the same as that in an Ethernet LAN. However, 

we need to resolve a number of implementation issues to enable the attacks, which 

are described below. 

Although WinPcap works well on most Ethernet NICs, it is not properly supported 

by many wireless NICs. First, many wireless NICs do not support the promiscuous 

mode for power conservation. Second, WinPcap device driver assumes Ethernet as 

its default link layer, which is incompatible with most wireless NICs. However, we do 

find that certain wireless NICs (e.g. Dell TrueMobile 1300 WLAN Mini-PCI Card) 

work with WinPcap and support the promiscuous mode. On these NICs, WinPcap 

emulates an Ethernet layer by automatically creating fake Ethernet frames from WiFi 

frames. In addition, we have developed a specific packet sniÆer/injector that works 

with D-Link AG-132 Wireless USB Adapter in Windows platform. 

5.6 Mitigations and Fixes 

In this section, we describe how browsers vendors fixed or planned to fix the 

vulnerabilities reported in this paper. We also discuss possible ways to mitigate the 

impact of the class of PBP vulnerabilities before they are discovered and patched. 

5.6.1 Fixes of the Vulnerabilities 

We have reported these vulnerabilities (except the authentication cookie vulnera­

bility) to the aÆected browser vendors: Microsoft’s IE team, Mozilla’s Firefox team, 

Opera Software and Google’s Chrome team. Since the authentication cookie vulner­

ability in Section 5.4.2 is due to improper setting of cookie attribute by individual 

websites, we have to inform the websites instead of the browser vendors. Table 5.3 

shows the browser vendors’ responses to each of these vulnerabilities. The vendors 

have acknowledged the vulnerabilities reported by us. Although Mozilla has not ex­

plicitly confirmed a plan for fixing the vulnerabilities described in Section 5.3.1 and 



102 

Table 5.3
 
Vulnerability reporting and browser vendors’ responses.
 

Microsoft (IE) Mozilla 

(Firefox) 

Opera Google (Chrome) 

Vulnerability 

Section 5.3.1 

in Fixed in IE8 Vulnerability 

acknowledged 

Fixed in 

Dec.2007 

Fix being developed 

Vulnerability 

Section 5.3.2 

in N/A Vulnerability 

acknowledged 

Fixed in 

Dec.2007 

N/A 

Vulnerability in Vulnerability Vulnerability Vulnerability Fix planned 

Section 5.3.3 acknowledged acknowledged acknowledged 

Fix proposed Fix proposed 

Vulnerability 

Section 5.4.1 

in Fixed in IE8 N/A N/A Fix being developed 

Vulnerability 

Section 5.4.2 

in Not reported Not reported Not reported Not reported 

5.3.2, we believe that they will be fixed given the high risks. Microsoft has fixed them 

in IE8, and scheduled to patch IE7 soon. Opera has fixed them in December 2007. 

Google’s fix is being developed. 

IE8 and Opera fixed the vulnerability in Section 5.3.1 by displaying a local error 

page when receiving a 4xx/5xx response before the SSL handshake succeeds. Opera 

fixed the vulnerability in Section 5.3.2 by ignoring the proxy’s 3xx redirections. As a 

proposal for the vulnerability in Section 5.3.3, Mozilla plans to fix it by blocking any 

script/CSS resources imported by HTTP into HTTPS context, or reliably display a 

warning. Microsoft and Opera are considering a ”defense-in-depth” patch, of which 

the details have not been confirmed. 

Browser vendors are not in the best position to fix the authentication cookie 

vulnerability described in Section 5.4.2, because currently there is no mechanism to 

for the browsers to know if a cookie value is for the authentication purpose or meant 

to be shared with the corresponding HTTP domain. The cookie’s secure attribute 

largely depend on the application semantics. 



103 

5.6.2 Mitigations by Securing the Network 

Because HTTPS is designed fundamentally for secure communications over an 

insecure network, it is of course an unconvincing ”solution” that we secure the network 

in order to secure HTTPS. However, in practice, network-based mitigation approaches 

are still valuable to consider because it is not safe to assume every machine will be fully 

patched. More importantly, we believe there will be future vulnerabilities similar to 

what we have discovered. Good mitigations that are eÆective against known attacks 

may mitigate future/unknown attacks. 

At the high level, users should be cautious about plugging their machines into 

untrusted network ports, connecting to unknown wireless access points (APs), or 

using arbitrary network proxies. In cases when users must go through them to access 

the network, they should avoid using the network for critical transactions, such as 

online banking. In enterprise networks where Kerberos authentication is being used, 

network administrators should prevent any unauthorized sni±ng of user tra±c. 

Since the PBP attacks are so easy to launch if the attacker has the ability to 

intercept or sniÆ tra±c content, a straightforward mitigation approach is to encrypt 

the content transmitted on the network. Fortunately, there have already existing 

techniques that are applicable in diÆerent scenarios: 

•	 Almost all wireless APs support encryption, which make it di±cult for adver­

saries to sniÆ tra±c in the air. Among the commonly available encryption 

schemes, WPA and WPA2 are more secure, because they maintain per-user 

keys. WEP uses a static shared key among all the users who connect to the 

same AP. It is widely known that WEP is easy to break [66]. 

•	 Sometimes, users must rely on untrusted networks to access the Internet, e.g., in 

hotels, airports, conferences, and coÆee shops. They may secure their tra±c by 

using secure Virtual Private Network (VPN) if such option is available. Secure 

VPN allows a client to establish a secure connection with a VPN server, in 

which case all the tra±c between them is encrypted. Once the connection is 



104 

established, all requests and replies will be tunneled through the VPN server. 

Conceptually the users’ machines are connected to the enterprise network of the 

VPN server. 

•	 Enterprise networks should deploy IPSec to encrypt tra±c at the IP-layer. To­

day, IPSec coexists with regular IP in enterprise networks. There are lots of 

opportunities for PBP attackers to intercept or sniÆ users’ tra±c in enterprise 

networks. For example, large enterprise networks typically have thousands of 

network ports. Attackers can easily plug in their own wireless APs to a network 

port without being detected for a long time. These APs are often referred to as 

Rogue APs and allow attackers to gain unauthorized access to enterprise net­

work (e.g., sni±ng users’ tra±c). Another example is Network Load Balancing 

(NLB) where servers in the same load balancing group share a broadcast ad­

dress [67]. This facilitates packet sni±ng. To resolve these issues, it is important 

that all hosts involved in the communication must use IPSec to protect users 

from PBP attacks. To understand its importance, let us assume that IPSec is 

only used by all the proxy servers but not the PAC servers. Adversaries may 

still intercept/sniÆ the requests to PAC servers and feed malicious PAC scripts 

to browsers as we described earlier. Similarly, IPSec must be deployed on other 

types of servers that provide basic network services, such as DHCP servers and 

DNS servers. 



105 

6 DEFEATING CROSS-SITE REQUEST FORGERY ATTACKS WITH 

BROWSER-ENFORCED AUTHENTICITY PROTECTION 

6.1 Motivation 

Cross-site request forgery, also known as one-click attack or session riding and ab­

breviated as CSRF or XSRF, is an attack against web applications [5–7]. In a CSRF 

attack, a malicious web page instructs a victim user’s browser to send a request to 

a target website. If the victim user is currently logged into the target website, the 

browser will append authentication tokens such as cookies to the request, authenti­

cating the malicious request as if it is issued by the user. 

A CSRF attack does not exploit any browser vulnerability. As long as a user is 

logged into the vulnerable web site, simply browsing a malicious web page can lead to 

unintended operations performed on the vulnerable web site. Launching such CSRF 

attacks is possible in practice because many users browse multiple sites in parallel, 

and users often do not explicitly log out when they finish using a web site. A CSRF 

attack can also be carried out without a user visiting a malicious webpage. In a recent 

CSRF attack against residential ADSL routers in Mexico, an e-mail with a malicious 

IMG tag was sent to victims. By viewing the email message, the user initiated an 

HTTP request, which sent a router command to change the DNS entry of a leading 

Mexican bank, making any subsequent access by a user to the bank go through the 

attacker’s server [68]. 

CSRF appeared in the Open Web Application Security Project (OWASP) top 

10 web application threats in 2007 (ranked at 5) [69]. Several CSRF vulnerabilities 

against real-world web applications have been discovered [70–72]. In 2007, a serious 

CSRF vulnerability in Gmail was reported [73]. It allowed a malicious website to 

surreptitiously add a filter to a victim user’s Gmail account that forwards emails to a 



106 

third party address. CSRF vulnerabilities are very common. The potential damage 

of CSRF attacks, however, has not been fully realized yet. We quote the following 

from an online article [74], 

Security researchers say it’s only a matter of time before someone awakens 

the “sleeping giant” and does some major damage with it – like wiping 

out a user’s bank account or booking a flight on behalf of a user without 

his knowledge. 

“There are simply too many [CSRF-vulnerable Websites] to count,” says 

rsnake, founder of ha.ckers.org. “The sites that are more likely to be 

attacked are community websites or sites that have high dollar value ac­

counts associated with them – banks, bill pay services, etc.” 

Several defense mechanisms have been proposed and used for CSRF attacks. How­

ever, they suÆer from various limitations (see Section 2.3). 

We study browser-based defense against CSRF attacks, which is orthogonal to 

server-side defenses. The websites should follow the best practice to defend against 

the CSRF attacks before browser-side defenses are universally adopted. One cru­

cial advantage of a browser-based solution compared with a server-side solution is 

that a user who started using the protected browser will immediately have all his 

web browsing protected, even when visiting websites that have CSRF vulnerabilities. 

Furthermore, because the number of major browsers is small, deploying protection 

at the browser end can be achieved more easily, compared with deploying server-side 

defenses at all websites. 

We recognize that CSRF attacks are an example of the confused deputy problem. 

The current web design assumes that the browser is the deputy of the user and that 

any HTTP request sent by the browser reflects the user’s intention. This assumption 

is not true as many HTTP requests are under the control of the web pages and do not 

necessarily reflect the user’s intention. This becomes a security concern for HTTP 

requests that have sensitive consequences (such as financial consequences). 

http:ha.ckers.org


107 

Our solution to this problem is to enhance web browsers with a mechanism ensur­

ing that all sensitive requests sent by the browser should reflect the user’s intention. 

We achieve that by inferring whether an HTTP request reflects the intention of the 

user and whether an authentication token is sensitive, and striping all sensitive au­

thentication tokens from the HTTP requests that may not reflect the user’s intention. 

We call it Browser-Enforced Authenticity Protection. 

6.2 Understanding CSRF Attacks and Existing Defenses 

CSRF attacks exploit existing authenticated sessions. Two common approaches 

for maintaining authenticated web sessions are cookies and HTTP authentication 

credentials, which we call authentication tokens. 

Cookies [75] are pieces of text data sent by the web server to the browser. The 

browser stores the cookies locally and sends them along with every further request 

to the original web site who sets them. After a web site has authenticated a user, 

for example, by validating the user name and password entered by the user, the web 

site can send back a cookie containing a “session ID” that uniquely identifies the 

session, which is referred to as authentication cookie. If the web server relies only on 

cookies for user authentication, every request that has a valid authentication cookie 

is interpreted as an intended request issued by the authenticated user who owns the 

session. When sending a cookie to a browser, the website can specify an optional 

attribute expires among other three attributes. The expires field takes the value of a 

date that indicates how long the cookie is valid. After the date passes, the browser 

deletes the cookie. If the expires field is omitted, then the cookie is called a session 

cookie and should be deleted when user closes the web browser. Cookies with an 

expires field are called persistent cookies. Most financial websites and sensitive services 

specify the authentication cookie as a session cookie, because the session cookies are 

removed when the browser is closed and won’t be abused by others who may share 

the same computer and browser. 



108 

HTTP authentication [76], an authentication mechanism defined in the HTTP 

protocol [77], is widely used within Intranet environments. In the mechanism, when 

accessing a webpage that requires authentication, the browser will popup a dialog 

asking for the username and password. After entering the information, the credential 

is encoded and sent to the web server via the Authorization request header. The browser 

remembers the credential until the browser is closed. When later the user visiting the 

webpages in the same authentication realm, the browser automatically includes the 

credential in the request via the Authorization header. 

CSRF attacks use HTTP requests that have lasting observable eÆects at the web 

site. Two request methods are used in real-world HTTP requests: GET and POST. 

According to the HTTP/1.1 RFC document [77], the GET method, which is known as 

a “safe” method, is used to retrieve objects. The GET requests should not have any 

lasting observable eÆect (e.g., modification of a database). The operations that have 

lasting observable eÆects should be requested using the method POST. The POST 

requests have a request body and are typically used to submit forms. However, there 

exist web applications that do not follow the standard and use GET for requests that 

have lasting side eÆects. 

Visiting web pages in one site may result in HTTP requests to another site; these 

are called cross-site requests. More precisely, in a cross-site request, the link of the 

request is provided by a website that is diÆerent from the destination website of 

the request. Cross-site requests are common. For example, a webpage may include 

images, scripts, style files and sub-frames from a third-party website. When the 

user clicks a hyper-link or a button contained in a webpage, the linked URL may be 

addressing a third-party website. 

6.2.1 The CSRF Attack 

The general class of cross site request forgery (CSRF) attacks was first introduced 

in a posting to the BugTraq mailing list [5], and has been discussed by web application 



109 

developers [6, 7]. CSFR attacks use cross-site requests for malicious purposes. For 

example, suppose that the online banking application of bank.com provides a “pay 

bills” service using an HTML form. The user asks the bank to send a check to a payee 

by completing the form and clicking the “Sumbit” button. Upon the user clicking 

the button, a POST request is sent to the server, together with the authentication 

cookie. When the web server receives this HTTP request, it processes the request 

and sends a check to the payee identified in the request. 

A CSRF attack works as follows.While accessing the bank account, the user simul­

taneously browses some other web sites. One of these sites, evil.org, contains a hidden 

form and a piece of JavaScript. As soon as the user visits the web page, the browser 

silently submit the hidden form to bank.com. The format and content of the request 

is exactly the same as the request triggered by the user clicking the submit button in 

the “pay bill” form provided by the bank. On sending the request, the user’s browser 

automatically attaches the authentication cookies to the request. Since the session is 

still active in the server, the request will be processed by the server as issued by user. 

As illustrated in this example, POST requests can be forged by a hidden form. If the 

bank uses GET request for the pay bill service, the request can be easily forged by 

using various HTML elements, such as himgi, hscripti, hiframei, hai (hyper-link) and 

so on. 

We note that as long as a user is logged in to a vulnerable web site, a single 

mouse click or just browsing a page under the attacker’s control can easily lead to 

unintended operations performed on the vulnerable web site. 

CSRF vs. XSS. CSRF vulnerabilities should not be confused with XSS vulnerabil­

ities. In XSS exploits, an attacker injects malicious scripts into an HTML document 

hosted by the victim web site, typically through submitting text embedded with code 

which is to be displayed on the page, such as a blog post. Most XSS attacks are due to 

vulnerabilities in web applications which fail in sanitizing untrustworthy inputs which 

might in turn be displayed to users. CSRF attacks do not rely on the execution and 

injection of malicious JavaScript code. CSRF vulnerabilities are due to the use of 

http:bank.com
http:evil.org
http:bank.com


110 

Table 6.1
 
The CSRF vulnerabilities discovered in real world websites.
 

Vulnerable web site Targeted sensitive operation 

A university credit union site Money transfer between accounts; 

adding a new account 

A university web mail Deleting all emails in the Inbox 

An online forum for HTML development Posting a message; updating user profile 

Department portal site  Editing biography information 

cookies or HTTP authentication as the authentication mechanism. A web site that 

does not have XSS vulnerabilities may contain CSRF vulnerabilities. 

6.2.2 Real-world CSRF vulnerabilities 

In order to understand how commonly the CSRF vulnerability exists in the real-

world web applications, one of the authors of the paper examined about a dozen 

web sites for which he has an account and usually visits. As a result, we found four 

of them are vulnerable to CSRF attacks as shown in Table 6.1. We verified all the 

attacks with Firefox 2.0. 

The university credit union site relies on session cookies for authentication. Some 

services provided in the online banking are vulnerable to the CSRF attack. In partic­

ular, adding new accounts and transferring money between accounts are vulnerable. 

In the experiment, we conducted a benign attack that transfers $0.01 from the vic­

tim’s checking account to the saving account. We also successfully launch an attack 

to add an external account. Combining these two enables the adversary to transfer 

money from the victim’s account to an arbitrary external account. Fortunately, the 

bank requires contacting the help-desk personally to confirm the operation of adding 

an external account. And also the bill paying service is not vulnerable. 

The university web mail uses session cookies for authentication. Most sensitive 

operations (e.g., sending an email, changing the password) are protected against the 



111 

CSRF attacks using secret token validation (see Section 2.3). However, the feature 

of “managing folders” is vulnerable, and a CSRF attack can be launched to remove 

all emails in the victim’s Inbox. 

In an online forum for HTML development, all operations are vulnerable to the 

CSRF attack. The attacker is able to impersonate the victim user to send a posting, 

update the user profile, and so on. The vulnerable forum is created using phpBB [78], 

which is the most widely used open source forum solution. All forums created using 

phpBB 2.0.21 or earlier are vulnerable to the CSRF attack [79]. This is a well-

known vulnerability and there are CSRF attack generators for phpBB forums available 

online. Many public forums have upgraded to phpBB 2.0.22 or later, but there are 

still many forums using the vulnerable versions. 

In the departmental portal site, a CSRF attack is able to edit the biography 

information of the victim shown on the webpage. 

We have reported the vulnerabilities to the websites of the university credit union 

and the university web mail; we did not expose the name of those websites here 

because they have not fixed the vulnerabilities yet. These examples of vulnerabilities 

demonstrate that there exist a considerable amount of web services vulnerable to the 

CSRF attacks and the potential damage could be severe. 

6.2.3 A variant of CSRF attack 

All existing CSRF defenses 2.3 fail when facing a variant of CSRF attacks men­

tioned in [80] and [47]. We use the Facebook as an example to illustrate the attack. 

Facebook allows the users to post an article or a video from any website to the user’s 

own profile. For example, the user can post a video from Youtube.com to his Facebook 

profile by clicking “Share – Facebook” under the video. When clicking the link, the 

following GET request is sent to the Facebook: http://www.facebook.com/sharer. 

php?u=http://www.youtube.com/watch?v=VIDEO_ID&t=VIDEO_TITLE. This request 

loads a confirmation page (Fig. 6.1(A)) which asks the user the click a “Post” button 

http://www.facebook.com/sharer
http:Youtube.com


112 

Figure 6.1. (A): The confirmation page that posts a video from 
Youtube.com to the Facebook profile; (B): A malicious page that 
includes (A) as an iframe and tries to trick the user click the button 
without seeing other parts of (A); 

to complete the transaction. After the user clicking the “Post” button, a POST re­

quest is sent to http://www.facebook.com/ajax/share.php to confirm the posting 

operation. 

An attacker is able to launch a CSRF attack that posts anything to the victim 

user’s profile. On the malicious webpage, the attacker includes an iframe linking to 

the posting confirmation page (Fig. 6.1(A)). In addition, the attacker is able to auto-

scroll the iframe to the “Post” button and hide other parts of the page by using two 

nested iframes and manipulating the sizes of the iframes. As a result, what is shown 

in the browser looks like Fig. 6.1(B). The user can be easily tricked to click the “Post” 

button without knowing that he is posting something to his own Facebook profile. 

Facebook.com uses secret validation token to defend against CSRF attacks. How­

ever, because the request is sent by user clicking the “Post” button in the confirmation 

page provided by Facebook the request will include a correct validation token. Using 

http:Facebook.com
http://www.facebook.com/ajax/share.php
http:Youtube.com


113 

a referer-checking would also fail because the final posting request has a Referer header 

of Facebook.com. 

This attack is traditionally defended using “frame busting”, in which the tar­

get webpage includes a piece of JavaScript to force itself to be displayed in a top-

level frame [81]. However, this defense can be defeated if the attacker disables the 

JavaScript in the sub-frame that links to the target webpage [82]. 

6.3 Browser-Enforced Authenticity Protection (BEAP) 

CSRF attacks are particularly di±cult to defend because cross-site requests are 

a feature of the web. Many web sites use legitimate cross-site requests, and some of 

these usages require the attachment of cookies to cross-site requests to work properly 

(e.g., posting a video from Youtube to Facebook in the above example). To eÆectively 

defend against CSRF attacks, one needs as much information about an HTTP request 

as possible, in particular, how the request is triggered and crafted. Such information 

is available only within the browser. Existing defenses suÆer from the fact that they 

do not have enough information about HTTP requests. They either have to change 

the web application to enhance the information they have or to use unreliable source 

of information (such as Referer header). Even when such information is available, it is 

still insu±cient. For example, they cannot defend against the attack in Section 6.2.3 

because while they can tell the request is coming from their web form, they do not 

know that the web form is actually embedded in a page controlled by the attacker. 

We focus on browser-based defense against CSRF attacks. It is well known that 

CSRF is a confused deputy attack against the browser. The current web design 

assumes that the browser is always the deputy of the user and that any HTTP 

request sent by the browser reflects the user’s intention. This assumption is not 

true as many HTTP requests are under the control of the web pages and do not 

necessarily reflect the user’s intention. This confusion causes no harm when these 

requests have no sensitive consequences, and merely retrieve web pages from the web 

http:Facebook.com


114 

server. However, when these requests have sensitive consequences (such as financial 

consequences), it becomes a severe security concern. Because such requests occur 

in authenticated sessions, these requests have authentication tokens attached. The 

fundamental nature of the CSRF attack is that the user’s browser is easily tricked 

into sending a sensitive request that does not reflect the user’s intention. 

Our solution to this problem is to directly address the confused deputy problem of 

the browser. More specifically, we propose Browser-Enforced Authenticity Protection 

(BEAP), which enhances web browsers with a mechanism ensuring that all sensitive 

requests sent by the browser reflect the user’s intention. BEAP achieves this through 

the following. First, BEAP infers whether an HTTP request reflects the intention 

of the user. Second, BEAP infers whether authentication tokens associated with 

the HTTP request are sensitive. An authentication token is sensitive if attaching 

the token to the HTTP request could have sensitive consequences. Third, if BEAP 

concludes that an HTTP request reflects the user’s intention, the request is allowed 

to be sent with authentication tokens attached. If BEAP concludes that an HTTP 

request may not reflects the user’s intention, it strips all sensitive authentication 

tokens from the HTTP request. In this rest of this section, we describe BEAP in 

details. 

6.3.1 Inferring the User’s Intention 

In inferring whether an HTTP request reflects the user’s intention, we classify 

the requests into two types depending on the source of the request. Type-1 requests 

are caused by the webpages hosted in the browser. When displaying a webpage, 

the browser may send additional requests to retrieve the resources included in the 

web page, such as images, scripts and so on. These resources may come from the 

same website or a third-party website. Similarly, when the user clicks a hyper-link 

or a button contained in a webpage, requests are sent by the browser. In addition, 

the Javascripts contained in the webpages may send requests as well. In all these 



115 

cases, the URLs and contents of the requests are determined by the source webpage. 

Whether such a request reflects the user’s intention is inferred by browser-enforced 

Source-set checking, which we will explain soon. 

Type-2 requests are not associated with a source webpage. For example, when 

the user clicks an URL embedded in an email, the URL is passed to the browser as 

a startup argument, resulting in an HTTP request that is not associated with any 

webpage already hosted in the browser. We use the following user-interface intention 

heuristics to infer whether a type-2 request reflects the user’s intention. 

1.	 Address-bar-entering. When the user types in a URL in the address bar and 

hits enter, the request sent by the browser is considered as intended, because 

we can assure that the user intends to visit the URL she typed in. 

Note that we distinguish between typing in by keyboard and pasting from the 

clipboard. The adversary may send the victim an email, which contains a URL 

that links to a CSRF attack. Instead of providing a hyper-link for the user to 

click, the email can ask the user to copy and paste the URL to the browser’s 

address-bar. To defeat this trick, only when the URL is typed in to the address-

bar by the keyboard, the request is intended. If the URL is pasted from the 

clipboard, the request is not considered to be intended. 

2.	 Bookmark-clicking. When the user selects a link from the bookmarks, the re­

quest is considered as intended, because users are usually careful in maintaining 

the bookmarks. 

3.	 Default-homepage. When the browser displays the default home page either 

when it starts or when user clicks the “homepage” button, the request is con­

sidered intended, because the configuration of default homepage is set by the 

user and cannot be easily modified by malicious web sites. 

All other type-2 requests are not considered to be intended. For example, when the 

user clicks a link from the history, or when the user clicks a link outside the browser 



116 

(e.g., in an email or a word document), the requests are not considered as intended. 

When performing those actions, users normally do not have a clear idea about which 

web site they are going to. The history and the links outside the browser may contain 

malicious contents that could launch CSRF attacks. Note that these requests are still 

allowed to proceed, we will only strip sensitive authentication tokens from them. 

Browser-enforced Source-set Checking. To determine whether a type-1 re­

quest reflects the user’s intention, we borrow the idea from the server-side referer­

checking technique. Our approach has two significant diÆerences. First, the enforce­

ment is done by the browser rather than the web application. In this way, the Referer 

header does not need to be sent to the web server. This addresses the privacy con­

cerns caused by sending out the Referer header, and it is compatible to the browsers 

and network devices that block the Referer header. In addition, the browser is able to 

check the Referer for all requests whose links are provided by a webpage (type-2 re­

quests); so it avoids the dilemma in the server-side referer-checking with the requests 

that lack a Referer header. Second, we extend the notion of Referer to Source-set by 

taking into account the visual relationships among webpages in the browser. As a 

result, we can defeat the CSRF attack against Facebook mentioned in Section 6.2.3. 

Source-set checking can only be done in the browser. 

Intuitively, the Source-set of a request includes all web pages that can potentially 

aÆect the request. We define the Source-set as follows. 

Definition 6.3.1 The referer of a request is the webpage that provides the link to the 

request. The Source-set of a request includes its referer and all webpages hosted in 

ancestor frames of the referer. 

For example, in Fig. 6.1, when the user clicks the “Post” button in the last tab, 

a request is sent to Facebook.com. The referer of the request is the innermost iframe 

that links to http://www.facebook.com/sharer.php. The Source-set includes the 

referer and its two ancestor webpages that are from the malicious website (In the at­

http://www.facebook.com/sharer.php
http:Facebook.com


117 

tack, the malicious webpage includes an iframe linking to another malicious webpage, 

which further includes an iframe linking to Facebook.). 

The rationale for including all ancestors of the referer page in the Source-set of a 

request is because all ancestor webpages can potentially aÆect the request. Users are 

typically unaware of the existence of the frame hierarchy, and they assume they are 

visiting the website hosted in the top-level frame with the URL shown in the address-

bar. The parent frame is able to manipulate the URL, size, position and scrolling of 

child frame, to fool the user. As a result, when the user performs some actions in the 

child frame, those actions may not reflect the user’s intention. Therefore, the referer 

and all its ancestor webpages are considered to be in the Source-set of a request. 

Given a type-1 request, we consider it reflect the user’s intention if all webpages 

in the Source-set are from the same website as the destination of the request. This is 

based on the following assumption: a request sent by a website to itself reflects the 

user’s intention. In other words, a website won’t launch a CSRF attack against itself. 

6.3.2 Inferring the Sensitive Authentication Tokens 

We have introduced a mechanism to infer whether an HTTP request reflects the 

user’s intention. A simple way to defend against the CSRF attacks is to stripe all 

cookies and other authentication tokens from all requests that may not reflect the 

user’s intention. However, such a policy would break some existing web applications. 

In particular, it would disable the legitimate cross-site requests that need to carry 

authentication tokens. An important observation is that although legitimate cross-

site requests may need to carry an authentication token, legitimate cross-site requests 

typically do not lead to sensitive consequence, because sensitive operations typically 

require an explicit confirmation that is done in the target website. Based on this 

observation, we further infer whether an authentication token is sensitive or not for a 

request, and stripe only sensitive authentication tokens from requests that may not 

reflect the user’s intension. 



118 

Table 6.2 
The default policy of BEAP enforced by the browser 

GET POST 

HTTP HTTPS 

Sensitive Session Cookies Not Sensitive Sensitive 

Persistent Cookies Not Sensitive 

HTTP Authorization Header Sensitive 

We use heuristics derived from analyzing the real-world web applications to de­

termine whether an authentication token is sensitive or not for a request, based on 

the following information: (1) Whether the request is GET or POST. (2) Whether 

the token is a session cookie, a persistent cookie or an HTTP authorization header. 

(3) Whether the communication channel is HTTP or HTTPS. Our heuristics are 

summarized in Table 6.2 and are explained below. 

The HTTP authorization headers are always sensitive. The HTTP authorization 

headers are typically used in the home/enterprise network. The services using the 

authorization headers for authentication are typically sensitive, e.g., home router ad­

ministration, enterprise network services. In addition, it would be severe if a malicious 

website in the Internet is able to launch a CSRF attack against a service inside the 

Intranet. 

For cookies we distinguish between the two request methods. All cookies that 

are attached to the POST requests are sensitive for two reasons. First, according 

to the HTTP/1.1 RFC document, all the operations that have lasting observable 

eÆects should be requested using the method POST. Second, the POST requests 

are used to submit forms and forms are mostly submitted to the same website as 

that provides the form. So to stripe authentication tokens from the cross-site POST 

requests will protect all web applications that follow the RFC standard, and won’t 

aÆect the existing web applications. 



119 

However, there exist some web applications that do not follow the standard and 

use GET requests for sensitive operations. We would like to protect those web ap­

plications against the CSRF attacks as well. For the cookies with GET requests, 

the policy further distinguishes between the session cookies and persistent cookies. 

The persistent cookies (those that have an expiration date) with GET requests are 

not sensitive. The persistent cookies are commonly used by the websites to pro­

vide personalized services without asking the user to explicitly log in. For example, 

Amazon.com displays recommendations based on the user’s history activities. This is 

achieved by storing the user’s identity and related information in persistent cookies. 

If the user links to Amazon.com from a third party website (e.g., a search engine), the 

request should carry the persistent cookies so that Amazon.com is able to recognize 

the user and provides a personalized service. Therefore, there exists legitimate cross-

site GET requests that need to carry persistent cookies. On the other hand, most 

sensitive web applications (especially financial websites such as banks) use session 

cookies (those that does not have an expiration date and will be deleted when the 

browser is closed) as the authentication token for sensitive operations. For example, 

the persistent cookies are not enough for a user to place an order in Amazon.com, 

he needs to type in his password to obtain a session cookie to place an order. Some 

financial websites provide a “Remember me” option with the login form, but typi­

cally that is used to remember the user’s username, the user still needs to type in 

the password to obtain a session cookie in order to access his account. Furthermore, 

using persistent cookies for sensitive operations is a bad practice, because the users 

may access their accounts from public computers (e.g., in an Internet Cafe). Using 

persistent cookies for authenticating sensitive operations would allow the persons who 

use the same computer following the user to impersonate the user. 

It is a bit complicated for the session cookies with GET requests. We observe some 

websites issue legitimate cross-site GET requests that need to carry session cookies. 

In particular, the content sharing websites, such as Digg, Facebook, etc., allow people 

to discover and share contents from anywhere on the Internet, by submitting links 

http:Amazon.com
http:Amazon.com
http:Amazon.com
http:Amazon.com


120 

Figure 6.2. Youtube provides links to various content sharing websites 
under the video. 

and stories. Many webpages include links to the submission pages of those websites, 

so that the users can easily post the current article or video to their accounts. For ex­

ample, as shown in Figure 6.2, Youtube.com provides links to various content sharing 

websites under each video. When clicking the Facebook link, a GET request is sent 

from Youtube.com to Facebook.com. If the user already logs in to Facebook.com, the 

request will carry the session cookie and the user can be directly linked to the sub­

mission page (Fig. 6.1(A)) without logging in again. To preserve this functionality of 

the content sharing websites, the policy treats the session cookies with GET requests 

using the HTTP protocol as not sensitive. In contract, the session cookies with GET 

requests using the HTTPS protocol are sensitive, because the sensitive services are 

typically served over HTTPS. 

In conclusion, we infer whether an authentication token is sensitive as summarized 

in Table 6.2. To defend against the CSRF attack, we stripe the sensitive authentica­

tion tokens from the requests that may not reflect the user’s intention. 

6.4 Security Analysis and Discussions 

EÆectiveness of BEAP. How eÆective is BEAP for defending against CSRF at­

tacks? In other words, how eÆective dose BEAP achieves “all sensitive requests sent 

http:Facebook.com
http:Facebook.com
http:Youtube.com
http:Youtube.com


121 

by the browser reflect the user’s intention”? We now answer these questions by ana­

lyzing under what assumptions the two inferences work correctly. 

We observe that, under three assumptions, a CSRF attack always results in a 

request that BEAP considers to not reflect the user’s intention. First, the browser 

has not been compromised. BEAP is not designed to defend against attacks that 

exploit vulnerabilities in browsers to take over the browser or the operating system. 

BEAP defends against CSRF attacks, which exploit web browsers’ design feature of 

allowing cross-site requests. Defending against browser exploitation is orthogonal to 

our work. Second, a user will not type in a CSRF attack URL in the address bar, 

or include a CSRF attack page in the bookmark, or use it as the default homepage. 

Under these two assumptions, type-2 requests that are considered as intended are 

not CSRF attacks. Third, a website does not include CSRF attacks against itself. 

This ensures that any CSRF attack via type-1 requests will be correctly classified. 

The third assumption means that we cannot defend against CSRF attacks that are 

injected into the target website. For example, the attacker may be able to inject 

a CSRF attack into a forum via a posting, which sends a posting on the victim’s 

behalf. In this case, the malicious request is actually not a cross-site request, and 

will be treated as intended. Such an attack cannot be defeated by a pure client-side 

defense, because the browser cannot tell which requests in a webpage are legitimately 

added by the web site and which ones are maliciously added by user postings. The 

problem should be addressed by having the web application sanitize the user input 

to be displayed in the website, similar to defending against XSS attacks. 

Second, BEAP allows non-sensitive cookies to be sent with requests that are not 

intended. This causes no harm when these requests do not have sensitive conse­

quences. This is true assuming that websites do not contain sensitive operations that 

(1) use GET requests and rely on persistent cookies for authentication, or (2) use 

GET requests over HTTP and rely on session cookies for authentication. We would 

like to point out that these are all bad practices and are vulnerable to attacks other 

than CSRF attacks. First, using GET for requests that have sensitive consequence 



122 

violates the HTTP/1.1 standard [77]. Second, when using persistent cookies for au­

thenticating sensitive services, the accounts can be easily stolen if the user access the 

account in a public computer. Third, serving sensitive service over HTTP enables the 

network attacker to launch session injection attack. In particular, we did not observe 

any financial websites violate these assumptions; they are all hosted over HTTPS and 

relying on session cookies for authentication. 

Compatibility of BEAP. BEAP will stripe cookies and HTTP authentication 

headers from some requests. Would this aÆect the existing web applications and 

change the user’s browsing experiences? We now show that the answer is no. 

First, we point out that cookie blocking has already been used for other purposes. 

Cookies, such as those set by doubleclick.com, can be used to track users’ browsing 

behavior and violate user’ privacy. Because of this, Internet Explorer 6 and later 

versions protect the user’s privacy with respect to cookies [83]. We compared the 

cookie filtering in IE with BEAP in Section 6.4.1. 

It is di±cult to use a crawler or an automatic tool to perform a large-scale com­

patibility testing, because testing the compatibility is possible only when we have an 

account on a website and log into the account to perform authenticated operations. 

In particular, creating web accounts on financial websites typically require having 

physical accounts. 

Finally, we note that the functionalities provided by these web sites are not dis­

abled. When cookies are striped, the worst case is that the user needs to re-enter the 

password in order to perform certain operations. 

6.4.1 Compared with IE’s Cookie Filtering for Privacy Protection 

Cookies are widely used to track users across multiple websites. For example, 

advertisers typically use cookies to identify the user, so that they can track the user’s 

movement as he visits diÆerent publishers. As a result, the advertisers can profile the 

user’s browsing habit and display targeted advertisements. 

http:doubleclick.com


123 

Table 6.3 
The default policy for cookie filtering for privacy protection in IE6 

First-party cookies  Third-party cookies  

Persistent cookies with no policy Leash Deny 

Persistent cookies with unsatisfactory policy Downgrade Deny 

Persistent cookies with acceptable policy Accept Accept 

Session cookies Accept Treated as persistent cookies 

Internet Explorer 6 and later versions protect the user’s privacy with respect to 

cookies [83]. In particular, IE requires web services to deploy policies as defined by 

P3P (Platform for Privacy Preferences) [84]. When a website does not provide a P3P 

policy or the policy does not satisfy the user’s preference, IE performs cookie filtering 

against the website. The approach applied by IE’s cookie filtering has similarities 

with our defense against the CSRF attacks, but it aims at protecting privacy while 

we aim at protecting authenticity. 

The cookie filtering infers whether a cookie may violate the user privacy based on 

the type of the cookie and the heuristics derived from real-world web applications. 

First, the policy distinguishes between first-party cookies and third-party cookies. 

A webpage may contain images or other components stored on a third-party web-

site. Cookies that are set during retrieval of these components are called third-party 

cookies. Third-party cookies are more likely to violate the user privacy because the 

tracking cookies are typically set when retrieving third-party advertisements. Second, 

it also distinguishes between session cookies and persistent cookies. For the privacy 

protection, the persistent cookies are considered to be more dangerous than the ses­

sion cookies, because the tracking cookies need to persist across multiple sessions. 

The default policy (medium) applied by the cookie filtering is shown in Ta­

ble 6.3 [83]. Depending on the context, IE will accept, deny, downgrade, or leash 

the cookie. A downgraded cookie is a persistent cookie that is removed when the 

session ends or the cookie expires, whichever comes first. A leashed cookie is one that 

is sent only on requests to download first-party content. When requests are made for 



124 

third-party content, these cookies are suppressed. The leashed cookie is similar to 

the sensitive authentication tokens that are suppressed from the requests that may 

not reflect the user’s intention in our proposal. 



125 

7 SUMMARY 

In access control systems, a request is issued by the subject, while the privileges are 

granted to principals. An essential step in performing the access control check is to 

link the subjects in the requests to the principals in the policies. We introduce the 

notion of origins of a request. The origins of a request is the set of principals that 

cause the subject to issue the request and thus should be responsible for the request. 

Many access control systems are vulnerable to certain attacks because their limi­

tations in identifying the origins. We targeted two real-world access control systems, 

operating system access control and browser access control. The discretionary access 

control used in today’s operating systems is vulnerable to the vulnerability exploita­

tion and Trojan horse attacks. The same origin policy (SoP) model implemented 

in modern browsers are vulnerable to the pretty-bad-proxy adversary for HTTPS 

and the cross-site request forgery attack. We have showed that these access control 

mechanisms are vulnerable because they did not properly identify the origins of the 

requests. 

To enhance the DAC to defend against remote exploitation, we introduced the 

UMIP model, a simple and practical MAC model for host integrity protection that 

defends against attacks targeting network server and client programs. The key idea 

of UMIP is to associate each process with an integrity level, which indicates whether 

the process may have been exploited by the remote attackers. By adding this bit to 

the origins of the request, UMIP is able to defend against the remote exploitation 

attacks. UMIP supports existing applications and system administration practices, 

and has a simple policy configuration interface. 

To enhance the DAC to defend against Trojan horses, we proposed the IFEDAC 

model, which uses information flow techniques to track which principals are the ori­

gins of a request, thereby achieving the DAC policy without assuming that software 



126 

are bug-free and benign. While using techniques from mandatory information flow, 

IFEDAC follows the discretionary control principle and allows owners to decide which 

other users can access the file and uses the identities of the requester to decide access. 

In this sense, IFEDAC is the first DAC model that can defend against Trojan horses. 

With a focused examination of the PBP adversary against the HTTPS deploy­

ment in modern browsers, we discovered a set of PBP-exploitable vulnerabilities in 

IE, Firefox, Opera, Chrome browsers and many websites. The existence of the vul­

nerabilities clearly undermines the end-to-end security guarantees of HTTPS. The 

PBP adversary is able to inject a malicious web message into a HTTPS session and 

the browser will accept the malicious message as it comes from the target HTTPS 

domain. These vulnerabilities should be fixed by correctly identifying the origin of 

every web message in the HTTPS sessions and only accept those coming from the 

target HTTPS domain and transmitted over a secure connection. We have reported 

the vulnerabilities to major browser venders. All vulnerabilities are acknowledged 

and the fixes have been implemented or proposed. 

To defeat the cross-site request forgery attacks, we have proposed a browser-

based mechanism called BEAP. The CSRF attack is feasible because the same origin 

policy model did not restrict the operation of sending authentication tokens and the 

browser assumes every request reflects the user’s intention. The reality is that the 

browser can be fooled to send malicious requests by the malicious webpages. BEAP 

defeats the CSRF attacks by identifying the true origins of a request sent by the 

browser and inferring whether the request reflects the user’s intention. BEAP strips 

the sensitive authentication tokens from the requests that may not reflect the user’s 

intention. BEAP can eÆectively defend against the CSRF attacks, and does not break 

the existing web applications. 



LIST OF REFERENCES
 



127 

LIST OF REFERENCES
 

[1] Ross Anderson.	 Security Engineering: A Guide to Building Dependable Dis­
tributed Systems. Wiley, 2001. 

[2] DOD.	 Trusted Computer System Evaluation Criteria. Department of Defense 
5200.28-STD, December 1985. 

[3] NCSC.	 National Computer Security Center: A guide to understanding discre­
tionary access control in trusted systems, September 1987. NCSC-TG-003. 

[4] SUN.	 Same origin policy for JavaScript. https://developer.mozilla.org/ 
En/Same_origin_policy_for_JavaScript. 

[5] Peter Watkins. Cross-site request forgery, 2001. http://www.tux.org/~peterw/ 
csrf.txt. 

[6] Chris Shiflett.	 Foiling cross-site attacks, October 2001. http://shiflett.org/ 
articles/foiling-cross-site-attacks. 

[7] Chris Shiflett.	 Security corner: Cross-site request forgeries, December 2004. 
http://shiflett.org/articles/cross-site-request-forgeries. 

[8] Security-enhanced Linux. http://www.nsa.gov/selinux. 

[9] Apparmor	 application security for linux. http://www.novell.com/linux/ 
security/apparmor/. 

[10] The	 advantages of running applications on Windows Vista. http://msdn2. 
microsoft.com/en-us/library/bb188739.aspx. 

[11] NSA. Security-enhanced Linux. http://www.nsa.gov/selinux/. 

[12] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle, 
and Virgil D. Gligor. Subdomain: Parsimonious server security. In Proceedings 
of the 14th Conference on Systems Administration (LISA 2000), pages 355–368, 
December 2000. 

[13] Jerome H. Saltzer and Michael D. Schroeder.	 The protection of information in 
computer systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975. 

[14] Deborah D.	 Downs, Jerzy R. Rub, Kenneth C. Kung, and Carole S. Jordan. 
Issues in discretionary access control. In Proceedings of IEEE Symposium on 
Research in Security and Privacy, pages 208–218, April 1985. 

[15] D.	 Elliott Bell and Leonard J. LaPadula. Secure computer systems: Unified 
exposition and Multics interpretation. Technical Report ESD-TR-75-306, Mitre 
Corporation, March 1976. 

http://www.nsa.gov/selinux
http://msdn2
http://www.novell.com/linux
http://www.nsa.gov/selinux
http://shiflett.org/articles/cross-site-request-forgeries
http:http://shiflett.org
http://www.tux.org/~peterw
http:https://developer.mozilla.org


128 

[16] M.	 D. Mcllroy and J. A. Reeds. Multilevel security in the unix tradition. 
Software—Practice and Experience, 22(8):673–694, August 1992. 

[17] N. Provos.	 Improving host security with system call policies. In Proceedings of 
the 2003 USENIX Security Symposium, pages 252–272, August 2003. 

[18] Freebsd.org.	 Frequently asked questions for freebsd 4.x, 5.x, and 6.x. http: 
//www.freebsd.org/doc/en_US.ISO8859-1/books/faq/. 

[19] LIDS: Linux intrusion detection system. http://www.lids.org/. 

[20] David R.	 Wichers, Douglas M. Cook, Ronald A. Olsson, John Crossley, Paul 
Kerchen, Karl N. Levitt, and Raymong Lo. Pacl’s: An access control list ap­
proach to anti-viral security. In Proceedings of the 13th National Computer Se­
curity Conference, pages 340–349, October 1990. 

[21] K.	 J. Biba. Integrity considerations for secure computer systems. Technical 
Report MTR-3153, MITRE, April 1977. 

[22] T.	 Fraser. LOMAC: Low water-mark integrity protection for COTS environ­
ments. In 2000 IEEE Symposium on Security and Privacy, May 2000.  

[23] David D. Clark and David R. Wilson. A comparision of commercial and military 
computer security policies. In Proceedings of the 1987 IEEE Symposium on 
Security and Privacy, pages 184–194. IEEE Computer Society Press, May 1987. 

[24] Paul A. Karger. Implementing commercial data integrity with secure capabilities. 
In Proceeding IEEE Symposium on Security and Privacy, pages 130–139, 1988. 

[25] Theodore M. P. Lee. Using mandatory integrity to enforce “commercial” security. 
In Proceeding IEEE Symposium on Security and Privacy, pages 140–146, 1988. 

[26] Catherine Jensen McCollum, Judith R. Messing, and LouAnna Notargiacomo. 
Beyond the pale of MAC and DAC–defining new forms of access control. In Pro­
ceeding IEEE Symposium on Security and Privacy, pages 190–200. IEEE Com­
puter Society, 1990. 

[27] Boniface	 Hicks, Sandra Rueda, Trent Jaeger, and Patrick McDaniel. From 
trusted to secure: Building and executing applications that enforce system secu­
rity. In Proceedings of the USENIX Annual Technical Conference, June 2007. 

[28] James Newsome and Dawn Song. Dynamic taint analysis: Automatic detection, 
analysis, and signature generation of exploit attacks on commodity software. In 
Proceedings of the Network and Distributed Systems Security Symposium, Febru­
ary 2005. 

[29] W. Xu, S. Bhatkar, and R. Sekar.	 Taint-enhanced policy enforcement: A prac­
tical approach to defeat a wide range of attacks. In Proceedings of the 15th 
USENIX Security Symposium, August 2006. 

[30] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calcu­
lus for access control in distributed systems. ACM Transactions on Programming 
Languages and Systems, 15(4):706–734, October 1993. 

http:http://www.lids.org
www.freebsd.org/doc/en_US.ISO8859-1/books/faq
http:Freebsd.org


129 

[31] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, 
D. Mazieres, F. Kaashoek, and R. Morris. Labels and event processes in the 
Asbestos operating system. In Proceedings of the 2005 ACM Symposium on 
Operating System Principles, October  2005.  

[32] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazires. Mak­
ing information flow explicit in histar. In USENIX Symposium on Operating 
Systems Design and Implementation (OSDI), November 2006. 

[33] Maxwell	 Krohn, Alexander Yip, Micah Brodsky, Natan CliÆer, M. Frans 
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for stan­
dard os abstractions. In ACM Symposium on Operating Systems Principles 
(SOSP), October 2007.  

[34] Benjamin Livshits and Monica S. Lam.	 Finding security vulnerabilities in java 
applications with static analysis. In Proceeding USENIX Security Symposium, 
August 2005. 

[35] Wei Xu, Sandeep Bhatkar, and R.	 Sekar. Taint-enhanced policy enforcement: 
A practical approach to defeat a wide range of attacks. In Proceeding USENIX 
Security Symposium, July 2006. 

[36] Shuo Chen, David Ross,	 and Yi-Min Wang. An analysis of browser domain-
isolation bugs and a light-weight transparent defense mechanism. In Pro­
ceeding ACM Conference on Computer and Communications Security (CCS), 
November 2007. 

[37] Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David Mol­
nar, Dag Arne Osvik, and Benne de Weger. Md5 considered harmful today – 
creating a rogue ca certificate. http://www.win.tue.nl/hashclash/rogue-ca/ 
#sec71. 

[38] Stuart E.	 Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The 
emperor’s new security indicators: An evaluation of website authentication and 
the eÆect of role playing on usability studies. In Proceeding IEEE Symposium on 
Security and Privacy, May 2007.  

[39] Shuo Chen, Jose Meseguer, Ralf Sasse, Helen J. Wang, and Yi-Min Wang.	 A 
systematic approach to uncover security flaws in gui logic. In Proceeding IEEE 
Symposium on Security and Privacy, May  2007.  

[40] Collin Jackson and Adam Barth. Forcehttps: Protecting high-security web sites 
from network attacks. In WWW ’08: Proceedings of the 16th international con­
ference on World Wide Web, 2008.  

[41] Chris Karlof, Umesh Shankar, J.D. Tygar, and David Wagner. Dynamic pharm­
ing attacks and locked same-origin policies for web browsers. In Proceeding ACM 
Conference on Computer and Communications Security (CCS), November 2007. 

[42] US-CERT.	 Multiple dns implementations vulnerable to cache poisoning. http: 
//www.kb.cert.org/vuls/id/800113. 

[43] Grant	 Bugher. Wpad: Internet Explorer’s worst feature. http:// 
perimetergrid.com/wp/2008/01/11/wpad/. 

www.kb.cert.org/vuls/id/800113
http://www.win.tue.nl/hashclash/rogue-ca


130 

[44] Niels Teusink. Hacking random clients using wpad. http://blog.teusink.net/ 
2008/11/about-two-weeks-ago-i-registered-wpad.html. 

[45] Andreas Pashalidis. A cautionary note on automatic proxy configuration. In Pro­
ceedings of the IASTED International Conference on Communication, Network, 
and Information Security, 2003.  

[46] M. Johns and J. Winter. RequestRodeo: Client side protetion against session 
riding. In Proceedings of the OWASP Europe 2006 Conference, 2006.  

[47] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-site 
request forgery. In Proceeding ACM Conference on Computer and Communica­
tions Security (CCS), October  2008.  

[48] N. Jovanvoic, E.	 Kirda, and C. Kruegel. Preventing cross site request forgery 
attacks. In Proceedings of the Second IEEE Conference on Security and Privacy 
in Communication Networks, September 2006. 

[49] Ian Goldberg, David Wagner, Randi Thomas,	 and Eric A. Brewer. A secure 
environment for untrusted helper applications: Confining the wily hacker. In 
Proceeding USENIX Security Symposium, pages 1–13, June 1996. 

[50] Lee	 Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and 
Sheila A. Haghighat. Practical domain and type enforcement for UNIX. In 
Proceeding IEEE Symposium on Security and Privacy, pages 66–77, May 1995. 

[51] Lee	 Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and 
Sheila A. Haghighat. A domain and type enforcement UNIX prototype. In 
Proceeding USENIX Security Symposium, June 1995. 

[52] Ravi Sandhu. Good-enough security: Toward a pragmatic business-driven disci­
pline. IEEE Internet Computing, 7(1):66–68, January 2003. 

[53] Eric S. Raymond. The Art of UNIX Programming. Addison-Wesley Professional, 
2003. 

[54] D. Brumley and D. Song.	 PrivTrans: Automatically partitioning programs for 
privilege separation. In Proceedings of the USENIX Security Symposium, August 
2004. 

[55] N. Provos, M.	 Friedl, and P. Honeyman. Preventing privilege escalation. In 
Proceedings of the 2003 USENIX Security Symposium, pages 231–242, August 
2003. 

[56] P. Loscocco and S. Smalley. Integrating flexible support for security policies into 
the Linux operating system. In Proceedings of the FREENIX track: USENIX 
Annual Technical Conference, pages 29–42, June 2001. 

[57] T. Dierks and E. Resorla.	 Rfc5246: The transport layer security (tls) protocol. 
http://tools.ietf.org/html/rfc5246. 

[58] Jason	 Rafail. Cross-site scripting vulnerabilities. http://www.cert.org/ 
archive/pdf/cross_site_scripting.pdf. 

[59] Cookie property.	 http://msdn2.microsoft.com/en-us/library/ms533693. 
aspx. 

http://msdn2.microsoft.com/en-us/library/ms533693
http:http://www.cert.org
http://tools.ietf.org/html/rfc5246
http:http://blog.teusink.net


131 

[60] Internet	 access configuration instructions for some conferences, hotels, 
hospitals and airports that require proxies. http://homepage.eircom. 
net/~acsi/encs08.htm, http://www.hw.ac.uk/uics/Help_FAQs/WiFi_FAQs. 
html, http://www.vistagate.com/Demo/Administration/Help.htm, http: 
//www.ucd.ie/mcri/resources/IP_logistics_students.pdf, http://www. 
grh.org/patWireless.html. 

[61] Internet access configuration instructions for some university departments and li­
braries that require proxies. http://groups.haas.berkeley.edu/hcs/howdoi/ 
AirBearsXP.pdf, http://www.lib.berkeley.edu/Help/proxy_setup_ie5-7_ 
dialup.html, http://physics.ucsd.edu/~sps/html/resources/articles/ 
sciamsetup.html, http://www.lib.ucdavis.edu/ul/services/connect/ 
proxy/step1/iewindowslong.php. 

[62] Anonymizer: free web proxy, cgi proxy list, free anonymizers and the list of web 
anonymizers list. http://www.freeproxy.ru/en/free_proxy/cgi-proxy.htm. 

[63] MSDN Online.	 Using automatic configuration, automatic proxy, and automatic 
detection. http://www.microsoft.com/technet/prodtechnol/ie/reskit/6/ 
part6/c26ie6rk.mspx?mfr=true. 

[64] MSDN Online.	 Winhttp autoproxy support. http://msdn.microsoft.com/ 
en-us/library/aa384240.aspx. 

[65] Winpcap: The windows packet capture library. http://www.winpcap.org/. 

[66] Andrea Bittau, Mark Handley, and Joshua Lackey. The final nail in wep’s co±n. 
In Proceeding IEEE Symposium on Security and Privacy, May  2006.  

[67] Network load balancing:	 Frequently asked questions for windows 2000 and 
windows server 2003. http://technet2.microsoft.com/windowsserver/en/ 
library/884c727d-6083-4265-ac1d-b5e66b68281a1033.mspx?mfr=true. 

[68] The	 web hacking incidents database, 2008. http://www.webappsec.org/ 
projects/whid/byid_id_2008-05.shtml. 

[69] OWASP. Top ten most critical web application security vulnerabilties. Whitepa­
per, 2007. http://www.owasp.org/index.php/Top_10_2007. 

[70] US-CERT.	 Cross-site request forgery (CSRF) vulnerability in the Linksys 
wrt54gl wireless-g broadband router. CVE-2008-0228, January 2008. http: 
//nvd.nist.gov/nvd.cfm?cvename=CVE-2008-0228. 

[71] US-CERT.	 Cross-site request forgery (CSRF) vulnerability in @mail web-
mail 4.51. CVE-2006-6701, December 2006. http://nvd.nist.gov/nvd.cfm? 
cvename=CVE-2006-6701. 

[72] US-CERT.	 Multiple cross-site request forgery (CSRF) vulnerabilities in php­
myadmin before 2.9.1. CVE-2006-5116, October 2006. http://nvd.nist.gov/ 
nvd.cfm?cvename=CVE-2006-5116. 

[73] US-CERT.	 Google gmail cross-site request forgery vulnerability. Vulnerability 
Note 571584, October 2007. http://www.kb.cert.org/vuls/id/571584. 

http://www.kb.cert.org/vuls/id/571584
http:http://nvd.nist.gov
http://nvd.nist.gov/nvd.cfm
http://www.owasp.org/index.php/Top_10_2007
http:http://www.webappsec.org
http://technet2.microsoft.com/windowsserver/en
http:http://www.winpcap.org
http:http://msdn.microsoft.com
http://www.microsoft.com/technet/prodtechnol/ie/reskit/6
http://www.freeproxy.ru/en/free_proxy/cgi-proxy.htm
http://www.lib.ucdavis.edu/ul/services/connect
http://physics.ucsd.edu/~sps/html/resources/articles
http://www.lib.berkeley.edu/Help/proxy_setup_ie5-7
http://groups.haas.berkeley.edu/hcs/howdoi
http://www
www.ucd.ie/mcri/resources/IP_logistics_students.pdf
http://www.vistagate.com/Demo/Administration/Help.htm
http://www.hw.ac.uk/uics/Help_FAQs/WiFi_FAQs
http://homepage.eircom


132 

[74] Kelly Jackson Higgins.	 CSRF vulnerability: A ‘sleeping giant’, 2006. http: 
//www.darkreading.com/document.asp?doc_id=107651. 

[75] D. Kristol and L. Montulli.	 HTTP state management mechanism. RFC 2965, 
October 2000. http://www.ietf.org/rfc/rfc2965.txt. 

[76] J. Franks, P. Hallam-Baker, J.Hostetler, S.Lawrence, P. Leach, A. Luotonen, and 
L. Stewart. HTTP authentication: Basic and digest access authentication. RFC 
2617, June 1999. http://www.ietf.org/rfc/rfc2617.txt. 

[77] Network Working Group. Hypertext transfer protocol – HTTP/1.1. RFC 2616, 
June 1999. http://www.ietf.org/rfc/rfc2616.txt. 

[78] phpBB. Create communities worldwide. http://www.phpbb.com. 

[79] US-CERT.	 Cross-site request forgery (CSRF) vulnerability in privmsg.php in 
phpbb 2.0.22. CVE-2008-0471, January 2008. http://nvd.nist.gov/nvd.cfm? 
cvename=CVE-2008-0471. 

[80] Robert Hansen and Tom Stracener.	 Xploiting google gadgets: Gmalware and 
beyond, August 2008. 

[81] P. Koch. Frame busting. http://www.quirksmode.org/js/framebust.html. 

[82] Collin Jackson. Defeating frame busting techniques, 2005. http://www.crypto. 
stanford.edu/framebust/. 

[83] MSDN.	 Privacy in internet explorer 6. http://msdn.microsoft.com/en-us/ 
library/ms537343({VS}.85).aspx. 

[84] The platform for privacy preferences project (p3p).	 http://www.w3.org/TR/ 
P3P. 

http://www.w3.org/TR
http://msdn.microsoft.com/en-us
http://www.crypto
http://www.quirksmode.org/js/framebust.html
http://nvd.nist.gov/nvd.cfm
http:http://www.phpbb.com
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2965.txt
www.darkreading.com/document.asp?doc_id=107651


VITA
 



133 

VITA 

Ziqing Mao received his B.E. degree in computer science from Tsinghua University, 

People’s Republic of China in 2005. Since then he has been working toward a Ph.D. 

degree in Department of Computer Science at Purdue University. He received the 

M.S. degree in computer science in 2003. His research interest lies in computer security 

in general, with a focus on access control, operating system security, web security and 

browser security. 


