
CERIAS Tech Report 2009-35
Efficient query processing for rich and diverse real-time data

 by Nehme, Rimma
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

Rimma Nehme By

Entitled Efficient Query Processing for Rich and Diverse Real-Time Data

For the degree of Doctor of Philosophy

Is approved by the final examining committee:

Elisa Bertino Jennifer Neville

 Chair

Elke Rundensteiner

Ahmed Elmagarmid

Sunil Prabhakar

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Elisa Bertino Approved by Major Professor(s): ____________________________________

Elke Rundensteiner

Approved by: William J. Gorman 06/10/2009
Head of the Graduate Program Date

Graduate School Form 20
(Revised 10/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
Efficient Query Processing for Rich and Diverse Real-Time Data

Doctor of Philosophy For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Rimma Nehme
Signature of Candidate

06/10/2009
Date

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

EFFICIENT QUERY PROCESSING

FOR RICH AND DIVERSE REAL-TIME DATA

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Rimma Nehme

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2009

Purdue University

West Lafayette, Indiana

UMI Number: 3379699

All rights reserved
!

INFORMATION TO ALL USERS
!
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.
!

UMI 3379699
Copyright 2009 by ProQuest LLC.
!

All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 East Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

ii

To Freddy

iii

ACKNOWLEDGMENTS

I am extremely grateful to many people for all the guidance and help I have

received throughout the period of my Ph.D. studies.

My deepest gratitude is to Dr. Elisa Bertino. I have been fortunate to have an

advisor who gave me the freedom to explore on my own. I am grateful to her for

holding me to a high research standard and having high expectations from me, while

giving constant encouragement and support throughout my graduate studies.

I am indebted to my co-advisor Dr. Elke A. Rundensteiner for introducing me

to the idea of pursuing the Ph.D. degree in the first place and for all the guidance

and help she has given me over the years. Elke’s insightful comments and construc

tive criticisms at different stages of my research were thought-provoking and they

helped me focus my ideas and encouraged to try “risky” approaches. She has been a

wonderful role model as a researcher and as a teacher.

During the three summers at Microsoft Research (MSR), I have worked with a

wonderful group of people. In particular, I would like to thank my mentors there

Dr. Nicolas Bruno and Dr. David Lomet for exposing me to a number of interesting

research problems, engaging discussions and for inspiring me to do my very best. I

will cherish my experience in the Data Management, Exploration and Mining (DMX)

Group and the Database (DB) Group at MSR for the rest of my life. Working with

this excellent group of people significantly contributed to my passion for database

systems research.

I also would like to thank the current and the former members of the Indiana

Center for Database Systems (ICDS) at Purdue University and the Database Sys

tems Research Group (DSRG) at Worcester Polytechnic Institute with whom I have

interacted during the course of my graduate studies. Particularly, I would like to ac

knowledge Ashish Kamra, Mariana Jbantova, Chris Mayfield, Hazem D. Elmeleegy,

iv

Mohamed Y. Eltbakh, Dr. Hyo-Sang Lim, Venkatesh Raghavan, Dr. Luping Ding,

Dr. Yali Zhu, Dr. Bin Liu, Dr. Maged El-Sayed, Dr. Song Wang, Di Yang, Karen

Works, Mo Liu, Abhishek Mukerji, Mummoorthy Murugesan (and many others) for

the many valuable discussions that helped me understand my research area better.

I would like to express my gratitude to the rest of my advisory committee at

Purdue, Dr. Walid Aref, Dr. Ahmed Elmagarmid, Dr. Sunil Prabhakar and Dr.

Jennifer Neville, for their help and invaluable comments and suggestions.

Finally, and most importantly, I would like to thank my husband Alfred for his

love, support and the never-ending encouragement. His confidence in me has been

absolutely invaluable throughout my Ph.D. studies. I dedicate this thesis to him.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiv

1 Introduction . 1

1.1 Data Stream Management Systems 1

1.2 Emerging Real-life Streaming Applications 3

1.3 Features for the Next Generation of Data Stream Management Systems 6

1.3.1 Access Control for Streaming Data 9

1.3.2 Tagging Streaming Data . 9

1.3.3 Diversity-Aware Query Processing 10

1.4 Overview of Our Approach . 11

1.5 Contributions . 13

1.6 Summary and Outline . 17

2 Background and Related Work . 18

2.1 Data Stream Management Systems 18

2.2 Query Optimization Techniques . 20

2.3 Adaptive Query Processing Techniques 25

2.4 Streaming Metadata . 27

2.5 Learning Techniques . 27

2.6 Security and Access Control Enforcement 29

2.7 Tagging Methods . 31

2.8 Summary . 33

3 Security and Access Control for Streaming Data 34

3.1 Security in Data Stream Management Systems 35

3.1.1 Challenges . 37

3.1.2 Our Contributions: The FENCE Framework 38

3.2 Problem Formulation . 39

3.3 Overview of FENCE Framework . 41

3.3.1 FENCE Architecture . 41

3.3.2 An Instance of the FENCE Framework 43

3.4 Dynamic Security Policy Model . 45

3.4.1 General Security Punctuation Schema 45

3.4.2 Semantics of Security Punctuations 46

vi

Page
3.4.3 Examples of Security Punctuations 48

3.4.4 Security Punctuations Generation 50

3.5 Security-Aware Continuous Query Processing 51

3.5.1 Naive Approach . 51

3.5.2 Security Filter Approach (SFA) 53

3.5.3 Query Rewrite Approach (QRA) 57

3.5.4 Pros and Cons of QRA and SFA 60

3.6 Experimental Study . 62

3.6.1 Experimental Setup . 62

3.6.2 Effectiveness of Security Punctuations 65

3.6.3 Comparison of SA-CQP Methods 67

3.6.4 Overhead of Security Enforcement 68

3.6.5 Summary of Experimental Results 70

3.7 Conclusion . 71

4 Tagging of Streaming Data . 72

4.1 Tagging in Data Stream Environments 73

4.1.1 Challenges . 73

4.1.2 Alternative Tagging Methods 74

4.1.3 Our Proposed Solution: The Stream Tag Framework 76

4.1.4 Our Contributions . 78

4.2 Stream Tag Framework Overview 78

4.3 Streaming Tags (or Tick-Tags) . 79

4.3.1 What is a Tick-Tag? . 79

4.3.2 Tick-Tag Physical Design 81

4.3.3 Tag Query Language (TAG-QL) 84

4.3.4 Tick-Tag Examples . 85

4.3.5 Tick-Tag Generation . 86

4.4 Tag-Based Query Processing . 87

4.4.1 Tag-Oriented Query Processing 87

4.4.2 Tag-Aware Query Processing 91

4.5 Physical Implementation . 94

4.6 Experimental Study . 96

4.6.1 Experimental Setup . 96

4.6.2 Cost of Tagger Operator . 100

4.6.3 Comparison of Tick-Tag Approach Against Alternatives . . . 102

4.6.4 Cost of Tag Join Operator 104

4.6.5 Cost of Tag-Aware Join Operator 105

4.7 Conclusion . 106

5 Diversity-Aware Query Processing . 107

5.1 Core Query Mesh (QM) . 107

5.1.1 Single versus Multiple Execution Plans 107

vii

Page
5.1.2 Our Proposed Solution: The Query Mesh 109

5.1.3 Challenges . 111

5.1.4 QM Architecture . 112

5.1.5 QM Assumptions . 113

5.2 The Query Mesh Optimizer . 113

5.2.1 Data Sampling . 113

5.2.2 Query Mesh Search Space 114

5.2.3 Query Mesh Optimizer Sub-problems 116

5.2.4 Query Mesh Cost Model . 118

5.2.5 Optimal Query Mesh Search Algorithm 119

5.2.6 Query Mesh Search Heuristics 121

5.3 The Query Mesh Executor . 127

5.3.1 Instantiation of Physical Infrastructure 127

5.3.2 Physical Execution . 130

5.4 Query Mesh Experimental Study 131

5.4.1 Experimental Setup . 133

5.4.2 Results and Analysis . 134

5.4.3 Summary of Core QM Experimental Conclusions 142

5.5 QM Conclusion . 142

5.6 Self-Tuning Query Mesh (ST-QM) 143

5.6.1 Motivation for Adaptivity 144

5.6.2 Adaptive Multi-Plan Query Processing 145

5.6.3 Our Proposed Solution: ST-QM 148

5.7 Overview of Self-Tuning Query Mesh 149

5.7.1 The Main Idea . 149

5.7.2 Query Mesh Concept Drifts 149

5.7.3 ST-QM Architecture . 151

5.8 ST-QM Monitor . 153

5.8.1 Input Data Monitoring . 153

5.8.2 Execution Statistics Monitoring 156

5.9 ST-QM Analyzer . 157

5.9.1 Phase I: Concept Drift Detection 158

5.9.2 Phase II: Tuning Recommendations 160

5.10 ST-QM Actuator . 163

5.10.1 Physical Execution of Adaptivity 163

5.10.2 State Management and Adaptivity 164

5.11 Self-Tuning Query Mesh Experimental Study 165

5.11.1 Experimental Setup . 165

5.11.2 Results and Analysis . 168

5.11.3 Summary of ST-QM Experimental Conclusions 175

5.12 ST-QM Conclusion . 176

5.13 Uncertainty-Aware Query Mesh (UA-QM) 177

viii

Page
5.13.1 Problems with Uncertainty Ignorance 178

5.13.2 Challenges . 180

5.13.3 Our Proposed Solution: UA-QM 181

5.14 UA-QM Framework . 182

5.14.1 UA-QM Architecture . 182

5.14.2 Uncertainty Cases in Query Mesh 183

5.14.3 Reasoning About Uncertainty 185

5.14.4 Absolute Uncertainty . 186

5.14.5 Relative Uncertainty . 189

5.15 UA-QM Optimization . 190

5.16 UA-QM Execution . 197

5.16.1 Runtime Infrastructure . 198

5.16.2 Belief Space Handling . 199

5.17 UA-QM Conclusion . 200

6 Conclusion and Future Research Directions 202

6.1 Summary . 202

6.2 Future Research Directions . 203

6.2.1 Security Extensions in DSMSs 203

6.2.2 Tagging Extensions in DSMSs 204

6.2.3 Query Mesh Extensions . 205

6.2.4 Generalized Punctuation (GPUNCT) 207

LIST OF REFERENCES . 209

VITA . 226

ix

LIST OF TABLES

Table Page

3.1 Example of query rewriting. 58

3.2 Default experimental parameters. 61

3.3 Dynamic properties of security policies. 62

4.1 Traditional tags versus streaming tags. 80

4.2 Overview of key TAG-QL statements. 85

4.3 Examples of tag-oriented queries. 88

4.4 Examples of tag-aware queries. 92

4.5 Tag examples used in the experiments. 99

5.1 Defaults used in the experiments. 132

5.2 Distribution statistics. 133

5.3 Default experimental parameters. 167

5.4 Distribution statistics and parameters. 170

5.5 Selectivity intervals for various subsets. 187

x

LIST OF FIGURES

Figure	 Page

1.1 Simple view of a typical streaming environment. 2

1.2 Example 1: Ubiquitous healthcare application. 4

1.3 Example 2: Location-based application. 6

1.4 Traffic example with tags on location updates. 7

1.5 Conceptual differences between “Streams 1.0” and “Streams 2.0” systems. 8

1.6 Overview of a query mesh solution. 11

1.7 Query mesh overview. 12

2.1 Query mesh versus other optimization techniques. 22

3.1 Conceptual idea of security-aware continuous query processing (SA-CQP). 41

3.2	 Overview of FENCE architecture. 42

3.3	 General security punctuation schema. 46

3.4	 Enforcement of security punctuations in an “immediate” and “deferred”

manner. 48

3.5	 Query processing with sps. 53

3.6	 SFA-based SA-CQP. 54

3.7	 SS+ execution in SFA. 55

3.8	 Processing of sp in SS+ . 55

3.9	 Processing of “immediate sps”. 56

3.10	 QRA-based SA-CQP. 58

3.11 SA-CQP using QRA. 59

3.12 Algorithm for query rewriting. 60

3.13 Experimental results. 67

3.14 Security enforcement overheads. 69

4.1	 Stream Tag Framework (STF) overview. 79

xi

Figure Page

4.2 Tick-tag schema. 82

4.3 Interpretations based on tag signs. 83

4.4 Tag-oriented algebra (examples). 89

4.5 Tag-aware join example. 93

4.6 Tagger operator algorithm. 95

4.7 Tag join operator algorithm. 97

4.8 Experimental Queries. 98

4.9 Tag properties. 99

4.10 Cost of tagging operator. 101

4.11 Comparison of alternatives (output rate) 103

4.12 Comparison of alternatives (memory) 103

4.13 Cost of tag join. 104

4.14 Cost of tag-aware join. 105

5.1 Optimizer producing logical QM solution. 110

5.2 Core query mesh framework. 112

5.3 Lattice-shaped query mesh search space. 116

5.4 Optimal QM search algorithm . 120

5.5 II search strategy for QM . 124

5.6 SA search strategy for QM . 125

5.7 Hybrid search strategy for QM. 127

5.8 Query mesh execution example. 128

5.9 QM physical runtime infrastructure. 129

5.10 Physical instantiation of the Self-Routing Fabric infrastructure. 129

5.11 Experimental distributions. 133

5.12 QM with different start solutions. 135

5.13 Impact of start solutions on routes. 136

5.14 Effect of the search strategy. 137

5.15 Query mesh experimental results. 137

xii

Figure Page

5.16 Comparison of runtime overheads. 138

5.17 Overhead of runtime classification. 142

5.18 Virtual and real concepts in Query Mesh. 147

5.19 Concept drift “spectrum”. 150

5.20 Self-tuning Query Mesh framework. 152

5.21 ST-QM process flow. 154

5.22 Route-driven sampling. 155

5.23 QM concept drift detection. 158

5.24 QM tuning recommendations. 161

5.25 Physical execution of QM adaptivity. 164

5.26 Experimental distributions. 166

5.27 Experimental results. 169

5.28 ST-QM overhead. 174

5.29 Overhead when no adaptation is needed. 175

5.30 Geo-social networking query example. 179

5.31 UA-QM architecture. 183

5.32 Uncertainty scenarios in QM. 185

5.33 Symmetric modeling of SIN s and CIN s. 187

5.34 Belief function for a relative uncertainty. 188

5.35 Cases for uncertainty intervals’ overlaps. 190

5.36 Example of computing SBF. 191

5.37 UA-QM optimization approaches. 191

5.38 UA-QM Optimization. 192

5.39 Computing uncertain routes. 192

5.40 Computing selectivity intervals. 193

5.41 Conceptual idea of uncertain routes and classifier. 193

5.42 Merging point estimate into a SIN. 194

5.43 Computing uncertain classifier. 195

xiii

Figure Page

5.44 Merging uncertain query meshes. 197

5.45 Resolving belief functions (route example). 198

5.46 UA-QM execution. 201

6.1 Operator queue management. 206

6.2 Switch and operator-assisted tuning. 207

xiv

ABSTRACT

Nehme, Rimma Ph.D., Purdue University, August 2009. Efficient Query Processing
for Rich and Diverse Real-Time Data. Major Professors: Elisa Bertino and Elke A.
Rundensteiner.

In recent years, data streams have become ubiquitous as technology is improving

and the prices of sensor, location-tracking and portable devices are falling. Examples

of streaming data include observations from sensor networks, location updates from

GPS devices, measurements from health monitoring devices, status updates, com

ments and self-expressions from users on the web, e.g., by “twittering”. The current

state-of-the-art Data Stream Management Systems (or short DSMSs) typically con

sider a very simple streaming environment, where data streams transmit only data

tuples, and based on these arriving data tuples, continuous queries are evaluated on

the server. For execution of a continuous query, typically, a single execution plan

(based on the latest overall statistics) is employed for processing all arriving data.

We believe that such “first-generation” DSMSs (or as we also refer to them

“Streams 1.0” systems), while enabling users and applications to pose queries over

data streams, are, however, ill-equipped to support many of the functionalities crucial

to the newly-emerging streaming applications, e.g., ubiquitous healthcare or geo-social

networking. Motivated by the growing trend of such new stream-based applications,

in this thesis, we propose to equip DSMSs with several important functionalities,

namely:

1. the access control enforcement for security of streaming data

2. the tagging of streaming data for producing “richer” and more meaningful re

sults, and

xv

3. the diversity-aware query processing for efficient processing of queries, where

subsets of data may exhibit distinct statistical properties.

For each of the above features, we provide the concrete problem definition, the mo

tivating examples, develop and analyze algorithms, and present the experimental re

sults using a general-purpose DSMS prototype. We believe that the ideas presented

in this thesis can significantly contribute the development of the “next generation”

of DSMSs – or the so-called “Streams 2.0” systems.

1

1 INTRODUCTION

In this chapter, we begin in Section 1.1 by highlighting the bigger picture of streaming

technology. Next, in Section 1.2, using the real-life application examples, we motivate

the need for supporting security and tagging of streaming data, and the necessity

for instrumenting DSMSs with query processing techniques designed to efficiently

handle diverse data. In Section 1.3, we present the set of novel features for the “next

generation” of DSMSs – the so-called “Streams 2.0” systems. In Section 1.4, we give

an overview of our approach to support the proposed features. We summarize the

main contributions of the dissertation in Section 1.5. Finally, Section 1.6 gives the

outline for the rest of the dissertation.

1.1 Data Stream Management Systems

Database Management Systems (DBMSs) have played a central role in information

technology over the last three decades. DBMSs simplify the storage, maintenance,

and analysis of large datasets. When users or applications need to handle significant

amounts of data, they first load the data into a DBMS. Once loaded into the system,

the data or selected portions of it can be retrieved on demand easily and efficiently

through queries to the DBMS. Such queries are expressed in query languages like

SQL [1]. A query submitted to a DBMS is processed over the current dataset stored

in the DBMS. The results computed for the query are then returned back to the

corresponding user or application.

While conventional DBMSs are designed to process queries over finite stored

datasets, many modern applications need to process data streams that consist of data

elements generated in a continuous unbounded fashion. Examples of such applica

tions include health-monitoring applications that process streams of tuples describing

2

Data Stream
Management System

(DSMS)

Continuous Queries

Input streams Streamed query results

Figure 1.1. Simple view of a typical streaming environment.

the vital signs of patients, financial monitoring applications that detect patterns over

the stock-ticker streams, environmental monitoring applications that track physical

phenomena using the streams of observations generated by sensors, and many others.

These applications have new data management needs that arise from the continuous,

unbounded, rapid, and time-varying nature of data streams [2]. Since conventional

DBMSs are ill-equipped to fulfill the needs of these applications, a new class of sys

tems – called Data Stream Management Systems (or short DSMSs) [3–9] – have been

developed by the database research community as well as by several commercial ven

dors [10–14] to satisfy the requirements of stream-based applications. DSMSs enable

users and applications to pose queries over infinite data streams and to receive re

sults in near-real-time. These queries tend to be long-running, since data arrives

continuously, and are called continuous queries.

Figure 1.1 shows a high level overview of a typical data stream environment.

Continuous streams consisting of data tuples, e.g., sensor measurements, latest stock

prices, or moving objects’ location updates, are collected by monitoring devices and

sent to a DSMS for processing. In addition to the input streams, the DSMS may

also maintain conventional stored data, e.g., in the case of location-based services,

this can be a table storing the road network of a city, or in the case of a financial

application, this can be a table storing information about the companies and what

they do for business. Users or monitoring applications register continuous queries

over the input data streams and the other data managed by the DSMS. For example,

a registered continuous query for a location-based application may specify a set of

3

conditions that signal a potential road congestion, or a pattern for dangerous driving

behavior (to alert the nearby police and prevent potential accidents). The continuous

queries registered on the DSMS are evaluated on the new data tuples when they

arrive in the input data streams. Query results are usually output directly to users or

applications in the form of continuous data streams as well, as shown in Figure 1.1.

1.2 Emerging Real-life Streaming Applications

In this section, we present several real-life application examples that call for new

features that the current state-of-the-art DSMSs are ill-equipped to support. Based

on the current growth and the popularity trends of these applications, we believe

that they are here to stay and grow, and thus, it is crucial that the DSMSs become

instrumented with the much-needed features described in this section.

Example 1. Ubiquitous Healthcare: In ubiquitous healthcare [15–17], tiny sensors are

attached to a patient to gather information on bodily conditions such as temper

ature, heart rate, blood pressure, chemical levels, breathing rate and volume, and

almost any other physiological characteristic that provides information that can be

used to diagnose health problems. These sensors are worn on (or possibly implanted

in) the body, or installed in patients’ homes and workplaces. A family doctor can

remotely monitor patients, and provide general health advice and remote diagnosis

while saving the patients a trip to the doctor’s office, and thus providing cheaper and

better healthcare services. Figure 1.2 visually depicts the main idea of a ubiquitous

healthcare application.

While remote health monitoring provides a lot of convenience, at the same time,

detailed body sensor data may be combined with data from infrastructure sensors,

which can provide a “life log” or an “activity diary” of the patients in real-time. If

such sensitive personal data is shared among interested parties – such as employers,

insurance companies, drug companies and the government, to name a few – the

possibility of abuse or discrimination can be great.

4

rights

Data Stream

Patient 1: John Patient 2: Mary

No access Management Systems
rights (DSMS)

to streaming data

Nurse-on-duty
Dr. Evil

Limited access

Doctor

Health Improvement Services

(third party services)

Figure 1.2. Example 1: Ubiquitous healthcare application.

The patients, transmitting their health data through their monitoring devices,

should have the ability to continuously regulate who can access their real-time health

information at all times and adjust it as necessary, based on time, location, observed

data values, psychological state or any other reasons. The United States Health

Insurance Portability and Accountability Act (HIPAA) empowers patients to specify

their access control preferences on their health information, and the doctor’s office

must not release that information to any entity to whom the patient does not want

his or her information to be disclosed. Furthermore, a patient should be able to ask

the doctor’s office at any time (including in real-time, e.g., from his or her portable

device) to show that they indeed did not release his or her information to the parties

the patient did not approve.

In the near future, the goal of ubiquitous health applications is to provide ubiq

uitous care, where patients receive tele-prescription and tele-infusion of drugs (e.g., a

low glucose level may cause automatic injection of insulin for a diabetic patient) re

5

motely and immediately. In order to achieve accountability, it is important to know

who has gained access to the sensitive health data, when and under what circum

stances.

Another important factor to consider is that patients are involved in various ac

tivities in their every-day lives, which might cause changes in their typical health

data values. Consider a patient carrying a health monitoring device that measures

his heart rate. When a heart rate becomes abnormal, the doctor gets alerted about

it. The patient, to prevent unnecessary concerns, can attach a “tag” to his real-time

streaming measurements stating “Running”. The doctor or a nurse knows (based on

the tag) what is causing the change in the health measurements. This helps prevent

second-guessing and avert issuing unnecessary alerts. Similarly, if a diabetic patient’s

blood sugar rises slightly above the norm, and she attaches a tag to her streaming

data that she is at a birthday party, the doctor may not need to be alerted, if the

patient’s blood sugar has gone up only slightly, and there are friends and relatives

around, in case of an emergency. In general, if patients were able to attach additional

semantics (information) to their real-time streaming health data, the DSMS may

exploit this extra-information in possibly averting unnecessary emergency situations

and produce more informative results. The more informative results can facilitate in

providing better and less expensive health services.

Example 2. Location-Based Applications : Recent improvements in location-based

technologies and the drop in prices of location-tracking devices have spurred a new

wave of mobile applications, providing location-based services and enabling geo-social

networking scenarios e.g., [18, 19]. Figure 1.3 shows an example of a location-based

application, where a cell-phone user is searching for nearby quiet coffee shops that

currently have promotions (sales or discounts). Similarly, a user may request to find

any of her friends in the vicinity, to possibly invite them to join her for a coffee.

Location-based applications naturally raise security and privacy concerns. Users

consider their physical location and travel patterns highly privacy-sensitive and de

mand solutions that are able to protect their information. Therefore, it is essential to

6

Find all coffee shops
that have a promotion

and currently have
less than 5 customers.

Find any of my friends
within a 3 mile radius

from my current location.

Figure 1.3. Example 2: Location-based application.

provide support for users to be able to frequently change their access control policies

based on their preferences, to restrict who can “see” their real-time information, e.g.,

where they are, whom they are with, or what they are doing.

To motivate the need for being able to attach additional semantics to a stream

transmitting location-based information, consider another example (a traffic scenario)

depicted in Figure 1.4. An accident occurs on a highway which causes extensive traffic

jams. People stopped far away from the scene of the accident wonder what is causing

the stopped traffic: an accident, a road construction, or a “curiosity factor”? A

driver close to the accident attaches a tag to his location update describing what he

is observing: “Accident, 2 cars, Near Exit 12”. Using this tag information, other

drivers may determine how to procede: take the nearest exit, notify others about

their delay, or possibly even help if medical assistance is needed.

1.3 Features for the Next Generation of Data Stream Management Systems

Given that in the last several years the number of data sources that continu

ously generate data has increased significantly, the research on data streams has

grown substantially. Based on current trends, we can clearly observe that the newly

7

Tag: Accident
(2 cars, near

Exit 12)

(x,y)

5 miles

Query: Retrieve
all tags within
a 6 mile radius

Why is the traffic
stopped?

I wonder if it’s an
accident or a road

construction?

Figure 1.4. Traffic example with tags on location updates.

emerging applications are entering a new, more “social” and “participatory” phase,

where users are not passive observers, but rather active contributors of real-time in

formation. These trends lead to a feeling that the data stream management research

needs to enter a “second phase” to support the needs of these emerging applications

(see Figure 1.5), where in addition to sending their “regular” streaming data, users

can state who can access their information and under what circumstances and adjust

it in real-time. Furthermore, users should be able to attach additional information to

their real-time data as well as other (arbitrary) streaming data, thus further enriching

the streaming data with an additional semantics.

We can observe from the examples in Section 1.2 that the newly emerging appli

cations call for new “user-centric features” inside DSMSs, namely the provisions for

security (specifically, the access control) and the ability to attach additional semantics

to their real-time streaming data by tagging. As a result of the above functionalities

and often, based on data content alone, data streams may exhibit characteristics,

where certain data subsets (based on either the content, the security policies or the

associated tags) may be quite distinct, i.e., have unique statistical properties – and

each such distinct subset can benefit from a different, tailored to its local statistics,

8

“2.0” is really about people

“Streams 1.0” “Streams 2.0”

Query processing

Send:
 - data only

Send:
- data
- security policies
- tags attached to data

Query Specifier Mode Query:
- data only

Query:
- data and tags separately
- data with respect to tags
- tags with respect to data

Security
-

Security-aware query processing
with respect to:

- data access control policies
- query authorizations

Data Provider Mode

Single plan for all data
(“diversity-oblivious”)

Different plans for distinct
subsets of data

(“diversity-aware”)

co
nt

rib
ut

io
ns

 o
f t

hi
s

th
es

is

Figure 1.5. Conceptual differences between “Streams 1.0” and
“Streams 2.0” systems.

query execution plan. Clearly, current DSMSs either provide little or no support for

the above-mentioned functionalities [20].

Figure 1.5 roughly characterizes the conceptual differences between the so-called

“Streams 1.0” and “Streams 2.0” DSMSs. Similar to the emergence of Web 2.0 on

the Internet [21], where novel applications and services, such as blogs, video sharing,

social networking and podcasting have contributed to a more dynamic, user-driven,

and socially connected Web, we envision that DSMSs need to be instrumented to

provide similar in spirit “user-centric” functionalities with regard to streaming (real

time) data. In the rest of the section, we describe the features we address in this thesis,

9

namely the access control, the tagging, and the diversity-aware query processing in

the context of data stream environments.

1.3.1 Access Control for Streaming Data

One of the biggest challenges in dynamic data stream environments in the context

of security is access control enforcement – the ability to permit or deny a request

to perform an operation (e.g., a read operation on a data tuple). Given the long-

running nature of continuous queries, the content of the streaming data and along

with it its “sensitivity” may change frequently over the lifetime of query execution.

Furthermore, continuous queries on the server may also experience frequent changes in

their access control privileges (access authorizations), while they are being executed.

Such changes in security privileges may be due to mobility and varying context of

the users receiving the results of continuous queries. For example, query results may

be accessed via mobile phones, PDAs or IPhones from any place and at any time.

As such, the users sending their streaming data can be rightly concerned about a

possible unauthorized access to their real-time information and a potential violation

of their privacy. One of the major challenges in this context comes from the fact

that the security policies of both data and queries can be concurrently very dynamic.

Enforcing security, while still guaranteeing near real-time response to queries presents

a great challenge in a DSMS.

1.3.2 Tagging Streaming Data

Tagging in the general domain is known by a few different names, such as content

tagging, collaborative tagging, and social tagging [22]. Informally, a tag is a relevant

keyword or term associated with or assigned to a piece of information (a stream, a

tuple, an attribute in a tuple, a particular value, etc.), that describes the item and

enables the keyword-based classification and search of information.

10

Tags can be useful in many applications. Tags on streaming data can enrich exist

ing stream-based applications, e.g., [23–25], and can enable and inspire novel useful

services as described in Section 1.2. Other ways of leveraging tags associated with

streaming data may include: (1) Stream data tracking, where tagged objects can be

located and tracked unambiguously. (2) Creation of rich user profiles, where infor

mation about a user’s interests, mood, observations, and character can be revealed

based on the tags employed by him or her in real time, and used in privacy preser

vation or tailored services. (3) Exploration and browsing of streaming data, which

can be achieved by exploiting tags as a navigation mechanism allowing users to find

related streaming data based on the tags (see Section 4.4.1). (4) Social communica

tion, where by allowing other people to tag a specific subset of real-time data with

their own tags, one can find out what different people think about the same piece of

information. For instance, one scientist’s opinion (expressed via a tag) on real-time

measurements in an experiment might vary significantly from the tags attached by

other researchers. In general, we envision stream tagging being useful in almost any

application in which streams are produced or consumed.

1.3.3 Diversity-Aware Query Processing

Most modern query optimizers determine a single “best” plan at compile time for

executing a given query [26]. The execution cost for alternative plans is estimated and

the one with the overall cheapest cost is chosen. The cost typically is estimated based

on the average statistics of the data as a whole, as the objective is to find one plan

for all data. Such optimization approach largely relies on the uniformity of attribute

values. As a result, the single plan approach ignores the fact that various data

tuples from the same stream may have distinct statistical properties (e.g., frequencies,

correlations, etc.). While in some cases such simple and “monolithic” approach to

execution plan selection is adequate, the strong assumption of uniformity is often

11

Classifier Multi-Route Configuration

Query Mesh Solution

.

.

.

route r1

route r2

route r3

Figure 1.6. Overview of a query mesh solution.

unrealistic in practice and, in fact, rather unlikely for unbounded streams of data,

which potentially could seriously limit query performance [20, 27–29].

As the third part of this thesis, we describe a novel data-diversity-aware query

processing approach using our proposed Query Mesh (or QM, for short) model. The

conceptual idea of a query mesh is visually depicted in Figure 1.6. QM takes a

practical middle-ground strategy between the two query optimization extremes – the

“monolithic” single execution plan solutions, used in nearly all commercial DBMSs

[30–32] and the extremely reactive Eddies and its descendants [33, 34]. A query

mesh consists of two complementary components: (1) a set of pre-computed plans

(or routes), where each plan is optimized for a subset of data with certain statistical

properties, and (2) a classifier component to determine which data tuples should be

processed using which of the existing routes1 (see Figure 1.7 for a more detailed view).

1.4 Overview of Our Approach

The tagging and security features can be implemented in a Data Stream Man

agement System using a “layered” approach (e.g., outside the query processor). For

instance, [35–37] are examples of this type of implementation in the context of se

curity. However, this may severely limit the performance of continuous queries, and

such approach does not give enough flexibility in optimizing the issued queries.

1In the paper, we refer to the combination of a classifier and a set of execution routes – a QM solution.

12

r2

r3

Classifier Execution Routes

Data
Tuples

Query Mesh

c2

c1

c3

c4

r1

c = test condition
r = execution route
op = query operator

opi

opn...

opj

opn...

opk

opn...

Query
Results

Figure 1.7. Query mesh overview.

The most crucial feature of any DSMS is to produce query results in near-real

time. In many scenarios, if a query result is slightly delayed, it becomes useless by

the time it reaches the user. By adding the provisions for tagging and security in

DSMS, we increase the overhead in the system. Thus, it is extremely important that,

while extending the capabilities of a DSMS, the results are still produced in a timely

and an efficient manner. Our approach is to integrate tagging and security processing

into continuous query processing and optimization inside DSMS, which allows more

efficient query execution. Specifically, we introduce novel streaming metadata objects

that are embedded inside data streams and encapsulate the security and the tagging

algorithms in physical query operators that can be part of query execution plans.

We call these new operators security-aware and tag-aware and tag-oriented opera

tors. Tag-oriented operators are the novel operators that explicitly operate on the

streaming tags (e.g., tag selection, tag join), whereas tag-aware operators are regular

continuous query operators (selection, join) that have been instrumented to correctly

propagate streaming tags in the query pipeline (Section 4.4). Integrating security and

tagging metadata and algorithms into the continuous query processor in DSMS has

the following advantages:

•	 The security-aware and tag-aware query is under the optimizer’s control; best

algorithms and strategies can be chosen based on the estimated cost and other

execution environment variables.

13

•	 The security-aware and the tag-aware operators can be shuffled with other op

erators in a query evaluation plan for better performance (e.g., pushing down

security or tagging predicates). This flexibility is not possible when these fea

tures are implemented outside the query processing mechanism.

•	 The security and tagging functionality is general enough and highly applicable

to many queries in different contexts. This native support for security and

tagging greatly simplifies the development of many emerging applications, by

pushing this logic inside the streaming engine.

Finally, our diversity-aware query processing approach – the Query Mesh (QM) –

is general and can be easily integrated with security and tagging mechanisms. Query

mesh can support data-diversity based on data content or the security policies or the

attached semantic tags for efficient continuous query processing.

1.5 Contributions

The main contributions of this dissertation are as follows:

•	 Security. We address the problem of continuous access control enforcement in

dynamic data stream environments, where both data and query security restric

tions may potentially change in real-time. The distinguishing characteristics of

our solution include: (1) the stream-centric approach to model dynamic se

curity policies, (2) the symmetric security model for both continuous queries

and streaming data, and (3) the security-aware query processing methods, that

can optimize the execution based on data-related as well as security-related

selectivities. Specifically, the contributions can be summarized as:

–	 Symmetric Security Punctuation Model. We model both data and query

security restrictions symmetrically in the form of security metadata, called

“security punctuations”, streaming together with the data instead of being

persistently stored on the server. We distinguish between two types of

http:Model.We
http:Security.We

14

security punctuations, namely, the data security punctuations (or short,

dsps) which represent the access control policies of the streaming data, and

the query security punctuations (or short, qsps) which describe the access

authorizations of the continuous queries running on the server.

–	 Security-Aware Query Processing. For efficient execution of continuous

queries, we propose security-aware query processing methods, namely: (1)

the Security Filter Approach (or short SFA), and (2) the Query Rewrite

Approach (or short QRA). We discuss the pros and the cons of both of

these methods.

–	 Implementation and Experiments. We have implemented our solution in a

prototype DSMS and have carried out extensive performance evaluation.

The results of our experimental study show that our proposed approach

has low overhead and can result in great performance benefits compared

to alternative security solutions for streaming environments.

•	 Tagging. We show that supporting tagging as a DSMS functionality enables

many interesting and useful applications. We show the advantages of supporting

tagging on the query operator level inside the continuous engine in contrast

to implementing tagging using alternative options. The contributions of our

tagging solution can be summarized as follows:

–	 Streaming Tag Model. We describe the streaming tag metadata model for

tagging various streaming objects (e.g., tuples, data values, etc.). Tags

are embedded inside streams and support a wide variety of user-based

semantics.

–	 Tag Query Language. We introduce a Tag Query Language (or short TAG

QL) that enables declarative specification and querying of streaming tags.

–	 Tag Query Processing In DSMS equipped with tagging, users can attach

and explicitly query streaming tags. We propose a tag-oriented query al

gebra that enables this functionality. We have also extended support for

http:Model.We
http:Tagging.We
http:Experiments.We

15

implicit querying of tags on DSMS, where continuous query results are

enriched with the tags of the base data. We describe the extensions to the

continuous query algebra to enable tag-aware query processing and support

correct propagation of tags in the query pipeline.

–	 Implementation and Experiments. To illustrate the feasibility, we have im

plemented our approach in a prototype DSMS. Our experimental analysis

shows scalability and benefits of the streaming tag approach, and the costs

associated with tag-awareness.

•	 Diversity-Aware Query Processing. As the third part of this dissertation, we

introduce a novel Query Mesh (QM) model, which addresses the problem of

efficient query processing when data is diverse. Instead of forcing all data to be

processed by the same single plan, a query mesh solution effectively supports

the concurrent usage of multiple plans to evaluate a query. The contributions

of our proposed Query Mesh approach are as follows:

–	 Query Mesh Model. QM employs a practical middle-ground strategy be

tween the two query optimization extremes – the solutions that employ a

“monolithic” single execution plan strategy for all input data, e.g., nearly

all commercial DBMSs [30–32], and the systems like Eddies that employ a

fine-grained “plan-less” approach, where instead of predermined plans, at

runtime the Eddy operator determines, one-at-a-time, the next operator,

that the tuples must visit for processing [34]. QM provides the middle-

ground by using multiple pre-computed plans, each optimized for a subset

of data with certain statistical properties, and the classifier component

to determine which data subsets should be processed by which of the pre

computed routes. The QM framework, implemented in a continuous query

processing engine [8], has been shown to be very effective for both real and

synthetic data compared to the single plan and the Eddy-based query pro

cessing alternatives.

http:Processing.As
http:Experiments.To

16

–	 Query Mesh-Based Optimization. We formulate the complexity of the QM

search space (Section 5.2.5), and develop the algorithm Opt-QM that finds

optimal query meshes. Opt-QM, however, may be not feasible in practice

due to its exhaustive nature when enumerating the search space. As viable

alternatives, we propose several effective cost-based search heuristics to

find good quality QM s efficiently.

–	 Query Mesh-Based Execution. For efficient query execution, we propose

the Self-Routing Fabric (SRF) infrastructure. The novelty of SRF lies in

its support for execution of multiple routes in parallel without physical

constructing their topologies and without using a central router operator

like Eddy. We describe other advantages of SRF in Section 5.3.

–	 Self-Tuning Query Mesh. We present a Self-Tuning Query Mesh infrastruc

ture (or short ST-QM) that continuously adapts the query mesh solution

to changing data subsets’ characteristics and to system conditions, e.g.,

memory, CPU resources availability. The fundamental challenge for self-

tuning query mesh is the problem of determining the discrepancy between

the previously learned query mesh model and the current model of the new

data, what we denote as optimization concept drift problem.

–	 Uncertainty-Aware Query Mesh. To address the issue of uncertainty (about

data input rate, operator selectivities, attribute values and their distribu

tions) that naturally arises during query optimization in the streaming

context, we present uncertainty-aware extension to the query mesh model,

called Uncertainty-Aware Query Mesh (or UA-QM, for short). The goal of

UA-QM is two-fold: (1) to model and measure various types of uncertainty

to represent real-life scenarios in streaming environments more accurately

and (2) to process data in an uncertainty-aware and multi-plan fashion.

–	 Implementation and Experiments. We thoroughly evaluate QM approach

through experiments comparing it to the state-of-the-art techniques, namely

http:Experiments.We
http:Optimization.We

17

the systems using a single plan computed a priori and the systems discov

ering routes at runtime. Our results show that QM results in substantial

performance improvements over the competitor systems. We also demon

strate QM effectiveness by measuring its runtime overhead.

1.6 Summary and Outline

In this section we have presented the real-life motivating application examples

calling for new features to be added to Data Stream Management Systems (DSMSs),

namely the access control for protecting sensitive streaming data, the tagging for

attaching additional semantics to streaming data, and the data diversity-aware con

tinuous query processing. Efficient handling of security, tagging and data diversity

in DSMSs enables many key stream-based applications including location-based ser

vices, ubiquitous healthcare, environmental monitoring and many others. In this

chapter, we gave an overview of our proposed approaches to address these problems

and briefly summarized our contributions.

The rest of this dissertation is organized as follows. Chapter 2 highlights the

related work and provides the necessary background for this dissertation. Chapter

3 presents our solution for access control enforcement in data stream environments.

Chapter 4 presents our solution for tagging of streaming data. Chapter 5 describes

our diversity-aware query processing mechanism using the query mesh model. Finally,

Chapter 6 concludes by giving a summary of the dissertation and outlines extensions

to the work presented in this dissertation.

Parts of this dissertation have been published in conferences and have been sub

mitted to journals; the security for data streams and its details have been published in

ICDE-2008 [38], the diversity-aware query processing in EDBT-2009 [27], the tagging

and the extensions to the security and the query mesh models have been submitted

to several publication venues [39–41]. The stream-centric approach to security in a

DSMS will be demonstrated in ACM SIGMOD-2009 [42].

18

2 BACKGROUND AND RELATED WORK

In this chapter, we present an overview of the state-of-the-art research related to

the work in this dissertation. This chapter is organized as follows. Section 2.1 de

scribes different prototypes of DSMSs from both the academia and the industry. Brief

survery of query optimization approaches is given in Section 2.2. In Section 2.3, we

discuss adaptive query processing algorithms techniques for efficient processing of

long-running continuous queries. Section 2.4 surveys various metadata mechanisms

in current DSMSs. Section 2.5 describes related work in the context of learning ap

proaches as applicable to our diversity-aware query processing approach. In Sections

2.6, we describe the related work in security, in particular, in access control. Section

2.7 provides the related work and necessary background on tagging. Finally, Section

2.8 summarizes the chapter.

2.1 Data Stream Management Systems

A number of general-purpose DSMSs have been proposed in the literature that

target different application domains, where continuous data streams arise and queries

must be evaluated continuously, including Aurora [3], Gigascope [5], CAPE [8], Nia

garaCQ [9], Nile [7], STREAM [43], and TelegraphCQ [4]. All of these systems share

similar goals, however, each of them has distinct characteristics and algorithms to

achieve these goals.

While STREAM supports a declarative language for specifying arbitrarily com

plex continuous queries, Aurora supports a workflow-style boxes and arrows interface

for specifying continuous queries. Aurora has limited support for adaptive query

processing, but richer support for distributed query processing and tolerance to fail

ures [44].

19

The TelegraphCQ system is built on the Eddies adaptive query processor [34].

Eddies is an integrated optimizer, executor, and operator scheduler1. On the other

hand, most DSMSs take a modular approach to query processing, having separate

optimization, execution, and scheduling components. Unlike many DSMSs, which

were developed from scratch, TelegraphCQ was developed as an extension to the

PostgreSQL relational DBMS [45]. The pros and cons of building a DSMS on top of

an existing DBMS are documented in [46].

Nile [7] has a rich support for exploiting sharing of data and computation while

processing multiple continuous queries concurrently. To support the efficient and

correct pipelined execution of sliding window queries over multiple data streams,

Nile employs the Negative Tuple Approach [7]. Negative tuples are the tuples that

are generated whenever a tuple expires out of a sliding window. Each operator in

the pipeline reacts differently whenever it receives a negative tuple to counteract

the effect of the corresponding positive tuple that just expired out of the window.

Although negative tuples guarantee correct execution of query pipelines, they induce

performance overhead. Nile provides several optimization techniques to reduce the

performance overhead induced by negative tuples. Another distinct feature of Nile

is its predicate windows [47]. In contrast to sliding windows that limit the focus of

queries on streams to the most recent tuples, predicate windows can select tuples of

interest that meet a certain select or join predicate.

CAPE [8] focuses on adaptive query processing at many levels. In particular,

CAPE emphasizes the following features: (1) Intra-operator adaptivity, where CAPE

exploits metadata knowledge about the data streams to reduce resource usage and

improve execution efficiency of operators. (2) Plan-level adaptivity, where CAPE

supports online query re-optimizations and plan migration. (3) System-level adap

tivity, where CAPE supports adaptive distribution of the query plan among multiple

machines for load balancing.

We discuss Eddies in more detail in Section 2.3. 1

http:scheduler1.On

20

Gigascope is a DSMS tailored to the network monitoring domain [5]. Gigascope

supports a declarative query language (GSQL) which is less expressive than SQL [1]

or CQL [48]. Gigascope also takes a two-level approach to query processing, where

sub-queries are pushed down to the network interface level to eliminate unneeded

input stream tuples as quickly and efficiently as possible.

Apart from DSMSs, continuous queries are also used in content-based filtering

and publish-subscribe systems, e.g., [49–53]. Two systems, OpenCQ [54] and Nia

garaCQ [9], support continuous queries for monitoring persistent data sets spread

over a wide-area network, e.g., web sites over the Internet. Unlike many DSMSs sup

porting more expressive declarative languages for continuous queries, both OpenCQ

and NiagaraCQ support continuous queries specified in an Event-Condition-Action

(ECA) format typically used for triggers. Furthermore, OpenCQ and NiagaraCQ

lack many features present in general DSMS systems, e.g., flexible query plans and

operator scheduler, adaptive processing of commutative filters and stream joins.

One way of thinking about materialized views [55] and triggers [56] in conven

tional in database management systems is as “continuous queries” that need to be

processed whenever the base data changes or a monitored event happens [57]. How

ever, materialized views and triggers are insufficient to meet the needs of stream-based

applications easily and efficiently.

2.2 Query Optimization Techniques

Query optimization is a well-studied area, with most efforts primarily concentrat

ing on the “monolithic” strategy of optimizing a single query execution plan for all

data [58–62].

To better illustrate where our research on diversity-aware query optimization fits

among the existing techniques, we classify these techniques along two dimensions:

the timing of the optimization decision and the granularity of optimization (see Fig

21

ure 2.12). Some database systems determine query execution plans in advance (at

compile time), while others forego pre-computed plans and “route” tuples on-the-fly

(at runtime). We observe that these approaches have a close resemblance to network

communication methods which can be described as: (1) connection-oriented, where

a connection with the receiver is established in advance before passing any data, or

(2) connection-less, where data is sent without establishing an a priori connection,

and the next hop of a packet is determined by a router during the transmission

at runtime [63]. The parallel between route optimization in networking and query

optimization in databases is evident. Query operators (for a given query) can be

viewed as a “network” and a query plan as a specific “route” through all opera

tors in the “network”. Given this parallel, we classify the state-of-the-art techniques

according to the optimization time dimension as “route-oriented ” and “route-less”

solutions3. Database systems, including major commercial DBMSs [30–32] that de

termine a query plan a priori, employ the route-oriented paradigm. Systems, like

Eddy [34] and its descendants, that at runtime decide for every data tuple which

operator should process it next, fall under the route-less category [34, 64, 65].

In practice, almost all route-oriented solutions pre-compute a single route leading

to their main disadvantage – optimization coarseness [66, 67]. Having a fully estab

lished plan a priori, however, has a number of advantages: all tuples follow the same

execution plan, which is fully known, and the execution tends to be “overhead-free”.

Furthermore, data tuples’ sizes do not need to be extended to store any optimization-

related metadata (e.g., tuple lineage).

On the other hand, “route-less” systems, like Eddies [34], tend to use multiple

routes by default. Such systems based on observed conditions decide at runtime which

operator should process a tuple next [34, 64], thus discovering different execution

routes for tuples on-the-fly. Unfortunately the “optimization decision” (i.e., which

operator should process a data tuple next) is made continuously, and in the worst case

2Figure 2.1 is not meant to be an exhaustive survey. It merely provides an intuitive idea of where we think our

solution fits compared to the state-of-the art techniques.
3By “oriented”, we mean that routes (i.e., query plans) are established in-advance.

h

ry

22

one route
per tuple

 one route per
group of tuples

one route
for all tuples

“Route-less” Systems
Eddies

Que

Adaptive
Ordering of
Pipelined
Operators

CBR

“Route-oriented” Systems

 Mes Parametric
Query

Optimization

Traditional
Query

Optimization
Selectivity-based

Partitioning

Conditional Plans

O
pt

im
iz

at
io

n
Ti

m
e

C
om

pi
le

-t
im

e
R

un
tim

e
middle-ground

Plan-level Group-level Tuple-level

Optimization Granularity

Figure 2.1. Query mesh versus other optimization techniques.

for every individual tuple, thus resulting in an unavoidable per-tuple route discovery

overhead. Such systems typically do not exploit the observation that stable conditions

tend to dominate query execution time, and that tuples with identical content or

similar statistical properties are likely to be best served by the same route [28, 68].

Furthermore, individual tuples’ sizes tend to be larger, as tuples must now carry their

individual “itineraries” (i.e., their lineage) depicting their current processing state.

In summary, optimizing too frequently as in the multi route-less approach may

discover several plans but may also result in wasted resources. However, optimizing

too coarsely as in the systems pre-computing a single plan may miss critical opportu

nities to improve query execution performance. We thus propose a practical middle

ground approach between these two extremes in the form of a “multi route-oriented”

solution called Query Mesh (or QM, for short).

Our work on diversity-aware query processing is related to the concept of hor

izontal partitioning [69]. Conceptually, the main idea here is to partition data so

that different partitions can be processed using different execution plans. Selectivity-

based partitioning scheme [29] – an instance of horizontal partitioning approach –

23

adopts a divide-and-union approach. A relation is partitioned according to selectiv

ities, and subsequently the query is rewritten as a union of constituent queries over

the computed partitions. The approach presented in [29], however, only focuses on

the partitioning algorithm, rather than a systematic approach to generate different

plans for different subsets of data – the focus of our work. In practice, the lack of

a comprehensive system support for concurrent multi-plan execution may reduce (or

completely cancel out) the effectiveness of such query processing strategy. The au

thors in [29] also do not address the issue of overhead associated with partitioning

(classification) incurred at runtime when the data arrives and the important issue of

concurrent multi-plan runtime execution efficiency. Our work addresses these issues

and employs a very efficient novel “Self-Routing Fabric” data structure for efficient

runtime execution.

Conditional plans [70] generalize serial plans by allowing different predicate eval

uation orders to be used for different tuples based on the values of certain attributes.

This class of plans can be beneficial when the attributes are highly correlated, and

when there is a large disparity in the acquisition and evaluation costs of the predi

cates. Conditional plans primarily focus on often selecting a single and very cheap to

acquire partitioning attribute, since query processing is done in the context of sensor

networks. Such attribute is not necessarily the “best” splitting attribute in a more

general context of DSMSs. In that respect, query mesh is a more general model that

can employ an arbitrary number of attributes for partitining (classification) of data.

QM, being a general model, can exploit the data security and the tagging metadata

(described in Chapters 3 and 4) to partition data into distinct data subsets.

A common problem with pre-computed solutions is that they might become in

efficient over time. One approach to address inaccuracy or potential changes in an

environment during query execution is through eager re-optimization and runtime

adaptation of execution, e.g., [34, 71, 72]. Systems like IBM’s LEO (LEarning Opti

mizer) and more recently Microsoft SQL Server use monitoring and feedback to repair

24

incorrect cardinality estimations and statistics [73–75]. For a survey of adaptive query

processing techniques, we refer the reader to [76].

Some works have proposed robust and uncertainty-aware solutions for query op

timization e.g., [77–79], but they primarily focus on a single-plan strategy for query

execution.

Proactive re-optimization in Rio [78] is a robust query optimization technique

based on the concept of bounding boxes. Bounding boxes specify range of values that

a parameter can take, thus representing uncertainty. The optimizer finds a (set of)

plan(s) that behave well in the bounding box, and at run-time, if observed statistics

fall inside the bounding box, the best plan in that box (based on the latest statistics)

is chosen, else the re-optimization is invoked.

Error-aware optimization (eao) [80], similar to Rio, makes use of intervals over

query cost estimates. Eao, however, focuses on memory usage uncertainty rather

than selectivity uncertainty.

Babcock et.al. [77] tackle cardinality estimation uncertainty and consider a prob

ability distribution over possible selectivities instead of a point estimate of selectivity.

Using probability distribution, the optimizer selects the appropriate query plan after

considering the relative importance of predictability vs. performance preference of

the user. Prior to optimization, the user selects the trade-off between the two goals

of predictability and performance (which could be at odds sometimes) to find the

appropriate query plan.

Chu et al. [81] describe the least expected cost optimization technique. Here,

instead of finding the lowest cost plan for the expected values of the parameters,

the optimizer attempts to find the plan that has the lowest expected cost over the

different values the parameters can take. The goal here is to find a “conservative”

plan that is likely to perform reasonably well in many situations, rather than a more

“aggressive” plan that may work better if the cost estimate is accurate, but much

worse if the estimates are slightly off.

25

Ioannidis et al. [82] present parametric query optimization method, whereby mul

tiple alternative plans are identified at compile-time, after which an actual single plan

is chosen at run-time, when the actual parameter values are known.

A large body of work has been dedicated to extend support for uncertain data

inside databases [83–86] including several efforts in building systems for managing

uncertainty [87–89]. While many of these works study efficient algorithms for query

processing on uncertain data, none of them actually consider uncertainty in the query

processing itself, which is the focus of our paper.

To the best of our knowledge, none of the existing works tackle the problem

of uncertainty when multiple query execution plans are employed concurrently for

processing of distinct subsets of data.

2.3 Adaptive Query Processing Techniques

Related to our work are several techniques from adaptive query processing [3,6,76].

Here, at different times, tuples may be processed differently, as data statistics or

system environment change. Similar to compile-time optimization, most adaptive

query processing works still focus on adapting a single query plan as data properties

and system conditions change at runtime [73, 78].

A very recent survey of systems and techniques for adaptive query processing

is given in [90]. Previous work on adaptive query processing considers primarily

traditional relational query processing. One technique, which is being incorporated

into commercial databases, is to collect statistics about query subexpressions dur

ing execution and to use the accurate statistics to generate better plans for future

queries [73, 91]. Two other approaches [92, 93] re-optimize parts of a query plan fol

lowing a (blocking) materialization point, based on accurate statistics collected on

the materialized subexpression.

Convergent query processing is proposed in [68,94]: a query is processed in stages,

each stage leveraging its increased knowledge of input statistics from the previous

26

stage to improve the query plan. The algorithms proposed in [68,94] do not extend to

continuous queries and provide no guarantees on convergence. Reference [95] explores

the idea of moving execution to different parts of a query plan adaptively when input

relations transferred from remote nodes incur high latency. The POP approach adds

checks to conventional query plans in DBMSs to detect sub-optimalities during query

execution, invoking re-optimization if required [79].

The previously-mentioned Eddies architecture [4, 33, 34, 65, 96, 97] enables fine-

grained adaptivity by eliminating query plans, by instead routing each tuple adap

tively across operators that need to process it. Eddies [34], which can potentially

adapt at the tuple granularity, is observed to mostly be using a single plan for nearly

all tuples as also indicated in [28]. Closely related to the QM paradigm is the content-

based routing (CBR) extension of Eddies [28] that considers not only properties of

operators (such as their selectivities and backlog) but also the content of the data.

CBR, an extension to Eddies, however inherits several problems associated with Ed

dies, such as expensive on-the-fly decision-making and often unnecessary tuple-level

granularity of adaptivity. [33] adds batching to the Eddies routing to reduce the

tuple-level routing overhead. This work differs from ours in that it is still “route

less”. Further, the batching process is still neither content- nor route-based: batches

of k tuples (i.e., continuous chunks of tuples that happened to arrive together in time)

are routed together to aim to reduce the rather significant overhead associated with

Eddies. Our QM solution is more coarse-grained than Eddies in that at a given point

in time one execution plan is followed by all input tuples for a continuous query.

Apart from Eddies, the CAPE [8] and Gigascope [5] DSMSs support adaptive

query processing over data streams. CAPE supports adaptive processing at the level

of operators, e.g., within a join operator, as well at the level of query plans, e.g.,

switching among different plans for a query. CAPE also supports adaptive placement

of query plan fragments across machines in a parallel processing environment. The

two-level query processor in Gigascope can adapt the partitioning of work between

the two levels, based on the characteristics of the input streams.

27

2.4 Streaming Metadata

Punctuations as sub-stream delimiters inside data streams have been first pre

sented in [98]. PJoin [99] and PWJoin [100] apply punctuations to achieve join

optimizations on streaming data. [101] uses punctuation-like annotations to inject

dynamic schema-knowledge into XML stream to facilitate query optimization and

out-of-order processing. [102] uses punctuations for execution safety checking of con

tinuous join queries (CJQs). Punctuation uses continue to expand beyond their orig

inal semantics – delimiting epochs in the stream.

The authors in [103] propose a feedback mechanism based on punctuations that

flow against the stream direction, and carry an intent, as opposed to embedded punc

tuations [104, 105]. DSMSs have focused on collecting and distributing feedback in

formation by statically placing monitors in the query plan and directly sending pa

rameter changes to operators. The approach in [103] differs significantly in at least

two aspects: (1) the use of punctuation to convey the feedback messages, and (2)

giving operators the ability to create, consume, and propagate feedback, eliminating

the need for centralized managers.

AT&T’s Gigascope DSMS includes a type of punctuations – called “heartbeats”

– that signal the passing of time, but their work does not exploit punctuations as

feedback mechanisms for optimization [106].

This thesis is the first work proposing to use punctuations as (1) security con

straints to enact access control policies, (2) as semantic labels (tags) to attach addi

tional semantics to streaming data, and (3) as routing “itineraries” to process various

subsets of data using different execution plans.

2.5 Learning Techniques

Related to the QM concept presented in this thesis are several techniques in

machine learning. There has been plenty of work on building mining models over

continuous data streams, including clustering [107, 108], decision trees [109] [110],

28

nearest neighbors [111], and heavy hitters [112, 113]. New algorithms have also been

proposed for maintaining statistics over data streams, e.g., samples [114], histograms

[115], and quantiles [116].

A number of algorithms have been proposed in the literature for extracting knowl

edge from data, using clustering [117, 118], classification [109, 110, 119], frequency

counting [120, 121] and time series analysis techniques [122, 123]. These techniques

can be integrated into the classifier component of the QM, the subject we plan to

investigate further.

Decision tree construction is an important problem in data mining [124–127].

Most of the proposed algorithms address the problem of decision tree construction

for static data. The key issue in mining on streaming data is that only one pass

is allowed over the entire data. Moreover, there is a real-time constraint, i.e., the

processing time is limited by the rate of arrival of instances in the data stream, and

the memory available to store any summary information may be bounded. For most

data mining problems, a one pass algorithm cannot be very accurate. The existing

algorithms typically achieve either a deterministic bound on the accuracy [108], or

a probabilistic bound [110]. A good survey of data mining techniques for streaming

environments is presented in [128].

Several methods have been proposed to deal with time changing concepts [109,

129,130]. The two basic methods are based on temporal windows, where the window

fixes the training set for the learning algorithm and weighting tuples that ages the

training tuples by shrinking the importance of the oldest tuples. The time window

method can be improved by adapting its size [129, 131].

VFDT [110] is a very fast decision tree algorithm for data-streams. The main

innovation in VFDT is the use of the Hoeffding bound to decide when a leaf should

be expanded to a decision node. Later, VFDT has been extended with the ability to

detect changes in the underlying distribution of the examples. CVFDT [109] is an

algorithm for mining decision trees from continuous-changing data streams. CVFDT

works by keeping its model consistent with a sliding window of the most recent ex

29

amples. When a new example arrives it increments the counts corresponding to the

new example and decrements the counts to the oldest example in the window which

is now forgotten. Each node in the tree maintains sufficient statistics. Periodically,

the splitting-test is recomputed. If a new test is chosen, CVFDT starts growing an

alternate subtree. The old one is replaced only when the new one becomes more

accurate.

Other learning techniques in artificial intelligence, such as neural networks [132],

intelligent agents and reasoning [133], intelligent information systems [134], logic and

logic programming [135], planning and scheduling [136,137], bayesian networks [138],

genetic programming [139] have also received a lot of attention from the research

community in the recent years.

Works dealing with uncertainty in classification and machine learning [140] focus

primarily on the prediction accuracy of the models. Classical versions of classifica

tion algorithms typically are not designed to handle uncertainty [141]. To overcome

this limitation, probabilistic decision trees [142], bayesian decision trees [143], and

classifier ensembles [144] have been proposed to deal with classification of data with

missing, imprecise, or updated attribute values.

2.6 Security and Access Control Enforcement

Agrawal et al. have coined the concept of Hippocratic databases [145] to incor

porate the privacy protection within relational DBMS. Hippocratic databases use

privacy metadata to represent the data owner’s privacy preferences and the the data

collector’s privacy policies. The data is returned to users only when the policies meet

the preferences. The work focuses on relational databases only and does not address

the challenges present in the streaming context.

The problem of access control in dynamic environments has raised significant in

terests in research community in recent years [146–148]. [149] extends RBAC model

to Temporal-RBAC, which supports periodic role enabling and disabling and tempo

30

ral dependencies among permissions. GEO-RBAC [150] extends RBAC model with

spatial awareness. For most of these access control models, however, the changes in

the policies do not get reflected on the results until the query is re-executed after the

change. While the focus of our work is to enforce access control throughout the long

running time of continuous queries in a DSMS.

The notion of continuous access control has been introduced by Ravi Sandhu et

al. as part of the UCON model [151,152]. To the best of our knowledge, apart from

the initial theoretical paper, our on continuous access control enforcement in DSMSs

is the first real instance of the UCON model. One of the reasons for the lack of real

systems is that it is difficult to implement in practice [151]. We believe that we are

the first to do so.

Fine-grained access control in relational databases has received a lot of atten

tion recently [153–155]. Fine-grained access control allows control of access at the

granularity of individual rows, and to specific columns within those rows and is

often required in many database applications. Wang et.al. [153] design a labeling

scheme to hide information in a database. To answer queries the authors propose a

query modification approach to evaluate the queries over tables with masked cells.

Chaudhuri et.al. [154] propose a model for fine-grained authorization based on adding

predicates to authorization grants. The model supports predicated authorization to

specific columns, cell-level authorization with null-ification, authorization for func

tion/procedure execution, and grants with grant option. The model also incorporates

other novel features, such as query defined user groups, and authorization groups,

which are designed to simplify administration of authorizations. The model is de

signed to be a strict generalization of the current SQL authorization mechanism.

Kabra et.al. [155] make an observation that the majority of models for fine grained

access control follow a view replacement strategy which suffers from the overhead of

the access control predicates when they are redundant and potentially may leak in

formation through channels such as user-defined functions, and operations that cause

exceptions and error messages. The authors propose techniques for redundancy re

31

moval and define when a query plan is safe with respect to UDFs and other unsafe

functions. To address the potential information leakage, the authors propose tech

niques to generate safe query plans. To the best of our knowledge, none of works on

fine-grained access control address the simulteneous enforcement of multiple policies

(server side and client side) and typically consider a static relational database context

instead of dynamic data streams – the focus of our work.

Another area of related work is the context-awareness in access control and context-

aware adaptation of access-control policies, e.g., for crisis management (or emer

gency). The main idea here is to employ contextual parameters as inputs to the

access control model (e.g., a context-sensitive RBAC model [156]). In our paper,

we accomodate the requirements of context-aware access control by providing sup

port for: (1) generation of security punctuations based on the real-time context data

streams, and (2) support for the immediate enforcement of security policiesto tackle

emergency situations.

2.7 Tagging Methods

There are several ongoing projects that deal with annotation propagation and

management for scientific databases, e.g., DBNotes [157], Mondrian [158], bdbms

[159], and MMS [160]. Social bookmarking systems, such as Flickr [161], Delicious

[162] and Technorati [163] support annotations of web resources and images with

free-text keywords. For more examples of tagging systems and their taxonomy, we

refer the reader to [164]. To the best of our knowledge, none of these existing works

address the problem of tagging in the context of dynamic data stream environments.

Chi et al. [165] study the entropy of tagging systems, in an effort to understand

how tags grow, and how the groupings of tags change over time and affect browsing

of data. Halpin et al.’s work [166] looks at the nature of tag distributions with

information theoretic tools. There has been some work on association rules in tagging

systems, including [167, 167] and [168]. [168] primarily focuses on prediction of tags.

32

Oldenburg et al. [169] look at how to integrate tags across tagging systems by using

Jaccard measure and discuss different types of tagging systems: social bookmarking,

research paper tagging systems, but not DSMSs.

Research on self-describing streaming XML which can be viewed as “data tags”

has received a lot of attention in recent years [170–172]. XML processing is typically

more expensive compared to traditional stream data processing, and requires a special

XML stream management functionality (in addition to the XML-aware optimizer and

executor). Our proposed tagging approach is simpler in design and more light-weight

compared to streaming XML, while at the same time it provides support for rich

user-based tag semantics.

Relational data-bases have had an extraordinarily successful history of commercial

success and fertile research. It is not surprising, therefore, that database researchers

have attempted to understand annotations and “tagging” in the context of relational

databases [157].

One of the biggest challenges in relational databases is the correct propagation

of annotations through queries’ pipelines. This is similar to the problem we’ve dis

cussed in the context of tag-aware query processing. In [157], a practical approach

is taken to handling annotation in which an extension of SQL is developed support

ing explicit user control over the propagation of annotations. The idea is to allow

the user to control the flow of annotations by adding propagation instructions to the

SQL query language. In our implementation, the tagging system performs (by de

fault) the system-driven propagation, when processing tag-aware continuous queries.

Adding support for user preferences regarding tag propagation in tag-aware queries

is a subject of our future work.

Most of the work on annotations of relational data focuses on annotating individ

ual values in a table. Geerts et al. [158] have taken a more sophisticated approach and

provide support for annotating associations between values in a tuple. For example,

in a query one might want to annotate fields A and B in the output with informa

tion that they came from input table R, and the fields B and C with information

33

that they came from table S. The authors introduce the concept of a “block” – a

set of fields in a tuple to which one attaches an annotation and a “colour” which is

essentially the content or some property of the annotation. They investigate both the

theoretical aspects and the overhead needed to implement the system. Our approach

supports various tagging granularity by using regular expressions in the Applicability

field in the tick-tags, and to maintain the tags’ “lineage” we employ the streaming

stix concept.

We are unaware of any work that addresses the problem of real-time data tagging

in the context of DSMSs and provides support for both explicit and implicit tag

querying. Furthermore, our proposed approach is unique in that it is stream-centric:

tags attached to streaming data are interleaved with the actual data tuples in the data

streams, and the processing of these streaming tags is encapsulated inside the tag-

based query operators that can be combined with regular continuous query operators.

2.8 Summary

In this chapter, we have described work related to the concepts and algorithms

proposed in this thesis, including an overview of various DSMSs, static and adaptive

query optimization approaches, existing streaming metadata techniques in DSMSs.

We have also discussed relevant access control solutions from the security area and

the tagging and annotation approaches in various systems.

34

3 SECURITY AND ACCESS CONTROL FOR STREAMING DATA

In this chapter, we address the problem of continuous access control enforcement in

dynamic data stream environments, where both data and query security restrictions

may potentially change in real-time and must be enforced online.

We present the FENCE (short for Continuous Access Control Enforcement in

Dynamic Data Stream Environments) framework that effectively addresses this prob

lem. The distinguishing characteristics of FENCE include: (1) the stream-centric

approach to dynamic security, (2) the symmetric security model for both continuous

queries and streaming data, and (3) two alternative security-aware query processing

methods, that can optimize the execution based on data-related as well as security-

related selectivities. In FENCE, both data and query security restrictions are modeled

symmetrically in the form of security metadata, called “security punctuations”. Secu

rity punctuations stream together with the data instead of being persistently stored

on the server. We distinguish between two types of security punctuations, namely,

the data security punctuations (or short, dsps) which represent the access control

policies of the streaming data, and the query security punctuations (or short, qsps)

which describe the access authorizations of the continuous queries running on the

server. With respect to the problem of efficient execution of continuous queries, we

propose and compare two security-aware query processing methods, namely: (1) the

Security Filter Approach (SFA), and (2) the Query Rewrite Approach (QRA).

The rest of this chapter is organized as follows. In Section 3.1, we motivate the

need to address the problem of continuous and online access control enforcement for

streaming data. We give the problem definition in Section 3.2. Section 3.3 presents

the FENCE architecture. Section 3.4 describes our security model with data and

query security punctuations and their semantics. Section 3.5 presents the alternative

35

security-aware query processing methods. We describe the results of our experimental

study in Section 3.6. We conclude in Section 3.7.

3.1 Security in Data Stream Management Systems

Due to recent developments in pervasive and ubiquitous computing, many enter

prises begin to provide high-quality services based on real-time data, e.g., patient

monitoring, location-based services and ubiquitous social networking [2, 173, 174].

The information in such applications arrives in the form of infinite data streams to a

DSMS, where continuous queries are evaluated.

One of the biggest challenges in such dynamic data stream environments is the

access control enforcement – the ability to permit or deny a request to perform an op

eration (e.g., a read operation). Given the long-running nature of continuous queries,

the content of the streaming data and along with it its “sensitivity” may change

frequently over the lifetime of query execution. Furthermore, queries on the server

may also experience frequent changes in their access control privileges while being

executed. Such changes in security privileges may be due to mobility and varying

context of the users receiving the results of continuous queries: query results may

be accessed via mobile phones, PDAs or IPhones from any place and at any time.

Clearly, the users sending their streaming data can be rightly concerned about pos

sible unauthorized accesses to their real-time information and potential violations of

their privacy. One of the major challenges here comes from the fact that the security

policies of both data and queries can be concurrently very dynamic.

Example 1: Ubiquitous healthcare system. Healthcare systems support real-time

monitoring and access to vital signs data of patients by doctors, emergency personnel,

and pharmacies. Consider a physician executing a continuous query Q that monitors

the health state of his patients, e.g., heart rate, blood pressure, etc. Over time,

while the query Q is being executed, the physician may continuously acquire different

36

roles1, which may have different access privileges, e.g., a hospital employee (R1), a

doctor with unrestricted access (R2), or a doctor with restricted access (R3). Possibly,

multiple combinations of these roles can be active at any time depending on the

policy and the doctor’s context. While working in the emergency room, the doctor’s

active set of roles may be: {R1,R2}. When entering an insurance building to settle a

claim, the doctor’s active set of roles immediately changes to: {R3}. In the evening,

when the doctor comes back home, his active role set becomes: {R1}. The patients,

transmitting their data through their monitoring devices, should have the ability

to continuously regulate in which role their doctor can access their real-time health

information.

Example 2: Location-Based Services. Recent improvements in location-based tech

nologies and the drop in prices of location-tracking devices have spurred a new wave

of mobile services, such as location-based services and geo-social networking applica

tions [19]. Such applications naturally raise privacy concerns. Users consider their

physical location and travel patterns highly privacy-sensitive and demand solutions

that are able to protect their information. Therefore, it is essential to provide support

for users to be able to frequently change their access control policies based on their

preferences, to restrict who can “see” their real-time information (e.g., where they

are, whom they are with, or what they are doing).

Based on these real-life examples, we can observe that dynamic changes in policies

are natural and represent an essential part of an access control environment in data

streams. We can also observe that changes in security may arise not only because of

(1) the dynamic preferences of the users sending their data (i.e., the data providers)

but also from (2) the dynamic privileges of the users receiving the results of continuous

queries running on DSMS (i.e., the query specifiers). To the best of our knowledge,

our work is the first to address the problem of online access control enforcement with

concurrent dynamic changes in security for both data and queries.

1Here, we assume the system is using a role-based access control (RBAC) model [175].

37

3.1.1 Challenges

Due to the characteristics of streaming data, there are a number of inherent chal

lenges that make continuous access control enforcement a challenging task.

•	 Fast data arrival rate. A common characteristic of data streams is a high data

volume and a rapid arrival rate [2]. It is not feasible to store all data from

all streams and take random accesses to the data as it is done in traditional

databases. Therefore, the security policies associated with a data must be

determined as fast as possible and the speed of the access control enforcement

algorithm must be faster than the incoming data rate.

•	 Single scan of data. Due to the massive volumes of data, there may be not

enough space to store all streaming data and its security policies (which may be

numerous and of fine granularity). Therefore, one scan of data and its security

restrictions with compact memory usage is required.

•	 Dynamic changes in security. The widespread usage of portable devices and

the users’ mobility are likely to lead to frequent changes in transmitted stream

ing data and possibly its “sensitivity”. In addition to that, the mobility and

the changing context of the users receiving the results may translate into fre

quent changes in the access control authorizations. Thus, an access control

enforcement mechanism must be adaptive to runtime changes in security.

•	 Correctness of enforcement. The foremost challenge is the prevention of any

information leaks that may occur when access is no longer authorized. It is

also important to ensure that the access to data is not denied, when an access

privilege has, in fact, been granted, especially when it is crucial to see the data

immediately (e.g., in the case of an emergency). At any time, only the data

elements that satisfy both the query and the data security policies at the same

time must be returned as query results.

38

•	 Low overhead. The results in streaming environments are expected to be pro

duced in near-real-time. Since access control enforcement is nothing but an

added “overhead” compared to the traditional continuous query processing, its

cost must be as low as possible not to decrease the utility of the DSMS.

3.1.2 Our Contributions: The FENCE Framework

To address the above-mentioned challenges, we propose the FENCE (short for

Continuous Access Control Enforcement in Dynamic Data Stream Environments)

framework that supports the online enforcement of changes in the security policies of

the data as well as in authorizations of the continuous queries while they are being

executed. FENCE employs the Security Punctuation (SP) model [38] for both the

streaming data and the continuous queries. Furthermore, FENCE enables a much

richer security semantics for various applications’ needs. These features introduce new

technical challenges for which we present our solutions in the rest of this chapter. Our

major contributions can be summarized as follows:

•	 FENCE models both data-side and query-side dynamic security restrictions

symmetrically using streaming “security punctuations”2 metadata. FENCE

extends the SP Framework [38] scheme by distinguishing between the two types

of sps, namely, the data security punctuations (dsps) and the query security

punctuations (qsps) to enforce security for both data and queries in a simple

and efficient manner.

•	 FENCE framework supports security-aware continuous query processing with

combined dsps and qsps. Compared to [38], which supports only one security-

aware query processing method, FENCE is equipped with two adaptive tech

niques, namely: (1) the Security Filter Approach (SFA), and (2) the Query

2We chose to name the streaming security metadata “security punctuations” (or short sps), because by introducing

sps into data streams, we subdivide (i.e., punctuate) infinite data streams into finite partitions with associated access

control policies.

39

Rewrite Approach (QRA). We discuss the advantages and the limitations of

each of the methods, and describe how both methods can support security-

aware and compliant query processing, and can adapt to both data as well as

security-related selectivities.

•	 Since in data stream environments, the access control policies may change in

the middle of query execution, FENCE distinguishes between two types of se

curity policy enforcement semantics, namely the deferred and the immediate

enforcement. In the former, the access control policies are enforced on only the

data tuples that arrive after the policy change. Alternatively, in immediate

enforcement (e.g., in emergency scenarios), the access constrol is enforced in

stantly including the tuples that have arrived before the policy change and are

not yet returned as query results. We formally address this issue and provide

an efficient solution to support both types of security policy enforcements.

•	 We have implemented FENCE in a general DSMS prototype [8]. Our exper

imental study shows that FENCE efficiently supports access control on data

streams with data and query security policy changes and security-related over

head with sps is low relative to continuous query execution cost.

3.2 Problem Formulation

To formulate the problem we address in this chapter, we first give the definition for

the concept of continuous query processing (or CQP for short). In traditional CQP,

continuous queries are registered in DSMS, and only the data tuples that satisfy the

predicates of the continuous queries are produced as results. We call these predicates

– query predicates – and formally define CQP as follows:

Definition 3.2.1 (Continuous Query Processing (CQP)) Suppose that a data

element d=(v1, v2,...,vn) from a data stream has n attributes and a query predicate

ϕQ(attr1, attr2, ..., attrn) on d represents the condition of a given continuous query

40

Q. Then, whenever d arrives, the continuous query processing mechanism produces d

as a result of Q if and only if ϕQ(v1, v2, ..., vn) is true.

In Security-Aware Continuous Query Processing (SA-CQP), in addition to the query

predicates, there is an additional type of predicates, called security predicates, which

determine whether the query may access the arriving data tuples based on the current

access control policies. We distinguish between two types of security predicates,

namely: (1) the data-side security predicates, which represent the data provider’s

security policies on the streaming data and (2) the query-side security predicates,

which describe the query specifier’s current access authorizations. Continuous queries,

registered by a user (i.e., query specifier) implicitly acquire the access authorizations of

that query specifier. Consequently, SA-CQP enforces access control on data streams

by only producing the results that satisfy both the query predicates and the security

predicates at the same time. SA-CQP can be formally defined as follows:

Definition 3.2.2 (Security-Aware Continuous Query Processing (SA-CQP))

Suppose that a data element d = (v1, v2, ..., vn) from a data stream has n attributes,

a query predicate ϕQ(attr1, attr2, ..., attrn) on d represents the condition of a given

continuous query Q, and a security predicate ϕS (attr1, attr2, ..., attrn) on d represents

a security policy S. Then, whenever d arrives, the security-aware continuous query

processing returns d as a result of Q if and only if ϕQ(v1, v2, ..., vn) ∧ ϕS (v1, v2, ...,

vn) are both true.

Figure 3.1 visually depicts the SA-CQP concept. Query predicates are denoted by ϕQ,

and security predicates ϕS are composed of two types of security predicates, namely

the data-side security predicates and the query-side security predicates denoted by

ϕds and ϕqs, respectively.

In our work, we address one of the key aspects of security in data stream envi

ronments, namely, the dynamic changes in security policies (specifically, the changes

in access control), while continuous queries are being executed. Dynamic security

means that during query execution access control policies affecting the processing

41

data-side query -side
security predicates security predicates

φds φr φqs

φQ

Results
(satisfying φr

Data
)stream Data Query

Provider Specifier

query predicates

φr =
 φQ

U

φds

U

φqs

Figure 3.1. Conceptual idea of security-aware continuous query pro
cessing (SA-CQP).

(and the results) of the query may frequently change to support the real-time needs

of users and the requirements of applications. Data-side dynamic security represents

the changes in the data providers’ security preferences and query-side dynamic secu

rity represents the changes in the query specifiers’ access authorizations. In our work,

we provide a solution for SA-CQP in the presence of both types of dynamic security.

3.3 Overview of FENCE Framework

In this section, we present the general FENCE architecture and then describe a

specific instance of the framework that we consider in the rest of the paper.

3.3.1 FENCE Architecture

To model dynamic access control in a data stream environment, FENCE extends

the concept of security punctuations introduced in [38]. Security punctuations (or

short, sps) are meta-data embedded inside data streams that describe the following

aspects: (a) who has access rights, (b) to which streaming data objects, and (c) when.

Compared to the original sps in [38], which only describe the data-side security poli

cies, FENCE extends the sp paradigm to model both the data-side dynamic security

policies as well as the query-side dynamic access authorizations that may be both

42

Security
Analyzer

Query
results

Data stream

Data stream

Query
Specifier

dt dsp

dt

DSMS

Data
Provider

Administrator

Security Policies

- data security punctuation (dsp)

- data tuple (dt)

- query security punctuation (qsp)

Data
Security

Predicates
Query

Security
Predicates

Query
Predicates

SA-CQP

symmetric

qsp

dsp

Figure 3.2. Overview of FENCE architecture.

continuously changing. By uniformly representing the security settings for data and

queries using a single concept, namely the security punctuations, FENCE facilitates

a simpler security model, code re-use and enables similar security processing for both

data and queries. Using streaming sps, a DSMS can support online flexible, dynamic,

and fast access control enforcement over infinite data streams, while queries are being

evaluated. We will discuss the concept of security punctuations, as applicable to data

and queries, in Section 3.4.

Figure 3.2 shows a high level overview of the FENCE architecture. In a typical

streaming environment, we distinguish between three types of users: (1) The data

provider – a user continuously sending his or her streaming data with the interleaved

sps, that describe the real-time security preferences on his or her streaming data.

(2) The query specifier – a user who registers a continuous query on the server to

be evaluated on the incoming streaming data. As can be seen from Figure 3.2, a

query specifier also streams his or her real-time context (via a data stream), based on

which qsps that describe the real-time access privileges of the continuous query are

generated. For example, if a query specifier is a physician and he is out on a lunch

break, the current location of the physician (“outside the hospital premises”) will

generate a punctuation that limits the data (the health information of his patients)

43

the doctor can access from his portable device. (3) The DSMS administrator is a

user responsible for registering security policies that guarantee that correct privileges

are given to the queries based on the context of the query specifiers. The Security

Analyzer component in Figure 3.2 is responsible for generating correct qsps according

to the organization’s security policy registered by the DSMS administrator. Both data

and query-side security are symmetrically modeled by security punctuations. This

symmetry facilitates a simpler model and similar processing for both data and query

security medatadata inside DSMS. When streaming security punctuations arrive to

the system, the query processor interprets sps as security predicates by processing the

data-side and the query-side sps alike, and then, produces results that satisfy both

the query predicates as well as the security predicates (as shown in Figure 3.2). In

FENCE, dsps are assumed to be directly generated by the data providers3 and qsps

can either arrive from the query specifiers (or from a third-party security service) or

most likely are generated locally in DSMS by the Security Analyzer module based on

the query specifiers’ current context4. We discuss the different possible scenarios of

sp generation in Section 3.4.4.

3.3.2 An Instance of the FENCE Framework

FENCE is a general framework and is not restricted to any particular data or

access control model. But to make our discussion concrete, here, we describe an

instance of FENCE framework, with a specific data and an access control model that

we will consider in the rest of the paper.

3The data security punctuations (dsps) may also be generated on the DSMS by evaluating continuous security policy

queries on the incoming data streams (see Section 3.4.4), but for simplicity of discussion, we assume that the dsps

arrive to the DSMS already interleaved with the data.
4We asssume that the context of the query specifiers is represented by additional incoming data streams, e.g., stream

of location updates.

http:context4.We

44

Data and Query Model

We consider a centralized DSMS processing long-running select-project-join (SPJ)

queries on a set of infinite data streams. A continuous data stream S is a potentially

infinite sequence of tuples that arrive over time. The general schema of tuples in

a data stream is described by: [sid, tid, A, ts], where sid is the stream identifier,

tid is the tuple identifier, A is a set of attribute values in the tuple, and ts is the

timestamp of the tuple. As commonly considered in other streaming systems, e.g.,

[43, 176], the timestamps of the stream elements are assumed to be ordered. For

simplicity of discussion, we consider a single continuous query Qi, registered by a

query specifier in the DSMS, to be executed over data streams A,B,...Z. The security

restrictions applicable to the query specifier get implicitly inherited by Qi. Query Qi

is represented by a query execution plan composed of operators op1,..., opk, where each

operator acquires the security restrictions associated with the query Qi for which it

processes the incoming data tuples.

Access Control Model

An access control policy specifies who has access to which objects and when. In its

general form, an access control policy can be described by a triple <object, subject,

operation>. An object is an entity that contains the information. Examples of objects

in data stream environments are: streams, tuples, tuple attributes and data values.

A subject may invoke a request to access an object to perform an operation, e.g., a

“read operation” on a data tuple. The subjects in FENCE are the query specifiers.

Subjects acquire the access rights which are the set of privileges that they can hold

and execute on an object. In our work, we consider a read right (operation) only. Due

to the fact that just about all stream systems are read-only, this is a natural focus.

However, the model can be easily extended to support other operations as well, such

as update, delete, etc. Access to an object implies the right to use the information

http:operation>.An

45

it contains. An access is granted, if the corresponding subject owns a permission for

the requested operation. Authorization is the granting of the access permissions.

As an example of an access control model, we consider a Role-Based Access Control

(RBAC) model [175] in our work, and show how it can be implemented in FENCE.

RBAC is one of the most well-known and widely-used access control models in modern

systems today [175]. The main idea of RBAC is to introduce roles as an abstraction

layer to decouple subjects and permissions [175]. Under the assumption of using

RBAC, the streaming dsps describe which roles have currently the access rights to

which streaming objects, and the streaming qsps depict the current roles of a con

tinuous query. Query specifiers activate their default roles when they sign into the

DSMS. We require that each query specifier belongs to at least one role. However,

this assignment may change while the query specifier is receiving the results of his or

her continuous query.

3.4 Dynamic Security Policy Model

In this section, we present the schema and the semantics of the security punctu

ations in FENCE. We provide examples of various sps and describe the scenarios of

sp generation.

3.4.1 General Security Punctuation Schema

In FENCE, we employ security punctuations to model symmetrically both the

data and the query-side dynamic security restrictions. Such symmetric model makes

SA-CQP simpler and allows security-related code re-use in DSMS. We call the sps

representing data provider’s preferences for security – the data security punctuations

(dsps) and the sps representing the query specifiers’ access privileges – the query

security punctuations (qsps). Figure 3.3 shows a general sp schema applicable to

both dsps and qsps. We discuss each field in the sp schema next.

http:FENCE.We

46

Time- Enforce-
Type Data Description Security Restriction stamp ment

sign (et)(pt) Part (ddp) Part (srp) (ts)

Stream(s), Tuple(s),
Attribute(s)...

+
-

dsp
qsp

Access Control
Model Type & Value

I
D

Figure 3.3. General security punctuation schema.

•	 Punctuation Type (pt): describes whether the punctuation is a data or a query

security punctuation.

•	 Data Description Part (ddp): specifies which object(s) the access control pol

icy applies to, e.g., which stream(s), tuple(s), or tuple attribute(s) [38]. For

compactness of storage, we use regular expressions to describe objects and their

policies inside sps.

•	 Security Restriction Part (srp): denotes both the access control model type and

the subjects authorized by the policy. Since we use RBAC in this work (see

Section 3.3.2), the srp specifies RBAC as the model type and a set of role(s)

that are authorized by the sp.

•	 Sign: indicates whether the authorization represented by the sp is positive or

negative (see [177] for more details).

•	 Timestamp (ts): records the time when the sp was generated.

•	 Enforcement (et): indicates the security policy enforcement setting. We distin

guish between two types of enforcement, namely the Deferred (D) enforcement

and the Immediate (I) enforcement. We describe the details of this attribute

in Section 3.4.2.

3.4.2 Semantics of Security Punctuations

A security policy may be expressed by one or more sps and may apply to zero

or more tuples. A set of consecutive dsps or qsps form a “batch” of sps which is

interpreted as a single access control policy or a complex authorization. All sps of

47

the same policy (or authorization) have the same timestamp ts – the time when the

security policy was created and the sps were generated. If there is no sp authorizing

the access to an object, “denial-by-default” is enforced, i.e., an access to a streaming

object is denied unless explicitly allowed.

Another important semantic attribute is the access control policy’s enforcement

setting. In traditional DBMSs, the enforcement semantics of security policies is clear –

a policy applies to all data (i.e., the entire dataset) stored in the system. Furthermore,

the policies do not change in the middle of query execution, and even if they do, they

are not reflected on the results until the query is executed over again. In contrast,

in DSMSs, the semantics is not quite so clear. Since data streams are infinite and

queries are continuously being evaluated, whenever a new sps (with a new policy)

arrives, there may be data tuples (that have arrived before the sp) and are in the

pipelines of the continuous query execution plan, that according to the sp are no longer

accessible (the reverse may also be true, and the previously unaccessible tuples may

now be accessed by the query).

To properly reflect the users’ security preferences in the system, we introduce two

ways of enforcing a security policy, namely the deferred and the immediate enforce

ments, specified in the et attribute of an sp. In the case of the deferred enforcement, a

policy represented by an sp applies only to the data that arrives after the sp, i.e., the

tuples whose timestamps are greater than that of the sp. This type of enforcement

is the most frequent case, and is needed for applications that need to protect the

“future” data. For example, if a user carrying a cell phone device enters a casino, he

or she may want to instantly prevent others from knowing his precise whereabouts.

Thus, an sp with the deferred enforcement will be injected into his stream transmit

ting the user’s real-time location updates. With the immediate enforcement setting,

the new policy affects both the (near past) data that has arrived to the DSMS be

fore the current sp as well as to the future data that follows after it. Hence, the

policy here may apply to both the “historic” and the “future” data. This type of en

forcement is needed for the applications that demand the immediate reflection of the

48

... sp7 123456

WG

891011sp12

immediate

deferred

time

DSMS

(data inside DSMS)

...

Figure 3.4. Enforcement of security punctuations in an “immediate”
and “deferred” manner.

policy changes on the query results, without waiting for the arrival of new data. For

example, in some applications, e.g., health monitoring, or financial applications, users

cannot afford to wait for the arrival of new streaming data after a policy changes. In

a healthcare application, this could be a matter of saving a patient’s life.

Figure 3.4 visually illustrates the differences between the immediate and deferred

enforcement semantics. Consider the security punctuation sp7, where 7 is the times

tamp of the sp. Tuples denoted by the integers 1 through 6 represent the data tuples

that have arrived before the sp7, and tuples 8 through 11 after the sp7. With the

immediate enforcement, sp7’s policy will apply to tuples 1 through 11. With the

deferred enforcement, sp7’s policy will only apply to tuples 8 through 11. To support

the immediate security enforcement, we only consider the streaming data that is cur

rently inside the DSMS (see Figure 3.4). A recent past data window can be further

customized based on the application needs, e.g., last 1 hour of data only. To enable

the immediate security policy enforcement, we maintain a global window WG of the

streaming data in DSMS , and WG periodically slides, purging the data tuples that

have expired from the “recent past” data window.

3.4.3 Examples of Security Punctuations

Consider the following data streams: S1 is the heart data stream, S2 represents

the blood pressure data stream and S3 is the respiration data stream. Let R =

49

{D1,D2,D3,D4,D5} be the set of roles in DSMS5. The following dsps and qsps may

specified6:

Data Security Punctuations

dsp1: <dsp|S1,*,*|D 2|+|12:00:00PM|D >

only queries registered by a cardiologist (role D2) can query the stream S1 (heart

rate) after this punctuation arrives (due to deferred semantics, i.e., dsp1.et = D).

This is an example of a stream granularity policy.

dsp2: <dsp|*,[30,210],*|D 4|+|12:00:00PM|D >

only queries registered by a general physician (role D4) can access data tuples (from

any data stream) of patients with ids between 30 and 210, after this punctuation

arrives (dsp2.et = D). This is an example of a tuple granularity policy.

dsp3: <dsp|{S1, S2},*,{HeartBeat}|{D 2,D 5}|+|12:00:00PM|I >

only a cardiologist (D2) or a nurse-on-duty (D5) can query the heart beat from streams

S1 and S2. This is an example of an attribute granularity policy.

Query Security Punctuations

qsp1: <qsp|null|D1|+|12:00:00PM|D >

the query acquires a role of a dermatologist (D1) with deferred enforcement, i.e., the

role applies to the query after the arrival of qsp1 and will pertain to the data tuples

with the timestamp greater than qsp1.ts.

qsp2: <qsp|S1, ∗, ∗|D 4|+|12:00:00PM|D >

the query acquires a general physician (D4) role and the current authorization of role

D4 is the permission to only access stream S1 (heart data stream). The enforcement

is deferred.
5The roles can be as follows: D1 = dermatologist, D2 = cardiologist, D3 = hospital employee, D4 = general physician,

and D5 = nurse-on-duty.

6The different fields in an sp are separated by a vertical bar “|”.

50

qsp3: <qsp|null|{D 2,D 5}|null|12:00:00PM|I >

the query now acquires roles D2 and D5 with an immediate enforcement.

Combination of DSPs and QSPs

To determine which data tuples, the query currently has access to, the intersection

of the data and the query security punctuations must be evaluated [38, 178]. Only if

the intersection between the policies of dsps and the authorizations of qsps is non

empty, the access to the streaming data elements is granted. For example, if dsp1 and

qsp2 arrive at the same time, the query access to the data tuples following the dsp1

will be denied. Although both sps grant a permission to access stream S1, the qsp2

indicates that the current role of the query is D4, and the access control policy of the

data allows only the role D2 to access the stream S1.

3.4.4 Security Punctuations Generation

Until now, we have assumed that sps are manually generated by users and arrive

to DSMS for processing already interleaved with the data. However, in some applica

tions, such scenario is not feasible, and users may gain improper access privileges. To

handle real and more complex real-life scenarios, here we discuss the more sophisti

cated approaches for generating sps. The discussion below is applicable to both dsps

and qsps due to the symmetric property of the model.

•	 Time-driven: Sps can be generated at a specific time or periodically. For

example, every Δ time units, a security module on the data provider’s device

may generate an sp that carries the latest user-specified policy. The time-

driven method allows users to periodically generate sps to automatically enforce

current access control policies.

51

•	 Value-driven: Alternatively, sps can be generated based on the observed data

values. For example, an sp can be inserted into a data stream whenever an

attribute value has exceeded a predefined threshold.

•	 Query-driven: A more advanced approach is to generate appropriate policies

for a specific context by evaluating a special type of continuous queries – the

Continuous Security Policy Queries (or short CP-Queries). A CP-Query con

sumes data streams describing a user’s context (e.g., current location, activity,

or any other context) or a data stream specific to a particular domain and pro

duces as output a security metadata stream – a stream composed of only sps.

We can easily support a CP-Query approach in DSMSs, since the processing

of such queries is almost identical to the regular continuous queries, except the

produced results are sps here instead of regular data tuples.

3.5 Security-Aware Continuous Query Processing

In order to support efficient security-aware continuous query processing (SA

CQP), the following key issues must be addressed: (1) how should the query predi

cates and the security predicates be evaluated together, (2) how should the security

predicates be adapted, whenever a new dsp or a qsp arrives, and (3) how should the

immediate and the deferred enforcement semantics be efficiently and correctly imple

mented. In this section, we address the above issues by presenting the two alternative

query processing methods. To motivate our proposed approaches, we first begin with

the naive method.

3.5.1 Naive Approach

A naive method for query processing with dynamic security takes a very simple

approach: it completely separates the access control processing from regular CQP.

Such strategy evaluates security predicates at a designated point – either before or

52

after the query plan execution. The former and the latter strategies are also known

as pre-filtering and post-filtering, respectively [38]. Figure 3.5 illustrates the naive

approach along with the FENCE approach, which integrates the access control pro

cessing with the continuous query processing. Here, A,...Z represent the regular input

data streams with the embedded dsps from data providers, and C represents a stream

transmitting qsps.

In naive pre-filtering method, a security filter, which discards data elements that

do not satisfy the security predicates is placed before the query execution plan. There

fore, only the data tuples the query has the access rights to access can enter the query

plan, e.g., [179,180]. The post-filtering method is the reverse of the pre-filtering: the

query predicates are evaluated first, and then the results get filtered post-mortem

based on the access control policy of the data and the access rights of the query.

In both the pre- and the post-filtering methods, the fixed placement of the access

control filters may add significant processing overheads and considerably limit the

query performance. If the access control policies are “loose” (i.e., query specifier has

access to nearly all data), but the query predicates are very selective, the pre-filtering

method may result in a heavy security-related processing overhead prior the query

execution plan. This may be unnecessary, if the query predicates end up discarding

the majority of the tuples anyways. In contrast, the post-filtering method may intro

duce unnecessary processing overhead, when very expensive query predicates (e.g.,

joins, groups by) are evaluated first, only for the tuples to be discarded later by the

security predicates, because the query does not have access rights to them.

In the following sections, to overcome the limitations of the naive method, we

propose two efficient SA-CQP methods employed in FENCE, namely the Security

Filter Approach (SFA) and the Query Rewrite Approach (QRA). Both SFA and QRA

have a key advantage – they integrate security processing together with traditional

query processing and can adapt to not only data-related but also to security-related

selectivities. Such deep integration with traditional continuous query processing can

help reduce the waste of resources, when few subjects have access rights to data or

53

dt dsp

dt dsp

qsp

FENCE
approach

A
...

Query Query Execution
Z results Plan

C Pre- Post
filtering filtering

Figure 3.5. Query processing with sps.

minimize the security-related processing overhead when the query predicates are very

selective.

3.5.2 Security Filter Approach (SFA)

The main idea of the SFA is to introduce a special physical operator that performs

access control-based filtering into the query execution plan. We call this new operator

the Security Shield Plus (SS+) operator7, and it is handled just like any other tradi

tional query operator in query processing and query optimization. SS+ operator can

be viewed as a “select operator” that filters input data tuples based on the security

predicates determined based on the arrived dsps and qsps. The filtering condition of

SS+ changes dynamically whenever a new dsp or a qsp arrives. Figure 3.6 shows how

the SFA-based SA-CQP works with the SS+ operators. The triangle-shaped operators

in the figure are the SS+ operators, filtering data based on the security predicates

of the query. Just like for an ordinary select operator, the location of SS+ in the

query plan is determined by the query optimizer according to the selectivities of the

security predicates. If the selectivity is high, the SS+ operator is pushed down in the

query plan to come before the operators with lower selectivity (similar to “selection

pushdown”). Contrary to the traditional select operator, however, SS+ is a stateful

operator: it stores the most recently arrived dsps and qsps in its buffers: Bufferdsp

7SS+ is similar in spirit to the initially proposed Security Shield (SS) operator in [38], however, its semantics is more

sophisticated: it provides support for both dsps and qsps with much richer semantics.

54

δ

δ

ss +A
dt dsp

B
dt dsp

C
qsp

Query Execution
Plan

Bufferqsp
query
results

ss +

Bufferdsp

Bufferdsp

jo
in

Figure 3.6. SFA-based SA-CQP.

and Bufferqsp, respectively8, and computes their intersection to determine the current

security predicates for filtering of data.

Since the rest of processing is similar to traditional CQP, we only explain the

execution of SS+ operator9. Figure 3.7 shows the pseudocode for SS+ execution.

If the input to SS+ is a security punctuation (dsp or qsp), the security predicates

variable, that represents the current intersection of the data and the query security

policies, are updated to reflect the changes in policies (Step 3). If the input is a data

tuple, it is propagated to the next operator in the pipeline if and only if the data

tuple’s security policy satisfies the security predicates condition, otherwise, the tuple

is discarded (Step 8).

Figure 3.8 shows the algorithm for computing the security predicates in SS+ operator.

For every newly arrived sp, the intersection with the opposite type of sps (stored in the

security buffer) is performed, e.g., qsp ∩ Bufferdsp (Step 2) and dsp ∩ Bufferqsp (Step

5). This intersection is stored in the security predicates variable, which represents the

current filtering condition.

If an sp has the immediate enforcement setting (Step 4 in Figure 3.7), in addi

tion to the change in the security predicates variable (to be reflected on the future

8As mentioned in Section 3.4.1, all sps that belong to the same policy have the same timestamp ts. Therefore,

Bufferdsp and Bufferqsp store the sps for data and queries respectively, that have arrived most recently and have the

same ts.
9To preserve the correct security semantics during execution, traditional query operators in SFA need to be modified

to become “security punctuation-aware”, as described in [38].

55

SSPlusExecution (o streaming object)

01 if (o.type == ‘‘security punctuation’’)

02 sp ← o

03 security predicates ← ProcessSp (sp)

04 if (sp.et == ‘‘immediate’’)

05 ProcessImmediateSp (sp)

06 if (o.type == ‘‘data tuple’’)

07 if (o does not satisfy security predicates)

08 discard o

09 else

10 propagate o

Figure 3.7. SS+ execution in SFA.

ProcessSp (sp security punctuation)

01 if (sp.pt == ‘‘qsp’’)

02 security predicates ← Intersect (sp, Bufferdsp)

03 update Bufferqsp with sp

04 else if (sp.pt == ‘‘dsp’’)

05 security predicates ← Intersect (sp, Bufferqsp)

06 update Bufferdsp with sp

07 return security predicates

Figure 3.8. Processing of sp in SS+ .

data), the historic data in the WG window (which has arrived earlier than the sp)

must be re-processed to be affected by the changes in the policy. To efficiently han

dle the immediate enforcement, we introduce a notion of the “narrowing intersec

tion scope” for security policies. Informally, the narrowing means that the updated

security predicates (representing the access control filtering condition) are more se

lective than prior to the change. Definition 3.5.1 formally describes the narrowing

scope.

http:if(sp.et

56

Definition 3.5.1 Let ϕi be the security predicate at time tsi and ϕj at time tsj (tsi

< tsj). If the security predicate has changed between time tsi and tsj (i.e., ϕi �= ϕj),

and if ∃ any data tuple d that makes ϕj(d) = false but makes ϕi(d) = true, the policy

scope is said to be narrowing.

Figure 3.9 shows the algorithm for processing of the immediate sps using the no

tion of narrowing to optimize the immediate enforcement execution. If the scope is

narrowing, it means that there may be tuples in the query pipeline that might have

already passed through the SS+ (based on the earlier security policies), but are now

no longer accessible (because of the narrowed intersection of the policies). Therefore,

to immediately enforce the access control in such case, it is enough to consider only

the data tuples that have already passed the SS+ in the query plan. To prevent that

data from being returned as results, the new SS+ operator is activated at the root

of the query execution plan until all of the pipelined data (that has arrived prior to

the sp) is processed (Step 3). Otherwise, if the policy is not narrowing, the tuples

stored in the WG must be re-processed using the plan, to immediately see the results

(that otherwise would possibly not be produced), thus reflecting the updated security

policy (Steps 5 and 6). This can be done by clearing the data tuples from all of

the query operators’ queues, and then, feeding the data tuples from the recent past

window WG into the query plan.

ProcessImmediateSp (sp security punctuation)

01 scope ← DeterminePolicyScope (sp)

02 if (scope == ‘‘narrowing’’)

03 ActivatePostFiltering(sp)

04 else

05 discard all data tuples in the query plan

06 start query processing with WG

Figure 3.9. Processing of “immediate sps”.

57

By encapsulating all security processing inside SS+ operators, SFA-based security-

aware continuous query processing (or SA-CQP) can interleave the execution of se

curity predicates with traditional query predicates. SFA, however, may require sub

stantial modifications to the codebases of the current DSMSs (see Section 3.5.4). In

the next section, we propose another SA-CQP approach that minimizes the need to

modify existing DSMSs significantly and largely reuses the existing query processor

infrastructure inside DSMS as it is.

3.5.3 Query Rewrite Approach (QRA)

The main idea behind the QRA-based SA-CQP comes from the observation that

the enforcement of the dynamic security policies can be seen as the dynamic “rewrit

ing of queries”10. According to the SA-CQP definition (in Section 3.2), we consider a

query registered in DSMS that consists of query predicates and security predicates,

where the security predicates are updated whenever a new sp arrives. A DSMS can

support dynamic security changes in SA-CQP by creating a “new” query with the

integrated in it the latest security predicates and replacing with it the current query.

Table 3.1 shows an example of query rewriting. Here, after the arrival of sps, the orig

inal query predicate (R.a = S.a) ∧ (0< R.b <100)∧ (0<S.c<100) is rewritten

into (R.a = S.a) ∧ (0< R.b <50)∧ (50<S.c<100) to reflect the access control

policies described by the dsp1 and the qsp1.

Figure 3.10 gives an overview of the QRA-based SA-CQP. Compared to the SFA,

where SS+ operators process sps in the query plan, the QRA uses a centralized mod

ule, called the Query Rewriting Module (QRM), to process arriving sps. QRM con

sumes dsps and qsps immediately upon their arrival to the system and stores them

in the global Bufferdsp and the Bufferqsp, respectively. QRM also stores traditional

query predicates in the Bufferquery. Whenever new sps arrive, QRM rewrites the cor

10Query rewriting is generally used to compose queries or manage views. In our work, we exploit the query rewriting

concept for the purpose of combining security and query predicates to adapt to dynamic changes in the access control

policies and authorizations.

58

Table 3.1

Example of query rewriting.

Original Predicates Rewritten Predicates

Q.p1 → (R.a = S.a)

Q.p2 → (0< R.b <100)

Q.p3 → (0< S.c <100)

dsp1 → (0< R.b <50)

qsp1 → (50<S.c <100)

Q.p1 ’ → R.a = S.a

Q.p2 ’ → 0< R.b <50 //Q.p2+dsp1

Q.p3 ’ → 50< S.c <100 //Q.p3+qsp1

responding query using the information stored in these buffers. Regular data stream

tuples are processed by the query processor in the same way as in the traditional

DSMSs. We note that sps are not sent into the query execution plan, but rather

consumed by the QRM module to generate a new query. In that regard, the regular

continuous query operators do not need to be “security punctuation-aware” as in the

SFA.

Query Execution Plan

A

B

Updated query C
predicates

δ

δ

dt dsp

dt dsp

qsp
Query Rewriting Module

(QRM)

query
results

dt

dsp

dsp
dt

Bufferdsp Bufferqsp Bufferquery

Figure 3.10. QRA-based SA-CQP.

Figure 3.11 shows the pseudocode for the QRA-based SA-CQP algorithm. Com

pared to the SFA which implements SA-CQP using SS+ operators, QRA realizes

SA-CQP by executing the QRM, which may rewrite the query (and consequently

its execution plan) in an effort to combine the security predicates with the query

predicates. In the algorithm in Figure 3.11, if the input is an sp, the QRM rewrites

the continuous query plan to integrate the new security predicates into the execution

59

plan (Step 3). The processing for the immediate enforcement is the same as in the

SFA-based algorithm. If the input is a regular data tuple, the query processor eval

uates it as in the regular continuous query processing (Step 7). We note that, in the

context of QRA, the QRM is a separate module from the query processor module,

thus, largely not requiring any modifications to the DSMS query optimizer and query

executor modules.

QRA SA-CQP (o streaming object)

01 if (o.type == ‘‘security punctuation’’)

02 sp ← o

03 RewriteQuery (sp)

04 if (sp.et == ‘‘immediate’’)

05 ProcessImmediateSp (sp)

06 else if (o.type == ‘‘data tuple’’)

07 process o as in normal continuous query processing

Figure 3.11. SA-CQP using QRA.

Figure 3.12 shows the query rewriting algorithm used by the QRM. Just like in the

SFA algorithm, the dsps and the qsps are intersected to produce the updated security

predicates (Step 2 and 5). In addition to this intersection, QRA also intersects the

security predicates with the query predicates to produce the final predicates to be

used in the query execution (equivalent to ϕr in Figure 3.1) (Step 8). The rewrit

ten continuous query is optimized by the optimizer, and the new plan replaces the

previously used execution plan (Step 9).

QRA has the advantage of minimizing the need to modify the existing DSMS com

ponents, e.g., query algebra, optimization rules and statistics, optimizer and the

executor. Since the approach produces a new (rewritten) form of the same query to

adapt to dynamic security policies, the existing query processor and the optimizer

can be largely re-used (as they are) to implement the SA-CQP. In the next section,

we discuss the pros and the cons of the SFA and the QRA methods in more detail.

http:if(sp.et

60

RewriteQuery (sp -- security punctuation)

01 if (sp.pt == ‘‘qsp’’)

02 security predicates ← Intersect (sp, Bufferdsp)

03 update Bufferqsp with sp

04 else if (sp.pt == ‘‘dsp’’)

05 security predicates ← Intersect (sp, Bufferqsp)

06 update Bufferdsp with sp

07 query predicates ← Find (Bufferquery, GetCurrentQuery ())

08 new Q ← Intersect (security predicates, query predicates)

09 new qp ← Optimize (new Q)

Figure 3.12. Algorithm for query rewriting.

3.5.4 Pros and Cons of QRA and SFA

The major difference between the QRA and the SFA is the abstraction level of

the security predicates. In the QRA, security predicates are represented as logical

conditions of a query. In contrast, in the SFA, security predicates are encapsulated

in separate physical (SS+) operators in the query execution plan. As a result, this

difference contributes to both the pros and the cons of the approaches. The main

advantage of the QRA is that the existing query processor infrastructure can be

largely re-used as it is, since the sps are not propagated into the query execution

plan. Here, a query plan consist of only “traditional” continuous query operators and

the dynamic changes in the access control are implemented by the Query Rewriting

Module (QRM). The QRM is nearly all that is needed to be added to the system in

this case. Conceptually, the QRA treats the existing query optimizer as the “black

box” and invokes it as a sub-routine, with the query specification that integrates

both the query and the security predicates. Such approach is faithful to the goal

of minimizing code changes in the existing systems, but may result in a blow-up in

the optimization time by a factor equal to the number of sub-routine invocations.

In the worst case, this may happen every time a new dsp or a qsp arrives to the

61

Table 3.2

Default experimental parameters.

Parameter Value Description

dsp/t 1:10 Average dsp to tuple ratio

qsp/(dsp/t) 1:100 Average qsp to (dsp + tuple ratio)

ϕds 5 roles Average size (in # of roles) of dsps

ϕqs 10 roles Average size (in # of roles) of qsps

Pds tuple-level Data-side policy applicability

(i.e., policy level)

Pqs role-change Query-side authorization

et Deferred Default enforcement semantics

|WG| 1000 tuples Size of WG window

system. Clearly, the main disadvantage here is that this approach is not very robust

to dynamic changes in security. Potentially, every new dsp and qsp may lead to

the optimizer re-invocation, the query plan rewriting, and the physical query plan

migration, thus consuming the precious resources from evaluating continuous queries.

The main advantages of the SFA include its high performance and robustness to

dynamic changes in security policies. Whenever a new qsp or dsp arrives, only the

SS+ operators are affected, to reflect the changes in security policy, and the rest of the

query plan does not need to be modified. The SFA approach is also more amenable to

shared query processing in the case of multiple queries. If queries have the same query

predicates (even if their authorizations are different), the processing can be shared

with the proper security filters installed before and after the shared sub-part in the

execution plan. Introducing new operators into the query algebra and making the

existing query operators security-aware, however, brings several disadvantages. The

query optimizer must now become aware of these new operators and their semantics,

and must also adjust the cost model to reflect the streaming sps’ statistics and the

cost of their processing by SS+ and regular (now security-aware) continuous query

operators. In summary, the codebase of DSMS may need to undergo significant

changes to accommodate the security-awareness inside the query processor.

62

Table 3.3

Dynamic properties of security policies.

Frequency variation: (1/1) →(1/10) →(1/30) →(1/50) →(1/100)

Scope variation: (|R| = 1) → (|R| = 10) → (|R| = 50) → (|R| = 100)

Intersection variation: (ϕds∩qs = 0)→(ϕds∩qs = 0.5) →(ϕds∩qs = 1)

3.6 Experimental Study

In this section, we report the results of our experimental evaluation of FENCE.

The three questions that we address in this section are summarized below:

•	 How effective is security punctuation mechanism, with embedded into streams

dsps and qsps), compared to alternatives? (Section 3.6.2)

•	 How do the SFA and the QRA methods compare against each other, and against

the naive approach in terms of query performance? (Section 3.6.3)

•	 How big is the overhead of access control enforcement relative to the cost of the

continuous query execution, i.e., SA-CQP vs. regular CQP? (Section 3.6.4)

3.6.1 Experimental Setup

We have implemented FENCE in a prototype DSMS called CAPE [8]. All our

experiments are run on a machine with Java 1.6.0.0 runtime, Windows Vista with

Intel(R) Core(TM) Duo CPU @1.86GHz processor and 2GB of RAM. For the ex

periments, we consider a geo-social networking application scenario described in Sec

tion 3.1. The goal in such application is to enable social networking combined with

location-based monitoring without leaking any sensitive information as determined by

the users’ and the application’s policies. For data, we use the Network-based Moving

Objects Generator [181] to generate data streams with total of 110K moving objects

(e.g., people driving in cars with GPS devices, pedestrians walking on the streets

with mobile phones) in the city of Worcester, MA USA. We have instrumented the

63

generated data streams with two additional attributes, namely the “age” and the “in

terests”. The values for the “age” attribute follow a normal distribution with mean

µ = 20, and the values for the “interests” attribute are randomly generated out of

10 possible choices, e.g., dating, friendship, movies, etc. Each data tuple also

contains a timestamp.

In our setup, we have considered a scenario, where dsps are generated by the

data providers on their physical devices, and the streaming data arrives to the DSMS

with already interleaved dsps. To embed the corresponding dsps (and qsps) into

the data streams, we have written a separate sp generator application, that, given

the different values for the input parameters, produces security policies with desired

characteristics. The dsps in the data streams describe the tuple-granularity access

control policies, i.e., a security policy applies to an entire tuple, and thus, implicitly

to all of its attributes. We chose the tuple level policy, because it is likely to be

the most common granularity of security in such mobile environments. All tuple

policies are described by a single dsp or a single qsp. We decided to represent policies

using a single sp as this, in our belief, is likely to represent the most frequent case.

Occasionally, more complex security policies may require multiple sps to represent it.

Roles in our experimental setup, R1, R2 . . . Rn represent the various real-life “roles”

of subjects encountered in a geo-social networking application, e.g., R1 may represent

a “family member”, R2 a “friend”, R3 a “stranger”, R4 a “co-worker”, and so

on.

When determining a query for our experiments, we envisioned a query that allows

people to “connect” to each other based on similar interests, proximity in age and

current geographic location (for example, to spontaneously meet at a nearby coffee

shop). We thus use the following query in our experiments:

SELECT * FROM S1, S2, CoffeeShops AS CS

WHERE distance(S1.loc, S2.Loc) < 5 AND

maxdistance(S2.loc, S3.Loc, CS) < 5 AND

64

intersect(S1.interests, S2.interests) AND

difference(S1.age, S2.age) < 10

This query may be executed by a user in a geo-social networking application, where

one stream (S1) represents his or her data stream and another data stream (S2) of

other users.

To simulate dynamic query-side security policies, our sp generator inserts a new

qsp periodically into the stream transmitting qsps. qsps are generated using random

role assignments from R1...R30. The default dsp to tuple ratio is 1:10, which means

that there is one dsp per 10 tuples. The average policy size in dsps is 5 roles. The

qsp to data ratio is 1:100, which means that for every 100 data stream elements

(data tuples and dsps), a new qsp is generated. The qsps depict only role changes.

For simplicity, we have omitted the changes in the privileges of the roles that could

be specified in the qsps (e.g., by an organization). Unless mentioned otherwise, the

default parameters and their values used in the experiments are as specified in Table

3.2.

To simulate dynamic changes in security policies, we use our sp generator applica

tion to imitate the different possible real-life scenarios. The generation of the security

policies with changing characteristics is managed as follows: the sp generator starts

with an initial set of parameters, and over time the parameter values are varied, e.g.,

for frequency variation, the transition: (1/1) →(1/10) →(1/30) →(1/50) →(1/100)

(as illustrated in Table 3.3), which means that initially sp to tuple ratio was 1 to

1 (i.e., every tuple has a unique policy), after some time it changes to 1 to 10, and

then to 1 to 30 and so on. This process is repeated continuously for the entire query

execution duration. The values of sp generator parameters are changed every 10K

tuples. Other kinds of transitions in the security policies are depicted in Table 3.3.

65

3.6.2 Effectiveness of Security Punctuations

Our first set of experiments compares the performance of the three alternative

access control enforcement mechanisms for streaming data: (1) the non-streaming,

(2) the tuple-embedded, and (3) the security punctuation-based described in [38] (see

Figure 3.13(a) and 3.13(b)). We refer to them in the charts as non-streaming, tuple

and sp, respectively. In the case of non-streaming method, the tuple policies arrive to

the system separately from the data. We assume that in the non-streaming case, users

specify their policies using SQL, and send them separately over the network. When

SQL-based access control policies are received, the non-streaming method parses them

and stores them in the global policy hash table. For each arriving data stream tuple,

the non-streaming method checks this policy table to retrieve the relevant security

policies. To perform access control-based filtering, the relevant policies are intersected

to determine if the access should be granted. In our setup, we have simulated this

approach by using a separate stream of dsps (to imitate separately arriving policy

specifications), and have introduced a small delay (a few seconds) to account for

parsing of SQL. In the tuple-embedded approach, the tuples’ schema is extended by

adding an additional attribute to store the access control policies of the tuples. Thus,

each individual tuple carries its access control policy, i.e., all authorized roles that

are allowed to access it. In the sp approach, dsps are interleaved with the streaming

data. For the query-side dynamic policy changes, in all three cases, we use a stream

of qsps to simulate the changes in the roles of the executing query.

Figure 3.13(a) compares the average output rate for the three alternatives. The

bottom axis denotes the sp to tuple ratio (e.g., 1/10 means for every 10 tuples, there is

an sp). As can be seen, the average output rate using the sp approach is significantly

higher than for the alternative methods (ranging from 30%-55% compared to the non-

streaming approach and 8% to almost 70% to the tuple-based approach, with various

sp to tuple ratios). Obviously, the lower the sp to tuple ratio, i.e., the more policies are

shared by data tuples, the more advantageous the sp approach becomes. The security

66

policy frequency has almost no effect on the tuple-based approach. This is expected,

because access control policies are stored in their entirety in each tuple, regardless of

whether a set of consecutive tuples may share the same policy or not. When policies

are the same for streaming data tuples, the tuple-based approach is thus significantly

“penalized”. Here, the security processing for each tuple is done as if each tuple has

a unique policy, and a lot of unnecessary overhead is thus incurred. The other two

methods exploit the shared storage and the shared processing of security policies.

In the non-streaming method, a single representation of each policy is maintained

in the global policy hash table, and the security-related processing can be shared by

(multiple) consecutive tuples with the same policy that arrive to the system. In the sp

model, sharing policies is easy, and since they are already interleaved with the data,

processing overhead is minimized (e.g., determining which policies are applicable to

which data tuples), since sps always precede their associated data.

Figure 3.13(b) shows the average execution cost for the three alternatives, which

follows a similar pattern as described above for the average output rate. The non-

streaming method has the highest cost, which is somewhat expected. With frequent

unique policies in the streams, more processing must be done by this method: policies

must be parsed, stored, and when access control must be enforced, the policy table

is probed, to find the policies and to intersect them. For the tuple-based method,

the cost does not change, but it is higher than for the other two methods when

the policies on the data tend to be similar and the sp to tuple ratio decreases (e.g.,

1/50 case). The sp approach has a slightly higher cost for the 1/1 case, as there

is a distinct dsp for each tuple, consuming more memory resources, and requiring

more processing. However, if policies are shared, which is the most likely scenario

in a typical application, the sp approach can significantly outperform the other two

methods.

67

 2 25

20
 1.5

1/1 1/10 1/50

non-streaming
tuple

sp

non-streaming
tuple

sp

1/1 1/10 1/50

m
se

c

of
 re

su
lt

tu
pl

es

tu
pl

es
/m

se
c

of

 re
su

lt
tu

pl
es

m

se
c

tim
e

(m
se

c) 15

 10

 1

 0.5
 5

 0 0

sp to tuple ratio sp to tuple ratio

(a) Average output rate (b) Average execution cost

 3500000
Select

SS+Naive
QRA
SFA

 2
 300000

 450000

 400000

 350000

 2.5

 250000 1.5

 200000

 150000
 1

 100000
 0.5

 50000

 0
 00 5 10 15 20 25 1/1 1/10 1/50
Time (min) sp to tuple ratio

(c) Output rate (SA-CQP) (d) SS+ cost

 6
SS+

QRM

1/1 1/10 1/50

600000
QRA
SFA

no security5 500000

 400000

 300000

 200000

 4

 3

 2

 1000001

 00 0 5 10 15 20 25
sp to tuple ratio Time (min)

(e) QRM cost (f) Security impact on performance

Figure 3.13. Experimental results.

3.6.3 Comparison of SA-CQP Methods

In this experiment, we compare the performance of the security-aware query pro

cessing alternatives described in Section 3.5, specifically the naive approach, the se

curity filter approach (SFA) and the query rewriting approach (QRA). In the naive

68

approach, we have used the post-filtering method, where the access control-based

filtering of query results is done after the query execution plan. We ran the query

for 25 minutes several times, each time varying the dynamic security characteristics

as illustrated in Table 3.3. Figure 3.13(c) shows the total number of result tuples

produced over time when using these different query processing strategies. The lines

represent the averages over all runs. As a general trend, we have observed that, the

SFA has about 14 to 22% higher output rate than the QRA and 24 to 37% higher

than the Naive approach. Clearly, we can see that the fixed placement of the secu

rity processing, can often limit the continuous query performance, especially if the

security conditions are quite dynamic. When using the naive approach, the system

cannot adapt to security-related selectivities, and the tuples that could have been

filtered earlier may instead be in the query pipelines consuming valuable resources,

like memory and CPU.

3.6.4 Overhead of Security Enforcement

In this experiment, we evaluate the “overhead” of continuous access control en

forcement on the continuous query performance. We begin by first measuring the

processing costs specific to the SFA and the QRA. Then, we compare the output rate

of the “security-free” continuous query execution (as a base case) to the output rates

of the SA-CQP methods. Last, we present the overall overhead of these SA-CQP

methods relative to the total execution cost of the query.

For SFA, we measure the cost of SS+ execution (Figure 3.13(d)). We have in

strumented the SS+ operator code to measure the time spent to process a dsp or a

qsp. We have also compared it to the cost of the regular select operator as the closest

operator to SS+. As can be seen from Figure 3.13(d), for the 1/1 sp to tuple ratio, the

SS+ cost is close to the cost of the select operator. There is an additional overhead

in SS+ to compute the filtering condition – the predicate based on the arriving dsps

and qsps, that is not present in the regular selection and accounts for the disparity

69

 0

 20

 40

 60

 80

 100

 120

QRA SFA

%
 o

f t
ot

al
 e

xe
 c

os
t

21% 7%

Query Cost
Security Overhead

Figure 3.14. Security enforcement overheads.

in the 1/1 case. However, as one can observe, the more tuples share the same secu

rity policies, the smaller the overhead of the SS+ operator becomes compared to the

selection.

In Figure 3.13(e), we present our comparison of the security processing cost in the

QRA method, specifically, the average execution cost of the query rewriting module

(QRM). Here, we only measure the cost of the query plan rewriting. We also contrast

it to the average cost of the SS+ operator. As it can be seen, the QRM execution has

a higher overhead compared to the SS+ execution (in some cases, by as much as 80%).

The reason for such big cost disrepancy is that in SS+ only a policy intersection with

the opposite buffer needs to be performed (which in most cases consists of only a

single sp). Whereas the QRM module has to scan through all of the query predicates

in the query to determine if the security predicates from the newly arrived sp can

be combined with any of the existing query predicates. This operation is performed

for every arrived sp, which explains the big cost disrepancy. The cost of the QRM

execution can be improved by using more efficient internal data structures (e.g., an

index on sps or the query predicates), but in the worst case, the QRM may still have

to scan all query predicates.

To evaluate the impact of the continuous access control enforcement on the query

performance, we ran the query with and without security-awareness enabled. Figure

3.13(f) shows the total number of tuples produced over time for both methods com

70

pared to traditional continuous query execution as the baseline. We have abstracted

the total security overhead in each method and illustrate it in Figure 3.14. As it can

be seen, the query rewriting approach, on average, results in 21% overhead compared

to the query execution cost, whereas the security filter approach in only 7%. The

more frequently sps arrive (i.e., the more dynamic the policies are), the larger is the

QRM ’s overhead. In the case of SS+, it basically replaces the dsps and qsps in its

buffers and determines the latest policy intersection. If the selectivity of SS+ has not

changed after the policy is updated, no further optimizations to the current execution

plan is needed.

3.6.5 Summary of Experimental Results

The main results of our experimental study can be summarized as follows:

1. The symmetric security punctuation model with streaming dsps and qsps sig

nificantly outperforms the other alternatives, especially when more tuples share

the same security policies.

2. The SFA approach results in up to 37% improvement over the naive approach

and up to 22% over the QRA approach in the execution time and the output

rate.

3. The runtime overhead of the continuous access control enforcement cost relative

to the query execution cost is at most 21% for the QRA-based query processing

and only 7% for the SFA-based query processing.

4. In general, the ability of the continuous query processor to adapt to not only

data-related but also to security-related selectivities can significantly improve

continuous query performance.

71

3.7 Conclusion

In this chapter, we have presented our solution to address the problem of con

tinuous online access control enforcement in data stream environments, where both

data and query security restrictions may change as the query is being evaluated. Our

research motivation comes from the complicated access control requirements inher

ent in real-time streaming environments in the context of healthcare, location-based

services and financial applications. We have proposed the FENCE framework, where

data and query access control policies are modeled symmetrically using the data and

the query security punctuations. We have implemented our proposed FENCE frame

work in a general DSMS prototype. Our experimental results show that our approach

has low overhead and is suitable for data stream environments with dynamic security.

We believe that our work makes an important contribution to both the databases and

security fields in that it is the first to propose and implement a practical approach

for online continuous access control enforcement where policies for data and queries

may change concurrently.

72

4 TAGGING OF STREAMING DATA

In this chapter, we propose to enrich data streams with a new type of metadata called

streaming tags or short tick-tags1. The fundamental premise of tagging is that users

can label data using uncontrolled vocabulary, and these tags can be exploited in a

wide variety of applications, such as data exploration, data search, and to produce

“enriched” (with additional semantics) and thus, more informative query results.

We focus primarily on the problem of continuous query processing with streaming

tags and the tagged objects, and address the tick-tag semantic issues as well as the

efficiency concerns. Our main contributions are as follows. We present the Stream

Tag Framework (or short STF) that supports a stream-centric approach to tagging,

and where tick-tags, attached to streaming objects, are treated as first-class citizens.

Under STF, users can tag streaming objects at various granularity and can query tags

explicitly as well as implicitly by outputting the tags of the base data together with

continuous queries’ results. We have implemented STF in a prototype DSMS, and

through a set of performance experiments, we show that the cost of stream tagging

is small and the approach is scalable to a large percentage of tagged objects.

The rest of this chapter is organized as follows. We motivate the need to support

streaming data tagging in Section 4.1. We give the overview of the Stream Tag

Framework in Section 4.2. Section 4.3 describes our tagging model, the streaming

tag concept and presents the tag query language called TAG-QL. Section 4.4 describes

two tag-bassed query processing methods, namely the tag-oriented and the tag-aware

query processing. Section 4.5 presents the physical implementations of the several

key tagging operators.

1We chose the name “tick-tags” to capture the transient nature of attached labels and distinguish them from traditional

“tags” (e.g., for web pages, images, files) that tend to be static and persistent.

73

We describe the results of our experimental study in Section 4.6. Finally, we

conclude this chapter in Section 4.7.

4.1 Tagging in Data Stream Environments

Data streams are common in applications ranging from location-based services

and traffic management to environmental and health sensing. Over the past few

years, a large amount of research has been devoted to the design and development

of DSMSs [4, 8, 43, 176]. With the exception of a few systems [38, 105, 182, 183],

most DSMSs assume that data streams transmit exclusively data tuples (without any

additional metadata embedded inside streams), and continuous queries are evaluated

on the streaming data tuples.

We propose to enrich data stream environments with a special type of metadata

called streaming tags, or short tick-tags2. An informal definition of tagging is the

process of adding comments or labels to something. The problem of stream tagging is

important, because high volume continuous data streams are ubiquitous, and stream

processing applications are becoming vital in our every-day life (e.g., real-time traffic

monitoring, emergency response and health monitoring). Tags on streaming data can

enrich existing stream-based appications, e.g., [23–25], and can enable and inspire

novel useful services as described in Section 1.2. We have also described many other

ways of leveraging of streaming data tags in Section 1.3.2.

4.1.1 Challenges

Due to the inherent characteristics of streaming environments, the tagging of

streaming objects is a challenging task. Stream data is typically characterized by

large volumes, high input rates, is generated by multiple distributed data sources that

rapidly send updates. Processing of continuous queries on streaming data requires

2The terms “streaming tags” and “tick-tags” represent the same concept in the context of our work and are used

interchangeably.

http:tick-tags2.An

74

near-real response time. Yet unlike traditional databases, data is not persistently

stored on the server, but rather streamed through the DSMS once and then discarded.

A system supporting tagging of streaming data must consider scalability, output rate,

latency and resource utilization. To be useful in practice, a tagging mechanism must

be able to support a variety of tagging granularities: users should be able to tag

streams, tuples, attributes, or specific data values. For instance, if a set of data

tuples correspond to a particular physical phenomenon (e.g., a hurricane), then it is

useful to tag all those tuples with a single tag. Alternatively, if a particular data

value is called into question, users should be able to attach a tag to an individual

data value as well. Naturally, the more fine-grained the tagging is, the higher the

overhead it may potentially incur. Furthermore, due to the infinite nature of streams

and typically long-running continuous queries, frequent changes in data are likely

to occur, which translates into possibly very frequent changes in tags’ contents and

statistics.

4.1.2 Alternative Tagging Methods

To motivate our proposed solution, next we describe several alternative methods

that could be used for tagging of streaming data.

•	 Table Approach. One solution is to build a separate global table in DSMS, where

all tags arriving via a separate channel (e.g., another stream) are maintained.

For each tag, the links to the appropriate streaming data elements in the form

of query predicates are stored, as illustrated below:

Tag Link To Data

“Running” SELECT measurement FROM HeartRate

WHERE time > 9:00AM and time < 9:30AM

Using this method, the tags are maintained separately from the streaming data.

As a result, this method may potentially incur significant overheads. All tags

arriving to DSMS (separately from the data) must be processed, and for every

tag an entry in the central tag table must be created or updated. To identify the

75

data to which the tags are applicable to, a separate continuous query must be

instantiated (in the worst case, one-per-tag) to find the streaming data elements

that the tag corresponds to. If there are many tags, this may severely impact the

performance of the system, as significant amount of resources would be taken

away from evaluating continuous queries. Furthermore, after the steaming data

passes through the DSMS, their respective tags must be deleted from the global

tag table, thus further increasing the tag-related maintenance overhead.

•	 Extended Data Tuples. An alternative approach to tagging is to extend the

schema of streaming data tuples by adding an additional attribute, where the

tag information is stored. Here, tags physically are strongly coupled with the

streaming data tuples. Although attractive, this approach has several limi

tations. First, by increasing the tuples’ sizes, more memory and processing

resources are consumed. Second, tags may apply to a collection of data tuples

or data values, but using this method, tags would have to be duplicated, even

if several tuples share the same tag. Furthermore and more importantly, when

searching for tags or tagged data, every single tuple must be looked at to see

if the tag content matches the search predicate. This approach suffers from

the same problem as the “non-normalized” representation of data in relational

databases, which calls for optimization of design [1].

•	 Streaming XML. Another possible solution for tagging is to exploit streaming

XML [184, 185]. XML is human-legible and is designed to be self-describing.

This enables the capability to define self-describing data elements by users.

However, XML technology is complex and XML query processing (using ei

ther XQuery or XPath languages) is not intended to be evaluated over bursty

streams. Even with the extensions supporting XML data streams such as

[171, 172, 186], continuous processing of frequent XML-based tags is likely to

be expensive and can seriously limit the performance of continuous queries.

http:Tuples.An

76

•	 Streaming Tags3. Our proposed solution is to introduce a special type of stream

ing metadata called the streaming tags or short tick-tags. Tick-tags are embed

ded inside data streams and uniquely identify the streaming data objects (e.g.,

tuples, tuple attributes or data values) to which additional semantic labels are

being attached. The advantage of the tick-tag approach is three-fold. First,

tick-tags can be shared by several streaming objects, thus reducing memory

and processing overheads. Second, tick-tags, interleaved with streaming data,

facilitate a faster search for the objects they are applicable to. Furthermore,

tick-tags can be just as dynamic as the streaming data and can be exploited

in continuous query optimization similar to data tuples. The query optimizer

can determine the best order of operators by considering both the data statis

tics as well as the streaming tags’ statistics. Finally, if users decide not to tag

their data, then the data streams are identical to traditional data streams, and

the existing query processing solutions for regular streaming environments are

applicable as before.

4.1.3 Our Proposed Solution: The Stream Tag Framework

Here, we present the Stream Tag Framework (or short STF) that provides full-

fledged support for tagging of streaming data. In our endeavor, we strive to achieve

the following goals.

•	 Stream-centric tags. Tags applicable to streaming objects are not transmitted

and stored separately from the actual data, but rather interleaved with the data

tuples inside data streams. Streaming tags have a transient nature – they are

not stored permanently on the server, but rather “make a one pass” through

the system and then may be discarded.

3We use terms “streaming tags” and “tick-tags” interchangeably. Both mean the same thing in the context of our

work.

77

•	 User-centric tags. Different users may have unique understandings and expla

nations for the same piece of information, thus it is essential for a tagging

framework to support “personalized” tags with respect to data. Users may also

want to customize the time setting of their tags – whether they should be at

tached and be applicable only once or for some time in the near future. We

refer to this feature – a user-centric tag semantics.

•	 Explicit Querying of Tags. Users or applications should be able to query stream

ing tags explicitly, in an ad-hoc or in a continuous manner. We call this

feature – the tag-oriented query processing (see Figure 4.1). For example, a

location-based application may specify a range query Q: Continuously retrieve

all streaming tags specified by users in the downtown of City X4 . Here the re

sults of the query Q are characterized by a continuous stream of tick-tags that

appear in the specified geographic region.

•	 Enriched Query Results. Regular continuous queries can also produce superior

(tag-enriched) results [86,157]. This functionaliy is enabled by tag-aware query

processing (Figure 4.1). The goal here is to preserve the tags attached to the

original data based on which the query results are computed. For example, if

a tag calls into question the veracity of some streaming data value, one would

like this information to be available to anyone who sees the results of a query

based on this information. The main challenge in this context is to correctly

propagate streaming tags through the query plan, while the tags’ corresponding

data is being filtered, projected out or joined with other data tuples.

•	 Tag Query Language. Finally, a comprehensive tagging system must provide a

high-level language to attach tags to streaming data, to query them or to specify

that enriched (with tags) results should be produced for a given continuous

query. For this purpose, we introduce a declarative Tag Query Language (or

4Here, we assume that tick-tags are attached to streaming data that has a location attribute.

78

short TAG-QL), which provides an intuitive interface for users to perform the

above-mentioned actions.

4.1.4 Our Contributions

The contributions of our Stream Tag Framework (STF) can be summarized as

follows:

1.	 Tag Model. We introduce the notion of the tick-tag metadata for tagging various

streaming objects (e.g., tuples, data values, etc.). Tick-tags are embedded inside

data streams and support a wide variety of user-based semantics.

2.	 Tag Query Language. We introduce the Tag Query Language (or short, TAG

QL) that enables declarative specification and querying of streaming tags.

3.	 Tag-Oriented Query Processing. In STF, users can attach and explicitly query

tick-tags. We describe the tag-oriented query algebra that enables this func

tionality.

4.	 Tag-Aware Query Processing. STF also supports implicit querying of tags,

where continuous query results are enriched with the tags of the base data. We

describe the extensions to the continuous query algebra to support the correct

propagation of tags in a query pipeline.

5.	 Implementation and Experiments. To illustrate the feasibility, STF has been

implemented in a prototype DSMS called CAPE [8]. Our experimental analysis

shows scalability and benefits of the tick-tag approach, and the costs associated

with the tag-awareness.

4.2 Stream Tag Framework Overview

Figure 4.1 shows a data stream environment with the STF (integrated inside

DSMS) and the streaming tick-tags embedded inside data streams.

http:Experiments.To
http:tick-tags.We
http:Processing.In
http:Language.We
http:Model.We

79

Data
stream

Data
tuples

Tick-tag

DSMS
Users/Taggers

(client side)

STF

Tag-oriented queries

Tag-aware queries

TAG-QL

TAG-QL

TAG-QL

TAG-QL

User/Tagger
(server side)

Tick-tag results

Tuple results
(based on semantics

of tick-tags)

Enriched tuple
results

Figure 4.1. Stream Tag Framework (STF) overview.

We consider a centralized DSMS processing long-running queries on a set of data

streams. A continuous data stream s is a potentially unbounded sequence of tuples

that arrive over time. Tuples in the stream are of the form tuple = [sid, tpid, A, ts],

where sid is the stream identifier, tpid is the tuple identifier, A is a set of attribute

values, and ts is the timestamp of the tuple.

A user u ∈ U can attach tags t ∈ T to streaming objects o ∈ O that can be of

any granularity. A taggable streaming object o can be a (sub-)stream, a tuple, an

attribute of a tuple, or a data value. An object is a piece of data to which additional

information (via a tag) can be attached. An object o can have multiple tags at any

given time and can be tagged in two ways: by a user providing the streaming data

(on the client side) or by a user of the DSMS querying the streaming data (on the

server side). Tagging itself can be performed in an ad-hoc manner, or it can also be

continuously executed using a special type of continuous query called the continuous

tagging query (see Section 4.3.5).

4.3 Streaming Tags (or Tick-Tags)

4.3.1 What is a Tick-Tag?

Tick-tags are metadata tuples that attach additional information (a keyword,

a label or a desciption) to streaming data objects. Tick-tags precede the streaming

80

objects they are applicable to (i.e., the physical data tuples containing the information

to which the tag is attached), and the tuples in data streams are completely unaware

of the tick-tags. In comparison to traditional keyword metadata, tags are not chosen

from a controlled vocabulary defined by a single user, by an organization or by a

third party [187, 188]. Instead (as it is also commonly done on the Web), users in

their role as taggers can create tags of any content and attach them to streaming

objects at any time. As a result, tick-tags contribute to a development of a real-time

and continuously evolving folksonomy [164] – a rich way to characterize real-time

data and means to discover interesting things about this data based on exploiting the

collective knowledge of possibly many users.

Tick-tags have several distinguishing characteristics compared to their traditional

counter-parts – the (static) tags used for tagging web pages, images, files, or relational

data. Table 4.1 gives a brief comparison of dynamic tick-tags against traditional static

tags.

Table 4.1

Traditional tags versus streaming tags.

Property Traditional Tags Streaming Tick-Tags

Persistence Permanent Transient

Locality (Most likely) stored separately from

data

Interleaved with data

Access Random access Sequential access

Input Rate Low High

Size Finite Potentially infinite

Tag

Processing

One-time Continuous

As one can observe from Table 4.1, tick-tags inherit many characteristics of the dy

namic streaming data that they are associated with. Namely, they are infinite, they

arrive online, stay in DSMS only for a limited time and eventually get discarded by

the system.

http:tick-tags.In

81

4.3.2 Tick-Tag Physical Design

The physical schema of a tick-tag is shown in Figure 4.25 .

•	 Tagger Identifier (TID) depicts the source of the tick-tag. The id of a tagger is

globally unique and is determined by the system.

•	 Applicability describes the stream objects to which the tag is applicable to, e.g.,

a data value or a collection of tuples. To keep the objects’ description compact,

regular expressions [189] similar to [38, 105] are used in this field.

•	 Content is a string datatype and stores the actual tag value. Given that

STF supports an uncontrolled vocabulary, this could be anything: a keyword

“Accident”, a description “Nice Weather” or an emotional expression “Happy”,

“Sad”.

•	 Type is used by the framework to classify streaming tags. There are a number of

taxonomies for tags in the literature, e.g., [190,191]. Although not the primary

focus of this paper, we have added this field in the tick-tag schema to support

future applications, such as reality mining [192] and tag-based data classification

[193]. Our current implementation considers the following five types of tags,

while the other types and classification algorithms will be a part of our future

work:

–	 Objective: Objective means a description, that does not depend on a par

ticular user. For example, “Bad Smell” is not an objective tag (because

one needs to know who thought it was bad), whereas “3 Car Accident”

or “Electricity Loss” are objective tags.

–	 Subjective: Subjective tag implies a personal opinion. For example, “Nice”,

“Awful”, “Interesting”.

–	 Physical : This type of tag describes something physically. For instance,

“Broken Light” or “Icy Road”.
5The fields not specified by users are shaded in grey.

82

Tagger	 Time Applicability Content Type Sign Lifespan Mode Identifier stamp

Stream(s), Tuple(s),
Attribute(s) ...

Blah ... TID
O

C
+

-

explicitly specified by tagger

Figure 4.2. Tick-tag schema.

–	 Acronym: This type of tag is an acronym or a lingo that might mean

various things. For example, “ZZZ” might mean going to sleep, “GFC” –

going for coffee, and “911” – emergency or danger.

–	 Junk : The tag is meaningless or indecipherable. For example, “J” or

“FJKDSLAD”.

•	 Sign. Since taggers use diversified vocabulary, often it may be difficult to gen

erate an overall opinion or characterization based on the tags’ content [191].

Therefore, we have added a sign field to serve as a qualitative description of a

tick-tag. Sign allows tags to rate and express opinions in a more shareable vo

cabulary than conventional tag content. Plus(+) or minus(-) values in the sign

field easily characterize whether a tag has a positive(+) or negative(-) context.

By counting the numbers of positive and negative tags, a representation of the

overall opinion (or a “reputation”) or an assessment of the tagged information

can be known. Tags without any value in the sign are considered as neutral and

serve as regular content tags.

For example, consider an online auction system such as eBay [194]. This sys

tem monitors bids over items available for auction. One can imagine an Auction

stream containing items to sell with a schema: Auction(seller, product, prod

uct features, start price, time). A collection of tags with different signs appli

cable to the objects in the stream Auction can give various interpretations as

shown in Figure 4.3. The system could interpret the collection of positive and

negative tags for objects here as:

83

Auction

Schema

tuple

seller product product_features start_price time

3:00:00AM 145 Cell Phone
G12

Motorolla,
Touch screen $100.00

10 tags 3 tags 20 tags 40 tags 5 tags

+ - -- +- +- + +
0 16 4 1 539 08 2 3

Figure 4.3. Interpretations based on tag signs.

–	 “Most people like the seller.”6

–	 “Most people like the features of the product.”

–	 “Most people don’t like the start price of the product.”

The more tags there are, the more diverse interpretations can be made. A sign

feature, thus, serves as a “bridge” for many diverse tags making them more

shareable and enabling richer tag semantics.

•	 Lifespan. The lifespan of a tick-tag is the time interval during which the tag

is active. A user specifies for how long (in the near future) the tag should

be applicable to a streaming object. After the tag’s lifespan expires, the tag

becomes inactive and the system garbage collects it. If only a single instance’s

applicability is wanted (i.e., one pass through the system together with the

data without any temporary delay in the system), the keyword “I” (meaning

“Instant”) is specified in the field.

•	 Mode. The tag mode indicates a user’s preference regarding the combination

of the tag with the earlier tags (those tags that are in the system and whose

lifespans have not yet expired). “O” indicates “Overwrite”, and “C” means

“Combine”7 respectively. Taggers can specify the mode with respect to their

tags only, i.e., a user’s tag cannot overwrite the tags generated by other users

(taggers) applicable to the same streaming objects. We use TID field to track

6This could be based on the services or the quality of the products users might have purchased from the seller before.
7Different semantics can be used to combine tick-tags.

84

the sources of tags (i.e., the taggers) for this purpose. This field enables users

to retract their earlier tags or to add more elaborate descriptions via multiple

tags.

•	 Timestamp. Timestamp describes the time when the tag was generated by a

user (i.e., the tagger).

4.3.3 Tag Query Language (TAG-QL)

To enable users to attach and query streaming tags in an intuitive manner, STF

provides a declarative language called the Tag Query Language (or TAG-QL for

short). The syntax for attaching a tick-tag to a streaming object is shown below8:

ATTACH TAG <tag_content>

TO <object_description>

(WHERE <condition_description>)

(WITH

TAG_SIGN = < + | - >

TAG_LIFESPAN = <lifespan_value>

TAG_MODE = <mode_value>)

The <object description> describes the applicability of the tag, namely the object(s) to

which the tag is being attached to. The WHERE <condition description> clause is used to

describe the conditions that the tagged data must satisfy. Implicitly, the WHERE clause

also conveys the “location” in the stream, where the tick-tag will be inserted. Since

tick-tags always come before the data they are applicable to, the WHERE clause states

which data the tag should precede in the stream. The <condition description> can be a

simple condition or a nested sub-query. Other TAG-QL statements are illustrated in

Table 4.2. We will describe them in detail and give query examples in the rest of the

paper.

8The WHERE... and the WITH... clauses are optional here.

85

Table 4.2

Overview of key TAG-QL statements.

Syntax Meaning

ATTACH TAG ... Attaches a tag to a streaming object

SELECT TAGS ... Selects tags satisfying a search predicate

SELECT TAGGED OBJECTS... Selects tagged objects

SELECT ... WITH TAGS Returns tag-enriched query results

4.3.4 Tick-Tag Examples

Here, we present several tick-tag examples to illustrate the syntax and the seman

tics of streaming tick-tags. Consider a data stream Patients(sid, pid, measure, loc,

time) transmitting the real-time health measurements and the current locations of

patients. The following tick-tags may be generated9:

t1: !|-,-,-,loc.value|Panic Attack|!|-|1 min|O|!

represents a tag attached to the current location value of the user, and indicates

that the user is having a panic attack at her current location. The user feels negative

about this experience (- sign), which may also explain the changes in the health

measurements (e.g., increase in the heart rate of the patient). The lifespan of the

tag is 1 min, and it overwrites any other tags associated with this location value

previously sent by the user. This is an example of a tag attached to a specific data

value10 .

t2: !|-,-,measure,-|Running|!|+|30 min|O|!

is a tag attached to the heart rate measure attribute in the stream, and indicates

that the user is currently running, which is something the user likes to do (as described

by the negative ‘+’ sign). The lifespan of the tag is 30 min (possibly indicating how

long the user intends to exercise), and it overwrites any other tags associated with

9We only illustrate the fields specified by users. The system fields (that are not exposed to users) are denoted by !.
10To attach a tag to an attribute value “<attribute name>.value” syntax is used, where <attribute name> is

replaced with an actual attribute name.

86

the heart rate measure attribute specified by the user. This is an example of a tag

attached to a tuple attribute. Using TAG-QL, the above tags are expressed as follows:

t1	 ATTACH TAG

‘Panic attack’ TO

Patients.loc.value

WITH

TAG SIGN = ‘-’ AND

TAG LIFESPAN = 1 min AND

TAG MODE = OVERWRITE

t2	 ATTACH TAG ‘Running’

TO Patients.measure

WITH

TAG SIGN = ‘+’ AND

TAG LIFESPAN = 30 min AND

TAG MODE = OVERWRITE

The absence of the WHERE... clause in the TAG-QL statements above indicates that

there are no constraints regarding which data values the tick-tags must precede. Thus,

the tick-tags will be inserted into the stream interleaved with whatever the tuples

happen to be transmitted at the time.

4.3.5 Tick-Tag Generation

Users can create tick-tags manually (in an ad-hoc manner) as described above.

Alternatively, users can perform continuous tagging by instantiating a special type

of query, called the Continuous Tagging Query. A novel operator, called the Tagger

operator always exists in such query. This operator consumes an input data stream,

continuously evaluates the tagging condition, and produces the corresponding tick

tags that get inserted into the output stream and represent the tags being attached to

the following after them data. We describe the physical implementation of the Tagger

operator in Section 4.5. The processing of the tagging query is almost identical to

an ordinary continuous query, except that the data tuples in the output stream are

now interleaved with tick-tags. An example of a continuous tagging query expressed

in TAG-QL is shown below:

ATTACH TAG ’Dangerous’

CONTINUOUSLY

TO Patients.pid.value

http:tick-tags.An

87

WHERE (SELECT pid

FROM Patients

WHERE measure > 80)

WITH

TAG_SIGN = ’-’

The keyword CONTINUOUSLY in the TAG-QL statement above indicates that the tagging

will be executed continuously, that is, a tag will be attached to every patient id (pid)

value with the heart rate above the specified threshold. Specifically, a tick-tag (with

the value “Dangerous”) will be created and inserted into the stream ahead of every

tuple with the heart rate measure > 80 for the entire duration of the tagging query

execution.

4.4 Tag-Based Query Processing

We distinguish between two types of tag-based query processing in STF, namely

the tag-oriented query processing and the tag-aware query processing.

4.4.1 Tag-Oriented Query Processing

Expressing Tag-Oriented Queries in TAG-QL

In tag-oriented query processing, users or applications query tick-tags explicitly.

Explict tag querying is useful for the following two purposes: (1) to locate tags where

the tag values themselves are of interest, e.g., Show me all tags which have a sign =

‘-’ ; and (2) to locate tags where the associated base data values are of interest, e.g.,

Show me all data tuples that are tagged with the tags that have a value = ‘dangerous’.

Such explicit querying gives the ability to see what other streaming objects have been

tagged with the same keyword or a sign, as well as browse through the tags related

to the same streaming objects. For specifying such queries, TAG-QL provides “SELECT

TAGS” and “SELECT TAGGED OBJECTS” statements. Queries Q1 and Q2 shown in Table 4.3 are

examples of such tag-oriented queries.

88

Table 4.3

Examples of tag-oriented queries.

Syntax Meaning

Q1: SELECT TAGS

FROM Patients

WHERE OBJECT = Patients.measure

AND

TAG SIGN = ‘-’

Finds all negative tags attached to the heart rate measure

attribute in the Patients stream

Q2: SELECT TAGGED OBJECTS

FROM Patients

WHERE TAG = ‘Emergency’

Returns tuples that contain objects tagged with word

‘Emergency’ in the stream Patients

Tag-Oriented Query Algebra

Here, we describe several tag-oriented operators introduced into the continuous

query algebra. Let t denote a tag, o – a streaming data object, T – a stream of tags,

O – a stream of data objects, and p – a search predicate, which can be either on data

objects (denoted as po) or tags (denoted as pt). The following tag-oriented operations

are defined in STF11:
T '
r

Tagger Operator [TO(O, po, t) → O , where ∀ ti ∈ T ', ti = t]. Tagger operator

is a unary operator that processes tuples on-the-fly, by attaching a tag t to an object

o ∈ O, if o satisfies the condition po. As a result, the tagger operator inserts a tag t

into the output stream preceding the object o. Figure 4.4(a) shows an example where

the object o2 gets tagged with the tag t.
T
r

Tag Selection [TS (O , pt) → T ']. Tag selection is a unary operator that returns

tags T ' (T ' ⊆ T) (without their respective objects) that satisfy the tag search pred

icate pt. Figure 4.4(c) illustrates an example, where tags t1 and t2 get returned as

results by the tag selection operator based on the search predicate pt.

Tt

11
r r

We denote an object o tagged with a tag t as o , and a stream with embedded inside it tick-tags as O .

89

o2 satisfies po

TOo1o2 o1to2

(a) Tagging

t1 and t2 satisfy pt

TJ

stix

t1

t2t3

o1

t1t2

o2o3

o4o5

o1o2o3o4

t1 and t2 “join” based on E

42 11

(b) Tag Join

t1 and t2 satisfy pt

TS t1o1t2o2 t1 t2 TOS o1t2o2 t1 o1o2

(c) Tag Selection (d) Tagged Object Selection

t1 and t2 “are the same” based on E

TGt1o1o2o3t2t3 o4o5

stix

t1t2a1t3a2

t1 o1 o2 o3

t2 o4

t3 o5

operator
state

42 11

a1

a2

aggregate values

(e) Tag-Based Aggregation

Figure 4.4. Tag-oriented algebra (examples).

T
r

Tagged Object Selection [TOS (O , pt) → O ']. Tagged object selection is similar

to tag selection operator (TS), except that instead of tags it returns the tagged

objects O ' ⊆ O, whose tags satisfy the selection predicate pt (for example, objects o1

and o2 in Figure 4.4(d) based on their respective tags t1 and t2). A variant of this

operator returns the tagged objects together with their respective tags.
' TT1 T2
rr r

Tag Join [TJ (O1 , O ' , where T ' = E(T1,T2)�O2 , E) → = ∅]. Tag join is a binary

operator that joins two streams of objects, interleaved with tick-tags, based on the tag

join condition E. The join condition E can be a tag equivalence, or a tag similarity,

or some other tag join criteria. For example, a tag equivalence function TE (t1,t2)

checks for the content equivalence of two tags, which can be word-based “Accident”

= “Accident”, or semantics-based (e.g., when words mean the same thing) using the

system’s dictionary12, e.g., “Accident” = “Disaster”, or by co-occurrence, if both

tags contain the same objects. One of the simplest co-occurrence methods is using

STF maintains the internal dictionary to support tag classification, tag equivalence and tag similarity function. 12

90

absolute co-occurrence, that is counting the number of times two tags are assigned to

the same object. The similarity can also be estimated based on relative co-occurrence,

also called “tag overlapping”, and can be measured by Jaccard coefficient [195]. If

A and B are the collections of stream objects described by two tags, relative co

|A∩B|occurrence is then defined as: JC(A, B) = . That is, relative co-occurrence |A∪B|

is equal to the division between the number of objects in which tags co-occur, and

the number of objects in which appear any one of two tags. For example, by this

definition, the tag “Fireworks” could be equivalent to the tag “Cool”, if users had

tagged all objects annotated with the term “Fireworks” with the tag “Cool.”

The result of the tag join operator is a single stream of tagged objects whose

tags join based on the join function E. Figure 4.4(b) shows an example of a tag

join operator output. Here, tags t1 and t2 from the two input streams join based

on function E, and are sent to the output stream followed by their respective tagged

objects o1 -o4. Note, that although the tags join, physically they are not combined into

a single tick-tag tuple. The reason for such design is the need to preserve the correct

base tags’ semantics. Since the tag join is based on only the tick-tag ’s content field,

we maintain the original tick-tags with their values (for attributes like lifespan, sign,

mode, etc.,) to ensure that the user-specified tag semantics is enforced correctly even

after the tags join. After tag join, an additional streaming element is inserted into

the stream – the so-called “streaming tag index” tuple (or short “stix ”). The purpose

of the stix is to store the references of the joined tags (which are placed consecutively

together in the output stream) to their respective base data tuples. In the tag join

example in Figure 4.4(b), the stix contains the following information: 42|11
13 . The

subscripts (1 and 2) are the indicies to the subsequent after the stix tick-tags, i.e., “1 ”

refers to the first tick-tag and “ 2” to the second tick-tag, respectively. The values in

each index refer to the offsets of the data tuples to which that tick-tag applies to.

Thus, the above stix means the following: the first tick-tag applies to the tuples 1-3

(o1 -o3) and the second tick-tag applies to the tuple 4 (i.e., o4).

The stix illustration should be read from right to left. 13

91

The main idea of the tag join operator is to combine two streams of tagged data

based on the similarity of their embedded tags’. This operation can be useful for

applications searching for related (based on the tags) streaming data that may arrive

from various sources.
TT
rr

, E, Gagg Tag-Based Aggregation [TG(O T)→ O ']. This operator groups objects
agg

GT

in a stream by their tags (the groups are based on the tag function E) and incre

mentally updates the value of a given aggregate for each tag-based group (see Figure

4.4(e)). For every arrived tuple, the operator first adds it to the state buffer, and

determines which group it belongs to (based on its tag’s content and the tag similar

ity function E), and then returns an updated result for this group (preceded by the

subgroup’s corresponding tags), which is understood to replace a previously reported

answer for this group. It may happen that a data tuple may belong to several groups

based on the attached tag to it. In this case, the operator picks the “closest” (again

based on the function E) tag group for the streaming object and updates the answer

for that group. Objects without any attached tags can be either completely ignored

by the operator or can be placed into a separate “non-tagged” objects group, for

which the result is maintained similar to the tag-based groups. In the second case, a

dummy tick-tag (with an empty content) is inserted prior to sending the answer to

preserve correct semantics – to ensure that the earlier outputted tags are not applied

to this aggregate answer.

4.4.2 Tag-Aware Query Processing

Expressing Tag-Aware Queries in TAG-QL

In addition to the explicit querying of tags, users and applications may find it

useful to receive continuous query results that are “enriched” with the tags associated

with the original data, based on which the query results were produced. We call this

functionality “implicit tag querying” and achieve it by performing the tag-aware query

processing. To indicate that enriched results should be outputted for a given query,

92

Table 4.4

Examples of tag-aware queries.

Syntax Meaning

Q3: SELECT pid, loc, time

FROM Patients

WHERE measure > 80

WITH TAGS

Select-project query that will produce results with interleaved

tags of the base data.

Q4: SELECT A.pid, B.pid

FROM Patients A [1 min],

B [3 min]

WHERE Dist(A.loc, B.loc)

WITH TAGS

Animals

< 0.2

Join query that will produce results with interleaved tags of

the base data.

a user simply adds a “WITH TAGS” statement when specifying a continuous query to the

system as depicted in Table 4.4.

One of the immediate challenges in tag-aware query processing is the support for

correct propagation of streaming tags through the continuous query pipeline, as data

objects are being filtered, joined, or projected out. If one thinks of a tag as a form

of mark-up on the streaming data, the key question here is how should that mark-up

be transferred into the results of a query. We enable this functionality by adding the

tag-awareness to continuous query operators.

Tag-Aware Query Algebra

Projection is an unary operator that processes tuples by discarding unwanted at

tributes. This operator simply propagates tick-tags and thereafter the projected tu

ples. If a tick-tag applies only to the projected attributes, it is discarded by the

project operator as well.

Selection is a unary operator that drops tuples that do not satisfy the selection

condition. A select operator delays a tick-tag propagation until at least one of the

93

tagged tuples that follow it satisfies the selection predicate. If all tagged tuples are

filtered, their corresponding tick-tag is discarded then as well.

Join is a binary operator that joins the tuples of its input streams. If a tuple joins

with another tuple, before being sent to the output stream the tags of the base tuples

are physically arranged in a similar fashion as in the tag-oriented join (discussed in

Section 4.4.1), with the following two main differences:

1. Since	 the data tuples (after the join) are physically combined into a single

physical tuple, the tick-tags attached to the base data tuples will now refer to

this (new) joined tuple. This reference is stored in the stix metadata tuple

(described in Section 4.4.1) that gets inserted prior to the tick-tags.

2. In addition to maintaining the tuple-level granularity reference in stix, we now

also store the references to the joined tuple attributes (that correspond to the

base tuples’ attributes) that the tick-tags apply to.

Figure 4.5 illustrates an example of a tag-aware join output.

x
A

B

TAJ

stix

t1

t2

t1t2

tuples x and y join

(1:1,4-5)2 (1:1-3)1

y

c1b1a1

f2e2a1

c1b1a1 f2e2
1 2 3 4 5

tuple

tuple

Figure 4.5. Tag-aware join example.

Here tuples x and y from streams A and B join based on the equality of the first

attribute value a1. Their respective base tuples’ tags t1 and t2 precede the join tuple,

and the stix stores the following information (1:1,4-5)2 |(1:1-3)1 , where “(1:1-3)1” means

the first (after the stix) tick-tag t1 applies to the first tuple and to the attributes 1-3

in the join tuple. Similarly, “(1:1,4-5)2” means that the second tick-tag t2 applies to

the first tuple and to the attributes 1, 4 and 5 in the join tuple, respectively.

Aggregation. In a tag-aware aggregation operator, each attribute domain is parti

tioned into attribute sub-groups, where each sub-group contains tuples with the same

http:Aggregation.In

94

attribute value. A result is calculated for each sub-group and then sent to the output

stream preceded by the collection of tags that have arrived and have not yet expired

from the window and are applicable to any object in that sub-group. The motivation

for such comprehensive tag propagation is to make all tags associated with the base

data (used to compute the outputted aggregate value) available with the aggregate

query result.

4.5 Physical Implementation

Here, we describe the physical implementation of two key operators in the tag-

oriented algebra, namely the tagger operator and the tag join operator.

Tagger Operator : This operator is designed to continuously attach tags to stream

ing objects that satisfy tagging predicate po. Conceptually, the tagger operator is

similar to the selection operator, except that it doesn’t discard the tuples that don’t

satisfy the predicate po, but instead forwards them to the output stream without

inserting a tick-tag ahead of them. Figure 4.6 shows the pseudocode for the tagger

operator execution.

For every arrived data tuple, the tagger operator evaluates the tagging predicate

to determine whether the streaming object should be tagged (Line 3). If yes, then a

new tick-tag is created with the tag properties specified as parameters to the operator

(Line 6). The operator assigns the current query id as the tagger identifier (tid) in

the tick-tag (Line 5), and the time the tick-tag was created is stored in its timestamp

field. The newly created tick-tag is then forwarded to the output stream followed by

the data tuple (Lines 7-8). If the tagger operator receives a tick-tag as its input, it

simply propagates it to the output stream (Line 11). One of the optimizations that

can be employed by the tagger operator (the pseudocode is not shown), is to cache

the last outputted tick-tag. If the next tuple satisfies the same tagging condition,

and the regular expression in the applicability field of the already outputted tick-tag

is suitable for the new tuple, then no additional tick-tag needs to be created and

http:tick-tag.If

95

TaggerOperator (po tagging predicate, c tag content,

s tag sign, l tag lifetime, m tag mode)

01 for (every new element e received from input stream)

02 if (e is a tuple) // input is a tuple

03 if (e satisfies po)

04 ts = geTime(now)

05 tid = getCurrentQueryId()

06 t = CreateNewTickTag(tid,P ,c,s,l,m,ts)

07 send t to output

08 send e to output

09 else send e to output

10 else // input is a tick-tag

11 send e to output // propagate tick-tag

Figure 4.6. Tagger operator algorithm.

sent to the output stream. The tuple will simply be forwarded to the output stream.

The understanding here is that several tuples share the same tick-tag and follow it

consecutively in the output data stream.

Tag Join : The TagJoin algorithm is shown in Figure 4.7. We present the TagJoin

as a sliding window E-based join algorithm, where E is a tag join function (which

can be a tag similarity, a tag equivalence function or any other tag join criteria as

described in Section 4.4.1). In our pseudocode we describe the nested-loop version

of the TagJoin. The optimized version of the operator employing an index on tuples

and tick-tags in the window is a part of our future work. The TagJoin maintains a

time-based sliding window. We employ a list structure to link all tuples and their

tick-tags in a chronological order (most recent at the tail). Tick-tags are interleaved

with tuples in the window, and, thus, the tuple list is “partitioned” by the tick-tags

into segments, where the tuples in each segment may be tagged by the preceding them

tick-tags. A collection of tuples between any two non-adjacent collections of tick-tags

96

is called a tagged segment. We discuss the processing of tuples and tick-tags from the

input stream A. The processing for input stream B is similar due to the symmetric

execution logic.

Tag Collection. As tick-tags arrive, they are stored in the sliding window. They

represent the labels (annotations) for the upcoming data tuples (Lines 3-4).

Invalidation. When a new data tuple eA is retrieved from the input stream A, it is used

to invalidate the expired tuples from the head of the window of the stream B (Line

7). If all tuples from a tagged segment have been invalidated, their corresponding

tick-tags are purged from the head of the window as well.

Probe. After the invalidation is done, the tick-tag(s) preceding the tuple eA are used to

probe the window of the stream B. For concreteness of discussion, let’s consider there

is a single tag tA in the window of stream A that precedes tuple eA and represents

the tag attached to eA. If tA joins with tick-tag tB from stream B based on the

tag join function E, the tick-tags are placed consecutively together followed by their

corresponding base tuples (see Section 4.4.1 for detailed explanation and an example

of this step). The stix metadata tuple is then created (Line 17) to store the reference

to the base tuples and is inserted into the output stream ahead of the “joined” tick-

tags. The stix, the tick-tags, and their respective tuples are then forwarded to the

output stream (Lines 18-19). If the tag join is empty (i.e., the tags do not join based

on E), then neither the tick-tags nor their respective tuples are forwarded to the

output stream.

4.6 Experimental Study

4.6.1 Experimental Setup

We have implemented our proposed Stream Tag Framework in a DSMS prototype

called CAPE [8]. We execute CAPE on Intel Pentium IV CPU 2.4GHz with 2GB

RAM running Windows Vista and 1.6.0.0 Java SDK. For data, we use the Network-

based Moving Objects Generator [181] to generate a moving objects dataset on which

http:Collection.As
http:segment.We

97

TagJoin (A stream, B stream)

01 WA ← join time window for stream A

02 WB ← join time window for stream B

03 if (a new element eA is received from stream A)

04 if (eA is a tick-tag) // input is a tick-tag

05 TagCollection(eA, A, WA)

06 else if (eA is a tuple) // input is a tuple

07 Invalidate(eA, B, WB)

// retrieve tags that have arrived prior to tuple eA

08 TA ← GetTags(eA)

09 Probe(TA, A, WA, B, WB , E)

10 if (a new element eB is received from stream B)

// Similar to above

Probe (TA - set of tick-tags from the current stream,

A - current stream, WA - current stream window,

B - opposite stream, WB - opposite stream window,

E - join condition)

11 TB ← GetTags(B[WB])

12 for (every tick-tag tA ∈ TA)

13 for (every tick-tag tB ∈ TB)

14 if (Join(tA,tB,E) // tags join based on E

15 SA ← A[WA,tA] // objects tagged by tA

16 SB ← B[WB,tB] // objects tagged by tB

17 stix ← CreateNewStix()

18 send stix to output

19 send tA, tB, SA, SB tuples to output

Figure 4.7. Tag join operator algorithm.

98

Tagger
Operator

Tag
Selection Tag Join Tag-Aware

Join

(a) Query 1 (b) Query 2 (c) Query 3 (d) Query 4

Figure 4.8. Experimental Queries.

we evaluate our experimental queries. The input to the generator is the road map of

Worcester county, MA, USA. The output of the generator is a set of objects that move

on the given road network and continuously send their location updates. We generate

100K of moving objects, which represent cars, cyclists, and pedestrians. Each tuple

in the stream consists of the following fields: update type, object id, report number,

object type, timestamp, current location, speed, and the location of the next des

tination node (see [181] for more details on the generator’s output). We break the

moving objects stream up into several streams based on the ids of objects. Such setup

simulates objects sending updates to different service providers or base stations and

allows us to test join queries. Tuples’ arrival distribution is modeled using a Poisson

distribution with a mean tuple inter-arrival rate equal to 10 milliseconds. Unless men

tioned otherwise, the tagging is done at the tuple granularity and the tick-tags arrive

to the DSMS already interleaved with the streaming data. We chose the tuple level,

because it is likely to be the most common granularity of tagging. For comparison,

we have implemented alternative tagging solutions described in Section 4.1.2, namely

the table approach, the extended data tuple approach, and the streaming XML ap

proach. In this section, we refer to them as TABLE, TUPLE, and XML respectively.

Our technique is abbreviated as TICK-TAG.

For tag content, we employ the “emotion tags” dataset from the ManyEyes appli

cation [196] supported by IBM. Figure 4.9(a) shows the “tag cloud” for the emotion

tags used in our experiments (with more frequent tags depicted in larger fonts). Fig

ure 4.9(b) illustrates the overall tag distribution, and Table 4.5 lists some of the

examples of the tag values.

99

(a) Tag cloud (emotion tags)

(b) Tag distribution (emotion tags)

Figure 4.9. Tag properties.

Table 4.5

Tag examples used in the experiments.

Most frequent emotions tags

ManyEyes dataset [196]

– happy, sad, jealous, self-loathing, angry, elated, content, lonely, de

pressed, frustrated, aggravated, exhausted, grateful, sleepy, anxious,

sorry, excited, anxious, loved, peaceful, joyful, tipsy, affectionate, cool,

alright, stressed, lost, confused, outraged, despaired, hopeful, sympa

thetic, relaxed, unimpressed, ...

Four types of queries are used in our experiments which are depicted in Figure

4.8. Query 1 attaches tags (with values chosen at random) to streaming data tuples,

with the tagging predicate being on the current location of moving objects. We use

Query 1 to test the performance of our proposed tagger operator. Query 2 selects

the tags satisfying the tag search predicate (the predicate is based on two types of

emotions: “sad” and “angry” in a specific geographic area14) on the incoming stream

with already interleaved tags. It is used to test the tag selection operation. Query

14A query of the form: “Continuously monitor all emotional tags (attached by people to their real-time information)

that fall into ‘angry’ and ‘sad’ categories in downtown” may be executed by the law enforcement authorities to

prevent potential violence or accidents in the city.

100

3 joins two streams of tagged tuples based on the tag equality function E, which is

defined as semantics-based equivalence. Specifically, we have partitioned the emotion

tags from the dataset [196] into 5 separate groups based on the type of the emotion,

e.g., “happy”, “sad”, “neutral”, “angry”, etc., and in the tag-based join, we perform

the join based on whether the tags belong to the same emotion group. For example,

if tags “Joyful” and “Excited” belong to the same group “happy emotions”, then

the two tags join, if they happen to arrive at the same time and are in the windows

of the streams being joined. This type of query may be useful to find people who

experience similar emotions at the same time, and can possibly help correlate it to

their location or a nearby event. Finally, Query 4 performs a tag-aware join on two

incoming streams of location updates based on the mutual proximity of the moving

objects, e.g., two objects join, if they are within 0.1 miles from each other. Query 4

is used to test the cost of tag-awareness in the continuous join operator.

The real-life application (based on the data, tag values and queries described

above) that we consider in our experimental setting is a geo-social networking appli

cation, e.g., [18, 197]. Here, users may want to tag their location updates with their

emotions to update their friends on their well-being, or possibly look for someone to

meet and socialize with in a given geographic area.

4.6.2 Cost of Tagger Operator

Figure 4.10 compares the cost of our proposed Tagger operator to the cost of a

regular Selection operator. In the case of selection operator, we process a regular data

stream (without any tick-tags interleaved). We use Query 1 (from Figure 4.8) in this

experiment. The selection predicate here is equivalent to the tagging predicate. The

percentage of tagged objects is varied from 0% – none of the tuples are tagged to 100%

– meaning all tuples are tagged (the same selectivity is for the selection operator). We

use the selection operator here as the cost baseline to which we compare the tagger’s

cost while varying the tagging frequency. The difference between the selection and the

101

tagger is as follows: (1) the selection operator discards the tuples that don’t satisfy its

predicate, whereas the tagger operator simply propagates them to the output stream

(without tagging); (2) if the predicate is satisfied, the tagger inserts a tick-tag prior

to the data tuple being tagged, whereas the selection simply propagates this tuple to

the output stream. The cost for the selection operator increases, as the selectivity of

the operator increases, largely due to more work being done by the operator when

more tuples have to be propagated up-stream. Similarly, for tagger operator, as the

percentage of objects being tagged increases, the tagger operator’s cost increases.

This is due to a larger number of tick-tags being generated (in the case of 100%

tagging - twice as many streaming elements are enqueued to the output stream. The

cost of the tagger is larger than of the selection (which is expected), on average, by

1.08x for 0% tagging15 (when no tick-tags are inserted) by 1.8x for 100% tagging

(where for every data tuple a tick-tag is inserted).

Figure 4.10. Cost of tagging operator.

15There are minor execution overheads in the tagger operator that are not present in the selection – e.g., propagation

of (un-tagged) data elements upstream.

102

4.6.3 Comparison of Tick-Tag Approach Against Alternatives

The goal in this section is to compare the TICK-TAG approach against the al

ternative tagging solutions (described in Section 4.1.2), namely, the TABLE, the

TUPLE, and the streaming XML methods. All these solutions were implemented in

CAPE and re-use as much of the same code as possible for fair comparison. We use

Query 2 (Figure 4.8) in this experiment, and present the average output rate and

memory utilization results when performing tag selection using these methods. The

query is a square region inside which we continuously monitor moving objects’ tags.

For the focal point of the tag selection query, we choose a random location on the

road network (the same for all four cases) and consider it as the center of the query.

The focal point the query is static, hence both the tick-tags as well as the moving

objects that appear in the query region are the same for all four cases. The space is

represented as the unit square, the query size is a square region of side length 2.

For TABLE tagging approach, we have a separate stream transmitting tick-tags

that continuously arrive to the system. For every arrived tick-tag, we process it by

inserting it into the global tag table and initiating an evaluation on the streaming

data tuples to determine if the newly arrived tag is applicable to them. For the

TUPLE approach, we have added an additional attribute in the stream’s schema to

store the tag value (in addition to all other tag parameters, e.g., mode, lifetime, to be

fair in comparison with other approaches). For XML approach, we have embedded

“xml tags” inside streaming tuples that are interleaved with regular data tuples, and

process them when they arrive to the system16. Figures 4.11 and 4.12 compare the

alternative approaches when varying the percentage of moving objects tagged from

0% to 100% in terms of average output rate and memory usage, respectively.

Figure 4.11 shows the average output rate results for the four different alternatives.

In the figure, we measure the average number of result tuples produced per time

unit. In Figure 4.12 we measure the memory usage by these different solutions over

16In the implementation, one XML tag is represented by two physical tuples – one storing the start xml tag and the

other – the end tag.

103

Figure 4.11. Comparison of alternatives (output rate)

time. We can see from both Figures 4.11 and 4.12 that the TICK-TAG approach

results in higher output rate and smaller memory usage compared to the alternatives.

The relative performance of TICK-TAG over the other tagging approaches increases

with the increase of the number of streaming objects that can share their tags. The

main reason is that the search cost of TICK-TAG is much lower than updating in

search costs (to find the tagged objects) in the TABLE approach. Although XML and

TUPLE approaches also take a “stream-centric” approach for tag implementation,

they do not exploit the commonalities between the different tuples, and thus result

in more memory being used and higher processing cost.

Figure 4.12. Comparison of alternatives (memory)

104

4.6.4 Cost of Tag Join Operator

In this section we evaluate the cost of the tag join operator again with varying

percentage of tagged data in both streams (from 0% to 100%). We use Query 3 in

this experiment (Figure 4.8). Sliding windows are time-based and state buffers are

implemented as linked lists. The tag join condition is described in Section 4.6.1.

Figure 4.13 shows the average cost (computed after several runs) of the TagJoin. As

Figure 4.13. Cost of tag join.

can be expected, the cost of tag join increases as the percentage of tagged objects in

creases by about 65% when 100% of objects are tagged. The more tags are embedded

inside data streams, the more overhead is incurred by the tag join. Also, in order to

preserve the correct base tag semantics, e.g., tag lifetime, the operator continuously

creates stix tuples that are used to maintain the references to the original data after

the tick-tags and their respective data tuples get physically re-arranged in the stream

as a result of the tag join. The more tags are interleaved in the streams, the more

the join function E has to be invoked, the more stix elements will be created and the

more elements will need to be enqueued into the output stream.

http:TagJoin.As

105

4.6.5 Cost of Tag-Aware Join Operator

In this section we compare the cost of the Tag-Aware Join operator (described

in Section 4.4.2) to a regular join operator using Query 4 from Figure 4.8. The goal

of this experiment is to measure the overhead of tag-awareness in a join operator.

Figure 4.14 shows the cost of the tag-aware join with respect to the regular join,

when varying the percentage of tagged objects. We see that, the larger the number

of tagged objects, the higher the cost of the tag-awareness. For 0%, the tag-aware

join cost is nearly idenitical to the regular join operator cost, since there are no tick-

tags in the streams, and the operator executes just like a regular join. Whereas for

100% of tagged objects, the tag-awareness incurs a “penalty” of processing a larger

quantity of streaming tick-tags, incurring about 43% of additional cost for 100% of

tagging. However, we believe, the case when 100% of data is tagged is highly unlikely

in real-life applications. And the average overhead case, between 14%-33% for 20%

80% of tagged data seems to be a reasonable overhead for the added tag-awareness

functionality and correct tag propagation through the query pipeline.

Figure 4.14. Cost of tag-aware join.

106

4.7 Conclusion

In this chapter we have proposed a tagging solution for streaming data using a

special type of metadata called the tick-tags. Tick-tags can serve a variety of purposes,

including labelling or describing some underlying real-time information, and serving

as means of disseminating useful knowledge in addition to what is captured by the

content of data tuples. Our experimental results show the scalability and performance

benefits of the tick-tag approach compared to alternative solutions. We have also

evaluated the costs of executing tag-aware and tag-oriented continuous queries.

107

5 DIVERSITY-AWARE QUERY PROCESSING

In this chapter we present our diversity-aware query processing solution termed the

query mesh. We first present the core query mesh framework in Section 5.1. Section

5.6 discusses the self-tuning query mesh for adaptive query processing. Section 5.13

describes the uncertainty-aware query mesh to address the problem of uncertainty

and imprecision in the multi-plan-based execution approach.

5.1 Core Query Mesh (QM)

5.1.1 Single versus Multiple Execution Plans

As we have previously stated in the introduction, most modern query optimizers

determine a single “best” plan at compile time for executing a given query [26]. The

execution cost for alternative plans is estimated and the one with the overall cheapest

cost is chosen. The cost typically is estimated based on the average statistics of the

data as a whole as the objective is to find one plan for all data. However, significant

statistical variations of different subsets of data may lead to poor query execution

performance [20]. The main drawback here is the very coarse optimization granularity:

a single execution plan is chosen for all data. Such “monolithic” approach can miss

important opportunities for effective query optimization [20, 28, 29].

Example: Suppose we want to monitor stocks that exhibit “bullish” patterns, and

appear recently in the news and in the latest “street research” e.g., blogs, popular

web sites, etc. We can formulate such query as:

SELECT S.company name, S.symbol, S.price

FROM Stock as S, News as N, StreetResearch as SR

WHERE matches(S.data, BullishPatterns) /*op1*/

108

AND contains(S.sector, News[1 hour]) /*op2*/

AND contains(S.company name, StreetResearch[3 hours]); /*op3*/

The lookup table BullishPatterns contains “bullish” patterns of stock behavior, e.g.,

“symmetrical triangle” or “falling wedge”, etc. [198]. Operator op1 performs a simila

rity-based join on the latest financial data of the incoming stock data tuples with

the BullishPatterns table. Operators op2 and op3 perform the matches on the stock’s

sector and the company name with the news sources’ data and the street research

data1 . Let ci denote the current average processing cost per tuple for operator opi,

and δi denote the current expected selectivity of opi. Suppose it is a bull market (i.e.,

stocks are doing well) and the following conditions hold: c1 > c2 > c3 and δ1 > δ2 >

δ3. Given these statistics, the best ordering of operators to process the data is op3,

op2, op1. Now suppose the news about poor crop harvest (e.g., due to severe weather

conditions – floods, hurricanes, etc.) become public. Such news will most likely hurt

companies in the agricultural and food sectors. Even if individually a company may

be not affected, the price of a stock is often based on the health of its entire sector,

and a company’s stock price may go up or down depending on whether investors think

its industry will grow or contract. Thus, with the news of poor harvest, the stocks of

the agricultural sector will likely result in fewer matches with BullishPatterns table)

and occasionally may be mentioned in the news and blogs. Thus, δ1 is likely to be

high, and δ2 and δ3 still relatively low for such data tuples. So, op1, op2, op3 may be

the most efficient ordering for processing stock tuples of this sector. Other sectors,

e.g., high-tech, defense or financial services, however, may be completely unaffected,

and hence for them op3, op2, op1 will remain the best ordering as before. If the system

continues to use the overall statistics, and will still process all data using the op3, op2,

op1 plan, this may significantly limit the query performance.

Other real-life examples where subsets of data may have different statistical prop

erties are plentiful. In Internet and communication networks, network traffic tends to

1The results of such n-way join queries are frequently consumed by financial monitoring software, e.g., [199] for further

analysis.

109

vary depending on its destination or its type (e.g., voice or multimedia or data). In

case of a network congestion, different traffic packets will be discarded by routers with

different probabilities. In real-time health monitoring, devices attached to people are

likely to produce various values for different patients, depending on their age, gender,

weight, etc.

We can observe from the examples above that real-life data tends to be non

uniform, i.e., there may be data subsets with distinct statistical properties, based

on either the data content, or the access control policies or based on semantic tags

(labels) associated with data tuples. Clearly, a single execution plan often is not likely

to be able to serve well many of such rather diverse subsets of data, thus, leading to

seriously inefficient query processing for some or possibly huge fractions of the actual

data. Most current query optimization approaches do not focus on addressing such

intra-data variations.

5.1.2 Our Proposed Solution: The Query Mesh

The main idea of QM is to determine multiple execution routes (or execution

plans2), each optimized for a subset of data with disctinct statistical properties. Then,

a classifier model is inferred based on the computed set of routes3 and the data char

acteristics (as depicted in Figure 5.1). The classifier is used for runtime classification

of new data tuples to determine the best routes for their processing. While many

classification models could be plugged-in into QM, e.g., neural networks, naive bayes,

etc. [141], we employ a decision tree (DT) classifier. In our experiments, we have

observed that the use of a DT classifier approach can “zero-in” on the sought-after

route very quickly with typically a small number of comparisons. We describe other

beneficial features of DT classifiers in Section 5.2.3, thus further justifying our choice.

2In the context of this thesis, we use the terms “routes” and “plans” interchangeably. Both denote the same concept

here.
3We also refer to a set of multiple execution routes as a multi-route configuration.

110

Training

dataset T

Optimizer

Classifier Multi-Route Configuration

Data

Stream
Query

Results

Figure 5.1. Optimizer producing logical QM solution.

Finding an optimal QM solution for a given query is an expensive process, largely

due to the combinatorial explosion in the search space (Section 5.2.2). We formulate

the complexity of the QM search space (Section 5.2.5), and develop the algorithm

Opt-QM that finds optimal query meshes. Opt-QM, however, may be not feasible in

practice due to its exhaustive nature when enumerating the search space. As viable

alternatives, we propose several effective cost-based search heuristics to find good

quality QM s efficiently.

In order to determine the best query mesh, the query optimizer uses a training

dataset T (see Figure 5.1) that represents the data and its distribution expected to

come in the future – a common approach in many database systems [28, 200] and in

prediction models in data mining alike [201]. For streaming databases, which are the

focus of our paper, relying on samples of data is unavoidable, since it is impossible to

“see” all of the streaming data a priori. Since, in addition to multiple execution routes

used for query processing, a QM solution also includes the classifier component, the

classifier cost must be considered during query optimization, as classification is now a

part of the overall query execution process. The QM optimization problem can then

be stated as follows: for a given query Q and a representative dataset T , the optimizer

111

must find a query mesh solution QM composed of a multi-route configuration R and

a classifier C that results in the lowest execution cost for tuples in T .

For query execution, we have implemented a novel runtime infrastructure called

the Self-Routing Fabric (SRF) that efficiently executes multiple routes in parallel

without constructing their physical topologies. Instead, the SRF design enables query

operators to “self-route” data in a distributed manner with near-zero overhead.

5.1.3 Challenges

Several practical issues make this problem challenging: (1) Finding the optimal

solution is complex, because there is a combinatorial explosion of all possible execution

routes for all possible subsets of training data to consider. (2) Selecting a good

quality training dataset is a challenging task. Training dataset’s size and accuracy

directly affect the size of the QM search space and the quality of the resulting QM

solution. With a smaller training dataset, we may be able to enumerate all possible

QM solutions, but the accuracy with respect to the real data may be low. Whereas

with a larger training set, the accuracy may significantly improve, but at the cost of

an extremely large search space, making it impossible to enumerate all solutions. (3)

Most challenging of all is the fact that the classifier model and the number and the

choice of particular execution routes are strongly dependent on each other. A change

in one component may cause a modification to the other, subsequently affecting the

cost of the overall QM solution. Such interplay between routes and classification

introduces a dilemma: how should a QM solution be computed. Should the training

dataset get partitioned first, and then the optimizer would compute the routes for

the different partitions? Or alternatively, should some effective routes be computed

first, and then the tuples from the training dataset would get assigned to one of

the established routes? Clearly, finding a good QM solution is a complex problem.

(4) Finally, query execution with multiple concurrent routes is a challenge. If the

112

Query Mesh
Search

Self-Routing
Fabric (SRF)

opi

opj

opk

0

1

2

3

opl

4

...
...

Data
Streams

tuple
cluster

r-token

ruster

Online Classifier

Query

Query Mesh Solution
(classifier + multiple routes)

query mesh
routes info

Query Mesh Optimizer

statistics

Query Mesh Executor

<1,2,4,3>

<4,2,3,1>

<3,4,1,2>

<4,3,1,2>

A = a2

A = a1

B = b1

B = b1

B = b2
B = b3

B = b2
B = b3

Query
Results

example execution

Route
Labels

...

...

Figure 5.2. Core query mesh framework.

execution infrastructure is not well-designed, the benefits of using multiple distinct

routes for different subsets of data may be completely lost.

5.1.4 QM Architecture

The QM framework consists of two primary components: the query mesh opti

mizer and the query mesh executor (see Figure 5.2). For a given query, the query

mesh optimizer computes the query mesh off-line using training tuples and statis

tics. For every query mesh solution analyzed by the optimizer, the classifier model

is induced and the routes are computed. To avoid redundant recomputations, the

optimizer employs several caching techniques for sub-components of the query mesh

(e.g., routes, or parts of the classifier) that don’t change as it traverses the search

space. The query mesh executor takes the query mesh configuration produced by

the optimizer and instantiates the physical runtime infrastructure. Next, we describe

each of the query mesh components more in detail.

113

5.1.5 QM Assumptions

We focus on select-project-join (SPJ) queries in our work, thus, the set of admis

sible operators in SRF includes: selection filter, projection, and a join. To implement

joins, we use one-way-join-probe (OJP) operators inside the SRF. OJPs are similar in

spirit to SteM operators4 [65], and essentially correspond to a half of a traditional join

operator, and are formed over a base stream, supporting the insert (build), search

(probe), and delete (eviction) operations for window purging. The choice for such

join implementation was largely influenced by our current system implementation [8]

and the fact that it is one of the representative approaches of the state-of-the-art.

While a number of other alternatives to join implementation are possible, since this

was not the focus of our work, we decided to go with the existing system setup. The

solution works, and we leave the exploration of other state management techniques

in QM as a part of our future work.

5.2 The Query Mesh Optimizer

5.2.1 Data Sampling

The selection of the training data, i.e., which sampling technique should be em

ployed to accurately depict the distribution of the data, is a research topic in its own

right. For our work, we have explored several techniques from statistics, including

random sampling with cross-validation and sampling with bootstrapping [201]. Us

ing these methods, the system can estimate how well the selected training dataset is

going to represent future as-yet-unseen data, and re-sample the data until the desired

accuracy is achieved. In practice, the training dataset may also be collected using

statistics from previous (historical) execution runs of the query or by employing a

similar approach to plan staging [76], where optimization and execution are inter

leaved. The first stage of query processing may use a traditional single plan approach

4We ensure that no duplicate or missing results are produced similar to SteMs [65].

114

for query execution, while simultaneously collecting data statistics and training data.

Using the samples from the first stage as the training set, a QM solution can be

computed by the optimizer and then used for the execution in the subsequent QM

stage.

5.2.2 Query Mesh Search Space

Given a query and collected training data (Figure 2.1), we now study how many

possible multi-route configurations (i.e., diffferent routes’ combinations) the optimizer

may have to enumerate through to find the best one. The expected execution costs of

the routes, including the classifier would have to be estimated for these configurations

in order to find the optimal QM solution. Thus, the set of all possible multi-route

configurations comprises the QM search space.

The cardinality of the training dataset has a direct impact on the size of the QM

search space. The larger the cardinality of the training dataset the more possible

data subsets, routes, their statistics, and their different combinations may need to

be evaluated by the optimizer. Hence, the training dataset must be selected wisely

to be compact yet sufficiently representative of the real data. To reduce the size of

the search space, we perform data condensing [202] on the set of sampled real data

tuples. The condensing step aims at selecting a small subset of tuples without a

significant degradation in accuracy in order to reduce both storage and processing

time. Within the condensing techniques, the approaches can be categorized into two

main groups. First, the schemes that select a subset of the original tuples [203, 204],

and second the adaptive schemes that modify or generate them [205, 206]. In both

cases original data “densities” (i.e., value frequencies) [207] get associated with the

condensed training tuples. In our implementation, we went with the second scheme.

We keep our discussion on training set condensation brief here. For more details

on the condensing algorithms, we refer the reader to [207]. After condensing the

training data, each condensed training tuple serves as an abstraction for a subset of

� � �

115

the original sample dataset. In the rest of the paper, we will refer to a condensed

tuple as a training tuple t and a reduced dataset that consists of such condensed

tuples, summarizing their respective original data tuples, as a training dataset T .

Since routes are computed based on the training dataset T , the spectrum of possi

ble multi-route configurations ranges from an individual route per each training tuple

in T to a one route for all tuples in T . Let n denote the cardinality of the training

tuple set T , i.e., n = |T |. The upper-bound for all possible multi-route configurations

corresponds to the number of distinct possible ways of assigning n distinguishable tu

ples to one or more routes. The number that describes this value is the Bell number

(Bn) [208], which represents the number of different partitions of a set of n elements.

A multi-route configuration, which represents the set of execution routes, is a partition

of the training tuple set T , defined as a set of non-empty, pair-wise disjoint subsets of

T whose union is T (see Figure 5.3). For example, B3 = 5, since the 3-element set {1,

2, 3} can be partitioned in 5 distinct ways: {{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}},

{{3},{1,2}} and {{1,2,3}}5. The Bell number describes the size of QM search space,

i.e., the total number of all possible partitions for an arbitrary training dataset T .

Mathematically, the Bell number is represented as the sum of Stirling numbers of

the second kind [208]. The Stirling number S(n, k) is the number of ways to parti

tion a set of cardinality n into exactly k nonempty subsets. The problem is clearly

challenging, as Bn’s complexity is exponential as described below:

n n k �

Bn =

S(n, k) =
 1

(−1)k−j n
jn . (5.1)

k! k
k=1 k=1 j=1

Figure 5.3 illustrates the lattice-shaped QM search space for a set of training tuples

of size n=4. It also shows two examples of partitions with 2 and 4 routes respectively.

The total number of different partitions here equals 15 (B4=15).

Points A,B,C and D in Figure 5.3 (on the right) denote four different QM solutions.

A,C and D are the neighbor solutions to B, as indicated by the pairwise connecting

edges to B. A single basic transformation e.g., a split of a subset, or merge of two

5For brevity, we denote {{1},{2,3}} as “1/23”.

116

Representation of partitions
via Euler diagrams One route for all training data

B

1234

1/2/3/4

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

14/23 1/234 124/3 13/24 123/4 134/2 12/34

Each training tuple
A partition of a set

with 4 routes:

A partition of a set
with 2 routes:

r2

r1 r2

r2

r1

r2

r3

r4

D
C

A

with an individual route

Figure 5.3. Lattice-shaped query mesh search space.

subsets, is needed to transition from a QM solution to its neighbor, e.g., “12/34” →

“12/3/4”.

5.2.3 Query Mesh Optimizer Sub-problems

In this section, we first address two main sub-problems of QM selection. We then

proceed with the cost model and the search algorithms used by the QM optimizer.

Route Selection Sub-problem : One of the main sub-components of QM solution

is a multi-route configuration composed of a set of execution routes. Let O = {op1,...,

opn} be the set of operators in a query, where opi ∈ O (1 ≤ i ≤ n) is σ , π or ��

operators, then a route rq depicts an operator ordering rq = <op1,..., opn>. Finding

the optimal ordering of operators for query optimization is a well-studied topic in

database research. In our work, we consider the computation of a single best route

(for a subset of data) as a “black box” computation. That is, the optimizer invokes an

existing procedure to compute a route based on available statistics using any of the

state-of-the-art techniques, e.g., [66, 209, 210]. For example, similar to [58], the best

order of operators can be determined by an increasing order of operator rank. The
c(opi)rank of an operator opi is defined by rank (opi) = , where c(opi) is the cost of 1−δ(opi)

operator opi and δ (opi) is its selectivity (0 ≤ δ (opi) ≤ 1). Alternatively, the optimizer

117

can also use the dynamic programming [210] or the transformation-based [66] methods

to determine the routes.

Classifier Selection Sub-problem : The second main sub-component of QM solu

tion is classifier. Inducing classifier model based on the computed routes (as discussed

above) and the training data attributes’ values is another problem that must be ad

dressed. There is a wide range of classifiers available in the literature, each with its

strengths and weaknesses. Determining a suitable classifier for a given problem is still

more an art than a science [141]. This is due to the fact that classifier performance

and quality depend greatly on the characteristics of the data to be classified [201].

In our work, we employ a decision tree (DT) classifier. DT is attractive for several

reasons:

•	 First, complex decisions can be approximated by the conjunction of simpler

local decisions at various levels of the tree.

•	 Second, in contrast to other classifiers, where each data tuple is tested against

all classes, thereby reducing efficiency, in DT classifier, a data tuple is tested

against only certain subsets of test conditions, thus eliminating unnecessary

computations.

•	 Because most tuple features are deterministic and often common to a group of

tuples, a DT -based classifier tends to be very efficient (as was also confirmed

by our experimental study in Section 5.4).

The algorithm for DT induction executes in a top-down recursive divide-and

conquer manner. At the start, all training tuples are at the root. Then, they get

partitioned recursively by the tree induction algorithm based on selected test at

tributes. Test attributes are selected on the basis of the entropy-based measure,

called information gain [141]. The leaf nodes of the DT contain the route identifiers

for the execution routes that will be assigned to the tuples that reach those leaf nodes

after classification. Conditions for stopping DT growth are: (1) all training tuples

118

for a given node belong to the same route, (2) there are no remaining attributes for

further partitioning, then majority voting [141] is employed for assigning a class label

to the leaf, or (3) there are no training tuples left.

5.2.4 Query Mesh Cost Model

Next, we describe the cost model used by the optimizer to compare query mesh

solutions when searching for the best one. The expected cost of a QM consists of

three main parts:

(1) Cost of routes: Each execution route rq, composed of a sequence of operators,

has a per-tuple cost c(rq) to process a tuple using that route. c(rq) represents the

expected time to process a single tuple to completion, meaning either to output the

tuple as a result or to drop it using rq. The cost of rq is commonly calculated using

two quantities: (i) cost of operator ci(opi), which represents a per-tuple cost of opi

∈ rq, and (ii) selectivity of operator δ(opi), which is defined as the fraction of tuples

that are expected to satisfy opi.

(2) Cost of classification: Since each arriving tuple must be processed by the classifier,

the classification cost must be included in the overall expected processing cost. The

classification cost is defined as the cost of a path p(DT |rq) from the DT root to the

leaf node with a route label rq. The cost of a path c(DT |rq) is a function of the

number of nodes in the path, combined with the cost of computation at each test

) =
�|p(DT |rq)|node in the path: c(DT |rq i=1 c(nodei).

(3) Multi-route overhead : Maintaining multiple execution routes introduces system

overhead, e.g., memory, processing, scheduling, etc. For simplicity of presentation, we

abstract all overheads associated with a route into a single variable OVH representing

the average overhead per route. The total cost of a QM can then be described as:

|R|

cost(QM) = fq ∗ [c(DT |rq) + c(rq|q)] + |R| ∗ OVH. (5.2)
q=1

119

where q represents a distinct subset of data that gets assigned a route rq ∈ R, and

|R| is the number of routes in the QM, fq is the expected fraction of tuples from the

training dataset T to be processed by a particular route rq, and c(rq|q) is the expected

cost of the route for a subset q.

5.2.5 Optimal Query Mesh Search Algorithm

As the baseline, we now introduce the Opt-QM algorithm (pseudo-code shown in

Figure 5.4) which is guaranteed to find optimal QM solution. Opt-QM traverses the

lattice-shaped search space (see Figure 5.3 for an example) starting from the “bottom”

point, where each training tuple has an individual route to the other extreme, where

all data is processed using the same (single) route.

In the algorithm in Figure 5.4, first, the Opt-QM computes the power set P(T)

for the given training dataset T (Line 3). The power set of T is the set of all subsets

of T . Using the training dataset, the statistics for the subsets in the power set are

calculated (Line 5). The training tuples are processed by the operators, to estimate

the operators’ costs and selectivities. The routes are computed similar to the methods

discussed in Section 5.2.3 (Line 6). After all possible subsets have been established

and the best routes for those subsets have been computed, the algorithm iterates

through all possible partitions that represent the possible multi-route configurations

for the set T . For each partition p composed of the subsets {Si...Sj } (Line 8), a union

of the routes R for the subsets is computed (Line 9) and the classifier is induced

(Line 10). A new QM solution is constructed with the routes R and the classifier

C (Line 11), and its cost estimated (as described in Section 5.2.4). If the new QM

has the smallest cost compared to the solutions seen so far, it is kept (Lines 13-14),

otherwise it is discarded (Line 16). After the exhaustive enumeration of all possible

configurations, the algorithm returns the QM solution with the smallest cost as a

result.

120

OptQM (T training dataset)

01 bestQM = null

02 bestQMCost = ∞

03 P (T) = ComputePowerSet (T) // compute the power set of T

04 for (each set S ∈ P (T))

05 S.stats = ComputeStats (S)

06 S.r = BestRoute (S.stats) // compute the best route for S based on S.stats

07 repeat

08	 let p = {Si...Sj} // p is a partition of the power set P (T)

09	 R = BestRoutes (p) // union the best routes for {Si...Sj}

// induce classifier based on the training data and the routes

10 C = InduceClassifier (p)

11 QM = NewQMSolution (C,R)

12 if (QM.cost < bestQMCost)

13 bestQM = QM ;

14 bestQMCost = QM.cost

15 else

16 discard QM // better QM has been already found

17 until (all partitions p ∈ P (T) enumerated) // total Bn of them

18 return bestQM

Figure 5.4. Optimal QM search algorithm

Complexity Analysis: The complexity of the Opt-QM is O(Bn *E), where Bn is the

Bell number (described in Section 5.2.2) and represents the upper-bound of all pos

sible multi-route configurations (query meshes) for the set T . E is the time complex

ity of the “black-box” route computation algorithm and depends on the algorithm

employed by the optimizer to find a route, e.g., E = O(n2n) for dynamic program

ming [210], or E = O(n2) for the rank-based ordering algorithm [58, 211]. Clearly

with large training datasets, the Opt-QM algorithm is not scalable in practice. The

problem of finding one optimal route alone is already known to be NP -hard [58].

121

By adding the multi-route factor, the complexity of the problem increases further.

Consequently, both the exponential running time and the space requirements provide

a strong motivation to design efficient search heuristics as more practical alternatives

for query mesh optimization.

5.2.6 Query Mesh Search Heuristics

Here we propose a series of cost-based heuristics that find a good quality QM

solution in reasonable time without exhaustive enumeration of the search space. The

heuristics have the following three main steps:

•	 Step 1: A start QM solution is chosen, its cost is computed, and it is set as

the best solution found so far, bestQM =QM.

•	 Step 2: A search strategy is iteratively applied to traverse the QM search space

to find another solution QM’.

•	 Step 3: The cost of QM’ is computed and compared to the cost of the bestQM

found so far. If QM’ has a smaller cost, the bestQM is replaced with QM’.

Steps 2-3 are repeated until a stop condition is reached.

Although the steps above sound simple, deciding on what is the best strategy for

each of these steps is non-trivial. Furthermore, all three steps in unison have a great

impact on the quality of the final QM solution. Typically, after a start solution is

chosen, the search strategy performs walks in the search space via a series of “moves”.

The number of moves is limited (by the stop condition), and if a poor start solution is

picked at the start, the search strategy might not be able to reach a good quality QM

before the search terminates. In the rest of the section, we propose various schemes

to address the following questions: (1) How to pick a promising start QM solution?

(2) What effective search strategies can be employed to improve the start solution?

(3) Finally, when should the search for QM terminate, i.e., what should be the stop

condition?

122

Selecting a Start Solution

Given that a query mesh model represents an interplay between data values, their

frequencies and the best execution routes for their processing, one possible approach

to start the search is to pick a start solution based on data content. Given a training

dataset T , a content-driven approach (or short CDA) partitions training tuples based

on the similarity of their values: each attribute domain is partitioned based on the

pre-defined threshold (e.g., for a discrete domain it could be a set of values, for a

continuous domain it could be a simple range, etc.) that define how “close” the

training tuples are to one another based on their content. After the content-based

groups have been determined, the best route for each group is computed, and the

classifier model induced to complete the QM solution. The motivation here is that

similar content likely means similar selectivities, and thus the same best routes.

An alternative approach is to first compute the routes for each of the training

tuples separately6. Thereafter, the tuples can be “grouped-by” the similarity of their

respective routes, thus forming the groups composed of “route-equivalent” tuples.

Lastly, the classifier induction is performed. We call this method the route-driven

approach (or RDA, for short). The RDA takes the “reverse” approach compared to

the CDA. The motivation here is that tuples with different values may still share

the same best route. Consider, for instance, moving objects applications. Here,

geographically distant areas may still have similar distributions of moving objects,

and query processor can thus exploit the same execution route for objects with very

different location values.

Other QM start solution approaches may also include random-pick (RP), where

a QM with the smallest cost out of x randomly selected solutions is chosen. Another

alternative is to pick a QM solution, where all data has one route (the top of the

lattice in Figure 5.3) and the classifier is empty. This solution is called extreme-1

6After data condensing (described in Section 5.2.2), training tuple abstracts a set of sampled real data tuples. When

estimating statistics and computing routes for training tuples, their respective real data tuples are used.

123

route (or E1R) approach, and corresponds to a single plan execution strategy, just

like in traditional query optimization.

One interesting observation can be made here: the above methods share some

similarities with methods in cluster analysis [201]. For example, CDA resembles

the partitioning method in cluster analysis driven by the content. RDA resembles the

density-based method in clustering. Finally, E1R can be viewed as the “root” solution

in a hierarchical clustering analysis.

The advantage of CDA is that it is intuitive, rather simple, and can produce

distinct subsets quickly. The disadvantage, however, is that the quantity and the

quality of routes are largely dependent on the partitioning function. The advantage

RDA is that it can find groups of arbitrary “shape” (if represented visually as clusters),

i.e., tuples with very different content may still be found to belong to the same group

and help create a more efficient QM solution. E1R is works well where the number

of clusters is not known in advance, and the algorithm relies on the search strategy

(described next) to divide the data into particular sub-sets to determine the next

QM solution. Based on the resemblance to the cluster analysis techniques, we believe

the same guiding principles as when selecting a cluster analysis technique for a given

dataset [212] can be applied here when choosing among the strategies for QM start

solution.

The Search Strategy

There exists a large number of search algorithms in the literature, each with its

strengths and weaknesses. In QM for a search strategy, we chose randomized search

strategies, e.g., based on iterative improvement, simulated annealing, hill-climbing,

etc., which guarantee to find a good QM solution in reasonable amount of time

[213]. They can serve as viable alternatives to the exhaustive QM search. As an

example of a search strategy, we illustrate in Figure 5.5 the pseudo-code for the

iterative improvement QM search strategy (II-QM). In our system, we have also

124

II-QM (bestQM a start query mesh solution)

01 bestQMCost = bestQM.cost

02 while (not stop condition)

03 QM = start solution (e.g., chosen at random,

or using methods from Section 5.2.6)

04 while (not local minimum(QM))

' 05 QM = random solution in NEIGHBORS (QM)

06 if (cost (QM ') < cost (QM))

07 QM = QM’

08 if (QM.cost < cost (bestQM))

09 bestQM = QM

10 return bestQM

Figure 5.5. II search strategy for QM

implemented Simulated Annealing QM strategy (Figure 5.6), where a great deal of

random movement in the search space is tolerated.

Iterative Improvement. The inner loop of II-QM is called a local optimization, which

starts at a certain start QM solution and improves it by repeatedly accepting random

downhill moves (i.e., QM s with decreasing costs) until it reaches a local minimum.

II-QM repeats these local optimizations until a stop condition is met. Then it returns

the local minimum with the lowest cost found. As time approaches ∞, the probability

that II-QM will visit the global minimum approaches 1. The procedure is repeated

various times, each time starting at a new QM start solution7, until a stop condition

is met. Then the algorithm compares the local minima it found and chooses the

solution with the lowest cost. If there were enough repetitions of the first steps, the

algorithm has found a solution that is close to the global minimum.

Simulated Annealing. In simulated annealing (SA) search strategy, initially the “tem

perature” τ parameter is set to high. Thus, a great deal of random movement in

7One good strategy in II-QM is to try the different start QM selection approaches and return the QM with the

smallest cost after several iterations.

http:Annealing.In

125

SA-QM (bestQM a start query mesh solution)

01 QM = bestQM

// Choose an initial (high) temperature τ > 0

// Choose a value for ρ, the rate of cooling parameter

' 02 Choose a random neighbour of QM and call it QM

// Calculate the cost difference in the query meshes:

03 δ = cost (QM ') - cost (QM)

// Decide to accept the new query mesh or not

04 if (δ ≤ 0)

' ' 05 QM = QM // QM is better than or is the same as QM

06 else

' 07 QM = QM with probability e
−

τ
δ

08 if (stop condition is met)

09 exit with QM as the final solution

10 else

11 reduce temperature by setting τ=ρ*τ, and go to Step 2

Figure 5.6. SA search strategy for QM

the search space is tolerated. Over time the “temperature” parameter is lowered,

and thus less and less random movement is allowed, until the solution settles into a

final “frozen” state. This allows the heuristic to sample the solution space widely

when the “temperature” is high, and then gradually move towards simple steepest

ascent/descent as the “temperature” cools. Thus the search can move out of local

optima during the high temperature phase. The SA algorithm accepts a worsening

move with a certain probability. This probability declines as τ declines, by analogy

the randomness in the movements decreases as the temperature falls. When τ is

small enough the algorithm accepts only the improving moves. Figure 5.6 sketches

the pseudo-code for SA-based query mesh search strategy.

126

Hybrid Search. Alternatively, we can employ a hybrid search strategy, the pseudocode

for which is shown in Figure 5.7. The hybrid algorithm takes three input parameters:

T , m, and H , where T is the training tuple set, m describes the cardinality (or the

upper-bound) of the subsets to be fully enumerated, and H is the list of the search

heuristics (with their stop conditions) to employ after the full enumeration completes.

The main idea of the hybrid is to first start with the full numeration strategy, then

choose the best candidate solution as input to the first search heuristic in the list.

Heuristics are then executed one after another, each improving the QM solution and

returning its output as the input to the next heuristic in the list until all heuristics

have executed. We denote the size of the training set using n = |T |. The input

parameters m and H control the overall search strategy for the best QM . At one

extreme, if m = n, then the search procedure takes the full enumeration approach to

find the optimal query mesh. On the other hand, if m = 0, the procedure corresponds

to a pure heuristic-based search (described in Section 5.2.6). If m = k, where 0

< k < n, then the search procedure first enumerates in a bottom-up8 fashion the

query mesh configurations up to the size k of subsets. Then the “best so far” query

mesh is used as the start solution for the heuristic-based search. The value of m

relative to n reflects the desired degree of completeness of enumeration. The issue

of heuristically determining an appropriate value of m depends on the characteristics

of the training set data. For now, we assume the query mesh optimizer can adjust

this value heuristically to vary the nature of enumeration from quick and heuristic to

accurate and exhaustive. This covers the entire search spectrum from pure heuristic

to the full enumeration search.

Selecting a Stop Condition

The stop condition largely depends on the QM search strategy employed. In general,

query mesh search may stop when either k iterations have gone by, or the solution did

8Alternatively, we can take a top-down approach where initially a single route is assigned to the entire training set.

Subsequently, the training set is broken down into subsets and routes are computed for the subsets.

127

HybridSearch (m subset size or the upper-bound for full enumeration,

T training dataset, H search heuristic)

01 n = |T | // size of the training tuple set

02 if (m = 0)

03 bestQM = RANDOM-PICK // see “Selecting a Start Solution” Section

04 else

05 bestQM = EXTREME-N-ROUTES // see “Selecting a Start Solution” Section

06 while (size of subsets in bestQM ≤ m)

07 execute QM Exhaustive Enumeration (bestQM)

08 if (m < n)

09 continue with the heuristic H(bestQM) // where H ∈ {II, SA, ...}

10 return bestQM

Figure 5.7. Hybrid search strategy for QM.

not improve in the last several rounds indicating that the search process has reached

a plateau. Alternatively, the search can be time-bounded or resource-bounded, e.g.,

when memory or CPU utilization limits are reached.

To summarize, given a finite amount of time, the quality of the resulting QM

found by a heuristic depends on the start solution, the connectivity of the search

space determined by the neighbors of each solution, the search strategy and its step

size, the stop condition, and, finally, the quality of the cost model employed by the

optimizer.

5.3 The Query Mesh Executor

5.3.1 Instantiation of Physical Infrastructure

Given a logical query mesh specification (the classifier and the set of routes) found

by the optimizer, the QM executor takes it as an input and instantiates the physical

QM runtime infrastructure. The runtime infrastructure consists of the Online Clas

128

Classifier Self-Routing Fabric (SRF)

Data
Stream

Labels

Figure 5.8. Query mesh execution example.

sifier operator and the Self-Routing Fabric (SRF)9 infrastructure inside which all the

query operators are instantiated (Figure 5.9).

The SRF infrastructure consists of two main elements (see Figure 5.9): (1) The

Operator Index Array (OI-array) which stores the pointers to all query operators.

Each index i corresponds to a unique operator opi. Index “0” is reserved for the SRF

global output queue, where query result tuples are placed to be sent to application(s).

(2) The Operator Modules (Op-modules) which are the actual operators processing

the tuples, e.g., selection, projection, etc.

Before starting query execution, SRF infrastructure must be instantiated. Figure

5.10 shows the pseudo-code for constructing SRF for a given query. The algorithm

takes as an input a logical specification of QM from the optimizer. First it iterates

through all operators in the routes of QM, and computes a union of all operators

denoted by O (Lines 2-6). Thereafter, the OI-Array is instantiated (Line 5) with the

“0th” index being reserved (Line 6), and a physical instance of each operator is created

and assigned to one position in the array (Lines 7-9). The OPT hash table stores the

mapping between the logical operators and their physical instances (Line 8), and is

used at the end of the instantiation to update the logical routes with their physical

counterparts (Line 13). To keep the description concise, we skip the pseudo-code for

9The name “Self-Routing Fabric” was chosen, because the infrastructure enables the operators to self-route the tuples

according to their best routes without any central router operator like Eddy.

B = b2

0

1

2

3

4

5

6

<4,2,5,6>

<4,2,6,5>

<6,4,5,2>

B = b1 <6,5,2,4>

A = a2

A = a1

A = a3

B = b1

B = b2

B = b3
Query
results

Example
B = b3 Route execution

129

Self-Routing Fabric (SRF)

op

op

op

0

1

2

3

op

4

...

OI-array Op-modules

<4,2,5,1>

<4,5,3,1>

<3,4,1,5>

<5,4,1,3>

Data
Streams

Route
Labels

A = a2

A = a1

A = a3

B = b1

B = b1

B = b2

B = b3

B = b2

B = b3

Online Classifier

Data subset example execution

Query
results

...

...

data
tuples r-token

ruster op queues

5

Figure 5.9. QM physical runtime infrastructure.

ConstructSRF (QM logical query mesh solution)

01 OP T = new operator translation hash table

02 for (each r ∈ QM.R)

03 for (each op ∈ r)

04 O = Union (op)

05 SRF .OI − Array = new Array[1 + |O|]

06 op index = 1 // 0-th index is reserved for result tuples

07 for (each op ∈ O)

08 OP T [op] = op index

09 SRF .OI − Array[op index++] = new PhysOp(op)

10 ReplaceLogicalLabelsInOnlineClassifier(OP T)

11 return;

Figure 5.10. Physical instantiation of the Self-Routing Fabric infrastructure.

label replacement, but the main idea is to translate and update of the classifier labels

with operators’ physical ids in the SRF. This step is done only once and only in the

SRF instantiation to eliminate the burden of continuous logical-to-physical operator

translation for every classified tuple at runtime.

130

5.3.2 Physical Execution

When new tuples arrive, they first get processed by the online classifier operator

to determine the routes to be used for their processing. To keep memory and CPU

overhead minimal, the routing decisions are applied at the granularity of groups of

tuples, denoted as “routable clusters” (or short “rusters”), rather than individual

tuples. Thereafter, the tuples are forwarded into the SRF for the actual query eval

uation according to their routes (see Figure 5.9). In contrast to simple tuple batches

e.g., in [33], rusters are based on the semantics of sharing the same best execution

route. Hence, a ruster concept is different from both a batch of tuples that happen

to arrive contiguously together in time, as well as from a traditional cluster, e.g.,

grouping tuples based on similar values. Tuples with very different data values may

still be assigned to the same ruster. Hence, the term “ruster” allows us to depict the

concept of such tuple grouping precisely.

Tuples are classified using a tumbling classification window W TC. We use a tum

bling window, because it partitions a stream into non-overlapping consecutive win

dows, so that a tuple is classified only once. If tuples within a time window are

known to be correlated, then the classification overhead can be minimized by classi

fying one tuple per window and then sending the rest of the tuples on the same route

as the classified tuple. The pre-computed route for a ruster is stored in a route token

(short r-token). R-tokens are metadata tuples, similar in spirit to streaming punctu

ations [105] and are embedded inside data streams, thus partitioning the infinite data

streams into finite rusters. What distinguishes the r-tokens from other streaming

metadata is that (i) they are “self-describing” as they carry routing instructions for

streaming data to convey to operators and (ii) the routes in the r-tokens are specified

in the form of an operator id stack based on the design of the SRF.

An example of runtime execution is depicted by a thick black arrow in Figure

5.9. Consider an SRF with the operator index array as follows: OI-array [1] = opi,

OI-array [2] = opj , OI-array [3] = opk, OI-array [4] = opl, OI-array [5] = opm. Then a

131

route r = <opm, opl, opi, opk> will be encoded in an r-token as a stack <5,4,1,3>,

where ‘5’ is the first operator in the route and ‘3’ is the last. The top of the stack

represents the index of the operator in the SRF. A ruster is always routed to the

operator that is currently the top node in the routing stack. OI-array enables the

knowledge of the “location” of other operators. After an operator is done processing

the ruster, the operator “pops” its index from the top of the routing stack in the r-

token, and then forwards the ruster to the next (now the top) operator. If all tuples

from a ruster are dropped by an operator opi, then the ruster is not processed any

further and its r-token is discarded. When the r-token operator stack is empty, the

ruster tuples are forwarded to the global output queue reserved by the index “0” and

then to applications.

The novelty of our proposed infrastructure lies in the physical separation between

the component that determines which routes should be used for execution and the

component that actually physically executes the routes based on the logical specifi

cations. Such architecture easily supports concurrent execution of multiple routes.

Furthermore, SRF eliminates a central router operator (like Eddy), and removes the

“backflow” bottleneck problem present in the systems based on Eddy, where tuples

are continuously sent back to the Eddy to determine which operator should process

them next [33]. We also believe that our runtime infrastructure offers many other

potential benefits for adaptivity and multi-query shared processing.

5.4 Query Mesh Experimental Study

Here, we describe our experimental evaluation of the core query mesh framework

implemented inside Java-based continuous query engine called CAPE [8]. To evaluate

QM, we compare its performance against competitor systems, such as the solution

employing “single plan for all data” [62] (SP, for short) and the “multi-route-less

systems” [34] (or MR, for short) discovering routes at runtime. In the rest of the

section, we will refer to them using their abbreviated names, SP and MR, respectively.

132

Table 5.1

Defaults used in the experiments.

Parameter Value Description

D Poisson Default data distribution

|A| 6 # of attributes in tuple schema

|S| 1000 tuples Size of sample tuple set

|T | 10 tuples Size of training tuple set (after data condens

ing)

Start

Solution

Route-Driven QM start solution strategy

Search

Strategy

II-QM QM search strategy

Stop

Condition

k = 3 # of iterations in the search

W T C 1,000 tuples Classification window size

Ruster size 100 tuples ruster size

For SP, we use a multi-way join (MJoin) [62] operator. MJoin is a generalization of

symmetric binary join algorithms, providing the best plan for each stream, and thus it

became our choice for SP (as the closest competitor to query mesh). For MR, we use

Eddy framework with CBR routing [28], which is one of the closest approaches to QM.

To ensure the even comparison, all systems were implemented in CAPE, and their

implementation used as much of the same codebase and data structures as possible.

We use a Round-Robin scheduler in all three systems, which cycles over the list of

active operators and schedules the first operator ready to execute. When scheduled,

an operator runs for a fixed amount of time bounded by |Tdq|, the number of tuples

that an operator may dequeue from its input queue in each execution epoch. Round-

Robin was chosen as it has a desirable property of avoiding starvation: no operator

with tuples in its input queue goes unscheduled for an unbounded amount of time.

In addition to comparison against the alternative systems, we also demonstrate the

effectiveness of QM by measuring its runtime overheads.

133

Figure 5.11. Experimental distributions.

Table 5.2

Distribution statistics.

Data Distributions

Name Parameters Application Examples

Uniform α ∈ {...,β-1,β}

β ∈ {α,α+1,...}

X ∈ {α,...,β-1,β}

• Long-term patterns of data

• Distribution of moving objects in some geographic

areas

Poission 0 < λ < ∞

X ∈ {0,1,...}

• Service times in a system

• # people arriving at a counter

• # of times a web server is accessed per minute

Uniform (α = 0, β = 100): min: 0.0, max : 100.0, med : 49.0,

mean: 49.7, ave.dev : 25.2, st.dev : 29.14, var : 849.18, skew : 0.05,

kurt : -1.18.

Poisson (λ = 1): min: 0.0, max : 7.0, med : 1.0,

mean: 0.97, ave.dev : 0.74, st.dev : 1.01, var : 1.02,

skew : 1.17, kurt : 1.89

5.4.1 Experimental Setup

All our experiments are run on a machine with Java 1.6.0.0 runtime, Windows

Vista with Intel(R) Core(TM) Duo CPU @1.86GHz processor and 2GB of RAM. We

use N -way join queries in our experiments of the form:

select * from S1, S2, S3,...SN

where S1.col1 = S2.col1 and

134

S2.col2 = S3.col1 and

S3.col2 = S4.col1 and ...

SN−1.col2 = SN .col1 Such queries represent a core query type in database

and data stream management systems alike and are frequently used to discover cor

relations across data coming from different sources. In the context of financial ap

plications, such query may be useful for applications making a decision on a stock

purchase, e.g., to estimate expected fall/rise in stock prices based on the arriving

news. For sensor data, this type of query may be useful to detect fire “hotspots” or

for automatic temperature control inside buildings. The specific query we use is an

equi-join of 5 streams, i.e., S0 ��S 1... S4 ��S 5. We use synthetic data sources for

our experiments, similar to many other systems’ evaluations e.g., [28, 64, 65]. Using

synthetic data allows us to manage data properties that are hard to control in real-life

data10 .

We employ several well-known data distributions to establish the data skew.

Specifically, we use Uniform and Poisson distributions (Figure 5.11 visually illus

trates these distributions). These distributions model many real-life phenomena (a

few examples are listed in Table 5.2). The default data properties, distribution pa

rameters and system parameters used in the experiments are depicted in Table 5.3

and Table 5.4.

5.4.2 Results and Analysis

QM Optimizer: Effect of the Start Solution

Here, we evaluate the effects of different start solution approaches (described in Sec

tion 5.2.6) on the structure of QM solution when used in a heuristic-based search.

10We have also experimented with real-life data, and the results were very encouraging: the trends were similar to

synthetic data.

The sliding windows in the queries are based on the timestamps present in the data (as opposed to the clock times

when tuples arrived to the system during a particular test run). In this way, we ensured that the query answers were

the same regardless of the rate at which the dataset is streamed to the system or the order of tuple processing.

135

(i) CDA (ii) E1R

(iii) RP (iv) RDA

Figure 5.12. QM with different start solutions.

We provide the qualitative rather than the quantitative analysis here, as it clearer

depicts the differences among the approaches. In all cases, the search strategy ran

with a single iteration, thus after selecting the start solution the search terminated.

We have implemented a QM visualizer application that given a logical query mesh

solution found by the optimizer graphically displays its structure. Figure 5.12 shows

the snapshots of QM s when four different start solutions were used: CDA, E1R, RP

and RDA, respectively. Although, it is not possible to show all the details of the

classifier nodes and operators in the routes, we thought that showing the overall QM

structure could give the reader a better idea of what a QM solution may look like.

Black node represents the root of the classifier in QM. Green node is a global OR

distinguishing between different streams’ data. Purple nodes represent the internal

test nodes of the DT classifier, and red nodes are the leaves of the classifier. Routes

composed of query operators are depicted by blue nodes.

Figure 5.13 provides intuitive examples for why different start solutions approaches

result in such different QM s. Here, the data tuples are represented as dots and the

dashed lines separate data into subsets with distinct routes according to the approach.

136

RA RB RA RA

RB RA

RB

(i) CDA (ii) RDA

(2 distinct routes) (3 distinct routes)

Figure 5.13. Impact of start solutions on routes.

In CDA, we partition quantitative attribute domains into ranges, and based on the

statistics of different content-based partitions compute routes (in the example, we

have two routes RA and RB). Here, the subsets of data (and as a result, the final

routes and the overall QM solution) are largely dependent on the partition function

employed. In E1R, all data subsets, regardless how distinct they are, will be processed

using one route (RA). In RDA, distinct subsets will be determined based on similar

data statistics (or data “densitities”). Clearly, a start solution approach has a great

impact on the final QM solution, in particular, the count and the quality of the routes

found and the classifier model induced.

QM Optimization: Effect of the Search Strategy

Here, we evaluate how QM solution changes after a search strategy is applied to the

start QM solution. For this purpose, we have picked two QM s produced by E1R

and RDA, as examples, and ran the II-QM algorithm with the stop condition k = 10

iterations. Figure 5.14(top) shows the QM change with E1R start solution and Figure

5.14(bottom) shows the resulting QM with RDA start approach. As can be seen, the

search strategy improves the initially picked QM solution, and the resulting QM s are

RB RC RC RA RA

(iii) E1R

(1 distinct route)

137

...

After
k = 10

iterations

E1R start solution Resulting QM solution

...

After
k = 10

iterations

RDA start solution Resulting QM solution

Figure 5.14. Effect of the search strategy.

 800

Uniform Poisson

SP
MR+CBR

MR+CBR+Batch
QM

 1

Uniform Poisson

SP
MR+CBR

MR+CBR+Batch
QM

1.41000

1.2

tu
pl

es
/m

se
c

Ti
m

e
(m

se
c)

600 0.8

 0.6
 400

 200
 0.2

 0.4

 0

Data Distributions

0

Data Distributions

(a) Average output rate (b) Average execution time

Figure 5.15. Query mesh experimental results.

similar, although not identical (the classifier model varied slightly). Given a limited

amount of search time (bounded by our stop condition), still the start solution has a

great impact on the final QM solution produced by the optimizer and the efficiency

of the optimizer to produce good QM s quickly.

138

 0

 20

 40

 60

 80

 100

 120

MR+CBR MR+CBR+Batch QM

%
 o

f t
ot

al
 e

xe
 c

os
t

20% 8% 2%

Query Cost
Run-time Overhead

Figure 5.16. Comparison of runtime overheads.

QM Optimization: Classifier Structure and Size

Here, we analyze how the classifier model may vary relative to the features of data.

QM decision tree classifier consists of a root, a number of branches composed of

internal nodes and leaves. DT can contain both categorical and numeric (continuous)

information in the nodes of the tree. Quantitative data types (ordinal and continuous)

are “binned” into categories that are used in the creation of branches – or splits – in the

decision tree. Similarly, the categorical data is collapsed into groupings of categories

- to enable them to form the branches of the decision tree). We have observed that,

on average, the size of the learned decision tree varied between 51 and 70 total nodes

(that’s with streams’ schemas consisting of 6 attributes as depicted in Table 5.3),

with about 1-6 distinct subsets (described by the number of leaves) per stream and

1-4 unique routes per stream. If the cardinality of the multi-route configuration is

1 (which may happen when all data is uniform or there is a query constraint, e.g.,

a plan consists of a single operator or a certain operator order must be used), then

clearly there is no need for a DT, hence height(DT) = 0. Otherwise, the height of the

classifier very much depends on the features of the data and the number of routes and

139

their distribution with respect to the training data. Generalizing about the expected

height of a QM classifier for an arbitrary dataset is extremely challenging. However,

implicit preference for a small decision tree is built-in into the classifier induction

algorithm by default [141], which guarantees minimum classification cost, regardless

of what data properties may be.

Query Mesh Execution: Average Output Rate and Processing Time

In this experiment, we compare QM against competitor approaches, namely SP and

MR. We execute MR in two modes: (i) with batching [33] and (ii) without batching.

The batch size is set to 100, which is similar to max ruster size parameter in QM (see

Table 5.3), and is designed to reduce MR execution overhead. We executed query

for 25 minutes several times, using these different solutions, and show the results,

averaged over all those runs. Figure 5.15(a) compares the average output rate, the

average execution time per tuple is presented in Figure 5.15(b), and the run-time

execution overheads present in these systems are in Figure 5.16.

From Figure 5.15(a), we can observe that for Uniform distribution, on average, QM

is between 2.2 - 8% worse than SP in output rate, better by 39% in output rate than

MR+CBR without any batching, and better by 24% than MR+CBR with batching.

With Uniform distribution, most of the time, QM uses a single route per stream.

Occasionally, due to sampling, we have noticed two routes per stream in QM. For

Poisson distribution, we have observed that QM on average has 27% higher output

rate than MR+CBR without batching, 18% higher than MR+CBR with batching

and 44% higher output rate than SP. The average execution time per tuple (in Figure

5.15(b)) follows a similar trend.

The results show that QM approach does not incur significant performance penalty

if datasets are not skewed, and can give great improvements if they are. The “worst

case” scenario for QM is when all data has uniform distribution and no distinct routes

are needed. If there are no distinct subsets in the data, no benefit can be gained from

140

trying to find distinct routes during optimization and during execution, processing

rusters of tuples that all have the same route.

QM Execution: Runtime Overheads

Here, we compare runtime overheads of QM and MR11. Figure 5.16 reports the over

heads per workload of tuples relative to the total execution cost. A workload in this

experiment is a set of data tuples received and processed during a time interval of 1

minute. For both MR and QM, we considered any execution that is not the actual

query processing (i.e., the processing by the query operators on the data) to be a

runtime overhead. We have instrumented the code to determine the time spent by

each procedure contributing to such overhead in both cases. The relative runtime

overhead is depicted in black in Figure 5.16.

MR suffers from continuous re-optimization and re-learning overheads. In MR,

Eddy operator continuously profiles operators and identifies “classifier attributes” to

partition the data into tuple classes that may be routed differently [28]. Continuous

overhead of re-computing classifier attributes based on runtime information may often

be unnecessary as the best classifier attribute for an operator does not change very

often, as was also indicated in [28]. Furthermore, MR continuously experiences the

“backflow” overhead, where tuples get continuously routed back to the Eddy operator

that has to re-examine the tuples and forward them to the next operator for process

ing. The overhead is O(n+1) time, where n equals the number of operators and 1

accounts for the first time a tuple from an input stream gets processed. Batching

attempts to reduce MR overhead. However, batching in Eddy [33] is still very naive:

every b tuples, i.e., a continuous chunk of tuples that happened to arrive together in

time are batched and routed together. Without any batching, the runtime overhead

in MR+CBR algorithm amounted to nearly 20% of the total execution cost. These

11We did not measure SP runtime overheads, as all data is processed using one route here, and thus no overhead

regarding how the data should be processed is incurred at runtime.

141

overheads limit query performance and the benefit that can be obtained from a better

adaptive policy in Eddy.

In QM, on the other hand, tuples are grouped together into the same ruster based

on the classification. The classifier model implicitly considers the data values and the

similarity of statistics to assign routes to data, and thus tuples classified and grouped

into rusters are guaranteed to share the same best route. Furthermore, QM ’s runtime

infrastructure based on SRF enables the query operators to route data tuples in a

distributed fashion nearly overhead-free, thus eliminating the “backflow” overhead

problem associated with Eddies. The only small runtime overhead incurred in QM is

the probing of the classifier to determine the execution plan for arriving data. The

classification overhead, however, was measured to be very small, on average, only 2%

of the query execution cost (Figure 5.16). The classifier in our case is small in height

(maximum 2-3 levels high) and DT traversal is rather quick and cheap. Additional

system overheads include scheduling an additional operator (i.e., the online classifier)

by the scheduler. Since the processing of the tuples by the classifier is fast, the

operator, when scheduled, completes its work very quickly giving majority of the

execution time to query operators.

We have evaluated the overhead of the online classifier relative to the overall query

execution cost. Figure 5.17 shows the classifier overhead for various join queries.

As can be seen, online classification has a very low relative overhead ranging from

2% for a 10-join query up to 4% for a 4-join query. We have also observed that the

decision tree classifier tends to be small in height (maximum 2-3 levels high) and DT

traversal is thus quick and cheap. Additional system overhead of the online classifier

corresponds to scheduling an additional operator by the scheduler. Since the process

ing of the tuples by the classifier is fast, the operator, when scheduled, completes its

work very quickly giving majority of the execution time to query operators.

142

 0

 20

 40

 60

 80

 100

 120

4 joins 6 joins 8 joins 10 joins

%
 o

f t
ot

al

4% 3% 2% 2%

Operator Cost
Classifier Cost

Figure 5.17. Overhead of runtime classification.

5.4.3 Summary of Core QM Experimental Conclusions

The main points of our experimental study can be summarized as follows:

1. QM can give up to 44% improvement in execution time and output rate.

2. Even if data is not skewed, QM ’s performance in the worst case will be at most

2-8% slower than a single plan approach.

3. The runtime overhead of QM is very small (2% to 4% at most) relative to the

overall query processing cost.

4. The actual route execution in SRF (forwarding of data by an operator to the

next operator in the route) is nearly negligible resulting in 0.01% of total query

execution cost.

5.5 QM Conclusion

Here, we have proposed a novel query processing approach called Query Mesh

(or QM). QM approach answers a central need to have a middle-ground solution

between the plan-based systems using a single plan and the continuously re-optimizing

solutions that may employ different plans for different data. Furthermore, QM offers

numerous advantages over the state-of-the-art techniques. First, QM uses machine

143

learning techniques to discover the relationship between the data and the resulting

routes to find the best processing strategy for different subsets of data. Second,

QM is comprehensive and addresses both query optimization and execution. Third,

QM execution infrastructure facilitates shared operator processing and has near-zero

route execution overhead. Our most important contribution was to show that QM

implemented in a prototype DSMS can achieve significant performance improvements

over alternative solutions, and thus presents a potential as a paradigm for query

optimization.

In the future we plan to address the issue of uncertainty in QM. The current

setup assumes a “perfect” knowledge scenario when computing QM, which may not

be the fact in real-life. We plan to address scenarios, where computed routes may

be uncertain (e.g., due to lack of statistics), classifier may be uncertain (e.g., due

to several possible best route alternatives for a subset of data), and how the QM

optimizer the QM executor should handle such cases.

5.6 Self-Tuning Query Mesh (ST-QM)

As we have described at the beginning of this chapter, in real-life applications,

different subsets of data may have distinct statistical properties, e.g., various websites

may have diverse visitation rates, different categories of stocks may have dissimilar

price fluctuation patterns. For such applications, it can be fruitful to eliminate the

commonly made single execution plan assumption and instead execute a query us

ing several plans, each optimally serving a subset of data with particular statistical

properties. Furthermore, in dynamic environments, data properties may change con

tinuously, thus calling for adaptivity. The intriguing question is: can we have an

execution strategy that

1. is plan-based to leverage on all the benefits of traditional plan-based systems,

2. supports multiple plans each customized for different subset of data, and yet

144

3. is as adaptive as “plan-less” systems like Eddies?

While the proposed Query Mesh (QM) approach provides a foundation for such

an execution paradigm, it does not address the question of adaptivity required for

highly dynamic environments. In this section, we fill this gap by proposing a Self-

Tuning Query Mesh (ST-QM) – an adaptive solution for content-based multi-plan

execution engines. ST-QM addresses adaptive query processing by abstracting it as

a concept drift problem – a well-known subject in machine learning. Such abstraction

allows to discard adaptivity candidates (i.e., the cases indicating a change in the

environment) early in the process if they are insignificant or not “worthwhile” to adapt

to, and thus minimize the adaptivity overhead. A unique feature of our approach is

that all logical transformations to the execution strategy get translated into a single

inexpensive physical operation – the classifier change. Our experimental evaluation

using a continuous query engine shows the performance benefits of ST-QM approach

over the alternatives, namely the non-adaptive and the Eddies-based solutions.

5.6.1 Motivation for Adaptivity

Many modern applications deal with data that is updated continuously and needs

to be processed in real-time [214–216]. Examples include network monitoring, finan

cial monitoring, fraud detection, etc. Even if given a highly effective query execution

strategy at the start, data and system characteristics may change considerably dur

ing the query lifetime, making it necessary to adapt the execution strategy. This

pressing problem of adaptivity has become an important and active area of research

in recent years [58, 72, 76, 96, 217]. Moreover, real-life datasets typically tend to be

non-uniformly distributed [218], e.g., sensor networks, moving objects, etc. Enforcing

a single query plan execution strategy, as is the defacto standard for most database

technology, may lead to serious performance deterioration in situations where subsets

of data may have very different statistics [20].

145

Motivating Example. Consider the following continuous query used in a financial

monitoring application to correlate stock prices with current events:

SELECT *

FROM stocks, news, currency, blogs

WHERE blogs.subject = stocks.industry

AND stocks.region = news.region

AND news.country = currency.country

AND stocks.percent_change > 15

To answer this query, the data may be acquired from several stock exchanges,

geographically dispersed news sources and blogs that may be updated at various rates,

e.g., based on the location or the time zone. Arriving from various data providers, the

respective data subsets are likely to have different statistical properties, such as their

data values, their frequency, and arrival rates. To complicate matters, in reaction to

the same real-life events, prices of stocks may fluctuate rather differently over time.

News about political instability in certain geographical regions may affect positively

the stocks of defense-related companies while having an opposite or no effect on other

sectors. Change in data values and their frequencies may lead to the disappearance

of existing and the emergence of new statistically similar data subsets, consequently

leading to changes in query execution statistics. To ensure good performance at all

times, a database system must be capable to continuously identify such distinct data

subsets and to adapt the execution strategy accordingly.

Unlike most adaptive solutions, e.g., [58,72,76], our work does not focus on adapt

ing a single execution plan for a query, but rather on adapting the multi-plan-based

(or we refer to it as multi-route-based) execution strategy12 [219].

5.6.2 Adaptive Multi-Plan Query Processing

Given that QM employs a practical middle-ground strategy between the two query

optimization extremes – the solutions that employ a “monolithic” single execution

12We use terms “plan” and “route” interchangeably. Both mean the same thing in the context of this paper. To

prevent any confusion with Eddies-based systems [33, 34], a route in our work is a fully pre-computed query plan.

146

plan strategy for all input data, e.g., nearly all commercial DBMSs [30–32], and the

systems like Eddies that employ a fine-grained “plan-less” approach, where instead of

predermined plans, at runtime the Eddy operator determines, one-at-a-time, the next

operator, that the tuples must visit for processing [34]. The open question now arises,

if a multi-plan based execution strategy, such as QM, can be as adaptive as “plan

less” systems like Eddies? The need for adaptivity is evident. Even with an initial

good choice of a QM solution, after some time, data characteristics, e.g., data values,

their frequencies and execution statistics, such as operators’ costs and selectivities,

may change considerably requiring to adapt the execution strategy. The fundamental

challenge for QM adaptivity is the problem of determining the discrepancy between

the previously constructed QM model13 and the currently most suitable QM solution

based on the new data characteristics, i.e., its values and its statistics. In machine

learning, such disrepancy is called a concept drift [141]. Concept drifts happen when

a model built in the past is no longer applicable to the current data.

In the context of QM, the change may occur at either the target concept level,

i.e., the routes in the multi-route configuration, or at the underlying data distribution

level, i.e., the data values and their frequencies (see Figure 5.18). The necessity to

change the current model due to changes in the data distribution is called a virtual

concept drift [220]. A real concept drift may occur for instance when more accurate

statistics become available during execution and the routes in QM should be adapted

based on this new information. Virtual and real concept drifts often occur together.

We refer to such case as hybrid concept drift [141]. From a practical point, a concept

drift (real, virtual, or both) gives a good indication that the current QM solution

needs to be adapted. A concept drift implicitly indicates that either the data values,

their frequencies or execution statistics have changed. Thus the predictions made

by the current QM solution become less accurate as the time passes, e.g., data may

be assigned to “wrong” subsets and less efficient execution plans may be used for

13A QM solution represents a particular “model” of execution, as determined by the classifier and the set of execution

routes. In machine learning, this term is commonly used to refer to classifier-based systems.

147

Data

Virtual Concept
(Data Values + Distribution)

Real (Target) Concept
(Execution Routes)

Stream

r1

A = a2A = a1

B = b1B = b1

B = b2
B = b3

B = b2
B = b3

Execution
Routes

r2 r3 r4

...

...

...

...

Decision Tree
Classifier

Query Mesh Concepts in Query Mesh

Figure 5.18. Virtual and real concepts in Query Mesh.

processing of those data tuples. Hence, detecting concept drifts can serve as a good

signal indicating a possible need to adapt.

Multi-route adaptivity is a more complex problem compared to a single plan adap

tivity and brings several new challenges. First, we must continuously find and deploy

the best execution solution where multiple plans are used concurrently. The majority

of current adaptive solutions [76] are inapplicable here, as these methods are designed

to support only a single plan. Second, QM employs a classifier as a component of

query processing infrastructure. Therefore the classification cost must be taken into

account by the QM optimizer. Furthermore, a QM may need to be adapted not

only when statistics change, but also when data values change (even if statistics stay

the same), because such change has a direct impact on the classifier accuracy14 and

the overall performance of QM solution. Therefore, monitoring data values is as im

portant as monitoring statistics. Finally, the physical execution of QM adaptation

itself must be inexpensive to make it practical for dynamic environments where query

results must be produced in near-real time. In summary, the key challenges include:

(1) how and when to determine that the current QM solution is no longer adequate,

(2) how to determine the new “best” QM solution based on the new data values and

The classifier is constructed based on data values. 14

148

the updated statistics, and (3) how to efficiently execute the physical migration from

the current QM to a new QM solution while the query is being executed.

5.6.3 Our Proposed Solution: ST-QM

We address the above-mentioned challenges by proposing a self-tuning framework

for QM called ST-QM. The techniques presented in this work are discussed in the

context of stream environments and multi-plan query processing, however, in princi

ple, they can be applicable to other systems as well. In summary, the contributions

of this paper are:

1. We abstract the adaptivity of a multi-plan solution QM as a concept drift prob

lem. Our approach, based on monitoring and detection of concept drifts, can

discard many insignificant adaptivity cases early, and thus minimize the adap

tivity overhead.

2. We present algorithms to efficiently determine virtual and real concept drifts in

QM used to determine if and how the execution strategy should be adapted.

3. The key feature of our adaptive method is that all logical transformations to the

current execution solution are translated into a single physical operation – the

change of the classifier, without effecting the rest of the execution infrastructure.

This makes physical adaptivity extremely lightweight.

4. We thoroughly evaluate the ST-QM approach through experiments. Our results

show that ST-QM is very effective in adapting to different kinds of concept

drifts, its overhead is minimal, and the physical actuation of adaptivity has

nearly negligible cost.

149

5.7 Overview of Self-Tuning Query Mesh

5.7.1 The Main Idea

The following is the problem we tackle in the context of adaptive query processing

using Query Mesh model:

Multi-Route AQP Problem : For a given query Q and its multi-plan solution

QM computed at time ti based on the representative dataset T and statistics H,

continuously detect a concept drift when a new sample dataset T ' and statistics H '

become available at time tj > ti. If a concept drift has occurred, find a new solution

QM ' based on H ' that results in the lowest execution cost for tuples in T ' . If the

estimated cost(QM’) < cost(QM), replace QM with QM’.

The goal of Self-Tuning Query Mesh framework (or short ST-QM) is to detect

QM concept drifts and to adapt the current QM solution correspondingly to best suit

the observed drift. Our approach is unique in that we view the problem of adaptive

query processing (AQP) as a concept drift problem from machine learning [221]. This

abstraction of the AQP gives several advantages to the adaptive system. First, if we

discard an adaptivity case due to an absence or a presence of a small concept drift, it is

likely not going to lead to a better QM solution, because we’ve discarded insignificant

changes in the environment. If we do not discard a case, then there is a high chance

that it is worthwhile to analyze further. In the end, there are fewer cases ST-QM

has to analyze and the ones that do get analyzed further are all promising. Second,

techniques from machine learning and data mining fields addressing the concept drift

detection and analysis can be leveraged here to determine if adaptation is needed and

how to best adapt to the observed drift.

5.7.2 Query Mesh Concept Drifts

Given the two kinds of concepts in QM (virtual and real), the following three

cases may occur:

9/15/2008

9/15/2008 9/15/2008

150

Virtual Hybrid Real
Concept Drift Concept Drift Concept Drift

Figure 5.19. Concept drift “spectrum”.

Case 1: Virtual Concept Drift. This indicates that data values and/or their fre

quencies have changed, but the execution statistics of the new data subsets stay the

same, thus making the previously computed routes still applicable. One example

when such scenario may occur is when a better quality (i.e., more representative)

training dataset is collected over time. In this case, the execution statistics of the

subsets might not change significantly, yet the QM classifier can be further fine-tuned

by integrating new data values. For example, a new DT sub-tree can be added or

the nodes can be “pushed-up” or “down” for faster classification. Another example

of this case (based on the application mentioned in Section 5.6.1) is when a stock

exchange opens and starts streaming its data. The streaming data values from the

recently opened stock exchange get combined with the streaming data from other

previously streaming stock exchanges (e.g., from other regions). Here the new stock

data values, e.g., symbols, location, etc., will appear in the data streams, yet the

underlying distribution and the statistically similar data subsets are likely to stay

unchanged.

Case 2: Real Concept Drift. This case means that the data values stay unchanged,

but their execution statistics (e.g., selectivities or operator costs) begin to vary, thus

requiring the execution routes to be adapted. This scenario tends to be less fre

quent, but may arise when the optimizer used a rough approximation of data subsets’

statistics, and then more accurate statistics become available as a result of the query

execution feedback. The updated statistics enable the “tune-up” of the execution

routes. Using the financial application example, this case may happen when a sole

stock market is being monitored.Here, the data values, e.g., stocks being sold on

151

this stock exchange, become available as soon as it opens and are unlikely to change

significantly during the day. Yet, the statistics for the new data might not be very

accurate at the beginning of the execution. However, the longer the query runs, the

more accurate estimations can be made. Another example when this case may occur

is when better routes are found through route exploration described in Section 5.8.2.

Case 3: Both Virtual and Real Concept Drifts. We refer to this case – the hybrid

concept drift, and it happens when both the data distribution and the execution

statistics change, consequently leading to alterations in the execution routes and the

classifier. Using financial application example, this case may happen when during the

after-market trade hours, important news become public, which may have a signifi

cant impact on the stock prices of some industries. Since not all stocks participate in

the after-hours trading, the data distribution changes after the markets close. Fur

thermore, the real-life news may impact the prices of only certain types of stocks. In

this case, both the data distribution and the execution statistics may change signifi

cantly, thus requiring both the classifier and the set of execution routes in QM to be

adapted.

The three cases described above are not independent. Virtual and real concept

drifts are the special cases of the hybrid concept drift. The three cases compose

a comprehensive “spectrum” of changes that may occur in a system (Fig. 5.19):

specifically, a change in data values and their frequencies, a change in execution

statistics and a change in both.

5.7.3 ST-QM Architecture

ST-QM adds three new components to the core QM framework: ST-QM Monitor,

ST-QM Analyzer and ST-QM Actuator (shaded grey in Figure 5.20). We have de

signed ST-QM to be highly modular, enabling adaptivity functionality to be turned

on/off with complete transparency to the core QM framework (bottom of Figure

5.20). The architecture is easily extensible: new algorithms and metrics can be added

http:Drifts.We

152

Query Mesh
Search

Self-Routing
Fabric (SRF)

opi

opj

opk

0

1

2

3

opl

4

...
...

Data
Streams ruster

Online Classifier

Query

Initial QM Solution

Query Mesh
Optimizer

Query Mesh Executor

<1,2,4,3>

<4,2,3,1>

<3,4,1,2>

<4,3,1,2>

A = a2

A = a1

B = b1

B = b1

B = b2
B = b3

B = b2
B = b3

Query
Results

Route
Labels

...

ST-QM
Monitor

ST-QM
Analyzer

ST-QM
Actuator

execution
statistics

data
sampling

measurements tuning recommendations

estimations
cost

tuning execution

ST-QM execution

S
T-

Q
M

C
or

e
Q

M

...

routes
info

Figure 5.20. Self-tuning Query Mesh framework.

without much disturbance to the rest of the system. We describe the functionality of

each ST-QM component next.

ST-QM Monitor continuously samples data and execution statistics that will be

used to determine if a concept drift has occurred. Monitored parameters include data

values, their frequencies, and the operators’ costs and selectivities. Our monitoring

approach is comparable to that of the existing systems, e.g., [58, 222] with a few

distinct characteristics (see Section 5.8). Given the measurements from the ST-QM

Monitor, the ST-QM Analyzer determines if a concept drift has actually occurred,

how well the current QM solution is meeting its estimated costs and performance

goals, and what (if anything) is going wrong. Based on the analysis, the ST-QM

Analyzer makes recommendations if and how the QM solution should be adapted.

153

ST-QM Actuator takes these recommendations and physically adapts the QM solu

tion. Figure 5.21 graphically depicts the flow of the entire process.

Monitoring, analysis, and actuation of adaptivity in ST-QM add overhead to

query processing. Thus, to minimize the overhead, the following system requirements

must be met: (1) monitoring must be light-weight, and only if significant changes

are detected should the more expensive analysis process be invoked, (2) adaptivity

candidates corresponding to insignificant changes in the environment must be dis

carded early, e.g., during monitoring or in the early analysis, without invoking the

optimizer, (3) the decision to adapt should be made only if significant improvement

in the performance is expected, and (4) the physical execution of adaptivity must be

fast and inexpensive to be done online.

5.8 ST-QM Monitor

Monitoring aims to identify if the current QM solution is no longer consistent

with the current data and its characteristics. What sets apart our monitoring goals

from the existing systems, e.g., [58, 222] is that: (1) we monitor not only the change

in data distributions and execution statistics but also in the data values, and (2)

we focus not only on assuring the overall representativeness of a sample but also on

ensuring that new, i.e., the never seen before data values are not gone undetected.

ST-QM Monitor employs two complimentary techniques, namely the input data and

the execution statistics monitoring.

5.8.1 Input Data Monitoring

For data monitoring, we sample the arriving to the server data to collect a new

training dataset. This new dataset is analyzed to see if changes in the data values

and their distributions have occurred. Monitoring data values (in addition to the

distributions and execution statistics) has the advantage that the adaptive system

can exploit this extra information, which is collected inexpensively, to minimize the

154

ST-QM Analyzer ST-QM ST-QM

Monitor

Data

Samples

Execution
Statistics

Virtual
Concept

Drift

Real
Concept

Drift

Hybrid
Concept

Drift

Logical
Recommendations

Single Physical
Operation

Concept Drifts

QM Online
Classifier
change

New
Statistics

H’

Old
Statistics

H
Dist (,) >

H

Actuator

New Old
Dist (

+

Training
Set T’ Set T

Training ,) >
T

New Classifier

Old Routes

Old Classifier
+

New Routes

New Classifier
+

New Routes

Phase I: Concept Drift Detection Phase II: Tuning Recommendations

Figure 5.21. ST-QM process flow.

overhead of the more expensive execution statistics monitoring, e.g., when profiling

operators or exploring for new execution routes alternatives. Often changes in data

values implicitly indicate changes in data distributions. Consequently, this leads to

a possible change in the execution statistics, since virtual and real concept drifts fre

quently occur together. If the system detects a change in data values, it may then

employ a more expensive and detailed execution statistics monitoring to see if the

routes may need to be adapted. Simple random and systematic sampling techniques

can be used here for data sampling [200]. However they can miss potentially “im

portant” training data trying to uniformly cover the entire sampling window. Thus,

we’ve designed the following techniques:

Classifier-driven sampling. This type of sampling is based on the “importance” of

tuple attributes. In QM, some attributes are naturally more important than others,

e.g., when the decision tree (DT) classifier is constructed, a split criterion is used

to select the best splitting attribute at each node. Information gain, entropy, or

gini index measures of impurity can be used for this purpose [141, 223]. Comparing

the impurity value of a split attribute in the DT classifier for the old and the new

samples of data can be a good indicator if the data distribution possibly changed. If

the differences between the old and the new impurity measures for the same attributes

155

are significantly different, then the new sample is considered “interesting to analyze

further” and thus is not discarded. The decision of how many impurity measures to

compute, i.e., for how many DT nodes, and their relative importance in the overall

sampling is parameterized.

Route-driven sampling. This sampling method resembles a biased sampling approach.

It is guided by the QM execution routes and the expected percentage (% expected)

of tuples to be processed by those routes. Here, each tuple from the new sample first

probes the current QM classifier (Stage 1). After probing, tuple groups are formed,

with each group being assigned to a particular route. If the difference between the

actual and the expected route assignment fraction of tuples is less than the system-set

threshold, then a random selection of k members from those groups is performed. If

the difference is greater than the threshold, these tuple groups get a high “priority”,

because they contain the different (from before) data and (k + k * (% expected - %

actual)) tuples are sampled from each such tuple group (Stage 2). The sub-sample

size here is directly proportional to the observed frequency difference.

ci - classifier test condition
rj - execution route

% expected tuples
is associated with

each route

Data Stream

c1
c2

c3

c4c5c6c7

r1 r2 r3 r4

else

rdefault

else

else

% expected - % actual
< threshold

% expected - % actual
> threshold

sample sample
k tuples from each group of (k + k * (% expected - % actual))

tuples assigned to these routes tuples

Figure 5.22. Route-driven sampling.

156

The motivation behind this method is the following: if the same fraction of tuples

were assigned to the same routes, then the data distribution is unchanged. However, if

the difference is significant, e.g., in the case of a special route called the default route15 ,

then more tuples should be sampled, as this could be an indication of a virtual concept

drift and possibly the classifier may need to be updated. Since this type of sampling

is “biased” towards collecting previously unseen data, the new sample is treated as a

compliment to the old training data set and the two sets are combined (unioned) to

improve the overall quality of the training data and the resulting execution model.

5.8.2 Execution Statistics Monitoring

The statistics collected during execution are used to detect the presence of the

real concept drift. Execution statistics monitoring consists of two complementary

sub-parts: exploitation and exploration statistics monitoring.

Exploitation Statistics. Exploitation statistics monitoring tracks the selectivities and

costs of operators when using the established execution routes. We instrument query

operators to collect three types of statistics: (1) independent selectivities, (2) corre

lated selectivities and (3) operator costs (measured by wall-clock time). To compute

independent selectivities, a statistics bit is turned on in the r-token of a randomly

selected ruster, thus making it a special-purpose (statistics) ruster. If a tuple from

a statistics ruster does not satisfy operator predicate, the tuple is not physically

discarded, but rather marked as a “ghost” to be able to compute independent se

lectivities for other operators en-route. For correlated selectivities, the selectivity is

computed using only the regular (“non-ghost”) tuples in the statistics ruster, i.e., the

tuples that have not been discarded by any previous operators in the route. All three

types of statistics are collected for each individual route by the operators.

15A default route rdef ault (illustrated in Figure 5.22) is an execution route based on the overall statistics of the data.

It is used by the data that has similar statistics as the overall data statistics, as well as by the “new” data with

properties (values and frequencies) that may have not been present when the QM was originally computed.

http:ruster.If

157

Exploration Statistics. The motivation for the exploration statistics lies in the fact

that the only way to know precise costs of alternative strategies is through competi

tive execution [34]. For this purpose, we use exploration rusters – a small fraction of

the input rusters that are randomly selected and assigned different from their current

“best” routes, while monitoring the statistics along these routes. The exploration

routes are determined by the exploration policy. ST-QM employs two exploration

policies: (i) random existing route, where chosen rusters and sent on another ran

domly picked existing route; (ii) random new route, where rusters are sent on a

randomly generated and currently non-existing in the QM solution route.

Devoting resources to exploration to obtain information about thus-unknown costs

may help in finding better routes, but in the short term it detracts from exploitation

– producing results with the current best routes. This is a classic exploration versus

exploitation dilemma [76]. To address this problem, ST-QM adaptively determines

the number of rusters used for exploration. The total number of exploration rusters

(TER) depends on the value of a distance measure (described in Section 5.9) and is

computed as: TER = DER + (α * µ), where DER is the default number of exploration

rusters, µ is the value of the distance measure and α is the fraction of rusters per

distance unit. The larger the distance, the larger the number of rusters used for

exploration. Exploration may also be applied selectively to only some rusters, to put

more focus on exploring routes for certain subsets of data.

5.9 ST-QM Analyzer

The ST-QM Analyzer takes the data samples and the statistics from the ST-QM

Monitor and based on them determines if any concept drifts have occurred. It then

gives tuning recommendations based on the analysis. The execution consists of two

phases: (1) concept drift detection, and (2) tuning recommendations.

158

5.9.1 Phase I: Concept Drift Detection

Virtual Concept Drift Detection

The concept drift detection algorithm CD-Detect (in Figure 5.23) maps the problem

of virtual concept drift detection to the problem of comparing two data samples T

and T ' .

' CD-Detect (T old training set, T new tuple sample,

' H old statistics, H new statistics)

01 distdata = ComputeDataDistance (T ,T ')

02 distroutes = ComputeRoutesDistance(H,H ')

03 if (distdata > θdata) and (distroutes > θroutes)

04 return Hybrid Concept Drift

05 else if (distdata > θdata)

06 return Virtual Concept Drift

07 else if (distroutes > θroutes)

08 return Real Concept Drift

Figure 5.23. QM concept drift detection.

The algorithm requires a distance measure distdata which quantifies the difference

between data samples T and T ' . If distdata > θdata, where θdata is the adjustable

distance threshold, virtual concept drift is reported. The key to the change detection

is the intelligent choice of the distance function to compute distdata, which must

accurately quantify a data change that may impact the current QM. The choice for

the threshold θdata value defines the balance between the sensitivity and the robustness

of the detection. The smaller θdata, the more likely we are to detect small changes in

the data, but the larger is the risk of a false positive.

One common approach to measuring data differences is to first estimate the prob

ability distributions of the data, and then compute the distance, such as the Kullback-

Leibler Divergence or the Jensen-Shannon Divergence [224], between the estimated

distributions. However, this approach is computationally impractical for large and

159

high dimensional data. The problem becomes even more challenging in streaming

data environments, as the high speed makes it difficult for such expensive algorithms

to keep up with the data [225]. To tackle this issue, we have designed two efficient

methods:

Misclassification Rate. Misclassification rate or error rate E , described as E = (1 - A)

where A is the classifier accuracy, represents the fraction of total cases “misclassified”

by the current QM classifier for the new data sample. The main idea here is to assign

the execution routes to the tuples from the new data sample. Then the tuples from the

new sample probe the current classifier, and the classifier’s misclassification rate, e.g.,

mean absolute error, is computed. The reason we assign the new sample tuples to the

existing routes (even though we could possibly find better plans for their processing)

is because we are checking for virtual concept drift with respect to the current target

(i.e., the current set of execution routes).

Signature-Based Method. This method regards the decision tree classifier as a sum

marization of the distribution of data. Each leaf node contains a route label and the

fraction of tuples expected to be processed by that route. Together, all the leaf nodes

can be thought of forming a special “histogram” of route assignment frequencies.

Then after probing the classifier, a signature is assigned to each data sample that

depicts the route assignments frequencies. This way we evaluate data distribution

changes by comparing these signatures. This method is extremely efficient, since all

it requires is a quick probe of the classifier.

Real Concept Drift Detection

Real concept drift occurs when execution statistics change significantly, consequently

implying that the execution routes may need to be altered as well. Given the updated

execution statistics, a new set of routes is computed and compared to the old set of

routes. The goal here is not to estimate whether the QM solution with the new set of

routes would necessarily be “better” (remember, the cost of a QM solution depends

160

on the combination of both the classifier and the routes’ costs), but rather that

the new routes are different (see Algorithm in Figure 5.23). Using such simple route

difference approach allows ST-QM to minimize its overhead: since route computation

is a fraction of the entire QM re-computation [219]. Next we discuss several possible

choices for the route distance measure distroutes.

Number of Affected Routes. This distance measure counts the number of routes that

are different when comparing the old and the new sets of routes. Let R denote the

old set of routes, and R’ be the new set of routes. Then distroutes = |Rdiff | = |R ' −R|,

where ∀ r ∈ Rdiff , r ∈ R ' and r /∈ R. For example, if a route r has a different operator

ordering or if a new route r exists in the new set as a result of exploration – all these

changes contribute to the route distance measure. If a more fine-grained measure is

needed, the approach can be extended to consider the count of the operators with

significantly different selectivities and execution costs.

Route Edit Distance. This distance measure is based on the edit distance approach

[226]. Here, the old and the new routes are mapped respectfully to the same data

subsets, meaning these routes were considered as the best execution strategies for

processing of the same data subset at different times. Routes represent operator

sequences and can be described by the strings composed of operator identifiers. The

edit distance between any two routes is then the number of operations required to

transform one of them into the other. The examples of edit distances that can be

used here include Hamming distance, Levenshtein distance, and many others.

5.9.2 Phase II: Tuning Recommendations

After QM concept drifts have been detected, the ST-QM Analyzer determines

how to address them. In response to the concept drifts, ST-QM Analyzer may do the

following: (1) ignore the concept drifts, if they are small or the benefits of adapting the

current QM is not expected to give much performance improvement; (2) incrementally

tune a sub-part of the QM solution, e.g., a classifier sub-tree or a route; (3) compute a

161

Algorithm TR-Produce(CD detected concept drift, T’ new training dataset, H’ latest execution statistics)

1:	 QM = current query mesh solution used in execution

/* VIRTUAL CONCEPT DRIFT RECOMMENDATIONS */

2:	 if (CD.Type == Virtual Concept Drift) then

3: Compute new classifier C’ based on the training set T’

4: Let QM’ = new query mesh solution with classifier C’

5: if (cost(QM’) < cost(QM)) then

6: Recommend New Classifier C’

7: end if

/* REAL CONCEPT DRIFT RECOMMENDATIONS */

8:	 else if (CD.Type == Real Concept Drift) then

9: Compute new set of routes R’

10: Let C’ = current classifier QM.C

11: Update the target level of the classifier C’ with routes R’

12: if (the target R’ requires modification of classifier C’) then

13: Compute a new classifier C” based on the new target R’

14: Let QM’ = new query mesh solution with classifier C”

15: if (cost(QM’) < cost(QM)) then

16: Recommend New Classifier C” and New Routes R’

17: else

18: Let QM’ = new query mesh with routes R '

19: end if

20: if (cost(QM’) < cost(QM)) then

21: Recommend New Routes R’

22: end if

23: end if

/* HYBRID CONCEPT DRIFT RECOMMENDATIONS */

24: else if (CD.Type == Hybrid Concept Drift) then

25: Compute new QM’ solution based on the training set T’ and the new statistics H’

26: if (cost(QM’) < cost(QM)) then

27: Let C’ = classifier QM’.C

28: Let R’ = set of routes QM’.R

29: Recommend New Classifier C’ and New Routes R’

30: end if

31: end if

Figure 5.24. QM tuning recommendations.

new QM solution based on the updated statistics and consider to replace the current

QM solution.

� �

162

Recommendation Algorithm

Figure 5.24 illustrates the pseudo-code for the TR-Produce algorithm16 employed by

the ST-QM Analyzer to produce tuning recommendations. Similar to many adaptive

solutions, ST-QM uses the QM optimizer cost model [219] to compare the current

execution to what was originally expected or what is estimated to be possible [76].

The recommendation algorithm has the following cases:

Case 1: Virtual Concept Drift Recommendation. If a virtual concept drift is detected,

first a new classifier C’ for the new training set T’ is computed. Then the cost of

the new query mesh (with the new classifier C’) QM’ is determined and compared

to the cost of the current QM. If the new QM’ has a smaller cost, the new classifier

C’ is recommended.

Case 2: Real Concept Drift Recommendation. If a real concept drift has been de

tected, the target level (i.e., the routes) in the QM classifier are updated. If this

update does not require the modification of the rest of the classifier, and if the QM’

solution with new routes R’ has a smaller cost than the current QM solution, then

the new routes R’ are recommended. If the classifier needs to be adjusted (e.g., if

some routes are now shared by several groups or if some routes are removed), this

case is then handled as a hybrid concept drift.

Case 3: Hybrid Concept Drift Recommendation. If a hybrid concept drift has been

detected, a new QM solution with the new classifier and the new set of routes is

computed, its cost is estimated and compared to the current QM solution’s cost. If

the newly computed QM’ has a smaller cost, then both the new classifier C’ and the

new routes R’ are recommended17 .

To evaluate the benefit of a recommendation, ST-QM Analyzer uses the metric,

called improvement I :

cost(QM ' , T ' , H ')
I(QM, QM ' , T ' , H ') = 100% ∗ 1 −

cost(QM, T ', H ')

16“TR” is the abbreviation for “Tuning Recommendations”.

17If either the classifier or the new set of routes have been computed in the earlier stages of analysis, e.g., during

concept drift detection, they are cached and not recomputed in this phase.

163

where QM is the initial and QM’ the recommended solution, and cost(QM’,T’,H’)

is the expected cost of evaluating a query under the QM’ solution based on the

training data set T’ and the statistics H’. The ST-QM Analyzer computes the ex

pected improvement value, and if the value is deemed as substantial, only then the

recommendation is outputted.

5.10 ST-QM Actuator

5.10.1 Physical Execution of Adaptivity

ST-QM Actuator physically adapts the QM solution in the execution framework

based on the recommendations received from the ST-QM Analyzer. As described in

Section 5.9.2, ST-QM Actuator may receive the following three kinds of recommen

dations:

• R1. New Classifier + Old Routes

• R2. Old Classifier + New Routes

• R3. New Classifier + New Routes

The key characteristic of the ST-QM is that all three recommendations get translated

into a single physical operation in the execution infrastructure, namely the change of

the classifier in the online classifier operator. To accomplish this, only a simple pointer

re-assignment to the new classifier object is needed (Figure 5.25). This single step is

the actual execution of QM adaptivity and the implementation is trivial. What makes

this possible is the architecture of QM framework. Although routes (i.e., query plans)

are pre-computed, their topology is not physically constructed. Instead the Self-

Routing Fabric (SRF) infrastructure provides distributed routing (i.e., forwarding of

tuples to the operators in the plan) based on the plan specifications assigned by the

classifier. This physical separation between the component that determines which

plans should be used for execution and the component that actually executes the

plans based on specifications, makes the QM adaptivity so light-weight. To change

http:Analyzer.As

<4,3,1,2>

A a1

Routes

164

the execution strategy, all the system needs to do is modify the specification of the

plans (in the classifier).

Figure 5.25 illustrates an example of physical execution of QM adaptivity. The old

classifier, marked by lighter grey, is replaced by the new classifier, and the rusters with

new routes are sent into the self-routing fabric instantaneously. The attractiveness of

Old Classifier Self-Routing Fabric (SRF)

opi

opj

opk

0

1

2

3

opl

4

...

Data
Streams

New Classifier

<1,2,4,3>

<4,2,3,1>

<3,4,1,2>

<4,3,1,2>

A = a2

A = a1

B = b1

B = b1

B = b2
B = b3

B = b2
B = b3

Query Results

example execution after QM adaptivity

Routes

...

<1,2,4,3> A = a2

=

execution path before QM adaptivity

...

Figure 5.25. Physical execution of QM adaptivity.

our design is that we can easily switch between different multi-plan solutions. If the

desired performance improvements after adaptivity are not gained, ST-QM can easily

switch back to the previous QM solution. The architecture makes such behavior very

flexible.

5.10.2 State Management and Adaptivity

One of the key questions that must answered in adaptive systems is the problem

of state management for stateful operators. We consider select-project-join (SPJ)

queries. For joins, we employ one-way-join-probe (OJP) operators [219], similar in

spirit to SteM s [65], which correspond to a half of a traditional join operator. There

165

is one OJP associated with each stream attribute that participates in the join. The

OJP keeps track of the window of attribute values that have arrived on the stream

and allow subsequent tuples from the other streams to probe these stored attribute

values to search for a match. In the case of the join operator, the order in which

tuples probe the OJP is irrelevant as long as each tuple passes through each OJP

exactly once. This holds from the associativity and the commutativity property of

the join operator [65, 217]. Without adaptive functionality, the core QM framework

already supports concurrent plans with different operator ordering. Hence, adding

adaptivity does not require any additional support. We plan, however, to investigate

new state management techniques in our future work, to extend support to other

types of queries.

5.11 Self-Tuning Query Mesh Experimental Study

We now describe our experimental evaluation of ST-QM implemented inside

Java-based continuous query engine called CAPE [8]. To evaluate ST-QM ’s de

sign, we compare its relative performance against competitor systems, namely the

non-adaptive QM and the adaptive “plan-less” Eddies [34] with CBR-based routing

policy [28] – the closest solutions to ST-QM. To ensure the even comparison, all three

systems were implemented in CAPE, and their implementation used as much of the

same codebase and data structures as possible. We also demonstrate the effectiveness

of ST-QM by measuring its overheads and the benefits of its concept drift abstraction

approach.

5.11.1 Experimental Setup

All our experiments are run on a machine with Java 1.6.0.0 runtime, Windows

Vista with Intel(R) Core(TM) Duo CPU @1.86GHz processor and 2GB of RAM. Our

experiments use N -way join queries which join incoming S1...SN streams. The specific

query we use is an equi-join of 10 streams, i.e., S0 ��S 1... S9 ��S 10. N -way join

http:ST-QM.To

166

Uniform Pareto Poisson

Figure 5.26. Experimental distributions.

queries are one of the core queries in database systems used to discover relationships

across data or events coming from different data sources.

We use synthetic data sources for our experiments, similar to [28, 64, 65]. Using

synthetic data allows us to manage data properties that are hard to control in real-life

data. We employ several known data distributions to determine the skew of the data.

Specifically, we use well-known distributions: Uniform, Pareto and Poisson [227]

(see Figure 5.26). These distributions model many real-life phenomena (see Table

5.3 for examples). The default data properties, system parameters and distribution

parameters used in the experiments are shown in Table 5.3 and Table 5.418 .

Each stream’s schema is composed of five attributes and a timestamp. For every

join attribute column, integer-based values are generated using one of the above-

mentioned distributions. The values of other attributes are correlated to the join at

tribute values, e.g., in a stream S(col1, col2, col3, col4, col5), if col1 is a join attribute,

the values of col2...col5 are correlated to the values in the join attribute column ac

cording to the specified to generator correlation parameters. The default values are

50%, 30%, 15%, 5%. To make this more concrete, consider an example: value 100

is generated in the join attribute column based on the chosen distribution, then in

another attribute column, 50% of the time value 99 will appear next to 100, 30% value

98, and so on19. For other attributes in the stream, the values are generated similarly.

18The different colors in Figure 5.26 illustrate how the distribution changes when the parameter values vary as

described in Table 5.4.
19Values ‘99’ and ‘98’ were picked arbitrarily here to convey the example.

167

Table 5.3

Default experimental parameters.

Parameter Value Description

Ruster size 100 tuples Average ruster size

Sample size 100 tuples Average sample size per stream

Data monitoring Route-driven sampling Data monitoring method.

k = |T |/|R|, θdiff = 0.2

Execution monitoring Exploitation statistics No exploration is used

distdata Signature-based Virtual concept drift detection method. θdata

= 0.1

distroutes Number of affected

routes

Real concept drift detection method. θroutes

= 0.2

Impr. I I = 0.1 Improvement parameter

Data Distributions

Name Parameters Application Examples

Uniform α ∈ {...,β-1,β}

β ∈ {α,α+1,...}

X ∈ {α,...,β-1,β}

• Long-term patterns of data

Pareto 0 < α < ∞

0 < β < ∞

α ≤ X < ∞

• Animal migration

• Word frequencies

Poission 0 < λ < ∞

X ∈ {0,1,...}

• Service times in a system

• # of phone calls at a call center per minute

• # of times a web server is accessed per

minute

We decided against generating random values in the non-join atribute columns, to

avoid short and wide decision tree classifiers (e.g., a decision tree with height 1 and

the test conditions based on all possible random values). The explanation for this

is the following: if an attribute contains a lot of unique random values, the entropy

value for this attribute column approaches 0. Since many splitting criteria in DT

construction algorithms are entropy-based [141], the attribute with the most distinct

values gets picked first, and the algorithm stops right there, thus resulting in a short

and wide decision tree.

168

To simulate dynamic changes, the generation of data was managed as follows: the

data generator starts with a data distribution and its initial distribution parameters;

over time, the distribution parameters values are varied, e.g., for Poisson distribution,

the transition: (λ = 1)→(λ = 3)→(λ = 5) (see Table 5.4), means that the initial

distribution parameter value was 1, after some time it was changed to 3, and then

to 5. This process is repeated continuously for infinite data streams. The values of

distribution parameters are changed every 10K tuples across all streams.

The execution of ST-QM in CAPE [8] is split into two execution threads. The

monitoring and the adaptivity actuation are interleaved with the query execution on

one thread. The analysis of ST-QM (i.e., concept drift detection, optimizer calls and

generation of tuning recommendations) is executed on another thread. The analysis

and the optimizer search can sometimes be extensive [219], thus blocking the query

executor from processing the arriving data tuples, while the system is being analyzed

by adaptive component, is not practical. Hence, we separated ST-QM analysis into a

separate thread, to prevent blocking of the query executor and to ensure that results

are produced at all times.

5.11.2 Results and Analysis

Comparison Against Alternative Systems

In this experiment, we compare ST-QM design against the closest competitors, specif

ically the non-adaptive QM execution and the Eddy-based system with CBR-based

routing [28]. The main difference between the implementations is that the non

adaptive QM evaluates the query using the same classifier and routes for the duration

of the entire query execution. If data characteristics change, and the classifier does

not have a sub-tree for the new data values, the “default plan” (rdefault) is used for

processing of that data. rdefault plan is based on the overall statistics of the data and

is computed by the optimizer prior to query execution, just like in traditional query

optimization. CBR-based execution is done in the context of Eddies. Eddy operator

169

QMQM QM1.4Eddy+CBREddy+CBR Eddy+CBR10001000
Eddy+CBR+BatchEddy+CBR+Batch Eddy+CBR+Batch

ST-QMST-QM ST-QM1.2

 800800
 1

of

 re
su

lt
tu

pl
es

%

 o
f t

ot
al

 e
xe

 c
os

t
tu

pl
es

/m
se

c
tu

pl
es

/m
se

c

600600

 400400

Ti
m

e
(m

se
c)

of

 re
su

lt
tu

pl
es

of
 re

su
lt

tu
pl

es

 0.8

 0.6

 0.4

 200200
 0.2

 00 0
UniformUniform PoissonPoisson ParetoPareto Uniform Poisson Pareto

Data DistributionsData Distributions Data Distributions

(a) Average output rate (b) Average execution time

Run-time Overhead
 120 QM

ST-QM
700000Query Cost

20% 8% 2% 600000
 100

 500000

 400000

 300000

 200000

 80

 60

 40

 100000
 20

 0
 0 5 10 15 20 250

Eddy+CBR Eddy+CBR+Batch QM & ST-QM Time (min)

(c) Run-time execution overheads (d) Virtual concept drift adaptivity

QM QM700000 700000
ST-QM ST-QM

600000 600000

 500000

 400000

 300000

 500000

 400000

 300000

 200000 200000

 100000 100000

 0
 0 5 10 15

Time (min)
20 25

0
 0 5 10 15

Time (min)
20 25

(e) Real concept drift adaptivity (f) Hybrid concept drift adaptivity

Figure 5.27. Experimental results.

continuously profiles operators and identifies “classifier attributes” to partition the

data into tuple classes that may be routed differently [28]. We execute Eddy with

CBR routing in two modes: (i) with batching and (ii) without batching [33]. The

batch size is set to 100, which is similar to ruster max size parameter in ST-QM (see

Table 5.3), and is designed to reduce execution overhead.

170

Table 5.4

Distribution statistics and parameters.

Uniform (α = 0, β = 100): min: 0.0, max : 100.0, med : 49.0,

mean: 49.7, ave.dev : 25.2, st.dev : 29.14, var : 849.18, skew : 0.05,

kurt : -1.18.

Distr. trans: (α=0, β=100)→(α=0, β=150)→(α=0, β=200)...

Pareto (α = 1, β = 1): min: 10.0, max : 6833.0, med : 19.0,

mean: 73.56, ave.dev : 86.22, st.dev : 341.25, var : 116455.33,

skew : 14.26, kurt : 240.2

Distr. transitions: (α=1, β=1)→(α=1, β=1.5)→(α=1, β=2)...

Poisson (λ = 1): min: 0.0, max : 60.0, med : 10.0,

mean: 10.0, ave.dev : 7.2, st.dev : 9.8, var : 97.59,

skew : 0.96, kurt : 0.88

Distribution transitions: (λ = 1)→(λ = 3)→(λ = 5)...

We ran the query processor for 25 minutes several times, employing these different

execution strategies, and show the results, averaged over all those runs. Figure 5.27(a)

compares the average output rate, the average execution time per tuple is presented

in Figure 5.27(b), and the run-time execution overheads present in these systems are

in Figure 5.27(c)20 .

From Figure 5.27(a), we can observe that for Uniform distribution, on average,

ST-QM has 39% higher output rate than CBR without any batching, 24% higher than

CBR with batching, and 6% lower than non-adaptive QM. In Uniform distribution,

most of the time, the streams tend to have a single route. Occasionally, due to

sampling, we have noticed two routes per stream in ST-QM. However, even with

changes in the environment, the routes based on average statistics of the “old” data

tend to be the same best routes for the “new” data. This explains the close output

rate of ST-QM compared to non-adaptive QM for Uniform distribution. For Poisson

distribution, ST-QM on average has 13% higher output rate than CBR without

batching, 0-0.5% smaller rate than CBR with batching, and 43% higher output rate

than non-adaptive QM. Here the simple batching of Eddies incidentally plays out

“QM” in the charts refers to the non-adaptive QM execution. 20

171

very well, thus resulting in an average performance of ST-QM and Eddies being

really close. For Pareto distribution, we observe that ST-QM on average has 27%

higher output rate than CBR without batching, 18% higher than CBR with batching

and 44% higher output rate than non-adaptive QM.The average execution time per

tuple (in Figure 5.27(b)) follows a similar trend.

For Pareto and Poisson distributions, when a concept drift occurs, and most of

the data gets processed by the default routes in non-adaptive QM system, this results

in poor execution strategy, since the data properties have changed and the execution

could be improved by determining the new data subsets and customizing the routes

for them, as is done in ST-QM. CBR, on the other hand, suffers from continuous re-

optimization and re-learning overheads (the relative overhead is depicted in black in

Figure 5.27(c)). Implemented in the context of Eddies, CBR continuously experiences

the “backflow” overhead, where tuples get continuously routed back to the Eddy

operator that has to re-examine the tuples and forward them to the next operator for

processing. The overhead is O(n+1) time, where n equals the number of operators

and 1 accounts for the first time a tuple from an input stream gets processed. Without

any batching, Eddy processing with CBR algorithm amounted to nearly 20% of the

total execution cost.

Batching attempts to reduce Eddy overhead. However, batching in Eddy [33]

is still very naive: every b tuples, i.e., a continuous chunk of tuples that happened

to arrive together in time are batched and routed together. Without batching, the

Eddy “backflow” overhead per workload of tuples W is O((n+1)*|W |). With batch

ing, the overhead gets reduced by the batch size b, resulting in the total overhead

O((n+1)*|W |)/(b). In practice, the batches might be smaller, depending on the ar

rival rates of the tuples. In QM, on the other hand, tuples are grouped together into

the same ruster based on the classification, i.e., the data values and the similarity of

statistics, and are thus guaranteed to share the same best route.

Eddies employing CBR also experience continuous overhead of re-computing clas

sifier attributes based on runtime information, even though the best classifier attribute

172

for an operator does not change very often [28]. These overheads limit the benefit

that can be obtained from a better adaptive policy in Eddy. Static QM and ST-QM

also have a small runtime overhead, namely the probing of the online classifier to

determine the execution plan for arriving data. The classification overhead, however,

was measured to be very small, only 2% of the query execution cost (Figure 5.27(c)).

Adaptivity to Concept Drifts

This experiment evaluates how ST-QM adapts to different concept drifts. We use

non-adaptive QM execution as a base case to compare ST-QM results.

A virtual concept drift means that the data values change, but the distributions

of the new content groups stay the same, thus affecting the classifier component but

not the target routes. To simulate only virtual concept drifts, we generate data using

one of the experimental distributions, and then over time replace the data values with

different values, while maintaining the same distribution of data values. Thus, the

content of data changes, but their frequencies stay the same. A real life example when

this scenario may happen is the variation between the number of times a web server

is accessed per minute. Depending on the day (e.g., work day or weekend), the hour

(e.g., morning or evening) the values may be different, but the overall distribution

typically tends to follow Poisson distribution [63]. We show the results for the Poisson

distribution here, but similar trends have been observed for other distributions as well.

Figure 5.27(d) shows the results for ST-QM compared to non-adaptive QM. ST-QM

gives, on average, between 24% to 38% improvement over static QM execution.

In real concept drift, the data values stays constant, but the execution routes

change. Real concept drift may occur due to changes in either the selectivities, the

costs of query operators, or both. Typically, a change in selectivity indicates a change

in the data distribution, and thus most likely a hybrid concept drift. Therefore, to

simulate only real concept drifts, we vary the time it takes an operator to process a

tuple over time (with non-changing data values) and report the effects on ST-QM ’s

173

performance. To motivate the exploration of the space of higher operator costs,

consider the following example: [228] describes multilingual query operators, e.g.,

LexEQUAL and SemEQUAL, for matching multilingual names and concepts, respectively.

If over time, the user is not happy with the results produced by the queries composed

of such operators, the user may increase the quality threshold [228], which may result

in more detailed computations by such operators for certain phonemically close words.

In our experiments, the increase in operator cost is obtained by running CPU intensive

computations every time a tuple has to be processed by an operator, and varying this

cost depending on the tuple’s data values. Figure 5.27(e) shows that ST-QM is quite

effective at detecting and adapting to real concept drifts. On average, ST-QM ’s

approach results in 15 to 28% faster output rate than the non-adaptive QM case.

For hybrid concept drift, we varied both data values and operator costs. Figure

5.27(f) shows the results for continuous hybrid concept drift occurrence, i.e., when

both virtual and real concept drifts take place together. We can observe, that ST-QM

outperforms non-adaptive QM by 24% to 41% in hybrid concept drift case.

Run-time Overhead of ST-QM

ST-QM has three overheads: monitoring, analysis and actuation. We instrumented

the code to determine the time spent by each of these overheads. Figure 5.28 reports

the overheads per workload of tuples relative to the total execution cost. A workload

in this experiment is a set of data tuples received and processed during time interval

between any two ST-QM invocations.

The monitoring overhead per tuple was measured as the time taken by the func

tion that performs sampling and makes the decision whether to discard or keep the

sample (see Section 5.8.1). For execution statistics monitoring, we have instrumented

each operator to measure the time spent computing the statistics (selectivities and

execution cost) for each “statistics” ruster (Section 5.8.2). The analysis overhead was

measured as the time taken by the function that performs concept drift detection, to

174

invoke the optimizer, and to produce tuning recommendations (see Section 5.9). The

actuation overhead was measured as the time taken to replace the current classifier

with a new classifier (described in Section 5.10).

10 Join Query

%
 o

f t
ot

al
 e

xe
 c

os
t

91.0%

0.6%
1.8%

6.5%

0.02%

Query cost
Data monitoring
Stats monitoring

Analysis
Actuation

Figure 5.28. ST-QM overhead.

The total overhead (monitoring together with analysis and actuation) is 2.42%

of the total execution time without optimizer invocation, and 8.92% with optimizer

invocation. One important parameter to control the overhead of ST-QM is the size of

the training tuple set or the new tuples’ sample size. The more tuples get collected, the

larger is the analysis overhead and the optimizer overhead. The optimizer overhead is

especially sensitive to the size and type of training tuples collected, as was previously

reported in [219]. A balance must be kept between the size and the quality of the

training data.

In addition, we also measured the worst case scenario for ST-QM : when no con

cept drift occurs and the adaptation is not needed. If there are no changes in the

environment, no benefit can be gained from changing to a different QM solution.

Thus, differences in the output rates must be due to extraneous overhead (and not

due to better decisions). For this experiment, we ran our experimental query over the

Poisson-distributed dataset without any changes to the data and with ST-QM func

tionality enabled. Figure 5.28 displays the average over 5 runs of the query. When

175

of

 re
su

lt
tu

pl
es

700000

 600000

 500000

 400000

 300000

 200000

 100000

 0

QM
STQM

0 5 10 15 20 25
Time (min)

Figure 5.29. Overhead when no adaptation is needed.

no benefit is possible, ST-QM is on average between 2.2 - 4.8% worse than static QM

in the total number of results produced. This result confirms that ST-QM approach

has detected that changes were insignificant, based on its monitoring and concept

drift detection and did not invoke the optimizer. By discarding such insignificant

adaptivity cases early, it minimized its adaptivity overhead. This overhead can be

further reduced in the system by minimizing the monitoring frequency of both data

and execution statistics.

5.11.3 Summary of ST-QM Experimental Conclusions

The main points of our experimental study can be summarized as follows:

1.	 ST-QM can give up to 44% improvement in execution time and output rate.

2.	 ST-QM is highly adaptive to virtual, real and hybrid concept drifts and can

result in some cases in up-to 41% improvement compared to non-adaptive QM.

3. The runtime overhead of ST-QM relative to query execution is small (at most

7%) . The actuation cost of physical adaptivity is nearly negligible resulting in

0.02% of total execution cost.

176

4. Even if no adaptivity is needed, ST-QM ’s performance in the worst case will

be at most 2-4% slower than of static QM.

5.12 ST-QM Conclusion

Here we addressed the problem of adaptivity in the multi-plan-based query pro

cessing engines. We have presented a Self-Tuning Query Mesh (ST-QM) achitecture

that uses multiple plans for processing different subsets of data, and yet is as adap

tive as the “plan-less” systems. ST-QM increases the efficiency of query processing

in highly dynamic environments, by adapting the multi-plan solution, so that differ

ent subsets of data may benefit from different execution plans over time. ST-QM

approach is unique in that it abstracts the problem of adaptive query processing as

a concept drift problem. Such abstraction allows ST-QM to discard adaptivity can

didates early in the process, if the changes are insignificant to adapt to and thus

minimize the adaptivity overhead. The key characteristic of the ST-QM approach

is that all logical changes to the current QM solution get translated into a simple

physical operation, namely the classifier change. Our most important contribution

is that we have shown in our prototype implementation that ST-QM approach can

be simultaneously inexpensive and adaptive. Our experimental study indicates that

ST-QM can adapt to different types of concept drifts very efficiently. Furthermore,

the run-time overhead of ST-QM execution is fully amortized by the performance

benefits of the better multi-plan-based query processing.

Here, we address the problem of adaptive query processing on non-uniform data

streams. We propose a Self-Tuning Query Mesh infrastructure (or short ST-QM)

that continuously adapts to data streams’ characteristics and to system conditions,

e.g., memory, CPU resources availability. The fundamental challenge for self-tuning

query mesh is the problem of determining the discrepancy between the previously

learned query mesh model and the current model based on the characteristics of the

new data and the system condition, what we denote as optimization concept drift

problem. The self-tuning query mesh has the ability to judiciously determine when

177

and how to adapt its infrastructure to accurately match the changed concept of the

data streams and employ the best query mesh for the current system conditions. ST

QM used a three-fold adaptation process - classifier tuning, multi-route configuration

tuning, and runtime route tuning - to ensure efficient processing of continuous queries

on non-uniform data streams. We have described the tuning techniques in ST-QM

and have presented detailed experimental evaluation.

5.13 Uncertainty-Aware Query Mesh (UA-QM)

Recent years have witnessed the emergence of novel applications where incoming

data arrives in the form of continuous data streams, for example, location-based ser

vices, sensor networks and financial tickers. Data in such applications tends to be

non-uniformly distributed, and query processing can often benefit from employing

multiple execution plans, each optimally serving a subset of data with distinct statis

tical properties. Recently proposed Query Mesh (QM) framework implements such

multi-plan (or multi-route21) execution paradigm very efficiently. However, similar to

most query processing systems, QM optimizer assumes all knowledge to be certain

and complete when determining a low cost multi-route solution. Such assumption

is unrealistic for streaming environments which are riddled with uncertainty, due to

measurement inaccuracies, incomplete or unknown information or data arrival laten

cies. Here, we focus on the problem of uncertainty in the multi-route query processing

context, and propose a novel Uncertainty-Aware Query Mesh solution (or short UA

QM) to address this problem. The goal of UA-QM is two-fold: (1) to model and

measure various types of uncertainty to represent real-life scenarios in streaming en

vironments more accurately and (2) to process data in an uncertainty-aware and

multi-route fashion. We have implemented our approach in a prototype DSMS, and

our experimental evaluation shows the benefits of our proposed UA-QM approach.

21We use terms “plans” and “routes” interchangeably in our work. Both mean the same thing in the context of this

paper.

178

5.13.1 Problems with Uncertainty Ignorance

Compared to traditional relational databases where the entire dataset is present

and so are the complete statistics about it, this luxury is not available in DSMSs.

Here, the knowledge about the environment such as data input rate, operator selec

tivities, attribute values and their distributions is typically incomplete and is con

tinuously changing. Thus, uncertainty naturally arises during query optimization in

the streaming context. Most query processors in Data Stream Management Systems

(similar to relational counterparts), however, consider all knowledge to be certain

and complete during optimization phase, which may significantly limit query perfor

mance at runtime [77]. Existing solutions dealing with uncertainty e.g., [77–79] are

primarily single-plan-based and focus on cardinality estimations for the data as a

whole. A more complex structure and a different execution paradigm (that employs

unique plans for distinct subsets of data) makes these uncertainty solutions insuffi

cient for a multi-route solution like query mesh (see Section 5.14.2 for more detailed

explanation).

As a motivating example, consider a geo-social networking application, such as

BrightKite [18]. Here, an input data stream people may be transmitting real-time

location updates from the users looking to get together to socialize in a given geo

graphic area. A continuous query Q (shown at the top left in Figure 5.30) is executing

to match people based on similar age, interests and location. For simplicity of dis

cussion, we assume that the stream people has two distinct data subsets, denoted as

the “city” and the “suburbs” subsets22. Figure 5.30 (the table at the bottom left)

shows the selectivities of operators OP1 -OP3 for each of the subsets, and the over

all selectivity. Here, the selectivities are represented as “certain” point estimates –

a common approach in most database systems. Assuming that operators have the

same execution costs and only overall selectivities are considered, the best ordering

for people stream tuples for query Q is OP2, OP3, OP1. However, if we distinguish

22This could be people living in a city and in the suburbs.

179

SELECT name, age, location
FROM people OP1 OP2 OP3
WHERE age BETWEEN 22 AND 28
AND marital_status = ‘single’
AND interest = ‘theatre’ 22 < age

< 28
status =
‘single’

Location 22 <
age < 28

status =
‘single’

city

suburbs

interest =
‘theatre’

interest =
‘theatre’

22 <
age < 28

interest =
‘theatre’

status =
‘single’

Data

possibly

possibly

Classifier Multiple execution routes

Location OP1 OP2 Location OP3 OP1 OP2 OP3

city 45% 50% city 65% [40,50]% [45,55]% [40,70]%

suburbs 35% 10% suburbs 5% [30,40]% [5,15]% [0,10]%

overall 40% 30% overall 35% [35,45]% [25,35]% [20,40]%

Selectivities as point estimates Selectivities as intervals

Figure 5.30. Geo-social networking query example.

operators’ selectivities based on the different subsets, we can see that for the “city”

tuples, the ordering OP1, OP2, OP3 will outperform OP2, OP3, OP1, while OP3, OP2,

OP1 will outperform OP2, OP3, OP1 for the “suburbs” tuples.

While the above example clearly motivates the benefit of processing different data

using different plans, it has a major limitation: it completely ignores uncertainty.

For example, uncertainty may be present in the operator selectivities due to vary

ing estimates based on (several) data samples, each roughly approximating the real

data, or due to data arrival latency. Uncertainty in operator statistics translates into

uncertainty in execution routes. Furthermore, the classifier, which is used to assign

routes to data tuples, due to the training set quality or its limited size, may contain

some uncertainty as well.

Consider the same example in Figure 5.30 at the bottom right, where instead

of certain point estimates, we use selectivity intervals to represent uncertainty in

180

operator selectivities. With uncertain selectivities, it becomes much more challenging

to determine which data tuples should be processed using which of the present routes.

For example, the “city” tuples may benefit from the ordering OP1, OP2, OP3, but

also in some cases, it could benefit from the alternative ordering OP2, OP3, OP1

(depicted by a dashed line) due to the overlap in the operators’ selectivitiy intervals.

Similarly, some “suburbs” tuples may benefit from the alternative routes if uncertainty

is considered during query optimization.

In addition to uncertainty in routes, classifier may also face uncertainty. For

simplicity of presentation, the classifier in our example consists of a single test on

the location attribute. However, in real-life scenarios, a classifier is likely to have

multiple test nodes based on which tuples are assigned to their best routes. Thus,

given uncertain routes and uncertain route assignments, as well as the training set only

roughly approximating the real data, a classifier is likely to contain some uncertainty

as well.

In summary, the problem with many current optimization techniques is that they

are: (1) mostly uncertainty-oblivious; and (2) those that are uncertainty-aware, pri

marily focus on uncertainty in a single query plan execution strategy. Here, we

propose to address the open problem of uncertainty in multi-route query processing

in the context of data streams.

5.13.2 Challenges

A number of characteristics inherent in streaming environments make the problem

of handling uncertainty in a multi-route solution a challenging task.

•	 Fast data arrival rate. A common characteristic of data streams is a high data

volume and a rapid arrival rate. Therefore, uncertainty estimation algorithm

needs to be as fast as possible and the speed of decision-making regarding

uncertainty must be faster than the data incoming rate.

181

•	 Different types of uncertainty. Uncertainty in a multi-route solution may occur

in both routes as well as in classifier which is responsible for assigning tuples to

routes. Moreover, uncertainty may be “absolute” (with regard to actual values,

such as statistics measurements, e.g., order of operators), or it may be “relative”

(with regard to the best choice among multiple possible alternatives). Thus, an

uncertainty mechanism must be able to model and measure various types of

uncertainty in both routes and classifier as well.

•	 User preferences. Users executing continuous queries may have different pref

erences regarding the best way of dealing with uncertainty. Users may want to

decide what should be a reasonable tradeoff between certainty vs. possibility (in

other words, expectation and ambiguity) when their query is being executed.

Thus, uncertainty mechanism should provide support for user preferences with

regard to how to handle uncertainty during query processing.

•	 Low overhead. The results in streaming environments are expected to be pro

duced in near-real time. Since the added uncertainty-awareness functional

ity adds processing and storage overheads (compared to regular “uncertainty

oblivious” query processing), the overhead must be as low as possible not to

seriously impact the performance of DSMS.

We address the above-mentioned challenges in the context of data streams and

present a solution, based on the multi-route query mesh model [219], which we call

Uncertainty-Aware Query Mesh (UA-QM).

5.13.3 Our Proposed Solution: UA-QM

UA-QM contributions can be summarized as follows:

1.	 Model. We propose uncertainty model where both absolute and relative uncer

tainties are modeled symmetrically for both execution routes and classifier in

http:Model.We

182

a query mesh. Absolute uncertainties are represented using uncertainty inter

vals and relative uncertainties using belief functions. The symmetric property

provides a simpler model and similar uncertainty processing in different com

ponents of query mesh. (Section 5.14).

2.	 Optimization. We describe uncertainty-aware optimization algorithms including

the computation of multiple execution routes and classifier induction under

various uncertainty scenarios (Section 5.15).

3.	 Execution. We discuss how uncertainty is handled at runtime when executing

a continuous query in the UA-QM framework (Section 5.16).

4.	 Experiments. We have implemented UA-QM in a prototype DSMS called

CAPE [8]. We present our experimental analysis showing the benefits of our

proposed approach.

5.14 UA-QM Framework

5.14.1 UA-QM Architecture

Figure 5.31 gives an overview of UA-QM architecture which builds on top of the

core query mesh framework [27, 219]. We have designed UA-QM to be highly mod

ular, enabling uncertainty-awareness functionality to be turned on/off with complete

transparency to the core QM framework (bottom of the Figure 5.31). The architec

ture is easily extensible: new algorithms, heuristics and metrics can be added without

much disturbance to the rest of the system.

The key components of UA-QM inlcude: (1) QM optimizer with uncertainty ex

tensions, (shaded half-way in Figure 5.31) and described in Section 5.15, (2) Belief

Space nodes, used to represent uncertainty in routes and classifier (Section 5.15), (3)

Belief Handler, a component responsible for resolving uncertainty by taking into con

sideration user preferences (described in Section 5.16), and (4) Uncertainty encoding

http:Experiments.We
http:Execution.We
http:Optimization.We

183

Self-Routing
Fabric (SRF)

opi

opj

opk

0

1

2

3

opl

4

...
...

Data
Streams

ruster

Online Classifier

Query

Query Mesh Executor

<1,{2|4},3>

A = a2

A = a1

Query
Results

Routes
...

data
sampling

Lazy uncertainty handling

C
or

e
Q

M

...

routes
info

Optimization
Approach

U
A

-Q
M

Certain

Uncertain
Uncertain

Certain

Uncertain

Uncertain

Logical QM Solution

content-based hybrid
route based

Belief Handler

QM
Optimizer

B = b2 | b3

B = b2 | b3

<4,{2|3},1>

<3,{4|1},2>

<4,{3|1},2>

Belief Space Nodes
Uncertainty Encoding

Eager uncertainty handling

Figure 5.31. UA-QM architecture.

used in routes’ specifications (discussed in Section 5.16). We present each of these

components, their functionality and execution in detail in the rest of the paper.

5.14.2 Uncertainty Cases in Query Mesh

Compared to a single plan solution, where uncertainty may be present in only one

route, a multi-route solution may have uncertainty in several routes, as well as in the

classifier. For classifier, we employ a decision tree model, as it is one of the most

commonly used and efficient classification models. Under route uncertainty, we focus

on uncertainty in operators’ selectivities, and under classifier uncertainty, we consider

184

uncertainty in the impurity measures (specifically, in information gain23 [141]) that

have a direct impact on the structure and size of the classifier. Next, we describe the

three possible uncertainty cases that may occur in a multi-route QM solution.

Case 1: Certain Classifier and Uncertain Routes. By uncertainty in routes we mean

uncertainty in the routes’ costs as a result of imprecision in individual operators’

selectivities. This leads to ambiguity about the best operator ordering and it may

occur when the query mesh optimizer uses a strategy similar to Content-Learns algo

rithm [28], or Content-Based Approach (CBA) [219] to find a low cost QM solution.

The main idea of these optimization strategies is to partition the training dataset into

groups based on the similarity of data values first, and then compute the routes for

each content group. Different data values may imply unique distributions and statis

tics, and thus possibly various execution routes. Here, the statistics of the routes may

be imprecise, yet the classification based on the training data and the partitions they

belong to (determined based on the training data values) is considered to be certain

(Figure 5.32(a)).

Case 2: Uncertain Classifier and Certain Routes. This scenario is the reverse of

the above case. Here, routes are assumed to be certain and the classification may

be uncertain (Figure 5.32(b)). This case may occur when the QM optimizer uses a

Route-Based Approach (RBA) [219] to find the best multi-route query mesh solution

for a given query. The main idea of this optimization strategy is to compute routes

first, using all avilable statistics (possibly coming from multiple samples of data), and

then assign the training data to the existing routes. The statistics used for routes’

computations are assumed to be complete and reliable (after being collected over

many runs of the same query), yet the training dataset (of limited size) used for

the classifier induction may depict real data with some inaccuracy, thus resulting in

classification model with uncertainty. This case may also occur when using a large

training dataset for classifier induction is prohibitive [141], and some training data

23Other measures of impurity, such as entropy or gini index [141] could be used here as well.

http:Routes.By

185

d1 d2 d3 d1 d2 d3 d1 d2 d3

- certain
- uncertain

r1 r2 r3 r1 r2 r1 r1 r2 r3 r1 r2 r3 r1 r2 r1

(a) Certain classifier and (b) Uncertain classifier and (c) Uncertain classifier and
uncertain routes certain routes uncertain routes

Figure 5.32. Uncertainty scenarios in QM.

must be eliminated from being used in classifier induction – the phenomenon known

in machine learning as “pruning” [229].

Case 3: Uncertain Classifier and Uncertain Routes. The third case is the composite

of the above two cases, where uncertainty is present in both the routes and the

classifier (Figure 5.32(c)). Here, a data tuple may belong to more than one data subset

(or a distinct group), and more than one route may be considered to be possible for

processing of that subset. This case may occur when a hybrid optimization approach

is used by the QM optimizer: two QM solutions are computed, one using the CBA

method and another using the RBA method (as described above), and then “merged”

to produce the “best” overall QM solution.

5.14.3 Reasoning About Uncertainty

In order to address the problem of uncertainty, we need a method for representing

and measuring it. In robust query processing, the common approaches for modeling

uncertainty include probability distributions (or short PDs) [77] or bounding boxes

(or short BBs) (also known as bounding intervals) [78]. Both methods have their

advantages and limitations. PDs, for instance, give an intuitive representation for

users to decide how much uncertainty they are willing to “tolerate” when planning an

186

execution strategy at compile-time. BBs, on the other hand, easily capture variations

and imprecisions in statistics, e.g., possible min, max and expected bounds. It also

allows a query processor to check the latest statistics at runtime, and determine which

concrete execution solution applicable within the bounding interval should actually

be employed.

Our uncertainty model includes the strengths of both of the above approaches

and enables both user-driven [77] and system-driven [78] responses to handling un

certainty. What sets our model apart from the existing techniques is that we model

two types of uncertainty, namely the absolute uncertainty and the relative uncertainty,

and we model them symmetrically for both routes and classifier in query mesh. We

believe that such two-way uncertainty modeling can represent real-life scenarios more

accurately, and the symmetric property facilitates a simpler model and similar pro

cessing for different components in query mesh.

Informally, absolute uncertainty represents the uncertainty in actual values (e.g.,

in operator statistics or in attribute impurity estimates), whereas relative uncertainty

models the ambiguity about the choice among possible alternatives (e.g., the best

order of operators in routes, or the choice of the best splitting attribute in classifier

when multiple options are possible). In UA-QM, we employ uncertainty intervals for

modeling absolute uncertainties (see Section 5.14.4) and belief functions from Belief

Function theory to represent relative uncertainties (see Section 5.14.5).

5.14.4 Absolute Uncertainty

We distinguish between two types of uncertainty intervals in UA-QM, namely the

selectivity intervals and the classification intervals to model absolute uncertainty.

Selectivity intervals (or short SIN s) represent uncertainty in operators’ statistics.

Table 5.5 shows an example. Here, the selectivity of OP1 for the distinct subset d1

might be not known with certainty, but it is known to be between 40% and 50%, and

is represented by the inverval [40,50]. Hence, the interval describes the possibility

187

In
te

rv
al

P
oi

nt
 V

al
ue

s

Uncertainty Interval

40 - 50

40 800

50 200

classifier Selectivity
Interval

40 50 40 50

...

Classification
Interval route

Weights

(a) physical representation (b) graphical illustration of SIN (c) graphical illustration of CIN

Figure 5.33. Symmetric modeling of SIN s and CIN s.

distribution of OP1 selectivity for subset d1. Viewed in this perspective, the entries

in Table 5.5 in the column SIN are the possibility distributions of the values of

selectivities for different subsets of data.

Table 5.5

Selectivity intervals for various subsets.

Stream Operator Subset SIN

d1 [40,50]

S1 OP1 d2 [30,40]

d3 [35,45]

Classification intervals24 (or short CIN s) represent uncertainty in the informa

tion gain values of different attributes that are used in determining the best splitting

attribute when constructing QM classifier. One of the basic steps in decision tree

classification is to select the splits based on attributes and data values that are used

to predict membership in the terminal nodes of the decision tree classifier (in the

context of our work, terminal nodes represent the various execution routes). In gen

eral terms, the split at each node found will generate the greatest improvement in

predictive accuracy. This is usually measured with an impurity measure, which pro

vides an indication of the relative “homogeneity” of tuples in the terminal nodes of

24A more precise term would be “impurity measure intervals”, but we decided to choose a more general name –

“classification intervals” – to characterize where in QM the uncertainty takes place.

188

Uncertainty
Interval UI1

Uncertainty
Interval UI2certainly

possibly
Q = (UI1 UI2)
BF(Q) = (C(Q), P(Q))

U

Figure 5.34. Belief function for a relative uncertainty.

the classifier. For example, if all training tuples in each terminal node have identical

values, then node impurity is minimal, homogeneity is maximal, and prediction is

perfect (at least for the case of training tuples used in the induction of classifier). We

omit the discussion of information gain and how it is computed and refer the reader

to [141] or any machine learning textbook.

A classifier interval CIN =[0.4,0.5] represents a range of impurity measure values

between 0.4 and 0.5 (or in absolute terms [40,50], meaning between 40% and 50%).

Due to symmetric property of our model, both SIN s and CIN s are represented by

the same physical data structure (shown on the left in Figure 5.33). Consider, for

example, an uncertainty interval UI [40,50] (which could be either a SIN or a CIN).

UI.Interval stores the interval value, between 40 and 50. UI.PointValues represent

the original point value estimates measured and used in determining the overall in

terval. UI.Weights correspond to the weights of their respective UI.PointValues. For

example, in Figure 5.33 in the case of a SIN, the weight of 800 represents the count

of tuples that reported to have the point estimate of selectivity equal 40% and the

weight of 200 indicates, that 200 tuples contributed to the selectivity point estimate

50%. The weight values could be based on the absolute count of tuples from the

samples that have resulted in that particular point estimate value, when the selectiv

ity interval was computed. Alternatively, weights can be represented using relative

percent values instead of absolute counts.

189

5.14.5 Relative Uncertainty

To model relative uncertainty, we use the concepts from the Belief Function Theory

also known as Dempster-Shafer Theory [230,231]. Relative uncertainties in routes and

in the classifier are expressed in the form of belief functions. Belief functions provide a

very intuitive way to model ambiguity (compared to classical probability framework),

and allow incorporating subjectiveness in uncertainty [77]. Furthermore, if evidences

come from multiple sources (e.g., from different samples of data collected at different

times), the model provides a flexible and adaptive way to combine those evidences25 .

Another attractive aspect of belief functions framework is its flexibility – it can be

reduced to the Bayesian framework under certain conditions. Figure 5.34 shows a

conceptual idea of a belief function. Here, two uncertainty intervals (which could

be either SIN s or CIN s) are depicted as UI1 and UI2. Under relative uncertainty,

the question Q we are interested in is – how large is the overlap between the two

intervals UI1 and UI2? This question Q denotes the intersection of the uncertainty

intervals and precisely characterizes the relative uncertainty regarding UI1 and UI2.

Since both UI1 and UI2 are uncertain, the answer to this question can be constructed

to have two parts, one relating to the certainty C in the answer and the other to

its possibility P , and symbolically can be expressed as BF (Q)=(C(Q),P (Q)). The

certainty parameter can be viewed as the expectation and the possibility parameter as

the ambiguity. Similar to absolute uncertainties, relative uncertainties, are modelled

symmetrically for both routes and classifier in QM as described below.

A Selectivity Belief Function (SBF) represents a belief in the intersection of any

two SIN s. A route (query plan) optimization algorithm26 must determine the best

order of operators. If any of the operators’ SIN s are overlapping, this translates into

the uncertainty about which operator should come first. Figure 5.35 illustrates the

possible cases for uncertainty intervals’ intersections27: UI s may be completely non

25Here, we use a basic form of belief functions. More advanced features like adding subjectiveness to evidence, etc.,

we reserve for our future work.
26This can be any of the state-of-the-art techniques from the literature, e.g., [58, 66, 209, 210].
27Due to model symmetricity, the same logic applies to CIN s as well.

190

UI1 UI2 UI3 UI1

UI2 UI3

UI1

UI2

UI3

(a) Not Overlapping (b) Fully overlapping (c) Partially overlapping

Figure 5.35. Cases for uncertainty intervals’ overlaps.

overlapping (5.35a), completely-overlapping (5.35b) or partially overlapping (5.35c).

For overlapping selectivity intervals, SBF s are computed for the following three cases:

(1) SBF1: operator with SIN1 must come first

(2) SBF2: operator with SIN2 must come first

(3) SBF3: either of operators may come first

Figure 5.36 shows a concrete example of partially overlapping SIN s. The values of

SBF s for this example are as follows: SBF1 = (800,1000), SBF2 = (400,1000), and

SBF3 = (800,2000) when expressed in absolute terms, and after normalization: SBF1

= (0.8,1), SBF2 = (0.4,1), and SBF3 = (0.8,2).

Classification Belief Functions (CBF s) represent beliefs in the relative intersec

tions of CIN s and are modeled similar to SBF s. Thus, we omit the details of CBF s

computation, as it is the same as for SBF s. CBF s represent relative uncertainty about

impurity measures for various attributes, which translates into uncertainty about the

best order of splitting attributes when computing the classifier.

In UA-QM, Belief functions (both SBF s and CBF s) are resolved to concrete

answers, e.g., specific classification nodes and operators in the routes based on user

preferences with respect to uncertainty. Belief functions can be resolved in an “eager”

and a “lazy” manner during execution as described in Section 5.16.

5.15 UA-QM Optimization

In this section, we describe uncertainty-aware multi-route query optimization al

gorithm. We consider three possible uncertainty cases presented in Section 5.14.2.

191

in
te

rv
al

SIN1 SIN2 SIN1

22 - 26

22 800

26 200

22

200 + 600

26
24 - 27

24 600

27 400

800

40024 27
SIN2

weights weights

Figure 5.36. Example of computing SBF.

in
te

rv
al

po
in

t v
al

ue
s

po
in

t v
al

ue
s

r3

r2

r1

...

...

S1 S2 S3 S4

data samples data samples

R = {r1,r2,...rn}us
ed

 in
 c

la
ss

ifi
er

in
du

ct
io

n
r1 r2 rn

...

...

... S1 S2 S3 S4

r3

r2

r1

Case 1 Case 2 Case 3

content-
based

paritions

(a) Content-based optimization (b) Route-based optimization (c) Hybrid optimization

Figure 5.37. UA-QM optimization approaches.

Figure 5.38 illustrates the pseudocode for the overall uncertainty-aware multi-route

query optimization algorithm and Figure 5.37 visually depicts the cases.

Case 1: Certain Classifier and Uncertain Routes: As we have previously stated,

this case may occur when QM optimizer uses a Content-Based Approach (CBA) to

find a good query mesh (Figure 5.37(a)). Using CBA, the algorithm first divides data

into partitions based on similarity of values (Figure 5.38, Line 2), and then computes

the execution routes for each content-based partition (Figure 5.38, Line 3).

Computation of Uncertain Routes : The pseudocode for the procedure computing un

certain routes is shown in Figure 5.39. It starts off by computing selectivity intervals

for each operator and each content-based partition (Line 1). The operators are then

ordered by the monotonically increasing selectivity intervals (Line 2). After the SIN s

192

UA-QM-Optimization (T training dataset represented

by a collection of data samples {k1,k2...kn}=T))

// Case 1: Certain Classifier and Uncertain Routes

01 if (optimization method == Content-Based)

02 D = {d1,d2...dn} // content-based partitions

03 Ru = ComputeUncertainRoutes(T ,D)

04 Cc = InduceCertainClassifier(T ,D)

05 return new UA-QM (Cc,Ru)

// Case 2: Uncertain Classifier and Certain Routes

06 else if (optimization method == Route-Based)

07 (Rc,D) = ComputeCertainRoutes(T)

08 Cu = InduceUncertainClassifier(T ,D,Rc)

09 return new UA-QM (Cu,Rc)

// Case 3: Uncertain Classifier and Uncertain Routes

10 else if (optimization method == Hybrid)

11 Let UA-QM1 = solution from steps 1-5

12 Let UA-QM2 = solution from steps 6-9

13 return new MergeUAQMSolutions(UA-QM1,UA-QM2)

Figure 5.38. UA-QM Optimization.

ComputeUncertainRoutes (T training dataset,

D content-based partitions)

01 SIN = ComputeSelectivityIntervals(T ,D)

02 oSIN = OrderSelectivityIntervals(SIN)

03 uSIN = GetOverlappingSelectivityIntervals(oSIN)

04 SBF = ComputeSBFsForSelectivityIntervals(uSIN)

05 uR = OrderOperatorsWithSINsAndSBFs(uSIN,SBF)

06 return uR

Figure 5.39. Computing uncertain routes.

Belief

Space

Belief
Space

Belief
Space

193

ComputeSelectivityIntervals (T training dataset,

D content-based partitions)

SIN -- a hashtable storing SINs of all

operators for different subsets of data

01 for (each operator OP)

02 SIN[OP] = NULL // No precomputed statistics

// Compute selectivities using different samples

03 for each sample ki ∈ T

04 for each partition dj ∈ D

05 compute selectivity s(OP) for dj based on ki

// Merge point selectivity into selectivity interval

06 sin = MergeIntoSIN(OP,dj,s(OP),|ki|)

07 SIN[OP, dj] = sin

08 SIN[OP].Update(SIN[OP, dj])

09 return SIN

Figure 5.40. Computing selectivity intervals.

CN1 Space

CN3

CN4

Belief

certain components of the classifier

uncertain components of the classifier

input
stream execution

routes CN7

CN9

CN2 | CN5

CN6 | CN8

Either CN2 or CN5

are possible

OP1 OP3 OP7

certain components of the route

uncertain components of the route

input
stream

query
results

op2 | op4 op5 | op6

Either op2 or op4

are possible U
nc

er
ta

in
 R

ou
te

U
nc

er
ta

in
 C

la
ss

ifi
er

Figure 5.41. Conceptual idea of uncertain routes and classifier.

194

MergeIntoSIN (OP operator, dj partition,

s selectivity value, w weight)

01 sin = SIN[OP, dj]

// if SIN is null, initialize it

02 if (sin == null), then

03 sin.Min = sin.Max = s;

04 return sin;

// if s is far from the SIN mid-point, return a “conflict”

05 mid = (sin.Max - sin.Min)/2;

06 if (Δ = diff(s, mid) > ΔMAX) then return null;

// update SIN attributes

07 if (s > sin.Max) then sin.Max = s

08 else if (s < sin.Min) then sin.Min = s

09 sin.P ointV alue[s] = w

10 return sin

Figure 5.42. Merging point estimate into a SIN.

have been ordered, the algorithm determines if any of them are overlapping (Line

3). For all overlapping SIN s, SBF s are computed (Line 4) as described in Section

5.14.5. After the selectivity belief functions have been established, the algorithm

determines the routes by ordering the operators. In every case, where uncertainty

intervals are overlapping, i.e., a choice between the operators is uncertain (and there

is a corresponding SBF), a “belief space node” is created in the route (pseudocode

is not shown). Figure 5.41 (top) shows a conceptual idea of an uncertain route with

belief space nodes.

To complete the uncertainty-aware QM solution, the optimizer induces the clas

sifier28 based on the training data tuples and the subsets they belong to (Fig. 5.38,

Line 4), which are the certain partitions defined based on the data content.

The induction algorithm for a “certain classifier” is the same as for to regular decision trees, such as ID3, C4.5 from

the literature.

28

195

ComputeUncertainClassifier (T training tuples, S - set of attributes

that may be tested by the decison tree, R - target route attribute

(predicted by the decision tree), M - data samples)

01 Root = DecisionTreeNode(T)

02 if (all tuples of T are assigned to the same route ri)

03 Root = single-node tree with label = ri

04 else if (S	 is empty)

05 root = single node tree with label = most common value of R in T

06 else

07 G ← members of S that maximize InfoGain(T ,A,M)

08 if (|G|	 > 1) // there are overlapping CINs

09 BS is belief space node ∀A ∈ G

10 Root.addBeliefSpaceNode(BS)

11 Root	 = BS

12 for (every A ∈ G)

13 perform the same steps as in Lines 15-22

14 else if (|G| == 1) // there are no overlapping CINs

15 A ∈ G is decision attribute for Root

16 for (each possible value v of A)

17 add a branch below Root testing for A = v

18 Tv ← subset of T with A = v

19 if (Tv is empty)

20	 below the new branch add a leaf with

label = most common value of R ∈ T

21 else

// below the new branch add subtree

22 Root.addBranch(ComputeUncertainClassifier(Tv,S - {A}),R)

23 return Root

Figure 5.43. Computing uncertain classifier.

196

SIN Computation: Figures 5.40 and 5.42 illustrate the pseudocode describing the

details of SIN computation. In Figure 5.40, after the SIN hashtable that stores se

lectivity intervals for all operators is initialized (Fig. 5.40, Line 1), for each operator

and partition combination, a point selectivity is estimated using every available col

lected data sample. The computed value for each data sample is then merged with

other point estimates to form a selectivity interval for that operator with respect to

that partition (Lines 3-6).

Figure 5.42 shows the pseudocode describing how a point estimate is merged with

other estimates to form a SIN for an operator. First, if the SIN is null, then the

point estimate s becomes the min and the max value of the SIN (Lines 2-4). If s

is far from the mid-point of the SIN, this is viewed as a “conflict” with the current

selectivity interval and a null value is returned (Lines 5-6). The conflict flag (or a null

value returned by the procedure) indicates that the selectivity value is significantly

different from the selectivity estimates from other samples in that SIN. The limit for

how far a value may be from the mid-point without causing a conflict is controlled by

the system parameterΔ MAX . A significant difference may indicate a possible sample

outlier or a change in the environment, thus calling for more samples (representing

the latest data) to be collected to be used in QM optimization. Otherwise, if s is not

conflicting and s is either smaller or larger that the current min and max, these values

are updated accordingly. The point value estimate with its weight, which corresponds

to the cardinality of the sample (used in estimating that measure) is stored inside the

SIN data structure (Lines (7-9)).

Case 2: Uncertain Classifier and Certain Routes This case occurs, when QM op

timizer uses the Route-Based optimization approach (RBA) (see Section 5.14.2 and

Figure 5.37(b)). Here routes are computed first, based on all available samples of

data and their statistics (Figure 5.38, Line 7). The statistics are considered to be

certain, and thus computed routes are assumed to be certain as well. To induce a

classifier, the impurity measures for classifying attributes are computed based on all

available data samples. Impurity measures for the same attribute may vary for each

197

data sample, thus leading classification intervals or CIN s. The presence of CIN s

leads to an uncertain classifier. Figure 5.41 (bottom) shows a conceptual view of an

uncertain classifier29 .

Computation of Uncertain Classifier : Figure 5.43 shows the pseudocode for construct

ing uncertain classifier. First, root node is created (Line 1). If all training tuples are

assigned to one route, then the classifier is a singleton, or we refer to it “empty”

classifier. The understanding here is that all data should be processed using a single

route.

Case 3: Uncertain Classifier and Uncertain Routes The third case for multi-route

optimization is when both routes and classifier may be uncertain, as a result of merg

ing uncertain QM solutions computed using two different optimization approaches

(CBA and RBA) – to get a better overall QM solution (Figure 5.37(c)).

MergeUAQMSolutions (UA-QM1 - CBA -based QM,

UA-QM2 - RBA -based QM)

// UA-QM final is the final (merged) QM

01 UA-QM final.C = UA-QM 2.C // classifier from RBA-based QM

02 UA-QM final.R = MergeRoutes(UA-QM 1.R, UA-QM 2.R)

03 return UA-QMfinal

Figure 5.44. Merging uncertain query meshes.

Merging Uncertainty-Aware QMs: Figure 5.44 shows the pseudocode for merging two

query meshes.

5.16 UA-QM Execution

UA-QM Executor receives logical QM specification from the optimizer and in

stantiates physical runtime infrastructure. Conceptually, at runtime, we may have

either the classifier with belief space nodes or the routes with belief space nodes which

29CN stands short for “classifier test node”.

198

represent the uncertainty about the best option (among several possible alternatives).

In this section, we describe how these belief space nodes are resolved at runtime to

determine the concrete execution solution. In Section 5.16.2 we describe how beliefs

are resolved in UA-QM.

Belief Space Belief Space

200% 2000

OP1

OP2

OP1/OP2

OP1

OP2

OP1/OP2

Threshold
Function

1000 1000 100% 100%
800 80%

600
 60%500

0 0 00

certainty plausibility certainty plausibility

(a) Before normalization (b) After normalization

Figure 5.45. Resolving belief functions (route example).

5.16.1 Runtime Infrastructure

For efficient query execution, QM Executor uses an infrastructure, called the Self-

Routing Fabric (SRF) (see Figure 5.31) [27,219], which implements query processing

via multiple routes with near-zero route execution overhead. In contrast to current

adaptive systems, SRF eliminates the expensive central data router operator, such as

Eddy operator [33,34,97] and enables de-centralized self-routing of data by operators.

Route specifications are encoded in meta-data tuples, called “routing tokens” (or short

r-tokens). R-tokens are then embedded inside data streams along with their data

tuples by the online classifier operator. To keep memory and CPU overheads minimal,

the tuples are assigned to an existing route in groups called “routable clusters” or

short “rusters” rather than individual tuples. Rusters distinguish themselves from

traditional batching, e.g., [33, 217], in that they are formed by probing the classifier.

Hence, only the tuples that share the same best route get assigned to the same ruster.

http:operator.To

199

To enable de-centralized routing, routes in the r-tokens are specified in the form of

an operator stack based on the design of SRF. The stack nodes represent the indexes

of the operators in the SRF, e.g., the r-token <2,3,1,4> indicates that ‘2’ is the first

operator in the route, ‘3’ is the next, and so on. A ruster is always sent to the

operator that is currently the top node in the routing stack. After an operator is

done processing the ruster, the operator “pops” the top of the routing stack – its

unique identifier in the r-token, and then puts the ruster into the next (now the

top) operator’s input queue. When the operator stack is empty, the ruster tuples

are forwarded to the global output queue reserved by index “0” and then to the

application(s).

To enable uncertain route specification, we introduce a small modification to the

route encoding: the r-token <2,{3|1},4> indicates that ‘2’ is the first operator in the

route, ‘3’ or ‘1’ is the next, etc. The encoding {3 | 1} depicts the uncertainty about

the order of operators.

5.16.2 Belief Space Handling

Figure 5.45 visually depicts belief functions using a “relationship graph” (or we

denote it as “belief space”) where certainty vs. plausibility of each belief are plotted

against each other. Thus, resulting BFs represent the uncertainty in the overlapping

selectivity sub-intervals.

In this scenario, we have a certain classifier and uncertain routes, i.e., routes with

“belief spaces”. In order to determine the concrete physical sequence of operators in

an uncertain route, the user receiving results of the query provides a threshold function

to specify how much he or she is willing to believe in (certainty and possibility of)

a relative uncertainty. To make this more intuitive, let’s consider what is the act of

believing: it consists of creating a threshold of belief at some probability, assembling

evidence for the question, and when the probability exceeds that threshold, accepting

it as true. Thus, a threshold function specifies the preference of the user with regard to

200

uncertainty and symbolically is described as TF=(C,P), where C and P are certainty

and possibility parameters.

Given the threshold function, a concrete route is determined as follows (see Figure

5.45): for every belief space (depicting relateive uncertainty in the order of operators

in the route), and the specified threshold function we find the closest belief function.

If we were to plot belief functions together with the threshold function, we would get

something like in Figure 5.45. The threshold function line does not serve as a “cut

off” parameter in a traditional sense of a threhold, but rather a desired belief of the

user. In order to determine the closest belief function to the threshold function, we

employ integration techniques from mathematics (since we need to find a line with

the smallest area between that line and the threshold function line).

Definition 5.16.1 (Smallest Distance Property) Let A denote area, y(x) =

BF (OPi) represent the belief function of an operator OPi, and z(x) = TF () rep
x=1 x=1

resent the threshold function line. Let AOPi =
�

y(x)dx, and ATF =
�

z(x)dx .
x=0 x=0

We choose an operator OPi if it satisfies the following property: AΔ = |ATF − ABF |

is the smallest ∀ BFs in the belief space.

Thus, using mathematical integration we can find the closest line (belief function) to

the treshhold function, and make a choice among possible alternatives while consid

ering the preferences of the user.

5.17 UA-QM Conclusion

Uncertainty-awareness addresses a major limitation of the most of the existing

query processing solutions which typically ignore uncertainty and could result in

poor performance, or may lead to frequent re-optimizations, further impeding query

performance. Here, we have proposed using the concepts of the belief function theory

of evidence can be used as basis for a method that makes multi-route query optimiza

tion more robust to uncertainty – both in the plan computation as well as in plan

assignment.

201

Self-Routing Fabric (SRF)

opi

opj

opk

0

1

2

3

opl

4

...

Data
Streams

Classifier

<1,{2|4},3>

<4,{2|3},1>

<3,{4|1},2>

<4,{3|1},2>

A = a2

A = a1

B = b1

B = b1

Query Results

example execution after QM adaptivity

Routes

...

Belief Handler

execution path before QM adaptivity

...

B = b2 | b3

B = b2 | b3

“eager” handling

“lazy”
handling

Figure 5.46. UA-QM execution.

In this paper, we propose to address the challenges above and present a frame

work handling uncertainty problem in a multi-plan (or multi-route) query execution

systems. To be practical, an uncertainty mechanism in a data stream environment

must provide: (1) fast measurement of uncertainty, (2) efficient and meaningful rep

resentationg of different types of uncertainty in a multi-route solution, (3) support

for user preferences in uncertainty processing, (4) adaptivity to dynamic changes in

uncertainty, and (5) very low overhead compared to traditional continuous query

processing. Our uncertainty modeling procedure captures both absolute and rela

tive uncertainty and is compatible with the architecture of existing query optimizers,

allowing it to be easily integrated into traditional single-plan-based database man

agement system.

202

6 CONCLUSION AND FUTURE RESEARCH DIRECTIONS

6.1 Summary

The main goal of this dissertation is to introduce several new features inside Data

Stream Management Systems (DSMSs) that are becoming increasingly important

requirements for many emerging stream-based applications. Specifically, we tackle

the problems of the access control enforcement on streaming data, the tagging of

streaming data and the diversity-aware query processing inside DSMSs. The three

main contributions of this dissertation can be summarized as follows.

First, the dissertation addresses the problem of continuous access control enforce

ment in dynamic data stream environments, where both the data and the query

security restrictions may potentially change in real-time. The proposed approach ad

vances the state of the art of data stream management systems by introducing: (1)

the stream-centric approach to dynamic security, (2) the symmetric security model for

both continuous queries and streaming data, and (3) the alternative security-aware

query processing methods, that can optimize the execution based on data-related as

well as security-related selectivities. Experimental evaluation shows that our pro

posed approach outperforms other possible alternatives and the security-aware query

processing can achieve significant performance benefits over the previously proposed

naive pre-filtering and post-filtering methods.

Second, the dissertation proposes a solution for tagging streaming data using a

special type of streaming metadata calleda tick-tags. Tick-tags can serve a variety of

purposes, including labelling or describing some underlying real-time information, and

serving as means of disseminating useful knowledge in addition to what is captured

by the content of data tuples. Exploiting tags embedded in a data stream increases

the kinds of queries that can be executed over data streams. Our experimental results

203

show the scalability and performance benefits of the tick-tag approach compared to

alternative solutions. We have also evaluated the costs of executing tag-aware and

tag-oriented continuous queries.

The third contribution in this dissertation is the development of a data diversity-

aware query processing framework, called query mesh, that enables different subsets

of data to be processed by different query execution plans. We addressed the prob

lem of optimization and efficient runtime execution using query mesh framework, the

adaptivity to changing conditions at runtime, and the problem of imprecision and

uncertainty in the context of query mesh. The query mesh framework is general,

offering numerous advantages over current state-of-the-art solutions. It is applicable

to streaming engines and potentially to relational DBMSs as well. Our preliminary

experimental results verify the effectiveness of the query mesh approach and demon

strate its potential as a paradigm for continuous query optimization for rich and

diverse data.

6.2 Future Research Directions

Next we describe the possible directions for future research based on the concepts

presented in this dissertation.

6.2.1 Security Extensions in DSMSs

Security is paramount to the functioning of any system. In this thesis, we have

considered only the problem of access control. However, a full-fledged DSMSs needs

a comprehensive security support, which involves different issues of security [232]:

authentication, authorization and access control, confidentiality and integrity, avail

ability, auditing, privacy, physical, hardware security, and operating system security.

One interesting direction is to expand security punctuation mechanism further to

support streaming data integrity, e.g., providing assurance that real-time data traffic

is not altered during the transmission. Another area worth examining is the mining

204

of security preferences (depicted by streaming security punctuations) of the users and

building security policy profiles, based on which the best query execution plans can

be constructed in advance and anticipated to be used in the future.

6.2.2 Tagging Extensions in DSMSs

In our approach, we tag streaming data using words (strings of characters). An

alternative to string-based tags could be object-based tags. An interesting research

direction is the investigation whether streaming data could be tagged with objects

instead of keywords. Instead of tagging objects with strings, which falls back on a

simple full-text search, users could tag something with an actual representation.

Another interesting problem to investigate is whether the tick-tag awareness can

also be used in query optimization at compile-time when determining a query exe

cution plan, as well as at runtime (similar to punctuations [105]) to adapt the query

execution strategy based on the observed streaming tick-tags. Clearly, not all punctu

ations are useful to a particular query, and it would be useful to make a determination

of when they are. That is, we would like to answer the question “Can stream query

Q benefit from a particular set of punctuations?” To that end, we first define punc

tuation schemes to specify the collection of punctuations that will be presented to

a query on a particular data stream. We show how both punctuations and query

operators induce groupings over the items in the domain of the input(s). We show

that a query benefits from an input punctuation scheme (in terms of being able to

produce a given output scheme), if each set in the groupings induced by the operators

of the query is covered by a finite number of punctuations in the scheme a kind of

compactness.

Finally, real-time tag mining and tag classification can be of interest to many

stream-based applications, e.g., real-time auction monitoring, social networking, and

scientific monitoring. This problem refers to extending the support for real-time

mining and classification to streaming tags.

205

6.2.3 Query Mesh Extensions

While so far, this thesis has focused on the core issues of the query mesh op

timization and execution, many other topics could potentially be explored in this

context.

One interesting direction is to employ learning methods towards different problems

inside data stream engine. One such problem in continuous environments is resource

limitations problem. Currently there is an underlying assumption that a query mesh

produces exact answers under constrained resources. Since query processing even

tually may “fail” due to finite resources, alternate solutions may ultimately need to

be employed. Here, to reduce the volume of data processed under duress, learning

methods may be employed towards adaptive load shedding, results approximation,

and disk-spilling. This direction would also help in expanding the understanding of

the power and limitations of machine learning techniques in the “guts” of a database

engine.

A very important problem is shared multi-query processing using query mesh

paradigm. Here, methods for sharing execution routes and classification would need

to be investigated not only among subsets of tuples for one query but also among

different query meshes for multiple queries executing on the system.

In the long term, it is essential to expand the query mesh scope to consider

processing in the context of large-scale distributed environments. Here, issues like

resource discovery, business process coordination and resource negotiation must be

tackled. Resilience under failures of the network (unreliable communication), servers

(fault tolerance), or components of a server (recovery) are critical services, which I

would like to explore in my future work.

In both static and streaming databases, a query plan operator typically maintains

a single queue (see Figure 6.1(a)). Such setup has several disadvantages in the context

of multi-route execution: (1) only a single type of scheduling policy can be used by

206

Input Queue Input Mega-Queue

Sub-Queue1

Sub-Queue2

Sub-Queue3
O

perator S
cheduling

P
olicy

tuples

(a) Current operator queue structure (b) Proposed operator queue structure

Figure 6.1. Operator queue management.

an operator to dequeue tuples, namely First-In-First-Out (FIFO), and (2) operator

processing can be biased towards “bursty” inputs.

Another direction worth examining is the so-called horizontal queue partitioning

scheme (see Figure 6.1(b)), where the operator input queue is partitioned into mul

tiple sub-queues. Based on horizontally partitioned queues, operators can perform

queue management for further improvement for query mesh-based execution. With

horizontal queue partitioning approach, there are many possibilities for scheduling

tuples for execution by the operators, e.g., FIFO, Priority Queuing, Fair Queuing,

Round Robin Weighted Fair Queuing, etc [63]. Other advantages of the proposed

operator queue management scheme include: (1) operator can control average queue

size, (2) bursts can be absorbed without dropping tuples, (3) operators can prevents

bias against “bursty” inputs, and (4) operators can possibly “punish” bursty flows.

The idea of operator-assisted monitoring approach, inspired by the resource man

agement approach in ATM networks [63] (see Figure 6.2(a)) could potentially also be

beneficial in the context of query mesh. The performance metadata, denoted resource

management (RM) cells, are injected into the network by the intermediate switches

and routers and are used to convey network status (e.g., available bandwidth, con

gestion levels) to the source and destination systems. In the query mesh context, the

main idea is for operators to attach their status information, e.g., number of tuples

in the queue, current processing rate, etc., to the performance metadata tuples (p

tokens) streaming together with the data, so that other operators (e.g., the operators

next in route) can become aware of this performance information and possibly exploit

207

Self-Routing Fabric (SRF)

- RM cells

- data cells

switch switch

(a) Switch-assisted moniotring

in networks

Figure 6.2. Switch and operator-assisted tuning.

it by adapting the routes of the future rusters that may contain those bottlenecked

operators.

The attractiveness of such operator-assisted performance and state information

“diffusion” is in the fact that in a sense it comes for “free”. Since the tuple rusters

may still have to be routed to other operators, a small “performance signal” with a

timestamp can be interleaved with streaming tuples, and then the operators that are

left in the route can become “aware” of the current situation at the other operator(s).

They can use this information (within a time window) to possibly “detour” some

rusters if the immediate operators are “overloaded”. Furthermore, these runtime

performance metadata can be streamed back to the optimizer to determine how the

overall query mesh (not just the runtime routes) can be adapted.

Finally, while our focus in this thesis is on applying diversity-aware query pro

cessing in a DSMS, the query mesh model can also useful in conventional DBMSs,

addressing the issue that optimizers sometimes pick plans that perform poorly com

pared to the actual best plan.

6.2.4 Generalized Punctuation (GPUNCT)

One potentially very effective research direction to explore is the idea of a general

ized punctuation in DSMSs. To make the idea more intuitive to the reader, consider

0 1 2 3 ...

(b) Operator-assisted monitoring
in query mesh

To optimizer ...

To applications ...

p-tokens

data tuples

op1 op2 op3 opn
source desti

nation

208

the concept of a Generalized Search Tree (GiST) [233] in Database Management Sys

tems, which is an index structure supporting an extensible set of queries and data

types. The GiST is an extensible data structure, which allows users to develop indices

over any kind of data, supporting any lookup over that data. It unifies a number of

popular search trees in one data structure (the list includes R-trees, B+-trees, hB

trees, TV-trees, Ch-Trees, partial sum trees, ranked B+-trees, and many others),

eliminating the need to build multiple search trees for handling diverse applications.

The similar in spirit idea could be extended to the concept of punctuations in Data

Stream Management Systems. We refer to this notion – a generalized punctuation

or GPUNCT for short. In a single data structure, the GPUNCT can provide vari

ous punctuation logics required by a DSMS, thereby unifying disparate punctuation-

based mechanisms. GPUNCT can be used to easily implement a range of well-known

punctuation mechanisms, including as sub-stream delimiters inside data streams [98],

security metadata [38], feedback mechanisms [103], routing lineage [27], and many

others; it can also allow for easy development of specialized metadata for new data

types or queries. GPUNCT, like GiST, would represent an example of software ex

tensibility in the context of DSMSs. It will enable the smooth evolution of DSMS

towards supporting new punctuation-based algorithms. This would allow authors of

new punctuation-based algorithms to focus on implementing the novel features of the

new punctuation type – for example, the way in which subsets of the data should be

described for search – without becoming experts in DSMS internals.

LIST OF REFERENCES

209

LIST OF REFERENCES

[1] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Sys
tems: The Complete Book. Prentice Hall, Upper Saddle River, NJ, USA, 2001.

[2] Lukasz Golab and Tamer Ozsu.	 Issues in data stream management. SIGMOD
Record, 32(2):5–14, 2003.

[3] Donald Carney, Ugur Ç etintemel, Mitch Cherniack, Christian Convey, Sang-
don Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stanley B.
Zdonik. Monitoring streams – A new class of data management applications. In
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 215–226, 2002.

[4] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vi
jayshankar Raman, Frederick Reiss, and Mehul A. Shah. TelegraphCQ: Con
tinuous dataflow processing for an uncertain world. In Proceedings of the Con
ference on Innovative Data Systems Research (CIDR), 2003.

[5] Charles	 D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav
Shkapenyuk. Gigascope: A stream database for network applications. In Pro
ceedings of the International Conference on Management of Data (SIGMOD),
pages 647–651, 2003.

[6] Rajeev	 Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath
Babu, Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein,
and Rohit Varma. Query processing, approximation, and resource management
in a data stream management system. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), 2003.

[7] Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H. Ali, Walid G. Aref,
Ann Christine Catlin, Ahmed K. Elmagarmid, Mohamed Y. Eltabakh, Mo
hamed G. Elfeky, Thanaa M. Ghanem, R. Gwadera, Ihab F. Ilyas, Mirette S.
Marzouk, and Xiaopeng Xiong. Nile: A query processing engine for data
streams. In Proceedings of the International Conference on Data Engineering
(ICDE), page 851, 2004.

[8] Elke A. Rundensteiner, Luping Ding, Timothy M. Sutherland, Yali Zhu, Brad
ford Pielech, and Nishant Mehta. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In Proceedings of the International Confer
ence on Very Large Data Bases (VLDB), pages 1353–1356, 2004.

[9] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang.	 NiagaraCQ: A
scalable continuous query system for internet databases. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages 379–390,
2000.

210

[10] StreamBase. http://www.streambase.com/.

[11] Coral8. http://www.coral8.com/.

[12] Truviso. http://truviso.com/.

[13] Progress Aparma. http://www.progress.com/apama/index.asp.

[14] Andrew	 Witkowski, Srikanth Bellamkonda, Hua-Gang Li, Vince Liang, Lei
Sheng, Wayne Smith, Sankar Subramanian, James Terry, and Tsae-Feng Yu.
Continuous queries in Oracle. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 1173–1184, 2007.

[15] My Heart. http://www.hitech-projects.com/euprojects/myheart/.

[16] PIPS. http://www.pips.eu.org/.

[17] Proactive Health. http://www.intel.com/research/prohealth/.

[18] Bright Kite. http://brightkite.com/.

[19] The Carbon Project. http://www.thecarbonproject.com/.

[20] S.	 Christodoulakis. Implications of certain assumptions in database perfor
mance evaluation. ACM Transactions on Database Systems (TODS), 9(2):163–
186, 1984.

[21] Daniel Lewis. What is Web 2.0? Crossroads, 13(1):3–3, 2006.

[22] Hak Lae Kim, John G.	 Breslin, Sung-Kwon Yang, and Hong-Gee Kim. So
cial semantic cloud of tag: Semantic model for social tagging. In Proceedings
of the Agent and Multi-Agent Systems: Technologies and Applications (KES
AMSTA), pages 83–92, 2008.

[23] Liming Chen and Craig Roberts. Semantic tagging for large-scale content man
agement. In Proceedings of the Web Intelligence, pages 478–481, 2007.

[24] Pirjo Näkki, Sari Vainikainen, and Asta Bäck. Experiences of semantic tagging
with Tilkut. In Proceedings of the International Conference on Entertainment
and Media in the Ubiquitous Era (Mindtrek), pages 167–171, 2008.

[25] Simone	 Braun, Valentin Zacharias, and Hans-Jörg Happel. Social semantic
bookmarking. In Proceedings of the Practical Aspects of Knowledge Manage
ment (PAKM), pages 62–73, 2008.

[26] Raghu Ramakrishnan and Johannes Gehrke.	 Database Management Systems.
McGraw-Hill Higher Education, New York, NY, USA, 2000.

[27] Rimma V. Nehme, Elke A. Rundensteiner, and Elisa Bertino. Self-tuning query
mesh for adaptive multi-route query processing. In Proceedings of the Interna
tional Conference on Extending Database Technology (EDBT), pages 803–814,
2009.

[28] Pedro Bizarro, Shivnath Babu, David J. DeWitt, and Jennifer Widom. Content-
based routing: Different plans for different data. In Proceedings of the Interna
tional Conference on Very Large Data Bases (VLDB), pages 757–768, 2005.

http:http://www.thecarbonproject.com
http:http://brightkite.com
http://www.intel.com/research/prohealth
http:http://www.pips.eu.org
http://www.hitech-projects.com/euprojects/myheart
http://www.progress.com/apama/index.asp
http:http://truviso.com
http:http://www.coral8.com
http:http://www.streambase.com

211

[29] Neoklis Polyzotis. Selectivity-based partitioning: A divide-and-union paradigm
for effective query optimization. In Proceedings of the International Conference
on Information and Knowledge Management (CIKM), pages 720–727, 2005.

[30] Microsoft SQL Server. http://www.microsoft.com/sql/default.mspx.

[31] DB2. http://www.ibm.com/software/data/db2/.

[32] Oracle. http://www.oracle.com/index.html.

[33] Amol Deshpande.	 An initial study of overheads of eddies. SIGMOD Record,
33(1):44–49, 2004.

[34] Ron Avnur and Joseph M.	 Hellerstein. Eddies: Continuously adaptive query
processing. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 261–272. ACM, 2000.

[35] W. Lindner and J. Meier.	 Towards a secure data stream management system.
In Proceedings of the Trends in Enterprise Application Architecture (TEAA),
pages 114–128, 2005.

[36] Wolfgang Lindner and Jörg Meier. Securing the borealis data stream engine. In
Proceedings of the International Database Engineering and Applications Sym
posium (IDEAS), pages 137–147, 2006.

[37] Barbara Carminati, Elena Ferrari, and Kian Lee Tan.	 Enforcing access control
over data streams. In Proceedings of the Symposium on Access Control Models
and Technologies (SACMAT), pages 21–30, 2007.

[38] Rimma V. Nehme, Elke A. Rundensteiner, and Elisa Bertino. A security punc
tuation framework for enforcing access control on streaming data. In Proceedings
of the International Conference on Data Engineering (ICDE), pages 406–415,
2008.

[39] Rimma V. Nehme, Hyo-Sang Lim, and Elisa Bertino. Fence: Continuous access
control enforcement in dynamic data stream environments. Submitted to the
International Conference on Very Large Data Bases (VLDB), 2009.

[40] Rimma V. Nehme, Elke A. Rundensteiner, and Elisa Bertino.	 Tagging stream
data for rich real-time services. Submitted to the International Conference on
Very Large Data Bases (VLDB), 2009.

[41] Rimma V. Nehme, Karen E. Works, Elke A. Rundensteiner, and Elisa Bertino.
Query mesh: Multi-route query processing technology. Submitted to the Inter
national Conference on Very Large Data Bases (VLDB), 2009.

[42] Rimma V. Nehme, Hyo-Sang Lim, Elisa Bertino, and Elke A. Rundensteiner.
Streamshield: A stream-centric approach towards security and privacy in data
stream environments. In Proceedings of the International Conference on Man
agement of Data (SIGMOD), 2009.

[43] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru
Nishizawa, Justin Rosenstein, and Jennifer Widom. STREAM: The stanford
stream data manager. In Proceedings of the International Conference on Man
agement of Data (SIGMOD), page 665, 2003.

http://www.oracle.com/index.html
http://www.ibm.com/software/data/db2
http://www.microsoft.com/sql/default.mspx

212

[44] Magdalena Balazinska, Hari Balakrishnan, and Michael Stonebraker. Contract-
based load management in federated distributed systems. In Proceedings of the
Conference on Symposium on Networked Systems Design and Implementation,
pages 197–210, 2004.

[45] The	 PostgreSQL object relational database management system.
http://www.postgresql.org, 2009.

[46] Sailesh Krishnamurthy,	 Sirish Chandrasekaran, Owen Cooper, Amol Desh
pande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Samuel Madden,
Frederick Reiss, and Mehul A. Shah. TelegraphCQ: An architectural status
report. IEEE Data Engineering Bulletin, 26(1):11–18, 2003.

[47] Thanaa M. Ghanem. Supporting predicate-window queries in data stream man
agement systems. In Proceedings of the International Conference on Data En
gineering Workshops, page 139, 2006.

[48] Arvind Arasu,	 Shivnath Babu, and Jennifer Widom. The CQL continuous
query language: Semantic foundations and query execution. VLDB Journal,
15(2):121–142, 2006.

[49] Mehmet Altinel and Michael J. Franklin.	 Efficient filtering of xml documents
for selective dissemination of information. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 53–64, 2000.

[50] Yanlei Diao and Michael J. Franklin.	 Query processing for high-volume xml
message brokering. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 261–272, 2003.

[51] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda.	 Moni
toring xml data on the web. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 437–448, 2001.

[52] Ulf Schreier,	 Hamid Pirahesh, Rakesh Agrawal, and C. Mohan. Alert: An
architecture for transforming a passive DBMS into an active DBMS. In Pro
ceedings of the International Conference on Very Large Data Bases (VLDB),
pages 469–478, 1991.

[53] Douglas B. Terry, David Goldberg, David A. Nichols, and Brian M. Oki. Con
tinuous queries over append-only databases. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 321–330, 1992.

[54] Ling Liu, Calton Pu, and Wei Tang. Continual queries for internet scale event-
driven information delivery. IEEE Transactions on Knowledge and Data Engi
neering (TKDE), 11(4):610–628, 1999.

[55] Ashish Gupta and Inderpal Singh Mumick.	 Maintenance of materialized views:
Problems, techniques, and applications. IEEE Data Engineering Bulletin,
18(2):3–18, 1995.

[56] Jennifer Widom and Stefano Ceri, editors.	 Active Database Systems: Triggers
and Rules For Advanced Database Processing. Morgan Kaufmann, San Fran
sisco, CA, USA, 1996.

http:http://www.postgresql.org

213

[57] Shivnath Babu.	 Adaptive Query Processing in Data Stream Management Sys
tems. PhD thesis, Stanford University, 2005.

[58] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jen
nifer Widom. Adaptive ordering of pipelined stream filters. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages 407–418,
2004.

[59] Yannis E. Ioannidis and Younkyung Cha Kang.	 Left-deep vs. bushy trees: An
analysis of strategy spaces and its implications for query optimization. In Pro
ceedings of the International Conference on Management of Data (SIGMOD),
pages 168–177, 1991.

[60] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo.	 Optimization of nonre
cursive queries. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 128–137, 1986.

[61] Arun	 N. Swami and Balakrishna R. Iyer. A polynomial time algorithm for
optimizing join queries. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 345–354, 1993.

[62] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output
rate of multi-way join queries over streaming information sources. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages 285–
296, 2003.

[63] James F.	 Kurose and Keith Ross. Computer Networking: A Top-Down Ap-
proach. Addison-Wesley, Boston, MA, USA, 2002.

[64] Amol Deshpande and Joseph M. Hellerstein. Lifting the burden of history from
adaptive query processing. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 948–959, 2004.

[65] Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein. Using state
modules for adaptive query processing. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 353–365, 2003.

[66] Goetz	 Graefe and William J. McKenna. The Volcano optimizer generator:
Extensibility and efficient search. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 209–218, 1993.

[67] Morton	 M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P.
Eswaran, Jim Gray, Patricia P. Griffiths, W. Frank King III, Raymond A.
Lorie, Paul R. McJones, James W. Mehl, Gianfranco R. Putzolu, Irving L.
Traiger, Bradford W. Wade, and Vera Watson. System R: Relational approach
to database management. ACM Transactions on Database Systems (TODS),
1(2):97–137, 1976.

[68] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Adapting to source prop
erties in processing data integration queries. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 395–406, 2004.

[69] Paul De Bra and Jan Paredaens.	 Horizontal decompositions and their impact
on query solving. SIGMOD Record, 13(1):46–50, 1982.

214

[70] Amol Deshpande, Carlos Guestrin, Wei Hong, and Samuel Madden. Exploiting
correlated attributes in acquisitional query processing. In Proceedings of the
International Conference on Data Engineering (ICDE), pages 143–154, 2005.

[71] Chung-Min Chen and Nick Roussopoulos. Adaptive selectivity estimation using
query feedback. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 161–172, 1994.

[72] Quanzhong Li, Minglong Shao, Volker Markl, Kevin S. Beyer, Latha S. Colby,
and Guy M. Lohman. Adaptively reordering joins during query execution. In
Proceedings of the International Conference on Data Engineering (ICDE), pages
26–35, 2007.

[73] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil.	 LEO
DB2’s LEarning Optimizer. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 19–28, 2001.

[74] Volker Markl and Guy Lohman.	 Learning table access cardinalities with LEO.
In Proceedings of the International Conference on Management of Data (SIG
MOD), pages 613–613, 2002.

[75] Ning Zhang 0002, Peter J. Haas, Vanja Josifovski, Guy M. Lohman, and Chun
Zhang. Statistical learning techniques for costing xml queries. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages 289–
300, 2005.

[76] Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman.	 Adaptive query
processing. Foundations and Trends in Databases, 1(1):1–140, 2007.

[77] Brian Babcock and Surajit Chaudhuri.	 Towards a robust query optimizer: A
principled and practical approach. In Proceedings of the International Confer
ence on Management of Data (SIGMOD), pages 119–130, 2005.

[78] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. Proactive re-optimization.
In Proceedings of the International Conference on Management of Data (SIG
MOD), pages 107–118, 2005.

[79] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and
Hamid Pirahesh. Robust query processing through progressive optimization.
In Proceedings of the International Conference on Management of Data (SIG
MOD), pages 659–670, 2004.

[80] Efstratios Viglas.	 Novel query optimization and evaluation techniques. PhD
thesis, University of Wisconsin – Madison, 2003.

[81] Francis C. Chu, Joseph Y. Halpern, and Johannes Gehrke. Least expected cost
query optimization: What can we expect? In Proceedings of the Symposium on
Principles of Database Systems (PODS), pages 293–302, 2002.

[82] Yannis E.	 Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis.
Parametric query optimization. VLDB Journal, 6(2):132–151, 1997.

[83] Norbert Fuhr.	 A probabilistic framework for vague queries and imprecise in
formation in db. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 696–707, 1990.

215

[84] G.	 Grahne. Problem of Incomplete Information in Relational Databases.
Springer-Verlag, New York, NY, USA, 1991.

[85] Lyublena Antova, Christoph Koch, and Dan Olteanu.	 Query language support
for incomplete information in the maybms system. In Proceedings of the In
ternational Conference on Very Large Data Bases (VLDB), pages 1422–1425,
2007.

[86] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, Martin Theobald, and
Jennifer Widom. Databases with uncertainty and lineage. VLDB Journal,
17(2):243–264, 2008.

[87] Laks V. S. Lakshmanan, Nicola Leone, Robert B. Ross, and V. S. Subrahma
nian. Probview: A flexible probabilistic database system. ACM Transactions
on Database Systems (TODS), 22(3):419–469, 1997.

[88] Jihad Boulos, Nilesh N. Dalvi, Bhushan Mandhani, Shobhit Mathur, Christo
pher Ré, and Dan Suciu. MYSTIQ: A system for finding more answers by using
probabilities. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 891–893, 2005.

[89] Jennifer Widom.	 Trio: A system for integrated management of data, accuracy,
and lineage. In Proceedings of the Conference on Innovative Data Systems
Research (CIDR), pages 262–276, 2005.

[90] Shivnath Babu and Pedro Bizarro.	 Adaptive query processing in the looking
glass. In Proceedings of the Conference on Innovative Data Systems Research
(CIDR), pages 238–249, 2005.

[91] Nicolas Bruno and Surajit Chaudhuri. Exploiting statistics on query expressions
for optimization. In Proceedings of the International Conference on Manage
ment of Data (SIGMOD), pages 263–274, 2002.

[92] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy, and Daniel S.
Weld. An adaptive query execution system for data integration. In Proceedings
of the International Conference on Management of Data (SIGMOD), pages
299–310, 1999.

[93] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub
optimal query execution plans. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 106–117, 1998.

[94] Zachary George Ives. Efficient query processing for data integration. PhD thesis,
University of Washington, 2002.

[95] Tolga Urhan, Michael J.	 Franklin, and Laurent Amsaleg. Cost based query
scrambling for initial delays. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 130–141, 1998.

[96] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar Ra
man. Continuously adaptive continuous queries over streams. In Proceedings of
the International Conference on Management of Data (SIGMOD), pages 49–60,
2002.

216

[97] Feng Tian and David J. DeWitt. Tuple routing strategies for distributed ed
dies. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 333–344, 2003.

[98] Peter A. Tucker, David Maier, and Tim Sheard. Applying punctuation schemes
to queries over continuous data streams. IEEE Data Engineering Bulletin,
26(1):33–40, 2003.

[99] Luping Ding, Nishant Mehta, Elke A. Rundensteiner, and George T. Heineman.
Joining punctuated streams. In Proceedings of the International Conference on
Extending Database Technology (EDBT), pages 587–604, 2004.

[100] Luping Ding and Elke A. Rundensteiner.	 Evaluating window joins over punc
tuated streams. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pages 98–107, 2004.

[101] Leonidas	 Fegaras, David Levine, Sujoe Bose, and Vamsi Chaluvadi. Query
processing of streamed xml data. In Proceedings of the International Conference
on Information and Knowledge Management (CIKM), pages 126–133, 2002.

[102] Hua-Gang Li, Songting Chen, Junichi Tatemura, Divyakant Agrawal, K. Selçuk
Candan, and Wang-Pin Hsiung. Safety guarantee of continuous join queries
over punctuated data streams. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 19–30, 2006.

[103] Rafael J.Fernandez-Moctezuma, Kristin A.	 Tufte, and Jin Li. Inter-operator
feedback in data stream management. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), 2009.

[104] Peter Tucker.	 Punctuated data streams. PhD thesis, OGI School of Science &
Engineering at Oregon Health and Science University, 2005.

[105] Peter A.	 Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploit
ing punctuation semantics in continuous data streams. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 15(3):555–568, 2003.

[106] Theodore	 Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, and Oliver
Spatscheck. A heartbeat mechanism and its application in Gigascope. In Pro
ceedings of the International Conference on Very Large Data Bases (VLDB),
pages 1079–1088, 2005.

[107] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. On demand
classification of data streams. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining (KDD), pages 503–508, 2004.

[108] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan.	 Clus
tering data streams. In Proceedings of the Symposium on Foundations of Com
puter Science (FOCS), pages 359–366, 2000.

[109] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing
data streams. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD), pages 97–106, 2001.

[110] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceed
ings of the International Conference on Knowledge Discovery and Data Mining
(KDD), pages 71–80, 2000.

217

[111] Nick Koudas, Beng Chin Ooi, Kian-Lee Tan, and Rui Zhang.	 Approximate nn
queries on streams with guaranteed error/performance bounds. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages 804–
815, 2004.

[112] Graham Cormode,	 Theodore Johnson, Flip Korn, S. Muthukrishnan, Oliver
Spatscheck, and Divesh Srivastava. Holistic udafs at streaming speeds. In Pro
ceedings of the International Conference on Management of Data (SIGMOD),
pages 35–46, 2004.

[113] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Find
ing hierarchical heavy hitters in data streams. In Proceedings of the Interna
tional Conference on Very Large Data Bases (VLDB), pages 464–475, 2003.

[114] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Transactions in
Mathematics Software, 11(1):37–57, 1985.

[115] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining
stream statistics over sliding windows. In Proceedings of the Symposium on
Discrete Algorithms (SODA), pages 635–644, 2002.

[116] Arvind Arasu	 and Gurmeet Singh Manku. Approximate counts and quan
tiles over sliding windows. In Proceedings of the Symposium on Principles of
Database Systems (PODS), pages 286–296, 2004.

[117] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy.	 Better streaming
algorithms for clustering problems. In Proceedings of the Symposium on the
Theory of Computing (STOC), pages 30–39, 2003.

[118] Sudipto Guha, Adam Meyerson,	 Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 15(3):515–528, 2003.

[119] João Gama, Ricardo Rocha, and Pedro Medas. Accurate decision trees for
mining high-speed data streams. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining (KDD), pages 523–528, 2003.

[120] Graham Cormode and S. Muthukrishnan.	 What’s hot and what’s not: Track
ing most frequent items dynamically. ACM Transactions on Database Systems
(TODS), 30(1):249–278, 2005.

[121] Pierre-Alain Laur, Richard Nock, Jean-Emile Symphor, and Pascal Poncelet.
Mining evolving data streams for frequent patterns. Pattern Recognition,
40(2):492–503, 2007.

[122] Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah, and Jianyong Wang.
Multi-dimensional regression analysis of time-series data streams. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages 323–
334, 2002.

[123] Valery Guralnik and Jaideep Srivastava. Event detection from time series data.
In Proceedings of the International Conference on Knowledge Discovery and
Data Mining (KDD), pages 33–42, 1999.

218

[124] Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan, and Wei-Yin Loh.
Boat – optimistic decision tree construction. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 169–180, 1999.

[125] Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh Ganti. Rainforest – A
framework for fast decision tree construction of large datasets. Data Minining
Knowledge Discovery, 4(2-3):127–162, 2000.

[126] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen.	 SLIQ: A fast scalable
classifier for data mining. In Proceedings of the International Conference on
Extending Database Technology (EDBT), pages 18–32, 1996.

[127] John	 C. Shafer, Rakesh Agrawal, and Manish Mehta. SPRINT: A scalable
parallel classifier for data mining. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 544–555, 1996.

[128] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy.	 Min
ing data streams: A review. SIGMOD Record, 34(2):18–26, 2005.

[129] Ralf Klinkenberg.	 Learning drifting concepts: Example selection vs. example
weighting. Intelligent Data Analysis, 8(3):281–300, 2004.

[130] Miroslav Kubat and Gerhard Widmer. Adapting to drift in continuous domains
(Extended Abstract). In Proceedings of the European Conference on Machine
Learning (ECML), pages 307–310, 1995.

[131] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift
and hidden contexts. Machine Learning, 23(1):69–101, 1996.

[132] Erich Schikuta	 and Paul Glantschnig. An object-relational neural network
database type. In Artificial Intelligence and Applications, pages 31–37, 2007.

[133] José Cascalho and Helder Coelho. Tuning agents’ behaviours using embedded
attributes. In Artificial Intelligence and Applications, pages 157–162, 2007.

[134] Stepas Janusonis and Liudas Leonas.	 Future trends in self-formation. In Arti
ficial Intelligence and Applications, pages 627–632, 2005.

[135] David Gilbert and Christopher J.	 Hogger. Logic for representing and imple
menting knowledge about system behaviour. In Advanced Topics in Artificial
Intelligence, pages 42–49, 1992.

[136] Jiŕı Lazanský. Practical applications of planning tasks. In Advanced Topics in
Artificial Intelligence, pages 238–244, 1992.

[137] Menno Heeren.	 Ant system for solving reactive scheduling problems in value
added chains. In Artificial Intelligence and Applications, pages 6–11, 2005.

[138] Ivan Stajduhar and Ivan Bratko.	 Likelihood based classification in bayesian
networks. In Artificial Intelligence and Applications, pages 367–372, 2007.

[139] Richard J. Povinelli.	 Book review: Foundations of genetic programming. Ge
netic Programming and Evolvable Machines, 5(3):319–320, 2004.

[140] Durga Shrestha.	 Machine learning approaches for estimation of prediction in
terval for the model output. Neural Networks, 19(2):225–235, 2006.

219

[141] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, NY, USA.

[142] Ilyes Jenhani, Nahla Ben Amor, and Zied Elouedi. Decision trees as possibilis
tic classifiers. International Journal of Approximate Reasoning, 48(3):784–807,
2008.

[143] Siegfried Nijssen.	 Bayes optimal classification for decision trees. In Proceedings
of the International Conference on Machine Learning (ICML), pages 696–703,
2008.

[144] Nick Street and YongSeog Kim.	 A streaming ensemble algorithm (SEA) for
large-scale classification. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining (KDD), pages 377–382, 2001.

[145] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hippo
cratic databases. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 143–154, 2002.

[146] Carlos Ribeiro, Andre Zuquete, Paulo Ferreira, and Paulo Guedes.	 SPL: An
access control language for security policies and complex constraints. In Pro
ceedings of the Network and Distributed System Security Symposium (NDSS),
2001.

[147] Piero	 A. Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Sama
rati. An algebra for composing access control policies. ACM Transactions on
Information and System Security (TISSEC), 5(1):1–35, 2002.

[148] Dominik Raub and Rainer Steinwandt. An algebra for enterprise privacy policies
closed under composition and conjunction. In Proceedings of the International
Conference on Emerging Trends in Information and Communication Security
(ETRICS), pages 130–144, 2006.

[149] Elisa Bertino, Piero A. Bonatti, and Elena Ferrari. TRBAC: A temporal role-
based access control model. ACM Transactions on Information and System
Security (TISSEC), 4(3):191–233, 2001.

[150] Maria	 Luisa Damiani, Elisa Bertino, Barbara Catania, and Paolo Perlasca.
GEO-RBAC: A spatially aware RBAC. ACM Transactions on Information and
System Security (TISSEC), 10(1), 2007.

[151] Jaehong Park and Ravi Sandhu.	 Towards usage control models: Beyond tra
ditional access control. In Proceedings of the Symposium on Access Control
Models and Technologies (SACMAT), pages 57–64, 2002.

[152] Jaehong Park and Ravi Sandhu.	 The UCON-ABC usage control model. ACM
Transactions on Information and System Security (TISSEC), 7(1):128–174,
2004.

[153] Qihua	 Wang, Ting Yu, Ninghui Li, Jorge Lobo, Elisa Bertino, Keith Irwin,
and Ji-Won Byun. On the correctness criteria of fine-grained access control in
relational databases. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 555–566, 2007.

[154] Surajit Chaudhuri, Tanmoy Dutta, and S. Sudarshan.	 Fine grained authoriza
tion through predicated grants. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 1174–1183, 2007.

220

[155] Govind Kabra, Ravishankar Ramamurthy, and S. Sudarshan. Redundancy and
information leakage in fine-grained access control. In Proceedings of the Inter
national Conference on Management of Data (SIGMOD), pages 133–144, 2006.

[156] Arun	 Kumar, Neeran M. Karnik, and Girish Chafle. Context sensitivity in
role-based access control. Operating Systems Review, 36(3):53–66, 2002.

[157] Deepavali Bhagwat, Laura Chiticariu,	 Wang Chiew Tan, and Gaurav Vijay
vargiya. An annotation management system for relational databases. VLDB
Journal, 14(4):373–396, 2005.

[158] Floris Geerts, Anastasios Kementsietsidis, and Diego Milano.	 Mondrian: An
notating and querying databases through colors and blocks. In Proceedings of
the International Conference on Data Engineering (ICDE), page 82, 2006.

[159] Mohamed Y. Eltabakh,	 Mourad Ouzzani, and Walid G. Aref. bdbms – A
database management system for biological data. In Proceedings of the Confer
ence on Innovative Data Systems Research (CIDR), pages 196–206, 2007.

[160] Divesh Srivastava and Yannis Velegrakis. Intensional associations between data
and metadata. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 401–412, 2007.

[161] Flickr. http://flickr.com/, 2009.

[162] Delicious. http://del.icio.us/.

[163] Technorati. http://www.technorati.com/.

[164] Cameron Marlow, Mor Naaman, Danah Boyd, and Marc Davis.	 HT06, tag
ging paper, taxonomy, Flickr, academic article, to read. In Proceedings of the
Conference on Hypertext and Hypermedia (Hypertext), pages 31–40, 2006.

[165] Ed H. Chi and Todd Mytkowicz.	 Understanding the efficiency of social tagging
systems using information theory. In Proceedings of the Conference on Hypertext
and Hypermedia (Hypertext), pages 81–88, 2008.

[166] Harry Halpin, Valentin Robu, and Hana Shepherd.	 The complex dynamics of
collaborative tagging. In Proceedings of the International World Wide Web
Conference (WWW), pages 211–220, 2007.

[167] Christoph Schmitz, Andreas Hotho, Robert Jschke, and Gerd Stumme. Mining
association rules in folksonomies. In Proceedings of the International Federation
of Classification Societies (IFCS), pages 261–270, Heidelberg, 2006.

[168] Paul Heymann, Daniel Ramage, and Hector Garcia-Molina.	 Social tag predic
tion. In Proceedings of the International Conference on Research and Develop
ment in Information Retrieval (SIGIR), pages 531–538, 2008.

[169] Steffen Oldenburg, Martin Garbe, and Clemens H. Cap. Similarity cross-
analysis of tag/co-tag spaces in social classification systems. In Proceeding of
the ACM Workshop on Search in Social Media (SSM), pages 11–18, 2008.

[170] Dan Olteanu,	 Tim Furche, and François Bry. An efficient single-pass query
evaluator for XML data streams. In Proceedings of the Symposium on Applied
computing (SAC), pages 627–631, 2004.

http:http://www.technorati.com
http:http://del.icio.us
http:http://flickr.com

221

[171] Feng Peng	 and Sudarshan S. Chawathe. XPath queries on streaming data.
In Proceedings of the International Conference on Management of Data (SIG
MOD), pages 431–442, 2003.

[172] Xiaogang Li and Gagan Agrawal. Efficient evaluation of XQuery over streaming
data. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 265–276, 2005.

[173] Eugene Wu, Yanlei Diao, and Shariq Rizvi.	 High-performance complex event
processing over streams. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 407–418, 2006.

[174] Mohamed H. Ali, Walid G. Aref, Raja Bose, Ahmed K. Elmagarmid, Abdel
salam Helal, Ibrahim Kamel, and Mohamed F. Mokbel. NILE-PDT: A phe
nomenon detection and tracking framework for data stream management sys
tems. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 1295–1298, 2005.

[175] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based access
control. ACM Transactions on Information and System Security (TISSEC),
4(3):224–274, 2001.

[176] Daniel J. Abadi, Donald Carney, Ugur Ç etintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B.
Zdonik. Aurora: A new model and architecture for data stream management.
VLDB Journal, 12(2):120–139, 2003.

[177] Elisa Bertino, Pierangela Samarati, and Sushil Jajodia.	 An extended autho
rization model for relational databases. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 9(1):85–101, 1997.

[178] Duminda Wijesekera	 and Sushil Jajodia. A propositional policy algebra for
access control. ACM Transactions on Information and System Security (TIS
SEC), 6(2):286–325, 2003.

[179] Wenfei Fan, Chee-Yong Chan, and Minos Garofalakis. Secure xml querying with
security views. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 587–598, 2004.

[180] Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and Prasan Roy. Extending
query rewriting techniques for fine-grained access control. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages 551–562,
2004.

[181] Thomas Brinkhoff. Generating network-based moving objects. In Proceedings of
the Statistical and Scientific Database Management (SSDBM), page 253, 2000.

[182] Jin	 Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore
Johnson, and David Maier. Out-of-order processing: A new architecture for
high-performance stream systems. Proceedings of the International Conference
on Very Large Data Bases (VLDB), 1(1):274–288, 2008.

222

[183] Luping Ding and Elke A. Rundensteiner.	 Evaluating window joins over punc
tuated streams. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pages 98–107, 2004.

[184] Christoph	 Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bernhard
Stegmaier. FluXQuery: An optimizing XQuery processor for streaming xml
data. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 1309–1312, 2004.

[185] Sujoe Bose and Leonidas Fegaras.	 Data stream management for historical xml
data. In Proceedings of the International Conference on Management of Data
(SIGMOD), pages 239–250, 2004.

[186] Hong Su, Elke A. Rundensteiner, and Murali Mani. Semantic query optimiza
tion for XQuery over xml streams. In Proceedings of the International Confer
ence on Very Large Data Bases (VLDB), pages 277–288, 2005.

[187] Bettina Berendt and Christoph Hanser. Tags are not metadata, but “just more
content” – to some people. In Proceedings of the International Conference on
Weblogs and Social Media (ICWSM), 2007.

[188] Ronen Feldman,	 Binyamin Rosenfeld, Moshe Fresko, and Brian D. Davison.
Hybrid semantic tagging for information extraction. In Proceedings of the In
ternational World Wide Web Conference (WWW), pages 1022–1023, 2005.

[189] Keith Ellul, Bryan	 Krawetz, Jeffrey Shallit, and Ming-Wei Wang. Regular
expressions: New results and open problems. Journal of Automata, Languages
and Combinatorics, 10(4):407–437, 2005.

[190] Morgan Ames and Mor Naaman.	 Why we tag: Motivations for annotation in
mobile and online media. In Proceedings of the Conference on Computer Human
Interaction (CHI), pages 971–980, 2007.

[191] Scott A. Golder and Bernardo A. Huberman.	 The structure of collaborative
tagging systems. Proceedings of the Computing Research Repository (CoRR),
2005.

[192] Nathan	 Eagle and Alex Pentland. Reality mining: Sensing complex social
systems. Personal and Ubiquitous Computing (PUC), 10(4):255–268, 2006.

[193] Robert	 Jäschke, Leandro Balby Marinho, Andreas Hotho, Lars Schmidt-
Thieme, and Gerd Stumme. Tag recommendations in social bookmarking sys
tems. Artificial Intelligence Communications, 21(4):231–247, 2008.

[194] EBay. http://www.ebay.com/.

[195] Wen-Liang Hung	 and Miin-Shen Yang. Similarity measures between type-2
fuzzy sets. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 12(6):827–842, 2004.

[196] Many Eyes DS. http://manyeyes.alphaworks.ibm.com/.

[197] Google Latitude. http://www.google.com/latitude/intro.html.

[198] TradingMarkets. http://www.tradingmarkets.com/.

http:http://www.tradingmarkets.com
http://www.google.com/latitude/intro.html
http:http://manyeyes.alphaworks.ibm.com
http:http://www.ebay.com

223

[199] Trending. http://www.trending123.com/.

[200] Richard J.	 Lipton, Jeffrey F. Naughton, Donovan A. Schneider, and S. Se
shadri. Efficient sampling strategies for relational database operations. Theo
retical Computer Science, 116(1&2):195–226, 1993.

[201] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of data mining.
MIT Press, Cambridge, MA, USA, 2001.

[202] Dymitr Ruta.	 Dynamic data condensation for classification. In Proceedings of
the Artificial Intelligence and Soft Computing (ICAISC), pages 672–681, 2006.

[203] B.V. Dasarathy.	 Minimal consistent set identification for optimal NN deci
sion systems. IEEE Transactions on Systems, Man, and Cybernetics (TSMC),
24(3):511–517, 1994.

[204] Takekazu Kato and Toshikazu Wada.	 Direct condensing: An efficient voronoi
condensing algorithm for nearest neighbor classifiers. In Proceedings of the
International Conference on Pattern Recognition (ICPR), pages 474–477, 2004.

[205] C.	 H. Chen and Adam Józwik. A sample set condensation algorithm for the
class sensitive artificial neural network. Pattern Recognition, 17(8):819–823,
1996.

[206] José Salvador Sánchez. High training set size reduction by space partitioning
and prototype abstraction. Pattern Recognition, 37(7):1561–1564, 2004.

[207] Maria Teresa Lozano.	 Data Reduction Techniques in Classification Processes.
PhD thesis, Jaume University, 2007.

[208] Martin Klazar.	 Bell numbers, their relatives, and algebraic differential equa
tions. Journal of Combinatorial Theory Series, 102(1):63–87, 2003.

[209] Surajit Chaudhuri.	 An overview of query optimization in relational systems.
In Proceedings of the Symposium on Principles of Database Systems (PODS),
pages 34–43, 1998.

[210] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. Access path selection in a relational database man
agement system. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 23–34, 1979.

[211] Joseph M.	 Hellerstein and Michael Stonebraker. Predicate migration: Opti
mizing queries with expensive predicates. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 267–276, 1993.

[212] Leonard Kaufman and Peter J. Rousseeuw.	 Finding Groups in Data: An In
troduction to Cluster Analysis. Wiley-Interscience, New York, NY, USA, 1990.

[213] Yannis E.	 Ioannidis and Younkyung Cha Kang. Randomized algorithms for
optimizing large join queries. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 312–321, 1990.

[214] Arvind Arasu,	 Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer
Widom. Characterizing memory requirements for queries over continuous data
streams. ACM Transactions on Database Systems (TODS), 29:162–194, 2004.

http:http://www.trending123.com

224

[215] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of the
Symposium on Principles of Database Systems (PODS), pages 1–16, 2002.

[216] Stratis Viglas	 and Jeffrey F. Naughton. Rate-based query optimization for
streaming information sources. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 37–48, 2002.

[217] Kajal T.	 Claypool and Mark Claypool. Teddies: Trained eddies for reactive
stream processing. In Proceedings of the International Conference on Database
Systems for Advanced Applications (DASFAA), pages 220–234, 2008.

[218] Kien A. Hua, Yu lung Lo, and Honesty C. Young. Considering data skew factor
in multi-way join query optimization for parallel execution. VLDB Journal,
2(3):303–330, 1993.

[219] Rimma V. Nehme, Elke A. Rundensteiner, Karen E. Works, and Elisa Bertino.
Query mesh: An efficient multi-route approach to query optimization. Technical
Report CSD TR #08-009, Department of Computer Science, Purdue University,
April 2008.

[220] Gerhard Widmer and Miroslav Kubat.	 Effective learning in dynamic environ
ments by explicit context tracking. In Proceedings of the European Conference
on Machine Learning (ECML), pages 227–243, 1993.

[221] Alexey Tsymbal. The problem of concept drift: Definitions and related work.
Technical Report TCD-CS-2004-15, Department of Computer Science, Univer
sity of Dublin, Trinity College, 2004.

[222] Surajit Chaudhuri, Arnd Christian König, and Vivek R. Narasayya. Sqlcm: A
continuous monitoring framework for relational database engines. In Proceedings
of the International Conference on Data Engineering (ICDE), pages 473–485,
2004.

[223] Donald Michie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell, editors.
Machine learning, neural and statistical classification. Ellis Horwood, Upper
Saddle River, NJ, USA, 1994.

[224] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991.

[225] Haixun Wang and Jian Pei. A random method for quantifying changing distri
butions in data streams. In Proceedings of the Principles of Data Mining and
Knowledge Discovery (PKDD), pages 684–691, 2005.

[226] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approx
imating edit distance efficiently. In Proceedings of the Symposium on Founda
tions of Computer Science (FOCS), pages 550–559, 2004.

[227] I.	 M. Chakravarti, R. G. Laha, and J. Roy. Handbook of Methods of Applied
Statistics, volume I. John Wiley and Sons, New York, NY, USA, 1967.

[228] A. Kumaran, Pavan K. Chowdary, and Jayant R. Haritsa. On pushing multilin
gual query operators into relational engines. In Proceedings of the International
Conference on Data Engineering (ICDE), page 98, 2006.

225

[229] Ian H. Witten and Eibe Frank.	 Data mining: Practical machine learning tools
and techniques with Java implementations. In SIGMOD Record, 31(1):76–77,
2002.

[230] Philippe Smets. The transferable belief model. Artificial Intelligence, 66(2):191–
234, 1994.

[231] Philippe Smets.	 The application of the transferable belief model to diagnostic
problems. International journal of intelligent systems, 13:127–157, 1998.

[232] Matthew	 A. Bishop. The Art and Science of Computer Security. Addison-
Wesley, Boston, MA, USA, 2002.

[233] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized search
trees for database systems. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 562–573, 1995.

VITA

226

VITA

Rimma V. Nehme was born in the small town of Baranovitchi, USSR (currently

Belarus). She spent her childhood travelling all over the Soviet Union and East

Germany because of her father’s job in the military. In 1997, during her senior year

in high-school, Rimma came to the United States. As a result, Rimma earned two

high school diplomas in 1998, in the US and in Belarus.

Being completely fascinated with America, Rimma decided to pursue her under

graduate studies at Hillsdale College, MI in August 1998. In 2001, after three years,

Rimma was granted her B.S. degree with the Magna Cum Laude (high honor) in Com

putational Mathematics. Upon graduation, Rimma joined the EMC Corporation as

a software engineer in Hopkinton, MA working on the online management of enter

prise storage devices. After spending several years in the industry, Rimma decided

to pursue graduate studies part-time in Worcester Polytechnic Institute (WPI) in

Worcester, MA and received the masters degree in Computer Science in 2005. While

at WPI, Rimma shaped her research attitude and developed significant interest in

database systems. Rimma then came to Purdue University to pursue her Ph.D. de

gree in the fall of 2005. Rimma published several papers in core database technology.

In 2006, 2007 and 2008, Rimma spent three summers at Microsoft Research in Red

mond, WA, one of the top research labs in the field world-wide. During her summer

internships, Rimma interacted with many world-class researchers and further built

her database systems experience. Rimma V. Nehme graduated with a Ph.D. degree

in Computer Science from Purdue University in August 2009 and joined the Microsoft

Jim Gray Systems Lab in Madison, Wisconsin USA.

