
CERIAS Tech Report 2009-34
Architectural approaches for code injection defense at the user and kernel levels

 by Riley, Ryan
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

Ryan Denver Riley By

Entitled Architectural Approaches for Code Injection Defense at the User and Kernel Levels

For the degree of Doctor of Philosophy

Is approved by the final examining committee:

Dr. Dongyan Xu Dr. Eugene Spafford

 Chair

Dr. Xuxian Jiang

Dr. Cristina Nita-Rotaru

Dr. Sonia Fahmy

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Dr. Dongyan Xu Approved by Major Professor(s): ____________________________________

Dr. Xuxian Jiang

Approved by: Dr. Aditya Mathur July 22, 2009
Head of the Graduate Program Date

Graduate School Form 20
(Revised 6/09)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
Architectural Approaches for Code Injection Defense at the User and Kernel Levels

Doctor of Philosophy For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Ryan Denver Riley
Printed Name and Signature of Candidate

07/22/2009
Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

ARCHITECTURAL APPROACHES FOR CODE INJECTION DEFENSE

AT THE USER AND KERNEL LEVELS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ryan D. Riley

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2009

Purdue University

West Lafayette, Indiana

UMI Number: 3379718

All rights reserved
!

INFORMATION TO ALL USERS
!
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.
!

UMI 3379718
Copyright 2009 by ProQuest LLC.
!

All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 East Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

ii

To the one who died that I might live.

Soli Deo Gloria

iii

ACKNOWLEDGMENTS

I would like to start by thanking my advisors, Professors Dongyan Xu and Xuxian

Jiang. They have invested countless hours into me, both as a researcher and as a

human being. Their support and care has been invaluable, and they have continually

looked out for my best interests, even when I was not. Without them I would have

never made it through, and I certainly wouldn’t have published anything. Professor

Eugene Spafford has consistently reminded me to look at the science of what I’m

doing, and to look to the past for inspiration. Professor Cristina Nita-Rotaru taught

countless classes I was in and provided a service very few people do – she told me what

she really thought. Professor Sonia Fahmy has faithfully served on my committee and

given me invaluable advice during my job search. Professor Doug Comer and Professor

David Yau have each made significant impacts on me by causing me to think deeply

about quality teaching as well as my own teaching philosophy.

My lab mates, Junghwan Rhee, Ardalan Kangarlou, Sahan Gamage, and Zhiqiang

Lin have provided countless hours of brainstorming, encouragement, and even ca­

maraderie. I will sorely miss our random conversations about topics ranging from

research to real life. Both Xuxian Jiang and Paul Ruth, graduates from our lab,

provided me important insights into what it takes to actually graduate and find a

job. Jeff Turkstra has been with me since the beginning of my Purdue career and the

friendship we formed will last a lifetime – I’m happy to report that I beat him to our

third and final graduation.

The staff in the Computer Science department has been invaluable in ensuring I

made it through unscathed. Mike Motuliak has provided better hardware support

than I ever imagined possible. He even replaced a capacitor on a broken motherboard

when I had a deadline looming. Brian Board has spent far more time than I deserve

fixing my various networking problems and getting new computers online fast. Linda

iv

Byfield ensured I got reimbursed for all of my travel – even when I made that difficult.

Amy Ingram has shown excessive patience in answering my questions while providing

an encouraging smile.

My gorgeous wife Betsy may have come to me late in my graduate school career,

but no person has brought me more encouragement and joy in this journey. There is

no one else I would rather have by my side in the trials and troubles of life. She is

far more precious to me than she will ever know.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

1 Introduction . 1

1.1 Background and Problem Statement 1

1.2 Contributions . 2

1.3 Terminology . 3

1.4 Execution Model . 5

1.4.1 Processor . 6

1.4.2 Memory . 7

1.5 Dissertation Organization . 7

2 Attack Overview and Related Work . 8

2.1 Code Injection Attacks . 8

2.1.1 Control-flow Hijacking . 8

2.1.2 Payload Execution . 9

2.1.3 Kernel Rootkits . 10

2.1.4 Other Code Injection Attacks 11

2.2 Deterrence Techniques . 11

2.2.1 Compiler Approaches . 11

2.2.2 Execution Prevention . 13

2.3 Kernel Rootkit Defense . 15

2.3.1 Rootkit Detection . 15

2.3.2 Rootkit Prevention . 15

2.3.3 Rootkit Profiling . 16

2.4 Organization of Attacks and Defenses 17

3 Architectural Analysis of Code Injection Attacks 19

3.1 Basic Architectures . 19

3.1.1 The von Neumann Memory Architecture 19

3.1.2 The Harvard Memory Architecture 20

3.2 Split Memory Architecture . 21

3.2.1 Overview . 21

3.2.2 Effects on Code Injection . 22

3.2.3 Further Applications . 22

vi

Page
3.2.4	 Limitations . 24

3.2.5 Comparison to Other Architectural Approaches 24

4 SMA for User-Level Code Injection Defense 26

4.1 Introduction . 26

4.2 Challenges in Using an SMA on the x86 28

4.3 Overview of the TLB on the x86 . 28

4.4 Constructing an SMA . 29

4.4.1	 What to Split . 29

4.4.2	 How to Split . 30

4.4.3	 Portability to Other Architectures 33

4.4.4	 Overhead . 34

4.4.5	 Attack Response Modes . 34

4.4.6	 Dynamic and Shared Libraries 37

4.5 Implementation . 37

4.5.1	 Modifications to the ELF Loader 38

4.5.2	 Modifications to the Page Fault Handler 38

4.5.3	 Modifications to the Debug Interrupt Handler 39

4.5.4	 Modifications to the Memory Management System 40

4.5.5	 Modifications to the Signal Handler 41

4.6 Effectiveness . 42

4.6.1	 Wilander Benchmark . 42

4.6.2	 Real World Attacks . 44

4.6.3	 Response Modes . 47

4.7 Performance . 51

4.8 Hardware Support . 54

4.9 Limitations . 56

4.10 Summary . 57

5 SMA for Kernel-Level Code Injection Defense 58

5.1 Introduction . 58

5.2 NICKLE Design . 60

5.2.1	 Design Goals and Threat Model 60

5.2.2	 VMM-based SMA . 61

5.2.3	 Guest Memory Access Indirection 64

5.2.4	 Flexible Responses to Unauthorized Kernel Code Execution At­

tempts . 66

5.3 NICKLE Implementation . 67

5.3.1	 Memory Shadowing and Guest Memory Access Indirection . 67

5.3.2	 Flexible Response . 71

5.3.3	 Porting Experience . 71

5.4 NICKLE Evaluation . 72

5.4.1	 Effectiveness against Kernel Rootkits 72

vii

Page
5.4.2 Impact on Performance . 78

5.5 Discussion . 83

5.6 Hardware Support . 85

5.7 Summary . 86

6 SMA-Assisted Profiling of Injected Code 87

6.1 Introduction . 87

6.2 Assumptions . 90

6.3 Design . 90

6.3.1 Switching to Profiling Mode 91

6.3.2 Tracking Targeted Kernel Objects 93

6.3.3 Discovering Rootkit Hooking and User-Level Impacts 98

6.4 Implementation . 99

6.4.1 Instantaneous Rootkit Detection 100

6.4.2 Logging and Context Tracking 100

6.4.3 Kernel Object Interpretation 102

6.5 Evaluation . 102

6.5.1 Profiling-based Study of Rootkit Behavior 106

6.5.2 Detailed Results for Three Representative Rootkits 107

6.6 Performance . 113

6.7 Discussion . 114

6.7.1 Attacks . 115

6.7.2 Limitations . 116

6.8 Summary . 117

7 Conclusion . 118

7.1 Conclusions . 120

7.2 Future Work . 121

LIST OF REFERENCES . 122

VITA . 131

viii

LIST OF TABLES

Table Page

2.1 Organization of attack and defense techniques 18

4.1 Wilander benchmark . 43

4.2 Five real world vulnerabilities . 45

4.3 Configuration information used for performance evaluation 52

5.1 Effectiveness of NICKLE in detecting and preventing Linux 2.4 rootkits 73

5.2 Effectiveness of NICKLE in detecting and preventing Linux 2.6 rootkits 74

5.3 Effectiveness of NICKLE in detecting and preventing Windows rootkits 75

5.4 Software configuration for performance evaluation 80

5.5 Application benchmark results . 81

5.6 Unixbench results . 82

6.1 Summary of kernel rootkit profiling results using PoKeR (Part 1) . . . 103

6.2 Summary of kernel rootkit profiling results using PoKeR (Part 2) . . . 104

6.3 Excerpt of SucKIT code extracted by PoKeR 110

ix

LIST OF FIGURES

Figure Page

1.1 Execution model . 6

3.1 von Neumann architecture . 20

3.2 Harvard architecture . 20

3.3 Split memory architecture . 21

3.4 Code injection attempt on the user-level virtual Harvard architecture. . 23

4.1 Program memory layouts . 26

4.2 SMA page fault handler . 31

4.3 Debug interrupt handler . 31

4.4 Observe algorithm . 36

4.5 Response modes (Part 1) . 48

4.6 Response modes (Part 2) . 49

4.7 Normalized performance for applications and benchmarks 52

4.8 Stress-testing the performance penalties from context switching 53

4.9 Closer look into Apache performance 53

4.10 Modifications to x86 to support user-level memory splitting in hardware 55

5.1 VMM-based SMA in NICKLE . 62

5.2 Algorithm for memory shadowing and guest memory access indirection 69

5.3 Foiling the SucKIT rootkit . 77

5.4 An example of NICKLE response modes 79

6.1 VMM-based PoKeR architecture . 91

6.2 Combat tracking algorithm . 95

6.3 A simplified example of a Linux process list 96

6.4 Sample log entries generated by PoKeR 100

6.5 PoKeR performance results . 113

x

ABSTRACT

Riley, Ryan D. Ph.D., Purdue University, August 2009. Architectural Approaches for
Code Injection Defense at the User and Kernel Levels. Major Professors: Dongyan
Xu and Xuxian Jiang.

Code injection attacks, despite being well researched, continue to be a problem

today. Modern architectural solutions such as the execute-disable bit have been use­

ful in limiting the attacks, however they enforce program layout restrictions and can

often still be circumvented by a determined attacker. In this dissertation, we analyze

the code injection problem from the perspective of a vulnerable system’s memory

architecture. We propose an alternative memory architecture, the split memory ar­

chitecture (SMA), which is not susceptible to code injection attacks. This memory

architecture can be implemented either in software running on a von Neumann mem­

ory architecture or through slight modifications to the von Neumann architecture.

The SMA is also able to support the execution of unmodified programs and operat­

ing systems designed and compiled for a von Neumann system.

We demonstrate the efficacy of the SMA approach at the user-level by presenting

the design, implementation, and evaluation of an operating system level patch to run

a process inside an SMA. The results show that the system is able to prevent a variety

of code injection attacks while imposing less than 20% overhead on average.

We also demonstrate an SMA at the kernel-level with NICKLE, an instantiation

of an SMA in a virtual machine monitor (VMM). We use NICKLE to verify the

applicability of the SMA design to the prevention of code injection based kernel

rootkits. Our evaluation reveals that NICKLE is able to prevent the execution of

these rootkits while imposing less than 10% overhead to QEMU. The VMM-based

xi

SMA is also used as the basis for a rootkit profiler named PoKeR, which is able to

help human experts determine the behavior of a rootkit.

Our results reveal that the SMA can be a solution for preventing code injection

attacks in both user-level applications and the operating system kernel.

1

1 INTRODUCTION

1.1 Background and Problem Statement

Code injection attacks, in their various forms, have been in existence and been an

area of consistent research for a number of years [1, 2]. A code injection attack is a

method whereby an attacker inserts malicious code into a running computing system

and transfers execution to his malicious code. In this way he can gain control of a

running process or operating system because his injected code will run at the same

privilege level as the entity being attacked.

A widely utilized memory architecture in desktop computers is known as a von

Neumann memory architecture [3]. In this architecture code and data share a common

memory space. As such, data injected by an attacker can be executed as code by the

processor. A different type of architecture, the Harvard [4,5] architecture, enforces a

strict separation of code and data, making it infeasible for an attacker to inject data

into the system and force execution of it. As such, a Harvard architecture does not

have the “features” required for a code injection attack to succeed.

Architectural code injection prevention techniques, such as the execute-disable

bit and segmentation, rely on a separation of code and data, either into pages or

segments. In effect, these techniques force a Harvard like separation of information

while executing on a von Neumann architecture. This forced separation of code and

data may prevent these techniques from being properly used in the context of some

operating system kernels.

In this dissertation we present the split memory architecture (SMA), a memory

architecture that has the code injection immunity benefits of a Harvard architecture

and yet can be constructed for software running on a von Neumann system. As such,

the thesis for this work is as follows: The split memory architecture can prevent

2

code injection attacks that a standard von Neumann architecture cannot, and it can

do so while incurring reasonable overhead. In addition, the split memory architecture

can be constructed in software on a von Neumann system and existing, unmodified

programs and operating systems can be executed on it.

1.2 Contributions

The contributions of this dissertation are as follows:

•	 Analysis of Code Injection and Memory Architectures An analysis

of the code injection problem with respect to the system’s underlying memory

architecture is conducted. The properties of the memory architectures related

to permitting or denying code injection is enumerated and discussed. A new

memory architecture, named a split memory architecture, not susceptible to

code injection attacks, is proposed.

•	 User Level Code Injection Prevention An operating system level ap­

proach to implementing an SMA on an unmodified Intel x86 processor is given.

Using this architectural approach, code and data become physically together but

function as if they are separate, and injected code is unable to be fetched for

execution. The system is also able to protect pages that contain both code and

data, something which existing page-level execution prevention techniques are

unable to do. In addition, various techniques for responding to code injection

attacks are also presented.

•	 Kernel Level Code Injection Prevention While a significant amount of

research has been done regarding code injection prevention at the user-level,

relatively little work has been done at the kernel level. As such, the main

contributions of this dissertation are in the area of kernel level code injection

prevention. An analysis of kernel level code injection attacks and the assump­

tions they make regarding the underlying memory architecture is presented.

3

Specifically, the attack case to be considered will be kernel level rootkits em­

ploying code injection to accomplish their means. Building on the concepts of

generalized code injection, a theoretical understanding of kernel level code in­

jection and prevention is presented. A method for constructing an SMA using

a virtual machine monitor is described. This method is then instantiated in

multiple virtual machine monitors that are used to verify the effectiveness of

an SMA against kernel rootkit attacks. Our system is among the first capa­

ble of preventing kernel-level code injection attacks, and has sparked additional

research into more effective rootkit attacks [6].

•	 Kernel Rootkit Profiling The SMA is not only applicable to code injection

prevention, it also provides unique benefits that allow the profiling of injected

code. Accordingly, an SMA based system for analyzing the behavior of injected

kernel rootkit code will be described. At the core of this system, an SMA pro­

vides a convenient mechanism for identifying injected rootkit code before it is

executed. This “right-before” timing allows us to begin profiling as soon as the

kernel portion of the attack begins. Techniques and algorithms for monitoring

and profiling this malicious code for the purpose of quickly ascertaining what a

rootkit does will also be presented. We propose the combat tracking technique

to determine the identity of targeted kernel objects, even when they are dy­

namically located. This system is one of the first in the growing area of kernel

rootkit profiling.

1.3 Terminology

This section defines terminology used throughout this dissertation.

•	 Attacker Our definition of an attacker is adapted from the definition of

penetration found in [7]. An attacker is a person, organization, or computer

program that is attempting to obtain unauthorized access to files, programs, or

the control state of a computer system. We further assume that the attacker

4

is attempting to gain this access remotely. We do not consider physical access,

social engineering, or similar attacks.

•	 Control-flow Hijacking Control-flow hijacking is an attack strategy wherein

an attacker modifies the control-flow of a running computing system by causing

direct modifications to the system’s program counter register. A buffer overflow

attack, for example, is a type of control-flow hijacking.

•	 Code Injection Code injection is the process of an attacker adding new

code (ranging from machine instructions to a high-level scripting language) to

a computer system. Unless otherwise noted, in this dissertation we will only

use code injection to refer to the injection of machine instructions.

•	 Code Injection Attack A code injection attack occurs when an attacker

combines code injection and control-flow hijacking to cause new, injected code

to be executed on a computing system.

•	 Rootkit We adapt our definition of rootkit from Greg Hoglund et al. [8]. A

rootkit is a set of programs and code that allows a permanent or consistent,

undetectable presence on a computer. This presence is not authorized by the

computer’s administrator. An attacker uses a rootkit on an operating system

to maintain access as long as possible without being detected. Rootkits will

frequently hide files, processes, network activity, and log entries. Rootkits exist

for a variety of operating systems. In this dissertation we are concerned with

kernel rootkits, which are rootkits that accomplish their goals by modifying

the running operating system kernel.

•	 Virtualization When we refer to virtualization we are referring to operating

system virtualization. Our practical use of virtualization in this dissertation is

limited to x86 systems, although the theoretical design is applicable to multiple

underlying architectures. We form our definition of virtualization and virtual

machines by combining definitions from Meyer et al. [9] as well as Goldberg [10]:

5

The expression, “virtual machine,” is now generally accepted as a software

replica of a complete computer system. It consists of a data structure describing

the memory size and the input/output configuration of the simulated system. In

these systems, much of the software for the simulated machine executes directly

on the hardware. Systems of this kind are called virtual machine systems, the

simulated machines are called virtual machines (VMs), and the simulator

software is called the virtual machine monitor (VMM).

•	 Authorized Code / Authenticated Code When we refer to authorized or

authenticated code we are referring to a body of program or operating system

machine code that has been verified to be unmodified and un-appended to when

compared to some prior state. For example, an operating system’s running code

may be authenticated by verifying that it matches, byte-for-byte, the code that

was initially produced by the compiler. Given that very large code bases (such

as OS kernels) are not usually formally verified, we do not consider the formal

correctness of the code or provide a guarantee that it does not contain bugs

or security vulnerabilities. Instead, we rely on a developer or administrator to

designate a piece of code as authorized.

1.4 Execution Model

In this work we assume a uni-processor system using a fetch-execute cycle to

execute instructions stored in a physical memory space which employs virtual memory

using page tables. The system supports multiple processes, each of which has its own

virtual memory space defined by a page table. Figure 1.1 illustrates this execution

model. The model is based on models described in [11] and [12]. A basic overview of

this model is described here, for details of any of these concepts see the previous two

references.

6

Memory
Processor ...

PC IR

PTR SP

Instruction
Instruction
Instruction

Data

...

Data
Data

...

TLB

MMU

Figure 1.1. Execution model

1.4.1 Processor

The processor has four control registers: a program counter (PC), the instruction

register (IR), the page table register (PTR), and the stack pointer (SP). The PC

contains the address of the next instruction to be fetched for execution. The IR

contains the last instruction fetched for execution. The PTR contains the address

of the current page table in memory. The SP points to the last item added to the

stack. (Alternatively, it could point to the next available empty slot on the stack.)

The stack itself grows from higher addresses to lower addresses (downward growth).

The processor fetches instructions from the system’s memory for execution. This

occurs during two cycles, a fetch cycle and an execute cycle. During the fetch cycle the

instruction located at the address indicated by the PC is loaded into the instruction

register and the PC is incremented to the address of the next instruction. During the

execution cycle the instruction in the IR is decoded and executed. These two cycles

may occur simultaneously, with one instruction being fetched and the other executed

at the same time. A more complicated pipelining architecture may also be used [13].

During a function call, the current PC is pushed onto the stack before being modified

to reflect the address of the function being called.

7

1.4.2 Memory

The processor interfaces to memory through the memory management unit (MMU)

which translates virtual addresses into physical addresses. Pages are 4 kilobytes in

size. The MMU makes use of the page table found at the address specified by the

PTR. (Ensuring the correctness of the page table and the PTR is the responsibil­

ity of the operating system.) This procedure requires multiple accesses to memory to

translate one virtual address. A small hardware cache called the translation lookaside

buffer (TLB) is used to store recently accessed page table entries. Many page table

lookups never need to go all the way to the page table, but instead can be served by

the TLB. Each TLB entry corresponds to one entire memory page.

1.5 Dissertation Organization

This dissertation contains seven chapters. Chapter 2 contains an overview of code

injection attacks as well as related work. Chapter 3 presents an analysis of the code

injection problem with respect to a system’s underlying memory architecture and

proposes using a split memory architecture for code injection prevention on existing

von Neumann systems. Chapters 4 and 5 demonstrate the effectiveness and perfor­

mance of this architecture for protecting both the user and kernel levels. Chapter 6

presents a method for using this architecture to determine the behavior of injected

rootkit code. In chapter 7 we summarize, draw some conclusions, and present future

work.

8

2 ATTACK OVERVIEW AND RELATED WORK

In this chapter we give an overview of various code injection attacks and the defense

mechanisms related to them.

2.1 Code Injection Attacks

In this section we will discuss various types and components of code injection

attacks.

2.1.1 Control-flow Hijacking

In this work we define control-flow hijacking as an attack strategy wherein an

attacker modifies the control-flow of a running computing system by causing direct

modifications to the PC. We will discuss a number of control-flow hijacking techniques

here.

A stack based buffer overflow occurs when a write to an array located on the

stack goes beyond the allocated bounds of that array. Under this circumstance var­

ious control structures also stored on the stack, such as the return address, may be

overwritten. When the function later returns, the modified return address will be

loaded into the PC, causing modification to a program’s control-flow. A description

of stack based buffer overflows as well as exploitation techniques is available in [14].

The Morris Worm [1] made use of this type of attack. A variation of this attack

modifies function pointers on the stack as a means to modify control flow.

The term heap overflow describes a vulnerability where a buffer allocated on the

heap has data written beyond its bounds. Under this circumstance an attacker may

modify function pointers in neighboring heap allocations or even modify heap control

9

data to cause the memory allocator to overwrite arbitrary memory addresses. A

similar attack would be a double-free, wherein a program mistakenly frees the same

heap variable twice. An attacker may be able to leverage this situation to modify

arbitrary memory locations.

A format string vulnerability occurs when a buffer that is filled with data from

an untrusted source (such as the network, a file, a user, etc.) is passed directly to a

function in the printf family as the format string. An attacker can make use of this

vulnerability to cause a program to display the values of arbitrary stack entries (data

leakage) and even directly modify arbitrary memory addresses.

2.1.2 Payload Execution

Thus far we have discussed various ways an attacker may hijack the control-flow

of a running system. We have not, however, discussed what an attacker may wish to

execute (the payload) using this change of control flow.

The first, and most obvious, target for a hijacked instruction pointer would be

new code that the attacker herself has written and added to the system’s memory.

(We will refer to this henceforth as injecting code.) Injecting code is not normally a

difficult procedure, as a system’s normal input routines (file I/O, network I/O, user

I/O, etc.) can be used to cause arbitrary attack code to be written to memory. In the

case of a stack based buffer overflow, for example, an attacker could add her code into

the buffer itself, or if the buffer is too small it could be written to a heap based buffer

using some other program functionality. Once an attacker has injected her code into

the memory space, she can use any of the above control-flow hijacking techniques to

cause it to be executed.

A different option for an attacker would be to point the instruction pointer to

existing code. This attack, traditionally called a return-to-libc attack [15], makes use

of a control-flow hijacking technique combined with a carefully crafted stack to use

portions of existing code to accomplish an attacker’s goals. In Shacham et al. [16]

10

this concept of “return oriented programming” was been shown to provide Turing

completeness given a sufficiently large code base, specifically a large C library. This

attack was further refined and generalized to other architectures as well [17].

2.1.3 Kernel Rootkits

A kernel rootkit is a program that modifies a running operating system kernel

to maintain an unauthorized, undetectable presence on a computer system. Many

kernel rootkits use code injection to modify the running kernel.

The control-flow hijacking and code injection techniques of these rootkits may

differ slightly from those already mentioned. While a kernel rootkit may make use of

traditional attack vectors such as a stack based buffer overflow, the rootkits discussed

in this dissertation gain full read and write access to kernel memory using existing

OS mechanisms.

Some rootkits are installed into the running kernel directly as loadable kernel mod­

ules. Using this technique, a rootkit is written and compiled as a runtime extension

to the OS that is then loaded into the kernel’s memory space and executed. Once

running, the module has full access to all of kernel memory and can modify operating

system data structures and function pointers directly. The rootkit may, for example,

hijack control flow by modifying function pointer entries in the system call table.

Other rootkits are installed into the kernel from user-space by making use of a

raw memory access device1 such as /dev/kmem. Raw memory access devices exist to

allow certain privileged programs to read and write kernel memory directly. A rootkit

is able to use these devices to directly write new code into the kernel’s memory space

and modify function pointers to hijack control flow.

1This is not an actual device, it is implemented entirely in software. It is referred to as a device only
because it uses the OS device driver interface.

11

2.1.4 Other Code Injection Attacks

If our definition of code injection were to be expanded, there are a number of other

types of attacks which might also be considered code injection attacks. We mention

these for completeness, but they are outside the scope of this dissertation.

•	 A non-control-data attack [18] is one that indirectly changes a program’s con­

trol flow by modifying crucial control variables, such as variables used in the

evaluation of conditionals.

•	 SQL Injection attacks [19] can occur when user input to a database-driven

web application is not properly validated. Certain inputs can be used to pass

arbitrary queries to the underlying database.

•	 Cross-site scripting (XSS) attacks [20] are another example of improper input

validation. In this case, however, a malicious URL is used by an attacker to

inject malicious javascript onto a legitimate website being viewed by a victim.

2.2 Deterrence Techniques

In response to the attack techniques discussed above, defense measures have been

developed. We classify these into two major categories: compiler based approaches

that focus on preventing control flow hijacking, and exection prevention techniques

that focus on preventing the execution of attack code.

2.2.1 Compiler Approaches

There are a number of code injection prevention approaches that focus on modify­

ing the compiler to produce a binary that is not susceptible to one or more control-flow

hijacking techniques.

StackGuard [21] attempts to prevent the stack based buffer overflow by modifying

the compiler to insert a randomly generated “canary value” on to the stack between

12

the return address and the locally allocated variables. This canary is then verified

prior to returning from a function. If an attacker overflows a buffer to overwrite

the return address, she will also need to overwrite the canary value. This technique

makes a number of assumptions. First, it assumes that the attacker does not know the

canary value. This may not be true, as other vulnerabilities such as a format string

vulnerability (discussed below) can be used to reveal arbitrary memory locations.

Another assumption is that the attacker must overflow a buffer to get to the return

address, which may also be untrue. For example, an attacker could instead overflow

the buffer into other pointers on the stack to cause valid code to later overwrite the

return address directly.

Another compiler-based solution, Pro Police [22], builds on StackGuard’s scheme

by also rearranging local, stack-based variables to ensure that buffers are located at

higher addresses than function pointers. The technique has been effective in prac­

tice, however it is unable to protect against format string vulnerabilities or heap based

vulnerabilities. Another compiler based solution, PointGuard [23], extends the Stack-

Guard concept to protect function pointers as well. PointGuard suffers from the same

weaknesses as Pro Police. Yet another compiler based technique, Stack Shield [24]

uses a separate stack for return addresses as well as adding verification of ret and

call targets.

A number of compiler based approaches rely on bounds checking to ensure that

data is not written beyond the end of a buffer. Jones et al. [25] produced a compiler

that ensures the results of pointer arithmetic refer to the same object as the origi­

nal pointer. Cash [26] is a compiler based approach that leverages segmentation at

runtime to cause memory access faults when a buffer overflow occurs.

FormatGuard [27] attempts to mitigate format string vulnerabilities by verify­

ing that the proper number of arguments is passed for a given format string. This

technique will prevent a large number of attacks that involve overwriting arbitrary

memory, but is not able to prevent all format string attacks.

13

A problem with these compiler based solutions is that they tend to only work

against known hijacking techniques. That means that while they are effective in some

cases, they may miss many of the more complicated attacks. Wilander et al. [28], for

example, demonstrates that some of these techniques miss a fairly large percentage

(45% in the best case) of attacks that were implemented as part of a buffer overflow

benchmark.

2.2.2 Execution Prevention

Regardless of the control-flow hijacking technique, there are a number of works

related to preventing an attacker from executing attack code even if control-flow

hijacking takes place.

One technique makes use of non-executable memory pages. This protection can

come in the form of hardware support or a software only patch. Hardware support

has been put forth by both Intel and AMD that extends the page-level protections

of the virtual memory subsystem to allow for non-executable pages. (Intel refers to

this as the “execute-disable” (XD) bit [29].) It is commonly applied using the W⊕X

principle: Program information is separated into code pages and data pages. The

data pages (stack, heap, bss, etc) are all marked non-executable. At the same time,

code pages are all marked read-only. In the event an attacker exploits a vulnerability

to inject code, it is guaranteed to be injected on a page that is non-executable and

therefore the injected code is never run. Microsoft makes use of this protection

mechanism in Windows XP SP2 as a part of Data Execution Protection (DEP) [30].

This method is effective for traditional code injection attacks, however it requires

hardware support to be of use. Legacy x86 hardware does not support this feature.

This technique is also available as a software-only patch to the operating system

that allows it to simulate the execute-disable bit through careful mediation of certain

memory accesses. PaX PAGEEXEC [31] is an open source implementation of this

technique that is applied to the Linux kernel. It functions identically to the hardware

14

supported version, however it also supports legacy x86 hardware because of being a

software only patch. A similar technique [32] makes use of the concept of segmentation

to split a program in various segments that have the appropriate permissions to

prevent the execution of injected code. These techniques are effective for many of the

traditional attacks, however attackers still manage to circumvent them [33].

CuPIDS [34] makes use of a “shadow process” to monitor the execution of a

running process. It can help mitigate and recover from stack based buffer overflows

by monitoring program execution during “unsafe” system calls. Salamat et al. [35]

offers a solution to reverse the direction of stack growth in a program and run it

side-by-side with the original to detect when buffer overflows occur.

Other prevention techniques use randomization to thwart an attacker’s ability to

find or write injected code. Address Space Layout Randomization (ASLR) [36–39] is a

technique whereby various portions of a process’s memory space are placed at random

locations to lower the probability an attack will succeed. By randomizing the memory

layout of a running process, ASLR makes it hard for attackers to accurately locate

injected attack code or existing program code (e.g., libc functions), hence lowering the

probability an attack will successfully hijack control flow. One disadvantage to this

technique is that there is often not enough entropy in the randomization to prevent

an attacker from “guessing” the correct address when a large number of attempts

are allowed. Instruction Set Randomization (ISR) [40–42] is a method whereby the

code space of a process is encrypted in memory with a secret key and then decrypted

immediately before execution. In this scenario, an attacker needs to know the secret

key to encrypt a malicious payload for injection.

In response to return-to-libc attacks, a technique known as Control Flow Integrity

(CFI) [43] was developed. CFI rewrites assembly code to enforce that all control-flow

changes fall within a determined control flow graph. The technique, while effective,

can add significant overhead to a running entity. CuPIDS can also be used to help

monitor control flow when the program being protected has been instrumented to pass

function call information to the shadow monitoring process. ASLR is also available

15

as a defense technique here, as it makes it more difficult for an attacker to learn the

address of existing library code.

2.3 Kernel Rootkit Defense

There is a significant amount of work related to kernel level rootkits. We will now

discuss their detection, prevention, and profiling.

2.3.1 Rootkit Detection

Most work on kernel rootkits relates to detection. A rootkit detection system is

one that analyzes an OS to look for symptoms that a rootkit has been installed into

the kernel.

Petroni et al. [44] and Zhang et al. [45] propose the use of external hardware

to retrieve a copy of the runtime OS memory image and detect possible rootkit

presence by detecting certain kernel code integrity violations (e.g., rootkit-inflicted

kernel code manipulation). Follow up work further identifies possible violations of

semantic integrity of dynamic kernel data [46] or state based control-flow integrity of

kernel code [47]. Generalized control-flow integrity [43] may have strong potential to

be used as a prevention technique, but as yet has not been applied to kernel integrity.

Other solutions such as Strider GhostBuster [48] and VMwatcher [49] target the self-

hiding nature of rootkits and infer rootkit presence by detecting discrepancies between

the views of the same system from different perspectives.

2.3.2 Rootkit Prevention

Providing a much stronger guarantee than rootkit detection, rootkit prevention

has the goal of preventing the rootkit attack from happening.

Livewire [50], based on a software-based VMM, protects the guest OS kernel code

and critical data structures from being modified. In many ways Livewire provides a

16

foundation upon which we build in Chapter 5. SecVisor [51] leverages new hardware

extensions to enforce life-time kernel integrity and prevent the execution of unau­

thorized code using the W⊕X principle for the protection of an OS’s memory space.

SecVisor requires modification to OS kernel source code as well as recent hardware

support for MMU and IOMMU virtualization.

The concept of verifying the integrity of code prior to execution has been used

previously in techniques such as Microsoft’s ActiveX Authenticode [52] and more

recently driver signing [53]. The concept was originally proposed by Cohen [54, 55]

in the form of an integrity shell. An integrity shell uses a cryptographic checksum to

verify that a program about to be executed has not been modified, and offers various

response modes if it has. The technique was proposed for virus prevention, but the

principles are applicable at the kernel level as well.

Various forms of driver verification [56, 57] have also been proposed. These tech­

niques are helpful in verifying the identity or integrity of the loaded code. However,

a kernel-level vulnerability could potentially be exploited to bypass these techniques.

2.3.3 Rootkit Profiling

Rootkit profiling is the process of determining a rootkit’s behavior. There are a

few early works in this relatively new area.

Panorama [58] performs system-wide information flow tracking to understand how

sensitive data (e.g., user keystrokes) are stolen or manipulated by malware. The un­

derlying taint-based information flow techniques fundamentally suffer from control-

flow evasion attacks [59] that directly break taint propagation. From another perspec­

tive, K-Tracer [60] combines backward and forward slicing techniques to understand

kernel rootkit behavior. However, the slicing operation requires prior determination

of the sensitive data on which to perform the slicing analysis. As a result, although it

is capable of dealing with regular kernel rootkits that hijack system call table entries,

it becomes less efficient to handle advanced ones such as DKOM-capable rootkits.

17

Several other approaches have recently been proposed to understand rootkit hook­

ing behavior. HookFinder [61] analyzes a given rootkit sample and reports a list of

kernel hooks that are being used by the rootkit. HookMap [62] instead systematically

enumerates all of the kernel hooks that can be hijacked for rootkit-hiding purposes.

These approaches mainly focus on one aspect of rootkit behavior, the hooking behav­

ior. They miss, however, other aspects that are also important for rootkit profiling

purposes.

2.4 Organization of Attacks and Defenses

Table 2.1 illustrates which attacks the various defense techniques discussed above

are able to prevent. The attack techniques are duplicated to distinguish between

attacks involving the execution of code injected by the attack (“New Code”) and

those involving a return-to-libc style attack (“Existing Code”). A checkmark is placed

in a box when the defense technique in the left hand column can prevent the attack

in the upper row. In cases where a defense technique can protect some instances of

the specific attack but not all, a checkmark is still placed. (ASLR, for example, can

be defeated by some advanced return address overflows, however it still receives a

checkmark.) The chart illustrates a best case scenario for each defense scheme.

18

Table 2.1

Organization of attack and defense techniques

User/
Kernela

New Code Existing Code
Ret Addr
Overflowb

Pointer
Overflowc

Format
String

Heap
Overflow

Double
Free

Direct
Modd

Ret Addr
Overflow

Pointer
Overflow

Format
String

Heap
Overflow

Double
Free

Direct
Mod

StackGuard U ! !
Pro Police U ! ! ! !
Stack Shield U ! !
PointGuard U ! ! ! !
FormatGuard U ! !
Jones et al. [25] U ! ! ! ! ! !

XD Bit U ! ! ! ! ! !
PAGEEXEC U ! ! ! ! ! !
SEGMEXEC U ! ! ! ! ! !

ISR U ! ! ! ! ! !
ASLR U ! ! ! ! ! ! ! !

CFI U ! ! ! ! ! ! ! ! ! ! ! !
Salamat et al. [35] U ! ! ! !
CuPIDS U ! ! ! ! ! ! ! ! ! ! ! !
Cash U ! ! ! ! ! !

SecVisor K ! ! ! ! ! !

aUser/Kernel signifies whether the system was designed to prevent attacks at the user-level or kernel-level.

bReturn Address Overflow refers to a stack based buffer overflow attack which modifies the return address.

cPointer Overflow refers to instances where a buffer is overflowed and a program pointer is modified. This could occur on the stack or the heap.

dDirect Modification refers to attacks that modify memory directly, such as a kernel rootkit attack.

19

3 ARCHITECTURAL ANALYSIS OF CODE INJECTION ATTACKS

Code injection is a problem when a computing system permits code and data to

share the same memory address space. Under such a system an attacker can inject

his payload as data and later execute it as code. The underlying assumption relied

on by attackers is that the processor’s memory architecture does not strictly separate

code and data or enforce a distinction between them.

For this reason, we approach the code injection problem by analyzing two different

memory architectures and their susceptibility to code injection attacks. Next, we

propose a new memory architecture that is not susceptible to code injection and

discuss its benefits and features.

3.1 Basic Architectures

There are two models for memory architectures in existing computing devices

that we will discuss with regards to code injection. The first, the von Neumann

architecture, uses one memory space. The second, the Harvard architecture, makes

use of two memory spaces. In this section we will describe each of these architectures

as well as the susceptibility of their designs to code injection attacks.

3.1.1 The von Neumann Memory Architecture

The memory architecture code injection attacks implicitly rely on is known as

a von Neumann memory architecture [3]. Under a von Neumann system there is

one physical memory which is shared by both code and data. As a consequence of

this, code can be read and written as data and data can be executed as code. Some

systems will use segmentation or paging to help separate code and data from each

20

Physical Memory

Instructions

Data

…

Processor
Instruction/Data

Fetch

Figure 3.1. von Neumann architecture

Instruction Memory Data Memory

Processor

Instructions

Instructions

…

Data

Instruction
Fetch

Data
Fetch

Data

…

Figure 3.2. Harvard architecture

other or from other processes, but code and data end up sharing the same address

space. Figure 3.1 illustrates a von Neumann architecture.

3.1.2 The Harvard Memory Architecture

An architecture found in some embedded processors [63] and operating systems

[64] is known as a Harvard architecture [4, 5]. Under the Harvard architecture code

and data each have their own physical address space. One can think of a Harvard

architecture as being a machine with two different physical memories, one for code

and another for data. Figure 3.2 shows a Harvard architecture.

The Harvard architecture’s split memory model makes it immune to code injection

attacks as defined in Chapter 2 because a strict separation between code and data is

enforced at the hardware level. Any and all data, regardless of the source, is stored in

a different physical memory from instructions. Instructions cannot be addressed as

21

Memory

Processor

Data
Fetch

Instruction
Fetch

Data

Data

Instructions

Instructions

Figure 3.3. Split memory architecture

data, and data cannot be addressed as instructions. This means that the attacker is

unable to inject any information whatsoever into the instruction memory and at the

same time is unable to execute any code placed in the data memory. The architecture

simply does not have the “features” required for a successful code injection attack.

3.2 Split Memory Architecture

When approaching the code injection problem from the memory architecture per­

spective, it would be desirable to have a memory architecture that has the code

injection immunity benefits of the Harvard architecture and the versatility and in­

stall base of the von Neumann architecture. A new architecture is needed. In this

work we propose a memory architecture known as the split memory architecture.

3.2.1 Overview

Figure 3.3 illustrates an SMA. This architecture bears resemblance to both of

the previously discussed memory architectures. Like a von Neumann system, the

architecture consists of only one physical memory space. Like a Harvard system, the

processor is unable to fetch data as instructions or access instructions as data. Under

this new architecture, instruction fetches are routed to one portion of physical memory

while data accesses are routed to another. The SMA is designed to be implemented in

22

software running on a von Neumann memory architecture and support the execution

of programs and operating systems designed for a von Neumann system.

3.2.2 Effects on Code Injection

An SMA creates an environment wherein an attacker can exploit a vulnerable

program and inject code into its memory space, but never be able to fetch it for

execution. This is because the physical memory location that contains the data the

attacker managed to write into the program is not accessible during an instruction

fetch, as instruction fetches will be routed to an un-compromised memory location.

To illustrate the effects of an SMA on code injection let us consider an example. A

sample code injection attack attempt using a stack based buffer overflow on an SMA

can be seen in Figure 3.4 and described as follows:

1. The attacker injects his code into a string buffer starting at address 0xbf000000.

The memory writes are routed to physical memory corresponding to data.

2. At the same time as the injection, the attacker overflows the buffer and changes

the return address of the function to point to 0xbf000000, the expected location

of his malicious code.

3. The function returns and control is transferred to address	 0xbf000000. The

processor’s instruction fetch is routed to the physical memory corresponding to

instructions.

4. The attacker’s malicious code is not in the instruction memory (the code was

injected as data and therefore routed to the data memory) and is not run. In all

likelihood the instruction memory is empty (containing zeros) and the program

simply crashes.

3.2.3 Further Applications

Using an SMA provides opportunities beyond that of prevention. Given that the

architecture maintains separate copies of the code and data memories, it provides the

23

Instruction Memory Data Memory

Blank
(Zeros)

Return
Address

String Buffer

0xbf000000

(a) Before the attacker injects code

Instruction Memory Data Memory

Processor

Attack Code

0xbf000000

Processor Data
Access

0xbf000000

Blank
(Zeros)

(b) The injection to the data page

Instruction Memory Data Memory

Attack Code

0xbf000000

Processor
Instruction

Access

0xbf000000

Blank
(Zeros)

(c) The execution attempt that gets routed to

the instruction page

Figure 3.4. Code injection attempt on the user-level virtual Harvard architecture.

24

unique opportunity for the comparison of the two memory spaces to preemptively

detect the attack or even determine its behavior. Specific examples of such attack

responses will be discussed in Chapters 4 and 6.

3.2.4 Limitations

When compared to the von Neumann architecture, the SMA has a gain of pre­

venting the execution of data as code. There are a number of limitations as well:

•	 Self modifying code, including certain program language VMs such as Java, is

not able to execute. The modifications would impact the data memory while

execution would be attempted from the instruction memory.

•	 Under an SMA memory usage may be higher because two physical pages are

required for each virtual page. In practice demand paging may be able to reduce

this excess usage, but there will still be some additional memory usage.

•	 If being constructed and enforced using software, an additional performance

penalty will be incurred. Details about this penalty are shown in Chapters 4

and 5.

3.2.5 Comparison to Other Architectural Approaches

There are a number of architectural security measures that can be used to prevent

code injection attacks. Here we will discuss them and compare them with the SMA.

Segmentation, the concept of splitting a program into functional memory spaces,

was first discussed by Holt [65] in 1961 as a method for splitting a program into

parts to assist the loader in memory allocation. Segmentation gained popularity and

became part of a number of computing systems such as Multics [66], the Burroughs

B5000 [67], and the Intel 386 architecture [68]. Although it started as a mechanism for

memory allocation, segmentation developed into a method for enforcing permissions

as well. In a simple way, one could imagine using segmentation as a code injection

25

prevention technique by separating a program into segments for code and segments for

data. Code segments would be read-only, and data segments would not be executable.

To be protected by segmentation based protection, some programs would need to be

heavily modified or recompiled to accommodate various segments. The SMA, as we

will demonstrate, is capable of protecting unmodified programs that do not consider

these sorts of permissions.

Paging, pioneered in the Atlas computer system [69], is the concept of splitting a

program’s flat memory space into smaller pieces and allocating them as needed. It

can also be used as a code injection prevention mechanism. Both Intel and AMD

have introduced the concept of non-executable pages to their architectures. As the

name implies, a non-executable page is one which does not permit its content to be

executed. By marking code pages read-only and data pages non-executable, code

injection attacks can be mitigated, even for some unmodified programs that are not

designed to make use of the protection. This technique is sometimes also referred to

as W⊕X (write exclusive-or execute) because no page should be both writable and

executable at the same time.

The use of non-executable pages has a few disadvantages when used for code

injection prevention. First, it assumes that code and data are strictly separated

into different pages. This assumption is not always correct. Chapter 5 will discuss

instances of pages containing both code and data in an operating system kernel.

Another disadvantage occurs because the permissions of memory pages often times

must be dictated by the program itself. In such a scenario, an attacker may be able to

change the permissions on existing pages or create a new memory allocation with the

permissions she desires and inject code there. The SMA, in contrast, does have these

same restrictions. As we will see in the user and kernel level experiments, mixed pages

can be handled and the architecture (including permissions) is totally transparent to

the protected entity, meaning that an attacker cannot modify the memory access

rights.

26

4 SMA FOR USER-LEVEL CODE INJECTION DEFENSE

In this chapter, we will demonstrate the effectiveness and performance of the SMA

when used to protect user-level applications under the Linux operating system running

on an x86 processor [70]. While the high-level design is applicable to a variety of von

Neumann processors, an Intel x86 processor is assumed.

4.1 Introduction

In this chapter we are concerned with addressing code injection attacks at the

user level. The attacks described in Chapter 2 are all applicable at the user level. As

we discussed in that chapter, an important defense technique is the hardware enabled

execute-disable bit. While this technique is widely deployed and has proven to be

effective, it has limitations. First, programs must adhere to the “code and data are

Code

Data

Heap

Page Page
Code
Data
Code
Data
Code
Data

Heap
'

Page Page

Page Page

(a) Separate code and data pages (b) Mixed code and data pages

Figure 4.1. Program memory layouts

27

always separated” model. See Figure 4.1(a) for an example of this memory layout.

In the event a program has pages containing both code and data (see Figure 4.1(b))

the protection scheme cannot be used. Such “mixed pages” do exist in real-world

software systems. For example, the Linux kernel uses mixed pages for both signal

handling [71] as well as loadable kernel modules. A second problem with these schemes

is that an advanced attacker can disable or bypass the protection bit using library

code already in the process’ address space and from there execute the injected code.

Such an attack has been demonstrated for the Windows platform by injecting code

into non-executable space and then using a well crafted stack containing a series of

system calls and library functions to cause the system to create a new, executable

memory space, copy the injected code into it, and then transfer control to it. One

such example has been shown in [33].

It is these two limitations in existing page-level protection schemes (the forced

code and data separation and the bypass methodology) that provide the motivation

for our user-level work, which architecturally addresses the code injection problem at

its core.

Our technique for SMA construction can be implemented as a lightweight, software-

only patch for the operating system, and our implementation for the Intel x86 archi­

tecture incurs an average performance penalty between 10 and 20%. Such a software

only technique is possible through careful exploitation of the two translation looka­

side buffers (TLBs) on the x86 architecture to split memory in such a way that it

enforces a strict separation of code and data memory. Furthermore, instead of let­

ting the system crash when a code injection attack occurs, our technique is able to

accommodate a number of response modes for attack monitoring and investigation.

The experiments with a buffer overflow benchmark suite as well as five attacks on

real-world software vulnerabilities successfully demonstrate the effectiveness of the

proposed approach.

28

4.2 Challenges in Using an SMA on the x86

A goal of this chapter is to make use of an SMA on an Intel x86 processor. A

technique for creating an SMA on the x86 is to make unconventional use of some

x86 features to create the appearance of a memory that is split between code and

data. Through careful use of the page table and the TLBs on x86, it is possible to

construct an SMA at the process level using only operating system level modifications.

No modifications need to be made to the underlying x86 architecture, and the system

can be run on conventional x86 hardware without the need for hardware emulation.

In the following sections, we will further describe this technique for the x86 proces­

sor as well as its unique advantages. The realization of an SMA on other architectures

(e.g., SPARC) will be discussed in Section 4.4.3.

4.3 Overview of the TLB on the x86

The are a few specifics regarding the TLB on the x86 that require more discussion

than the overview provided in Section 1.4. The full details of paging on the x86 are

available in the Intel manual [29].

On the x86 the loading of the TLB is managed automatically by the hardware,

but removing entries from it can be handled by either software or hardware. The

hardware, for example, will automatically flush the TLB when the OS changes the

address of the currently mapped page table (such as during a context switch). Soft­

ware can use the invlpg instruction to invalidate specific TLB entries when making

modifications to individual page table entries to ensure that the TLB and page tables

remain synchronized.

While the TLB is able to speed up virtual memory on the x86, one problem is that

because it is limited in size, old entries are automatically removed when new ones

come in. As a consequence of this, a program that makes many random data accesses

may cause the TLB to flush entries related to code accesses, necessitating that they

be reloaded if that code page is referenced again. To help prevent this problem, the

29

TLB is split into two TLBs in many x86 processor models, one for code and one for

data. During normal operation one would want to ensure that the two TLBs do not

contain conflicting entries (where one address could be mapped to different physical

pages, depending on which TLB services the request).

4.4 Constructing an SMA

The key idea in our SMA construction technique is to exploit the dual TLB feature

of the x86 architecture to route data accesses for a given virtual address to one physical

page while routing instruction fetches to another. By desynchronizing the TLBs and

having each contain a different mapping for the same virtual page, every virtual page

may have two corresponding physical pages: One for code fetch and one for data

access. In essence, a system is produced where any given virtual memory address

could be routed to two possible physical memory locations. We will construct our

SMA by splitting the individual pages in a process’ memory space.

4.4.1 What to Split

Before we discuss the technical details behind successfully splitting a given page,

it is important to note that different pages in a process’ address space may be chosen

to split based on how our system will be used.

One potential use of the system is to augment the existing non-executable page

methods by expanding their protection to allow for protecting mixed code and data

pages. Under this usage of the system, the majority of pages under a process’ address

space would be protected using the non-executable pages, while the mixed code and

data pages would be protected using our technique. Note that this assumes we have a

good understanding of the memory space of the program being protected. In addition,

doing only partial protection using our technique may limit the use of the various

response modes described in Section 4.4.5.

30

Another potential use of our system, and the one which we use in our prototype

in Section 4.5, is to protect every page in a process’ memory space. This is a more

comprehensive type of protection than simply augmenting existing schemes. Note

that in this case, more pages are chosen to be split and thus protected.

4.4.2 How to Split

Once it is determined which pages will be split, the technique for splitting a given

page is as follows:

1) On page allocation (either program startup or first use of the page), the page that

needs to be split is duplicated. This produces two copies of the page in physical

memory. We choose one page to be the target of instruction fetches, and the other

to be the target of data accesses.

2) The page table entry (PTE) corresponding to the page we are splitting is set to

ensure a page fault will occur on a TLB miss. In this case, the page is considered

restricted, meaning it is only accessible when the processor is in supervisor mode.

We accomplish it by setting or enabling the supervisor bit [29] in the PTE for that

page. If supervisor is marked in a PTE and a user-level process attempts to access

that page for any reason, a page fault will be generated and the page fault handler

will be automatically invoked.

3) Depending on the reasons for the page fault, i.e., either this page fault is caused

by a data TLB miss or it is caused by an instruction TLB miss, the page fault

handler behaves differently. Note that for an instruction-TLB miss, the faulting

address (saved in the CR2 register) is equal to the program counter (contained in

the EIP register); while for a data-TLB miss, the page fault address is different

from the program counter. In the following, we describe how different TLB misses

are handled. The algorithm is outlined in Algorithm 4.2.

The data-TLB is loaded from within the page fault handler. The page table entry

(PTE) in question is set to point to the data page for that address, the entry is

31

Input: Faulting Address (addr), CPU instruction pointer (EIP), Page table

Entry for addr (pte)

1 if addr == EIP then /* Code Access */

2 pte = the code page;

3 unrestrict(pte);

4 enable single step();

5 return;

6 else /* Data Access */

7 pte = the data page;

8 unrestrict(pte);

9 read byte(addr);

10 restrict(pte);

11 return;

12 end

Figure 4.2. SMA page fault handler

Input: Page table Entry for previously faulting address (pte)

1 if processor is in single step mode then

2 restrict(pte);

3 disable single step();

4 end

Figure 4.3. Debug interrupt handler

32

unrestricted (we unset the supervisor bit in the PTE), and a read of data on that

page is performed. As soon as the read occurs, the memory management unit in the

hardware reads the newly modified PTE, loads it into the data-TLB, and returns the

content. At this point the data-TLB contains the entry to the data page for that

particular address while the instruction-TLB remains untouched. Finally, the PTE

is restricted again to prevent a later instruction access from improperly filling the

instruction-TLB. Note that even though the PTE is restricted, later data accesses

to that page can occur unhindered because the data-TLB contains a valid mapping.

This loading method is also used in the PaX [31] protection model and is known to

cause the overhead for a data-TLB load to be less than 2.7% in benchmarks on a

Pentium III [72].

The procedure above can be seen in lines 7–11 of Algorithm 4.2. First, the page

table entry is set to point to the data page and unrestricted by setting the entry to be

user accessible instead of supervisor accessible. Next, a byte on the page is touched,

causing the hardware to load the data-TLB with a page table entry corresponding

to the data page. Finally, the page table entry is re-protected by setting it into

supervisor mode once again.

The loading of the instruction-TLB has additional complications compared to

that of the data-TLB, namely because there does not appear to be an equally simple

procedure that can accomplish the same task. Despite these complications, however,

a technique introduced in [73] can be used to load the instruction-TLB on the x86.

Once it is determined that the instruction-TLB needs to be loaded, the PTE is

unrestricted, the processor is placed into single step mode, and the faulting instruction

is restarted. When the instruction runs this time the PTE is read out of the page

table and stored in the instruction-TLB. After the instruction finishes then the single

step mode of the processor generates an interrupt, which is used as an opportunity

to restrict the PTE.

This functionality can be seen in Algorithm 4.2 lines 2–5 as well as in Algo­

rithm 4.3. First, the PTE is set to point to the corresponding code page and is

33

unprotected. Next, the processor is placed into single step mode and the page fault

handler returns, resulting in the faulting instruction being restarted. Once the sin­

gle step interrupt occurs, Algorithm 4.3 is run, effectively restricting the PTE and

disabling single step mode.

We created another instruction-TLB loading method that did not require the use

of single-step mode by adding a ret instruction to the page and then calling it from

the page fault handler, but surprisingly this decreased the system’s efficiency. It is

our theory that the slowdown was caused by the x86 maintaining cache coherency.

In essence, when the write to the code page occurs, the processor invalidates the

memory caches corresponding to that page, and also invalidates any portions of the

instruction pipeline currently containing instructions fetched from that page. This

causes undesirable performance degradation to the system.

4.4.3 Portability to Other Architectures

The TLB loading methods just described are specific for the Intel x86. In some

other architecture platforms, such as SPARC, the TLB is managed by software instead

of by hardware. Given this, the split memory scheme should be much easier to build.

On an architecture with software loaded TLBs, there would be no need for complex

data or instruction TLB loading techniques. Instead, the processor’s TLBs could

be loaded directly. The basic procedure would be as follows: 1) Split and mark

pages and page table entries in the same way as the x86 implementation. 2) When a

“memory splitting” page fault occurs, use the architecture’s TLB loading instructions

to load the correct TLB with an entry to the correct physical page. A project which

splits memory pages to defeat software self-checksumming [73] has previously been

implemented on the SPARC architecture.

Given that no complex loading procedures would be required, we believe that the

code base needed to construct the SMA on such an architecture would be smaller and

that the performance overhead imposed on such a system would be noticeably lower.

34

4.4.4 Overhead

The technique of constructing an SMA does not come without a cost. There is

some overhead associated with the methodologies described above.

One potential problem is the use of the processor’s single step mode for the

instruction-TLB load. This loading process has a fairly significant overhead because

two interrupts (the page fault and the debug interrupt) are required to complete

it. This overhead ends up being minimal overall for many applications because

instruction-TLB loads are fairly infrequent, as it only needs to be done once per

page of instructions. (One TLB entry corresponds to an entire page of instructions.)

Another problem is that of context switches in the operating system. Whenever

a context switch (meaning the OS changes running processes) occurs, the TLB is

flushed. This means that every time a protected process is switched out and then

back in, any memory accesses it makes will trigger a page fault and subsequent TLB

load. The overheard of these TLB loads is significantly higher than a traditional

page fault. The problem of context switches is the greatest cause of overhead in

the implemented system. The experimental details of the overhead can be seen in

Section 4.7.

4.4.5 Attack Response Modes

As described, the constructed SMA provides protection against the execution of

injected code. We can also take advantage of the provided protection as a means

of detecting the injected code execution attempt and responding accordingly. The

attack is detected right before executing the first instruction injected by the attacker,

therefore we can develop a number of options to respond. These include terminating

the execution of the exploited process or permitting the attack to proceed while al­

lowing its subsequent behavior to be closely monitored, similar to the way a honeypot

is monitored. In the following, we describe three response modes.

35

Break mode

This response mode will take no action and still route the instruction fetch to the

un-compromised code page, which contains null content (a string of zeroes). When it

encounters zeroes as instructions, the x86 triggers a fault. As a result, the operating

system will typically terminate the offending application. Notice that this option, or

one that achieves the same results, is the de-facto standard for many code injection

prevention systems.

Observe mode

This mode will log the code injection attempt and then still permit the attack

to continue. This can be applied to honeypot-style systems wherein notification of a

previously unknown attack would be helpful while still allowing the attack to continue.

The system could even be tightly integrated with honeypot monitoring tools (such

as Sebek [74] and VMscope [75]) to allow features such as an incoming attack being

seamlessly transferred to a sandbox system and allowed to continue.

To intervene prior to the execution of injected code some sort of trap will need

to be generated by the hardware. This challenge arises because the operating system

does not normally intercede before every instruction fetch, and doing so would cause

undue performance penalties. In our system, we take the following approach to cause

a trap that will be handled by the operating system: Fill the previously empty code

pages with invalid opcodes so that an invalid instruction fault will be generated when

an execution attempt occurs.

Upon the detection of an invalid instruction fault, our response will be activated

and Algorithm 4.4 will be executed. It works as follows: Once the trap is intercepted,

log the attack attempt and record the timestamp when the injected attack code is

executed. Next, the page table entry is updated to point to the data page (the data

page contains the actual attack code), memory splitting is turned off for the page,

the TLB entry is invalidated, and the program is resumed. The net result is that

36

Input: CPU instruction pointer (EIP), Page table entry for EIP (pte)

1 if Invalid Instruction Fault then

2 log();

3 pte = the data page;

4 disable splitting(pte);

5 invalidate tlb(pte);

6 continue execution;

7 end

Figure 4.4. Observe algorithm

the PTE has been updated to point to the page containing the attack code and the

attack is able to continue unhindered by the intercession.

Forensic mode

In this mode, we perform forensic analysis of the detected attack. As the attack

is detected right before the first injected attack code is executed, we consider it

an opportune time to start forensic analysis. Given that the OS has access to the

process’ entire address space as well as the current instruction pointer before malicious

code is executed, forensic investigation of the attack is feasible. Operations such

as shellcode analysis (the instruction pointer points to shellcode in the data pages)

or attack fingerprinting based on memory contents are fully realizable and can be

initiated live during a previously unseen attack. A related project – Argos [76] – has

offered the ability to replace injected code with its own, “forensic” code. This same

technique could easily be accommodated by this system by simply injecting the code

into the process’ address space, changing the EIP to point to it, and resuming program

execution. In our current implementation, we dump the corresponding EIP content

and the related injected attack code. An example will be presented in Section 4.5.

37

4.4.6 Dynamic and Shared Libraries

The concept of multiple processes sharing the same procedures and data in mem­

ory existed in the MULTICS operating system [77] as the concept of intersegment

linking and addressing. Under Linux, these features are referred to as dynamic and

shared libraries. For ease of presentation, we make the distinction between dynamic

and shared libraries as follows: A dynamic library (sometimes called a plugin by ap­

plications) is a piece of code and data that is loaded into an application on demand

at runtime while shared library is typically loaded into a process’ memory space at

load time. The split memory system detects the loading of these libraries at either

load time or run time and splits their pages appropriately.

For libraries to be handled in a secure way they must be validated when being

loaded. As a solution to this problem, we look to existing work [78, 79] that uses

cryptographic primitives to verify binaries and libraries. Using one of these systems,

memory splitting could simply validate the signature of the loaded library prior to

loading and splitting it. This would prevent an attacker from loading a new or

modified module into a running program’s address space, while still permitting valid

modules to be loaded and used unhindered. Given that this technique has already

been implemented for two operating systems which can execute on our model of

computation (Linux [78] and NetBSD [79]), we do not repeat it in our implementation.

4.5 Implementation

An x86 implementation of the above design has been created by modifying version

2.6.13 of the Linux kernel. In this section, we present a detailed description of the

modifications to create the SMA.

38

4.5.1 Modifications to the ELF Loader

ELF is a format that defines the layout of an executable file stored on disk. The

ELF loader is used to load those files into memory and begin executing them. This

work includes setting up all of the code, data, BSS, stack, and heap pages as well as

mapping most of the dynamic libraries used by a given program.

The modifications to the loader are as follows: After the ELF loader maps the

code and data pages from the ELF file, for each one of those pages two new, side-

by-side, physical pages are created and the original page is copied into both of them.

This effectively creates two copies of the program’s memory space in physical memory.

The page table entries corresponding to the code and data pages are changed to map

to one of those copies of the memory space, leaving the other copy unused for the

moment. In addition, the page table entries for those pages get the supervisor bit

cleared, placing that page in supervisor mode to be sure a page fault will occur when

that entry is needed. A previously unused bit in the page table entry is used to signify

that the page is being split. In total, about 90 lines of code are added to the ELF

loader.

In this particular implementation of an SMA the memory usage of an application

is effectively doubled, however this limitation is not one of the technique itself, but

instead of the prototype. A system can be envisioned based on demand-paging (only

allocating a code or data page when needed) instead of the current method of proac­

tively duplicating every virtual page. This would result in a lower memory overhead

because duplicate physical pages would only be needed when both code and data are

accessed from the same virtual page.

4.5.2 Modifications to the Page Fault Handler

Under Linux, the page fault (PF) handler is called in response to a hardware

generated PF interrupt. The handler is responsible for determining what caused the

fault, correcting the problem, and restarting the faulting instruction.

39

If it is determined that the fault was caused by a split memory page and that it

needs to be serviced, then the instruction pointer is compared to the faulting address

to decide whether the instruction-TLB or data-TLB needs to be loaded. If the data-

TLB needs to be loaded, then the PTE is set to user mode, a byte on the page is

touched, and the PTE is set back to supervisor mode1. In the event the instruction-

TLB needs to be loaded, the PTE is set to user mode (to allow access to the page) and

the trap flag (single-step mode) bit in the EFLAGS register is set. This will ensure

that the debug interrupt handler gets called after the instruction is restarted. Before

the PF handler returns and that interrupt occurs, however, the faulting address is

saved into the process’ entry in the OS process table to pass it to the debug interrupt

handler.

In total there were about 110 lines of code added to the PF handler to facilitate

splitting memory.

4.5.3 Modifications to the Debug Interrupt Handler

The debug interrupt handler is used by the kernel to handle interrupts related

to debugging. For example, using a debugger to step through a running program

or watch a particular memory location makes use of this interrupt handler. For the

purposes of split memory, the handler is modified to check the process table to see if a

faulting address has been given, indicating that this interrupt was generated because

the PF handler set the trap flag. If this is the case, then it is safe to assume that

the instruction which originally caused the PF has been restarted and successfully

executed (meaning the instruction-TLB has been filled) and as such the PTE is set

to supervisor mode once again and the trap flag is cleared. In total, about 40 lines

of code were added to the debug interrupt handler to accommodate these changes.

1Occasionally this procedure does not successfully load the data-TLB. In this case, single stepping
mode (like the instruction-TLB load) must be used.

http:mode1.In

40

4.5.4 Modifications to the Memory Management System

There are a number of features related to memory management that must be

slightly modified to properly handle our system. First, on program termination any

split pages must be freed specially to ensure that both physical pages (the code page

and data page) get put back into the kernel’s pool of free memory pages. This is

accomplished by simply looking for the split memory PTE bit that was set by the

ELF loader, and if it is found then freeing two pages instead of one.

Another feature in the memory system that needs to be updated is the copy-on­

write (COW) mechanism. COW is used by Linux to make forked processes run more

efficiently. The basic idea is that when a process makes a copy of itself using fork

both processes get a copy of the original page table, but with every entry set read-

only. Then, if either process writes to a given page, the kernel will give that process

its own copy. (This reduces memory usage in the system because multiple processes

can share the same physical page.) For split memory the COW system must copy

both pages in the event of a write, instead of one.

A update similar to the COW update is also made to the demand paging system.

Demand paging basically means that a page is not allocated until it is required by a

process. In this way a process can have a large amount of available memory space

(such as in the BSS or heap) but only have physical pages allocated for portions it

uses. The demand paging system was modified to allocate two pages instead of the one

page it normally does. This required modifications to the code that allocates empty

pages on demand as well as the code that allocates pages for memory mapped files.

Proper support of memory mapped files also allows the system to protect dynamic

and shared libraries as well.

Overall, about 75 lines of code were added to handle these various parts related

to memory management.

41

4.5.5 Modifications to the Signal Handler

To accommodate the three response modes outlined in Section 4.4.5, we extend the

Linux signal handler to better handle the SIGILL (illegal instruction) signal generated

by the corresponding processor exception. In the event an attack is detected, the

following three response modes have been implemented to respond to the attack:

break mode, observe mode, and forensic mode.

The basic control flow in implementing the response modes is as follows. Once

the attack has been detected, a log entry containing the EIP of the processor prior

to malicious code execution is added to the system. After that, different modes lead

to different responses:

•	 If the system is in observe mode, the corresponding page table entry is modified

to point to the data page, split memory is disabled for that page, and the

program is allowed to continue. The data page is locked in as the sole mapping

and program execution is resumed. This means that only the first unauthorized

code execution on a given page will be logged, as future execution will occur

unhindered from the data page.

•	 If the system is in forensic mode (a light version of what is described in our

design), we first dump additional information about the attack. For example,

we record the injected attack code or shellcode. The shellcode is considered the

first payload executed after compromising the vulnerable program. Thanks to

the unique timing of our system in detecting the attack, we can easily identify

the location of the shellcode, namely those bytes starting at the EIP in the

data page. We record them in the log for later analysis. Moreover, we can also

inject our own “forensic” shellcode into the address space, update the EIP to

point to the new code, and resume normal program execution. Currently the

implementation copies the new code onto the empty code page being executed

from and changes the EIP to point to the beginning of the page. The features

42

of the forensic shellcode can range from a basic program exit to more advanced

and customized code that collects run-time application semantic information.

•	 If the system is in break mode, the application will simply be terminated. This

is what would occur if no modifications were made to the signal handler, and

while it lacks elegance it is effective at preventing the attacker from executing

his malicious code.

Overall, about 70 lines of code were added to handle these various parts related

to signal handling for response mode implementation.

4.6 Effectiveness

To evaluate the effectiveness, we used a buffer overflow benchmark as well as 5

representative, real-world attacks to see how our system performs. Our testbed was

a modest system, consisting of a Pentium III 600Mhz with 384 MB of RAM and a

100MBit NIC.

4.6.1 Wilander Benchmark

The code injection benchmark used for evaluation was originally put forth by

Wilander et al. [28]. It was chosen because it is the only benchmark of its kind that

we are aware of. The benchmark was modified slightly to allow it to handle having

the code injected on the data, BSS, heap, and stack portions of the program’s address

space. In addition, four of the test cases did not successfully execute an attack on our

unprotected system, and so have been labeled “N/A.” Table 4.1 shows the results of

running the benchmark. The checkmarks indicate that the system successfully halted

the attack. As can be seen, the system was effective in preventing all types of code

injection attacks present in the benchmark. The effectiveness of the system is because

no matter what method of control-flow hijacking the benchmark uses, the processor

is simply unable to fetch the injected code.

43

Table 4.1

Wilander benchmark results when code is injected onto the data, BSS, heap, and stack segments

Attack Type Hijack Type
Injection Destination

Data BSS Heap Stack

Buffer overflow on stack

Return address
Old base pointer
Function pointer as local variable
Function pointer as parameter
Longjmp buffer as local variable
Longjmp buffer as function parameter

!
!
!
!
!
!

!
!
!
!
!
!

!
!
!
!
!
!

!
!
!
!
!
!

Buffer overflow on heap/BSS
Function pointer
Longjmp buffer

!
!

!
!

!
!

!
!

Buffer overflow of pointers on stack

Return address
Old base pointer
Function pointer as local variable
Function pointer as parameter
Longjmp buffer as local variable
Longjmp buffer as function parameter

N/A
N/A
!
!
!
!

N/A
N/A
!
!
!
!

!
N/A
!
!
!
!

N/A
N/A
!
!
!
!

Buffer overflow on heap/BSS

Return address
Old base pointer
Function pointer as variable
Longjmp buffer as variable

N/A
N/A
!
!

N/A
N/A
!
!

!
N/A
!
!

N/A
N/A
!
!

44

4.6.2 Real World Attacks

Five representative software packages containing real-world vulnerabilities that

permit code injection and execution were run under our implementation. Vulnerabil­

ities in five major Linux server packages from 2001 to 2003 were used. These specific

vulnerabilities were chosen because of the availability and effectiveness of publicly

released exploits. Our software platform for the attacks was a copy of the RedHat

7.2 operating system (chosen because of its vulnerability to many attacks from that

time period) that had been manually upgraded to use version 2.6.13 of the Linux

kernel. Table 4.2 summarizes the results of the experiments, including the versions

of software installed on our testing platform. Some software shipped with the default

version of RedHat 7.2, other software was “forward” ported from previous releases.

The results of the attacks when executed on an unpatched kernel is reflected by the

“Attack Result” column.

1. Apache 1.3.20 with OpenSSL 0.9.6d.	 A bug in OpenSSL allows a buffer overflow

to occur if an attacker sends a large client master key to the server. The exploit

we used, openssl-too-open by Solar Eclipse [80], overflows a heap buffer and

makes use of an information leak in the SSL handshake to determine the proper

address for its shellcode. If the attack successfully executes, a shell owned

by nobody (the uid of the apache process) is spawned over the network to

the attacker. When run under our system, the heap buffer is overflowed, but

execution of the injected shell code is foiled because it is unavailable to the

processor when it attempts to fetch instructions from the heap page.

2. Bind 8.2.2 P5. Bugs in the DNS server implementation allow either a stack or

heap overflow to occur (depending on which bug is exploited) while handling

transaction signatures. For our testing we used a publicly released lsd-pl.net

exploit [81]. (A modified version of this same exploit code was used by the

Lion worm [82].) Much like the apache attack, this exploit makes used of an

information leak bug to determine the shellcode jump address. Once that occurs

http:lsd-pl.net

45

Table 4.2

Five real world vulnerabilities

Software CVE Corruptable Memory Region Attack Result Stopped?

apache-1.3.20-16/mod ssl-2.8.4-9 CVE-2002-0656 Heap nobody shell Yes

bind-8.2.2 P5-9 CVE-2001-0010 Stack or Heap named shell Yes

proftpd-1.2.7-1 CVE-2003-0831 Heap root shell Yes

samba-2.2.1a-4 CVE-2003-0201 Stack root shell Yes

wu-ftpd-2.6.1-18 CVE-2001-0550 Heap root shell Yes

46

a stack overflow is triggered and a shell is spawned over the network. When

run under our system, the information leak bug still functions and the stack

overflow still occurs, but the shellcode is unable to be fetched and the execution

attempt fails.

3.	 ProFTPD 1.2.7. When transferring files in ASCII mode, ProFTPD contains a

bug that causes newline characters to be translated incorrectly and permits an

attacker to execute arbitrary code. Our exploit of choice was proftpd-not-pro­

enough by Solar Eclipse [83]. To trigger the flaw the exploit logs in to the server

and uploads a file containing a malicious payload. Next, it puts the server in

ASCII mode and downloads that file. During the ASCII translation process the

exploit code is executed from the heap. The malicious code then breaks out of

any chroot environments and spawns a root shell over the network. Executing

the server under our system results in the instruction fetch from the heap failing

and hence the attack is foiled.

4. Samba 2.2.1a.	 Samba contains a bug in the call trans2open function that

allows a stack buffer to be overflowed. For our testing we used an exploit

put out by eSDee [84]. The exploit is a stack based buffer overflow with a

brute-force mode to guess the address of the shellcode on the stack based on a

good “first guess” obtained by manual analysis of a similar vulnerable system.

This bug was made more difficult to exploit because version 2.6 of the Linux

kernel added randomization to the placement of an application’s stack within

memory. This means that it can take a long time for the attack to properly

determine the correct stack address. To better facilitate testing, the exploit was

“helped” by providing a better first guess using insider information about the

stack location. (An unmodified attack would still function given enough time.)

When run under our system, the return address is still guessed properly, but the

shellcode is unavailable to the processor when it attempts to transfer control to

that location.

47

5. WU-FTPD 2.6.1. A bug in the WU-FTPD code handling filename globbing

(the feature that expands strings like *.txt into all the .txt files in a direc­

tory) combined with the free’ing of attacker controlled memory permits arbi­

trary code execution. This bug is different from, but related to, a traditional

heap overflow. The exploit code we used was 7350wurm published by TESO

Security [85]. The exploit logs in to the server, adds its own malicious code

to the heap, triggers the globbing flaw, and causes a root shell to be spawned.

Under our system, the heap is still filled with malicious code and the globbing

bug is still triggered, but the injected code is not fetched by the processor.

Overall, even with a variety of bugs and exploitation techniques, our system is

able to defeat code injection in these real-world scenarios because it prevents malicious

code from ever being executed, even after successful injection into the process’ data

space.

4.6.3 Response Modes

To validate the attack response modes described in Section 4.4.5, the WU-FTPD

vulnerability and exploit were executed under the various modes. Figures 4.5 and 4.6

show how the exploit code reacts when the WU-FTPD daemon is run under break

mode, observe mode, and forensic mode. First, the ftp server is run under break mode.

As can be seen in Figure 4.5(a), the exploit fails to successfully launch a root shell.

(This is because the process crashes when attempting to execute the shellcode.) This

is contrasted with our second test, executing the server under observe mode, where the

exploit is allowed to continue unhindered and a rootshell is spawned (Figure 4.5(b)).

More information about this particular attack can be observed when running under

forensic mode, which can be seen in Figure 4.6(a). A closer examination of the

screenshot will find that the log entry contains the first 20 bytes of the injected

shellcode. This can be recognized because of the nop instructions (the 0x90 bytes).

48

(a) Attack failure during break mode

(b) Attack success during observe mode

Figure 4.5. Demonstration of response modes against the WU-FTPD
exploit (Part 1)

49

(a) Output during forensics mode

(b) Sebek log during observe mode

Figure 4.6. Demonstration of response modes against the WU-FTPD
exploit (Part 2)

50

A manual analysis of the exploit code reveals that these 20 bytes are indeed the

first 20 bytes of injected code. The exploit functions using two stages of injected

code. The initial stage (the first 20 bytes of which are in the figure) is used to write

4 bytes back to the attacker over the network to signal that the attack succeeded and

then immediately reads a second stage of shellcode from the network and executes

it. Currently, our system can successfully observe the execution of the initial stage of

code, but does not intercede before the second stage because the memory page has

been locked on to the data entry.

The last screenshot, Figure 4.6(b), demonstrates our system used in conjunction

with Sebek, a kernel level logging mechanism for honeypots. In our experiment, we

integrate Sebek as a part of the observe response mode. By default, Sebek’s logging

mechanism always runs. To reduce log volume, we modified Sebek to be activated by

a buffer overflow event (caused by code injection) detected by our system. By doing

so, log files can be significantly smaller, yet we can still ensure that an attacker’s

actions are captured thanks to our system’s detection of code injection attacks. The

screenshot shows Sebek logging the commands the attacker types into his spawned

shellcode.

We also tested the possibility of injecting custom shellcode into the program’s

address space. For demonstration purposes we injected the code required to cause

the program to call the exit system call and terminate gracefully. The injected

shellcode (corresponding to exit(0);) is as follows:

"\xbb\x00\x00\x00\x00" /* mov $0x0,%ebx */

"\xb8\x01\x00\x00\x00" /* mov $0x1,%eax */

"\xcd\x80"; /* int $0x80 */

The code loads %ebx with the program’s return value (0), loads the system call number

for exit() into %eax, and finally generates the interrupt required for the system call.

By replacing the attacker’s injected code with this code, the program terminates

without a segmentation fault. While this test shows the injection of fairly uninvolved

51

code, it can easily be replaced with more sophisticated forensic shellcode to assist in

attack investigation.

4.7 Performance

A number of benchmarks, both applications and micro-benchmarks, were used

to test the performance of the system. When applicable, benchmarks were run 10

times and the results averaged. Details of the configuration for the tests are available

in Table 4.3. Each result has been normalized with respect to the speed of the

unprotected system.

Four benchmarks that we consider to be a reasonable assessment of the system’s

performance can be found in Figure 4.7. They were chosen because they test a

variety of both CPU and I/O intensive workloads. First, the Apache [86] webserver

was run in a threading mode to serve a 32KB page (roughly the size of Purdue

University’s main index.html). The ApacheBench program was then run on another

machine connected via the NIC to determine the request throughput of the system as

a whole. The protected system achieved a little over 89% of the unprotected system’s

throughput. Next, gzip was used to compress a 256 MB file, and the operation was

timed. The protected system was found to run at 87% of full speed. Third, the

nbench [87] suite was used to show performance under a set of primarily computation

based tests. The slowest test in the nbench system came in at slightly under 97%.

Finally, the Unixbench [88] Unix benchmarking suite was used as a micro-benchmark

to test various aspects of the system’s performance at tasks such as process creation,

pipe throughput, filesystem throughput, etc. Here, the split memory system ran at

82% of normal speed. This result will be explained below. As can be seen from these

four benchmarks, the system performance at above 80% of full speed under a variety

of tasks.

Two benchmarks contrived to highlight the system’s weakness can be found in

Figure 4.8. First, one of the Unixbench test cases called “pipe based context switch­

52

Table 4.3

Configuration information used for performance evaluation

Item Version Configuration

Slackware 10.2.0 Using Linux 2.6.13

Apache 2.2.3 Worker mpm mode, set to spawn one

process with threads

ApacheBench 2.0.41-dev -c3 -t 60 <url/file>

Unixbench 4.1.0 N/A

Nbench 2.2.2 N/A

Gzip 1.3.3 Compress a 256 MB file.

 100 Plain
Protected

80

 60

 40

 20

 0
 apache2.2 gzip nbench unixbench
32KB pages 256 meg file worst case overall

Figure 4.7. Normalized performance for applications and benchmarks

%
 o

f f
ul

l s
pe

ed

53

%
 o

f f
ul

l s
pe

ed

100 Plain
Protected

80
%

 o
f f

ul
l s

pe
ed

60

 40

 20

 0 unixbench
pipe ctxsw

apache2.2
1KB pages

Figure 4.8. Stress-testing the performance penalties from context switching

 80

 100
Plain

Protected

60

 40

 20

 0 1 2 4 8 16 32 64 128 256 512
Page size (kilobytes)

Figure 4.9. Closer look into Apache performance

54

ing” is shown. This primarily tests how quickly a system can context switch between

two processes that are exchanging data using a pipe. The next test is Apache used

to serve a 1KB page. In this configuration, Apache will context switch heavily while

serving requests. In both of these tests, context switching is taken to an extreme and

therefore our system’s performance degrades substantially because of the constant

flushing of the TLB. As can be seen in the graph, both are at or below 50%. In

addition, in Figure 4.9, we have a more thorough set of Apache benchmarks demon­

strating this same phenomena, namely that for low page sizes the system context

switches heavily and performance suffers, whereas for larger page sizes that cause

Apache to spend more time on I/O as well as begin to saturate the system’s network

link, the results become significantly better. These tests are indicative of the system’s

worst-case performance under highly stressful conditions.

Overall, the system’s performance is, in most cases, between 80 and 90% of an

unprotected system. Moreover, if split memory was supported at the hardware level,

the overheard would be almost non-existent.

4.8 Hardware Support

Although this chapter discusses an operating system modification to enable an

SMA for user-level programs, if the feature was supported in hardware then the

performance overhead described in Section 4.7 would be greatly reduced. In this

section we will discuss what changes would need to be made to a basic x86 architecture

to support a user-level SMA.

Figure 4.10(a) is a representation of the paging architecture of the x86 architecture.

The important thing to note is that while the memory management unit (MMU) has

access to two different TLBs, one for code and one for data, there is only one page

table register (CR3) and only one page table.

Figure 4.10(b) represents our modifications to the paging architecture. As can be

seen, there are still two TLBs, but now there are also two page table registers (CR3-C

55

Memory

I−TLB D−TLB

MMU

Processor

CR3table
Page−

(a) Standard x86 paging hardware

Memory

I−TLB D−TLB

MMU

CR3−D

CR3−C

Processor

Page−
table

Data
Page−
table

Code

(b) Modified x86 paging hardware

Figure 4.10. Modifications to x86 to support user-level memory split­
ting in hardware

56

for code and CR3-D for data) and two page tables as well. Under this new design

all instruction accesses use one page table and associated TLB and all data accesses

use another. An operating system creating an SMA for a process would create two

different page tables, one for code and one for data, and load CR3-C and CR3-D

appropriately. This would cause the process to run inside of an SMA. This technique

is also easily made backwards compatible with non-SMA processes by creating only

one page table and pointing both CR3-C and CR3-D to it.

This is not the first architecture to make use of two separate address spaces for a

single user-level process. The PDP 11/45 had a processor [89] with a similar design.

While other hardware modifications to achieve the same goal (such as a reworked

instruction set or extended segmentation support) may also be valid, this one is

presented here because it is a straightforward extension of the already discussed and

tested software design.

4.9 Limitations

There are a few limitations to our approach. First, as shown in other work [90],

a split memory architecture does not lend itself well to handling self-modifying code.

As such, self-modifying programs cannot be protected using our technique.

Next, this protection scheme offers no protection against attacks which do not

rely on executing code injected by the attacker. For example, modifying a function’s

return address to point to a different part of the original code pages will not be stopped

by this scheme. Address space layout randomization [36] could be combined with our

technique to help prevent this kind of attack. Along those same lines, non-control­

data attacks [18], wherein an attacker modifies a program’s data to alter program

flow, are also not protected by this system.

57

4.10 Summary

In this chapter we have demonstrated the efficacy of the SMA for the prevention

of code injection at the user-level. Instead of maintaining the traditional single mem­

ory space containing both code and data, which is often exploited by code injection

attacks, our approach creates an SMA that separates code and data into different

memory spaces. Consequently, in a system protected by our approach, code injection

attacks may result in the injection of attack code into the data space. However, the

attack code in the data space cannot be fetched for execution as instructions are only

retrieved from the code space. We have implemented a Linux prototype on the x86

architecture, and experimental results show the system is effective in preventing and

responding to a wide range of code injection attacks in both artificial and real-world

scenarios and performs between 80 and 90% of full speed in most cases.

58

5 SMA FOR KERNEL-LEVEL CODE INJECTION DEFENSE

We will now demonstrate the applicability of an SMA to preventing kernel-level code

injection attacks. Specifically, we will be discussing code injection based kernel rootkit

attacks [91].

5.1 Introduction

In this chapter we present NICKLE (“No Instruction Creeping into Kernel Level

Executed”)1, a lightweight, VMM-based system that provides an important guarantee

in kernel rootkit prevention: No unauthorized code can be executed at the kernel level.

NICKLE achieves this guarantee using legacy hardware and without requiring guest

OS kernel modification. As such, NICKLE is readily deployable to protect unmodified

guest OSes (e.g., Fedora Core 3/4/5 and Windows 2K/XP) against kernel rootkits.

NICKLE is based on observing a common, fundamental characteristic of most modern

kernel rootkits: their ability to execute unauthorized instructions at the kernel level.

To achieve the “NICKLE” guarantee, we first observe that a kernel rootkit is able

to access the entire physical address space of the victim machine. This observation

inspires us to impose restricted access to the instructions in the kernel space: only

authenticated kernel instructions can be fetched for execution. Obviously, such a

restriction cannot be enforced by the OS kernel itself. Instead, a natural strategy is

to enforce such a memory access restriction using the VMM, which is at a privilege

level higher than that of the (guest) OS kernel.

Our main challenge is to realize the above VMM-level kernel instruction fetch

restriction in a guest-transparent, real-time, and efficient manner. An intuitive ap­

1With a slight abuse of terms, we use NICKLE to denote both the system itself and the guarantee
achieved by the system – when used in quotation marks.

59

proach would be to impose W⊕X on kernel memory pages to protect existing kernel

code and prevent the execution of injected kernel code. However, because of the

existence of mixed kernel pages in commodity OSes, this approach is not viable for

guest-transparent protection. To address that, we propose a VMM-based SMA for

NICKLE that will work with mixed kernel pages. An SMA for kernel level code

injection prevention makes use of two memory spaces: one for kernel code and the

other for everything else. We refer to the kernel code memory space as the shadow

memory and the memory space for everything else as the standard memory. The

VMM enforces that the guest OS kernel cannot access the shadow memory. Upon

the VM’s startup, the VMM performs kernel code authentication and dynamically

copies authenticated kernel instructions from the standard memory to the shadow

memory. At runtime, any instruction executed in the kernel space must be fetched

from the shadow memory instead of from the standard memory. To enforce this while

maintaining guest transparency, a lightweight guest memory access indirection mech­

anism is added to the VMM. As such, a kernel rootkit will never be able to execute

any of its own code as the code injected into the kernel space will not be able to reach

the shadow memory.

We have implemented NICKLE in two VMMs: QEMU [92] with the KQEMU

accelerator and VirtualBox [93]. Our evaluation results show that NICKLE incurs a

reasonable impact on the VMM platform (e.g., 1.01% on QEMU+KQEMU and 5.45%

on VirtualBox when running Unixbench). NICKLE is shown capable of transparently

protecting a variety of commodity OSes, including RedHat 8.0 (Linux 2.4.18 kernel),

Fedora Core 3 (Linux 2.6.15 kernel), Windows 2000, and Windows XP. Our results

show that NICKLE is able to prevent and respond to 22 real-world kernel rootkits

targeting the above OSes, without requiring details of rootkit attack vectors. Finally,

our porting experience indicates that the NICKLE design is generic and realizable in

a variety of VMMs.

60

5.2 NICKLE Design

5.2.1 Design Goals and Threat Model

NICKLE has the following three main design goals:

First, NICKLE should prevent any unauthorized code from being executed in the

kernel space of the protected VM. The challenges of realizing this goal come from

the real-time requirement of prevention as well as from the requirement that the

guest OS kernel should not be trusted to initiate any task of the prevention – the

latter requirement is justified by the kernel rootkit’s highest privilege level inside the

VM and the possible existence of zero-day vulnerabilities inside the guest OS kernel.

NICKLE overcomes these challenges using a VMM-based SMA (Section 5.2.2). We

note that the scope of NICKLE is focused on preventing unauthorized kernel code

execution. The prevention of other types of attacks (e.g., data-only attacks) is a

non-goal and related solutions will be discussed in Section 5.5.

Second, NICKLE should not require modifications to the guest OS kernel. This

allows commodity OSes to be supported “as is” without recompilation and reinstal­

lation. Correspondingly, the challenge in realizing this goal is to make the SMA

transparent to the VM with respect to both the VM’s function and performance.

Third, the design of NICKLE should be generically portable to a range of VMMs.

Given this, the challenge is to ensure that NICKLE has a small footprint within

the VMM and remains lightweight with respect to performance impact. We focus on

supporting NICKLE in software VMMs, but we expect that the exploitation of recent

hardware-based virtualization extensions [94,95], will improve NICKLE’s performance

even further.

In addition, it is also desirable that NICKLE facilitate various flexible response

mechanisms to be activated upon the detection of an unauthorized kernel code execu­

tion attempt. A flexible response, for example, is to cause only the offending process

to fail without impacting the rest of the OS. The challenge in realizing this is to

61

initiate flexible responses entirely from outside the protected VM and minimize the

side-effects on the running OS.

We assume the following adversary model when designing NICKLE: (1) The kernel

rootkit has the highest privilege level inside the victim VM (e.g., root privileges in a

UNIX system); (2) The kernel rootkit has full access to the VM’s memory space (e.g.,

through /dev/kmem in Linux); (3) The rootkit needs to execute its own (malicious)

code in the kernel space. Such a need exists in most kernel rootkits today [47], and

we will discuss possible exceptions in Section 5.5.

Meanwhile, we assume a trusted VMM that provides VM isolation. This assump­

tion is shared by many other VMM-based security research efforts [49, 50, 75, 96–98].

We will discuss possible attacks (e.g., VM fingerprinting) in Section 5.5. With this

assumption, we consider the threat from DMA attacks launched from physical hosts

outside of the scope of this work.2

5.2.2 VMM-based SMA

The VMM-based SMA enforces the “NICKLE” property as follows. For a VM,

apart from its standard physical memory space, the VMM also allocates a separate

physical memory region as the VM’s shadow memory which is transparent to the VM

and controlled by the VMM. Upon the startup of the VM’s OS, all known-good, au­

thenticated guest kernel instructions will be copied from the VM’s standard memory

to the shadow memory (Figure 5.1(a)). At runtime, when the VM is about to execute

a kernel instruction, the VMM will transparently redirect the kernel instruction fetch

to the shadow memory (Figure 5.1(b)). All other memory accesses (to user code, user

data, and kernel data) will proceed unhindered in the standard memory.

The design of the VMM-based SMA is motivated by the observation that modern

computers define a single memory space for all code, both kernel code and user code,

2There exists another type of DMA attack that is initiated from within a guest VM. However, since
the VMM itself virtualizes or mediates the guest DMA operations, NICKLE can be easily extended
to intercede and block them.

62

VM

Guest OS

Standard Memory

Kernel code

Kernel code

Shadow Memory

Auth. kernel code

Auth. kernel code

VMM

Physical
Memory

NICKLE Module

Applications

Kernel code authentication and copying

Guest OS

(a) Kernel code authorization and copying

VM

Applications

VMM
NICKLE Module

Guest physical address

Physical
Kernel code Auth. kernel code Memory

Standard Memory

Kernel code

Shadow Memory

Other memory accesses Guest kernel instruction fetch

Auth. kernel code

(b) Guest physical address redirection

Figure 5.1. VMM-based SMA in NICKLE

63

and data. With the VMM running at a higher privilege level, we can now “shadow”

the guest kernel code space with elevated (VMM-level) privileges to ensure that the

guest OS kernel itself cannot access the shadowed kernel code space containing the

authenticated kernel instructions. By doing so, even if a kernel rootkit is able to

inject its own code into the VM’s standard memory, the VMM will ensure that the

malicious code never gets copied over to the shadow memory. Moreover, an attempt

to execute the malicious code can be caught immediately because of the inconsistency

between the standard and shadow memory contents.

An important question to answer is, “How is NICKLE functionally different from

W⊕X?” In essence, W⊕X is a scheme that enforces the property, “A given memory

page will never be both writable and executable at the same time.” The basic premise

behind this scheme is that if a page cannot be written to and later executed from,

code injection becomes impossible. There are two main reasons why this scheme is

not adequate for stopping kernel level rootkits:

First, W⊕X is not able to protect mixed kernel pages with both code and data,

which do exist in some OSes. As a specific example, in a Fedora Core 3 VM (with

the 32-bit 2.6.15 kernel and the NX protection), the Linux kernel stores the main

static kernel text in memory range [0xc0100000, 0xc02dea50] and keeps the system

call table starting from virtual address 0xc02e04a0. Notice that the Linux ker­

nel uses a large page size (2MB) to manage the physical memory,3 which means

that the first two kernel pages cover memory ranges [0xc0000000, 0xc0200000) and

[0xc0200000, 0xc0400000), respectively. As a result, the second kernel page contains

both code and data, and thus must be marked both writable and executable – This

conflicts with the W⊕X scheme. Mixed pages also exist for accommodating the code

and data of Linux loadable kernel modules (LKMs) – an example will be shown in

Section 5.4.1. NICKLE is able to protect mixed pages.4

3If the NX protection is disabled, those kernel pages containing static kernel text will be of 4MB in
size.
4We also considered the option of eliminating mixed kernel pages. However, doing so would require
kernel source code modification, which conflicts with our second design goal. Even given source
code access, mixed page elimination is still a complex task (more than only page-aligning data). A

64

Second, W⊕X assumes only one execution privilege level while kernel rootkit pre­

vention requires further distinction between user and kernel code pages. For example,

a page may need to be set executable in user mode but non-executable in kernel mode.

The sort of permission desired is not W⊕X, but W⊕KX (i.e. not writable and kernel-

executable at the same time.) Still, we point out that the enforcement of W⊕KX is

not effective for mixed kernel pages and, regardless, not obvious to construct on x86

processors that do not allow such fine-grained memory permissions.

5.2.3 Guest Memory Access Indirection

To construct the VMM-based SMA, two issues need to be resolved. The first

is adding authenticated kernel code to the shadow memory. The second is fetching

authenticated kernel instructions for execution while detecting and preventing any

attempt to execute unauthorized code in the kernel space. Our solutions need to be

transparent to the guest OS (and thus to the kernel rootkits). We now present the

guest memory access indirection technique to address these issues.

Guest memory access indirection is performed between the VM and its memory

(standard and shadow) by a thin NICKLE module inside the VMM. It has two main

functions, kernel code authentication and copying at VM startup and upon kernel

module loading as well as guest physical address redirection at runtime.

In some ways this component of NICKLE’s design can be thought of as a reference

monitor [99] which validates accesses (memory reads and writes) based on a set of

permissions (the processor’s current privilege level and type of access).

To add authenticated kernel instructions to the shadow memory, the NICKLE

module inside the VMM needs to first determine the accurate timing for kernel code

authentication and copying. To better articulate the problem, we will use the Linux

kernel as an example. There are two specific situations throughout the OS’s lifetime

kernel configuration option with a similar purpose exists in the latest Linux kernel (version 2.6.23).
But after we enabled the option, we still found more than 700 pages that were both writable and
executable. NICKLE instead simply avoids such complexity and works even with mixed kernel
pages.

65

when kernel code needs to be authorized and shadowed: One at startup and the

other upon the loading/unloading of a loadable kernel module (LKM). When the VM

is booting, the guest’s shadow memory is empty. The kernel bootstrap code then

decompresses the kernel. Right after the decompression and before any processes are

executed, NICKLE will use a cryptographic hash to verify the integrity of the kernel

code (this is very similar to level 4 in the secure bootstrap procedure [100]) and

then copy the authenticated kernel code from the standard memory into the shadow

memory (Figure 5.1(a)). As such, the protected VM will start with a known clean

kernel.

The LKM support in modern OSes complicates our design. From NICKLE’s per­

spective, LKMs are considered injected kernel code and thus need to be authenticated

and shadowed before their execution. The challenge for NICKLE is to externally mon­

itor the guest OS and detect the kernel module loading/unloading events in real-time.

NICKLE achieves this by leveraging previous work on non-intrusive VM monitoring

and semantic event reconstruction [49, 75]. When NICKLE detects the loading of a

new kernel module, it intercepts the VM’s execution and performs kernel module code

authentication and shadowing. The authentication is performed by taking a crypto­

graphic hash of the kernel module’s code segment and comparing it with a known

correct value, which is computed a priori off-line and provided by the administrator

or distribution maintainer.5 If the hash values do not match, the kernel module’s

code will not be copied to the shadow memory. This technique is similar is principle

and goal to integrity shells [54, 55].

Through kernel code authentication and copying, only authenticated kernel code

will be loaded into the shadow memory, thus blocking the copying of malicious kernel

rootkit code or any other code injected by exploiting kernel vulnerabilities, including

zero-day vulnerabilities. It is important to note that neither kernel startup hashing

nor kernel module hashing assumes trust in the guest OS. Should the guest OS fail

5We have developed an off-line kernel module profiler that, given a legitimate kernel module, will
compute the corresponding hash value (Section 5.3.1).

66

to cooperate, no code will be copied to the shadow memory, and any attempts to

execute that code will be detected and refused.

Once the shadow memory contains the authenticated kernel code, the operating

system memory accesses must be redirected at runtime. The NICKLE module inside

the VMM intercepts the memory accesses of the VM after the “guest virtual address

→ guest physical address” translation. As such, NICKLE does not interfere with –

and is therefore transparent to – the guest OS’s memory access handling procedure

and virtual memory mappings. Instead, it takes the guest physical address, deter­

mines the type of the memory access (kernel, user; code, data; etc.), and routes it to

either the standard or shadow memory (Figure 5.1(b)).

We point out that the interception of VM memory accesses can be provided by

existing VMMs (e.g., QEMU+KQEMU, VirtualBox, and VMware). NICKLE builds

on this interception capability by adding the guest physical address redirection logic.

First, using a simple method to check the current privilege level of the processor,

NICKLE determines whether the current instruction fetch is for kernel code or for

user code: If the processor is in supervisor mode (CPL=0 on x86), we infer that the

fetch is for kernel code and NICKLE will verify and route the instruction fetch to the

shadow memory. Otherwise, the processor is in user mode and NICKLE will route

the instruction fetch to the standard memory. Data accesses of either type are always

routed to the standard memory.

5.2.4 Flexible Responses to Unauthorized Kernel Code Execution Attempts

If an unauthorized execution attempt is detected, there are a number of ways

NICKLE can respond. Given that NICKLE is situated between the VM and its

memory and has a higher privilege level than the guest OS, it possesses a wide range

of options and capabilities to respond. We describe two response modes facilitated

by the current NICKLE system.

67

Rewrite mode: NICKLE will dynamically rewrite the malicious kernel code with

code of its own. The response code can range from OS-specific error handling code

to a well-crafted payload designed to clean up the impact of a rootkit installation

attempt. Note that this mode may require an understanding of the guest OS to

ensure that valid, sensible code is returned.

Break mode: NICKLE will take no action and route the instruction fetch to the

shadow memory. In the case where the attacker only modifies the original kernel

code, this mode will lead to the execution of the original code – a desirable situation.

However, in the case where new code is injected into the kernel, this mode will lead

to an instruction fetch from presumably null content (containing 0s) in the shadow

memory. As such, break mode prevents malicious kernel code execution but may or

may not be graceful depending on how the OS handles invalid code execution faults.

5.3 NICKLE Implementation

To validate the portability of the NICKLE design, we have implemented NICKLE

in two VMMs: QEMU+KQEMU [92] and VirtualBox [93]. As the open-source

QEMU+KQEMU is the VMM platform where we first implemented NICKLE, we

use it as the representative VMM to describe our implementation details. For most

of this section, we choose RedHat 8.0 as the default guest OS. We will also discuss

the limitations of our current prototype in supporting Windows guest OSes.

5.3.1 Memory Shadowing and Guest Memory Access Indirection

To implement memory shadowing, we have considered two options: (1) NICKLE

could interfere as instructions are executed; or (2) NICKLE could interfere when

instructions are dynamically translated. Note that dynamic instruction translation is

a key technique behind existing software-based VMMs, which transparently translates

guest machine code into native code that will run on the physical host. We favor the

second option for performance reasons: QEMU caches translated code blocks, and

http:memory.In

68

NICKLE can take advantage of this. In QEMU+KQEMU, for example, guest kernel

instructions are grouped into “blocks” and are dynamically translated at runtime.

After a block of code is translated, it is stored in a cache to make it available for

future execution. In terms of NICKLE, this means that if we intercede during code

translation we need not intercede as often as we would if we did so during code

execution, resulting in a smaller impact on system performance.

The pseudo-code for memory shadowing and guest memory access indirection is

shown in Algorithm 5.2. Given the guest physical address of an instruction to be

executed by the VM, NICKLE first checks the current privilege level of the pro­

cessor (CPL) to determine if it is in supervisor mode. Using the guest physical

address, NICKLE compares the content of the standard and shadow memories to

determine whether the kernel instruction to be executed is already in the shadow

memory (namely has been authenticated). If so, the kernel instruction is allowed to

be fetched, translated, and executed. If not, NICKLE will determine if the guest

OS kernel is being bootstrapped or a kernel module is being loaded. If either is the

case, the corresponding kernel text or kernel module code will be authenticated and,

if successful, shadowed into the shadow memory. Otherwise, NICKLE detects an

attempt to execute an unauthorized instruction in the kernel space and prevents it

by executing our response to the attempt.

In Algorithm 5.2, the way to determine whether the guest OS kernel is being boot-

strapped or a kernel module is being loaded requires OS-specific knowledge. Using

the Linux 2.4 kernel as an example, when the kernel’s startup 32 function, located

at physical address 0x00100000 or virtual address 0xc0100000 as shown in the Sys­

tem.map file, is to be executed, we know that this is the first instruction executed to

load the kernel and we can intercede appropriately. For kernel module loading the

NICKLE module inside the VMM can intercept the system call used to load mod­

ules and then perform kernel module authentication and shadowing right before the

module-specific init module routine is executed.

69

Input: (1) GuestPA: guest physical address of instruction to be executed; (2) ShadowMEM[]: shadow memory; (3)

StandardMEM[]: standard memory

1 if !IsUserMode(vcpu) AND ShadowMEM[GuestPA] != StandardMEM[GuestPA] then

2 if (kernel is being bootstrapped) OR (module is being loaded) then

3 Authenticate and shadow code;

4 else

5 Unauthorized execution attempt - Execute response;

6 end

7 end

8 Fetch, translate, and cache code;

Figure 5.2. Algorithm for memory shadowing and guest memory access indirection

70

In our implementation, the loading of LKMs requires special handling. Providing

a hash of a kernel module’s code space ends up being complicated in practice. This is

because kernel modules are dynamically relocatable and hence some portions of the

kernel module’s code space may be modified by the module loading function. Accord­

ingly, the cryptographic hash of a loaded kernel module will be different depending on

where it is relocated. To solve this problem, we perform an off-line, a priori profiling

of the legitimate kernel module binaries. For each known good module we calculate

the cryptographic hash by excluding the portions of the module that will be changed

during relocation. In addition, we store a list of bytes affected by relocation so that

the same procedure can be repeated by NICKLE during runtime hash evaluation of

the same module.

Although the implementation of NICKLE requires certain guest OS-specific in­

formation, it does not require modifications to the guest OS itself. Still, for a closed-

source guest OS (e.g., Windows), lack of information about kernel bootstrapping

and dynamic kernel code loading may lead to certain limitations. For example, not

knowing the timing and “signature” of dynamic (legal) kernel code loading events in

Windows, the current implementation of NICKLE relies on the administrator to des­

ignate a time instance when all authorized Windows kernel code has been loaded into

the standard memory. Not knowing the exact locations of the kernel code, NICKLE

then copies the standard memory to the shadow memory, hence creating a “gold

standard” against which to compare future kernel code execution. From this time

on, NICKLE can transparently protect the Windows OS kernel from executing any

unauthorized kernel code. Moreover, this limited implementation can be made com­

plete when the relevant information becomes available through vendor disclosure or

reverse engineering.

71

5.3.2 Flexible Response

In response to an attempt to execute an unauthorized instruction in the kernel

space, NICKLE provides two response modes. Our initial implementation of NICKLE

simply re-routes the instruction fetch to the shadow memory for a string of zeros

(break mode). This causes a Linux guest OS to trigger a kernel fault and terminate

the offending process. Windows reacts to the NICKLE response by immediately

halting with a blue screen – a less graceful outcome.

In search of a more flexible response mode, we find that by rewriting the offending

instructions at runtime (rewrite mode), NICKLE can respond in a less disruptive way.

We also observe that most kernel rootkits analyzed behave the following way: They

first insert malicious code into the kernel space; then they somehow ensure their code

is call’d as a function. With this observation, we let NICKLE dynamically replace

the code with return -1;, which in x86 assembly is: mov $0xffffffff, %eax; ret.

The main kernel text or the kernel module loading process will interpret this as an

error and gracefully handle it: Our experiments with Windows 2K/XP, Linux 2.4,

and Linux 2.6 guest OSes all confirm that NICKLE’s rewrite mode is able to handle

the malicious kernel code execution attempt by triggering the OS to terminate the

offending process without causing a fault in the OS.

5.3.3 Porting Experience

We have experienced no major difficulty in porting NICKLE to another VMM.

The NICKLE implementations in both VMMs is lightweight: The SLOC (source

lines of code) added to implement NICKLE in QEMU+KQEMU and VirtualBox are

853 and 762, respectively. As mentioned earlier, we first implemented NICKLE in

QEMU+KQEMU.

The VirtualBox port is more complicated than the QEMU port. VirtualBox is a

software VMM, but attempts to execute as much guest code (both user and kernel)

as possible directly on the host processor in user mode. In the event that a piece of

72

guest kernel code cannot be executed directly, VirtualBox makes use of parts of the

QEMU source code (namely the recompiler) to do binary translation. Our original

port simply reused the NICKLE code for QEMU+KQEMU and modified VirtualBox

to execute all kernel code using the QEMU recompiler. This caused performance

degradation because of the speed difference between native and recompiler-based

executions.

To achieve better performance, we used the following optimization: If a kernel

page contains nothing but verified kernel code, then the code from the page will be

executed directly on the host processor; For a kernel page mixed with both code

and data, the execution will be passed off to the recompiler and the related memory

requests will be mediated. This technique can result in significant performance gains:

in the kernel compilation test (Section 5.4), NICKLE before optimization incurred

a 50% slowdown while after optimization it is reduced to 7.06%. Rhe VirtualBox

port is more difficult because of the complexity of the VMM itself. As such we still

consider this port to be a proof of concept and reasonable indicator of performance,

but additional time would be required to further reduce the performance overhead

and make it comparable to the QEMU port.

5.4 NICKLE Evaluation

5.4.1 Effectiveness against Kernel Rootkits

We have evaluated the effectiveness of NICKLE with 22 real-world kernel rootkits.

They consist of ten Linux 2.4 rootkits, seven Linux 2.6 rootkits, and five Windows

rootkits6 that can infect Windows 2000 and/or XP. The selected rootkits cover the

main attack platforms and attack vectors thus providing a good representation of

the state-of-the-art kernel rootkit technology. They were chosen because they were

able to run successfully on our testing platform. Tables 5.1, 5.2, and 5.3 show our

6There is a Windows rootkit named hxdef or Hacker Defender, that is usually classified as a user-
level rootkit. However, since hxdef contains a device driver which will be loaded into the kernel, we
consider it a kernel rootkit in this dissertation.

73

Table 5.1

Effectiveness of NICKLE in detecting and preventing Linux 2.4 rootkits

Guest OS Rootkit Attack Vector

Outcome of NICKLE Response

Rewrite Mode Break Mode

Prevented? Outcome Prevented? Outcome

Linux 2.4

adore 0.42, 0.53 LKM ! insmod fails ! Seg. fault

adore-ng 0.56 LKM ! insmod fails ! Seg. fault

knark LKM ! insmod fails ! Seg. fault

rkit 1.01 LKM ! insmod fails ! Seg. fault

kbdv3 LKM ! insmod fails ! Seg. fault

allroot LKM ! insmod fails ! Seg. fault

rial LKM ! insmod fails ! Seg. fault

Phantasmagoria LKM ! insmod fails ! Seg. fault

SucKIT 1.3b /dev/kmem ! Installation fails silently ! Seg. fault

74

Table 5.2

Effectiveness of NICKLE in detecting and preventing Linux 2.6 rootkits

Guest OS Rootkit Attack Vector

Outcome of NICKLE Response

Rewrite Mode Break Mode

Prevented? Outcome Prevented? Outcome

Linux 2.6

adore-ng 0.56 LKM ! insmod fails ! Seg. fault

eNYeLKM v1.2 LKM ! insmod fails ! Seg. fault

sk2rc2 /dev/kmem ! Installation fails ! Seg. fault

superkit /dev/kmem ! Installation fails ! Seg. fault

mood-nt 2.3 /dev/kmem ! Installation fails ! Seg. fault

override LKM ! insmod fails ! Seg. fault

Phalanx b6 /dev/mem ! Installation crashes ! Seg. fault

75

Table 5.3

Effectiveness of NICKLE in detecting and preventing Windows rootkits

Guest OS Rootkit Attack Vector

Outcome of NICKLE Response

Rewrite Mode Break Mode

Prevented? Outcome Prevented? Outcome

Windows 2K/XP

FU DKOMa ! Driver loading fails ! BSODb

FUTo DKOM ! Driver loading fails ! BSOD

he4hook 215b6 Driver ! Driver loading fails ! BSOD

hxdef 1.0.0 revisited Driver partialc Driver loading fails ! BSOD

NT Rootkit Driver ! Driver loading fails ! BSOD

aA common rootkit technique which directly manipulates kernel objects
b“Blue Screen Of Death”
cThe in-kernel component of the Hacker Defender rootkit fails

76

experimental results: NICKLE is able to detect and prevent the execution of malicious

kernel code in all experiments using both rewrite and break response modes. In the

following, we present details of two representative experiments, SucKIT and FU.

The SucKIT rootkit [101] for Linux 2.4 infects the Linux kernel by directly mod­

ifying the kernel through the /dev/kmem interface. During installation SucKIT first

allocates memory within the kernel, injects its code into the allocated memory, and

then causes the code to run as a function. Figure 5.3 shows NICKLE preventing

the SucKIT installation. The window on the left shows the VM running RedHat

8.0 (with 2.4.18 kernel), while the window on the right shows the NICKLE output.

Inside the VM, one can see that the SucKIT installation program fails and returns

an error message “Unable to handle kernel NULL pointer dereference”. This occurs

because NICKLE (operating in break mode) foils the execution of injected kernel

code by fetching a string of zeros from the shadow memory, which causes the kernel

to terminate the rootkit installation program. Interestingly, when NICKLE operates

in rewrite mode, it rewrites the malicious code and forces it to return −1. However,

it seems that SucKIT does not bother to check the return value and so the rootkit

installation fails silently and the kernel-level functionality does not work.

In the right-side window in Figure 5.3, NICKLE reports the authentication and

shadowing of sequences of kernel instructions starting from the initial BIOS bootstrap

code to the kernel text as well as its initialization code and finally to various legitimate

kernel modules. In this experiment, there are five legitimate kernel modules, parport.o,

parport pc.o, ieee1394.o, ohci1394, and autofs.o, all authenticated and shadowed. The

code portion of the kernel module begins with an offset of 0x60 bytes in the first

page. The first 0x60 bytes are for the kernel module header, which stores pointers to

information such as the module’s name, size, and other entries linking to the global

linked list of loaded kernel modules. This is another example of mixed kernel pages

with code and data in Linux (Section 5.2.2).

The FU rootkit [102] is a Windows rootkit that loads a kernel driver and proceeds

to manipulate kernel data objects. The manipulation will allow the attacker to hide

77

Figure 5.3. NICKLE/QEMU+KQEMU foils the SucKIT rootkit
(guest OS: RedHat 8.0)

78

certain running processes or device drivers loaded in the kernel. When running FU on

NICKLE, the driver is unable to load successfully as the driver-specific initialization

code is considered unauthorized kernel code. Figure 5.4 compares NICKLE’s two

response modes against FU’s attempt to load its driver. Under break mode, the OS

simply breaks with a blue screen. Under rewrite mode, the FU installation program

fails (“Failed to initialize driver.”) but the OS does not crash.

5.4.2 Impact on Performance

To evaluate NICKLE’s impact on system performance we have performed bench­

mark based measurements on both VMMs – with and without NICKLE. The physical

host in our experiments has an Intel 2.40GHz processor and 3GB of RAM running

Ubuntu Linux 7.10. QEMU version 0.9.0 with KQEMU 1.3.0pre11 or VirtualBox 1.5.0

OSE is used where appropriate. The VM’s guest OS is Redhat 8.0 with a custom com­

pile of a vanilla Linux 2.4.18 kernel and is started in uniprocessor mode with the de­

fault amount of memory (256MB for VirtualBox and 128MB for QEMU+KQEMU).

Table 5.4 shows the software configuration for the measurement. For the Apache

benchmark, a separate machine connected to the host via a dedicated gigabit switch

is used to launch ApacheBench. When applicable, benchmarks are run 10 times and

the results are averaged.

Three application-level benchmarks (Table 5.5) and one micro-benchmark (Ta­

ble 5.6) are used to evaluate the system. The first application benchmark is a kernel

compilation test: A copy of the Linux 2.4.18 kernel is uncompressed, configured, and

compiled. The total time for these operations is recorded and a lower number is

better. This test is commonly used to help evaluate system performance. Second,

the insmod benchmark measures the amount of time taken to insert a module (in

this case, the ieee1394 module) into the kernel and again lower is better. This bench­

mark is included to illustrate the amount of time it takes to authenticate and copy

a module, something we believe will show the system’s worst performance. Third,

79

(a) Under break mode

(b) Under rewrite mode

Figure 5.4. Comparison of NICKLE/QEMU+KQEMU’s response
modes against the FU rootkit (guest OS: Windows 2K)

80

Table 5.4
Software configuration for performance evaluation

Item Version Configuration

Redhat

Kernel

ApacheBench

Unixbench

Apache

8.0

2.4.18

2.0.40-dev

4.1.0

2.0.59

Using Linux 2.4.18

Standard kernel compilation

-c3 -t 60 <url/file>

-10 index

Using the default high-performance

configuration file

the ApacheBench program is used to measure the VM’s throughput when serving re­

quests for a 16KB file. In this case, higher is better. Apache provides a strongly I/O

bound workload and is thus included. Finally, the Unixbench micro-benchmark is ex­

ecuted to evaluate the more fine-grained performance impact of NICKLE. Unixbench

provides a variety of tests useful in determining causes of slowdown. The numbers

reported in Table 5.6 are an index where higher is better. It should be noted that

the benchmarks are meant primarily to compare a NICKLE-enhanced VMM with the

corresponding unmodified VMM. These numbers are not meant to compare different

VMMs (such as QEMU+KQEMU vs. VirtualBox).

The QEMU+KQEMU implementation of NICKLE exhibits low overhead in most

tests. A few of the benchmark tests show a slight performance gain for the NICKLE

implementation, but we consider these results to signify that there is no noticeable

slowdown caused by NICKLE for that test. From Table 5.5 it can be seen that both

the kernel compilation and Apache tests come in below 1% overheard. The insmod

test has a modest overhead, 7.3%, primarily because NICKLE must calculate and

verify the hash of the module prior to copying it into the shadow memory. Given

how infrequently kernel module insertion occurs in a running system, this overhead

is not a concern. The Unixbench tests in Table 5.6 further testify to the efficiency

81

Table 5.5

Application benchmark results

QEMU+KQEMU VirtualBox

Benchmark w/o NICKLE w/NICKLE Overhead w/o NICKLE w/ NICKLE Overhead

Kernel Compiling 231.490s 233.529s 0.87% 156.482s 168.377s 7.06%

insmod 0.088s 0.095s 7.34% 0.035s 0.050s 30.00%

Apache 351.714 req/s 349.417 req/s 0.65% 463.140 req/s 375.024 req/s 19.03%

82

Table 5.6

Unixbench results (for the first two data columns, higher is better)

QEMU+KQEMU VirtualBox

Benchmark w/o NICKLE w/NICKLE Overhead w/o NICKLE w/ NICKLE Overhead

Dhrystone 659.3 660.0 -0.11% 1843.1 1768.6 4.04%

Whetstone 256.0 256.0 0.00% 605.8 543.0 10.37%

Execl 126.0 127.3 -1.03% 205.4 178.2 13.24%

File copy 256B 45.5 46 -1.10% 2511.8 2415.7 3.83%

File copy 1kB 67.6 68.2 -0.89% 4837.5 4646.9 3.94%

File copy 4kB 128.4 127.4 0.78% 7249.9 7134.3 1.59%

Pipe throughput 41.7 40.7 2.40% 4646.9 4590.9 1.21%

Process creation 124.7 118.2 5.21% 92.1 85.3 7.38%

Shell scripts (8) 198.3 196.7 0.81% 259.2 239.8 7.48%

System call 20.9 20.1 3.83% 2193.3 2179.9 0.61%

Overall 106.1 105.0 1.01% 1172.6 1108.7 5.45%

83

of the NICKLE implementation in QEMU+KQEMU, with the worst-case overhead

of any test being 5.21% and the overall overhead being 1.01%. The low overhead of

NICKLE is because NICKLE’s modifications to the QEMU control flow only take

effect while executing kernel code (user-level code is executed by the unmodified

KQEMU accelerator).

The VirtualBox implementation has a more noticeable overhead than the QEMU

implementation, but still runs below 10% for the majority of the tests. The kernel

compilation test, for example, exhibits about 7% overhead; while the Unixbench suite

shows a little less than 6% overall. The Apache test shows the highest overheard, a

19.03% slowdown. This can be attributed to the heavy number of user/kernel mode

switches that occur while serving web requests. It is during these mode switches that

the VirtualBox implementation does its work to ensure only verified code will be exe­

cuted directly, hence incurring overhead. The insmod test shows a large performance

degradation, coming in at 30.0%. This is because module insertion on the VirtualBox

implementation entails the VMM leaving native code execution as well as verifying

the module. However, this is not a concern as module insertion is an uncommon event

at runtime. Table 5.6 shows that the worst performing Unixbench test (Execl) results

in an overhead of 13.24%. This result is most likely because of a larger number of

user/kernel mode switches that occur during that test.

In summary, our benchmark experiments show that NICKLE incurs minimal to

moderate impact on system performance, relative to that of the respective original

VMMs.

5.5 Discussion

In this section, we discuss several issues related to NICKLE. First, the goal of

NICKLE is to prevent unauthorized code from executing in the kernel space, but not

to protect the integrity of kernel-level control flows. This means that it is possible

for an attacker to launch a “return-into-libc” style attack within the kernel by lever­

84

aging only the existing authenticated kernel code. As mentioned previously, work by

Shacham [16] and Buchanan et al. [17] models a powerful attacker who can execute

virtually arbitrary code using only a carefully crafted stack that causes jumps and

calls into existing code. Fortunately, this approach cannot produce persistent code to

be called on demand from other portions of the kernel. And Petroni et al. [47] found

that 96% of the rootkits they surveyed require persistent code changes. From another

perspective, an attacker may also be able to directly or indirectly influence the kernel-

level control flow by manipulating certain non-control data [18]. However, without its

own kernel code, this type of attack tends to have limited functionality. For example,

all four stealth rootkit attacks described in [103] need to execute their own code in

kernel space and hence will be defeated by NICKLE. Meanwhile, solutions exist for

protecting control flow integrity [43, 47, 104] and data flow integrity [105], which can

be leveraged and extended to complement NICKLE.

Second, the current NICKLE implementation does not support self-modifying ker­

nel code. This limitation can be removed by intercepting the self-modifying behavior

(e.g., based on the translation cache invalidation resulting from the self-modification)

and re-authenticating and shadowing the kernel code after the modification.

Third, NICKLE currently does not support kernel page swapping. Linux does not

swap out kernel pages, but Windows does have this capability. To support kernel page

swapping in NICKLE, it would require implementing the introspection of swap-out

and swap-in events and ensuring that the page being swapped in has the same hash

as when it was swapped out. Otherwise an attacker could modify swapped out code

pages without NICKLE noticing. This limitation has not yet created any problem in

our experiments, where we did not encounter any kernel level page swapping.

Fourth, targeting kernel-level rootkits, NICKLE is ineffective against user-level

rootkits. However, NICKLE significantly elevates the trustworthiness of the guest

OS, on top of which anti-malware systems can be deployed to defend against user-

level rootkits more effectively.

85

Fifth, the deployment of NICKLE increases the memory footprint for the protected

VM. In the worst case, memory shadowing will double the physical memory usage.

As future work, we can explore the use of demand-paging to effectively reduce the

extra memory requirement to the actual amount of memory needed. Overall, it is

reasonable and practical to trade memory space for elevated OS kernel security.

Finally, we point out that NICKLE assumes a trusted VMM to achieve the

“NICKLE” property. This assumption is needed because it essentially establishes

the root-of-trust of the entire system and secures the lowest-level system access.

We also acknowledge that a VM environment can potentially be fingerprinted and

detected [106, 107] by attackers so that their malware can exhibit different behav­

ior [108]. We could improve the fidelity of the VM environment (e.g., [109, 110]) to

thwart some of the VM detection methods, however some researchers report this to

be infeasible in the general sense [111]. Meanwhile, as virtualization continues to gain

popularity, the concern over VM detection may become less significant as attackers’

incentive and motivation to target VMs increases.

5.6 Hardware Support

While this chapter discusses a software VMM-based approach for constructing

an SMA at the kernel level, simple modifications to the processor architecture could

significantly lessen the performance overhead.

Some processors contain hardware support for virtualization designed to greatly

increase the efficiency of x86 virtualization. One of these features, Nested Paging,

provides an additional level of paging at the virtualization level to translate guest-

physical addresses to actual physical addresses. A nested page table (NPT) provides

the mappings. For a detailed description, see [112].

A processor with Nested Paging support can be modified to better accommodate

building an SMA by adding the nested CR3 registers needed to accommodate two

nested page tables: One for kernel code and one for everything else. With this sort

86

of hardware support the virtual machine monitor would setup both sets of NPTs for

a running operating system to execute it on an SMA.

This sort of support would significantly reduce or remove the overhead required

to mediate operating system memory accesses, however overhead related to kernel

code authentication and copying would be unchanged. In addition, the system would

still need to make use of a virtual machine monitor to handle the authentication and

copying. (The VMM, however, could be significantly smaller.)

This particular hardware design is discussed because it is a straightforward exten­

sion of the software design presented.

5.7 Summary

In this chapter we have demonstrated the efficacy of the SMA for the prevention of

kernel level rootkits. We have presented the design, implementation, and evaluation

of NICKLE, a VMM-based SMA approach that transparently detects and prevents

the launching of kernel rootkit attacks against guest VMs. NICKLE achieves the

“NICKLE” guarantee, which foils the common need of existing kernel rootkits to

execute their own unauthorized code in the kernel space. NICKLE makes use of a

VMM-based SMA and achieves guest transparency through the guest memory access

indirection technique. NICKLE’s portability has been demonstrated by its imple­

mentation in two VMM platforms. Our experiments show that NICKLE is effective

in preventing 22 representative real-world kernel rootkits that target a variety of

commodity OSes. Our measurement results show that NICKLE adds less than 8%

overheard to the QEMU platform.

87

6 SMA-ASSISTED PROFILING OF INJECTED CODE

We have discussed the use of an SMA to prevent code injection at both the user-level

and the kernel-level, we now turn to demonstrating the applicability of an SMA for

profiling the behavior of injected code.

We have demonstrated this concept to a small extent at the user-level in Chapter 4

with the observe and forensic response modes. The SMA is particularly suitable as

the basis for a profiler because it allows for efficient and effective comparisons between

the code and data memory spaces.

In this chapter we will discuss a technique for using NICKLE’s VMM-based SMA

as a foundation for constructing a kernel rootkit profiler [113].

6.1 Introduction

Despite recent research efforts in kernel rootkit detection [44,46,47,50] and kernel

rootkit prevention [51, 91], less attention has been given to kernel rootkit profiling–

the revelation of key aspects of a kernel rootkit’s behavior. It is desirable that such

profiles be generated on-the-fly in “live” systems such as honeypots. Kernel rootkit

profiles are valuable in the design of effective solutions to kernel rootkit detection,

damage mitigation, and kernel integrity protection. We define a kernel rootkit profile

as being comprised of the following four aspects:

•	 Hooking behavior: the way the kernel rootkit hijacks the kernel’s control flow,

if any, during the rootkit’s installation. Typically, such hijacking is done by

modifying hooks (e.g., function pointers) in the kernel. Note that it is not

uncommon for rootkits to install hooks within various kernel objects, including

kernel code or dynamically allocated kernel objects [114].

88

•	 Targeted kernel objects: the kernel objects accessed by the rootkit, such as those

read or modified by the rootkit. Similar to hooking behavior, a targeted kernel

object may be dynamic. A classic example is the task list, maintained by the

OS kernel for accounting purposes but often manipulated by rootkits for hiding

purposes.

•	 User-level impacts: the affected user-level applications whose execution may be

directly affected by the execution of rootkit code. We do not derive a complete

list of affected applications. Instead, we focus on a corpus of commonly-used

system utilities (e.g., ps, ls, netstat, etc.) that retrieve important system

information and are therefore often targeted by kernel rootkits.

•	 Injected code: the kernel rootkit code injected into the kernel memory address

space for execution. The injected code should be accurately located at runtime

and extracted for later forensic analysis.

A number of recent have been reported towards kernel rootkit profiling [58,60–62].

Despite their usefulness, the current approaches leave more to be desired in their ca­

pabilities: (1) Some approaches require prior availability of the kernel rootkit code

and knowledge that the rootkit attack is going to occur. However, such requirements

make it difficult to profile zero-day kernel rootkits. (2) The current profiling tech­

niques only focus on one aspect of rootkit behavior (e.g., hooking behavior) or on one

stage of a rootkit’s life cycle (e.g., installation or execution but not both). (3) The

key techniques used in the existing approaches such as system-wide tainting or slicing

have well-known limitations and challenges that need to be overcome. For example,

taint-based information flow tracking can be circumvented by various control-flow

evasion schemes [59].

To overcome the above limitations we present PoKeR (Profiler of Kernel Rootkits),

a virtualization-based kernel rootkit profiler that generates multi-aspect kernel rootkit

profiles during rootkit execution. PoKeR is designed to be deployed in a system that

can tolerate high performance overhead, such as a honeypot which is subject to rootkit

attacks in the wild. A PoKeR-enabled system executes normally until a kernel rootkit

89

is installed and ready to execute malicious code injected into the kernel. At that point,

PoKeR switches the system (a virtual machine or VM) to a rootkit profiling mode

and applies a strategy called “combat tracking”1 to automatically track and determine

the kernel objects, static and dynamic, that are being targeted by the kernel rootkit.

In addition, when injected rootkit code is being executed, PoKeR records the relevant

system call contexts and infers potential effects on user-level applications.

We have developed a prototype of PoKeR and used it to profile 10 representative

real-world kernel rootkits that exhibit a broad range of attack methodologies. This

includes basic system call table hooking, the more advanced technique of direct kernel

object manipulation [115], manipulation of function pointers inside dynamic kernel

data objects [114], and others. The profiles generated by PoKeR capture multiple

aspects of the rootkit’s behavior and permit unique insights into each rootkit’s char­

acteristics. We have also measured the performance of our QEMU-based prototype

and found that it degrades virtualization system performance between 3x and 6x dur­

ing profiling, with the virtualization system itself adding an additional slowdown of

3.8x above and beyond that of the physical host.

The contributions of this chapter are as follows:

•	 We identify four key aspects of kernel rootkit behavior and use them to char­

acterize and profile existing kernel rootkits.

•	 We define the concept of an instantaneous rootkit detection system and discuss

how a VMM-based SMA can be used as one to generate a detection point to

trigger rootkit profiling.

•	 We propose a technique called combat tracking to determine the identity and

type information of rootkit-targeted kernel objects, even if they are dynamically

allocated from the kernel heap.

•	 We develop a PoKeR prototype and present the evaluation results with 10

representative real-world rootkits. The obtained rootkit profiles provide useful

1Combat tracking, in war, is the art of hunting the enemy by following the signs he leaves behind
as he moves. In PoKeR, we intend to follow the trail the rootkit leaves behind.

90

insights into rootkit behavior, some of which are difficult to obtain without

PoKeR, despite in-depth analysis.

6.2 Assumptions

Similar to Chapter 5, in this chapter we assume that a kernel rootkit has the same

memory access privileges as the OS kernel itself. If the OS can read from or write

to a memory location, so can the rootkit. This also means that the rootkit does not

have privileges higher than that of the OS, such as those of a virtual machine monitor

(VMM). The rootkit is free to modify any kernel objects, whether static or dynamic.

We also assume that the rootkit requires the execution of injected code at the ker­

nel’s privilege level. We do not, however, require that the injected code be persistent

throughout the life cycle of the rootkit attack. We refer to a kernel rootkit that re­

quires the execution of injected code at the kernel’s privilege level as a code injection

kernel rootkit. For ease of presentation, we will use the term kernel rootkit to refer

to a code injection kernel rootkit. This assumption is realistic. Petroni et al. [47]

surveyed 25 kernel rootkits and none of them violate our assumptions. In particular,

all 25 rootkits make use of injected code in the kernel space, and 24 of them require

injected code to be persistent throughout their lifetime.

With regards to PoKeR itself, we assume that it has access to the OS kernel source

code for static analysis, or to debugging symbols and type information for an already

compiled kernel binary. We also assume that the system PoKeR is running on can

tolerate high performance overhead during profiling.

6.3 Design

Figure 6.1 shows the overall architecture of PoKeR. As highlighted in the figure,

PoKeR has two main components:

91

Log Profile

Detection

Kernel Object
Interpretation

Logging and Context Tracking
Point

A
 V

ir
tu

al
 M

ac
hi

ne User−level Applications

Guest Kernel

Virtual Machine Monitor (VMM)

Kernel Symbols & Kernel Object Types

Figure 6.1. VMM-based PoKeR architecture

•	 The Logging and Context Tracking module resides inside the VMM and, once

activated, collects runtime execution traces of malicious rootkit code. The ex­

ecution trace is saved outside the target VM and contains information such

as rootkit instructions executed, corresponding memory reads and writes, and

associated execution context. The logging of execution context will be helpful

later in assessing the user-level impacts of the rootkit attack. Note that the

activation of this module requires a detection point, which we will discuss in

Section 6.3.1.

•	 The Kernel Object Interpretation module processes the collected execution trace

and resolves read and write target addresses into the kernel objects read or

manipulated by a rootkit. The dynamic nature of certain kernel objects signif­

icantly complicates the interpretation procedure.

There are three key challenges and techniques associated with the design of PoKeR.

They will be presented in the following three subsections.

6.3.1 Switching to Profiling Mode

As mentioned in Section 6.1, PoKeR is primarily designed to be used in environ­

ments that can tolerate high overhead. A PoKeR-enabled system has two modes of

92

operation. The first mode, detection mode, is its initial state. While in this mode,

an instantaneous rootkit detection system (defined below) watches for kernel rootkit

execution. Most of PoKeR’s rootkit profiling features are disabled during detection

mode. The other mode, profiling mode, starts right at the detection point, when the

instantaneous rootkit detection system reports that a kernel rootkit attack is about to

occur. In profiling mode, PoKeR enables its profiling features and logs the rootkit’s

actions at a fine granularity, such as instruction execution, system calls, and memory

reads and writes. PoKeR will then generate the rootkit’s profile according to the four

aspects defined in Section 6.1.

To ensure that all of a rootkit’s actions are profiled properly, the detection point

must be generated before the first rootkit instruction is about to execute in the kernel.

We refer to a detection system capable of meeting this strict time constraint as an

instantaneous detection system. We leverage NICKLE’s VMM-based SMA to serve

as the instantaneous detection system that generates kernel rootkit detection points

for PoKeR.

Turning the original NICKLE into an instantaneous rootkit detection system for

PoKeR is straightforward. Instead of simply blocking rootkit code execution, the

system will allow the code to be executed unhindered from the standard memory.

This is similar to observe mode in the user-level code injection prevention system

as described in Chapter 4. During a guest kernel instruction fetch the contents of

the standard and shadow memory are compared to determine if the same instruc­

tion exists in both. If a kernel instruction that is about to be fetched exists in the

standard memory but not the shadow memory (or if the contents simply differ) then

unauthorized code is about to be executed at the kernel level. This serves as PoKeR’s

detection point, and the system can be switched to profiling mode.

Given that we know an instruction is malicious prior to executing it and the SMA

has a copy of both the original and modified memory, we have the unique opportunity

to identify and extract the malicious rootkit code. It can then be analyzed further

later on, such as by static analysis. To aid in this, we also record the order in

93

which the instructions were executed. In addition, the malicious code identification

capability may allow profiling mode to turn on and off during profiling – on when

rootkit instructions are executed and off when authenticated kernel instructions are

executed. The dynamic toggling between detection mode (faster) and profiling mode

(slower) may result in better rootkit profiling efficiency.

6.3.2 Tracking Targeted Kernel Objects

Once kernel rootkit execution is detected and the profiling mode of PoKeR is

switched on, it is necessary to keep track of all kernel objects manipulated by the

kernel rootkit. The rootkit may, for example, traverse the entire process list looking

for an entry with a specific PID to remove. Or, it may change key values in a TCP

data structure within the kernel to mask the sending of data to a remote location.

It is important that PoKeR be able to determine, upon the execution of a rootkit

instruction, which kernel object is being read or modified. This is challenging because

PoKeR operates at the VMM level, which does not directly provide a semantic view

of the guest kernel objects. Unfortunately, current virtual machine introspection

techniques [49, 50, 116] do not support such a “reverse lookup” (namely, given a

memory address, identify the corresponding kernel object).

A list of the rootkit’s reads and writes is simple to obtain using PoKeR’s logging

and context tracking module, as it simply logs all reads and writes performed by the

rootkit code. However, determining which kernel objects a rootkit is modifying is

complicated because a large number of kernel objects are dynamically allocated. For

example, we may know that a rootkit is modifying memory at address 0xc6600856,

but if that address is located within the kernel’s heap there is no simple way to

determine what object it is. (This is one reason that a simple symbolic debugger

cannot be used to track kernel objects.) This is in contrast to statically allocated

kernel objects, whose addresses can be easily determined at compile time. To handle

dynamically allocated kernel objects, we need to create an address-to-dynamic object

94

map that can be used to translate memory addresses into the kernel objects they are

a part of.

One key observation that helps in creating this address-to-dynamic object map

is that all dynamically allocated kernel objects must be accessible in some way from

global variables or CPU registers. If one imagines kernel objects as a graph where

the edges are pointers, then all objects will be transitively reachable from at least one

global variable. If an object is not reachable in this way, then the kernel itself will not

be able to access it and the object cannot be used. A similar observation has also been

made in previous work on both garbage collection [117] and state-based control-flow

integrity [47]. A brute force approach for mapping an address to a dynamic object

would be to search the entire memory graph. This would be inefficient.

To support the address-to-dynamic object mapping in a more efficient way, we

propose a technique called “combat tracking.” The key observation in our combat

tracking technique is that for a kernel rootkit to find the address of a dynamically

allocated kernel object, it will first traverse to it from a statically allocated one.

The rootkit, much like PoKeR, is naturally ignorant of the layout of dynamic kernel

objects, and therefore will do a series of reads of kernel memory to reach the objects.

By tracking a rootkit through its series of reads, we can dynamically build up an

address-to-dynamic object map for PoKeR to look up a corresponding dynamic kernel

object when given a memory address.

Algorithm 6.2 shows the combat tracking algorithm executed by PoKeR’s kernel

object interpretation module. The algorithm assumes the availability of an initial

map of static objects and uses that, combined with the rootkit’s reads, to build the

map of dynamic objects on the fly. (In our prototype, the static kernel object map

as well as the object type definitions come from a copy of the kernel compiled with

debug symbols.) The first step in the algorithm is to determine the type of data at

the address being read. We first query the static object map to see if the object is

a global object and if that fails then we check our dynamic object map to see if we

have previously added this address to the map. Once we find the type of the object

95

Input: Address of read (addr), Value read (val)

1 if addr in static map then

2 // Query the static data for type information of the address;

3 type ← static objects(addr);

4 else if addr in dynamic map then

5 // Query the dynamic map instead;

6 type ← query dynamic map(addr);

7 else

8 // No type information known;

9 return;

10 end

11 if type is pointer then

12 // If we have a pointer, val is the address of a kernel object;

13 d typ ← dereference(type);

14 add dynamic map(val, d type);

15 end

Figure 6.2. Combat tracking algorithm

being read, we determine if it is a pointer. We care about pointers because if a read

occurs on a pointer object, then the value of the read corresponds to the address of

a kernel object. This may be a kernel object we have not seen before, and it can be

used to further build the dynamic map. Given this, in the event the rootkit did read

a pointer, we determine the value read by the rootkit (the address of the new object)

as well as the de-referenced type of the pointer (the type of the new object) and we

add this information to the dynamic map. In this way we progressively build up the

address-to-dynamic object map based on the rootkit’s reads.

To illustrate combat tracking, let us consider an example. Figure 6.3 is a simplified

representation of the process list maintained in the Linux kernel. There is one global

96

Global Data Structures Dynamic Data Structures

init_task struct task_struct struct task_struct struct task_struct struct task_struct
0xc0300000 0xc11a0000 0xc11b0000 0xc11c0000 0xc11d0000

pid = 0

...

pid = 1

...

pid = 2

...

next_task
0xc11c0000

pid = 3

...

pid = 4

...

0xc11b0000
next_task next_task

0xc11d0000
next_task

0xc11a0000 0xc0300000
next_task

Figure 6.3. A simplified example of a Linux process list

97

data structure at address 0xc0300000, init task, which forms the head of a linked

list of dynamically allocated struct task struct structures. If a rootkit were to try

to find the task struct for pid 3, it would do the following. First, it would read

address 0xc0300004 to find the next task pointer in the global task struct. It

would receive 0xc11a0000, the address of the next structure. Next, it would read the

pid of that next structure at address 0xc11a0000, and when it found that it was not

3, it would read 0xc11a0004 to find the next task struct to search. It would repeat

this procedure until it found pid 3 in the task struct at address 0xc11c0000. From

there it may modify a variable in that data structure (e.g. at address 0xc11c0008)

to perform some sort of kernel object manipulation.

Without combat tracking, we would only know that the rootkit did a write at

address 0xc11c0008 and we would have no way of knowing what kind of data was at

the address. With combat tracking, given the entire chain of reads, the dynamic map

would be built: When the rootkit first reads the next task element of init task, a

query of the initial static map tells us that the read corresponds to an object of type

struct task struct *. Given this knowledge, combined with the knowledge that

the rootkit reads 0xc11a0000 from that location, we know that address 0xc11a0000

contains a struct task struct and add it to our dynamic map. When the rootkit

later reads the next task pointer from that dynamic data structure, we know (from

the previous read) that the read is for another pointer of type struct task struct *

and can add that element of the linked list to our dynamic map as well. We continue

on in this fashion until we have a map of all the data structures the rootkit has read.

Later, when the write to address 0xc11c0008 occurs, we can check the dynamic map

to know that the address is part of a task struct and determine which element of

the data structure is being modified.

We do not keep track of a kernel object’s lifetime and remove its entry from

the dynamic map after its de-allocation. The entry will still exist in the map despite

there being no object at that location. Such a “stale entry” does not matter, however,

because the rootkit should not access a deallocated kernel object. (If it does, it is

98

most likely a programming error.) If a new object is ever allocated at a previously

used address, then the chain of rootkit reads to the new object will result in the stale

entry being replaced by a new entry that corresponds to the new object.

6.3.3 Discovering Rootkit Hooking and User-Level Impacts

For many kernel rootkits, one key reason for manipulating a specific subset of

kernel objects is to eventually hijack the kernel’s control flow so that the rootkit can

somehow affect the execution state of the running kernel. The hijacking behavior

is typically accomplished by modifying function pointers, many of which may be

stored in dynamically allocated objects within the kernel’s heap. To reveal a rootkit’s

hooking behavior, it is vital that we be able to find these hooks as they are being

installed. It is also possible for the rootkit to directly modify legitimate code to force

a call to the rootkit code. Fortunately, both types of changes can be thought of as

a subset of the kernel object tracking problem. Tracking modifications to existing

code is similar to tracking modifications to static objects; whereas tracking function

pointer modifications is simply a part of tracking object modifications using combat

tracking – the main reason being that the modified function pointers belong to certain

kernel objects.

As an example, consider a Linux kernel module (LKM) based rootkit with the

goal of ensuring that files that end in the extension “.hacker” are never visible to a

user. The attacker installs this malicious rootkit as a kernel module using the insmod

command. The system copies the malicious module into memory and then runs

the module’s init() function. Before the first instruction from init() is executed,

the instantaneous rootkit detection system generates a detection point which turns

on PoKeR’s profiling mode. Next, the rootkit’s initialization function modifies the

system call table so that the system call originally used to retrieve a directory listing

is changed to point to a malicious function that ensures files ending in .hacker do

not appear in the listing. The write to the system call table is logged and interpreted.

99

Thus the code’s hooking point is discovered and the control flow modification made

by the rootkit is profiled.

In addition to determining which function pointers get hijacked by a kernel rootkit,

it is also desirable to determine how the modified kernel control flow will impact

system calls made by user-level programs. This may help ascertaining which user-

level programs are being targeted by a specific rootkit as well as giving us a general

understanding of what the rootkit is trying to hide. For kernel rootkits that modify

the system call table, such impact is obvious: explicitly modified table entries will

result in hijacked control flow when the corresponding system calls are made. For

rootkits that do not directly modify system call table entries, however, determining

which system calls will be affected is less obvious.

To determine which system calls get their control flow hijacked at runtime, we need

to be able to correlate the execution of malicious rootkit code with the execution of

the system call that led to it. To accomplish this, PoKeR will track the execution of

system calls and apply a virtual machine introspection technique [49] to determine the

current process context, namely which process is making the system call. Note that

by logging the starting point when a system call is made and the ending point when

the system call returns, PoKeR can effectively keep track of the lifetime of the system

call. If malicious code execution is detected, PoKeR will infer the current process

context of the malicious code execution and determine if any ongoing system call has

the same process context. If so, the control flow of that system call is hijacked.

6.4 Implementation

To validate our design, we have developed a prototype of PoKeR. In this section

we will describe its implementation.

100

1: M - 0xc883d000

2: R - 0xc1548054 - 0xc154a000

3: C - 0xc6706000

4: W - 0xc6707f24 - 0xc6707f3c

5: SC - 619 - insmod - sys_write

6: E - 0xc883ea28 - 619

7: SR - 619 - insmod

Figure 6.4. Sample log entries generated by PoKeR

6.4.1 Instantaneous Rootkit Detection

As mentioned in Section 6.3.1, NICKLE provides our VMM-based SMA for in­

stantaneous rootkit detection. We made use the QEMU port of NICKLE as a basis

for PoKeR.

6.4.2 Logging and Context Tracking

Once NICKLE signals the detection of malicious kernel rootkit code, PoKeR enters

profiling mode. In profiling mode all kernel instructions are interpreted using the

built-in dynamic re-compiler (a virtualization technique based on efficient, dynamic

translation of guest code into host code) in QEMU so that the rootkit’s actions can

be logged at a fine granularity.

A sample of the log is shown in Figure 6.4. It shows the seven different types of

log entries. The R and W log lines (lines 2 and 4) signify that the malicious rootkit

code is now reading or writing. The reads and writes are caught by extending the

QEMU-translated VM memory access instruction to include a check on whether the

instruction issuing the access is malicious. The first argument on the line is the

memory address being read or written and the second argument is the corresponding

memory content. The E log line (line 6) signifies the execution of rootkit code and is

101

generated by PoKeR while a malicious instruction is being translated for execution.

The arguments are the address of the malicious instruction and the pid of the process

context it is running in, respectively. The M log line (line 1) is emitted whenever a

kernel module is loaded (as seen by virtual machine introspection that is a part of

NICKLE) and signifies the base address of that module’s kernel data structure. (The

M log line is the one item logged before a detection point is raised.) The C log line (line

3) is used to signify the address of the task structure of the currently running process

(current in Linux) and is output preceding a read or write from that task structure.2

The SC and SR log lines (lines 5 and 7) signify the start and end, respectively, of a

system call. The SC log line includes information about the pid, program name, and

system call made and is generated by extending the binary translation of the system

call interrupt (int 0x80 and sysenter). The SR log line only conveys the pid and

program name, and is generated during the kernel-to-user mode switch.

The SC, SR, and E log entries allow us to determine which system calls have their

control flow hijacked by a kernel rootkit. This is done by correlating the system call

log entries with the rootkit code execution entries via the process context information.

We parse through the log file and track currently running system calls (they begin

with an SC and end with an SR) for running processes. In the event an E log line for

a given process occurs while there is an open system call in that process, we know

that the system call’s control flow has been hijacked.

As mentioned earlier, the malicious rootkit instructions executed are logged along

with the order in which they are executed. Later, a customized disassembler [118] is

used to combine these two pieces of information and produce a copy of the rootkit’s

executed code annotated with its order of execution.

current in Linux is not an actual variable, it is instead a macro that derives the address of the
task structure for the currently running process based on the runtime kernel stack. The address
of current cannot be determined by static analysis and this hint is needed by the object tracker
later on. We output current during rootkit reads and writes that involve the task structure for the
currently running process.

2

102

6.4.3 Kernel Object Interpretation

Once the log file of memory accesses is available, it is important to translate these

accesses into names and types of the corresponding kernel objects. To track both

static and dynamic kernel objects as described in Section 6.3.2, static analysis must

be performed on the kernel itself. PoKeR can then use this information in conjunction

with the rootkit’s memory reads to instantiate our combat tracking technique.

The Linux kernel is a large, complicated code base that makes traditional static

analysis difficult. However, by compiling a copy of the kernel with debug symbols

(the -g flag to gcc) the GNU debugger (gdb) [119] can be used to extract the types,

names, and locations of all static kernel objects. We modified gdb to facilitate easier

access to this information and query for static kernel object information.

PoKeR’s kernel object interpretation module is written in Python and implements

combat tracking. It uses gdb for static type information and progressively builds its

own internal map of dynamic kernel objects by processing rootkit reads using the

algorithm in Section 6.3.2. The rootkit’s kernel object manipulation profile can then

be produced by querying the static and dynamic kernel object maps in interpreting the

rootkit’s memory writes. Our implementation also facilitates manual type annotation

to accommodate union types. For the current prototype unions are handled by having

a human user decide a priori which type should be used when that specific union is

encountered. Another possibility would be to bifurcate union decisions by inserting

all possibilities into the dynamic map. This could, however, result in an explosion of

search space in the map. We look to emerging work in the area of automatic type

determination [120] to eventually automate the handling of unions.

6.5 Evaluation

In this section we present the results of using PoKeR to profile 10 real-world

kernel rootkits and give a brief evaluation of PoKeR’s performance. The 10 rootkits

were chosen because they were able to execute in our testing environment. In our

103

Table 6.1

Summary of kernel rootkit profiling results using PoKeR (Part 1)

Name Code
Kernel Objects Modified User-Level

Impacts Attack
Type

Kernel Object Note

SucKIT
1.3b

1687 instr sys_call_table[59]
system_call at offset 47
tracesys at offset 27
current->addr_limit
current->flags

Function Pointer
Code
Code
Data Object
Data Object

2 - fork
3 - read
4 - write
5 - open
6 - close
11 - execve

code change,
syscall hook

85 - readlink
195 - stat64
196 - lstat64
220 - getdents64

rial 475 instr sys_call_table[3,5,6,141,167] Function Pointers 3 - read
5 - open
6 - close

syscall hook

167 - query mod
rkit 1.01 12 instr sys_call_table[23] Function Pointer syscall hook
knark
0.59

490 instr sys_call_table[2,3,11,37,54]
sys_call_table[79,120,141,220]
current->flags

Function Pointers
Function Pointers
Data Object

2 - fork
3 - read
11 - execve
54 - ioctl

syscall hook

220 - getdents64
kbdv3 30 instr sys_call_table[30,199]

current->uid
Function Pointers
Data Object

199 - getuid32 syscall hook,
DKOM

current->euid Data Object
current->gid
current->egid

Data Object
Data Object

104

Table 6.2

Summary of kernel rootkit profiling results using PoKeR (Part 2)

Name Code
Kernel Objects Modified User-Level

Impacts Attack
Type

Kernel Object Note

adore
0.42

770 instr sys_call_table[2,4,5,6,18,37,39,84,106]
sys_call_table[107,120,141,195,196,220]

Function Pointers
Function Pointers

2 - fork
4 - write
5 - open
6 - close

syscall hook

195 - stat64
196 - lstat64
220 - getdents64

adore
0.53

733 instr sys_call_table[1,2,6,26,37,39,120,141,220]
proc_net->subdir->next->(...)->next->get_info
proc_root_inode_operations->lookup

Function Pointers
Function Pointer
Function Pointer

1 - exit
2 - fork
3 - read
5 - open
6 - close

syscall hook,
data hook

85 - readlink
195 - stat64
220 - getdents64

adore­
ng 0.56

785 instr proc_net->subdir->next->(...)->next->get_info
proc_root_inode_operations->lookup
proc_root_operations->readdir

Function Pointer
Function Pointer
Function Pointer

3 - read
5 - open
85 - readlink

data hook

ext3_dir_operations->readdir
ext3_file_operations->write
unix_dgram_ops->recvmsg

Function Pointer
Function Pointer
Function Pointer

195 - stat64
220 - getdents64

linuxfu 117 instr init_task->next_task->(...)->prev_task->next_task
init_task->next_task->(...)->next_task->prev_task

Data Object
Data Object

DKOM

hp 1.0.0 100 instr pidhash[600] Data Object DKOM
pidhash[600]->pid Data Object
pidhash[600]->prev_task->next_task
pidhash[600]->next_task->prev_task

Data Object
Data Object

pidhash[600]->p_osptr->p_ysptr Data Object
pidhash[600]->p_ysptr->p_osptr Data Object

105

experiments, the host machine is an Intel Core 2 - 2.4GHz desktop running Ubuntu

8.10. The VMM is a modified version of QEMU 0.9.0 running with KQEMU enabled3 .

Our guest OS is RedHat 8.04 running a recompiled version of its stock kernel, Linux

2.4.18-14. The recompilation is needed to produce a version with debug symbols

(Section 6.4.3.)

Tables 6.1 and 6.2 show an abbreviated summary of the profiling results. For each

kernel rootkit, its profile consists of the four aspects described in Section 6.1. The

first aspect, hooking behavior, is revealed by the modified function pointers in certain

kernel objects shown in the table. The second aspect of the profile, targeted kernel

objects, indicates which objects are of interest to a rootkit. Kernel objects read but

not modified are part of this aspect of the profile, but are not shown in the table

because of the sheer quantity of them.

The third aspect of the profile is the potential impact on user-level programs.

Given that most rootkits have a primary goal of altering a system administrator’s

view of the OS, we ran a corpus of 10 system utility programs that retrieve system

information that kernel rootkits tend to hide. Four of them, w, who, uptime, and

finger are capable of showing information related to currently logged-in users. Two,

netstat and ifconfig, reveal information about network usage. Another pair, ls

and bash, can reveal the existence of files. Information about running processes can

be obtained by ps. Finally, lsmod shows the list of installed kernel modules.

These 10 programs were run and tested to see how many of the system calls they

made resulted in the execution of rootkit code. They do not, however, represent the

execution of all possible system calls. While a program could be written to exercise

all system calls, the enormous variety of arguments and the control paths that those

arguments could trigger would make it infeasible to ensure that the program would

follow all hooked rootkit code paths. By using programs that a rootkit tends to hide

3KQEMU is a host kernel module to enhance QEMU’s performance by running some guest code
natively on the host processor. It was disabled for the SucKIT experiments because it interferes
with an assembly instruction related to the interrupt descriptor table.
4We choose this version of Linux because it allowed the most rootkits we experimented with to
execute.

106

information from, we expect that at least a portion of the malicious rootkit code will

be triggered. During the execution of those 10 utility programs, 39 different system

calls get executed and those that led to rootkit code execution are shown in the “User-

Level Impacts” column of the table. The last aspect of the profile is the extracted

kernel rootkit code shown in the table only by the number of rootkit instructions

extracted. This is useful for determining the approximate size of a kernel rootkit, and

the code is made available by PoKeR for further analysis, as shown in Section 6.5.2.

6.5.1 Profiling-based Study of Rootkit Behavior

As a kernel rootkit investigation tool, PoKeR allows a human expert to quickly

ascertain and classify a rootkit’s attack methodology without solely relying on manual

analysis of the rootkit’s binary, source code, or the compromised OS. In the following,

we summarize the findings that generalize across the rootkits we have profiled using

PoKeR.

From the “hooking behavior” aspect, we can generalize the rootkits’ profiles to

three hooking strategies: modifying existing kernel code, hooking system call entries,

and hooking function pointers in data structures. For example, one rootkit that we

profiled, SucKIT, modifies existing kernel code. Five rootkits (rial, rkit, knark, kbdv3,

and adore 0.42) use syscall hooking as their primary attack vector, with two others

(SucKIT and adore 0.53) employing it in addition to other attack techniques. Two

rootkits (adore 0.53 and adore-ng 0.56) hook function pointers in both static and

dynamic kernel objects.

From the “targeted kernel objects” aspect, we can identify those kernel objects

that are more likely to be manipulated by rootkits that manipulate kernel data struc­

tures directly. (This is also known as direct kernel object manipulation or DKOM).

For example, some critical fields in the process control block (e.g., uid, euid) can be

targeted (e.g., by the kbdv3 rootkit) for escalating the privilege of the process under

which the rootkit code runs. The task list is often manipulated (e.g., by the linuxfu

107

and hp rootkits) for process hiding purposes. Moreover, the semantics associated with

the function pointers hijacked by kernel rootkits also reveal the rootkits’ intentions.

For example, the function pointer get info can be hijacked (e.g., by adore 0.53 and

adore-ng 0.56) to point to a function used to filter out “sensitive” information so that

a rootkit can remain invisible in the compromised system.

PoKeR’s rootkit profiles can also reveal the changes made between various versions

of the same rootkit. Consider the three different adore rootkits in Table 6.2. Version

0.42 relies solely on a system call hooking attack. A later version, 0.53, lessens its

reliance on system call hooking and hooks two kernel objects instead. Once adore

becomes adore-ng, it moves to entirely relying on hooks in kernel objects. Such an

evolution of adore’s attack behavior is clearly illustrated by PoKeR’s profiles.

6.5.2 Detailed Results for Three Representative Rootkits

When conducting in-depth analysis of kernel rootkits, PoKeR is especially helpful

in providing a human expert with information related to what a kernel rootkit does

so that the expert can more quickly understand it. In this section, we describe

detailed profiling results for three kernel rootkits which each display different attack

methodologies. Our intention is to show how a human expert can use PoKeR to

quickly understand a rootkit’s behavior without starting from the source code.

adore-ng 0.56

Hooking Behavior

The hooking profile for adore-ng reveals that it does not hook any system calls. In

addition, one of its hooks requires combat tracking to reveal. The rootkit modifies

six function pointers in various kernel objects. It modifies three function pointers in

the proc file system. One of those pointers, proc_net->(...)->get_info, is located

in an object that was dynamically allocated on the kernel’s heap (and was found

by combat tracking.) The other two, proc_root_inode_operations->lookup and

108

proc_root_operations->readdir are related to file operations on proc. The proc

file system exports information from kernel-space to user-space and is used by ap­

plications that retrieve system information. ps, for example, retrieves the process

list and netstat gets information about open network connections. Modifying func­

tion pointers in the proc filesystem allows the rootkit to hide processes and network

connections. Adore-ng also impacts the main ext3 file system. The first of these

functions, ext3_dir_operations->readdir, is used to generate directory listings.

The second function, ext3_file_operations->write, is used to write to files. The

most obvious reason to hook readdir on the main file system would be to hide the

existence of certain files. Lastly, adore-ng hijacks the unix_dgram_ops->recvmsg

function pointer, which would allow it to intercept UNIX domain socket messages, a

type of inter-process communication.

An analysis of the adore-ng source code reveals some additional observations

that could not be obtained from only analyzing the profile. The proc_root_inode_

operations->lookup hook is used to signal information to adore-ng ’s kernel com­

ponent from user-space. ext3_file_operations->write is modified to ensure that

hidden processes do not write to any of the system wide log files in /var. unix_dgram_

ops->recvmsg is changed to allow the rootkit to intercept and delete messages to the

system logging daemon.

Targeted Kernel Objects

Based on PoKeR’s profiling results, adore-ng does not modify any kernel objects

outside of function pointers and instead does its work by hijacking the control flow.

In this respect the rootkit is not any more advanced than many system call hooking

rootkits. However, it is important to note that while it does not modify any other ker­

nel objects, its malicious code may still be modifying the system call results returned

to user-level programs.

109

User-Level Process Effects

Without modifying any system call table entries directly, adore-ng still manages to

execute its malicious payload during system calls. This is logical, considering that

the function pointers it modified would be called during various system calls. Our

results show that five system calls from our corpus executed adore-ng code.

Extracted Code

Adore-ng results in 785 instructions extracted.

SucKIT 1.3b

Hooking Behavior

SucKIT only modifies one entry in the system call table, 59. This entry corresponds

to a deprecated system call, oldolduname. A source code review reveals that SucKIT

makes use of this system call entry to make the kernel function kmalloc callable from

user-space. This allows it to allocate a place for its kernel component from user-space

and then install it via /dev/kmem.

Targeted Kernel Objects

The targeted kernel objects lead to a few important observations. First, PoKeR’s

memory read log indicates that SucKIT reads the entire system call table. Second,

it modifies the code of two kernel functions, system call and tracesys. These

two functions can be used to dispatch system calls. For example, when a software

interrupt 0x80 is received, the system call function directs the system call to the

proper kernel handler by reading the function pointer from the system call table.

These two observations indicate that SucKIT makes a copy of the system call table

and modifies the dispatcher functions to use the new table instead of the old one.

User-Level Process Effects

In SucKIT ’s profile, we observed no modifications to relevant function pointers other

than oldolduname. However, because SucKIT directly overwrites kernel code in the

110

Table 6.3
Excerpt of SucKIT code extracted by PoKeR

Address Order Instruction
C72EC40B 22 lcall 0x00000414
C72EC410 -
C72EC414 23 pop %eax
C72EC415 24 ret
. . .
C72EE0CB 1 push %ebp
C72EE0CC 2 mov %esp, %ebp
C72EE0CE 3 sub $0x0C, %esp
C72EE0D1 4 mov $0x00001000, %ecx
C72EE0D6 5 push %edi
C72EE0D7 6 push %esi
C72EE0D8 7 push %ebx
C72EE0D9 8 movl 0x14(%ebp), %eax
C72EE0DC 9 mov $0x0804EF39, %ebx
C72EE0E1 10 sub $0x0804D040, %ebx
C72EE0E7 11 movl 0xC(%ebp), %edx
C72EE0EA 12 movl %eax, 0xEC(%edx)
C72EE0F0 13 movl 0x8(%ebp), %esi
C72EE0F3 14 leal 0x400(%esi,%ebx), %esi
C72EE0FA 15 movl %esi, -0x4(%ebp)
C72EE0FD 16 mov $0x00, %dl
C72EE0FF 17 mov %esi, %edi
C72EE101 18 mov %dl, %al
C72EE103 19 repz stosb %al, %es:(%edi)
C72EE105 21 lcall 0xFFFFE40B

Linux system call dispatcher, it still hijacks the control flow of key system calls using

its alternate table. In our test suite, we find that SucKIT manages to hijack 10 of

the 39 system calls.

Extracted Code

One portion of the extracted code was interesting enough to warrant inclusion here.

Table 6.3 shows the first few dozen instructions executed by the SucKIT rootkit. The

table shows the virtual address where the code was located, the order in which the

111

instructions were executed, and the extracted instructions themselves – all provided

by PoKeR.

One unique property of SucKIT that can be seen from these instructions is the

way it creates global variables. SucKIT installs itself into the kernel by writing its

malicious kernel payload directly into a piece of memory specially kmalloc’d and then

executing it. The specific address of kernel memory where SucKIT will reside is not

known at compile time. Global variables (the addresses of which must be known at

compile time) are not available to the rootkit author. Rootkits that install as kernel

modules do not have this problem as the kernel will dynamically relocate their code

and data prior to execution. Given that SucKIT does not have the benefit of dynamic

relocation, a trick is used to permit the use of global variables when their addresses

cannot be known a priori. Instruction 21 in the table (lcall 0xFFFFE40B) makes a

function call to an offset of the current page, in this case a negative number. This call

causes instruction 22 (near the top of the table) to execute. Starting at instruction

22 the layout is: instruction 22 followed by 4 bytes followed by instructions 23 and

24. When instruction 22 executes (another local call) the address of the memory

immediately following the lcall is pushed onto the stack. This is the return address,

but here it corresponds to the address of the 4 bytes of data. The pop instruction

that runs next moves that address into register eax and then issues a ret that returns

control flow back to the main code. At this point register eax contains the address of

the 4 bytes of data. This mechanism allows the attacker to achieve the functionality

of global variables without having to worry about dynamic relocation.

hide pid (hp) 1.0.0

Hooking Behavior

The hp rootkit modifies no function pointers and does not hijack control flow at all. It

also does not install persistent code. This is different from the previous two rootkits.

112

Targeted Kernel Objects

The kernel object accessed by hp is the pid hash table. (pidhash is basically a table

of task structures hashed by pid. It allows kernel functions to search for a process by

pid without needing to traverse the entire process list. Entries in the hash table are

still part of the process list, however.) It is possible to see the rootkit’s functionality

using the following excerpt from its object access log:

R - 0xc03a61a0 (0xc677c000): pidhash[600]

R - 0xc677c078 (0x0000025a): pidhash[600]->pid

R - 0xc677c054 (0xc6780000): pidhash[600]->prev_task

R - 0xc677c050 (0xc76d8000): pidhash[600]->next_task

R - 0xc677c050 (0xc76d8000): pidhash[600]->next_task

R - 0xc677c054 (0xc6780000): pidhash[600]->prev_task

W - 0xc76d8054 (0xc6780000): pidhash[600]->next_task->prev_task

R - 0xc677c054 (0xc6780000): pidhash[600]->prev_task

W - 0xc6780050 (0xc76d8000): pidhash[600]->prev_task->next_task

As can be seen from the log, the rootkit reads pidhash[600] in the table, verifies it

is the correct entry by checking the pid, and then proceeds to remove that entry from

the process list by modifying the previous and next pointers of its neighbors. These

task structures are dynamically allocated, yet our combat tracking technique is able

to identify them accurately.

User-Level Process Effects

The hp rootkit did not execute any malicious code during the execution of our corpus.

Extracted Code

The extracted code of hp is small – only 100 instructions.

113

 6
QEMU

PoKeR not profiling
PoKeR while profiling5

 4

 3

 2

 1

 0
Unixbench

Overall

N
or

m
al

iz
ed

 S
lo

w
-d

ow
n

Kernel

Compilation

Figure 6.5. PoKeR performance results

Summary

The above analysis demonstrates that PoKeR’s profiles are able to tell a human

expert what a rootkit does to help her better understand the rootkit. The man­

ual analysis of the source code frequently only provides further clarification to the

human’s interpretation of the PoKeR profile. Our experience while profiling these

rootkits indicates that even when the rootkit source code is available, it is convenient

to first use PoKeR – instead of starting from the source code – to achieve faster

revelation and understanding of the rootkit’s behavior.

6.6 Performance

While performance is not always a significant concern for a honeypot system, in

this section we test the speed at which the various components of PoKeR run.

Runtime PoKeR Module

We ran two basic tests to determine the performance of PoKeR’s runtime component

that generates the log entries. All tests were run under the system as described at the

beginning of Section 6.5. We ran Unixbench 4.1.0 as well as a test timing kernel com­

pilation under standard QEMU, QEMU + PoKeR without a rootkit being profiled,

114

and QEMU + PoKeR while profiling the adore-ng rootkit. These two benchmarks

were chosen because they test a variety of both CPU and I/O bound workloads. The

results, normalized to the speed of standard QEMU, are shown in Figure 6.5. (Lower

is better.) While in profiling mode, PoKeR is 2.96x slower than standard QEMU for

the kernel compilation test and about 5.88x slower under the Unixbench test. While

not profiling (but simply waiting to detect an attack), the slowdown is significantly

less, 1.17x for the kernel compilation case and 1.28x for the Unixbench case.

QEMU

QEMU itself contributes a noticeable amount of overhead to our PoKeR prototype.

Thoroughly benchmarking QEMU is outside the scope of this work, a basic benchmark

is helpful for understanding PoKeR’s overall performance. To test the overhead of

QEMU we used version 0.9.1 (the latest release) and compared the performance of a

native install of Ubuntu 8.10 to a QEMU+KQEMU virtualized copy. Both had access

to the same amount of memory (512MB) and one processor core. A kernel compilation

benchmark revealed an overhead of 3.8x. Given the portability of NICKLE to other

dynamic translation-based VMMs such as VMware [91], we believe that this portion

of overhead could be reduced by making use of a more efficient VMM platform.

Log Processing

To demonstrate the efficiency of log processing, the amount of time taken to process

the log entries for each of the 10 rootkits in Tables 6.1 and 6.2 was measured. The

longest processing time was for rial : 3 minutes and 36 seconds. The shortest time

was for rkit : 0.7 second. The average time across all 10 rootkits was 37 seconds.

6.7 Discussion

In this section we will discuss potential attacks against PoKeR as well some of its

limitations and future improvements.

115

6.7.1 Attacks

There exist a number of potential attacks that a rootkit may employ to evade

PoKeR.

Our current prototype relies on NICKLE to signal the execution of kernel rootkit

code. However, if a kernel rootkit modifies kernel data directly from user-space using

a memory access device such as /dev/kmem, PoKeR will not be able to profile it.

We have synthesized such a rootkit, although it has limited functionality as it cannot

execute its own kernel code. A related attack is one that uses only existing kernel code

as in an advanced type of return-to-libc attack [16,17] for the kernel. NICKLE would

fail to generate the needed detection point for PoKeR. Existing approaches such as

control-flow integrity [43] are able to detect these types of attacks and PoKeR could

be engineered to use them to generate detection points.

Combat tracking implicitly relies on the assumption that a rootkit must obtain

dynamic kernel objects’ addresses by starting a chain of reads at a static data object.

A rootkit may not need to do this, however. It may, for example, call existing kernel

code to retrieve the address of a data structure. In this case, the chain of reads would

occur from legitimate kernel code and hence would not be logged. PoKeR can handle

this situation by simply tracking all kernel reads instead of only rootkit reads, but

at an increased performance penalty. Another potential approach would be to have

PoKeR monitor all kernel reads as long as there is a pointer to malicious code on the

current kernel stack. This pointer is likely a return address to the rootkit code, which

has called the valid kernel code.

Another situation is one where a rootkit installs a code hook and uses it to walk

the stack and find kernel object addresses on it. (If the rootkit author knows what

functions have already been called prior to his hook, he can easily derive the type

information for function arguments on the stack.) In this case, combat tracking

would not be able to properly identify the types of data being read. PoKeR could be

116

extended to monitor type information for items on the stack, similar to the way gdb

does.

Finally, a rootkit may be able to scan kernel memory and guess at the identity of

kernel objects, and do so with a high probability of success. One possible approach

to combating this attack would be to periodically build a complete map of kernel

objects (similar to SBCFI [47]). Assuming that this periodic map building occurred

at regular intervals, PoKeR would be able to identify any dynamic kernel object with

high probability, even without a chain of reads.

6.7.2 Limitations

There are some limitations to our current PoKeR prototype. First, our current

profiling results are not complete for fully and provably determining all aspects of a

given rootkit. Instead, we are only focusing on four specific aspects of the rootkit’s

behavior. Our lack of completeness is a trait shared by other dynamic analysis based

systems [60, 121].

Second, the current prototype is still limited in revealing the context in which the

rootkit-manipulated kernel objects were used. For example, in the adore-ng experi­

ment we noticed that the IPC datagram receive function was hijacked. The derived

profile, however, could not tell what this modification is able to accomplish. Manually

inspecting the adore-ng source code indicated that this was used to filter messages

being sent to syslogd. It would be advantageous if PoKeR could be improved to

automatically reveal this. In the meantime, we also recognize that PoKeR’s user-

level impact metric is still simplistic and we would like to extend it to determine the

complete set of system calls that may get hijacked at runtime. Correlating modified

kernel objects with a static analysis of the kernel’s call graph as well as multiple path

exploration [121] are potential avenues of research in this area.

Finally, a rootkit may be able to detect virtualization or PoKeR’s profiling mode

and alter its actions accordingly. Note that as virtual machines become more preva­

http:syslogd.It

117

lent, they are quickly becoming valid targets for attacks and rootkit authors are losing

their incentive to avoid them. While efforts could be made to mask the presence of

virtualization from the attacker, it is considered an unsolvable problem in the general

sense [111].

6.8 Summary

In this chapter we demonstrated the applicability of the SMA to a security prob­

lem outside of code injection prevention, namely the profiling of injected code. We

presented the design, implementation, and evaluation of PoKeR, a kernel rootkit

profiler that produces multi-aspect rootkit profiles which include hooking behavior,

targeted kernel objects, user-level impacts, and executed rootkit code. In particular,

via the combat tracking technique, PoKeR maintains a map of dynamic kernel ob­

jects, which allows it to accurately determine which kernel objects are modified by

a rootkit. PoKeR is also able to extract the executed rootkit code and infer the po­

tential impact the rootkit might have on user-level programs. PoKeR was evaluated

using 10 real-world kernel rootkits, the profiles of which reveal a variety of attack

methodologies and demonstrate PoKeR’s effectiveness as a rootkit analysis aid.

118

7 CONCLUSION

In this dissertation we have presented the split memory architecture, a memory ar­

chitecture which is not susceptible to code injection attacks.

In Chapter 3 we discussed the basic design of this memory architecture and com­

pared it to existing architectural approaches for the prevention of code injection at­

tacks. We described why computer systems which employ the von Neumann memory

architecture are susceptible to the attacks and discussed how the SMA addresses

the problem by preventing the processor from accessing injected code during an in­

struction fetch. The SMA separates code and data into separate memory spaces and

transparently redirects memory accesses accordingly. The end result is that programs

and operating systems compiled for a von Neumann architecture are able to execute

on an SMA without modification while still gaining the code injection immunity ben­

efits. We also discussed trade-offs involved in using an SMA, specifically regarding

increased memory usage and an inability to run self modifying code.

In Chapter 4 we demonstrated that an operating system can construct an SMA

for individual processes which it hosts. We built our system in version 2.6.13 of the

Linux kernel running on an Intel x86 processor and demonstrated its efficacy against

the attacks in the Wilander benchmark as well as five exploits in real software. The

system is able to prevent attacks that involve the execution of injected code, however

it is unable to prevent return oriented programming attacks that make use of existing

code. Given that return oriented programming has been demonstrated to be Turing

complete in some instances [16], a solution to this limitation is one which should be

pursued in future work. In terms of performance, our modified system was able to

execute at higher than 80% of full speed for the four primary benchmarks we used.

In Chapter 5 we applied an SMA to prevent the execution of injected code by

a running operating system kernel. Code injection is a tactic used by many kernel

119

rootkits. We built a VMM-based SMA called NICKLE for the purpose of preventing

these rootkits. NICKLE was one of the first systems capable to preventing the execu­

tion of all unauthorized code at the kernel’s privilege level. We implemented NICKLE

in two different virtual machine monitors, QEMU and VirtualBox, and demonstrated

the system’s effectiveness against 22 different rootkits. One unique feature of NICKLE

over other systems is its ability to protect memory pages containing both code and

data. Both Linux and Windows contain these “mixed” pages, and as such it was vital

that our implementation be able to protect them. In this work we did not thoroughly

evaluate the reason for mixed pages in these two operating systems, however that

would be an important next step in further evaluating the problem. Much like the

SMA for the user-level, NICKLE is also limited to only preventing rootkit attacks

that involve the execution of new code at the kernel’s privilege level. The possibility

still exists that attackers could make use of existing kernel code or modify only kernel

data structures, however it is currently unknown how effective such attacks would be.

In terms of performance, the QEMU port of NICKLE was able to execution at 99%

of the speed of an unmodified version of QEMU.

In Chapter 6 we applied an SMA to the realm of behavioral profiling of injected

code with PoKeR, a rootkit behavioral profiler based on NICKLE’s VMM-base SMA.

PoKeR is able to profile rootkits in a honeypot setting and reveal what a rootkit does

to help a human expert understand it. PoKeR successfully demonstrates that the

SMA has applications outside of code injection prevention. Because its separate code

and data spaces allow it to identify injected code, the SMA opens up new opportu­

nities in the realm of attack response through things like malicious code rewriting,

forensic extraction of malicious code, and monitoring of malicious code execution.

120

7.1 Conclusions

There are a few conclusions that we have drawn based on our results.

•	 The SMA is extremely effective against code injection because it reveals and

cuts off a root cause of code injection attacks: the processor’s ability to fetch

“data” for execution. Many existing techniques rely on preventing a specific

control-flow hijacking methodology, which makes them unable to be used in new

scenarios. For example, detecting modifications to a function return address

may prevent a large number of attacks at the user-level, but the technique is

not applicable to a kernel-level scenario where the attacker can load a malicious

driver to inject code and modify the return address. The SMA is not tied to

a specific control-flow hijacking technique, and as such is applicable to a large

number of attack scenarios.

•	 Virtualizing one memory architecture on top of another needs be thought of

from the perspective of cost versus benefit. The SMA provides a very strong

benefit, the inability to execute injected code, but this comes at the cost of

performance and the loss of some features such as self-modifying code. This

means that the SMA cannot be used to fully protect programs that make use

of just in time compilation [122], but it can protect many other programs. It is

also important to look at the workload of the protected target. The user-level

implementation of the SMA, for example, performs poorly under workloads with

a high frequency of context switches, but performs very well for more general

workloads. We have begun investigating a hybrid scheme that combines the

SMA with the XD bit which may be able to significantly reduce the performance

overhead.

121

7.2 Future Work

The code injection prevention work presented in this dissertation, especially when

applied to kernel rootkits, has opened up new opportunities for both offensive and

defensive future work.

•	 Virtualization as an OS Security Extension Hardware virtualization

(such as Intel’s VT and AMD’s SVM) is advancing and reducing the perfor­

mance penalty of using such features to almost zero. This support is currently

being used to produce VM hypervisors, but we are interested in leveraging the

elevated privilege level of these processors to create a small operating system

monitor capable of protecting the operating system from malicious tampering

or unintended faults. By keeping the monitor small and only concerned about

security, the overhead of such an approach can be negligible and provide a

smaller, less complicated code base to be targeted for attack. We are particu­

larly interested in finding new protection schemes that go beyond the current

work of preventing unauthorized code execution.

•	 Data-only Kernel Rootkit Attacks Now that NICKLE is able to effectively

prevent the execution of code injected into an OS kernel, rootkit attacks will

need to shift to other attack vectors. We will further research attack and defense

techniques related to rootkit attacks that operate by directly modifying kernel

data structures but not executing any new code in the kernel. Thus far there is

little existing work constructing or defending against these data-only attacks.

This work is challenging because many kernel data structures are frequently

changed during normal usage, making it difficult to distinguish between valid

and invalid states.

LIST OF REFERENCES

122

LIST OF REFERENCES

[1] Eugene H. Spafford. The Internet Worm Program: An Analysis. SIGCOMM
Computer Communication Review, 19(1):17–57, 1989.

[2] James P. Anderson. Computer Security Technology Planning Study, Volume
I. Technical Report ESD-TR-73-51, ESD/AFSC, Hanscom Air Force Base,
Bedford, MA, October 1972. See page 61.

[3] J. von Neumann.	 First Draft of a Report on the EDVAC. 1945. Reprinted
in The Origins of Digital Computers Selected Papers, Second Edition, pages
355–364, 1975.

[4] H. H. Aiken. Proposed Automatic Calculating Machine. 1937. Reprinted in The
Origins of Digital Computers Selected Papers, Second Edition, pages 191–198,
1975.

[5] H. H. Aiken and G. M. Hopper. The Automatic Sequence Controlled Calculator.
1946. Reprinted in The Origins of Digital Computers Selected Papers, Second
Edition, pages 199–218, 1975.

[6] Ralf Hund, Thorsten Holz,	 and Felix C. Freiling. Return-oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms. In Proceedings of the
18th USENIX Security Symposium, August 2009.

[7] James P. Anderson Co. Computer Security Threat Monitoring and Surveillance.
Technical Report Contract 79F296400, February 1980.

[8] Greg Hoglund and James Butler.	 Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, 2005.

[9] R.	 A. Meyer and L. H. Seawright. A Virtual Machine Time-sharing System.
IBM Systems Journal, 9(3):199, 1970.

[10] Robert P.	 Goldberg. Survey of Virtual Machine Research. IEEE Computer,
7(6):34–45, 1974.

[11] William Stallings. Operating Systems Internals and Design Principles. Prentice
Hall, Upper Saddle River, New Jersey 07458, Fourth edition, 2001.

[12] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne.	 Operating System
Concepts. John Wiley & Sons, Inc., Sixth edition, 2002.

[13] David A. Patterson and John L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann Publishers, Inc., 340 Pine
Street, Sixth Floor, San Francisco, CA 94104-3205, 1997.

123

[14] Aleph One. Smashing The Stack For Fun And Profit. Phrack, 7(49). Article
14.

[15] Nergal. The Advanced Return-into-lib(c) Exploits:	 PaX Case Study. Phrack,
11(58). Article 4.

[16] Hovav Shacham.	 The Geometry of Innocent Flesh on the Bone: Return-into­
libc Without Function Calls (On the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security, October 2007.

[17] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When Good
Instructions Go Bad: Generalizing Return-Oriented Programming to RISC. In
Proceedings of the 15th ACM Conference on Computer and Communications
Security, October 2008.

[18] Shuo	 Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravi Iyer. Non­
Control-Data Attacks Are Realistic Threats. In Proceedings of the 14th USENIX
Security Symposium, August 2005.

[19] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso.	 A Classification
of SQL-injection Attacks and Countermeasures. In Proceedings of the Interna­
tional Symposium on Secure Software Engineering, 2006.

[20] David Endler.	 The Evolution of Cross-site Scripting Attacks. Technical report,
iDEFENSE Labs, May 2002.

[21] Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic Adaptive Detection and Prevention of Buffer-Overflow At­
tacks. In Proceedings of the 7th USENIX Security Conference, pages 63–78,
January 1998.

[22] H. Etoh.	 GCC Extension for Protecting Applications From Stack-smashing
Attacks. http: // www. trl. ibm. com/ projects/ security/ ssp/ . Accessed
December 2006.

[23] Crispin Cowan, P. Wagle, C. Pu, Steve Beattie, and J. Walpole.	 Buffer Over­
flows: Attacks and Defenses for the Vulnerability of the Decade. In Proceedings
of DARPA Information Survivability Conference and Expo, 1999.

[24] Vendicator.	 Stack Shield: A “Stack Smashing” Technique Protection Tool for
Linux. http: // www. angelfire. com/ sk/ stackshield/ info. html . Ac­
cessed December 2006.

[25] Richard W.	 M. Jones and Paul H. J. Kelly. Backwards-compatible Bounds
Checking for Arrays and Pointers in C Programs. In Proceedings of the Third
International Workshop on Automated Debugging, pages 13–26, May 1997.

[26] Lap-chung Lam and Tzi-cker Chiueh.	 Checking Array Bound Violation Using
Segmentation Hardware. In Proceedings of the International Conference on
Dependable Systems and Networks, pages 388–397, 2005.

[27] Crispin Cowan,	 Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike
Frantzen, and Jamie Lokier. FormatGuard: Automatic Protection from printf
Format String Vulnerabilities. In Proceedings of the 10th USENIX Security
Symposium, 2001.

124

[28] John Wilander and Mariam Kamkar. A Comparison of Publicly Available Tools
for Dynamic Buffer Overflow Prevention. In Proceedings of the 10th Network and
Distributed System Security Symposium, pages 149–162, San Diego, California,
February 2003.

[29] Intel Corporation.	 IA-32 Intel Architecture Software Developer’s Manual Vol­
ume 3A: System Programming Guide, Part 1. Intel Corporation, 2006. Publi­
cation number 253668.

[30] A Detailed Description of the Data Execution	 Prevention (DEP) Feature in
Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Win­
dows Server 2003. http: // support. microsoft. com/ kb/ 875352 . Accessed
December 2006.

[31] PAX PAGEEXEC Documentation.	 http: // pax. grsecurity. net/ docs/
pageexec. txt . Accessed May 2009.

[32] PAX SEGMEXEC Documentation.	 http: // pax. grsecurity. net/ docs/
segmexec. txt . Accessed May 2009.

[33] Buffer Overflow Attacks Bypassing DEP (NX/XD bits) - Part 2 : Code Injec­
tion. http: // www. mastropaolo. com/ ?p= 13 . Accessed December 2006.

[34] Paul	 Williams and Eugene H. Spafford. An Exploration of Highly Fo­
cused, Coprocessor-based Information System Protection. Computer Networks,
51(5):1284–1298, April 2007.

[35] Babak Salamat, Andreas Gal,	 and Michael Franz. Reverse Stack Execution
in a Multi-variant Execution Environment. In Proceeding of the Workshop on
Compiler and Architectural Techniques for Application Reliability and Security,
2008.

[36] PAX ASLR Documentation.	 http: // pax. grsecurity. net/ docs/ aslr.
txt . Accessed December 2006.

[37] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address Obfuscation: An
Efficient Approach to Combat a Broad Range of Memory Error Exploits. In
Proceedings of the 12th USENIX Security Symposium, 2003.

[38] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney.	 Efficient Techniques for
Comprehensive Protection from Memory Error Exploits. In Proceedings of the
14th USENIX Security Symposium, 2005.

[39] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer.	 Transparent Runtime
Randomization for Security. In Proceedings of the 22nd Symposium on Reliable
and Distributed Systems, October 2003.

[40] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer,
Darko Stefanovic, and Dino Dai Zovi. Randomized Instruction Set Emulation
to Disrupt Binary Code Injection Attacks. In Proceedings of the 10th ACM
Conference on Computer and Communications Security, 2003.

[41] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering Code-
Injection Attacks With Instruction-Set Randomization. In Proceedings of the
10th ACM Conference on Computer and Communications Security, 2003.

125

[42] Stelios	 Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D.
Keromytis. Building a Reactive Immune System for Software Services. In
Proceedings of the USENIX Annual Technical Conference, 2005.

´ [43] Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-Flow
Integrity: Principles, Implementations, and Applications. In Proceedings of the
12th ACM Conference on Computer and Communications Security, November
2005.

[44] Nick L. Petroni, Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copi­
lot: A Coprocessor-based Kernel Runtime Integrity Monitor. In Proceedings of
the 13th USENIX Security Symposium, pages 179–194, 2004.

[45] Xiaolan Zhang, Leendert van Doorn, Trent Jaeger, Ronald Perez, and Reiner
Sailer. Secure Coprocessor-based Intrusion Detection. In Proceedings of the
10th ACM SIGOPS European Workshop, pages 239–242, 2002.

[46] Nick L. Petroni, Jr., Timothy Fraser, AAron Walters, and William A. Arbaugh.
An Architecture for Specification-based Detection of Semantic Integrity Viola­
tions in Kernel Dynamic Data. In Proceedings of the 15th USENIX Security
Symposium, 2006.

[47] Nick L. Petroni,	 Jr. and Michael Hicks. Automated Detection of Persistent
Kernel Control-Flow Attacks. In Proceedings of the 14th ACM Conference on
Computer and Communications Security, October 2007.

[48] Yi-Min Wang,	 Doug Beck, Binh Vo, Roussi Roussev, and Chad Verbowski.
Detecting Stealth Software with Strider GhostBuster. In Proceedings of the
IEEE International Conference on Dependable Systems and Networks, pages
368–377, 2005.

[49] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy Malware Detec­
tion through VMM-based “Out-of-the-Box” Semantic View Reconstruction. In
Proceedings of the 14th ACM Conference on Computer and Communications
Security, October 2007.

[50] Tal Garfinkel and Mendel Rosenblum.	 A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In Proceedings of the Network and Dis­
tributed Systems Security Symposium, February 2003.

[51] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A Tiny Hy­
pervisor to Guarantee Lifetime Kernel Code Integrity for Commodity OSes. In
Proceedings of the ACM Symposium on Operating Systems Principles, October
2007.

[52] Simson Garfinkel and Gene Spafford. Web Security & Commerce, chapter 9.
O’Reilly & Associates, Inc. Sebastopol, CA, USA, 1997.

[53] Microsoft.	 Driver Signing for Windows. http: // technet. microsoft. com/
en-us/ library/ cc784714. aspx . Accessed November 2008.

[54] Fred Cohen.	 A Cryptographic Checksum for Integrity Protection. Computers
and Security, 6(6):505–510, December 1987.

126

[55] Fred Cohen. Models of Practical Defenses Against Computer Viruses. Comput­
ers and Security, 8(2):149–160, April 1989.

[56] Jeffrey Wilhelm and Tzi-cker Chiueh. A Forced Sampled Execution Approach
to Kernel Rootkit Identification. In Proceedings of Recent Advances in Intrusion
Detection, pages 219–235, September 2007.

[57] Christopher	 Kruegel, William Robertson, and Giovanni Vigna. Detecting
Kernel-Level Rootkits Through Binary Analysis. In Proceedings of the 20th
Annual Computer Security Applications Conference, pages 91–100, 2004.

[58] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.	 Panorama: Capturing
System-wide Information Flow for Malware Detection and Analysis. In Proceed­
ings of the 14th ACM conference on Computer and communications security,
pages 116–127, 2007.

[59] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. On the Limits of Information
Flow Techniques for Malware Analysis and Containment. In Conference on
Detection of Intrusions and Malware & Vulnerability Assessment, July 2008.

[60] Andrea Lanzi, Monirul Sharif, and Wenke Lee.	 K-Tracer: A System for Ex­
tracting Kernel Malware Behavior. In Proceedings of the 16th Annual Network
and Distributed System Security Symposium, February 2009.

[61] Heng Yin, Zhenkai Liang, and Dawn Song.	 HookFinder: Identifying and Un­
derstanding Malware Hooking Behaviors. In Proceedings of the 15th Annual
Network and Distributed System Security Symposium, February 2008.

[62] Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang.	 Countering Per­
sistent Kernel Rootkits through Systematic Hook Discovery. In Proceedings of
Recent Advances in Intrusion Detection, pages 21–38, September 2008.

[63] Atmel Corporation. 8-bit AVR R�Microcontroller with 128K Bytes In-System
Programmable Flash. 2008. Document 2467.

[64] Wind River:	 VxWorks. http: // www. windriver. com/ vxworks/ . Accessed
March 2007.

[65] Anatol W. Holt. Program Organization and Record Keeping for Dynamic Stor­
age Allocation. Communications of the ACM, 4(10):422–431, 1961.

[66] A. Bensoussan, C. T. Clingen, and R. C. Daley.	 The Multics Virtual Memory:
Concepts and Design. Communications of the ACM, 15(5):308–318, 1972.

[67] Alastair J. W.	 Mayer. The Architecture of the Burroughs B5000: 20 Years
Later and Still Ahead of the Times? SIGARCH Computer Architecture News,
10(4):3–10, 1982.

[68] Intel Corporation.	 INTEL 80386 Programmer’s Reference Manual. Intel Cor­
poration, 1987.

[69] John Fotheringham.	 Dynamic Storage Allocation in the Atlas Computer, In­
cluding an Automatic Use of a Backing Store. Communications of the ACM,
4(10):435–436, 1961.

©

127

[70] Ryan Riley, Xuxian Jiang, and Dongyan Xu.	 An Architectural Approach to
Preventing Code Injection Attacks. In Proceedings of the 37th Annual Interna­
tional Conference on Dependable Systems and Networks, pages 30–40, 2007.

[71] kernelthread.com:	 Securing Memory. http: // www. kernelthread. com/
publications/ security/ smemory. html . Accessed December 2006.

[72] Pedro Venda. PaX Performance Impact. http: // www. pjvenda. org/ linux/
doc/ pax-performance/ , October 2005. Accessed May 2009.

[73] Paul C. van Oorschot, Anil Somayaji, and Glenn Wurster.	 Hardware-assisted
Circumvention of Self-Hashing Software Tamper Resistance. IEEE Transactions
Dependable and Secure Computing, 2(2):82–92, 2005.

[74] Sebek. http: // www. honeynet. org/ tools/ sebek/ . Accessed May 2009.

[75] Xuxian Jiang and Xinyuan Wang.	 “Out-of-the-Box” Monitoring of VM-based
High-interaction Honeypots. In Proceedings of Recent Advances in Intrusion
Detection, pages 198–218, September 2007.

[76] Georgios Portokalidis, Asia Slowinska, and Herbert Bos.	 Argos: an Emulator
for Fingerprinting Zero-day Attacks for Advertised Honeypots with Automatic
Signature Generation. In Proceedings of the 1st ACM European Conference on
Computer Systems, pages 15–27, 2006.

[77] Robert C. Daley and Jack B. Dennis.	 Virtual Memory, Processes, and Sharing
in MULTICS. Communications of the ACM, 11(5):306–312, 1968.

[78] Axelle Apvrille, David Gordon, Serge Hallyn, Makan Pourzandi, and Vincent
Roy. DigSig: Run-time Authentication of Binaries at Kernel Level. In Proceed­
ings of the 18th USENIX Conference on System Administration (LISA), pages
59–66, 2004.

[79] Brett Lymn.	 Verified Exec – Extending the Security Perimeter. In Australian
Unix Users Group Conference, 2004.

[80] Solar	 Eclipse. openssl-too-open. http: // www. phreedom. org/ solar/
exploits/ apache-openssl/ . Accessed June 2009.

[81] lsd-pl.net. BIND 8.2.x (TSIG) Remote Root Stack Overflow Exploit (2). http:
// milw0rm. org/ exploits/ 279 . Accessed June 2009.

[82] CERT.	 CERT R Incident Note IN-2001-03, Exploitation of BIND Vulnera­
bilities. http: // www. cert. org/ incident_ notes/ IN-2001-03. html . Ac­
cessed May 2009.

[83] Solar Eclipse.	 proftpd-not-pro-enough. http: // www. phreedom. org/ solar/
exploits/ proftpd-ascii/ . Accessed June 2009.

[84]	 eSDee. samba-2.2.8 < remote root exploit. http: // downloads.
securityfocus. com/ vulnerabilities/ exploits/ sambal. c . Accessed
June 2009.

[85] TESO Security.	 7350wurm – x86/linux wu ftpd remote root exploit. http: //
examples. oreilly. com/ networksa/ tools/ 7350wurm. c . Accessed June
2009.

http:lsd-pl.net
http:kernelthread.com

128

[86] The Apache HTTP Server Project.	 http: // httpd. apache. org/ . Accessed
December 2006.

[87] Linux/Unix nbench. http: // www. tux. org/ mayer/ linux/ bmark. html .~
Accessed December 2006.

[88] Unixbench.	 http: // www. tux. org/ pub/ tux/ benchmarks/ System/
unixbench/ . Accessed December 2006.

[89] Digital Equipment Corporation.	 KB11-A Central Processor Unit Maintenance
Manual. 1972. Section 4.3.4.2 – Access Modes.

[90] Jonathon Giffin, Mihai Christodorescu, and Louis Kruger. Strengthening Soft­
ware Self-Checksumming via Self-Modifying Code. In Proceedings of the 21st
Annual Computer Security Applications Conference, pages 18–27, December
2005.

[91] Ryan Riley, Xuxian Jiang, and Dongyan Xu.	 Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing. In Proceedings of
Recent Advances in Intrusion Detection, pages 1–20, September 2008.

[92] Fabrice Bellard.	 QEMU: A Fast and Portable Dynamic Translator. In Pro­
ceedings of the USENIX Annual Technical Conference, FREENIX Track, pages
41–46, 2005.

[93] Innotek.	 Virtualbox. http: // www. virtualbox. org/ . Accessed September
2007.

[94] Intel Corportation.	 Virtualization Technologies from Intel. http: // www.
intel. com/ technology/ virtualization/ . Accessed June 2009.

[95] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual Volume
2: System Programming, 3.12 edition. September 2006.

[96] G.W. Dunlap, S.T. King, S. Cinar, M.A. Basrai, and P.M. Chen.	 ReVirt: En­
abling Intrusion Analysis through Virtual Machine Logging and Replay. In
Proceedings of the USENIX Symposium on Operating Systems Design and Im­
plementation, 2002.

[97] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra:
A Virtual Machine-Based Platform for Trusted Computing. In Proceedings of
the ACM Symposium on Operating System Principles, October 2003.

[98] A. Joshi, S.T. King, G.W. Dunlap, and P.M. Chen. Detecting Past and Present
Intrusions through Vulnerability-specific Predicates. In Proceedings of the ACM
Symposium on Operating Systems Principles, pages 91–104, 2005.

[99] James P. Anderson. Computer Security Technology Planning Study, Volume
II. Technical Report ESD-TR-73-51, ESD/AFSC, Hanscom Air Force Base,
Bedford, MA, October 1972.

[100] William	 A. Arbaugh, David J. Farber, and Jonathan M. Smith. A Secure
and Reliable Bootstrap Architecture. In Proceedings of IEEE Symposium on
Security and Privacy, pages 65–71, May 1997.

129

[101]	 sd and devik. Linux on-the-fly Kernel Patching without LKM. Phrack, 11(58).
Article 7.

[102] fuzen op. FU Rootkit. http: // www. rootkit. com/ project. php? id= 12 .
Accessed September 2007.

[103] Arati Baliga, Pandurang Kamat, and Liviu Iftode.	 Lurking in the Shadows:
Identifying Systemic Threats to Kernel Data. In Proceedings of the IEEE Sym­
posium on Security and Privacy, May 2007.

[104] Julian	 B. Grizzard. Towards Self-Healing Systems: Re-establishing Trust in
Compromised Systems. PhD thesis, Georgia Institute of Technology, May 2006.

[105] Miguel Castro, Manuel Costa, and Tim Harris. Securing Software by Enforcing
Data-Flow Integrity. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, 2006.

[106] Tobias	 Klein. Scooby Doo – VMware Fingerprint Suite. http: // www.
trapkit. de/ research/ vmm/ scoopydoo/ index. html . Accessed June 2009.

[107] Joanna	 Rutkowska. Red Pill: Detect VMM Using (Almost) One CPU In­
struction. http: // invisiblethings. org/ papers/ redpill. html , Novem­
ber 2004.

[108] F-Secure	 Corporation. Agobot. http: // www. f-secure. com/ v-descs/
agobot. shtml . Accessed June 2009.

[109] Kostya	 Kortchinsky. Honeypots: Counter Measures to VMware Finger­
printing. http: // seclists. org/ honeypots/ 2004/ q1/ 0015. html , Jan­
uary 2004. Accessed June 2009.

[110] Tom	 Liston and Ed Skoudis. On the Cutting Edge: Thwart­
ing Virtual Machine Detection. http: // handlers. sans. org/ tliston/
ThwartingVMDetection_ Liston_ Skoudis. pdf , 2006. Accessed June 2009.

[111] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Compatibil­
ity is Not Transparency: VMM Detection Myths and Realities. In Proceedings
of the 11th Workshop on Hot Topics in Operating Systems, May 2007.

[112] Advanced Micro Devices. Whitepaper: AMD-VTMNested Paging. July 2008.

[113] Ryan Riley, Xuxian Jiang, and Dongyan Xu.	 Multi-aspect Profiling of Kernel
Rootkit Behavior. In Proceedings of the 4th ACM European Conference on
Computer Systems, pages 47–60, April 2009.

[114] Greg Hoglund.	 Kernel Object Hooking Rootkits (KOH Rootkits). http: //
www. rootkit. com/ newsread. php? newsid= 501 , 2006. Accessed November
2008.

[115] Peter	 Silberman and C.H.A.O.S. FUTo. Uninformed, 3, 2006. http:
//uninformed.org/?v=3&a=7&t=sumry.

[116] Bryan D. Payne, Martim Carbone, and Wenke Lee.	 Secure and Flexible Moni­
toring of Virtual Machines. In Proceedings of the 23rd Annual Computer Secu­
rity Applications Conference, December 2007.

130

[117] Hans Boehm and Mark Weiser.	 Garbage Collection in an Uncooperative Envi­
ronment. Software, Practice and Experience, 18(9):807–820, September 1988.

[118] libdisasm.	 x86 Disassembler Library. http: // bastard. sourceforge. net/
libdisasm. html . Accessed September 2008.

[119] Free Software Foundation.	 GDB: The GNU Project Debugger. http: // www.
gnu. org/ software/ gdb/ . Accessed October 2008.

[120] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T.	 King. Digging for
data structures. In Proceedings of the USENIX Symposium on Operating Sys­
tems Design and Implementation, pages 255–266, December 2008.

[121] A. Moser, C. Kruegel, and E. Kirda.	 Exploring Multiple Execution Paths for
Malware Analysis. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 231–245, 2007.

[122] Andreas Krall. Efficient JavaVM Just-in-time Compilation. In Proceedings of
the International Conference on Parallel Architectures and Compilation Tech­
niques, pages 205–212, 1998.

VITA

131

VITA

Ryan Riley entered Purdue University in the Fall of 2000 and received a B.S. in

computer engineering in May 2004. He went on to obtain an M.S. in computer science

in May 2006 and a Ph.D. in August 2009 under the direction of Professor Dongyan

Xu and Professor Xuxian Jiang. During his time in graduate school he was awarded

the Purdue University Graduate Student Award For Outstanding Teaching, the Best

Paper Award from the 2008 Recent Advances in Intrusion Detection conference, and

the CERIAS Diamond Award For Outstanding Academic Achievement. In the Fall of

2009 he joined the faculty of Qatar University as an Assistant Professor of Computer

Science and Engineering.

