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ABSTRACT 

Nehme, Rimma Ph.D., Purdue University, August 2009. Efficient Query Processing 
for Rich and Diverse Real-Time Data. Major Professors: Elisa Bertino and Elke A. 
Rundensteiner. 

In recent years, data streams have become ubiquitous as technology is improving 

and the prices of sensor, location-tracking and portable devices are falling. Examples 

of streaming data include observations from sensor networks, location updates from 

GPS devices, measurements from health monitoring devices, status updates, com

ments and self-expressions from users on the web, e.g., by “twittering”. The current 

state-of-the-art Data Stream Management Systems (or short DSMSs) typically con

sider a very simple streaming environment, where data streams transmit only data 

tuples, and based on these arriving data tuples, continuous queries are evaluated on 

the server. For execution of a continuous query, typically, a single execution plan 

(based on the latest overall statistics) is employed for processing all arriving data. 

We believe that such “first-generation” DSMSs (or as we also refer to them 

“Streams 1.0” systems), while enabling users and applications to pose queries over 

data streams, are, however, ill-equipped to support many of the functionalities crucial 

to the newly-emerging streaming applications, e.g., ubiquitous healthcare or geo-social 

networking. Motivated by the growing trend of such new stream-based applications, 

in this thesis, we propose to equip DSMSs with several important functionalities, 

namely: 

1. the access control enforcement for security of streaming data 

2. the tagging of streaming data for producing “richer” and more meaningful re

sults, and 
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3. the  diversity-aware  query  processing  for  efficient  processing  of  queries,  where  

subsets of data may exhibit distinct statistical properties. 

For each of the above features, we provide the concrete problem definition, the mo

tivating examples, develop and analyze algorithms, and present the experimental re

sults using a general-purpose DSMS prototype. We believe that the ideas presented 

in this thesis can significantly contribute the development of the “next generation” 

of DSMSs – or the so-called “Streams 2.0” systems. 
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1 INTRODUCTION 

In this chapter, we begin in Section 1.1 by highlighting the bigger picture of streaming 

technology. Next, in Section 1.2, using the real-life application examples, we motivate 

the need for supporting security and tagging of streaming data, and the necessity 

for instrumenting DSMSs with query processing techniques designed to efficiently 

handle diverse data. In Section 1.3, we present the set of novel features for the “next 

generation” of DSMSs – the so-called “Streams 2.0” systems. In Section 1.4, we give 

an overview of our approach to support the proposed features. We summarize the 

main contributions of the dissertation in Section 1.5. Finally, Section 1.6 gives the 

outline for the rest of the dissertation. 

1.1 Data Stream Management Systems 

Database Management Systems (DBMSs) have played a central role in information 

technology over the last three decades. DBMSs simplify the storage, maintenance, 

and analysis of large datasets. When users or applications need to handle significant 

amounts of data, they first load the data into a DBMS. Once loaded into the system, 

the data or selected portions of it can be retrieved on demand easily and efficiently 

through queries to the DBMS. Such queries are expressed in query languages like 

SQL [1]. A query submitted to a DBMS is processed over the current dataset stored 

in the DBMS. The results computed for the query are then returned back to the 

corresponding user or application. 

While conventional DBMSs are designed to process queries over finite stored 

datasets, many modern applications need to process data streams that consist of data 

elements generated in a continuous unbounded fashion. Examples of such applica

tions include health-monitoring applications that process streams of tuples describing 



  
  

  

2 

Data Stream 
Management System 

(DSMS) 

Continuous Queries 

Input streams Streamed query results 

Figure 1.1. Simple view of a typical streaming environment. 

the vital signs of patients, financial monitoring applications that detect patterns over 

the stock-ticker streams, environmental monitoring applications that track physical 

phenomena using the streams of observations generated by sensors, and many others. 

These applications have new data management needs that arise from the continuous, 

unbounded, rapid, and time-varying nature of data streams [2]. Since conventional 

DBMSs are ill-equipped to fulfill the needs of these applications, a new class of sys

tems – called Data Stream Management Systems (or short DSMSs) [3–9] – have been 

developed by the database research community as well as by several commercial ven

dors [10–14] to satisfy the requirements of stream-based applications. DSMSs enable 

users and applications to pose queries over infinite data streams and to receive re

sults in near-real-time. These queries tend to be long-running, since data arrives 

continuously, and are called continuous queries. 

Figure 1.1 shows a high level overview of a typical data stream environment. 

Continuous streams consisting of data tuples, e.g., sensor measurements, latest stock 

prices, or moving objects’ location updates, are collected by monitoring devices and 

sent to a DSMS for processing. In addition to the input streams, the DSMS may 

also maintain conventional stored data, e.g., in the case of location-based services, 

this can be a table storing the road network of a city, or in the case of a financial 

application, this can be a table storing information about the companies and what 

they do for business. Users or monitoring applications register continuous queries 

over the input data streams and the other data managed by the DSMS. For example, 

a registered  continuous  query  for  a location-based  application  may  specify  a set  of  
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conditions that signal a potential road congestion, or a pattern for dangerous driving 

behavior (to alert the nearby police and prevent potential accidents). The continuous 

queries registered on the DSMS are evaluated on the new data tuples when they 

arrive in the input data streams. Query results are usually output directly to users or 

applications in the form of continuous data streams as well, as shown in Figure 1.1. 

1.2 Emerging Real-life Streaming Applications 

In this section, we present several real-life application examples that call for new 

features that the current state-of-the-art DSMSs are ill-equipped to support. Based 

on the current growth and the popularity trends of these applications, we believe 

that they are here to stay and grow, and thus, it is crucial that the DSMSs become 

instrumented with the much-needed features described in this section. 

Example 1. Ubiquitous Healthcare: In  ubiquitous  healthcare  [15–17],  tiny  sensors  are  

attached to a patient to gather information on bodily conditions such as temper

ature, heart rate, blood pressure, chemical levels, breathing rate and volume, and 

almost any other physiological characteristic that provides information that can be 

used to diagnose health problems. These sensors are worn on (or possibly implanted 

in) the body, or installed in patients’ homes and workplaces. A family doctor can 

remotely monitor patients, and provide general health advice and remote diagnosis 

while saving the patients a trip to the doctor’s office, and thus providing cheaper and 

better healthcare services. Figure 1.2 visually depicts the main idea of a ubiquitous 

healthcare application. 

While remote health monitoring provides a lot of convenience, at the same time, 

detailed body sensor data may be combined with data from infrastructure sensors, 

which can provide a “life log” or an “activity diary” of the patients in real-time. If 

such sensitive personal data is shared among interested parties – such as employers, 

insurance companies, drug companies and the government, to name a few – the 

possibility of abuse or discrimination can be great. 



  
 

  

 

    

  
  

    

  
 

4 

rights 

Data Stream 

Patient 1: John Patient 2: Mary 

No access Management Systems 
rights (DSMS) 

to streaming data 

Nurse-on-duty 
Dr. Evil 

Limited access 

Doctor 

Health Improvement Services
 
(third party services)
 

Figure 1.2. Example 1: Ubiquitous healthcare application. 

The patients, transmitting their health data through their monitoring devices, 

should have the ability to continuously regulate who can access their real-time health 

information at all times and adjust it as necessary, based on time, location, observed 

data values, psychological state or any other reasons. The United States Health 

Insurance Portability and Accountability Act (HIPAA) empowers patients to specify 

their access control preferences on their health information, and the doctor’s office 

must not release that information to any entity to whom the patient does not want 

his or her information to be disclosed. Furthermore, a patient should be able to ask 

the doctor’s office at any time (including in real-time, e.g., from  his  or  her  portable  

device) to show that they indeed did not release his or her information to the parties 

the patient did not approve. 

In the near future, the goal of ubiquitous health applications is to provide ubiq

uitous care, where patients receive tele-prescription and tele-infusion of drugs (e.g., a 

low glucose level may cause automatic injection of insulin for a diabetic patient) re
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motely and immediately. In order to achieve accountability, it is important to know 

who has gained access to the sensitive health data, when and under what circum

stances. 

Another important factor to consider is that patients are involved in various ac

tivities in their every-day lives, which might cause changes in their typical health 

data values. Consider a patient carrying a health monitoring device that measures 

his heart rate. When a heart rate becomes abnormal, the doctor gets alerted about 

it. The patient, to prevent unnecessary concerns, can attach a “tag” to his real-time 

streaming measurements stating “Running”. The doctor or a nurse knows (based on 

the tag) what is causing the change in the health measurements. This helps prevent 

second-guessing and avert issuing unnecessary alerts. Similarly, if a diabetic patient’s 

blood sugar rises slightly above the norm, and she attaches a tag to her streaming 

data that she is at a birthday party, the doctor may not need to be alerted, if the 

patient’s blood sugar has gone up only slightly, and there are friends and relatives 

around, in case of an emergency. In general, if patients were able to attach additional 

semantics (information) to their real-time streaming health data, the DSMS may 

exploit this extra-information in possibly averting unnecessary emergency situations 

and produce more informative results. The more informative results can facilitate in 

providing better and less expensive health services. 

Example 2. Location-Based Applications : Recent  improvements  in  location-based  

technologies and the drop in prices of location-tracking devices have spurred a new 

wave of mobile applications, providing location-based services and enabling geo-social 

networking scenarios e.g., [18, 19]. Figure 1.3 shows an example of a location-based 

application, where a cell-phone user is searching for nearby quiet coffee shops that 

currently have promotions (sales or discounts). Similarly, a user may request to find 

any of her friends in the vicinity, to possibly invite them to join her for a coffee. 

Location-based applications naturally raise security and privacy concerns. Users 

consider their physical location and travel patterns highly privacy-sensitive and de

mand solutions that are able to protect their information. Therefore, it is essential to 
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Find all coffee shops 
that have a promotion 

and currently have 
less than 5 customers. 

Find any of my friends 
within a 3 mile radius 

from my current location. 

Figure 1.3. Example 2: Location-based application. 

provide support for users to be able to frequently change their access control policies 

based on their preferences, to restrict who can “see” their real-time information, e.g., 

where they are, whom they are with, or what they are doing. 

To motivate the need for being able to attach additional semantics to a stream 

transmitting location-based information, consider another example (a traffic scenario) 

depicted in Figure 1.4. An accident occurs on a highway which causes extensive traffic 

jams. People stopped far away from the scene of the accident wonder what is causing 

the stopped traffic: an accident, a road construction, or a “curiosity factor”? A 

driver close to the accident attaches a tag to his location update describing what he 

is observing: “Accident, 2 cars, Near Exit 12”. Using this tag information, other 

drivers may determine how to procede: take the nearest exit, notify others about 

their delay, or possibly even help if medical assistance is needed. 

1.3 Features for the Next Generation of Data Stream Management Systems 

Given that in the last several years the number of data sources that continu

ously generate data has increased significantly, the research on data streams has 

grown substantially. Based on current trends, we can clearly observe that the newly
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Tag: Accident 
(2 cars, near 

Exit 12) 

(x,y) 

5 miles 

Query: Retrieve 
all tags within 
a 6 mile radius 

Why is the traffic 
stopped? 

I wonder if it’s an 
accident or a road 

construction? 

Figure 1.4. Traffic example with tags on location updates. 

emerging applications are entering a new, more “social” and “participatory” phase, 

where users are not passive observers, but rather active contributors of real-time in

formation. These trends lead to a feeling that the data stream management research 

needs to enter a “second phase” to support the needs of these emerging applications 

(see Figure 1.5), where in addition to sending their “regular” streaming data, users 

can state who can access their information and under what circumstances and adjust 

it in real-time. Furthermore, users should be able to attach additional information to 

their real-time data as well as other (arbitrary) streaming data, thus further enriching 

the streaming data with an additional semantics. 

We can observe from the examples in Section 1.2 that the newly emerging appli

cations call for new “user-centric features” inside DSMSs, namely the provisions for 

security (specifically, the access control) and the ability to attach additional semantics 

to their real-time streaming data by tagging. As a result of the above functionalities 

and often, based on data content alone, data streams may exhibit characteristics, 

where certain data subsets (based on either the content, the security policies or the 

associated tags) may be quite distinct, i.e., have unique statistical properties – and 

each such distinct subset can benefit from a different, tailored to its local statistics, 
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Figure 1.5. Conceptual differences between “Streams 1.0” and 
“Streams 2.0” systems. 

query execution plan. Clearly, current DSMSs either provide little or no support for 

the above-mentioned functionalities [20]. 

Figure 1.5 roughly characterizes the conceptual differences between the so-called 

“Streams 1.0” and “Streams 2.0” DSMSs. Similar to the emergence of Web 2.0 on 

the Internet [21], where novel applications and services, such as blogs, video sharing, 

social networking and podcasting have contributed to a more dynamic, user-driven, 

and socially connected Web, we envision that DSMSs need to be instrumented to 

provide similar in spirit “user-centric” functionalities with regard to streaming (real

time) data. In the rest of the section, we describe the features we address in this thesis, 
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namely the access control, the tagging, and the diversity-aware query processing in 

the context of data stream environments. 

1.3.1 Access Control for Streaming Data 

One of the biggest challenges in dynamic data stream environments in the context 

of security is access control enforcement – the ability to permit or deny a request 

to perform an operation (e.g., a read operation on a data tuple). Given the long-

running nature of continuous queries, the content of the streaming data and along 

with it its “sensitivity” may change frequently over the lifetime of query execution. 

Furthermore, continuous queries on the server may also experience frequent changes in 

their access control privileges (access authorizations), while they are being executed. 

Such changes in security privileges may be due to mobility and varying context of 

the users receiving the results of continuous queries. For example, query results may 

be accessed via mobile phones, PDAs or IPhones from any place and at any time. 

As such, the users sending their streaming data can be rightly concerned about a 

possible unauthorized access to their real-time information and a potential violation 

of their privacy. One of the major challenges in this context comes from the fact 

that the security policies of both data and queries can be concurrently very dynamic. 

Enforcing security, while still guaranteeing near real-time response to queries presents 

a great  challenge  in  a  DSMS.  

1.3.2 Tagging Streaming Data 

Tagging in the general domain is known by a few different names, such as content 

tagging, collaborative tagging, and social tagging [22]. Informally, a tag is a relevant 

keyword or term associated with or assigned to a piece of information (a stream, a 

tuple, an attribute in a tuple, a particular value, etc.), that describes the item and 

enables the keyword-based classification and search of information. 
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Tags can be useful in many applications. Tags on streaming data can enrich exist

ing stream-based applications, e.g., [23–25], and can enable and inspire novel useful 

services as described in Section 1.2. Other ways of leveraging tags associated with 

streaming data may include: (1) Stream data tracking, where  tagged  objects  can  be  

located and tracked unambiguously. (2) Creation of rich user profiles, where  infor

mation about a user’s interests, mood, observations, and character can be revealed 

based on the tags employed by him or her in real time, and used in privacy preser

vation or tailored services. (3) Exploration and browsing of streaming data, which  

can be achieved by exploiting tags as a navigation mechanism allowing users to find 

related streaming data based on the tags (see Section 4.4.1). (4) Social communica

tion, where  by  allowing  other  people  to  tag  a  specific  subset  of  real-time  data  with  

their own tags, one can find out what different people think about the same piece of 

information. For instance, one scientist’s opinion (expressed via a tag) on real-time 

measurements in an experiment might vary significantly from the tags attached by 

other researchers. In general, we envision stream tagging being useful in almost any 

application in which streams are produced or consumed. 

1.3.3 Diversity-Aware Query Processing 

Most modern query optimizers determine a single “best” plan at compile time for 

executing a given query [26]. The execution cost for alternative plans is estimated and 

the one with the overall cheapest cost is chosen. The cost typically is estimated based 

on the average statistics of the data as a whole, as  the  objective  is  to  find  one plan 

for all data. Such optimization approach largely relies on the uniformity of attribute 

values. As a result, the single plan approach ignores the fact that various data 

tuples from the same stream may have distinct statistical properties (e.g., frequencies, 

correlations, etc.). While in some cases such simple and “monolithic” approach to 

execution plan selection is adequate, the strong assumption of uniformity is often 
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Figure 1.6. Overview of a query mesh solution. 

unrealistic in practice and, in fact, rather unlikely for unbounded streams of data, 

which potentially could seriously limit query performance [20, 27–29]. 

As the third part of this thesis, we describe a novel data-diversity-aware query 

processing approach using our proposed Query Mesh (or QM, for  short)  model.  The  

conceptual idea of a query mesh is visually depicted in Figure 1.6. QM takes a 

practical middle-ground strategy between the two query optimization extremes – the 

“monolithic” single execution plan solutions, used in nearly all commercial DBMSs 

[30–32] and the extremely reactive Eddies and its descendants [33, 34]. A query 

mesh consists of two complementary components: (1) a set of pre-computed plans 

(or routes), where each plan is optimized for a subset of data with certain statistical 

properties, and (2) a classifier component to determine which data tuples should be 

processed using which of the existing routes1 (see Figure 1.7 for a more detailed view). 

1.4 Overview of Our Approach 

The tagging and security features can be implemented in a Data Stream Man

agement System using a “layered” approach (e.g., outside the query processor). For 

instance, [35–37] are examples of this type of implementation in the context of se

curity. However, this may severely limit the performance of continuous queries, and 

such approach does not give enough flexibility in optimizing the issued queries. 

1In the paper, we refer to the combination of a classifier and a set of execution routes – a QM solution. 
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Figure 1.7. Query mesh overview. 

The most crucial feature of any DSMS is to produce query results in near-real

time. In many scenarios, if a query result is slightly delayed, it becomes useless by 

the time it reaches the user. By adding the provisions for tagging and security in 

DSMS, we increase the overhead in the system. Thus, it is extremely important that, 

while extending the capabilities of a DSMS, the results are still produced in a timely 

and an efficient manner. Our approach is to integrate tagging and security processing 

into continuous query processing and optimization inside DSMS, which allows more 

efficient query execution. Specifically, we introduce novel streaming metadata objects 

that are embedded inside data streams and encapsulate the security and the tagging 

algorithms in physical query operators that can be part of query execution plans. 

We call these new operators security-aware and tag-aware and tag-oriented opera

tors. Tag-oriented operators are the novel operators that explicitly operate on the 

streaming tags (e.g., tag selection, tag join), whereas tag-aware operators are regular 

continuous query operators (selection, join) that have been instrumented to correctly 

propagate streaming tags in the query pipeline (Section 4.4). Integrating security and 

tagging metadata and algorithms into the continuous query processor in DSMS has 

the following advantages: 

•	 The security-aware and tag-aware query is under the optimizer’s control; best 

algorithms and strategies can be chosen based on the estimated cost and other 

execution environment variables. 
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•	 The security-aware and the tag-aware operators can be shuffled with other op

erators in a query evaluation plan for better performance (e.g., pushing down 

security or tagging predicates). This flexibility is not possible when these fea

tures are implemented outside the query processing mechanism. 

•	 The security and tagging functionality is general enough and highly applicable 

to many queries in different contexts. This native support for security and 

tagging greatly simplifies the development of many emerging applications, by 

pushing this logic inside the streaming engine. 

Finally, our diversity-aware query processing approach – the Query Mesh (QM ) –  

is general and can be easily integrated with security and tagging mechanisms. Query 

mesh can support data-diversity based on data content or the security policies or the 

attached semantic tags for efficient continuous query processing. 

1.5 Contributions 

The main contributions of this dissertation are as follows: 

•	 Security. We  address  the  problem  of  continuous  access  control  enforcement  in  

dynamic data stream environments, where both data and query security restric

tions may potentially change in real-time. The distinguishing characteristics of 

our solution include: (1) the stream-centric approach to model dynamic se

curity policies, (2) the symmetric security model for both continuous queries 

and streaming data, and (3) the security-aware query processing methods, that  

can optimize the execution based on data-related as well as security-related 

selectivities. Specifically, the contributions can be summarized as: 

–	 Symmetric Security Punctuation Model. We  model  both  data  and  query  

security restrictions symmetrically in the form of security metadata, called 

“security punctuations”, streaming together with the data instead of being 

persistently stored on the server. We distinguish between two types of 

http:Model.We
http:Security.We
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security punctuations, namely, the data security punctuations (or short, 

dsps) which represent the access control policies of the streaming data, and 

the query security punctuations (or short, qsps) which describe the access 

authorizations of the continuous queries running on the server. 

–	 Security-Aware Query Processing. For  efficient  execution  of  continuous  

queries, we propose security-aware query processing methods, namely: (1) 

the Security Filter Approach (or short SFA), and (2) the Query Rewrite 

Approach (or short QRA). We discuss the pros and the cons of both of 

these methods. 

–	 Implementation and Experiments. We  have  implemented  our  solution  in  a  

prototype DSMS and have carried out extensive performance evaluation. 

The results of our experimental study show that our proposed approach 

has low overhead and can result in great performance benefits compared 

to alternative security solutions for streaming environments. 

•	 Tagging. We  show  that  supporting  tagging  as  a  DSMS  functionality  enables  

many interesting and useful applications. We show the advantages of supporting 

tagging on the query operator level inside the continuous engine in contrast 

to implementing tagging using alternative options. The contributions of our 

tagging solution can be summarized as follows: 

–	 Streaming Tag Model. We  describe  the  streaming  tag  metadata  model  for  

tagging various streaming objects (e.g., tuples, data values, etc.). Tags 

are embedded inside streams and support a wide variety of user-based 

semantics. 

–	 Tag Query Language. We introduce a Tag Query Language (or short TAG

QL) that enables declarative specification and querying of streaming tags. 

–	 Tag Query Processing In DSMS equipped with tagging, users can attach 

and explicitly query streaming tags. We propose a tag-oriented query al

gebra that enables this functionality. We have also extended support for 

http:Model.We
http:Tagging.We
http:Experiments.We
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implicit querying of tags on DSMS, where continuous query results are 

enriched with the tags of the base data. We describe the extensions to the 

continuous query algebra to enable tag-aware query processing and support 

correct propagation of tags in the query pipeline. 

–	 Implementation and Experiments. To  illustrate  the  feasibility,  we  have  im

plemented our approach in a prototype DSMS. Our experimental analysis 

shows scalability and benefits of the streaming tag approach, and the costs 

associated with tag-awareness. 

•	 Diversity-Aware Query Processing. As  the  third  part  of  this  dissertation,  we  

introduce a novel Query Mesh (QM ) model,  which  addresses  the  problem  of  

efficient query processing when data is diverse. Instead of forcing all data to be 

processed by the same single plan, a query mesh solution effectively supports 

the concurrent usage of multiple plans to evaluate a query. The contributions 

of our proposed Query Mesh approach are as follows: 

–	 Query Mesh Model. QM employs a practical middle-ground strategy be

tween the two query optimization extremes – the solutions that employ a 

“monolithic” single execution plan strategy for all input data, e.g., nearly 

all commercial DBMSs [30–32], and the systems like Eddies that employ a 

fine-grained “plan-less” approach, where instead of predermined plans, at 

runtime the Eddy operator determines, one-at-a-time, the next operator, 

that the tuples must visit for processing [34]. QM provides the middle-

ground by using multiple pre-computed plans, each  optimized  for  a  subset  

of data with certain statistical properties, and the classifier component 

to determine which data subsets should be processed by which of the pre

computed routes. The QM framework, implemented in a continuous query 

processing engine [8], has been shown to be very effective for both real and 

synthetic data compared to the single plan and the Eddy-based query pro

cessing alternatives. 

http:Processing.As
http:Experiments.To
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–	 Query Mesh-Based Optimization. We  formulate  the  complexity  of  the  QM 

search space (Section 5.2.5), and develop the algorithm Opt-QM that finds 

optimal query meshes. Opt-QM, however,  may  be  not  feasible  in  practice  

due to its exhaustive nature when enumerating the search space. As viable 

alternatives, we propose several effective cost-based search heuristics to 

find good quality QM s efficiently.  

–	 Query Mesh-Based Execution. For  efficient  query  execution,  we  propose  

the Self-Routing Fabric (SRF ) infrastructure.  The  novelty  of  SRF lies in 

its support for execution of multiple routes in parallel without physical 

constructing their topologies and without using a central router operator 

like Eddy. We describe other advantages of SRF in Section 5.3. 

–	 Self-Tuning Query Mesh. We  present  a  Self-Tuning Query Mesh infrastruc

ture (or short ST-QM ) that  continuously  adapts  the  query  mesh  solution  

to changing data subsets’ characteristics and to system conditions, e.g., 

memory, CPU resources availability. The fundamental challenge for self-

tuning query mesh is the problem of determining the discrepancy between 

the previously learned query mesh model and the current model of the new 

data, what we denote as optimization concept drift problem. 

–	 Uncertainty-Aware Query Mesh. To  address  the  issue  of  uncertainty  (about  

data input rate, operator selectivities, attribute values and their distribu

tions) that naturally arises during query optimization in the streaming 

context, we present uncertainty-aware extension to the query mesh model, 

called Uncertainty-Aware Query Mesh (or UA-QM, for  short).  The  goal  of  

UA-QM is two-fold: (1) to model and measure various types of uncertainty 

to represent real-life scenarios in streaming environments more accurately 

and (2) to process data in an uncertainty-aware and multi-plan fashion. 

–	 Implementation and Experiments. We  thoroughly  evaluate  QM approach 

through experiments comparing it to the state-of-the-art techniques, namely 

http:Experiments.We
http:Optimization.We
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the systems using a single plan computed a priori and the systems discov

ering routes at runtime. Our results show that QM results in substantial 

performance improvements over the competitor systems. We also demon

strate QM effectiveness by measuring its runtime overhead. 

1.6 Summary and Outline 

In this section we have presented the real-life motivating application examples 

calling for new features to be added to Data Stream Management Systems (DSMSs), 

namely the access control for protecting sensitive streaming data, the tagging for 

attaching additional semantics to streaming data, and the data diversity-aware con

tinuous query processing. Efficient handling of security, tagging and data diversity 

in DSMSs enables many key stream-based applications including location-based ser

vices, ubiquitous healthcare, environmental monitoring and many others. In this 

chapter, we gave an overview of our proposed approaches to address these problems 

and briefly summarized our contributions. 

The rest of this dissertation is organized as follows. Chapter 2 highlights the 

related work and provides the necessary background for this dissertation. Chapter 

3 presents  our  solution  for  access  control  enforcement  in  data stream  environments.  

Chapter 4 presents our solution for tagging of streaming data. Chapter 5 describes 

our diversity-aware query processing mechanism using the query mesh model. Finally, 

Chapter 6 concludes by giving a summary of the dissertation and outlines extensions 

to the work presented in this dissertation. 

Parts of this dissertation have been published in conferences and have been sub

mitted to journals; the security for data streams and its details have been published in 

ICDE-2008 [38], the diversity-aware query processing in EDBT-2009 [27], the tagging 

and the extensions to the security and the query mesh models have been submitted 

to several publication venues [39–41]. The stream-centric approach to security in a 

DSMS will be demonstrated in ACM SIGMOD-2009 [42]. 
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2 BACKGROUND AND RELATED WORK 

In this chapter, we present an overview of the state-of-the-art research related to 

the work in this dissertation. This chapter is organized as follows. Section 2.1 de

scribes different prototypes of DSMSs from both the academia and the industry. Brief 

survery of query optimization approaches is given in Section 2.2. In Section 2.3, we 

discuss adaptive query processing algorithms techniques for efficient processing of 

long-running continuous queries. Section 2.4 surveys various metadata mechanisms 

in current DSMSs. Section 2.5 describes related work in the context of learning ap

proaches as applicable to our diversity-aware query processing approach. In Sections 

2.6, we describe the related work in security, in particular, in access control. Section 

2.7 provides the related work and necessary background on tagging. Finally, Section 

2.8 summarizes the chapter. 

2.1 Data Stream Management Systems 

A number  of  general-purpose  DSMSs  have  been proposed in the  literature  that  

target different application domains, where continuous data streams arise and queries 

must be evaluated continuously, including Aurora [3], Gigascope [5], CAPE [8], Nia

garaCQ [9], Nile [7], STREAM [43], and TelegraphCQ [4]. All of these systems share 

similar goals, however, each of them has distinct characteristics and algorithms to 

achieve these goals. 

While STREAM supports a declarative language for specifying arbitrarily com

plex continuous queries, Aurora supports a workflow-style boxes and arrows interface 

for specifying continuous queries. Aurora has limited support for adaptive query 

processing, but richer support for distributed query processing and tolerance to fail

ures [44]. 
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The TelegraphCQ system is built on the Eddies adaptive query processor [34]. 

Eddies is an integrated optimizer, executor, and operator scheduler1. On  the  other  

hand, most DSMSs take a modular approach to query processing, having separate 

optimization, execution, and scheduling components. Unlike many DSMSs, which 

were developed from scratch, TelegraphCQ was developed as an extension to the 

PostgreSQL relational DBMS [45]. The pros and cons of building a DSMS on top of 

an existing DBMS are documented in [46]. 

Nile [7] has a rich support for exploiting sharing of data and computation while 

processing multiple continuous queries concurrently. To support the efficient and 

correct pipelined execution of sliding window queries over multiple data streams, 

Nile employs the Negative Tuple Approach [7]. Negative tuples are the tuples that 

are generated whenever a tuple expires out of a sliding window. Each operator in 

the pipeline reacts differently whenever it receives a negative tuple to counteract 

the effect of the corresponding positive tuple that just expired out of the window. 

Although negative tuples guarantee correct execution of query pipelines, they induce 

performance overhead. Nile provides several optimization techniques to reduce the 

performance overhead induced by negative tuples. Another distinct feature of Nile 

is its predicate windows [47]. In contrast to sliding windows that limit the focus of 

queries on streams to the most recent tuples, predicate windows can select tuples of 

interest that meet a certain select or join predicate. 

CAPE [8] focuses on adaptive query processing at many levels. In particular, 

CAPE emphasizes the following features: (1) Intra-operator adaptivity, where CAPE 

exploits metadata knowledge about the data streams to reduce resource usage and 

improve execution efficiency of operators. (2) Plan-level adaptivity, where CAPE 

supports online query re-optimizations and plan migration. (3) System-level adap

tivity, where CAPE supports adaptive distribution of the query plan among multiple 

machines for load balancing. 

We discuss Eddies in more detail in Section 2.3. 1

http:scheduler1.On
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Gigascope is a DSMS tailored to the network monitoring domain [5]. Gigascope 

supports a declarative query language (GSQL) which is less expressive than SQL [1] 

or CQL [48]. Gigascope also takes a two-level approach to query processing, where 

sub-queries are pushed down to the network interface level to eliminate unneeded 

input stream tuples as quickly and efficiently as possible. 

Apart from DSMSs, continuous queries are also used in content-based filtering 

and publish-subscribe systems, e.g., [49–53]. Two systems, OpenCQ [54] and Nia

garaCQ [9], support continuous queries for monitoring persistent data sets spread 

over a wide-area network, e.g., web sites over the Internet. Unlike many DSMSs sup

porting more expressive declarative languages for continuous queries, both OpenCQ 

and NiagaraCQ support continuous queries specified in an Event-Condition-Action 

(ECA) format typically used for triggers. Furthermore, OpenCQ and NiagaraCQ 

lack many features present in general DSMS systems, e.g., flexible query plans and 

operator scheduler, adaptive processing of commutative filters and stream joins. 

One way of thinking about materialized views [55] and triggers [56] in conven

tional in database management systems is as “continuous queries” that need to be 

processed whenever the base data changes or a monitored event happens [57]. How

ever, materialized views and triggers are insufficient to meet the needs of stream-based 

applications easily and efficiently. 

2.2 Query Optimization Techniques 

Query optimization is a well-studied area, with most efforts primarily concentrat

ing on the “monolithic” strategy of optimizing a single query execution plan for all 

data [58–62]. 

To better illustrate where our research on diversity-aware query optimization fits 

among the existing techniques, we classify these techniques along two dimensions: 

the timing of the optimization decision and the granularity of optimization (see Fig
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ure 2.12). Some database systems determine query execution plans in advance (at 

compile time), while others forego pre-computed plans and “route” tuples on-the-fly 

(at runtime). We observe that these approaches have a close resemblance to network 

communication methods which can be described as: (1) connection-oriented, where  

a connection with the receiver is established in advance before passing any data, or 

(2) connection-less, where  data  is  sent  without  establishing  an  a  priori connection,  

and the next hop of a packet is determined by a router during the transmission 

at runtime [63]. The parallel between route optimization in networking and query 

optimization in databases is evident. Query operators (for a given query) can be 

viewed as a “network” and a query plan as a specific “route” through all opera

tors in the “network”. Given this parallel, we classify the state-of-the-art techniques 

according to the optimization time dimension as “route-oriented ” and  “route-less” 

solutions3. Database  systems,  including  major  commercial  DBMSs  [30–32]  that  de

termine a query plan a priori, employ the route-oriented paradigm. Systems, like 

Eddy [34] and its descendants, that at runtime decide for every data tuple which 

operator should process it next, fall under the route-less category [34, 64, 65]. 

In practice, almost all route-oriented solutions pre-compute a single route leading 

to their main disadvantage – optimization coarseness [66, 67]. Having a fully estab

lished plan a priori, however, has a number of advantages: all tuples follow the same 

execution plan, which is fully known, and the execution tends to be “overhead-free”. 

Furthermore, data tuples’ sizes do not need to be extended to store any optimization-

related metadata (e.g., tuple lineage). 

On the other hand, “route-less” systems, like Eddies [34], tend to use multiple 

routes by default. Such systems based on observed conditions decide at runtime which 

operator should process a tuple next [34, 64], thus discovering different execution 

routes for tuples on-the-fly. Unfortunately the “optimization decision” (i.e., which 

operator should process a data tuple next) is made continuously, and in the worst case 

2Figure 2.1 is not meant to be an exhaustive survey. It merely provides an intuitive idea of where we think our 

solution fits compared to the state-of-the art techniques. 
3By “oriented”, we mean that routes (i.e., query plans) are established in-advance. 
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Figure 2.1. Query mesh versus other optimization techniques. 

for every individual tuple, thus resulting in an unavoidable per-tuple route discovery 

overhead. Such systems typically do not exploit the observation that stable conditions 

tend to dominate query execution time, and that tuples with identical content or 

similar statistical properties are likely to be best served by the same route [28, 68]. 

Furthermore, individual tuples’ sizes tend to be larger, as tuples must now carry their 

individual “itineraries” (i.e., their lineage) depicting their current processing state. 

In summary, optimizing too frequently as in the multi route-less approach may 

discover several plans but may also result in wasted resources. However, optimizing 

too coarsely as in the systems pre-computing a single plan may miss critical opportu

nities to improve query execution performance. We thus propose a practical middle 

ground approach between these two extremes in the form of a “multi route-oriented” 

solution called Query Mesh (or QM, for  short).  

Our work on diversity-aware query processing is related to the concept of hor

izontal partitioning [69]. Conceptually, the main idea here is to partition data so 

that different partitions can be processed using different execution plans. Selectivity-

based partitioning scheme [29] – an instance of horizontal partitioning approach – 
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adopts a divide-and-union approach. A relation is partitioned according to selectiv

ities, and subsequently the query is rewritten as a union of constituent queries over 

the computed partitions. The approach presented in [29], however, only focuses on 

the partitioning algorithm, rather than a systematic approach to generate different 

plans for different subsets of data – the focus of our work. In practice, the lack of 

a comprehensive  system  support  for  concurrent  multi-plan  execution  may  reduce  (or  

completely cancel out) the effectiveness of such query processing strategy. The au

thors in [29] also do not address the issue of overhead associated with partitioning 

(classification) incurred at runtime when the data arrives and the important issue of 

concurrent multi-plan runtime execution efficiency. Our work addresses these issues 

and employs a very efficient novel “Self-Routing Fabric” data structure for efficient 

runtime execution. 

Conditional plans [70] generalize serial plans by allowing different predicate eval

uation orders to be used for different tuples based on the values of certain attributes. 

This class of plans can be beneficial when the attributes are highly correlated, and 

when there is a large disparity in the acquisition and evaluation costs of the predi

cates. Conditional plans primarily focus on often selecting a single and very cheap to 

acquire partitioning attribute, since query processing is done in the context of sensor 

networks. Such attribute is not necessarily the “best” splitting attribute in a more 

general context of DSMSs. In that respect, query mesh is a more general model that 

can employ an arbitrary number of attributes for partitining (classification) of data. 

QM, being  a  general  model,  can  exploit  the  data  security  and  the  tagging  metadata  

(described in Chapters 3 and 4) to partition data into distinct data subsets. 

A common  problem  with  pre-computed  solutions  is  that  they  might  become  in

efficient over time. One approach to address inaccuracy or potential changes in an 

environment during query execution is through eager re-optimization and runtime 

adaptation of execution, e.g., [34, 71, 72]. Systems like IBM’s LEO (LEarning Opti

mizer) and more recently Microsoft SQL Server use monitoring and feedback to repair 
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incorrect cardinality estimations and statistics [73–75]. For a survey of adaptive query 

processing techniques, we refer the reader to [76]. 

Some works have proposed robust and uncertainty-aware solutions for query op

timization e.g., [77–79], but they primarily focus on a single-plan strategy for query 

execution. 

Proactive re-optimization in Rio [78] is a robust query optimization technique 

based on the concept of bounding boxes. Bounding boxes specify range of values that 

a parameter  can  take,  thus  representing  uncertainty.  The  optimizer  finds  a  (set  of)  

plan(s) that behave well in the bounding box, and at run-time, if observed statistics 

fall inside the bounding box, the best plan in that box (based on the latest statistics) 

is chosen, else the re-optimization is invoked. 

Error-aware optimization (eao) [80], similar to Rio, makes use of intervals over 

query cost estimates. Eao, however, focuses on memory usage uncertainty rather 

than selectivity uncertainty. 

Babcock et.al. [77] tackle cardinality estimation uncertainty and consider a prob

ability distribution over possible selectivities instead of a point estimate of selectivity. 

Using probability distribution, the optimizer selects the appropriate query plan after 

considering the relative importance of predictability vs. performance preference of 

the user. Prior to optimization, the user selects the trade-off between the two goals 

of predictability and performance (which could be at odds sometimes) to find the 

appropriate query plan. 

Chu et al. [81] describe the least expected cost optimization technique. Here, 

instead of finding the lowest cost plan for the expected values of the parameters, 

the optimizer attempts to find the plan that has the lowest expected cost over the 

different values the parameters can take. The goal here is to find a “conservative” 

plan that is likely to perform reasonably well in many situations, rather than a more 

“aggressive” plan that may work better if the cost estimate is accurate, but much 

worse if the estimates are slightly off. 
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Ioannidis et al. [82] present parametric query optimization method, whereby mul

tiple alternative plans are identified at compile-time, after which an actual single plan 

is chosen at run-time, when the actual parameter values are known. 

A large  body  of  work  has  been dedicated  to  extend  support  for  uncertain data  

inside databases [83–86] including several efforts in building systems for managing 

uncertainty [87–89]. While many of these works study efficient algorithms for query 

processing on uncertain data, none of them actually consider uncertainty in the query 

processing itself, which is the focus of our paper. 

To the best of our knowledge, none of the existing works tackle the problem 

of uncertainty when multiple query execution plans are employed concurrently for 

processing of distinct subsets of data. 

2.3 Adaptive Query Processing Techniques 

Related to our work are several techniques from adaptive query processing [3,6,76]. 

Here, at different times, tuples may be processed differently, as data statistics or 

system environment change. Similar to compile-time optimization, most adaptive 

query processing works still focus on adapting a single query plan as data properties 

and system conditions change at runtime [73, 78]. 

A very  recent  survey  of  systems  and techniques  for  adaptive  query  processing  

is given in [90]. Previous work on adaptive query processing considers primarily 

traditional relational query processing. One technique, which is being incorporated 

into commercial databases, is to collect statistics about query subexpressions dur

ing execution and to use the accurate statistics to generate better plans for future 

queries [73, 91]. Two other approaches [92, 93] re-optimize parts of a query plan fol

lowing a (blocking) materialization point, based on accurate statistics collected on 

the materialized subexpression. 

Convergent query processing is proposed in [68,94]: a query is processed in stages, 

each stage leveraging its increased knowledge of input statistics from the previous 
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stage to improve the query plan. The algorithms proposed in [68,94] do not extend to 

continuous queries and provide no guarantees on convergence. Reference [95] explores 

the idea of moving execution to different parts of a query plan adaptively when input 

relations transferred from remote nodes incur high latency. The POP approach adds 

checks to conventional query plans in DBMSs to detect sub-optimalities during query 

execution, invoking re-optimization if required [79]. 

The previously-mentioned Eddies architecture [4, 33, 34, 65, 96, 97] enables fine-

grained adaptivity by eliminating query plans, by instead routing each tuple adap

tively across operators that need to process it. Eddies [34], which can potentially 

adapt at the tuple granularity, is observed to mostly be using a single plan for nearly 

all tuples as also indicated in [28]. Closely related to the QM paradigm is the content-

based routing (CBR) extension of Eddies [28] that considers not only properties of 

operators (such as their selectivities and backlog) but also the content of the data. 

CBR, an extension to Eddies, however inherits several problems associated with Ed

dies, such as expensive on-the-fly decision-making and often unnecessary tuple-level 

granularity of adaptivity. [33] adds batching to the Eddies routing to reduce the 

tuple-level routing overhead. This work differs from ours in that it is still “route

less”. Further, the batching process is still neither content- nor route-based: batches 

of k tuples (i.e., continuous chunks of tuples that happened to arrive together in time) 

are routed together to aim to reduce the rather significant overhead associated with 

Eddies. Our QM solution is more coarse-grained than Eddies in that at a given point 

in time one execution plan is followed by all input tuples for a continuous query. 

Apart from Eddies, the CAPE [8] and Gigascope [5] DSMSs support adaptive 

query processing over data streams. CAPE supports adaptive processing at the level 

of operators, e.g., within a join operator, as well at the level of query plans, e.g., 

switching among different plans for a query. CAPE also supports adaptive placement 

of query plan fragments across machines in a parallel processing environment. The 

two-level query processor in Gigascope can adapt the partitioning of work between 

the two levels, based on the characteristics of the input streams. 



27 

2.4 Streaming Metadata 

Punctuations as sub-stream delimiters inside data streams have been first pre

sented in [98]. PJoin [99] and PWJoin [100] apply punctuations to achieve join 

optimizations on streaming data. [101] uses punctuation-like annotations to inject 

dynamic schema-knowledge into XML stream to facilitate query optimization and 

out-of-order processing. [102] uses punctuations for execution safety checking of con

tinuous join queries (CJQs). Punctuation uses continue to expand beyond their orig

inal semantics – delimiting epochs in the stream. 

The authors in [103] propose a feedback mechanism based on punctuations that 

flow against the stream direction, and carry an intent, as opposed to embedded punc

tuations [104, 105]. DSMSs have focused on collecting and distributing feedback in

formation by statically placing monitors in the query plan and directly sending pa

rameter changes to operators. The approach in [103] differs significantly in at least 

two aspects: (1) the use of punctuation to convey the feedback messages, and (2) 

giving operators the ability to create, consume, and propagate feedback, eliminating 

the need for centralized managers. 

AT&T’s Gigascope DSMS includes a type of punctuations – called “heartbeats” 

– that  signal  the  passing  of  time,  but  their  work  does  not  exploit  punctuations  as  

feedback mechanisms for optimization [106]. 

This thesis is the first work proposing to use punctuations as (1) security con

straints to enact access control policies, (2) as semantic labels (tags) to attach addi

tional semantics to streaming data, and (3) as routing “itineraries” to process various 

subsets of data using different execution plans. 

2.5 Learning Techniques 

Related to the QM concept presented in this thesis are several techniques in 

machine learning. There has been plenty of work on building mining models over 

continuous data streams, including clustering [107, 108], decision trees [109] [110], 
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nearest neighbors [111], and heavy hitters [112, 113]. New algorithms have also been 

proposed for maintaining statistics over data streams, e.g., samples [114], histograms 

[115], and quantiles [116]. 

A number  of  algorithms  have  been  proposed  in  the  literature  for  extracting  knowl

edge from data, using clustering [117, 118], classification [109, 110, 119], frequency 

counting [120, 121] and time series analysis techniques [122, 123]. These techniques 

can be integrated into the classifier component of the QM, the  subject  we  plan  to  

investigate further. 

Decision tree construction is an important problem in data mining [124–127]. 

Most of the proposed algorithms address the problem of decision tree construction 

for static data. The key issue in mining on streaming data is that only one pass 

is allowed over the entire data. Moreover, there is a real-time constraint, i.e., the 

processing time is limited by the rate of arrival of instances in the data stream, and 

the memory available to store any summary information may be bounded. For most 

data mining problems, a one pass algorithm cannot be very accurate. The existing 

algorithms typically achieve either a deterministic bound on the accuracy [108], or 

a probabilistic  bound  [110].  A  good  survey  of  data mining  techniques  for  streaming  

environments is presented in [128]. 

Several methods have been proposed to deal with time changing concepts [109, 

129,130]. The two basic methods are based on temporal windows, where  the  window  

fixes the training set for the learning algorithm and weighting tuples that ages the 

training tuples by shrinking the importance of the oldest tuples. The time window 

method can be improved by adapting its size [129, 131]. 

VFDT [110] is a very fast decision tree algorithm for data-streams. The main 

innovation in VFDT is the use of the Hoeffding bound to decide when a leaf should 

be expanded to a decision node. Later, VFDT has been extended with the ability to 

detect changes in the underlying distribution of the examples. CVFDT [109] is an 

algorithm for mining decision trees from continuous-changing data streams. CVFDT 

works by keeping its model consistent with a sliding window of the most recent ex
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amples. When a new example arrives it increments the counts corresponding to the 

new example and decrements the counts to the oldest example in the window which 

is now forgotten. Each node in the tree maintains sufficient statistics. Periodically, 

the splitting-test is recomputed. If a new test is chosen, CVFDT starts growing an 

alternate subtree. The old one is replaced only when the new one becomes more 

accurate. 

Other learning techniques in artificial intelligence, such as neural networks [132], 

intelligent agents and reasoning [133], intelligent information systems [134], logic and 

logic programming [135], planning and scheduling [136,137], bayesian networks [138], 

genetic programming [139] have also received a lot of attention from the research 

community in the recent years. 

Works dealing with uncertainty in classification and machine learning [140] focus 

primarily on the prediction accuracy of the models. Classical versions of classifica

tion algorithms typically are not designed to handle uncertainty [141]. To overcome 

this limitation, probabilistic decision trees [142], bayesian decision trees [143], and 

classifier ensembles [144] have been proposed to deal with classification of data with 

missing, imprecise, or updated attribute values. 

2.6 Security and Access Control Enforcement 

Agrawal et al. have coined the concept of Hippocratic databases [145] to incor

porate the privacy protection within relational DBMS. Hippocratic databases use 

privacy metadata to represent the data owner’s privacy preferences and the the data 

collector’s privacy policies. The data is returned to users only when the policies meet 

the preferences. The work focuses on relational databases only and does not address 

the challenges present in the streaming context. 

The problem of access control in dynamic environments has raised significant in

terests in research community in recent years [146–148]. [149] extends RBAC model 

to Temporal-RBAC, which supports periodic role enabling and disabling and tempo
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ral dependencies among permissions. GEO-RBAC [150] extends RBAC model with 

spatial awareness. For most of these access control models, however, the changes in 

the policies do not get reflected on the results until the query is re-executed after the 

change. While the focus of our work is to enforce access control throughout the long 

running time of continuous queries in a DSMS. 

The notion of continuous access control has been introduced by Ravi Sandhu et 

al. as part of the UCON model [151,152]. To the best of our knowledge, apart from 

the initial theoretical paper, our on continuous access control enforcement in DSMSs 

is the first real instance of the UCON model. One of the reasons for the lack of real 

systems is that it is difficult to implement in practice [151]. We believe that we are 

the first to do so. 

Fine-grained access control in relational databases has received a lot of atten

tion recently [153–155]. Fine-grained access control allows control of access at the 

granularity of individual rows, and to specific columns within those rows and is 

often required in many database applications. Wang et.al. [153] design a labeling 

scheme to hide information in a database. To answer queries the authors propose a 

query modification approach to evaluate the queries over tables with masked cells. 

Chaudhuri et.al. [154] propose a model for fine-grained authorization based on adding 

predicates to authorization grants. The model supports predicated authorization to 

specific columns, cell-level authorization with null-ification, authorization for func

tion/procedure execution, and grants with grant option. The model also incorporates 

other novel features, such as query defined user groups, and authorization groups, 

which are designed to simplify administration of authorizations. The model is de

signed to be a strict generalization of the current SQL authorization mechanism. 

Kabra et.al. [155] make an observation that the majority of models for fine grained 

access control follow a view replacement strategy which suffers from the overhead of 

the access control predicates when they are redundant and potentially may leak in

formation through channels such as user-defined functions, and operations that cause 

exceptions and error messages. The authors propose techniques for redundancy re
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moval and define when a query plan is safe with respect to UDFs and other unsafe 

functions. To address the potential information leakage, the authors propose tech

niques to generate safe query plans. To the best of our knowledge, none of works on 

fine-grained access control address the simulteneous enforcement of multiple policies 

(server side and client side) and typically consider a static relational database context 

instead of dynamic data streams – the focus of our work. 

Another area of related work is the context-awareness in access control and context-

aware adaptation of access-control policies, e.g., for crisis management (or emer

gency). The main idea here is to employ contextual parameters as inputs to the 

access control model (e.g., a context-sensitive RBAC model [156]). In our paper, 

we accomodate the requirements of context-aware access control by providing sup

port for: (1) generation of security punctuations based on the real-time context data 

streams, and (2) support for the immediate enforcement of security policiesto tackle 

emergency situations. 

2.7 Tagging Methods 

There are several ongoing projects that deal with annotation propagation and 

management for scientific databases, e.g., DBNotes [157], Mondrian [158], bdbms 

[159], and MMS [160]. Social bookmarking systems, such as Flickr [161], Delicious 

[162] and Technorati [163] support annotations of web resources and images with 

free-text keywords. For more examples of tagging systems and their taxonomy, we 

refer the reader to [164]. To the best of our knowledge, none of these existing works 

address the problem of tagging in the context of dynamic data stream environments. 

Chi et al. [165] study the entropy of tagging systems, in an effort to understand 

how tags grow, and how the groupings of tags change over time and affect browsing 

of data. Halpin et al.’s work [166] looks at the nature of tag distributions with 

information theoretic tools. There has been some work on association rules in tagging 

systems, including [167, 167] and [168]. [168] primarily focuses on prediction of tags. 
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Oldenburg et al. [169] look at how to integrate tags across tagging systems by using 

Jaccard measure and discuss different types of tagging systems: social bookmarking, 

research paper tagging systems, but not DSMSs. 

Research on self-describing streaming XML which can be viewed as “data tags” 

has received a lot of attention in recent years [170–172]. XML processing is typically 

more expensive compared to traditional stream data processing, and requires a special 

XML stream management functionality (in addition to the XML-aware optimizer and 

executor). Our proposed tagging approach is simpler in design and more light-weight 

compared to streaming XML, while at the same time it provides support for rich 

user-based tag semantics. 

Relational data-bases have had an extraordinarily successful history of commercial 

success and fertile research. It is not surprising, therefore, that database researchers 

have attempted to understand annotations and “tagging” in the context of relational 

databases [157]. 

One of the biggest challenges in relational databases is the correct propagation 

of annotations through queries’ pipelines. This is similar to the problem we’ve dis

cussed in the context of tag-aware query processing. In [157], a practical approach 

is taken to handling annotation in which an extension of SQL is developed support

ing explicit user control over the propagation of annotations. The idea is to allow 

the user to control the flow of annotations by adding propagation instructions to the 

SQL query language. In our implementation, the tagging system performs (by de

fault) the system-driven propagation, when processing tag-aware continuous queries. 

Adding support for user preferences regarding tag propagation in tag-aware queries 

is a subject of our future work. 

Most of the work on annotations of relational data focuses on annotating individ

ual values in a table. Geerts et al. [158] have taken a more sophisticated approach and 

provide support for annotating associations between values in a tuple. For example, 

in a query one might want to annotate fields A and B in the output with informa

tion that they came from input table R, and  the  fields  B and C with information 
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that they came from table S. The  authors  introduce  the  concept  of  a  “block”  –  a  

set of fields in a tuple to which one attaches an annotation and a “colour” which is 

essentially the content or some property of the annotation. They investigate both the 

theoretical aspects and the overhead needed to implement the system. Our approach 

supports various tagging granularity by using regular expressions in the Applicability 

field in the tick-tags, and  to  maintain  the  tags’  “lineage”  we  employ  the  streaming  

stix concept. 

We are unaware of any work that addresses the problem of real-time data tagging 

in the context of DSMSs and provides support for both explicit and implicit tag 

querying. Furthermore, our proposed approach is unique in that it is stream-centric: 

tags attached to streaming data are interleaved with the actual data tuples in the data 

streams, and the processing of these streaming tags is encapsulated inside the tag-

based query operators that can be combined with regular continuous query operators. 

2.8 Summary 

In this chapter, we have described work related to the concepts and algorithms 

proposed in this thesis, including an overview of various DSMSs, static and adaptive 

query optimization approaches, existing streaming metadata techniques in DSMSs. 

We have also discussed relevant access control solutions from the security area and 

the tagging and annotation approaches in various systems. 
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3 SECURITY AND ACCESS CONTROL FOR STREAMING DATA 

In this chapter, we address the problem of continuous access control enforcement in 

dynamic data stream environments, where both data and query security restrictions 

may potentially change in real-time and must be enforced online. 

We present the FENCE (short for Continuous Access Control Enforcement in 

Dynamic Data Stream Environments) framework that effectively addresses this prob

lem. The distinguishing characteristics of FENCE include: (1) the stream-centric 

approach to dynamic security, (2) the symmetric security model for both continuous 

queries and streaming data, and (3) two alternative security-aware query processing 

methods, that can optimize the execution based on data-related as well as security-

related selectivities. In FENCE, both  data  and  query  security  restrictions  are  modeled  

symmetrically in the form of security metadata, called “security punctuations”. Secu

rity punctuations stream together with the data instead of being persistently stored 

on the server. We distinguish between two types of security punctuations, namely, 

the data security punctuations (or short, dsps) which  represent  the  access  control  

policies of the streaming data, and the query security punctuations (or short, qsps) 

which describe the access authorizations of the continuous queries running on the 

server. With respect to the problem of efficient execution of continuous queries, we 

propose and compare two security-aware query processing methods, namely: (1) the 

Security Filter Approach (SFA), and (2) the Query Rewrite Approach (QRA). 

The rest of this chapter is organized as follows. In Section 3.1, we motivate the 

need to address the problem of continuous and online access control enforcement for 

streaming data. We give the problem definition in Section 3.2. Section 3.3 presents 

the FENCE architecture. Section 3.4 describes our security model with data and 

query security punctuations and their semantics. Section 3.5 presents the alternative 
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security-aware query processing methods. We describe the results of our experimental 

study in Section 3.6. We conclude in Section 3.7. 

3.1 Security in Data Stream Management Systems 

Due to recent developments in pervasive and ubiquitous computing, many enter

prises begin to provide high-quality services based on real-time data, e.g., patient 

monitoring, location-based services and ubiquitous social networking [2, 173, 174]. 

The information in such applications arrives in the form of infinite data streams to a 

DSMS, where continuous queries are evaluated. 

One of the biggest challenges in such dynamic data stream environments is the 

access control enforcement – the ability to permit or deny a request to perform an op

eration (e.g., a read operation). Given the long-running nature of continuous queries, 

the content of the streaming data and along with it its “sensitivity” may change 

frequently over the lifetime of query execution. Furthermore, queries on the server 

may also experience frequent changes in their access control privileges while being 

executed. Such changes in security privileges may be due to mobility and varying 

context of the users receiving the results of continuous queries: query results may 

be accessed via mobile phones, PDAs or IPhones from any place and at any time. 

Clearly, the users sending their streaming data can be rightly concerned about pos

sible unauthorized accesses to their real-time information and potential violations of 

their privacy. One of the major challenges here comes from the fact that the security 

policies of both data and queries can be concurrently very dynamic. 

Example 1: Ubiquitous healthcare system. Healthcare  systems  support  real-time  

monitoring and access to vital signs data of patients by doctors, emergency personnel, 

and pharmacies. Consider a physician executing a continuous query Q that monitors 

the health state of his patients, e.g., heart rate, blood pressure, etc. Over time, 

while the query Q is being executed, the physician may continuously acquire different 
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roles1, which may have different access privileges, e.g., a hospital employee (R1), a 

doctor with unrestricted access (R2), or a doctor with restricted access (R3). Possibly, 

multiple combinations of these roles can be active at any time depending on the 

policy and the doctor’s context. While working in the emergency room, the doctor’s 

active set of roles may be: {R1,R2}. When  entering  an  insurance  building  to  settle  a  

claim, the doctor’s active set of roles immediately changes to: {R3}. In  the  evening,  

when the doctor comes back home, his active role set becomes: {R1}. The  patients,  

transmitting their data through their monitoring devices, should have the ability 

to continuously regulate in which role their doctor can access their real-time health 

information. 

Example 2: Location-Based Services. Recent  improvements  in  location-based  tech

nologies and the drop in prices of location-tracking devices have spurred a new wave 

of mobile services, such as location-based services and geo-social networking applica

tions [19]. Such applications naturally raise privacy concerns. Users consider their 

physical location and travel patterns highly privacy-sensitive and demand solutions 

that are able to protect their information. Therefore, it is essential to provide support 

for users to be able to frequently change their access control policies based on their 

preferences, to restrict who can “see” their real-time information (e.g., where they 

are, whom they are with, or what they are doing). 

Based on these real-life examples, we can observe that dynamic changes in policies 

are natural and represent an essential part of an access control environment in data 

streams. We can also observe that changes in security may arise not only because of 

(1) the dynamic preferences of the users sending their data (i.e., the data providers) 

but also from (2) the dynamic privileges of the users receiving the results of continuous 

queries running on DSMS (i.e., the query specifiers). To the best of our knowledge, 

our work is the first to address the problem of online access control enforcement with 

concurrent dynamic changes in security for both data and queries. 

1Here, we assume the system is using a role-based access control (RBAC) model [175]. 
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3.1.1 Challenges 

Due to the characteristics of streaming data, there are a number of inherent chal

lenges that make continuous access control enforcement a challenging task. 

•	 Fast data arrival rate. A  common  characteristic  of  data  streams  is  a  high  data  

volume and a rapid arrival rate [2]. It is not feasible to store all data from 

all streams and take random accesses to the data as it is done in traditional 

databases. Therefore, the security policies associated with a data must be 

determined as fast as possible and the speed of the access control enforcement 

algorithm must be faster than the incoming data rate. 

•	 Single scan of data. Due  to  the  massive  volumes  of  data,  there  may  be  not  

enough space to store all streaming data and its security policies (which may be 

numerous and of fine granularity). Therefore, one scan of data and its security 

restrictions with compact memory usage is required. 

•	 Dynamic changes in security. The  widespread  usage  of  portable  devices  and  

the users’ mobility are likely to lead to frequent changes in transmitted stream

ing data and possibly its “sensitivity”. In addition to that, the mobility and 

the changing context of the users receiving the results may translate into fre

quent changes in the access control authorizations. Thus, an access control 

enforcement mechanism must be adaptive to runtime changes in security. 

•	 Correctness of enforcement. The  foremost  challenge  is  the  prevention  of  any  

information leaks that may occur when access is no longer authorized. It is 

also important to ensure that the access to data is not denied, when an access 

privilege has, in fact, been granted, especially when it is crucial to see the data 

immediately (e.g., in the case of an emergency). At any time, only the data 

elements that satisfy both the query and the data security policies at the same 

time must be returned as query results. 



38 

•	 Low overhead. The  results  in  streaming  environments  are  expected  to  be  pro

duced in near-real-time. Since access control enforcement is nothing but an 

added “overhead” compared to the traditional continuous query processing, its 

cost must be as low as possible not to decrease the utility of the DSMS. 

3.1.2 Our Contributions: The FENCE Framework 

To address the above-mentioned challenges, we propose the FENCE (short for 

Continuous Access Control Enforcement in Dynamic Data Stream Environments) 

framework that supports the online enforcement of changes in the security policies of 

the data as well as in authorizations of the continuous queries while they are being 

executed. FENCE employs the Security Punctuation (SP) model  [38]  for  both  the  

streaming data and the continuous queries. Furthermore, FENCE enables a much 

richer security semantics for various applications’ needs. These features introduce new 

technical challenges for which we present our solutions in the rest of this chapter. Our 

major contributions can be summarized as follows: 

•	 FENCE models both data-side and query-side dynamic security restrictions 

symmetrically using streaming “security punctuations”2 metadata. FENCE 

extends the SP Framework [38] scheme by distinguishing between the two types 

of sps, namely, the data security punctuations (dsps) and the query security 

punctuations (qsps) to enforce security for both data and queries in a simple 

and efficient manner. 

•	 FENCE framework supports security-aware continuous query processing with 

combined dsps and  qsps. Compared to [38], which supports only one security-

aware query processing method, FENCE is equipped with two adaptive tech

niques, namely: (1) the Security Filter Approach (SFA), and (2) the Query 

2We chose to  name the streaming  security  metadata  “security  punctuations”  (or  short  sps), because by introducing 

sps into  data  streams,  we  subdivide  (i.e.,  punctuate)  infinite  data  streams into  finite  partitions with  associated  access  

control policies. 
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Rewrite Approach (QRA). We discuss the advantages and the limitations of 

each of the methods, and describe how both methods can support security-

aware and compliant query processing, and can adapt to both data as well as 

security-related selectivities. 

•	 Since in data stream environments, the access control policies may change in 

the middle of query execution, FENCE distinguishes between two types of se

curity policy enforcement semantics, namely the deferred and the immediate 

enforcement. In the former, the access control policies are enforced on only the 

data tuples that arrive after the policy change. Alternatively, in immediate 

enforcement (e.g., in emergency scenarios), the access constrol is enforced in

stantly including the tuples that have arrived before the policy change and are 

not yet returned as query results. We formally address this issue and provide 

an efficient solution to support both types of security policy enforcements. 

•	 We have implemented FENCE in a general DSMS prototype [8]. Our exper

imental study shows that FENCE efficiently supports access control on data 

streams with data and query security policy changes and security-related over

head with sps is low  relative  to  continuous  query  execution  cost.  

3.2 Problem Formulation 

To formulate the problem we address in this chapter, we first give the definition for 

the concept of continuous query processing (or CQP for short). In traditional CQP, 

continuous queries are registered in DSMS, and only the data tuples that satisfy the 

predicates of the continuous queries are produced as results. We call these predicates 

– query predicates – and  formally  define  CQP  as  follows:  

Definition 3.2.1 (Continuous Query Processing (CQP)) Suppose that a data 

element d=(v1, v2,...,vn) from  a data stream  has  n attributes and a query predicate 

ϕQ(attr1, attr2, ..., attrn) on  d represents the condition of a given continuous query 
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Q. Then, whenever d arrives, the continuous query processing mechanism produces d 

as a result of Q if and only if ϕQ(v1, v2, ...,  vn) is true. 

In Security-Aware Continuous Query Processing (SA-CQP), in addition to the query 

predicates, there is an additional type of predicates, called security predicates, which  

determine whether the query may access the arriving data tuples based on the current 

access control policies. We distinguish between two types of security predicates, 

namely: (1) the data-side security predicates, which  represent  the  data  provider’s  

security policies on the streaming data and (2) the query-side security predicates, 

which describe the query specifier’s current access authorizations. Continuous queries, 

registered by a user (i.e., query specifier) implicitly acquire the access authorizations of 

that query specifier. Consequently, SA-CQP enforces access control on data streams 

by only producing the results that satisfy both the query predicates and the security 

predicates at the same time. SA-CQP can be formally defined as follows: 

Definition 3.2.2 (Security-Aware Continuous Query Processing (SA-CQP)) 

Suppose that a data element d = (v1, v2, ...,  vn) from a data stream has n attributes, 

a query  predicate  ϕQ(attr1, attr2, ..., attrn) on d represents the condition of a given 

continuous query Q, and  a  security  predicate  ϕS (attr1, attr2, ..., attrn) on d represents 

a security  policy  S. Then,  whenever  d arrives, the security-aware continuous query 

processing returns d as a result of Q if and only if ϕQ(v1, v2, ...,  vn) ∧ ϕS (v1, v2, ...,  

vn) are both true. 

Figure 3.1 visually depicts the SA-CQP concept. Query predicates are denoted by ϕQ, 

and security predicates ϕS are composed of two types of security predicates, namely 

the data-side security predicates and the query-side security predicates denoted by 

ϕds and ϕqs, respectively.  

In our work, we address one of the key aspects of security in data stream envi

ronments, namely, the dynamic changes in security policies (specifically, the changes 

in access control), while continuous queries are being executed. Dynamic security 

means that during query execution access control policies affecting the processing 
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Figure 3.1. Conceptual idea of security-aware continuous query pro
cessing (SA-CQP). 

(and the results) of the query may frequently change to support the real-time needs 

of users and the requirements of applications. Data-side dynamic security represents 

the changes in the data providers’ security preferences and query-side dynamic secu

rity represents the changes in the query specifiers’ access authorizations. In our work, 

we provide a solution for SA-CQP in the presence of both types of dynamic security. 

3.3 Overview of FENCE Framework 

In this section, we present the general FENCE architecture and then describe a 

specific instance of the framework that we consider in the rest of the paper. 

3.3.1 FENCE Architecture 

To model dynamic access control in a data stream environment, FENCE extends 

the concept of security punctuations introduced in [38]. Security punctuations (or 

short, sps) are meta-data embedded inside data streams that describe the following 

aspects: (a) who has access rights, (b) to which streaming data objects, and (c) when. 

Compared to the original sps in  [38],  which  only describe  the  data-side  security  poli

cies, FENCE extends the sp paradigm to model both the data-side dynamic security 

policies as well as the query-side dynamic access authorizations that may be both 
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Figure 3.2. Overview of FENCE architecture. 

continuously changing. By uniformly representing the security settings for data and 

queries using a single concept, namely the security punctuations, FENCE facilitates 

a simpler  security  model,  code  re-use  and  enables  similar  security  processing  for  both  

data and queries. Using streaming sps, a DSMS can support online flexible, dynamic, 

and fast access control enforcement over infinite data streams, while queries are being 

evaluated. We will discuss the concept of security punctuations, as applicable to data 

and queries, in Section 3.4. 

Figure 3.2 shows a high level overview of the FENCE architecture. In a typical 

streaming environment, we distinguish between three types of users: (1) The data 

provider – a  user  continuously  sending  his  or  her  streaming  data with  the  interleaved  

sps, that describe the real-time security preferences on his or her streaming data. 

(2) The query specifier – a user  who  registers  a continuous  query  on  the  server  to  

be evaluated on the incoming streaming data. As can be seen from Figure 3.2, a 

query specifier also streams his or her real-time context (via a data stream), based on 

which qsps that describe the real-time access privileges of the continuous query are 

generated. For example, if a query specifier is a physician and he is out on a lunch 

break, the current location of the physician (“outside the hospital premises”) will 

generate a punctuation that limits the data (the health information of his patients) 
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the doctor can access from his portable device. (3) The DSMS administrator is a 

user responsible for registering security policies that guarantee that correct privileges 

are given to the queries based on the context of the query specifiers. The Security 

Analyzer component in Figure 3.2 is responsible for generating correct qsps according  

to the organization’s security policy registered by the DSMS administrator. Both data 

and query-side security are symmetrically modeled by security punctuations. This 

symmetry facilitates a simpler model and similar processing for both data and query 

security medatadata inside DSMS. When streaming security punctuations arrive to 

the system, the query processor interprets sps as security  predicates  by  processing  the  

data-side and the query-side sps alike,  and  then,  produces  results  that  satisfy  both  

the query predicates as well as the security predicates (as shown in Figure 3.2). In 

FENCE, dsps are  assumed  to  be  directly  generated  by  the  data  providers3 and qsps 

can either arrive from the query specifiers (or from a third-party security service) or 

most likely are generated locally in DSMS by the Security Analyzer module based on 

the query specifiers’ current context4. We  discuss  the  different  possible  scenarios  of  

sp generation in Section 3.4.4. 

3.3.2 An Instance of the FENCE Framework 

FENCE is a general framework and is not restricted to any particular data or 

access control model. But to make our discussion concrete, here, we describe an 

instance of FENCE framework, with a specific data and an access control model that 

we will consider in the rest of the paper. 

3The data security punctuations (dsps) may also be generated on the DSMS by evaluating continuous security policy 

queries on the incoming data streams (see Section 3.4.4), but for simplicity of discussion, we assume that the dsps 

arrive to the DSMS already interleaved with the data. 
4We asssume that the context of the query specifiers is represented by additional incoming data streams, e.g., stream 

of location updates. 

http:context4.We
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Data and Query Model 

We consider a centralized DSMS processing long-running select-project-join (SPJ) 

queries on a set of infinite data streams. A continuous data stream S is a potentially 

infinite sequence of tuples that arrive over time. The general schema of tuples in 

a data stream  is  described  by:  [sid, tid, A, ts ], where sid is the stream identifier, 

tid is the tuple identifier, A is a set of attribute values in the tuple, and ts is the 

timestamp of the tuple. As commonly considered in other streaming systems, e.g., 

[43, 176], the timestamps of the stream elements are assumed to be ordered. For 

simplicity of discussion, we consider a single continuous query Qi, registered  by  a  

query specifier in the DSMS, to be executed over data streams A,B,...Z. The  security  

restrictions applicable to the query specifier get implicitly inherited by Qi. Query  Qi 

is represented by a query execution plan composed of operators op1,..., opk, where  each  

operator acquires the security restrictions associated with the query Qi for which it 

processes the incoming data tuples. 

Access Control Model 

An access control policy specifies who has access to which objects and when. In its 

general form, an access control policy can be described by a triple <object, subject, 

operation>. An  object is an entity that contains the information. Examples of objects 

in data stream environments are: streams, tuples, tuple attributes and data values. 

A subject may invoke a request to access an object to perform an operation, e.g., a 

“read operation” on a data tuple. The subjects in FENCE are the query specifiers. 

Subjects acquire the access rights which are the set of privileges that they can hold 

and execute on an object. In our work, we consider a read right (operation) only. Due 

to the fact that just about all stream systems are read-only, this is a natural focus. 

However, the model can be easily extended to support other operations as well, such 

as update, delete, etc. Access to an object implies the right to use the information 

http:operation>.An
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it contains. An access is granted, if the corresponding subject owns a permission for 

the requested operation. Authorization is the granting of the access permissions. 

As an example of an access control model, we consider a Role-Based Access Control 

(RBAC ) model  [175]  in  our  work,  and  show  how  it  can  be  implemented  in  FENCE. 

RBAC is one of the most well-known and widely-used access control models in modern 

systems today [175]. The main idea of RBAC is to introduce roles as an abstraction 

layer to decouple subjects and permissions [175]. Under the assumption of using 

RBAC, the streaming dsps describe  which  roles  have  currently  the  access  rights  to  

which streaming objects, and the streaming qsps depict  the  current  roles of  a  con

tinuous query. Query specifiers activate their default roles when they sign into the 

DSMS. We require that each query specifier belongs to at least one role. However, 

this assignment may change while the query specifier is receiving the results of his or 

her continuous query. 

3.4 Dynamic Security Policy Model 

In this section, we present the schema and the semantics of the security punctu

ations in FENCE. We  provide  examples  of  various  sps and  describe  the  scenarios  of  

sp generation. 

3.4.1 General Security Punctuation Schema 

In FENCE, we  employ  security  punctuations  to  model symmetrically  both  the  

data and the query-side dynamic security restrictions. Such symmetric model makes 

SA-CQP simpler and allows security-related code re-use in DSMS. We call the sps 

representing data provider’s preferences for security – the data security punctuations 

(dsps) and the sps representing  the  query  specifiers’  access  privileges  –  the  query 

security punctuations (qsps). Figure 3.3 shows a general sp schema applicable to 

both dsps and  qsps. We discuss each field in the sp schema next. 

http:FENCE.We
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Figure 3.3. General security punctuation schema. 

•	 Punctuation Type (pt): describes whether the punctuation is a data or a query 

security punctuation. 

•	 Data Description Part (ddp): specifies which object(s) the access control pol

icy applies to, e.g., which stream(s), tuple(s), or tuple attribute(s) [38]. For 

compactness of storage, we use regular expressions to describe objects and their 

policies inside sps. 

•	 Security Restriction Part (srp): denotes both the access control model type and 

the subjects authorized by the policy. Since we use RBAC in this work (see 

Section 3.3.2), the srp specifies RBAC as the model type and a set of role(s) 

that are authorized by the sp. 

•	 Sign: indicates  whether  the  authorization  represented  by  the  sp is positive or 

negative (see [177] for more details). 

•	 Timestamp (ts): records the time when the sp was generated. 

•	 Enforcement (et): indicates the security policy enforcement setting. We distin

guish between two types of enforcement, namely the Deferred (D) enforcement  

and the Immediate (I ) enforcement.  We  describe  the  details  of  this  attribute  

in Section 3.4.2. 

3.4.2 Semantics of Security Punctuations 

A security  policy  may  be  expressed  by  one  or  more  sps and  may apply  to  zero  

or more tuples. A set of consecutive dsps or  qsps form  a  “batch” of  sps which  is  

interpreted as a single access control policy or a complex authorization. All sps of  
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the same policy (or authorization) have the same timestamp ts – the  time  when  the  

security policy was created and the sps were  generated.  If  there  is no  sp authorizing 

the access to an object, “denial-by-default” is enforced, i.e., an access to a streaming 

object is denied unless explicitly allowed. 

Another important semantic attribute is the access control policy’s enforcement 

setting. In traditional DBMSs, the enforcement semantics of security policies is clear – 

a policy  applies  to  all data (i.e., the entire dataset) stored in the system. Furthermore, 

the policies do not change in the middle of query execution, and even if they do, they 

are not reflected on the results until the query is executed over again. In contrast, 

in DSMSs, the semantics is not quite so clear. Since data streams are infinite and 

queries are continuously being evaluated, whenever a new sps (with  a  new policy)  

arrives, there may be data tuples (that have arrived before the sp) and  are  in  the  

pipelines of the continuous query execution plan, that according to the sp are no longer 

accessible (the reverse may also be true, and the previously unaccessible tuples may 

now be accessed by the query). 

To properly reflect the users’ security preferences in the system, we introduce two 

ways of enforcing a security policy, namely the deferred and the immediate enforce

ments, specified in the et attribute of an sp. In  the  case  of  the  deferred  enforcement,  a  

policy represented by an sp applies only to the data that arrives after the sp, i.e.,  the  

tuples whose timestamps are greater than that of the sp. This  type  of  enforcement  

is the most frequent case, and is needed for applications that need to protect the 

“future” data. For example, if a user carrying a cell phone device enters a casino, he 

or she may want to instantly prevent others from knowing his precise whereabouts. 

Thus, an sp with the deferred enforcement will be injected into his stream transmit

ting the user’s real-time location updates. With the immediate enforcement setting, 

the new policy affects both the (near past) data that has arrived to the DSMS be

fore the current sp as well as to the future data that follows after it. Hence, the 

policy here may apply to both the “historic” and the “future” data. This type of en

forcement is needed for the applications that demand the immediate reflection of the 
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Figure 3.4. Enforcement of security punctuations in an “immediate” 
and “deferred” manner. 

policy changes on the query results, without waiting for the arrival of new data. For 

example, in some applications, e.g., health monitoring, or financial applications, users 

cannot afford to wait for the arrival of new streaming data after a policy changes. In 

a healthcare  application,  this  could  be  a matter  of saving  a patient’s  life.  

Figure 3.4 visually illustrates the differences between the immediate and deferred 

enforcement semantics. Consider the security punctuation sp7, where  7  is  the  times

tamp of the sp. Tuples  denoted  by  the  integers  1  through  6  represent  the  data  tuples  

that have arrived before the sp7, and  tuples  8  through  11  after  the  sp7. With  the  

immediate enforcement, sp7’s policy will apply to tuples 1 through 11. With the 

deferred enforcement, sp7’s policy will only apply to tuples 8 through 11. To support 

the immediate security enforcement, we only consider the streaming data that is cur

rently inside the DSMS (see Figure 3.4). A recent past data window can be further 

customized based on the application needs, e.g., last 1 hour of data only. To enable 

the immediate security policy enforcement, we maintain a global window WG of the 

streaming data in DSMS , and WG periodically slides, purging the data tuples that 

have expired from the “recent past” data window. 

3.4.3 Examples of Security Punctuations 

Consider the following data streams: S1 is the heart data stream, S2 represents 

the blood pressure data stream and S3 is the respiration data stream. Let R = 
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{D1,D2,D3,D4,D5} be the  set  of  roles  in  DSMS5. The  following  dsps and  qsps may  

specified6: 

Data Security Punctuations 

dsp1: <dsp|S1,*,*|D 2|+|12:00:00PM|D >
 

only queries registered by a cardiologist (role D2) can  query  the  stream  S1 (heart
 

rate) after this punctuation arrives (due to deferred semantics, i.e., dsp1.et = D).
 

This is an example of a stream granularity policy.
 

dsp2: <dsp|*,[30,210],*|D 4|+|12:00:00PM|D > 

only queries registered by a general physician (role D4) can  access  data  tuples  (from 
  

any data stream) of patients with ids between 30 and 210, after this punctuation
 

arrives (dsp2.et = D). This is an example of a tuple granularity policy.
 

dsp3: <dsp|{S1, S2},*,{HeartBeat}|{D 2,D 5}|+|12:00:00PM|I >
 

only a cardiologist (D2) or a  nurse-on-duty  (D5) can  query  the  heart  beat from  streams 
  

S1 and S2. This  is  an  example  of  an  attribute granularity policy.
 

Query Security Punctuations 

qsp1: <qsp|null|D1|+|12:00:00PM|D > 

the query acquires a role of a dermatologist (D1) with  deferred  enforcement,  i.e.,  the  

role applies to the query after the arrival of qsp1 and will pertain to the data tuples 

with the timestamp greater than qsp1.ts. 

qsp2: <qsp|S1, ∗, ∗|D 4|+|12:00:00PM|D > 

the query acquires a general physician (D4) role  and  the  current  authorization  of  role  

D4 is the permission to only access stream S1 (heart data stream). The enforcement 

is deferred. 
5The roles can be as follows: D1 = dermatologist,  D2 = cardiologist,  D3 = hospital  employee,  D4 = general  physician, 
  

and D5 = nurse-on-duty. 
  
6The different fields in an sp are separated by a vertical bar “|”.
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qsp3: <qsp|null|{D 2,D 5}|null|12:00:00PM|I >
 

the query now acquires roles D2 and D5 with an immediate enforcement.
 

Combination of DSPs and QSPs 

To determine which data tuples, the query currently has access to, the intersection 

of the data and the query security punctuations must be evaluated [38, 178]. Only if 

the intersection between the policies of dsps and  the  authorizations of  qsps is non

empty, the access to the streaming data elements is granted. For example, if dsp1 and 

qsp2 arrive at the same time, the query access to the data tuples following the dsp1 

will be denied. Although both sps grant  a  permission  to  access  stream  S1, the  qsp2 

indicates that the current role of the query is D4, and  the  access  control policy  of  the  

data allows only the role D2 to access the stream S1. 

3.4.4 Security Punctuations Generation 

Until now, we have assumed that sps are  manually  generated  by  users  and  arrive  

to DSMS for processing already interleaved with the data. However, in some applica

tions, such scenario is not feasible, and users may gain improper access privileges. To 

handle real and more complex real-life scenarios, here we discuss the more sophisti

cated approaches for generating sps. The discussion below is applicable to both dsps 

and qsps due  to  the  symmetric  property  of  the  model.  

•	 Time-driven: Sps can  be  generated  at  a  specific  time  or  periodically.  For  

example, every Δ time units, a security module on the data provider’s device 

may generate an sp that carries the latest user-specified policy. The time-

driven method allows users to periodically generate sps to  automatically  enforce  

current access control policies. 
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•	 Value-driven: Alternatively,  sps can  be  generated  based  on  the  observed  data  

values. For example, an sp can be inserted into a data stream whenever an 

attribute value has exceeded a predefined threshold. 

•	 Query-driven: A  more  advanced  approach  is  to  generate  appropriate  policies  

for a specific context by evaluating a special type of continuous queries – the 

Continuous Security Policy Queries (or short CP-Queries). A CP-Query con

sumes data streams describing a user’s context (e.g., current location, activity, 

or any other context) or a data stream specific to a particular domain and pro

duces as output a security metadata stream – a stream composed of only sps. 

We can easily support a CP-Query approach in DSMSs, since the processing 

of such queries is almost identical to the regular continuous queries, except the 

produced results are sps here  instead  of  regular  data  tuples.  

3.5 Security-Aware Continuous Query Processing 

In order to support efficient security-aware continuous query processing (SA

CQP), the following key issues must be addressed: (1) how should the query predi

cates and the security predicates be evaluated together, (2) how should the security 

predicates be adapted, whenever a new dsp or a qsp arrives, and (3) how should the 

immediate and the deferred enforcement semantics be efficiently and correctly imple

mented. In this section, we address the above issues by presenting the two alternative 

query processing methods. To motivate our proposed approaches, we first begin with 

the naive method. 

3.5.1 Naive Approach 

A naive  method  for  query  processing  with  dynamic  security  takes  a  very  simple  

approach: it completely separates the access control processing from regular CQP. 

Such strategy evaluates security predicates at a designated point – either before or 
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after the query plan execution. The former and the latter strategies are also known 

as pre-filtering and post-filtering, respectively  [38].  Figure  3.5  illustrates  the  naive  

approach along with the FENCE approach, which integrates the access control pro

cessing with the continuous query processing. Here, A,...Z represent the regular input 

data streams with the embedded dsps from  data  providers,  and  C represents a stream 

transmitting qsps. 

In naive pre-filtering method, a security filter, which discards data elements that 

do not satisfy the security predicates is placed before the query execution plan. There

fore, only the data tuples the query has the access rights to access can enter the query 

plan, e.g., [179,180]. The post-filtering method is the reverse of the pre-filtering: the 

query predicates are evaluated first, and then the results get filtered post-mortem 

based on the access control policy of the data and the access rights of the query. 

In both the pre- and the post-filtering methods, the fixed placement of the access 

control filters may add significant processing overheads and considerably limit the 

query performance. If the access control policies are “loose” (i.e., query specifier has 

access to nearly all data), but the query predicates are very selective, the pre-filtering 

method may result in a heavy security-related processing overhead prior the query 

execution plan. This may be unnecessary, if the query predicates end up discarding 

the majority of the tuples anyways. In contrast, the post-filtering method may intro

duce unnecessary processing overhead, when very expensive query predicates (e.g., 

joins, groups by) are evaluated first, only for the tuples to be discarded later by the 

security predicates, because the query does not have access rights to them. 

In the following sections, to overcome the limitations of the naive method, we 

propose two efficient SA-CQP methods employed in FENCE, namely  the  Security 

Filter Approach (SFA) and  the  Query Rewrite Approach (QRA). Both SFA and QRA 

have a key advantage – they integrate security processing together with traditional 

query processing and can adapt to not only data-related but also to security-related 

selectivities. Such deep integration with traditional continuous query processing can 

help reduce the waste of resources, when few subjects have access rights to data or 
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Figure 3.5. Query processing with sps. 

minimize the security-related processing overhead when the query predicates are very 

selective. 

3.5.2 Security Filter Approach (SFA) 

The main idea of the SFA is to introduce a special physical operator that performs 

access control-based filtering into the query execution plan. We call this new operator 

the Security Shield Plus (SS+) operator7, and  it  is  handled  just  like  any  other  tradi

tional query operator in query processing and query optimization. SS+ operator can 

be viewed as a “select operator” that filters input data tuples based on the security 

predicates determined based on the arrived dsps and  qsps. The filtering condition of 

SS+ changes dynamically whenever a new dsp or a qsp arrives. Figure 3.6 shows how 

the SFA-based SA-CQP works with the SS+ operators. The triangle-shaped operators 

in the figure are the SS+ operators, filtering data based on the security predicates 

of the query. Just like for an ordinary select operator, the location of SS+ in the 

query plan is determined by the query optimizer according to the selectivities of the 

security predicates. If the selectivity is high, the SS+ operator is pushed down in the 

query plan to come before the operators with lower selectivity (similar to “selection 

pushdown”). Contrary to the traditional select operator, however, SS+ is a stateful 

operator: it stores the most recently arrived dsps and  qsps in  its buffers:  Bufferdsp 

7SS+ is similar in spirit to the initially proposed Security Shield (SS ) operator  in  [38],  however,  its  semantics  is  more  

sophisticated: it provides support for both dsps and  qsps with  much  richer  semantics.  
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Figure 3.6. SFA-based SA-CQP. 

and Bufferqsp, respectively8, and  computes  their  intersection  to  determine  the  current  

security predicates for filtering of data. 

Since the rest of processing is similar to traditional CQP, we only explain the 

execution of SS+ operator9. Figure  3.7  shows  the  pseudocode  for  SS+ execution. 

If the input to SS+ is a security punctuation (dsp or qsp), the security predicates 

variable, that represents the current intersection of the data and the query security 

policies, are updated to reflect the changes in policies (Step 3). If the input is a data 

tuple, it is propagated to the next operator in the pipeline if and only if the data 

tuple’s security policy satisfies the security predicates condition, otherwise, the tuple 

is discarded (Step 8). 

Figure 3.8 shows the algorithm for computing the security predicates in SS+ operator. 

For every newly arrived sp, the  intersection  with  the  opposite  type  of  sps (stored  in  the  

security buffer) is performed, e.g., qsp ∩ Bufferdsp (Step 2) and dsp ∩ Bufferqsp (Step 

5). This intersection is stored in the security predicates variable, which represents the 

current filtering condition. 

If an sp has the immediate enforcement setting (Step 4 in Figure 3.7), in addi

tion to the change in the security predicates variable (to be reflected on the future 

8As mentioned in Section 3.4.1, all sps that  belong  to  the  same  policy  have  the  same  timestamp  ts. Therefore,  

Bufferdsp and Bufferqsp store the sps for  data  and  queries respectively,  that  have  arrived  most  recently  and  have  the  

same ts. 
9To preserve the correct security semantics during execution, traditional query operators in SFA need to be modified 

to become “security punctuation-aware”, as described in [38]. 



55 

SSPlusExecution (o streaming object)
 

01 if (o.type == ‘‘security punctuation’’)
 

02 sp ← o
 

03 security predicates ← ProcessSp (sp )
 

04 if (sp.et == ‘‘immediate’’)
 

05 ProcessImmediateSp (sp )
 

06 if (o.type == ‘‘data tuple’’)
 

07 if (o does not satisfy security predicates )
 

08  discard  o
 

09 else
 

10 propagate o
 

Figure 3.7. SS+ execution in SFA. 

ProcessSp (sp security punctuation)
 

01 if (sp.pt == ‘‘qsp’’)
 

02 security predicates ← Intersect (sp, Bufferdsp)
 

03 update Bufferqsp with sp
 

04 else if (sp.pt == ‘‘dsp’’)
 

05 security predicates ← Intersect (sp, Bufferqsp)
 

06 update Bufferdsp with sp
 

07 return security predicates
 

Figure 3.8. Processing of sp in SS+ . 

data), the historic data in the WG window (which has arrived earlier than the sp) 

must be re-processed to be affected by the changes in the policy. To efficiently han

dle the immediate enforcement, we introduce a notion of the “narrowing intersec

tion scope” for security policies. Informally, the narrowing means that the updated 

security predicates (representing the access control filtering condition) are more se

lective than prior to the change. Definition 3.5.1 formally describes the narrowing 

scope. 

http:if(sp.et
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Definition 3.5.1 Let ϕi be the security predicate at time tsi and ϕj at time tsj (tsi 

< tsj ). If the security predicate has changed between time tsi and tsj (i.e., ϕi �= ϕj), 

and if ∃ any data tuple d that makes ϕj(d) =  false but  makes  ϕi(d) =  true,  the policy  

scope is said to be narrowing. 

Figure 3.9 shows the algorithm for processing of the immediate sps using  the  no

tion of narrowing to optimize the immediate enforcement execution. If the scope is 

narrowing, it means that there may be tuples in the query pipeline that might have 

already passed through the SS+ (based on the earlier security policies), but are now 

no longer accessible (because of the narrowed intersection of the policies). Therefore, 

to immediately enforce the access control in such case, it is enough to consider only 

the data tuples that have already passed the SS+ in the query plan. To prevent that 

data from being returned as results, the new SS+ operator is activated at the root 

of the query execution plan until all of the pipelined data (that has arrived prior to 

the sp) is  processed  (Step  3).  Otherwise,  if  the  policy  is  not narrowing, the tuples 

stored in the WG must be re-processed using the plan, to immediately see the results 

(that otherwise would possibly not be produced), thus reflecting the updated security 

policy (Steps 5 and 6). This can be done by clearing the data tuples from all of 

the query operators’ queues, and then, feeding the data tuples from the recent past 

window WG into the query plan. 

ProcessImmediateSp (sp security punctuation)
 

01 scope ← DeterminePolicyScope (sp )
 

02 if (scope == ‘‘narrowing’’)
 

03 ActivatePostFiltering(sp )
 

04 else
 

05 discard all data tuples in the query plan
 

06 start query processing with WG
 

Figure 3.9. Processing of “immediate sps”. 
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By encapsulating  all  security  processing  inside  SS+ operators, SFA-based security-

aware continuous query processing (or SA-CQP) can interleave the execution of se

curity predicates with traditional query predicates. SFA, however,  may  require  sub

stantial modifications to the codebases of the current DSMSs (see Section 3.5.4). In 

the next section, we propose another SA-CQP approach that minimizes the need to 

modify existing DSMSs significantly and largely reuses the existing query processor 

infrastructure inside DSMS as it is. 

3.5.3 Query Rewrite Approach (QRA) 

The main idea behind the QRA-based SA-CQP comes from the observation that 

the enforcement of the dynamic security policies can be seen as the dynamic “rewrit

ing of queries”10. According  to  the  SA-CQP  definition  (in  Section  3.2),  we  consider  a  

query registered in DSMS that consists of query predicates and security predicates, 

where the security predicates are updated whenever a new sp arrives. A DSMS can 

support dynamic security changes in SA-CQP by creating a “new” query with the 

integrated in it the latest security predicates and replacing with it the current query. 

Table 3.1 shows an example of query rewriting. Here, after the arrival of sps, the orig

inal query predicate (R.a = S.a) ∧ (0< R.b  <100)∧ (0<S.c<100) is rewritten 

into (R.a = S.a) ∧ (0< R.b  <50)∧ (50<S.c<100) to reflect the access control 

policies described by the dsp1 and the qsp1. 

Figure 3.10 gives an overview of the QRA-based SA-CQP. Compared to the SFA, 

where SS+ operators process sps in  the  query  plan,  the  QRA uses a centralized mod

ule, called the Query Rewriting Module (QRM ), to process arriving sps. QRM con

sumes dsps and  qsps immediately  upon  their  arrival  to  the  system  and  stores  them  

in the global Bufferdsp and the Bufferqsp, respectively.  QRM also stores traditional 

query predicates in the Bufferquery. Whenever  new  sps arrive,  QRM rewrites the cor

10Query rewriting is generally used to compose queries or manage views. In our work, we exploit the query rewriting 

concept for the purpose of combining security and query predicates to adapt to dynamic changes in the access control 

policies and authorizations. 
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Table 3.1
 
Example of query rewriting.
 

Original Predicates Rewritten Predicates 

Q.p1 → (R.a = S.a) 

Q.p2 → (0< R.b  <100) 

Q.p3 → (0< S.c  <100) 

dsp1 → (0< R.b  <50) 

qsp1 → (50<S.c <100) 

Q.p1 ’ → R.a = S.a 

Q.p2 ’ → 0< R.b  <50 //Q.p2+dsp1 

Q.p3 ’ → 50< S.c  <100 //Q.p3+qsp1 

responding query using the information stored in these buffers. Regular data stream 

tuples are processed by the query processor in the same way as in the traditional 

DSMSs. We note that sps are  not  sent  into  the  query  execution  plan,  but  rather  

consumed by the QRM module to generate a new query. In that regard, the regular 

continuous query operators do not need to be “security punctuation-aware” as in the 

SFA. 

Query Execution Plan 

A 

B 

Updated query C 
predicates 

δ 

δ 

dt dsp 

dt dsp 

qsp 
Query Rewriting Module 

(QRM) 

query 
results 

dt 

dsp 

dsp 
dt 

Bufferdsp Bufferqsp Bufferquery 

Figure 3.10. QRA-based SA-CQP. 

Figure 3.11 shows the pseudocode for the QRA-based SA-CQP algorithm. Com

pared to the SFA which implements SA-CQP using SS+ operators, QRA realizes 

SA-CQP by executing the QRM, which  may  rewrite  the  query  (and  consequently  

its execution plan) in an effort to combine the security predicates with the query 

predicates. In the algorithm in Figure 3.11, if the input is an sp, the  QRM rewrites 

the continuous query plan to integrate the new security predicates into the execution 
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plan (Step 3). The processing for the immediate enforcement is the same as in the 

SFA-based algorithm. If the input is a regular data tuple, the query processor eval

uates it as in the regular continuous query processing (Step 7). We note that, in the 

context of QRA, the  QRM is a separate module from the query processor module, 

thus, largely not requiring any modifications to the DSMS query optimizer and query 

executor modules. 

QRA SA-CQP (o streaming object)
 

01 if (o.type == ‘‘security punctuation’’)
 

02 sp ← o
 

03 RewriteQuery (sp )
 

04 if (sp.et == ‘‘immediate’’)
 

05 ProcessImmediateSp (sp )
 

06 else if (o.type == ‘‘data tuple’’)
 

07 process o as in normal continuous query processing
 

Figure 3.11. SA-CQP using QRA. 

Figure 3.12 shows the query rewriting algorithm used by the QRM. Just  like  in  the  

SFA algorithm, the dsps and  the  qsps are  intersected  to  produce  the  updated  security  

predicates (Step 2 and 5). In addition to this intersection, QRA also intersects the 

security predicates with the query predicates to produce the final predicates to be 

used in the query execution (equivalent to ϕr in Figure 3.1) (Step 8). The rewrit

ten continuous query is optimized by the optimizer, and the new plan replaces the 

previously used execution plan (Step 9). 

QRA has the advantage of minimizing the need to modify the existing DSMS com

ponents, e.g., query algebra, optimization rules and statistics, optimizer and the 

executor. Since the approach produces a new (rewritten) form of the same query to 

adapt to dynamic security policies, the existing query processor and the optimizer 

can be largely re-used (as they are) to implement the SA-CQP. In the next section, 

we discuss the pros and the cons of the SFA and the QRA methods in more detail. 

http:if(sp.et
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RewriteQuery (sp -- security punctuation)
 

01 if (sp.pt == ‘‘qsp’’)
 

02 security predicates ← Intersect (sp, Bufferdsp)
 

03 update Bufferqsp with sp
 

04 else if (sp.pt == ‘‘dsp’’)
 

05 security predicates ← Intersect (sp, Bufferqsp)
 

06 update Bufferdsp with sp
 

07 query predicates ← Find (Bufferquery, GetCurrentQuery ())
 

08 new Q ← Intersect (security predicates, query predicates )
 

09 new qp ← Optimize (new Q )
 

Figure 3.12. Algorithm for query rewriting. 

3.5.4 Pros and Cons of QRA and SFA 

The major difference between the QRA and the SFA is the abstraction level of 

the security predicates. In the QRA, security  predicates  are  represented  as  logical  

conditions of a query. In contrast, in the SFA, security  predicates  are  encapsulated  

in separate physical (SS+) operators  in  the  query  execution  plan.  As  a  result,  this  

difference contributes to both the pros and the cons of the approaches. The main 

advantage of the QRA is that the existing query processor infrastructure can be 

largely re-used as it is, since the sps are  not  propagated  into  the  query  execution  

plan. Here, a query plan consist of only “traditional” continuous query operators and 

the dynamic changes in the access control are implemented by the Query Rewriting 

Module (QRM ). The QRM is nearly all that is needed to be added to the system in 

this case. Conceptually, the QRA treats the existing query optimizer as the “black 

box” and invokes it as a sub-routine, with the query specification that integrates 

both the query and the security predicates. Such approach is faithful to the goal 

of minimizing code changes in the existing systems, but may result in a blow-up in 

the optimization time by a factor equal to the number of sub-routine invocations. 

In the worst case, this may happen every time a new dsp or a qsp arrives to the 
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Table 3.2
 
Default experimental parameters.
 

Parameter Value Description 

dsp/t 1:10 Average dsp to tuple ratio 

qsp/(dsp/t) 1:100 Average qsp to (dsp + tuple  ratio)  

ϕds 5 roles  Average size (in # of roles) of dsps 

ϕqs 10 roles Average size (in # of roles) of qsps 

Pds tuple-level Data-side policy applicability 

(i.e., policy level) 

Pqs role-change Query-side authorization 

et Deferred Default enforcement semantics 

|WG| 1000 tuples Size of WG window 

system. Clearly, the main disadvantage here is that this approach is not very robust 

to dynamic changes in security. Potentially, every new dsp and qsp may lead to 

the optimizer re-invocation, the query plan rewriting, and the physical query plan 

migration, thus consuming the precious resources from evaluating continuous queries. 

The main advantages of the SFA include its high performance and robustness to 

dynamic changes in security policies. Whenever a new qsp or dsp arrives, only the 

SS+ operators are affected, to reflect the changes in security policy, and the rest of the 

query plan does not need to be modified. The SFA approach is also more amenable to 

shared query processing in the case of multiple queries. If queries have the same query 

predicates (even if their authorizations are different), the processing can be shared 

with the proper security filters installed before and after the shared sub-part in the 

execution plan. Introducing new operators into the query algebra and making the 

existing query operators security-aware, however, brings several disadvantages. The 

query optimizer must now become aware of these new operators and their semantics, 

and must also adjust the cost model to reflect the streaming sps’ statistics and the 

cost of their processing by SS+ and regular (now security-aware) continuous query 

operators. In summary, the codebase of DSMS may need to undergo significant 

changes to accommodate the security-awareness inside the query processor. 
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Table 3.3
 
Dynamic properties of security policies.
 

Frequency variation: (1/1) →(1/10) →(1/30) →(1/50) →(1/100) 

Scope variation: (|R| = 1) → (|R| = 10) → (|R| = 50) → (|R| = 100)  

Intersection variation: (ϕds∩qs = 0)→(ϕds∩qs = 0.5) →(ϕds∩qs = 1)  

3.6 Experimental Study 

In this  section,  we  report  the  results  of  our  experimental  evaluation of  FENCE. 

The three questions that we address in this section are summarized below: 

•	 How effective is security punctuation mechanism, with embedded into streams 

dsps and  qsps), compared to alternatives? (Section 3.6.2) 

•	 How do the SFA and the QRA methods compare against each other, and against 

the naive approach in terms of query performance? (Section 3.6.3) 

•	 How big is the overhead of access control enforcement relative to the cost of the 

continuous query execution, i.e., SA-CQP vs. regular CQP? (Section 3.6.4) 

3.6.1 Experimental Setup 

We have implemented FENCE in a prototype DSMS called CAPE [8]. All our 

experiments are run on a machine with Java 1.6.0.0 runtime, Windows Vista with 

Intel(R) Core(TM) Duo CPU @1.86GHz processor and 2GB of RAM. For the ex

periments, we consider a geo-social networking application scenario described in Sec

tion 3.1. The goal in such application is to enable social networking combined with 

location-based monitoring without leaking any sensitive information as determined by 

the users’ and the application’s policies. For data, we use the Network-based Moving 

Objects Generator [181] to generate data streams with total of 110K moving objects 

(e.g., people driving in cars with GPS devices, pedestrians walking on the streets 

with mobile phones) in the city of Worcester, MA USA. We have instrumented the 
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generated data streams with two additional attributes, namely the “age” and the “in

terests”. The values for the “age” attribute follow a normal distribution with mean 

µ = 20,  and  the  values  for  the  “interests”  attribute  are  randomly  generated  out  of  

10 possible choices, e.g., dating, friendship, movies, etc.  Each  data  tuple  also  

contains a timestamp. 

In our setup, we have considered a scenario, where dsps are  generated  by  the  

data providers on their physical devices, and the streaming data arrives to the DSMS 

with already interleaved dsps. To embed the corresponding dsps (and  qsps) into 

the data streams, we have written a separate sp generator application, that, given 

the different values for the input parameters, produces security policies with desired 

characteristics. The dsps in  the  data  streams  describe  the  tuple-granularity access 

control policies, i.e., a security policy applies to an entire tuple, and thus, implicitly 

to all of its attributes. We chose the tuple level policy, because it is likely to be 

the most common granularity of security in such mobile environments. All tuple 

policies are described by a single dsp or a single qsp. We  decided  to  represent  policies  

using a single sp as this, in our belief, is likely to represent the most frequent case. 

Occasionally, more complex security policies may require multiple sps to  represent  it.  

Roles in our experimental setup, R1, R2 . . .  Rn represent the various real-life “roles” 

of subjects encountered in a geo-social networking application, e.g., R1 may represent 

a “family member”, R2 a “friend”, R3 a “stranger”, R4 a “co-worker”, and so 

on. 

When determining a query for our experiments, we envisioned a query that allows 

people to “connect” to each other based on similar interests, proximity in age and 

current geographic location (for example, to spontaneously meet at a nearby coffee 

shop). We thus use the following query in our experiments: 

SELECT * FROM S1, S2, CoffeeShops AS CS 

WHERE distance(S1.loc, S2.Loc) < 5 AND 

maxdistance(S2.loc, S3.Loc, CS) < 5 AND 



64 

intersect(S1.interests, S2.interests) AND 

difference(S1.age, S2.age) < 10 

This query may be executed by a user in a geo-social networking application, where 

one stream (S1) represents his or her data stream and another data stream (S2) of 

other users. 

To simulate dynamic query-side security policies, our sp generator inserts a new 

qsp periodically into the stream transmitting qsps. qsps are  generated  using  random  

role assignments from R1...R30. The  default  dsp to tuple ratio is 1:10, which means 

that there is one dsp per 10 tuples. The average policy size in dsps is 5  roles.  The  

qsp to data ratio is 1:100, which means that for every 100 data stream elements 

(data tuples and dsps), a new qsp is generated. The qsps depict  only role  changes.  

For simplicity, we have omitted the changes in the privileges of the roles that could 

be specified in the qsps (e.g.,  by  an  organization).  Unless  mentioned  otherwise,  the  

default parameters and their values used in the experiments are as specified in Table 

3.2. 

To simulate dynamic changes in security policies, we use our sp generator applica

tion to imitate the different possible real-life scenarios. The generation of the security 

policies with changing characteristics is managed as follows: the sp generator starts 

with an initial set of parameters, and over time the parameter values are varied, e.g., 

for frequency variation, the transition: (1/1) →(1/10) →(1/30) →(1/50) →(1/100) 

(as illustrated in Table 3.3), which means that initially sp to tuple ratio was 1 to 

1 (i.e.,  every  tuple  has  a  unique  policy),  after  some  time  it  changes  to  1 to  10,  and  

then to 1 to 30 and so on. This process is repeated continuously for the entire query 

execution duration. The values of sp generator parameters are changed every 10K 

tuples. Other kinds of transitions in the security policies are depicted in Table 3.3. 



65 

3.6.2 Effectiveness of Security Punctuations 

Our first set of experiments compares the performance of the three alternative 

access control enforcement mechanisms for streaming data: (1) the non-streaming, 

(2) the tuple-embedded, and (3) the security punctuation-based described in [38] (see 

Figure 3.13(a) and 3.13(b)). We refer to them in the charts as non-streaming, tuple 

and sp, respectively.  In  the  case  of  non-streaming  method, the  tuple  policies  arrive  to  

the system separately from the data. We assume that in the non-streaming case, users 

specify their policies using SQL, and send them separately over the network. When 

SQL-based access control policies are received, the non-streaming method parses them 

and stores them in the global policy hash table. For each arriving data stream tuple, 

the non-streaming method checks this policy table to retrieve the relevant security 

policies. To perform access control-based filtering, the relevant policies are intersected 

to determine if the access should be granted. In our setup, we have simulated this 

approach by using a separate stream of dsps (to  imitate  separately  arriving  policy  

specifications), and have introduced a small delay (a few seconds) to account for 

parsing of SQL. In the tuple-embedded approach, the tuples’ schema is extended by 

adding an additional attribute to store the access control policies of the tuples. Thus, 

each individual tuple carries its access control policy, i.e., all authorized roles that 

are allowed to access it. In the sp approach, dsps are  interleaved  with  the  streaming  

data. For the query-side dynamic policy changes, in all three cases, we use a stream 

of qsps to  simulate  the  changes  in  the  roles of  the  executing  query.  

Figure 3.13(a) compares the average output rate for the three alternatives. The 

bottom axis denotes the sp to tuple ratio (e.g., 1/10 means for every 10 tuples, there is 

an sp). As can be seen, the average output rate using the sp approach is significantly 

higher than for the alternative methods (ranging from 30%-55% compared to the non-

streaming approach and 8% to almost 70% to the tuple-based approach, with various 

sp to tuple ratios). Obviously, the lower the sp to tuple ratio, i.e., the more policies are 

shared by data tuples, the more advantageous the sp approach becomes. The security 
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policy frequency has almost no effect on the tuple-based approach. This is expected, 

because access control policies are stored in their entirety in each tuple, regardless of 

whether a set of consecutive tuples may share the same policy or not. When policies 

are the same for streaming data tuples, the tuple-based approach is thus significantly 

“penalized”. Here, the security processing for each tuple is done as if each tuple has 

a unique  policy,  and  a lot  of  unnecessary  overhead  is  thus  incurred.  The  other  two  

methods exploit the shared storage and the shared processing of security policies. 

In the non-streaming method, a single representation of each policy is maintained 

in the global policy hash table, and the security-related processing can be shared by 

(multiple) consecutive tuples with the same policy that arrive to the system. In the sp 

model, sharing policies is easy, and since they are already interleaved with the data, 

processing overhead is minimized (e.g., determining which policies are applicable to 

which data tuples), since sps always  precede  their  associated  data.  

Figure 3.13(b) shows the average execution cost for the three alternatives, which 

follows a similar pattern as described above for the average output rate. The non-

streaming method has the highest cost, which is somewhat expected. With frequent 

unique policies in the streams, more processing must be done by this method: policies 

must be parsed, stored, and when access control must be enforced, the policy table 

is probed, to find the policies and to intersect them. For the tuple-based method, 

the cost does not change, but it is higher than for the other two methods when 

the policies on the data tend to be similar and the sp to tuple ratio decreases (e.g., 

1/50 case). The sp approach has a slightly higher cost for the 1/1 case, as there 

is a distinct dsp for each tuple, consuming more memory resources, and requiring 

more processing. However, if policies are shared, which is the most likely scenario 

in a typical application, the sp approach can significantly outperform the other two 

methods. 
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Figure 3.13. Experimental results. 

3.6.3 Comparison of SA-CQP Methods 

In this experiment, we compare the performance of the security-aware query pro

cessing alternatives described in Section 3.5, specifically the naive approach, the se

curity filter approach (SFA) and  the  query  rewriting  approach  (QRA). In the naive 
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approach, we have used the post-filtering method, where the access control-based 

filtering of query results is done after the query execution plan. We ran the query 

for 25 minutes several times, each time varying the dynamic security characteristics 

as illustrated in Table 3.3. Figure 3.13(c) shows the total number of result tuples 

produced over time when using these different query processing strategies. The lines 

represent the averages over all runs. As a general trend, we have observed that, the 

SFA has about 14 to 22% higher output rate than the QRA and 24 to 37% higher 

than the Naive approach. Clearly, we can see that the fixed placement of the secu

rity processing, can often limit the continuous query performance, especially if the 

security conditions are quite dynamic. When using the naive approach, the system 

cannot adapt to security-related selectivities, and the tuples that could have been 

filtered earlier may instead be in the query pipelines consuming valuable resources, 

like memory and CPU. 

3.6.4 Overhead of Security Enforcement 

In this experiment, we evaluate the “overhead” of continuous access control en

forcement on the continuous query performance. We begin by first measuring the 

processing costs specific to the SFA and the QRA. Then,  we  compare  the  output  rate  

of the “security-free” continuous query execution (as a base case) to the output rates 

of the SA-CQP methods. Last, we present the overall overhead of these SA-CQP 

methods relative to the total execution cost of the query. 

For SFA, we  measure  the  cost  of  SS+ execution (Figure 3.13(d)). We have in

strumented the SS+ operator code to measure the time spent to process a dsp or a 

qsp. We  have  also  compared  it  to  the  cost  of  the  regular  select  operator  as  the  closest  

operator to SS+. As  can  be  seen  from  Figure  3.13(d),  for  the  1/1  sp to tuple ratio, the 

SS+ cost is close to the cost of the select operator. There is an additional overhead 

in SS+ to compute the filtering condition – the predicate based on the arriving dsps 

and qsps, that is not present in the regular selection and accounts for the disparity 
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Figure 3.14. Security enforcement overheads. 

in the 1/1 case. However, as one can observe, the more tuples share the same secu

rity policies, the smaller the overhead of the SS+ operator becomes compared to the 

selection. 

In Figure 3.13(e), we present our comparison of the security processing cost in the 

QRA method, specifically, the average execution cost of the query rewriting module 

(QRM ). Here, we only measure the cost of the query plan rewriting. We also contrast 

it to the average cost of the SS+ operator. As it can be seen, the QRM execution has 

a higher  overhead  compared  to the  SS+ execution (in some cases, by as much as 80%). 

The reason for such big cost disrepancy is that in SS+ only a policy intersection with 

the opposite buffer needs to be performed (which in most cases consists of only a 

single sp). Whereas the QRM module has to scan through all of the query predicates 

in the query to determine if the security predicates from the newly arrived sp can 

be combined with any of the existing query predicates. This operation is performed 

for every arrived sp, which  explains  the  big  cost  disrepancy.  The  cost  of  the  QRM 

execution can be improved by using more efficient internal data structures (e.g., an 

index on sps or  the  query  predicates),  but  in  the  worst  case,  the  QRM may still have 

to scan all query predicates. 

To evaluate the impact of the continuous access control enforcement on the query 

performance, we ran the query with and without security-awareness enabled. Figure 

3.13(f) shows the total number of tuples produced over time for both methods com
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pared to traditional continuous query execution as the baseline. We have abstracted 

the total security overhead in each method and illustrate it in Figure 3.14. As it can 

be seen, the query rewriting approach, on average, results in 21% overhead compared 

to the query execution cost, whereas the security filter approach in only 7%. The 

more frequently sps arrive  (i.e.,  the  more  dynamic  the  policies  are),  the  larger  is  the  

QRM ’s overhead. In the case of SS+, it  basically  replaces  the  dsps and  qsps in  its  

buffers and determines the latest policy intersection. If the selectivity of SS+ has not 

changed after the policy is updated, no further optimizations to the current execution 

plan is needed. 

3.6.5 Summary of Experimental Results 

The main results of our experimental study can be summarized as follows: 

1. The symmetric security punctuation model with streaming dsps and  qsps sig

nificantly outperforms the other alternatives, especially when more tuples share 

the same security policies. 

2. The SFA approach results in up to 37% improvement over the naive approach 

and up to 22% over the QRA approach in the execution time and the output 

rate. 

3. The runtime overhead of the continuous access control enforcement cost relative 

to the query execution cost is at most 21% for the QRA-based query processing 

and only 7% for the SFA-based query processing. 

4. In general, the ability of the continuous query processor to adapt to not only 

data-related but also to security-related selectivities can significantly improve 

continuous query performance. 
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3.7 Conclusion 

In this chapter, we have presented our solution to address the problem of con

tinuous online access control enforcement in data stream environments, where both 

data and query security restrictions may change as the query is being evaluated. Our 

research motivation comes from the complicated access control requirements inher

ent in real-time streaming environments in the context of healthcare, location-based 

services and financial applications. We have proposed the FENCE framework, where 

data and query access control policies are modeled symmetrically using the data and 

the query security punctuations. We have implemented our proposed FENCE frame

work in a general DSMS prototype. Our experimental results show that our approach 

has low overhead and is suitable for data stream environments with dynamic security. 

We believe that our work makes an important contribution to both the databases and 

security fields in that it is the first to propose and implement a practical approach 

for online continuous access control enforcement where policies for data and queries 

may change concurrently. 
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4 TAGGING OF STREAMING DATA 

In this chapter, we propose to enrich data streams with a new type of metadata called 

streaming tags or short tick-tags1. The  fundamental  premise  of  tagging  is  that  users  

can label data using uncontrolled vocabulary, and these tags can be exploited in a 

wide variety of applications, such as data exploration, data search, and to produce 

“enriched” (with additional semantics) and thus, more informative query results. 

We focus primarily on the problem of continuous query processing with streaming 

tags and the tagged objects, and address the tick-tag semantic issues as well as the 

efficiency concerns. Our main contributions are as follows. We present the Stream 

Tag Framework (or short STF ) that supports  a  stream-centric approach to tagging, 

and where tick-tags, attached  to  streaming  objects,  are  treated  as  first-class  citizens.  

Under STF, users can tag streaming objects at various granularity and can query tags 

explicitly as well as implicitly by outputting the tags of the base data together with 

continuous queries’ results. We have implemented STF in a prototype DSMS, and 

through a set of performance experiments, we show that the cost of stream tagging 

is small and the approach is scalable to a large percentage of tagged objects. 

The rest of this chapter is organized as follows. We motivate the need to support 

streaming data tagging in Section 4.1. We give the overview of the Stream Tag 

Framework in Section 4.2. Section 4.3 describes our tagging model, the streaming 

tag concept and presents the tag query language called TAG-QL. Section 4.4 describes 

two tag-bassed query processing methods, namely the tag-oriented and the tag-aware 

query processing. Section 4.5 presents the physical implementations of the several 

key tagging operators. 

1We chose the name “tick-tags” to capture the transient nature of attached labels and distinguish them from traditional  

“tags” (e.g.,  for web pages,  images, files) that  tend  to be static  and persistent.  
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We describe  the results  of  our  experimental  study  in  Section  4.6.  Finally,  we  

conclude this chapter in Section 4.7. 

4.1 Tagging in Data Stream Environments 

Data streams are common in applications ranging from location-based services 

and traffic management to environmental and health sensing. Over the past few 

years, a large amount of research has been devoted to the design and development 

of DSMSs [4, 8, 43, 176]. With the exception of a few systems [38, 105, 182, 183], 

most DSMSs assume that data streams transmit exclusively data tuples (without any 

additional metadata embedded inside streams), and continuous queries are evaluated 

on the streaming data tuples. 

We propose to enrich data stream environments with a special type of metadata 

called streaming tags, or  short  tick-tags2. An  informal  definition  of  tagging  is  the  

process of adding comments or labels to something. The problem of stream tagging is 

important, because high volume continuous data streams are ubiquitous, and stream 

processing applications are becoming vital in our every-day life (e.g., real-time traffic 

monitoring, emergency response and health monitoring). Tags on streaming data can 

enrich existing stream-based appications, e.g., [23–25], and can enable and inspire 

novel useful services as described in Section 1.2. We have also described many other 

ways of leveraging of streaming data tags in Section 1.3.2. 

4.1.1 Challenges 

Due to the inherent characteristics of streaming environments, the tagging of 

streaming objects is a challenging task. Stream data is typically characterized by 

large volumes, high input rates, is generated by multiple distributed data sources that 

rapidly send updates. Processing of continuous queries on streaming data requires 

2The terms “streaming tags” and  “tick-tags” represent  the  same  concept  in  the  context  of  our  work  and  are  used  

interchangeably. 

http:tick-tags2.An
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near-real response time. Yet unlike traditional databases, data is not persistently 

stored on the server, but rather streamed through the DSMS once and then discarded. 

A system  supporting  tagging  of  streaming  data  must  consider  scalability,  output  rate,  

latency and resource utilization. To be useful in practice, a tagging mechanism must 

be able to support a variety of tagging granularities: users should be able to tag 

streams, tuples, attributes, or specific data values. For instance, if a set of data 

tuples correspond to a particular physical phenomenon (e.g., a hurricane), then it is 

useful to tag all those tuples with a single tag. Alternatively, if a particular data 

value is called into question, users should be able to attach a tag to an individual 

data value as well. Naturally, the more fine-grained the tagging is, the higher the 

overhead it may potentially incur. Furthermore, due to the infinite nature of streams 

and typically long-running continuous queries, frequent changes in data are likely 

to occur, which translates into possibly very frequent changes in tags’ contents and 

statistics. 

4.1.2 Alternative Tagging Methods 

To motivate our proposed solution, next we describe several alternative methods 

that could be used for tagging of streaming data. 

•	 Table Approach. One  solution  is  to  build  a  separate  global  table  in  DSMS,  where  

all tags arriving via a separate channel (e.g., another stream) are maintained. 

For each tag, the links to the appropriate streaming data elements in the form 

of query predicates are stored, as illustrated below: 

Tag Link To Data 

“Running” SELECT measurement FROM HeartRate 

WHERE time > 9:00AM and time < 9:30AM 

Using this method, the tags are maintained separately from the streaming  data.  

As a result, this method may potentially incur significant overheads. All tags 

arriving to DSMS (separately from the data) must be processed, and for every 

tag an entry in the central tag table must be created or updated. To identify the 
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data to which the tags are applicable to, a separate continuous query must be 

instantiated (in the worst case, one-per-tag) to find the streaming data elements 

that the tag corresponds to. If there are many tags, this may severely impact the 

performance of the system, as significant amount of resources would be taken 

away from evaluating continuous queries. Furthermore, after the steaming data 

passes through the DSMS, their respective tags must be deleted from the global 

tag table, thus further increasing the tag-related maintenance overhead. 

•	 Extended Data Tuples. An  alternative  approach  to  tagging  is  to  extend  the  

schema of streaming data tuples by adding an additional attribute, where the 

tag information is stored. Here, tags physically are strongly coupled with the 

streaming data tuples. Although attractive, this approach has several limi

tations. First, by increasing the tuples’ sizes, more memory and processing 

resources are consumed. Second, tags may apply to a collection of data tuples 

or data values, but using this method, tags would have to be duplicated, even 

if several tuples share the same tag. Furthermore and more importantly, when 

searching for tags or tagged data, every single tuple must be looked at to see 

if the tag content matches the search predicate. This approach suffers from 

the same problem as the “non-normalized” representation of data in relational 

databases, which calls for optimization of design [1]. 

•	 Streaming XML. Another  possible  solution  for  tagging  is  to  exploit  streaming  

XML [184, 185]. XML is human-legible and is designed to be self-describing. 

This enables the capability to define self-describing data elements by users. 

However, XML technology is complex and XML query processing (using ei

ther XQuery or XPath languages) is not intended to be evaluated over bursty 

streams. Even with the extensions supporting XML data streams such as 

[171, 172, 186], continuous processing of frequent XML-based tags is likely to 

be expensive and can seriously limit the performance of continuous queries. 

http:Tuples.An
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•	 Streaming Tags3. Our  proposed  solution  is  to  introduce  a  special  type  of  stream

ing metadata called the streaming tags or short tick-tags. Tick-tags are embed

ded inside data streams and uniquely identify the streaming data objects (e.g., 

tuples, tuple attributes or data values) to which additional semantic labels are 

being attached. The advantage of the tick-tag approach is three-fold. First, 

tick-tags can be shared by several streaming objects, thus reducing memory 

and processing overheads. Second, tick-tags, interleaved  with  streaming  data,  

facilitate a faster search for the objects they are applicable to. Furthermore, 

tick-tags can be just as dynamic as the streaming data and can be exploited 

in continuous query optimization similar to data tuples. The query optimizer 

can determine the best order of operators by considering both the data statis

tics as well as the streaming tags’ statistics. Finally, if users decide not to tag 

their data, then the data streams are identical to traditional data streams, and 

the existing query processing solutions for regular streaming environments are 

applicable as before. 

4.1.3 Our Proposed Solution: The Stream Tag Framework 

Here, we present the Stream Tag Framework (or short STF ) that provides  full-

fledged support for tagging of streaming data. In our endeavor, we strive to achieve 

the following goals. 

•	 Stream-centric tags. Tags  applicable  to  streaming  objects  are  not  transmitted  

and stored separately from the actual data, but rather interleaved with the data 

tuples inside data streams. Streaming tags have a transient nature – they are 

not stored permanently on the server, but rather “make a one pass” through 

the system and then may be discarded. 

3We use terms “streaming tags” and “tick-tags” interchangeably.  Both mean the same thing in the context of our  

work. 
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•	 User-centric tags. Different  users  may  have  unique  understandings  and  expla

nations for the same piece of information, thus it is essential for a tagging 

framework to support “personalized” tags with respect to data. Users may also 

want to customize the time setting of their tags – whether they should be at

tached and be applicable only once or for some time in the near future. We 

refer to this feature – a user-centric tag semantics. 

•	 Explicit Querying of Tags. Users  or  applications  should  be  able  to  query  stream

ing tags explicitly, in  an  ad-hoc  or  in  a  continuous  manner.  We  call  this  

feature – the tag-oriented query processing (see Figure 4.1). For example, a 

location-based application may specify a range query Q: Continuously retrieve 

all streaming tags specified by users in the downtown of City X4 . Here the re

sults of the query Q are characterized by a continuous stream of tick-tags that 

appear in the specified geographic region. 

•	 Enriched Query Results. Regular  continuous  queries  can  also  produce  superior  

(tag-enriched) results [86,157]. This functionaliy is enabled by tag-aware query 

processing (Figure 4.1). The goal here is to preserve the tags attached to the 

original data based on which the query results are computed. For example, if 

a tag  calls  into  question  the  veracity  of  some  streaming  data  value,  one  would  

like this information to be available to anyone who sees the results of a query 

based on this information. The main challenge in this context is to correctly 

propagate streaming tags through the query plan, while the tags’ corresponding 

data is being filtered, projected out or joined with other data tuples. 

•	 Tag Query Language. Finally,  a  comprehensive  tagging  system  must  provide  a  

high-level language to attach tags to streaming data, to query them or to specify 

that enriched (with tags) results should be produced for a given continuous 

query. For this purpose, we introduce a declarative Tag Query Language (or 

4Here, we assume that tick-tags are attached to streaming data that has a location attribute. 



78 

short TAG-QL), which provides an intuitive interface for users to perform the 

above-mentioned actions. 

4.1.4 Our Contributions 

The contributions of our Stream Tag Framework (STF ) can  be  summarized  as  

follows: 

1.	 Tag Model. We  introduce  the  notion  of  the  tick-tag metadata for tagging various 

streaming objects (e.g., tuples, data values, etc.). Tick-tags are embedded inside 

data streams and support a wide variety of user-based semantics. 

2.	 Tag Query Language. We  introduce  the  Tag Query Language (or short, TAG

QL) that enables declarative specification and querying of streaming tags. 

3.	 Tag-Oriented Query Processing. In  STF,  users  can  attach  and  explicitly query 

tick-tags. We  describe  the  tag-oriented  query  algebra  that  enables  this  func

tionality. 

4.	 Tag-Aware Query Processing. STF  also  supports  implicit querying of tags, 

where continuous query results are enriched with the tags of the base data. We 

describe the extensions to the continuous query algebra to support the correct 

propagation of tags in a query pipeline. 

5.	 Implementation and Experiments. To  illustrate  the  feasibility,  STF  has  been  

implemented in a prototype DSMS called CAPE [8]. Our experimental analysis 

shows scalability and benefits of the tick-tag approach, and the costs associated 

with the tag-awareness. 

4.2 Stream Tag Framework Overview 

Figure 4.1 shows a data stream environment with the STF (integrated inside 

DSMS) and the streaming tick-tags embedded inside data streams. 

http:Experiments.To
http:tick-tags.We
http:Processing.In
http:Language.We
http:Model.We
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TAG-QL 
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Tick-tag results 

Tuple results
(based on semantics 

of tick-tags) 

Enriched tuple 
results 

Figure 4.1. Stream Tag Framework (STF) overview. 

We consider a centralized DSMS processing long-running queries on a set of data 

streams. A continuous data stream s is a potentially unbounded sequence of tuples 

that arrive over time. Tuples in the stream are of the form tuple = [sid, tpid, A, ts], 

where sid is the stream identifier, tpid is the tuple identifier, A is a set of attribute 

values, and ts is the timestamp of the tuple. 

A user  u ∈ U can attach tags t ∈ T to streaming objects o ∈ O that can be of 

any granularity. A taggable streaming object o can be a (sub-)stream, a tuple, an 

attribute of a tuple, or a data value. An object is a piece of data to which additional 

information (via a tag) can be attached. An object o can have multiple tags at any 

given time and can be tagged in two ways: by a user providing the streaming data 

(on the client side) or by a user of the DSMS querying the streaming data (on the 

server side). Tagging itself can be performed in an ad-hoc manner, or it can also be 

continuously executed using a special type of continuous query called the continuous 

tagging query (see Section 4.3.5). 

4.3 Streaming Tags (or Tick-Tags) 

4.3.1 What is a Tick-Tag? 

Tick-tags are metadata tuples that attach additional information (a keyword, 

a label  or  a desciption)  to streaming  data objects.  Tick-tags precede the streaming 
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objects they are applicable to (i.e., the physical data tuples containing the information 

to which the tag is attached), and the tuples in data streams are completely unaware 

of the tick-tags. In  comparison  to  traditional  keyword  metadata,  tags  are  not  chosen  

from a controlled vocabulary defined by a single user, by an organization or by a 

third party [187, 188]. Instead (as it is also commonly done on the Web), users in 

their role as taggers can create tags of any content and attach them to streaming 

objects at any time. As a result, tick-tags contribute to a development of a real-time 

and continuously evolving folksonomy [164] – a rich way to characterize real-time 

data and means to discover interesting things about this data based on exploiting the 

collective knowledge of possibly many users. 

Tick-tags have several distinguishing characteristics compared to their traditional 

counter-parts – the (static) tags used for tagging web pages, images, files, or relational 

data. Table 4.1 gives a brief comparison of dynamic tick-tags against traditional static 

tags. 

Table 4.1
 
Traditional tags versus streaming tags.
 

Property Traditional Tags Streaming Tick-Tags 

Persistence Permanent Transient 

Locality (Most likely) stored separately from 

data 

Interleaved with data 

Access Random access Sequential access 

Input Rate Low High 

Size Finite Potentially infinite 

Tag 

Processing 

One-time Continuous 

As one can observe from Table 4.1, tick-tags inherit many characteristics of the dy

namic streaming data that they are associated with. Namely, they are infinite, they 

arrive online, stay in DSMS only for a limited time and eventually get discarded by 

the system. 

http:tick-tags.In
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4.3.2 Tick-Tag Physical Design 

The physical schema of a tick-tag is shown in Figure 4.25 . 

•	 Tagger Identifier (TID) depicts  the  source  of  the  tick-tag. The  id  of  a  tagger  is  

globally unique and is determined by the system. 

•	 Applicability describes the stream objects to which the tag is applicable to, e.g., 

a data value  or  a collection  of tuples.  To  keep  the  objects’  description  compact,  

regular expressions [189] similar to [38, 105] are used in this field. 

•	 Content is a string datatype and stores the actual tag value. Given that 

STF supports an uncontrolled vocabulary, this could be anything: a keyword 

“Accident”, a description “Nice Weather” or  an  emotional  expression  “Happy”, 

“Sad”. 

•	 Type is used by the framework to classify streaming tags. There are a number of 

taxonomies for tags in the literature, e.g., [190,191]. Although not the primary 

focus of this paper, we have added this field in the tick-tag schema to support 

future applications, such as reality mining [192] and tag-based data classification 

[193]. Our current implementation considers the following five types of tags, 

while the other types and classification algorithms will be a part of our future 

work: 

–	 Objective: Objective  means  a  description,  that  does  not  depend  on  a  par

ticular user. For example, “Bad Smell” is  not  an  objective  tag  (because  

one needs to know who thought it was bad), whereas “3 Car  Accident” 

or “Electricity Loss” are  objective  tags.  

–	 Subjective: Subjective  tag  implies  a  personal  opinion.  For  example,  “Nice”, 

“Awful”, “Interesting”. 

–	 Physical : This  type  of  tag  describes  something  physically.  For  instance,  

“Broken Light” or  “Icy Road”. 
5The fields not specified by users are shaded in grey. 
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Tagger	 Time Applicability Content Type Sign Lifespan Mode Identifier stamp 

Stream(s), Tuple(s), 
Attribute(s) ... 

Blah ... TID 
O 

C 
+ 

-

explicitly specified by tagger 

Figure 4.2. Tick-tag schema. 

–	 Acronym: This  type  of  tag  is  an  acronym  or  a  lingo  that  might  mean  

various things. For example, “ZZZ” might  mean  going to sleep,  “GFC” –  

going for coffee, and “911” –  emergency  or  danger.  

–	 Junk : The  tag  is  meaningless  or  indecipherable.  For  example,  “J” or  

“FJKDSLAD”. 

•	 Sign. Since  taggers  use  diversified  vocabulary,  often  it  may  be  difficult  to  gen

erate an overall opinion or characterization based on the tags’ content [191]. 

Therefore, we have added a sign field to serve as a qualitative description of a 

tick-tag. Sign allows tags to rate and express opinions in a more shareable vo

cabulary than conventional tag content. Plus(+) or minus(-) values in the sign 

field easily characterize whether a tag has a positive(+) or negative(-) context. 

By counting the numbers of positive and negative tags, a representation of the 

overall opinion (or a “reputation”) or an assessment of the tagged information 

can be known. Tags without any value in the sign are considered as neutral and 

serve as regular content tags. 

For example, consider an online auction system such as eBay [194]. This sys

tem monitors bids over items available for auction. One can imagine an Auction 

stream containing items to sell with a schema: Auction(seller, product, prod

uct features, start price, time). A collection of tags with different signs appli

cable to the objects in the stream Auction can give various interpretations as 

shown in Figure 4.3. The system could interpret the collection of positive and 

negative tags for objects here as: 
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Auction
 
Schema
 

tuple 

seller product product_features start_price time 

3:00:00AM 145 Cell Phone 
G12 

Motorolla, 
Touch screen $100.00 

10 tags 3 tags 20 tags 40 tags 5 tags 

+ - -- +- +- + + 
0 16 4 1 539 08 2 3 

Figure 4.3. Interpretations based on tag signs. 

–	 “Most people like the seller.”6 

–	 “Most people like the features of the product.” 

–	 “Most people don’t like the start price of the product.” 

The more tags there are, the more diverse interpretations can be made. A sign 

feature, thus, serves as a “bridge” for many diverse tags making them more 

shareable and enabling richer tag semantics. 

•	 Lifespan. The  lifespan  of  a  tick-tag is the time interval during which the tag 

is active. A user specifies for how long (in the near future) the tag should 

be applicable to a streaming object. After the tag’s lifespan expires, the tag 

becomes inactive and the system garbage collects it. If only a single instance’s 

applicability is wanted (i.e., one pass through the system together with the 

data without any temporary delay in the system), the keyword “I” (meaning  

“Instant”) is specified in the field. 

•	 Mode. The  tag  mode  indicates  a  user’s  preference  regarding  the  combination  

of the tag with the earlier tags (those tags that are in the system and whose 

lifespans have not yet expired). “O” indicates  “Overwrite”, and “C” means  

“Combine”7 respectively. Taggers can specify the mode with respect to their 

tags only, i.e., a user’s tag cannot overwrite the tags generated by other users 

(taggers) applicable to the same streaming objects. We use TID field to track 

6This could be based on the services or the quality of the products users might have purchased from the seller before. 
7Different semantics can be used to combine tick-tags. 
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the sources of tags (i.e., the taggers) for this purpose. This field enables users 

to retract their earlier tags or to add more elaborate descriptions via multiple 

tags. 

•	 Timestamp. Timestamp  describes  the  time  when  the  tag  was  generated  by  a  

user (i.e., the tagger). 

4.3.3 Tag Query Language (TAG-QL) 

To enable users to attach and query streaming tags in an intuitive manner, STF 

provides a declarative language called the Tag Query Language (or TAG-QL for 

short). The syntax for attaching a tick-tag to a streaming object is shown below8: 

ATTACH TAG <tag_content>
 

TO <object_description>
 

(WHERE <condition_description>)
 

(WITH
 

TAG_SIGN = < + | - >
 

TAG_LIFESPAN = <lifespan_value>
 

TAG_MODE = <mode_value>)
 

The <object description> describes the applicability of the tag, namely the object(s) to 

which the tag is being attached to. The WHERE <condition description> clause is used to 

describe the conditions that the tagged data must satisfy. Implicitly, the WHERE clause 

also conveys the “location” in the stream, where the tick-tag will be inserted. Since 

tick-tags always come before the data they are applicable to, the WHERE clause states 

which data the tag should precede in the stream. The <condition description> can be a 

simple condition or a nested sub-query. Other TAG-QL statements are illustrated in 

Table 4.2. We will describe them in detail and give query examples in the rest of the 

paper. 

8The WHERE... and the WITH... clauses are optional here. 
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Table 4.2
 
Overview of key TAG-QL statements.
 

Syntax Meaning 

ATTACH TAG ... Attaches a tag to a streaming object 

SELECT TAGS ... Selects tags satisfying a search predicate 

SELECT TAGGED OBJECTS... Selects tagged objects 

SELECT ... WITH TAGS Returns tag-enriched query results 

4.3.4 Tick-Tag Examples 

Here, we present several tick-tag examples to illustrate the syntax and the seman

tics of streaming tick-tags. Consider  a  data  stream  Patients(sid, pid, measure, loc, 

time) transmitting  the  real-time  health  measurements  and  the  current  locations  of  

patients. The following tick-tags may be generated9: 

t1: !|-,-,-,loc.value|Panic Attack|!|-|1 min|O|! 

represents a tag attached to the current location value of the user, and indicates 

that the user is having a panic attack at her current location. The user feels negative 

about this experience (- sign), which may also explain the changes in the health 

measurements (e.g., increase in the heart rate of the patient). The lifespan of the 

tag is 1 min, and it overwrites any other tags associated with this location value 

previously sent by the user. This is an example of a tag attached to a specific data 

value10 . 

t2: !|-,-,measure,-|Running|!|+|30 min|O|! 

is a tag attached to the heart rate measure attribute in the stream, and indicates 

that the user is currently running, which is something the user likes to do (as described 

by the negative ‘+’ sign). The lifespan of the tag is 30 min (possibly indicating how 

long the user intends to exercise), and it overwrites any other tags associated with 

9We only  illustrate  the fields  specified  by  users.  The  system  fields  (that  are  not  exposed  to  users)  are  denoted  by  !. 
10To attach a tag to an attribute value “<attribute name>.value” syntax  is  used,  where  <attribute name> is 

replaced with an actual attribute name. 
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the heart rate measure attribute specified by the user. This is an example of a tag 

attached to a tuple attribute. Using TAG-QL, the above tags are expressed as follows: 

t1	 ATTACH TAG 

‘Panic attack’ TO 

Patients.loc.value 

WITH 

TAG SIGN = ‘-’ AND 

TAG LIFESPAN = 1 min AND 

TAG MODE = OVERWRITE 

t2	 ATTACH TAG ‘Running’ 

TO Patients.measure 

WITH 

TAG SIGN = ‘+’ AND 

TAG LIFESPAN = 30 min AND 

TAG MODE = OVERWRITE 

The absence of the WHERE... clause in the TAG-QL statements above indicates that 

there are no constraints regarding which data values the tick-tags must precede. Thus, 

the tick-tags will  be  inserted  into  the  stream  interleaved  with  whatever  the  tuples  

happen to be transmitted at the time. 

4.3.5 Tick-Tag Generation 

Users can create tick-tags manually (in an ad-hoc manner) as described above. 

Alternatively, users can perform continuous tagging by instantiating a special type 

of query, called the Continuous Tagging Query. A  novel  operator,  called  the  Tagger 

operator always exists in such query. This operator consumes an input data stream, 

continuously evaluates the tagging condition, and produces the corresponding tick

tags that  get  inserted  into  the  output  stream  and  represent  the  tags being  attached  to  

the following after them data. We describe the physical implementation of the Tagger 

operator in Section 4.5. The processing of the tagging query is almost identical to 

an ordinary continuous query, except that the data tuples in the output stream are 

now interleaved with tick-tags. An  example  of  a  continuous  tagging  query  expressed  

in TAG-QL is shown below: 

ATTACH TAG ’Dangerous’
 

CONTINUOUSLY
 

TO Patients.pid.value
 

http:tick-tags.An
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WHERE (SELECT pid 

FROM Patients 

WHERE measure > 80) 

WITH 

TAG_SIGN = ’-’ 

The keyword CONTINUOUSLY in the TAG-QL statement above indicates that the tagging 

will be executed continuously, that is, a tag will be attached to every patient id (pid) 

value with the heart rate above the specified threshold. Specifically, a tick-tag (with 

the value “Dangerous”) will be created and inserted into the stream ahead of every 

tuple with the heart rate measure > 80 for the entire duration of the tagging query 

execution. 

4.4 Tag-Based Query Processing 

We distinguish between two types of tag-based query processing in STF, namely 

the tag-oriented query processing and the tag-aware query processing. 

4.4.1 Tag-Oriented Query Processing 

Expressing Tag-Oriented Queries in TAG-QL 

In tag-oriented query processing, users or applications query tick-tags explicitly. 

Explict tag querying is useful for the following two purposes: (1) to locate tags where 

the tag values themselves are of interest, e.g., Show me all tags which have a sign = 

‘-’ ; and  (2)  to  locate  tags  where  the  associated  base  data  values  are  of  interest,  e.g.,  

Show me all data tuples that are tagged with the tags that have a value = ‘dangerous’. 

Such explicit querying gives the ability to see what other streaming objects have been 

tagged with the same keyword or a sign, as well as browse through the tags related 

to the same streaming objects. For specifying such queries, TAG-QL provides “SELECT 

TAGS” and “SELECT TAGGED OBJECTS” statements. Queries Q1 and Q2 shown in Table 4.3 are 

examples of such tag-oriented queries. 
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Table 4.3
 
Examples of tag-oriented queries.
 

Syntax Meaning 

Q1: SELECT TAGS 

FROM Patients 

WHERE OBJECT = Patients.measure 

AND 

TAG SIGN = ‘-’ 

Finds all negative tags attached to the heart rate measure 

attribute in the Patients stream 

Q2: SELECT TAGGED OBJECTS 

FROM Patients 

WHERE TAG = ‘Emergency’ 

Returns tuples that contain objects tagged with word 

‘Emergency’ in  the  stream  Patients 

Tag-Oriented Query Algebra 

Here, we describe several tag-oriented operators introduced into the continuous 

query algebra. Let t denote a tag, o – a streaming  data object,  T – a  stream  of  tags,  

O – a stream  of data objects,  and  p – a search  predicate,  which  can  be  either  on  data  

objects (denoted as po) or  tags  (denoted  as  pt). The following tag-oriented operations 

are defined in STF11: 
T ' 
r  

Tagger Operator [TO(O, po, t) → O , where  ∀ ti ∈ T ', ti = t]. Tagger operator 

is a unary operator that processes tuples on-the-fly, by attaching a tag t to an object 

o ∈ O, if  o satisfies the condition po. As  a  result,  the  tagger  operator  inserts  a  tag  t 

into the output stream preceding the object o. Figure  4.4(a)  shows  an  example  where  

the object o2 gets tagged with the tag t. 
T 
r  

Tag Selection [TS ( O , pt) → T ']. Tag selection is a unary operator that returns 

tags T ' (T ' ⊆ T ) (without  their  respective  objects)  that satisfy  the  tag  search  pred

icate pt. Figure  4.4(c)  illustrates  an  example,  where  tags  t1 and t2 get returned as 

results by the tag selection operator based on the search predicate pt. 

Tt 

11
r  r  

We denote an  object  o tagged with a tag t as o , and  a  stream  with  embedded  inside  it  tick-tags as O . 
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aggregate values 

(e) Tag-Based Aggregation 

Figure 4.4. Tag-oriented algebra (examples). 

T 
r 

Tagged Object Selection [TOS ( O , pt) → O ' ]. Tagged object selection is similar 

to tag selection operator (TS), except that instead of tags it returns the tagged 

objects O ' ⊆ O, whose  tags  satisfy  the  selection  predicate  pt (for example, objects o1 

and o2 in Figure 4.4(d) based on their respective tags t1 and t2). A variant of this 

operator returns the tagged objects together with their respective tags. 
' TT1 T2 
rr r 

Tag Join [TJ ( O1 , O ' , where  T ' = E(T1,T2)�O2 , E) → = ∅]. Tag join is a binary 

operator that joins two streams of objects, interleaved with tick-tags, based  on  the  tag 

join condition E. The  join  condition  E can be a tag equivalence, or a tag similarity, 

or some other tag join criteria. For example, a tag equivalence function TE (t1,t2) 

checks for the content equivalence of two tags, which can be word-based “Accident” 

= “Accident”, or semantics-based (e.g., when words mean the same thing) using the 

system’s dictionary12, e.g., “Accident” = “Disaster”, or by co-occurrence, if both 

tags contain the same objects. One of the simplest co-occurrence methods is using 

STF maintains the internal dictionary to support tag classification, tag equivalence and tag similarity function. 12
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absolute co-occurrence, that  is  counting  the  number  of  times  two  tags  are  assigned  to  

the same object. The similarity can also be estimated based on relative co-occurrence, 

also called “tag overlapping”, and can be measured by Jaccard coefficient [195]. If 

A and B are the collections of stream objects described by two tags, relative co

|A∩B|occurrence is then defined as: JC(A, B) =  . That is, relative co-occurrence |A∪B| 

is equal to the division between the number of objects in which tags co-occur, and 

the number of objects in which appear any one of two tags. For example, by this 

definition, the tag “Fireworks” could  be  equivalent  to  the  tag  “Cool”, if users had 

tagged all objects annotated with the term “Fireworks” with  the  tag  “Cool.” 

The result of the tag join operator is a single stream of tagged objects whose 

tags join based on the join function E. Figure  4.4(b)  shows  an  example  of  a  tag  

join operator output. Here, tags t1 and t2 from the two input streams join based 

on function E, and  are  sent  to  the  output  stream  followed  by  their  respective  tagged  

objects o1 -o4. Note,  that  although  the  tags  join,  physically  they  are  not combined into 

a single  tick-tag tuple. The reason for such design is the need to preserve the correct 

base tags’ semantics. Since the tag join is based on only the tick-tag ’s content field, 

we maintain the original tick-tags with their values (for attributes like lifespan, sign, 

mode, etc.,) to ensure that the user-specified tag semantics is enforced correctly even 

after the tags join. After tag join, an additional streaming element is inserted into 

the stream – the so-called “streaming tag index” tuple  (or  short  “stix ”). The purpose 

of the stix is to store the references of the joined tags (which are placed consecutively 

together in the output stream) to their respective base data tuples. In the tag join 

example in Figure 4.4(b), the stix contains the following information: 42|11 
13 . The 

subscripts (1 and 2) are  the  indicies  to  the  subsequent  after the  stix tick-tags, i.e.,  “1 ” 

refers to the first tick-tag and “ 2” to  the  second  tick-tag, respectively.  The  values  in  

each index refer to the offsets of the data tuples to which that tick-tag applies to. 

Thus, the above stix means the following: the first tick-tag applies to the tuples 1-3 

(o1 -o3) and  the  second  tick-tag applies to the tuple 4 (i.e., o4). 

The stix illustration should be read from right to left. 13
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The main idea of the tag join operator is to combine two streams of tagged data 

based on the similarity of their embedded tags’. This operation can be useful for 

applications searching for related (based on the tags) streaming data that may arrive 

from various sources. 
TT 
rr 

, E, Gagg Tag-Based Aggregation [TG( O T )→ O ' ]. This operator groups objects 
agg 

GT 

in a stream by their tags (the groups are based on the tag function E) and  incre

mentally updates the value of a given aggregate for each tag-based group (see Figure 

4.4(e)). For every arrived tuple, the operator first adds it to the state buffer, and 

determines which group it belongs to (based on its tag’s content and the tag similar

ity function E), and then returns an updated result for this group (preceded by the 

subgroup’s corresponding tags), which is understood to replace a previously reported 

answer for this group. It may happen that a data tuple may belong to several groups 

based on the attached tag to it. In this case, the operator picks the “closest” (again 

based on the function E) tag  group  for  the  streaming  object and  updates  the  answer  

for that group. Objects without any attached tags can be either completely ignored 

by the operator or can be placed into a separate “non-tagged” objects group, for 

which the result is maintained similar to the tag-based groups. In the second case, a 

dummy tick-tag (with an empty content) is inserted prior to sending the answer to 

preserve correct semantics – to ensure that the earlier outputted tags are not applied 

to this aggregate answer. 

4.4.2 Tag-Aware Query Processing 

Expressing Tag-Aware Queries in TAG-QL 

In addition to the explicit querying of tags, users and applications may find it 

useful to receive continuous query results that are “enriched” with the tags associated 

with the original data, based on which the query results were produced. We call this 

functionality “implicit tag querying” and  achieve  it  by  performing  the  tag-aware  query  

processing. To indicate that enriched results should be outputted for a given query, 
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Table 4.4
 
Examples of tag-aware queries.
 

Syntax Meaning 

Q3: SELECT pid, loc, time 

FROM Patients 

WHERE measure > 80 

WITH TAGS 

Select-project query that will produce results with interleaved 

tags of the base data. 

Q4: SELECT A.pid, B.pid 

FROM Patients A [1 min], 

B [3  min]  

WHERE Dist(A.loc, B.loc) 

WITH TAGS 

Animals 

< 0.2 

Join query that will produce results with interleaved tags of 

the base data. 

a user  simply  adds  a  “WITH TAGS” statement when specifying a continuous query to the 

system as depicted in Table 4.4. 

One of the immediate challenges in tag-aware query processing is the support for 

correct propagation of streaming tags through the continuous query pipeline, as data 

objects are being filtered, joined, or projected out. If one thinks of a tag as a form 

of mark-up on the streaming data, the key question here is how should that mark-up 

be transferred into the results of a query. We enable this functionality by adding the 

tag-awareness to continuous query operators. 

Tag-Aware Query Algebra 

Projection is an unary operator that processes tuples by discarding unwanted at

tributes. This operator simply propagates tick-tags and thereafter the projected tu

ples. If a tick-tag applies only to the projected attributes, it is discarded by the 

project operator as well. 

Selection is a unary operator that drops tuples that do not satisfy the selection 

condition. A select operator delays a tick-tag propagation until at least one of the 
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tagged tuples that follow it satisfies the selection predicate. If all tagged tuples are 

filtered, their corresponding tick-tag is discarded then as well. 

Join is a binary operator that joins the tuples of its input streams. If a tuple joins 

with another tuple, before being sent to the output stream the tags of the base tuples 

are physically arranged in a similar fashion as in the tag-oriented join (discussed in 

Section 4.4.1), with the following two main differences: 

1. Since	 the data tuples (after the join) are physically combined into a single 

physical tuple, the tick-tags attached to the base data tuples will now refer to 

this (new) joined tuple. This reference is stored in the stix metadata tuple 

(described in Section 4.4.1) that gets inserted prior to the tick-tags. 

2. In addition to maintaining the tuple-level granularity reference in stix, we  now  

also store the references to the joined tuple attributes (that correspond to the 

base tuples’ attributes) that the tick-tags apply to. 

Figure 4.5 illustrates an example of a tag-aware join output. 

x 
A 

B 

TAJ 

stix 

t1 

t2 

t1t2 

tuples x and y join 

(1:1,4-5)2 (1:1-3)1 

y 

c1b1a1 

f2e2a1 

c1b1a1 f2e2 
1 2 3 4 5 

tuple 

tuple 

Figure 4.5. Tag-aware join example. 

Here tuples x and y from streams A and B join based on the equality of the first 

attribute value a1. Their  respective  base  tuples’  tags  t1 and t2 precede the join tuple, 

and the stix stores the following information (1:1,4-5)2 |(1:1-3)1 , where  “(1:1-3)1” means  

the first (after the stix ) tick-tag t1 applies to the first tuple and to the attributes 1-3 

in the join tuple. Similarly, “(1:1,4-5)2” means  that  the  second  tick-tag t2 applies to 

the first tuple and to the attributes 1, 4 and 5 in the join tuple, respectively. 

Aggregation. In  a  tag-aware  aggregation  operator,  each  attribute  domain  is  parti

tioned into attribute sub-groups, where each sub-group contains tuples with the same 

http:Aggregation.In
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attribute value. A result is calculated for each sub-group and then sent to the output 

stream preceded by the collection of tags that have arrived and have not yet expired 

from the window and are applicable to any object in that sub-group. The motivation 

for such comprehensive tag propagation is to make all tags associated with the base 

data (used to compute the outputted aggregate value) available with the aggregate 

query result. 

4.5 Physical Implementation 

Here, we describe the physical implementation of two key operators in the tag-

oriented algebra, namely the tagger operator and the tag join operator. 

Tagger Operator : This  operator  is  designed  to  continuously  attach  tags  to  stream

ing objects that satisfy tagging predicate po. Conceptually,  the  tagger  operator  is  

similar to the selection operator, except that it doesn’t discard the tuples that don’t 

satisfy the predicate po, but  instead  forwards  them  to  the  output  stream  without  

inserting a tick-tag ahead of them. Figure 4.6 shows the pseudocode for the tagger 

operator execution. 

For every arrived data tuple, the tagger operator evaluates the tagging predicate 

to determine whether the streaming object should be tagged (Line 3). If yes, then a 

new tick-tag is created with the tag properties specified as parameters to the operator 

(Line 6). The operator assigns the current query id as the tagger identifier (tid) in  

the tick-tag (Line 5), and the time the tick-tag was created is stored in its timestamp 

field. The newly created tick-tag is then forwarded to the output stream followed by 

the data tuple (Lines 7-8). If the tagger operator receives a tick-tag as its input, it 

simply propagates it to the output stream (Line 11). One of the optimizations that 

can be employed by the tagger operator (the pseudocode is not shown), is to cache 

the last outputted tick-tag. If  the  next  tuple  satisfies  the  same  tagging  condition,  

and the regular expression in the applicability field of the already outputted tick-tag 

is suitable for the new tuple, then no additional tick-tag needs to be created and 

http:tick-tag.If
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TaggerOperator (po tagging predicate, c tag content,
 

s tag sign, l tag lifetime, m tag mode)
 

01 for (every new element e received from input stream)
 

02 if (e is a tuple) // input is a tuple
 

03 if (e satisfies po)
 

04 ts = geTime(now) 
  

05 tid = getCurrentQueryId() 
  

06 t = CreateNewTickTag(tid,P ,c,s,l,m,ts)
 

07 send t to output
 

08 send e to output
 

09 else send e to output
 

10 else // input is a tick-tag
 

11 send e to output // propagate tick-tag
 

Figure 4.6. Tagger operator algorithm. 

sent to the output stream. The tuple will simply be forwarded to the output stream. 

The understanding here is that several tuples share the same tick-tag and follow it 

consecutively in the output data stream. 

Tag Join : The  TagJoin algorithm is shown in Figure 4.7. We present the TagJoin 

as a sliding window E-based join algorithm, where E is a tag join function (which 

can be a tag similarity, a tag equivalence function or any other tag join criteria as 

described in Section 4.4.1). In our pseudocode we describe the nested-loop version 

of the TagJoin. The  optimized  version  of  the  operator  employing  an  index  on  tuples  

and tick-tags in the window is a part of our future work. The TagJoin maintains a 

time-based sliding window. We employ a list structure to link all tuples and their 

tick-tags in a chronological order (most recent at the tail). Tick-tags are interleaved 

with tuples in the window, and, thus, the tuple list is “partitioned” by the tick-tags 

into segments, where the tuples in each segment may be tagged by the preceding them 

tick-tags. A  collection  of  tuples  between  any  two  non-adjacent  collections  of  tick-tags 
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is called  a  tagged segment. We  discuss  the  processing  of  tuples  and  tick-tags from the 

input stream A. The  processing  for  input  stream  B is similar due to the symmetric 

execution logic. 

Tag Collection. As  tick-tags arrive, they are stored in the sliding window. They 

represent the labels (annotations) for the upcoming data tuples (Lines 3-4). 

Invalidation. When  a  new  data  tuple  eA is retrieved from the input stream A, it  is  used  

to invalidate the expired tuples from the head of the window of the stream B (Line 

7). If all tuples from a tagged segment have been invalidated, their corresponding 

tick-tags are purged from the head of the window as well. 

Probe. After  the  invalidation  is  done,  the  tick-tag(s) preceding the tuple eA are used to 

probe the window of the stream B. For  concreteness  of  discussion,  let’s  consider  there  

is a single tag tA in the window of stream A that precedes tuple eA and represents 

the tag attached to eA. If  tA joins with tick-tag tB from stream B based on the 

tag join function E, the  tick-tags are placed consecutively together followed by their 

corresponding base tuples (see Section 4.4.1 for detailed explanation and an example 

of this step). The stix metadata tuple is then created (Line 17) to store the reference 

to the base tuples and is inserted into the output stream ahead of the “joined” tick-

tags. The  stix, the  tick-tags, and  their  respective  tuples  are  then  forwarded  to  the  

output stream (Lines 18-19). If the tag join is empty (i.e., the tags do not join based 

on E), then neither the tick-tags nor their respective tuples are forwarded to the 

output stream. 

4.6 Experimental Study 

4.6.1 Experimental Setup 

We have implemented our proposed Stream Tag Framework in a DSMS prototype 

called CAPE [8]. We execute CAPE on Intel Pentium IV CPU 2.4GHz with 2GB 

RAM running Windows Vista and 1.6.0.0 Java SDK. For data, we use the Network-

based Moving Objects Generator [181] to generate a moving objects dataset on which 

http:Collection.As
http:segment.We


97 

TagJoin (A stream, B stream)
 

01 WA ← join time window for stream A
 

02 WB ← join time window for stream B
 

03 if (a new element eA is received from stream A)
 

04 if (eA is a tick-tag ) // input is a tick-tag
 

05 TagCollection(eA, A, WA)
 

06 else if (eA is a tuple) // input is a tuple
 

07 Invalidate(eA, B, WB )
 

// retrieve tags that have arrived prior to tuple eA 

08 TA ← GetTags(eA) 

09 Probe(TA, A, WA, B, WB , E) 

10 if (a new element eB is received from stream B) 

// Similar to above 

Probe (TA - set of tick-tags from the current stream,
 

A - current  stream,  WA - current  stream  window, 
  

B - opposite  stream,  WB - opposite  stream  window, 
  

E - join  condition) 
  

11 TB ← GetTags(B[WB])
 

12 for (every tick-tag tA ∈ TA)
 

13 for (every tick-tag tB ∈ TB) 

14 if (Join(tA,tB,E) // tags join based on E 

15 SA ← A[WA,tA] // objects tagged by tA 

16 SB ← B[WB,tB] // objects tagged by tB 

17 stix ← CreateNewStix() 

18 send stix to output 

19 send tA, tB, SA, SB tuples to output 

Figure 4.7. Tag join operator algorithm. 
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Tagger 
Operator 

Tag 
Selection Tag Join Tag-Aware 

Join 

(a) Query 1 (b) Query 2 (c) Query 3 (d) Query 4 

Figure 4.8. Experimental Queries. 

we evaluate our experimental queries. The input to the generator is the road map of 

Worcester county, MA, USA. The output of the generator is a set of objects that move 

on the given road network and continuously send their location updates. We generate 

100K of moving objects, which represent cars, cyclists, and pedestrians. Each tuple 

in the stream consists of the following fields: update type, object id, report number, 

object type, timestamp, current location, speed, and the location of the next des

tination node (see [181] for more details on the generator’s output). We break the 

moving objects stream up into several streams based on the ids of objects. Such setup 

simulates objects sending updates to different service providers or base stations and 

allows us to test join queries. Tuples’ arrival distribution is modeled using a Poisson 

distribution with a mean tuple inter-arrival rate equal to 10 milliseconds. Unless men

tioned otherwise, the tagging is done at the tuple granularity and the tick-tags arrive 

to the DSMS already interleaved with the streaming data. We chose the tuple level, 

because it is likely to be the most common granularity of tagging. For comparison, 

we have implemented alternative tagging solutions described in Section 4.1.2, namely 

the table approach, the extended data tuple approach, and the streaming XML ap

proach. In this section, we refer to them as TABLE, TUPLE, and  XML respectively. 

Our technique is abbreviated as TICK-TAG. 

For tag content, we employ the “emotion tags” dataset from the ManyEyes appli

cation [196] supported by IBM. Figure 4.9(a) shows the “tag cloud” for the emotion 

tags used in our experiments (with more frequent tags depicted in larger fonts). Fig

ure 4.9(b) illustrates the overall tag distribution, and Table 4.5 lists some of the 

examples of the tag values. 
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(a) Tag cloud ( emotion tags) 

(b) Tag distribution (emotion tags) 

Figure 4.9. Tag properties.
 

Table 4.5
 
Tag examples used in the experiments.
 

Most frequent emotions tags 

ManyEyes dataset [196] 

– happy, sad, jealous, self-loathing, angry, elated, content, lonely, de

pressed, frustrated, aggravated, exhausted, grateful, sleepy, anxious, 

sorry, excited, anxious, loved, peaceful, joyful, tipsy, affectionate, cool, 

alright, stressed, lost, confused, outraged, despaired, hopeful, sympa

thetic, relaxed, unimpressed, ... 

Four types of queries are used in our experiments which are depicted in Figure 

4.8. Query 1 attaches tags (with values chosen at random) to streaming data tuples, 

with the tagging predicate being on the current location of moving objects. We use 

Query 1 to test the performance of our proposed tagger operator. Query 2 selects 

the tags satisfying the tag search predicate (the predicate is based on two types of 

emotions: “sad” and “angry” in a specific geographic area14) on  the  incoming  stream  

with already interleaved tags. It is used to test the tag selection operation. Query 

14A query  of  the  form:  “Continuously monitor all emotional tags (attached by people to their real-time information) 

that fall into ‘angry’ and ‘sad’ categories in downtown” may  be  executed  by  the  law  enforcement  authorities  to  

prevent potential violence or accidents in the city. 
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3 joins two streams of tagged tuples based on the tag equality function E, which  is  

defined as semantics-based equivalence. Specifically, we have partitioned the emotion 

tags from the dataset [196] into 5 separate groups based on the type of the emotion, 

e.g., “happy”, “sad”, “neutral”, “angry”, etc., and in the tag-based join, we perform 

the join based on whether the tags belong to the same emotion group. For example, 

if tags “Joyful” and  “Excited” belong  to  the  same  group  “happy  emotions”,  then  

the two tags join, if they happen to arrive at the same time and are in the windows 

of the streams being joined. This type of query may be useful to find people who 

experience similar emotions at the same time, and can possibly help correlate it to 

their location or a nearby event. Finally, Query 4 performs a tag-aware join on two 

incoming streams of location updates based on the mutual proximity of the moving 

objects, e.g., two objects join, if they are within 0.1 miles from each other. Query 4 

is used to test the cost of tag-awareness in the continuous join operator. 

The real-life application (based on the data, tag values and queries described 

above) that we consider in our experimental setting is a geo-social networking appli

cation, e.g., [18,  197].  Here,  users  may  want  to  tag  their  location  updates  with  their  

emotions to update their friends on their well-being, or possibly look for someone to 

meet and socialize with in a given geographic area. 

4.6.2 Cost of Tagger Operator 

Figure 4.10 compares the cost of our proposed Tagger operator to the cost of a 

regular Selection operator. In the case of selection operator, we process a regular data 

stream (without any tick-tags interleaved). We use Query 1 (from Figure 4.8) in this 

experiment. The selection predicate here is equivalent to the tagging predicate. The 

percentage of tagged objects is varied from 0% – none of the tuples are tagged to 100% 

– meaning  all  tuples  are  tagged  (the  same  selectivity  is  for  the  selection  operator).  We  

use the selection operator here as the cost baseline to which we compare the tagger’s 

cost while varying the tagging frequency. The difference between the selection and the 
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tagger is as follows: (1) the selection operator discards the tuples that don’t satisfy its 

predicate, whereas the tagger operator simply propagates them to the output stream 

(without tagging); (2) if the predicate is satisfied, the tagger inserts a tick-tag prior 

to the data tuple being tagged, whereas the selection simply propagates this tuple to 

the output stream. The cost for the selection operator increases, as the selectivity of 

the operator increases, largely due to more work being done by the operator when 

more tuples have to be propagated up-stream. Similarly, for tagger operator, as the 

percentage of objects being tagged increases, the tagger operator’s cost increases. 

This is due to a larger number of tick-tags being generated (in the case of 100% 

tagging - twice as many streaming elements are enqueued to the output stream. The 

cost of the tagger is larger than of the selection (which is expected), on average, by 

1.08x for 0% tagging15 (when no tick-tags are inserted) by 1.8x for 100% tagging 

(where for every data tuple a tick-tag is inserted). 

Figure 4.10. Cost of tagging operator. 

15There are minor execution overheads in the tagger operator that are not present in the selection – e.g., propagation 

of (un-tagged) data elements upstream. 
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4.6.3 Comparison of Tick-Tag Approach Against Alternatives 

The goal in this section is to compare the TICK-TAG approach against the al

ternative tagging solutions (described in Section 4.1.2), namely, the TABLE, the  

TUPLE, and  the  streaming  XML methods. All these solutions were implemented in 

CAPE and re-use as much of the same code as possible for fair comparison. We use 

Query 2 (Figure 4.8) in this experiment, and present the average output rate and 

memory utilization results when performing tag selection using these methods. The 

query is a square region inside which we continuously monitor moving objects’ tags. 

For the focal point of the tag selection query, we choose a random location on the 

road network (the same for all four cases) and consider it as the center of the query. 

The focal point the query is static, hence both the tick-tags as well as the moving 

objects that appear in the query region are the same for all four cases. The space is 

represented as the unit square, the query size is a square region of side length 2. 

For TABLE tagging approach, we have a separate stream transmitting tick-tags 

that continuously arrive to the system. For every arrived tick-tag, we  process  it  by  

inserting it into the global tag table and initiating an evaluation on the streaming 

data tuples to determine if the newly arrived tag is applicable to them. For the 

TUPLE approach, we have added an additional attribute in the stream’s schema to 

store the tag value (in addition to all other tag parameters, e.g., mode, lifetime, to be 

fair in comparison with other approaches). For XML approach, we have embedded 

“xml tags” inside streaming tuples that are interleaved with regular data tuples, and 

process them when they arrive to the system16. Figures  4.11  and  4.12  compare  the  

alternative approaches when varying the percentage of moving objects tagged from 

0% to 100% in terms of average output rate and memory usage, respectively. 

Figure 4.11 shows the average output rate results for the four different alternatives. 

In the figure, we measure the average number of result tuples produced per time 

unit. In Figure 4.12 we measure the memory usage by these different solutions over 

16In the  implementation,  one  XML  tag  is  represented  by two  physical  tuples  –  one  storing  the  start  xml  tag  and the  

other – the end tag. 
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Figure 4.11. Comparison of alternatives (output rate) 

time. We can see from both Figures 4.11 and 4.12 that the TICK-TAG approach 

results in higher output rate and smaller memory usage compared to the alternatives. 

The relative performance of TICK-TAG over the other tagging approaches increases 

with the increase of the number of streaming objects that can share their tags. The 

main reason is that the search cost of TICK-TAG is much lower than updating in 

search costs (to find the tagged objects) in the TABLE approach. Although XML and 

TUPLE approaches also take a “stream-centric” approach for tag implementation, 

they do not exploit the commonalities between the different tuples, and thus result 

in more memory being used and higher processing cost. 

Figure 4.12. Comparison of alternatives (memory) 
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4.6.4 Cost of Tag Join Operator 

In this section we evaluate the cost of the tag join operator again with varying 

percentage of tagged data in both streams (from 0% to 100%). We use Query 3 in 

this experiment (Figure 4.8). Sliding windows are time-based and state buffers are 

implemented as linked lists. The tag join condition is described in Section 4.6.1. 

Figure 4.13 shows the average cost (computed after several runs) of the TagJoin. As  

Figure 4.13. Cost of tag join. 

can be expected, the cost of tag join increases as the percentage of tagged objects in

creases by about 65% when 100% of objects are tagged. The more tags are embedded 

inside data streams, the more overhead is incurred by the tag join. Also, in order to 

preserve the correct base tag semantics, e.g., tag lifetime, the operator continuously 

creates stix tuples that are used to maintain the references to the original data after 

the tick-tags and their respective data tuples get physically re-arranged in the stream 

as a result of the tag join. The more tags are interleaved in the streams, the more 

the join function E has to be invoked, the more stix elements will be created and the 

more elements will need to be enqueued into the output stream. 

http:TagJoin.As
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4.6.5 Cost of Tag-Aware Join Operator 

In this section we compare the cost of the Tag-Aware Join operator (described 

in Section 4.4.2) to a regular join operator using Query 4 from Figure 4.8. The goal 

of this experiment is to measure the overhead of tag-awareness in a join operator. 

Figure 4.14 shows the cost of the tag-aware join with respect to the regular join, 

when varying the percentage of tagged objects. We see that, the larger the number 

of tagged objects, the higher the cost of the tag-awareness. For 0%, the tag-aware 

join cost is nearly idenitical to the regular join operator cost, since there are no tick-

tags in the streams, and the operator executes just like a regular join. Whereas for 

100% of tagged objects, the tag-awareness incurs a “penalty” of processing a larger 

quantity of streaming tick-tags, incurring  about  43%  of  additional  cost  for  100%  of  

tagging. However, we believe, the case when 100% of data is tagged is highly unlikely 

in real-life applications. And the average overhead case, between 14%-33% for 20%

80% of tagged data seems to be a reasonable overhead for the added tag-awareness 

functionality and correct tag propagation through the query pipeline. 

Figure 4.14. Cost of tag-aware join. 
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4.7 Conclusion 

In this chapter we have proposed a tagging solution for streaming data using a 

special type of metadata called the tick-tags. Tick-tags can serve a variety of purposes, 

including labelling or describing some underlying real-time information, and serving 

as means of disseminating useful knowledge in addition to what is captured by the 

content of data tuples. Our experimental results show the scalability and performance 

benefits of the tick-tag approach compared to alternative solutions. We have also 

evaluated the costs of executing tag-aware and tag-oriented continuous queries. 
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5 DIVERSITY-AWARE QUERY PROCESSING 

In this chapter we present our diversity-aware query processing solution termed the 

query mesh. We first present the core query mesh framework in Section 5.1. Section 

5.6 discusses the self-tuning query mesh for adaptive query processing. Section 5.13 

describes the uncertainty-aware query mesh to address the problem of uncertainty 

and imprecision in the multi-plan-based execution approach. 

5.1 Core Query Mesh (QM) 

5.1.1 Single versus Multiple Execution Plans 

As we have previously stated in the introduction, most modern query optimizers 

determine a single “best” plan at compile time for executing a given query [26]. The 

execution cost for alternative plans is estimated and the one with the overall cheapest 

cost is chosen. The cost typically is estimated based on the average statistics of the 

data as a whole as the objective is to find one plan for all data. However, significant 

statistical variations of different subsets of data may lead to poor query execution 

performance [20]. The main drawback here is the very coarse optimization granularity: 

a single execution plan is  chosen  for  all  data. Such  “monolithic”  approach  can  miss  

important opportunities for effective query optimization [20, 28, 29]. 

Example: Suppose  we  want  to  monitor  stocks  that  exhibit  “bullish”  patterns,  and  

appear recently in the news and in the latest “street research” e.g., blogs, popular 

web sites, etc. We can formulate such query as: 

SELECT S.company name, S.symbol, S.price 

FROM Stock as S, News as N, StreetResearch as SR 

WHERE matches(S.data, BullishPatterns) /*op1*/ 
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AND contains(S.sector, News[1 hour]) /*op2*/ 

AND contains(S.company name, StreetResearch[3 hours]); /*op3*/ 

The lookup table BullishPatterns contains “bullish” patterns of stock behavior, e.g., 

“symmetrical triangle” or “falling wedge”, etc. [198]. Operator op1 performs a simila

rity-based join on the latest financial data of the incoming stock data tuples with 

the BullishPatterns table. Operators op2 and op3 perform the matches on the stock’s 

sector and the company name with the news sources’ data and the street research 

data1 . Let ci denote the current average processing cost per tuple for operator opi, 

and δi denote the current expected selectivity of opi. Suppose  it  is  a  bull  market  (i.e.,  

stocks are doing well) and the following conditions hold: c1 > c2 > c3 and δ1 > δ2 > 

δ3. Given  these  statistics,  the  best  ordering  of  operators  to  process  the  data  is  op3, 

op2, op1. Now  suppose  the  news  about  poor  crop  harvest  (e.g.,  due  to  severe  weather  

conditions – floods, hurricanes, etc.) become public. Such news will most likely hurt 

companies in the agricultural and food sectors. Even if individually a company may 

be not affected, the price of a stock is often based on the health of its entire sector, 

and a company’s stock price may go up or down depending on whether investors think 

its industry will grow or contract. Thus, with the news of poor harvest, the stocks of 

the agricultural sector will likely result in fewer matches with BullishPatterns table) 

and occasionally may be mentioned in the news and blogs. Thus, δ1 is likely to be 

high, and δ2 and δ3 still relatively low for such data tuples. So, op1, op2, op3 may be 

the most efficient ordering for processing stock tuples of this sector. Other sectors, 

e.g., high-tech, defense or financial services, however, may be completely unaffected, 

and hence for them op3, op2, op1 will remain the best ordering as before. If the system 

continues to use the overall statistics, and will still process all data using the op3, op2, 

op1 plan, this may significantly limit the query performance. 

Other real-life examples where subsets of data may have different statistical prop

erties are plentiful. In Internet and communication networks, network traffic tends to 

1The results of such n-way join queries are frequently consumed by financial monitoring software, e.g., [199] for further 

analysis. 
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vary depending on its destination or its type (e.g., voice or multimedia or data). In 

case of a network congestion, different traffic packets will be discarded by routers with 

different probabilities. In real-time health monitoring, devices attached to people are 

likely to produce various values for different patients, depending on their age, gender, 

weight, etc. 

We can observe from the examples above that real-life data tends to be non

uniform, i.e., there may be data subsets with distinct statistical properties, based 

on either the data content, or the access control policies or based on semantic tags 

(labels) associated with data tuples. Clearly, a single execution plan often is not likely 

to be able to serve well many of such rather diverse subsets of data, thus, leading to 

seriously inefficient query processing for some or possibly huge fractions of the actual 

data. Most current query optimization approaches do not focus on addressing such 

intra-data variations. 

5.1.2 Our Proposed Solution: The Query Mesh 

The main idea of QM is to determine multiple execution routes (or execution 

plans2), each optimized for a subset of data with disctinct statistical properties. Then, 

a classifier model is inferred based on the computed set of routes3 and the data char

acteristics (as depicted in Figure 5.1). The classifier is used for runtime classification 

of new data tuples to determine the best routes for their processing. While many 

classification models could be plugged-in into QM, e.g., neural  networks,  naive  bayes,  

etc. [141], we employ a decision tree (DT ) classifier.  In  our  experiments,  we  have  

observed that the use of a DT classifier approach can “zero-in” on the sought-after 

route very quickly with typically a small number of comparisons. We describe other 

beneficial features of DT classifiers in Section 5.2.3, thus further justifying our choice. 

2In the context of this thesis, we use the terms “routes” and “plans” interchangeably.  Both denote the same concept  

here. 
3We also refer to a set of multiple execution routes as a multi-route configuration. 
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Figure 5.1. Optimizer producing logical QM solution. 

Finding an optimal QM solution for a given query is an expensive process, largely 

due to the combinatorial explosion in the search space (Section 5.2.2). We formulate 

the complexity of the QM search space (Section 5.2.5), and develop the algorithm 

Opt-QM that finds optimal query meshes. Opt-QM, however,  may  be  not  feasible  in  

practice due to its exhaustive nature when enumerating the search space. As viable 

alternatives, we propose several effective cost-based search heuristics to find good 

quality QM s efficiently.  

In order to determine the best query mesh, the query optimizer uses a training 

dataset T (see Figure 5.1) that represents the data and its distribution expected to 

come in the future – a common approach in many database systems [28, 200] and in 

prediction models in data mining alike [201]. For streaming databases, which are the 

focus of our paper, relying on samples of data is unavoidable, since it is impossible to 

“see” all of the streaming data a priori. Since, in addition to multiple execution routes 

used for query processing, a QM solution also includes the classifier component, the 

classifier cost must be considered during query optimization, as classification is now a 

part of the overall query execution process. The QM optimization problem can then 

be stated as follows: for a given query Q and a representative dataset T , the  optimizer  
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must find a query mesh solution QM composed of a multi-route configuration R and 

a classifier  C that results in the lowest execution cost for tuples in T . 

For query execution, we have implemented a novel runtime infrastructure called 

the Self-Routing Fabric (SRF ) that  efficiently  executes  multiple  routes  in  parallel  

without constructing their physical topologies. Instead, the SRF design enables query 

operators to “self-route” data in a distributed manner with near-zero overhead. 

5.1.3 Challenges 

Several practical issues make this problem challenging: (1) Finding the optimal 

solution is complex, because there is a combinatorial explosion of all possible execution 

routes for all possible subsets of training data to consider. (2) Selecting a good 

quality training dataset is a challenging task. Training dataset’s size and accuracy 

directly affect the size of the QM search space and the quality of the resulting QM 

solution. With a smaller training dataset, we may be able to enumerate all possible 

QM solutions, but the accuracy with respect to the real data may be low. Whereas 

with a larger training set, the accuracy may significantly improve, but at the cost of 

an extremely large search space, making it impossible to enumerate all solutions. (3) 

Most challenging of all is the fact that the classifier model and the number and the 

choice of particular execution routes are strongly dependent on each other. A change 

in one component may cause a modification to the other, subsequently affecting the 

cost of the overall QM solution. Such interplay between routes and classification 

introduces a dilemma: how should a QM solution be computed. Should the training 

dataset get partitioned first, and then the optimizer would compute the routes for 

the different partitions? Or alternatively, should some effective routes be computed 

first, and then the tuples from the training dataset would get assigned to one of 

the established routes? Clearly, finding a good QM solution is a complex problem. 

(4) Finally, query execution with multiple concurrent routes is a challenge. If the 
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Figure 5.2. Core query mesh framework. 

execution infrastructure is not well-designed, the benefits of using multiple distinct 

routes for different subsets of data may be completely lost. 

5.1.4 QM Architecture 

The QM framework consists of two primary components: the query mesh opti

mizer and the query mesh executor (see Figure 5.2). For a given query, the query 

mesh optimizer computes the query mesh off-line using training tuples and statis

tics. For every query mesh solution analyzed by the optimizer, the classifier model 

is induced and the routes are computed. To avoid redundant recomputations, the 

optimizer employs several caching techniques for sub-components of the query mesh 

(e.g., routes, or parts of the classifier) that don’t change as it traverses the search 

space. The query mesh executor takes the query mesh configuration produced by 

the optimizer and instantiates the physical runtime infrastructure. Next, we describe 

each of the query mesh components more in detail. 
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5.1.5 QM Assumptions 

We focus on select-project-join (SPJ) queries in our work, thus, the set of admis

sible operators in SRF includes: selection filter, projection, and a join. To implement 

joins, we use one-way-join-probe (OJP) operators  inside  the  SRF. OJPs are  similar  in  

spirit to SteM operators4 [65], and essentially correspond to a half of a traditional join 

operator, and are formed over a base stream, supporting the insert (build), search 

(probe), and delete (eviction) operations for window purging. The choice for such 

join implementation was largely influenced by our current system implementation [8] 

and the fact that it is one of the representative approaches of the state-of-the-art. 

While a number of other alternatives to join implementation are possible, since this 

was not the focus of our work, we decided to go with the existing system setup. The 

solution works, and we leave the exploration of other state management techniques 

in QM as a part of our future work. 

5.2 The Query Mesh Optimizer 

5.2.1 Data Sampling 

The selection of the training data, i.e., which sampling technique should be em

ployed to accurately depict the distribution of the data, is a research topic in its own 

right. For our work, we have explored several techniques from statistics, including 

random sampling with cross-validation and sampling with bootstrapping [201]. Us

ing these methods, the system can estimate how well the selected training dataset is 

going to represent future as-yet-unseen data, and re-sample the data until the desired 

accuracy is achieved. In practice, the training dataset may also be collected using 

statistics from previous (historical) execution runs of the query or by employing a 

similar approach to plan staging [76], where optimization and execution are inter

leaved. The first stage of query processing may use a traditional single plan approach 

4We ensure that no duplicate or missing results are produced similar to SteMs [65].  
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for query execution, while simultaneously collecting data statistics and training data. 

Using the samples from the first stage as the training set, a QM solution can be 

computed by the optimizer and then used for the execution in the subsequent QM 

stage. 

5.2.2 Query Mesh Search Space 

Given a query and collected training data (Figure 2.1), we now study how many 

possible multi-route configurations (i.e., diffferent routes’ combinations) the optimizer 

may have to enumerate through to find the best one. The expected execution costs of 

the routes, including the classifier would have to be estimated for these configurations 

in order to find the optimal QM solution. Thus, the set of all possible multi-route 

configurations comprises the QM search space. 

The cardinality of the training dataset has a direct impact on the size of the QM 

search space. The larger the cardinality of the training dataset the more possible 

data subsets, routes, their statistics, and their different combinations may need to 

be evaluated by the optimizer. Hence, the training dataset must be selected wisely 

to be compact yet sufficiently representative of the real data. To reduce the size of 

the search space, we perform data condensing [202] on the set of sampled real data 

tuples. The condensing step aims at selecting a small subset of tuples without a 

significant degradation in accuracy in order to reduce both storage and processing 

time. Within the condensing techniques, the approaches can be categorized into two 

main groups. First, the schemes that select a subset of the original tuples [203, 204], 

and second the adaptive schemes that modify or generate them [205, 206]. In both 

cases original data “densities” (i.e., value frequencies) [207] get associated with the 

condensed training tuples. In our implementation, we went with the second scheme. 

We keep our discussion on training set condensation brief here. For more details 

on the condensing algorithms, we refer the reader to [207]. After condensing the 

training data, each condensed training tuple serves as an abstraction for a subset of 
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the original sample dataset. In the rest of the paper, we will refer to a condensed 

tuple as a training tuple t and a reduced dataset that consists of such condensed 

tuples, summarizing their respective original data tuples, as a training dataset T . 

Since routes are computed based on the training dataset T , the  spectrum  of  possi

ble multi-route configurations ranges from an individual route per each training tuple 

in T to a one route for all tuples in T . Let n denote the cardinality of the training 

tuple set T , i.e.,  n = |T |. The  upper-bound  for  all  possible  multi-route  configurations  

corresponds to the number of distinct possible ways of assigning n distinguishable tu

ples to one or more routes. The number that describes this value is the Bell number 

(Bn) [208],  which  represents  the  number  of  different  partitions of a set of n elements. 

A multi-route  configuration,  which  represents  the  set  of  execution  routes,  is  a  partition 

of the training tuple set T , defined  as  a  set  of  non-empty,  pair-wise  disjoint  subsets  of  

T whose union is T (see Figure 5.3). For example, B3 = 5,  since  the  3-element  set  {1, 

2, 3} can be partitioned in 5 distinct ways: {{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, 

{{3},{1,2}} and {{1,2,3}}5. The  Bell number describes the size of QM search space, 

i.e., the total number of all possible partitions for an arbitrary training dataset T . 

Mathematically, the Bell number is represented as the sum of Stirling numbers of 

the second kind [208]. The Stirling number S(n, k) is  the  number  of  ways  to  parti

tion a set of cardinality n into exactly k nonempty subsets. The problem is clearly 

challenging, as Bn’s complexity is exponential as described below: 

n n k � 

Bn = 
 

S(n, k) =  
 1  

(−1)k−j n
jn . (5.1) 

k! k 
k=1 k=1 j=1 

Figure 5.3 illustrates the lattice-shaped QM search space for a set of training tuples
 

of size n=4. It also shows two examples of partitions with 2 and 4 routes respectively.
 

The total number of different partitions here equals 15 (B4=15).
 

Points A,B,C and D in Figure 5.3 (on the right) denote four different QM solutions.
 

A,C and D are the neighbor solutions to B, as  indicated  by  the  pairwise  connecting 
  

edges to B. A single  basic  transformation e.g.,  a  split  of  a  subset,  or  merge  of  two 
  

5For brevity, we denote {{1},{2,3}} as “1/23”. 
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Figure 5.3. Lattice-shaped query mesh search space. 

subsets, is needed to transition from a QM solution to its neighbor, e.g., “12/34” → 

“12/3/4”. 

5.2.3 Query Mesh Optimizer Sub-problems 

In this section, we first address two main sub-problems of QM selection. We then 

proceed with the cost model and the search algorithms used by the QM optimizer. 

Route Selection Sub-problem : One  of  the  main  sub-components  of  QM solution 

is a multi-route configuration composed of a set of execution routes. Let O = {op1,..., 

opn} be the set of operators in a query, where opi ∈ O (1 ≤ i ≤ n) is  σ , π or �� 

operators, then a route rq depicts an operator ordering rq = <op1,..., opn>. Finding  

the optimal ordering of operators for query optimization is a well-studied topic in 

database research. In our work, we consider the computation of a single best route 

(for a subset of data) as a “black box” computation. That is, the optimizer invokes an 

existing procedure to compute a route based on available statistics using any of the 

state-of-the-art techniques, e.g., [66, 209, 210]. For example, similar to [58], the best 

order of operators can be determined by an increasing order of operator rank. The  
c(opi)rank of an operator opi is defined by rank (opi) =  , where  c(opi) is  the  cost  of  1−δ(opi) 

operator opi and δ (opi) is  its  selectivity  (0  ≤ δ (opi) ≤ 1). Alternatively, the optimizer 
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can also use the dynamic programming [210] or the transformation-based [66] methods 

to determine the routes. 

Classifier Selection Sub-problem : The  second  main  sub-component  of  QM solu

tion is classifier. Inducing classifier model based on the computed routes (as discussed 

above) and the training data attributes’ values is another problem that must be ad

dressed. There is a wide range of classifiers available in the literature, each with its 

strengths and weaknesses. Determining a suitable classifier for a given problem is still 

more an art than a science [141]. This is due to the fact that classifier performance 

and quality depend greatly on the characteristics of the data to be classified [201]. 

In our work, we employ a decision tree (DT ) classifier.  DT is attractive for several 

reasons: 

•	 First, complex decisions can be approximated by the conjunction of simpler 

local decisions at various levels of the tree. 

•	 Second, in contrast to other classifiers, where each data tuple is tested against 

all classes, thereby reducing efficiency, in DT classifier, a data tuple is tested 

against only certain subsets of test conditions, thus eliminating unnecessary 

computations. 

•	 Because most tuple features are deterministic and often common to a group of 

tuples, a DT -based classifier tends to be very efficient (as was also confirmed 

by our experimental study in Section 5.4). 

The algorithm for DT induction executes in a top-down recursive divide-and

conquer manner. At the start, all training tuples are at the root. Then, they get 

partitioned recursively by the tree induction algorithm based on selected test at

tributes. Test attributes are selected on the basis of the entropy-based measure, 

called information gain [141]. The leaf nodes of the DT contain the route identifiers 

for the execution routes that will be assigned to the tuples that reach those leaf nodes 

after classification. Conditions for stopping DT growth are: (1) all training tuples 
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for a given node belong to the same route, (2) there are no remaining attributes for 

further partitioning, then majority voting [141] is employed for assigning a class label 

to the leaf, or (3) there are no training tuples left. 

5.2.4 Query Mesh Cost Model 

Next, we describe the cost model used by the optimizer to compare query mesh 

solutions when searching for the best one. The expected cost of a QM consists of 

three main parts: 

(1) Cost of routes: Each  execution  route  rq, composed  of  a  sequence  of  operators,  

has a per-tuple cost c(rq) to  process  a  tuple  using  that  route.  c(rq) represents  the  

expected time to process a single tuple to completion, meaning either to output the 

tuple as a result or to drop it using rq. The  cost  of  rq is commonly calculated using 

two quantities: (i) cost of operator ci(opi), which represents a per-tuple cost of opi 

∈ rq, and  (ii)  selectivity of operator δ(opi), which is defined as the fraction of tuples 

that are expected to satisfy opi. 

(2) Cost of classification: Since  each  arriving  tuple  must  be  processed  by  the  classifier,  

the classification cost must be included in the overall expected processing cost. The 

classification cost is defined as the cost of a path p(DT |rq) from  the  DT root to the 

leaf node with a route label rq. The  cost  of  a  path  c(DT |rq) is  a  function  of  the  

number of nodes in the path, combined with the cost of computation at each test 

) =  
�|p(DT |rq )|node in the path: c(DT |rq i=1 c(nodei). 

(3) Multi-route overhead : Maintaining  multiple  execution  routes  introduces  system  

overhead, e.g., memory, processing, scheduling, etc. For simplicity of presentation, we 

abstract all overheads associated with a route into a single variable OVH representing 

the average overhead per route. The total cost of a QM can then be described as: 

|R| 

cost(QM) =  fq ∗ [c(DT |rq) +  c(rq|q)] + |R| ∗ OVH. (5.2) 
q=1 
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where q represents a distinct subset of data that gets assigned a route rq ∈ R, and  

|R| is the number of routes in the QM, fq is the expected fraction of tuples from the 

training dataset T to be processed by a particular route rq, and  c(rq|q) is  the  expected  

cost of the route for a subset q. 

5.2.5 Optimal Query Mesh Search Algorithm 

As the baseline, we now introduce the Opt-QM algorithm (pseudo-code shown in 

Figure 5.4) which is guaranteed to find optimal QM solution. Opt-QM traverses the 

lattice-shaped search space (see Figure 5.3 for an example) starting from the “bottom” 

point, where each training tuple has an individual route to the other extreme, where 

all data is processed using the same (single) route. 

In the algorithm in Figure 5.4, first, the Opt-QM computes the power set P(T) 

for the given training dataset T (Line 3). The power set of T is the set of all subsets 

of T . Using  the  training  dataset,  the  statistics  for  the  subsets  in  the  power  set  are  

calculated (Line 5). The training tuples are processed by the operators, to estimate 

the operators’ costs and selectivities. The routes are computed similar to the methods 

discussed in Section 5.2.3 (Line 6). After all possible subsets have been established 

and the best routes for those subsets have been computed, the algorithm iterates 

through all possible partitions that represent the possible multi-route configurations 

for the set T . For  each  partition  p composed of the subsets {Si...Sj } (Line 8), a union 

of the routes R for the subsets is computed (Line 9) and the classifier is induced 

(Line 10). A new QM solution is constructed with the routes R and the classifier 

C (Line 11), and its cost estimated (as described in Section 5.2.4). If the new QM 

has the smallest cost compared to the solutions seen so far, it is kept (Lines 13-14), 

otherwise it is discarded (Line 16). After the exhaustive enumeration of all possible 

configurations, the algorithm returns the QM solution with the smallest cost as a 

result. 
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OptQM (T training dataset) 

01 bestQM = null  

02 bestQMCost = ∞ 

03 P (T ) =  ComputePowerSet (T ) // compute the power set of T 

04 for (each set S ∈ P (T )) 

05 S.stats = ComputeStats (S) 

06 S.r = BestRoute (S.stats) // compute the best route for S based on S.stats 

07 repeat 

08	 let p = {Si...Sj} // p is  a partition  of  the  power  set  P (T ) 

09	 R = BestRoutes (p ) // union the best routes for {Si...Sj} 

// induce classifier based on the training data and the routes 

10 C = InduceClassifier (p ) 

11 QM = NewQMSolution (C,R ) 

12 if (QM.cost < bestQMCost ) 

13 bestQM = QM ; 

14 bestQMCost = QM.cost 

15 else 

16 discard QM // better QM has been already found 

17 until (all partitions p ∈ P (T ) enumerated)  // total Bn of them 

18 return bestQM 

Figure 5.4. Optimal QM search algorithm 

Complexity Analysis: The  complexity  of  the  Opt-QM is O(Bn *E), where  Bn is the 

Bell number (described in Section 5.2.2) and represents the upper-bound of all pos

sible multi-route configurations (query meshes) for the set T . E is the time complex

ity of the “black-box” route computation algorithm and depends on the algorithm 

employed by the optimizer to find a route, e.g., E = O(n2n) for dynamic program

ming [210], or E = O(n2) for the rank-based ordering algorithm [58, 211]. Clearly 

with large training datasets, the Opt-QM algorithm is not scalable in practice. The 

problem of finding one optimal route alone is already known to be NP -hard [58]. 
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By adding  the  multi-route  factor,  the  complexity  of  the  problem  increases  further.  

Consequently, both the exponential running time and the space requirements provide 

a strong motivation  to design  efficient  search  heuristics  as  more  practical  alternatives  

for query mesh optimization. 

5.2.6 Query Mesh Search Heuristics 

Here we propose a series of cost-based heuristics that find a good quality QM 

solution in reasonable time without exhaustive enumeration of the search space. The 

heuristics have the following three main steps: 

•	 Step 1: A  start QM solution is chosen, its cost is computed, and it is set as 

the best solution found so far, bestQM =QM. 

•	 Step 2: A  search strategy is iteratively applied to traverse the QM search space 

to find another solution QM’. 

•	 Step 3: The  cost  of  QM’ is computed and compared to the cost of the bestQM 

found so far. If QM’ has a smaller cost, the bestQM is replaced with QM’. 

Steps 2-3 are repeated until a stop condition is reached. 

Although the steps above sound simple, deciding on what is the best strategy for 

each of these steps is non-trivial. Furthermore, all three steps in unison have a great 

impact on the quality of the final QM solution. Typically, after a start solution is 

chosen, the search strategy performs walks in the search space via a series of “moves”. 

The number of moves is limited (by the stop condition), and if a poor start solution is 

picked at the start, the search strategy might not be able to reach a good quality QM 

before the search terminates. In the rest of the section, we propose various schemes 

to address the following questions: (1) How to pick a promising start QM solution? 

(2) What effective search strategies can be employed to improve the start solution? 

(3) Finally, when should the search for QM terminate, i.e., what should be the stop 

condition? 
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Selecting a Start Solution 

Given that a query mesh model represents an interplay between data values, their 

frequencies and the best execution routes for their processing, one possible approach 

to start the search is to pick a start solution based on data content. Given a training 

dataset T , a  content-driven approach (or short CDA) partitions  training  tuples  based  

on the similarity of their values: each attribute domain is partitioned based on the 

pre-defined threshold (e.g., for a discrete domain it could be a set of values, for a 

continuous domain it could be a simple range, etc.) that define how “close” the 

training tuples are to one another based on their content. After the content-based 

groups have been determined, the best route for each group is computed, and the 

classifier model induced to complete the QM solution. The motivation here is that 

similar content likely means similar selectivities, and thus the same best routes. 

An alternative approach is to first compute the routes for each of the training 

tuples separately6. Thereafter,  the  tuples  can  be  “grouped-by”  the  similarity  of  their  

respective routes, thus forming the groups composed of “route-equivalent” tuples. 

Lastly, the classifier induction is performed. We call this method the route-driven 

approach (or RDA, for  short).  The  RDA takes the “reverse” approach compared to 

the CDA. The  motivation  here  is  that  tuples  with  different  values  may  still  share  

the same best route. Consider, for instance, moving objects applications. Here, 

geographically distant areas may still have similar distributions of moving objects, 

and query processor can thus exploit the same execution route for objects with very 

different location values. 

Other QM start solution approaches may also include random-pick (RP), where 

a QM with the smallest cost out of x randomly selected solutions is chosen. Another 

alternative is to pick a QM solution, where all data has one route (the top of the 

lattice in Figure 5.3) and the classifier is empty. This solution is called extreme-1

6After data condensing (described in Section 5.2.2), training tuple abstracts a set of sampled real data tuples. When 

estimating statistics and computing routes for training tuples, their respective real data tuples are used. 
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route (or E1R) approach,  and  corresponds  to  a  single  plan  execution  strategy,  just  

like in traditional query optimization. 

One interesting observation can be made here: the above methods share some 

similarities with methods in cluster analysis [201]. For example, CDA resembles 

the partitioning method in cluster analysis driven by the content. RDA resembles the 

density-based method in clustering. Finally, E1R can be viewed as the “root” solution 

in a hierarchical clustering analysis. 

The advantage of CDA is that it is intuitive, rather simple, and can produce 

distinct subsets quickly. The disadvantage, however, is that the quantity and the 

quality of routes are largely dependent on the partitioning function. The advantage 

RDA is that it can find groups of arbitrary “shape” (if represented visually as clusters), 

i.e., tuples with very different content may still be found to belong to the same group 

and help create a more efficient QM solution. E1R is works well where the number 

of clusters is not known in advance, and the algorithm relies on the search strategy 

(described next) to divide the data into particular sub-sets to determine the next 

QM solution. Based on the resemblance to the cluster analysis techniques, we believe 

the same guiding principles as when selecting a cluster analysis technique for a given 

dataset [212] can be applied here when choosing among the strategies for QM start 

solution. 

The Search Strategy 

There exists a large number of search algorithms in the literature, each with its 

strengths and weaknesses. In QM for a search strategy, we chose randomized search 

strategies, e.g., based on iterative improvement, simulated annealing, hill-climbing, 

etc., which guarantee to find a good QM solution in reasonable amount of time 

[213]. They can serve as viable alternatives to the exhaustive QM search. As an 

example of a search strategy, we illustrate in Figure 5.5 the pseudo-code for the 

iterative improvement QM search strategy (II-QM ). In our system, we have also 
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II-QM (bestQM a start query  mesh solution)  

01 bestQMCost = bestQM.cost 

02 while (not stop condition) 

03 QM = start  solution  (e.g.,  chosen  at random,  

or using methods from Section 5.2.6) 

04 while (not local minimum(QM)) 

' 05 QM = random  solution  in  NEIGHBORS (QM)
 

06 if (cost (QM ' ) < cost (QM))
 

07 QM = QM’
 

08 if (QM.cost < cost (bestQM))
 

09 bestQM = QM
 

10 return bestQM
 

Figure 5.5. II search strategy for QM 

implemented Simulated Annealing QM strategy (Figure 5.6), where a great deal of 

random movement in the search space is tolerated. 

Iterative Improvement. The  inner  loop  of  II-QM is called a local optimization, which 

starts at a certain start QM solution and improves it by repeatedly accepting random 

downhill moves (i.e., QM s with  decreasing  costs)  until  it  reaches  a  local  minimum.  

II-QM repeats these local optimizations until a stop condition is met. Then it returns 

the local minimum with the lowest cost found. As time approaches ∞, the  probability  

that II-QM will visit the global minimum approaches 1. The procedure is repeated 

various times, each time starting at a new QM start solution7, until a  stop  condition  

is met. Then the algorithm compares the local minima it found and chooses the 

solution with the lowest cost. If there were enough repetitions of the first steps, the 

algorithm has found a solution that is close to the global minimum. 

Simulated Annealing. In  simulated  annealing  (SA) search  strategy,  initially  the  “tem

perature” τ parameter is set to high. Thus, a great deal of random movement in 

7One good strategy in II-QM is to try the different start QM selection approaches and return the QM with the 

smallest cost after several iterations. 

http:Annealing.In
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SA-QM (bestQM a start  query  mesh  solution)  

01 QM = bestQM 

// Choose an initial (high) temperature τ > 0
 

// Choose a value for ρ, the  rate  of  cooling  parameter 
  

' 02 Choose a random neighbour of QM and call it QM 

// Calculate the cost difference in the query meshes: 

03 δ = cost (QM ' ) - cost (QM) 

// Decide to accept the new query mesh or not 

04 if (δ ≤ 0) 

' ' 05 QM = QM // QM is better than or is the same as QM 

06 else 

' 07 QM = QM with probability e 
−

τ
δ 

08 if (stop condition is met)  

09 exit with QM as the final solution 

10 else 

11 reduce temperature by setting τ=ρ*τ, and go to  Step  2  

Figure 5.6. SA search strategy for QM 

the search space is tolerated. Over time the “temperature” parameter is lowered, 

and thus less and less random movement is allowed, until the solution settles into a 

final “frozen” state. This allows the heuristic to sample the solution space widely 

when the “temperature” is high, and then gradually move towards simple steepest 

ascent/descent as the “temperature” cools. Thus the search can move out of local 

optima during the high temperature phase. The SA algorithm accepts a worsening 

move with a certain probability. This probability declines as τ declines, by analogy 

the randomness in the movements decreases as the temperature falls. When τ is 

small enough the algorithm accepts only the improving moves. Figure 5.6 sketches 

the pseudo-code for SA-based query mesh search strategy. 
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Hybrid Search. Alternatively,  we  can  employ  a  hybrid  search  strategy,  the  pseudocode  

for which is shown in Figure 5.7. The hybrid algorithm takes three input parameters: 

T , m, and  H , where  T is the training tuple set, m describes the cardinality (or the 

upper-bound) of the subsets to be fully enumerated, and H is the list of the search 

heuristics (with their stop conditions) to employ after the full enumeration completes. 

The main idea of the hybrid is to first start with the full numeration strategy, then 

choose the best candidate solution as input to the first search heuristic in the list. 

Heuristics are then executed one after another, each improving the QM solution and 

returning its output as the input to the next heuristic in the list until all heuristics 

have executed. We denote the size of the training set using n = |T |. The  input  

parameters m and H control the overall search strategy for the best QM . At  one  

extreme, if m = n, then  the  search  procedure  takes  the  full  enumeration  approach  to  

find the optimal query mesh. On the other hand, if m = 0,  the  procedure  corresponds  

to a pure heuristic-based search (described in Section 5.2.6). If m = k, where  0  

< k < n, then  the  search  procedure  first  enumerates  in  a  bottom-up8 fashion the 

query mesh configurations up to the size k of subsets. Then the “best so far” query 

mesh is used as the start solution for the heuristic-based search. The value of m 

relative to n reflects the desired degree of completeness of enumeration. The issue 

of heuristically determining an appropriate value of m depends on the characteristics 

of the training set data. For now, we assume the query mesh optimizer can adjust 

this value heuristically to vary the nature of enumeration from quick and heuristic to 

accurate and exhaustive. This covers the entire search spectrum from pure heuristic 

to the full enumeration search. 

Selecting a Stop Condition 

The stop condition largely depends on the QM search strategy employed. In general, 

query mesh search may stop when either k iterations have gone by, or the solution did 

8Alternatively, we can take a top-down approach where initially a single route is assigned to the entire training set. 

Subsequently, the training set is broken down into subsets and routes are computed for the subsets. 
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HybridSearch (m subset size or the upper-bound for full enumeration,
 

T training dataset, H search heuristic)
 

01 n = |T | // size of the training tuple set
 

02 if (m = 0) 
  

03 bestQM = RANDOM-PICK // see “Selecting a Start Solution” Section
 

04 else
 

05 bestQM = EXTREME-N-ROUTES // see “Selecting a Start Solution” Section
 

06 while (size of subsets in bestQM ≤ m)
 

07 execute QM Exhaustive Enumeration (bestQM)
 

08 if (m < n)
 

09 continue with the heuristic H(bestQM) // where H ∈ {II, SA, ...}
 

10 return bestQM
 

Figure 5.7. Hybrid search strategy for QM. 

not improve in the last several rounds indicating that the search process has reached 

a plateau.  Alternatively,  the  search  can  be  time-bounded  or  resource-bounded,  e.g.,  

when memory or CPU utilization limits are reached. 

To summarize, given a finite amount of time, the quality of the resulting QM 

found by a heuristic depends on the start solution, the connectivity of the search 

space determined by the neighbors of each solution, the search strategy and its step 

size, the stop condition, and, finally, the quality of the cost model employed by the 

optimizer. 

5.3 The Query Mesh Executor 

5.3.1 Instantiation of Physical Infrastructure 

Given a logical query mesh specification (the classifier and the set of routes) found 

by the optimizer, the QM executor takes it as an input and instantiates the physical 

QM runtime infrastructure. The runtime infrastructure consists of the Online Clas
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Classifier Self-Routing Fabric (SRF) 

Data 
Stream 

Labels 

Figure 5.8. Query mesh execution example. 

sifier operator and the Self-Routing Fabric (SRF )9 infrastructure inside which all the 

query operators are instantiated (Figure 5.9). 

The SRF infrastructure consists of two main elements (see Figure 5.9): (1) The 

Operator Index Array (OI-array) which  stores  the  pointers  to  all  query  operators.  

Each index i corresponds to a unique operator opi. Index  “0”  is  reserved  for  the  SRF 

global output queue, where query result tuples are placed to be sent to application(s). 

(2) The Operator Modules (Op-modules) which  are  the  actual  operators  processing  

the tuples, e.g., selection, projection, etc.  

Before starting query execution, SRF infrastructure must be instantiated. Figure 

5.10 shows the pseudo-code for constructing SRF for a given query. The algorithm 

takes as an input a logical specification of QM from the optimizer. First it iterates 

through all operators in the routes of QM, and  computes  a  union  of  all  operators  

denoted by O (Lines 2-6). Thereafter, the OI-Array is instantiated (Line 5) with the 

“0th” index being reserved (Line 6), and a physical instance of each operator is created 

and assigned to one position in the array (Lines 7-9). The OPT hash table stores the 

mapping between the logical operators and their physical instances (Line 8), and is 

used at the end of the instantiation to update the logical routes with their physical 

counterparts (Line 13). To keep the description concise, we skip the pseudo-code for 

9The name “Self-Routing Fabric” was  chosen,  because  the  infrastructure  enables  the  operators  to  self-route  the  tuples  

according to their best routes without any central router operator like Eddy. 
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Figure 5.9. QM physical runtime infrastructure. 

ConstructSRF (QM logical query mesh solution)
 

01 OP T = new  operator  translation  hash  table 
  

02 for (each r ∈ QM.R)
 

03 for (each op ∈ r)
 

04 O = Union (op)
 

05 SRF .OI − Array = new  Array[1  +  |O|]
 

06 op index = 1  // 0-th index is reserved for result tuples
 

07 for (each op ∈ O)
 

08 OP T [op] =  op index
 

09 SRF .OI − Array[op index++] = new PhysOp(op)
 

10 ReplaceLogicalLabelsInOnlineClassifier(OP T )
 

11 return;
 

Figure 5.10. Physical instantiation of the Self-Routing Fabric infrastructure. 

label replacement, but the main idea is to translate and update of the classifier labels 

with operators’ physical ids in the SRF. This  step  is  done  only  once  and  only  in  the  

SRF instantiation to eliminate the burden of continuous logical-to-physical operator 

translation for every classified tuple at runtime. 
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5.3.2 Physical Execution 

When new tuples arrive, they first get processed by the online classifier operator 

to determine the routes to be used for their processing. To keep memory and CPU 

overhead minimal, the routing decisions are applied at the granularity of groups of 

tuples, denoted as “routable clusters” (or  short  “rusters”), rather than individual 

tuples. Thereafter, the tuples are forwarded into the SRF for the actual query eval

uation according to their routes (see Figure 5.9). In contrast to simple tuple batches 

e.g., in [33], rusters are based on the semantics of sharing the same best execution 

route. Hence, a ruster concept is different from both a batch of tuples that happen 

to arrive contiguously together in time, as well as from a traditional cluster, e.g., 

grouping tuples based on similar values. Tuples with very different data values may 

still be assigned to the same ruster. Hence,  the  term  “ruster” allows  us  to  depict  the  

concept of such tuple grouping precisely. 

Tuples are classified using a tumbling classification window W TC. We  use  a  tum

bling window, because it partitions a stream into non-overlapping consecutive win

dows, so that a tuple is classified only once. If tuples within a time window are 

known to be correlated, then the classification overhead can be minimized by classi

fying one tuple per window and then sending the rest of the tuples on the same route 

as the classified tuple. The pre-computed route for a ruster is stored in a route token 

(short r-token). R-tokens are metadata tuples, similar in spirit to streaming punctu

ations [105] and are embedded inside data streams, thus partitioning the infinite data 

streams into finite rusters. What  distinguishes  the  r-tokens from other streaming 

metadata is that (i) they are “self-describing” as they carry routing instructions for 

streaming data to convey to operators and (ii) the routes in the r-tokens are specified 

in the form of an operator id stack based on the design of the SRF. 

An example of runtime execution is depicted by a thick black arrow in Figure 

5.9. Consider an SRF with the operator index array as follows: OI-array [1] = opi, 

OI-array [2] = opj , OI-array [3] = opk, OI-array [4] = opl, OI-array [5] = opm. Then  a  
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route r = <opm, opl, opi, opk> will be encoded in an r-token as a stack <5,4,1,3>, 

where ‘5’ is the first operator in the route and ‘3’ is the last. The top of the stack 

represents the index of the operator in the SRF. A  ruster is always routed to the 

operator that is currently the top node in the routing stack. OI-array enables the 

knowledge of the “location” of other operators. After an operator is done processing 

the ruster, the  operator  “pops”  its  index  from  the  top  of  the  routing  stack  in  the  r-

token, and  then  forwards  the  ruster to the next (now the top) operator. If all tuples 

from a ruster are dropped by an operator opi, then  the  ruster is not processed any 

further and its r-token is discarded. When the r-token operator stack is empty, the 

ruster tuples are forwarded to the global output queue reserved by the index “0” and 

then to applications. 

The novelty of our proposed infrastructure lies in the physical separation between 

the component that determines which routes should be used for execution and the 

component that actually physically executes the routes based on the logical specifi

cations. Such architecture easily supports concurrent execution of multiple routes. 

Furthermore, SRF eliminates a central router operator (like Eddy), and removes the 

“backflow” bottleneck problem present in the systems based on Eddy, where tuples 

are continuously sent back to the Eddy to determine which operator should process 

them next [33]. We also believe that our runtime infrastructure offers many other 

potential benefits for adaptivity and multi-query shared processing. 

5.4 Query Mesh Experimental Study 

Here, we describe our experimental evaluation of the core query mesh framework 

implemented inside Java-based continuous query engine called CAPE [8]. To evaluate 

QM, we  compare  its  performance  against  competitor  systems,  such  as  the  solution  

employing “single plan for all data” [62] (SP, for short) and the “multi-route-less 

systems” [34] (or MR, for short) discovering routes at runtime. In the rest of the 

section, we will refer to them using their abbreviated names, SP and MR, respectively. 



132 

Table 5.1
 
Defaults used in the experiments.
 

Parameter Value Description 

D Poisson Default data distribution 

|A| 6 # of  attributes  in  tuple  schema  

|S| 1000 tuples Size of sample tuple set 

|T | 10 tuples Size of training tuple set (after data condens

ing) 

Start 

Solution 

Route-Driven QM start solution strategy 

Search 

Strategy 

II-QM QM search strategy 

Stop 

Condition 

k = 3 # of  iterations  in  the  search  

W T C 1,000 tuples Classification window size 

Ruster size 100 tuples ruster size 

For SP, we use a multi-way join (MJoin) [62] operator. MJoin is a generalization  of  

symmetric binary join algorithms, providing the best plan for each stream, and thus it 

became our choice for SP (as the closest competitor to query mesh). For MR, we use 

Eddy framework with CBR routing [28], which is one of the closest approaches to QM. 

To ensure the even comparison, all systems were implemented in CAPE, and their 

implementation used as much of the same codebase and data structures as possible. 

We use a Round-Robin scheduler in all three systems, which cycles over the list of 

active operators and schedules the first operator ready to execute. When scheduled, 

an operator runs for a fixed amount of time bounded by |Tdq|, the  number  of  tuples  

that an operator may dequeue from its input queue in each execution epoch. Round-

Robin was chosen as it has a desirable property of avoiding starvation: no operator 

with tuples in its input queue goes unscheduled for an unbounded amount of time. 

In addition to comparison against the alternative systems, we also demonstrate the 

effectiveness of QM by measuring its runtime overheads. 
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Figure 5.11. Experimental distributions.
 

Table 5.2
 
Distribution statistics.
 

Data Distributions 

Name Parameters Application Examples 

Uniform α ∈ {...,β-1,β} 

β ∈ {α,α+1,...} 

X ∈ {α,...,β-1,β} 

• Long-term patterns of data 

• Distribution of moving objects in some geographic 

areas 

Poission 0 < λ < ∞ 

X ∈ {0,1,...} 

• Service times in a system 

• # people  arriving  at  a  counter  

• # of  times a  web  server  is  accessed  per  minute  

Uniform (α = 0, β = 100):  min: 0.0,  max : 100.0,  med : 49.0,  

mean: 49.7, ave.dev : 25.2,  st.dev : 29.14,  var : 849.18,  skew : 0.05,  

kurt : -1.18. 

Poisson (λ = 1): min: 0.0,  max : 7.0,  med : 1.0,  

mean: 0.97, ave.dev : 0.74,  st.dev : 1.01,  var : 1.02,  

skew : 1.17, kurt : 1.89  

5.4.1 Experimental Setup 

All our experiments are run on a machine with Java 1.6.0.0 runtime, Windows 

Vista with Intel(R) Core(TM) Duo CPU @1.86GHz processor and 2GB of RAM. We 

use N -way join queries in our experiments of the form: 

select * from S1, S2, S3,...SN
 

where S1.col1 = S2.col1 and
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S2.col2 = S3.col1 and 

S3.col2 = S4.col1 and ... 

SN−1.col2 = SN .col1 Such queries represent a core query type in database 

and data stream management systems alike and are frequently used to discover cor

relations across data coming from different sources. In the context of financial ap

plications, such query may be useful for applications making a decision on a stock 

purchase, e.g., to estimate expected fall/rise in stock prices based on the arriving 

news. For sensor data, this type of query may be useful to detect fire “hotspots” or 

for automatic temperature control inside buildings. The specific query we use is an 

equi-join of 5 streams, i.e., S0 ��S 1... S4 ��S 5. We  use  synthetic  data  sources  for  

our experiments, similar to many other systems’ evaluations e.g., [28, 64, 65]. Using 

synthetic data allows us to manage data properties that are hard to control in real-life 

data10 . 

We employ several well-known data distributions to establish the data skew. 

Specifically, we use Uniform and Poisson distributions (Figure 5.11 visually illus

trates these distributions). These distributions model many real-life phenomena (a 

few examples are listed in Table 5.2). The default data properties, distribution pa

rameters and system parameters used in the experiments are depicted in Table 5.3 

and Table 5.4. 

5.4.2 Results and Analysis 

QM Optimizer: Effect of the Start Solution 

Here, we evaluate the effects of different start solution approaches (described in Sec

tion 5.2.6) on the structure of QM solution when used in a heuristic-based search. 

10We have also  experimented  with  real-life  data,  and  the  results  were  very  encouraging:  the  trends  were  similar  to  

synthetic data. 

The sliding windows in the queries are based on the timestamps present in the data (as opposed to the clock times 

when tuples arrived to the system during a particular test run). In this way, we ensured that the query answers were 

the same regardless of the rate at which the dataset is streamed to the system or the order of tuple processing. 
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(i) CDA (ii) E1R 

(iii) RP (iv) RDA 

Figure 5.12. QM with different start solutions. 

We provide the qualitative rather than the quantitative analysis here, as it clearer 

depicts the differences among the approaches. In all cases, the search strategy ran 

with a single iteration, thus after selecting the start solution the search terminated. 

We have implemented a QM visualizer application that given a logical query mesh 

solution found by the optimizer graphically displays its structure. Figure 5.12 shows 

the snapshots of QM s when  four  different  start  solutions  were  used:  CDA, E1R, RP 

and RDA, respectively.  Although,  it  is  not  possible  to  show  all the  details  of  the  

classifier nodes and operators in the routes, we thought that showing the overall QM 

structure could give the reader a better idea of what a QM solution may look like. 

Black node represents the root of the classifier in QM. Green  node  is  a  global  OR  

distinguishing between different streams’ data. Purple nodes represent the internal 

test nodes of the DT classifier, and red nodes are the leaves of the classifier. Routes 

composed of query operators are depicted by blue nodes. 

Figure 5.13 provides intuitive examples for why different start solutions approaches 

result in such different QM s. Here, the data tuples are represented as dots and the 

dashed lines separate data into subsets with distinct routes according to the approach. 
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RA RB RA RA 

RB RA 

RB 

(i) CDA (ii) RDA
 
(2 distinct routes) (3 distinct routes)
 

Figure 5.13. Impact of start solutions on routes. 

In CDA, we  partition  quantitative  attribute  domains  into  ranges,  and  based  on  the  

statistics of different content-based partitions compute routes (in the example, we 

have two routes RA and RB ). Here, the subsets of data (and as a result, the final 

routes and the overall QM solution) are largely dependent on the partition function 

employed. In E1R, all data  subsets,  regardless  how  distinct  they  are,  will  be  processed  

using one route (RA). In RDA, distinct  subsets  will  be  determined  based  on  similar  

data statistics (or data “densitities”). Clearly, a start solution approach has a great 

impact on the final QM solution, in particular, the count and the quality of the routes 

found and the classifier model induced. 

QM Optimization: Effect of the Search Strategy 

Here, we evaluate how QM solution changes after a search strategy is applied to the 

start QM solution. For this purpose, we have picked two QM s produced  by  E1R 

and RDA, as  examples,  and  ran  the  II-QM algorithm with the stop condition k = 10  

iterations. Figure 5.14(top) shows the QM change with E1R start solution and Figure 

5.14(bottom) shows the resulting QM with RDA start approach. As can be seen, the 

search strategy improves the initially picked QM solution, and the resulting QM s are  

RB RC RC RA RA 

(iii) E1R
 
(1 distinct route)
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... 

After 
k = 10 

iterations 

E1R start solution Resulting QM solution 

... 

After 
k = 10 

iterations 

RDA start solution Resulting QM solution 

Figure 5.14. Effect of the search strategy.
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Figure 5.15. Query mesh experimental results. 

similar, although not identical (the classifier model varied slightly). Given a limited 

amount of search time (bounded by our stop condition), still the start solution has a 

great impact on the final QM solution produced by the optimizer and the efficiency 

of the optimizer to produce good QM s quickly.  
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Figure 5.16. Comparison of runtime overheads. 

QM Optimization: Classifier Structure and Size 

Here, we analyze how the classifier model may vary relative to the features of data. 

QM decision tree classifier consists of a root, a number of branches composed of 

internal nodes and leaves. DT can contain both categorical and numeric (continuous) 

information in the nodes of the tree. Quantitative data types (ordinal and continuous) 

are “binned” into categories that are used in the creation of branches – or splits – in the 

decision tree. Similarly, the categorical data is collapsed into groupings of categories 

- to  enable  them  to  form  the  branches  of  the  decision  tree).  We  have  observed  that,  

on average, the size of the learned decision tree varied between 51 and 70 total nodes 

(that’s with streams’ schemas consisting of 6 attributes as depicted in Table 5.3), 

with about 1-6 distinct subsets (described by the number of leaves) per stream and 

1-4 unique routes per stream. If the cardinality of the multi-route configuration is 

1 (which  may  happen  when  all  data is  uniform  or  there  is  a query  constraint,  e.g.,  

a plan  consists  of  a single  operator  or  a certain  operator  order  must be used), then 

clearly there is no need for a DT, hence  height(DT ) = 0.  Otherwise,  the  height  of  the  

classifier very much depends on the features of the data and the number of routes and 
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their distribution with respect to the training data. Generalizing about the expected 

height of a QM classifier for an arbitrary dataset is extremely challenging. However, 

implicit preference for a small decision tree is built-in into the classifier induction 

algorithm by default [141], which guarantees minimum classification cost, regardless 

of what data properties may be. 

Query Mesh Execution: Average Output Rate and Processing Time 

In this experiment, we compare QM against competitor approaches, namely SP and 

MR. We execute MR in two modes: (i) with batching [33] and (ii) without batching. 

The batch size is set to 100, which is similar to max ruster size parameter in QM (see 

Table 5.3), and is designed to reduce MR execution overhead. We executed query 

for 25 minutes several times, using these different solutions, and show the results, 

averaged over all those runs. Figure 5.15(a) compares the average output rate, the 

average execution time per tuple is presented in Figure 5.15(b), and the run-time 

execution overheads present in these systems are in Figure 5.16. 

From Figure 5.15(a), we can observe that for Uniform distribution, on average, QM 

is between 2.2 - 8% worse than SP in output rate, better by 39% in output rate than 

MR+CBR without any batching, and better by 24% than MR+CBR with batching. 

With Uniform distribution, most of the time, QM uses a single route per stream. 

Occasionally, due to sampling, we have noticed two routes per stream in QM. For  

Poisson distribution, we have observed that QM on average has 27% higher output 

rate than MR+CBR without batching, 18% higher than MR+CBR with batching 

and 44% higher output rate than SP. The average execution time per tuple (in Figure 

5.15(b)) follows a similar trend. 

The results show that QM approach does not incur significant performance penalty 

if datasets are not skewed, and can give great improvements if they are. The “worst 

case” scenario for QM is when all data has uniform distribution and no distinct routes 

are needed. If there are no distinct subsets in the data, no benefit can be gained from 
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trying to find distinct routes during optimization and during execution, processing 

rusters of tuples that all have the same route. 

QM Execution: Runtime Overheads 

Here, we compare runtime overheads of QM and MR11. Figure  5.16  reports  the  over

heads per workload of tuples relative to the total execution cost. A workload in this 

experiment is a set of data tuples received and processed during a time interval of 1 

minute. For both MR and QM, we  considered  any  execution  that  is  not  the  actual  

query processing (i.e., the processing by the query operators on the data) to be a 

runtime overhead. We have instrumented the code to determine the time spent by 

each procedure contributing to such overhead in both cases. The relative runtime 

overhead is depicted in black in Figure 5.16. 

MR suffers from continuous re-optimization and re-learning overheads. In MR, 

Eddy operator continuously profiles operators and identifies “classifier attributes” to 

partition the data into tuple classes that may be routed differently [28]. Continuous 

overhead of re-computing classifier attributes based on runtime information may often 

be unnecessary as the best classifier attribute for an operator does not change very 

often, as was also indicated in [28]. Furthermore, MR continuously experiences the 

“backflow” overhead, where tuples get continuously routed back to the Eddy operator 

that has to re-examine the tuples and forward them to the next operator for process

ing. The overhead is O(n+1) time, where n equals the number of operators and 1 

accounts for the first time a tuple from an input stream gets processed. Batching 

attempts to reduce MR overhead. However, batching in Eddy [33] is still very naive: 

every b tuples, i.e., a continuous chunk of tuples that happened to arrive together in 

time are batched and routed together. Without any batching, the runtime overhead 

in MR+CBR algorithm amounted to nearly 20% of the total execution cost. These 

11We did  not  measure  SP  runtime  overheads,  as  all  data  is  processed  using  one route  here,  and  thus  no  overhead  

regarding how the data should be processed is incurred at runtime. 
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overheads limit query performance and the benefit that can be obtained from a better 

adaptive policy in Eddy. 

In QM, on  the  other  hand,  tuples  are  grouped  together  into  the  same  ruster based 

on the classification. The classifier model implicitly considers the data values and the 

similarity of statistics to assign routes to data, and thus tuples classified and grouped 

into rusters are guaranteed to share the same best route. Furthermore, QM ’s runtime 

infrastructure based on SRF enables the query operators to route data tuples in a 

distributed fashion nearly overhead-free, thus eliminating the “backflow” overhead 

problem associated with Eddies. The only small runtime overhead incurred in QM is 

the probing of the classifier to determine the execution plan for arriving data. The 

classification overhead, however, was measured to be very small, on average, only 2% 

of the query execution cost (Figure 5.16). The classifier in our case is small in height 

(maximum 2-3 levels high) and DT traversal is rather quick and cheap. Additional 

system overheads include scheduling an additional operator (i.e., the online classifier) 

by the scheduler. Since the processing of the tuples by the classifier is fast, the 

operator, when scheduled, completes its work very quickly giving majority of the 

execution time to query operators. 

We have evaluated the overhead of the online classifier relative to the overall query 

execution cost. Figure 5.17 shows the classifier overhead for various join queries. 

As can be seen, online classification has a very low relative overhead ranging from 

2% for a 10-join query up to 4% for a 4-join query. We have also observed that the 

decision tree classifier tends to be small in height (maximum 2-3 levels high) and DT 

traversal is thus quick and cheap. Additional system overhead of the online classifier 

corresponds to scheduling an additional operator by the scheduler. Since the process

ing of the tuples by the classifier is fast, the operator, when scheduled, completes its 

work very quickly giving majority of the execution time to query operators. 
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Figure 5.17. Overhead of runtime classification. 

5.4.3 Summary of Core QM Experimental Conclusions 

The main points of our experimental study can be summarized as follows: 

1. QM can give up to 44% improvement in execution time and output rate. 

2. Even if data is not skewed, QM ’s performance in the worst case will be at most 

2-8% slower than a single plan approach. 

3. The runtime overhead of QM is very small (2% to 4% at most) relative to the 

overall query processing cost. 

4. The actual route execution in SRF (forwarding of data by an operator to the 

next operator in the route) is nearly negligible resulting in 0.01% of total query 

execution cost. 

5.5 QM Conclusion 

Here, we have proposed a novel query processing approach called Query Mesh 

(or QM ). QM approach answers a central need to have a middle-ground solution 

between the plan-based systems using a single plan and the continuously re-optimizing 

solutions that may employ different plans for different data. Furthermore, QM offers 

numerous advantages over the state-of-the-art techniques. First, QM uses machine 
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learning techniques to discover the relationship between the data and the resulting 

routes to find the best processing strategy for different subsets of data. Second, 

QM is comprehensive and addresses both query optimization and execution. Third, 

QM execution infrastructure facilitates shared operator processing and has near-zero 

route execution overhead. Our most important contribution was to show that QM 

implemented in a prototype DSMS can achieve significant performance improvements 

over alternative solutions, and thus presents a potential as a paradigm for query 

optimization. 

In the future we plan to address the issue of uncertainty in QM. The  current  

setup assumes a “perfect” knowledge scenario when computing QM, which  may  not  

be the fact in real-life. We plan to address scenarios, where computed routes may 

be uncertain (e.g., due to lack of statistics), classifier may be uncertain (e.g., due 

to several possible best route alternatives for a subset of data), and how the QM 

optimizer the QM executor should handle such cases. 

5.6 Self-Tuning Query Mesh (ST-QM) 

As we have described at the beginning of this chapter, in real-life applications, 

different subsets of data may have distinct statistical properties, e.g., various websites 

may have diverse visitation rates, different categories of stocks may have dissimilar 

price fluctuation patterns. For such applications, it can be fruitful to eliminate the 

commonly made single execution plan assumption and instead execute a query us

ing several plans, each optimally serving a subset of data with particular statistical 

properties. Furthermore, in dynamic environments, data properties may change con

tinuously, thus calling for adaptivity. The intriguing question is: can we have an 

execution strategy that 

1. is plan-based to leverage on all the benefits of traditional plan-based systems, 

2. supports multiple plans each customized for different subset of data, and yet 
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3. is  as  adaptive  as  “plan-less”  systems  like  Eddies?  

While the proposed Query Mesh (QM ) approach  provides  a  foundation  for  such  

an execution paradigm, it does not address the question of adaptivity required for 

highly dynamic environments. In this section, we fill this gap by proposing a Self-

Tuning Query Mesh (ST-QM ) –  an  adaptive  solution  for  content-based  multi-plan  

execution engines. ST-QM addresses adaptive query processing by abstracting it as 

a concept drift problem – a  well-known  subject  in  machine  learning.  Such  abstraction  

allows to discard adaptivity candidates (i.e., the cases indicating a change in the 

environment) early in the process if they are insignificant or not “worthwhile” to adapt 

to, and thus minimize the adaptivity overhead. A unique feature of our approach is 

that all logical transformations to the execution strategy get translated into a single 

inexpensive physical operation – the  classifier  change.  Our  experimental  evaluation  

using a continuous query engine shows the performance benefits of ST-QM approach 

over the alternatives, namely the non-adaptive and the Eddies-based solutions. 

5.6.1 Motivation for Adaptivity 

Many modern applications deal with data that is updated continuously and needs 

to be processed in real-time [214–216]. Examples include network monitoring, finan

cial monitoring, fraud detection, etc. Even if given a highly effective query execution 

strategy at the start, data and system characteristics may change considerably dur

ing the query lifetime, making it necessary to adapt the execution strategy. This 

pressing problem of adaptivity has become an important and active area of research 

in recent years [58, 72, 76, 96, 217]. Moreover, real-life datasets typically tend to be 

non-uniformly distributed [218], e.g., sensor networks, moving objects, etc. Enforcing 

a single  query  plan  execution  strategy,  as  is  the  defacto standard  for  most  database  

technology, may lead to serious performance deterioration in situations where subsets 

of data may have very different statistics [20]. 
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Motivating Example. Consider  the  following  continuous  query  used  in  a  financial  

monitoring application to correlate stock prices with current events: 

SELECT * 

FROM stocks, news, currency, blogs 

WHERE blogs.subject = stocks.industry 

AND stocks.region = news.region 

AND news.country = currency.country 

AND stocks.percent_change > 15 

To answer this query, the data may be acquired from several stock exchanges, 

geographically dispersed news sources and blogs that may be updated at various rates, 

e.g., based on the location or the time zone. Arriving from various data providers, the 

respective data subsets are likely to have different statistical properties, such as their 

data values, their frequency, and arrival rates. To complicate matters, in reaction to 

the same real-life events, prices of stocks may fluctuate rather differently over time. 

News about political instability in certain geographical regions may affect positively 

the stocks of defense-related companies while having an opposite or no effect on other 

sectors. Change in data values and their frequencies may lead to the disappearance 

of existing and the emergence of new statistically similar data subsets, consequently 

leading to changes in query execution statistics. To ensure good performance at all 

times, a database system must be capable to continuously identify such distinct data 

subsets and to adapt the execution strategy accordingly. 

Unlike most adaptive solutions, e.g., [58,72,76], our work does not focus on adapt

ing a single execution plan for a query, but rather on adapting the multi-plan-based 

(or we refer to it as multi-route-based) execution strategy12 [219]. 

5.6.2 Adaptive Multi-Plan Query Processing 

Given that QM employs a practical middle-ground strategy between the two query 

optimization extremes – the solutions that employ a “monolithic” single execution 

12We use terms “plan” and “route” interchangeably.  Both mean the same thing in the context of this paper.  To  

prevent any confusion with Eddies-based systems [33, 34], a route in our work is a fully pre-computed query plan. 
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plan strategy for all input data, e.g., nearly all commercial DBMSs [30–32], and the 

systems like Eddies that employ a fine-grained “plan-less” approach, where instead of 

predermined plans, at runtime the Eddy operator determines, one-at-a-time, the next 

operator, that the tuples must visit for processing [34]. The open question now arises, 

if a multi-plan based execution strategy, such as QM, can  be  as  adaptive  as  “plan

less” systems like Eddies? The need for adaptivity is evident. Even with an initial 

good choice of a QM solution, after some time, data characteristics, e.g., data values, 

their frequencies and execution statistics, such as operators’ costs and selectivities, 

may change considerably requiring to adapt the execution strategy. The fundamental 

challenge for QM adaptivity is the problem of determining the discrepancy between 

the previously constructed QM model13 and the currently most suitable QM solution 

based on the new data characteristics, i.e., its values and its statistics. In machine 

learning, such disrepancy is called a concept drift [141]. Concept drifts happen when 

a model  built  in  the  past  is  no  longer  applicable  to the  current  data.  

In the context of QM, the  change  may  occur  at  either  the  target concept level, 

i.e., the routes in the multi-route configuration, or at the underlying data distribution 

level, i.e., the data values and their frequencies (see Figure 5.18). The necessity to 

change the current model due to changes in the data distribution is called a virtual 

concept drift [220]. A real concept drift may occur for instance when more accurate 

statistics become available during execution and the routes in QM should be adapted 

based on this new information. Virtual and real concept drifts often occur together. 

We refer to such case as hybrid concept drift [141]. From a practical point, a concept 

drift (real, virtual, or both) gives a good indication that the current QM solution 

needs to be adapted. A concept drift implicitly indicates that either the data values, 

their frequencies or execution statistics have changed. Thus the predictions made 

by the current QM solution become less accurate as the time passes, e.g., data may 

be assigned to “wrong” subsets and less efficient execution plans may be used for 

13A QM solution represents a particular “model” of execution, as determined by the classifier and the set of execution 

routes. In machine learning, this term is commonly used to refer to classifier-based systems. 
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Figure 5.18. Virtual and real concepts in Query Mesh. 

processing of those data tuples. Hence, detecting concept drifts can serve as a good 

signal indicating a possible need to adapt. 

Multi-route adaptivity is a more complex problem compared to a single plan adap

tivity and brings several new challenges. First, we must continuously find and deploy 

the best execution solution where multiple plans are used concurrently. The majority 

of current adaptive solutions [76] are inapplicable here, as these methods are designed 

to support only a single plan. Second, QM employs a classifier as a component of 

query processing infrastructure. Therefore the classification cost must be taken into 

account by the QM optimizer. Furthermore, a QM may need to be adapted not 

only when statistics change, but also when data values change (even if statistics stay 

the same), because such change has a direct impact on the classifier accuracy14 and 

the overall performance of QM solution. Therefore, monitoring data values is as im

portant as monitoring statistics. Finally, the physical execution of QM adaptation 

itself must be inexpensive to make it practical for dynamic environments where query 

results must be produced in near-real time. In summary, the key challenges include: 

(1) how and when to determine that the current QM solution is no longer adequate, 

(2) how to determine the new “best” QM solution based on the new data values and 

The classifier is constructed based on data values. 14
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the updated statistics, and (3) how to efficiently execute the physical migration from 

the current QM to a new QM solution while the query is being executed. 

5.6.3 Our Proposed Solution: ST-QM 

We address the above-mentioned challenges by proposing a self-tuning framework 

for QM called ST-QM. The  techniques  presented  in  this  work  are  discussed  in  the  

context of stream environments and multi-plan query processing, however, in princi

ple, they can be applicable to other systems as well. In summary, the contributions 

of this paper are: 

1. We abstract the adaptivity of a multi-plan solution QM as a concept drift prob

lem. Our approach, based on monitoring and detection of concept drifts, can 

discard many insignificant adaptivity cases early, and thus minimize the adap

tivity overhead. 

2. We present algorithms to efficiently determine virtual and real concept drifts in 

QM used to determine if and how the execution strategy should be adapted. 

3. The key feature of our adaptive method is that all logical transformations to the 

current execution solution are translated into a single physical operation – the  

change of the classifier, without effecting the rest of the execution infrastructure. 

This makes physical adaptivity extremely lightweight. 

4. We thoroughly evaluate the ST-QM approach through experiments. Our results 

show that ST-QM is very effective in adapting to different kinds of concept 

drifts, its overhead is minimal, and the physical actuation of adaptivity has 

nearly negligible cost. 
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5.7 Overview of Self-Tuning Query Mesh 

5.7.1 The Main Idea 

The following is the problem we tackle in the context of adaptive query processing 

using Query Mesh model: 

Multi-Route AQP Problem : For a given query Q and its multi-plan solution 

QM computed at time ti based on the representative dataset T and statistics H, 

continuously detect a concept drift when a new sample dataset T ' and statistics H ' 

become available at time tj > ti. If  a  concept  drift  has  occurred,  find  a  new  solution  

QM ' based on H ' that results in the lowest execution cost for tuples in T ' . If  the  

estimated cost(QM’) < cost(QM), replace QM with QM’. 

The goal of Self-Tuning Query Mesh framework (or short ST-QM ) is  to  detect  

QM concept drifts and to adapt the current QM solution correspondingly to best suit 

the observed drift. Our approach is unique in that we view the problem of adaptive 

query processing (AQP) as a concept drift problem from machine learning [221]. This 

abstraction of the AQP gives several advantages to the adaptive system. First, if we 

discard an adaptivity case due to an absence or a presence of a small concept drift, it is 

likely not going to lead to a better QM solution, because we’ve discarded insignificant 

changes in the environment. If we do not discard a case, then there is a high chance 

that it is worthwhile to analyze further. In the end, there are fewer cases ST-QM 

has to analyze and the ones that do get analyzed further are all promising. Second, 

techniques from machine learning and data mining fields addressing the concept drift 

detection and analysis can be leveraged here to determine if adaptation is needed and 

how to best adapt to the observed drift. 

5.7.2 Query Mesh Concept Drifts 

Given the two kinds of concepts in QM (virtual and real), the following three 

cases may occur: 
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Virtual Hybrid Real 
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Figure 5.19. Concept drift “spectrum”. 

Case 1: Virtual Concept Drift. This  indicates  that  data  values  and/or  their  fre

quencies have changed, but the execution statistics of the new data subsets stay the 

same, thus making the previously computed routes still applicable. One example 

when such scenario may occur is when a better quality (i.e., more representative) 

training dataset is collected over time. In this case, the execution statistics of the 

subsets might not change significantly, yet the QM classifier can be further fine-tuned 

by integrating new data values. For example, a new DT sub-tree can be added or 

the nodes can be “pushed-up” or “down” for faster classification. Another example 

of this case (based on the application mentioned in Section 5.6.1) is when a stock 

exchange opens and starts streaming its data. The streaming data values from the 

recently opened stock exchange get combined with the streaming data from other 

previously streaming stock exchanges (e.g., from other regions). Here the new stock 

data values, e.g., symbols, location, etc., will appear in the data streams, yet the 

underlying distribution and the statistically similar data subsets are likely to stay 

unchanged. 

Case 2: Real Concept Drift. This  case  means  that  the  data  values  stay  unchanged,  

but their execution statistics (e.g., selectivities or operator costs) begin to vary, thus 

requiring the execution routes to be adapted. This scenario tends to be less fre

quent, but may arise when the optimizer used a rough approximation of data subsets’ 

statistics, and then more accurate statistics become available as a result of the query 

execution feedback. The updated statistics enable the “tune-up” of the execution 

routes. Using the financial application example, this case may happen when a sole 

stock market is being monitored.Here, the data values, e.g., stocks being sold on 



151 

this stock exchange, become available as soon as it opens and are unlikely to change 

significantly during the day. Yet, the statistics for the new data might not be very 

accurate at the beginning of the execution. However, the longer the query runs, the 

more accurate estimations can be made. Another example when this case may occur 

is when better routes are found through route exploration described in Section 5.8.2. 

Case 3: Both Virtual and Real Concept Drifts. We  refer  to  this  case  –  the  hybrid  

concept drift, and it happens when both the data distribution and the execution 

statistics change, consequently leading to alterations in the execution routes and the 

classifier. Using financial application example, this case may happen when during the 

after-market trade hours, important news become public, which may have a signifi

cant impact on the stock prices of some industries. Since not all stocks participate in 

the after-hours trading, the data distribution changes after the markets close. Fur

thermore, the real-life news may impact the prices of only certain types of stocks. In 

this case, both the data distribution and the execution statistics may change signifi

cantly, thus requiring both the classifier and the set of execution routes in QM to be 

adapted. 

The three cases described above are not independent. Virtual and real concept 

drifts are the special cases of the hybrid concept drift. The three cases compose 

a comprehensive  “spectrum”  of changes  that  may  occur  in  a system  (Fig.  5.19):  

specifically, a change in data values and their frequencies, a change in execution 

statistics and a change in both. 

5.7.3 ST-QM Architecture 

ST-QM adds three new components to the core QM framework: ST-QM Monitor, 

ST-QM Analyzer and ST-QM Actuator (shaded grey in Figure 5.20). We have de

signed ST-QM to be highly modular, enabling adaptivity functionality to be turned 

on/off with complete transparency to the core QM framework (bottom of Figure 

5.20). The architecture is easily extensible: new algorithms and metrics can be added 

http:Drifts.We
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Figure 5.20. Self-tuning Query Mesh framework. 

without much disturbance to the rest of the system. We describe the functionality of 

each ST-QM component next. 

ST-QM Monitor continuously samples data and execution statistics that will be 

used to determine if a concept drift has occurred. Monitored parameters include data 

values, their frequencies, and the operators’ costs and selectivities. Our monitoring 

approach is comparable to that of the existing systems, e.g., [58, 222] with a few 

distinct characteristics (see Section 5.8). Given the measurements from the ST-QM 

Monitor, the  ST-QM Analyzer determines if a concept drift has actually occurred, 

how well the current QM solution is meeting its estimated costs and performance 

goals, and what (if anything) is going wrong. Based on the analysis, the ST-QM 

Analyzer makes recommendations if and how the QM solution should be adapted. 
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ST-QM Actuator takes these recommendations and physically adapts the QM solu

tion. Figure 5.21 graphically depicts the flow of the entire process. 

Monitoring, analysis, and actuation of adaptivity in ST-QM add overhead to 

query processing. Thus, to minimize the overhead, the following system requirements 

must be met: (1) monitoring must be light-weight, and only if significant changes 

are detected should the more expensive analysis process be invoked, (2) adaptivity 

candidates corresponding to insignificant changes in the environment must be dis

carded early, e.g., during monitoring or in the early analysis, without invoking the 

optimizer, (3) the decision to adapt should be made only if significant improvement 

in the performance is expected, and (4) the physical execution of adaptivity must be 

fast and inexpensive to be done online. 

5.8 ST-QM Monitor 

Monitoring aims to identify if the current QM solution is no longer consistent 

with the current data and its characteristics. What sets apart our monitoring goals 

from the existing systems, e.g., [58, 222] is that: (1) we monitor not only the change 

in data distributions and execution statistics but also in the data values, and (2) 

we focus not only on assuring the overall representativeness of a sample but also on 

ensuring that new, i.e., the never seen before data values are not gone undetected. 

ST-QM Monitor employs two complimentary techniques, namely the input data and 

the execution statistics monitoring. 

5.8.1 Input Data Monitoring 

For data monitoring, we sample the arriving to the server data to collect a new 

training dataset. This  new  dataset  is  analyzed  to  see  if  changes  in  the  data  values  

and their distributions have occurred. Monitoring data values (in addition to the 

distributions and execution statistics) has the advantage that the adaptive system 

can exploit this extra information, which is collected inexpensively, to minimize the 
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Figure 5.21. ST-QM process flow. 

overhead of the more expensive execution statistics monitoring, e.g., when profiling 

operators or exploring for new execution routes alternatives. Often changes in data 

values implicitly indicate changes in data distributions. Consequently, this leads to 

a possible change in the execution statistics, since virtual and real concept drifts fre

quently occur together. If the system detects a change in data values, it may then 

employ a more expensive and detailed execution statistics monitoring to see if the 

routes may need to be adapted. Simple random and systematic sampling techniques 

can be used here for data sampling [200]. However they can miss potentially “im

portant” training data trying to uniformly cover the entire sampling window. Thus, 

we’ve designed the following techniques: 

Classifier-driven sampling. This  type  of  sampling  is  based  on  the  “importance”  of  

tuple attributes. In QM, some  attributes  are  naturally  more  important  than  others,  

e.g., when the decision tree (DT ) classifier  is  constructed,  a  split  criterion  is  used  

to select the best splitting attribute at each node. Information gain, entropy, or  

gini index measures of impurity can be used for this purpose [141, 223]. Comparing 

the impurity value of a split attribute in the DT classifier for the old and the new 

samples of data can be a good indicator if the data distribution possibly changed. If 

the differences between the old and the new impurity measures for the same attributes 
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are significantly different, then the new sample is considered “interesting to analyze 

further” and thus is not discarded. The decision of how many impurity measures to 

compute, i.e., for how many DT nodes, and their relative importance in the overall 

sampling is parameterized. 

Route-driven sampling. This  sampling  method  resembles  a  biased sampling approach. 

It is guided by the QM execution routes and the expected percentage (% expected) 

of tuples to be processed by those routes. Here, each tuple from the new sample first 

probes the current QM classifier (Stage 1). After probing, tuple groups are formed, 

with each group being assigned to a particular route. If the difference between the 

actual and the expected route assignment fraction of tuples is less than the system-set 

threshold, then a random selection of k members from those groups is performed. If 

the difference is greater than the threshold, these tuple groups get a high “priority”, 

because they contain the different (from before) data and (k + k * (%  expected - %  

actual)) tuples are sampled from each such tuple group (Stage 2). The sub-sample 

size here is directly proportional to the observed frequency difference. 

ci - classifier test condition 
rj - execution route 
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is associated with 

each route 

Data Stream 
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Figure 5.22. Route-driven sampling. 
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The motivation behind this method is the following: if the same fraction of tuples 

were assigned to the same routes, then the data distribution is unchanged. However, if 

the difference is significant, e.g., in the case of a special route called the default route15 , 

then more tuples should be sampled, as this could be an indication of a virtual concept 

drift and possibly the classifier may need to be updated. Since this type of sampling 

is “biased” towards collecting previously unseen data, the new sample is treated as a 

compliment to the old training data set and the two sets are combined (unioned) to 

improve the overall quality of the training data and the resulting execution model. 

5.8.2 Execution Statistics Monitoring 

The statistics collected during execution are used to detect the presence of the 

real concept drift. Execution statistics monitoring consists of two complementary 

sub-parts: exploitation and exploration statistics monitoring. 

Exploitation Statistics. Exploitation  statistics  monitoring  tracks  the  selectivities  and  

costs of operators when using the established execution routes. We instrument query 

operators to collect three types of statistics: (1) independent selectivities, (2) corre

lated selectivities and (3) operator costs (measured by wall-clock time). To compute 

independent selectivities, a statistics bit is turned on in the r-token of a randomly 

selected ruster, thus  making  it  a  special-purpose  (statistics) ruster. If  a  tuple  from  

a statistics ruster does not satisfy operator predicate, the tuple is not physically 

discarded, but rather marked as a “ghost” to be able to compute independent se

lectivities for other operators en-route. For correlated selectivities, the selectivity is 

computed using only the regular (“non-ghost”) tuples in the statistics ruster, i.e., the  

tuples that have not been discarded by any previous operators in the route. All three 

types of statistics are collected for each individual route by the operators. 

15A default route rdef ault (illustrated in Figure 5.22) is an execution route based on the overall statistics of the data. 

It is used by the data that has similar statistics as the overall data statistics, as well as by the “new” data with 

properties (values and frequencies) that may have not been present when the QM was originally computed. 

http:ruster.If
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Exploration Statistics. The  motivation  for  the  exploration  statistics  lies  in  the  fact  

that the only way to know precise costs of alternative strategies is through competi

tive execution [34]. For this purpose, we use exploration rusters – a  small  fraction  of  

the input rusters that are randomly selected and assigned different from their current 

“best” routes, while monitoring the statistics along these routes. The exploration 

routes are determined by the exploration policy. ST-QM employs two exploration 

policies: (i) random existing route, where  chosen  rusters and sent on another ran

domly picked existing route; (ii) random new route, where  rusters are sent on a 

randomly generated and currently non-existing in the QM solution route. 

Devoting resources to exploration to obtain information about thus-unknown costs 

may help in finding better routes, but in the short term it detracts from exploitation 

– producing  results  with  the  current  best  routes.  This  is  a classic  exploration  versus  

exploitation dilemma [76]. To address this problem, ST-QM adaptively determines 

the number of rusters used for exploration. The total number of exploration rusters 

(TER) depends  on  the  value  of  a  distance  measure  (described  in  Section  5.9)  and  is  

computed as: TER = DER + (α * µ), where DER is the default number of exploration 

rusters, µ is the value of the distance measure and α is the fraction of rusters per 

distance unit. The larger the distance, the larger the number of rusters used for 

exploration. Exploration may also be applied selectively to only some rusters, to  put  

more focus on exploring routes for certain subsets of data. 

5.9 ST-QM Analyzer 

The ST-QM Analyzer takes the data samples and the statistics from the ST-QM 

Monitor and based on them determines if any concept drifts have occurred. It then 

gives tuning recommendations based on the analysis. The execution consists of two 

phases: (1) concept drift detection, and  (2)  tuning recommendations. 



158 

5.9.1 Phase I: Concept Drift Detection 

Virtual Concept Drift Detection 

The concept drift detection algorithm CD-Detect (in Figure 5.23) maps the problem 

of virtual concept drift detection to the problem of comparing two data samples T 

and T ' . 

' CD-Detect (T old training set, T new tuple sample, 

' H old statistics, H new statistics)
 

01 distdata = ComputeDataDistance (T ,T ' )
 

02 distroutes = ComputeRoutesDistance(H,H ' )
 

03 if (distdata > θdata) and  (distroutes > θroutes)
 

04 return Hybrid Concept Drift
 

05 else if (distdata > θdata)
 

06 return Virtual Concept Drift
 

07 else if (distroutes > θroutes)
 

08 return Real Concept Drift
 

Figure 5.23. QM concept drift detection. 

The algorithm requires a distance measure distdata which quantifies the difference 

between data samples T and T ' . If  distdata > θdata, where  θdata is the adjustable 

distance threshold, virtual concept drift is reported. The key to the change detection 

is the intelligent choice of the distance function to compute distdata, which  must  

accurately quantify a data change that may impact the current QM. The  choice  for  

the threshold θdata value defines the balance between the sensitivity and the robustness 

of the detection. The smaller θdata, the  more  likely  we  are  to  detect  small changes  in  

the data, but the larger is the risk of a false positive. 

One common approach to measuring data differences is to first estimate the prob

ability distributions of the data, and then compute the distance, such as the Kullback-

Leibler Divergence or the Jensen-Shannon Divergence [224], between the estimated 

distributions. However, this approach is computationally impractical for large and 
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high dimensional data. The problem becomes even more challenging in streaming 

data environments, as the high speed makes it difficult for such expensive algorithms 

to keep up with the data [225]. To tackle this issue, we have designed two efficient 

methods: 

Misclassification Rate. Misclassification  rate  or  error  rate  E , described  as  E = (1  - A) 

where A is the classifier accuracy, represents the fraction of total cases “misclassified” 

by the current QM classifier for the new data sample. The main idea here is to assign 

the execution routes to the tuples from the new data sample. Then the tuples from the 

new sample probe the current classifier, and the classifier’s misclassification rate, e.g., 

mean absolute error, is computed. The reason we assign the new sample tuples to the 

existing routes (even though we could possibly find better plans for their processing) 

is because we are checking for virtual concept drift with respect to the current target 

(i.e., the current set of execution routes). 

Signature-Based Method. This  method  regards  the  decision  tree  classifier  as  a  sum

marization of the distribution of data. Each leaf node contains a route label and the 

fraction of tuples expected to be processed by that route. Together, all the leaf nodes 

can be thought of forming a special “histogram” of route assignment frequencies. 

Then after probing the classifier, a signature is assigned to each data sample that 

depicts the route assignments frequencies. This way we evaluate data distribution 

changes by comparing these signatures. This method is extremely efficient, since all 

it requires is a quick probe of the classifier. 

Real Concept Drift Detection 

Real concept drift occurs when execution statistics change significantly, consequently 

implying that the execution routes may need to be altered as well. Given the updated 

execution statistics, a new set of routes is computed and compared to the old set of 

routes. The goal here is not to estimate whether the QM solution with the new set of 

routes would necessarily be “better” (remember, the cost of a QM solution depends 
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on the  combination  of  both the  classifier  and  the  routes’  costs),  but  rather  that  

the new routes are different (see Algorithm in Figure 5.23). Using such simple route 

difference approach allows ST-QM to minimize its overhead: since route computation 

is a fraction of the entire QM re-computation [219]. Next we discuss several possible 

choices for the route distance measure distroutes. 

Number of Affected Routes. This  distance  measure  counts  the  number  of  routes  that  

are different when comparing the old and the new sets of routes. Let R denote the 

old set of routes, and R’ be the new set of routes. Then distroutes = |Rdiff | = |R ' −R|, 

where ∀ r ∈ Rdiff , r ∈ R ' and r /∈ R. For  example,  if  a  route  r has a different operator 

ordering or if a new route r exists in the new set as a result of exploration – all these 

changes contribute to the route distance measure. If a more fine-grained measure is 

needed, the approach can be extended to consider the count of the operators with 

significantly different selectivities and execution costs. 

Route Edit Distance. This  distance  measure  is  based  on  the  edit distance approach 

[226]. Here, the old and the new routes are mapped respectfully to the same data 

subsets, meaning these routes were considered as the best execution strategies for 

processing of the same data subset at different times. Routes represent operator 

sequences and can be described by the strings composed of operator identifiers. The 

edit distance between any two routes is then the number of operations required to 

transform one of them into the other. The examples of edit distances that can be 

used here include Hamming distance, Levenshtein distance, and  many  others.  

5.9.2 Phase II: Tuning Recommendations 

After QM concept drifts have been detected, the ST-QM Analyzer determines 

how to address them. In response to the concept drifts, ST-QM Analyzer may do the 

following: (1) ignore the concept drifts, if they are small or the benefits of adapting the 

current QM is not expected to give much performance improvement; (2) incrementally 

tune a sub-part of the QM solution, e.g., a classifier sub-tree or a route; (3) compute a 
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Algorithm TR-Produce(CD detected concept drift, T’ new training dataset, H’ latest execution statistics) 

1:	 QM = current  query  mesh  solution  used  in  execution 
  

/* VIRTUAL CONCEPT DRIFT RECOMMENDATIONS */
 

2:	 if (CD.Type == Virtual Concept Drift) then 

3: Compute new classifier C’ based on the training set T’ 

4: Let QM’ = new  query  mesh  solution  with  classifier  C’ 

5: if (cost(QM’ ) < cost(QM )) then 

6: Recommend New Classifier C’ 

7: end if 

/* REAL CONCEPT DRIFT RECOMMENDATIONS */ 

8:	 else if (CD.Type == Real Concept Drift) then 

9: Compute new set of routes R’ 

10: Let C’ = current  classifier  QM.C 

11: Update the target level of the classifier C’ with routes R’ 

12: if (the target R’ requires modification of classifier C’ ) then 

13: Compute a new classifier C” based on the new target R’ 

14: Let QM’ = new  query  mesh  solution  with  classifier  C” 

15: if (cost(QM’ ) < cost(QM )) then 

16: Recommend New Classifier C” and New Routes R’ 

17: else 

18: Let QM’ = new  query  mesh  with  routes  R ' 

19: end if 

20: if (cost(QM’ ) < cost(QM )) then 

21: Recommend New Routes R’ 

22: end if 

23: end if 

/* HYBRID CONCEPT DRIFT RECOMMENDATIONS */ 

24: else if (CD.Type == Hybrid Concept Drift) then 

25: Compute new QM’ solution based on the training set T’ and the new statistics H’ 

26: if (cost(QM’ ) < cost(QM )) then 

27: Let C’ = classifier  QM’.C 

28: Let R’ = set  of  routes  QM’.R 

29: Recommend New Classifier C’ and New Routes R’ 

30: end if 

31: end if 

Figure 5.24. QM tuning recommendations. 

new QM solution based on the updated statistics and consider to replace the current 

QM solution. 
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Recommendation Algorithm 

Figure 5.24 illustrates the pseudo-code for the TR-Produce algorithm16 employed by 

the ST-QM Analyzer to produce tuning recommendations. Similar to many adaptive 

solutions, ST-QM uses the QM optimizer cost model [219] to compare the current 

execution to what was originally expected or what is estimated to be possible [76]. 

The recommendation algorithm has the following cases: 

Case 1: Virtual Concept Drift Recommendation. If a virtual concept drift is detected, 

first a new classifier C’ for the new training set T’ is computed. Then the cost of 

the new query mesh (with the new classifier C’ ) QM’ is determined and compared 

to the cost of the current QM. If  the  new  QM’ has a smaller cost, the new classifier 

C’ is recommended. 

Case 2: Real Concept Drift Recommendation. If a real concept drift has been de

tected, the target level (i.e., the routes) in the QM classifier are updated. If this 

update does not require the modification of the rest of the classifier, and if the QM’ 

solution with new routes R’ has a smaller cost than the current QM solution, then 

the new routes R’ are recommended. If the classifier needs to be adjusted (e.g., if 

some routes are now shared by several groups or if some routes are removed), this 

case is then handled as a hybrid concept drift. 

Case 3: Hybrid Concept Drift Recommendation. If a hybrid concept drift has been 

detected, a new QM solution with the new classifier and the new set of routes is 

computed, its cost is estimated and compared to the current QM solution’s cost. If 

the newly computed QM’ has a smaller cost, then both the new classifier C’ and the 

new routes R’ are recommended17 . 

To evaluate the benefit of a recommendation, ST-QM Analyzer uses the metric, 

called improvement I : 

cost(QM ' , T  ' , H  ' )
I(QM, QM ' , T  ' , H  ' ) =  100%  ∗ 1 − 

cost(QM, T ', H ') 

16“TR” is  the  abbreviation  for  “Tuning  Recommendations”. 
  
17If either the classifier or the new set of routes have been computed in the earlier stages of analysis, e.g., during
 

concept drift detection, they are cached and not recomputed in this phase.
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where QM is the initial and QM’ the recommended solution, and cost(QM’,T’,H’) 

is the expected cost of evaluating a query under the QM’ solution based on the 

training data set T’ and the statistics H’. The  ST-QM Analyzer computes the ex

pected improvement value, and if the value is deemed as substantial, only then the 

recommendation is outputted. 

5.10 ST-QM Actuator 

5.10.1 Physical Execution of Adaptivity 

ST-QM Actuator physically adapts the QM solution in the execution framework 

based on the recommendations received from the ST-QM Analyzer. As  described  in  

Section 5.9.2, ST-QM Actuator may receive the following three kinds of recommen

dations: 

• R1. New Classifier + Old Routes 

• R2. Old Classifier + New Routes 

• R3. New Classifier + New Routes 

The key characteristic of the ST-QM is that all three recommendations get translated 

into a single physical operation in the execution infrastructure, namely the change of 

the classifier in the online classifier operator. To accomplish this, only a simple pointer 

re-assignment to the new classifier object is needed (Figure 5.25). This single step is 

the actual execution of QM adaptivity and the implementation is trivial. What makes 

this possible is the architecture of QM framework. Although routes (i.e., query plans) 

are pre-computed, their topology is not physically constructed. Instead the Self-

Routing Fabric (SRF ) infrastructure  provides  distributed  routing  (i.e.,  forwarding  of  

tuples to the operators in the plan) based on the plan specifications assigned by the 

classifier. This physical separation between the component that determines which 

plans should be used for execution and the component that actually executes the 

plans based on specifications, makes the QM adaptivity so light-weight. To change 
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the execution strategy, all the system needs to do is modify the specification of the 

plans (in the classifier). 

Figure 5.25 illustrates an example of physical execution of QM adaptivity. The old 

classifier, marked by lighter grey, is replaced by the new classifier, and the rusters with 

new routes are sent into the self-routing fabric instantaneously. The attractiveness of 

Old Classifier Self-Routing Fabric (SRF) 

opi 

opj 

opk 

0 
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3 

opl 
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... 

Figure 5.25. Physical execution of QM adaptivity. 

our design is that we can easily switch between different multi-plan solutions. If the 

desired performance improvements after adaptivity are not gained, ST-QM can easily 

switch back to the previous QM solution. The architecture makes such behavior very 

flexible. 

5.10.2 State Management and Adaptivity 

One of the key questions that must answered in adaptive systems is the problem 

of state management for stateful operators. We consider select-project-join (SPJ) 

queries. For joins, we employ one-way-join-probe (OJP) operators  [219],  similar  in  

spirit to SteM s [65],  which  correspond  to  a  half  of  a  traditional  join  operator.  There  
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is one  OJP associated with each stream attribute that participates in the join. The 

OJP keeps track of the window of attribute values that have arrived on the stream 

and allow subsequent tuples from the other streams to probe these stored attribute 

values to search for a match. In the case of the join operator, the order in which 

tuples probe the OJP is irrelevant as long as each tuple passes through each OJP 

exactly once. This holds from the associativity and the commutativity property of 

the join operator [65, 217]. Without adaptive functionality, the core QM framework 

already supports concurrent plans with different operator ordering. Hence, adding 

adaptivity does not require any additional support. We plan, however, to investigate 

new state management techniques in our future work, to extend support to other 

types of queries. 

5.11 Self-Tuning Query Mesh Experimental Study 

We now describe our experimental evaluation of ST-QM implemented inside 

Java-based continuous query engine called CAPE [8]. To evaluate ST-QM ’s de

sign, we compare its relative performance against competitor systems, namely the 

non-adaptive QM and the adaptive “plan-less” Eddies [34] with CBR-based routing 

policy [28] – the closest solutions to ST-QM. To  ensure  the  even  comparison,  all three  

systems were implemented in CAPE, and their implementation used as much of the 

same codebase and data structures as possible. We also demonstrate the effectiveness 

of ST-QM by measuring its overheads and the benefits of its concept drift abstraction 

approach. 

5.11.1 Experimental Setup 

All our experiments are run on a machine with Java 1.6.0.0 runtime, Windows 

Vista with Intel(R) Core(TM) Duo CPU @1.86GHz processor and 2GB of RAM. Our 

experiments use N -way join queries which join incoming S1...SN streams. The specific 

query we use is an equi-join of 10 streams, i.e., S0 ��S 1... S9 ��S 10. N -way join 

http:ST-QM.To
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Uniform Pareto Poisson 

Figure 5.26. Experimental distributions. 

queries are one of the core queries in database systems used to discover relationships 

across data or events coming from different data sources. 

We use synthetic data sources for our experiments, similar to [28, 64, 65]. Using 

synthetic data allows us to manage data properties that are hard to control in real-life 

data. We employ several known data distributions to determine the skew of the data. 

Specifically, we use well-known distributions: Uniform, Pareto and Poisson [227] 

(see Figure 5.26). These distributions model many real-life phenomena (see Table 

5.3 for examples). The default data properties, system parameters and distribution 

parameters used in the experiments are shown in Table 5.3 and Table 5.418 . 

Each stream’s schema is composed of five attributes and a timestamp. For every 

join attribute column, integer-based values are generated using one of the above-

mentioned distributions. The values of other attributes are correlated to the join at

tribute values, e.g., in a stream S(col1, col2, col3, col4, col5), if col1 is a join attribute, 

the values of col2...col5 are correlated to the values in the join attribute column ac

cording to the specified to generator correlation parameters. The default values are 

50%, 30%, 15%, 5%. To make this more concrete, consider an example: value 100 

is generated in the join attribute column based on the chosen distribution, then in 

another attribute column, 50% of the time value 99 will appear next to 100, 30% value 

98, and so on19. For  other  attributes  in  the  stream,  the  values  are  generated  similarly.  

18The different colors in Figure 5.26 illustrate how the distribution changes when the parameter values vary as 

described in Table 5.4. 
19Values ‘99’ and ‘98’ were picked arbitrarily here to convey the example. 
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Table 5.3
 
Default experimental parameters.
 

Parameter Value Description 

Ruster size 100 tuples Average ruster size 

Sample size 100 tuples Average sample size per stream 

Data monitoring Route-driven sampling Data monitoring method. 

k = |T |/|R|, θdiff  = 0.2  

Execution monitoring Exploitation statistics No exploration is used 

distdata Signature-based Virtual concept drift detection method. θdata 

= 0.1  

distroutes Number of affected 

routes 

Real concept drift detection method. θroutes 

= 0.2  

Impr. I I = 0.1 Improvement parameter 

Data Distributions 

Name Parameters Application Examples 

Uniform α ∈ {...,β-1,β} 

β ∈ {α,α+1,...} 

X ∈ {α,...,β-1,β} 

• Long-term patterns of data 

Pareto 0 < α < ∞ 

0 < β < ∞ 

α ≤ X < ∞ 

• Animal migration 

• Word frequencies 

Poission 0 < λ < ∞ 

X ∈ {0,1,...} 

• Service times in a system 

• # of  phone  calls  at  a  call  center  per  minute  

• # of  times  a  web  server  is accessed  per  

minute 

We decided against generating random values in the non-join atribute columns, to 

avoid short and wide decision tree classifiers (e.g., a decision tree with height 1 and 

the test conditions based on all possible random values). The explanation for this 

is the following: if an attribute contains a lot of unique random values, the entropy 

value for this attribute column approaches 0. Since many splitting criteria in DT 

construction algorithms are entropy-based [141], the attribute with the most distinct 

values gets picked first, and the algorithm stops right there, thus resulting in a short 

and wide decision tree. 
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To simulate  dynamic  changes,  the  generation  of  data  was  managed  as  follows:  the  

data generator starts with a data distribution and its initial distribution parameters; 

over time, the distribution parameters values are varied, e.g., for Poisson distribution, 

the transition: (λ = 1)→(λ = 3)→(λ = 5)  (see  Table  5.4),  means  that  the  initial  

distribution parameter value was 1, after some time it was changed to 3, and then 

to 5. This process is repeated continuously for infinite data streams. The values of 

distribution parameters are changed every 10K tuples across all streams. 

The execution of ST-QM in CAPE [8] is split into two execution threads. The 

monitoring and the adaptivity actuation are interleaved with the query execution on 

one thread. The analysis of ST-QM (i.e., concept drift detection, optimizer calls and 

generation of tuning recommendations) is executed on another thread. The analysis 

and the optimizer search can sometimes be extensive [219], thus blocking the query 

executor from processing the arriving data tuples, while the system is being analyzed 

by adaptive component, is not practical. Hence, we separated ST-QM analysis into a 

separate thread, to prevent blocking of the query executor and to ensure that results 

are produced at all times. 

5.11.2 Results and Analysis 

Comparison Against Alternative Systems 

In this experiment, we compare ST-QM design against the closest competitors, specif

ically the non-adaptive QM execution and the Eddy-based system with CBR-based 

routing [28]. The main difference between the implementations is that the non

adaptive QM evaluates the query using the same classifier and routes for the duration 

of the entire query execution. If data characteristics change, and the classifier does 

not have a sub-tree for the new data values, the “default plan” (rdefault) is  used  for  

processing of that data. rdefault plan is based on the overall statistics of the data and 

is computed by the optimizer prior to query execution, just like in traditional query 

optimization. CBR-based execution is done in the context of Eddies. Eddy operator 
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Figure 5.27. Experimental results. 

continuously profiles operators and identifies “classifier attributes” to partition the 

data into tuple classes that may be routed differently [28]. We execute Eddy with 

CBR routing in two modes: (i) with batching and (ii) without batching [33]. The 

batch size is set to 100, which is similar to ruster max size parameter in ST-QM (see 

Table 5.3), and is designed to reduce execution overhead. 
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Table 5.4
 
Distribution statistics and parameters.
 

Uniform (α = 0, β = 100):  min: 0.0,  max : 100.0,  med : 49.0,  

mean: 49.7, ave.dev : 25.2,  st.dev : 29.14,  var : 849.18,  skew : 0.05,  

kurt : -1.18. 

Distr. trans: (α=0, β=100)→(α=0, β=150)→(α=0, β=200)... 

Pareto (α = 1, β = 1):  min: 10.0,  max : 6833.0,  med : 19.0,  

mean: 73.56, ave.dev : 86.22,  st.dev : 341.25,  var : 116455.33,  

skew : 14.26, kurt : 240.2  

Distr. transitions: (α=1, β=1)→(α=1, β=1.5)→(α=1, β=2)... 

Poisson (λ = 1): min: 0.0,  max : 60.0,  med : 10.0,  

mean: 10.0, ave.dev : 7.2,  st.dev : 9.8,  var : 97.59,  

skew : 0.96, kurt : 0.88  

Distribution transitions: (λ = 1)→(λ = 3)→(λ = 5)...  

We ran the query processor for 25 minutes several times, employing these different 

execution strategies, and show the results, averaged over all those runs. Figure 5.27(a) 

compares the average output rate, the average execution time per tuple is presented 

in Figure 5.27(b), and the run-time execution overheads present in these systems are 

in Figure 5.27(c)20 . 

From Figure 5.27(a), we can observe that for Uniform distribution, on average, 

ST-QM has 39% higher output rate than CBR without any batching, 24% higher than 

CBR with batching, and 6% lower than non-adaptive QM. In  Uniform  distribution,  

most of the time, the streams tend to have a single route. Occasionally, due to 

sampling, we have noticed two routes per stream in ST-QM. However,  even  with  

changes in the environment, the routes based on average statistics of the “old” data 

tend to be the same best routes for the “new” data. This explains the close output 

rate of ST-QM compared to non-adaptive QM for Uniform distribution. For Poisson 

distribution, ST-QM on average has 13% higher output rate than CBR without 

batching, 0-0.5% smaller rate than CBR with batching, and 43% higher output rate 

than non-adaptive QM. Here  the  simple  batching  of  Eddies  incidentally  plays  out  

“QM” in the charts refers to the non-adaptive QM execution. 20
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very well, thus resulting in an average performance of ST-QM and Eddies being 

really close. For Pareto distribution, we observe that ST-QM on average has 27% 

higher output rate than CBR without batching, 18% higher than CBR with batching 

and 44% higher output rate than non-adaptive QM.The average execution time per 

tuple (in Figure 5.27(b)) follows a similar trend. 

For Pareto and Poisson distributions, when a concept drift occurs, and most of 

the data gets processed by the default routes in non-adaptive QM system, this results 

in poor execution strategy, since the data properties have changed and the execution 

could be improved by determining the new data subsets and customizing the routes 

for them, as is done in ST-QM. CBR, on  the  other  hand,  suffers  from  continuous  re-

optimization and re-learning overheads (the relative overhead is depicted in black in 

Figure 5.27(c)). Implemented in the context of Eddies, CBR continuously experiences 

the “backflow” overhead, where tuples get continuously routed back to the Eddy 

operator that has to re-examine the tuples and forward them to the next operator for 

processing. The overhead is O(n+1) time, where n equals the number of operators 

and 1 accounts for the first time a tuple from an input stream gets processed. Without 

any batching, Eddy processing with CBR algorithm amounted to nearly 20% of the 

total execution cost. 

Batching attempts to reduce Eddy overhead. However, batching in Eddy [33] 

is still very naive: every b tuples, i.e., a continuous chunk of tuples that happened 

to arrive together in time are batched and routed together. Without batching, the 

Eddy “backflow” overhead per workload of tuples W is O((n+1)*|W |). With batch

ing, the overhead gets reduced by the batch size b, resulting  in  the  total  overhead  

O((n+1)*|W |)/(b). In practice, the batches might be smaller, depending on the ar

rival rates of the tuples. In QM, on  the  other  hand,  tuples  are  grouped  together  into  

the same ruster based on the classification, i.e., the data values and the similarity of 

statistics, and are thus guaranteed to share the same best route. 

Eddies employing CBR also experience continuous overhead of re-computing clas

sifier attributes based on runtime information, even though the best classifier attribute 
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for an operator does not change very often [28]. These overheads limit the benefit 

that can be obtained from a better adaptive policy in Eddy. Static QM and ST-QM 

also have a small runtime overhead, namely the probing of the online classifier to 

determine the execution plan for arriving data. The classification overhead, however, 

was measured to be very small, only 2% of the query execution cost (Figure 5.27(c)). 

Adaptivity to Concept Drifts 

This experiment evaluates how ST-QM adapts to different concept drifts. We use 

non-adaptive QM execution as a base case to compare ST-QM results. 

A virtual concept drift means that the data values change, but the distributions 

of the new content groups stay the same, thus affecting the classifier component but 

not the target routes. To simulate only virtual concept drifts, we generate data using 

one of the experimental distributions, and then over time replace the data values with 

different values, while maintaining the same distribution of data values. Thus, the 

content of data changes, but their frequencies stay the same. A real life example when 

this scenario may happen is the variation between the number of times a web server 

is accessed per minute. Depending on the day (e.g., work day or weekend), the hour 

(e.g., morning or evening) the values may be different, but the overall distribution 

typically tends to follow Poisson distribution [63]. We show the results for the Poisson 

distribution here, but similar trends have been observed for other distributions as well. 

Figure 5.27(d) shows the results for ST-QM compared to non-adaptive QM. ST-QM 

gives, on average, between 24% to 38% improvement over static QM execution. 

In real concept drift, the  data  values  stays  constant,  but  the  execution  routes  

change. Real concept drift may occur due to changes in either the selectivities, the 

costs of query operators, or both. Typically, a change in selectivity indicates a change 

in the data distribution, and thus most likely a hybrid concept drift. Therefore, to 

simulate only real concept drifts, we vary the time it takes an operator to process a 

tuple over time (with non-changing data values) and report the effects on ST-QM ’s 
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performance. To motivate the exploration of the space of higher operator costs, 

consider the following example: [228] describes multilingual query operators, e.g., 

LexEQUAL and SemEQUAL, for  matching  multilingual  names  and  concepts,  respectively.  

If over time, the user is not happy with the results produced by the queries composed 

of such operators, the user may increase the quality threshold [228], which may result 

in more detailed computations by such operators for certain phonemically close words. 

In our experiments, the increase in operator cost is obtained by running CPU intensive 

computations every time a tuple has to be processed by an operator, and varying this 

cost depending on the tuple’s data values. Figure 5.27(e) shows that ST-QM is quite 

effective at detecting and adapting to real concept drifts. On average, ST-QM ’s 

approach results in 15 to 28% faster output rate than the non-adaptive QM case. 

For hybrid concept drift, we varied both data values and operator costs. Figure 

5.27(f) shows the results for continuous hybrid concept drift occurrence, i.e., when 

both virtual and real concept drifts take place together. We can observe, that ST-QM 

outperforms non-adaptive QM by 24% to 41% in hybrid concept drift case. 

Run-time Overhead of ST-QM 

ST-QM has three overheads: monitoring, analysis and actuation. We instrumented 

the code to determine the time spent by each of these overheads. Figure 5.28 reports 

the overheads per workload of tuples relative to the total execution cost. A workload 

in this experiment is a set of data tuples received and processed during time interval 

between any two ST-QM invocations. 

The monitoring overhead per tuple was measured as the time taken by the func

tion that performs sampling and makes the decision whether to discard or keep the 

sample (see Section 5.8.1). For execution statistics monitoring, we have instrumented 

each operator to measure the time spent computing the statistics (selectivities and 

execution cost) for each “statistics” ruster (Section 5.8.2). The analysis overhead was 

measured as the time taken by the function that performs concept drift detection, to 
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invoke the optimizer, and to produce tuning recommendations (see Section 5.9). The 

actuation overhead was measured as the time taken to replace the current classifier 

with a new classifier (described in Section 5.10). 
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Figure 5.28. ST-QM overhead. 

The total overhead (monitoring together with analysis and actuation) is 2.42% 

of the total execution time without optimizer invocation, and 8.92% with optimizer 

invocation. One important parameter to control the overhead of ST-QM is the size of 

the training tuple set or the new tuples’ sample size. The more tuples get collected, the 

larger is the analysis overhead and the optimizer overhead. The optimizer overhead is 

especially sensitive to the size and type of training tuples collected, as was previously 

reported in [219]. A balance must be kept between the size and the quality of the 

training data. 

In addition, we also measured the worst case scenario for ST-QM : when  no  con

cept drift occurs and the adaptation is not needed. If there are no changes in the 

environment, no benefit can be gained from changing to a different QM solution. 

Thus, differences in the output rates must be due to extraneous overhead (and not 

due to better decisions). For this experiment, we ran our experimental query over the 

Poisson-distributed dataset without any changes to the data and with ST-QM func

tionality enabled. Figure 5.28 displays the average over 5 runs of the query. When 
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Figure 5.29. Overhead when no adaptation is needed. 

no benefit is possible, ST-QM is on average between 2.2 - 4.8% worse than static QM 

in the total number of results produced. This result confirms that ST-QM approach 

has detected that changes were insignificant, based on its monitoring and concept 

drift detection and did not invoke the optimizer. By discarding such insignificant 

adaptivity cases early, it minimized its adaptivity overhead. This overhead can be 

further reduced in the system by minimizing the monitoring frequency of both data 

and execution statistics. 

5.11.3 Summary of ST-QM Experimental Conclusions 

The main points of our experimental study can be summarized as follows: 

1.	 ST-QM can give up to 44% improvement in execution time and output rate. 

2.	 ST-QM is highly adaptive to virtual, real and hybrid concept drifts and can 

result in some cases in up-to 41% improvement compared to non-adaptive QM. 

3. The runtime overhead of ST-QM relative to query execution is small (at most 

7%) . The actuation cost of physical adaptivity is nearly negligible resulting in 

0.02% of total execution cost. 
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4. Even  if  no  adaptivity  is  needed,  ST-QM ’s performance in the worst case will 

be at most 2-4% slower than of static QM. 

5.12 ST-QM Conclusion 

Here we addressed the problem of adaptivity in the multi-plan-based query pro

cessing engines. We have presented a Self-Tuning Query Mesh (ST-QM ) achitecture  

that uses multiple plans for processing different subsets of data, and yet is as adap

tive as the “plan-less” systems. ST-QM increases the efficiency of query processing 

in highly dynamic environments, by adapting the multi-plan solution, so that differ

ent subsets of data may benefit from different execution plans over time. ST-QM 

approach is unique in that it abstracts the problem of adaptive query processing as 

a concept  drift  problem.  Such  abstraction  allows  ST-QM to discard adaptivity can

didates early in the process, if the changes are insignificant to adapt to and thus 

minimize the adaptivity overhead. The key characteristic of the ST-QM approach 

is that all logical changes to the current QM solution get translated into a simple 

physical operation, namely the classifier change. Our most important contribution 

is that we have shown in our prototype implementation that ST-QM approach can 

be simultaneously inexpensive and adaptive. Our experimental study indicates that 

ST-QM can adapt to different types of concept drifts very efficiently. Furthermore, 

the run-time overhead of ST-QM execution is fully amortized by the performance 

benefits of the better multi-plan-based query processing. 

Here, we address the problem of adaptive query processing on non-uniform data 

streams. We propose a Self-Tuning Query Mesh infrastructure (or short ST-QM ) 

that continuously adapts to data streams’ characteristics and to system conditions, 

e.g., memory, CPU resources availability. The fundamental challenge for self-tuning 

query mesh is the problem of determining the discrepancy between the previously 

learned query mesh model and the current model based on the characteristics of the 

new data and the system condition, what we denote as optimization concept drift 

problem. The self-tuning query mesh has the ability to judiciously determine when 
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and how to adapt its infrastructure to accurately match the changed concept of the 

data streams and employ the best query mesh for the current system conditions. ST

QM used a three-fold adaptation process - classifier tuning, multi-route configuration 

tuning, and runtime route tuning - to ensure efficient processing of continuous queries 

on non-uniform data streams. We have described the tuning techniques in ST-QM 

and have presented detailed experimental evaluation. 

5.13 Uncertainty-Aware Query Mesh (UA-QM) 

Recent years have witnessed the emergence of novel applications where incoming 

data arrives in the form of continuous data streams, for example, location-based ser

vices, sensor networks and financial tickers. Data in such applications tends to be 

non-uniformly distributed, and query processing can often benefit from employing 

multiple execution plans, each  optimally  serving  a  subset  of  data  with  distinct  statis

tical properties. Recently proposed Query Mesh (QM ) framework  implements  such  

multi-plan (or multi-route21) execution  paradigm  very  efficiently.  However,  similar  to  

most query processing systems, QM optimizer assumes all knowledge to be certain 

and complete when determining a low cost multi-route solution. Such assumption 

is unrealistic for streaming environments which are riddled with uncertainty, due to 

measurement inaccuracies, incomplete or unknown information or data arrival laten

cies. Here, we focus on the problem of uncertainty in the multi-route query processing 

context, and propose a novel Uncertainty-Aware Query Mesh solution (or short UA

QM ) to  address  this  problem.  The  goal  of  UA-QM is two-fold: (1) to model and 

measure various types of uncertainty to represent real-life scenarios in streaming en

vironments more accurately and (2) to process data in an uncertainty-aware and 

multi-route fashion. We have implemented our approach in a prototype DSMS, and 

our experimental evaluation shows the benefits of our proposed UA-QM approach. 

21We use  terms  “plans”  and  “routes”  interchangeably  in  our  work.  Both  mean  the same  thing  in  the  context  of  this  

paper. 
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5.13.1 Problems with Uncertainty Ignorance 

Compared to traditional relational databases where the entire dataset is present 

and so are the complete statistics about it, this luxury is not available in DSMSs. 

Here, the knowledge about the environment such as data input rate, operator selec

tivities, attribute values and their distributions is typically incomplete and is con

tinuously changing. Thus, uncertainty naturally arises during query optimization in 

the streaming context. Most query processors in Data Stream Management Systems 

(similar to relational counterparts), however, consider all knowledge to be certain 

and complete during optimization phase, which may significantly limit query perfor

mance at runtime [77]. Existing solutions dealing with uncertainty e.g., [77–79] are 

primarily single-plan-based and focus on cardinality estimations for the data as a 

whole. A  more  complex  structure  and  a  different  execution  paradigm  (that  employs  

unique plans for distinct subsets of data) makes these uncertainty solutions insuffi

cient for a multi-route solution like query mesh (see Section 5.14.2 for more detailed 

explanation). 

As a motivating example, consider a geo-social networking application, such as 

BrightKite [18]. Here, an input data stream people may be transmitting real-time 

location updates from the users looking to get together to socialize in a given geo

graphic area. A continuous query Q (shown at the top left in Figure 5.30) is executing 

to match people based on similar age, interests and location. For simplicity of dis

cussion, we assume that the stream people has two distinct data subsets, denoted as 

the “city” and  the  “suburbs” subsets22. Figure  5.30  (the  table  at  the  bottom  left)  

shows the selectivities of operators OP1 -OP3 for each of the subsets, and the over

all selectivity. Here, the selectivities are represented as “certain” point estimates – 

a common  approach  in  most  database  systems.  Assuming  that  operators  have  the  

same execution costs and only overall selectivities are considered, the best ordering 

for people stream tuples for query Q is OP2, OP3, OP1. However,  if  we  distinguish  

22This could be people living in a city and in the suburbs. 
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SELECT name, age, location 
FROM people OP1 OP2 OP3
WHERE age BETWEEN 22 AND 28 
AND marital_status = ‘single’ 
AND interest = ‘theatre’ 22 < age 

< 28 
status = 
‘single’ 

Location 22 < 
age < 28 

status = 
‘single’ 

city 

suburbs 

interest = 
‘theatre’ 

interest = 
‘theatre’ 

22 < 
age < 28 

interest = 
‘theatre’ 

status = 
‘single’ 

Data 

possibly 

possibly 

Classifier Multiple execution routes 

Location OP1 OP2 Location OP3 OP1 OP2 OP3 

city 45% 50% city 65% [40,50]% [45,55]% [40,70]% 

suburbs 35% 10% suburbs 5% [30,40]% [5,15]% [0,10]% 

overall 40% 30% overall 35% [35,45]% [25,35]% [20,40]% 

Selectivities as point estimates Selectivities as intervals 

Figure 5.30. Geo-social networking query example. 

operators’ selectivities based on the different subsets, we can see that for the “city” 

tuples, the ordering OP1, OP2, OP3 will outperform OP2, OP3, OP1, while  OP3, OP2, 

OP1 will outperform OP2, OP3, OP1 for the “suburbs” tuples.  

While the above example clearly motivates the benefit of processing different data 

using different plans, it has a major limitation: it completely ignores uncertainty. 

For example, uncertainty may be present in the operator selectivities due to vary

ing estimates based on (several) data samples, each roughly approximating the real 

data, or due to data arrival latency. Uncertainty in operator statistics translates into 

uncertainty in execution routes. Furthermore, the classifier, which is used to assign 

routes to data tuples, due to the training set quality or its limited size, may contain 

some uncertainty as well. 

Consider the same example in Figure 5.30 at the bottom right, where instead 

of certain point estimates, we use selectivity intervals to represent uncertainty in 
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operator selectivities. With uncertain selectivities, it becomes much more challenging 

to determine which data tuples should be processed using which of the present routes. 

For example, the “city” tuples  may  benefit  from  the  ordering  OP1, OP2, OP3, but  

also in some cases, it could benefit from the alternative ordering OP2, OP3, OP1 

(depicted by a dashed line) due to the overlap in the operators’ selectivitiy intervals. 

Similarly, some “suburbs” tuples  may  benefit  from  the  alternative  routes  if uncertainty  

is considered during query optimization. 

In addition to uncertainty in routes, classifier may also face uncertainty. For 

simplicity of presentation, the classifier in our example consists of a single test on 

the location attribute. However, in real-life scenarios, a classifier is likely to have 

multiple test nodes based on which tuples are assigned to their best routes. Thus, 

given uncertain routes and uncertain route assignments, as well as the training set only 

roughly approximating the real data, a classifier is likely to contain some uncertainty 

as well. 

In summary, the problem with many current optimization techniques is that they 

are: (1) mostly uncertainty-oblivious; and (2) those that are uncertainty-aware, pri

marily focus on uncertainty in a single query plan execution strategy. Here, we 

propose to address the open problem of uncertainty in multi-route query processing 

in the context of data streams. 

5.13.2 Challenges 

A number  of  characteristics  inherent  in  streaming  environments  make  the  problem  

of handling uncertainty in a multi-route solution a challenging task. 

•	 Fast data arrival rate. A  common  characteristic  of  data  streams  is  a  high  data  

volume and a rapid arrival rate. Therefore, uncertainty estimation algorithm 

needs to be as fast as possible and the speed of decision-making regarding 

uncertainty must be faster than the data incoming rate. 
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•	 Different types of uncertainty. Uncertainty  in  a  multi-route  solution  may  occur  

in both routes as well as in classifier which is responsible for assigning tuples to 

routes. Moreover, uncertainty may be “absolute” (with  regard  to actual  values,  

such as statistics measurements, e.g., order of operators), or it may be “relative” 

(with regard to the best choice among multiple possible alternatives). Thus, an 

uncertainty mechanism must be able to model and measure various types of 

uncertainty in both routes and classifier as well. 

•	 User preferences. Users executing continuous queries may have different pref

erences regarding the best way of dealing with uncertainty. Users may want to 

decide what should be a reasonable tradeoff between certainty vs. possibility (in 

other words, expectation and ambiguity) when their query is being executed. 

Thus, uncertainty mechanism should provide support for user preferences with 

regard to how to handle uncertainty during query processing. 

•	 Low overhead. The  results  in  streaming  environments  are  expected  to  be  pro

duced in near-real time. Since the added uncertainty-awareness functional

ity adds processing and storage overheads (compared to regular “uncertainty

oblivious” query processing), the overhead must be as low as possible not to 

seriously impact the performance of DSMS. 

We address the above-mentioned challenges in the context of data streams and 

present a solution, based on the multi-route query mesh model [219], which we call 

Uncertainty-Aware Query Mesh (UA-QM ). 

5.13.3 Our Proposed Solution: UA-QM 

UA-QM contributions can be summarized as follows: 

1.	 Model. We  propose  uncertainty  model  where  both  absolute and relative uncer

tainties are modeled symmetrically for both execution routes and classifier in 

http:Model.We
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a query mesh. Absolute uncertainties are represented using uncertainty inter

vals and relative uncertainties using belief functions. The  symmetric property 

provides a simpler model and similar uncertainty processing in different com

ponents of query mesh. (Section 5.14). 

2.	 Optimization. We  describe  uncertainty-aware  optimization  algorithms  including  

the computation of multiple execution routes and classifier induction under 

various uncertainty scenarios (Section 5.15). 

3.	 Execution. We  discuss  how  uncertainty  is  handled  at  runtime  when  executing  

a continuous  query  in  the  UA-QM framework (Section 5.16). 

4.	 Experiments. We  have  implemented  UA-QM in a prototype DSMS called 

CAPE [8]. We present our experimental analysis showing the benefits of our 

proposed approach. 

5.14 UA-QM Framework 

5.14.1 UA-QM Architecture 

Figure 5.31 gives an overview of UA-QM architecture which builds on top of the 

core query mesh framework [27, 219]. We have designed UA-QM to be highly mod

ular, enabling uncertainty-awareness functionality to be turned on/off with complete 

transparency to the core QM framework (bottom of the Figure 5.31). The architec

ture is easily extensible: new algorithms, heuristics and metrics can be added without 

much disturbance to the rest of the system. 

The key components of UA-QM inlcude: (1) QM optimizer with uncertainty ex

tensions, (shaded half-way in Figure 5.31) and described in Section 5.15, (2) Belief 

Space nodes, used to represent uncertainty in routes and classifier (Section 5.15), (3) 

Belief Handler, a  component  responsible  for  resolving  uncertainty  by  taking  into  con

sideration user preferences (described in Section 5.16), and (4) Uncertainty encoding 

http:Experiments.We
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Figure 5.31. UA-QM architecture. 

used in routes’ specifications (discussed in Section 5.16). We present each of these 

components, their functionality and execution in detail in the rest of the paper. 

5.14.2 Uncertainty Cases in Query Mesh 

Compared to a single plan solution, where uncertainty may be present in only one 

route, a multi-route solution may have uncertainty in several routes, as well as in the 

classifier. For classifier, we employ a decision tree model, as it is one of the most 

commonly used and efficient classification models. Under route uncertainty, we focus 

on uncertainty in operators’ selectivities, and  under  classifier  uncertainty,  we  consider  
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uncertainty in the impurity measures (specifically, in information gain23 [141]) that 

have a direct impact on the structure and size of the classifier. Next, we describe the 

three possible uncertainty cases that may occur in a multi-route QM solution. 

Case 1: Certain Classifier and Uncertain Routes. By  uncertainty  in  routes  we  mean  

uncertainty in the routes’ costs as a result of imprecision in individual operators’ 

selectivities. This leads to ambiguity about the best operator ordering and it may 

occur when the query mesh optimizer uses a strategy similar to Content-Learns algo

rithm [28], or Content-Based Approach (CBA) [219]  to  find  a  low  cost  QM solution. 

The main idea of these optimization strategies is to partition the training dataset into 

groups based on the similarity of data values first, and then compute the routes for 

each content group. Different data values may imply unique distributions and statis

tics, and thus possibly various execution routes. Here, the statistics of the routes may 

be imprecise, yet the classification based on the training data and the partitions they 

belong to (determined based on the training data values) is considered to be certain 

(Figure 5.32(a)). 

Case 2: Uncertain Classifier and Certain Routes. This  scenario  is  the  reverse  of  

the above case. Here, routes are assumed to be certain and the classification may 

be uncertain (Figure 5.32(b)). This case may occur when the QM optimizer uses a 

Route-Based Approach (RBA) [219]  to  find  the  best  multi-route  query  mesh  solution  

for a given query. The main idea of this optimization strategy is to compute routes 

first, using all avilable statistics (possibly coming from multiple samples of data), and 

then assign the training data to the existing routes. The statistics used for routes’ 

computations are assumed to be complete and reliable (after being collected over 

many runs of the same query), yet the training dataset (of limited size) used for 

the classifier induction may depict real data with some inaccuracy, thus resulting in 

classification model with uncertainty. This case may also occur when using a large 

training dataset for classifier induction is prohibitive [141], and some training data 

23Other measures of impurity, such as entropy or gini index [141] could be used here as well. 
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d1 d2 d3 d1 d2 d3 d1 d2 d3 

- certain 
- uncertain 

r1 r2 r3 r1 r2 r1 r1 r2 r3 r1 r2 r3 r1 r2 r1 

(a) Certain classifier and (b) Uncertain classifier and (c) Uncertain classifier and 
uncertain routes certain routes uncertain routes 

Figure 5.32. Uncertainty scenarios in QM. 

must be eliminated from being used in classifier induction – the phenomenon known 

in machine learning as “pruning” [229]. 

Case 3: Uncertain Classifier and Uncertain Routes. The  third  case  is  the  composite  

of the above two cases, where uncertainty is present in both the routes and the 

classifier (Figure 5.32(c)). Here, a data tuple may belong to more than one data subset 

(or a distinct group), and more than one route may be considered to be possible for 

processing of that subset. This case may occur when a hybrid optimization approach 

is used by the QM optimizer: two QM solutions are computed, one using the CBA 

method and another using the RBA method (as described above), and then “merged” 

to produce the “best” overall QM solution. 

5.14.3 Reasoning About Uncertainty 

In order to address the problem of uncertainty, we need a method for representing 

and measuring it. In robust query processing, the common approaches for modeling 

uncertainty include probability distributions (or short PDs) [77] or bounding boxes 

(or short BBs) (also known as bounding intervals) [78]. Both methods have their 

advantages and limitations. PDs, for instance, give an intuitive representation for 

users to decide how much uncertainty they are willing to “tolerate” when planning an 
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execution strategy at compile-time. BBs, on the other hand, easily capture variations 

and imprecisions in statistics, e.g., possible min, max and expected bounds. It also 

allows a query processor to check the latest statistics at runtime, and determine which 

concrete execution solution applicable within the bounding interval should actually 

be employed. 

Our uncertainty model includes the strengths of both of the above approaches 

and enables both user-driven [77] and system-driven [78] responses to handling un

certainty. What sets our model apart from the existing techniques is that we model 

two types of uncertainty, namely the absolute uncertainty and the relative uncertainty, 

and we model them symmetrically for both routes and classifier in query mesh. We 

believe that such two-way uncertainty modeling can represent real-life scenarios more 

accurately, and the symmetric property facilitates a simpler model and similar pro

cessing for different components in query mesh. 

Informally, absolute uncertainty represents the uncertainty in actual values (e.g., 

in operator statistics or in attribute impurity estimates), whereas relative uncertainty 

models the ambiguity about the choice among possible alternatives (e.g., the best 

order of operators in routes, or the choice of the best splitting attribute in classifier 

when multiple options are possible). In UA-QM, we  employ  uncertainty intervals for 

modeling absolute uncertainties (see Section 5.14.4) and belief functions from Belief 

Function theory to represent relative uncertainties (see Section 5.14.5). 

5.14.4 Absolute Uncertainty 

We distinguish between two types of uncertainty intervals in UA-QM, namely  the  

selectivity intervals and the classification intervals to model absolute uncertainty. 

Selectivity intervals (or short SIN s) represent uncertainty in operators’ statistics. 

Table 5.5 shows an example. Here, the selectivity of OP1 for the distinct subset d1 

might be not known with certainty, but it is known to be between 40% and 50%, and 

is represented by the inverval [40,50]. Hence, the interval describes the possibility 
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Figure 5.33. Symmetric modeling of SIN s and  CIN s. 

distribution of OP1 selectivity for subset d1. Viewed  in  this  perspective,  the  entries  

in Table 5.5 in the column SIN are the possibility distributions of the values of 

selectivities for different subsets of data. 

Table 5.5
 
Selectivity intervals for various subsets.
 

Stream Operator Subset SIN 

d1 [40,50] 

S1 OP1 d2 [30,40] 

d3 [35,45] 

Classification intervals24 (or short CIN s) represent uncertainty in the informa

tion gain values of different attributes that are used in determining the best splitting 

attribute when constructing QM classifier. One of the basic steps in decision tree 

classification is to select the splits based on attributes and data values that are used 

to predict membership in the terminal nodes of the decision tree classifier (in the 

context of our work, terminal nodes represent the various execution routes). In gen

eral terms, the split at each node found will generate the greatest improvement in 

predictive accuracy. This is usually measured with an impurity measure, which pro

vides an indication of the relative “homogeneity” of tuples in the terminal nodes of 

24A more  precise  term  would  be  “impurity measure intervals”, but we decided to choose a more general name – 

“classification intervals” – to characterize  where  in  QM the uncertainty takes place. 
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Figure 5.34. Belief function for a relative uncertainty. 

the classifier. For example, if all training tuples in each terminal node have identical 

values, then node impurity is minimal, homogeneity is maximal, and prediction is 

perfect (at least for the case of training tuples used in the induction of classifier). We 

omit the discussion of information gain and how it is computed and refer the reader 

to [141] or any machine learning textbook. 

A classifier  interval  CIN =[0.4,0.5] represents a range of impurity measure values 

between 0.4 and 0.5 (or in absolute terms [40,50], meaning between 40% and 50%). 

Due to symmetric property of our model, both SIN s and  CIN s are  represented  by  

the same physical data structure (shown on the left in Figure 5.33). Consider, for 

example, an uncertainty interval UI [40,50] (which could be either a SIN or a CIN ). 

UI.Interval stores the interval value, between 40 and 50. UI.PointValues represent 

the original point value estimates measured and used in determining the overall in

terval. UI.Weights correspond to the weights of their respective UI.PointValues. For  

example, in Figure 5.33 in the case of a SIN, the  weight  of  800  represents  the  count  

of tuples that reported to have the point estimate of selectivity equal 40% and the 

weight of 200 indicates, that 200 tuples contributed to the selectivity point estimate 

50%. The weight values could be based on the absolute count of tuples from the 

samples that have resulted in that particular point estimate value, when the selectiv

ity interval was computed. Alternatively, weights can be represented using relative 

percent values instead of absolute counts. 
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5.14.5 Relative Uncertainty 

To model relative uncertainty, we  use  the  concepts  from  the  Belief Function Theory 

also known as Dempster-Shafer Theory [230,231]. Relative uncertainties in routes and 

in the classifier are expressed in the form of belief functions. Belief  functions  provide  a  

very intuitive way to model ambiguity (compared to classical probability framework), 

and allow incorporating subjectiveness in uncertainty [77]. Furthermore, if evidences 

come from multiple sources (e.g., from different samples of data collected at different 

times), the model provides a flexible and adaptive way to combine those evidences25 . 

Another attractive aspect of belief functions framework is its flexibility – it can be 

reduced to the Bayesian framework under certain conditions. Figure 5.34 shows a 

conceptual idea of a belief function. Here, two uncertainty intervals (which could 

be either SIN s or  CIN s) are depicted as UI1 and UI2. Under  relative  uncertainty,  

the question Q we are interested in is – how large is the overlap between the two 

intervals UI1 and UI2? This  question  Q denotes the intersection of the uncertainty 

intervals and precisely characterizes the relative uncertainty regarding UI1 and UI2. 

Since both UI1 and UI2 are uncertain, the answer to this question can be constructed 

to have two parts, one relating to the certainty C in the answer and the other to 

its possibility P , and symbolically  can be  expressed  as  BF (Q)=(C(Q),P (Q)). The 

certainty parameter can be viewed as the expectation and the possibility parameter as 

the ambiguity. Similar to absolute uncertainties, relative uncertainties, are modelled 

symmetrically for both routes and classifier in QM as described below. 

A Selectivity Belief Function (SBF ) represents  a  belief  in  the  intersection  of  any  

two SIN s. A route (query plan) optimization algorithm26 must determine the best 

order of operators. If any of the operators’ SIN s are  overlapping,  this  translates  into  

the uncertainty about which operator should come first. Figure 5.35 illustrates the 

possible cases for uncertainty intervals’ intersections27: UI s may  be  completely  non

25Here, we use a basic form of belief functions. More advanced features like adding subjectiveness to evidence, etc., 

we reserve for our future work. 
26This can be any of the state-of-the-art techniques from the literature, e.g., [58, 66, 209, 210]. 
27Due to model symmetricity, the same logic applies to CIN s as  well.  
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(a) Not Overlapping (b) Fully overlapping (c) Partially overlapping 

Figure 5.35. Cases for uncertainty intervals’ overlaps. 

overlapping (5.35a), completely-overlapping (5.35b) or partially overlapping (5.35c). 

For overlapping selectivity intervals, SBF s are  computed  for  the  following  three  cases:  

(1) SBF1: operator with SIN1 must come first 

(2) SBF2: operator with SIN2 must come first 

(3) SBF3: either of operators may come first 

Figure 5.36 shows a concrete example of partially overlapping SIN s. The values of 

SBF s for  this  example  are  as follows:  SBF1 = (800,1000),  SBF2 = (400,1000),  and  

SBF3 = (800,2000)  when  expressed  in  absolute  terms,  and  after normalization:  SBF1 

= (0.8,1),  SBF2 = (0.4,1),  and  SBF3 = (0.8,2).  

Classification Belief Functions (CBF s) represent beliefs in the relative intersec

tions of CIN s and  are  modeled  similar  to  SBF s. Thus, we omit the details of CBF s 

computation, as it is the same as for SBF s. CBF s represent  relative  uncertainty  about  

impurity measures for various attributes, which translates into uncertainty about the 

best order of splitting attributes when computing the classifier. 

In UA-QM, Belief  functions  (both  SBF s and  CBF s) are resolved to concrete 

answers, e.g., specific classification nodes and operators in the routes based on user 

preferences with respect to uncertainty. Belief functions can be resolved in an “eager” 

and a “lazy” manner during execution as described in Section 5.16. 

5.15 UA-QM Optimization 

In this section, we describe uncertainty-aware multi-route query optimization al

gorithm. We consider three possible uncertainty cases presented in Section 5.14.2. 
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Figure 5.36. Example of computing SBF. 
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Figure 5.37. UA-QM optimization approaches. 

Figure 5.38 illustrates the pseudocode for the overall uncertainty-aware multi-route 

query optimization algorithm and Figure 5.37 visually depicts the cases. 

Case 1: Certain Classifier and Uncertain Routes: As  we  have  previously  stated,  

this case may occur when QM optimizer uses a Content-Based Approach (CBA) to 

find a good query mesh (Figure 5.37(a)). Using CBA, the algorithm first divides data 

into partitions based on similarity of values (Figure 5.38, Line 2), and then computes 

the execution routes for each content-based partition (Figure 5.38, Line 3). 

Computation of Uncertain Routes : The  pseudocode  for  the  procedure  computing  un

certain routes is shown in Figure 5.39. It starts off by computing selectivity intervals 

for each operator and each content-based partition (Line 1). The operators are then 

ordered by the monotonically increasing selectivity intervals (Line 2). After the SIN s 
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UA-QM-Optimization (T training dataset represented 

by a collection of data samples {k1,k2...kn}=T )) 

// Case 1: Certain Classifier and Uncertain Routes 

01 if (optimization method == Content-Based ) 

02 D = {d1,d2...dn} // content-based partitions 

03 Ru = ComputeUncertainRoutes(T ,D) 

04 Cc = InduceCertainClassifier(T ,D) 

05 return new UA-QM (Cc,Ru) 

// Case 2: Uncertain Classifier and Certain Routes 

06 else if (optimization method == Route-Based ) 

07 (Rc,D) = ComputeCertainRoutes(T ) 

08 Cu = InduceUncertainClassifier(T ,D,Rc) 

09 return new UA-QM (Cu,Rc) 

// Case 3: Uncertain Classifier and Uncertain Routes 

10 else if (optimization method == Hybrid ) 

11 Let UA-QM1 = solution  from  steps  1-5  

12 Let UA-QM2 = solution  from  steps  6-9  

13 return new MergeUAQMSolutions(UA-QM1,UA-QM2) 

Figure 5.38. UA-QM Optimization. 

ComputeUncertainRoutes (T training dataset,
 

D content-based partitions)
 

01 SIN = ComputeSelectivityIntervals(T ,D)
 

02 oSIN = OrderSelectivityIntervals(SIN)
 

03 uSIN = GetOverlappingSelectivityIntervals(oSIN)
 

04 SBF = ComputeSBFsForSelectivityIntervals(uSIN)
 

05 uR = OrderOperatorsWithSINsAndSBFs(uSIN,SBF )
 

06 return uR
 

Figure 5.39. Computing uncertain routes. 
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ComputeSelectivityIntervals (T training dataset,
 

D content-based partitions)
 

SIN -- a hashtable storing SINs of all 
  

operators for different subsets of data
 

01 for (each operator OP)
 

02 SIN[OP] = NULL  // No precomputed statistics
 

// Compute selectivities using different samples 

03 for each sample ki ∈ T 

04 for each partition dj ∈ D 

05 compute selectivity s(OP) for  dj based on ki 

// Merge point selectivity into selectivity interval 

06 sin = MergeIntoSIN(OP,dj,s(OP),|ki|) 

07 SIN[OP, dj ] =  sin 

08 SIN[OP].Update(SIN[OP, dj]) 

09 return SIN 

Figure 5.40. Computing selectivity intervals. 
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Figure 5.41. Conceptual idea of uncertain routes and classifier. 
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MergeIntoSIN (OP operator, dj partition,
 

s selectivity value, w weight)
 

01 sin = SIN[OP, dj]
 

// if SIN is null, initialize it 

02 if (sin == null), then 

03 sin.Min = sin.Max = s; 

04 return sin; 

// if s is far from the SIN mid-point, return a “conflict” 

05 mid = (sin.Max - sin.Min)/2; 

06 if (Δ = diff(s, mid) > ΔMAX) then  return  null;  

// update SIN attributes 

07 if (s >  sin.Max) then  sin.Max = s 

08 else if (s <  sin.Min) then  sin.Min = s 

09 sin.P ointV alue[s] =  w 

10 return sin 

Figure 5.42. Merging point estimate into a SIN. 

have been ordered, the algorithm determines if any of them are overlapping (Line 

3). For all overlapping SIN s, SBF s are computed (Line 4) as described in Section 

5.14.5. After the selectivity belief functions have been established, the algorithm 

determines the routes by ordering the operators. In every case, where uncertainty 

intervals are overlapping, i.e., a choice between the operators is uncertain (and there 

is a corresponding SBF ), a “belief space node” is  created  in  the  route  (pseudocode  

is not shown). Figure 5.41 (top) shows a conceptual idea of an uncertain route with 

belief space nodes. 

To complete the uncertainty-aware QM solution, the optimizer induces the clas

sifier28 based on the training data tuples and the subsets they belong to (Fig. 5.38, 

Line 4), which are the certain partitions defined based on the data content. 

The induction algorithm for a “certain classifier” is the same as for to regular decision trees, such as ID3, C4.5 from 

the literature. 

28
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ComputeUncertainClassifier (T training tuples, S - set of attributes  

that may be tested by the decison tree, R - target  route  attribute  

(predicted by the decision tree), M - data  samples)  

01 Root = DecisionTreeNode(T ) 

02 if (all tuples of T are assigned to the same route ri) 

03 Root = single-node  tree  with label  =  ri 

04 else if (S	 is empty) 

05 root = single node tree with label = most common value of R in T 

06 else 

07 G ← members of S that maximize InfoGain(T ,A,M) 

08 if (|G|	 > 1) // there are overlapping CINs 

09 BS is belief space node ∀A ∈ G 

10 Root.addBeliefSpaceNode(BS) 

11 Root	 = BS 

12 for (every A ∈ G) 

13 perform the same steps as in Lines 15-22 

14 else if (|G| == 1) // there are no overlapping CINs 

15 A ∈ G is decision attribute for Root 

16 for (each possible value v of A) 

17 add a branch below Root testing for A = v 

18 Tv ← subset of T with A = v 

19 if (Tv is empty) 

20	 below the new branch add a leaf with 

label = most common value of R ∈ T 

21 else 

// below the new branch add subtree 

22 Root.addBranch(ComputeUncertainClassifier(Tv,S - {A}),R) 

23 return Root 

Figure 5.43. Computing uncertain classifier. 
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SIN Computation: Figures  5.40  and  5.42  illustrate  the  pseudocode  describing  the  

details of SIN computation. In Figure 5.40, after the SIN hashtable that stores se

lectivity intervals for all operators is initialized (Fig. 5.40, Line 1), for each operator 

and partition combination, a point selectivity is estimated using every available col

lected data sample. The computed value for each data sample is then merged with 

other point estimates to form a selectivity interval for that operator with respect to 

that partition (Lines 3-6). 

Figure 5.42 shows the pseudocode describing how a point estimate is merged with 

other estimates to form a SIN for an operator. First, if the SIN is null, then  the  

point estimate s becomes the min and the max value of the SIN (Lines 2-4). If s 

is far from the mid-point of the SIN, this  is  viewed  as  a  “conflict” with  the  current  

selectivity interval and a null value is returned (Lines 5-6). The conflict flag (or a null 

value returned by the procedure) indicates that the selectivity value is significantly 

different from the selectivity estimates from other samples in that SIN. The  limit  for  

how far a value may be from the mid-point without causing a conflict is controlled by 

the system parameterΔ MAX . A  significant  difference  may  indicate  a  possible  sample  

outlier or a change in the environment, thus calling for more samples (representing 

the latest data) to be collected to be used in QM optimization. Otherwise, if s is not 

conflicting and s is either smaller or larger that the current min and max, these  values  

are updated accordingly. The point value estimate with its weight, which corresponds 

to the cardinality of the sample (used in estimating that measure) is stored inside the 

SIN data structure (Lines (7-9)). 

Case 2: Uncertain Classifier and Certain Routes This case occurs, when QM op

timizer uses the Route-Based optimization approach (RBA) (see Section 5.14.2 and 

Figure 5.37(b)). Here routes are computed first, based on all available samples of 

data and their statistics (Figure 5.38, Line 7). The statistics are considered to be 

certain, and thus computed routes are assumed to be certain as well. To induce a 

classifier, the impurity measures for classifying attributes are computed based on all 

available data samples. Impurity measures for the same attribute may vary for each 
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data sample, thus leading classification intervals or CIN s. The presence of CIN s 

leads to an uncertain classifier. Figure 5.41 (bottom) shows a conceptual view of an 

uncertain classifier29 . 

Computation of Uncertain Classifier : Figure  5.43  shows  the  pseudocode  for  construct

ing uncertain classifier. First, root node is created (Line 1). If all training tuples are 

assigned to one route, then the classifier is a singleton, or we refer to it “empty” 

classifier. The understanding here is that all data should be processed using a single 

route. 

Case 3: Uncertain Classifier and Uncertain Routes The third case for multi-route 

optimization is when both routes and classifier may be uncertain, as a result of merg

ing uncertain QM solutions computed using two different optimization approaches 

(CBA and RBA) – to get a better overall QM solution (Figure 5.37(c)). 

MergeUAQMSolutions (UA-QM1 - CBA -based QM, 

UA-QM2 - RBA -based QM) 

// UA-QM final is the final (merged) QM 

01 UA-QM final.C = UA-QM 2.C // classifier from RBA-based QM 

02 UA-QM final.R = MergeRoutes(UA-QM 1.R, UA-QM 2.R) 

03 return UA-QMfinal 

Figure 5.44. Merging uncertain query meshes. 

Merging Uncertainty-Aware QMs: Figure  5.44  shows  the  pseudocode  for  merging  two  

query meshes. 

5.16 UA-QM Execution 

UA-QM Executor receives logical QM specification from the optimizer and in

stantiates physical runtime infrastructure. Conceptually, at runtime, we may have 

either the classifier with belief space nodes or the routes with belief space nodes which 

29CN stands short for “classifier test node”. 
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represent the uncertainty about the best option (among several possible alternatives). 

In this section, we describe how these belief space nodes are resolved at runtime to 

determine the concrete execution solution. In Section 5.16.2 we describe how beliefs 

are resolved in UA-QM. 

Belief Space Belief Space 

200% 2000 

OP1 

OP2

OP1/OP2 

OP1

OP2 

OP1/OP2 

Threshold 
Function 

1000 1000 100% 100% 
800 80%
 

600
 60%500 

0 0 00 

certainty plausibility certainty plausibility 

(a) Before normalization (b) After normalization 

Figure 5.45. Resolving belief functions (route example). 

5.16.1 Runtime Infrastructure 

For efficient query execution, QM Executor uses an infrastructure, called the Self-

Routing Fabric (SRF ) (see  Figure  5.31)  [27,219],  which  implements  query  processing  

via multiple routes with near-zero route execution overhead. In contrast to current 

adaptive systems, SRF eliminates the expensive central data router operator, such as 

Eddy operator [33,34,97] and enables de-centralized self-routing of data by operators. 

Route specifications are encoded in meta-data tuples, called “routing tokens” (or  short  

r-tokens). R-tokens are then embedded inside data streams along with their data 

tuples by the online classifier operator. To  keep  memory  and  CPU  overheads  minimal,  

the tuples are assigned to an existing route in groups called “routable clusters” or  

short “rusters” rather  than  individual  tuples.  Rusters distinguish themselves from 

traditional batching, e.g., [33, 217], in that they are formed by probing the classifier. 

Hence, only the tuples that share the same best route get assigned to the same ruster. 

http:operator.To
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To enable  de-centralized  routing,  routes  in  the  r-tokens are specified in the form of 

an operator stack based on the design of SRF. The  stack  nodes  represent  the  indexes  

of the operators in the SRF, e.g., the  r-token <2,3,1,4> indicates that ‘2’ is the first 

operator in the route, ‘3’ is the next, and so on. A ruster is always sent to the 

operator that is currently the top node in the routing stack. After an operator is 

done processing the ruster, the  operator  “pops”  the  top  of  the  routing  stack  –  its  

unique identifier in the r-token, and  then  puts  the  ruster into the next (now the 

top) operator’s input queue. When the operator stack is empty, the ruster tuples 

are forwarded to the global output queue reserved by index “0” and then to the 

application(s). 

To enable uncertain route specification, we introduce a small modification to the 

route encoding: the r-token <2,{3|1},4> indicates that ‘2’ is the first operator in the 

route, ‘3’ or ‘1’ is the next, etc. The encoding {3 | 1} depicts the uncertainty about 

the order of operators. 

5.16.2 Belief Space Handling 

Figure 5.45 visually depicts belief functions using a “relationship graph” (or we 

denote it as “belief space”) where certainty vs. plausibility of each belief are plotted 

against each other. Thus, resulting BFs represent the uncertainty in the overlapping 

selectivity sub-intervals. 

In this scenario, we have a certain classifier and uncertain routes, i.e., routes with 

“belief spaces”. In order to determine the concrete physical sequence of operators in 

an uncertain route, the user receiving results of the query provides a threshold function 

to specify how much he or she is willing to believe in (certainty and possibility of) 

a relative  uncertainty.  To make  this  more  intuitive,  let’s  consider  what  is  the  act  of  

believing: it consists of creating a threshold of belief at some probability, assembling 

evidence for the question, and when the probability exceeds that threshold, accepting 

it as true. Thus, a threshold function specifies the preference of the user with regard to 
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uncertainty and symbolically is described as TF=(C,P ), where C and P are certainty 

and possibility parameters. 

Given the threshold function, a concrete route is determined as follows (see Figure 

5.45): for every belief space (depicting relateive uncertainty in the order of operators 

in the route), and the specified threshold function we find the closest belief function. 

If we were to plot belief functions together with the threshold function, we would get 

something like in Figure 5.45. The threshold function line does not serve as a “cut 

off” parameter in a traditional sense of a threhold, but rather a desired belief of the 

user. In order to determine the closest belief function to the threshold function, we 

employ integration techniques from mathematics (since we need to find a line with 

the smallest area between that line and the threshold function line). 

Definition 5.16.1 (Smallest Distance Property) Let  A denote area, y(x) = 

BF (OPi) represent  the belief  function  of  an  operator  OPi, and  z(x) = TF () rep
x=1 x=1

resent the threshold function line. Let AOPi = 
� 

y(x)dx, and  ATF  = 
� 

z(x)dx . 
x=0 x=0 

We choose an operator OPi if it satisfies the following property: AΔ = |ATF  − ABF | 

is the smallest ∀ BFs in the belief space. 

Thus, using mathematical integration we can find the closest line (belief function) to 

the treshhold function, and make a choice among possible alternatives while consid

ering the preferences of the user. 

5.17 UA-QM Conclusion 

Uncertainty-awareness addresses a major limitation of the most of the existing 

query processing solutions which typically ignore uncertainty and could result in 

poor performance, or may lead to frequent re-optimizations, further impeding query 

performance. Here, we have proposed using the concepts of the belief function theory 

of evidence can be used as basis for a method that makes multi-route query optimiza

tion more robust to uncertainty – both in the plan computation as well as in plan 

assignment. 
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Figure 5.46. UA-QM execution. 

In this paper, we propose to address the challenges above and present a frame

work handling uncertainty problem in a multi-plan (or multi-route) query execution 

systems. To be practical, an uncertainty mechanism in a data stream environment 

must provide: (1) fast measurement of uncertainty, (2) efficient and meaningful rep

resentationg of different types of uncertainty in a multi-route solution, (3) support 

for user preferences in uncertainty processing, (4) adaptivity to dynamic changes in 

uncertainty, and (5) very low overhead compared to traditional continuous query 

processing. Our uncertainty modeling procedure captures both absolute and rela

tive uncertainty and is compatible with the architecture of existing query optimizers, 

allowing it to be easily integrated into traditional single-plan-based database man

agement system. 
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6 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

6.1 Summary 

The main goal of this dissertation is to introduce several new features inside Data 

Stream Management Systems (DSMSs) that are becoming increasingly important 

requirements for many emerging stream-based applications. Specifically, we tackle 

the problems of the access control enforcement on streaming data, the tagging of 

streaming data and the diversity-aware query processing inside DSMSs. The three 

main contributions of this dissertation can be summarized as follows. 

First, the dissertation addresses the problem of continuous access control enforce

ment in dynamic data stream environments, where both the data and the query 

security restrictions may potentially change in real-time. The proposed approach ad

vances the state of the art of data stream management systems by introducing: (1) 

the stream-centric approach to dynamic security, (2) the symmetric security model for 

both continuous queries and streaming data, and (3) the alternative security-aware 

query processing methods, that can optimize the execution based on data-related as 

well as security-related selectivities. Experimental evaluation shows that our pro

posed approach outperforms other possible alternatives and the security-aware query 

processing can achieve significant performance benefits over the previously proposed 

naive pre-filtering and post-filtering methods. 

Second, the dissertation proposes a solution for tagging streaming data using a 

special type of streaming metadata calleda tick-tags. Tick-tags can serve a variety of 

purposes, including labelling or describing some underlying real-time information, and 

serving as means of disseminating useful knowledge in addition to what is captured 

by the content of data tuples. Exploiting tags embedded in a data stream increases 

the kinds of queries that can be executed over data streams. Our experimental results 
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show the scalability and performance benefits of the tick-tag approach compared to 

alternative solutions. We have also evaluated the costs of executing tag-aware and 

tag-oriented continuous queries. 

The third contribution in this dissertation is the development of a data diversity-

aware query processing framework, called query mesh, that enables different subsets 

of data to be processed by different query execution plans. We addressed the prob

lem of optimization and efficient runtime execution using query mesh framework, the 

adaptivity to changing conditions at runtime, and the problem of imprecision and 

uncertainty in the context of query mesh. The query mesh framework is general, 

offering numerous advantages over current state-of-the-art solutions. It is applicable 

to streaming engines and potentially to relational DBMSs as well. Our preliminary 

experimental results verify the effectiveness of the query mesh approach and demon

strate its potential as a paradigm for continuous query optimization for rich and 

diverse data. 

6.2 Future Research Directions 

Next we describe the possible directions for future research based on the concepts 

presented in this dissertation. 

6.2.1 Security Extensions in DSMSs 

Security is paramount to the functioning of any system. In this thesis, we have 

considered only the problem of access control. However, a full-fledged DSMSs needs 

a comprehensive  security  support,  which  involves  different  issues  of security  [232]:  

authentication, authorization and access control, confidentiality and integrity, avail

ability, auditing, privacy, physical, hardware security, and operating system security. 

One interesting direction is to expand security punctuation mechanism further to 

support streaming data integrity, e.g., providing assurance that real-time data traffic 

is not altered during the transmission. Another area worth examining is the mining 
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of security  preferences  (depicted  by  streaming  security  punctuations)  of the  users  and  

building security policy profiles, based on which the best query execution plans can 

be constructed in advance and anticipated to be used in the future. 

6.2.2 Tagging Extensions in DSMSs 

In our approach, we tag streaming data using words (strings of characters). An 

alternative to string-based tags could be object-based tags. An interesting research 

direction is the investigation whether streaming data could be tagged with objects 

instead of keywords. Instead of tagging objects with strings, which falls back on a 

simple full-text search, users could tag something with an actual representation. 

Another interesting problem to investigate is whether the tick-tag awareness can 

also be used in query optimization at compile-time when determining a query exe

cution plan, as well as at runtime (similar to punctuations [105]) to adapt the query 

execution strategy based on the observed streaming tick-tags. Clearly,  not  all  punctu

ations are useful to a particular query, and it would be useful to make a determination 

of when they are. That is, we would like to answer the question “Can stream query 

Q benefit from a particular set of punctuations?” To that end, we first define punc

tuation schemes to specify the collection of punctuations that will be presented to 

a query  on  a particular  data  stream.  We  show  how  both  punctuations  and  query  

operators induce groupings over the items in the domain of the input(s). We show 

that a query benefits from an input punctuation scheme (in terms of being able to 

produce a given output scheme), if each set in the groupings induced by the operators 

of the query is covered by a finite number of punctuations in the scheme a kind of 

compactness. 

Finally, real-time tag mining and tag classification can be of interest to many 

stream-based applications, e.g., real-time auction monitoring, social networking, and 

scientific monitoring. This problem refers to extending the support for real-time 

mining and classification to streaming tags. 
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6.2.3 Query Mesh Extensions 

While so far, this thesis has focused on the core issues of the query mesh op

timization and execution, many other topics could potentially be explored in this 

context. 

One interesting direction is to employ learning methods towards different problems 

inside data stream engine. One such problem in continuous environments is resource 

limitations problem. Currently there is an underlying assumption that a query mesh 

produces exact answers under constrained resources. Since query processing even

tually may “fail” due to finite resources, alternate solutions may ultimately need to 

be employed. Here, to reduce the volume of data processed under duress, learning 

methods may be employed towards adaptive load shedding, results approximation, 

and disk-spilling. This direction would also help in expanding the understanding of 

the power and limitations of machine learning techniques in the “guts” of a database 

engine. 

A very  important  problem  is  shared  multi-query  processing  using  query  mesh  

paradigm. Here, methods for sharing execution routes and classification would need 

to be investigated not only among subsets of tuples for one query but also among 

different query meshes for multiple queries executing on the system. 

In the long term, it is essential to expand the query mesh scope to consider 

processing in the context of large-scale distributed environments. Here, issues like 

resource discovery, business process coordination and resource negotiation must be 

tackled. Resilience under failures of the network (unreliable communication), servers 

(fault tolerance), or components of a server (recovery) are critical services, which I 

would like to explore in my future work. 

In both static and streaming databases, a query plan operator typically maintains 

a single queue (see Figure 6.1(a)). Such setup has several disadvantages in the context 

of multi-route execution: (1) only a single type of scheduling policy can be used by 
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Figure 6.1. Operator queue management. 

an operator to dequeue tuples, namely First-In-First-Out (FIFO), and (2) operator 

processing can be biased towards “bursty” inputs. 

Another direction worth examining is the so-called horizontal queue partitioning 

scheme (see Figure 6.1(b)), where the operator input queue is partitioned into mul

tiple sub-queues. Based on horizontally partitioned queues, operators can perform 

queue management for further improvement for query mesh-based execution. With 

horizontal queue partitioning approach, there are many possibilities for scheduling 

tuples for execution by the operators, e.g., FIFO, Priority Queuing, Fair Queuing, 

Round Robin Weighted Fair Queuing, etc [63]. Other advantages of the proposed 

operator queue management scheme include: (1) operator can control average queue 

size, (2) bursts can be absorbed without dropping tuples, (3) operators can prevents 

bias against “bursty” inputs, and (4) operators can possibly “punish” bursty flows. 

The idea of operator-assisted monitoring approach, inspired by the resource man

agement approach in ATM networks [63] (see Figure 6.2(a)) could potentially also be 

beneficial in the context of query mesh. The performance metadata, denoted resource 

management (RM ) cells,  are  injected  into  the  network  by  the  intermediate  switches  

and routers and are used to convey network status (e.g., available bandwidth, con

gestion levels) to the source and destination systems. In the query mesh context, the 

main idea is for operators to attach their status information, e.g., number of tuples 

in the queue, current processing rate, etc., to the performance metadata tuples (p

tokens) streaming  together  with  the  data,  so  that other operators  (e.g.,  the  operators  

next in route) can become aware of this performance information and possibly exploit 
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Figure 6.2. Switch and operator-assisted tuning. 

it by adapting the routes of the future rusters that may contain those bottlenecked 

operators. 

The attractiveness of such operator-assisted performance and state information 

“diffusion” is in the fact that in a sense it comes for “free”. Since the tuple rusters 

may still have to be routed to other operators, a small “performance signal” with a 

timestamp can be interleaved with streaming tuples, and then the operators that are 

left in the route can become “aware” of the current situation at the other operator(s). 

They can use this information (within a time window) to possibly “detour” some 

rusters if the immediate operators are “overloaded”. Furthermore, these runtime 

performance metadata can be streamed back to the optimizer to determine how the 

overall query mesh (not just the runtime routes) can be adapted. 

Finally, while our focus in this thesis is on applying diversity-aware query pro

cessing in a DSMS, the query mesh model can also useful in conventional DBMSs, 

addressing the issue that optimizers sometimes pick plans that perform poorly com

pared to the actual best plan. 

6.2.4 Generalized Punctuation (GPUNCT) 

One potentially very effective research direction to explore is the idea of a general

ized punctuation in DSMSs. To make the idea more intuitive to the reader, consider 

0 1 2 3 ... 

(b) Operator-assisted monitoring 
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To optimizer ... 

To applications ... 
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data tuples 

op1 op2 op3 opn 
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the concept of a Generalized Search Tree (GiST ) [233]  in  Database  Management  Sys

tems, which is an index structure supporting an extensible set of queries and data 

types. The GiST is an extensible data structure, which allows users to develop indices 

over any kind of data, supporting any lookup over that data. It unifies a number of 

popular search trees in one data structure (the list includes R-trees, B+-trees, hB

trees, TV-trees, Ch-Trees, partial sum trees, ranked B+-trees, and many others), 

eliminating the need to build multiple search trees for handling diverse applications. 

The similar in spirit idea could be extended to the concept of punctuations in Data 

Stream Management Systems. We refer to this notion – a generalized punctuation 

or GPUNCT for short. In a single data structure, the GPUNCT can provide vari

ous punctuation logics required by a DSMS, thereby unifying disparate punctuation-

based mechanisms. GPUNCT can be used to easily implement a range of well-known 

punctuation mechanisms, including as sub-stream delimiters inside data streams [98], 

security metadata [38], feedback mechanisms [103], routing lineage [27], and many 

others; it can also allow for easy development of specialized metadata for new data 

types or queries. GPUNCT, like GiST, would represent an example of software ex

tensibility in the context of DSMSs. It will enable the smooth evolution of DSMS 

towards supporting new punctuation-based algorithms. This would allow authors of 

new punctuation-based algorithms to focus on implementing the novel features of the 

new punctuation type – for example, the way in which subsets of the data should be 

described for search – without becoming experts in DSMS internals. 
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