
CERIAS Tech Report 2009-22
ACHIEVING HIGH SURVIVABILITY IN DISTRIBUTED SYSTEMS THROUGH AUTOMATED RESPONSE

 by Yu-Sung Wu
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

 Yu-Sung Wu

Achieving High Survivability in Distributed Systems through Automated Response

 Doctor of Philosophy

S. Bagchi

R. Eigenmann

A. Ghafoor

E. H. Spafford

S. Bagchi

V. Balakrishnan 6/16/2009

Graduate School Form 20
(Revised 10/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Signature of Candidate

Date

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

Achieving High Survivability in Distributed Systems through Automated Response

 Doctor of Philosophy

2009/6/16

Yu-Sung Wu

ACHIEVING HIGH SURVIVABILITY IN DISTRIBUTED SYSTEMS THROUGH

AUTOMATED RESPONSE

A Dissertation

 Submitted to the Faculty

of

Purdue University

by

Yu-Sung Wu

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2009

Purdue University

West Lafayette, Indiana

ii

To my family, for their support, love, and endeavor.

感謝我摯愛的家人

iii

ACKNOWLEDGMENTS

Special thanks to Prof. Saurabh Bagchi and my colleague Bingrui Foo without

whose efforts and input this work would not have made its way. Also thanks to Prof.

Gene Spafford, who has been providing advice to guide the ADEPTS project. I would also

like to thank Prof. Arif Ghafoor and Prof. Rudolf Eigenmann for being on my committee

and helping to shape my years long study at Purdue ECE.

iv

TABLE OF CONTENTS

Page

1. INTRODUCTION ...1

1.1. Thesis Statement ..5
1.1.1 Survivability Metric for Automated Response System 5
1.1.2 BASELINE Model ... 6
1.1.3 Proposed Model .. 7
1.1.4 Claims ... 7

2. RELATED RESEARCH ...9

3. MULTI-STAGE SECURITY ATTACKS AND RESPONSES12

3.1. Adversary and Attack Model ...13
3.2. I-GRAPH ...14

3.2.1 I-GRAPH Structure... 14
3.2.2 I-GRAPH Generation ... 15
3.2.3 Definition of I-GRAPH G(N,E): .. 16

3.3. Response Model for Multi-Stage Attack ...17
3.4. Survivability Guarantee by Proposed Model ...19
3.5. Impact Vector Metric ...20
3.6. Impact Vector Metric for Response Combination21

3.6.1 Survivability Metric .. 22
3.7. Inference on I-GRAPH : CCI Computation Algorithm.22

3.7.1 Effect of Response and Edge Propagation Factor 25
3.7.2 False Alarm Estimation .. 25
3.7.3 Missed Alarm Estimation ... 27

3.8. Inference on I-GRAPH: Bayesian Network ..28
3.9. Limitations ...29

v

Page

4. AUTOMATED RESPONSES ...30

4.1. Design Overview ...32
4.2. Attack Sub-Graphs ...33
4.3. Determining Response Locations ..35

4.3.1 Response Set Computation Algorithm. 35
4.4. Response Deployment ...36

4.4.1 Response Infrastructure .. 36
4.4.2 Choosing Responses ... 37

4.5. Matching in Attack Template Library ...37
4.5.1 Immunizer ... 39

4.6. Handling Unknown Alerts ...40
4.7. Response Chains and Persistent Attacks ...41
4.8. Providing Feedback to Responses ...42

4.8.1 Varying EI .. 42
4.8.2 Tuning Response CPT Values in Bayesian Network 43
4.8.3 Deactivating Responses .. 43

4.9. Complexity Analysis ...44
4.10. Limitations ...44

5. OPTIMAL RESPONSES ..45

5.1. Deficiency and Sub-Optimality in ADEPTS I Response47
5.2. Framework for Global Optimal Response ...49

5.2.1 Intractability of Optimal Response Determination 49
5.3. Design Overview ...50
5.4. Attack Template Library (ATL) and Attack Snapshots50
5.5. Predicting the Escalation of Attack ...51

5.5.1 Domain Graph .. 52
5.6. Similarity of Attack Snapshots SA(SN) ...53
5.7. Genetic Algorithm (GA)-based Response Mechanism53
5.8. Limitations ...55

6. RESPONDING TO ZERO-DAY ATTACKS ...57

vi

Page

6.1. Design Overview ...59
6.2. System Configuration Specification ..61

6.2.1 Component Definition .. 63
6.2.2 Connection Definition .. 64
6.2.3 Detector Definition ... 65

6.3. Online Attack Graph Generation Process ..66
6.3.1 Attack Graph Generation .. 67

6.4. Conceptualization of Attack Graph ...69
6.5. Limitations ...73

7. IMPLEMENTATION OF ADEPTS AND TESTBED ...74

7.1. Description of e-Commerce Application ...74
7.2. Detectors ..75
7.3. Attack Scenarios ..76
7.4. Response Repository ...78

8. EXPERIMENTS AND RESULTS ..80

8.1. Missed Alarm and False Alarm Estimation ...80
8.2. Adaptation of Response Action ...83
8.3. Survivability Improvement from Automated Response (ADEPTS)88
8.4. Survivability Improvement : ADEPTS v.s BASELINE Local Response92
8.5. Scalability of ADEPTS ..94
8.6. Survivability for Micro-Benchmark (SWIFT v.s ADEPTS I)96
8.7. SWIFT : Learning from History to Reduce Search Space Size98
8.8. SWIFT : Survivability for Real Attack Scenarios101
8.9. SWIFT : Responding to Attack Variants ...103
8.10. ORIGIN : Responding to Zero-Day Attacks ..104

8.10.1 Benefits from Conceptualization .. 110
8.10.2 Drawbacks from Conceptualization 113

9. CONCLUSIONS ...115

vii

Page

LIST OF REFERENCES.. 118

VITA .. 123

viii

LIST OF FIGURES

Figure Page

3.1. An example I-GRAPH ... 13
3.2. A section of the I-GRAPH from our deployed e-Commerce environment 14
3.3. Three different snapshots for a given attack. Response combinations RCX, RCY,

RCZ are deployed between snapshots ... 17
3.4. Snapshots for an example four-stages attack. .. 18
3.5. Effect of response and EPF in I-GRAPH inference ... 25
3.6. Bayesian Network based Attack Graph Model .. 28
4.1: Overview of the different phases of ADEPTS ... 32
4.2: Example of a static attack pattern and reference responses 38
4.3. Persistent attack example ... 42
5.1. Deficiency in ADEPTS I response location ... 47
5.2. ADEPTS I/II with respect to optimal response .. 48
5.3. Transformation to map set covering problem to ORD .. 49
5.4. Overall flow for the steps in SWIFT to respond to an attack 50
5.5. Relations between attack snapshot/domain graph/I-Graph .. 52
6.1. Abstraction on attack steps .. 59
6.2. Building Blocks and Operational Flow in ADEPTS III / ORIGIN 61
6.3. Example of Component Memberships ... 62
6.4. Component Inheritance Chart .. 64
6.5. Connection Inheritance Chart .. 64
6.6. Detector Inheritance Chart ... 65
6.7. Example of conceptualization .. 69
7.1. Layout of e-Commerce testbed .. 74
7.2. Example of a dynamic attack scenario (Attack Scenario 9) 78
8.1. Behavior of false and missed alarm computation algorithms 82

ix

Figure Page

8.2. Raw Patterns #1 and #2 after instance 1 and 2 of attack scenario 9 87
8.3. Static attack pattern with optimized responses for experiment 2 87
8.4. Effect of attack scenarios on survivability ... 90
8.5. Survivability vs. Attack Steps from Attack Scenario 0 ... 93
8.6. Survivability vs. Attack Steps from Attack Scenario 1 ... 93
8.7. Degree of parallelization in ADEPTS I .. 94
8.8. Speed up in ADEPTS I with increasing number of concurrent alerts 95
8.9. Improvement in lowering |Iv| with SWIFT for Micro-benchmark 96
8.10. # of edges in the domain graph generated out of the 3rd snapshot 98
8.11. Time used by SWIFT in response decision ... 99
8.12. |Iv| v.s Attack Instance ... 99
8.13. Attack scenarios 3 and 4 (AS3, AS4) .. 101
8.14. |Iv| for AS3 ... 101
8.15. | Iv | for AS4 ... 102
8.16. |Iv| with SWIFT leveraging history from an attack variant (AS3) 103
8.17. |Iv| with SWIFT leveraging history from an attack variant (AS4) 103
8.18. AS: MIT LLDoS .. 104
8.19. AS: MalExec .. 105
8.20. AS: ModSSL .. 105
8.21. w/o conceptualization. LLDoS w/ and w/o history from MalExec 107
8.22. w/o conceptualization. MalExec w/ and w/o history from LLDoS 108
8.23. Conceptualize(G,2,3). LLDoS w/ and w/o history from MalExec 108
8.24. Conceptualize(G,2,3). MalExec w/ and w/o history from LLDoS 109
8.25. Conceptualize(G,1,2). LLDoS w/ and w/o history from MalExec 109
8.26. Conceptualize(G,1,2). MalExec w/ and w/o history from LLDoS 110
8.27. Conceptualize(G,1,2). LLDoS w/ and w/o history from ModSSL 112
8.28. Conceptualize(G,1,2). MalExec w/ and w/o history from ModSSL...................... 112
8.29. Conceptualize(G,2,3). MalExec w/ and w/o history form ModSSL...................... 113

x

LIST OF TABLES

Table Page

1.1. BASELINE Model of Automated Response ... 6
1.2. Proposed Model of Automated Response .. 7
1.3. Desirable Properties of Automated Response .. 8
3.1. Proof for Thesis Claim C1 ... 19
3.2. Example E-Commerce Transaction Goals ... 20
3.3. Example E-Commerce Security Goals .. 20
4.1. Pseudo-code for attack sub-graph creation when new alert event arrives 33
4.2. Algorithm for calculating matching score ... 40
4.3. Notations for complexity analysis ... 44
5.1. GA based response mechanism ... 55
6.1. Capability of ORIGIN/ADEPTS III for different kinds of attacks 60
6.2. Component Definition ... 63
6.3. Updating Attack Graph .. 67
6.4. Generating Attack Graph ... 68
6.5. Update Node IDs.. 71
6.6. Conceptualization of Attack Graph ... 71
6.7. Conceptualization of Attack Graph Node .. 72
7.1. List of e-Commerce transactions ... 75
7.2. List of e-Commerce security goals .. 75
7.3. Attack Scenario 0 ... 77
7.4. Attack Scenario 1 ... 77
7.5. Attack Scenario 4 ... 77
7.6. Attack Scenario 8 ... 77
8.1. Placement of testbed services (symbolic addresses are used subsequently) 84
8.2. Explanation of the responses for attack scenario 9 .. 85

xi

Table Page

8.3. Response adaptation for attack scenario 9 ... 86
8.4. Responses associated with the static attack pattern in Figure 8.3. 87
8.5. Response selection with matching against static attack pattern 88
8.6. Cause of survivability drop with and without ADEPTS in scenario 1 92
8.7. Detailed attack snapshots from attack instance 24 .. 97
8.8. Overall |Iv| for each attack scenario injected to the testbed (IRS in absence) 106
8.9. Nodes (in component ID / detector ID pair) generated by ORIGIN 106
8.10. Conceptualized nodes (Conceptualize(G,2,3)) .. 106
8.11. Conceptualized nodes (Conceptualize(G,1,2)) .. 106

xii

ABSTRACT

Wu, Yu-Sung Ph.D., Purdue University, August 2009. Achieving High Survivability in
Distributed Systems through Automated Response. Major Professor: Saurabh Bagchi.

We propose a new model for automated response in distributed systems. We

formalize the process of providing automated responses and the criterion for asserting
global optimality of the selection of responses. We show that reaching the globally
optimal solution is an NP-hard problem. Therefore we design a genetic algorithm
framework for searching for good selections of responses in the runtime. Our system
constantly adapts itself to the changing environment based on short-term history and also
tracks the patterns of attacks in a long-term history.

Unknown security attacks, or zero-day attacks, exploit unknown or undisclosed
vulnerabilities and can cause devastating damage. The escalation pattern, commonly
represented as an attack graph, is not known a priori for a zero-day attack. Hence, a
typical response system provides ineffective or drastic responses. Our system
“conceptualizes” nodes in an attack graph, whereby they are generalized based on the
object-oriented hierarchy for components and alerts. This is done based on our insight
that high level manifestations of unknown attacks may bear similarity with those of
previously seen attacks. This allows the use of history such as effectiveness of each
response from past attacks to assist responses to the unknown attack.

This thesis lays down three distinct claims and validates them empirically. The
claims are: (i) For automated response, consider a baseline mechanism that has a static
mapping from the local detector symptom to a local response. This corresponds to the
state-of-the-art in deployed response systems. Now consider our proposed model which
takes into account global optimality from choosing a set of responses and also does a
dynamic computation of the response combination from the set of detectors and other
system parameters (inferences about the accuracy of the attack diagnosis, response

xiii

effectiveness, etc.). The survivability of the application system with our proposed model
is an upper bound of the survivability achievable through the baseline model. (ii) In some
practical situations, the proposed model gives higher survivability than the baseline
model. (iii) The survivability with our proposed model is improved when the system
takes into account history from prior similar attacks. This kind of history is particularly
important when the system deals with zero-day attacks.

1

Equation Chapter (Next) Section 1

1. INTRODUCTION

Distributed systems comprising multiple services interacting among themselves to

provide end-user functions are an increasingly important information infrastructure.
Examples abound in the commercial domain and in the critical infrastructure domain,
such as, e-Commerce systems and SCADA systems, respectively. A fundamental nature
of the distributed systems is that they are built of multiple services, such as web service
and authentication service, running on individual hosts communicating with each other
through standardized protocols, such as SOAP. The huge financial stakes involved or the
importance to homeland security make them prime candidates for malicious activities,
a.k.a. attacks1. In addition, as the complexity of these systems increases in exponential
order due to the burgeoning number of services and the increasing complexity of the
individual services, the occurrences of accidental failures are also on an upswing.
Henceforth in the paper, we will refer to cyber attacks1, while realizing that some of the
discussion carries over to natural or accidental failures as well2.

The motivations outlined above have led to substantial interest in securing
distributed systems through prevention of failures and successful attacks. Prevention is
achieved through careful design and development of the components to eliminate most
faults and vulnerabilities. However, it is widely believed that prevention cannot be the
ultimate solution because despite the heroic efforts of developers, testers, and deployment
specialists, few systems, if any, can claim to prevent all failures or attacks. This is
especially pertinent when the systems have interfaces to external users, as all e-
Commerce systems and many SCADA systems do.

1 Here we focus on cyber attacks, while attacks generally include physical attacks as well. We define
attacks as malicious attempts to violate the integrity of an information system and perform illegitimate
actions. An intrusion is a penetration into the system. Thus, a network based DoS is an attack, but not an
intrusion.
2 A failure implies any violation of the specification of the system, according to the current policy in force,
due to natural (or accidental) causes.

2

This reasoning has led to a focus on efforts to build survivable systems that can
provide sustained operation of mission critical functions in the face of anticipated and
unanticipated failures or attacks. This has spurred interest in the defense community as
evidenced by DARPA’s OASIS program [1] and the follow-on Self Regenerative
Systems (SRS) program[2]. Therefore, besides the use of the best possible prevention
techniques, a survivable system has to have the ability for incident3 response when
failures or attacks happen. Traditionally, incident response means the intervention of
system administrators in which the administrators have to identify the issues, contain the
effects from the incident, recover the system, understand the incident, and apply
measures which would prevent the reoccurrence of the same incident. However, as
distributed systems become ubiquitous and complex and they are often placed in
environments difficult to reach for human intervention, automated response tools gain
importance. We present the design and instantiation of a series of automated response
systems called ADEPTS, which provides a framework for achieving automated response in
a distributed system environment.

Providing automated response for a distributed system is very different from
providing one for a stand-alone system. One needs to consider the interaction effects
among the multiple services both to accurately identify patterns of the attacks relevant to
the response process and to identify the effectiveness of the deployed response
mechanism. The rudimentary response mechanism often bundled with Host-based
Intrusion Prevention System (HIPS) [3, 4] or Network-based Intrusion Prevention System
(NIPS) [5, 6] overwhelmingly consider only immediate local responses that are directly
suggested by the detected symptom. For example, a file being infected with a virus may
cause the HIPS or anti-virus product to quarantine the file and disable all access to the
file, or a suspect packet being flagged by a NIPS may cause the specific network
connection to be terminated. This is unsatisfactory since the response may be sub-optimal
at best – greater effect may be achieved by deploying it at a site different from the
detection, and inaccurate at worst – the response is ineffective since the intrusion goal has
already been achieved and the response system plays a fruitless game of catch-up.

In designing an automated response system for distributed systems, one has to
consider the constituent services in the system and the different levels of degradation of

3 An incident is defined as the event of an attack or a failure.

3

each individual service due to an incident, i.e., an intrusion. For easier understanding, one
may visualize a malicious adversary who is trying to impact the constituent services (the
sub-goals) with the overall goal of either degrading some system functionality (e.g., no
new orders may be placed to the e-store) or violating some system guarantee (e.g., credit
card records of the e-store customers will be made public). In ADEPTS, we use a
representation called an Incident Graph (I-GRAPH), where the nodes represent sub-goals
for the incident and the edges represent pre-conditions/post-conditions between the goals.
Thus, an edge may be OR/AND/Quorum indicating any, all, or a subset of the goals of
the nodes at the head of the edge need to be achieved before the goal at the tail can be
achieved. We will use the term “a node is achieved” to mean the goal corresponding to a
node in the I-GRAPH is achieved. The attack model considered in ADEPTS is multi-stage
network-based attacks. Some of the stages of the attack must be detectable by detectors
embedded in the distributed system. An attack which compromises the entire system in
one shot is not considered. Insider attacks may also be considered, though the
requirement is that the insider should be not be omnipotent and must not be able to
compromise multiple services instantaneously. Brute force DoS attacks which do not
penetrate the system are not considered, nor are passive attacks.

Now we outline the key design principles or design requirements that drive our
work. The response choice in an automated response system should be dynamically and
adaptively determined. The attacks may be unanticipated or the dynamic system
conditions, such as the frequency of interaction between the services or the load on a
service, may vary. In ADEPTS, the response choice is determined by a combination of
three factors – static information about the response, such as how disruptive the response
is to normal users; dynamic information, essentially history of how effective the response
has been for a specific class of attack; and out-of-band parameters of the response, such
as expert system knowledge of an effective response for a specific attack or policy
determined response when a specific manifestation occurs. The automated response
system should be capable of providing its service in the face of unanticipated attacks.
This is clearly motivated by the observation that the potential universe of attack or failure
sequences is infinite. Translating this to ADEPTS, it should not assume that the I-GRAPH is
complete nor that there is a detector to flag whenever an I-GRAPH node is achieved.
However, we do assume that the incident will ultimately have a manifested goal which is
detectable. Any automated response system needs to consider the imperfections of the
detection system that inputs alerts to it. The detectors would have both type I and type II
errors, i.e., false alarms and missed alarms. If false alarms are not handled, this can cause

4

the automated response system to take unnecessary responses, potentially degrading the
system functionality below that of an unsecured system. If missed alarms (or delayed
alarms) are not compensated for, the system functionality may be severely degraded
despite the automated response system. In ADEPTS, we take the approach of co-existing
with off-the-shelf detectors in the detection system and consider the problem of
improving the accuracy of the detectors as orthogonal and outside the scope. ADEPTS can
also make use of correlation based intrusion detection systems, such as CIDS previously
developed by us [7], that already improves the detection metrics. ADEPTS provides
algorithms to estimate the likelihood that an alarm from the detection system is false or
there is a missing alarm. The algorithm is based on following the pattern of nodes being
achieved in the I-GRAPH with the intuition that a lower level sub-goal is achieved with
the intention of achieving a higher level sub-goal.

An interesting question one might ask is the optimality of the chosen responses by
a response system. Specifically, given a set of detector alarms, indicating the current state
of an attack on the system, what would be the best response actions a response system
should take against the attack? Here one needs to factor in both the cost from deploying a
response and also the cost from potential further damage to the system as a result of not
deploying a response. We formally define the optimality criterion for responses and show
that the problem of optimal response determination (O.R.D.) is an NP-Hard problem.
Hence, we develop a genetic algorithm (GA) based framework to approximate the
optimal response for a given attack. Since GA has the nice property of passing good
chromosomes (solutions) from a parent generation to the child generation, the response
solution for an attack can actually be improved across instances of attacks. This means
that for an attack, which has been seen before or has been seen somewhere else, very
effective response actions can be taken promptly without needing to perform the lengthy
GA evolution process much.

Zero-day attacks are attacks which exploit unknown computer vulnerabilities.
They pose challenges to the design of a response system due to that the corresponding
attack graph for such an attack is not assumed a known priori. On the other hand, exact
history information of effective responses against such an attack is not known as well. To
address these challenges, we firstly come up with an online process to dynamically
populate the attack graph (I-GRAPH) based on detector alarms and knowledge of the
configuration of the protected system. Our work is based on existing works on alert
correlation [8, 9]. The generated attack graph, however, does not warrant better responses
for the zero-day attack due to the lack of information such as response effectiveness

5

against the attack. We come up with a technique called “conceptualization of attack
graph” to enable the use of inexact history information from a closely matched past attack.
This is based on our observation that though the detailed mechanism of a zero-day attack
is unknown, in most cases the high level manifestation behind such an attack is not
necessarily unknown.

Overall, the goal of the paper is to present a structured methodology for
automating response actions. Within this methodology, ADEPTS provides algorithms for
determining the appropriate locations and choices for the response, how to deploy the
response, and how to evaluate the effectiveness of a response. The metric used to
evaluate a survivable system has to be carefully chosen. Low-level metrics, such as the
latency of detection or false and missed alarm rates do not fully capture the effect of an
incident on the system’s functionality. We propose the use of the metric survivability [10]
to evaluate the effect of responses. We define it such that its value depends on the set of
high-level system transactions that can be achieved (e.g., allow web store browsing) and
the set of high-level security goals (e.g., keep users’ private information secure) that are
preserved in the event of an incident. A high level transaction depends on certain chains
of interactions between multiple functioning services and preserving a high level goal
implies thwarting certain goals from being reached.

The design of ADEPTS is realized in an implementation which provides automated
response service to a realistic distributed e-Commerce system. The e-Commerce system
mimics an online book store system and two auxiliary systems for the warehouse and the
bank. Real attack scenarios are injected into the system with each scenario being realized
through a sequence of steps. The sequence may be non-linear and have control flow, such
as trying out a different step if one fails. ADEPTS’ responses are deployed for different
runs of the attack scenarios with different speeds of propagation, which bring out the
latency of the response action and the adaptive nature of ADEPTS. The survivability of the
system is compared with that of a baseline system.

1.1. Thesis Statement

1.1.1 Survivability Metric for Automated Response System

The performance of a response system can be evaluated based on many different

metrics such as throughput, reliability, usability, security effectiveness [11], and

6

survivability [10]. Survivability is qualitatively defined as the capability of a system to
fulfill its mission, in a timely manner, in the presence of attacks. The term security
effectiveness has sometime been used synonymously with survivability. Our discussion
will be focused on survivability.

Survivability can be evaluated based on impact from an attack and from deployed
response actions [12] to the protected system. It considers the impact on confidentiality,
integrity, and availability of the protected system. Assume for an attack, a response
system chooses a set RC of response actions. We conceptually defines the expected
impact from deploying RC to the protected system as :

() | (expected impact from attack with being present) +

 (impact from response actions in) |
Iv RC RC

RC
=

 (1.1)

Assume the system's initial survivability is C, then the survivability post the

deployment of RC should be :

survivability() ()RC C Iv RC= − (1.2)

Note that we describe |Iv(RC)| as the "expected" impact from deploying RC. This

is because the impact from an attack can be non-deterministic because an adversary may
or may not take a certain attack step. In addition, a response action may or may not react
to the attack successfully. The complete definition of |Iv(RC)| is presented in Sec. 3.6.

1.1.2 BASELINE Model

Table 1.1. BASELINE Model of Automated Response

1. A collection of (detectors, response actions) pairs :
{(D

1
,R

1
), (D

2
,R

2
),…, (D

k
,R

k
), …, (D

N
,R

N
)}

2. For each pair, a mapping function f
k
 : D

k
→R

k
is

determined prior to the execution of the system
3. f

k
 is designed based on expert knowledge

7

Table 1.1 defines a BASELINE Model for Automated Response in Distributed
Systems. This corresponds to existing mainstream automated response systems, where
stand-alone IDS or IPS boxes are used. An instantiation of this model has each IDS or
IPS box trigger some local response(s). In this model, the mapping from detectors to
response actions is specific to each pair, and a local detection at one IDS or IPS box
cannot flag a response at a different IDS or IPS box. The corresponding mapping
function fk dictates how each IDS or IPS carries out the response actions based on the
alerts from the detectors.

1.1.3 Proposed Model

Table 1.2. Proposed Model of Automated Response

We propose a new model for automated response in distributed system (Table

1.2). The proposed model considers the whole set of detectors and the whole set of the
response actions. The mapping function allows the mapping of any detector into any
response action. The model also allows the use of history information from past attacks.

1.1.4 Claims

C1. For a given attack, the proposed model describes a set of response actions, from

which the survivability is the upper bound of the survivability from any set of
response actions generated from the BASELINE model.

C2. In a practical system, it is possible to identify cases when the proposed model
yields a higher survivability than the BASELINE model.

C3. It is possible that the use of history information in the proposed model can further
improve the survivability.

1. The set of all the detectors D and the set of all the response
actions R.

2. History of past attacks H
3. A mapping function f : (D,H) →R

8

Table 1.3. Desirable Properties of Automated Response

1. f is designed to maximize the survivability (Eq. (1.2)) based on
the information accumulated in H and detectors D

2. f is designed to tolerate new types of attacks

The proposed model generalizes the BASELINE model. To ensure an instantiation

of the proposed model can provide higher survivability beyond the BASELINE model, we
introduce two properties in Table 1.3 to guide the design of the mapping function f in the
proposed model. The properties are incorporated into the two instantiations we created:
the SWIFT system in Sec. 5 and the ORIGIN system in Sec. 6. Essentially, these two
properties will help identify cases to support claim C2 and claim C3, which will be
presented in Sec. 8.

9

Equation Chapter (Next) Section 1

2. RELATED RESEARCH

In order to guarantee the requirement for continuous availability of the services in

a distributed system, it is important to consider how the system reacts once the intrusion
is detected. The majority of current IDSs stops with flagging alarms and relies on manual
response by the security administrator or system administrator. This results in delays
between the detection of the intrusion and the response, which may range from minutes
to months. Cohen showed using simulated attack scenarios that given a ten hour delay
from detection, 80% of the attacks succeed and given thirty hours, almost all the attacks
succeed irrespective of the skill level of the defending system’s administrator[13]. This
insight has led to research in survivable systems engineering pioneered by CERT at CMU.
Survivability is loosely defined as the capability of a system to fulfill its mission, in a
timely manner, in the presence of attacks, failures, or accidents [14, 15]. The researchers
identify the four key properties of survivable systems, namely, resistance to attacks,
recognition of attacks and damage, recovery of essential and full services after attack, and
adaptation and evolution to reduce effectiveness of future attacks. ADEPTS is motivated
by the requirement to provide the second, third, and fourth properties.

A majority of the IRSs are static in nature in that they provide a set of
preprogrammed responses that the administrator can choose from in initiating a response.
This may reduce the time gap between detection and response, but still leaves a
potentially unbounded window of vulnerability. The holy grail is an IRS that can respond
to an attack automatically. A handful of systems provide adaptive responses. In [12], the
authors propose a network model that allows an IRS to evaluate the effect of a response
on the network services. The system chooses in a greedy manner the response that
minimizes the penalty. There are some studies which present taxonomy of offensive and
defensive responses to aid in selection of coherent responses in an automated response
system ([16],[17],[18]). Cooperating Security Managers (CSM) [19] is a distributed and
host-based intrusion detection and response system. CSM proactively detects intrusions
and reactively responds to them using the Fisch DC&A taxonomy [16]. It uses the
suspicion level of the user as the only determining factor in the choice of response. A

10

second system called EMERALD [20] uses two factors in determining the response – the
amount of evidence furnished to support the claim of intrusion and the severity of the
response. None of the systems uses record of the past performance of the intrusion
detection system as measured by the incidence of false positives and false negatives.
None keeps track of the success or failure of the deployed response nor provide a
framework for easily incorporating these factors in the automated response determination.
Another adaptive IRS is the Adaptive, Agent-based Intrusion Response System (AAIRS)
[21]. The work provides a good framework on which the IRS can be built. However, it
does not provide any of the system-level techniques and algorithms that will be required
for the AAIRS to work in practice. There is some previous work on protecting distributed
systems against flooding based distributed denial of service (DDoS) attacks in an
automated manner through rate limiting [22, 23].

A significant volume of work in this domain has focused on using diverse
redundant components in building intrusion tolerant systems ([24-27]). The basic
intuition is that the components have design diversity and are unlikely to share
vulnerabilities that are exploited by an attack. Using the Sitar system as a representative
example, the basic mechanism is reminiscent of active replication techniques. There are
proxy servers which interface with the external world mediating access to the actual
servers after passing the requests through some checks. The outputs from the servers are
passed through validity checks and then voted on. Disagreement during voting acts as a
trigger for the reconfiguration module to evaluate the intrusion threat and initiate
reconfiguration, such as bringing in a different server. While diverse components were
taken for granted in all of this work, more recent work performed under the DARPA SRS
program has explored introducing diversity through synthetic means, such as compiler
transformations. An attractive feature of this approach is it does not concern itself with
the way the attack is launched but only on the manifestation, namely divergence in the
outputs from the replicas. This philosophy resonates with our philosophy in ADEPTS.

Fault trees have been used extensively in root cause analysis in fault tolerant
systems. They have also been used to a limited extent in secure system design [28, 29].
We use an attack graph representation with nodes as intermediate goals since the same
intermediate goals show up in several attack paths. Graph theoretic approaches to
modeling the temporal nature of security attributes is found in [30, 31]. The notion of
privilege graphs introduced in [31] has some similarity to our I-GRAPH. However, they
represent only attacks launched by escalating the privilege level of the attacker and the
arcs are marked with weights representing the difficulty of the privilege escalation. The

11

weights are dependent on several factors, such as the expertise and resources of the
attacker, and therefore difficult to predict. The work lays down a framework to reason
about the optimality of the response choices made by these systems, which has not been
seen in previous works.

A topic relevant to our work here is multi-stage attack graph generation. Three
complementary methods are discernable among the existing work: (i) Using pre-
conditions and post-conditions of vulnerabilities and attacker actions to generate the
graphs, (ii) using the network topology, connectivity, and/or other physical network
attribute, and, (iii) using attack classification/taxonomy and expert knowledge to broadly
identify the possible links between attack stages or relations between alerts. Most past
research has mainly relied on (i) [32], though they have at times used (ii) as a
complement. Any approach that relies on (i) is unable to target zero-day attacks, therefore
our approach uses (ii), though additional information can be provided from (iii) to make
our approach more refined. A relevant work that also uses (ii) is [12], and the
mechanisms described are similar to the initial version of ADEPTS [33]. The significant
differences are that their system cannot handle unknown attacks and it is unknown
whether their system has been developed further to include more capabilities. The
distinguishing feature we call ‘conceptualization’ is novel and has additional benefits not
explicitly desired or considered by other researchers, namely the usefulness in responding
to zero-day attacks. For a review of past approaches, one can refer to the survey paper at
[34]. The approaches explored so far have not been targeted to unknown attacks, though
it is conceivable that one can build on them for this purpose. The use of a Bayesian
network as the basic framework for inference is not new [35], and we have applied it to
inferencing in the presence of deployed responses.

There have been some efforts at using genetic algorithms for intrusion detection
[36-38] and search for vulnerabilities [39]. The results have been promising, but only
after careful definition of the syntax of the chromosomes and tuning of the fitness
measure. We have not found prior application of GA to intrusion response.

12

Equation Chapter (Next) Section 1

3. MULTI-STAGE SECURITY ATTACKS AND RESPONSES

In a distributed system, an attack at a site (a specific service on a specific host)

can obviously cause impacts at that site. However, it can also potentially cause cascading
effects on the other services and the other hosts in the system due to the interconnected
nature of a distributed system. As a result, many attacks targeted at distributed systems
are the multi-stage attacks, in which an attack consists of multiple attack steps that can
span across different services and different hosts. In IDS research, there have been
systems which utilize the diverse detection alerts from these multiple attack stages for
increasing overall detection accuracy and better understanding of the whole behavior
from a multi-stage attack [7]. Also there is research on reconstructing the attack stages
for an attack from detector alerts [8]. In this section, we lay out the attack model for a
multi-stage attack. We then give the model on responses for multi-stage attacks. In the
end, we present a metric to evaluate the effect from using responses against an attack.

13

3.1. Adversary and Attack Model

A. Malware
downloaded to

secretary’s
computer

B. Password
keystroke
recorded

D. Change
grades
record

Detector
DA

r1
r2

E. Connect to a
workstation on

campus

F. Exploit NFS
rpc.mound and

install rootkit on
storage server

G. Erase backup
copy of grades

record file

I. Permanently
changed grades

record

C. Sniff packet
to get the grade

system
login/password

H. Manipulate
data file contents

Detector
DE

Detector
DD

Detector
DH

Detector
DG

r3

OR

AND

A. Malware
downloaded to

secretary’s
computer

B. Password
keystroke
recorded

D. Change
grades
record

Detector
DA

r1
r2

E. Connect to a
workstation on

campus

F. Exploit NFS
rpc.mound and

install rootkit on
storage server

G. Erase backup
copy of grades

record file

I. Permanently
changed grades

record

C. Sniff packet
to get the grade

system
login/password

H. Manipulate
data file contents

Detector
DE

Detector
DD

Detector
DH

Detector
DG

r3

OR

AND

A. Malware
downloaded to

secretary’s
computer

B. Password
keystroke
recorded

D. Change
grades
record

Detector
DA

r1r1
r2

E. Connect to a
workstation on

campus

E. Connect to a
workstation on

campus

F. Exploit NFS
rpc.mound and

install rootkit on
storage server

F. Exploit NFS
rpc.mound and

install rootkit on
storage server

G. Erase backup
copy of grades

record file

G. Erase backup
copy of grades

record file

I. Permanently
changed grades

record

I. Permanently
changed grades

record

C. Sniff packet
to get the grade

system
login/password

C. Sniff packet
to get the grade

system
login/password

H. Manipulate
data file contents

Detector
DE

Detector
DD

Detector
DH

Detector
DG

r3r3

OR

AND

Figure 3.1. An example I-GRAPH

Our model for the target attack is an external multi-stage attack which first

compromises the services that have external interfaces and subsequently compromises
internal services with the goal of disrupting some transactions supported in the system or
violating some of the security goals in the system. This is the model commonly used in
the literature for distributed intrusion response systems (IRSs) [12, 33]

A representation called Incident Graph (I-GRAPH) [33] is used for modeling the
spread of the attack, which is similar in concept to attack graphs [9, 32, 40]. The final
goal of the adversary may be disrupting some high level system functionality, such as
“Permanently change grades record” in Figure 3.1. This final goal is achieved through
multiple intermediate intrusion goals (attack steps) and each is represented as an I-GRAPH
node.

14

3.2. I-GRAPH

3.2.1 I-GRAPH Structure

The I-GRAPH is used as the underlying representation for knowledge about
intrusions, as they spread achieving progressively wider set of goals. In the I-GRAPH
representation, each intrusion goal is represented by one node in the graph. The final goal
of the intrusion may be disrupting some high level system functionality, such as “Denial
of service achieved against the online store”. This final step will be achieved through
multiple small to moderate sized steps. A successful execution of a step is looked upon as
achieving an intermediate intrusion goal and captured as an I-GRAPH node. The intrusion
goals have dependency relationships between one another. For example, in order to
corrupt the data in the backend database server, one may need to exploit a vulnerability in
the front-end web server. The edges are used to model this kind of dependency. The
parents of a node are the nodes reached by the outgoing edges of the node. They
correspond to higher goals relative to the goal of the node. The children of a node are the
nodes with outgoing edges to the node. They correspond to lower goals relative to the
goal of the node.

1. SSL module
buffer overflow in

Apache host 1

2.Execute
arbitrary code on

Apache host 1

4. Send malicious
chunk encoded

packet

3. Illegal access to
http document root

5. C library code
buffer overflowed

9. MySQL
buffer overflow

6. Chunk handling
buffer overflow

on Apache host 1

12. Execute
arbitrary code on

MySQL host 10. DoS of
MySQL

11. DoS webstore

8. DoS of Apache
host 2

7. DoS of Apache
host 1

13. MySQL
information leak

OR AND

QUORUM

2

n

1. SSL module
buffer overflow in

Apache host 1

2.Execute
arbitrary code on

Apache host 1

4. Send malicious
chunk encoded

packet

3. Illegal access to
http document root

5. C library code
buffer overflowed

9. MySQL
buffer overflow

6. Chunk handling
buffer overflow

on Apache host 1

12. Execute
arbitrary code on

MySQL host 10. DoS of
MySQL

11. DoS webstore

8. DoS of Apache
host 2

7. DoS of Apache
host 1

13. MySQL
information leak

OR AND

QUORUM

2

n

Figure 3.2. A section of the I-GRAPH from our deployed e-Commerce environment

15

In the I-GRAPH, edges are categorized into three types – OR, AND, and Quorum
edges. For a node with incoming OR edges to be achieved, at least one of its child nodes
needs to be achieved, while for AND edges, all the child nodes have to be achieved. For
Quorum edges, one can assign a Minimum Required Quorum (MRQ) on it, which
represents the minimum number of child nodes whose goals need to be achieved in order
for the node with incoming Quorum edges to be achieved. Conforming to the traditional
definition of quorums in fault tolerant systems, one may think MRQ as the minimum
number of service replicas whose loss will affect the functionality of the service. An
example fragment of the I-GRAPH used in our payload system, a distributed e-Commerce
system, is shown in Figure 2.

3.2.2 I-GRAPH Generation

A key issue in the usability of ADEPTS is the ease with which the I-GRAPH can be
generated and updated as system configuration changes or new vulnerabilities are
brought to light. We employ a semi-automated method called Portable I-GRAPH
Generation (PIG) for this. PIG requires two inputs − vulnerability descriptions and
system services description (SNet). Of the two inputs, the SNet is target system
dependent. This is a directed graph, in which each node represents an individual service
in the target system and an edge from node A to node B represents an intrusion-centric
channel. An intrusion-centric channel means if A is compromised, then the intrusion can
spread to B through the channel. An intrusion-centric channel may be of five kinds – (i)
DoS channel: if the source service is subjected to a successful DoS attack, then the
destination service can also be subjected to DoS; (ii) Network channel: there is a network
data connection between A and B; (iii) Shared file channel; (iv) Shared memory channel;
(v) Super channel: which combines the functionality of all of the above. The SNet is
currently manually created for the target system, though in the future, some tool which
can perform service discovery and interaction discovery can perform this task
automatically. This is an active area of research especially in the industry, such as for
IrDA and Bluetooth Service Discovery Protocol (SDP), Sun’s Jini, and Microsoft’s
Universal Plug and Play (UPnP).

The second input to PIG is the target independent vulnerability descriptions.
Information on the vulnerabilities can be created based on installed detectors in the
system. For example, a stack overflow detector can correspond to a stack overflow
vulnerability. This kind of vulnerability can be generic in nature as the associated

16

detector can be designed to pick up generic manifestation such as a buffer overflow,
regardless of the specific signature used to trigger the manifestation. On the other hand,
vulnerabilities can also be obtained by querying the common vulnerability databases,
such as CERT, Bugtraq, and CERIAS-VDB.

For use in PIG, the vulnerability is specified through four fields – (i) Name: which
is primarily useful for human reference. (ii) Affected service: which gives the service(s) in
the SNet affected by the vulnerability; (iii) Manifestation: this is a Boolean expression in
disjunctive normal form composed of five elementary manifestations, namely, leaking of
information, execution of arbitrary code, incorrect behavior of service, DoS, and service
termination. (iv) Dependent vulnerability and services: which denotes the dependence on
other vulnerabilities and services that have to be compromised to exploit this
vulnerability. The vulnerability definitions are analogous to the virus definitions used in
anti-virus products. They can be developed either by the ADEPTS developer or by a third
party. The basic idea behind the I-GRAPH generation algorithm is that when a
vulnerability description is read in, a corresponding node in the I-GRAPH is created, thus
creating a one-to-one map. In the next step, the algorithm checks for nodes in the I-
GRAPH that this newly created node can get connected to. For this step, it relies on
information from both the SNet and the vulnerability descriptions to decide whether
spread of the intrusion is possible from the newly created node to the other nodes and
vice-versa. In the following, we give the formal definition on the structure of our I-
GRAPH.

3.2.3 Definition of I-GRAPH G(N,E):

N := {nodes in G} := {{NA: specific attack manifestation} ∪ {NB: generic attack
manifestation} ∪ {NC: high level parameterized manifestation} ∪ {ND: logical inference
pseudonodes }}

E := {edges in G} := {(n1,n2) | if n2 is casually dependent on n1 for n1,n2∈N}
NA : These nodes are constructed directly out of the detector alerts for specific

attack manifestations. These manifestations carry specific detector signatures. For
example, the Snort rule for detecting Apache chunked encoding memory corruption
exploits or some AntiVirus software detecting the binary code of some virus in an
infected file.

NB : These nodes are constructed out of the detector alerts that correspond to
attack manifestations which are generic in nature. These manifestations usually span

17

across multiple different attacks, some of which can be potentially of unknown attack
types. For example, stack buffer overflow detectors such as LIBSAFE should generate
alerts out of any attack attempts which result in stack buffer overflow, irrespective of the
specific attack signature used to achieve the overflow.

NC : These node corresponds to high level manifestation which usually do not
have a corresponding detector alert. However, the manifestation is hypothesized since it
directly impacts a system functionality or violates a system goal. For example, “losing
customer credit card numbers” could form a node of type NC.

ND : These are intermediate nodes used for providing OR/AND/Quorum logics in
the I-GRAPH.

In many deployments, the systems may have unknown vulnerabilities and
therefore the I-GRAPH is mainly composed of NB nodes, which can be automatically
created based on the available detectors and the knowledge of the interactions among the
servers in the target system [32],[40]. It is not necessarily dependent on knowledge about
specific attacks or vulnerabilities. For example, if we have an I-GRAPH node
corresponding to “Root password on machine M is changed”, this does not mean we
know a priori that the operating system on machine M has the vulnerability which can be
used to change the root password. However, it is actually one of ADEPTS’ key roles to
deal with the uncertainty by constantly adapting to the actual situation, to provide
continuous protection to the system.

3.3. Response Model for Multi-Stage Attack

Figure 3.3. Three different snapshots for a given attack. Response combinations RCX,

RCY, RCZ are deployed between snapshots

18

Figure 3.4. Snapshots for an example four-stages attack.

In general, a multi-stage attack consists of multiple attack snapshots. Each

snapshot contains the detector alerts which have been generated thus far, and the
fragment of the I-GRAPH with nodes for which alerts have been received. Figure 3.3
shows a general case, where three snapshots X, Y, and Z are created from an attack. In
practice, we find that there are groups of alerts that arrive in a batch, corresponding to
several closely spaced attack steps of a fast-moving attack and an IRS cannot deploy a
response within a batch of alerts. This batch creates a snapshot. Figure 3.4 shows an
example of four attack snapshots created from a real-world attack consisting of four
attack stages. The attack begins with a company chief financial officer (CFO)
downloaded a malware as a e-mail attachment to his office computer followed by the
malware sniffing the keystrokes on the CFO’s computer and the adversary eventually
getting the corporate bank account number and password. The adversary eventually uses
the account number and password to deplete the company’s bank account. Potentially,
responses can be used right after each attack snapshot such as “R1:Remove the
malware…”. The goal is to deter the attack from inflicting further damages on the system
and as a result prevent the next attack snapshot from being created.

Corresponding to the proposed model in Sec. 1.1, for a multi-stage attack
consisting of k snapshots {s1,s2,..sk}, the response mechanism is formally described by
RCi = Respond(si, Hi), where si is the ith snapshot, Hi is the history information and RCi is

1. Malware
downloaded
as an e-mail
attachment
to CFO’s
office PC.

1. Malware
downloaded as
an e-mail
attachement.

2. CFO opens the
e-mail, and the
malware gets
the CFO’s
security
password
through
keystroke
recording.

1. Malware
downloaded as an
e-mail attachement.

2. CFO opens the e-
mail and the
malware gets the
CFO’s security
password through
keystroke recording.

3. The hacker uses the
CFO’s password to
transfer money from
the corporate bank
account into his
bank account.

R1
R2

R3

R1: Remove the malware with anti-malware tools.

R2: Change the CFO’s security password.

R3: Freeze the corporate account.

1. …

2. …

3. …

4. Corporate
account is
emptied.

1. Malware
downloaded
as an e-mail
attachment
to CFO’s
office PC.

1. Malware
downloaded as
an e-mail
attachement.

2. CFO opens the
e-mail, and the
malware gets
the CFO’s
security
password
through
keystroke
recording.

1. Malware
downloaded as an
e-mail attachement.

2. CFO opens the e-
mail and the
malware gets the
CFO’s security
password through
keystroke recording.

3. The hacker uses the
CFO’s password to
transfer money from
the corporate bank
account into his
bank account.

R1
R2

R3

R1: Remove the malware with anti-malware tools.

R2: Change the CFO’s security password.

R3: Freeze the corporate account.

1. …

2. …

3. …

4. Corporate
account is
emptied.

19

the response combination decided by an IRS. Therefore, in Figure 3.3, we have
RCX=Respond(sX,HX), RCY=Respond(sY,HY), and RCZ=Respond(sZ,HZ).

3.4. Survivability Guarantee by Proposed Model

Table 3.1. Proof for Thesis Claim C1

Thesis Claim C1 in Sec. 1.1 states that the proposed response model guarantees

system survivability higher than or equal to the system survivability attainable by the
BASELINE model. The proof is intuitive and is presented in Table 3.1.

Proof:

1. Assume an attack indicated as detector alerts { }N1 2D ,D ,..,D .

2. In the BASELINE model, assume mapping functions { }N1 2f ,f ,..,f generate

sets of response actions { }N1 2RC ,RC ,..,RC with the highest survivability,
where : D Rk k kf →

3. In the proposed model, we can have a mapping function f constructed as
follow

() { }1 2 ND D D N1 2{ , ,..., }, RC ,RC ,...,RC contains the mapping f ∅ →
4. We now have a mapping function f in the proposed model which

describes the set of response actions, which yields the same survivability
as from { }N1 2f ,f ,..,f in the BASELINE model. This suffices an upper bound

on the survivability attainable by any set of response actions from the
BASELINE model.

20

3.5. Impact Vector Metric

Table 3.2. Example E-Commerce Transaction Goals

Name Weight

Browse webstore 10

Add merchandise to shopping cart 10

Place order 10

Charge credit card 5

Admin work 10

Table 3.3. Example E-Commerce Security Goals

Name Weight

Illegal read of file 20

Illegal write to file 30

Illegal process being run 50

Corruption of MySQL database 70

Confidentiality leak of customer information stored in
MySQL database 100

Unauthorized orders created or shipped 80

Unauthorized credit card charges 80

Cracked administrator password 90

Conceptually, an attack can impact the normal operation of a system. On the other

hand, a response action can also affect the normal operation of system. For example, a
firewall rule may accidentally block legitimate traffic as well. To quantify the impact on
a system from an attack and from a response action, we define a metric called Impact
Vector. We assume that the protected target system has a set of transactions (e.g. Table
3.2) that should be supported during system operation and security goals (e.g. Table 3.3)
that should be satisfied during its operation. The impact vector Iv used in a system of n

21

transactions and m security goals is an (n+m) element vector, with each element
representing the impact value on the corresponding transaction or security goal. The
higher the value is, the more severe the impact is. The range for the value is [0, ∞].

The dimensions may not all be independent, in which case assigning the Iv values
has to be done carefully taking the dependence into account. The notion of impact vectors
is found in the security domain in several different forms, e.g., as the result of risk
analysis[41].

For each response r, there is an associated impact vector Iv(r) which indicates the
impact on the system as a result of deploying the response. This may be specified by the
system administrator or determined automatically by calculating the services affected by
the response and computing which transactions and security goals are violated as a result
as in [12]. For each I-GRAPH node n, there is an associated impact vector Iv(n) which
gives the impact as a result of this node being achieved by an adversary.

The absolute value of Iv is defined as

|Iv| = |[a1 a2 … an]| = ∑i=1,n ai, ai ∈ (0, ∞).

The summation of two impact vectors is also an impact vector and is defined as follows:

Iv = Iv1+Iv2 = [max(Iv1,1,Iv2,1), ..., max(Iv1,n,Iv2,n)]

3.6. Impact Vector Metric for Response Combination

Let us assume an attack has resulted in i snapshots s1,s2,..,si. Also assume the I-
GRAPH has m nodes n1,n2,..nm. We want to evaluate the cost of the response combination
RCi = f(si,H), which consists of n response actions {r1,r2,..,rn}. Assume the probability of
each node being achieved in the attack considering the responses in RCi is P(n1), P(n2),…,
P(nm). Then the cost of RCi is defined by Eq. (3.1). Under this metric, the optimal
response combination to a given attack at a specific snapshot (corresponding to a specific
point in time) is the one which yields the minimum value of cost as shown in Eq. (3.2).

22

1 1

() | () | () P() ()
m n

i i k k k
k k

Cost RC Iv RC Iv n n Iv r
= =

= = +∑ ∑ (3.1)

, arg min ()
i

i opt i
RC

RC Cost RC= (3.2)

The summation across the m I-GRAPH nodes in Eq. (3.1) corresponds to the

expected impact from attack as shown in Eq. (1.1) in Sec. 1.1. The remaining part
correspond to the impact from response actions.

3.6.1 Survivability Metric

The survivability metric after deploying response combination RCi is calculated

by subtracting Cost(RCi) from the initial system survivability and is defined as follow:

survivability after deploying = initial survivability - ()
 = initial survivability - ()

i i

i

RC Cost RC
Iv RC

 (3.3)

 Thus, a lower impact vector value corresponds to a higher survivability. The
optimal response combination RCi,opt maximizes the survivability in Eq. (3.3).

3.7. Inference on I-GRAPH : CCI Computation Algorithm.

The goal of the algorithm is to determine, based on the received alerts from the
detectors, which of the I-GRAPH goal nodes are likely to have been achieved. Each
detector provides confidence values for its alerts, termed alert confidence. If the detector
does not provide an inbuilt confidence value with the alert, then the alert confidence
value is set to one. The alert confidence provided by a detector is then moderated based
on the likelihood it is a false alarm. ADEPTS has a mechanism to determine this on a per-
alert basis and will adjust the alert confidence as described in detail in the next section.

The Compromised Confidence Index (CCI) of a node is a measure of the
likelihood that the node has been achieved. It is computed based on the alert confidence

23

corresponding to the alert that is mapped to the node and the CCI of its immediate
children nodes. Mathematically, the CCI of a node is given by

()

max() ,OR edge
,no child

min() ,ANDedge
() ,no detector

(|) ,Quorum edge and quorum met
,otherwise(, .)

0 , Quorum edge and quorum not met

CCIialert confidence
CCIiCCI f CCI fi mean CCI CCIi if f CCI alert confi

τ

⎧
⎧ ⎪
⎪ ′ ′= =⎨ ⎨ >⎪ ′⎩

⎪

⎪
⎪⎩

where CCIi corresponds to the CCI of the ith child and τ is a per node threshold.

The intuition behind our implementation is that for an OR edge, the node can be
achieved if any of its children nodes is achieved and therefore the likelihood (due to its
children) is the maximum of all of its children. For an AND edge, all the children nodes
have to be achieved and therefore the likelihood is as much as the least likely child node.
For Quorum edges, if the quorum is not met, then the higher goal is not achieved, but if
met, the likelihood of it being achieved only depends on the children nodes that have
achieved the quorum. The function ƒ allows various weights to be assigned to determine
the relative effect of the alert confidence and the children’s CCI. The function for the
current design is the statistical mean. Though our specific implementation is defined
above, the framework can accommodate formal models as well. For example, the I-
GRAPH can be considered to be a Bayesian network, and the conditional probability
distributions derived from the edge relations (i.e. OR, AND, Quorum).

In CCI calculation, the I-GRAPH is traversed in breadth-first-search (BFS) order
starting from the nodes with the earliest alerts, and the CCIs of the nodes are computed
until each reachable node has been traversed at most once. This prevents infinite cycling
to occur even though there may be cycles in the I-GRAPH. The disadvantage of such a
traversal (or even a DFS traversal) is that the traversal may lead to a node being
processed before all its predecessor nodes are processed and therefore the CCI computed
will be a lower bound. Thus, some causal relations between nodes may be lost. However,
the alerts are usually temporally ordered according to the order in which the events
occurred, thus the causal order is more likely to be obeyed in the CCI computation. Since
the CCI of a parent node is dependent on that of its child nodes, a BFS traversal starting
from the earliest node with an alert, rather than DFS, is more justified. A performance
optimization is terminating the CCI computation when the CCI value goes below a

24

threshold since this gives confidence that a response at nodes beyond this point is
unnecessary.

As each node can potentially contain multiple alert events, which has an
individual alert confidence, the alert confidence used to update the CCI is chosen based
on policy. For an aggressive policy, the maximum alert confidence in the alert queue is
used; for a moderate policy, the maximum of a subset of alert confidences based on the
most recent alerts is chosen; for a conservative policy, the alert confidence corresponding
to the most recent alert is chosen. No matter which case, we call the chosen alert event as
the active alert event. Before a child node is used for CCI computation, ADEPTS will
check whether the active alert events on the child and the parent obey a causal relation.
Causal relation is defined as causality in the information such as packet source IP,
destination IP, and process ID that is included in the alerts. By comparing the information,
the causal relation between two alerts can be validated. For example, knowing that the
SSH server listens on port 22, the CCI calculation for the event ‘buffer overflow at SSH
server’ can depend on the CCI value from the child node ‘detecting malicious packet
bound for port 22’. On the other hand, the buffer overflow event can’t depend on the CCI
value from the child node ‘detecting malicious packet bound for port 80’, since there’s no
causal relation between port 80 and the SSH server. Since a parent node can potentially
have more than one child node, alternative child nodes will be used in case the causal
relation is found not to match. If no child node can pass the causality validation, the
parent node will be regarded as a leaf node in the CCI update path, and its CCI value will
only depend on its own alert confidence. Impreciseness in the causality validation can be
treated as missed/false alarms and can be inherently tolerated by the CCI update
algorithm.

25

3.7.1 Effect of Response and Edge Propagation Factor

yx
e

r

Dx Dy

yx
e

r

Dx Dy

()()

. : detector alert confidence value from Dx

. : detector alert confidence value from Dy
P() . .

. . . 1 . , .

P() .

x AV
y AV

x x cci x AV

y cci f x cci e EPF r EI y AV

y y cci

← ←

← × × −

←

Figure 3.5. Effect of response and EPF in I-GRAPH inference

In reality, attack may not always propagate across an I-GRAPH edge. This can be

due to a less skilled adversary or a more secure system design. We introduce the edge
propagation factor (EPF) to model the likelihood of an attack propagating on an edge.
EPF is a value between 0 and 1. It is used to attenuate the CCI value from a child node in
the CCI calculation. In Figure 3.5, we show an example where the CCI from node x is
attenuated by the EPF value e.EPF on edge e.

The Effectiveness Index (EI) of a response indicates the likelihood of success of
the response, For better understanding, Figure 3.5 shows a simple example on how
response r on an edge e affects the CCI values on the parent and the child node on the
edge. The CCI values are then used as the estimates of the probabilities of nodes being
achieved P(x) and P(y).

EI and EPF values are estimated by ADEPTS through observation of alerts.
Conceptually for a response deployed on an edge, if attack propagation (based on
incoming detector alerts) is observed, the EI value of the response will be decreased.
Otherwise it will be increased. When the response is not deployed, if attack propagation
is observed, then the EPF value will be increased. Otherwise, it will be decreased.

3.7.2 False Alarm Estimation

It is important that the response system not use the alarms from imperfect
detectors as the only triggers. The detectors may have both false alarms and missed
alarms. ADEPTS attempts to estimate when either of the two events has happened and
either suppress its operation (false alarm) or trigger its operation (missed alarm). The

26

false alarm detection algorithm attempts to detect false alarms for a given detector and a
given node in the attack sub-graph by considering both present and past evidence. Our
objective for detecting false alarms is to prevent needless invocation of ADEPTS and
prevent useless responses from being deployed. As a result, it will mitigate DoS attacks
targeting ADEPTS by injecting spurious alarms. To achieve this goal, based on the
probability of an alert being a false alarm, the confidence of the alert is modified. Alerts
with extremely low confidence are discarded, which allows obvious false alarms to be
conveniently ignored. The algorithm is designed to be conservative in nature, that is, a lot
of evidence is required to conclude that an alert is false, but not as much evidence is
required to conclude that a false alert is actually true. This bias is easily controlled using
two parameters (α , β). Also, the rate of increase (decrease) of the false alarm probability

increases with successive false (true) alarms giving a convex (concave) curve. The shapes
of the curves are also controlled by the parameters (α , β).

When alerts are passed to ADEPTS from the detectors, a false alarm probability
(calculated a priori and initially set to 0) is recalculated for each alert. Based on this
probability, the alert confidence is modified using the following equation

 _ _ (1 _ _)alert confidence alert confidence false alarm probability= × −

The recalculation of the false alarm probabilities is as follows. For each alert, the

false alarm probability is

 _ _ _ (1) _false alarm probability links probability history probabilityα α= × + − ×

The links probability represents the lack of evidence linking the alert to other

alerts. It is defined as

 1 - max(probability that a link exists) = 1 - max(probability of temporal linkage,

probability of spatial linkage)

The probability of spatial linkage is)1(1 qq ×+ γ , where qγ is a scaling

parameter and q is the minimum spatial distance between alerts in the same attack sub-
graph. The probability of temporal linkage is similarly given by)1(1 pp ×+ γ , where pγ

is a scaling parameter and p is the minimum temporal distance between the alert and

27

other alerts in previous iterations that occurred spatially close to the alert. The temporal
distance is in terms of the number of invocations of ADEPTS that separates the two alerts.
The history probability is a combination of past link probabilities, and it is recalculated
given the present links probability using the following equation.

 _ * _ (1)* _history probability links probability history probabilityβ β= + −

3.7.3 Missed Alarm Estimation

The missed alarm detection algorithm first attempts to determine the possible
locations of missed alarms. Then it uses the methods described in the false alarm
detection algorithm to recalculate the missed alarm probability using other link evidence.
This means that all the formulas used are the same as described in the previous section,
except that the links probability is defined to be 1 – max(ratio of alert confidence to
combined confidence of successors, ratio of alert confidence to combined confidence of
predecessors). ADEPTS introduces alerts corresponding to the missed alarms into the
system in the next iteration. This is more efficient than re-computing the CCI in the
present iteration, as this may lead to multiple re-computations and can be exploited by an
attacker. The alerts introduced will have their alert confidences inversely proportional to
their missed alarm probability.

The algorithm is run asynchronously with respect to the other algorithms, with the
exception that it must run after the CCI computation algorithm because it uses the
updated CCI values to determine the possible locations of missed alarms. In a nutshell,
the algorithm determines the locations by doing a reversed CCI computation by
traversing a sub-graph in reverse order, where for each incoming edge of a node,

((max(rCCI),)) , node has and

(max(rCCI)) , node has no
rCCI

() , node has no
0 , otherwise

g g ac d oei
g di
g ac oe

′⎧ ⎫
⎪ ⎪
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

where rCCIi corresponds to rCCI of the ith
outgoing edge, “ac” is alert confidence,
“d” is detector, “oe” is outgoing edge.

,AND edges
CCI ,OR edges
CCI()

,Quorum & CCI
0 ,Quorum & CCI

N

N

child

child

child

children

y

y
g y

y

⎧
⎪
⎪ ×
⎪

= ⎨
⎪
⎪ > τ
⎪ ≤ τ⎩

∑

28

The function g′ is the statistical mean of the two inputs, where the return value of
the function g′ represents the likelihood a node has been achieved based on evidence

from its detectors and its parents. After the computations are completed, the locations of
the missing alarms are those nodes for which all the following conditions are satisfied. (i)

(CCI) alert confidenceif k′ > × ; (ii) (CCI)i Mf ′ > τ ; (iii) max(rCCI) alert confidencei k> × ; (iv)
max(rCCI)i M> τ , where k and Mτ are constants. A possible missed alarm location is

determined based on whether the ratio of evidence of children being achieved to the
direct evidence that the node has been achieved and the ratio of evidence of parents being
achieved to the direct evidence that the node has been achieved is high (conditions (i) and
(iii)). Conditions (ii) and (iv) are required to ensure that there is enough evidence to
suggest a missed alarm occurred there.

3.8. Inference on I-GRAPH: Bayesian Network

Figure 3.6. Bayesian Network based Attack Graph Model

Bayesian network [42] can also be used to perform inference in the I-GRAPH. A

Bayesian Network based I-GRAPH includes nodes that represent attack steps (v0, v1, and
v2 in Figure 3.6) and nodes for responses (r0 and r1). For each node, a conditional
probability table (CPT) is used to model the probability on the states of a node given the
states of its parents. For root nodes, the CPT is used to represent the prior probabilities.
For an attack step node, the possible states are true, i.e., the step is achieved or false, i.e.,
the step is not achieved. For a response node, the states are again true, i.e., the response is
deployed and false, i.e., the response is not deployed. Also, for both types of nodes, the

29

state can be set to NA (not available), which means ADEPTS is not sure about the state of
the node.

3.9. Limitations

The concept of attack graph has been widely used in modeling multi-stage attacks.
The creation of attack snapshots for an attack from detector alerts is not the focus of this
work, and one can rely on techniques from [8, 9, 40] for the construction of attack graph.
We thus assume an attack snapshot is provided by the detection framework and is
accurate in the sense the detection framework should address excessive false/missed
alarms. We present a basic technique to address false/missed alarms in Sec. 3.7. This,
however, is not the focus of this work. One should refer to a more comprehensive
approach such as [43] on improving detection accuracy of multi-stage attacks.

Many different metrics can be used to evaluate an automated response system
[11]. Some examples include throughput of the transactions the system can sustain,
reliability of the system, usability, survivability, etc. Our discussion is centered on
survivability only. We formally define the impact vector metric to measure the change in
survivability. We assume the impact vectors for each response action and each I-GRAPH
node are given.

The impact vector metric only looks at the expected value of the resulting costs
(impact) from using a response combination for an attack in a system. The individual
impact vectors from response actions and achieved I-GRAPH nodes are assumed constants.
The proposed response model (Sec. 1.1 and Sec. 3.3) is set to optimize responses based
on the expected impact. There can be alternative ways to define the metric for evaluating
the survivability. For instance, the impact vector from achieving an I-GRAPH node can be
a function of time (e.g. a DDoS attack at midnight is probably less damaging than a
DDoS attack during business hours) instead of being a constant. As a result, the
corresponding metric requires integration across time of the costs over the I-GRAPH nodes
/ response actions. This is a more involved calculation requiring many more parameters.

30

Equation Chapter (Next) Section 1

4. AUTOMATED RESPONSES

For distributed systems with nearly exponentially large number of interaction

effects among multiple components, pre-configuring static pairs of detector alarm and the
corresponding response when the alarm is flagged is laborious. We show (in Sec. 8.3)
that this design has inferior runtime performance due to the dynamic workload on the
system and due to the changing nature of attacks.

In the following, we present a system called ADEPTS I as a first step in
instantiating the proposed model for automated response, which was introduced in Sec.
1.1. In choosing responses, ADEPTS considers both the severity of the current situation
(what damage to the system the attack will cause or has already caused) and the
effectiveness of the responses. The mapping between responses and detectors is therefore
dynamic. In the end, when the attack ceases, ADEPTS will evaluate the actual
effectiveness of the deployed responses. Ineffective responses will be ignored by ADEPTS
in dealing with future attacks. This corresponds to the use of history information in the
proposed model.

It is often a challenge for an automated response system to handle multiple
concurrent attacks on a system. The response mechanisms due to the different
manifestations of the distinct incidents may interact in arbitrary ways. For example, the
response taken due to one incident may make that due to a second incident redundant, or
make it easier to proceed. It also becomes difficult to identify the effectiveness of a
response when the different incidents are not identified and handled separately. ADEPTS I
provides an algorithm to use the factors of locality (spatial in the I-GRAPH or temporal)
and causality (parameters of the packet, such as originating IP) to identify incident
instances that need to be handled separately. It is tricky to define what constitutes two
separate concurrent attacks, since they may originate from the same source by the same
adversary. We bypass this argument by considering instances whose responses would not

31

interfere as distinct and separate instances. An attack sub-graph4 is created from the I-
GRAPH for every incident instance. The attack sub-graph is grown in a Petri dish as alerts
come in and in parallel, it is matched against an attack template library5 of graphs to
determine appropriate reference responses.

ADEPTS I is the first step in designing an automated response system beyond the
BASELINE model (Sec. 1.1). This will be evidenced by the response location
determination in Sec. 4.3. The mapping between response actions and detectors is not
restricted within a pair of response actions and detectors. Also the estimation of response
effectiveness (Sec. 4.8) involves the use of history and is beyond the BASELINE model. In
determining responses, ADEPTS I employs a simple heuristic to pick responses, which are
effective and time-efficient (Sec. 4.4). The heuristic does not guarantee the maximal
survivability property mentioned in Sec. 1.1. However, empirical results (Sec. 8.4)
indicate cases where even such a sub-optimal design is more than enough to out-perform
the BASELINE Model.

4 In ADEPTS, we focus more on dealing with attacks, which is the reason why we use the term “attack sub-
graph” rather than “incident sub-graph” here. However, the techniques used in ADEPTS can be extended to
handle an incident which could be due to attacks or failures.
5 Similarly, we use the term “attack template library” rather than the term “incident template library” as in
ADEPTS, we focus more on dealing with attacks.

32

4.1. Design Overview

First, we give an overview figure (Figure 4.1) that shows the different phases in
the operation of ADEPTS I. In the following sections, we will explain each of the phases
and refer back to this figure.

Detector
alerts

Locality
segmentation

……

……

C
ausality-driven C

C
I

U
pdate/C

andidate Labeling
A

lgorithm
s

I-GRAPH
Petri dish

Attack Template
Library

Response
Control Center

Immunizer

Deployment/
Revocation

Distiller
Evaluation of

deployed
responses

Protected
Payload

……

Detector
alerts

Locality
segmentation

…………

…………

C
ausality-driven C

C
I

U
pdate/C

andidate Labeling
A

lgorithm
s

I-GRAPH
Petri dish

Attack Template
Library

Response
Control Center

Immunizer

Deployment/
Revocation

Distiller
Evaluation of

deployed
responses

Protected
Payload

…………

Figure 4.1: Overview of the different phases of ADEPTS

Throughout ADEPTS I, three policy levels are used to control the behavior of the
relevant algorithms − aggressive, moderate, and conservative. The three policies can be
abstracted to represent a ratio of missed responses to false responses deployed, with the
aggressive policy having the lowest ratio and the conservative policy having the highest
ratio.

33

Table 4.1. Pseudo-code for attack sub-graph creation when new alert event arrives

A Petri-dish P is used to house sub-graphs. When a new

alert event E comes in, the following algorithm will be

initiated to either push E into some existing sub-graph(s) or

create a new sub-graph NS with E in it.

EnterDEvent(P, E) {

1. bNeedNewSub-graph := true

2. for each existing sub-graph S do {

if LocalityTest(S,E) is true then do {

3. bNeedNewSub-graph := false

4. Add the nodes and edges induced by E

into S

5. CCIUpdate(S,E)

6. }

7. }

8. if bNeedNewSub-graph is true then do {

9. Create new sub-graph NS

10. Add node corresponding to E into NS

11. Add NS into P

12. CCIUpdate(NS,E)

13. }

 }

Check whether alert event E is local to sub-graph S.

Assuming I-GRAPH I and a user-defined threshold T.

LocalityTest(S,E) {

1. D: = the node in the I-GRAPH which

corresponds to event E.

2. if D is NULL then return False

3. for each node X in S {

4. H: = the node in the I-GRAPH which

corresponds to X

5. Dist := shortest distance between D and H

6. If Dist < T then return (true, S)

7. }

8. return false

}

4.2. Attack Sub-Graphs

In ADEPTS I, the I-GRAPH is made a read-only data structure and is used to create
attack sub-graphs corresponding to each attack instance. Attack sub-graph instances are
created and modified during runtime to separately model concurrent and overlapping
attacks. Concurrent attacks are defined to be attacks that occur around the same time and
overlapping attacks are those for which the intersection of their affected I-GRAPH nodes
is not null. By using attack sub-graphs, ADEPTS is able to handle such attacks in parallel
and optimize its response to each attack. Each attack sub-graph is grown in a Petri dish as
alert events are received. The use of attack sub-graphs is a departure from the design in
the precursor system of ADEPTS [33], where all alerts were made to operate on the I-

34

GRAPH structure itself. We will refer to the earlier version as version 0. There are several
motivations for the current design. In version 0, multiple attack instances will incorrectly
affect each other’s response determination though the response at a given node may have
different effects depending on which attack it is targeted at. For example, a response at a
“Libsafe buffer overflow on Apache” node may be to kill the Apache process. This may
be useful for an attack which tries to inject malicious code through the buffer overflow
but not useful for a denial of service attack against Apache. Similarly, attack instances at
different point in time will interfere with one another to different degrees as well. The
different attack sub-graphs can also be processed in parallel by multiple threads on the
same processor or different processors and the read-only nature of the I-GRAPH
eliminates a synchronization bottleneck.

The pseudo-code for handling a new alert event is given in Table 4.1. For each
alert that is received by ADEPTS, the alert is mapped to a node in the I-GRAPH and then
sub-graph creation algorithm determines whether the alert belongs to an existing attack
(and therefore existing sub-graph) or whether it is from a new attack. If it is the former,
the alert will be placed into the corresponding sub-graph and the sub-graph will be
evaluated by the system for response determination (Sec. 4.3). If it is the latter, the
algorithm will create a new sub-graph beginning from the node mapped to by the alert.
Note that in the I-GRAPH, we have general nodes for mapping generic alerts for a service
or generic alerts from a host machine (see Section 4.6). Therefore, under this design, all
alerts will always be mapped to some node in the I-GRAPH.

In reality, it can be difficult to accurately determine which attack instance an alert
belongs to, though some effort has been made in [44] by clustering source IP addresses,
destination IP addresses, source ports, destination ports, user accounts and initiated
processes. To avoid this problem our algorithm uses locality of the alerts to reduce the
uncertainty, and is designed such that inaccuracies are tolerated. All existing active sub-
graph instances are considered to be possible choices for an alert. This is because when
an attack is determined to have concluded or contained, the attack instance is removed.
The necessary condition for an alert to belong to a sub-graph (which corresponds to a
specific attack instance) is that the shortest spatial distance with respect to the nodes in
the I-GRAPH (i.e. spatial locality) be within a user-defined threshold. The minimum
spatial distance is the minimum pair-wise distance in the I-GRAPH between the node
mapped to by the alert and the nodes in the sub-graph. In the case when none of the
existing sub-graphs passes the LocalityTest, a new sub-graph is created to house the
alert event.

35

In the following sections, we present the different mechanisms in ADEPTS to
choose the appropriate responses and the locations to deploy them after attack sub-graphs
are created, handle unanticipated attacks, and provide feedback to the responses.

4.3. Determining Response Locations

For any given node in the attack sub-graph we can consider there are two kinds of
responses associated with it, one set associated with the outgoing edges which have the
role of preventing higher level goals from being achieved, and the second set with
incoming edges which have the role of preventing continued achievement of the node
goal.

4.3.1 Response Set Computation Algorithm.

The purpose of this algorithm is to determine the nodes where the current attack is
and will most likely spread to. This will allow the response algorithm to deploy
appropriate responses at those locations. Each sub-graph is traversed in reverse order of
the CCI computation algorithm, continuing until all reachable nodes are traversed at most
once. During the traversal, each node is labeled as one of: (i) Strong Candidate (SC), if
CCI > τ; (ii) Weak Candidate (WC), if CCI ≤ τ but further traversal across only AND
edges can reach a SC node; (iii) Very Weak Candidate (VWC), if CCI ≤ τ but further
traversal across any type of edge can reach a SC node; (iv) Non-Candidate (NC),
otherwise. If the CCI of a node is computed to be greater than τ, the system concludes the
node has been achieved, where τ is a deployment parameter. Therefore the SC label on a
node is a strong indicator that the node has been achieved, while the WC or VWC label
indicates smaller likelihoods due to evidence from their parents.

Next, some nodes are placed in a response set, indicating to the response system
where responses should be deployed. For an aggressive policy, all SC nodes, and WC and
VWC nodes which have at least one immediate NC parent node are placed in the
response set. For a moderate policy, all SC and WC nodes that have at least one
immediate NC parent node are chosen. For a conservative policy, all SC nodes that have
at least one immediate NC parent node are chosen. The aggressive, moderate, and
conservative policies provide increasingly less disruption as well as less protection. It is
important to note that in ADEPTS, responses may be deployed even in nodes for which no
direct evidence as alerts are available. This is a key differentiator from the BASELINE
model.

36

4.4. Response Deployment

In this section we focus on the mechanisms needed to deploy a response. The
deployment of the response is achieved by a Response Repository, a Response Control
Center, and distributed Response Execution Agents.

4.4.1 Response Infrastructure

The Response Repository stores the responses available for deployment in a
payload system. Each response in the repository consists of an opcode and one or more
operands, with wildcards allowed for each. The opcode is the response command, and the
operands are the different parameters that need to be specified in order to execute the
response. For example, the opcode for the response command of dropping incoming
packets from a remote IP to a local port is DROP_INPUT, and the corresponding
operands are REMOTE_IP and LOCAL_PORT. The opcode and the operands together
make up a complete response command. The response structure allows ADEPTS fine-
grained customization of the available responses

The opcode is selected based on the ability of the opcode to cut off the intrusion-
centric channels as defined in Section 3.2. The Response set computation algorithm
(Section 4.3) sends to the Response Control Center the list of I-GRAPH nodes which are
candidates for the deployment of responses. For each node, the Response Control Center
selects a set of candidate response opcodes that can be used to prevent attacks from
spreading via the node’s outgoing intrusion-centric channels. The choice is determined by
the type of the channel. For example, the file access based opcodes, such as
DENY_FILE_ACCESS or DISABLE_WRITE, are selected as candidate response
opcodes if an outgoing shared file channel is present.

After the opcodes have been chosen, the Response Control Center generates a list
of complete response commands by collecting suitable operands. For this, it examines the
alert events stored in the alert queue of the node and uses them to fill in the operands that
are required by the selected opcodes. An opcode can be combined with multiple operands
during this phase. For example, for an opcode KILL_PROCESS, the control center may
extract PID#1 from alert event#1 and PID#2 from alert event #2, both in the alert queue.
Then, the response command KILL_PROCESS PID#1, PID#2 is generated for
subsequent evaluation.

37

4.4.2 Choosing Responses

For each selected response command, the Response Control Center computes the
Response Index (RI). The RI takes into the account the estimated effectiveness of the
response to the particular attack, measured by the Effectiveness Index (EI), and the
perceived disruptiveness of the response to legitimate users of the system, measured by
the Disruptiveness Index (DI). The EI and the DI are both specific to the response
command (opcode-operand combination) and the node in the I-GRAPH to which the
response is mapped. The RI is given by RI = a.EI – b.DI, where a and b are deployment
parameters.

Note that EI of an identical response command may differ for different attacks
that map to different I-GRAPH nodes. For example, blocking port 65000 or 16660 may be
useful against the stacheldraht DDoS attack but is unlikely to be effective against the
TFN DDoS attack. The two attacks can be differentiated by their packet signatures. The
control center chooses the response with the highest RI among the candidate responses,
with a threshold being used to suppress a response that falls below it. The Response
Execution Agents, one on each managed node, are used to deploy the responses. If no
response is chosen for a particular node, then the next higher level node is searched for
possible responses. When Response Execution Agents on a particular compromised host
have been disabled, responses will be taken at other hosts, as determined by the spread of
the attack through the I-GRAPH.

4.5. Matching in Attack Template Library

ADEPTS maintains an attack template library of attack patterns (attack snapshots),
similar in structure to the attack sub-graphs which are created at runtime. The attack
patterns can be categorized into two types: static attack pattern and raw attack pattern.

The static attack pattern is created from previously seen attack patterns for which
the “best” responses for each node in the pattern have been determined a priori by an
expert system or by a security administrator. These responses would therefore be chosen
over an automatically determined response if the matching score between the static
pattern and the growing attack sub-graph exceeds a user-defined threshold.

Additionally, the reference response may be determined by policy decisions made
by a corporation or by a public body, e.g., sample data as a result of an incident may be
automatically mailed to a central monitoring site for use in corporate-wide profiling and
monitoring. Alternatively, if certain types of classified data are exposed, the system may

38

notify appropriate investigators so as to begin an official investigation. This mechanism
is powerful in letting ADEPTS learn its responses from domain specific knowledge,
acquired knowledge over previous attack instances, or regulatory policy.

Apache Chunk at
Apache rid:1

Stack Buffer
Overflow at Apache

rid:1

Illegal access to
/var/lib/mysql

When matching score > 0.6

1. Disable wite access to SQL database
2. Block malicious source IP
3. Restart Apache Host
4. Wait for 5 minutes
5. Re-enable write access to SQL database

When matching score > 1.2

1. Shutdown Apache
2. Shutdown SQL

Apache Chunk at
Apache rid:1

Stack Buffer
Overflow at Apache

rid:1

Illegal access to
/var/lib/mysql

When matching score > 0.6

1. Disable wite access to SQL database
2. Block malicious source IP
3. Restart Apache Host
4. Wait for 5 minutes
5. Re-enable write access to SQL database

When matching score > 1.2

1. Shutdown Apache
2. Shutdown SQL

Figure 4.2: Example of a static attack pattern and reference responses

The matching between the static attack pattern and a growing attack sub-graph is

handled by the Immunizer in Figure 4.1. The algorithm for calculating the matching score
is illustrated in Table 4.2. Figure 4.2 shows an example of a static attack pattern.

Raw attack patterns are patterns automatically generated by ADEPTS I from the
attack sub-graphs via the Distiller in Figure 4.1. The raw attack patterns are used to store
the pattern from an attack sub-graph and the responses which have been used in that
attack sub-graph. Most importantly, the EI values for those responses are stored in the
raw attack pattern as well. As mentioned in Section 4.2, ADEPTS I features the distinction
of EI values from different attack instances. Since the EI value is used to quantify the
effectiveness of a response against a certain type of attack, it is necessary to make sure
the attack sub-graphs corresponding to the same type of attack will be using the same
copy of EI values. At the time when the first instance of a type of attack comes into the
system, there’s no corresponding raw attack pattern in the attack template library, and the
default EI values will be used for the responses in the attack sub-graph which is being
grown for that instance of attack. After the attack ceases (the attack sub-graph stops
growing for a pre-defined expiration time), the attack sub-graph will be distilled into a
raw attack pattern in the attack template library by the Distiller. What will happen when a
later instance of the same type of attack comes into the system is that the Immunizer will
match the growing attack sub-graph against the patterns in the attack template library. As
it identifies the best-matched raw attack pattern, the EI values for the corresponding
responses will then be loaded from that pattern into the growing attack sub-graph. At the

39

time when the second instance of the attack stops, the Distiller will then merge the attack
sub-graph back into the best-matched raw attack pattern. During the merge process, the
Distiller writes back the new EI values into the attack pattern and optionally adds new
nodes and new edges to the attack pattern, as some degree of non-determinism can be
expected in a different run of the same type of attack.

4.5.1 Immunizer

The Immunizer matches a growing attack sub-graph against the patterns in the
template library. As a suitable raw attack pattern is matched, the Immunizer uploads the
EI values for the corresponding nodes from the attack pattern to the still growing attack
sub-graph. On the other hand, when a suitable static attack pattern is matched, the
Immunizer passes the pre-stored responses to the Response Control Center in Figure 4.1
for guiding further choice. Now, assuming there are M patterns I1, I2, …, IM in the attack
template library. For each node N from a sub-graph G, we keep a vector S[1..M] which
records the matching score for G with respect to each of the M patterns till the addition of
node N. A match is concluded when the matching score exceeds a threshold. The
algorithm for calculating the matching score is given in Table 4.2.

40

Table 4.2. Algorithm for calculating matching score

4.6. Handling Unknown Alerts

In a real-world deployment, it is quite probable that all possible attack paths have
not been anticipated and therefore the I-GRAPH for the payload system is incomplete.
Thus, ADEPTS would be unable to map an incoming alert from a detector to a node. To
handle this situation, ADEPTS has the provision of a general node per host. The alert
would be mapped to the general node for the host that is the destination of the attack. It is
assumed, with reason we believe, that the host is easily deducible from the alert. Since
the general node represents unknown vulnerabilities, it is connected to all others nodes
related to the services running on the particular host. Thus the effect of a general node
flagging will be felt through increased CCI for other nodes related to the same host. The
responses attached to the general node form a pre-specified fixed set called the general
responses. The general responses are the commands that would be possible to deploy
with very little knowledge of the operands, such as killing a process (need process ID),
shutting down a service (need service ID), or restarting a host (need host ID).

// N : a node being added to an existing sub-graph G
// N.S[k] : the per-node matching score for N with respect to pattern Ik
// N.ChildNodeInCCIUpdatePath : the child node of N that contributes to N's CCI. (see

f'(CCIi) in Section 3.7)
// root_nodes_of(G) : nodes in G that do not have out-going edges.

…… After the field N.ChildNodeInCCIUpdatePath is determined……..

1. for k := 1 to M do
If there’s a path P from the corresponding node of
N.ChildNodeInCCIUpdatePath to the corresponding node of N in Ik then do

N.S[k] := N.ChildNodeInCCIUpdatePath.S[k] +
N.cci/num_of_edges_of(P)

2. Load response EI values for N from Ih, where N.S[h] is maximal for h∈1..M
3. Let p∈1..M such that

N root_nodes_of(G)
N.S[p]

∈
∑ is maximal.

4. If
N root_nodes_of(G)

N.S[p] preset-threshold
∈

>∑ , then return responses from Ip.

41

4.7. Response Chains and Persistent Attacks

In real-world attack scenarios, there exist attack actions whose success depends
on the continued presence of a previous attack action. In I-GRAPH terminology, a higher
level attack goal can only continue to be achieved, if the lower level goal also continues
to be achieved. This means a persistent connection has to be maintained between the
attack agents that achieve the higher and lower level goals for the attack action to persist
successfully. An administrator can flag each I-GRAPH node that requires the lower level
goals to continue to be met, as a persistent node. The connected persistent nodes form a
persistent attack path.

When the Response Control Center sees that the I-GRAPH node on which a
response is to be deployed is a persistent node, it performs an action different from the
algorithm outlined in Section 4.4. Instead of taking response on the node, it searches
downward along the persistent attack path and identifies the non persistent nodes that
terminate the path. Then, the response against these non-persistent nodes are deployed.
For an AND node, one path is searched, and for an OR node, all paths are searched. In
practice, it is possible that the response taken at the first encountered non-persistent node
does not succeed, and it may be desirable to deploy responses on the other nodes on the
attack path. In ADEPTS, for the aggressive policy, responses will be deployed both at the
top-level node with which the response algorithm is invoked and the lowest level non-
persistent nodes.

42

1. Attacker buffer
overflow Apache

2. Insert Malicious
code into Apache

3. Via the malicious
code, the attacker do a
Ip/port scanning to find

SQL server

4. Guess the
password of the root

account on SQL
server 5. Login to SQL

server as root

6. Access
/var/lib/mysql via

the malicious shell

7. Insert automatic
malicious code into

Apache

8. The malicious code at
Apache tries to do a
buffer overflow at the

SQL server

9. Insert automatic
malicious code into SQL

10. Removes data
under /var/lib/mysql

Persistent Node
Non-Persistent Node

1. Attacker buffer
overflow Apache

2. Insert Malicious
code into Apache

3. Via the malicious
code, the attacker do a
Ip/port scanning to find

SQL server

4. Guess the
password of the root

account on SQL
server 5. Login to SQL

server as root

6. Access
/var/lib/mysql via

the malicious shell

7. Insert automatic
malicious code into

Apache

8. The malicious code at
Apache tries to do a
buffer overflow at the

SQL server

9. Insert automatic
malicious code into SQL

10. Removes data
under /var/lib/mysql

Persistent Node
Non-Persistent Node

Figure 4.3. Persistent attack example

An example of a persistent attack is shown in Figure 4.3. Here, node 2,3,4,5, and

6 are persistent nodes. On this attack path, it requires the attacker progressively embed
malicious codes onto Apache and MySQL. These embedded codes act like relay stations
such that the attacker is able to remotely control a root privileged shell on the SQL server.

4.8. Providing Feedback to Responses

Feedback to the response system is crucial for ADEPTS, providing the runtime
mechanism to bias response choices in favor of those that have been effective in the past.

4.8.1 Varying EI

The feedback is provided by dynamically varying the EI of the response. After a
response has been deployed, the feedback system checks to see if any active response
action is deployed on an edge that can be used to reach a node in the currently computed
response set. If such a response action exists, it is indication that the response action
possibly failed and its EI is decreased.

The amount by which the EI of the response is decreased depends on whether the
response is on an AND edge, OR edge, or Quorum edge to the node in the response set. If

43

it is on an AND edge, then it is certain that the response failed and thus the node was
achieved. Therefore, the EI is decreased by a fixed fraction for responses on all the edges.
If the response is on an OR or Quorum edge, then the EI is decreased in the proportion of
the CCI values of the nodes, the maximum decrease being the same as in the AND case.
When a response expires or when an administrator manually deactivates a response, the
EI of the response action is increased by a fixed percentage under the intuition that the
response was successful since further alerts were not observed.

Referencing Figure 3.2, suppose an active response is present on the edge
between node 1 and 7, and node 10 is in the response set. Suppose the fixed fraction to

decrease is α. Then for the active response,
16

1

78

7

CCICCI
CCI

CCICCI
CCI

EIEI oldnew ++
−= α .

4.8.2 Tuning Response CPT Values in Bayesian Network

If one opts for Bayesian Network for inferencing on I-GRAPH, feedback of
deployed responses can be achieved through standard Bayesian Network parameters
learning such as EM learning [42]. This results in tuning of values in the conditional
probability table entries corresponding to those deployed responses.

4.8.3 Deactivating Responses

To reduce disruptiveness of an ineffective response, each response gets a pre-
assigned time-to-live (TTL). After the response has been deployed, the Response Control
Center (RCC) periodically checks the activated responses and deactivates it when they
are expired. On the other hand, the RCC will extend the TTL of an expired response
temporarily if it finds the response is successful and the payload system is still under
attack. This is determined by investigating that the alerts mapped to the current node in I-
GRAPH disappears, the immediate upper level node has not been compromised, but the
immediate lower level node still gets alerts.

44

4.9. Complexity Analysis

Table 4.3. Notations for complexity analysis

Max number of existing alerts in a sub-
graph

a
Number of new alerts

t

Number of existing sub-graphs
s Max number of outgoing response

from a node
o

Max number of nodes in a sub-graph
v Max number of alerts in an alert

queue
q

Max number of edges in a sub-graph e Number of nodes in response set r
Max number of existing active responses
in a sub-graph

c Number of patterns in attack
template library

p

The worst case computational complexity follows directly from analysis of the

algorithms presented in Sections 3 and 3.1.
Sub-graph creation: O(tsv); CCI update: O(v2ep); False alarm determination: O(ta);
Missed alarm determination: O(ve); Response set computation: O(ve); Optimal response
selection: O(roq); Varying EI algorithm: O(cve)

Thus, the worst case time complexity of an execution of ADEPTS is: O(tsv + v2ep
+ ta + roq + p + cve).

The process of updating a raw attack pattern from a sub-graph can be done offline
and is O(v3+vp).

4.10. Limitations

We assume reliable and secure communication channels between detectors and
ADEPTS. Similarly, reliable and secure communication channels are assumed between
response execution agents and ADEPTS. This can be achieved through existing work on
secure network service architecture such as [45].

Alerts may arrive at ADEPTS out-of-order, i.e., not following the causality of the
attack steps. To handle this, alerts are first put in a reorder buffer and after a time period
are processed in ADEPTS. However, if the communication channels cause the alerts to
arrive out-of-order beyond the time period for which alerts sit in the reorder buffer, then
ADEPTS can mistakenly process an alert before processing its causally preceding alerts.

45

Equation Chapter (Next) Section 1

5. OPTIMAL RESPONSES

The few available dedicated IRSs for distributed systems [12, 19-21, 46, 47] have

one or more of the following characteristics—they have a static mapping of symptoms
from the detector to the response, do not take feedback into account for determining
future responses, assume perfect detectors with no missed and no false alarms, or assume
perfect success rate for a deployed response. The complex interactions among the
complex software running the distributed applications, the non-determinism in the
execution environment, and the reality of new forms of intrusions surfacing would make
any one of the above characteristics undesirable. Importantly, the existing work does not
present a method for reasoning about or evaluating the optimality of a chosen set of
responses. The presented protocols, including our earlier work ADEPTS I, take a heuristic
approach and do not give a globally optimal response solution prescribed in our proposed
response model in Sec. 1.1. By globally optimal we mean the set of responses that
maximizes the system survivability. How far each solution is from the optimal is also not
clear. Optimality is an important metric because it allows a system designer to reason
about how well a given set of responses with which the IRS is populated can work for the
target attack scenarios. This may point to modification of the response repository in the
IRS. We address the problem of optimal response selection in this chapter.

We present a system called SWIFT (ADEPTS II) to reason about the global
optimality of a chosen set of responses in a distributed system of interacting services. The
optimality criterion takes into account the impact of a deployed response to the services
in the system and the impact of not deploying a response to the services which could
result in further spread of the attack. This system is probabilistic since the future spread
of the attack and the effectiveness of a response are unknowns and can only be estimated.
The optimality of a response set is a global or system-wide property and thus optimizing
the response choice on each compromised service individually as seen in [33],[48] may
not be sufficient. The globally optimal solution must account for the fact that there exist
dependencies between responses available at the different services. For example,
blocking all traffic from a specific subnet at the ingress point will make it redundant to

46

impose restrictions at an internal service on traffic from a host within the subnet. Also the
effectiveness of a response depends on the time to deploy the response.

We prove that solving the optimal response determination problem is NP-hard.
Both the number of responses and the number of services (including replicas) can grow
large with increasing system size and complexity. Since it is imperative to deploy prompt
responses at runtime to counteract automated attacks, we design an approximate solution.
Our solution employs genetic algorithm (GA) [49] based search through the universe of
possible responses. As multiple attack instances of an attack type or its variants are seen,
SWIFT updates the effectiveness of the deployed responses and the quality of the
chromosome pool used to initiate the GA-based search. Thus, SWIFT adapts to provide
better responses as history builds up in the system. SWIFT can respond to attack variants
through an approximate graph matching algorithm and population of chromosomes from
the approximate match. Attack variants are particularly relevant for distributed
applications where different order of observing alerts from different machines may give
the impression of an attack variant.

The SWIFT system is an instantiation of the proposed model of automated
response incorporating the two properties of maximizing survivability and tolerating new
types of attacks (Sec. 1.1). The experiments (Sec. 8.6 and Sec. 8.8) indicate improved
survivability from SWIFT compared to ADEPTS I, the ability of SWIFT to adapt its
responses as increasing numbers of attack instances are seen, and its ability to handle
attack variants (Sec. 8.9).

47

5.1. Deficiency and Sub-Optimality in ADEPTS I Response

Figure 5.1. Deficiency in ADEPTS I response location

A deficiency in ADEPTS I response mechanism is that the set of the potential

responses on an edge e are restricted to the responses whose opcodes match with the
channel type of edge e and whose operands are compatible with the alerts on the source
node of edge e, and this constraints ADEPTS I from applying precautionary responses. For
example, in Figure 5.1, let’s assume that node a, b, c, d, and f are achieved by the attacker.
Also, assume that nodes c, d, and f are flagged by ADEPTS for deploying responses.
Consequently, only responses Rfk, Rdg, Rdh, and Rce will be consider by ADEPTS I at this
point in time.

Let’s define Ivx to be the overall impact from the compromised node a, b, c, d,
and f and the deployed responses Rfk, Rdg, Rdh, and Rce. Also, let’s define the impact from
losing node e is Ive, and the impact from deploying response Rej to be Ivr. Finally, let’s
define the impact from losing node j to be Ivj.

Now, let’s assume that responses Rfk, Rdg, and Rdh are 100% effective, which
means they are always effective in blocking the propagation of the intrusion on the
corresponding edges. And let’s assume that response Rce is a partially effective response,
which has a probability of p in successfully blocking the attack propagation. Let’s assume
that Rej takes the same time as the attack propagating from node e to j to deployment,
which means that Rej will be effective when it is deployed before node e is flagged and

a

b c

d

e

f h

j

k g

i
Rce

Rej
(Won’t be deployed until node e is flagged)

Rfk

Rdg

Rdh

a

b c

d

e

ff h

j

k gg

i
Rce

Rej
(Won’t be deployed until node e is flagged)

Rfk

Rdg

Rdh

48

ineffective otherwise. So depending on whether Rej will be pre-deployed, the expected
impact on the end-scene from this response mechanism with respect to this intrusion will
be:

If Rej is pre-deployed,

Expected impact = Iv1

= Ivx + Ivr + p*Ive
= (Ivx + p*Ive) + Ivr

If Rej is not pre-deployed (current ADEPTS),

Expected impact = Iv2
= Ivx + p*(Ive + Ivj + Ivr)
= (Ivx + p*Iv eee)+ [p*Ivr + p*Ivj]

Therefore, in the case when |Ivr| is small, |Ivj| is high and p is high, one would

expect |Iv2| > |Iv1|. And in this case, the ADEPTS I response would be sub-optimal. The
adaptation process in ADEPTS I won’t be able to fix this deficiency as the current
adaptation mechanism doesn’t deal with this kind of precautionary responses (responses
acting on nodes which haven’t been reached by the attacker).

Space of Attacks x Responses

Attacks x
Optimal

Responses

Attacks x
ADEPTS I
Responses

Space of Attacks x Responses

Attacks x
Optimal

Responses

Attacks x
ADEPTS II
Responses

Figure 5.2. ADEPTS I/II with respect to optimal response

49

The relation of ADEPTS I with respect to the optimal response in the space of
attacks x responses can be seen as Figure 5.2. Here we are going to present a improved
version of ADEPTS named SWIFT (ADEPTS II) to pursue the optimal response set.

5.2. Framework for Global Optimal Response

SWIFT is set to pursue the global optimal response combination RCi,opt mentioned

in Sec. 3.6. This involves selecting response actions that maximize the survivability (Eq.
(3.3) in Sec. 3.6). We prove this optimal response determination to be an NP-Hard
problem as shown in the following. SWIFT therefore uses genetic algorithm to
approximate the optimal response combination. The details are presented in Sec. 5.7.

5.2.1 Intractability of Optimal Response Determination

N0

N1 Nt….

Edge e1 with possible
set of response R1 Node is already

compromised

|Iv|= ∞ |Iv|= ∞

N0N0

N1N1 NtNt….

Edge e1 with possible
set of response R1 Node is already

compromised

|Iv|= ∞|Iv|= ∞ |Iv|= ∞|Iv|= ∞

Figure 5.3. Transformation to map set covering problem to ORD

Consider the small I-GRAPH in Figure 5.3. Let E = {e1, …, et}. Each edge in E has

a set of possibly overlapping responses. Each response has the same probability of
success and identical Iv’s. The Iv of each node N1, …, Nt is ∞. Thus ORD will deploy a
response on each edge in E. By definition of ORD, it will generate a response
combination R such that the cost is minimized, which for the special settings implies that
the number of responses is minimized. Thus the responses in R cover the set E. This is
the solution to the set covering problem. The reduction is obviously polynomial. Hence,
ORD is an NP-hard problem in terms of the input size of number of responses and
number of nodes.

50

In practice, for a reasonable-sized distributed system, there are many possible
attack steps and therefore many possible response steps. For example, there are several
research efforts aimed at scalable generation of attack graphs with tens of thousands of
nodes [40]. Also, there are many possible services and therefore attack graph nodes.
Again, notice the significant research efforts aimed at diagnosing root cause problem in
services which aim at scalability to a large number of services [50, 51]. The intractability
is observed in practice not just for a few corner cases, but in the average cases as well.
This is due to the dependences between responses and attack steps.

5.3. Design Overview

The overall execution flow in SWIFT’s search for optimal response combination is
shown in Figure 5.4.

Figure 5.4. Overall flow for the steps in SWIFT to respond to an attack

5.4. Attack Template Library (ATL) and Attack Snapshots

SWIFT seeks to adapt its responses based on previous attack snapshots. Thus it is
important to store the history of attack snapshots and prior responses. This is maintained
in the Attack Template Library (ATL).

The ATL houses snapshots of attacks seen so far. Each snapshot entry s in the
template library contains the following information: s.g: the sub-graph of the I-GRAPH

Detection
framework

Attack Graph
for attack k

Create new
snapshot or load

snapshot from ATL

sN

Create Domain Graph
Identify Similar

Attack Snapshots
in ATL

Attack Snapshots for Attack k

{s0,D0} → {s1,D1} →…→ {sN-1,DN-1} → {sN,?}

sN

Prepare response
candidates

GA: Populate
Chromosome Pool

Seed good
responses
of sN in pool

{SA(sN)}
DN

GA Solver

Alerts

Attack Graph

for attack 1

…

Evaluate effectiveness of
deployed responses
{RC0,RC1,..RCN-1}.

Update {s0,s1,..,sN-1} in ATL

DN

DN

Response
Combination RCN

sN: attack snapshot, DN: domain graph
Edges represent flow of information, encircled numbers in a box represent the temporal ordering in the
execution flow (3 happens before 4, while 3a and 3b are concurrent, BA implies step occurs between attacks)

sN EPF

1 2

3a

3b 4

BA
5

6

Detection
framework

Attack Graph
for attack k

Create new
snapshot or load

snapshot from ATL

sN

Create Domain Graph
Identify Similar

Attack Snapshots
in ATL

Attack Snapshots for Attack k

{s0,D0} → {s1,D1} →…→ {sN-1,DN-1} → {sN,?}

sN

Prepare response
candidates

GA: Populate
Chromosome Pool

Seed good
responses
of sN in pool

{SA(sN)}
DN

GA Solver

Alerts

Attack Graph

for attack 1

…

Evaluate effectiveness of
deployed responses
{RC0,RC1,..RCN-1}.

Update {s0,s1,..,sN-1} in ATL

DN

DN

Response
Combination RCN

sN: attack snapshot, DN: domain graph
Edges represent flow of information, encircled numbers in a box represent the temporal ordering in the
execution flow (3 happens before 4, while 3a and 3b are concurrent, BA implies step occurs between attacks)

sN EPF

1 2

3a

3b 4

BA
5

6

51

with nodes that have been achieved at snapshot s and the corresponding edges; s.predict:
the path prediction table used to predict the propagation trend in the I-GRAPH from the
snapshot s (Section 5.5); s.rc: the most effective response combinations previously found
by SWIFT for snapshot s, s.r: the responses used previously for this attack snapshot and
their EI values. Thus, the EI value of a response is maintained per snapshot, rather than
globally for the response. This acknowledges that a response’s effectiveness also depends
on how far ahead of the attack front reaching the response node, i.e, on the time to
successfully deploy a response. Also when the EI value is used by SWIFT, it picks it up
from a Normal distribution with the mean and the variance of the EI observed so far. This
design, called fuzzy EI, ensures that a response that falsely has a low EI value will
eventually be redeemed, deployed in a response combination, and its EI reevaluated.

When the detection framework sends attack graph gN to SWIFT, SWIFT will check
in the ATL if there is an existing attack snapshot se with se.g = gN. If it does, se is loaded
from the ATL as sN (step 2, Figure 5.4) for subsequent SWIFT operations. Otherwise a
new snapshot is created. If space is a constraint, SWIFT deletes snapshots from the ATL
by various criteria—by time of creation or time of last access, frequency of access, or the
snapshot with the lowest cumulative |Iv| of its nodes.

5.5. Predicting the Escalation of Attack

Given an attack snapshot s, while there are many possible follow-on attack steps,
in practice, some are much more likely. SWIFT estimates the likely follow-on steps so that
the search space is restricted and unnecessary responses are not deployed. The attack
snapshot prediction table and the edge propagation factor tuning algorithms are used for
this purpose.

To track the likelihood of follow-on steps, SWIFT maintains a prediction table
s.predict for each snapshot s. The table entry s.predict[e], which is called edge
propagation factor for edge e (e.EPF), tracks the likelihood of an attack propagating on
the edge e.EPF is a real number in the range [0, 1] and is used in the creation of the so
called Domain Graph in next paragraph, which defines the search space explored by
SWIFT in making the response decision. SWIFT increases EPF on an edge if attack
propagation is perceived on the edge and decreases EPF otherwise. For example, in
Figure 3.5, assuming response r is not deployed and detector Dx fires, e.EPF will be
increased if detector Dy fires subsequently. Otherwise, it will be decreased. EPF on edge
e is used to tone down the contribution to the probability P(y) from node x. Therefore, if

52

the EPF value e.EPF is low, this would decrease the likelihood of SWIFT deploying
responses around y.

If Bayesian Network is used to provide inference on I-GRAPH, s.predict[e] is
modeled by the corresponding entry in the conditional probability table (CPT) of the
destination node of edge e as shown in Figure 3.6. There’s no need to use additional
structures to hold the values. The equivalence to EPF tuning is the Bayesian Network
parameter learning for the CPT entries[42].

A

B C
D

E

[A,B]: attack snapshot

[A,C]: actual extent of the attack

[A,D]: domain graph

[A,E]: I-Graph

?
(Actual extent unknown to SWIFT)

A

B C
D

E

[A,B]: attack snapshot

[A,C]: actual extent of the attack

[A,D]: domain graph

[A,E]: I-Graph

?

A

B C
D

E

[A,B]: attack snapshot

[A,C]: actual extent of the attack

[A,D]: domain graph

[A,E]: I-Graph

A

B C
D

E

[A,B]: attack snapshot

[A,C]: actual extent of the attack

[A,D]: domain graph

[A,E]: I-Graph

?
(Actual extent unknown to SWIFT)

Figure 5.5. Relations between attack snapshot/domain graph/I-Graph

5.5.1 Domain Graph

The Domain Graph D(s) ⊇ s.g and is a subgraph of I-GRAPH, which provides an
approximate bound on the nodes that may be reached by an adversary from a snapshot s
(Figure 5.5). In Eq.(3.1), when we calculate the expected impact vectors due to the nodes
in the I-GRAPH, we consider all the nodes in the I-GRAPH. This can adversely affect the
performance since the I-GRAPH is likely a large structure for any large real-world
distributed systems and many nodes in it will have vanishingly low probability of being
achieved based on the current snapshot. The Domain Graph subsets the nodes to be
considered so that a more timely and more accurate reaction to the attack can be taken.

Given the I-GRAPH I and a snapshot s, the Domain Graph D(s) = (V, E) where V =
{{node n∈I such that P(n) × |Iv(n)| is greater than a given threshold T} ∪ {node n∈I
such that n is on the path from nx to ny in I where nx, ny∈V }} and E={e|e∈edges(I) and e:
(u, v) , where u, v∈V} . This is computed in step 4 of Figure 5.4.

53

Essentially, domain graph gives the worst case estimate, assuming no responses
are going to be deployed, on the extent of an attack and bounds the search space of the
Genetic Algorithm that we discuss next. The estimation of domain graph is refined
through the tuning of the EPF values (Section 5.5) and the EI values of the responses
already deployed. In the ideal case, the estimated domain graph should coincide with the
actual extent of an attack. (e.g. C=D in Figure 5.5)

5.6. Similarity of Attack Snapshots SA(SN)

Similar attack snapshots SA(sN)={sX: sX∈ATL and |sX.g-sN.g| < threshold} are
used in the creation of the domain graph and the preparation of response candidates (Step
3b in Figure 5.4). The objective is to rely on knowledge learnt previously from similar
attack snapshots for helping provide responses to the current attack snapshot sN. This is
useful when sN by itself does not contain enough historical information for deriving low-
cost responses.
The difference |gx-gy| between two I-GRAPH fragments gx and gy is defined as

|gx-gy| = x y x y

x y
1

(# nodes in g g) (# edges in g g)
nodes and edges in g g

∩ ∩
−

+
∪

5.7. Genetic Algorithm (GA)-based Response Mechanism

As the problem of deciding the optimal response combination (ORD) for an attack
snapshot has been proved to be NP-hard, we focus on an approximate solution using a
GA framework [49]. Following Figure 5.4 step 6, this corresponds to designing a
response mechanism Respond(.) (algorithm shown in Table 5.1), which takes the
snapshot sN from Step 2 and generates the approximate optimal response combination
RCN. The history information used here is embedded in sN and Rdeployed, the responses
deployed thus far.

Within this framework, we map each response combination onto a chromosome,
and the problem of searching for the best response for an attack snapshot is then
translated into looking for the best chromosome from the chromosome pool over multiple
evolutions. Often using genetic algorithm to perform optimization is an expensive
process [38] due to the requirement of search through a huge chromosome pool over
many evolution cycles to get a good solution. We reduce the execution time by
selectively initializing the chromosome pool.

54

SWIFT only considers the responses within the Domain Graph that have not been
deployed yet. This set of applicable responses is given by RA. The encoding scheme is
that each chromosome c is an |RA|-sized bit vector, with each bit uniquely mapped to a
response r∈RA.

To populate the chromosome pool (Step 5 in Figure 5.4), first, SWIFT relies on the
history information from the snapshot, namely sN.rc and sN.r (i.e., the best response
combination found so far for this snapshot and responses deployed and their EIs). Second,
SWIFT relies on this same information from past similar attacks. Third, SWIFT populates
the chromosome pool with heuristic-based responses from ADEPTS I and fourth, with a set
of randomly filled chromosomes.

The fitness of a chromosome c, is determined by the response combination RC for
c. The fitness of chromosome c is defined as | ()|/dimension()() 10 Iv RC Ivfitness c −= . This fitness

function satisfies some desirable properties – high |Iv| translates to low fitness and |Iv| of
zero or infinity are handled. A Genetic Algorithm Solver (Step 6 in Figure 5.4) is then
invoked to systematically probe through the space of response combination RC through
the typical GA evolution process [49]. The high-level concept here is those response
combinations that yield low cost values will be returned by the GA Solver in the end.

The ORD problem is a NP-Hard combinatorial global optimization problem.
Techniques such as Simulated Annealing [52] or Monte Carlo Method can also be used.
We chose GA because it has been widely used and is easy to implement. The framework
of automated response and the ORD problem are generic with respect to the optimization
techniques used to solve them.

55

Table 5.1. GA based response mechanism
Algorithm: Respond
Input: latest attack snapshot sN
Output: approximated optimal response combination RCN
Pre-defined Constants:

chromosome_pool_size: a constant on the chromosome pool size.
v% : the percentage of top chromosomes to be kept in the history.
max_evolutions: maximum number of evolutions per iteration for the GA.
rc_size: the maximum size of the set sN.rc of best response combinations previously

found.
Rdeployed : responses deployed thus far
RA : The set of applicable responses

Method:
1. Create Domain Graph DN=D(sN).
2. Derive RA from Rdeployed and DN.
3. Initialize GA chromosome pool through four sources defined in Section 5.7.

pool = GA_PopulateChromosomePool (ATL, sN, DN, chromosome_pool_size).
4. Perform GA evolution cycles

for i=1 to max_evolutions {
pool = GA_NextChromosomeGeneration(pool).

}
5. Update the best response combinations

best_chromosomes = {the top v% of chromosomes in pool (wrt fitness)}.
sN.rc = the top rc_size chromosomes from (sN.rc ∪ best_chromosomes).

6. Find chromosome RCN∈sN.rc with highest fitness.
7. Return RCN.

5.8. Limitations

Both CCI Inference (Sec. 3.7) and Bayesian Network Inference (Sec. 3.8) use the
statistical means of past observations to estimate the attack escalation and response
effectiveness. This assumes a probability distribution with small variance. In our
experiments (e.g. Sec. 8.8), we notice non-smooth patterns in the |Iv| plot due to non-
deterministic attack escalation and response effectiveness. If the variances of the
corresponding distributions are too large, further unstable performance from the system
can be expected. For future work, it may be useful to estimate the variance and account
for it as well.

The current design on dealing with attack variants in SWIFT assumes that similar
attacks share similar EPF values (attack escalation parameters) and EI values (response
effectiveness). This is by and large an open research question, which requires a thorough

56

study of existing multi-stage attacks to prove or disprove it. Such a dataset is
unfortunately not available in the public domain at present.

57

Equation Chapter (Next) Section 1

6. RESPONDING TO ZERO-DAY ATTACKS

Zero-day attack [53] is the kind of attack which exploits undisclosed

vulnerabilities or vulnerabilities for which patches are not yet known. The typical way to
deal with it is to limit the possibility of zero-day attack. One approach is to strip
unnecessary functionalities thus eliminating potential vulnerabilities [45]. Another
approach is to harden the existing system through tighter security policies such as
SELiunx. However, both approaches can significantly hamper the flexibility and the
diverse functionality of a system. Another approach is to use detection technologies that
rely on detecting the “manifestations” of each attack stage rather than the mechanism of
launching the attack, which is unknown for zero-day attacks. One example is code
emulation based malware detection [54], where they determine if a malware is malicious
or not based on its observed behaviors when running on an emulator. They usually have
high false positive rates and therefore are typically used on an advisory basis mostly.

A zero-day multi-stage attack has two characteristics: (1) some or all the stages
are based on unknown exploits; (2) some or all the interconnections among the stages are
unknown. In short, the complete mechanism behind a multi-stage zero-day attack is not
known a priori. Current work on dealing with multi-stage attacks fall short of handling
zero-day multi-stage attacks. Existing work on alert correlation and attack graph
generation [9, 55] and prevention based on attack graph analysis [32, 40] are explicitly
predicated on known vulnerabilities. Automated intrusion response systems such as
SWIFT or ADEPTS I are designed to work on a prebuilt attack graph that captures all
escalation paths for attacks. Host-based solution such as pH [56] provides only local
responses to intrusions detected on the corresponding host and is not designed to deal
with multi-stage attacks. Most existing IRS [19, 46, 56-58] are static in that the response
mechanism is tied to the specific alerts by a rule and cannot adapt to new kinds of attacks.

Here, we come up with a solution that enables automated response to zero-day
multi-stage attacks. There are two major contributions from this work.

The first contribution is a modeling technique for zero-day attacks. This
comprises an object-oriented hierarchical model for the component, the detector alerts in

58

the system and the interconnections between the components that allow attack escalation.
The model is used to represent a system configuration specification for the protected
system, which is currently a manual input. This is then used for online attack graph
generation. Distinct from the extensive body of work on attack graph generation, we
generate the graph at runtime based on received alerts, and the graph only captures the
local part of the system for which the alerts have been observed. Also, we map the alerts
to manifestations of each attack stage, rather than the mechanism of achieving the stage.
For example, an alert may flag that the access control list has changed (maliciously in this
case), but not the steps used by the adversary to achieve this.

The second contribution is a technique called conceptualization of an attack
graph. We observe that even for zero-day attacks, the concepts behind them are not
always new. For example, a conceptual description of many distinct attacks is memory
overflow followed by data execution. This concept is so commonly seen that to deal with
it processor manufacturers have introduced the NX-bit, and OS manufacturers have
introduced the idea of data execution prevention. We conceptualize the component and
the detector associated with an attack graph node by moving each up to a super-class in
the object-oriented hierarchy. For example, an Apache Web Server and a Microsoft IIS
Web Server can both be conceptualized into a “Web Server” or simply a “Program”.
Similarly, an alert corresponding to “Java array out of bound exception” can be
conceptualized into a “Buffer Overflow”, a “Memory”, or a “Got Effect” (something is
wrong) alert. Essentially, we use conceptualization to map two distinct attacks into the
same (or closely similar) attack graph at a high-enough level of conceptualization. Then
we use the ability of our IRS, ADEPTS to leverage information from the previously-seen
attack to deploy effective responses to the zero-day attack. The proposed system is named
ADEPTS III / ORIGIN.

59

6.1. Design Overview

1. Snort : Apache
Chunk buffer

overflow

2. Libsafe :
Buffer overflow

at Apache

3. DNS HINFO
Query to find SQL

server

4. Libsafe :
Buffer overflow

at SQL

Buffer overflow
exploit to Apache

Buffer overflow
activity to Apache

Reconnaissance
for SQL server

Buffer overflow
activity to SQL

Buffer overflow
exploit to Apache

Buffer overflow
activity to Apache

Reconnaissance
for SQL server

Buffer overflow
activity to SQL

Apache Chunk
buffer overflow

packet

Stack-based
buffer overflow

Apache

IP/port scanning
to find SQL

server

Buffer overflow &
Insertion of

malicious code into
SQL

Attack Template Library

Portion of I-Graph which is induced by an attack

1. Snort : Apache
Chunk buffer

overflow

1. Snort : Apache
Chunk buffer

overflow

2. Libsafe :
Buffer overflow

at Apache

2. Libsafe :
Buffer overflow

at Apache

3. DNS HINFO
Query to find SQL

server

3. DNS HINFO
Query to find SQL

server

4. Libsafe :
Buffer overflow

at SQL

Buffer overflow
exploit to Apache

Buffer overflow
activity to Apache

Reconnaissance
for SQL server

Buffer overflow
activity to SQL

Buffer overflow
exploit to Apache

Buffer overflow
activity to Apache

Reconnaissance
for SQL server

Buffer overflow
activity to SQL

Apache Chunk
buffer overflow

packet

Stack-based
buffer overflow

Apache

IP/port scanning
to find SQL

server

Buffer overflow &
Insertion of

malicious code into
SQL

Attack Template Library

Portion of I-Graph which is induced by an attack
Figure 6.1. Abstraction on attack steps

An issue concerning IDS and IRS is their effectiveness on handling zero-day

attacks. A classical approach in IDS application is the use of looser detection rules. By
that it means the use of a detection rule which can potentially detect a whole class of
attacks, and not just a single attack. For example, using a Snort rule signature pattern
‘/bin/sh’ can potentially match against a couple of different variants of shell creation
exploits, some of which can be owing to unknown zero-day attacks.

Typically, the nodes in I-GRAPH are specific to a detector alert, so if the detector
rule for this alert is too strict, a slight variation in an attack could cause a missed mapping
between an I-GRAPH node and an attack step, which in turn could result in a less effective
response action.

To address this issue, our approach relies on the abstraction of I-GRAPH nodes. As
shown in Figure 6.1, the rectangular boxes contain the abstractions on the corresponding
oval-shaped I-GRAPH nodes. Therefore, what happen here is that when an exact mapping
between an alert and an I-GRAPH node is impossible, ORIGIN will fall back to the
abstractions and try to perform the mapping on the abstraction layers. By doing so, we
hope ORIGIN can better tolerate variations in attacks and provide equally well responses
to the unknown zero-day variants of an attack. For instance, in the example in Figure 6.1,
there’s no ‘DNS-HINFO Query to find SQL server’ node, which could result in a

60

mismatching with the attack pattern in the template library. That attack pattern, however,
resembles the attack instance almost perfectly. By using the abstractions, this
mismatching can then be resolved, and the optimized responses from that attack pattern
can be applied to this attack instance as well.

Table 6.1 gives a high-level summary of how different types of IRS technologies
perform against different types of attacks through the life-time of attacks. Existing local
response technologies take responses based on an alert flagged by a detector on the local
machine and the response is hard-coded statically for each kind of alert. This is the most
prevalent form of IRS in use today, such as, anti-virus software quarantining a file when
the detector matches a virus signature in the file. Existing multi-stage capable IRSs such
as SWIFT perform significantly better than the local response technologies for known
attacks. This is due to the fact that they consider the global effect from a multi-stage
attack and from the use of responses. However, for zero-day attacks, they are no better
than the local response technologies, since they do not find the attack in the pre-built
knowledge structure, such as the I-GRAPH used in SWIFT.

Table 6.1. Capability of ORIGIN/ADEPTS III for different kinds of attacks

First Attack

Instance
Repeated Attack Instances

IRS Learning Phase IRS Fully Adapted

Known Attack
Good /

Excellent
Excellent Excellent

Zero-day
Attack with
known
concept

Good /
Excellent

Good / Excellent Excellent

Zero-day
attack with
new concept

Poor /
Moderate

Moderate / Good Excellent

Local responses : “Poor” for all 9 cases
ADEPTS I/II : “Poor” for the 6 Zero-day attack cases.

(A range of performance is shown for some cells since the exact performance depends on
the parameter setting of the IRS.)

61

The contribution of our work is highlighted in the bold box in Table 6.1, which
corresponds to the cases of zero-day attacks. We categorize zero-day attacks into two
types: one with known concepts, and another with new concepts. The first kind
corresponds to the case, where after conceptualization, the zero-day attack will become
identical (or closely similar) to a previously seen attack. The second kind corresponds to
the case, where not even a conceptually similar attack has been seen before. ORIGIN
greatly improves the state-of-the-art for the first kind of zero-day attacks, while it still
improves the state-of-the-art, but less significantly, for the second kind of zero-day
attacks. Note also that as in previous ADEPTS systems, ORIGIN shows the capability of
learning – the effectiveness of deployed responses, the escalation paths of attacks –
through observing multiple instances of an attack type and therefore the performance
improves with repeated instances, till it is fully adapted to the attack type.

Figure 6.2 shows the overall system design of ORIGIN, which we will describe in
the next few sections.

Figure 6.2. Building Blocks and Operational Flow in ADEPTS III / ORIGIN

6.2. System Configuration Specification

Rather than assuming prior knowledge of attacks by utilizing a pre-built attack
graph as done in existing work [32, 40, 59], ORIGIN is designed to rely on the knowledge
about the configuration of a system. Our hypothesis is that for a system owner it is easier
to provide the system configuration, than to enumerate all possible attacks against her
system. It is still a challenge to represent the configuration of a real world system which

62

can consist of multiple heterogeneous components with complex dependency
relationships among them. While prior works have introduced the idea of using system
configuration information for attack graph generation, they use a simple and coarse
system model. For example [8, 40, 60] use each host in the system as the unit in the
configuration.

In our specification, an application system is viewed as a collection of
components. A component is a generic term for any resource in the system and can be an
OS, a program, a file, etc. To model the interconnections between two components, we
define a connection between them, which can allow the spread of attack.

We use C++ [61] as the specification language, which allows us the use of an
inheritance hierarchy for components. Then we can move common specifications to a
base component (base class in C++ terminology). One example is two machines running
the same operating system but having different customizations (e.g. different programs
installed and different settings). In this case, there can be a base component representing
the original OS and two derived components representing the customized OSs (machines).
The specification is compiled into a dynamic linked library (DLL), which can be
loaded/unloaded from ORIGIN at runtime.

WebServer (Linux)

Apache

Telnetd

Passwd Files

Workstation

MySQL

DBServer

Bank

WebServer (Solaris)

Apache

Telnetd

Passwd Files MySQL

DBServer

WebPortal

Sadmind
Tomcat

AppServer

LittlePlanet

Figure 6.3. Example of Component Memberships

63

6.2.1 Component Definition

Table 6.2. Component Definition

class ComponentName : baseComponentName
/// baseComponentName is optional
{

GetID()
GetHost()
EnumerateDetectors()
EnumerateMembers()
EnumerateOutConnections(d)
GetIV(d)

}

Table 6.2 shows a component definition. We omit the detailed C++ syntax

keywords/types/qualifiers for presentation simplicity. GetID returns the identifier for this
component. GetHost returns the hosting component of this component. For example, a
Linux component can be the hosting component of a sendmail component installed on
that Linux box. EnumerateDetectors returns the detectors associated with this component.
EnumerateMembers returns the member components. In ORIGIN, the membership relation
between components x and y means x is hosted within y, either physically (e.g., in a
machine) or logically (e.g., the sendmail component as a member of the Linux
component.) Figure 6.3 shows an example of the member associations of some of the
components in our testbed. In Figure 6.3, a component x within the rectangle of
component y means x is a member of y. EnumerateOutConnections(d) returns the applicable
outgoing connections where attack effect can propagate outward from this component
given the detector alert from detector d. For example,
Apache.EnumerateOutConnections(StackOverflow) may have a connection leading to a code
execution on that machine while it is unlikely for
Apache.EnumerateOutConnections(NetworkDoS) to have a connection leading to code execution.
GetIV(d) returns the impact vector Iv for this component given an alert from detector d.
This represents the damage cost to the component when the alert is triggered. We have
defined Iv in Section 3.5 to be a vector with each element value ∈[0, 1] representing the
damage to each transaction and each security goal in the system. The object-oriented

64

design allows ORIGIN to concisely represent components using inheritance of shared
properties.

Figure 6.4. Component Inheritance Chart

Figure 6.4 shows an excerpt of the inheritance hierarchy of the components in our

prototype implementation.

6.2.2 Connection Definition

Figure 6.5. Connection Inheritance Chart

In a multi-stage attack, attack effect can propagate from one component to

another following certain conditions / rules [8, 32]. To incorporate this concept into our
design, we introduce the information flow connection. We use an information flow
connection from component X to component Y if data can be transmitted from X to Y.
Typically, this assumes a network connection from X to Y [40, 60, 62] though this can
also be a shared memory, a shared file, or a procedure call between X and Y.

65

Less obviously, and distinct from prior work, we use another kind of connection
between components – a privilege propagation connection. This captures spread of
attacks without any explicit computing connection, but say through social channels, or by
breaking into an email account and accessing privileged information to say access an
online bank account. Formally, if compromising X can give an attacker the ability to
carry out actions on Y, which are otherwise not possible, a privilege propagation
connection is created from X to Y.

A connection also has an inheritance hierarchy (Figure 6.5) starting from a base
class baseConnectionName. Its members are: source and destination components, PF – the
propagation factor ∈ [0, 1] which gives the prior likelihood of attack propagation on this
connection (refer to EPF in Section 3.7); Responses for the responses that can halt the
attack propagation on this connection. Each response has an associated effectiveness
index (EI) value (Section 3.7) indicating how effective it is believed to be when used on
this connection.

6.2.3 Detector Definition

A component can have associated detectors, which are returned by the
EnumerateDetectors function of a component. Each associated detector generates alerts that
pertain to certain attack manifestations observed on the component.

Figure 6.6. Detector Inheritance Chart

Figure 6.6 shows an excerpt of the inheritance relationship among detectors in our

prototype implementation. Right below the base, there are two derived detectors :
NoEffect and GotEffect. The NoEffect detector is used in the attack graph generation
process (Section 6.3) to model the “silent” nodes on an attack path that do not generate

66

actual detector alerts, either because detectors are not present or the installed detectors
failed to generate alerts, but can logically fit into an attack path. In the complete chart, the
level beneath GotEffect has eight high level manifestations {VirusPattern, UnAuthExec,
SecPolicyChange, OtherRuntimeError, MemError, DoS, ContentChange, and
ConfidentialityLoss} that we find in practice have high coverage for all different attack
stages, even for zero-day attacks. We show only the part of the inheritance hierarchy
which applies to the attack scenarios we use later in the evaluation section.

6.3. Online Attack Graph Generation Process

In the attack graph, each node v has the following fields: the detector alert
(v.detector), the component where the detector is installed (v.component), the identifier (v.id),
the conceptualized detector alert after the node has gone through the conceptualization
process (v.cdetector), the conceptualized component (v.ccomponent), the CPT table (v.cpt),
and state of the node (v.state). A response node r has the following fields: the response
command (r.cmd), the impact vector for this response (r.iv), and state of the node (r.state).

67

6.3.1 Attack Graph Generation

Table 6.3. Updating Attack Graph

UpdateGraph(G,dk,NodeState)
// G: an existing attack graph which was created based on prior alerts d1,d2,…,dk-1.
// dk: a detector alert
{

1. Create node vk
2. vk.detector := dk
3. vk.component := Component where dk is generated from.
4. vk.id = string_concate(vk.detector, vk.component)
5. if vk already exists in G (as identified by vk.id) discard vk and return.
6. Connect node vs ∈ G to vk through edge ePm : vs → vk for each path P:

vs → {vsk1 → vsk2 → … → vskq}Pm → vk such that the following conditions hold:

6.1. vski∉G for i = 1..q
6.2. q is minimized
6.3. For each consecutive nodes pair va → vb on P, there exists a connection

c ∈ va.component.EnumerateOutConnections(va.detector) such that
c.GetDstComponent() = vb.component.

6.4. vski.detector = NoEffect for i = 1..q
6.5. All the nodes on P are distinct with respect to the nodes’ identifiers.

7. For each consecutive nodes pair va → vb on P
7.1. c := the connection from va to vb
7.2. For each response R in c.EnumerateResponses()

If !∃ response node r such that r.cmd == R {
Create node r in G
Set r.cmd:=R and r.iv := impact vector of R.
r.state = NA

}
Connect r to vk

8. Initialize the vk.cpt with default values or load it from attack template library if
a past attack exists.

9. vk.state := NodeState
}

Table 6.3 shows the algorithm for updating an attack graph when receiving a new

detector alert. At the beginning, G is set to be empty, so calling UpdateGraph(…) for
each incoming detector alert essentially generates the resulting attack graph.

68

The idea behind this algorithm is to chain up detector alerts that are considered to
have causal relationships. Our assumption on the casual relations between two alerts is
based on connections between the underlying components where the alerts originate from.
This assumption is widely used in prior work [34, 40, 62] though prior work has dealt
with offline analysis of known vulnerabilities.

Table 6.4. Generating Attack Graph

GenAttackGraph({d1,d2,..,dk},{sd1,sd2,…,sdm})
// {d1,d2,…,dk}:detector alerts received in order
// {sd1,sd2,…,sdk}:speculative detector alerts
{
1. G := NULL
2. For i = 1 to k

UpdateGraph(G,di,true)
3. For i=1 to m

UpdateGraph(G,sdi,NA)
4. return G
}

Table 6.4 shows the algorithm which generates the attack graph where

{d1,d2,…,dk} are detector alerts received and {sd1,sd2,…,sdm} are “speculative” detector
alerts. Speculative alerts are not actually triggered yet, but are provided here so that the
attack graph can grow to include them. Speculative alerts are used to populate those
attack graph nodes which are likely to be but haven’t been achieved by the adversary in
an ongoing attack (Region [B,D] in Figure 5.5). This is required so that the IRS engine
can consider a pro-active response, i.e., a response on a component that has not been
affected yet, but due to the spread of the current attack. They are also useful to evaluate
how effective deployed responses have been in preventing those nodes from being
reached.

Similar to ADEPTS I / II, ORIGIN maintains an attack template library (ATL) of
attack graphs of past attacks. Assuming an ongoing attack has triggered detector alerts
{d1,d2,…,dk} and there’s a past attack with “triggered” detector alerts
{d1,d2,…,dk,dk+1,…,dk+j}. ORIGIN will then use {dk+1,dk+2,…,dk+j} as part of the
speculative alerts for the generation of attack graph for this attack.

69

At Step 6.2 of the algorithm in Table 6.3 we assume attack escalates through the
shortest path (minimum number of connections). Technically, one needs to consider all
possible escalation paths. In practice, we find that many of these paths share some of the
connections used in the shortest path, which means the responses from the connections on
the shortest path suffice to break the corresponding edge in the attack graph.

6.4. Conceptualization of Attack Graph

Figure 6.7. Example of conceptualization

Existing attack graph models are typically bound to specific vulnerabilities or

specific detector alerts. This becomes an issue when dealing with zero-day attacks where
the information about the underlying vulnerabilities is not known. Even if there are
detectors that flag the manifestations from the attack, these do not map to the pre-built
attack graphs available to the IRS results in either ineffective or disruptive response
choices due to the lack of prior knowledge about the attack and consequently, no
opportunity for the IRS to learn based on past responses. Typical disruptive responses are
of the form of killing a process or shutting down a machine, responses that can be
deployed with little knowledge of the specifics of an attack.

We therefore come up with a technique that allows ORIGIN to link a zero-day
attack with past knowledge. The idea is to conceptualize an attack graph by generalizing
a node’s component ID (n.component) and detector ID (n.detector). After conceptualization,
ORIGIN can potentially find from its database a past attack which, after a similar process,
looks similar to the new attack graph. ORIGIN can then leverage the CPTs learned from

70

the past attack, to more accurately estimate the attack escalation and to provide better
responses. We first provide an example of the conceptualization process before giving the
algorithm.

In Figure 6.7, there are two distinct attacks to the WebPortal site. The attack in the
top part of the figure (AS1) has the attacker exploit a bug in the user account management
application, which triggers a JavaArrayIndexOutOfBound exception. This bug causes a
user data corruption in the back-end database, which triggers a DBDataInconsist alert
from MySQL. As the user data is corrupted, a new instance of the Java based user
account management application refuses to start, thereby causing a DoS to the WebPortal
site. The attack in the bottom part of Figure 6.7 (AS2) has the attacker exploit a bug in the
Tomcat Java application server, which leads to a privileged access to the machine
running MySQL with the side-effect of a heap buffer overflow alert. The attacker
accesses the MySQL machine and deletes the data files used by the MySQL server. This
causes the server to stop functioning correctly due to the missing files, again resulting in
a DoS to the WebPortal site.

The two attacks AS1 and AS2 are radically different from the point of view of the
alerts generated and the vulnerabilities exploited. When a traditional IRS such as SWIFT
faces the two attacks in sequence, it will consider both of them to be two distinct fresh
zero-day attacks and deploy ineffective or disruptive responses. However, looking at the
center part of Figure 6.7 (ASC), we see that AS1 and AS2, after being conceptualized with
component level = 2 and detector level = 3, look identical. (Details on the
conceptualization process is mentioned in next paragraph.) At this level of generalization,
AS1 and AS2 share the concept which has a sequence of three steps – causing a memory
error at some program, followed by changing some contents at some program, and
eventually a DoS of some program. From ORIGIN’s point of view, the two attacks can
share the same effective response r1 and r2. Since it takes time for an IRS such as ADEPTS
to adapt its responses, the mapping of a zero-day attack to a known concept allows it to
deploy an effective response on the first instance of the attack. Thus, if AS1 has been seen
in ORIGIN, then a subsequent occurrence of AS2 can be handled better than in existing
IRS such ADEPTS I or SWIFT.

71

Table 6.5. Update Node IDs

UpdateNodeIDs(G)
//// G(N,E): An existing attack graph
{
1. Sort nodes in G into topological order {n1,n2,…,nN}

2. for i = 1..N {

2.1. m := number of parent nodes of ni
2.2. Sort parent nodes of ni into {p1,p2,..,pm} by the parent nodes IDs
2.3. count := 0
2.4. do {

ni.id := Hash({p1.id, p2.id,..,pm.id} , {ni.ccomponent, ni.cdetector}, count)
count := count + 1

}while (ni.id is already used by a node in G)
}

}

Table 6.6. Conceptualization of Attack Graph

Conceptualize(G, ComponentConceptLevel, DetectorConceptLevel)
// G: an attack graph to be conceptualized
// ComponentConceptLevel: concept level for component
// DetectorConceptLevel: concept level for detector
{
1. For each attack step node v in G do

1.1. ConceptualizeNode(v, ComponentConceptLevel, DetectorConceptLevel)

2. UpdateNodeIDs(G)
}

72

Table 6.7. Conceptualization of Attack Graph Node

ConceptualizeNode(v, ComponentConceptLevel, DetectorConceptLevel)
// v: attack graph node to be conceptualized
// ComponentConceptLevel: concept level for component
// DetectorConceptLevel: concept level for detector
{
1. v.ccomponent = v.component
2. v.cdetector := v.detector

3. depth_c := depth of v.compoent in the component inheritance chart (Figure 6.4)

from the root “Base”.
4. depth_d := depth of v.detector in the detector inheritance chart (Figure 6.6) from the

root “Base”.

5. while(depth_c > ComponentConceptLevel) {
5.1. v.ccomponent := base_component(v.ccomponent)
5.2. depth_c := depth_c – 1
}

6. while(depth_d > DetectorConceptLevel) {

6.1. v.cdetector := base_detector(v.cdetector)
6.2. depth_d := depth_d - 1
}

}

Table 6.6 shows the algorithm for conceptualizing an attack graph. The

parameters ComponentConceptLevel and DetectorConceptLevel determines the degree
of conceptualization. The word “conceptualization” means moving the component ID or
the detector ID of an attack graph node upward toward the respective base of the
inheritance hierarchy (Figure 6.4 and Figure 6.6). ComponentConceptLevel specifies the
target level a component should be moved to (base is at level 1). Similarly,
DetectorConceptLevel specifies the target level a detector should be moved to. The
algorithm in Table 6.7 is invoked by the algorithm in Table 6.6 to carry out the actual
conceptualization process for each node. The UpdateNodeIDs(G) (Table 6.5) used in
Table 6.6 generates the identifier for each attack step node in the attack graph. A node’s
ID is the hash value of its parent nodes’ IDs and its conceptualized component and
detector fields. This design ensures a node’s ID to be representative of the graph topology

73

leading to it. Conceptually, two nodes from two separate attacks bear the same IDs, then
ORIGIN knows they have the same preceding attack steps. This makes identifying
similarities between attacks easier.

6.5. Limitations

The conceptualization level (DetectorConceptLevel and ComponentConceptLevel
in Sec. 6.4) is considered an input value to the system. The system administrator needs to
set the value at the start of the system. Future research should look at how to determine
the appropriate conceptualization level automatically.

The proposed approach to deal with zero-day attack is built on the assumption
that two similar attacks will share similar attack escalation and response effectiveness.
This requires an exhaustive study of a database of multi-stage attacks. This kind of
database is not available in the public domain, and the assumption is still an open
problem.

74

Equation Chapter (Next) Section 1

7. IMPLEMENTATION OF ADEPTS AND TESTBED

7.1. Description of e-Commerce Application

Figure 7.1 depicts the testbed that we use for experiments. The payload system
mimics an e-Commerce webstore, which has two Apache web servers running webstore
applications, which are based on Cubecart (http://www.cubecart.com) and are written in
the PHP scripting language. In the backend, there’s a MySQL database which stores all
the store’s information, which includes products inventory, products description,
customer accounts, and order history. There are two other organizations with which the
webstore interacts – a Bank and a Warehouse. The Bank is a home-grown application
which verifies credit card requests from the webstore. The Warehouse is also a home-
grown application, which takes shipping requests from the webstore, checks inventory,
applies charges on the customer’s credit card account, and ships the product. The clients
submit transactions to the webstore through a browser. Some important transactions are
given in Table 7.1.

Data mining

ADEPTS
Control
CenterResponse

Cmd via
SSH

Detector Alerts
via MessageQ

Firewall

Apache

Clients

MySQL

PHP

Data Backup

Warehouse /

Shipping

Bank

Applications

Firewall

Apache

Applications

Load
Balancer

PHP

Intra-domain
Inter-domain
ADEPTS-
payload

interaction

Data mining

ADEPTS
Control
CenterResponse

Cmd via
SSH

Detector Alerts
via MessageQ

Firewall

Apache

ClientsClients

MySQL

PHP

Data BackupData Backup

Warehouse /

Shipping

Warehouse /

Shipping

BankBank

Applications

Firewall

Apache

Applications

Load
Balancer

Load
Balancer

PHP

Intra-domain
Inter-domain
ADEPTS-
payload

interaction

Figure 7.1. Layout of e-Commerce testbed

We set certain security goals for the system, the complement of which are

specified in Table 7.2, along with the weights. Thus adding the word “prevent” before
each gives the goal. The attached weights to the transactions and security goals are used
for survivability computation in Section 8.3. The weights are hypothetical but the

75

magnitudes represent the relative importance to the overall system. In an actual
deployment, these weights would be set by the system owner using methods such as
analysis of the Total Cost of Ownership (TCO).

Table 7.1. List of e-Commerce transactions

Name Services involved Weight
Browse webstore Apache, MySQL 10
Add to shopping cart Apache, MySQL 10
Place order Apache, MySQL 10
Charge credit card Warehouse, Bank 5
Admin work Variable 10

Table 7.2. List of e-Commerce security goals

Name Weight
Illegal read of file 20
Illegal write to file 30
Unauthorized credit card charges 80
Cracked administrator password 90
Illegal process being run 50
Corruption of Apache docs / MySQL DB 70
Confidentiality leak of customer info 100
Unauthorized orders created or shipped 80

7.2. Detectors

For our testbed, multiple detectors which communicate with ADEPTS through
secure channels are used. We use two off-the-shelf detectors − Snort and Libsafe, and
create three home-grown detectors. Snort is used for detecting intrusion patterns in
network traffic while Libsafe is used to detect buffer overflows in protected C-library
calls. We create a kernel-based File Access Monitor, which can detect file access
attempts of monitored processes and compare these access attempts against preset rules to
detect illegitimate activity. Also, we create a Transaction Response Monitor, which
monitors the transaction response time of the webstore using requests from the Apache
Benchmark (http://httpd.apache.org/docs-2.0/programs/ab.html). Finally, there is an

76

Abnormal Account Activity Detector at the Bank, which detects abnormal account
activities such as excessive number of credit card transactions on one account. The
detectors used are all imperfect ones, with the possibility of missed alarms and false
alarms. In Section 8.1, false alarms and missed alarms are artificially generated to test the
detection algorithms. The frequency of false alarms is controlled manually and missed
alarms are generated by non-deterministically discarding real alerts (or artificially setting
a low alert confidence) based on a user-defined missed alarm probability for an alert. The
detectors are not optimized for each attack scenario that the system is tested with. This is
because the process is clearly labor-intensive and relies heavily on administrator
expertise. For the off-the-shelf detectors, the rules are taken from the public distribution,
else the rules are created by a researcher separate from the group that generates the attack
scenarios.

7.3. Attack Scenarios

The ADEPTS implementation is tested with different attack scenarios classified
into three categories − illegal transaction, DoS, and leaking/corrupting information. Each
attack scenario consists of a set of attack steps, with an ultimate high-level goal. Each
step of the attack scenario may be detected by none, one, or more of the detectors. We
show in Table 7.3 ~ Table 7.6 and Figure 7.2 one sample scenario from each category –
Scenario 1 is placing unauthorized orders (illegal transaction), Scenario 4 is a DoS attack
on the webstore, and Scenario 8 is vandalizing webstore (leaking/corrupting information).
Scenario 9, which is stealing/corrupting the SQL database (leaking/corrupting
information) is different from the other attack scenarios shown in Table 7.3 ~ Table 7.6.
The difference is that Scenario 9 is a dynamic attack scenario while the other three are
the static ones. In a dynamic attack scenario, an adversary proceeds through the scenario
graph in a depth first manner and if any step is unsuccessful, possibly due to a successful
deployed response, the adversary attempts an alternate path. Thus, a branch out point
indicates multiple alternate strategies available to the adversary. Dynamic scenarios are
used to better reflect the actions from a real-world adversary.

77

Table 7.3. Attack Scenario 0
Scenario 0

1. Exploit Apache mod buffer overflow.
2. Insert malicious code.
3. IP/port scanning to find vulnerable SQL server.
4. Buffer overflow MYSQL to create a shell (/bin/sh).
5. Use malicious shell to steal information stored in

MySQL.

Table 7.4. Attack Scenario 1

Scenario 1
1. Apache php_mime_split buffer overflow
2. ‘ls’ to list webstore document root and identify code

regarding warehouse shipments
3. Send shipping request to warehouse, crafting request form to

cause buffer overrun to fill form with victim’s credit card
number

4. Make unauthorized orders

Table 7.5. Attack Scenario 4

Scenario 4
1. DDoS attack via issuing huge amount of legal transactions (i.e.

product search)

Table 7.6. Attack Scenario 8

Scenario 8
1. Buffer overflow Apache.
2. Create a shell with Apache Privilege
3. Attacker issues crontab command to exploit a vulnerability

which can create a root privilege shell
4. Root privilege shell created out of the vulnerable cron deamon
5. Attacker corrupts the data stored in web server document root

78

We also test ADEPTS with other attack scenarios (e.g. Figure 8.13, Figure 8.18,
Figure 8.19, Figure 8.20, and etc.) involving buffer overflow attacks to steal client info,
and other DoS attack scenarios entailing memory exhaustion in the Apache MIME
handling components. The entire I-GRAPH generated by the PIG algorithm consists of 57
nodes and 1148 edges and is too large to be shown. A fragment of the I-GRAPH was
shown in Figure 2.

Figure 7.2. Example of a dynamic attack scenario (Attack Scenario 9)

[Thicker blue circles denote an associated detector]

7.4. Response Repository

Four types of response commands are included in the Response Repository −
general, file, network, and denial-of-service types. The general-type commands can be
deployed to block any types of intrusion-centric channels in the I-GRAPH, corresponding
to the super channel. The other types of commands have a one-to-one map to the kinds of
intrusion channels introduced in Section 3.2. The implementation of the file-type
commands is achieved by using the Linux Intrusion Detection System (LIDS) version
2.2.0. The implementation of the network-type commands is performed by using iptables.
The general type commands are killing a process and restarting or shutting down a

79

service or a host. The file-type commands are to deny any access to a file, or selectively
disable read, write, or execute access. The network-type commands are to block
incoming or outgoing network connections, parameterized by source or destination port,
IP, or protocol. The DoS-type commands are to limit the rates of various types of packets,
such as SYN, ICMP echo, ICMP host not reachable, and SYN-ACK.

80

Equation Chapter (Next) Section 1

8. EXPERIMENTS AND RESULTS

We perform experiments on the e-Commerce testbed using both synthetic and

real-world attack scenarios. The experiments have the goals of demonstrating the
following – (i) Ability of the missed alarm and false alarm detection algorithms to
identify inaccuracies in the detectors, (ii) Ability of ADEPTS to adapt the responses
without and with reference attack patterns, (iii) Scalability of ADEPTS, (iv) Effect of
survivability with time as multiple instances of an attack scenario impact the payload, (v)
Comparing global optimal response determination (ADEPTS II / SWIFT) with heuristic-
based response determination (ADEPTS I), (vi) Effectiveness of (ADEPTS III / ORIGIN) to
deal with zero-day attacks.

Due to the constraints of space, the results for a sample number of attack
scenarios are shown. Comparing ADEPTS to other dedicated IRSs is difficult since they
are not publicly available. For the experiments, survivability is defined as 1000 - |Iv| or
more specifically 1000 – Σ unavailable transactions – Σ failed security goals. Each
response is pre-configured with an expiry time. When a transaction becomes unavailable
or the security goal is violated, the survivability drops by its corresponding weight (e.g.
Table 7.1 and Table 7.2). Transactions become unavailable due to responses, such as
rebooting a host, or attacks. Security goals may be violated due to the successful
execution of an attack step. After a run of an attack scenario is completed, any drop in
survivability (or increase in |Iv|) due to non-permanent security goal violations (e.g.
running a malicious process only to reach another goal) is reversed.

8.1. Missed Alarm and False Alarm Estimation

The objective of this experiment is to demonstrate the behavior of the false alarm
and missed alarm algorithms given in Section 3.7. The scaling parameter qγ and pγ are

set at 0.2.

81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 13 25 37 49 61 73 85 97 109

Number of times node 30 has flagged

Fa
ls

e
al

ar
m

 p
ro

ba
bi

lit
y

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41
Number of consecutive missed alarms

M
is

se
d

al
ar

m
 p

ro
ba

bi
lit

y

Alert confidence = 0.0

Alert confidence = 0.1

Alert confidence = 0.2

(b)

82

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (number of attacks)

D
et

ec
to

r m
is

se
d

al
ar

m
 ra

te Missed alarm rate = 50%

Missed alarm rate = 20%

Missed alarm rate = 5%

(c)

Figure 8.1. Behavior of false and missed alarm computation algorithms

Figure 8.1 (a) shows how the false alarm probability fluctuates as real attacks are

interspersed with false alarms. Repeatedly, sets of nine false alarms are generated
successively at node 30 with attack scenario 14 run after each set of false alarms.
Scenario 14 is a static scenario where the attacker attempts to buffer overflow Apache
and MySQL through their process stacks, to try and illegally access the MySQL database.
Scenario 14 generates a real alert at node 30, along alerts at other nodes. The last set of
false alarms has forty false alarms instead of nine. As can be seen, false alarms will cause
the false alarm probability for alerts at node 30 to increase. The increase with the first set
is the highest since there is no prior evidence of real attacks.

Due to the variation of the (α,β) bias parameters (they are dependent on the
present and past links probabilities), the rate of increase increases as more false alarms
occur but decreases as it converges to one. The large drop when a real alarm occurs is due
to the conservative nature of the algorithm which tries not to miss alarms for which
response action is to be taken.

Figure 8.1 (b) shows how the missed alarm probability of a node in the present I-
GRAPH varies when consecutive missed alarms are continuously generated. This is
achieved by repeatedly running attack scenario 14 with node 30 having hardwired alert

83

confidences of 0.0, 0.1, and 0.2. Due to the highly connected nature of the I-GRAPH, the
compromised child node of node 30 is also connected to the compromised parent node of
node 30. This results in a failure to detect a missed alarm when the alert confidence is 0.0
(i.e. no alert occurs at node 30). This is explained by the fact that a compromised child
node can lead to a parent of node 30 being compromised bypassing node 30 because of
the existence of an edge between them. Therefore it is not possible for the algorithm to
determine that there was a missed alarm at node 30 without any other evidence. If the I-
GRAPH was not that connected, or probabilities were assigned to each I-GRAPH edge
based on the likelihood of traversal, then it is very likely that the completely missed alert
(alert confidence 0.0) would be detected. Only when the alert confidences are small non-
zero values were missed alarms detected. The growth rate is inversely proportional to the
alert confidence. The missed alarm probability can grow to a maximum 1-alert
confidence.

Figure 8.1 (c) shows the Libsafe detector’s calculated missed alarm rate as attack
scenario 14 is repeatedly executed with varying missed alarm rates. This rate is calculated
by taking the number of times ADEPTS concludes there is a missed alarm with probability
greater than 0.5 and dividing it by the number of times the attack scenario has been run.
This mimics the situation where a detector is unpredictable and misses a fraction of alerts
corresponding to different variants of an attack. Every time scenario 14 is run, the alert
confidence of node 30 is set to 0.1 with a probability equal to the missed alarm rate (5%,
20%, 50% in the experiments) and to 1.0 otherwise. As we can see, the missed alarms are
detected with regularity, resulting in a calculated missed alarm rate that asymptotically
tends to the actual missed alarm rates. For the experimental setting of ADEPTS, only when
the missed alarm probability is greater than 50% will a possible missed alert be
considered an actual missed alert. As a result, the initial missed alarm rate is at 0% and
gradually grows later.

8.2. Adaptation of Response Action

In this experiment we demonstrate the adaptation in ADEPTS in taking more
appropriate responses as multiple instances of an attack are observed in the system.
Recollect that an attack sub-graph is induced from the I-GRAPH for each attack instance.
After the attack instance ceases, the sub-graph is distilled into a raw reference attack
pattern (attack snapshot) and the state regarding the effectiveness of the responses is
maintained in this pattern.

84

Four instances of attack scenario 9 shown in Figure 7.2 are executed. The
instances are not identical since the dynamic attack scenario 9 allows for diversity of
paths. Instance 1 and 3 follow the same attack steps while instance 2 and 4 follow the
same attack steps. Raw attack pattern 1 is created after instance 1 and reused in instance
3, while raw attack pattern 2 has the same role for instances 2 and 4.

The steps for the attack instances are as follows. Attack instances 1 and 3 have the
steps: S5 - Attacker sends packet for Apache chunk buffer overflow; S11 - Stack-based
buffer overflow on Apache; S1 - Insert malicious code into Apache; S2 - IP/Port scanning
to find SQL server; S13 - Send packets to SQL server for creating a shell; S3 – Stack-
based buffer overflow SQL; S14 – Create a shell out of SQL process; S4 – Access
/var/lib/mysql via the malicious shell. For attack instances 2 and 4, the steps are: S0 –
Attacker sends packets for Apache mod_ssl buffer overflow; S12 – Heap-based buffer
overflow at Apache; S1, S2 – Same as above; S6 - Guess the root password on SQL
server; S7 – Login to SQL server as a root. S10 – Modify SQL executable image to create
a malicious SQL daemon; S9 – Access /var/lib/mysql via the spawned malicous process.

Table 8.1. Placement of testbed services (symbolic addresses are used subsequently)

Client IPC : 128.10.247.110
Apache Replica 1 IPA : 128.10.247.105
MySQL Server IPM : 128.10.247.106

85

Table 8.2. Explanation of the responses for attack scenario 9

R0 iptables -A INPUT -p tcp -j DROP -s
IPC --dport 80

Block attacker’s IP from
accessing port 80 on Apache
Server Replica 1

R1 ./lids-file.sh IPA READ
/usr/local/apache2/bin/httpd

Make Apache Replica 1’s image
read-only

R2, R5,
R8, R96

iptables -A INPUT -j DROP -s IPC Block attacker’s IP from
accessing Apache Server Replica
1

R3, R7 restart.sh IPA
/usr/local/apache2/bin/httpd

Restarting Apache Server
Replicate 1

R4 iptables -A INPUT -p tcp -j DROP -s
IPC –dport 443

Block attacker’s IP from
accessing port 443 on Apache
Server Replica 1

R6 restart.sh IPM /usr/sbin/mysqld Restart MySQL Server

In Table 8.3, we show the different responses taken after each instance of the

attack. The second column gives the tuples with the responses and the EIs, both before
and after the attack. The third column gives the response that was taken and if it was a
success or a failure. Only a response that is deployed has its EI changed. The fourth
column gives the steps in the attack instance that were executed before it was contained
and therefore the attack sub-graph (AS) creation was stopped. After attack instances 1
and 2, the two raw attack patterns are created in the template library, which are shown in
Figure 8.2. In instance 2, responses R5 and R6 are noted as successful because they
prevent data on the SQL Server from being accessed henceforth, though the attacker’s
goal of accessing some data has already been achieved. After instance 3, a more precise
and effective set of responses is chosen using the raw pattern and the attack is stopped
two steps ahead compared to instance 1. Similarly for instance 4, a more effective
response R9 is chosen and the attack is stopped four steps ahead compared to instance 2.

6 Although R2, R5, R8, R9 are all the same, they are actually four independent responses deployed in the
four instances of scenario 9.

86

Table 8.3. Response adaptation for attack scenario 9

Instance
of

Attack
(Response, EI)

(Response
Taken,
After
which

step) (S|F)

Steps executed
before AS stopped

I1

Before: (R0, 1.1); (R1, 1.1); (R2,1.1);
R3(,1.1)

R0,11 (F)
R1,11 (F)
R2,2(S)
R3,2 (S)

S5 => S11 => S1
=> S2
 After: (R0, 0.935); (R1, 0.935);

I2
Before: (R4, 1.1); (R5, 1.1); (R6, 1.1)

R4,2 (F)
R5,9 (S)
R6,9 (S)

S0 => S12 => S1
=> S2 => S6 => S7
=> S10 => S9 After: (R4, 0.935)

I3

Load EI values from Raw Attack
pattern #1
EI(R1): 0.935
 ⇒ Another response as R1 is less
favorable in this attack instance.
EI(R3). 1.1
⇒ Set R7’s EI to 1.1 because R7 is the
same as R3
Before: (R7, 1.1); (R8, 1.1)

R7,11 (S)
R8,11 (S)

S5 => S11

After: (All responses are successful.
No decreasing of EI values occurs.)

I4

Load EI values from Raw Attack
pattern #2
EI(R4): 0.935
⇒ Another response as R4 is less
favorable in this attack instance.
EI(R5): 1.1
Before: (R9, 1.1)

R9,2 (S) S0 => S12 => S1
=> S2

After: (All responses are successful.
No decreasing of EI values occurs.)

87

Port scan MySQL Apache buffer
overflow at Apache

rid:1

Apache Chunk at
Apache rid:1

libmysqlclient.so
buffer overflow at

Apache rid:1

Pattern #1

Apache Mod SSL at
Apache rid:1

Port scan
MySQL

Illegal access to
/var/lib/mysql

Pattern #2

Port scan MySQL Apache buffer
overflow at Apache

rid:1

Apache Chunk at
Apache rid:1

libmysqlclient.so
buffer overflow at

Apache rid:1

Pattern #1

Apache Mod SSL at
Apache rid:1

Port scan
MySQL

Illegal access to
/var/lib/mysql

Pattern #2

Figure 8.2. Raw Patterns #1 and #2 after instance 1 and 2 of attack scenario 9

Table 8.4. Responses associated with the static attack pattern in Figure 8.3.

[16. Apache buffer overflow at Apache rid:1] [34. Port scan
MySQL]

− iptables -A INPUT -j DROP -s IPC
−./lids-file.sh IPM DENY “/var/lib/mysql"
− Reboot Apache’s host machine
− Wait for 15 minutes before deploying next

response for this node.
− Re-enable access to “/var/lib/mysql” on IPM

− Shutdown IPA

− Shutdown IPM

Figure 8.3. Static attack pattern with optimized responses for experiment 2

As mentioned earlier in Section 4.5, one can populate static attack patterns with

optimal responses in the attack template library. For this part of the experiment, we build
a static attack pattern as shown in Figure 8.3. The associated responses are shown in
Table 8.4. We use a preset threshold 0.5 for the threshold parameter in the algorithm
outlined in Table 4.2. For this part of experiment, we still use Scenario 9 and we take the
same attack path as the one used in Instance 1. It is observed that with the pre-configured
static attack pattern, the attack is stopped one step earlier when compared to the result of
instance 1 in Table 8.3. The recovery step of re-enabling access to “/var/lib/mysql” is also
advantageous since it improves the system survivability. For demonstrating the matching
with static attack pattern even better, another instance of scenario 9 is executed and the

88

successful response “Reboot Apache’s host machine” is suppressed for demonstration.
The result in Table 8.5 (column 2) shows that the attack moves one step further and the
responses stored on the node [34. Port scan MySQL] are deployed in which both the
Apache server and MySQL server are both shut down.

Table 8.5. Response selection with matching against static attack pattern

Instance of Attack
Scenario

Matching score,
Step at which
match is
successful

Step : Responses taken
(S|F)

Steps executed
before AS is
stopped

I1 0.64, S11 S11 : R1(S), R2(S),
R3(S), R4(S)
… after 15 minutes
R5(S)

S5 => S11
=>S1

I2 (Response
“Reboot Apache
machine” is
suppressed)

0.64, S11
0.72, S2

S11 : R1(S), R2(S),
R3(F)
S2 : R6(S), R7(S)

S5 => S11 =>
S1 => S2

8.3. Survivability Improvement from Automated Response (ADEPTS)

In this experiment, the objective is to show how the survivability of the e-
Commerce system is affected by repeatedly stressing the system through the injection of
successive instances of a given attack scenario. The results of running three scenarios are
shown, where static scenarios 1 and 8 cover two of the three general attack categories
(DoS attacks are not shown here) and scenario 9 is a dynamic scenario. The survivability
is measured with and without ADEPTS. The static attack template library was kept empty.
The initial survivability value without ADEPTS is fixed as 1000 while with ADEPTS it is
1010, so as to provide clarity in the graphs through non overlapping plot lines. In the
graphs displayed, when the survivability returns to its initial value, it means that a single
instance of an attack scenario has ended and responses that were deployed have expired.
Permanent violations of security goals (e.g. illegal transaction, corruption of a database)
will not result in the survivability returning to its initial value unless the administrator
resets/restores/repairs the system. Multiple violations of a security goal are assumed to be
from different attackers and therefore cause a decrease in survivability multiple times.

89

0

200

400

600

800

1000

1200

Scenario 1 Attacks

Su
rv

iv
ab

ili
ty

No response

ADEPTS

Instance 1 Instance 2

(a)

0

200

400

600

800

1000

1200

Scenario 8 Attacks

Su
rv

iv
ab

ili
ty

No response

ADEPTS

Inst. 1 Inst. 5Inst. 4Inst. 3Inst. 2

(b)

90

0

200

400

600

800

1000

1200

1400

Scenario 9 Attacks

Su
rv

iv
ab

ili
ty

No response

ADEPTS

Inst. 1
Path 1

Inst. 2
Path 2

Inst. 3
Path 1

Inst. 4
Path 2

Inst. 5
Path 2

Inst. 6
Path 1

(c)

Figure 8.4. Effect of attack scenarios on survivability

(x-axis corresponds to logical time)

In Figure 8.4(a), attack scenario 1 is executed twice by different attackers. With

ADEPTS, the response (restart httpd) deployed during step 2 of the attack scenario
prevents the leakage of system information regarding warehouse shipments. This results
in the termination of the attack scenario and a return to the initial survivability after the
response has expired. This contrasts with the survivability without ADEPTS, which further
degrades due to the continuing attack that finally results in unauthorized orders being
made. The survivability degrades further because a separate illegal transaction has
occurred in the second instance. Since the response was effective in the first instance, it is
deployed again in the second instance.

Table 8.6 shows the cause of the survivability drop during an instance of scenario
1. In Figure 8.4(b), attack scenario 8 is executed five times. Due to the ineffective nature
of the responses deployed by ADEPTS initially, the survivability degrades similarly (a
little worse due to deployment of ineffective responses) to the system without ADEPTS.
Survivability returns to the initial value during the first three instances because manual
intervention occurs, that is, an administrator repairs the system. During the fourth and the
fifth instances, due to the feedback from earlier instances, a relatively disruptive response
of rebooting the Apache host machine is deployed much earlier, resulting in an effective

91

termination of the attack scenario. The webstore transactions are unavailable for the
period when the response is active, resulting in a lower survivability.

In Figure 8.4(c), dynamic attack scenario 9 is executed six times. Due to the
dynamic nature of the attack, different optimal responses are learned for different attack
paths taken by the attacker. Two different attack paths are tried in this experiment. That is
why an effective response in the first instance does not apply to the second instance. As
more instances occur, the optimal responses are determined based on feedback. For path
1, because the attack does not require a persistent connection from outside the network,
the initial responses that block incoming packets fail. Due to the earlier failures, another
response that restarts the http daemon is deployed. The response is effective in stopping
the attack because a clean copy of the daemon will be running after the restart. Through
feedback, ADEPTS deploys this response earlier in instance 3 and instance 6 when the
attacker uses path 1 again. The survivability degradation is still the same, but by
deploying the response earlier, the likelihood that the malicious code is successfully
injected is minimized. The initial steps through path 2 consist of causing a buffer
overflow using the heap, which is undetectable by the available detectors in the system.
This allows the attacker to compromise Apache silently. Then the attacker determines the
IP address of the MySQL server and the port it is listening to. This is detected, but the
response of blocking incoming TCP packets from the attacker’s IP to port 443 fails
because the attacker is using another port to communicate with the malicious Apache
process. The attacker then buffer overflows the heap of the MySQL daemon using
another vulnerability, and this is undetected. Then the attacker illegally accesses
/var/lib/mysql and is detected. The effective response deployed is to restart the MySQL
daemon. This relatively late response results in a significant drop in survivability. In
instance 4 and instance 5 when path 2 is repeated, instead of blocking packets specific to
port 443, the effective response of blocking all incoming packets from the attacker is
deployed. The result is a smaller drop in survivability. Without ADEPTS, the survivability
only degrades once because the attack is successful and the database is corrupted and not
repaired.

92

Table 8.6. Cause of survivability drop with and without ADEPTS in scenario 1

Cause of survivability drop in scenario 1
[Penalty]

Without ADEPTS

Cause of survivability drop in scenario 1
[Penalty]

With ADEPTS
Compromised Apache invoking
unauthorized program (bin/bash) [-50]

Compromised Apache invoking
unauthorized program (bin/bash) [-50]

Compromised Apache invoking
unauthorized program (bin/ls) [-50]

Restart /usr/local/apache2/bin/httpd [-30]

Illegal read in /usr/local/apache2/htdocs [-
20]

Illegal order created [-80]

8.4. Survivability Improvement : ADEPTS v.s BASELINE Local Response

This experiment shows the comparative performance of ADEPTS in maintaining
the survivability of the e-commerce system with respect to having no responses and only
BASELINE local responses. Two different attack scenarios are executed and the
survivability calculated at each step of the attack scenario. For the local response case,
the responses that came with the deployed detectors are used – Snort (IP blocking) and
bank monitor (freeze credit card).

93

Figure 8.5. Survivability vs. Attack Steps from Attack Scenario 0

Figure 8.6. Survivability vs. Attack Steps from Attack Scenario 1

For Attack Scenario 0 (Figure 8.5), ADEPTS far outperforms the other two. The

File Access Monitor detects a malicious shell being created with Apache privileges while
Snort detects an Apache SSL module buffer overflow packet. Consequently, ADEPTS
deploys aggressive responses to kill the process and block all following incoming packets
from the attacker. The inability of the BASELINE local response implemented by Snort to

94

drop the IP packets in time causes the attack to continue to spread. For Attack Scenario 1
(Figure 8.6), the performance of the local response is noticeably worse than ADEPTS.
ADEPTS deploys a successful response of disallowing shell commands with Apache
privileges, earlier than the local response at the bank monitor.

8.5. Scalability of ADEPTS

In this experiment, we examine the performance benefits that accrue from this
capacity for parallelism. The benefit is brought out by comparing the performance of
ADEPTS with the ability to handle multiple independent attack instances with multiple
attack sub-graphs, one for each attack instance, against an early prototype of ADEPTS
(referred to as version 0 in Section 4.2) that lacks this ability and therefore operates on
the entire I-GRAPH.

In this experiment, we synthesized 8 random I-GRAPHS, each with 700 nodes and
1050 edges differing in topology. For each run of this experiment, we insert a given
number of concurrent alerts into ADEPTS. We then measure the time for processing them
measured as the time between receiving the alerts and determining the nodes for
responses. It is assumed that there exist enough computational resources to work on the
parallelized parts of the computation in parallel.

Figure 8.7. Degree of parallelization in ADEPTS I

95

Figure 8.8. Speed up in ADEPTS I with increasing number of concurrent alerts

From Figure 8.8, we see that ADEPTS I gives considerable speedup over ADEPTS 0,

with an increasing trend as the number of concurrent alerts increases. Looking at the
absolute values of times in ADEPTS I, we find that the time increases as the number of
alerts increases even though unlimited computation resources are assumed to be available.
This is because the number of parallelizable sub-graphs grows with the number of alerts
as shown in Figure 8.7 (only results from 4 out of the total 8 I-GRAPHS are shown for
presentation clarity). However, the growth is sub-linear and therefore the relative speedup
between ADEPTS I and ADEPTS 0 increases only sub-linearly with increasing number of
alerts. The sub-linear growth is explained by the fact that the spatial locality algorithm
will tend to cluster alerts close by in the I-GRAPH into the same attack sub-graph. The
second comparatively less significant contributor to the increasing time with increasing
number of alerts is that the non parallelizable part of the computation – determining
which sub-graph an incoming alert belongs to – becomes more resource intensive. Figure
8.8 gives the average speed up of all the 8 cases between ADEPTS I and ADEPTS 0. The
vertical bar shows 2 standard deviations. With a small number of alerts (say, 50), ADEPTS
I performs only slightly better than ADEPTS 0. This is due to the inherently higher
constant overhead of ADEPTS I nullifies the performance gain from limited parallelization
of 3-6 generated sub-graphs. However, from around 100 alerts, ADEPTS I starts to
significantly out-perform ADEPTS 0. Of course, it is not reasonable to expect such a huge

96

number of concurrent alerts for a relatively small scale testbed like ours, but could be
close to reality were ADEPTS to be deployed on a huge corporate system.

8.6. Survivability for Micro-Benchmark (SWIFT v.s ADEPTS I)

Figure 8.9. Improvement in lowering |Iv| with SWIFT for Micro-benchmark

We consider as a micro-benchmark an attack scenario that has the form shown in

Table 8.7. This is a regular structure with each node representing a unique service being
affected. The multi-stage attack starts at svc0 and proceeds through all the four possible
paths with the goal of achieving svc21. There are ‘single-node’ responses on each node
which if successful has the effect of preventing the node and its children nodes from
being achieved. The other responses are ‘dual-node’ responses, which can contain the
attack on two nodes at a time. In general, a dual-node response has lower cost than the
total cost from two counterpart single-node responses but has higher cost than an
individual single-node response. Still, one has to consider the overall effectiveness and
the overlapping cost from other responses. This is one of the key strength of SWIFT in
judging the whole situation and seeking for the global optimal response combination. The
attack scenario is injected individually into SWIFT and ADEPTS I at the root node and is
executed multiple times. The initial EI values for all responses are taken to be 1, a
consciously chosen overly optimistic decision to investigate how the system unlearns it.

97

The survivability result from the experiment is shown in Figure 8.9. Overall,
SWIFT chooses responses which yield lower |Iv| than those from ADEPTS. This clearly
shows the advantage from considering responses in a system-wide global manner in
SWIFT (Eq. (3.2)). This is true even for the first attack instance where no history
information is available as shown in Figure 8.9. With the history built up over each attack
instance, we can see the decreasing of |Iv| from both cases due to the adaption processes
employed. Over the 25 attack instances, SWIFT yields an averaged |Iv| of 15.9 while
ADEPTS yields an averaged 21.9, a 27% improvement.

Table 8.7. Detailed attack snapshots from attack instance 24
Attack Instance 24

(a) SWIFT
After attack snapshot 1

(b) ADEPTS I (|Iv|=19)
At the end of the attack

(C) SWIFT (|Iv|=12.6)
At the end of the attack

Table 8.7 shows the selected attack snapshots at different time points for SWIFT

and ADEPTS for attack instance 24. Octagonal node means adversary has achieved the
node, elliptical means it has not; solid node means response has been deployed. In (a), we
see the response of SWIFT after only the first attack snapshot has been observed. SWIFT
has already deployed proactive responses, as far ahead as the fourth stage of the attack.
Having seen 23 previous attack instances for this specific attack, SWIFT has deduced that
responses in the fourth stage (at nodes svc4, svc9, svc14, svc19) have to be deployed
early enough to be successful. (b) and (c) show the cases at the end of the attack for
ADEPTS I and SWIFT respectively. ADEPTS I selects locally optimal responses and
therefore prefers the single-node responses, deploying a total of 11 responses and
effectively preventing the end goal of the adversary from being achieved. However,
SWIFT due to the property of searching for globally optimal responses, selects 4 dual-

98

node responses (ID: 0x4E20, 0x4E23, 0x4E26, 0x4E27) and 1 single-node response (ID:
0xC), again preventing the end goal from being achieved, but at a lower cost.

8.7. SWIFT : Learning from History to Reduce Search Space Size

Figure 8.10. # of edges in the domain graph generated out of the 3rd snapshot

99

Figure 8.11. Time used by SWIFT in response decision

Figure 8.12. |Iv| v.s Attack Instance

100

This experiment shows the effect of EPF tuning on reducing the size of the
domain graph for an attack scenario as SWIFT gets adapted to the attack steps (Section
5.5.). Here we assume a system with an I-GRAPH containing 42 nodes and 103 edges. We
use two attack scenarios EPFAS.1, which can be potentially deterred with deployed
responses, and EPSAS.2, which doesn’t have any applicable responses available on its
attack paths and can’t be deterred. 30 attack instances are injected into the system. Attack
instances 0-9 follow attack scenario EPFAS.1, 10-19 follow EPFAS.2, and 20-29 revert
to EPFAS.1. Here we discuss the results on the 3rd attack snapshot from a few
representative attack instances. (In the last few attack instances, when SWIFT fully adapts
itself to the attack, the attack is only able to populate three attack snapshots before being
effectively stopped by SWIFT. Therefore, for presentation consistency, we use the 3rd
attack snapshot even though in the first few attack instances, there do have more than
three attack snapshots available.)

As we can see EPF Tuning not only reduces the size of the domain graph, which
speeds up the execution time of SWIFT, but also improves the quality of the generated
response solutions i.e., reduces the overall system |Iv|. This happens since SWIFT searches
through follow-on attack steps which are more likely and avoids deploying responses on
nodes that are unlikely. From Figure 8.10, we can see a clear decreasing trend in the size
of the domain graph from 77 edges to 12 edges for the first 10 attack instances with EPF
tuning. On the other hand, the number of edges without EPF tuning is significantly higher.
The fluctuation of the number of edges without EPF tuning is due to the different
responses deployed prior to the 3rd attack snapshot for each different attack instance.

From Figure 8.12 we can see that for attack instances 10-19, all the responses are
totally ineffective, which translates into the higher |Iv| values. From Figure 8.10, we see
the sudden increase in the size of the domain graph at instance 10 as the unseen attack
scenario EPFAS.2 emerges. With EPF tuning, SWIFT adapts itself quickly and the size
drops to 12 edges per domain graph starting from attack instance 13 again. When the
system is injected with EPFAS.1 again (instances 20-29), we observe that SWIFT is able
to use its memory of EPFAS.1—the domain graph is small and the |Iv| does not shoot up.
The spike in |Iv| at attack instance 22 is due to the probabilistic nature of the occasional
failure of the response on [svcs3].

Overall, we conclude that reducing the size of a domain graph through EPF tuning
not only improves the efficiency in response searching but also improves the quality of
the resulting responses.

101

8.8. SWIFT : Survivability for Real Attack Scenarios

Exploit ssldump vuln.
On web server

Access web server
admin site

Brute force admin
password

Ping or traceroute to
webserver 1

Run portscanner on
web server 6

16 18

Copy Hacker tool to
webserver 40

Install vuln. Scanner
on web server 56

Run port scanner9 Exploit rpc.statd on
app controller50

Brute force root pwd
on app controller53

14

Copy hacker tool to
web server using tftp40

Connect to
MySQL

36Modification queries
on database tables37

9, 14

14

45

66

71
56,57,71

37, 6025, 60

6

Dashed line: AS3, Thin solid line: AS3 and AS4, Thick line: AS4
Figure 8.13. Attack scenarios 3 and 4 (AS3, AS4)

Figure 8.14. |Iv| for AS3

102

Figure 8.15. | Iv | for AS4

Figure 8.13 shows the two attack scenarios AS3 and AS4 used in this experiment.

These are real in so far as they are created from the publicly available vulnerability and
attack databases by chaining individual attack steps. The numbers on the edges
correspond to the response IDs which can prevent propagation of the attack. Some
responses (R9, R25, R56, R57, and R66) require longer lag time for effective deployment.
They are useful for SWIFT due to its ability to deploy them proactively, but useless for
ADEPTS I, which considers only local optimal responses. Besides, we have initial EI value
for R60 set erroneously low and those of the other responses set overly high. The goal is
to see if SWIFT can recover from this situation. The end node N37 is a critical node with a
high |Iv|. We inject 15 instances each of AS3 and AS4 and compare the achieved
survivability at the end of each attack instance for ADEPTS I and SWIFT. Figure 8.14
shows that ADEPTS I’s performance is widely fluctuating for AS3. This is primarily due
to the fact that ADEPTS I considers responses close to the nodes that have been achieved.
For example, R71 has about 50% probability of success in deterring the propagation from
node N50 to N53 when it is deployed by ADEPTS I at the time when N9 is flagged. SWIFT
consistently has lower |Iv| than ADEPTS I. This is due primarily to SWIFT’s ability to
redeem R60 through the fuzzy EI mechanism (Section 5.4) even though it had a low initial
value. In ADEPTS I R60 is not considered till the EIs of the other responses also diminish
to this low value. For AS4 (Figure 8.15), while the general pattern is similar to that of
AS3, the difference in the |Iv| is negligible for some instances. This is due to the fact that

103

there are more available responses in AS4, and therefore ADEPTS I does not suffer as
much from underestimated response R60.

8.9. SWIFT : Responding to Attack Variants

Figure 8.16. |Iv| with SWIFT leveraging history from an attack variant (AS3)

Figure 8.17. |Iv| with SWIFT leveraging history from an attack variant (AS4)

104

In this experiment we consider AS3 and AS4 to be variants of each other (due to
their shared nodes as shown in Figure 8.13). The results are shown in Figure 8.16 and
Figure 8.17. In the first sub-experiment, we execute AS4 15 times and use its snapshot
from the ATL (which includes the optimized responses that SWIFT had determined) in
responding to AS3. In the second sub-experiment, we reverse the roles of AS3 and AS4.
The key difference between using history and not using it expectedly lies in the first
attack instance. In both AS3 and AS4, SWIFT is able to use the historical information
from the variant and limit the damage to the system from the first attack instance
compared to the case without history. This would be valuable in dealing with very
destructive attacks when they are observed for the first time.

8.10. ORIGIN : Responding to Zero-Day Attacks

Figure 8.18. AS: MIT LLDoS

105

Figure 8.19. AS: MalExec

Figure 8.20. AS: ModSSL

To evaluate the design, we inject attacks from different attack scenarios into our

testbed (the application system) which is protected by ORIGIN. We use two attack
scenarios from previous representative works in this field. One is the MIT LLDoS attack
scenario (Figure 8.18) as seen in [8, 62]. The other (Figure 8.19) is from the work by Ou
in a system called MulVAL [40]. We create a third attack scenario called “ModSSL”
(Figure 8.20). In the attack scenario, the oval nodes correspond to attack steps. The
rectangular nodes correspond to responses. In each attack scenario, the adversary follows
pre-specified probabilities which determine how likely he is to proceed from one step to
the next step in the absence of any response. For both LLDoS and MalExec, from step 1
to step 2 the value is 0.8, and for the rest, the probabilities are 0.9. For ModSSL, from
step 1 to step 2, the value is 0.1. For responses, the probability of success is a function of
the timing when they are deployed (response can take time to be fully deployed.). None
of these values are known to ORIGIN and it is left to the learning mechanism of ORIGIN.

106

Table 8.8. Overall |Iv| for each attack scenario injected to the testbed (IRS in absence)
LLDoS MalExec ModSSL

30 21 10

After we inject an attack scenario into the system, we sum the impact vectors

from the achieved attack steps and the impact vectors from the deployed responses. Table
8.8 shows the |Iv| for each attack scenario when ORIGIN is not present and all the attack
steps are achieved. Note that these values result from a subjective decision by the
sysadmin about the importance of the different transactions and the security goals in the
testbed system. The absolute values do not matter but the reduction by IRS is important.

We run ORIGIN with the conceptualization ON/OFF and study the results from
both cases. Since we are assuming all three attack scenarios are unknown to ORIGIN at the
beginning, there is no pre-built attack graph for any of them. Thus for previous IRS
systems including our previous ADEPTS I and ADEPTS II, no response will be considered,
and the attack will always go through. This means they can only achieve the same |IV|s as
for an unprotected system as given in Table 8.8.

Table 8.9. Nodes (in component ID / detector ID pair) generated by ORIGIN

LLDoS: 1.Sadmind (StackOverflow) => 2.PasswdShadowFiles (UpdateFiles) =>
3.Telnetd (NewUserLogin) => 5.Apache (NetworkDoS)

MalExec: 1.Apache (HeapOverflow) => 2.NFSFile (CreateFiles) => 3.Windows_wn
(UnAuthExec)

ModSSL: 1.Apache (StackOverflow) => 2.Linux_wsvr (SpawnShell)

Table 8.10. Conceptualized nodes (Conceptualize(G,2,3))
LLDoS: 1.Program (MemError) => 2.File (ContentChange) => 3.Program

(SecPolicyChange) => 5.Program (DoS)
MalExec: 1.Program (MemError) => 2.File (ContentChange) => 3.OS (UnAuthExec)
ModSSL: 1.Program (MemError) => 2.OS (UnAuthExec)

Table 8.11. Conceptualized nodes (Conceptualize(G,1,2))
LLDoS: 1.Base (GotEffect) => 2.Base (GotEffect) => 3.Base (GotEffect) =>

5.Base (GotEffect)
MalExec: 1.Base (GotEffect) => 2.Base (GotEffect) => 3.Base (GotEffect)
ModSSL: 1.Base (GotEffect) => 2.Base (GotEffect)

107

Table 8.9 shows the nodes (in component ID / detector ID pair) and the edges

created by the attack graph generation process for each of the three attack scenarios. For
LLDoS, there is no corresponding node for step 4. “Install DoS code on X” because in
our system configuration specification, there’s no detector to detect that step. Table 8.10
shows the nodes and edges after conceptualization with Conceptualize(G,2,3). Each node
shows the conceptualized component and the conceptualized detector alert. As shown in
Table 8.11, all three attack scenarios become identical in terms of their prefixes with
Conceptualize(G,1,2).

Next we present the results showing situations when conceptualization gives
benefits and also situations when conceptualization has drawbacks. For each experiment,
we conduct three batches of executions and take the average. In each batch of experiment,
we inject 100 instances of attacks (from the same scenario) into the testbed. We then plot
the averaged |Iv| readings for each corresponding attack instance.

Figure 8.21. w/o conceptualization. LLDoS w/ and w/o history from MalExec

108

Figure 8.22. w/o conceptualization. MalExec w/ and w/o history from LLDoS

Figure 8.23. Conceptualize(G,2,3). LLDoS w/ and w/o history from MalExec

109

Figure 8.24. Conceptualize(G,2,3). MalExec w/ and w/o history from LLDoS

Figure 8.25. Conceptualize(G,1,2). LLDoS w/ and w/o history from MalExec

110

Figure 8.26. Conceptualize(G,1,2). MalExec w/ and w/o history from LLDoS

8.10.1 Benefits from Conceptualization

For this experiment, we use LLDoS and MalExec as the attack scenarios. This is
because we found they share similarities after being conceptualized. Specifically, they
share the first two steps in Table 8.10 and the first three steps in Table 8.11. To start with,
we first experiment on LLDoS and MalExec without any conceptualization. The results
are shown in Figure 8.21 and Figure 8.22. Figure 8.21 shows the result on injecting
LLDoS into the testbed without any history in ORIGIN’s ATL and also pre-injecting
MalExec followed by injecting LLDoS (referred to as “with history”). The significant
discontinuities in the data points are due to the non-determinism in both the attack
escalations (the attacker can fail at any step) and the deployed responses (a response can
also fail). Like previous adaptation-capable IRS such as [48], we see the |Iv| value
decreases as more attack instances are seen. This is due to ORIGIN having a more accurate
estimate on both the attack escalations and effectiveness of responses for the specific
attack.

From both Figure 8.21 and Figure 8.22, we see no significant differences between
with and without history. This is understandable as the vulnerabilities exploited by

111

LLDoS and MalExec are completely different. Therefore, even with history from one
attack, the other attack is still regarded as a zero-day attack.

For the next run, we proceed with Conceptualize(G,2,3) in ORIGIN. The
conceptualized attack graph nodes are shown in Table 8.10. The results are shown in
Figure 3.5 and Figure 5.3. Still not much difference is observed between when history is
available and when history is not available. This is because the Conceptualize(G,2,3)
conceptualized attack graphs for LLDoS and MalExec only shares the first two nodes.
And after checking with Figure 8.18 and Figure 8.19, we know that they share only two
responses: ‘Kill XXX process’ and ‘Disable Write access to YYY’. A further
investigation turns out that these two responses are not very effective. So knowing one
attack does not really facilitate the response to the other attack.

We then proceed further to Conceptualize(G,1,2). This results in attack graph
nodes as shown in Table 8.11. The results are shown in Figure 8.25 and Figure 8.26.
Eventually, we observe distinctive improvement in the case where history is available.
This means that the originally zero-day attack is no-longer totally unknown to the IRS.
The improvement is more significant for the case of injecting MalExec with history from
LLDoS (Figure 8.26) and less significant in the other case (Figure 8.25). This is due to
the fact that even with the history from MalExec, ORIGIN still needs to figure out the
likelihood of escalation to Step 5 and the effectiveness of response M,D,E, and F in
LLDoS (Figure 8.18). While with the history from LLDoS, ORIGIN only needs to figure
out if responses J and K (Figure 8.19) are effective. Actually, we found that in both cases,
the most effective response is the “Disable Read Access”, which corresponds to
responses C and I. These responses are in the shared part of the conceptualized attack
graphs for the two attacks and hence history benefits from them.

In summary, ORIGIN is able to respond to a zero-day attack most notably MalExec,
having seen a distinct attack LLDoS before.

112

Figure 8.27. Conceptualize(G,1,2). LLDoS w/ and w/o history from ModSSL

Figure 8.28. Conceptualize(G,1,2). MalExec w/ and w/o history from ModSSL

113

Figure 8.29. Conceptualize(G,2,3). MalExec w/ and w/o history form ModSSL

8.10.2 Drawbacks from Conceptualization

In our experiment, we found that for both LLDoS and MalExec, the likelihood of
attack propagation from the first step to the second step is roughly 80%. We create the
attack ModSSL for further investigation into the capabilities of conceptualization (Figure
8.20). When injecting the ModSSL attack, the attacker is intentionally restrained from
proceeding to step 2 from step 1 with a low propagation probability of 10%. Figure 8.27
and Figure 8.28 present the result from first injecting ModSSL to the system and then
followed by LLDoS and MalExec respectively. The conceptualization level is set at
Conceptualize(G,1,2) as this is the level when the system will consider all three attack
scenarios as identical concept.

From both Figure 8.27 and Figure 8.28, we see worse performance with history
from ModSSL. This is because the pre-injected ModSSL has made ORIGIN believe that
propagation from step 1 and step 2 for attacks of that concept is very unlikely (around
10%). This decreases the likelihood of early proactive responses such as C and I when
the first attack step is achieved. These responses are useful for both LLDoS and MalExec
for they have a much higher chance of escalating from step 1 to step 2.

114

In Figure 8.29, we increase the concept level to Conceptualize(G,2,3). At this
level, ModSSL is no longer following the same concept as either LLDoS or MalExec
(Figure 8.18, Figure 8.19, and Figure 8.20). Therefore, the performance against MalExec
with ModSSL pre-injected is back to normal as if ModSSL has not been seen.

One thing to note is that even in the cases of Figure 8.27 and Figure 8.28, ORIGIN
is still able to self-correct itself and approach the better response choice as more attack
instances are being seen.

Overall, there exists an optimal conceptualization level for different cases the
experiments indicate. The fact that conceptualization is causing a degradation in response
quality can be automatically deduced by ORIGIN since the values in CPTs will change
sharply. Therefore, ORIGIN can increase the conceptualization levels (deconceptualization)
or turn it off completely for specific multi-stage attacks. This is left as a topic for future
work.

115

9. CONCLUSIONS

We propose a new model for automated response in distributed systems. The

proposed model is first instantiated by the design and implementation of an automated
response systems called ADEPTS I. ADEPTS I uses a directed graph representation called I-
GRAPH to model the spread of the failure and attack through the system. It provides
algorithms to determine the possible path of spread and appropriately choose the response.
The mapping between detectors and response actions are dynamic and not restricted to a
pre-assigned set pairs. ADEPTS I creates attack sub-graphs from the I-GRAPH for each
incident instance and processes each sub-graph independently, thus making it scalable
with the number of alerts. ADEPTS I is demonstrated on an e-Commerce system with real
attack scenarios. The effect on the system is measured through a high level survivability
metric which captures the effect of transactions that can be supported as well as system
goals that are preserved under the attack. Empirical results comparing ADEPTS I and
BASELINE (Sec. 8.4) constitutes the evidence to thesis claim C2.

We develop a system named SWIFT (ADEPTS II) as an improved instantiation of
the proposed model over ADEPTS I to pursue globally optimal responses. The optimality
criterion takes into account the impact on the whole system from a deployed response in
reducing functionality and from the spread of the attack. We proved that the optimal
response determination problem for multi-stage attacks is NP-hard, fundamentally
because responses at different services are inter-dependent. Hence, we proposed using a
Genetic Algorithm (GA) based framework. The proposed GA framework enables the use
of history information from past attacks that are similar to the current one through
seeding the initial chromosome pool with the learnt effective response combinations from
those similar attacks. The evaluation brings out the fact that survivability improves with
the global response determination process of SWIFT over a heuristic based response
determination (e.g. 27% improvement based on experiment in Section 8.6) used in
ADEPTS I. History information from past similar attacks is used to deal with attack
variants in SWIFT with corresponding empirical results (Sec. 8.9) supporting thesis claim
C3.

116

We develop a third system named ORIGIN (ADEPTS III) as a further improved
instantiation of the proposed model. The focus of ORIGIN is to provide automated
response for zero-day multi-stage attacks. For a zero-day attack, the corresponding attack
graph is not known a priori. Therefore, existing IRSs, which use pre-built attack graphs,
are ineffective for such kind of attacks. A multi-stage attack can have non-deterministic
escalations from one stage to another and many response choices may be available to
deter the escalation. Therefore knowledge from prior attacks is useful. However, for zero-
day attack such prior knowledge is not available to the IRS. We firstly propose an object-
oriented system configuration specification methodology. We also present an online
attack graph generation process to generate a Bayesian Network based attack graph based
on detector alerts and the system configuration specification. We propose a technique
called “conceptualization of attack graph” which manages to establish linkage between a
zero-day attack and past attacks to improve the performance of intrusion response for the
zero-day attacks. We validate the ORIGIN system by two representative attack scenarios
used in two independent previous papers [40, 62] and one custom-built attack scenario.
We show that conceptualization to an appropriate level enables ORIGIN to respond
effectively to LLDoS and MalExec when they are zero-day attacks. This is another
evidence when history may help reduce the impact from an attack (thesis claim C3).
However, we find that the performance is sensitive to the conceptualization level chosen
and how to determine the appropriate conceptualization level remains an open problem.

There are many issues yet to be addressed following this work. For example, the
current design does not consider the use of recovery responses. Typically, recovery of
compromised parts of a system can be achieved through system checkpoints and rollback.
Existing work such as virtual machine snapshot and volume shadow copy service (on MS
Windows) can serve as the building blocks for this task. However, a response action,
whether containment or recovery, may have unintended consequences, such as disruption
of normal functionality and violation of system integrity, and these will have to be
factored in carrying out a recovery response. In addition, another important work is
reconfiguration of a system after an attack, which is also not addressed in this work. The
goal of reconfiguration is to fix the vulnerabilities exploited by the attack and prevent the
same attack from compromising the system again. Reconfiguration can be simply
changing the settings in system configuration files or applying software patches. A recent
work [63] attempts to generate patches for software bugs automatically through genetic
programming, which can potentially be extended to generate patches for security
vulnerabilities and serve as a means to reconfigurate the system.

117

LIST OF REFERENCES

118

LIST OF REFERENCES

[1] DARPA-IPTO, "Organically Assured and Survivable Information Systems
(OASIS)," (http://www.darpa.mil/ipto/programs/oasis)

[2] DARPA-IPTO, "Self-Regenerative Systems (SRS),"
(http://www.darpa.mil/ipto/programs/srs)

[3] N. Provos, "Improving host security with system call policies," in USENIX
Security Symposium, 2003.

[4] N. MacDonald, "Host-Based Intrusion Prevention Systems (HIPS) Update: Why
Antivirus and Personal Firewall Technologies Aren't Enough," Gartner.com, 2007.

[5] N. Desai, "Intrusion prevention systems: The next step in the evolution of IDS,"
2003.

[6] G. Young and J. Pescatore, "Magic Quadrant for Network Intrusion Prevention
System Appliances, 1H08," Gartner.com, 2008.

[7] Y. S. Wu, B. Foo, Y. Mei, and S. Bagchi, "Collaborative intrusion detection
system (CIDS): a framework for accurate and efficient IDS," in IEEE Annual
Computer Security Applications Conference, 2003, pp. 234-244.

[8] P. Ning, Y. Cui, and D. S. Reeves, "Constructing attack scenarios through
correlation of intrusion alerts," in ACM conference on Computer and
Communications Security, 2002, pp. 245-254.

[9] S. Noel, E. Robertson, and S. Jajodia, "Correlating Intrusion Events and Building
Attack Scenarios through Attack Graph Distances," in IEEE Annual Computer
Security Applications Conference, 2004, pp. 350-359.

[10] CMU, "Survivable Network Technology,"
(http://www.sei.cmu.edu/organization/programs/nss/surv-net-tech.html)

[11] NSSLabs, "McAfee M-8000 Network IPS Product Certification," 2009.
[12] T. Toth and C. Kruegel, "Evaluating the Impact of Automated Intrusion Response

Mechanisms," in IEEE Annual Computer Security Applications Conference, 2002,
pp. 9-13.

[13] F. Cohen, "Simulating Cyber Attacks, Defenses, and Consequences,"
(http://all.net/journal/ntb/simulate/simulate.html)

[14] R. Ellison, R. Linger, T. Longstaff, and N. Mead, "Case Study in Survivable
Network System Analysis," SEI, CMU, Technical Report1998.

[15] A. H. R. Anderson, and R. Hundley, "Studies of Cyberspace Security Issues and
the Concept of a U.S. Minimum Essential Information Infrastructure," in
Information Survivability Workshop, 1997.

119

[16] E. Fisch, "Intrusion Damage Control and Assessment: A Taxonomy and
Implementation of Automated Responses to Intrusive Behavior," College Station,
TX: Texas A&M University, 1996.

[17] C. A. Carver and U. W. Pooch, "An Intrusion Response Taxonomy and its Role in
Automatic Intrusion Response," in Proceedings of IEEE Workshop on
Information Assurance and Security, 2000, pp. 129-135.

[18] U. Lindqvist and E. Jonsson, "How to systematically classify computer security
intrusions," in IEEE Symposium on Security and Privacy, Oakland, CA, 1997, pp.
154-163.

[19] G. B. White, E. A. Fisch, and U. W. Pooch, "Cooperating security managers: a
peer-based intrusion detectionsystem," IEEE Network, vol. 10, pp. 20-23, 1996.

[20] P. A. Porras and P. G. Neumann, "EMERALD: Event monitoring enabling
responses to anomalous live disturbances," in Proc. 20th NIST-NCSC National
Information Systems Security Conference, 1997, pp. 353–365.

[21] D. J. Ragsdale, C. A. Carver Jr, J. W. Humphries, U. W. Pooch, I. Technol, O.
Center, and U. S. M. Acad, "Adaptation techniques for intrusion detection and
intrusionresponse systems," in IEEE International Conference on Systems, Man,
and Cybernetics, 2000.

[22] D. Sterne, K. Djahandari, B. Wilson, B. Babson, D. Schnackenberg, H. Holliday,
and T. Reid, "Autonomic Response to Distributed Denial of Service Attacks," in
International Symposium on Recent Advances in Intrusion Detection, 2001.

[23] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker,
"Controlling High Bandwidth Aggregates in the Network," AT&T Center for
Internet Research at ICSI (ACIRI)2001.

[24] D. Wang, B. B. Madan, and K. S. Trivedi, "Security analysis of SITAR intrusion
tolerance system," in Proceedings of the 2003 ACM Workshop on Survivable and
self-regenerative systems, 2003, pp. 23-32.

[25] C. Cachin, "Distributing trust on the Internet," in Proceedings of International
Conference on Dependable Systems and Networks, 2001, pp. 183–192.

[26] P. Pal, F. Webber, R. E. Schantz, and J. P. Loyall, "Intrusion Tolerant Systems,"
in Proceedings of the IEEE Information Survivability Workshop, 2000, pp. 24-26.

[27] V. Stavridou, B. Dutertre, R. A. Riemenschneider, and H. Saidi, "Intrusion
tolerant software architectures," in DARPA Information Survivability Conference
& Exposition II, 2001.

[28] P. Brooke and R. Paige, "Fault Trees for Security System Analysis and Design,"
Elsevier Journal of Computers and Security, vol. 22, pp. 256-264, May 2003
2003.

[29] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller, and R. Lutz, "A Software
Fault Tree Approach to Requirements Analysis of an Intrusion Detection
System," in Proceedings of the 1st Symposium on Requirements Engineering for
Information Security, 2001.

[30] M. Dacier, Y. Deswarte, and M. Kaaniche, "Quantitative Assessment of
Operational Security: Models and Tools," LAAS Research Report 96493May
1996 1996.

120

[31] R. Ortalo, Y. Deswarte, and M. Kaaniche, "Experimenting with Quantitative
Evaluation Tools for Monitoring Operational Security," IEEE Tranctions on
Software Engineering, pp. 633-650, 1999.

[32] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, "Automated
generation and analysis of attack graphs," in IEEE Symposium on Security and
Privacy, 2002, pp. 273-284.

[33] B. Foo, Y. S. Wu, Y. C. Mao, S. Bagchi, and E. Spafford, "ADEPTS: adaptive
intrusion response using attack graphs in an e-commerce environment," in
Proceedings. International Conference on Dependable Systems and Networks,
Yokohama, Japan, 2005, pp. 508-517.

[34] R. P. Lippmann and K. W. Ingols, "An Annotated Review of Past Papers on
Attack Graphs," 2005.

[35] Y. Zhai, P. Ning, P. Iyer, and D. S. Reeves, "Reasoning about complementary
intrusion evidence," in IEEE Annual Computer Security Applications Conference,
2004, pp. 39-48.

[36] W. A. Jansen, "Intrusion detection with mobile agents," Computer
Communications, vol. 25, pp. 1392-1401, 2002.

[37] G. Helmer, J. S. K. Wong, V. Honavar, and L. Miller, "Automated discovery of
concise predictive rules for intrusion detection," The Journal of Systems &
Software, vol. 60, pp. 165-175, 2002.

[38] M. E. Ludovic, "GasSAtA, a Genetic Algorithm as an Alternative Tool for
Security Audit Trails Analysis," in Proceedings of the First International
Workshop on the Recent Advances in Intrusion Detection, Louvain-la-Neuve,
Belgium, 1998.

[39] S. Jacobs, D. Dumas, W. Booth, and M. Little, "Security Architecture for
Intelligent Agent Based Vulnerability Analysis," in Third Annual Fedlab
Symposium on Advanced Telecommunications/Information Distribution Research
Program, 1999, pp. 447-451.

[40] X. Ou, W. F. Boyer, and M. A. McQueen, "A scalable approach to attack graph
generation," in ACM conference on Computer and Communications Security,
2006, pp. 336-345.

[41] T. R. Peltier, Information security risk analysis, 2 ed.: Auerbach Publications,
2005.

[42] R. E. Neapolitan, Learning Bayesian Networks: Prentice Hall, 2004.
[43] G. Modelo-Howard, S. Bagchi, and G. Lebanon, "Determining Placement of

Intrusion Detectors for a Distributed Application through Bayesian Network
Modeling," in International Symposium on Recent Advances in Intrusion
Detection, 2008, pp. 271-290.

[44] C. A. Carver, J. M. D. Hill, and U. W. Pooch, "Limiting Uncertainty in Intrusion
Response," in Proceedings of the IEEE Workshop on Information Assurance and
Security, 2001, pp. 5-6.

[45] E. Bryant, J. Early, R. Gopalakrishna, G. Roth, E. H. Spafford, K. Watson, P.
William, and S. Yost, "Poly2 paradigm: a secure network service architecture," in
IEEE Annual Computer Security Applications Conference, 2003, pp. 342-351.

121

[46] I. Balepin, S. Maltsev, J. Rowe, and K. Levitt, "Using Specification-Based
Intrusion Detection for Automated Response," in International Symposium on
Recent Advances in Intrusion Detection, 2003.

[47] W. Lee, "Toward cost-sensitive modeling for intrusion detection and response,"
Journal of Computer Security, vol. 10, pp. 5-22, 2002.

[48] Y. S. Wu, B. Foo, Y. C. Mao, S. Bagchi, and E. H. Spafford, "Automated
adaptive intrusion containment in systems of interacting services," Computer
Networks, vol. 51, pp. 1334-1360, 2007.

[49] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning Addison-Wesley Professional, 1989.

[50] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, "Pinpoint: Problem
Determination in Large, Dynamic Internet Services," in Proceedings of the 2002
International Conference on Dependable Systems and Networks, 2002, pp. 595-
604.

[51] G. Khanna, I. Laguna, F. A. Arshad, and S. Bagchi, "Distributed Diagnosis of
Failures in a Three Tier E-Commerce System," in IEEE Symposium on Reliable
Distributed Systems, 2007.

[52] P. J. v. Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications,
1 ed.: Springer.

[53] Wikipedia, "Zero day attack," (http://en.wikipedia.org/wiki/Zero-Day_Attack)
[54] P. Szor and P. Ferrie, "Hunting for Metemorphic," Virus, vol. 123, 2001.
[55] P. Ning, Y. Cui, and D. S. Reeves, "Analyzing Intensive Intrusion Alerts via

Correlation," Lecture Notes in Computer Science, pp. 74-94, 2002.
[56] A. Somayaji and S. Forrest, "Automated Response Using System-Call Delays," in

USENIX Security Symposium, 2000.
[57] P. G. Neumann and P. A. Porras, "Experience with EMERALD to Date," in

Proceedings of the Workshop on Intrusion Detection and Network Monitoring,
1999, pp. 73-80.

[58] P. Uppuluri and R. Sekar, "Experiences with Specification-Based Intrusion
Detection," Lecture Notes in Computer Science, pp. 172-189, 2001.

[59] Y.-S. Wu, G. Modelo-Howard, B. Foo, S. Bagchi, and E. Spafford, "The Search
for Efficiency in Automated Intrusion Response for Distributed Applications," in
IEEE International Symposium on Reliable Distributed Systems (SRDS) Naples,
Italy, 2008.

[60] O. Sheyner and J. Wing, "Tools for Generating and Analyzing Attack Graphs,"
Lecture Notes in Computer Science, pp. 344-371, 2004.

[61] B. Stroustrup, The C++ Programming Language, 3rd ed.: Addison-Wesley, 2000.
[62] P. Ning, D. Xu, C. Healey, and R. S. Amant, "Building attack scenarios through

integration of complementary alert correlation methods," in Annual Network and
Distributed System Security Symposium, 2004, pp. 97-111.

[63] S. Forrest, W. Weimer, T. Nguyen, and C. L. Goues, "A Genetic Programming
Approach to Automated Software Repair," in Genetic and Evolutionary
Computing Conference, 2009.

VITA

123

VITA

Yu-Sung Wu was born in Hsin Chu, Taiwan. He got his Bachelor degree in

Electrical Engineering from National Tsing Hua University, Taiwan in 2002. He soon
came to Purdue and got his Master degree in Electrical and Computer Engineering in
2004. He continued his study at Purdue and got his Ph.D. degree in Electrical and
Computer Engineering in 2009.

Yu-Sung Wu's research has been focused on information security and system
dependability. His work includes the design and implementation of various intrusion
detection systems and intrusion response systems for distributed applications. At Purdue,
he has collaborated with faculty and students from CERIAS and Computer Science
department on many security-related projects. During summers, Yu-Sung has worked at
Avaya Labs in New Jersey, where he participated in projects related to Voice-over-IP
system security.

