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ABSTRACT

Dong, Jing. Ph.D., Purdue University, December 2009. Secure and Robust Com-
munication in Wireless Mesh Networks. Major Professor: Cristina Nita-Rotaru.

Wireless mesh networks (WMNs) have become the focus of research in recent

years, owing to their great promise in realizing numerous next-generation wireless

services. Driven by the demand for rich and high-speed content access, recent re-

search has focused on developing high performance communication protocols, while

the security of the proposed protocols has received relatively little attention. However,

given the wireless and multi-hop nature of the communication, WMNs are subject

to a wide range of security threats. In this dissertation, we study the security of

two main design methodologies that emerged from recent research for achieving high

performance data delivery in WMNs, namely, dynamic topology-aware adaptation

and network coding. In addition, we also study the principles of designing efficient

application layer security protocols for WMNs.

Dynamic topology-aware adaption presents an important design principle that

underlies many high performance network layer protocols proposed for WMNs. We

study the unique security threats that exploit the cooperative nature of such proto-

cols. The identified attacks can allow even only a few attacker nodes to distort the

path selection process in the entire network and to gain control on a large portion of

the traffic in the network. Our proposed defense mechanism relies on passive measure-

ments for detecting attacks and cooperative accusation for identifying and isolating

attacker nodes. Through both analysis and experimental evaluations, we show that

our defense protocol is effective and incurs low overhead.

Network coding is a major performance improvement technique for WMNs that

has emerged in recent years. Numerous practical systems have demonstrated that



xiv

network coding is able to achieve significantly improved performance over the tra-

ditional packet forwarding approach. We focus on studying the security aspects of

applying network coding on WMNs. We first perform a systematic security anal-

ysis on existing network coding systems and uncover numerous security threats on

various system components. We then focus on addressing a severe and generic at-

tack against network coding systems, known as packet pollution attack. We propose

the first practical defense mechanisms to pollution attacks for both of the two major

wireless network coding approaches, intra-flow network coding and inter-flow network

coding. Our defense uses efficiently computable random linear checksums and an effi-

cient traceback mechanism to filter out polluted packets and identify attacker nodes.

The experimental results show that the proposed mechanisms can effectively filter

out polluted packets and quickly identify and isolate attacker nodes while incurring

small computation and bandwidth overhead.

On the application layer, we demonstrate the unique challenges and opportunities

in designing efficient security protocols. We focus on the problem of providing data

confidentiality for group communication on WMNs, and present a protocol framework

designed specifically for WMNs. Our design employs decentralized group member-

ship, promotes localized communication, and exploits the nature of wireless broadcast.

Through both analytical and experimental evaluations, we demonstrate the impor-

tance of the design principles for the efficiency and performance of the application

layer protocols on WMNs.



1

1 INTRODUCTION

In recent years, wireless mesh networks (WMNs) have emerged as a key enabling tech-

nology for the next-generation wireless networking. A WMN typically consists of a set

of stationary wireless mesh routers and a set of mesh clients, as shown in Figure 1.1.

Mesh routers form a self-organized multi-hop wireless network, with nodes dynam-

ically maintaining the mesh connectivity among themselves via ad hoc networking

protocols, such as DSR [1], AODV [2] for unicast and ODMRP [3], MAODV [4] for

multicast. Mesh clients connect to mesh routers and communicate with each other

via the multi-hop backbone network formed by the mesh routers.

The self-maintenance feature of WMNs and the low cost of wireless routers make

WMNs a promising technology for providing economic solutions for a wide range of

applications, such as broadband community wireless service, enterprise wireless net-

working, security surveillance, and emergency networking [5]. In addition, through

bridging and gateway functions of mesh routers, WMNs can be easily integrated

with other networks, such as Internet, cellular networks, wireless local area networks

(WLAN), wireless personal area networks (WPAN), wireless metropolitan area net-

Mesh Router

Mesh Client

Figure 1.1. An example wireless mesh network.
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works (WMAN), and sensor networks. As an example application, WMNs can be

easily deployed for providing broadband wireless access for a community or enter-

prise environment by having a few mesh routers serve as Internet gateways and other

mesh routers serve as relays [5]. Compared to the alternative approach of using cel-

lular networks, WMNs are much more economical and can support a much higher

bandwidth. Compared to the approach of using 802.11 WLANs, WMNs avoid the in-

convenience and cost of wiring, and thus are much more flexible and can be deployed

incrementally as needed. As another example, in the case of disaster or other emer-

gency scenario, infrastructure based communications, such as cellular networks, may

be destroyed or unavailable. By simply placing mesh routers at desired locations, a

WMN can be easily established, enabling communication among emergency response

teams [5]. Given the large number of potential applications, WMNs have attracted

tremendous interest from both academia and industry, and resulted in dedicated sub-

working groups in several industry standards groups, such as 802.11, 802.15, and

802.16 [6–8].

1.1 Motivation

Driven by the increasing demand for rich and high-speed content access, recent

research in WMNs has focused on developing high performance communication pro-

tocols, and given rise to two general design approaches, dynamic topology-aware adap-

tation and dynamic network coding. The main principle of dynamic topology-aware

adaptation is to improve performance by dynamically adjusting protocol structure to

accommodate the unstable nature of wireless links. Dynamic network coding, on the

other hand, improves performance by exploiting the broadcast nature of wireless com-

munication to effectively make use of the common occurrence of packet overhearing

in wireless networks. Both approaches have been adopted in a wide range of practical

systems, and demonstrated significant improvement in system performance.
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In contrast, in the quest for performance, security and robustness of system de-

sign have received relatively little attention. However, security is a primary concern

in wireless mesh networks. Firstly, wireless communication is inherently open: At-

tackers can easily set up rogue nodes to mount a wide variety of attacks, such as

eavesdropping, jamming, man-in-the-middle and spoofing. Secondly, software bugs,

mis-configurations, and easy physical access all make mesh routers easier to be sub-

verted by attackers and result in insider attacks. Finally, even in a benign environ-

ment, the variability and unpredictability of wireless signals and the susceptibility of

mesh routers to failures also demand for robust communication protocols that can

tolerate topology variations and even a certain level of mis-behavior.

The lack of consideration on security and robustness makes many proposed sys-

tems extremely vulnerable to attacks and mis-behavior, thus unsuitable for real-world

deployment. For example, in many proposed systems with dynamic topology-aware

adaptation, even a single mis-behaving node can cause an epidemic effect in the net-

work and result in a significant negative impact on the protocol performance.

Unfortunately, achieving security in wireless networks is much more challenging

than in wired networks, especially for protocols aiming at high performance. On the

one hand, wireless networks have a much more open communication environment and

are subjected to a much wider range of attacks; on the other hand, wireless networks

are much more limited in resource, thus only lightweight solutions can be applied. As

a consequence, many security protocols proposed for wired networks are inapplicable

in the wireless environment.

1.2 Dissertation Focus

This dissertation constitutes an effort to reconcile security and performance in

system designs for wireless networks and to pave the way towards secure and high

performance communications in WMNs. We focus on the security of two general

approaches in achieving high performance communication, dynamic topology-aware



4

adaptation and dynamic network coding, which can serve as key building blocks in

building a secure and high performance communication platform for WMNs. We

also study the design of security protocols in the user application layer, revealing key

differences in design principles as compared to wired networks.

In summary, the key contributions of this dissertation are as follows.

• Dynamic topology-aware adaptation is an important design methodology for

achieving for high performance communication for WMNs and has been incor-

porated in many practical system designs. Using a high performance multicast

protocol as a concrete and representative example, we analyze the security vul-

nerabilities of this approach, identify its security risks, and propose an effective

and lightweight solution to consolidate such systems. In particular, we identify

attacks that exploit the local estimation and global aggregation of the metric

to allow attackers to attract a large amount of traffic. We show that these

attacks are very effective against multicast protocols based on high-throughput

metrics, and conclude that aggressive path selection is a double-edged sword:

While it maximizes throughput, it also increases attack effectiveness in the ab-

sence of defense mechanisms. Our approach to defend against the identified

attacks combines measurement-based detection and accusation-based reaction

techniques. The solution accommodates transient network variations and is

resilient against attempts to exploit the defense mechanism itself. A detailed

security analysis of our defense scheme establishes bounds on the impact of

attacks. We demonstrate both the attacks and our defense using ODMRP,

a representative multicast protocol for wireless mesh networks, and SPP, an

adaptation of the well-known ETX unicast metric to the multicast setting.

• Network coding has emerged in recent years as a new communication paradigm

that can significantly improve the efficiency of network protocols for WMNs.

Several real-world systems have been proposed to leverage network coding in

wireless networks. Although the theoretical foundations of network coding are
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well understood, a real-world system needs to solve a plethora of practical as-

pects before network coding can meet its promised potential. These practical

design choices expose network coding systems to a wide range of attacks.

We identify two general frameworks (intra-flow and inter-flow network coding)

that encompass all existing network coding-based systems proposed in wireless

networks. Our systematic analysis of the components of these frameworks re-

veals vulnerabilities to a wide range of attacks, which may severely degrade

system performance. We then focus on addressing a severe security threat

against network coding systems, known as packet pollution attack. For intra-

flow network coding systems, we propose a lightweight defense scheme that

uses time-based authentication in combination with random linear transforma-

tions to efficiently filter out polluted packets. We also propose efficient attacker

identification schemes that enable quick attacker isolation and the selection of

attacker-free paths, achieving additional performance improvement. For inter-

flow network coding, we first perform a detailed analysis on the impact of pollu-

tion attacks and reveal that pollution attacks can result in complicated effects

on the data delivery that depend not only on the network topology, but also

on the location and strategy of the attacker nodes. We then propose a reactive

attestation-based defense mechanism that uses efficient bit-level traceback and

a novel cross-examination technique to unequivocally identify attacker nodes.

We perform detailed security analysis and extensive simulation experiments for

our defense mechanisms for both intra-flow and inter-flow coding systems. Our

analysis and experimental results show that our defense schemes effectively mit-

igate the impact of pollution attacks on realistic systems and yet incurs little

bandwidth and computation overhead.

• The wireless environment is vastly different from the wired environment, as such

many security schemes proposed for wired networks cannot be directly applied in

the wireless environment. In particular, we identify the importance of commu-
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nication locality in designing secure and efficient protocols for wireless networks.

To demonstrate this, we focus on the problem of ensuring data confidentiality

for group communications on WMNs. We analyse the different properties of the

traditional wired network environment and the WMN environment, and pro-

pose a new protocol framework that employs decentralized group membership,

promotes localized communication, and leverages the wireless broadcast na-

ture to achieve efficient and secure group communication on WMNs. We then

perform a detailed analysis and show that the decentralized design approach

can result in a significant improvement in both the bandwidth overhead and

protocol responsiveness compared to a centralized design approach. We also

demonstrate through simulation experiments that our proposed protocols pro-

vide good performance to the application layer and incur a significantly smaller

overhead than a baseline centralized protocol optimized for WMNs.

1.3 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we present

the network and security models that serve as the basis for the security schemes we

present. In Chapter 3, we describe in detail the threats in topology-aware adaptation

based protocols, and propose a lightweight reactive defense scheme that mitigates the

identified threats and increases robustness of such systems against malicious activities.

Chapter 4, Chapter 5, and Chapter 6 address security issues on the use of network

coding on wireless networks. In Chapter 4, we present two general frameworks for

applying network coding on wireless networks and perform a systematic analysis

to expose a wide range of vulnerabilities in existing network coding systems. We

then focus on the most severe attacks, packet pollution attacks, on network coding

systems. In Chapter 5 and Chapter 6, we address these attacks for both intra-

flow network coding and inter-flow network coding systems, respectively. We tackle

the application layer security in Chapter 7 by designing an efficient secure group
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communication protocol for WMNs. Finally, we conclude and present the future

directions in Chapter 8.
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2 SYSTEM AND ADVERSARIAL MODEL

In this chapter, we describe the general system model and adversarial model under

which we study the security of communication protocols for WMNs.

2.1 System Model

A wireless mesh network consists of a set of stationary wireless mesh routers

and a set of wireless mesh clients. Each mesh router is equipped with one or more

wireless transceivers. The radio range is insufficient to cover the entire deployment

area. Thus, to communicate with each other, mesh routers form a multi-hop wire-

less network and relay traffic for each other. We consider nodes are equipped with

omni-directional antennas, where a wireless transmission is always a broadcast in all

directions. Using omni-directional antennas is a common approach in current research

and actual deployment of wireless networks. In addition, compared to directional an-

tennas, omni-directional antennas have the advantage of easier deployment, as it does

not need careful aiming of antenna directions.

Each mesh client is associated with a mesh router, and communicates with other

mesh clients via the multi-hop network formed among the mesh routers. A mesh

client may be mobile, and the state of the client is maintained with a hand-off protocol

between mesh routers.

2.2 Adversarial Model

In general, the attacker nodes can be either outsider attackers, e.g. rogue wire-

less transceivers deployed by the attacker, or insider attackers, e.g. legitimate nodes

compromised by the attacker. For insider attackers, we assume the attackers have
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full control of the compromised node, in particular, the attacker has access to any

cryptographic keys stored in the node and can share the key with other attacker

nodes. The attackers can mount both passive and active attacks, such as eavesdrop-

ping, injecting, or modifying packets. The attackers may conduct their attacks either

individually or in collusion.

The attackers can also mount wireless-specific attacks, such as wormholes [9] or

flood rushing attacks [10]. In wormhole attacks, the attacker nodes establish fic-

titiously links between two distant nodes in order to distort the perception of the

network topology in honest nodes. To create the fictitious shortcut (wormhole) in

the network, attacker nodes tunnel packets between each other by using either out-

of-band channels, such as strong radio signal with directional antennas, or in-band

channels of the routing infrastructure of the network itself. The fictitious shortcuts

make the routes through the attacker node appear shorter, thus more appealing, than

they actually are. This allows the attacker nodes to gain considerable advantage in

attracting traffic in the network. Thereafter, the attacker nodes can either perform

passive attacks such as eavesdropping and traffic analysis, or active attacks such as

dropping or selectively dropping packets in order to mount denial-of-service attacks.

In flood rushing attacks, the attacker nodes forward packets faster than honest nodes.

For example, in a 802.11 network, the flood rushing attacks can be mounted by not

performing the random back-off as required by the MAC layer when forwarding pack-

ets. By “rushing” the packets, the attacker nodes create the impression of fast and

more appealing paths through themselves, allowing them to attract traffic and mount

attacks as in the wormhole attacks.

In this dissertation, we are primarily concerned with attacks at the network and

application layer. We assumes that adversaries do not have control on lower lay-

ers such as the physical or MAC layers. Physical layer attacks can be countered by

jamming-resilient techniques such as direct sequence spread spectrum (DSSS) or fre-

quency hopping spread spectrum (FHSS) [11], while the MAC layer can be protected

with more resilient MAC protocols, such as [12].
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3 ROBUST TOPOLOGY-AWARE ADAPTATION

In this chapter, we study the security implications of applying topology-aware adap-

tation protocol design in WMNs. Topology-aware adaptation is an important design

methodology for achieving high performance on multi-hop wireless networks. The key

principle of topology-aware adaptation protocols is to dynamically adjust the proto-

col structure to adapt to the current network condition by selecting data delivery

paths based on metrics that capture the quality of the wireless links. Examples of

such metrics include ETX [13], MTM [14], ETT [15], and [15–17]. We refer to such

metrics as link-quality metrics or high-throughput metrics, and to protocols using such

metrics as high-throughput protocols1.

In a typical high-throughput protocol, nodes periodically send probes to their

neighbors to measure the quality of their adjacent links. During route discovery, a

node estimates the cost of the path by combining its own measured metric of adjacent

links with the path cost accumulated on the route discovery packet. The path with

the best metric is then selected. High-throughput protocols require the nodes to

collaborate in order to derive the path metric, thus relying on the assumption that

nodes behave correctly during metric computation and propagation. However, this

assumption is difficult to guarantee in wireless networks that are vulnerable to attacks

coming from both insiders and outsiders, due to the open and shared nature of the

medium and the multi-hop characteristic of the communication. An aggressive path

selection introduces new vulnerabilities and provides the attacker with an increased

arsenal of attacks leading to unexpected consequences. For example, adversaries may

manipulate the metrics in order to be selected on more paths and to draw more traffic,

1Note that the term high-throughput protocols only refers to protocols that select paths based on
link quality. It is not necessary that a high-throughput protocol can deliver a high throughput (in
terms of kbps), which is determined by the wireless link bandwidth and source-destination distance,
etc.
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creating opportunities for attacks such as data dropping, mesh partitioning, or traffic

analysis.

Although there has been extensive work on using high-throughput metrics to

improve performance in wireless networks, work studying the security implications

of this choice is relatively scarce. Previous work primarily focused on vulnerabilities

of unicast routing protocols that use hop count as a metric [18–25]. Secure wireless

multicast was less studied, and the existing work [26, 27] focused primarily on using

hop count metric in tree-based protocols.

In this chapter, we present security mechanisms that enhances the robustness of

topology-aware adaptation in WMNs. To be concrete, we use a high throughput

multicast protocol, ODMRP-HT [28], as a representative example. High-throughput

multicast is also in its own right an important protocol to study due to the prolif-

eration of a wide range of multicast based services, such as multimedia conferencing

and video broadcasting. To the best of our knowledge, we are the first to examine

vulnerabilities of high-throughput metrics in general, and in multicast protocols for

WMNs in particular. We summarize our contributions in this work as follows:

• We identify a class of severe attacks against high-throughput protocols that

exploit the use of high-throughput metrics, including local metric manipulation

(LMM) and global metric manipulation (GMM). We show that aggressive path

selection is a double-edged sword: It leads to increased throughput, but it

also leads to devastating effects in the presence of attacks. For example, our

simulations show that in ODMRP-HT, the GMM attack requires only about a

quarter of the number of attackers needed by a simple data dropping attack to

create the same disruption in the multicast service.

• We identify a dangerous effect of the attacks, referred to as metric poisoning,

which causes many honest nodes to have incorrect metrics. Consequently, any

response mechanism cannot rely on poisoned metrics for local recovery and must
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either use a fallback procedure not relying on the metric or refresh the metric

before starting recovery.

• We propose a secure high-throughput multicast protocol S-ODMRP that incor-

porates a novel defense scheme RateGuard. RateGuard combines measurement

-based detection and accusation-based reaction techniques to address the metric

manipulation and packet dropping attacks. To prevent attackers from exploit-

ing the defense mechanism itself, RateGuard limits the number of accusations

that can be generated by a node. RateGuard also adopts a temporary accusation

mechanism that accommodates false positive accusations that may be caused

by transient network variations.

• We perform a detailed security analysis and establish bounds on the impact of

the attacks under our defense scheme. Extensive simulations with ODMRP-HT

confirm our analysis and show that our strategy is very effective in defending

against the attacks, while incurring a low overhead.

The rest of the chapter is organized as follows. In Section 3.1, we present the details

of high-throughput metrics and the ODMRP-HT high-throughput multicast proto-

col. In Section 3.2, we present attacks against high-throughput multicast protocols,

exploiting the vulnerabilities exposed by the use of high-throughput metrics. In Sec-

tion 3.3, we present our secure multicast routing protocol, S-ODMRP, with a novel

defense scheme RateGuard to accommodate high-throughput metrics. Section 3.4 and

Section 3.5 present the details of the security analysis and experimental evaluation

results of our proposed protocol. Finally, Section 3.6 presents the related work and

Section 3.7 concludes this chapter.

3.1 High-Throughput Mesh-Based Multicast Routing

We consider a multi-hop wireless network where nodes participate in the data for-

warding process for other nodes, as presented in Chapter 2. We assume a mesh-based
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multicast routing protocol, which maintains a mesh connecting multicast sources

and receivers. Path selection is performed based on a metric designed to maximize

throughput. Below, we provide an overview of high-throughput metrics for multicast,

then describe in details how such metrics are integrated with mesh-based multicast

protocols.

3.1.1 High-Throughput Metrics

Traditionally, routing protocols have used hop count as a path selection metric.

In static networks however, this metric was shown to achieve sub-optimal throughput

because paths tend to include lossy wireless links [13, 29]. As a result, in recent

years the focus has shifted toward high-throughput metrics that seek to maximize

throughput by selecting paths based on the quality of wireless links (e.g., ETX [13],

PP [17, 29], RTT [16]). In such metrics, the quality of the links to/from a node’s

neighbors is measured by periodic probing. The metric for an entire path is obtained

by aggregating the metrics reported by the nodes on the path.

Several high-throughput metrics for multicast were proposed in [28]. All of these

metrics are adaptations of unicast metrics to the multicast setting by taking into

account the fundamental differences between unicast and multicast communication.

Transmissions in multicast are less reliable than in unicast for several reasons. In uni-

cast, a packet is sent reliably using link-layer unicast transmission, which involves link-

layer acknowledgments and possibly packet retransmissions; in multicast, a packet is

sent unreliably using link-layer broadcast, which does not involve link layer acknowl-

edgments or data retransmissions. Moreover, unicast transmissions are preceded by

a RTS/CTS exchange; in multicast there is no RTS/CTS exchange, which increases

collision probability and decreases transmission reliability. Many metrics for unicast

routing minimize the medium access time, while metrics for multicast capture in

different ways the packet delivery ratio.
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All the high-throughput multicast metrics proposed in [28] showed improvement

over the original path selection strategy. The SPP metric [28], an adaptation of the

well-known ETX [13] unicast metric, was shown to outperform the other multicast

metrics [28, 30]. Thus, in the remainder of the paper and in our experimental evalu-

ation, we consider SPP for demonstrative purposes. Below, we first give an overview

of ETX, then show how it was extended to SPP.

ETX Metric. The ETX metric [13] was proposed for unicast and estimates the

expected number of transmissions needed to successfully deliver a unicast packet over

a link, including retransmissions. Each node periodically broadcasts probe packets

which include the number of probe packets received from each of its neighbors over

a time interval. A pair of neighboring nodes, A and B, estimate the quality of the

link A↔ B by using the formula ETX = 1
df×dr

, where df and dr are the probabilities

that a packet is sent successfully from A to B (forward direction) and from B to A

(reverse direction), respectively. The value of ETX for a path of k links between a

source S and a receiver R is ETXS→R =
∑k

i=1 ETXi, where ETXi is the ETX value

of the i-th link on the path; ETXS→R estimates the total number of transmissions by

all nodes on the path to deliver a packet from a source to a receiver.

SPP Metric. ETX was adapted to the multicast setting by Roy et al. in the

form of the SPP metric [28]. The value of SPP for a path of k links between a source

S and a receiver R is SPPS→R = Πk
i=1SPPi, where the metric for each link i on the

path is SPPi = df and df is defined as in ETX. The rationale for defining SPP as

above is twofold:

• Unlike in unicast, where a successful transmission over a link depends on the

quality of both directions of that link, in multicast only the quality of the

forward direction matters because there are no link layer acknowledgments.

The quality of a link A → B, as perceived by node B, is SPPi = df and

represents the probability that B receives a packet successfully from A over the

link A → B. Node B obtains df by counting the probes received from A over

a fixed time interval.
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• Also unlike unicast, in which the individual link metrics are summed, in multi-

cast they are multiplied. This reflects the fact that for SPP the probability of

a packet being delivered over a path from a source to a receiver is the product

of the probabilities that the packet is successfully delivered to each of the in-

termediate nodes on the path. If any of the intermediate nodes fails to receive

the packet, this causes the transmission for the entire route to fail, since there

are no retransmissions. SPPS→R (in fact 1/SPPS→R) estimates the expected

number of transmissions needed at the source to successfully deliver a packet

from a source to a receiver.

SPP takes values in the interval [0, 1], with higher metric values being better.

In particular, SPP = 1 denotes perfect reliability, while SPP = 0 denotes complete

unreliability.

3.1.2 High-Throughput Mesh-Based Multicast Routing

Multicast protocols provide communication from sources to receivers organized

in groups by establishing dissemination structures such as trees or meshes, dynami-

cally updated as nodes join or leave the group. Tree-based multicast protocols (e.g.,

MAODV [4]) build optimized data paths, but require more complex operations to

create and maintain the multicast tree, and are less resilient to failures. Mesh-based

multicast protocols (e.g., ODMRP [3]) build more resilient data paths, but have

higher overhead due to redundant retransmissions.

We focus on ODMRP as a representative mesh-based multicast protocol for wire-

less networks. Below we first give an overview of ODMRP, then describe how it can

be enhanced with any link-quality metric. The protocol extension to use a high-

throughput metric was first described by Roy et al. [28,30]. We refer to the ODMRP

protocol using a high-throughput metric as ODMRP-HT in order to distinguish it

from the original ODMRP [3] protocol.
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ODMRP Overview. ODMRP is an on-demand multicast routing protocol for

multi-hop wireless networks, which uses a mesh of nodes for each multicast group.

Nodes are added to the mesh through a route selection and activation protocol. The

source periodically recreates the mesh by flooding a Join Query message in the

network in order to refresh the membership information and update the routes. We

use the term round to denote the interval between two consecutive mesh creation

events. Join Query messages are flooded using a basic flood suppression mechanism,

in which nodes only process the first received copy of a flooded message.

When a receiver node gets a Join Query message, it activates the path from itself

to the source by constructing and broadcasting a Join Reply message that contains

entries for each multicast group it wants to join; each entry has a next hop field

filled with the corresponding upstream node. When an intermediate node receives a

Join Reply message, it knows whether it is on the path to the source or not, by

checking if the next hop field of any of the entries in the message matches its own

identifier. If so, it makes itself a node part of the mesh (the Forwarding Group)

and creates and broadcasts a new Join Reply built upon the matched entries.

Once the Join Reply messages reach the source, the multicast receivers become

connected to the source through a mesh of nodes (the Forwarding Group) which

ensures the delivery of multicast data. While a node is in the Forwarding Group,

it rebroadcasts any non-duplicate multicast data packets that it receives.

ODMRP takes a “soft state” approach in that nodes put a minimal effort to

maintain the mesh. To leave the multicast group, receiver nodes are not required

to explicitly send any message, instead they do not reply to Join Query messages.

Also, a node’s participation in the Forwarding Group expires if its forwarding-

node status is not updated.

ODMRP-HT. We now describe ODMRP-HT, a protocol that enhances ODMRP

with high-throughput metrics in the path selection process. The main differences

between ODMRP-HT and ODMRP are: (1) instead of selecting routes based on

minimum delay (which results in choosing the fastest routes), ODMRP-HT selects
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Figure 3.1. An example of ODMRP-HT mesh creation for a multicast
group with 2 sources (S1, S2) and 6 receivers (R1, . . . , R6). The label
on each link represents the value of the link’s SPP metric.

routes based on a link-quality metric, and (2) ODMRP-HT uses a weighted flood

suppression mechanism to flood Join Query messages instead of using a basic flood

suppression.

As required by the link-quality metric, each node measures the quality of the

links from its neighbors to itself, based on the periodic probes sent by its neighbors.

The Join Query message is flooded periodically by a source S and contains a route

cost field which accumulates the metric for the route on which the message travelled.

Upon receiving a Join Query, a node updates the route cost field by accumulating

the metric of the last link travelled by the message. Because different paths may

have different metrics, Join Query messages are flooded using a weighted flood sup-

pression mechanism, in which a node processes flood duplicates for a fixed interval

of time and rebroadcasts flood messages that advertise a better metric (indicated by

the route cost field)2. Each node also records the node from which it received the

Join Query with the best quality metric as its upstream node for the source S.

After waiting for a fixed interval of time, during which it may receive several

Join Query packets that contain different route metrics, a multicast receiver records

2Several studies [27,30] show that the overhead caused by rebroadcasting some of the flood packets
is reasonable, validating the effectiveness of this weighted flood suppression strategy.
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as its upstream for source S the neighbor that advertised the Join Query with the

best metric. Just like in ODMRP, the receiver then constructs a Join Reply packet,

which will be forwarded towards the source on the optimal path as defined by the

metric and will activate the nodes on this path as part of the Forwarding Group.

In Figure 3.1 we give an example of how ODMRP-HT selects the mesh of nodes in

the Forwarding Group based on the SPP link-quality metric.

3.2 Attacks against High-Throughput Multicast

In this section, we present attacks against high-throughput multicast protocols.

In particular, we focus on attacks that exploit vulnerabilities introduced by the use

of high-throughput metrics. These attacks require little resource from the attacker,

but can cause severe damage to the performance of the multicast protocol. We first

present the adversarial model, followed by the details of the attacks.

3.2.1 Adversarial Model and Goal

We consider the adversarial model as described in Chapter 2. In particular, ma-

licious nodes may exhibit Byzantine behavior, either alone or in collusion with other

malicious nodes. We refer to any arbitrary action by authenticated nodes deviating

from protocol specification as Byzantine behavior, and to such an adversary as a

Byzantine adversary. Examples of Byzantine behavior include: Dropping, injecting,

modifying, replaying, or rushing packets, and creating wormholes. We consider at-

tacks that aim to cause denial-of-service (DoS) on the multicast data delivery, and

do not consider other attack goals such as traffic analysis, eavesdropping, or selfish

attacks where attackers refuse to participate in the multicast protocol for other nodes.

As presented in Chapter 2, we assume that adversaries do not have control on

the physical or MAC layers, which can be protected with with jamming-resilient

techniques such as frequency hopping and a more resilient MAC (e.g., [31]). We
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also do not consider the Sybil attack, which can be addressed using techniques such

as [32,33], complementary to our protocol.

3.2.2 Attacks

In general, the attacker can achieve the goal of disrupting the multicast data deliv-

ery by either exhausting network resource (resource consumption attacks), by causing

incorrect mesh establishment (mesh structure attacks), or by dropping packets (packet

dropping attacks). The packet dropping attack is straightforward: The attacker node

on the data delivery path simply drops data packets instead of forwarding them. We

describe next resource consumption and mesh structure attacks.

Resource consumption attacks

ODMRP-HT floods Join Query messages in the entire network, allowing an at-

tacker to inject either spoofed or its own legitimate Join Query messages at a high

frequency to cause frequent network-wide flooding. The attacker can also activate

many unnecessary data paths by sending many Join Reply messages to cause un-

necessary data packet forwarding. Finally, the attacker can inject invalid data packets

to be forwarded in the network.

If the attackers are insider nodes, an effective attack is to establish a legitimate

group session with high data rate in order to deprive the network resource from

honest nodes. Addressing such an attack requires admission control mechanisms

(e.g. [34]), which can limit the admission and duration of such groups. However, such

mechanisms are out of the scope of this paper and are not considered further.
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Mesh structure attacks

Mesh structure attacks disrupt the correct establishment of the mesh structure in

order to disrupt the data delivery paths. These attacks can be mounted by malicious

manipulation of the Join Query and Join Reply messages.

For the Join Query messages, the attacker can spoof the source node and inject

invalid Join Query messages, which can cause paths to be built toward the attacker

node instead of the correct source node. The attackers may also act in a selfish manner

by dropping Join Query messages, which allows them to avoid participation in the

multicast protocol. Since Join Query messages are flooded in the network, unless

the attacker nodes form a vertex cut in the network, they cannot prevent legitimate

nodes from receiving Join Query messages. Finally, the attacker may also modify

the accumulated path metrics in the Join Query messages incorrectly. Such metric

manipulation attacks can pose a severe threat to the correctness of path establishment,

and are discussed in more detail in the next section.

For the Join Reply messages, the attacker can drop Join Reply messages to

cause its downstream nodes to be detached from the multicast mesh. The attacker

can also forward Join Reply to an incorrect next hop node to cause an incorrect

path being built.

In many of the above attacks the power of the attacker relates directly to its ability

to control the mesh structure and to be selected on paths. For example, if the attacker

is on the path of many receivers, the attacker can affect many receivers by dropping the

Join Reply messages or the data packets. Traditionally, such ability is achieved via

wireless-specific attacks such as rushing and wormholes. The use of high-throughput

metrics gives attackers additional opportunities to manipulate the mesh structure by

manipulating the routing metric. Rushing and wormholes are general attacks against

wireless routing protocols that have been studied extensively [9, 10,35,36]. We focus

below on metric manipulation attacks, which require only little effort to execute, yet
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are extremely detrimental to the protocol performance; such attacks have not been

studied before.

3.2.3 Metric Manipulation Attacks

As discussed in Section 3.1, multicast protocols using high-throughput metrics

prefer paths to the source that are perceived as having high-quality, while trying to

avoid low-quality paths. Thus, a good strategy for an attacker to increase its chances

of being selected in the Forwarding Group is to advertise artificially good metrics

for routes to the source.

The use of high-throughput metrics requires each node to collect local information

about its adjacent links based on periodic probes from its neighbors. This local

information is accumulated in Join Query packets and propagated in the network,

allowing nodes to obtain global information about the quality of the routes from

the source. Adversaries can execute two types of metric manipulation attacks: local

metric manipulation (LMM) and global metric manipulation (GMM). These attacks

are Byzantine in nature, as they are conducted by nodes that have the credentials to

participate in the routing protocol, but are under adversarial control.

Local Metric Manipulation (LMM) Attacks. An adversarial node artificially

increases the quality of its adjacent links, distorting the neighbors’ perception about

these links. The falsely advertised “high-quality” links will be preferred and malicious

nodes have better chances to be included on routes.

A node can claim a false value for the quality of the links towards itself. In

Figure 3.2 a malicious node C1 claims that SPPB1→C1 = 0.9 instead of the correct

metric of 0.6. Thus, C1 accumulates a false local metric for the link B1 → C1 and

advertises to R the metric SPPS→C1 = 0.9 instead of the correct metric SPPS→C1 =

0.6. The route S-A1-B1-C1-R will be chosen over the correct route S-A3-B3-C3-R.

Global Metric Manipulation (GMM) Attacks. In a GMM attack, a mali-

cious node arbitrarily changes the value of the route metric accumulated in the flood
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Figure 3.2. Metric manipulation attack during the propagation of the
flood packet from the source S to receiver R. A label above a link
is the link’s real SPP metric; a label below a link is the link’s metric
falsely claimed by a node executing a LMM attack; a label below a
node is the accumulated route metric advertised by the node.

packet, before rebroadcasting this packet. A GMM attack allows a node to manipu-

late not only its own contribution to the path metric, but also the contributions of

previous nodes that were accumulated in the path metric. For example, in Figure 3.2

attacker C2 should advertise a route metric of 0.25, but instead advertises a route

metric of 0.9 to node R. This causes the route S-A2-B2-C2-R to be selected over the

correct route S-A3-B3-C3-R.

3.2.4 Impact of Metric Manipulation Attacks on Routing

The danger of metric manipulation attacks comes from the epidemic attack prop-

agation due to the epidemic nature of metric derivation. As a result, even a few

number of attackers can “poison” the metrics of many nodes in the network and cre-

ate powerful blackholes that attract and control the traffic to many receivers. We

exemplify these effects with the scenario in Figure 3.3.

When no attackers are present (Figure 3.3(a)), nodes B,C and D are activated as

part of the Forwarding Group. Consider that node A executes a metric manipu-
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Figure 3.3. Metric manipulation attack in a network with one source
(S), two receivers (R1, R2) and one attacker (A). The label on each
link represents the value of the link’s SPP metric.

lation attack (Figure 3.3(b)): Upon receiving the Join Query, node A changes the

metric and advertises a perfect metric with value 1. Consequently, node C derives an

incorrect metric of 0.9, and then propagates it to its neighbors, causing them to derive

an incorrect metric as well. Both receivers R1 and R2 are also “attracted” to the at-

tacker and only nodes B and C will be selected as part of the Forwarding Group.

The net effect is that both R1 and R2 are disconnected from the source.

Besides distorting path establishment for data delivery, a severe side effect of

the attack is that it introduces a significant challenge for attack recovery. As the

epidemic nature of metric poisoning causes the metric of many nodes to be incorrect,

these metrics cannot be used for attack recovery even after the attacker is identified.

Instead, one has to either resort to a fallback procedure not using the metric or refresh

the metric of all the nodes in the network in a trustworthy manner before recovery.

3.3 Secure High-Throughput Multicast Routing

In this section, we present our secure multicast routing protocol, S-ODMRP, with

a novel defense scheme RateGuard to accommodate high-throughput metrics.
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3.3.1 Authentication Framework

We assume that each user authorized to be part of the mesh network has a pair

of public and private keys and a client certificate that binds its public key to a

unique user identifier. This defends against external attacks from nodes that are not

part of the network. We assume source data is authenticated, so that receivers can

distinguish authentic data from spurious data. Efficient source data authentication

can be achieved with existing schemes such as TESLA [37]. Finally, we assume the

existence of a secure neighbor discovery scheme [38].

3.3.2 S-ODMRP Overview

S-ODMRP ensures the delivery of data from the source to the multicast receivers

even in the presence of Byzantine attackers, as long as the receivers are reachable

through non-adversarial paths. To achieve this goal, S-ODMRP uses a combination

of authentication and rate limiting techniques against resource consumption attacks

and a novel technique, RateGuard, against the more challenging packet dropping and

mesh structure attacks, including metric manipulations and Join Reply dropping.

S-ODMRP uses source message authentication to avoid processing bogus mes-

sages injected by the attacker. This eliminates a large class of attacks, including

outsider attacks, message spoofing and modification attacks targeting Join Query

and Join Reply messages, and the injection of corrupted data packets.

Even with message authentication, an insider attacker can still mount the resource

consumption attack by flooding Join Query messages frequently with itself as the

source. Such an attack can be countered by rate limiting, for example, a honest node

only forwards Join Query messages for a source node up to a maximum frequency.

To address the resource consumption attack in which the attacker activates many

unnecessary data delivery paths by injecting many Join Reply messages, we can

limit to at most one the number of Join Reply messages a node may send in one

round. Each node monitors the number of different signed Join Reply messages



25

that originate from its neighbors. If a node is observed to have broadcast two or more

different signed Join Reply messages, then punitive actions can be taken against the

node (e.g., isolation).

The attacks on the mesh structure and packet dropping attacks are much more

challenging to defend against, particularly in the context of high-throughput metrics.

In the following, we focus on defending against these attacks. We will first present

the high level overview of our defense scheme, RateGuard, and then present the details

of S-ODMRP with the RateGuard scheme.

3.3.3 RateGuard Overview

RateGuard relies on the observation that regardless of the attack strategy, either

by dropping Join Reply, metric manipulations, or by dropping packets, attackers do

not affect the multicast protocol unless they cause a drop in the packet delivery ratio

(PDR). We adopt a reactive approach in which attacker nodes are detected through

a measurement-based detection protocol component, and then isolated through an

accusation-based reaction protocol component. Next we describe these two compo-

nents.

Measurement-based attack detection. Whether by packet dropping alone

or by combining it with with metric manipulation to attract routes, the effect of

an attack is that data is not delivered at a rate consistent with the advertised path

quality. We propose a generic attack detection strategy that relies on the ability of

honest nodes to detect the discrepancy between the expected PDR (ePDR) and the

perceived PDR (pPDR). A node can estimate the ePDR of a route from the value of

the metric for that route3; the node can determine the pPDR for a route by measuring

the rate at which it receives data packets from its upstream on that route4.

3For the SPP metric, a route’s ePDR is equal to the route’s metric.
4Source data authentication allows nodes to distinguish authentic packets from spurious ones and
only authentic packets are counted towards pPDR.
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Both Forwarding Group nodes and receiver nodes monitor the pPDR of their

upstream node. If ePDR−pPDR for a route becomes larger than a detection threshold

δ, then nodes suspect that the route is under attack because the route failed to deliver

data at a rate consistent with its claimed quality5.

Accusation-based attack reaction. We use a controlled-accusation mechanism

in which a node, on detecting malicious behavior, temporarily accuses the suspected

node by flooding in the network an Accusation message containing its own identity

(the accuser node) and the identity of the accused node, as well as the duration of the

accusation. As long as the accusation is valid, metrics advertised by an accused node

will be ignored and the node will not be selected as part of the Forwarding Group.

This strategy also successfully handles attacks against path establishment. From the

downstream node point of view, the dropping of a Join Reply message causes exactly

the same effect as the attacker dropping all data packets, thus the downstream nodes

will react and accuse the attacker.

To prevent the abuse of the accusation mechanism by attackers, a node is not

allowed to issue a new accusation before its previously issued accusation expires.

Accused nodes can still act as receivers even though they are excluded from the

Forwarding Group. We use a temporary accusation strategy to cope with tran-

sient network variations: The accusation duration is calculated to be proportional to

the observed discrepancy between ePDR and pPDR, so that accusations caused by

metric inflation and malicious data dropping last longer, while accusations caused by

transient network variations last shorter.

Finally, to address the metric poisoning effect caused by metric manipulation

attacks, the metric in the entire network is refreshed shortly after attack detection.

In S-ODMRP, the metric refreshment is achieved automatically through the periodic

Join Query messages.

5Note that the rate inconsistency may also be caused by natural link quality variations. We do not
differentiate between losses caused by adversarial behavior and natural link variations because lossy
links must also be avoided in order to maintain a good performance level.
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Sign(m): sign message m using this node’s private key
Verify(n id, sig): verify the signature sig using node n id’s public key and exit
the procedure if the verification fails
Start timer(timer, t): start timer timer with timeout t
Refresh timer(timer, t): if timer is not active, then call Start timer(timer, t); oth-
erwise, set timeout of timer to t
Broadcast(m): broadcast message m one hop
Flood(m): flood message m in the entire network
Send message(m, n id): reliably send message m to neighbor n id
Link metric(n id): return the measured link metric to neighbor n id
Get best metric(query set): return the best metric of all queries in the set
query set, regardless of accusation status
Get neighbor best metric(query set): return the neighbor that has the best met-
ric in the set query set, regardless of accusation status

Figure 3.4. Basic procedures used in the S-ODMRP protocol description

3.3.4 S-ODMRP Detailed Description

To describe S-ODMRP in detail, we use the list of procedures described in Fig-

ure 3.4. For simplicity, we limit the description to one multicast group and one

multicast source. However, the scheme can easily be extended to multicast groups

with multiple sources.

Mesh Creation

S-ODMRP mesh creation follows the same pattern of ODMRP-HT presented in

Section 3.1.2. As described in Algorithm 1, the source node S periodically broadcasts

to the entire network a Join Query message in order to refresh the membership

information and to update the routes (Lines 1-5). The Join Query message is

signed by S and is propagated using a weighted flood suppression mechanism. Nodes

only process Join Query messages that have valid signatures (Line 8) and that are

received from nodes not currently accused (indicated by an Accusation List main-

tained by each node) (Lines 18-19). Nodes record the upstream node and the metric
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corresponding to the route with the best metric as best upstream and best metric

(Line 23).

The Join Reply messages are then sent from receivers back to S along opti-

mal paths as defined by the high-throughput metric, leading to the creation of the

Forwarding Group (the multicast mesh) for data delivery (Lines 28-29). After

sending a Join Reply to its best upstream, a node starts to monitor the PDR from

its best upstream in order to measure its perceived PDR (pPDR) (Line 38).

To address attackers that strategically accuse certain nodes in order to disconnect

the network, we make one exception from the rule that only non-accused nodes are

included in the Forwarding Group: If the best metric is advertised by an accused

neighbor, a node also activates this neighbor (by sending a Join Reply) in addition

to the best non-accused neighbor (Lines 39-39). This ensures that good paths are

still utilized, even if honest nodes on these paths are falsely accused. In Section 3.5.5,

we show that this strategy only adds a very low overhead.

Attack Detection

As described in the protocol overview, we detect attacks using a measurement-

based mechanism, where each Forwarding Group and receiver node continuously

monitors the discrepancy between ePDR and pPDR and flags an attack if ePDR −

pPDR > δ.

The most straightforward method for estimating pPDR is to use a sliding window

method, with pPDR calculated as pPDR = r/w, where r is the number of packets

received in the window and w is the number of packets sent by the source (derived

from packet sequence numbers) in that window. Albeit being simple, this method

is sensitive to bursty packet loss. In addition, this approach requires a node to wait

until at least w packets are sent in a round before being able to make any decision.

Therefore, setting w too large causes delay in making decisions, whereas setting w too

small results in inaccurate pPDR estimation and hence more frequent false positives.
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Algorithm 1: Mesh creation algorithm
Executed at the source node to initiate a new Join Query message:
1: create a Join Query message q
2: q.source = source id; q.from = source id
3: q.path metric = 1; q.seq = join seq
4: join seq + +
5: Sign(q); Broadcast(q)

Executed at a node upon receipt of a Join Query message q:
6: if (latest received join seq > q.seq) then
7: return // ignore old queries
8: Verify(q.from, q.sig)
9: get new query = FALSE

10: if (latest received join seq < q.seq) then
11: // get a new (non-duplicate) query
12: latest received join seq = q.seq
13: best metric = 0
14: best upstream = INVALID NODE
15: fastest upstream = q.from // for fallback recovery
16: get new query = TRUE
17: received queries.insert(q) // store the query
18: if (accusation list.contains accused node(q.from)) then
19: q.path metric = 0
20: else
21: q.path metric = q.path metric× Link metric(q.from)
22: if (get new query OR q.path metric > best metric) then
23: best upstream = q.from; best metric = q.path metric;
24: q.from = node id
25: Sign(q); Broadcast(q)
26: if (get new query AND is receiver) then
27: Start timer(reply timer,REPLY TIMEOUT)

Executed at a node upon timeout of reply timer:
28: Send reply()

Executed at a node upon receipt of a Join Reply message r:
29: if (latest received reply seq < r.seq) then
30: latest received reply seq = r.seq
31: Refresh timer(FG timer,FG TIMEOUT)
32: if (not is receiver) then
33: Send reply()

Send reply()
34: create a Join Reply message r
35: r.seq = latest received join seq
36: Send message(r, best upstream)
37: if (best metric > 0) then
38: start monitoring the PDR of best upstream
39: if (Get best metric(received queries) > best metric) then
40: // Activate the accused neighbor with best metric
41: Send message(r,Get neighbor best metric(received queries))
42: received queries.clear() // purge stored queries
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In general, it is difficult to determine the optimal value for w, as it depends on the

network conditions and the specific position of a node. To avoid these shortcomings,

we propose an efficient statistical-based estimation method for pPDR that naturally

adapts to the network environment of each node.

The main idea is to use the Wilson estimate [39] to determine a confidence interval

for pPDR, instead of trying to obtain a single estimated value. Let m be the number

of packets received by a node and n be the number of packets sent by the source in the

same time period, which can be derived from packet sequence numbers. The Wilson

estimate requires that n ≥ 5 [39], so whenever n ≥ 5, we can obtain a confidence

interval for pPDR as (p̂− e, p̂+ e), where

p̂ =
m+ 2

n+ 4
and e = z

√
p̂(1− p̂)
n+ 4

.

We assign z = 1.96 to obtain the commonly used confidence level of 95%. An attack

is detected if the upper bound of the confidence interval for pPDR is less than the

estimated PDR even after accounting for normal network variations, i.e., if:

p̂+ e < ePDR− δ,

where δ is the estimated PDR discrepancy under normal network conditions. In this

method, the exact number of packets required for attack detection naturally adapts

to the path quality and the severity of the attack. In addition, there is a precise level

of confidence on the accuracy of our estimation. This method has the advantage that

it applies for both constant rate and variable rate data sources.

Addressing silent periods. If a node fails to receive any data packets in a round,

the above method will be not able to compute the confidence interval of pPDR for its

upstream node, since the value of n is derived from sequence numbers contained in

received packets. We address this issue by including the current data sequence number

in Join Query packets, which are periodically flooded in the network. Thus, unless

a node does not have any adversarial-free path to the source, it can always obtain the

current data sequence number and compute the pPDR confidence interval to detect

attacks.



31

Attack Reaction

To isolate attackers, our protocol uses a controlled-accusation mechanism which

consists of three components, staggered reaction timeout, accusation message propa-

gation and handling, and recovery message propagation and handling.

As described in Algorithm 2, when a node detects attack behavior, it starts a

React Timer with timeout value β(1 − ePDR), where β is a system parameter that

determines the maximum timeout for reaction timer (Line 1). Since ePDR decreases

monotonically along a multicast data path, nodes farther away from the source will

have a larger timeout value for the React Timer. This staggered timeout technique

ensures nodes immediately below the attacker will take action first, before any of their

downstream nodes mistakenly accuse their upstream node. When the React Timer of

a node N expires, N accuses its best upstream node and cancels the React Timer at

its downstream nodes with the following actions:

• Create, sign, and flood an Accusation message in the network, which contains

N ’s identity (the accuser node) and the identity of N ’s best upstream node (the

accused node). The message also contains a value accusation time = α(ePDR−

pPDR), indicating the amount of time the accusation lasts (Lines 8-13). α is a

tunable system parameter that determines the severity of attack punishment.

• Create, sign, and send to its downstream nodes a Recovery message, which

contains the Accusation message (Lines 15-18). This message serves the role

of canceling the React Timer of nodes in N ’s subtree and activating the fallback

procedure at the receivers in N ’s subtree (see Section 3.3.4).

Upon receipt of an Accusation message, a node checks if it does not have an

unexpired accusation from the same accuser node and verifies the signature on the

message. This enforces our limited accusation mechanism, which allows nodes to

only have one active accusation at a time. If both checks pass, the node adds a

corresponding entry to its Accusation List (Lines 20-23). Accusations are removed

from the Accusation List after the accusation time has elapsed.
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Algorithm 2: Attack reaction algorithm
On detecting a discrepancy between ePDR and pPDR:
1: Start timer(React Timer, β(1− ePDR)

Executed at node on timeout of React Timer:
2: if (is receiver) then
3: create salvage message ss // fallback
4: Send message(ss, fastest upstream)
5: if (accusation list.contains accuser node(node id)) then
6: return // each node can only accuse once
7: // create and flood accusation message
8: create accusation message acc
9: acc.accused = best upstream

10: acc.accuser = node id
11: acc.accusation time = α(ePDR− pPDR)
12: accusation list.add(acc)
13: Sign(acc); Broadcast(acc)
14: // send recovery message to the subtree
15: create recovery message rr
16: rr.accusation = acc
17: Sign(rr)
18: for each downstream node d do
19: Send message(rr, d)

Executed at a node on receipt of an accusation message acc:
20: if (accusation list.contains accuser node(acc.accuser)) then
21: return // only allow one accusation from a node at a time
22: Verify(acc.accuser, acc.sig)
23: accusation list.add(acc)
24: Broadcast(acc)

Executed at a node on receipt of a recovery message rr:
25: if (handled recovery messages.contains(rr)) then
26: return // ignore duplicate recovery
27: if (accusation list.contains accuser node(rr.acc.accuser)

OR rr.acc.accusation time < α(ePDR− pPDR)) then
28: return // ignore recovery mesage if the accuser has an unexpired accusation or if the

accused time is inconsistent
29: Verify(rr)
30: handled recovery messages.insert(rr)
31: if (React Timer is active) then
32: cancel React Timer
33: for each downstream node d do
34: Send message(rr, d)
35: if (is receiver) then
36: create salvage message ss // fallback
37: Send message(ss, fastest upstream)

Executed at a node on receipt of a salvage message ss:
38: Refresh timer(FG timer,FG TIMEOUT)
39: Send message(ss, fastest upstream)
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Upon the receipt of a Recovery message rr from its best upstream node, a

Forwarding Group node N checks if it does not have an unexpired accusation

from the same accuser node and verifies the signature on the message. In addition,

the node also checks that the accusation time in the message is at least as much as

its own observed discrepancy (the ePDR−pPDR value) (Lines 27-27). This prevents

attackers who cause a large PDR drop from bypassing our defense by accusing its

upstream node only for a short amount of time. If all checks pass, it cancels its

pending React Timer, forwards rr to its downstream nodes (Lines 31-33), and if it is

a receiver, activates the recovery procedure (Lines 35-35) (see below).

Avoiding redundant accusations. Typically, an attacker node will attract

many honest neighbor nodes to connect to it. In order to avoid all the neighboring

nodes accusing the same attacker node and losing their accusing ability, we require

each of the neighboring nodes to add a random jitter before flooding its accusation

message. If a neighboring node receives an accusation message accusing the same

node it is about to accuse, it aborts its pending accusation. If the node is required

to send a Recovery message to its downstream, it includes the received accusation

message in Recovery instead of its own accusation message.

Fallback Recovery

The accusation mechanism ensures that when the metric is refreshed in the round

after the attack detection, the accused nodes are isolated. However, during the round

when an attack is detected, the receiver nodes in the subtree of the attacker need

to find alternative routes to “salvage” data for the rest of the round. As shown

in Section 3.2.3, a side effect of metric manipulation attacks is metric poisoning,

which prevents recovery by relying on the metrics in the current round. We address

this inability by falling back to the fastest route for routing during the remainder

of the round6. Specifically, during the Join Query flooding, besides recording the

6The strategy is not attack-proof, as the fastest route may include malicious nodes. However, since
the route is only used for the remainder of the round, we prefer to use an efficient procedure than
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best upstream node, each node also records the upstream for the fastest route as

fastest upstream (Algorithm 1, line 15). To recover from an attack, a receiver sends

a special Join Reply message (a salvage message) to its fastest upstream node (Al-

gorithm 2, lines 2-2 and 35-35). Each node on the fastest route forwards the spe-

cial Join Reply message to their fastest upstream node and becomes part of the

Forwarding Group (Algorithm 2, lines 38-39).

3.3.5 Impact of False Positives

Even though our defense scheme takes into account normal network variations with

the parameter δ, it is still possible that some honest nodes are mistakenly accused.

We argue that such false positive accusations have little impact on the performance

of the system for two main reasons. First, under most cases honest nodes cause only

a small discrepancy on the PDR, thus even if mistakenly accused, their accusation

duration is relatively short. Second, for most receivers there are redundant paths to

the source. Thus, even if some honest nodes are wrongly accused, affected receiver

nodes can obtain a similar performance by using nearby alternate routes.

3.3.6 Practical Implementation Issues

Parameter Selection

S-ODMRP has three tunable parameters, the attack detection threshold δ, the

coefficient for accusation duration α, and the coefficient for React Timer β.

The selection of δ trades off tolerance to normal network variations with sensitivity

of the scheme to attacks. A larger value for δ reduces false positives of accusing honest

nodes, however, it also allows attackers to inflict more impact without being detected.

An optimal value for δ is the estimated normal network variation, i.e. the sum of

the PDR discrepancy under normal network conditions and the error in estimating

to find attacker-free paths, which is itself a challenging task and requires expensive protocols [25].
We further discuss in Section 3.4.1 and 3.4.2 the impact of attacks against the recovery phase.
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ePDR from the advertised metric. Our experiments show that a typical value for δ

is 20%.

The value for α trades off the effectiveness of the scheme in isolating attacker

nodes and the severity of isolating honest nodes due to false positives. In a stable

network where the number of false positives is small, or in a dense network where the

impact of false positives is small due to path redundancy, it is advisable to have a

large value for α in order to reduce the impact of attacks. In Section 3.4.1, we give

lower bounds for α in order for the scheme to bound the impact of attacks effectively.

The value for β trades off the attack reaction delay and the effectiveness of the

staggered reaction timeout technique for preventing honest nodes from mistakenly

accusing each other. A smaller β results in quicker attack reaction, however, it also

results in a smaller difference in the reaction timeout value for consecutive nodes

on a path, increasing the chance of honest nodes being mistakenly accused. In our

experiments, we find β = 20ms achieves a good balance between these two effects.

Ensuring Staggered Timeouts for Reaction Timers

To avoid honest nodes mistakenly accusing each other, it is critical that we ensure

the React Timer at a downstream node does not expire before the node receives a

recovery message from its upstream node. Denote the link latency as t, and the

estimated PDR of two consecutive nodes on a path as ePDR1 and ePDR2. The

React Timer timeout value for the two nodes is TO1 = β(1 − ePDR1) and TO2 =

β(1− ePDR2). We need to ensure TO2 − TO1 > t, that is,

β(1− ePDR2)− β(1− ePDR1) > t,

hence ePDR2 < ePDR1 − t/β. Therefore, to ensure staggered reaction timeout, we

require a node artificially decreases its advertised metric if necessary so that its ePDR

is at least t/β smaller than the ePDR of its upstream node.
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3.4 S-ODMRP Security Analysis

In this section, we analyze the security of the S-ODMRP protocol and establish

bounds on the attack impact and on protocol resilience to various types of attacks.

3.4.1 Attack Impact

We upper bound the attack impact on the throughput of S-ODMRP. We first give

a precise definition of the attack impact. We then present two theorems that upper

bound the attack impact and discuss their practical implications.

Let N denote the network of interest with k attacker nodes. We define N ′ as the

exact same network as N , except that all the attacker nodes are removed. For a given

non-attacker receiver node R, let rR(t) and r′R(t) be the perceived PDR of R at time

t in network N and N ′, respectively. We define IR, the attack impact on a node R,

as

IR =
1

t1 − t0

∫ t1

t0

(r′R(t)− rR(t))dt,

where t0 and t1 are the start and end times for the interval of interest. Intuitively, the

attack impact is the average PDR degradation caused by the presence of attackers

over time compared to a network with no attackers. Alternatively, the attack impact

captures the discrepancy between a given defense scheme and a hypothetical perfect

defense scheme where all the attackers nodes are perfectly isolated.

Recall that δ denotes the attack detection threshold and α denotes the accusation

duration coefficient. Also, recall that a round is an interval between two consecutive

mesh creation events. We use λ to denote the time duration of a round. In the

following, we show two theorems that bound the attack impact of metric manipulation

attackers (colluding or individual) on any non-attacker receiver node in the presence

of our defense mechanisms.
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Theorem 3.4.1 In a network with k metric manipulation attackers, for any α ≥ kλ
δ2

,

the attack impact on any non-attacker receiver node in S-ODMRP is upper bounded

by δ during any time interval of duration T � α.

Implications of Theorem 3.4.1. According to Theorem 3.4.1 for large enough

α, the impact of metric manipulation attacks is bounded by the attack detection

threshold δ. For example, with δ = 20%, round duration of λ = 3 seconds, and

a total of 10 attackers, according to Theorem 3.4.1, we can set α ≥ 750 seconds

to ensure the attack impact on any non-attacker receiver node is bounded by δ.

Theorem 3.4.1 assumes the attacker nodes can coordinate perfectly and completely

disrupt the fallback procedure, thus it gives an upper bound on the impact of the

attack.

Theorem 3.4.2 In a network with k metric manipulation attackers, if S-ODMRP

uses a fallback procedure that restores the PDR to the same level as in a benign

network, then for any α ≥ kλ
δ

, the attack impact on any non-attacker receiver node is

upper bounded by δ during any time interval of duration T � α.

Implications of Theorem 3.4.2. In Theorem 3.4.2, we see that if we assume

the ideal case where the fallback procedure is always able to restore the data rate to

the normal level, then we can bound the attack impact under δ with a much smaller

value for the accusation duration α. For example, with the same settings of δ and λ

as above, we only need to set α ≥ 150 seconds.

The fallback recovery procedure uses fastest paths to recover data after attack

detection. Assuming resilience against rushing attacks, the attackers cannot attract

the recovery paths toward incorrect directions. Furthermore, the broadcast nature of

wireless transmission and the mesh nature of ODMRP can also tolerate occasional

attackers on the data forwarding paths. Hence, in a relatively dense network where

there are many possible paths from receivers to the source, most receivers are able

to restore the data rate to a level similar with the fallback recovery phase (this is
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also confirmed by our experiments in Section 3.5). Therefore, compared to Theo-

rem 3.4.1, Theorem 3.4.2 is a closer approximation to reality: We only need to set

α to be slightly larger (e.g., 250 seconds in our experiments) than the value derived

from Theorem 3.4.2 to bound the attack impact under the estimated normal network

variations.

Proofs of Theorem 3.4.1 and 3.4.2. To prove these two theorems, we first

introduce some additional notations and two lemmas. We label the start of the time

duration of interest of T as t0. Without loss of generality, let time ti and ti+1 be the

start and end times of round i, for i ≥ 0. Since a node only estimates its metric at

the beginning of a round, let mB(i) and m′B(i) be the estimated PDR from metric for

node B in round i in network N and in N ′, respectively. We use r̄B(i) and ∆B(i) to

denote the average perceived PDR and average PDR discrepancy of node B in round i

in network N , respectively, that is r̄B(i) = 1
λ

∫ ti+1

ti
rB(t)dt and ∆B(i) = mB(i)− r̄B(i).

Similarly, we define r̄′B(i) and ∆′B(i) for network N ′. With a slight abuse of notation,

we denote the attack impact on node B in round i as IB(i), that is, IB(i) = IB(ti, ti+1).

It is easy to see that IB(i) = r̄′B(i)− r̄B(i).

For simplicity, we assume that the network is stable and the PDR estimation from

the metric is accurate. Hence, for benign network N ′, we have m′B(i) and r̄′B(i) are

constant and m′B(i) = r̄′B(i) for all i. Thus, without ambiguity, we use r̄′B to denote

both the estimated and perceived PDR at node B in network N ′. Thus, we have

IB(i) = r̄′B − r̄B(i).

We also discount any physical layer effects (e.g., interference), which means that

mU(i) ≥ r′U for any node U , since additional attacker nodes cannot decrease the

metric derived by honest nodes.

Lemma 1 For any round i and any non-attacker node B, we have IB(i) ≤ ∆B(i).
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Proof In order for an attack to have any impact on R, it must be the case that

mB(i) ≥ r′B, since otherwise attacker nodes will not be selected on the path. There-

fore,

IB(i) = r′B − r̄B(i) ≤ mB(i)− r̄B(i) = ∆B(i).

�

Intuitively, Lemma 1 says that the attack impact of any node is always upper

bounded by its observed PDR discrepancy.

Lemma 2 For any consecutive sequence of time intervals (t0, t1), · · · , (tk−1, tk) and

a non-attacker node B, if IB(ti, ti+1) ≤ d for all 0 ≤ i ≤ k − 1, then IB(t0, tk) ≤ d.

Proof This is immediate from the definition of attack impact. �

Proof of Theorem 3.4.1: For ease of exposition, we first analyze the single

attacker case, followed by the multiple attackers case.

For the single attacker case, let A be the attacker node in network N and let

R be a non-attacker receiver node that is downstream from A. Let node B be the

immediate downstream of node A on the path from A to R. Let pBR denote the

path PDR between B and R. Since there is no attacker between B and R, we have

rR = rB · pBR and r′R = r′B · pBR. Thus,

IR =
1

t1 − t0

∫ t1

t0

(r′R(t)− rR(t))dt

=
1

t1 − t0

∫ t1

t0

(r′B(t) · pBR − rB(t) · pBR)dt

=
pBR
t1 − t0

∫ t1

t0

(r′B(t)− rB(t))dt

= IB · pBR ≤ IB

Therefore, we only need to show IB ≤ δ.

We classify rounds into two categories, Category A for rounds in which the attacker

is not detected, and Category B for rounds in which the attacker is detected or
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isolated. An attack in a Category A round i implies, by definition, that the attacker

is not detected, i.e., it drops data below the δ threshold: ∆B(i) < δ. By Lemma 1,

we have IB(i) ≤ ∆B(i) ≤ δ.

Let round a be the round in which the attack is detected and let w be the discrep-

ancy observed at node B when the attack is detected. Then our protocol ensures that

w ≥ δ and that node B accuses and isolates node A for time αw ≥ αδ. If we denote

the time when the attacker recovers from the accusation as tr, then tr − ta ≥ αw.

Therefore, the attack impact on node B from time ta to time tr is:

IB(ta, tr) =

∫ ta+1

ta
(r′B − rB(t))dt

tr − ta
≤ λ

αw
≤ λ

αδ

Hence, if α ≥ λ
δ2

, we have IB(ta, tr) ≤ δ. Therefore, by Lemma 2, we have IB(t0, tr) ≤

δ. Since the maximum accusation time is α, for any time interval with duration

T � α, we have IR ≤ IB ≤ δ.

For the case of multiple attackers, for rounds in Category A, where no attackers

are detected, we also have IB(i) ≤ δ. For rounds in Category B, node B may switch

to another attacker node in the round after detecting an attacker node, hence for a

total of k attacker nodes, we have

IR(ta, tr) ≤ IB(ta, tr) ≤
kλ

tr − ta
≤ kλ

αδ

Hence, if α ≥ kλ
δ2

, we have IR(ta, tr) ≤ δ. 2

Proof of Theorem 3.4.2: In the proof of Theorem 3.4.1, we assume a node

has perfect path quality in the benign network, whereas the node has zero PDR in

the round when the attacker is detected. If the fallback procedure can restore the

PDR to the level of the benign network, then the attack impact during that round

is bounded by δ (because, once the discrepancy on the average PDR exceeds δ, the

attack is detected and the node invokes the fallback procedure). Therefore, we can

derive an upper bound for IR for rounds in Category B as follows:

IR(ta, tr) ≤
kδλ

tr − ta
≤ kδλ

αδ
=
kλ

α

Hence, if α ≥ kλ
δ

, then IR(ta, tr) ≤ δ. Following a similar analysis as in Theorem 3.4.1,

we obtain that IR ≤ δ for any time interval of duration T � α. 2
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3.4.2 RateGuard Attack Resiliency

We discuss the resilience of the RateGuard protocol to various types of attacks.

In particular, the attacker may inject, modify, or drop accusation and recovery mes-

sages. Since both accusation and recovery messages are signed by the sender, the

modification attack is prevented. We consider the other attacks as follows.

Accusation message dropping. Since accusation messages are flooded in the

network, unless the attacker nodes form a vertex-cut in the network, they cannot

cause accusation messages to be missed by other nodes.

False accusation attack. Our limited accusation mechanism restricts attackers

to only have one active false accusation at any time. In addition, our technique of

activating the neighbor advertising the best metric regardless of its accused status

ensures that falsely accused nodes are also used in routing. This prevents attacker

nodes from partitioning the network by strategically accusing certain honest nodes.

Therefore, false accusation attacks only cause falsely accused nodes to be ignored

in the metric propagation process. In a dense enough network, this only results in

limited impact on the metric derived at each node, as each node typically has multiple

disjoint paths with similar metrics to the source. Therefore, the overall impact of the

false accusation attack is limited.

Recovery message injection. Since a node ignores recovery message unless

there is a corresponding accusation message, the one active accusation only policy

also prevents the attacker from causing its downstream nodes to constantly resort to

the fall-back procedures.

Recovery message dropping. Dropping a recovery message will only cause

the attacker node itself to be accused by its downstream honest node, because the

downstream node does not cancel its reaction timer unless it receives a recovery

message.

Attacks on the fall-back procedure. Since we do not protect the fallback

recovery phase, attackers that are selected as forwarders during the recovery phase
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may drop packets without being punished. However, since the fallback recovery is

only used to salvage data for the remaining of the current round, the impact of the

attack is limited. As shown in Theorem 3.4.1, even if the attacker is able to completely

block all packets to a node during the fallback recovery procedure, the average attack

impact is still bounded by δ for sufficiently large values of α.

3.4.3 Limitations of S-ODMRP

In S-ODMRP, a node is detected as an attacker only if the PDR drop caused by

the node exceeds the threshold δ. Therefore, this leaves the room for an attacker

to drop some amount of data below the threshold δ without being detected. Since

the threshold δ models the normal PDR variation exhibited by legitimate nodes, it

is impossible to distinguish such attackers from normal nodes. One may address

this shortcoming with more accurate modeling of the behavior of normal nodes. For

example, we can incorporate both the mean and the variance of PDR. Since we expect

PDR to vary around its mean under normal network variations, a node whose PDR

is constantly below its advertised value, even only for a small amount, can be seen as

abnormal. We defer such enhancements as future work.

S-ODMRP restricts a node to accuse at most one other node at a time. This

implies that attacker nodes should be a minority in the network. Otherwise, some

attacker nodes will be left unaccused and will be free to attract and deny service

to many receivers through metric manipulation. It is extremely difficult to secure a

network where the majority of nodes are insider attackers, and we do not address this

scenario in this work.

3.5 Experimental Evaluation

In this section, we demonstrate through experiments the vulnerability of met-

ric enhanced multicast protocol by examining the impact of different attacks, and

investigate the effectiveness of our defense mechanism and its associated overhead.
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3.5.1 Experimental Methodology

Simulation Setup. We implemented ODMRP-HT and S-ODMRP using the

ODMRP version available in the Glomosim [40] simulator. Nodes were set to use

802.11 radios with 2 Mbps bandwidth and 250m nominal range. We simulate envi-

ronments representative of mesh networks deployments by using the two-ray radio

propagation model with the Rayleigh loss model, which models environments with

large reflectors, e.g., trees and buildings, where the receiver is not in the line-of-sight

of the sender.

The network consists of 100 nodes randomly placed in a 1500m×1500m area. We

randomly select 20 nodes as multicast group members and among the 20 members

one node is randomly selected as the data source. Group members join the group at

the beginning of the experiment. At second 100, the source starts to multicast data

packets for 400 seconds at a rate of 20 packets per second, each packet of 512 bytes.

When attackers are present, they are randomly selected among nodes that are not

group members. For S-ODMRP, we use RSA signatures with 1024-bit keys, simulating

delays to approximate the performance of a 1.3 GHz Intel Centrino processor. We

empirically tune the threshold δ = 20% to accommodate random network variations

in the simulated scenarios. The timeout for React Timer is set as 20(1 − ePDR)

millisecond (i.e. β = 20), and the accusation time is set as 250(ePDR−pPDR) second

(i.e. α = 250). Nodes use the statistical-based method described in Section 3.3.4 to

determine their pPDR.

We used the SPP high-throughput metric, configured with optimal parameters as

recommended in [28]. Data points are averaged over 10 different random environments

and over all group members.

Attack Scenarios. We consider the following scenarios:

• No-Attack: The attackers do not perform any action in the network. This

represents the ideal case where the attackers are identified and completely isolated in
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the network, and serves as the baseline for evaluating the impact of the attack and

the performance of our defense.

• Drop-Only : The attackers drop data packets, but participate in the protocol

correctly otherwise. The attack has effect only when attackers are selected in the

Forwarding Group. We use this scenario to demonstrate that metric manipulation

amplifies data dropping attacks.

• LMM-Drop: The attackers combine local metric manipulation (LMM) with the

data dropping attack. The attackers conduct the LMM attack by re-advertising the

same metric they received in Join Query, which is equivalent to making their link

metric of the previous hop equal to 1 (best).

• GMM-Drop: The attackers combine global metric manipulation (GMM) with

the data dropping attack. The attackers conduct the GMM attack by re-advertising

a metric of 1 (best) after receiving a Join Query.

• False-Accusation: The attackers exploit our accusation mechanism by falsely

accusing a random honest node at startup for the whole experiment period in order

to reduce the PDR. We do not evaluate the attacks that aim to cause large bandwidth

overhead through frequent flooding of accusation messages using false accusations. We

can upper bound the frequency of the accusation message flooding from any attacker

node to only once a few seconds by imposing a lower bound on the accusation timeout,

thus the impact of the attack is limited.

Metrics. We measure the performance of data delivery using the packet delivery

ratio (PDR), defined as PDR = nr/ns, where nr is the average number of packets

received by all receivers and ns is the number of packets sent by the source.

We also measure the strength of the attacks using as metric the PDR decrease

ratio (PDR-DR), defined as

PDR-DR =
PDRnoattack − PDRattack

PDRnoattack
,

where PDRattack and PDRnoattack represent the PDR when the network is under

attack and not under attack, respectively.
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The overhead of our defense consists of three components, the control bandwidth

overhead due to additional messages and larger message size (e.g., accusation mes-

sages, signatures on query messages), the computational overhead due to crypto-

graphic operations, and the additional data packet transmissions caused by our pro-

tocol. We measure the control bandwidth overhead per node, defined as the total

control overhead divided by the number of nodes. The computational overhead is

measured as the number of signatures performed by each node per second. To measure

redundant data packet transmissions, we define data packet transmission efficiency

as the total number of data packets transmitted by all nodes in the network divided

by the total number of data packets received by all receivers. Thus, data packet

transmission efficiency captures the cost (number of data packet transmissions) per

data packet received.

mc:fig:attacks

3.5.2 Effectiveness of Metric Manipulation Attacks

Figure 3.5(a) shows the impact of Drop-Only attack on the original ODMRP (not

using high-throughput metric). The protocol is quite resilient to attacks, i.e., PDR

decreases by only 15% for 20 attackers. This reflects the inherent resiliency of mesh

based multicast protocols against packet dropping, as typically a node has multiple

paths to receive the same packet.

Figure 3.5(b) shows the PDR of the protocol when using a high-throughput metric

(ODMRP-HT) under different types of attacks. We observe that with the Drop-Only

attack, the PDR drops quickly to a level below the case when no high throughput

metric is used. Thus, simple packet dropping completely nullifies the benefits of

high throughput metrics. By manipulating the metrics as in LMM-Drop and GMM-

Drop, the attacker can inflict a much larger decrease in PDR. For example, the PDR

decreases from 72% to only 25% for 10 attackers using GMM-Drop, in contrast to 55%

for Drop-Only . Figure3.5(c) compares the impact of the attack in terms of the PDR
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Figure 3.5. The effectiveness of metric attacks on ODMRP-HT
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decrease ratio (PDR-DR). We see that metric manipulation significantly increases

the attack strength. For example, with 10 attackers, the PDR-DR of GMM-Drop

(68%) is more than double the PDR-DR of Drop-Only (32%). Thus, we conclude

that metric manipulation attacks pose a severe threat to high-throughput protocols.

3.5.3 Effectiveness of the Defense

In Figure 3.6 we show the effectiveness of our defense (S-ODMRP) against different

types of attacks, compared to the insecure ODMRP-HT protocol. S-ODMRP suffers

only a small PDR decrease relative to the baseline No-Attack case. For example, a

total of 20 attackers causes a PDR drop of only 12%, considerably smaller than the

case without defense, which shows a PDR decrease by as much as 55% in the GMM-

Drop attack. To rule out random factors, we performed a paired t-test [39] on the

results showing that S-ODMRP improves the PDR for all attack types, with P-value

less than 2.2×10−16. For 10 attackers, S-ODMRP improves the PDR of ODMRP-HT

for Drop-Only , LMM-Drop and GMM-Drop by at least 4.5%, 16.7%, 33%, with 95%

confidence level. Thus, our defense is very effective against all the attacks. The small

PDR decrease for S-ODMRP can be attributed to two main factors. First, common to

all reactive schemes, attackers can cause some initial damage, before action is taken

against them. Second, as the number of attackers increases, some receivers become

completely isolated and are not able to receive data.

Figure 3.6 also shows an interesting phenomenon: The PDR decrease of S-ODMRP

is similar for all attacks, despite the varying strength of the attacks. This outcome

reflects the design of our defense mechanism in which accusations last proportional to

the discrepancy between ePDR and pPDR: Attacks that cause a small discrepancy

(e.g., Drop-Only) are forgiven sooner and can be executed again, while attacks that

cause a large discrepancy (e.g., GMM-Drop) result in a more severe punishment and

can be executed less frequently.
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Finally, we note that the attack impact with S-ODMRP is less than δ = 20%,

which is consistent with the bound in our analysis in Section 3.4.1.

3.5.4 Defense Resiliency to Attacks

Attackers may attempt to exploit the accusation mechanism in S-ODMRP. Fig-

ure 3.7 shows that S-ODMRP is very resilient against the False-Accusation attack, in

which attackers falsely accuse one of their neighbors. This comes from the controlled

nature of accusations, which allows an attacker to accuse only one honest node at a

time. Also, as described in Section 3.3.4, falsely accused nodes that advertise a good

metric may continue to forward data.

3.5.5 Overhead of S-ODMRP

Figure 3.8(a) and 3.8(b) show the control bandwidth and computational overhead

for S-ODMRP. We observe that for all attack configurations, the bandwidth and

computational overhead are maintained at a stable low level of around 0.95 kbps and

0.9 signatures per node per second. To understand the source of the overhead better,

we analyzed different components of the overhead. The result shows that the overhead

due to reacting to attackers (such as dissemination of Accusation and Recovery



50

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0  5  10  15  20
B

an
dw

id
th

 o
ve

rh
ea

d 
(k

bp
s)

Number of attackers

No-Attack ODMRP-HT
Drop-Only S-ODMRP

GMM-Drop S-ODMRP
LMM-Drop S-ODMRP

False-Accusation S-ODMRP

(a) Bandwidth overhead per node

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  5  10  15  20

N
um

be
r 

of
 s

ig
na

tu
re

s

Number of attackers

No-Attack ODMRP-HT
Drop-Only S-ODMRP

GMM-Drop S-ODMRP
LMM-Drop S-ODMRP

False-Accusation S-ODMRP

(b) Computational overhead per node

 0

 1

 2

 3

 4

 5

 0  5  10  15  20

C
os

t p
er

 r
ec

ei
ve

d 
pa

ck
et

 (
pk

ts
)

Number of attackers

No-Attack ODMRP-HT
Drop-Only S-ODMRP

LMM-Drop S-ODMRP
GMM-Drop S-ODMRP

(c) Data transmission efficiency

Figure 3.8. The overhead of S-ODMRP



51

messages) is negligible, since the attackers, once detected, are accused for a relatively

long period of time. The bulk of the overhead comes from the periodic network-wide

flooding of authenticated Join Query packets. Since query flooding is common in

all scenarios, we obtain a similar level of overhead across different scenarios. The

reason for the slight overhead decrease for an increasing number of attackers for

the False-Accusation attack is that Join Query from the falsely accused honest

nodes are ignored by their neighbors, resulting a smaller number of transmissions of

Join Query packets.

In Figure 3.8(c), we notice that S-ODMRP under various attacks even improves

slightly the data transmission efficiency of ODMRP-HT with no attacks. This ap-

parent anomaly can be explained because in S-ODMRP nodes that are further away

from the source are more likely to be affected by attacks and these are the nodes that

require more transmissions to receive data packets.

3.6 Related Work

There has been extensive work in the area of secure unicast routing in multi-hop

wireless networks. Examples include [19–25, 41, 42]. In general, attacks on rout-

ing protocols can target either the route establishment process or the data delivery

process, or both. Ariadne [23] and SRP [18] propose to secure on demand source

routing protocols by using hop-by-hop authentication techniques to prevent mali-

cious packet manipulations on the route discovery process. SAODV [41], SEAD [19],

and ARAN [20] propose to secure on demand distance vector routing protocols by

using one-way hash chains to secure the propagation of hop counts. [42] proposes a se-

cure link state routing protocol that ensures the correctness of link state updates with

digital signatures and one-way hash chains. To ensure correct data delivery, [21] pro-

poses the watchdog and pathrater techniques to detect adversarial nodes by having

each node monitor if its neighbors forward packets correctly. SMT [22] and Ari-

adne [23] use multi-path routing to prevent malicious nodes from selectively dropping
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data. ODSBR [24,25] provides resilience to colluding Byzantine attacks by detecting

malicious links based on an end-to-end acknowledgment-based feedback technique.

In contrast to secure unicast routing, the work studying security problems spe-

cific to multicast routing in wireless networks is particularly scarce, with the notable

exception of the work by Roy et al. [26] and BSMR [27]. The work in [26] proposes

an authentication framework that prevents outsider attacks in a tree-based multicast

protocol, MAODV [4], while BSMR [27] complements the work in [26] and presents a

measurement-based technique that addresses insider attacks in tree-based multicast

protocols.

A key point to note is that all of the above existing work in either secure unicast or

multicast routing considers routing protocols that use only basic routing metrics, such

as hop count and latency. None of them consider routing protocols that incorporate

high-throughput metrics, which have been shown to be critical for achieving high

performance in wireless networks. On the contrary, many of them even have to remove

important performance optimizations in existing protocols in order to prevent security

attacks.

There are also a few studies ( [43, 44]) on secure QoS routing in wireless net-

works. However, they require strong assumptions, such as symmetric links, correct

trust evaluation on nodes, ability to correctly determine link metrics despite of at-

tacks. In addition, none of them consider attacks on the data delivery phase. To

the best of our knowledge, our work is the first work that encompasses both high

performance and security as goals in multicast routing and considers attacks on both

path establishment and data delivery phases.

Besides attacks on the routing layer, wireless networks are also subject to wireless

specific attacks, such as flood rushing and wormhole attacks. Defenses against these

attacks have been extensively studied in previous work, e.g., [9, 10, 35, 36], and are

complementary to our protocol. RAP [10] prevents the rushing attack by waiting for

several flood requests and then randomly selecting one to forward, rather than always

forwarding only the first one. Techniques to defend against wormhole attacks include



53

Packet Leashes [9] which restricts the maximum transmission distance by using time

or location information, Truelink [35] which uses MAC level acknowledgments to

infer if a link exists or not between two nodes, and the work in [36], which relies on

directional antennas.

3.7 Conclusion

We considered the security implication of using high throughput metrics in mul-

ticast protocols in wireless mesh networks. In particular, we identified metric manip-

ulation attacks that can inflict significant damage on the network. The attacks not

only have a direct impact on the multicast service, but also raise additional challenges

in defending against them due to their metric poisoning effect. We overcome the chal-

lenges with our novel defense scheme, RateGuard, that combines measurement-based

attack detection and accusation-based reaction. Our defense also copes with tran-

sient network variations and malicious attempts to attack the network indirectly by

exploiting the defense itself. We demonstrate through analysis and experiments that

our defense is effective against the identified attacks, resilient to malicious exploita-

tions, and imposes a small overhead on the network.
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4 SECURITY THREATS IN WIRELESS NETWORK CODING SYSTEMS

Network coding [45] has emerged in recent years as a new paradigm for designing net-

work protocols. Recent research has demonstrated the advantages of network coding

through numerous practical systems such as COPE [46] and MORE [47] for wireless

unicast and multicast, Avalanche [48] for peer-to-peer content distribution, proto-

cols for peer-to-peer storage [49], and protocols for network monitoring and man-

agement [50–52]. Network coding has been shown to increase throughput [53–55],

reduce network congestion [56], increase reliability [57, 58], and reduce power con-

sumption [59–62], in unicast [47,63–66], multicast [47,67], and more general network

configurations [68–71].

Although the theoretical foundations of network coding are well understood, real-

world systems need to solve a plethora of practical aspects before network coding

meets its promised potential. The wireless communication medium has inherent par-

ticularities, such as high error rates and varying signal strength, creating a complex,

unpredictable and challenging environment. As a result, network coding systems

need to make numerous practical design choices and optimizations that are essen-

tial to leverage network coding and achieve good performance. Unfortunately, in the

quest for performance, security aspects are disregarded: Many of these design choices

result in protocols that have numerous security vulnerabilities.

In this chapter, we introduce two general frameworks that encompass several net-

work coding-based systems proposed for WMNs. Depending on how they leverage the

benefits of network coding, we classify these systems into intra-flow network coding

systems [72–74], which mix packets within the same individual flows, and inter-flow

network coding systems [46,75,76], which mix packets across multiple different flows.

We then follow a well-known security principle that states a system is as secure as its

weakest link, and present a systematic analysis on the security of these frameworks
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and identify security vulnerabilities that may severely degrade system performance.

Finally, as a proof of concept, we experimentally demonstrate the severity of attacks

in network coding systems. Our experiments show that even a single attacker whose

only action is dropping packets can cause over 50% of throughput degradation for

over 80% of flows.

4.1 Network Coding-based Wireless Systems

In this section, we present a general classification for network coding systems

for wireless mesh networks. There are two general approaches for applying network

coding to wireless mesh networks, intra-flow network coding and inter-flow network

coding. Both approaches exploit the broadcast advantage and opportunistic listening

in wireless networks to reduce transmissions and improve performance. However,

these benefits are realized differently: Intra-flow network coding systems mix packets

within individual flows, while inter-flow network coding systems mix packets across

multiple flows.

4.1.1 Network Model

We adopt the wireless mesh network model as described in Chapter 2. In par-

ticular, for the purpose of network coding, nodes in WMNs have moderate amount

of storage space for buffering received packets and have powerful enough CPU for

performing the coding and decoding operations in the packet forwarding process. For

example, in two of the practical network coding systems [46, 72], a WMN node is a

desktop-class device (i.e., a PC), equipped with a 802.11 wireless card.

4.1.2 Intra-flow Network Coding

The general idea of intra-flow network coding is to leverage the opportunistic

overhearing by using packet coding to avoid redundant transmissions of packets in



56

1 2
1

1 2

(a) If node C has overheard one of the pack-
ets broadcast by the source node A, node B
can forward a single combined packet p1 + p2

without risking its packet being redundant at
C.

1 2

1 1 2

2 1 2

(b) Without any coordination, node B1 and
B2 can broadcast a linear combination of their
received packets without risking sending the
same packet to node C.

Figure 4.1. Illustrative examples for intra-flow network coding.

Current generation

Coded packet: computed as a random linear 
combination of packets in the current generation Coded packets

All plain packets

Figure 4.2. An illustration of plain packets, generation, and coded
packets in intra-flow network coding systems.

the network, thus improving performance. Figure 4.1 shows two illustrative examples

of how intra-flow coding benefits. In both Figure 4.1(a) and 4.1(b), node A has two

packets p1 and p2 to send to node C, and broadcasts these two packets locally. In

Figure 4.1(a), if node C has overheard one of the packets, node B can broadcast

a single coded packet p1 + p2 to allow node C to recover both packets, without

coordinating with C to avoid sending a redundant packet that has already been

received by C. In Figure 4.1(b), the two intermediate nodes B1 and B2 can broadcast

a random linear combination of their received packets, avoiding the possibility that

they both send the same packet to node C. Below, we first give a description of a

general system architecture for intra-flow network coding, then explain in detail the

coding and decoding operations.
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In intra-flow network coding systems, packets are delivered in batches, referred

to as generations. Each node forwards coded packets for the current generation.

The coded packets are computed as a random linear combination of the packets in

the generation (as illustrated in Figure 4.2). To send a generation of packets, the

source node continuously broadcasts coded packets for the current generation until

an acknowledgment (ACK) is received from the destination. The coded packets are

relayed to the destination via a set of intermediate nodes, referred to as forwarder

nodes. Each forwarder node stores linearly independent coded packets it overhears

and forwards new coded packets by combining the coded packets stored in its buffer.

When the destination node receives enough linearly independent coded packets, it

decodes the packets by solving a system of linear equations and unicasts an ACK

packet to the source node, allowing the source to start sending the next generation

of packets.

An intra-flow coding system consists of the following components: Forwarding

node selection and rate assignment, data packet forwarding, acknowledgment delivery,

and the coding/decoding procedure.

Forwarding node selection and rate assignment. This process determines

the forwarder node set and the rate at which each forwarder node forwards coded

packets. The optimal selection of forwarder nodes and rate assignment takes into

consideration several factors, such as the topological distance of each node to the

source and destination nodes, the interference among nodes, and the fairness among

different flows. The topological position of a node refers to the topological distance of

the node to the source and destination, as measured by certain routing metric, such

as ETX [13]. The topological position determines a node’s ability to contribute to

the delivery of data packets for a particular flow. A forwarding node selection and

rate assignment algorithm strives to select nodes that have large enough contribution

in the forwarder set and assign large forwarding rate to nodes that can make large

contributions. In contrast, nodes that make little or no contribution are not included

in the forwarder set and thus do not participate in the data delivery. The interference
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relationship among nodes also affects the node selection and rate assignment process.

An overly aggressive rate assignment can result in interference, and reducing the

protocol performance; on the other hand, an under-assignment of forwarding rate

delays the packet delivery process, also resulting in a reduced protocol performance.

Due to the global nature of the input required, existing intra-flow coding protocols,

such as MORE [72], DICE [74], and [73], use a centralized approach, where the

computation is based on a link state graph maintained at each node as in a link state

routing protocol. The source performs the centralized computation of the forwarding

node set and rate assignment, and disseminates this information to the other nodes

piggybacked on data packets.

Data packet forwarding. The forwarder nodes and the destination node main-

tain a buffer of linearly independent packets that they have overheard. Each for-

warder node generates new coded packets by computing random linear combinations

of coded packets stored in its buffer and broadcasts them at a pre-assigned rate as

discussed above. When the destination node overhears enough linearly independent

coded packets, it decodes the packets by solving a system of linear equations, and

initiates the acknowledgment process as described below.

Acknowledgment delivery. The ACK packet is delivered from the destination

to the source using the traditional single path routing process via the best quality

path. The timely and reliable delivery of ACK is critical to ensure that the source

moves to the next batch quickly. Thus, each intermediate node delivers ACK packets

with high priority and ensures reliability by mandating an explicit acknowledgment

from the next hop.

Packet coding and decoding. A key component of an intra-flow network coding

system is the coding and decoding operations performed by nodes, which we present

as follows.
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Let G denote a generation of n plain packets p1, p2, · · · , pn. In intra-flow network

coding, each plain packet pi is viewed as a column vector of m elements in a finite

field Fq of size q, i.e.

~pi = (pi1, pi2, · · · , pim)T , pij ∈ Fq.

Then, a generation G of n packets can be viewed as a m× n matrix, i.e.

G = [~p1, ~p2, . . . , ~pn],

with each plain packet being a column in the matrix.

A coded packet consists of two components, (~c,~e), referred to as coding vector and

coded data, respectively. The coding vector ~c = (c1, c2, . . . , cn) is a random vector in

Fqn. The coded data ~e is computed as a linear combination of packets in G using the

components of ~c as the coefficients, i.e.

~e =
n∑
i=1

ci~pi.

In the matrix form, we can write

~e = G~c.

The source node computes coded packets by selecting a random coding vec-

tor ~c, and then computing its corresponding coded data ~e = G~c from the plain

packets in the generation G. Each forwarder node computes new coded packets

by forming random linear combinations of the coded packets it has received. Let

(~c1, ~e1), (~c2, ~e2), . . . , (~ck, ~ek) be the set of coded packets a forwarder node has re-

ceived, to compute a new coded packet (~c′, ~e′), it first selects a random vector ~h =

(h1, h2, . . . , hk), and then computes ~c′ =
∑k

i=1 hi~ci and ~e′ =
∑k

i=1 hi~ei. It is easy to

verify that (~c′, ~e′) is a valid coded packet with ~e′ =
∑n

i=1 c
′
i~pi.

When the destination node receives n linearly independent coded packets

(~c1, ~e1), (~c2, ~e2), . . . , (~cn, ~en),

it can establish a system of linear equations {~ei =
∑n

i=1 ci~pi}, which consists of n

equations and n unknowns (~pis are unknowns). By solving this system of linear

equations, it can recover the plain packets ~p1, ~p2, . . . , ~pn.
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4.1.3 Inter-flow Network Coding

Inter-flow network coding exploits opportunistic listening and wireless broadcast

with opportunistic coding at intermediate nodes. The key idea is that when a node

has a set of packets for different flows to be delivered to different next hop nodes,

instead of unicasting each packet individually to its corresponding next hop node,

the node combines the packets together and broadcasts the combined packet once

for all the next hop nodes. Therefore, inter-flow coding reduces multiple individual

unicast transmissions to only one broadcast transmission. Figure 4.3(a) shows a

simple illustrative example of how inter-flow network coding benefits. In this figure,

node A has a packet mi to send to each of the downstream node Ri. Instead of

unicasting each packet individually, node A can take advantage of the packets that

have already been overheard by node Ris and broadcast a single coded packet to

allow each Ri to recover its desired packet. Below we present an overview of the

system architecture for inter-flow network coding systems and the essential system

components.

Inter-flow network coding systems are generally designed on top of traditional

routing protocols. Given a set of paths for different flows, inter-flow network coding

identifies a set of nodes at the intersections of paths to combine unicast transmissions

of plain packets for different flows into broadcast transmissions of coded packets. The

downstream nodes decode the coded packets using their overheard packets. Thus,

unlike intra-flow network coding where all forwarder nodes perform coding and only

receiver nodes perform decoding, in inter-flow network coding only nodes at the in-

tersections of flows perform coding operations and any downstream nodes that have

overheard necessary packets can perform the decoding operation.

In general, an inter-flow coding system consists of the following four components:

Discovery of coding opportunities, packet coding and decoding, packet forwarding,

and routing integration for increased coding opportunities.
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Figure 4.3. Illustrative examples for inter-flow network coding. The
number on edges represents the flow ID that the edge is on. Dashed
lines represent packet overhearing.

Discovery of coding opportunities. Coding opportunities at a node consist

of the packets that can be coded together for transmission such that the packet is

decodable at downstream nodes. Based on the scope considered for coding opportu-

nities, we can classify inter-flow coding protocols into localized coding protocols (only

one hop neighbors of a node are considered for potential coding opportunities) and

global coding protocols (all the nodes in the network are considered). In both cases,

the discovery of coding opportunities requires a node to collect information about

packet reception at other nodes.

In localized coding protocols (e.g., COPE [46] and [77]), each node periodically

reports its packet reception to its neighbors via local broadcasts. For example, in

Figure 4.3(a), each node Ri reports its received packets to node A, allowing node A

to broadcast a single coded packet m1⊕m2⊕m3 and be sure that it can be decoded

by all the downstream nodes. To deal with loss of reception reports, link qualities are

also used to guess whether a neighbor receives a packet. For example, if a neighbor

of a node has very good link quality to the previous hop of a packet, then the node

can infer that this neighbor also receives the packet with high probability.
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Figure 4.4. An example scenario illustrating partial and full decoding
in an inter-flow network coding system.

In global coding protocols (e.g., DCAR [75]), each node keeps track of all other

nodes in the network that can overhear a packet by maintaining the neighbor set of

all the nodes on the path of the packet. To achieve this goal, the protocol follows a

common flood-based on-demand route discovery process (e.g. DSR [1]), except that

each node includes in the route request message its neighbor set in addition to its own

identifier. An example of a global coding protocol is shown in Figure 4.3(b), where

node A knows that nodes R1 and R2 are the neighbors S2 and S1, respectively. Thus,

it can broadcast a single coded packet m1 ⊕m2 to allow both receiver nodes R1 and

R2 to decode and recover their desired packet using their overheard packet.

Packet coding and decoding. Both the coding and decoding operations in

inter-flow network coding are bit-wise XOR operations on packets. More specifically,

given a set of plain packets m1,m2, . . . ,mk for distinct flows, a coded packet e is

computed as e = m1 ⊕ m2 ⊕ . . . ⊕ mk. The decoding operation performed by a

node may be either a full decoding, which results in a plain packet, or a partial

decoding, which results in another (more simple) coded packet. Given a coded packet,

a node performs a full decoding if it has received all but one of the packets that are

XORed to form the coded packet. Otherwise, the node performs a partial decoding

to obtain another (more simple) coded packet. For example, given a coded packet

e = m1⊕m2⊕ . . .⊕mk, if a node has overheard packet m2, . . . ,mk, it can perform a

full decoding of e to recover the plain packet m1 by computing e⊕m2 ⊕ . . .⊕mk. If

it has only received packets m3, . . . ,mk, it performs a partial decoding by computing
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e⊕m3 ⊕ . . .⊕mk to obtain a new coded packet m1 ⊕m2. Figure 4.4 gives a simple

example demonstrating partial and full decoding in a network coding system. In

this figure, as node B has only overheard packet m1, on receiving a coded packet

m1 ⊕ m2 ⊕ m3, it performs a partial decoding and delivers the partially decoded

packet m2 ⊕m3 to node C, which allows node C to perform a full decoding using its

overheard packet m2 to recover its desired packet m3.

Packet forwarding. Unlike traditional routing protocol where each node only

forwards a packet to one next hop node, in inter-flow network coding a node needs

to deliver a coded packet to multiple next hop nodes. In order to achieve a relia-

bility guarantee similar to the 802.11 link layer reliability, a node needs to ensure

that a coded packet is received by all the intended next hop nodes. However, 802.11

broadcast lacks the reliability of unicast communication. To address this problem,

a pseudo-broadcast technique ( [46, 75]) has been commonly adopted. With pseudo-

broadcast, the sender node sends coded packets with 802.11 unicast using one of the

intended next hop nodes as the MAC receiver. The packet will be retransmitted mul-

tiple times until the designated MAC receiver receives the packet and acknowledges

it. The multiple retransmissions also allow the other next hop nodes more opportu-

nities to receive the packet. To guarantee full reliability, the other next hop nodes

are also required to acknowledge the packet, which is achieved by piggybacking the

ACK on other packets broadcast by the node. If the ACKs of some next hop nodes

are not received after a timeout period, the sender node retransmits the packet for

such nodes by either sending them individually or coding them with other packets.

Routing integration. An inter-flow coding protocol can be designed indepen-

dently of routing protocols, where coding opportunities arise from incidental path

intersections. A natural extension to further improve the performance is to design

coding-aware routing protocols, so that paths are selected to maximize the benefits

of coding. Such coding-aware routing protocols are usually realized with new coding-

aware metrics, which discount the cost of links that allow coding. The optimal path

selection based on such metrics can be performed in either distributed or centralized
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fashion. For example, in DCAR [75], the metric aggregation and path selection fol-

lows the same steps of traditional source routing protocols (e.g. DSR [1]), except

that each node also considers coding opportunities when computing path metrics. In

contrast, [76] adopts a centralized link state routing-like approach, where each node

floods its own coding-aware link metrics and local flow information in the network.

The source node then computes the optimal paths based on the complete network

information.

4.2 Threats in Network Coding Systems for Wireless Networks

In this section, we present potential security threats in current network coding

systems. We focus solely on attacks on the network coding system that aim to disrupt

the data delivery process. Below we first describe the assumptions we make about

the attacker nodes and then systematically describe attacks against each component

of the two classes of the network coding systems.

4.2.1 Adversarial Model

We adopt the adversarial model as described in Chapter 2. In particular, the

main objective of the attackers is to degrade network performance (i.e., throughput)

while minimizing the amount of expended resources. We differentiate between two

types of attacks by adversarial nodes that directly manipulate data packets and those

that target to improve the attacker’s participation in the network. The effectiveness

of an attack by a node that manipulates data packets (e.g., drops or modifies) is

directly proportional with the amount of packets that pass through the node. Under

benign conditions, nodes should receive, process and forward an amount of packets

proportional to their position and the quality of the links in the network. We refer to

this as the benign rate. We call a luring attack any attack which results in an increase

of a node’s rate over its benign rate. Luring attacks can be used as amplifiers for

other attacks such as packet dropping or packet pollution.
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4.2.2 Intra-flow Network Coding

We analyze security vulnerabilities in each component of intra-flow network coding

systems.

Forwarding node selection and rate assignment

A key input to the forwarding node selection and rate assignment process is the

link state graph, which is maintained as in a link state routing protocol as follows.

Each node monitors its local link qualities, and periodically floods the information in

the entire network. Albeit being simple, there are numerous security vulnerabilities

that can result in incorrect link state graphs at nodes, and consequently incorrect

selection of forwarding nodes and rate assignment.

• Link quality falsification or modification. The attacker node can claim

false metrics for its own adjacent links. Such attacks are difficult to prevent, as this

information is local to the attacker node. A reactive approach, e.g. in [78], that

detects the attack and then reactively identifies and isolates the attacker, may be

a more viable solution. Alternatively, the attacker node may modify link qualities

reported by other nodes as they are flooded in the network. Such attacks can be

prevented using message authentication, such as digital signatures.

• Wormholes. Wormhole attacks can introduce fictitious links between honest

nodes, and distort their perception of network topology. Although existing wormhole

solutions, such as packet leashes [79] and TrueLink [35] can be applied, they typically

incur substantial overhead, which can potentially nullify the performance gain of

network coding.

Designing a secure and efficient link state protocol is a challenging task. To our

knowledge, there is no existing solution that ensures correct link state propagation in

wireless networks in the presence of colluding attackers.
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Data forwarding

The data forwarding process is subject to packet pollution and packet dropping

attacks.

• Packet pollution. Packet pollution attacks are the most well-known and most

studied attacks against network coding systems. In packet pollution attacks, the

attacker node injects corrupted packets into the network. Using the notation defined

in Section 4.1.2, a packet (~c,~e) is corrupted if ~e 6=
∑n

i=1 ci~pi. In other words, a packet

is corrupted if it is not a valid linear combination of the packets in the generation as

claimed by the coding vector ~c.

As each forwarder node combines received packets to form new coded packets,

pollution attacks can cause an epidemic effect, where the corrupted packets from one

affected honest node further affect other honest nodes. As a result, by injecting even a

few corrupted packets, the attacker can degrade the performance significantly. Exist-

ing defense techniques are generally heavy-weighted, leading to a significant negative

impact on the protocol performance. Recently, a lightweight solution based on effi-

cient linear checksums and time asymmetry was proposed [80]. However, designing a

lightweight pollution defense for intra-flow coding systems in wireless networks that

does not rely on time synchronization is still an open problem.

• Packet dropping. Intuitively, network coding systems should be resilient to

packet dropping attacks due to the inherent redundancy in multi-path routing and

opportunistic listening. However, in current protocols, the selection of forwarding

nodes and rate assignment are carefully optimized to reduce interference and the

total number of transmissions. As a side effect, this results in fragile systems that are

sensitive to node misbehaviors, even as simple as packet dropping. As demonstrated

by our experiments (Section 4.3), even a single packet dropping attacker can result in

over 40% of degradation in performance for most flows. Addressing packet dropping

attacks in network coding systems is more challenging than in traditional routing

protocols, as the number of packets a node transmits and the time of transmissions
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are contingent on the opportunistic receptions at the node. As a result, traditional

approaches, e.g., watchdog [81], no longer apply.

Acknowledgment delivery

The timely and reliable delivery of ACK messages is critical to the performance

of the protocol. This process is vulnerable to the following attacks.

• ACK injection or modification. The attacker forges a bogus ACK or mod-

ifies an ACK packet causing the source to move onto the next batch prematurely.

As a result, the destination may receive only partial batches, and consequently is

not able to decode any data packets. Such attacks can be prevented with message

authentication, such as digital signatures.

• ACK dropping. If the attacker node lies on the ACK delivery path, it can

drop all the ACK packets. This can prevent the source node from advancing through

batches and cause it to keep transmitting one batch of packets forever. An attacker

can enhance their chance of being selected on the ACK delivery path by manipulating

path metrics or using wormhole attacks.

• ACK delay. The attacker node delays the delivery of ACK packets, instead of

dropping ACK packets completely. This attack is more stealthy than ACK dropping

attacks and can also cause a significant throughput degradation, as it prolongs the

time required for sending a batch of packets.

4.2.3 Inter-flow Network Coding

We next analyze each of the components of inter-flow coding systems for potential

security vulnerabilities.
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Discovery of coding opportunities

The correct discovery of coding opportunities at a node relies on the correct packet

reception information that the node collects from other nodes. The process of col-

lecting the packet reception information of other nodes is subject to various types of

attacks for both localized and global coding protocols as follows.

• Packet reception information mis-reporting. In localized coding proto-

cols (e.g., COPE [46]), an attacker can impersonate honest nodes and report incorrect

packet reception information to their neighbors. Such an attack can cause a node to

send coded packets that cannot be decoded by the intended next hop nodes. Since

such non-decodable packets cannot be acknowledged, it will cause the sender node

to continuously transmit useless packets. This attack can be addressed with mes-

sage authentication schemes. However, given the high frequency of packet reception

reports, the authentication scheme needs to be extremely lightweight.

• Link state pollution. Localized coding protocols also rely on the link quality

between nodes to infer packet reception status at other nodes. Therefore, attacks on

link state routing protocols which cause incorrect link state graph at nodes can also

cause a node to infer incorrect packet reception information and consequently send

non-decodable packets.

• Neighbor set pollution. In global coding systems (e.g., DCAR [75]), a node

determines coding opportunities based on the neighbor set information collected dur-

ing the route discovery process. An attacker can cause the collection of incorrect

neighbor set information either by direct modifications of route request packets or

by using wormholes to introduce fictitious links. The resulting incorrect neighbor set

can cause a node either to miss coding opportunities, or worse yet, to send coded

packets that cannot be decoded by downstream nodes, which can potentially degrade

the throughput of the targeted flow to zero. Existing approaches for secure source

routing protocols, such as Ariadne [82], can be used to authenticate the neighbor
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information, and prevent malicious modifications. However, techniques for defending

wormhole attacks are also necessary for securing the neighbor set information.

Transmission of coded packets

The packet transmission process in inter-flow coding systems is also subject to

various types of attacks as follows.

• ACK injection or modification. By injecting bogus ACKs or modifying

ACKs, the attacker node can cause premature ending of necessary packet retransmis-

sions in the pseudo-broadcast technique, resulting in the failure of packet reception

at next hop nodes. Again, message authentication schemes can be used as a counter-

measure; however, due to the high frequency of ACK messages, it is crucial that the

scheme selected is efficient in terms of both computation and bandwidth.

• Packet pollution. Like for intra-flow coding schemes, in a packet pollution

attack against inter-flow coding systems, the attacker node injects corrupted packets

into the network. However, the definition of corrupted packets is different for inter-

flow coding, given the nature of inter-flow coding systems which perform coding

across different flows. A packet e is corrupted if it is labeled as coded from packets

m1,m2, . . . ,mk, but e 6= m1 ⊕ m2 ⊕ . . . ⊕ mk, where each packet mi belongs to a

different flow i. Note that this definition includes the case when a coded packet e is

labeled as being coded from a single packet mi (generated by the source of flow i),

but e 6= mi.

By injecting only a few corrupted packets an attacker can cause epidemic corrup-

tion of packets. The devastating effect of a pollution attack becomes evident if we

consider corrupted packets that reach coding nodes; as these nodes are at the inter-

section of several flows, the corruption will propagate downstream on all the flows

that intersect at the coding nodes. Existing pollution defense schemes proposed for

intra-flow coding, such as homomorphic signatures, cannot be applied in this context,
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as coded packets are formed from packets generated by different sources. Defending

against pollution attacks in inter-flow coding systems is still an open problem.

• Packet over-coding. Coding nodes are supposed to code packets from different

flows as specified by the discovery of coding opportunities phase. This ensures that

downstream nodes will be able to perform decoding correctly. However, a malicious

coding node can execute an over-coding attack by coding together more packets than

it is supposed to. For example, consider a malicious coding node that is at the

intersection of three flows and is supposed to code packets from two of the three

flows; however, the node codes together packets from all the three flows, causing

incorrect decoding at the nodes downstream.

The difficulty of defending against such an attack comes from the fact that the

packets forwarded by the attacker do not match the definition of a corrupted packet.

Thus, even if a defense scheme was able to detect polluted packets, it would still not

be effective against packet over-encoding attacks. An effective defense would have to

incorporate information from the discovery of coding opportunities phase and would

have to ensure that the established coding opportunities are enforced. Finally, we note

that the packet over-coding attack is specific to inter-flow network coding systems.

• Packet under-decoding. This attack is similar to a packet over-coding attack,

but is performed by a decoding node. The discovery of coding opportunities phase

relies on the fact that decoding nodes use a certain number of their overheard packets

to decode (or partially decode) the coded packets they receive. However, a malicious

decoding node may use less overheard packets for decoding than it is supposed to.

As a result, the packets forwarded by the malicious node cannot be decoded by its

downstream nodes.

Just like the packet over-coding attack, the packet under-decoding attack is spe-

cific to inter-flow network coding systems and will not be detected by schemes that

only protect against packet pollution.

• Packet dropping. Compared to traditional routing protocols, inter-flow coding

systems encourage path sharing in an effort to increase coding opportunities. By
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exploiting such a tendency in the path selection, an attacker can manage to be selected

by many paths, and hence can disrupt the communication of many flows via packet

dropping. We differentiate between packet dropping performed by forwarding nodes

and coding/decoding nodes. When a forwarding node drops packets, this can be

detected with traditional defense techniques such as watchdog [81], because the node

is supposed to forward the same packets it has received. However, the watchdog

technique no longer applies when a coding/decoding node drops packets. For example,

consider a malicious coding node that is at the intersection of three flows is supposed

to code packets from the three flows; however, it drops packets from one of the

flows and only codes packets from the other two flows. In this example, its upstream

nodes cannot use overhearing to verify the correctness of the forwarded coded packets,

because they cannot decode these packets.

Routing integration

In order to select an optimal route that considers coding opportunities, a coding-

aware routing protocol not only requires the correctness of link and path metrics as

in traditional routing protocols, but it also requires the correctness of coding benefits

reported by each node. Thus, in addition to manipulating link and path metrics,

an attacker node can disrupt the protocol by manipulating coding opportunities.

For example, by reporting very high coding opportunities, the attacker can improve

its chances to be selected on the path and gain the control over the flow. Since

coding opportunities not only depend on the network topology, but also depend on

the current flow structure, it is more challenging to ensure the correctness of coding

opportunities reported by a node than ensuring the correctness of pure topological

metrics (e.g., link or path qualities).
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4.3 Experimental Evaluation

We present simulation results for evaluating the severity of security threats in

network coding systems. Although network coding systems are vulnerable to a myriad

of threats, we focus on attacks that target the coding, decoding, and the packet

forwarding process, as these attacks are more system independent and more specific

to network coding systems.

4.3.1 Methodology.

We conducted our experiments using the Glomosim [40] simulator. Below we

describe the detailed experimental setup for both intra-flow and inter-flow network

coding systems.

Experiment setup for intra-flow network coding. We use a representative

intra-flow coding protocol, MORE [72], for our experiments. We use the setup for

MORE as recommended by [72]: F28 as the finite field for network coding, the batch

size is 32 packets, and the packet size is 1500 bytes. For each experiment, we select

a source node and a destination node at random. The average throughput graph is

plotted as the average of 20 different random runs. The throughput CDF graph is

generated from 100 random pairs of source and destination nodes.

We enhance Glomosim to use a trace-driven physical layer based on traces from

the real-world link quality measurements in the MIT Roofnet [83], an experimental

802.11b/g mesh network of 38 nodes widely used in research papers [13, 84]. We use

802.11 MAC with 5.5Mbps raw bandwidth and 250 meter nominal range.

We examine the following three attack scenarios that represent the main threats

to the packet forwarding process of intra-flow network coding systems:

• Pollution: attacker nodes inject corrupted coded packets.

• Drop-Data: attacker nodes drop data packets.
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• Drop-ACK: attacker nodes drop ACK packets; data packets are delivered nor-

mally.

In all three types of attacks, the attacker nodes are selected at random among all

forwarding nodes.

Experiment setup for inter-flow network coding. As existing inter-flow

network coding systems vary significantly on the process used for the discovery of

coding opportunities and the specific coding conditions being used, we implement a

general inter-flow coding protocol, referred to as ICODE. Since we focus on the attacks

on coding, decoding, and packet forwarding process, ICODE is implemented in an

off-line manner using the global knowledge of the network. Specifically, we first select

a set of source and destination pairs, and establish a path between each pair using the

ETX metric [13] . Then each node on a path is examined for coding opportunities. At

runtime, each node forwards or codes packets according to the off-line analysis results.

Thus, ICODE utilizes all possible coding opportunities with global knowledge. In this

respect, ICODE encompasses all existing protocols, including [46,75–77,85–87].

As inter-flow network coding requires the participation of multiple flows, we use

a larger network of size 100 nodes placed uniformly at random in a 1500 m by 1500

m area. Up to 30 nodes are randomly selected among all the nodes to be attacker

nodes. A variable number of flows are established between randomly selected source

and destination pairs. The total offered load of all the flows is kept at 1 Mbps,

which is sufficient for full utilization of the network bandwidth without causing over-

congestion. We experimented with different numbers of flows. We only present results

for the case of 25 flows, as the results for the other cases are similar.

We examine the following attacks that are the main threats to the packet forward-

ing process of inter-flow network coding systems:

• Pollution: attacker nodes on selected paths inject corrupted (plain or coded)

packets to their downstream nodes.
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Figure 4.5. Average throughput under multiple packet dropping attackers.

• Over-coding: malicious coding nodes inject over-coded packets to their down-

stream nodes.

• Under-decoding: malicious decoding nodes refuse to decode packets that they

are supposed to decode; other packets are forwarded normally by the node.

• Drop-Data: attacker nodes on selected paths drop data packets.

4.3.2 Results for Intra-flow Network Coding

Figure 4.5 shows the average throughput as we vary the number of packet dropping

attackers from 1 to 7. We see that the throughput drops rapidly as the number of

attackers increases for all three attack types. In particular, we see that with even

a single attacker, both Drop-Data and Drop-ACK attacks lower the throughput to

around half of the throughput when there is no attack. Pollution attack causes an

even more dramatic degradation of the throughput: A single attacker causes the

throughput to drop to less than 10% of the throughput under a benign environment.

For all three types of attacks, the impact of the attacks levels out when the number

of attackers goes beyond 3. This is an artifact of the random selection of the source

and destination for each experiment. When the source and destination selected are
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Figure 4.6. Throughput CDF under single packet dropping attacker.

immediate neighbors, none of the above attacks can impact the delivery of data. Such

cases maintain the average throughput at a constant level, when the attacks cause all

the other cases to have zero throughput.

To further analyze the impact of the attacks on different flows, Figure 4.6 shows

the throughput CDF for the case of a single attacker. We first see that the Pollution

attack causes over 90% of flows to have zero throughput. This demonstrates the

extreme danger of this attack on intra-flow coding systems due to the epidemic effect

of packet corruption. For Drop-Data and Drop-ACK attacks, the attack impact is

relatively small, but still a significant percentage of flows experience zero throughput:

35% and 50% for Drop-Data and Drop-ACK attacks, respectively. Such cases occur

when the single attacker node happens to be the critical forwarder node that every

packet has to pass through. Therefore, contrary to the common belief of intra-flow

network coding systems being robust to packet dropping attacks, practical systems

are actually quite fragile, a side effect of performance optimization algorithms that

aim to reduce interference by minimizing the forwarder node set size and forwarding

rates. The reason that Drop-ACK inflicts a higher level of damage than Drop-Data

is that the ACK packet is delivered via single path routing which is more vulnerable

to packet dropping than the data packet delivery which uses multi-path routing.
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4.3.3 Results for Inter-flow Network Coding

Figure 4.7 shows the total network throughput for Pollution, Over-coding, Under-

decoding and Drop-Data attacks for different number of attackers. We first observe

that both Pollution and Drop-Data cause a steady decrease in the network throughput

as the number of attackers increases. Unlike in intra-flow network coding where

pollution attacks are significantly more damaging than packet dropping attacks, for

inter-flow network coding we observe that the effect of pollution attacks is similar to

packet dropping attacks. This is because inter-flow network coding is based on single

path routing, hence the presence of a packet pollution attacker on a flow causes the

same effect as a packet dropping attacker in that they both reduce the throughput

of the flow to zero. However, we note that pollution attacks are significantly more

challenging to defend against than packet dropping attacks, as it is difficult to verify

the correctness of coded packets in inter-flow coding systems, whereas packet dropping

attacks can be addressed with monitoring based solutions (e.g., watchdog [81]).

Over-coding and Under-decoding attacks cause a milder degradation of through-

put compared to pollution and dropping attacks. This is primarily due to the less

number of effective attacker nodes in Over-coding and Under-decoding attacks, as

only attacker nodes who are also coding nodes (for Over-coding attacks) or decoding
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nodes (for Under-decoding attacks) execute attack actions, while other selected at-

tacker nodes behave like honest nodes. Comparing Over-coding and Under-decoding

attacks, the impact of Under-decoding attacks is even lower than Over-coding attacks.

This is because a Under-decoding attacker affects only the flow that the attacker is on,

while for Over-coding attacks a malicious coding node can affect multiple flows simul-

taneously. A surprising result from the figure is the mild impact of Under-decoding

attacks even with up to 30 attacker nodes. A careful inspection reveals that most

decoding nodes only perform packet decoding occasionally, while performing packet

forwarding most of the time. This is consistent with the observation in [88]. Thus,

Under-decoding attacks affect only a small number of packets in the network.

4.4 Conclusion

In this chapter, we explored two general frameworks for existing network coding

systems, intra-flow network coding and inter-flow network coding. Through detailed

and systematic analysis, we reveal that both intra-flow and inter-flow network coding

systems are vulnerable to a wide range of attacks at various stages of the protocol.

The use of coding techniques not only introduces new attacks, but also makes existing

attacks more damaging and more challenging to defend against. Except for packet

pollution, the security threats for network coding are largely unexplored, hence, pro-

vide exciting opportunities for future security research.
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5 POLLUTION ATTACKS AND DEFENSES IN WIRELESS INTRA-FLOW

NETWORK CODING SYSTEMS

As presented in the previous chapter, packet pollution attacks are an extremely dan-

gerous class of attacks against network coding systems. They exploit the core principle

of network coding, and can cause significant throughput degradation with only a few

attackers in the network. In this chapter, we focus on addressing pollution attacks for

intra-flow network coding systems in wireless mesh networks. In intra-flow network

coding systems [47, 67, 71], intermediate nodes do not decode received packets, but

use them to generate new coded packets. However, intermediate nodes need to verify

that each received coded packet is a valid combination of native packets from the

source. As a result, traditional digital signature schemes cannot be used to defend

against pollution attacks, because the brute force approach in which the source gen-

erates and disseminates signatures of all possible combinations of native packets has

a prohibitive computation and communication cost, and thus it is not feasible.

Several solutions to address pollution attacks in intra-flow coding systems use

special-crafted digital signatures [89–92] or hash functions [93,94], which have homo-

morphic properties that allow intermediate nodes to verify the integrity of combined

packets. While these are elegant approaches from a theoretical perspective, they are

highly inefficient when applied in practice in wireless networks, even under benign

conditions when no attacks take place. Non-cryptographic solutions have also been

proposed [95–97]. These solutions either provide only a partial solution by detect-

ing the attacks without any response mechanism [95], or add data redundancy at the

source, resulting in throughput degradation proportionally to the bandwidth available

to the attacker [96, 97].

In this chapter, we propose two practical schemes to address pollution attacks

against intra-flow network coding in wireless mesh networks. Unlike previous work,
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our schemes do not require complex cryptographic functions and incur little overhead

on the system, yet can effectively contain the impact of pollution attacks. More

specifically, the contributions of this work are:

• We demonstrate through both analysis and experiments that previous defenses

against pollution attacks are impractical in wireless networks. In particular, we

show that under a practical setting, previous cryptographic-based solutions [89–

93] are able to achieve only less than 10% of the typically available throughput.

• We design DART, a practical new defense scheme against pollution attacks.

In DART, the source periodically disseminates random linear checksums for

packets that are currently being forwarded in the network. Other nodes verify

their received coded packets by checking the correctness of their checksums

via efficient random linear transformations. The security of DART relies on

time asymmetry, that is, a checksum is used to verify only those packets that

are received before the checksum itself was created. This prevents an attacker

that knows a checksum to subsequently generate corrupted packets that will

pass our verification scheme, as the packets will be verified against another

checksum that has not yet been created. DART uses pipelining to efficiently

deliver multiple generations concurrently. Our analysis of the security of DART

shows that under typical system settings, DART allows only 1 out of 65336

polluted packets passing a first hop neighbor of the attacker, and 1 out of over

4 billion polluted packets passing a second hop neighbor.

• We show how DART can be enhanced to perform optimistic forwarding of un-

verified packets in a controlled manner. The new scheme, EDART, improves

network throughput and reduces delivery latency, while containing the scope of

pollution attacks to a limited network region. Our analysis of EDART shows

precise upper bounds on the impact of pollution attacks under the optimistic

forwarding scheme.
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• We further enhance both DART and EDART with an efficient attacker iden-

tification scheme, with which the attacker nodes can be quickly isolated. The

attacker identification scheme for EDART leverages the independence of sym-

bols in the coding process and a novel cross-examination techniuqe to efficiently

identify attackers.

• We validate the performance and the overhead of our schemes with extensive

simulations using a well-known network coding system for wireless networks

(MORE [47]) and realistic link quality measurements from the Roofnet [83]

experimental testbed. Our results show that pollution attacks severely impact

the network throughput; even a single attacker can reduce the throughput of

most flows to zero. Our schemes effectively contain pollution attacks, achieving

throughputs similar to a hypothetical ideal defense scheme. The schemes incur

a bandwidth overhead of less than 2% of the system throughput and require

approximately five digital signatures per second at the source. The attacker

identification schemes can identify attackers within around one second of the

attack, and incurs only small bandwidth overhead on the network.

The rest of the chapter is organized as follows. Section 5.1 overviews related work.

Section 5.2 presents our system and adversarial model, while Section 5.3 motivates the

need for a new practical defense against pollution attacks. Sections 5.4 and 5.5 present

our two schemes, DART and EDART. Section 5.6 proposes the schemes for attacker

identification for both DART and EDART. Section 5.7 demonstrates the impact of the

attacks and the effectiveness of our defense mechanisms through simulations. Finally,

Section 5.8 concludes the chapter.

5.1 Related Work

Previous work addressing pollution attacks in intra-flow network coding can be

categorized into cryptographic approaches and information theoretic approaches. Net-

work error correction coding is also related.
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Cryptographic approaches. In cryptographic approaches, the source uses cryp-

tographic techniques to create and send additional verification information that allows

nodes to verify the validity of coded packets. Polluted packets can then be filtered

out by intermediate nodes. The proposed schemes rely on techniques such as ho-

momorphic hash functions or homomorphic digital signatures. These schemes have

high computational overhead, as each verification requires a large number of modular

exponentiations. In addition, they require the verification information (e.g., hashes

or signatures) to be transmitted separately and reliably to all nodes in advance; this

is difficult to achieve efficiently in wireless networks. An exception to the paradigm of

homomorphic hash or signatures is a recently proposed scheme [98] based on efficient

homomorphic MACs. However, the scheme requires a key pre-distribution from a

centralized trusted entity and its security decreases as the number of compromised

nodes increases. Thus, in the following, we only consider homomorphic hash or signa-

ture based schemes which ensures security irrespective of the number of compromised

nodes.

In hash-based schemes [93, 94], the source uses a homomorphic hash function to

compute a hash of each native data packet and sends these hashes to intermediate

nodes via an authenticated channel. The homomorphic property of the hash function

allows nodes to compute the hash of a coded packet out of the hashes of native

packets. The requirement for reliable communication is a strong assumption that

limits the applicability of such schemes in wireless networks that have high error

rates. The scheme proposed in [93] also has a high computational overhead. To

overcome this limitation, the work in [94] proposed probabilistic batch verification in

conjunction with a cooperative detection mechanism. This scheme was proposed for

and works reasonably well in peer-to-peer networks. However, it relies on fast and

reliable dissemination of pollution alert messages. The scheme also relies on mask-

based checksums that need to be sent individually to every node via different secret

and reliable channels prior to the data transfer. Both of these are difficult to achieve
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in wireless networks, in which links have higher latency and error rate than in wired

networks.

Schemes based on digital signatures [89–92] require reliable distribution of a new

public key for every new file that is sent and the size of the public key is linear in the file

size (the only exception is a recent scheme [99] which achieves constant-size public

key, but uses expensive bilinear maps). The source uses specialized homomorphic

signatures to send signatures that allow intermediate nodes to filter out polluted

packets. These schemes have a high computational cost. To verify each packet, the

schemes in [89, 99] rely on expensive bilinear maps, while the schemes in [90–92]

require a large number of modular exponentiations. Although the schemes proposed

in [90–92] allow batch verification, in which several packets are verified at once to

amortize the cost of verification, they have inherent limitations because they cannot

achieve a suitable balance between computational overhead, network overhead, and

packet delay. Ultimately, they result in low overall performance. In Section 5.3, we

argue in detail that cryptographic approaches have high overhead even under benign

conditions, making them impractical for use in a wireless network.

Information theoretic approaches. One information theoretic approach [95]

relies on coding redundant information into packets, allowing receivers to efficiently

detect the presence of polluted packets. The scheme provides only a partial solution,

as it does not specify any mechanisms to recover from pollution attacks. Another

approach [96] provides a distributed protocol to allow the receiver to recover native

packets in the presence of pollution attacks. However, given that polluted packets are

not filtered out, the throughput that can be achieved by the protocol is upper-bounded

by the information-theoretic optimal rate of C− zO, where C is the network capacity

from the source to the receiver and zO is the network capacity from the adversary to

the receiver. Thus, if the attacker has a large bandwidth to the receiver, the useful

throughput can rapidly degrade to 0. Unfortunately, there are many scenarios in

wireless networks where the attacker has a large bandwidth to the receivers (e.g.,

the attacker is located one hop away from the receiver, or multiple attackers are
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present), making the scheme not practical in wireless networks. In addition, due to

the constrained bandwidth of the medium, there is a long term benefit in detecting

the presence of the attacker and not allowing polluted packets to propagate in the

network. The work in [97] proposes to reduce the capacity of the attacker by only

allowing nodes to broadcast at most once in the network. This model requires trusted

nodes and differs vastly from practical systems for wireless networks, where each

intermediate node in general forwards multiple coded packets.

Network error correction coding. Recent work [100–103] has developed a

network error correction coding theory for detecting and correcting corrupted packets

in network coding systems. In principle, the network error correction coding theory

is parallel to classic coding theory for traditional communication networks, and also

exhibits a fundamental trade-off between coding rate (bandwidth overhead of coding)

and the error correction ability. Such schemes have limited error correcting ability

and are inherently oriented toward network environments where errors only occur

infrequently. In an adversarial wireless environment, the attackers are capable of

injecting a large number of polluted packets that can easily overwhelm the error

correction scheme and result in incorrect decoding.

5.2 System and Adversarial Model

5.2.1 System Model

We consider the intra-flow network coding system as introduced in Section 4.1.2 in

Chapter 4. Since pollution attacks target the coding and decoding process of network

coding systems, we briefly summarize this process in intra-flow coding systems as

follows.

The source has a sequence of N packets which is divided into sub-sequences called

generations. Each generation consists of n packets and is disseminated independently

to the receivers using network coding.
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Each packet ~pi in a generation is viewed as an m-dimensional column vector over

a field Fq, i.e.,

~pi = (pi1, pi2, . . . , pim)T, pij ∈ Fq.

A generation G consisting of n packets is viewed as a matrix:

G = [~p1, ~p2, . . . , ~pn],

with each packet in the generation as a column in the matrix.

The source forms random linear combinations of plain packets

~e =
n∑
i=1

ci~pi,

where ci is a random element in Fq and all algebraic operations are in Fq. The

source then forwards coded packets consisting of (~c,~e) in the network, where ~c =

(c1, c2, . . . , cn). Forwarder nodes also form new coded packets by computing linear

combinations of the coded packets it has received and forwards them in the network.

When a receiver has obtained n linearly independent coded packets, it can decode

them to recover the native packets by solving a system of n linear equations. For

consistency, all vectors used throughout this chapter are column vectors.

5.2.2 Security and Adversarial Model

We assume the source is trusted. However, both the forwarders and receivers

can be adversarial. They can either be bogus nodes introduced by the attacker or

legitimate but compromised nodes. Adversarial nodes launch the pollution attack

either by injecting bogus packets or by modifying their output packets to contain

incorrect data. We say a packet (~c,~e) is a polluted packet, if the following equality

does not hold:

~e =
n∑
i=1

ci~pi.

As in the well-known TESLA protocol [104, 105], we assume that clocks in the

network are loosely synchronized and that each node knows the upper bound on the
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clock difference between the node and the source, denoted as ∆. Several mecha-

nisms to securely achieve such loose clock synchronization are provided in [104,106].

Other techniques proposed in [107] reduce the synchronization error to the order of

microseconds.

We also assume the existence of an end-to-end message authentication scheme,

such as the traditional digital signature or message authentication code, that allows

each receiver to efficiently verify the integrity of native packets after decoding.

We focus only on pollution attacks, which are a generic threat to all network

coding systems. We do not consider attacks on the physical or MAC layer. We also

do not consider packet dropping attacks, nor attacks that exploit design features of

specific network coding systems, such as the selection of forwarder nodes. Defending

against such attacks is complementary to this work.

5.3 Limitations of Previous Work

Approaches based on information theory and network error correction coding have

severe limitations in wireless networks, as they assume limited bandwidth between

the attacker and the receiver. However, in wireless networks, an attacker can easily

have a large bandwidth to the receiver, for example, by injecting many corrupted

packets, staying near the receiver node, or having multiple attacker nodes.

Cryptographic approaches propose to filter out polluted packets at the inter-

mediate nodes by using homomorphic digital signatures [89–92] and homomorphic

hashes [93, 94]. Below we argue that the high computational cost of these schemes

makes them impractical for wireless systems.

In the existing cryptographic-based schemes [89–94], verifying the validity of a

coded packet requires m + n modular exponentiations (typically using a 1024-bit

modulus), where m is the number of symbols in a packet and n is the number of

packets in a generation. Most schemes can reduce this cost to γ = 1 + m
n

exponen-

tiations per packet by using batch verification, which enables nodes to verify a set of
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coded packets from the same generation at once. Note that batch verification can-

not be performed across generations, since each generation requires a different set of

parameters (e.g., different public keys).

Even when batch verification is used, the computational cost is still too high for

practical network coding systems. More precisely, since the relative network overhead

due to network coding is ρ = n
m

and the computational overhead to verify a packet is

γ = 1 + m
n

, minimizing the computational cost and minimizing the relative network

overhead are two conflicting goals; reducing one of them results in increasing the

other. We now compute the maximum throughput τ achievable in such systems. We

assume each node in the system is equipped with a 3.4 Ghz Pentium IV processor,

which performs around 250 modular exponentiations per second1, and the packet size

is 1500B. Given this setup, the destination can verify 250
γ

packets per second and the

throughput is τ = (1− ρ)250
γ
× 1500 bytes per second, or equivalently,

τ = (1− n

m
)
250× 1500

1 + m
n

,

which achieves the maximum value of 502kbps when n
m

= 0.41. Therefore, even if

the source and destination are direct neighbors and there is no attack, the maximum

throughput achievable is 502kbps, regardless of the actual link bandwidth, which can

be much larger, e.g., 11Mbps. In practice, the source and destination are usually

more than one hop away, in which case the achievable throughput is much lower.

Our experiments (see Section 5.7.4) show that, under typical network settings, the

achievable throughput is around 50kbps, which is only 4% of the throughput of the

system without using the defense mechanism; this is a 96% throughput degradation

even when no attacks take place.

Besides having a high computational cost, previously proposed cryptographic

schemes require the source to disseminate new parameters for each generation (e.g.,

a new public key per generation) with a size linear to the size of the generation. This

further increases the overhead and reduces the throughput.

1Numbers were obtained using the OpenSSL library (version 0.9.8e).
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Previously proposed cryptographic schemes also have requirements that conflict

with the parameters for practical network coding in wireless systems. A critical factor

for the security of cryptographic schemes is the size of the field Fq, which has to be

large, e.g., 20 or 32 bytes [89–92]. However, in all the practical network coding

systems in wireless networks [47,66,67], the symbol size used is much smaller, usually

one byte. This is because arithmetic operations over a field are extensively used

and a small symbol size ensures that these operations are inexpensive. Furthermore,

small symbols result in a large m value, which in turn reduces the relative network

overhead.

5.4 The DART scheme

Our first scheme, DART, uses checksums based on efficiently computable random

linear transformations to allow each node to verify the validity of coded packets. The

security of the scheme relies on time asymmetry, that is, a node verifies a coded packet

only against a checksum that is generated after the coded packet itself was received.

Each node uses only valid coded packets to form new coded packets for forwarding.

Invalid packets are dropped after one hop, thus eliminating packet pollution. Our

scheme can be applied on top of any network coding scheme that uses generations

and has one or more active generations at a time. The time asymmetry of checksum

verification in DART is close in spirit with TESLA [104], in which the sender delays

disclosure of the key used to authenticate a packet.

We present our solution incrementally. First, we describe our scheme, focusing

on one active generation. We present in detail the checksum generation and verifica-

tion, showing how batch verification is performed for one generation. We then show

how multiple generations can be pipelined in a network coding system to increase

performance. Finally, we demonstrate the effectiveness of our scheme in filtering out

polluted packets by analyzing the probability that an attacker bypasses our verifica-

tion scheme.
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5.4.1 Scheme Description

Let G be an active generation. The source periodically computes and disseminates

a random checksum packet (CHKs(G), s, t) for the generation, where CHKs(G) is a

random checksum for the packets in generation G, s is the random seed used to create

the checksum, and t is the timestamp at the source when the checksum is created.

The source ensures the authenticity of the checksum packet itself by digitally signing

it2.

Each forwarder node maintains two packet buffers, verified set and unverified set,

that maintain the verified and unverified packets, respectively. Each node combines

only packets in the verified set to form new packets and forwards such packets as

specified by the network coding system. On receiving a new coded packet, a node

buffers the packet into unverified set and records the corresponding receiving time.

Upon receiving a checksum packet (CHKs(G), s, t), a forwarder node first verifies

that it is not a duplicate and that it was sent by the source by checking the corre-

sponding digital signature. If the checksum is authentic, the node re-broadcasts it to

its neighbors. It then uses the checksum to verify those packets in unverified set that

were received by that node before the checksum was created at the source (i.e., pack-

ets whose receive time is smaller than the time t−∆, where ∆ is the maximum time

skew in the network). Valid packets are transferred from unverified set to verified set.

Packets that do not pass the verification are discarded. Algorithm 3 summarizes the

detailed operation of the protocol.

Checksum packets are not required to be delivered reliably: If a node fails to

receive a checksum, it can verify its buffered packets upon the receipt of the next

checksum. To reduce the overhead, we restrict the checksum to be flooded only

among forwarder nodes.

When a receiver node receives enough linear independent coded packets that have

passed the checksum verification, it decodes the packets to recover the native packets.

2Alternatively, the source may use more efficient authentication mechanisms such as TESLA [104] or µTESLA [106].
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Algorithm 3: The DART protocol

Source: during time interval Ti

1: Send coded packets for the current generation as indicated by the network
coding system.

Source: at the end of time interval Ti

1: Compute the checksum CHKs(G) for the current generation with a random
seed s.

2: Authenticate the checksum packet (CHKs(G), s, t) with digital signature or
other broadcast authenticate scheme.

3: Broadcast the authenticated checksum packet (CHKs(G), s, t).

Forwarder nodes

1: Send coded packet for the current generation as indicated by the network
coding system by using the packets in verified set.

2: Buffer any received coded packet in unverified set.

Forwarder nodes: on receiving a checksum packet (CHKs(G), s, t)

1: set p set to an empty set.
2: for each Packet ~pi in unverified set whose receive time ti < t−∆ do
3: add ~pi to p set.
4: Batch verify packets in p set using the checksum (CHKs(G), s, t).
5: Add verified packets to verified set and discard unverified packets.
6: Re-broadcast the checksum packet (CHKs(G), s, t).

It verifies the native packets using an end-to-end authentication scheme such as digital

signature or message authentication code (MAC) before passing the packets to the

upper layer protocol. The additional end-to-end authentication is to address the

extremely rare occasion when some polluted packet pass our checksum verification

at the receiver, which would otherwise cause incorrect packets to be delivered to the

upper layer.

The key points of our approach are that checksums are very efficient to create and

verify, as they are based on cheap algebraic operations, and that each node uses a

checksum to verify only those packets that were received before the checksum itself

was created. Therefore, although after obtaining a checksum an attacker is able to

generate corrupted packets that match the known checksum, it cannot convince other

nodes to accept them, as these packets will not be verified with the checksum known
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Figure 5.1. An example network for illustrating the process in DART.
Node A1, A2, B1, B2 are the forwarder nodes for source S and des-
tination R. The arrows indicate that packets can be heard over the
link.

to the attacker, but with another random checksum generated by the source at a time

after the packets are received.

Since coded packets are delayed at each hop for checksum verification, the number

of checksums needed for a generation is at least as many as the number of hops from

the source to the receiver. As checksums are released at fixed time intervals, the

requirement of multiple checksums for a generation can increase the packet delivery

latency. The packet delivery time could be reduced by releasing checksums more often;

however, this would increase the network overhead. We solve this dilemma by using

pipelining across generations such that multiple generations are being transmitted

concurrently. We describe pipelining in Sec 5.4.3.

Example. We illustrate DART with an example in Figure 5.1. Without loss of

generality, we assume that the source S transmits one active generation at a time and

that nodes are perfectly time-synchronized. Let T denote the time interval at which

the source periodically disseminates checksum packets.

At time 0, the source starts broadcasting coded packets for the current generation.

Nodes A1 and A2 buffer their received coded packets in unverified set and record their

received time without forwarding them.

At time T , S broadcasts a signed random checksum packet with timestamp T .

Nodes A1 and A2 first forward the received checksum packet to the downstream nodes

B1 and B2. Then they use the checksum to verify the packets in their unverified set
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whose receive time is before time T , and transfer successfully verified packets to their

verified set. As nodes B1 and B2 do not have any packet to verify, the checksum

packet is ignored at B1 and B2. After packet verification, A1 and A2 start to forward

new coded packets generated from their verified set to B1 and B2, which buffer their

received packets in their unverified set without forwarding them.

At time 2T , S broadcasts a new (different) random checksum for the generation,

which is also forwarded by nodes A1, A2 to nodes B1, B2. Upon receiving the checksum

packet, nodes A1, A2, B1, B2 use it to verify packets in their unverified set that were

received before time 2T . Upon packet verification, nodes B1, B2 also start forwarding

coded packets generated from their verified set to the destination node R.

The above process continues until the destination node receives the entire gener-

ation of packets that are successfully verified, and sends an acknowledgment to the

source, which advances the source to transmitting the next generation. The entire

process then repeats for the delivery of the next generation.

5.4.2 Checksum Computation and Verification

We now describe in detail how checksums are generated and how individual coded

packets are verified. We then show how to amortize the verification cost by verifying

a set of packets at once.

As mentioned in the system model (Section 5.2.1), we denote the generation size

used for network coding as n. Let ~p1, ~p2, . . . , ~pn be the packets to be transmitted

in the current generation. We view each packet as an element in an m-dimensional

vector space over a field Fq, i.e., as a column vector with m symbols:

~pi = (pi1, pi2, . . . , pim)T, pij ∈ Fq.

We use a m× n matrix G to denote all packets in the generation:

G = [~p1, ~p2, . . . , ~pn].
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Let f : {0, 1}κ × {0, 1}log2(b)+log2(m) → Fq be a pseudo-random function, where κ and

b are security parameters (κ is the size of the key for f , whereas b controls the size of

the checksum). We write fs(x) to denote f keyed with key s applied on input x.

Our checksum generation and verification are based on a random linear transfor-

mation applied on the packets in a generation.

Checksum creation. The source generates a random b ×m matrix Hs = [ui,j]

using the pseudo-random function f and a random κ-bit seed s, where ui,j = fs(i||j).

We define the checksum CHKs(G) based on seed s for generation G as

CHKs(G) = HsG.

Hence, CHKs(G) is obtained by applying a random linear transformation Hs on

the packets in G. Since Hs is a b×m matrix and G is a m× n matrix, the checksum

CHKs(G) is a b × n matrix. The source includes (CHKs(G), s, t) in the checksum

packet, where t is the timestamp at the source when the checksum is created, and

then disseminates it in an authenticated manner.

Packet verification. Given an authentic checksum (CHKs(G), s, t) for generation

G, a node uses it to verify coded packets that are received before time t−∆, where ∆

is the maximum time skew in the network. Given such a packet (~c,~e), a node checks

its validity by checking if the following equation holds,

CHKs(G)~c = Hs~e, (5.1)

where Hs is the random b×m matrix generated from seed s as described above.

If Eq. (5.1) holds, then the coded packet is deemed valid, otherwise, it is deemed

invalid. To see the correctness of this check, consider a valid packet (~c,~e), where

~e =
∑n

i=1 ci~pi = G~c and the checksum (CHKs(G), s, t), where CHKs(G) = HsG.

Then,

CHKs(G)~c = (HsG)~c = Hs(G~c) = Hs~e.

Batch verification. The above individual verification can be extended to effi-

ciently verify a set of coded packets at once. Let

E = {(~c1, ~e1), . . . , (~cl, ~el)}
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be a set of l coded packets from a generation G where all packets are received before

time t − ∆. To verify E against a checksum (CHKs(G), s, t) a node computes a

random linear combination of the packets, (~c,~e) = (
∑l

i=1 ui~ci,
∑l

i=1 ui~ei), where the

coefficients u1, u2, . . . , ul are selected uniformly at random from Fq. The node then

verifies the combined packet (~c,~e) using the individual verification described above. A

node can further reduce the false negative probability of the verification by repeating

the procedure with different random coefficients.

If E passes the verification, then all l coded packets are regarded as valid. Oth-

erwise, the invalid packets in the set can be identified efficiently using a technique

similar to binary search.

Checksum overhead. The size of a checksum (CHKs(G), s, t) is dominated by

the size of CHKs(G), which is a b × n matrix of elements in Fq. Thus, its size

is bn log2 q bits. Compared to the total data size in a generation, the overhead is

(bn log2 q)/n(n + m) log2 q = b/(n + m). In a typical setting, b = 2, n = 32,m =

1500, the overhead is less than 0.1%. The computational overhead for checksum

computation and verification is also comparable to generating a single coded packet

in network coding, and is evaluated in Section 5.7.5.

5.4.3 Pipelining Across Generations

As discussed in Section 5.4.1, the basic DART scheme may reduce throughput due

to the increased packet delivery time. A general approach to address this problem is

using pipelining, in which transmissions are pipelined across generations and multiple

generations are delivered concurrently. Several existing network coding systems [66,

67] already incorporate pipelining for performance purpose and DART can be applied

directly to such systems without performance penalties. Next, we propose a generic

mechanism for pipelining across generations in systems that do not perform pipelining

natively, e.g., MORE [47].
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To pipeline packet transmission across generations, the source transmits n coded

packets for each generation, moving to the next generation without waiting for ac-

knowledgments. The source maintains a window of k active generations and cycles

through these active generations, transmitting n coded packets for each generation.

Whenever the source receives an acknowledgment for an active generation, that gen-

eration is considered successfully delivered and the source activates the next available

generation of packets. Each checksum packet contains k checksum values, one for

each active generation.

Selecting a large value for k assures that no link goes idle and the bandwidth

resource is fully utilized. However, an overly large value for k increases the latency

for delivering a generation, because the number of active generations that the source

cycles through increases. To meet these two opposing requirements, the optimal k

value should be the smallest value such that the bandwidth is fully utilized. We

estimate the optimal k value as follows. Let d be the number of hops from the source

to destination, and τ be the delay at each hop. τ consists of two components, the

time between two checksum packets (t1) and the clock synchronization error between

the node and the source node (t2), which is less than ∆. So the total delay from the

source to the destination is dτ . Let a be the time for transmitting n packets at the

source, to ensure the source never idles, we need to have k ≥ dτ
a

= d(t1+t2)
a

. Assuming

a relatively large clock synchronization error, that is t2 � t1, we have k ≥ dt2
a

. Thus

we can select k = d∆
a

. Our experiments show that selecting k = 5 is sufficient.

A potential concern for pipelining is that the source needs to disseminate multiple

checksums in one checksum packet, as there are multiple active generations simulta-

neously. Our experiments in Section 5.7 show that, due to the small size of checksums,

the overall bandwidth overhead is still small.
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5.4.4 Security Analysis

Below we discuss the security properties of DART by focusing on one generation.

Pipelining across several active generations has no implication on the security analysis

presented below as checksums are generation specific and packets for each generation

are verified independently.

Recall that checksums are signed by the source, thus the attacker cannot inject

forged checksums into the network. The only option left for the attacker is to generate

corrupted packets that will match the checksum verification at honest nodes. The key

point of our scheme that prevents this is the time asymmetry in checksum verification:

A node uses a checksum to verify only packets that are received before the creation

of the checksum. Therefore, unlike traditional hash functions where the attacker has

a chance to find a collision because he has the hash value, in our scheme, the time

asymmetry in checksum verification prevents the attacker from computing a suitable

polluted packet that will pass the verification algorithm. At best, the attacker can

randomly guess the upcoming checksum value, thus only having a small chance of

success. We formalize the intuition for the security of our scheme as follows.

We say a coded packet is safe with respect to a checksum packet if the coded

packet is created prior to the time the checksum packet is created at the source. In

the following, we proof the following theorems that quantify the security of the DART

scheme with respect to two system parameters, q and b, where q is the field size used

by network coding and b is the security parameter for the checksum generation as

described in Section5.4.2.

Lemma 3 In DART, on every checksum verification all packets that are verified are

safe with respect to the checksum packet being used.

Proof Since packet safety is based on relative timing, without loss of generality,

we use the time at the source as the reference time. Denote by tc the creation time

of the checksum packet. For any coded packet that is verified against this checksum
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packet at any node, denote its creation time by tg and its receiving time by tr. Hence,

tr > tg. We need to prove tg < tc.

When the packet is received by the node, let the local time at the node be t′r and

the time at the source be tr. Since the maximum clock difference between the node

and the source is ∆, we have |tr − t′r| < ∆, hence, tr < t′r + ∆.

In the DART scheme, the timestamp in the checksum packet received by the node

is tc and a node only verifies a packet against this checksum packet if t′r < tc − ∆.

Thus, we have tg < tr < t′r + ∆ < tc Hence, the packet is safe with respect to the

checksum packet. �

Theorem 5.4.1 Let CHK = (CHKs(G), s, t) be a checksum for a generation G, and

let (~c,~e) be a polluted packet ( i.e., ~e 6= G~c). The probability that (~c,~e) successfully

passes the packet verification for CHK at a node is at most
1

qb
.

Proof Let CHK = (CHKs(G), s, t) be a checksum for a generation G and (~c,~e) be

a polluted packet, i.e., ~e 6= G~c. We calculate the probability of the event that (~c,~e)

passes the checksum verification, i.e., the equation CHKs(G)~c = Hs~e holds, as follows.

Let ~e′ be the correct encoding for the code vector ~c, that is, ~e′ = G~c. Therefore,

~e′ 6= ~e. Let Hs = [ ~h1, ~h2, . . . , ~hm] be the b × m random matrix generated from the

seed s, where each ~hi is a vector of b elements in Fq.

Since both (~c,~e) and (~c, ~e′) pass the checksum verification, we have CHKs(G)~c =

Hs~e and CHKs(G)~c = Hs
~e′. Thus, we have Hs~e = Hs

~e′. Hence Hs(~e − ~e′) = 0. Let

~u = (u1, u2, . . . , um) = ~e− ~e′, Since ~e′ 6= ~e, we have at least some i, 1 ≤ i ≤ m, such

that ui 6= 0. Without loss of generality, we assume u1 6= 0. Re-write Hs~u = 0 as

~h1u1 + ~h2u2 + · · · + ~hmum = 0. Since u1 6= 0, u1 has a unique multiplicative inverse

v1 in Fq such that u1v1 = 1. We have

~h1 = −v1( ~h2u2 + ~h3u3 + · · ·+ ~hmum). (5.2)

Therefore, given a fixed ~h2, ~h3, . . . , ~hm and u1, u2, . . . , um, there exists a unique ~h1

that satisfies the above equation.
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Since the packet (~c,~e) is safe with respect to the checksum, the ~hi vectors are

generated at random after the ui values are determined. Thus, although the attacker

can control the values for ui, the probability that Eq. (5.2) holds is still equal to

probability that the randomly selected ~h1 is the unique vector required. Since ~h1

consists of b symbols in Fq and each symbol was obtained using a pseudo-random

function with output in Fq, the probability of that occurs is 1/qb.

�

Theorem 5.4.2 Let CHK = (CHKs(G), s, t) be a checksum for a generation G and

let E = {(~c1, ~e1), . . . , (~cl, ~el)} be a set containing polluted packets. The probability that

E successfully passes w independent batch verifications for CHK at a node is at most
1

qw
+

1

qb
.

Proof We evaluate the probability that a set of packets containing polluted packets

E = {(~c1, ~e1), (~c2, ~e2), . . . , (~cl, ~el)} passes w independent batch checksum verifications

as follows.

Let (~c,~e) be a random linear combination of the packets in E with coefficients

u1, . . . , ul selected uniformly at random from Fq, that is,

(~c,~e) = (
l∑

i=1

ui~ci,
l∑

i=1

ui~ei).

Let E ′ = {(~c1, ~e′1), (~c2, ~e′2), . . . , (~cl, ~e′l)} be the set of correctly coded packets with

the same coefficients as in E, and (~c, ~e′) be the linear combination of packets in E ′

obtained with the same coefficients u1, . . . , ul, that is,

(~c, ~e′) = (
l∑

i=1

ui~ci,
l∑

i=1

ui~e′i),

Since packets in E ′ are correctly coded packets, their linear combination (~c, ~e′) is also

a correctly coded packet.

Let Ui be the event that ~e = ~e′ holds for the i-th batch verification and Vi be

the event that the packet (~c,~e) successfully passes the verification for the i-th batch

verification.
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Let Fi be the event that E passes the i-th batch verifications. Then, clearly,

Ui ⊆ Fi and Fi = Ui ∪ (Vi ∩ Ūi). Let H =
⋂

1≤i≤w Fi, that is, H is the event that E

passes all w batch verifications. We evaluate the probability P (H) that H occurs as

follows.

P (H) = P (
⋂

1≤i≤w

Fi) = P (
⋂

1≤i≤w

(Ui ∪ (Vi ∩ Ūi)))

= P (
⋂

1≤i≤w

Ui ∪
⋂

1≤i≤w

(Vi ∩ Ūi))

≤ P (
⋂

1≤i≤w

Ui) + P (
⋂

1≤i≤w

(Vi ∩ Ūi))

≤ P (
⋂

1≤i≤w

Ui) + P (V1 ∩ Ū1)

=
∏

1≤i≤w

P (Ui) + P (V1|Ū1)P (Ū1)

≤
∏

1≤i≤w

P (Ui) + P (V1|Ū1),

(5.3)

where the second to last equation is because Ui’s are independent events, since at each

batch verification, the coefficients u1, . . . , ul are selected independently at random.

By Theorem 5.4.1, we have P (V1|Ū1) = 1/qb. We now evaluate P (Ui). That is,

we evaluate the probability that the equation

l∑
i=1

ui~ei =
l∑

i=1

ui~e′i

holds, or equivalently, the equation

l∑
i=1

ui(~ei − ~e′i) = 0

holds. Since at least one packet in E is polluted, we have that ~ei 6= ~e′i for at least

some i, 1 ≤ i ≤ l. Without loss of generality, we assume ~e1 6= ~e′1. Therefore, we have

that e1j 6= e′1j for at least some j, 1 ≤ j ≤ m. Again, without loss of generality,we

assume e11 6= e′11. Let W be the event that
∑l

i=1 ui(ei1 − e′i1) = 0. Let ~vi = ~ei1 − ~e′i1.
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We have
∑l

i=1 uivi = 0. Since v1 6= 0, v1 has a unique multiplicative inverse β1 in Fq,

thus, we have

u1 = −β1(
l∑

i=2

uivi). (5.4)

Since u1 is randomly selected from field Fq, given fixed u2, . . . , ul and v1, . . . , vl, the

probability that Eq. (5.4) holds is 1/q, i.e., P (W ) = 1/q. Since Ui ⊆ W , we have

P (Ui) ≤ P (W ) = 1/q.

Therefore, by Eq. (5.3) we have P (H) ≤ 1
qw + 1

qb .

�

Note that the checksum verification algorithm does not have false positives. Thus,

a packet can be verified against multiple checksums to further reduce the false neg-

ative probability, as long as the packet is safe with respect to the checksums. The

failure of any checksum verification indicates that the packet is corrupted. How-

ever, our experimental results (Section 5.7) show that verifying each packet with only

one checksum is already sufficient. Also note that since each checksum is generated

independently at random, knowing multiple checksums does not help the attacker

in generating corrupted packets that will pass the checksum verification for future

checksums.

Checksum dropping attacks. Attackers may try to attack the DART scheme

itself by preventing nodes from receiving checksum packets. Recall that the checksum

packets are flooded among all forwarder nodes. If attackers are always able to prevent

a node from receiving checksum packets, this implies that the node is completely

surrounded by attackers. In this case, the attackers can isolate the node by dropping

all data packets, thus achieving the same effect as dropping checksums. Our DART

scheme can provide additional resiliency against checksum dropping by flooding the

checksum not only among the set of forwarder nodes, but also among the nodes that

are near forwarder nodes (e.g., within two hops).

Size of the security parameters. As shown in Theorems 5.4.1 and 5.4.2, we

can reduce the false negative probability of the verification by using a large field size
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q or a large security parameter b. However, using a large field size also results in

large symbol sizes, causing larger network overhead (since the ratio n/m increases for

a fixed packet size). Security parameter b allows us to increase the security of the

scheme without increasing the field size.

For a typical field size of q = 28, selecting b = 2 is sufficient. With individual

packet verification, if an attacker injects more than 2562 = 65, 536 packets, then on

average, only one polluted packet will be forwarded more than one hop away. Our

experiments confirm that selecting b = 2 is sufficient to contain pollution attacks.

5.5 The EDART Scheme

In our DART scheme, valid packets received by a node are unnecessarily delayed

until the next checksum arrives. Ideally, nodes should delay only polluted packets

for verification, whereas unpolluted packets should be mixed and forwarded without

delay. However, nodes do not know which packets are polluted before receiving a

checksum packet and are faced with a dilemma: Imprudent forwarding may pollute

a large portion of the network, while overstrict verification will unnecessarily delay

valid packets.

We propose EDART, an adaptive verification scheme which allows nodes to opti-

mistically forward packets without verifying them. As in DART, nodes verify packets

using the periodic checksums. But in EDART, only nodes near the attacker tend

to delay packets for verification, while nodes farther away tend to forward packets

without delaying. Therefore, pollution is contained to a limited region around the

attacker and correct packets are forwarded without delay in regions without attack-

ers. A major advantage of EDART is that, when no attacks exist in the network,

the packets are delivered without delay, incurring almost no impact on the system

performance. Below, we describe EDART and provide bounds on the attack impact,

the attack success frequency, and the packet delivery delay in the network.



101

5.5.1 Scheme Description

In EDART, each node is in one of two modes, forward mode or verify mode. In

verify mode, a node delays received packets until they can be verified using the next

checksum. In forward mode, a node mixes and forwards received packets immediately

without verification, except if the packet has traveled more than a pre-determined

number of hops since its last verification. The limited scope of any unverified packets

ensures that the maximum number of hops a polluted packet can travel is bounded.

As in DART, upon receipt of a checksum, nodes always verify any buffered unverified

packet whose receive time is before the checksum creation time.

Nodes start in the forward mode at system initialization. A node switches to the

verify mode upon detecting a verification failure. The amount of time a node stays

in the verify mode is a decreasing function of its distance to an attacker node, so

that nodes near an attacker tend to verify packets, while nodes farther away tend to

forward packets without delay.

The detailed pseudo-code for EDART is presented in Algorithm 4. Each network

coded packet contains a new field, hv, which records the number of hops the packet has

traveled since its last verification. Each node maintains a variable Cv (the verification

counter), indicating the amount of time that the node will stay in the verify mode

(e.g., Cv = 0 means that the node is in the forward mode). A node also maintains

two sets of packets, forward set and delay set. Packets in forward set can be combined

to form coded packets, while packets in delay set are held for verification.

At system initialization, each node starts in the forward mode (i.e., Cv = 0) and

both forward set and delay set are empty.

Upon receiving a coded packet, a node adds the packet to the delay set if the node

is in the verify mode (i.e., Cv > 0) or if the packet has traveled more than δ hops since

its last verification (i.e., if hv > δ, where δ is a pre-determined system parameter).

Otherwise, the packet is added to the forward set for immediate forwarding. A new

coded packet is formed by combining packets in the forward set. The hv field of the
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Algorithm 4: EDART scheme executed by each forwarder node

Executed at system initialization

1: Cv = 0; forward set = ∅; delay set = ∅
Executed on receiving packet p

1: if (Cv > 0 or hv ≥ δ) then add p to delay set
2: else add p to forward set

Executed to output a packet

1: Select a subset of packets from forward set to form a coded packet as
required by the particular network coding system.

2: Set hmax to be the maximum hv in the selected packets
3: For the coded packet, set hv = hmax + 1

Executed on receiving checksum (CHKs(G), s, t)

1: Verify all unverified safe packets in both forward set and delay set against
CHKs(G)

2: Set hv = 0 for all verified packets
3: if there exist invalid packets that failed verification then
4: Set hmin to be the minimum hv in all packets that failed verification
5: Cv = Cv + α(1− hmin

δ
)

6: else if Cv > 0 then
7: Cv = Cv − 1

new packet is set to hmax + 1, where hmax is the maximum hv among all packets that

are combined to form this new packet.

Upon receiving a checksum packet, a node verifies all unverified packets in both

forward set and delay set. If all packets pass the verification, it decrements Cv by

one (unless it is already 0). If there are packets that fail the verification, the node

increments Cv by α(1 − hmin

δ
), where hmin is the minimum hv of all the packets that

fail the verification and α is a pre-determined system parameter. For all packets that

pass the verification, their hv field is reset to 0.

Note that the hv field does not require integrity protection. On the one hand, if

the attacker sets hv large, then the polluted packets are only propagated over a small

number of hops. On the other hand, if the attacker sets hv small, then the neighbors of

the attacker will stay in the verify mode longer after checksum verification, preventing

pollution from the attacker node for a longer duration of time. In the next section, we
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show that regardless of how attackers may set the hv value, the overall attack impact

is still bounded.

5.5.2 Security Analysis

We now analyze the properties of EDART, first in the context of one attacker,

and then extend the analysis to the case of multiple attackers. We refer to the time

between two consecutive checksum creation events as a time interval. To measure the

severity of a pollution attack, we define the following metrics:

• pollution scope: The number of hops traveled by a polluted packet before being

discarded, which captures the maximum impact caused by a single polluted

packet. We also consider the average pollution scope which captures the impact

of an attack averaged over time.

• pollution success frequency : The frequency of pollution attacks with scope

greater than one. Note that an attack with pollution scope of one hop has

no impact on the network, as the polluted packet is dropped immediately by

the first hop neighbors of the attacker.

To measure the effectiveness of EDART in minimizing packet delivery delay we

define unnecessary delay as the number of additional time intervals a node stays in

the verify mode, compared to an ideal scheme where only the direct neighbors of an

active attacker are in the verify mode and all other nodes are in the forward mode.

In EDART, attackers can only increase the pollution scope of an attack at the

cost of decreasing their pollution success frequency and vice-versa: Setting hv to a

low value for a polluted packet will result in a larger pollution scope, but the direct

neighbors will isolate the attacker for a longer period. Hence, the overall severity of the

attack is bounded. We now present properties that precisely capture the effectiveness

of the EDART scheme for the case of one attacker.

Property 1 The maximum pollution scope of an attack is upper-bounded by δ + 1.
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Proof Each honest node increments by one the hv field of its newly coded packets.

Then, clearly, a polluted packet that was forwarded by δ honest nodes will have

hv ≥ δ; thus, it will be verified, detected and dropped by the next honest node. �

Property 2 The average pollution scope per time interval is upper-bounded by δ/α.

Proof Let h be the minimum hv value of polluted packets sent by an attacker in

the current time interval. Then, the maximum pollution scope of polluted packets in

this time interval is δ−h. Upon receiving the first checksum, all the direct neighbors

of the attacker will detect verification failures, and increment their Cv by α(1 − h
δ
).

Thus, they will stay in the verify mode for at least α(1− h
δ
) time intervals. As long

as all the neighbors of the attacker are in the verify mode, all the polluted packets

generated by the attacker will be detected and dropped at the first hop, thus causing

no pollution effect on the network. Therefore, the average pollution scope per time

interval is at most (δ − h)/(α(1− h
δ
) + 1) < (δ − h)/(α(1− h

δ
)) = δ/α. �

Property 3 The maximum pollution success frequency is upper-bounded by δ/α.

Proof When an attacker sends polluted packets with hv = h in some time interval,

for the next α(1− h
δ
) time intervals its pollution attacks will be ineffective (polluted

packets will be verified and dropped by its first-hop neighbors). Thus, its pollution

success frequency is at most 1/(α(1− h
δ
)+1). To maximize this value, it sets h = δ−1,

resulting in the maximum success frequency of 1/(α(1− δ−1
δ

) + 1) < δ/α. �

Property 4 Let h be the minimum hv value of polluted packets sent by an attacker.

Nodes at i hops away from the attacker (for 2 ≤ i ≤ δ − h − 1) have unnecessary

delay of α(1− h+i
δ

) time intervals. Nodes more than δ− h− 1 hops away do not have

unnecessary delay.

Proof Since the hv value is incremented at each hop, nodes that are i hops away

from the attacker (with 2 ≤ i ≤ δ − h − 1) stay in the verify mode for α(1 − h+i
δ

)

time intervals. Nodes that are more than δ − h − 1 hops away do not switch to the
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Figure 5.2. Attacker X attacks first and nodes A and B receive pol-
luted packets; (b) In the following time interval, A and B switch to
verify mode, and attacker Y starts attacking. Y ’s polluted packets
are immediately dropped by node B and further nodes (node C) are
protected. Thus, the strength of Y ’s attack is diminished by X’s
attack.

verify mode since polluted packets are verified and dropped by nodes δ−h away from

attacker. �

Multi-attacker case: With multiple attackers, the attack strength per attacker

in terms of maximum pollution scope, average pollution scope, and maximum success

frequency is still bounded as in Properties 1, 2, and 3. To see this, we examine two

different cases. First, we consider attackers that are far apart from each other (e.g.,

over 2δ hops away) such that a honest node is only in the pollution scope of one

attacker. In this case, we can view the network subdivided into smaller areas, and in

each smaller area there is only one attacker, thus the bounds in Properties 1, 2, and

3 still hold. Second, we consider attackers positioned such that some honest nodes

are affected by multiple attackers. The reaction of such honest nodes is driven by

their closest attacker. As shown in the example of Figure 5.2, the effectiveness per

attacker is reduced, because nearby attackers cancel the effects of each other. Thus,

Properties 1, 2, and 3 also hold in this case. Our experiments in Section 5.7 confirm

that EDART remains effective against pollution attacks in the presence of multiple

attackers.
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5.5.3 Selection of δ and α

The parameter δ is defined as the number of hops after which a coded packet is

always verified. The parameter α is a parameter that controls the amount of time

a node stays in the verify mode. By Properties 1, 2, and 3, the scope and success

frequency of an attack are directly proportional to δ and inversely proportional to α,

thus we can increase attack resiliency by selecting a small δ and a large α. However, a

small δ and a large α result in a larger packet delay: A small δ causes valid packets to

travel only a small number of hops before being delayed for verification, and a large

α causes a larger unnecessary delay in the presence of attacks (Property 4). Thus, we

need to balance between attack resiliency and packet delivery delay when selecting δ

and α.

For systems that can tolerate large delivery latency, such as large file transfers in

mesh networks or code updates in sensor networks, we can use a small δ and a large

α to increase the system resiliency. On the other hand, for systems that are sensitive

to delivery latency, such as video or audio streaming, we can use a large δ and a small

α to reduce delay. We also note that in a benign network, the value of δ determines

the delivery latency and the delivery latency decreases as the value for δ increases.

Thus, in a network in which attacks are rare, we can use a large δ to reduce delivery

latency in normal cases, and use a large α to limit the attack impact when under

attack.

5.6 Attacker Identification

DART and EDART focus on detecting and dropping polluted packets. Although

this effectively limits the impact of pollution attacks, as a practical solution it is also

important to be able to identify attacker nodes in the network. Firstly, the ability

to identify attacker nodes allows the source node to exclude attacker nodes on the

data delivery path and make optimal selection of forwarder nodes among only honest

nodes. Otherwise, the attacker nodes may be selected to be on the critical path,
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rendering the flow under the complete control of the attacker. Secondly, excluding

attacker nodes from the data delivery path eliminates further packet pollution from

the identified attacker nodes. This is particularly useful for EDART because, in the

absence of packet pollution, nodes will operate in forward-only mode, which improves

performance. Finally, the identification of attacker nodes also allows for physical

intervention to recover compromised nodes, e.g. by re-installing software on them. In

this section, we enhance both the DART and EDART schemes to efficiently identify

pollution attacker nodes.

5.6.1 Assumptions

In order to be able to attribute the packet pollution to a certain node, we need to

ensure the non-repudiation property on packets. Thus, we assume that each forwarder

node signs every coded packet it generates. We further assume the existence of a

reliable end-to-end communication path between every pair of nodes. Reliable end-

to-end communication in wireless networks has been a subject of extensive study

with numerous proposals [41, 82, 108], any of which may be used with our protocol3.

Lastly, we assume that there is no Sybil attack, in which a single attacker node owns

multiple (bogus) identities and their associated credential information. However, the

attackers may collude, and conduct wormhole and rushing attacks.

5.6.2 DART-AI: DART with Attacker Identification

Since in DART each node verifies packets before using them for coding, honest

nodes will only forward valid packets except for a small false-negative probability

in the checksum verification scheme. Thus, we propose the attacker identification

scheme for DART (DART-AI) as follows: when a node receives a corrupted packet

that does not pass the checksum verification, it reports the sender of the packet as a

3Since reliable communication is required only after an attack is positively identified, even a straight-
forward implementation using flooding can be used.
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pollution attacker node to the source node along with the corrupted packet itself as a

proof. The source node, on receiving such a report, checks that the packet reported is

indeed corrupted and is signed by the reported attacker node. If so, the source regards

the reported node as an attacker node; otherwise, the reporting node is regarded as

an attacker node.

Security Analysis

Since there is a false-negative probability in the checksum verification, an honest

node can also forward corrupted packets, and hence is mistakenly identified as an

attacker node. Conversely, an attacker node whose corrupted packets happen to pass

the checksum verification at honest nodes can escape from being identified. Below we

analyse such false positive and false negative probability of the attacker identification

scheme for DART.

False positive probability. Let Efp be the event that a honest node is mis-

takenly identified as an attacker node and E1 be the event that the node accepts a

corrupted packet as a valid one. Since the event Efp occurs if the node accepts a

corrupted packet as a valid one and the packet produced by the node is correctly

identified by other nodes as corrupted, we have

Pr(Efp) ≤ Pr(E1).

Let k be the number of corrupted packets received by the node, then the probability

that any of these packets are accepted as valid by the node is

Pr(E1) = 1− (1− 1/qb)k.

Thus, we have

Pr(Efp) ≤ 1− (1− 1/qb)k.

Assuming the typical setting of q = 256 and b = 2, we plot Pr(Efp) as a function

of k in Figure 5.3. We see that the false positive probability is less than 0.002 even

when k is as large as 100.
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Figure 5.3. False positive probability of DART-AI as a function of
number of corrupted packets received by the node.

False negative probability. Let Efn be the event that a pollution attacker is not

identified after injecting a single polluted packet. Thus, Pr(Efn) is the lower-bound

on the probability that a pollution attacker goes undetected. Let u be the number of

checksums that the injected corrupted packet is verified against at an honest node.

The attacker is not identified only if its injected packet passes all u different checksum

verifications. Thus, we have

Pr(Efn) = (1/qb)u.

In the worst case, the injected corrupted packet is verified against only one checksum4,

we have Pr(Efn) ≤ 1/qb. Again with a typical setting of q = 256 and b = 2, we have

Pr(Efn) ≤ 1/216.

5.6.3 EDART-AI: EDART with Attacker Identification

In EDART, an honest node may forward many corrupted packets, as when in

forward mode it uses its received packets for coding without verifying them. Thus,

unlike in DART, we cannot simply accuse any node that forwards corrupted packets

4If it is not verified at all, the packet will not be used for coding, thus will not cause any pollution.
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as an attacker. Instead, we adopt a traceback strategy that traces backward through

the causal relationship of the packet pollution until an attacker is identified.

The strategy relies on the observation that a corrupted packet produced by an

honest node with an unverified hop count field hv1 is always caused by corrupted

packets received by the node with an unverified hop count field hv2 < hv1. Thus,

to identify the attacker node, the source iteratively queries each node that produces

corrupted packets for its input packets that have a smaller hv field than the corrupted

packet produced by the node. In this process, an honest node is always able to provide

one such packet as a proof of its coding correctness (thus being innocent), while the

attacker node who injects corrupted packets is not able to do so. Thus, by tracing

through the packet causal relationship in the reverse direction of the hv field, an

attacker can eventually be identified.

A naive implementationo of the above strategy would require each queried node

to return to the source an entire corrupted input packet as a proof of its innocence.

Instead, we propose an efficient symbol-level traceback technique that only requires

the queried nodes to return a single symbol in the packet5. The symbol-level traceback

strategy relies on the observation that each symbol in a packet is coded independently

of each other. A corrupted symbol at some position of a coded packet is always caused

by corrupted symbols at the same position of some input packets. Thus, the source

only needs to trace the causal relationship in the generation of a corrupted symbol in a

packet in order to identify the attacker node. One challenge of symbol-level traceback

is that an attacker node may claim an arbitrary input symbol being from any node in

the network, since symbols are not signed individually by forwarder nodes. To address

this, we incorporate a cross-examination technique which checks the consistency of

the claimed value for a symbol with the claimed sender of the packet. If the claimed

packet sender disagrees on the symbol value, then either the claiming node or claimed

5The symbol here refers to the symbol being used in network coding, as defined in Section 5.2.1,
which is usually of length of one byte.
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packet sender is lying. We can dissolve the dispute by querying the claiming node for

the complete packet containing the symbol as signed by the claimed sender node.

In the following, we first introduce some notations and formally define a corrupted

symbol, and then we describe the details of the symbol-level traceback procedure.

Notations

As defined in Section 5.2.1, each packet ~pi in a generation is viewed as a column

vector of m elements over Fq, i.e. ~pi = (pi1, pi2, · · · , pim)T with pij ∈ Fq. A genera-

tion G of n packets is viewed as a matrix G = [~p1, · · · , ~pn] with each packet in the

generation as a column in the matrix. We further define ~rj to be the jth row of the

matrix G, i.e. ~rj = (p1j, p2j, · · · , pnj). Given a corrupted coded packet p = (~c,~e) with

~c = (c1, c2, · · · , cn) and ~e = (e1, e2, · · · , em), we say a symbol ej is a corrupted symbol

if ej 6=
∑n

i=1 cipij, or equivalently, ej 6= ~c · ~rj, where “·” represents the vector dot

product. Thus, given ~rj and a coded packet (~c,~e), one can verify whether a symbol ej

in ~e is corrupted. Clearly, a corrupted packet always contains at least one corrupted

symbol.

Scheme Details

The symbol-level traceback starts when the source receives a pollution report

with a corrupted coded packet (~c,~e). To start the traceback, the source first locates

one corrupted symbol in the corrupted coded packet6. Let j be the position of the

corrupted symbol in ~e. The source maintains the following states:

• the current prover node P ,

• the previous prover node P ′,

• the current value for the hv field, denote as h, and

6The source is always able to do so, as it has all the plain packets for the respective generation.
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• the value ej of the corrupted symbol at the jth position of a packet produced

by the prover node P as claimed by the previous prover node P ′.

At first, the source initializes the current prover node P to be the node that reports

the pollution, h to be the hv field of the reported polluted packet. Both P ′ and ej

are initialized to be a special null value indicating that it is not used. In each round,

the source sends a query that contains a tuple Tq = (~rj, j, h, ej), where ~rj is the j-th

row of the matrix G. The value ej in the query tuple Tq is for cross-examination of

the symbol between the previous prover node and the current prover node.

On receiving a query tuple Tq = (~rj, j, h, ej), if ej is not null, the node first

validates the claim made by the previous prover node on ej by checking if it has

generated a corrupted packet p whose hv field is h and whose jth symbol is corrupted

and has value ej. If any of these checks fail, the node returns a response indicating

the cross-examination failure. Otherwise, the node checks all the coded packets in

its buffer with the hv field smaller than h for the correctness of their jth symbol.

To do so, for a coded packet (~c,~e) it checks if the equation ej = ~c · ~rj holds. An

honest node will always be able to find a corrupted packet whose jth symbol is

corrupted and with hv < h. In response to the query, the node returns a response

tuple Tr = (ej, hv, n), where ej and hv are the jth symbol and the hv field of the

corrupted packet, respectively, n is the identifier of the node that sent the packet.

If the source node fails to receives a response from the current prover node P after

a time out, it identifies P as an attacker, and terminates the traceback procedure.

If the received response indicates a cross-examination failure, then either the current

prover node P or the previous prover node P ′ is lying and can be identified as an

attacker. To find out which one, the source queries the previous prover node P ′ for

the packet signed by P and whose jth symbol is corrupted and has value ej. If node

P ′, who should have stored the packet in its buffer, can return the queried packet,

then node P is identified as the attacker. Otherwise, node P ′ is identified as the

attacker.
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If the source receives a response tuple Tr = (ej, hv, n) successfully with ej being

corrupted and hv < h, it repeats the traceback on node n by setting P ′ to be P , P

to be n, h to be hv and ej to be the ej in Tr. This process repeats until an attacker

is identified.

Security Analysis

Since the correctness of plain packets is ensured with end-to-end authentications,

packet corruption is always detected at some honest node either due to the failure of

checksum verifications or when the packet is decoded at the receiver node. Therefore,

for every packet pollution attack, a traceback procedure is always invoked. In the

following, we show that every invocation of the traceback procedure will result in an

attacker node being identified with a high probability. Therefore, we can conclude

that for every occurrence of pollution attack, an attacker is identified with a high

probability.

Lemma 4 On each traceback procedure an attacker is identified correctly with the

probability of 1−1/qb, and the probability that an honest node is mistakenly identified

as an attacker node (i.e. the false positive probability) is 1/qb.

Proof An honest node will only be identified as an attacker when it forwards a cor-

rupted packet with its hv field reset to 0. This only occurs when the node mistakenly

classifies a corrupted packet as a correct packet, because an honest node only resets

the hv field after performing a checksum verification. By Theorem 5.4.1, the false

negative probability of the checksum verification is 1/qb, thus we have the honest

node being mistakenly identified as an attacker node is also 1/qb.

Since the traceback procedure always identifies some node as an attacker node,

the probability that an attacker node is correctly identified is 1− 1/qb. �
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Overhead Analysis

We analyze the computation, bandwidth and storage overhead of the traceback

procedure.

The computation overhead involves only the generation signatures for the query

and response messages. Since the number of traceback rounds is upper-bounded by

δ, the maximum value for hv, we have the maximum number of signature generations

and verifications is 4δ.

For the bandwidth overhead, each query packet (~rj, j, h, ej) is of size |~rj| + |j| +

|h|+ |ej| = (n+ 1)q+ 2 bytes7, where n is the number of packets in a generation and

q is the packet size. A response packet (ej, hv, n) is of size q + 3 bytes, assuming a

node identifier takes two bytes. Since the maximum number of traceback rounds is

δ, we have the maximum bandwidth overhead incurred is ((n + 2)q + 5)δ. With a

realistic setting of n = 32, q = 1, δ = 8, we have the maximum bandwidth overhead

of a traceback procedure be less than as 320 bytes.

In order to be able to response to the traceback queries and perform cross-

examination, honest nodes need to store both the received input coded packets and

its output packet until a generation is received successfully at the receiver. A node is

already required to store the input packets for the purpose of network coding. Thus,

the storage overhead induced by the traceback procedure is only the storage of the

output packets. As validated by our experiments, for each generation a node typically

only sends tens of packets. Thus, the storage overhead of the traceback procedure is

small.

5.7 Experimental Evaluation

We show through simulations the impact of pollution attacks on an unprotected

system and the high cost of current cryptographic-based solutions. We then perform

an evaluation of our defense schemes. Our experiments are based on the well-known

7|x| denotes the size of x
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MORE protocol [47], a network coding-based routing protocol for wireless mesh net-

works. We selected MORE because it is one of the best known network coding based

routing protocols for wireless networks and the source code is publicly available.

We use the real-world link quality measurements from Roofnet [83], an experimen-

tal 802.11b/g mesh network in development at MIT. Roofnet has also been widely

used in other research papers [66,109–112] as a representative wireless mesh network

testbed.

5.7.1 MORE in a Nutshell

MORE is a routing protocol for wireless mesh networks that uses network coding

to achieve increased performance. MORE sends data in generations of n packets. For

each generation, the source continuously broadcasts coded packets of native packets

from the current generation until it receives an acknowledgment from the destina-

tion; the source then moves on to the next generation. The source includes in the

header of each coded packet the forwarder set, which is a set of nodes that partici-

pate in forwarding packets; this set is obtained based on each node’s distance to the

destination.

A forwarder node stores an overheard packet only if the packet is linearly inde-

pendent with previously stored packets. The reception of a new coded packet also

triggers the node to broadcast ` new coded packets, where ` is determined based on

the node’s relative distance to the destination compared to other nodes. The new

coded packets are generated from the stored coded packets previously received for the

same generation.

When the destination receives n linearly independent coded packets, it can decode

the generation and recover the native packets, upon which it sends an acknowledgment

to the source to indicate that it can start sending the next generation.
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Figure 5.4. Roofnet topology and link qualities.

5.7.2 Experimental Methodology

Simulation setup. Our experiments are performed with the Glomosim simulator

[40] configured with 802.11 as the MAC layer protocol. We use realistic link quality

measurements for the physical layer of Glomosim to determine the link loss rate.

Specifically, we use the real-world link quality trace data from the Roofnet testbed,

publicly available at [83]. The network consists of 38 nodes, and the topology and

link qualities are shown in Figure 5.4. The raw bandwidth is 5.5Mbps.

We assume the clocks of nodes in the network are loosely synchronized, with the

maximum clock drift between any node and the source being ∆ = 100ms8. We use

160-bit Elliptic Curve DSA signature (ECDSA)9, and simulate delays to approximate

the performanace of a 3.4 GHz Intel Pentium 4 processor.

We use the MORE unicast protocol to demonstrate our schemes. In each experi-

ment, we randomly select a pair of nodes as the source and destination. The source

starts to transfer a large file to the destination 100 seconds after the experiment starts

8Current secure clock synchronization schemes [107,113] can achieve clock drift in the order of microseconds. We use

a much larger clock drift to demonstrate that our schemes only require loose clock synchronization.
9Equivalent to the security level of 1024-bit DSA.
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for a duration of 400 seconds. The CDF results shown in our graphs are taken over

200 randomly selected source-destination pairs.

MORE setup. We use the default MORE setup as in [47]: The finite field for

network coding is F28 , the generation size n is 32 packets, and the packet size is

1500B.

Attack scenario. We vary the number of attackers from 1 to 10 (out of a total of

38 nodes). Since in MORE only forwarder nodes and nodes in the range of a forwarder

node can cause packet pollution, we select attackers at random among these nodes.

If the total number of such nodes is less than the specified number of attackers, we

select all of them as attackers.

The attackers inject polluted packets, but follow the protocol otherwise. To exam-

ine the impact of the attack, we define pollution intensity (PI) as the average number

of polluted packets injected by the attacker for each packet it receives. Thus, it cap-

tures the frequency of pollution attacks from an attacker. We vary PI to examine the

impact of different levels of attack intensity.

DART and EDART setup. We set the checksum parameter b = 2, which

results in a checksum size of 64 bytes. The source broadcasts a checksum packet after

broadcasting every 32 data packets10. We use the pipelining technique described in

Section 5.4.3, with the pipeline size of 5. For EDART, we use δ = 8 and α = 20.

These parameters are experimentally selected to suit the small scale of the network

and to balance between overhead, throughput, and latency.

As a baseline, we use a hypothetical ideal defense scheme referred to as Ideal,

where the polluted packets are detected with zero cost and immediately dropped by

a node. Note that under benign conditions, the Ideal scheme behaves the same as

the original MORE protocol. We compare our schemes with Ideal using the same

pipeline size to examine the latency caused by delayed packet verification.

10This does not mean there is only one checksum per generation. In MORE, the source keeps broadcasting coded

packets for a generation (usually more than 32 packets) until the destination is able to decode the entire generation

of packets.
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DART-AI and EDART-AI setup. The setup of DART-AI and EDART-AI is

based on the settings for DART and EDART as described above. For the attacker

identification, each packet is signed using the ECDSA signature scheme as described

previously. We assume the source avoids the attacker nodes by re-selecting the for-

warding node set once the attacker nodes are identified. As a baseline to evaluate the

performance of DART-AI and EDART-AI, we also define a hypothetical ideal defense

scheme with attacker identification referred to as Ideal-AI where polluted packets are

always filtered and the source node knows the attacker nodes without any overhead.

Thus, in Ideal-AI, the packet forwarding process is the same as if the attacker nodes

are taken out from the network.

Metrics. In our experiments, we measure throughput, latency and overhead

(bandwidth and computation) of our defense schemes. Throughput is measured as

the average receiving rate at which the destination receives data packets (after de-

coding). Latency is measured as the delay in receiving the first packet (decoded)

at the destination. For DART and EDART, the only bandwidth overhead incurred

by our scheme is the dissemination of checksum packets. We measure the bandwidth

overhead as the average bandwidth overhead per node among all forwarder nodes that

forward checksum packets. Since intermediate nodes perform only digital signature

and checksum verification, both of which incur small overhead (checksum verification

overhead is demonstrated in our micro-benchmark below), we measure the compu-

tational overhead as the number of digital signatures per second performed by the

source for signing checksum packets. The overhead measurement does not include

the overhead due to time synchronization. Similarly, for DART-AI and EDART-AI,

we measure both the bandwidth and computation overhead due to packet signatures

and the attacker identificaiton process.
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Figure 5.5. The throughput CDF in the presence of a single attacker
for various pollution intensities (PIs). Even when the attacker injects
only one polluted packet every 20 received packets (PI=0.05%), the
impact of the attack is still very significant.

5.7.3 Impact of Pollution Attacks

To demonstrate the severity of pollution attacks on network coding, we evaluate

the impact of the attack conducted by a single attacker. Figure 5.5 shows the

throughput of MORE in a network with only one attacker with various pollution

intensities. In the no attack case, we observe that all the flows have a throughput

greater than 500kbps, with median at around 1000kbps. In the attack case with

pollution intensity of 1, the throughput of around 80% of all flows goes to zero, and

97% of all flows have throughput less than 500kbps. Even when the pollution intensity

is very small at 0.05 (i.e., the attacker only injects, on average, one polluted packet

per 20 packets received), the throughput of most flows still degrades significantly, with

around 60% of all flows having a throughput below 500kbps. Therefore, we conclude

that pollution attacks are extremely detrimental to the system performance, even

when performed very infrequently and by only one attacker.
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Figure 5.6. Impracticality of previous work: Throughput CDF of
original MORE and of MORE with cryptographic-based defense in a
benign network. Even when no attack takes place, previous schemes
have a very high overhead that makes them impractical.

5.7.4 Limitations of Previous Solutions

We use a benign scenario to show that previous cryptographic-based solutions are

not practical for wireless networks. Protocols that add a significant overhead to the

system, even when no attack occurs, provide little incentive to be used.

We set up our experiments to strongly favor the cryptographic-based solutions as

follows. We only account for computational overhead at the intermediate nodes, and

ignore all other overhead, such as the computational overhead at the source and the

bandwidth overhead required to disseminate digital signatures and/or homomorphic

hashes. We also use a large symbol size of 20 bytes (hence m = 1500/20 = 75) to

favor these schemes in reducing their computational overhead. Any practical network

coding system requires n � m so that the network overhead of network coding is

small. With the generation size n = 32 and m = 75, the relative network overhead

is already around ρ = 42%. We also discount such large overhead of network coding

for these schemes. Finally, we use batch verification, such that each node can batch

verify a set of packets at the cost of one verification, and use the pipelining technique
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Table 5.1

Computational cost for checksum generation and verification for dif-
ferent checksum sizes. Batch verification time is for verifying 32 pack-
ets.

Size parameter (b value) 1 2 3

Generation time (ms) 0.475 0.957 1.432

Per packet verification time (ms) 0.188 0.388 0.507

Batch verification time (ms) 0.492 1.319 2.458

(with pipeline size of 5) described in Section 5.4.3 to further boost the performance

of such schemes.

Figure 5.6 shows the throughput CDF of strongly-favored cryptographic-based

schemes and the original MORE protocol in a network with no attackers. We see

that even when being exceedingly favored, the large computational overhead of these

schemes still results in significant throughput degradation, with 80% of the flows have

throughput 100kbps or less11 and the median throughput degrades by 96%. Hence,

we conclude they are impractical for wireless mesh networks.

5.7.5 Evaluation of DART and EDART

We present an evaluation of the performance of our proposed defenses, DART

and EDART. We first perform micro-benchmarks to evaluate the computational cost

of checksum generation and verification. We then evaluate the performance of our

defense schemes for benign networks and for networks under various pollution attack

intensities. Finally, we examine their bandwidth and computational overhead.

Micro-benchmarks. We evaluate the computational cost of checksum genera-

tion and verification on a computer with 1.3 GHz Intel Centrino processor, and use

the random number generator in the OpenSSL library (version 0.9.8e) for generating

11Some flows have throughput greater than the maximum throughput shown in Section 5.4 because we discounted

the network coding overhead in the results.
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Figure 5.7. The throughput of DART and EDART under benign case.
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Figure 5.8. Latency CDF of DART and EDART under benign case.

the random checksum coefficients. Table 5.1 summarizes the results for generating

and verifying checksums of different sizes.

Benign networks. Figure 5.7 and 5.8 shows the throughput and latency of our

schemes in a benign network with no attackers, as compared to the MORE protocol.

In Figure 5.7(a), we see that DART incurs some throughput degradation (around 9%

degradation when comparing median throughputs), whereas EDART incurs almost

no degradation.

Figure 5.7(b) provides insights into the throughput degradation of DART by show-

ing the scatter plot of throughput for DART with respect to the MORE protocol. We
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Figure 5.9. The throughput and latency CDF of DART and EDART
with 5 pollution attackers.

see that the throughput degradation is more severe for flows with smaller through-

put, while flows with higher throughput are less affected by DART. This is because

the throughput degradation of DART is primarily caused by the checksum authen-

tication delay at intermediate nodes. Flows with smaller throughput typically have

a longer path length, hence they incur a larger aggregate authentication delay and

consequently higher throughput degradation.

In Figure 5.8, we observe a similar pattern for the latency of DART and EDART.

DART incurs an additional 0.4 second in median latencies compared to the Ideal

scheme with the same pipeline size, while EDART incurs almost no additional latency.

For similar reasons to the throughput, we also observe that for DART, the latency

overhead is larger for flows that already have a large latency.

In summary, when no attacks take place, both of our schemes have throughput over

20 times higher than cryptographic-based schemes and cause minimal degradation on

system performance. The performance of EDART is almost identical to the Ideal

scheme.

Networks under attack. We examine the effectiveness of our defense against

different number of pollution attackers. Figure 5.9(a) and 5.9(b) show the throughput

and latency CDF of DART and EDART for the case of 5 attackers with pollution
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Figure 5.10. Bandwidth and computational overhead of DART and EDART.

intensity of 0.2. From Figure 5.9(a), we see that both DART and EDART achieve

a throughput close to the Ideal scheme. EDART achieves a even higher throughput

than DART, especially for low throughput flows, as these flows typically traverse

many forwarder nodes. In Figure 5.9(b) we see that the median latency increase of

DART and EDART over the Ideal scheme is around 0.5 seconds. This confirms that

the overall latency due to checksum verification is small.

An apparent anomaly is that EDART does not have a much smaller latency than

DART, although in EDART nodes forward packets optimistically without delay. This

is because the latency metric accounts for the delay of the first generation. In EDART,

the first generation of packets will be delayed as in DART because, although nodes

start in the forward mode, the propagation of the initial polluted packets causes all

forwarder nodes to switch to the verify mode. However, for all later generations,

only neighbors of the attackers delay packets in EDART. Thus, the delay of later

generations is smaller, leading to the improved throughput of EDART over DART.

We also experimented with the cases of 1 and 10 attackers and other pollution

intensities, all of which have similar results as the case of 5 pollution attackers with

the pollution intensity of 0.2. For larger pollution intensities, the congestion effect of

polluted packets also causes a certain level of throughput degradation; however, our

defense mechanisms still maintain a level of performance similar to the Ideal scheme.
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Overhead. Figs. 5.10(a) and 5.10(b) show the bandwidth and computational

overhead of our defense schemes, respectively. Both the bandwidth and computational

overhead remain at a stable level across different number of attackers, 18kbps per

forwarder node and 5 signatures per second at the source, respectively. This is because

our checksum generation and dissemination is independent of the number of attackers.

The bandwidth overhead of 18kbps is less than 2% of the throughput achieved by the

system on average.

It may also be counter-intuitive that both the bandwidth and computational over-

head decreases slightly when the number of attackers increases. The reason is that the

frequency with which the source disseminates packets decreases slightly when there

are more attackers, due to the congestion effect of the polluted packets. This results

in slightly fewer checksums being generated and disseminated.

5.7.6 Evaluation of DART-AI and EDART-AI

We evaluate the performance and overhead of DART-AI and EDART-AI. We

first evaluate the throughput of the schemes under a benign network environment.

Then we examine the benefits of attacker identification when the network is under

attack. Finally, we evaluate both the proactive and reactive overhead of attacker

identification.

Benign networks. Figure 5.11 shows the throughput of the defense schemes with

attacker identification in benign networks. As can be seen, the throughput of both

DART-AI and EDART-AI is very close to the Ideal-AI defense scheme. Compared to

the defense schemes without attacker identification as in Figure 5.7(a), we see that the

degradation in throughput due to the additional overhead of attacker identification

is very small.

Network under attack. Figure 5.12 shows the throughput of the defense

schemes with and without the attacker identification when the network is under 5

randomly placed attackers that perform both packet pollution and packet dropping
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Figure 5.11. Throughput under benign network for defense with at-
tacker identification scheme.
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Figure 5.12. Throughput under 5 random attackers with and without
attacker identification.

attacks. In other words, the attackers inject polluted packets, and do not forward any

correct packets. We see that when the attackers refuse to forward any correct pack-

ets, DART and EDART suffer around 40% performance degradation in median. This

is because although polluted packets are effectively filtered in DART and EDART,

the presence of attackers forwarding node set causes a sub-optimal packet forward-

ing as compared to the case when forwarding nodes are selected only among honest

nodes. By identifying and avoiding attacker nodes, we see that both DART-AI and

EDART-AI deliver a performance similar to the Ideal-AI defense scheme.



127

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  2  4  6  8  10
L

at
en

cy
 (

s)
Number of attackers

DART-AI
EDART-AI
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Figure 5.14. The proactive overhead of attacker identification.

A key factor of the effectiveness of an attacker identification scheme is the latency

of attacker identification, which measures the duration of time between when the

attack is executed and when the attacker is identified. As can be seen in Figure 5.13,

the latency of attacker identification for both DART-AI and EDART-AI remains at

a stable level of around 0.5 second and 1.2 second, respectively. The main reason

for the higher attacker identification latency of the EDART-AI scheme is due to the

traceback process, which is not necessary in DART-AI.
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Overhead. The overhead of DART-AI and EDART-AI consists of a proactive

component and a reactive component. The proactive overhead involves the bandwidth

and computation overhead associated with the packet signatures, while the reactive

overhead is due to the overhead for identifying attackers. Figure 5.14 shows the

proactive bandwidth and computation overhead of the two attacker identification

schemes. As can be seen, the proactive bandwidth overhead for both DART-AI and

EDART is similar, ranging from 10 kbps to 30 kbps. The proactive computation

overhead of the two schemes is also similar, ranging from 10 signatures per second to

30 signatures per second.

Figure 5.15 shows the reactive bandwidth overhead of DART-AI and EDART-AI,

measured as the total number of bytes delivered for identifying all the attackers in the

network. As can be seen, the reactive bandwidth overhead increases linearly as the

number of attackers increases, however, the total overhead incurred is only around

30 KB even for 10 attacker nodes in the network. We also observe that EDART-

AI incurs a similar level of bandwidth overhead as the DART-AI, showing that the

bandwidth overhead of the traceback procedure in EDART is small.
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5.8 Conclusion

In this chapter, we present two new and practical defense schemes, DART and

EDART, against pollution attacks in intra-flow network coding systems for wireless

mesh networks. DART combines random linear transformations with time asymmetry

in checksum verification to efficiently prevent packet pollution. EDART incorporates

optimistic packet forwarding to reduce delivery latency and improve system perfor-

mance. We also propose enhancements on DART and EDART that allow efficient

attacker identification and isolation. Besides providing a detailed security analysis

and analytical bounds for our schemes, we demonstrate their practicality through

simulations that use a well-known network coding routing protocol for wireless mesh

networks and real-life link quality measurements from a representative testbed for

mesh networks. Our results demonstrate that:

• The effect of pollution attacks is devastating in mesh networks using intra-

flow network coding. Without any protection, a single attacker can reduce the

throughput of 80% of all flows to zero.

• Previous solutions are impractical for wireless mesh networks. Even when no at-

tackers are present in the system, the large overhead of previous cryptographic-

based schemes result in as much as 96% degradation in the system throughput.

• Both DART and EDART can effectively filter out polluted packets and re-

store the network performance to a level similar to a hypothetical Ideal defense

scheme. The attacker identification schemes for both DART and EDART can

identify attackers within around one second of the attack, thus allowing the se-

lection of attacker-free paths and further improving the performance. All of our

schemes incur a small overhead in terms of both bandwidth and computation.
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6 POLLUTION ATTACKS AND DEFENSES IN WIRELESS INTER-FLOW

NETWORK CODING SYSTEMS

In this chapter, we study pollution attacks in wireless inter-flow network coding

systems. Unlike intra-flow network coding, in inter-flow network coding systems,

nodes code packets across different flows. Although several defenses for these attacks

are known for intra-flow network coding systems, none of them are applicable to

inter-flow coding systems.

Compared to intra-flow network coding, inter-flow network coding introduces ad-

ditional vulnerabilities because coding across flows results in complex inter-flow data

dependencies and allows pollution attacks on one flow to contaminate other flows.

The impact of such attacks is thus more devastating than in intra-flow coding sys-

tems. For example, by injecting a corrupted packet into a flow f , an attacker can

corrupt all the flows coded with f . Similarly, an attacker node at the intersection

of several flows can corrupt all the intersecting flows using a single incorrectly coded

packet. The use of inter-flow coding also makes pollution attacks more challenging

to defend against. Unlike intra-flow network coding which combines packets from the

same source, inter-flow coding combines packets from different sources. As a result,

cryptographic solutions proposed for intra-flow coding which assume a single point of

trust (the source of the flow) are not applicable for inter-flow coding systems because

there is no single source that is trusted for all the packets. Ideally, one would need

a signature scheme that is homomorphic for XOR operations and that could be used

to verify packets signed by different (and independent) sources. Unfortunately, we

are not aware of such a cryptographic primitive (we emphasize that aggregate signa-

tures [114] cannot be used, because they require the presence of the original packets

used to obtain the coded packet).
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To defend against pollution attacks on inter-flow network coding systems, we pro-

pose CodeGuard, a defense mechanism that combines proactive node attestation and

reactive traceback to identify the attacker nodes unequivocally. Prior work on pollu-

tion attacks that studied the case of intra-flow coding systems [89–91, 93, 94, 98, 115]

has primarily aimed at identifying and dropping polluted packets. CodeGuard also

incorporates a mechanism to swiftly identify attacker nodes. This is critical for the

pollution defense in inter-flow coding systems, because unlike intra-flow coding, where

there are multiple paths from source to destination, inter-flow coding systems are usu-

ally based on single-path routing; hence it is critical to identify and avoid attacker

nodes. To the best of our knowledge, this is the first work that investigates the impact

of and defense against pollution attacks in inter-flow network coding systems. The

contributions of this work are as follows:

• We formulate a general model for inter-flow network coding, which encompasses

all the existing systems including [46, 75, 76, 86, 116]. We classify pollution at-

tacks in inter-flow coding systems based on the type of packets injected by the

attacker and the attacks’ impact on flows in the network. In particular, we iden-

tify a new attack, cross-flow pollution, which exploits the coding dependencies

among flows to propagate pollution across flows.

• We propose CodeGuard, the first defense mechanism against packet pollution

attacks in inter-flow coding systems. The main novelty of CodeGuard lies in

the signature-based coding correctness attestations that maintains a constant

bandwidth overhead regardless of the number of coding nodes involved and a

bit-level traceback and cross-examination technique that efficiently tracks the

history of a corrupted packet and identifies attacker nodes unequivocally. The

traceback mechanism and cross-examination technique in CodeGuard share sim-

ilarity with the attacker identification scheme proposed for the EDART scheme

for addressing pollution attacks against intra-flow network coding as described

in Chapter 5. The main difference lies in the different underlying properties of
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the specific network coding systems relied on by the protocols for their correct-

ness and efficiency. In EDART, the correctness of the traceback procedure is

based on the monotonicity of unverified hop count field in the packets, while

its efficiency relies on the symbol-level coding independence. In contrast, Code-

Guard ensures its correctness based on the sufficiency of packet consistency for

the correctness of packet decoding in inter-flow coding systems, while the effi-

ciency of the protocol is achieved by observing the bit-level independence in the

coding an decoding operations.

• Using a representative inter-flow coding system, we quantify the impact of pol-

lution attacks, and evaluate the efficiency and effectiveness of CodeGuard as

a defense strategy. Our results show that due to cross-flow pollution effects, a

pollution attack can cause nearly zero throughput for a significant number of

affected flows, even if the attacker is not directly on the path of such a victim

flow. Under a random network setting, the overall throughput of an unprotected

network experiences a steady and severe decrease as the number of attackers

increases. CodeGuard can successfully restore the system throughput to an ex-

tremely high level even if there are many attacker nodes present. This is due to

CodeGuard’s ability to identify and isolate attacker nodes quickly (within 500

ms of attack). Furthermore, the overhead for both the proactive and reactive

components of CodeGuard is small.

The rest of the chapter is organized as follows. Section 6.1 overviews related

work. Section 6.2 presents a general model for inter-flow coding systems. Section 6.3

presents a detailed analysis of pollution attacks on inter-flow coding systems. Sec-

tion 6.4 presents our pollution defense, CodeGuard. Section 6.5 presents simulation

experimental results. Finall, Section 6.6 concludes the chapter.
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6.1 Related Work

Existing work in defending against packet pollution attacks on network coding has

been exclusively focusing on intra-flow coding systems. Below, we overview previous

work in the area of secure packet routing and forwarding.

There has been significant work on designing secure routing protocols in wireless

networks, including secure route establishment and secure packet forwarding. Se-

cure route establishment [41, 82, 117] protects the route selection process from being

tampered by attacker nodes. Since pollution attacks are directed against packet for-

warding, secure route establishment is complementary to our work. Closely related to

our work is secure packet forwarding, which addresses packet injection and dropping

attacks [81]. However, they are designed for traditional routing protocols, which do

not use coding. With network coding, nodes cannot easily verify the correctness of

their received packets. Hence, monitoring-based defenses (e.g., watchdog [81]) are

no longer effective, as an upstream node usually cannot decode packets coded by a

downstream node.

6.2 System Model and Adversarial Model

6.2.1 System Model

We consider the intra-flow network coding system as introduced in Section 4.1.3 in

Chapter 4. Since pollution attacks target the coding and decoding process of network

coding systems, we briefly summarize this process in inter-flow coding systems as

follows.

A coding node in inter-flow coding systems is a node that lies at the intersection

of two or more flows. The node codes received packets from the different flows into a

single coded packet, which it broadcasts to the downstream nodes. A coded packet is

a bit-wise XOR of packets from distinct flows, denoted as e = m1 ⊕m2 ⊕ · · · ⊕mk,
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where each mi is a plain packet for different flows.1 Since bit-wise XOR is equivalent

to addition modulo 2, we also write e as e =
∑

1≤i≤kmi, where the summation is

performed modulo 2. A decoding node decodes a received coded packet by XORing

it with previously overheard plain/coded packets. In particular, a decoding node may

also perform partial decoding, in which case the result is another coded packet. For

example, if a node receives a coded message e1 = m1⊕m2⊕m3 and overhears m1, the

node can perform a partial decoding of e1 by computing e1 ⊕m1 to obtain another

(more simple) coded packet e2 = m2 ⊕ m3. A decoding node can also perform full

decoding, in which case the result is a plain packet. For example, in the previous case,

if the node overhears plain packets m1 and m2 or a coded packet m1 ⊕ m2, it can

decode the plain packet m3 from e1.

6.2.2 Adversarial Model

We consider the adversarial model as described in Chapter 2. In particular, we

consider only packet pollution attacks defined as follows.

We define packet pollution attacks as the injection of corrupted packets into the

network by malicious nodes. A corrupted packet can be either a plain packet or a

coded packet. A corrupted plain packet is a packet that is labeled to be a plain packet

p from a source but differs from p. A corrupted coded packet is a packet e′ that is

labeled as coded from plain packets m1,m2, · · · ,mk, but e′ 6= m1⊕m2⊕ · · · ⊕mk. A

pollution attacker can inject corrupted packets to cause the corruption of packets in

any flow. Because any node can become the source of a flow, we assume that source

nodes are not trusted to behave correctly towards other flows.

As discussed in Chapter 4, besides pollution attacks, inter-flow coding systems are

vulnerable to a wide range of other attacks. In this chapter, we focus exclusively on

pollution attacks, which pose as a generic and potent threat to any network coding

1We assume that all the plain packets are of equal length, which is a standard assumption in inter-
flow coding systems.
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system. Solving pollution attacks is a critical step in any comprehensive solution to

secure these systems.

6.3 Pollution Attacks on Inter-Flow Network Coding Systems

In this section, we analyze in details the impact of pollution attacks under different

network scenarios in inter-flow network coding systems. Pollution attacks can have

different levels of severity depending on the strategy of the attacker, the network

topology, and the specific network coding system under consideration. We first classify

pollution attacks based on the type of packet used in the attack as plain packet

pollution and coded packet pollution, then we identify a unique cross-flow pollution

phenomenon for pollution attacks in inter-flow network coding.

6.3.1 Plain Packet Pollution

An attacker node conducts plain packet pollution attacks by directly injecting

a corrupted plain packet, modifying a plain packet, or injecting inconsistent plain

packets into the network. Direct packet injection and modification attacks are similar

to the respective attacks in traditional routing protocols, where an attacker node

injects corrupted packets or maliciously modifies en-route packets to cause packet

corruptions of a target flow.

The possibility to inject inconsistent plain packets is unique to attacks on inter-

flow coding systems. In such an attack, the attacker injects different plain packets

but labels them as the same packet, in order to cause inconsistency in the coding and

decoding operations. One example is shown in Figure 6.1(a), where two colluding

attacker nodes M1 and M2 send a packet m1 to node A and a different packet m′1

to node B, respectively, but both packets are labeled as m1. If A codes the packet

m0 with the injected packet m1 and sends the coded packet e = m0 ⊕m1 to B, then

when B tries to decode e with packet m′1, it will recover a corrupted packet for m0.
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(c) An example of cross-flow pollution attacks.

Figure 6.1. Pollution attacks on inter-flow coding systems. The node
in the dark color (red) is the attacker node and the shaded nodes are
victim receiver nodes that receive or decode corrupted packets. The
number on an edge represents the ID of the flow that traverses the
edge. Dashed lines represent packet overhearing.
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Note that in inconsistent plain packet attacks, the injected packets originate from

colluding attacker nodes, who may share a single identity. Since attacker nodes are

free to be the source of flows, the injected packets will pass message authentication,

and circumvent authentication-based defenses.

6.3.2 Coded Packet Pollution

In a coded packet pollution, attackers inject corrupted coded packets into the

network, either at a malicious coding node or at a malicious forwarding node. In

both cases, the attack can cause all the downstream nodes to decode incorrect packets.

However, executing the attack at a coding node allows the attacker to corrupt multiple

flows by injecting a single corrupted packet. For example, in Figure 6.1(b) the attacker

node A is a coding node, and a corrupted packet injected by A can cause both receiver

nodes R1 and R2 to decode incorrect packets. If the attacker were the forwarding node

B, then the attack would cause only receiver node R2 to decode incorrect packets.

A key feature of coded packet pollution attacks is that they are difficult to address

using cryptographic techniques. In inter-flow coding systems, each coded packet is

an XOR of packets from different source nodes. Furthermore, the source nodes do

not trust each other. Taking a cryptographic approach would require a cryptographic

scheme that can combine authentication information from multiple mutually distrust-

ing entities and is homomorphic with respect to the XOR operation. We are not aware

of the existence of any such cryptographic scheme.

6.3.3 The Cross-flow Pollution Phenomenon

In inter-flow network coding, attacker nodes can exploit the coding dependencies

among flows to cause an epidemic propagation of packet pollution across the flows. To

execute such an attack, the attacker arranges for corrupted packets that it generates

to be coded with (valid) packets of other flows. As an example, in Figure 6.1(c),

attacker node B injects corrupted packets into flow 1 for receiver R1. These packets
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are to be coded by node A with the flow 2 packets for receiver R2. As a result,

both R1 and R2 will receive corrupted packets. A severe consequence of the cross-

flow pollution is that the attack can bypass existing security mechanisms that try

to ensure the correctness of nodes on a selected path. This is because even if the

attacker is not selected for the path, it can still establish its own flow to corrupt the

target flow.

6.4 Pollution Defense: CodeGuard

In this section, we present CodeGuard, our approach to defend against pollution

attacks for inter-flow network coding systems. We first state our assumptions. We

then describe the defense system and present its security and overhead analysis.

6.4.1 Assumptions

We assume that each node can authenticate its messages by using digital signa-

tures. We also assume that each node has an authenticated communication channel

with its neighbors, which can be achieved via techniques such as digital signatures

or message authentication codes (MAC). These techniques prevent message spoofing

and packet injection from outsider nodes.

We further assume the existence of a reliable end-to-end communication path be-

tween every pair of nodes. Reliable end-to-end communication in wireless networks

has been a subject of extensive study with numerous proposals [41, 82, 117], any of

which may be used with our protocol. Also, since reliable communication is required

in our defense only after an attacker was positively detected, a straightforward im-

plementation using flooding can be used.

We assume that mechanisms are deployed to prevent a node from conducting a

Sybil attack, in which a single attacker node owns multiple (bogus) identities and their

associated credential information. However, the attackers may collude, and conduct



139

wormhole and rushing attacks. Each receiver of a flow trusts only the source of the

flow; it does not trust any intermediate nodes or the sources of other flows.

6.4.2 CodeGuard Overview

In CodeGuard, nodes use digital signatures to prevent packet injections and to

unequivocally identify pollution attackers. The source signs every plain packet to

indicate the authenticity and integrity of each plain packet; thus the injection of

corrupted plain packets is prevented. A coding node signs each coded packet it

generates to attest to the correctness of the coding operation. Forwarding nodes verify

the signature of the received packets, and forward the packet unchanged. When a

node receives a packet with an invalid signature on a link, it reports the link to the

source as a malicious link to be avoided.

The use of digital signatures alone does not provide a complete defense, since not

all the packets that pass the digital signature verification are necessarily valid. For

example, a malicious coding node can sign and inject polluted coded packets with its

own signature. Alternatively, colluding attacker nodes can conduct the inconsistent

plain packet attack by injecting two inconsistent plain packets signed using their

shared identity as discussed in Section 6.3. In these cases, the attack will eventually

cause a downstream node to recover a corrupted plain packet (detected by checking

the digital signature on the plain packet from its source). When that happens, the

node that discovers the corrupted packet will report it to the source of the flow,

which will then initiate a traceback procedure to identify the responsible attacker.

Traceback is initiated by the source because coding and forwarding nodes are not

trusted.

CodeGuard uses an efficient bit-level traceback procedure to trace the history of

a single corrupted bit and identify the attacker. In this process, the source queries

iteratively each involved coding node about the bit in question. Upon being queried,

a coding node reveals the corresponding bit values of its input packets as correctness
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proof of its coding. We use a novel cross-examination technique to ensure the con-

sistency of the bit values answered by a node with the originator of the packet. The

cross-examination relies on the observation that in inter-flow coding, consistency in

using packets is sufficient for the correct recovery of plain packets. We prove that in

the traceback, either a coding node will be unable to produce a correctness proof or

a node injecting inconsistent plain packets will be found. In either case, the source

node can always identify one attacker node and exclude it from the network.

6.4.3 Detection of Polluted Packets

In CodeGuard each plain packet is signed by its source node and each coded packet

is signed by its coding node. A signed plain packet created by a source S is denoted by

p̂ = (p, idS, sigS), where p is the plain packet, idS is the identifier (ID) of S, and sigS

is the signature of S over p. A signed coded packet created by a node C is denoted

by ê = (e, idC , sigC), where e is the XOR of two or more signed plain packets, idC is

the ID of C, and sigC is the signature of C over e. For consistency, we write a signed

plain packet in the same format as a signed coded packet, as p̂ = ((p, idS, sigS), 0, 0).

Using this notation, we define an XOR-like operation ⊕̂ for coding and decoding

signed packets as shown in Algorithm 5.

For example, coding two signed plain packets p̂1 = ((p1, idS1 , sigS1), 0, 0) and p̂2 =

((p2, idS2 , sigS2), 0, 0) at node C produces a signed coded packet ê = (e, idC , sigC),

with e = (p1 ⊕ p2, idS1 ⊕ idS2 , sigS1 ⊕ sigS2). To decode ê using p̂2, we compute

e ⊕ (p2, idS2 , sigS2) = (p1, idS1 , sigS1), which is a plain packet, and so the output

packet of ê⊕̂p̂2 is ((p1, idS1 , sigS1), 0, 0) = p̂1 as expected. Since a signed coded packet

always has only one attached signature (from the coding node), we stress that the

size of a coded packet remains the same regardless of the number of coding operations

performed to obtain it.

A signed plain packet p̂ and signed coded packet ê can be verified by checking the

validity of sigS over p, and that of sigC over e, respectively. Note that the verification
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Algorithm 5: Coding/decoding (⊕̂) executed at node C

Input: packets ê1, . . . , êk; (where êi is either a signed plain packet
(ei, 0, 0) = ((p, id, sig), 0, 0) or a signed coded packet (ei, id, sig))

Output: a signed plain or coded packet ê1⊕̂ . . . ⊕̂êk
1: Ensure the signatures on all input packets are valid
2: Compute e = e1 ⊕ . . .⊕ ek; (apply ⊕ component-wise)
3: if e is a plain packet then
4: if the signature on e is valid then
5: Output (e, 0, 0)
6: else
7: Send pollution notification to the source
8: else
9: Compute signature sigC over e

10: Output (e, idC , sigC)

of a signed coded packet does not involve the verification of the plain packets used to

obtain it; indeed these plain packets may not be available.

Each node performs the following actions:

• Source node: For every plain packet p the source generates, it computes and

forwards the signed version p̂ = ((p, id, sig), 0, 0) to the next hop node. The source

also stores the packet p for use in the traceback for attacker nodes in case of a packet

pollution.

• Forwarding node: When a forwarding node receives a (plain or coded) packet,

it verifies the packet’s attached signature. If the verification passes, the node forwards

the packet unchanged to its next hop node via an authenticated channel. Otherwise,

the packet is dropped and the node reports the link from which the packet is received

as a malicious link to be avoided.

• Coding/decoding node: As with a forwarding node, a coding/decoding node

verifies the signatures of its received plain and coded packets. If a packet with an

invalid signature is found, it reports the malicious link to the source. This way, only

packets with valid signatures are kept for further coding/decoding operations. If the

result of an operation is another coded packet (e.g., after coding or partial decoding),

the node computes the signed version of the coded packet as specified in Algorithm 5,
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and forwards the signed packet downstream. The node also stores the input packets

in case it needs to provide a correctness proof during traceback. If the result of an

operation is a plain packet, the node verifies the source signature on the packet. If the

verification fails, the packet is corrupted, and the node sends a pollution notification,

which includes the corrupted packet, to the source node concerned.

6.4.4 Attacker Node Identification

Upon receiving a pollution notification, the source starts a bit-level traceback

procedure to identify the attacker. A key observation in this step is that each bit in

a packet is coded/decoded independently. It is hence sufficient to perform a bit-level

traceback, instead of a more costly packet-level traceback. In bit-level traceback, each

node only responds with a single bit in a packet, and so packet signatures cannot be

used to ensure the correctness of the response. Instead, CodeGuard leverages another

key observation in inter-flow coding, namely that consistency in using packets is

sufficient for the correct recovery of plain packets. In other words, as long as a

packet is used consistently in the coding and decoding process, even if the packet

is corrupted, its effect will be cancelled out. This observation motivates a cross-

examination technique to ensure the consistency of the bit in question.

The bit-level traceback works as follows. On receiving a pollution notification

from a node R for a corrupted plain packet p̂′, the source first finds an incorrect bit,

say bit u, in p̂′ by comparing it with the signed plain packet p̂ it originally sent. Then

the source starts tracing back the history of bit u by contacting all the involved coding

nodes iteratively. The detailed procedure is shown in Algorithm 6. The procedure

terminates when an attacker node is identified.2

In Algorithm 6, the source maintains two sets, coded set and plain set, containing

information on coded and plain packets, respectively. At each step of the traceback,

the source selects a node P to be a prover node and queries it for a proof of innocence.

2In case of n (possibly colluding) attackers, the source node can identify all of them with at most n
invocations of the traceback procedure.



143

Algorithm 6: The traceback procedure

Input: A corrupted plain packet p̂′ and the pollution reporting node R
Output: The identified attacker node
Note: All query and response messages are signed by their originator nodes.

When a query times out, the queried node is identified as the attacker.
1: Let p̂ the correct packet stored by the source
2: if p̂′ and p̂ are identical then // Fake pollution notification
3: return node R
4: Set P = R
5: Let bPu be any bit in p̂′ that differs from the corresponding bit in the correct

packet p̂
6: Let u be the differing bit position
7: Set coded set = ∅, plain set = ∅
8: loop
9: Query P for tuples for bit u of its input packets

10: Let S = {(bi, pidi, ptypei, ni)} be the set of tuples returned by P
11: if

∑
bi 6= bPu then // Check if P codes correctly

12: return node P
13: for each tuple Ti = (bi, pidi, ptypei, ni) in S do
14: Query ni with tuple Ti for cross examination
15: if ni returns “NO” then // Either P or ni is lying
16: Query P for the signed packet p̂i containing the bit
17: if p̂i is from ni and bit u is bi then
18: return node ni
19: else
20: return node P
21: // Node P is now exonerated
22: Add to coded set all Ti’s returned by P whose ptypei is “coded”
23: Add to plain set all Ti’s returned by P whose ptypei is “plain”
24: if plain set contains two consistent tuples for the same packet then
25: return the originator node of the tuples
26: Remove a tuple (bi, pidi, ptypei, ni) from coded set
27: Set P = ni and bPu = bi to repeat the traceback procedure

For each prover node P , the source also has a target bit value bPu for bit u of the packet

output by the node. Initially, P is set to be the node R which sent the pollution

notification, and the target bit value bPu is set to be bit u of p̂′ (Lines 4–5). The

source queries P for the u-th bit of the input packets coded to produce p̂′ (Line 9).

In response, P sends for each input packet p̂i a tuple Ti = (bi, pidi, ptypei, ni), where
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bi is the value of bit u in p̂i, pidi is the packet ID of p̂i, ptypei is a bit indicating

whether p̂i is a coded or plain packet, and ni is the ID of the node that originated p̂i

(Line 10).

On receiving the set of tuples, the source verifies that P coded correctly by check-

ing if
∑
bi = bPu , where the summation is performed over modulo 2. If the verification

fails, P is identified as an attacker (Lines 11–12), as P performs the coding incorrectly.

Otherwise, the source cross-examines the bit value bi reported by P with its

claimed originator node ni (Lines 13–20). To do this, the source forwards each tu-

ple Ti to ni, which responds with an indication of whether it has indeed generated

a packet with ID pidi and whose bit u is indeed bi (Line 14). A positive response

indicates that node ni accepts the responsibility for generating the bit. If all the

responses are positive, then node P is exonerated, since the coding operations are

consistent up to node P .

If any response from ni is negative, that is, if ni disagrees with the claim made

by P regarding the bit value bi, then either P or ni is lying and can be identified as

the attacker. To find out which one, the source queries P for the signed input packet

from ni, which P should have stored in its buffer. If P is able to return a packet

correctly signed by ni whose u-th bit is bi, then node ni is identified as the attacker.

Otherwise, P is identified as the attacker (Lines 17–20).

The source adds all the received tuples Ti to coded set or plain set according to

their ptypei field (Lines 22–23). It then checks the consistency of the tuples in plain set

to ensure that no node has claimed conflicting bits for the same plain packet, that is,

there do not exist two tuples Ti and Tj in plain set with i 6= j, ni = nj, pidi = pidj, but

bi 6= bj. If such a conflict is found, the responsible node is identified as the attacker

(Lines 24–25). This consistency check handles the inconsistent plain packet attacks

(described in Section 6.3). Otherwise, the source removes a tuple from coded set, sets

P and bPu to be ni and bi in the removed tuple, respectively, and then repeats the

traceback procedure on the coding node ni (Lines 26-27).
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6.4.5 Security Analysis

In a pollution attack, an attacker can inject corrupted packets carrying an invalid

signature but also a valid signature (e.g., inconsistent plain packets or incorrectly

coded packets, signed by itself). In the following, we show that CodeGuard can

effectively address both types of attack. In addition, we show that a potential DoS

attack by repeatedly invoking the traceback procedure can only have limited impact.

Since each hop verifies the signature of its received packets, packets with invalid

signatures will be immediately identified and dropped. The link between the receiving

node and the attacker node is reported to the source as a malicious link to be avoided.

There is no danger of false accusations, as the reporting node is required to be one

end of the reported malicious link. Thus, an attacker node can only cause links

adjacent to it to be avoided (this is in fact desirable). Mounting pollution attacks

using packets with valid signatures will eventually cause the traceback procedure to be

invoked, as the source signature is attached to each plain packet. Thus, in the worst

case, the packet pollution will be detected at the receiver node, which will invoke the

traceback procedure. We now show that the traceback procedure can always identify

the attacker nodes.

Theorem 6.4.1 A traceback procedure always results in the identification of one at-

tacker node, even in the presence of colluding attackers, and there is no false positive.

Proof The proof relies on the concept of coding tree we introduce as follows. First,

we observe that in inter-flow coding systems, coding and decoding operations are

essentially the same operation, i.e., xor operation over multiple input packets. Thus,

in the following, we use the term coding to mean both coding and decoding. Given

a plain packet which is obtained from a decoding operation, we can trace back the

history of the packet by constructing a coding tree recursively from top to bottom as

follows. Each node represent a packet (coded or plain). The root of the tree is the

target plain packet. The children of each node in the tree are the input packets that

code together to obtain the node. A plain packet node, except for the root node, does
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Figure 6.2. An example coding tree. The leaf nodes represent plain
packets and the interior nodes represent the XOR of their child nodes.
In order to produce an incorrect plain packet at the root, it must be
the case that either an XOR is performed incorrectly at some interior
node (e.g. e 6= p1 ⊕ p2) or there are inconsistent plain packets at the
leaves (e.g. packets represented by node A and C are not the same
even though they are both labelled to be p1).

not have children. Figure 6.2 shows an example coding tree. Note that such a coding

tree can always be constructed for any plain packet.

In the above constructed coding tree, all interior nodes, except for the root node,

are coded nodes and all leave nodes are plain nodes. All nodes are also attached with

a signature: plain packet nodes are attached with the signature from the source node

and coded packet nodes are attached with the signature of the coding node. Since

CodeGuard requires each node to verify the validity of signature prior to the coding

operation, if there is a node with invalid signature, then its parent node is identified as

the attacker node. Hence, next we assume all nodes in the tree have valid signatures.

Since the root plain packet is a corrupted packet, it must be the case that at least

one of the following occurs: i) some interior coding node does not represent packet

correctly coded packet from its children, or ii) some plain packet nodes (at leaves) are

inconsistent. In the first case, the incorrect interior node is the culprit attacker node,

while in the second case, the source that signs inconsistent packets is the attacker

node. In the back-tracing procedure of CodeGuard, the source performs a breadth
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first search from the root node of the coding tree, thus it can always find a node that

violates the security conditions.

Below we analyze the effects of possible attacks on the traceback process: attacker

collusion, packet dropping, and reporting pollution on old packets.

In the presence of multiple (possibly colluding) attacker nodes, one attacker node

may be able to prove the correctness of its coding by blaming another attacker node

for providing incorrect input packets. However, regardless of how the attackers pass

off responsibilities among themselves, the traceback procedure will always identify

one attacker node.

Two attackers may collude to deceive the source about the bit being traced in the

cross-examination procedure. However, in inter-flow network coding, as long as the

bit is used consistently in both the coding and decoding processes, its impact cancels

out and does not result in packet corruption. Such consistency of bits is examined

at each step of the traceback; hence, collusion attacks on the cross-examination are

ineffective.

An attacker may incriminate an honest node by dropping either a traceback query

request or response message. However, a reliable end-to-end communication (as dis-

cussed in Section 6.4.1) prevents such attack.

Finally, an attacker may report a packet pollution for a packet long in the past such

that the input packets stored at an honest node for generating the coding correctness

proof have been purged, due to limited storage space. As shown in the storage

overhead analysis (see below), a node is able to store packets for 1000 seconds even

with a moderate storage space. Thus, the source can ignore pollution report for old

plain packets (e.g. older than 1000 seconds) to avoid such attacks. �

DoS exploiting the traceback. An attacker may try to invoke frequent and

lengthy traceback procedures by injecting corrupted packets in order to exhaust the

network bandwidth. However, the number of nodes contacted by the source during

traceback is upper-bounded by the number of coding nodes involved, which is typically
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a small number3. Furthermore, even if such an attack is executed, its effect cannot

be sustained since at least one attacker node will be removed from the network after

each traceback invocation.

6.4.6 Overhead Analysis

We now analyze the storage, computation, and bandwidth overhead of the pro-

posed defense.

Storage. CodeGuard requires each coding and decoding node to store its received

packets because they may be needed for verification during traceback. Since the

packets are needed only for traceback, they can be stored in secondary storage. For

example, for a hard drive capacity of 1 GB, a packet size of 1 KB, and a packet rate

of 1000 packets per second (equivalent to around 8 Mbps goodput), a packet can be

stored for over 1000 seconds before it becomes unavailable.

Computation. The computation overhead of CodeGuard consists of signature

generation at the source and coding nodes, and signature verification at the interme-

diate nodes. With increasingly more powerful CPUs and more prevalent use of cryp-

tographic hardware accelerators, computing per-packet digital signatures is becoming

practical. For instance, using the 160-bit Elliptic Curve DSA signature (ECDSA)4,

current consumer-grade processors can perform one signature generation/verification

operation in less than 1 ms5. With hardware accelerations, rates exceeding 10,000

operations per second have been reported [118].

Communication. The communication overhead of CodeGuard under normal

operation is due to signatures attached to packets. The size of a 160-bit ECDSA

signature is 320 bits. Hence, for a data packet size of 1500 bytes, the signature incurs

a bandwidth overhead of 2.7% for a signed plain packet and 5.4% for a signed coded

3Usually 2 or 3 in our experiments in Section 6.5.
4Equivalent to the security level of 1024-bit DSA.
5Based on OpenSSL version 0.9.8g on 2.26 GHz Intel Core 2 Duo CPU.
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packet.6 The communication overhead of the traceback process is also small, because

both query and response messages are only a few bytes long.

Finally, we note that in CodeGuard only nodes that participate in the coding and

decoding process incur the storage overhead and the computation overhead of signing

packets. In flows that do not have coding opportunities, CodeGuard only imposes

the overhead of the source signing its packets and intermediate nodes verifying their

received packets. Such overhead is necessary even for addressing the conventional

packet modification attacks.

6.5 Experimental Evaluation

In this section, we present simulation results to evaluate the effectiveness and

overhead of CodeGuard in identifying attacker nodes.

6.5.1 Experimental Methodology

Simulator setup. We use the Glomosim simulator [40] configured with 802.11

as the MAC layer protocol and a raw link bandwidth of 2 Mbps. We augment the

physical layer of Glomosim to use the measurement-based model from [119], which

empirically maps the link distance to the transmission success probability, considering

physical layer effects such as path-loss, shadowing, and multi-path fading.

Coding system. We implement an inter-flow coding protocol based on the gen-

eral coding condition in Section 6.2, and refer to it as ICODE. It encompasses all

existing protocols, including [46, 75, 76, 86, 116]. As we are only interested in the im-

pact of pollution attacks, ICODE is implemented in an off-line manner using global

knowledge of the network. Specifically, we first select a set of source and destination

pairs, and establish a path between each pair using the ETX metric [120]. Then each

node on a path is examined for coding opportunities. At runtime, nodes forward or

code packets according to the off-line analysis results.

6Because a signed coded packet contains two signatures. See Section 6.4.3.
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Experiment scenarios. We first examine the impact of pollution attacks us-

ing the network configurations in Figures 6.1(b) and 6.1(c). These configurations

demonstrate coded packet pollution attacks and plain packet pollution attacks with

cross-flow pollution. For each experiment, we vary the offered load in the network by

varying the packet sending rate at the source nodes.

We then examine the impact of pollution attacks and the effectiveness and over-

head of CodeGuard under a general network configuration. The network consists of

100 honest nodes and up to 30 attacker nodes distributed randomly in a 1500m by

1500m area. Attacker nodes selected on a data delivery path always send corrupted

packets to their downstream nodes. A variable number of flows are established be-

tween randomly selected source and destination pairs. The total offered load of all

the flows is kept at 1 Mbps, which is sufficient for full utilization of the network

bandwidth without causing over-congestion. We present results for 25 flows (results

for different number of flows are similar). Each simulation is run for 300 seconds, and

is repeated 20 times with different random seeds.

Metrics. We compute the following metrics for evaluating the impact of pollution

attacks and the effectiveness and overhead of CodeGuard.

• Network throughput. This is the aggregate data receiving rate (in kbps) of all

receivers in the network.

• Bandwidth overhead. This is the amount of data transmitted due to Code-

Guard, including both signatures attached to packets and the data sent during

traceback.

• Computation overhead. We measure computation overhead in terms of the

number of digital signatures performed at a source or a coding node, because

digital signatures are the most computation-intensive operations in CodeGuard.

• Delay in attacker identification. This is the average time over all attackers from

when an attacker starts the pollution attack to when the attacker is identified

by a source node.
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(a) Scenario in Figure 6.1(b)
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(b) Scenario in Figure 6.1(c)

Figure 6.3. Throughput for different offered loads with and without
using network coding, and the impact of pollution attacks on network
coding for illustrative scenarios in Figure 6.1(b) and 6.1(c).

6.5.2 Results from Illustrative Scenarios

Figure 6.3 shows the impact of packet pollution attacks on the two illustrative

network scenarios in Figure 6.1(b) and 6.1(c) as introduced in Section 6.3. As can

be seen, the pollution attack has a significant impact on the network throughput: It

degrades the throughput to nearly zero for both scenarios, especially when the offered

load is high. The network throughput under pollution attacks in Figure 6.3(b) exhibits

an interesting trend: it first increases and then decreases as the offered load increases.

This demonstrates the cross-flow impact of packet pollution attacks. In the network

scenario in Figure 6.1(c), flow 2 has no attacker on its path. When the network

is under a lighter load, packets do not accumulate in the output queue of node A.

Thus, as soon as node A receives a packet, it forwards the packet immediately without

inter-flow coding, and flow 2 is not affected by the pollution attack on flow 1. As

the offered load increases, node A starts to have packets queuing up, which enables

inter-flow coding of the packets. As a result, the polluted packets in flow 1 start to

contaminate the packets in flow 2, bringing the throughput of both flows to nearly

zero.
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Figure 6.4. Throughput with and without CodeGuard defense in a
random network.
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Figure 6.5. Attack impact on aggregate throughput of flows with 20 attackers.

6.5.3 Results from Random Network Scenarios

In this section, we present the impact of pollution attacks and the effectiveness

and overhead of CodeGuard under random network topologies.

Impact of pollution. Figure 6.4 shows the total throughput achievable in the

network under the presence of different numbers of pollution attackers, with and

without the use of CodeGuard in a general network setting. We observe that without

the defense, pollution attacks cause a steady degradation of network throughput

as the number of attackers increases. However, the impact is not as drastic as in
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Figure 6.6. Average delay of attacker identification.

the illustrative examples where the throughput drops to nearly zero. The reason is

that since the sources and destinations of flows are randomly selected and attackers

are randomly placed, shorter flows have a smaller chance of having an attacker on

their path. They are thus less likely to be affected by an attack, but they usually

contribute more towards the total network throughput. Figure 6.5 demonstrates the

phenomenon by showing the effects of pollution attacks on flows of different path

lengths, when there are 20 attacker nodes. We see that flows of only one or two hops

are only marginally affected by the attack, while longer flows may experience a severe

degradation in throughput.

Effectiveness of defense. From Figure 6.4, observe that with the use of Code-

Guard, the throughput is maintained at a high level similar to the case of no attack.

CodeGuard is highly effective in restoring the throughput because of its ability to

identify and isolate attacker nodes quickly after a single polluted packet is injected.

To demonstrate this, Figure 6.6 shows the average delay of attacker detection for

different numbers of attackers. From the figure, we see that it takes less than 500 ms

for an attacker node to be identified. Thus, the overall impact that an attacker can

inflict on a flow is minimum.

Overhead evaluation. We evaluate both the proactive and reactive overhead

of CodeGuard. Proactive overhead is incurred regardless of the presence of attacks.
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Figure 6.7. Proactive bandwidth (left-Y) and computation (right-Y) overheads.
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Figure 6.8. Reactive bandwidth (left-Y) and computation (right-Y) overheads.

It is primarily due to the use of digital signatures on packets. Reactive overhead is

incurred by efforts to identify and isolate attacker nodes.

Figure 6.7 shows the proactive bandwidth and computation overheads of Code-

Guard in terms of the percentage of data transmitted due to the defense and the

maximum number of signatures performed at a node, respectively. We see that Code-

Guard has a proactive bandwidth overhead of only around 3%, while the maximum

number of signature operations performed at a node is around 8 operations per sec-

ond. We note that the proactive computation overhead will increase proportionally

as the data rate increases. However, as discussed in Section 6.4.6, we do not expect
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it to become a performance bottleneck given the power of current processors and the

use of cryptographic hardware.

Figure 6.8 shows the reactive bandwidth and computation overheads in terms of

the total number of bytes delivered and the total number of signatures performed for

defense packets, respectively. The results are shown for different numbers of attacker

nodes in the network. Both the reactive bandwidth and computation overheads ex-

hibit a trend of linear increase as the number of attackers increases, but both remain

at a low level. For example, with as many as 30 attacker nodes, CodeGuard incurs

a bandwidth overhead of less than 25 KB and it uses less than 70 total signature

operations for the entire network.

6.6 Conclusion

We have studied packet pollution as a potentially devastating attack against wire-

less inter-flow coding systems. Our study reveals that pollution attacks on inter-flow

network coding systems can result in different impacts for different network con-

figurations and attacker strategies. We proposed a pollution defense, CodeGuard,

that uses node attestation and bit-level trace-back to efficiently identify attackers.

Through analysis and simulation experiments, we showed that CodeGuard provides

highly effective protection while incurring small computation and communication

overheads.
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7 EFFICIENT APPLICATION LAYER SECURITY: SECURE GROUP

COMMUNICATION

In this chapter, we study the principles of designing secure application layer protocols

on WMNs that take into account the unqiue features of WMNs. In particular, we fo-

cus on designing a secure group communication protocol for WMNs. Group oriented

applications are expected to be an important class of applications on WMNs, given

the community-oriented nature of WMN deployments. Example applications include

webcast, distance learning, online gaming, video conferencing, and multimedia broad-

casting. Many of these applications follow a communication pattern in which one or

more source clients disseminate data to a changing set of receivers. The openness of

the wireless environment makes security a critical concern in the deployment of such

group applications.

A major security goal for group applications is providing data confidentiality such

that only current group members have access to the data sent to the group. Previous

communication must remain protected from newly joined members, and future com-

munication must be protected from members who have left the group. Examples of

applications that can benefit from these services are applications which disseminate

sensitive content, such as multimedia conferencing, and applications which seek to

ensure that only clients that have paid or registered for service can receive data, such

as online video broadcasting and distance learning.

WMNs present unique features that pose new challenges in designing secure group

communication protocols. In WMNs, the backbone routers and wireless clients form

a unique two-tier architecture, with distinct mobility and power constraints. Back-

bone routers communicate via multi-hop wireless links, which have high loss rate and

latency. WMNs also present new opportunities for designing more efficient secure

group communication protocols than the ones proposed for wired or mobile ad hoc
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networks (MANETs). The wireless broadcast can be leveraged to reduce bandwidth

consumption. Static routers provide a decentralized and more stable structure than

MANETs. Multiple clients sharing the same access router can also be used for a more

localized communication. Finally, unlike MANETs, mobile clients often exhibit only

localized mobility in WMNs [121].

Existing solutions for wired networks [122–126] are not well suited for WMNs as

they assume efficient reliable end-to-end and multicast delivery, which is much more

expensive to achieve in a multi-hop wireless environment. These protocols also do not

exploit unique features of WMNs, such as the broadcast nature of wireless commu-

nication. Solutions proposed for wireless sensor networks (WSNs) [127], [128], [129]

and MANETs [130], [131], [132] are designed to sustain severe computation power,

storage, mobility, and energy constraints, and as a result have limited scalability and

robustness.

In this chapter, we focus on the problem of ensuring data confidentiality for group

communications in WMNs, considering their unique challenges and opportunities.

The main contributions of this work are:

• We propose a new protocol framework for secure group communication, Secure

Group Overlay Multicast (SeGrOM), that employs decentralized group member-

ship, promotes localized communication, and leverages the wireless broadcast

nature to efficiently accommodate dynamic group changes and reduce commu-

nication overhead. We present three secure multicast variants supported by our

framework, with different trade-offs in complexity, cost, and security, and an

efficient group revocation protocol that exploits localized client mobility.

• We demonstrate analytically the significant reduction of bandwidth overhead

(up to 10 times) and latency (up to 80 times) of the proposed protocols over a

centralized scheme that is optimized for wireless networks.

• We validate our protocols experimentally with extensive simulations based on

the NS2 simulator [133]. Simulation results show that all of the proposed pro-
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tocols provide good performance (comparable with the unprotected communi-

cation protocol) and incur a significantly smaller overhead than our baseline

centralized protocol that is optimized for wireless networks. Our protocols re-

duce the bandwidth overhead and latency by about 85% when handling group

changes.

The rest of the chapter is organized as follows. We present related work in Section

7.1. The network and security model and the design goals are described in Section 7.2.

Section 7.3 describes the SeGrOM protocols. The performance analysis is presented

in Sections 7.4. The experimental results are presented in Sections 7.5. Finally,

Section 7.6 concludes the chapter.

7.1 Related Work

Secure group communication is a mature research area and has a large body of

research literature. The main objective of a secure group communication protocol is

to ensure the data confidentiality against outsiders such that only legitimate group

members can recover the group data. In the following, we give a brief overview of

existing work in this area in both traditional wired networks and wireless networks,

respectively.

Secure Group Communication in Wired Networks. A general approach to

secure group communication is to use a group key shared among group members to

encrypt group data. Depending on the specific group key management protocol used,

we can classify existing schemes into group key distribution schemes and contributory

group key agreement schemes.

In a group key distribution scheme, a centralized entity (e.g. the data source or

the group manager) generates the group key and distributes the key to all the group

members. The most well-known protocols in this category are the tree-based key

management protocols like LKH [122] and its variants [134–138]. These protocols

maintain global membership and require direct communication to the source node for
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both group joins and leaves. Reliable key delivery is achieved with redundant packets

(forward error correction) and end-to-end unicast recovery. The high bandwidth and

latency overhead of such protocols make them unsuitable for the multi-hop wireless

environment.

Another direction of group key distribution is represented by the hierarchical group

key management schemes like Iolus [139]. Iolus explicitly constructs sub-groups based

on trusted group security agents (GSAs) and achieves scalability by handling group

dynamics within each sub-group. Our proposed framework, SeGrOM, shares the same

spirit as Iolus in that it also localizes the handling of group dynamics. But unlike

Iolus, SeGrOM localizes the traffic to the router level, which matches the unique two-

tier architecture of WMNs, to achieve a much more fine-grained traffic localization.

In addition, SeGrOM does not require trusted GSAs deployed in the network. Finally,

SeGrOM, being designed specifically for wireless networks, also encompasses mech-

anisms for leveraging the broadcast advantage of wireless transmission for improved

efficiency.

In contributory key agreement schemes, the group key is generated from uniform

contributions from all group members by using schemes such as n-party Diffie-Hellman

key exchange. In general, these schemes [140–142] require reliable communication

from each group member to every other group member on handling group dynamics.

Such reliable broadcast communication is extremely inefficient to achieve in multi-hop

wireless networks, rendering them not suitable for WMNs.

Recent work on secure group communication in wired networks has also focused on

the specific environment of overlay multicast networks [125, 126, 143, 144]. Although

overlay networks are also multi-hop in nature, they do not have the properties of

client mobility, multiple clients sharing the same access router, or the much more

limited bandwidth resource as in WMNs. As a result, the protocols built for overlay

networks are also not well-suited for WMNs.

Secure Group Communication in Wireless Networks. Due to the con-

strained resource in the wireless environment, the basic approach to secure group
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communication in wireless networks is to match the protocol structure with the struc-

ture of wireless networks in order to achieve improved performance and efficiency.

Below we briefly discuss existing protocols proposed for cellular networks and mobile

ad hoc networks (MANETs).

Cellular networks also exhibit a two-tier architecture, with high-bandwidth wired

links connecting base stations (BSs) and low-bandwidth links between BS and clients.

The work in [145] proposes a topology matching key management (TMKM) scheme

that adapts the traditional key tree (LKH) to match the two level structure of cel-

lular networks. TMKM does not consider the problem of key distribution among

BSs, as they are connected with high-bandwidth wired links. However, in WMNs,

mesh routers are connected with multi-hop wireless links, thus it is crucial to also

consider the communication on the backbone routers in designing a secure group

communication protocol.

The work in secure group communication in MANETs include GKMPAN [130],

CRTDH [131] and the work in [132]. GKMPAN is a group key management scheme

designed for a relatively stable group, and focuses primarily on member revocation.

The scheme uses pair-wise keys to distribute a common group key for data encryption

among group members. CRTDH [131] relies on the Chinese Remainder Theorem and

the Diffie-Hellman group key agreement for establishing group keys. It requires a

number of messages linear to the group size to refresh the key for every group join

and leave. Thus, it is not scalable in a wireless environment with limited bandwidth

resource. Kaya et al [132] adopts a distributed scheme for handling group dynamics

to address the high overhead of multi-hop communication in MANETs. However, the

scheme fails to exploit the broadcast advantage of wireless communication, primarily

due to the highly dynamic nature of MANETs which prevents the establishment of a

local sub-group key for data delivery.

In general, none of the existing protocols considered the unique features of WMNs,

such as static backbone routers and multiple clients sharing the same router, all of
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which can be leveraged for designing more optimized protocols. Our work tries to fill

this gap by designing such a scheme specifically for WMNs.

A relevant area of work to secure group communication is securing the underlying

multicast protocols, such as [146, 147]. These schemes primarily focus on the denial-

of-service attacks against the data forwarding process, thus they are complementary

to the problem of achieving data confidentiality that we focus on. Another relevant

research area is key pre-distribution schemes for wireless sensor networks [127], [128],

[129]. These schemes focus on secure pair-wise communication, instead of group

communication. Finally, a necessary condition to secure group communications is

the ability to authenticate users. The protocols in [148, 149] present efficient mesh

client authentication schemes on WMNs. These schemes can be used in conjunction

with SeGrOM for authenticating group members in secure group communications.

7.2 System Model and Design Goals

Network Model. We consider the WMN model as described in Chapter 2. In

particular, we consider group communications between mesh clients that communi-

cate with each other through a set of static wireless routers organized in a backbone

network and communicating through multi-hop wireless links. Mobile clients connect

to the wireless mesh through a local access router and communicate with each other

through the wireless mesh (See Figure 7.1). Both clients and routers can fail.

We assume that the wireless channel is symmetric; all nodes have the same trans-

mitting power and consequently the same transmission range. We assume that group

communication support is available through a tree-based on-demand multicast proto-

col. For concreteness, we consider the well-known MAODV [150] multicast protocol

in presenting our protocols.

During a group communication session, the group members can join or leave the

group at any time, with potentially high membership dynamics, possibly due to client

movement or flash crowd phenomenon [151].
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Figure 7.1. Example mesh network.

Security Assumptions. We assume that each client authorized to be part of

the mesh network has a pair of public/private keys and a client certificate that binds

its public key to a unique user identifier. A group manager, acting as a certificate

authority (CA), is responsible for authorizing clients to join the group by issuing

them a member certificate. This member certificate binds the client certificate to

the multicast group identifier, e.g. group IP address, and serves as proof of the

client’s membership. We assume all group members know the public key of the group

manager, so that all member certificates can be verified by any group member.

Security Goals and Adversarial Model. Our focus is on providing data

confidentiality from outside adversaries (both passive and active), where an outsider

is any non-group member client or backbone router. More specifically, the goal is

to provide the group secrecy property, such that it is computationally infeasible for

a non-member node (mobile client or backbone router) to discover the group data.

This also includes the backward and forward secrecy properties which guarantee that

it is computationally infeasible for a member client to gain access to the group data

sent before the time it joins the group, or after the time it leaves (or is revoked from)

the group, respectively.



163

We assume that current group members do not leak data or keys to routers or

unauthorized clients. As authorized members may leak data via out-of-band channels,

preventing such data leakage is outside the scope of our work. We do not consider

attacks against the multicast protocol itself. For example, we do not consider denial of

service attacks against data forwarding, and assume routers forward application and

control data according to protocol specifications. Protecting the multicast protocol,

e.g. [146,147], is complementary to our work.

7.3 SeGrOM Framework and Protocols

In this section, we introduce SeGrOM, our protocol framework for secure group

communication in WMNs. We provide an overview of the framework, describe three

protocol variants with different trade-offs in complexity, performance and security,

and present an efficient member revocation mechanism. For clarity, we assume a

single source multicast case in the description, however, the protocol can be easily

extended to a multi-source scenario.

7.3.1 Overview

SeGrOM is designed to address the specific characteristics of WMNs, reducing

communication overhead and latency while maintaining group data confidentiality.

SeGrOM handles member mobility and group dynamics with decentralized member-

ship management, thus avoiding the cost of multi-hop communication and obtaining

lower bandwidth overhead and latency. To achieve the decentralized membership

management, as well as to exploit the two-tier architecture of WMNs and the wire-

less broadcast nature, SeGrOM uses a hierarchical architecture consisting of two sub-

protocols, a global data delivery protocol for inter-router backbone communication

and a local data delivery protocol for efficient group data delivery to members con-

nected to the same access router. The global data delivery is achieved via a secure

overlay established on top of the wireless multicast protocol running on the back-
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Table 7.1
Notations used in Algorithms 7, 8, 9 and 10.

s the source node

r any group member (receiver)

hi the header member of the access router associated with member i

ai the access router associated with member i

m the group data packet

me the encrypted group data packet

Algorithm 7: Flow of data packet m from source node s to group members.

Input: Packet m to be sent
s sends m to its local head member hs;
hs sends m to local receivers via the local protocol at as;
hs forwards m to hr via the global protocol;

// Code executed by any head member hr
hr sends m to its local receivers via the local protocol at ar;
hr forwards m to other h′r via the global protocol;

bone routers. SeGrOM supports three different variants for the global data delivery

protocol, trading complexity, security and communication cost.

The local delivery protocol runs among members connected to the same access

router, with one member client elected as the coordinator, referred to as the head

member. The head member of an access router allows joins and leaves to be handled

locally. It also coordinates the secure local data delivery and participates in the global

delivery protocol on behalf of all the members connected to that access router.

Finally, SeGrOM encompasses an efficient revocation protocol which takes advan-

tage of the localized mobility of clients. For convenience of description, we will use

the notations as defined in Table 7.1 in describing the protocols.

The flow of a group data packet m is presented in Algorithm 7. The source s first

securely forwards the packet to its local head member hs, which delivers m to other
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members connected to the same access router via the local data delivery protocol,

and then disperses m to all other head members via the global data delivery protocol.

Each head member hr, on receiving the packet, forwards it to the group members

on the same access router ar via the local data delivery protocol and to other head

members h′r via the global delivery protocol.

7.3.2 Secure Local Data Delivery

The secure local delivery of group data within a router is coordinated by the head

member of that router. Each head member maintains a local data key, which is shared

among all member clients associated with the same router. When receiving a group

data packet, the head member encrypts the data packet with the local data key and

forwards it to the access router, which then broadcasts the encrypted packet to all

other member clients associated with the router.

Head members handle joins and leaves as follows. When a new client joins the

group, it sends the join request to the local head member. After verifying the member

certificate, the local head member refreshes the local data key and sends the new key to

the joining node allowing it to receive the group data. The verification of the member

certificate ensures that only authorized clients can join the group. When a client

leaves the group, either gracefully by informing the head member or by crashing, the

head member refreshes the local data key and distributes it only to the remaining

member clients.

The refreshment of the local data key upon any group join and leave ensures the

forward and backward secrecy of data. Due to the small scale and local communica-

tion, local data key refreshment can be achieved by encrypting the new local data key

for each of the local member clients using pair-wise or public keys.

When a member client joins the group via a router with no existing member

clients, the new member client becomes the head member for the router. When the

head member for a router leaves, a new head member is elected among the remaining
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Figure 7.2. Conceptual abstraction of the secure group overlay.

local member clients. Since we do not impose any additional security assumptions

on head members, each member client in a router is equally eligible to be the head

member, and a simple leader election algorithm, such as electing the node with the

minimum identifier, can be used. The traffic for electing the head member is restricted

to only the member clients in the local router.

7.3.3 Secure Group Overlay

For secure global data delivery, the framework maintains a secure group overlay

among all the head members, on top of the underlying backbone multicast tree (See

Figure 7.2). Two head members are connected by a link on the overlay if on the

underlying multicast tree there is no other router with active member clients between

them. We refer to head members connected by a link in the overlay as adjacent head

members. Each head member maintains a list of its adjacent head members, and

establishes and discards symmetric keys (or link keys) upon the join and leave of their

adjacent head members. A link key is established using standard authenticated key

exchange protocols such as Diffie-Hellman [152]. Since multicast protocols typically
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keep track of neighboring nodes, the list of adjacent head members is typically readily

available information.

The secure overlay is updated only when the head members change, i.e. a head

member at some access router left, or a member joins the group via a router with

no existing members, thus becoming the new head member. The join/leave of head

members is handled by the head member of the upstream router on the multicast

tree. Under normal operation when the head members do not change, the join and

leave of other members are handled locally by their local head member as described

in Section 7.3.2.

7.3.4 Global Data Delivery on the Secure Overlay

The global data delivery protocol uses the secure overlay to disseminate data

among head members. We consider two approaches. In the first approach, SeGrOM-

Group, the head members share a common group key to encrypt the data. The

group key is distributed and periodically refreshed using the secure overlay. In the

second approach, SeGrOM-Link, instead of maintaining a group key, data is encrypted

using a per-packet key selected by the source, which is distributed using the secure

overlay. We also show an optimization for this variant, SeGrOM-Hop, which reduces

the computation and communication overhead with the help of a per-hop key shared

among each head member and their downstream head members in the secure overlay.

We continue to use the notations defined in Table 7.1.

SeGrOM-Group: Using Group Key for Data Encryption and Secure Overlay for

Group Key Dissemination

In this protocol, a common group key is maintained among all head members. The

group data is encrypted with the group key Kg at the head member of the source, hs,

then disseminated through the multicast tree over the wireless backbone, as seen in

Algorithm 8. To avoid the cost of maintaining global membership and changing the
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Algorithm 8: Global data delivery with SeGrOM-Group.

Input: Packet m to be sent from hs to any hr
hs encrypts m with group key Kg, result is me;
hs sends me to hr via a multicast tree;
hr decrypts me with group key Kg, result is m;

group key every time the group changes, we use batching [153], a technique where

the source refreshes the group key only periodically instead of refreshing it every

time the group membership changes. The advantage of this scheme is its improved

performance and simplicity. However, as the key will not be changed immediately

when the group changes nodes that leave the group will still be able to decrypt group

data until the current key period elapses and a new group key is issued. This results

in a partial loss of the forward and backward data secrecy due to the use of periodic

group key refreshment.

SeGrOM-Link: Using Per-Packet Keys for Data Encryption and Secure Overlay for

Packet Key Dissemination

SeGrOM-Link avoids the partial loss of forward and backward secrecy in SeGrOM-

Group. One possible approach is to deliver data directly on the secure group overlay:

to forward a data packet, each head member encrypts the data packet with the link

key of each of its downstream head members and then forwards the encrypted packets

accordingly. However, this approach incurs a large computation and communication

overhead, since every data packet needs to be re-encrypted and forwarded by each

head member multiple times once for each downstream head member.

To overcome the large overhead, SeGrOM-Link uses per-packet keys to encrypt

data. To disseminate a data packet, the head member at the source hs first selects

a random key Kd. It then encrypts the data with Kd and encrypts Kd with the

link key of each of its downstream head members. It piggy-backs all the encryptions

of Kd to the encrypted data packet, and broadcasts the packet down the multicast
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Algorithm 9: Global data delivery with SeGrOM-Link.

// Code executed by source head member hs
Input: Packet m to be sent from hs to any hr
hs selects packet key Kd;
hs encrypts m with packet key Kd, result is me;
hs executes forward data(me, Kd)

// forward data by head member hi
Input: Encrypted data me, data key Kd

foreach downstream head member hj of hi do
hi encrypts Kd with link key Kij, result is Kej;
append Kej to me

end
Deliver the resulting packet to downstream head members.

// Code executed by hr when receiving a packet from its upstream

head member hu
Input: Encrypted data me, encrypted data key Ker
hr decrypts Ker with link key Kur, result is Kd;
hr decrypts me with packet key Kd, result is m;
if (hr has downstream head member) then

hr executes forward data(me, Kd)
end

tree. When a downstream head member receives the packet, it retrieves the data

by first decrypting Kd with its corresponding link key and then using Kd to decrypt

the data. To forward the packet downstream, the head member re-encrypts Kd with

the link keys of its downstream head members, and replaces the Kd encryptions on

the received packet with the new set of encryptions of Kd. Algorithm 9 presents the

pseudo-code for SeGrOM-Link.

In this scheme, the encrypted data packet is only broadcast once to all downstream

nodes, taking advantage of the wireless broadcast medium. At each head member,

only the per-packet keys need to be re-encrypted for each downstream nodes, since

symmetric keys are typically only 128 bits, the computation overhead is also signifi-

cantly smaller than encrypting data packets directly.
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SeGrOM-Hop: Using Per-Packet Key for Data Encryption and Per-Hop Key for

Packet Key Dissemination

In SeGrOM-Link, even with the optimization of using per-packet keys, there is

still per data packet computation and communication overhead at each head member

linear to the number of downstream head members. As data packets are expected to

be very frequent, the accumulated computation and communication overhead can be

substantial. SeGrOM-Hop optimizes the computation and communication overhead

further by having each head member share a hop key with all of its downstream

head members. Thus, each head member only needs to encrypt Kd with the hop

key and deliver the encrypted key once for each data packet, instead of once for each

downstream head member. Algorithm 10 presents the pseudo-code for SeGrOM-Hop.

The requirement of forward and backward data secrecy requires the refreshment

of the hop key whenever the downstream head member set changes. Since the hop key

refreshment involves only adjacent head members, thus incurring only local commu-

nication, a straightforward approach, such as encrypting and delivering the new hop

key individually for each downstream head member, can be employed. The cost of

maintaining a hop key is amortized over all the data packets delivered using that key.

Therefore, compared to SeGrOM-Link, SeGrOM-Hop has a lower per data packet

overhead.

7.3.5 Client Member Revocation

Revocation is necessary for many group applications. For example, it is necessary

to revoke a member that has been compromised by adversaries. In paid multimedia

broadcasting, the content provider needs to revoke membership from customers who

default payments. In schemes where the group membership is maintained by one

entity (e.g. centralized membership management schemes), members can be easily

revoked by the entity that manages the group membership. For example, in the case of

single source multicast where the source has the list of the most recent group members,
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Algorithm 10: Global data delivery with SeGrOM-Hop.

// Code executed by source head member hs
Input: Packet m to be sent from hs to any hr
hs selects packet key Kd;
hs encrypts m with packet key Kd, result is me;
hs executes forward data(me, Kd)

// forward data by head member hi
Input: Encrypted data me, data key Kd

hi encrypts Kd with downstream hop key Khop, result is Keh ;
hi sends me and Keh to downstream head members;

// Code executed by hr when receiving a packet from its upstream

head member hu
Input: Encrypted data me, encrypted data key Keh
hr decrypts Keh with upstream hop key Khop, result is Kd;
hr decrypts me with packet key Kd, result is m;
if (hr has downstream head members) then

hr executes forward data(me, Kd)
end
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it can revoke the access the data by changing the group key and not delivering the new

key to the revoked member. In decentralized schemes, a more general scheme relies

on a certificate revocation list (CRL) that includes the name of revoked members.

This approach requires the reliable delivery of CRLs to group members, which is

costly in a multi-hop wireless environment. Alternatively, the protocol can maintain

the node revocation status only at the entity issuing the CRLs (usually a group

manager), but then every group join requires a query to the group manager to check

the revocation status of the joining member. As group joins are expected to be

frequent, this approach can incur a significant delay and overhead in a multi-hop

wireless environment.

We propose a more efficient revocation scheme, SeGrOM-Revoke, which combines

the benefits of both approaches: It eliminates the need of reliable broadcast of CRLs

to all group members and also requires only localized traffic for checking revocation

status. We assume that most member clients move around a region that can be

covered by a small set of access routers, which are referred to as the client’s home

routers. This assumption is valid for most application scenarios, such as real-time

conferencing, multimedia broadcasting, and multi-player gaming, where most active

group members stay in some local region. SeGrOM-Revoke exploits such locality

of client movements in WMNs to support more efficient member revocations. The

main idea is to maintain the revocation status of a client at the members associated

with the client’s home routers. Thus, checking the revocation status of a member

requires only querying a member associated with a local home router of the member,

while revoking a member requires only delivering the revocation notice to members

associated with the home routers of the revoked member.

Scheme Details. Prior to joining the group, a client first selects a set of routers

that cover its movement area as its home routers. This set of routers can be discov-

ered with scoped local flooding. Recall that the group manager is the central entity

responsible for authorizing group members, issuing member certificates, and revok-

ing group members (Section 7.2). When requesting a member certificate, the client
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presents its selected home router set to the group manager, who then includes them

in the member certificate.

When the group manager decides to revoke a member certificate, it sends a signed

revocation notice to the head member of each home router of the revoked client, which

then disseminates it to other members associated with the same router. Hence, all

the members on the home routers of a member client maintain the revocation status

for the client.

When a client joins a group, the upstream head member needs to check whether

the new member has a valid member certificate that has not been revoked. To do so,

it first verifies the presented group member certificate. Upon verification, it contacts

a head member of one of the home routers listed in the member certificate to verify

the revocation status of the client. Since it is expected that a member client joins

the group via one of its home routers or some router close to its home routers, the

revocation verification process incurs only local traffic.

A caveat in the join process is that since only clients that are currently in the

group are trusted, the upstream head member also needs to verify that the responding

party is a current group member. For proof of the current membership, we present a

challenge-response scheme that relies upon the single secret shared among all group

members – the data itself. The challenging member sends a window of sequence

numbers for recent packets to the target node, which responds with a signed hash of

one of the packets. Since only current group members have access to current group

data, the correct hash value proves the current membership of the node. Allowing

the target node to select one from a window of sequence numbers addresses the lossy

environment of wireless networks where the target node may have lost some of the

recent packets.

In the case that no member clients exist on the home routers of the joining client,

the group manager is contacted for revocation status, which involves global com-

munication. However, as shown in the experiments (Section 7.5.3), such cases are

infrequent in most situations. Performance can be further optimized for roaming
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clients that move far away from their home region for an extended period by issuing

them new member certificates with updated home router sets.

7.4 Performance Analysis

In this section we compare the join and leave bandwidth cost and latency of

SeGrOM protocols with centralized schemes, where the source node is contacted for

every join and leave. Since the communication among backbone routers is expected

to be a bottleneck in most applications and the local communication between clients

and their access router are common in both approaches, we focus the analysis on the

cost of the communication among wireless routers. We discuss only member joins as

member leaves are analogous.

We assume a random geometric graph model for the analysis, namely, both

wireless routers and member clients are uniformly randomly distributed in a two-

dimensional unit square. Denote the number of routers as n and the number of

member clients as m. The radio transmission range of the routers is such that the

routers form a connected graph with average degree O(log n)1. Each client has at

least one router in its range and is associated with the router closest to it.

Since both bandwidth cost and latency are directly proportional to the communi-

cation path length, in the following we first derive the expected communication path

length in SeGrOM and the centralized approach, respectively. We then determine the

ratio of bandwidth and latency savings using the ratio of the communication path

length of the two approaches.

7.4.1 Communication Path Length for SeGrOM Join

In SeGrOM, if a new client joins the group with a router that has existing member

clients, the join is handled by the local head member and no communication among

1In random geometric graph, the average degree of O(log n) is sufficient for connectivity while
maintaining reasonable density [154].
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R1

d1
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Figure 7.3. The newly joined member client (A), its closest member
client (B), and their associated access routers (R1 and R2). The sym-
bols (dr, dc, d1, d2) denote the distance between the respective entities.

backbone routers is required. Thus, we only consider the event that the new client

joins with a router with no existing members. Let p be the probability of such an

event, since each member client has an equal probability of associating with any of

the routers, we have

p = (1− 1

n
)m.

Let dc be the random variable for the distance between the new client and the

closest member client, d1 and d2 be the distances between these two members and

their access routers, and dr be the distance between the two routers, as shown in

Figure 7.3. We then have

dr ≤ dc + d1 + d2 (7.1)

Lemma 5 Uniformly randomly place a point A and n other points in a unit square,

let D be the minimum distance between A to one of the n points, then

E[D] ≤ 2nπ

∫ ∞

0

x2e−nπx
2

dx.
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Proof Ignoring boundary effect, the number of points that fall into a circle of radius

x with center at A can be approximated with Poisson distribution with λ = nπx2.

Thus we obtain the CDF of D,

FD(x) = Pr(D ≤ x)

= 1− Pr(D > x)

= 1− Pr(no client in the circle of radius x)

= 1− e−nπx2

Thus, the probability density function of D is

fD(x) =
dFD(x)

dx
= 2nπxe−nπx

2

,

hence

E[D] ≤
∫ ∞

0

xfD(x)dx = 2nπ

∫ ∞

0

x2e−nπx
2

dx.

Note that ignoring boundary effect results in a lower bound on the density of the

points, thus the expected minimum distance computed is an upper bound on the

actual density. �

Therefore, by Lemma 5, we have

E[dc] ≤ 2mπ

∫ ∞

0

x2e−mπx
2

dx,

E[d1] = E[d2] ≤ 2nπ

∫ ∞

0

x2e−nπx
2

dx.

In SeGrOM, the router R associated with the new member client joins the mul-

ticast tree by contacting the closest router R′ with existing member clients. Let DR

be the distance between router R and router R′, then

DR ≤ dr ≤ dc + d1 + d2.

Hence by the linearity of expectation, we have

E[DR] ≤ E[dc] + 2E[d1]. (7.2)
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Let HR be the length of the shortest path between R and R′. Given a distance DR,

since the routers are uniformly distributed, we have E[HR|DR] being proportional to

DR, that is E[HR|DR] = DRg(n), where g(n) is some function of n that reflects the

density of the network. Therefore,

E[HR] = E[E[HR|DR]] = E[DR]g(n). (7.3)

Therefore, let H be the communication path length for joining the group in

SeGrOM, combining Equation 7.2 and 7.3, we have

E[H] = pE[HR]

= pE[DR]g(n)

≤ p(E[dc] + 2E[d1])g(n)

(7.4)

7.4.2 Communication Path Length for Centralized Join

Let D′R be the distance between the router associated with the joining client and

the router associated with the source client. Since both the routers and clients are

uniformly randomly distributed, the routers associated with the source client and the

new client are uniformly distributed in the unit square.

Lemma 6 The expected distance between two random points in a unit square is 1
15

(2+
√

2 + 5 ln(1 +
√

2)) (as shown in [155]).

Thus by Lemma 6, we have

E[D′R] =
1

15
(2 +

√
2 + 5 ln(1 +

√
2)).

Let H ′R be the path length between the two routers. Similar to the argument in the

SeGrOM case, we have

E[H ′R] = E[D′R]g(n). (7.5)
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7.4.3 Bandwidth Cost and Latency Ratio for Join Between Centralized Schemes and

SeGrOM

Combining Equation 7.4 and 7.5, the ratio of the expected path length Rpl for

join between centralized approach and SeGrOM is

Rpl =
E[H ′R]

E[H]

=
E[D′R]g(n)

pE[DR]g(n)

≥ E[D′R]

p(E[dc] + 2E[d1])

=
1
15

(2 +
√

2 + 5 ln(1 +
√

2))

2pπ(m
∫∞

0
x2e−mπx2dx+ 2n

∫∞
0
x2e−nπx2dx)

Now we show the following theorem.

Theorem 7.4.1 Let Rl and Rb be the ratio of expected latency and the ratio of

expected bandwidth cost, respectively, for join between the centralized approach and

SeGrOM, then

Rl = Rpl

Rb ≥ Rpl/D,

where D is the average degree of the backbone network.

Proof Since join latency is directly proportional to the communication path, we

have Rl = Rpl.

In SeGrOM a group join to a router empty of members also involves communi-

cation with all the downstream head members to maintain the group overlay. Let d

be the number of downstream head members for a group join, we have E(d) ≤ D.

Therefore, the expected ratio of the join bandwidth cost Rb = Rpl/E(d) ≥ Rpl/D. �

Figure 7.4(a) and 7.4(b) plot the latency ratio and the lower bound for the band-

width cost ratio with respect to the number of member clients when the number of

routers n = 100 and n = 200 and the average degree is log n. From the figures, we
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Figure 7.4. The latency and bandwidth cost ratio in a join operation
between a centralized scheme and SeGrOM.

can see that both ratios increase when the density of member clients gets higher,

which indicates that the improvement of SeGrOM over centralized schemes for joins

and leaves becomes more significant for groups with higher client density. We also

see that increasing n from 100 to 200 decreases both ratios. This is because as n

increases, there is a smaller chance of handling join/leave by local head members.

In addition, the number of downstream head members also increases, resulting in a

higher bandwidth cost for join/leave in SeGrOM.

7.5 Experimental Evaluation

In this section, we present an evaluation of the proposed protocols. We first

describe our experimental methodology, including a baseline protocol, referred to as

W-LKH. We then compare the performance and overhead of our protocols against

the baseline protocol. Finally, we evaluate the overhead of the SeGrOM-Revoke

revocation protocol.
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7.5.1 Experimental Methodology

We implemented our protocols using the NS2 network simulator [133] (version

2.26) with CMU Monarch extensions. The MAODV implementation is provided by

Zhu et al [156].

Wireless routers are simulated with nodes equipped with IEEE 802.11 radio,

2Mbps physical bandwidth and 250-meter nominal range. 100 routers are randomly

placed in a 1500m× 1500m area. The mobile clients are also randomly placed in the

area and are associated with the nearest router. We assume the local communica-

tion between mobile clients and their access router is on a different channel than the

channel used on the backbone network, thus it does not interfere with the backbone

communication. We assume the communication between the mobile clients and their

access routers is reliable with a fixed latency, set empirically to 4ms.

In the beginning of a simulation, the source client and 100 member clients are

placed at random positions and join the group sequentially at the rate of one join per

two seconds. For experiments considering group dynamics we use the Poisson process

to model the member join and leave events, based on previous studies [151,157,158].

We set the join and leave rates to be equal so that the group size remains stable. For

each join event, the new client joins from a random position; for each leave event, a

random member node is selected to leave the group. The duration of each simulation

is 1000 seconds. The source client starts sending data after the initial member joins

are completed. The packet size is 256 bytes, and the packet rate is varied. For

experiments that examine the effect of group dynamics, the data rate is fixed at 5

packets/second, to optimize the performance of MAODV.

We compare our protocols with a centralized protocol adapted to cope with the

high loss ratio and latency existent in multi-hop wireless networks. The protocol is

based on the well-known LKH [153] protocol and is referred as W-LKH. W-LKH uses

logical key graphs to minimize the number of encryptions performed by the source.
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It also incorporates batching [153] to minimize the communication cost, and reliable

hop-by-hop key delivery to cope with lossy links.

For protocols that use batching (W-LKH and SeGrOM-Group), a balanced key

refreshment period of 30 seconds was chosen based on previous studies [126]. We

also assume in all the protocols the size of symmetric keys is 128 bits, the size of

public/private keys is 1024 bits, and the computation delay for PKI signatures is

4ms.2 All data points plotted are the average of 10 runs with different random router

and client topologies and group join and leave events.

We compare the protocols using the following metrics:

• Delivery ratio: The delivery ratio is defined as the fraction of data packets that

are received and decrypted by a group member node out of all the data packets

that are broadcast by the source during the time when the node is a group

member. The delivery ratio measures the data goodput received by the upper

layer application.

• Computation, bandwidth and latency overhead of join and leave events, and

the overall bandwidth overhead: Since mobile clients and wireless routers are

expected to be limited in computation power, we evaluate the computation cost

of different protocols. To see how our protocols cope with the limited bandwidth

in WMNs, we evaluate their bandwidth overhead. Finally, to see how responsive

our protocols are to upper layer applications, we evaluate the latency of join

and leave events.

7.5.2 Protocol Performance and Robustness

Figure 7.5(a) and 7.5(b) show the delivery ratio for different protocols for differ-

ent data rates and group dynamics. We observe that for all data rates and group

2This value is based on running the 1024-bit RSA implementation of openssl on a 3GHz Intel
Pentium IV computer.
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Figure 7.5. Delivery ratio of SeGrOM protocols.

dynamics examined, all proposed secure multicast protocols maintain a high delivery

ratio similar to the case with no security mechanisms. Surprisingly, we observe that

SeGrOM-Hop even has a slightly higher delivery ratio than the no security case for

lower data rates. A more in-depth analysis reveals that the local hop key maintenance

in SeGrOM-Hop tends to eliminate weak links in the multicast tree that persist in

the bare MAODV case, having the unexpected benefit of optimizing the multicast

tree and resulting in a better delivery ratio.

7.5.3 Protocol Overhead

Computation overhead. Figures 7.6(a) and 7.6(b) show the computation over-

head due to cryptographic operations at the source node and a randomly selected

member node for our protocols and W-LKH. The source sends at a data rate of 5

packets/second (10kbps) to optimize MAODV performance. The group dynamics

used were 5 joins and 5 leaves per minute.

For symmetric encryption overhead, we observe that SeGrOM-Link has a much

higher overhead than the other protocols, especially at the source node. This is

because SeGrOM-Link requires per data packet computation overhead linear to the
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Figure 7.6. Computation overhead of SeGrOM protocols.

number of children of the node. The optimizations in SeGrOM-Hop successfully

reduce the overhead making it comparable to other protocols.

For asymmetric encryption overhead, we observe that W-LKH has a significantly

higher number of encryptions performed by the source node than the other protocols,

due to the centralized handling of joins and leaves, each of which requires asymmetric

encryptions. Since asymmetric encryptions are computation intensive operations,

the centralization of such encryptions in W-LKH introduces a potential performance

bottleneck at the source, especially at high group dynamics. It also allows for potential

DoS attacks that aim at exhausting the computation resource of source nodes.

Bandwidth overhead and latency. Figures 7.7(a), 7.7(b) and Figures 7.7(c),

7.7(d) show the bandwidth overhead and latency for the join and leave events, re-

spectively, for different levels of group dynamics. To decouple the cost of a join event

from the revocation status verification, we assume most nodes join the network from

their home routers. From these graphs, we first observe that all proposed proto-

cols maintain similar bandwidth overhead and latency for different levels of group

dynamics. We also observe that W-LKH has much higher bandwidth overhead and

latency for join and leave than SeGrOM-based protocols (e.g. about 8 times more

bandwidth overhead for a join event), demonstrating the benefits of the decentralized

membership management in SeGrOM.
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Figure 7.8. Peak bandwidth of SeGrOM protocols.

Compared to the theoretical analysis results in Section 7.4, we observe that the

experimental latency ratio (around 8–9) is similar to the result derived from the

analysis (around 10, see Figure 7.4(a) for the case n = 100,m = 100)3. We also

observe that the experimental bandwidth cost ratio of W-LKH over SeGrOM is much

higher than the theoretical analysis result (see Figure 7.4(b) for the case n = 100,m =

100). This is due to the overestimation of the number of downstream head members

in the analysis, which causes the underestimation of the bandwidth cost ratio.

Peak bandwidth. Figure 7.8 shows the bandwidth consumed at the source

node over time for different protocols for a simulation run with a data rate of 5

packets/second and group dynamics of 5 joins and 5 leaves per minute. From these

graphs, we can see that SeGrOM-based protocols consume a relatively stable band-

width at the source over time, while W-LKH exhibits high variability of bandwidth

consumption. The reason for the high peak bandwidth requirement of W-LKH is

two-fold. First, the size of the rekey packets in W-LKH is relatively large, since po-

tentially many keys targeted for different members need to be included. Second, all

join and leave requests require communication with the source. Since high bandwidth

peaks can cause packet loss and network congestion, W-LKH is less favorable than

the SeGrOM-based protocols in this respect.

3The slightly lower ratio for the experimental results is because the theoretical analysis ignores
the computation and local communication latency from routers to head members, which is slightly
higher in SeGrOM.
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Total bandwidth overhead. For an overview of all bandwidth overhead intro-

duced by the secure multicast protocols, Figures 7.9 and 7.10 show the average total

bandwidth overhead due to the protocols for an entire simulation session for different

data rates and group dynamics, respectively.

We first observe that the bandwidth overhead of both SeGrOM-Link and SeGrOM-

Hop increases linearly with the data rate. However, the rate of increase for SeGrOM-

Hop is significantly smaller than SeGrOM-Link, allowing its bandwidth overhead to

remain comparable to other protocols while that of SeGrOM-Link is much higher.

This difference shows the effectiveness of the hop key in SeGrOM-Hop for reducing
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bandwidth overhead. From Figure 7.10, we can also observe that for SeGrOM proto-

cols, the total bandwidth overhead remains quite stable for different levels of group

dynamics, while for W-LKH the overhead increases linearly with group dynamics,

again due to the global messages required for handling membership changes.

Overhead of SeGrOM-Revoke. In SeGrOM-Revoke, the main bandwidth and

latency cost occurs when the CA must be contacted for revocation status verification

due to the absence of member clients on the home routers of the joining client, or

the absence of CRL in those member clients. Fig 7.11 shows the frequency of CA

contact occurrence in a network with 100 routers for stabilized networks of different

group sizes and different home router set sizes. As can be seen from the figure, the

frequency is quite low when the number of clients is reasonably large.

7.6 Conclusion

In this chapter, we explored different design choices for solving the problem of

secure multicast service for WMNs. We proposed several secure group multicast pro-

tocols that employ decentralized group membership, promote localized communica-

tion, and exploit the wireless broadcast nature, to efficiently accommodate dynamic

group changes and reduce communication overhead. We compared our protocols
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with a baseline centralized protocol and discuss the trade-offs among different design

choices. Our results indicate that:

• Adding application-level data confidentiality to group communication in WMNs

does not affect the performance of the system. The bottleneck of achievable

data rate is not the data confidentiality mechanism but the underlying network

bandwidth.

• Our decentralized protocols show smaller computation and bandwidth overhead

and latency in dynamic groups where the set of receivers changes frequently.

In addition, our protocols show a smaller peak overhead than the centralized

baseline protocol for dynamic groups.

• Using a different encryption key per packet and hop key for delivering the data

encryption key exhibits the best balance between security and overhead.
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8 CONCLUSION AND FUTURE WORK

WMNs hold a great promise in realizing numerous next-generation wireless services,

such as broadband community wireless networks, enterprise networking, and disaster

and emergency networking. However, given the open nature of wireless environ-

ment, WMNs are subject to a wide range of security threats. In this thesis, we have

addressed the security issues in two main design methodologies for achieving high

performance data delivery in WMNs, namely, dynamic topology-aware adaptation

and network coding. We also studied the principles for designing efficient application

layer security protocols for WMNs by presenting a key management framework for

group communications in WMNs.

For dynamic topology-aware adaptations, we showed that without proper secu-

rity mechanisms such protocols are extremely vulnerable to attacks. In particular,

we identified attacks that exploit the local estimation and global aggregation of the

metrics to allow attackers to attract a large amount of traffic. To address these

vulnerabilities and enhance the robustness of topology-aware adaptations against at-

tacks, we proposed an efficient defense mechanism that combines measurement-based

detection and accusation-based reaction techniques. Our solution also accommodates

transient network variations and is resilient against attempts to exploit the defense

mechanism itself. Through detailed security analysis and extensive simulation exper-

iments, we demonstrated that our defense is effective against the identified attacks,

resilient to malicious exploitations, and imposes a small overhead.

Network coding has emerged in recent years as an effective method for achieving

significantly improved throughput in WMNs compared to traditional routing proto-

cols. In this thesis, we classified existing network coding protocols into two general

frameworks, intra-flow network coding and inter-flow network coding. We performed

systematic security analysis of both of the network coding approaches, and revealed
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a wide range of attacks to existing network coding systems. We then focused on

addressing a severe and long-standing security threat to network coding systems,

packet pollution attacks. For intra-flow network coding, we demonstrated that previ-

ous solutions to pollution attacks are not practical in wireless networks, incurring an

unacceptably high degradation of throughput. To address these attacks, we proposed

a lightweight scheme, DART, that uses time-based authentication in combination

with random linear transformations to defend against pollution attacks. We further

improved the system performance and proposed EDART, which enhances DART with

an optimistic forwarding scheme. We then proposed efficient attacker identification

schemes for both DART and EDART that enable quick attacker isolation and the

selection of attacker-free path, achieving additional performance improvement. A

detailed security analysis shows that the probability of a polluted packet passing

our verification procedure is very low. Performance results using the well-known

MORE protocol and realistic link quality measurements from the Roofnet experi-

mental testbed show that our schemes improve system performance over 20 times

compared to previous solutions. For inter-flow network coding, we are the first to

propose a defense against pollution attacks. We presented a detailed analysis on the

impact of pollution attacks on inter-flow coding systems, and proposed CodeGuard,

a reactive attestation-based defense mechanism that uses efficient bit-level traceback

and a novel cross-examination technique to unequivocally identify attacker nodes. We

analyzed the security and overhead of CodeGuard and prove that it is always able

to identify and isolate at least one attacker node on every occurrence of a pollution

attack. Our experimental results show that CodeGuard is able to identify attacker

nodes quickly (within 500 ms) and restore system throughput to a high level.

On the application layer, WMNs present new challenges and opportunities in

designing efficient security protocols on the application layer. We focused on study-

ing the problem of providing data confidentiality for group communication in WMNs,

and proposed a new protocol framework, Secure Group Overlay Multicast (SeGrOM).

SeGrOM employs decentralized group membership, promotes localized communica-
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tion, and leverages the wireless broadcast nature to achieve efficient and secure group

communication. We analyzed the performance and discuss the security properties

of our protocols, and demonstrated through simulations that our protocols provide

good performance and incur a significantly smaller overhead than a baseline central-

ized protocol optimized for WMNs.

Future Work

There are a number of open problems and future work directions suggested by

this dissertation.

Balanced network coding system design. As we presented in Chapter 4,

existing network coding systems are vulnerable to a wide range of attacks besides

the most well-known packet pollution attacks. Many of the weaknesses of existing

system designs lie in their single-minded performance optimizations. A more balanced

approach, which can provide improved security guarantees, is crucial to the actual

adoption of network coding for real-world applications. A future direction of work is to

uncover the security implications of different design and optimization techniques and

explore balanced system designs with network coding that achieve appropriate trade-

offs between security and performance suitable for different application requirements.

Security of hybrid networks. In many deployment situations, WMNs are

designed to be integrated with other types networks, such as wired networks and

cellular networks. This dissertation focuses only on the attacks within the mesh

networks. Addressing the attacks in hybrid environment also presents an interesting

future direction. On the one hand, such networks are vulnerable to a wider range

of attacks than its individual network components. For example, a mesh network

for wireless Internet access can be targeted with DDoS attacks launched from the

Internet. The scarcity of bandwidth resource on WMNs further exacerbates the

severity of such attacks. On the other hand, hybrid networks possess additional

resources and opportunities for defending against attacks. For example, for WMNs
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connected to the wired networks, we may leverage the high bandwidth low latency

wired links and deploy powerful computers on the wired networks to defend against

attacks.

Extending to MANETs and WSNs. Mobile ad hoc networks (MANETs)

and wireless sensor networks (WSNs) are two other active areas of research in the

area of wireless networks in recent years. They share many similarity with WMNs,

but pose a more stringent environment than WMNs for designing security mecha-

nisms. For example, the additional challenges in MANETs include the potential high

node mobility, constantly changing network topology, and intermittent connections.

In WSNs, the low-power nature of sensor nodes demands security protocols with ex-

tremely bandwidth and computation efficiency. As such, many security schemes that

relies on complex crytographic operations such as digital signatures are not suitable

for WSNs. An interesting future direction is to extend techniques proposed in this

dissertation to address attacks in MANETs and WSNs.
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