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ABSTRACT 
 
 

Wu, Yu-Sung  Ph.D.,  Purdue University, August 2009.  Achieving High Survivability in 
Distributed Systems through Automated Response.  Major Professor:   Saurabh Bagchi. 

 
 
We propose a new model for automated response in distributed systems. We 

formalize the process of providing automated responses and the criterion for asserting 
global optimality of the selection of responses. We show that reaching the globally 
optimal solution is an NP-hard problem. Therefore we design a genetic algorithm 
framework for searching for good selections of responses in the runtime. Our system 
constantly adapts itself to the changing environment based on short-term history and also 
tracks the patterns of attacks in a long-term history.  

Unknown security attacks, or zero-day attacks, exploit unknown or undisclosed 
vulnerabilities and can cause devastating damage. The escalation pattern, commonly 
represented as an attack graph, is not known a priori for a zero-day attack. Hence, a 
typical response system provides ineffective or drastic responses. Our system 
“conceptualizes” nodes in an attack graph, whereby they are generalized based on the 
object-oriented hierarchy for components and alerts. This is done based on our insight 
that high level manifestations of unknown attacks may bear similarity with those of 
previously seen attacks. This allows the use of history such as effectiveness of each 
response from past attacks to assist responses to the unknown attack.  

This thesis lays down three distinct claims and validates them empirically. The 
claims are: (i) For automated response, consider a baseline mechanism that has a static 
mapping from the local detector symptom to a local response. This corresponds to the 
state-of-the-art in deployed response systems. Now consider our proposed model which 
takes into account global optimality from choosing a set of responses and also does a 
dynamic computation of the response combination from the set of detectors and other 
system parameters (inferences about the accuracy of the attack diagnosis, response 



xiii 

effectiveness, etc.). The survivability of the application system with our proposed model 
is an upper bound of the survivability achievable through the baseline model. (ii) In some 
practical situations, the proposed model gives higher survivability than the baseline 
model. (iii) The survivability with our proposed model is improved when the system 
takes into account history from prior similar attacks. This kind of history is particularly 
important when the system deals with zero-day attacks.  
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Equation Chapter (Next) Section 1 

 

 
1. INTRODUCTION 

 
Distributed systems comprising multiple services interacting among themselves to 

provide end-user functions are an increasingly important information infrastructure. 
Examples abound in the commercial domain and in the critical infrastructure domain, 
such as, e-Commerce systems and SCADA systems, respectively. A fundamental nature 
of the distributed systems is that they are built of multiple services, such as web service 
and authentication service, running on individual hosts communicating with each other 
through standardized protocols, such as SOAP. The huge financial stakes involved or the 
importance to homeland security make them prime candidates for malicious activities, 
a.k.a. attacks1. In addition, as the complexity of these systems increases in exponential 
order due to the burgeoning number of services and the increasing complexity of the 
individual services, the occurrences of accidental failures are also on an upswing. 
Henceforth in the paper, we will refer to cyber attacks1, while realizing that some of the 
discussion carries over to natural or accidental failures as well2.  

The motivations outlined above have led to substantial interest in securing 
distributed systems through prevention of failures and successful attacks. Prevention is 
achieved through careful design and development of the components to eliminate most 
faults and vulnerabilities. However, it is widely believed that prevention cannot be the 
ultimate solution because despite the heroic efforts of developers, testers, and deployment 
specialists, few systems, if any, can claim to prevent all failures or attacks. This is 
especially pertinent when the systems have interfaces to external users, as all e-
Commerce systems and many SCADA systems do.   

                                                 
 
 

1 Here we focus on cyber attacks, while attacks generally include physical attacks as well. We define 
attacks as malicious attempts to violate the integrity of an information system and perform illegitimate 
actions. An intrusion is a penetration into the system. Thus, a network based DoS is an attack, but not an 
intrusion. 
2 A failure implies any violation of the specification of the system, according to the current policy in force, 
due to natural (or accidental) causes.  
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This reasoning has led to a focus on efforts to build survivable systems that can 
provide sustained operation of mission critical functions in the face of anticipated and 
unanticipated failures or attacks. This has spurred interest in the defense community as 
evidenced by DARPA’s OASIS program [1] and the follow-on Self Regenerative 
Systems (SRS) program[2]. Therefore, besides the use of the best possible prevention 
techniques, a survivable system has to have the ability for incident3  response when 
failures or attacks happen. Traditionally, incident response means the intervention of 
system administrators in which the administrators have to identify the issues, contain the 
effects from the incident, recover the system, understand the incident, and apply 
measures which would prevent the reoccurrence of the same incident. However, as 
distributed systems become ubiquitous and complex and they are often placed in 
environments difficult to reach for human intervention, automated response tools gain 
importance. We present the design and instantiation of a series of automated response 
systems called ADEPTS, which provides a framework for achieving automated response in 
a distributed system environment. 

Providing automated response for a distributed system is very different from 
providing one for a stand-alone system. One needs to consider the interaction effects 
among the multiple services both to accurately identify patterns of the attacks relevant to 
the response process and to identify the effectiveness of the deployed response 
mechanism. The rudimentary response mechanism often bundled with Host-based 
Intrusion Prevention System (HIPS) [3, 4] or Network-based Intrusion Prevention System 
(NIPS) [5, 6] overwhelmingly consider only immediate local responses that are directly 
suggested by the detected symptom. For example, a file being infected with a virus may 
cause the HIPS or anti-virus product to quarantine the file and disable all access to the 
file, or a suspect packet being flagged by a NIPS may cause the specific network 
connection to be terminated. This is unsatisfactory since the response may be sub-optimal 
at best – greater effect may be achieved by deploying it at a site different from the 
detection, and inaccurate at worst – the response is ineffective since the intrusion goal has 
already been achieved and the response system plays a fruitless game of catch-up.  

In designing an automated response system for distributed systems, one has to 
consider the constituent services in the system and the different levels of degradation of 

                                                 
 
 

3 An incident is defined as the event of an attack or a failure. 
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each individual service due to an incident, i.e., an intrusion. For easier understanding, one 
may visualize a malicious adversary who is trying to impact the constituent services (the 
sub-goals) with the overall goal of either degrading some system functionality (e.g., no 
new orders may be placed to the e-store) or violating some system guarantee (e.g., credit 
card records of the e-store customers will be made public). In ADEPTS, we use a 
representation called an Incident Graph (I-GRAPH), where the nodes represent sub-goals 
for the incident and the edges represent pre-conditions/post-conditions between the goals. 
Thus, an edge may be OR/AND/Quorum indicating any, all, or a subset of the goals of 
the nodes at the head of the edge need to be achieved before the goal at the tail can be 
achieved. We will use the term “a node is achieved” to mean the goal corresponding to a 
node in the I-GRAPH is achieved. The attack model considered in ADEPTS is multi-stage 
network-based attacks. Some of the stages of the attack must be detectable by detectors 
embedded in the distributed system. An attack which compromises the entire system in 
one shot is not considered. Insider attacks may also be considered, though the 
requirement is that the insider should be not be omnipotent and must not be able to 
compromise multiple services instantaneously. Brute force DoS attacks which do not 
penetrate the system are not considered, nor are passive attacks.  

Now we outline the key design principles or design requirements that drive our 
work. The response choice in an automated response system should be dynamically and 
adaptively determined. The attacks may be unanticipated or the dynamic system 
conditions, such as the frequency of interaction between the services or the load on a 
service, may vary. In ADEPTS, the response choice is determined by a combination of 
three factors – static information about the response, such as how disruptive the response 
is to normal users; dynamic information, essentially history of how effective the response 
has been for a specific class of attack; and out-of-band parameters of the response, such 
as expert system knowledge of an effective response for a specific attack or policy 
determined response when a specific manifestation occurs. The automated response 
system should be capable of providing its service in the face of unanticipated attacks. 
This is clearly motivated by the observation that the potential universe of attack or failure 
sequences is infinite. Translating this to ADEPTS, it should not assume that the I-GRAPH is 
complete nor that there is a detector to flag whenever an I-GRAPH node is achieved. 
However, we do assume that the incident will ultimately have a manifested goal which is 
detectable. Any automated response system needs to consider the imperfections of the 
detection system that inputs alerts to it. The detectors would have both type I and type II 
errors, i.e., false alarms and missed alarms. If false alarms are not handled, this can cause 



4 

the automated response system to take unnecessary responses, potentially degrading the 
system functionality below that of an unsecured system. If missed alarms (or delayed 
alarms) are not compensated for, the system functionality may be severely degraded 
despite the automated response system. In ADEPTS, we take the approach of co-existing 
with off-the-shelf detectors in the detection system and consider the problem of 
improving the accuracy of the detectors as orthogonal and outside the scope. ADEPTS can 
also make use of correlation based intrusion detection systems, such as CIDS previously 
developed by us [7], that already improves the detection metrics. ADEPTS provides 
algorithms to estimate the likelihood that an alarm from the detection system is false or 
there is a missing alarm. The algorithm is based on following the pattern of nodes being 
achieved in the I-GRAPH with the intuition that a lower level sub-goal is achieved with 
the intention of achieving a higher level sub-goal.  

An interesting question one might ask is the optimality of the chosen responses by 
a response system. Specifically, given a set of detector alarms, indicating the current state 
of an attack on the system, what would be the best response actions a response system 
should take against the attack? Here one needs to factor in both the cost from deploying a 
response and also the cost from potential further damage to the system as a result of not 
deploying a response. We formally define the optimality criterion for responses and show 
that the problem of optimal response determination (O.R.D.) is an NP-Hard problem. 
Hence, we develop a genetic algorithm (GA) based framework to approximate the 
optimal response for a given attack. Since GA has the nice property of passing good 
chromosomes (solutions) from a parent generation to the child generation, the response 
solution for an attack can actually be improved across instances of attacks. This means 
that for an attack, which has been seen before or has been seen somewhere else, very 
effective response actions can be taken promptly without needing to perform the lengthy 
GA evolution process much. 

Zero-day attacks are attacks which exploit unknown computer vulnerabilities. 
They pose challenges to the design of a response system due to that the corresponding 
attack graph for such an attack is not assumed a known priori. On the other hand, exact 
history information of effective responses against such an attack is not known as well. To 
address these challenges, we firstly come up with an online process to dynamically 
populate the attack graph (I-GRAPH) based on detector alarms and knowledge of the 
configuration of the protected system. Our work is based on existing works on alert 
correlation [8, 9]. The generated attack graph, however, does not warrant better responses 
for the zero-day attack due to the lack of information such as response effectiveness 



5 

against the attack. We come up with a technique called “conceptualization of attack 
graph” to enable the use of inexact history information from a closely matched past attack. 
This is based on our observation that though the detailed mechanism of a zero-day attack 
is unknown, in most cases the high level manifestation behind such an attack is not 
necessarily unknown. 

Overall, the goal of the paper is to present a structured methodology for 
automating response actions. Within this methodology, ADEPTS provides algorithms for 
determining the appropriate locations and choices for the response, how to deploy the 
response, and how to evaluate the effectiveness of a response. The metric used to 
evaluate a survivable system has to be carefully chosen. Low-level metrics, such as the 
latency of detection or false and missed alarm rates do not fully capture the effect of an 
incident on the system’s functionality. We propose the use of the metric survivability [10] 
to evaluate the effect of responses. We define it such that its value depends on the set of 
high-level system transactions that can be achieved (e.g., allow web store browsing) and 
the set of high-level security goals (e.g., keep users’ private information secure) that are 
preserved in the event of an incident. A high level transaction depends on certain chains 
of interactions between multiple functioning services and preserving a high level goal 
implies thwarting certain goals from being reached. 

The design of ADEPTS is realized in an implementation which provides automated 
response service to a realistic distributed e-Commerce system. The e-Commerce system 
mimics an online book store system and two auxiliary systems for the warehouse and the 
bank. Real attack scenarios are injected into the system with each scenario being realized 
through a sequence of steps. The sequence may be non-linear and have control flow, such 
as trying out a different step if one fails. ADEPTS’ responses are deployed for different 
runs of the attack scenarios with different speeds of propagation, which bring out the 
latency of the response action and the adaptive nature of ADEPTS. The survivability of the 
system is compared with that of a baseline system. 

 

1.1. Thesis Statement 

 

1.1.1 Survivability Metric for Automated Response System 

 
The performance of a response system can be evaluated based on many different 

metrics such as throughput, reliability, usability, security effectiveness [11], and 
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survivability [10]. Survivability is qualitatively defined as the capability of a system to 
fulfill its mission, in a timely manner, in the presence of attacks. The term security 
effectiveness has sometime been used synonymously with survivability. Our discussion 
will be focused on survivability. 

Survivability can be evaluated based on impact from an attack and from deployed 
response actions [12] to the protected system. It considers the impact on  confidentiality, 
integrity, and availability of the protected system. Assume for an attack, a response 
system chooses a set RC of response actions. We conceptually defines the expected 
impact from deploying RC to the protected system as : 

  
( )  | (expected impact from attack with being present) +

                    (impact from response actions in ) |
Iv RC RC

RC
=

     (1.1) 

 
Assume the system's initial survivability is C, then the survivability post the 

deployment of RC should be : 
 

survivability( ) ( )RC C Iv RC= −  (1.2) 

 
Note that we describe |Iv(RC)| as the "expected" impact from deploying RC. This 

is because the impact from an attack can be non-deterministic because an adversary may 
or may not take a certain attack step. In addition, a response action may or may not react 
to the attack successfully. The complete definition of |Iv(RC)| is presented in Sec. 3.6. 

 

1.1.2 BASELINE Model 

 

Table 1.1. BASELINE Model of Automated Response 

 
 

1. A collection of (detectors, response actions) pairs :  
{(D

1
,R

1
), (D

2
,R

2
),…, (D

k
,R

k
), …, (D

N
,R

N
)} 

2. For each pair, a mapping function f
k
 : D

k
→R

k 
is 

determined prior to the execution of the system 
3. f

k
 is designed based on expert knowledge 
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Table 1.1 defines a BASELINE Model for Automated Response in Distributed 
Systems. This corresponds to existing mainstream automated response systems, where 
stand-alone IDS or IPS boxes are used. An instantiation of this model has each IDS or 
IPS box trigger some local response(s). In this model, the mapping from detectors to 
response actions is specific to each pair, and a local detection at one IDS or IPS box 
cannot flag a response at a different IDS or IPS box. The corresponding mapping 
function fk dictates how each IDS or IPS carries out the response actions based on the 
alerts from the detectors. 

 

1.1.3 Proposed Model 

 

Table 1.2. Proposed Model of Automated Response 

 
 
We propose a new model for automated response in distributed system (Table 

1.2). The proposed model considers the whole set of detectors and the whole set of the 
response actions. The mapping function allows the mapping of any detector into any 
response action. The model also allows the use of history information from past attacks.  

 

1.1.4 Claims 

 
C1. For a given attack, the proposed model describes a set of response actions, from 

which the survivability is the upper bound of the survivability from any set of 
response actions generated from the BASELINE model. 

C2. In a practical system, it is possible to identify cases when the proposed model 
yields a higher survivability than the BASELINE model. 

C3. It is possible that the use of history information in the proposed model can further 
improve the survivability.  
 
 

1. The set of all the detectors D and the set of all the response 
actions R. 

2. History of past attacks H 
3. A mapping function f : (D,H) →R 
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Table 1.3. Desirable Properties of Automated Response 

1. f is designed to maximize the survivability (Eq. (1.2)) based on 
the information accumulated in H and detectors D 

2. f is designed to tolerate new types of attacks 
 
The proposed model generalizes the BASELINE model. To ensure an instantiation 

of the proposed model can provide higher survivability beyond the BASELINE model, we 
introduce two properties in Table 1.3 to guide the design of the mapping function f in the 
proposed model. The properties are incorporated into the two instantiations we created: 
the SWIFT system in Sec. 5 and the ORIGIN system in Sec. 6. Essentially, these two 
properties will help identify cases to support claim C2 and claim C3, which will be 
presented in Sec. 8. 



9 

Equation Chapter (Next) Section 1 

 

 

2. RELATED RESEARCH 

 
In order to guarantee the requirement for continuous availability of the services in 

a distributed system, it is important to consider how the system reacts once the intrusion 
is detected. The majority of current IDSs stops with flagging alarms and relies on manual 
response by the security administrator or system administrator. This results in delays 
between the detection of the intrusion and the response, which may range from minutes 
to months. Cohen showed using simulated attack scenarios that given a ten hour delay 
from detection, 80% of the attacks succeed and given thirty hours, almost all the attacks 
succeed irrespective of the skill level of the defending system’s administrator[13]. This 
insight has led to research in survivable systems engineering pioneered by CERT at CMU. 
Survivability is loosely defined as the capability of a system to fulfill its mission, in a 
timely manner, in the presence of attacks, failures, or accidents [14, 15]. The researchers 
identify the four key properties of survivable systems, namely, resistance to attacks, 
recognition of attacks and damage, recovery of essential and full services after attack, and 
adaptation and evolution to reduce effectiveness of future attacks. ADEPTS is motivated 
by the requirement to provide the second, third, and fourth properties. 

A majority of the IRSs are static in nature in that they provide a set of 
preprogrammed responses that the administrator can choose from in initiating a response. 
This may reduce the time gap between detection and response, but still leaves a 
potentially unbounded window of vulnerability. The holy grail is an IRS that can respond 
to an attack automatically. A handful of systems provide adaptive responses. In [12], the 
authors propose a network model that allows an IRS to evaluate the effect of a response 
on the network services. The system chooses in a greedy manner the response that 
minimizes the penalty. There are some studies which present taxonomy of offensive and 
defensive responses to aid in selection of coherent responses in an automated response 
system ([16],[17],[18]). Cooperating Security Managers (CSM) [19] is a distributed and 
host-based intrusion detection and response system. CSM proactively detects intrusions 
and reactively responds to them using the Fisch DC&A taxonomy [16]. It uses the 
suspicion level of the user as the only determining factor in the choice of response. A 
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second system called EMERALD [20] uses two factors in determining the response – the 
amount of evidence furnished to support the claim of intrusion and the severity of the 
response. None of the systems uses record of the past performance of the intrusion 
detection system as measured by the incidence of false positives and false negatives. 
None keeps track of the success or failure of the deployed response nor provide a 
framework for easily incorporating these factors in the automated response determination. 
Another adaptive IRS is the Adaptive, Agent-based Intrusion Response System (AAIRS) 
[21]. The work provides a good framework on which the IRS can be built. However, it 
does not provide any of the system-level techniques and algorithms that will be required 
for the AAIRS to work in practice. There is some previous work on protecting distributed 
systems against flooding based distributed denial of service (DDoS) attacks in an 
automated manner through rate limiting [22, 23]. 

A significant volume of work in this domain has focused on using diverse 
redundant components in building intrusion tolerant systems ([24-27]). The basic 
intuition is that the components have design diversity and are unlikely to share 
vulnerabilities that are exploited by an attack. Using the Sitar system as a representative 
example, the basic mechanism is reminiscent of active replication techniques. There are 
proxy servers which interface with the external world mediating access to the actual 
servers after passing the requests through some checks. The outputs from the servers are 
passed through validity checks and then voted on. Disagreement during voting acts as a 
trigger for the reconfiguration module to evaluate the intrusion threat and initiate 
reconfiguration, such as bringing in a different server. While diverse components were 
taken for granted in all of this work, more recent work performed under the DARPA SRS 
program has explored introducing diversity through synthetic means, such as compiler 
transformations. An attractive feature of this approach is it does not concern itself with 
the way the attack is launched but only on the manifestation, namely divergence in the 
outputs from the replicas. This philosophy resonates with our philosophy in ADEPTS.  

Fault trees have been used extensively in root cause analysis in fault tolerant 
systems. They have also been used to a limited extent in secure system design [28, 29]. 
We use an attack graph representation with nodes as intermediate goals since the same 
intermediate goals show up in several attack paths. Graph theoretic approaches to 
modeling the temporal nature of security attributes is found in [30, 31]. The notion of 
privilege graphs introduced in [31] has some similarity to our I-GRAPH. However, they 
represent only attacks launched by escalating the privilege level of the attacker and the 
arcs are marked with weights representing the difficulty of the privilege escalation. The 
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weights are dependent on several factors, such as the expertise and resources of the 
attacker, and therefore difficult to predict. The work lays down a framework to reason 
about the optimality of the response choices made by these systems, which has not been 
seen in previous works. 

A topic relevant to our work here is multi-stage attack graph generation. Three 
complementary methods are discernable among the existing work: (i) Using pre-
conditions and post-conditions of vulnerabilities and attacker actions to generate the 
graphs, (ii) using the network topology, connectivity, and/or other physical network 
attribute, and, (iii) using attack classification/taxonomy and expert knowledge to broadly 
identify the possible links between attack stages or relations between alerts. Most past 
research has mainly relied on (i) [32], though they have at times used (ii) as a 
complement. Any approach that relies on (i) is unable to target zero-day attacks, therefore 
our approach uses (ii), though additional information can be provided from (iii) to make 
our approach more refined. A relevant work that also uses (ii) is [12], and the 
mechanisms described are similar to the initial version of ADEPTS [33]. The significant 
differences are that their system cannot handle unknown attacks and it is unknown 
whether their system has been developed further to include more capabilities. The 
distinguishing feature we call ‘conceptualization’ is novel and has additional benefits not 
explicitly desired or considered by other researchers, namely the usefulness in responding 
to zero-day attacks. For a review of past approaches, one can refer to the survey paper at 
[34]. The approaches explored so far have not been targeted to unknown attacks, though 
it is conceivable that one can build on them for this purpose. The use of a Bayesian 
network as the basic framework for inference is not new [35], and we have applied it to 
inferencing in the presence of deployed responses. 

There have been some efforts at using genetic algorithms for intrusion detection 
[36-38] and search for vulnerabilities [39]. The results have been promising, but only 
after careful definition of the syntax of the chromosomes and tuning of the fitness 
measure. We have not found prior application of GA to intrusion response. 
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Equation Chapter (Next) Section 1 

 

 
3. MULTI-STAGE SECURITY ATTACKS AND RESPONSES 

 
In a distributed system, an attack at a site (a specific service on a specific host) 

can obviously cause impacts at that site. However, it can also potentially cause cascading 
effects on the other services and the other hosts in the system due to the interconnected 
nature of a distributed system. As a result, many attacks targeted at distributed systems 
are the multi-stage attacks, in which an attack consists of multiple attack steps that can 
span across different services and different hosts. In IDS research, there have been 
systems which utilize the diverse detection alerts from these multiple attack stages for 
increasing overall detection accuracy and better understanding of the whole behavior 
from a multi-stage attack [7]. Also there is research on reconstructing the attack stages 
for an attack from detector alerts [8]. In this section, we lay out the attack model for a 
multi-stage attack. We then give the model on responses for multi-stage attacks. In the 
end, we present a metric to evaluate the effect from using responses against an attack. 
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3.1. Adversary and Attack Model 
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Figure 3.1. An example I-GRAPH 

 
Our model for the target attack is an external multi-stage attack which first 

compromises the services that have external interfaces and subsequently compromises 
internal services with the goal of disrupting some transactions supported in the system or 
violating some of the security goals in the system. This is the model commonly used in 
the literature for distributed intrusion response systems (IRSs) [12, 33] 

A representation called Incident Graph (I-GRAPH) [33] is used for modeling the 
spread of the attack, which is similar in concept to attack graphs [9, 32, 40]. The final 
goal of the adversary may be disrupting some high level system functionality, such as 
“Permanently change grades record” in Figure 3.1. This final goal is achieved through 
multiple intermediate intrusion goals (attack steps) and each is represented as an I-GRAPH 
node. 
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3.2. I-GRAPH 

3.2.1 I-GRAPH Structure 

The I-GRAPH is used as the underlying representation for knowledge about 
intrusions, as they spread achieving progressively wider set of goals. In the I-GRAPH 
representation, each intrusion goal is represented by one node in the graph. The final goal 
of the intrusion may be disrupting some high level system functionality, such as “Denial 
of service achieved against the online store”. This final step will be achieved through 
multiple small to moderate sized steps. A successful execution of a step is looked upon as 
achieving an intermediate intrusion goal and captured as an I-GRAPH node. The intrusion 
goals have dependency relationships between one another. For example, in order to 
corrupt the data in the backend database server, one may need to exploit a vulnerability in 
the front-end web server. The edges are used to model this kind of dependency. The 
parents of a node are the nodes reached by the outgoing edges of the node. They 
correspond to higher goals relative to the goal of the node. The children of a node are the 
nodes with outgoing edges to the node. They correspond to lower goals relative to the 
goal of the node. 
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Figure 3.2. A section of the I-GRAPH from our deployed e-Commerce environment 
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In the I-GRAPH, edges are categorized into three types – OR, AND, and Quorum 
edges. For a node with incoming OR edges to be achieved, at least one of its child nodes 
needs to be achieved, while for AND edges, all the child nodes have to be achieved. For 
Quorum edges, one can assign a Minimum Required Quorum (MRQ) on it, which 
represents the minimum number of child nodes whose goals need to be achieved in order 
for the node with incoming Quorum edges to be achieved. Conforming to the traditional 
definition of quorums in fault tolerant systems, one may think MRQ as the minimum 
number of service replicas whose loss will affect the functionality of the service. An 
example fragment of the I-GRAPH used in our payload system, a distributed e-Commerce 
system, is shown in Figure 2. 

 

3.2.2 I-GRAPH Generation 

A key issue in the usability of ADEPTS is the ease with which the I-GRAPH can be 
generated and updated as system configuration changes or new vulnerabilities are 
brought to light. We employ a semi-automated method called Portable I-GRAPH 
Generation (PIG) for this. PIG requires two inputs − vulnerability descriptions and 
system services description (SNet). Of the two inputs, the SNet is target system 
dependent. This is a directed graph, in which each node represents an individual service 
in the target system and an edge from node A to node B represents an intrusion-centric 
channel. An intrusion-centric channel means if A is compromised, then the intrusion can 
spread to B through the channel. An intrusion-centric channel may be of five kinds – (i) 
DoS channel: if the source service is subjected to a successful DoS attack, then the 
destination service can also be subjected to DoS; (ii) Network channel: there is a network 
data connection between A and B; (iii) Shared file channel; (iv) Shared memory channel; 
(v) Super channel: which combines the functionality of all of the above. The SNet is 
currently manually created for the target system, though in the future, some tool which 
can perform service discovery and interaction discovery can perform this task 
automatically. This is an active area of research especially in the industry, such as for 
IrDA and Bluetooth Service Discovery Protocol (SDP), Sun’s Jini, and Microsoft’s 
Universal Plug and Play (UPnP). 

The second input to PIG is the target independent vulnerability descriptions. 
Information on the vulnerabilities can be created based on installed detectors in the 
system. For example, a stack overflow detector can correspond to a stack overflow 
vulnerability. This kind of vulnerability can be generic in nature as the associated 
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detector can be designed to pick up generic manifestation such as a buffer overflow, 
regardless of the specific signature used to trigger the manifestation. On the other hand, 
vulnerabilities can also be obtained by querying the common vulnerability databases, 
such as CERT, Bugtraq, and CERIAS-VDB.  

For use in PIG, the vulnerability is specified through four fields – (i) Name: which 
is primarily useful for human reference. (ii) Affected service: which gives the service(s) in 
the SNet affected by the vulnerability; (iii) Manifestation: this is a Boolean expression in 
disjunctive normal form composed of five elementary manifestations, namely, leaking of 
information, execution of arbitrary code, incorrect behavior of service, DoS, and service 
termination. (iv) Dependent vulnerability and services: which denotes the dependence on 
other vulnerabilities and services that have to be compromised to exploit this 
vulnerability. The vulnerability definitions are analogous to the virus definitions used in 
anti-virus products. They can be developed either by the ADEPTS developer or by a third 
party. The basic idea behind the I-GRAPH generation algorithm is that when a 
vulnerability description is read in, a corresponding node in the I-GRAPH is created, thus 
creating a one-to-one map. In the next step, the algorithm checks for nodes in the I-
GRAPH that this newly created node can get connected to. For this step, it relies on 
information from both the SNet and the vulnerability descriptions to decide whether 
spread of the intrusion is possible from the newly created node to the other nodes and 
vice-versa. In the following, we give the formal definition on the structure of our I-
GRAPH. 

 

3.2.3 Definition of I-GRAPH G(N,E):  

N := {nodes in G} := {{NA: specific attack manifestation} ∪ {NB: generic attack 
manifestation} ∪ {NC: high level parameterized manifestation} ∪ {ND: logical inference 
pseudonodes }} 

E := {edges in G} := {(n1,n2) | if n2 is casually dependent on n1 for n1,n2∈N} 
NA : These nodes are constructed directly out of the detector alerts for specific 

attack manifestations. These manifestations carry specific detector signatures. For 
example, the Snort rule for detecting Apache chunked encoding memory corruption 
exploits or some AntiVirus software detecting the binary code of some virus in an 
infected file. 

NB : These nodes are constructed out of the detector alerts that correspond to 
attack manifestations which are generic in nature. These manifestations usually span 
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across multiple different attacks, some of which can be potentially of unknown attack 
types. For example, stack buffer overflow detectors such as LIBSAFE should generate 
alerts out of any attack attempts which result in stack buffer overflow, irrespective of the 
specific attack signature used to achieve the overflow.  

NC : These node corresponds to high level manifestation which usually do not 
have a corresponding detector alert. However, the manifestation is hypothesized since it 
directly impacts a system functionality or violates a system goal. For example, “losing 
customer credit card numbers” could form a node of type NC.  

ND : These are intermediate nodes used for providing OR/AND/Quorum logics in 
the I-GRAPH. 

In many deployments, the systems may have unknown vulnerabilities and 
therefore the I-GRAPH is mainly composed of NB nodes, which can be automatically 
created based on the available detectors and the knowledge of the interactions among the 
servers in the target system [32],[40]. It is not necessarily dependent on knowledge about 
specific attacks or vulnerabilities. For example, if we have an I-GRAPH node 
corresponding to “Root password on machine M is changed”, this does not mean we 
know a priori that the operating system on machine M has the vulnerability which can be 
used to change the root password. However, it is actually one of ADEPTS’ key roles to 
deal with the uncertainty by constantly adapting to the actual situation, to provide 
continuous protection to the system.  

 

3.3. Response Model for Multi-Stage Attack 

 

 
Figure 3.3. Three different snapshots for a given attack. Response combinations RCX, 

RCY, RCZ are deployed between snapshots 
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Figure 3.4. Snapshots for an example four-stages attack. 

 
In general, a multi-stage attack consists of multiple attack snapshots. Each 

snapshot contains the detector alerts which have been generated thus far, and the 
fragment of the I-GRAPH with nodes for which alerts have been received. Figure 3.3 
shows a general case, where three snapshots X, Y, and Z are created from an attack. In 
practice, we find that there are groups of alerts that arrive in a batch, corresponding to 
several closely spaced attack steps of a fast-moving attack and an IRS cannot deploy a 
response within a batch of alerts. This batch creates a snapshot. Figure 3.4 shows an 
example of four attack snapshots created from a real-world attack consisting of four 
attack stages. The attack begins with a company chief financial officer (CFO) 
downloaded a malware as a e-mail attachment to his office computer followed by the 
malware sniffing the keystrokes on the CFO’s computer and the adversary eventually 
getting the corporate bank account number and password. The adversary eventually uses 
the account number and password to deplete the company’s bank account. Potentially, 
responses can be used right after each attack snapshot such as “R1:Remove the 
malware…”. The goal is to deter the attack from inflicting further damages on the system 
and as a result prevent the next attack snapshot from being created. 

Corresponding to the proposed model in Sec. 1.1, for a multi-stage attack 
consisting of k snapshots {s1,s2,..sk}, the response mechanism is formally described by 
RCi = Respond(si, Hi), where si is the ith snapshot, Hi is the history information and RCi is 
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the response combination decided by an IRS. Therefore, in Figure 3.3, we have 
RCX=Respond(sX,HX), RCY=Respond(sY,HY), and RCZ=Respond(sZ,HZ). 

 

3.4. Survivability Guarantee by Proposed Model 

 

Table 3.1. Proof for Thesis Claim C1 

 
 
Thesis Claim C1 in Sec. 1.1 states that the proposed response model guarantees 

system survivability higher than or equal to the system survivability attainable by the 
BASELINE model. The proof is intuitive and is presented in Table 3.1. 

 

Proof: 
 

1. Assume an attack indicated as detector alerts { }N1 2D ,D ,..,D . 

2. In the BASELINE model, assume mapping functions { }N1 2f ,f ,..,f  generate  

sets of response actions { }N1 2RC ,RC ,..,RC  with the highest survivability, 
where : D Rk k kf →  

3. In the proposed model, we can have a mapping function f  constructed as 
follow 

( ) { }1 2 ND D D N1 2{ , ,..., }, RC ,RC ,...,RC contains the mapping f ∅ →  
4. We now have a mapping function f in the proposed model which 

describes the set of response actions, which yields the same survivability 
as from { }N1 2f ,f ,..,f  in the BASELINE model. This suffices an upper bound 

on the survivability attainable by any set of response actions from the 
BASELINE model. 
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3.5. Impact Vector Metric 

 

Table 3.2. Example E-Commerce Transaction Goals 

Name  Weight  

Browse webstore  10 

Add merchandise to shopping cart 10 

Place order 10 

Charge credit card 5 

Admin work 10 

 

Table 3.3. Example E-Commerce Security Goals 

Name Weight 

Illegal read of file 20  

Illegal write to file  30  

Illegal process being run 50  

Corruption of MySQL database 70  

Confidentiality leak of customer information stored in 
MySQL database 100  

Unauthorized orders created or shipped 80  

Unauthorized credit card charges 80  

Cracked administrator password  90  

 
 
Conceptually, an attack can impact the normal operation of a system. On the other 

hand, a response action can also affect the normal operation of system. For example, a 
firewall rule may accidentally block legitimate traffic as well. To quantify the impact on 
a system from an attack and from a response action, we define a metric called Impact 
Vector. We assume that the protected target system has a set of transactions (e.g. Table 
3.2) that should be supported during system operation and security goals (e.g. Table 3.3) 
that should be satisfied during its operation. The impact vector Iv used in a system of n 



21 

transactions and m security goals is an (n+m) element vector, with each element 
representing the impact value on the corresponding transaction or security goal. The 
higher the value is, the more severe the impact is. The range for the value is [0, ∞].  

The dimensions may not all be independent, in which case assigning the Iv values 
has to be done carefully taking the dependence into account. The notion of impact vectors 
is found in the security domain in several different forms, e.g., as the result of risk 
analysis[41].  

For each response r, there is an associated impact vector Iv(r) which indicates the 
impact on the system as a result of deploying the response. This may be specified by the 
system administrator or determined automatically by calculating the services affected by 
the response and computing which transactions and security goals are violated as a result 
as in [12]. For each I-GRAPH node n, there is an associated impact vector Iv(n) which 
gives the impact as a result of this node being achieved by an adversary. 
 
The absolute value of Iv is defined as  
 

|Iv| = |[a1 a2 … an]| = ∑i=1,n ai, ai ∈ (0, ∞). 
 
The summation of two impact vectors is also an impact vector and is defined as follows: 
 

Iv = Iv1+Iv2 = [max(Iv1,1,Iv2,1), ..., max(Iv1,n,Iv2,n)] 
 

3.6. Impact Vector Metric for Response Combination 

Let us assume an attack has resulted in i snapshots s1,s2,..,si. Also assume the I-
GRAPH has m nodes n1,n2,..nm. We want to evaluate the cost of the response combination 
RCi = f(si,H), which consists of n response actions {r1,r2,..,rn}. Assume the probability of 
each node being achieved in the attack considering the responses in RCi is P(n1), P(n2),…, 
P(nm). Then the cost of RCi is defined by Eq. (3.1). Under this metric, the optimal 
response combination to a given attack at a specific snapshot (corresponding to a specific 
point in time) is the one which yields the minimum value of cost as shown in Eq. (3.2). 
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The summation across the m I-GRAPH nodes in Eq. (3.1) corresponds to the 

expected impact from attack as shown in Eq. (1.1) in Sec. 1.1. The remaining part 
correspond to the impact from response actions.   

 

3.6.1 Survivability Metric 

 
The survivability metric after deploying response combination RCi  is calculated 

by subtracting Cost(RCi) from the initial system survivability and is defined as follow: 
 

 
survivability after deploying  = initial survivability - ( )
                                                       = initial survivability - ( )

i i

i

RC Cost RC
Iv RC

 (3.3) 

 Thus, a lower impact vector value corresponds to a higher survivability. The 
optimal response combination RCi,opt maximizes the survivability in Eq. (3.3). 

 

3.7. Inference on I-GRAPH : CCI Computation Algorithm.  

The goal of the algorithm is to determine, based on the received alerts from the 
detectors, which of the I-GRAPH goal nodes are likely to have been achieved. Each 
detector provides confidence values for its alerts, termed alert confidence. If the detector 
does not provide an inbuilt confidence value with the alert, then the alert confidence 
value is set to one. The alert confidence provided by a detector is then moderated based 
on the likelihood it is a false alarm. ADEPTS has a mechanism to determine this on a per-
alert basis and will adjust the alert confidence as described in detail in the next section. 

The Compromised Confidence Index (CCI) of a node is a measure of the 
likelihood that the node has been achieved. It is computed based on the alert confidence 
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corresponding to the alert that is mapped to the node and the CCI of its immediate 
children nodes. Mathematically, the CCI of a node is given by 

 

( )

max( ) ,OR edge
,no child

min( ) ,ANDedge
( ) ,no detector

( | ) ,Quorum edge and quorum met
,otherwise( , .)

0 , Quorum edge and quorum not met

CCIialert confidence
CCIiCCI f CCI fi mean CCI CCIi if f CCI alert confi

τ

⎧
⎧ ⎪
⎪ ′ ′= =⎨ ⎨ >⎪ ′⎩

⎪

⎪
⎪⎩

 
where CCIi corresponds to the CCI of the ith child and τ is a per node threshold. 
 

The intuition behind our implementation is that for an OR edge, the node can be 
achieved if any of its children nodes is achieved and therefore the likelihood (due to its 
children) is the maximum of all of its children. For an AND edge, all the children nodes 
have to be achieved and therefore the likelihood is as much as the least likely child node. 
For Quorum edges, if the quorum is not met, then the higher goal is not achieved, but if 
met, the likelihood of it being achieved only depends on the children nodes that have 
achieved the quorum. The function ƒ allows various weights to be assigned to determine 
the relative effect of the alert confidence and the children’s CCI. The function for the 
current design is the statistical mean. Though our specific implementation is defined 
above, the framework can accommodate formal models as well. For example, the I-
GRAPH can be considered to be a Bayesian network, and the conditional probability 
distributions derived from the edge relations (i.e. OR, AND, Quorum).  

In CCI calculation, the I-GRAPH is traversed in breadth-first-search (BFS) order 
starting from the nodes with the earliest alerts, and the CCIs of the nodes are computed 
until each reachable node has been traversed at most once. This prevents infinite cycling 
to occur even though there may be cycles in the I-GRAPH. The disadvantage of such a 
traversal (or even a DFS traversal) is that the traversal may lead to a node being 
processed before all its predecessor nodes are processed and therefore the CCI computed 
will be a lower bound. Thus, some causal relations between nodes may be lost. However, 
the alerts are usually temporally ordered according to the order in which the events 
occurred, thus the causal order is more likely to be obeyed in the CCI computation. Since 
the CCI of a parent node is dependent on that of its child nodes, a BFS traversal starting 
from the earliest node with an alert, rather than DFS, is more justified. A performance 
optimization is terminating the CCI computation when the CCI value goes below a 
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threshold since this gives confidence that a response at nodes beyond this point is 
unnecessary. 

As each node can potentially contain multiple alert events, which has an 
individual alert confidence, the alert confidence used to update the CCI is chosen based 
on policy. For an aggressive policy, the maximum alert confidence in the alert queue is 
used; for a moderate policy, the maximum of a subset of alert confidences based on the 
most recent alerts is chosen; for a conservative policy, the alert confidence corresponding 
to the most recent alert is chosen. No matter which case, we call the chosen alert event as 
the active alert event. Before a child node is used for CCI computation, ADEPTS will 
check whether the active alert events on the child and the parent obey a causal relation. 
Causal relation is defined as causality in the information such as packet source IP, 
destination IP, and process ID that is included in the alerts. By comparing the information, 
the causal relation between two alerts can be validated. For example, knowing that the 
SSH server listens on port 22, the CCI calculation for the event ‘buffer overflow at SSH 
server’ can depend on the CCI value from the child node ‘detecting malicious packet 
bound for port 22’. On the other hand, the buffer overflow event can’t depend on the CCI 
value from the child node ‘detecting malicious packet bound for port 80’, since there’s no 
causal relation between port 80 and the SSH server.  Since a parent node can potentially 
have more than one child node, alternative child nodes will be used in case the causal 
relation is found not to match. If no child node can pass the causality validation, the 
parent node will be regarded as a leaf node in the CCI update path, and its CCI value will 
only depend on its own alert confidence. Impreciseness in the causality validation can be 
treated as missed/false alarms and can be inherently tolerated by the CCI update 
algorithm. 
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3.7.1 Effect of Response and Edge Propagation Factor 
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Figure 3.5. Effect of response and EPF in I-GRAPH inference 

 
In reality, attack may not always propagate across an I-GRAPH edge. This can be 

due to a less skilled adversary or a more secure system design. We introduce the edge 
propagation factor (EPF) to model the likelihood of an attack propagating on an edge. 
EPF is a value between 0 and 1. It is used to attenuate the CCI value from a child node in 
the CCI calculation. In Figure 3.5, we show an example where the CCI from node x is 
attenuated by the EPF value e.EPF on edge e. 

The Effectiveness Index (EI) of a response indicates the likelihood of success of 
the response, For better understanding, Figure 3.5 shows a simple example on how 
response r on an edge e affects the CCI values on the parent and the child node on the 
edge. The CCI values are then used as the estimates of the probabilities of nodes being 
achieved P(x) and P(y).   

EI and EPF values are estimated by ADEPTS through observation of alerts. 
Conceptually for a response deployed on an edge, if attack propagation (based on 
incoming detector alerts) is observed, the EI value of the response will be decreased. 
Otherwise it will be increased. When the response is not deployed, if attack propagation 
is observed, then the EPF value will be increased. Otherwise, it will be decreased. 

 

3.7.2 False Alarm Estimation 

It is important that the response system not use the alarms from imperfect 
detectors as the only triggers. The detectors may have both false alarms and missed 
alarms. ADEPTS attempts to estimate when either of the two events has happened and 
either suppress its operation (false alarm) or trigger its operation (missed alarm). The 
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false alarm detection algorithm attempts to detect false alarms for a given detector and a 
given node in the attack sub-graph by considering both present and past evidence. Our 
objective for detecting false alarms is to prevent needless invocation of ADEPTS and 
prevent useless responses from being deployed. As a result, it will mitigate DoS attacks 
targeting ADEPTS by injecting spurious alarms. To achieve this goal, based on the 
probability of an alert being a false alarm, the confidence of the alert is modified. Alerts 
with extremely low confidence are discarded, which allows obvious false alarms to be 
conveniently ignored. The algorithm is designed to be conservative in nature, that is, a lot 
of evidence is required to conclude that an alert is false, but not as much evidence is 
required to conclude that a false alert is actually true. This bias is easily controlled using 
two parameters (α , β ). Also, the rate of increase (decrease) of the false alarm probability 

increases with successive false (true) alarms giving a convex (concave) curve. The shapes 
of the curves are also controlled by the  parameters (α , β ). 

When alerts are passed to ADEPTS from the detectors, a false alarm probability 
(calculated a priori and initially set to 0) is recalculated for each alert. Based on this 
probability, the alert confidence is modified using the following equation 

 
  _ _ (1 _ _ )alert confidence alert confidence false alarm probability= × −  

 
The recalculation of the false alarm probabilities is as follows. For each alert, the 

false alarm probability is 
 
  _ _ _ (1 ) _false alarm probability links probability history probabilityα α= × + − ×  

 
The links probability represents the lack of evidence linking the alert to other 

alerts. It is defined as 
 
  1 - max(probability that a link exists) = 1 - max(probability of temporal linkage, 

probability of spatial linkage) 
 
The probability of spatial linkage is )1(1 qq ×+ γ , where qγ  is a scaling 

parameter and q is the minimum spatial distance between alerts in the same attack sub-
graph. The probability of temporal linkage is similarly given by )1(1 pp ×+ γ , where pγ  

is a scaling parameter and p is the minimum temporal distance between the alert and 
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other alerts in previous iterations that occurred spatially close to the alert. The temporal 
distance is in terms of the number of invocations of ADEPTS that separates the two alerts. 
The history probability is a combination of past link probabilities, and it is recalculated 
given the present links probability using the following equation. 

 
  _ * _ (1 )* _history probability links probability history probabilityβ β= + −  

 

3.7.3 Missed Alarm Estimation 

The missed alarm detection algorithm first attempts to determine the possible 
locations of missed alarms. Then it uses the methods described in the false alarm 
detection algorithm to recalculate the missed alarm probability using other link evidence. 
This means that all the formulas used are the same as described in the previous section, 
except that the links probability is defined to be 1 – max(ratio of alert confidence to 
combined confidence of successors, ratio of alert confidence to combined confidence of 
predecessors). ADEPTS introduces alerts corresponding to the missed alarms into the 
system in the next iteration. This is more efficient than re-computing the CCI in the 
present iteration, as this may lead to multiple re-computations and can be exploited by an 
attacker. The alerts introduced will have their alert confidences inversely proportional to 
their missed alarm probability. 

The algorithm is run asynchronously with respect to the other algorithms, with the 
exception that it must run after the CCI computation algorithm because it uses the 
updated CCI values to determine the possible locations of missed alarms. In a nutshell, 
the algorithm determines the locations by doing a reversed CCI computation by 
traversing a sub-graph in reverse order, where for each incoming edge of a node, 
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The function g′  is the statistical mean of the two inputs, where the return value of 
the function g′ represents the likelihood a node has been achieved based on evidence 

from its detectors and its parents. After the computations are completed, the locations of 
the missing alarms are those nodes for which all the following conditions are satisfied. (i) 

(CCI ) alert confidenceif k′ > × ; (ii) (CCI )i Mf ′ > τ ; (iii) max(rCCI ) alert confidencei k> × ; (iv) 
max(rCCI )i M> τ , where k and Mτ are constants. A possible missed alarm location is 

determined based on whether the ratio of evidence of children being achieved to the 
direct evidence that the node has been achieved and the ratio of evidence of parents being 
achieved to the direct evidence that the node has been achieved is high (conditions (i) and 
(iii)). Conditions (ii) and (iv) are required to ensure that there is enough evidence to 
suggest a missed alarm occurred there. 

 
3.8. Inference on I-GRAPH: Bayesian Network 

 

 
Figure 3.6. Bayesian Network based Attack Graph Model 

 
Bayesian network [42] can also be used to perform inference in the I-GRAPH.  A 

Bayesian Network based I-GRAPH includes nodes that represent attack steps (v0, v1, and 
v2 in Figure 3.6) and nodes for responses (r0 and r1). For each node, a conditional 
probability table (CPT) is used to model the probability on the states of a node given the 
states of its parents. For root nodes, the CPT is used to represent the prior probabilities. 
For an attack step node, the possible states are true, i.e., the step is achieved or false, i.e., 
the step is not achieved. For a response node, the states are again true, i.e., the response is 
deployed and false, i.e., the response is not deployed. Also, for both types of nodes, the 
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state can be set to NA (not available), which means ADEPTS is not sure about the state of 
the node.   

 
3.9. Limitations 

The concept of attack graph has been widely used in modeling multi-stage attacks. 
The creation of attack snapshots for an attack from detector alerts is not the focus of this 
work, and one can rely on techniques from [8, 9, 40] for the construction of attack graph. 
We thus assume an attack snapshot is provided by the detection framework and is 
accurate in the sense the detection framework should address excessive false/missed 
alarms. We present a basic technique to address false/missed alarms in Sec. 3.7. This, 
however, is not the focus of this work. One should refer to a more comprehensive 
approach such as [43] on improving detection accuracy of multi-stage attacks. 

Many different metrics can be used to evaluate an automated response system 
[11].  Some examples include throughput of the transactions the system can sustain, 
reliability of the system, usability, survivability, etc. Our discussion is centered on 
survivability only. We formally define the impact vector metric to measure the change in 
survivability. We assume the impact vectors for each response action and each I-GRAPH 
node are given.  

The impact vector metric only looks at the expected value of the resulting costs 
(impact) from using a response combination for an attack in a system. The individual 
impact vectors from response actions and achieved I-GRAPH nodes are assumed constants. 
The proposed response model (Sec. 1.1 and Sec. 3.3 ) is set to optimize responses based 
on the expected impact. There can be alternative ways to define the metric for evaluating 
the survivability. For instance, the impact vector from achieving an I-GRAPH node can be 
a function of time (e.g. a DDoS attack at midnight is probably less damaging than a 
DDoS attack during business hours) instead of being a constant. As a result, the 
corresponding metric requires integration across time of the costs over the I-GRAPH nodes 
/ response actions. This is a more involved calculation requiring many more parameters.  
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Equation Chapter (Next) Section 1 

 

 
4. AUTOMATED RESPONSES 

 
For distributed systems with nearly exponentially large number of interaction 

effects among multiple components, pre-configuring static pairs of detector alarm and the 
corresponding response when the alarm is flagged is laborious. We show (in Sec. 8.3) 
that this design has inferior runtime performance due to the dynamic workload on the 
system and due to the changing nature of attacks.  

In the following, we present a system called ADEPTS I as a first step in 
instantiating the proposed model for automated response, which was introduced in Sec. 
1.1. In choosing responses, ADEPTS considers both the severity of the current situation 
(what damage to the system the attack will cause or has already caused) and the 
effectiveness of the responses. The mapping between responses and detectors is therefore 
dynamic. In the end, when the attack ceases, ADEPTS will evaluate the actual 
effectiveness of the deployed responses. Ineffective responses will be ignored by ADEPTS 
in dealing with future attacks. This corresponds to the use of history information in the 
proposed model. 

It is often a challenge for an automated response system to handle multiple 
concurrent attacks on a system. The response mechanisms due to the different 
manifestations of the distinct incidents may interact in arbitrary ways. For example, the 
response taken due to one incident may make that due to a second incident redundant, or 
make it easier to proceed. It also becomes difficult to identify the effectiveness of a 
response when the different incidents are not identified and handled separately. ADEPTS I 
provides an algorithm to use the factors of locality (spatial in the I-GRAPH or temporal) 
and causality (parameters of the packet, such as originating IP) to identify incident 
instances that need to be handled separately. It is tricky to define what constitutes two 
separate concurrent attacks, since they may originate from the same source by the same 
adversary. We bypass this argument by considering instances whose responses would not 
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interfere as distinct and separate instances. An attack sub-graph4 is created from the I-
GRAPH for every incident instance. The attack sub-graph is grown in a Petri dish as alerts 
come in and in parallel, it is matched against an attack template library5 of graphs to 
determine appropriate reference responses. 

ADEPTS I is the first step in designing an automated response system beyond the 
BASELINE model (Sec. 1.1). This will be evidenced by the response location 
determination in Sec. 4.3. The mapping between response actions and detectors is not 
restricted within a pair of response actions and detectors. Also the estimation of response 
effectiveness (Sec. 4.8)  involves the use of history and is beyond the BASELINE model. In 
determining responses, ADEPTS I employs a simple heuristic to pick responses, which are 
effective and time-efficient (Sec. 4.4). The heuristic does not guarantee the maximal 
survivability property mentioned in Sec. 1.1. However, empirical results (Sec. 8.4) 
indicate cases where even such a sub-optimal design is more than enough to out-perform 
the BASELINE Model. 

                                                 
 
 

4 In ADEPTS, we focus more on dealing with attacks, which is the reason why we use the term “attack sub-
graph” rather than “incident sub-graph” here. However, the techniques used in ADEPTS can be extended to 
handle an incident which could be due to attacks or failures.  
5 Similarly, we use the term “attack template library” rather than the term “incident template library” as in 
ADEPTS, we focus more on dealing with attacks. 
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4.1. Design Overview 

First, we give an overview figure (Figure 4.1) that shows the different phases in 
the operation of ADEPTS I. In the following sections, we will explain each of the phases 
and refer back to this figure. 
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Figure 4.1: Overview of the different phases of ADEPTS 

Throughout ADEPTS I, three policy levels are used to control the behavior of the 
relevant algorithms − aggressive, moderate, and conservative. The three policies can be 
abstracted to represent a ratio of missed responses to false responses deployed, with the 
aggressive policy having the lowest ratio and the conservative policy having the highest 
ratio. 
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Table 4.1. Pseudo-code for attack sub-graph creation when new alert event arrives 

A Petri-dish P is used to house sub-graphs. When a new 

alert event E comes in, the following algorithm will be 

initiated to either push E into some existing sub-graph(s) or 

create a new sub-graph NS with E in it. 

 

EnterDEvent(P, E) { 

1. bNeedNewSub-graph := true 

2. for each existing sub-graph S do { 

if LocalityTest(S,E) is true then do { 

3. bNeedNewSub-graph := false 

4. Add the nodes and edges induced by E 

into S 

5. CCIUpdate(S,E) 

6. } 

7. } 

8. if bNeedNewSub-graph is true then do { 

9. Create new sub-graph NS 

10. Add node corresponding to E into NS 

11. Add NS into P 

12. CCIUpdate(NS,E) 

13. } 

     } 

Check whether alert event E is local to sub-graph S. 

Assuming I-GRAPH I and a user-defined threshold T. 

 

LocalityTest(S,E) { 

1. D: = the node in the I-GRAPH which 

corresponds to event E. 

2. if D is NULL then return False 

3. for each node X in S { 

4. H: = the node in the I-GRAPH which 

corresponds to X 

5. Dist := shortest distance between D and H

6. If Dist < T then return (true, S) 

7. } 

8. return false 

} 

 

 

4.2. Attack Sub-Graphs 

In ADEPTS I, the I-GRAPH is made a read-only data structure and is used to create 
attack sub-graphs corresponding to each attack instance. Attack sub-graph instances are 
created and modified during runtime to separately model concurrent and overlapping 
attacks. Concurrent attacks are defined to be attacks that occur around the same time and 
overlapping attacks are those for which the intersection of their affected I-GRAPH nodes 
is not null. By using attack sub-graphs, ADEPTS is able to handle such attacks in parallel 
and optimize its response to each attack. Each attack sub-graph is grown in a Petri dish as 
alert events are received. The use of attack sub-graphs is a departure from the design in 
the precursor system of ADEPTS [33], where all alerts were made to operate on the I-
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GRAPH structure itself. We will refer to the earlier version as version 0. There are several 
motivations for the current design. In version 0, multiple attack instances will incorrectly 
affect each other’s response determination though the response at a given node may have 
different effects depending on which attack it is targeted at. For example, a response at a 
“Libsafe buffer overflow on Apache” node may be to kill the Apache process. This may 
be useful for an attack which tries to inject malicious code through the buffer overflow 
but not useful for a denial of service attack against Apache. Similarly, attack instances at 
different point in time will interfere with one another to different degrees as well. The 
different attack sub-graphs can also be processed in parallel by multiple threads on the 
same processor or different processors and the read-only nature of the I-GRAPH 
eliminates a synchronization bottleneck. 

The pseudo-code for handling a new alert event is given in Table 4.1. For each 
alert that is received by ADEPTS, the alert is mapped to a node in the I-GRAPH and then 
sub-graph creation algorithm determines whether the alert belongs to an existing attack 
(and therefore existing sub-graph) or whether it is from a new attack. If it is the former, 
the alert will be placed into the corresponding sub-graph and the sub-graph will be 
evaluated by the system for response determination (Sec. 4.3). If it is the latter, the 
algorithm will create a new sub-graph beginning from the node mapped to by the alert. 
Note that in the I-GRAPH, we have general nodes for mapping generic alerts for a service 
or generic alerts from a host machine (see Section 4.6). Therefore, under this design, all 
alerts will always be mapped to some node in the I-GRAPH. 

In reality, it can be difficult to accurately determine which attack instance an alert 
belongs to, though some effort has been made in [44] by clustering source IP addresses, 
destination IP addresses, source ports, destination ports, user accounts and initiated 
processes. To avoid this problem our algorithm uses locality of the alerts to reduce the 
uncertainty, and is designed such that inaccuracies are tolerated. All existing active sub-
graph instances are considered to be possible choices for an alert. This is because when 
an attack is determined to have concluded or contained, the attack instance is removed. 
The necessary condition for an alert to belong to a sub-graph (which corresponds to a 
specific attack instance) is that the shortest spatial distance with respect to the nodes in 
the I-GRAPH (i.e. spatial locality) be within a user-defined threshold. The minimum 
spatial distance is the minimum pair-wise distance in the I-GRAPH between the node 
mapped to by the alert and the nodes in the sub-graph. In the case when none of the 
existing sub-graphs passes the LocalityTest, a new sub-graph is created to house the 
alert event.  
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In the following sections, we present the different mechanisms in ADEPTS to 
choose the appropriate responses and the locations to deploy them after attack sub-graphs 
are created, handle unanticipated attacks, and provide feedback to the responses.  

 

4.3. Determining Response Locations 

For any given node in the attack sub-graph we can consider there are two kinds of 
responses associated with it, one set associated with the outgoing edges which have the 
role of preventing higher level goals from being achieved, and the second set with 
incoming edges which have the role of preventing continued achievement of the node 
goal.  

 

4.3.1 Response Set Computation Algorithm.  

The purpose of this algorithm is to determine the nodes where the current attack is 
and will most likely spread to. This will allow the response algorithm to deploy 
appropriate responses at those locations. Each sub-graph is traversed in reverse order of 
the CCI computation algorithm, continuing until all reachable nodes are traversed at most 
once. During the traversal, each node is labeled as one of: (i) Strong Candidate (SC), if 
CCI > τ; (ii) Weak Candidate (WC), if CCI ≤ τ but further traversal across only AND 
edges can reach a SC node; (iii) Very Weak Candidate (VWC), if CCI ≤ τ but further 
traversal across any type of edge can reach a SC node; (iv) Non-Candidate (NC), 
otherwise. If the CCI of a node is computed to be greater than τ, the system concludes the 
node has been achieved, where τ is a deployment parameter. Therefore the SC label on a 
node is a strong indicator that the node has been achieved, while the WC or VWC label 
indicates smaller likelihoods due to evidence from their parents. 

Next, some nodes are placed in a response set, indicating to the response system 
where responses should be deployed. For an aggressive policy, all SC nodes, and WC and 
VWC nodes which have at least one immediate NC parent node are placed in the 
response set. For a moderate policy, all SC and WC nodes that have at least one 
immediate NC parent node are chosen. For a conservative policy, all SC nodes that have 
at least one immediate NC parent node are chosen. The aggressive, moderate, and 
conservative policies provide increasingly less disruption as well as less protection. It is 
important to note that in ADEPTS, responses may be deployed even in nodes for which no 
direct evidence as alerts are available. This is a key differentiator from the BASELINE 
model. 
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4.4. Response Deployment 

In this section we focus on the mechanisms needed to deploy a response. The 
deployment of the response is achieved by a Response Repository, a Response Control 
Center, and distributed Response Execution Agents. 

 

4.4.1 Response Infrastructure 

The Response Repository stores the responses available for deployment in a 
payload system. Each response in the repository consists of an opcode and one or more 
operands, with wildcards allowed for each. The opcode is the response command, and the 
operands are the different parameters that need to be specified in order to execute the 
response. For example, the opcode for the response command of dropping incoming 
packets from a remote IP to a local port is DROP_INPUT, and the corresponding 
operands are REMOTE_IP and LOCAL_PORT. The opcode and the operands together 
make up a complete response command. The response structure allows ADEPTS fine-
grained customization of the available responses 

The opcode is selected based on the ability of the opcode to cut off the intrusion-
centric channels as defined in Section 3.2.  The Response set computation algorithm 
(Section 4.3) sends to the Response Control Center the list of I-GRAPH nodes which are 
candidates for the deployment of responses. For each node, the Response Control Center 
selects a set of candidate response opcodes that can be used to prevent attacks from 
spreading via the node’s outgoing intrusion-centric channels. The choice is determined by 
the type of the channel. For example, the file access based opcodes, such as 
DENY_FILE_ACCESS or DISABLE_WRITE, are selected as candidate response 
opcodes if an outgoing shared file channel is present. 

After the opcodes have been chosen, the Response Control Center generates a list 
of complete response commands by collecting suitable operands. For this, it examines the 
alert events stored in the alert queue of the node and uses them to fill in the operands that 
are required by the selected opcodes. An opcode can be combined with multiple operands 
during this phase. For example, for an opcode KILL_PROCESS, the control center may 
extract PID#1 from alert event#1 and PID#2 from alert event #2, both in the alert queue. 
Then, the response command KILL_PROCESS PID#1, PID#2 is generated for 
subsequent evaluation. 
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4.4.2 Choosing Responses 

For each selected response command, the Response Control Center computes the 
Response Index (RI). The RI takes into the account the estimated effectiveness of the 
response to the particular attack, measured by the Effectiveness Index (EI), and the 
perceived disruptiveness of the response to legitimate users of the system, measured by 
the Disruptiveness Index (DI).  The EI and the DI are both specific to the response 
command (opcode-operand combination) and the node in the I-GRAPH to which the 
response is mapped. The RI is given by RI = a.EI – b.DI, where a and b are deployment 
parameters. 

Note that EI of an identical response command may differ for different attacks 
that map to different I-GRAPH nodes. For example, blocking port 65000 or 16660 may be 
useful against the stacheldraht DDoS attack but is unlikely to be effective against the 
TFN DDoS attack. The two attacks can be differentiated by their packet signatures. The 
control center chooses the response with the highest RI among the candidate responses, 
with a threshold being used to suppress a response that falls below it. The Response 
Execution Agents, one on each managed node, are used to deploy the responses. If no 
response is chosen for a particular node, then the next higher level node is searched for 
possible responses. When Response Execution Agents on a particular compromised host 
have been disabled, responses will be taken at other hosts, as determined by the spread of 
the attack through the I-GRAPH. 

 

4.5. Matching in Attack Template Library 

ADEPTS maintains an attack template library of attack patterns (attack snapshots), 
similar in structure to the attack sub-graphs which are created at runtime. The attack 
patterns can be categorized into two types: static attack pattern and raw attack pattern.  

The static attack pattern is created from previously seen attack patterns for which 
the “best” responses for each node in the pattern have been determined a priori by an 
expert system or by a security administrator. These responses would therefore be chosen 
over an automatically determined response if the matching score between the static 
pattern and the growing attack sub-graph exceeds a user-defined threshold. 

Additionally, the reference response may be determined by policy decisions made 
by a corporation or by a public body, e.g., sample data as a  result of an incident may be 
automatically mailed to a central  monitoring site for use in corporate-wide profiling and 
monitoring. Alternatively, if certain types of classified data are exposed, the system may 
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notify appropriate investigators so as to begin an official investigation. This mechanism 
is powerful in letting ADEPTS learn its responses from domain specific knowledge, 
acquired knowledge over previous attack instances, or regulatory policy. 
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Figure 4.2: Example of a static attack pattern and reference responses

 
The matching between the static attack pattern and a growing attack sub-graph is 

handled by the Immunizer in Figure 4.1. The algorithm for calculating the matching score 
is illustrated in Table 4.2. Figure 4.2 shows an example of a static attack pattern.  

Raw attack patterns are patterns automatically generated by ADEPTS I from the 
attack sub-graphs via the Distiller in Figure 4.1. The raw attack patterns are used to store 
the pattern from an attack sub-graph and the responses which have been used in that 
attack sub-graph. Most importantly, the EI values for those responses are stored in the 
raw attack pattern as well. As mentioned in Section 4.2, ADEPTS I features the distinction 
of EI values from different attack instances. Since the EI value is used to quantify the 
effectiveness of a response against a certain type of attack, it is necessary to make sure 
the attack sub-graphs corresponding to the same type of attack will be using the same 
copy of EI values. At the time when the first instance of a type of attack comes into the 
system, there’s no corresponding raw attack pattern in the attack template library, and the 
default EI values will be used for the responses in the attack sub-graph which is being 
grown for that instance of attack. After the attack ceases (the attack sub-graph stops 
growing for a pre-defined expiration time), the attack sub-graph will be distilled into a 
raw attack pattern in the attack template library by the Distiller. What will happen when a 
later instance of the same type of attack comes into the system is that the Immunizer will 
match the growing attack sub-graph against the patterns in the attack template library. As 
it identifies the best-matched raw attack pattern, the EI values for the corresponding 
responses will then be loaded from that pattern into the growing attack sub-graph. At the 
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time when the second instance of the attack stops, the Distiller will then merge the attack 
sub-graph back into the best-matched raw attack pattern. During the merge process, the 
Distiller writes back the new EI values into the attack pattern and optionally adds new 
nodes and new edges to the attack pattern, as some degree of non-determinism can be 
expected in a different run of the same type of attack. 

 

4.5.1 Immunizer 

The Immunizer matches a growing attack sub-graph against the patterns in the 
template library. As a suitable raw attack pattern is matched, the Immunizer uploads the 
EI values for the corresponding nodes from the attack pattern to the still growing attack 
sub-graph. On the other hand, when a suitable static attack pattern is matched, the 
Immunizer passes the pre-stored responses to the Response Control Center in Figure 4.1 
for guiding further choice.  Now, assuming there are M patterns I1, I2, …, IM in the attack 
template library. For each node N from a sub-graph G, we keep a vector S[1..M] which 
records the matching score for G with respect to each of the M patterns till the addition of 
node N. A match is concluded when the matching score exceeds a threshold. The 
algorithm for calculating the matching score is given in Table 4.2. 
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Table 4.2. Algorithm for calculating matching score 

 
 

4.6. Handling Unknown Alerts 

In a real-world deployment, it is quite probable that all possible attack paths have 
not been anticipated and therefore the I-GRAPH for the payload system is incomplete. 
Thus, ADEPTS would be unable to map an incoming alert from a detector to a node. To 
handle this situation, ADEPTS has the provision of a general node per host. The alert 
would be mapped to the general node for the host that is the destination of the attack. It is 
assumed, with reason we believe, that the host is easily deducible from the alert. Since 
the general node represents unknown vulnerabilities, it is connected to all others nodes 
related to the services running on the particular host. Thus the effect of a general node 
flagging will be felt through increased CCI for other nodes related to the same host. The 
responses attached to the general node form a pre-specified fixed set called the general 
responses. The general responses are the commands that would be possible to deploy 
with very little knowledge of the operands, such as killing a process (need process ID), 
shutting down a service (need service ID), or restarting a host (need host ID). 

 

// N : a node being added to an existing sub-graph G 
// N.S[k] : the per-node matching score for N with respect to pattern Ik 
// N.ChildNodeInCCIUpdatePath : the child node of N that contributes to N's CCI. (see 

f'(CCIi) in Section 3.7) 
// root_nodes_of(G) : nodes in G that do not have out-going edges. 
 
…… After the field N.ChildNodeInCCIUpdatePath is determined…….. 

1. for k := 1 to M do  
If there’s a path P from the corresponding node of 
N.ChildNodeInCCIUpdatePath to the corresponding node of N in Ik then do

N.S[k] := N.ChildNodeInCCIUpdatePath.S[k] + 
N.cci/num_of_edges_of(P) 

 
2. Load response EI values for N from Ih, where N.S[h] is maximal for h∈1..M 
3. Let p∈1..M such that 

N root_nodes_of(G)
N.S[p]

∈
∑  is maximal. 

4. If 
N root_nodes_of(G)

N.S[p] preset-threshold
∈

>∑ , then return responses from Ip. 
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4.7. Response Chains and Persistent Attacks 

In real-world attack scenarios, there exist attack actions whose success depends 
on the continued presence of a previous attack action. In I-GRAPH terminology, a higher 
level attack goal can only continue to be achieved, if the lower level goal also continues 
to be achieved. This means a persistent connection has to be maintained between the 
attack agents that achieve the higher and lower level goals for the attack action to persist 
successfully.  An administrator can flag each I-GRAPH node that requires the lower level 
goals to continue to be met, as a persistent node. The connected persistent nodes form a 
persistent attack path.  

When the Response Control Center sees that the I-GRAPH node on which a 
response is to be deployed is a persistent node, it performs an action different from the 
algorithm outlined in Section 4.4. Instead of taking response on the node, it searches 
downward along the persistent attack path and identifies the non persistent nodes that 
terminate the path. Then, the response against these non-persistent nodes are deployed.  
For an AND node, one path is searched, and for an OR node, all paths are searched. In 
practice, it is possible that the response taken at the first encountered non-persistent node 
does not succeed, and it may be desirable to deploy responses on the other nodes on the 
attack path. In ADEPTS, for the aggressive policy, responses will be deployed both at the 
top-level node with which the response algorithm is invoked and the lowest level non-
persistent nodes.  



42 

 

1. Attacker buffer 
overflow Apache

2. Insert Malicious 
code into Apache

3. Via the malicious 
code, the attacker do a 
Ip/port scanning to find 

SQL server

4. Guess the 
password of the root 

account on SQL 
server 5. Login to SQL 

server as root

6. Access 
/var/lib/mysql via 

the malicious shell

7. Insert automatic 
malicious code into 

Apache

8. The  malicious code at 
Apache tries to do a 
buffer overflow at the 

SQL server

9. Insert automatic 
malicious code into SQL

10. Removes data 
under /var/lib/mysql

Persistent Node
Non-Persistent Node

1. Attacker buffer 
overflow Apache

2. Insert Malicious 
code into Apache

3. Via the malicious 
code, the attacker do a 
Ip/port scanning to find 

SQL server

4. Guess the 
password of the root 

account on SQL 
server 5. Login to SQL 

server as root

6. Access 
/var/lib/mysql via 

the malicious shell

7. Insert automatic 
malicious code into 

Apache

8. The  malicious code at 
Apache tries to do a 
buffer overflow at the 

SQL server

9. Insert automatic 
malicious code into SQL

10. Removes data 
under /var/lib/mysql

Persistent Node
Non-Persistent Node

 
Figure 4.3. Persistent attack example

 
An example of a persistent attack is shown in Figure 4.3. Here, node 2,3,4,5, and 

6 are persistent nodes. On this attack path, it requires the attacker progressively embed 
malicious codes onto Apache and MySQL. These embedded codes act like relay stations 
such that the attacker is able to remotely control a root privileged shell on the SQL server. 

 

4.8. Providing Feedback to Responses 

Feedback to the response system is crucial for ADEPTS, providing the runtime 
mechanism to bias response choices in favor of those that have been effective in the past. 

 

4.8.1 Varying EI 

The feedback is provided by dynamically varying the EI of the response. After a 
response has been deployed, the feedback system checks to see if any active response 
action is deployed on an edge that can be used to reach a node in the currently computed 
response set. If such a response action exists, it is indication that the response action 
possibly failed and its EI is decreased. 

The amount by which the EI of the response is decreased depends on whether the 
response is on an AND edge, OR edge, or Quorum edge to the node in the response set. If 
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it is on an AND edge, then it is certain that the response failed and thus the node was 
achieved. Therefore, the EI is decreased by a fixed fraction for responses on all the edges. 
If the response is on an OR or Quorum edge, then the EI is decreased in the proportion of 
the CCI values of the nodes, the maximum decrease being the same as in the AND case. 
When a response expires or when an administrator manually deactivates a response, the 
EI of the response action is increased by a fixed percentage under the intuition that the 
response was successful since further alerts were not observed. 

Referencing Figure 3.2, suppose an active response is present on the edge 
between node 1 and 7, and node 10 is in the response set. Suppose the fixed fraction to 

decrease is α. Then for the active response,
16

1

78

7

CCICCI
CCI

CCICCI
CCI

EIEI oldnew ++
−= α . 

4.8.2 Tuning Response CPT Values in Bayesian Network 

If one opts for Bayesian Network for inferencing on I-GRAPH, feedback of 
deployed responses can be achieved through standard Bayesian Network parameters 
learning such as EM learning [42]. This results in tuning of values in the conditional 
probability table entries corresponding to those deployed responses. 

 

4.8.3 Deactivating Responses  

To reduce disruptiveness of an ineffective response, each response gets a pre-
assigned time-to-live (TTL). After the response has been deployed, the Response Control 
Center (RCC) periodically checks the activated responses and deactivates it when they 
are expired. On the other hand, the RCC will extend the TTL of an expired response 
temporarily if it finds the response is successful and the payload system is still under 
attack. This is determined by investigating that the alerts mapped to the current node in I-
GRAPH disappears, the immediate upper level node has not been compromised, but the 
immediate lower level node still gets alerts. 
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4.9. Complexity Analysis 

 

Table 4.3. Notations for complexity analysis 

Max number of existing alerts in a sub-
graph 

a
Number of new alerts 

t 

Number of existing sub-graphs 
s Max number of outgoing response 

from a node 
o 

Max number of nodes in a sub-graph 
v Max number of alerts in an alert 

queue 
q 

Max number of edges in a sub-graph e Number of nodes in response set r 
Max number of existing active responses 
in a sub-graph 

c Number of patterns in attack 
template library 

p 

 
The worst case computational complexity follows directly from analysis of the 

algorithms presented in Sections 3 and 3.1. 
Sub-graph creation: O(tsv); CCI update: O(v2ep); False alarm determination: O(ta); 
Missed alarm determination: O(ve); Response set computation: O(ve); Optimal response 
selection: O(roq); Varying EI algorithm: O(cve) 

Thus, the worst case time complexity of an execution of ADEPTS is: O(tsv + v2ep 
+ ta + roq + p + cve). 

The process of updating a raw attack pattern from a sub-graph can be done offline 
and is O(v3+vp). 

 

4.10. Limitations 

We assume reliable and secure communication channels between detectors and 
ADEPTS. Similarly, reliable and secure communication channels are assumed between 
response execution agents and ADEPTS. This can be achieved through existing work on 
secure network service architecture such as [45].  

Alerts may arrive at ADEPTS out-of-order, i.e., not following the causality of the 
attack steps. To handle this, alerts are first put in a reorder buffer and after a time period 
are processed in ADEPTS. However, if the communication channels cause the alerts to 
arrive out-of-order beyond the time period for which alerts sit in the reorder buffer, then 
ADEPTS can mistakenly process an alert before processing its causally preceding alerts.  
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Equation Chapter (Next) Section 1 

 

 
5. OPTIMAL RESPONSES 

 
The few available dedicated IRSs for distributed systems [12, 19-21, 46, 47] have 

one or more of the following characteristics—they have a static mapping of symptoms 
from the detector to the response, do not take feedback into account for determining 
future responses, assume perfect detectors with no missed and no false alarms, or assume 
perfect success rate for a deployed response. The complex interactions among the 
complex software running the distributed applications, the non-determinism in the 
execution environment, and the reality of new forms of intrusions surfacing would make 
any one of the above characteristics undesirable. Importantly, the existing work does not 
present a method for reasoning about or evaluating the optimality of a chosen set of 
responses. The presented protocols, including our earlier work ADEPTS I, take a heuristic 
approach and do not give a globally optimal response solution prescribed in our proposed 
response model in Sec. 1.1. By globally optimal we mean the set of responses that 
maximizes the system survivability. How far each solution is from the optimal is also not 
clear. Optimality is an important metric because it allows a system designer to reason 
about how well a given set of responses with which the IRS is populated can work for the 
target attack scenarios. This may point to modification of the response repository in the 
IRS. We address the problem of optimal response selection in this chapter. 

We present a system called SWIFT (ADEPTS II) to reason about the global 
optimality of a chosen set of responses in a distributed system of interacting services. The 
optimality criterion takes into account the impact of a deployed response to the services 
in the system and the impact of not deploying a response to the services which could 
result in further spread of the attack. This system is probabilistic since the future spread 
of the attack and the effectiveness of a response are unknowns and can only be estimated. 
The optimality of a response set is a global or system-wide property and thus optimizing 
the response choice on each compromised service individually as seen in [33],[48] may 
not be sufficient. The globally optimal solution must account for the fact that there exist 
dependencies between responses available at the different services. For example, 
blocking all traffic from a specific subnet at the ingress point will make it redundant to 
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impose restrictions at an internal service on traffic from a host within the subnet. Also the 
effectiveness of a response depends on the time to deploy the response. 

We prove that solving the optimal response determination problem is NP-hard. 
Both the number of responses and the number of services (including replicas) can grow 
large with increasing system size and complexity. Since it is imperative to deploy prompt 
responses at runtime to counteract automated attacks, we design an approximate solution. 
Our solution employs genetic algorithm (GA) [49] based search through the universe of 
possible responses. As multiple attack instances of an attack type or its variants are seen, 
SWIFT updates the effectiveness of the deployed responses and the quality of the 
chromosome pool used to initiate the GA-based search. Thus, SWIFT adapts to provide 
better responses as history builds up in the system. SWIFT can respond to attack variants 
through an approximate graph matching algorithm and population of chromosomes from 
the approximate match. Attack variants are particularly relevant for distributed 
applications where different order of observing alerts from different machines may give 
the impression of an attack variant.  

The SWIFT system is an instantiation of the proposed model of automated 
response incorporating the two properties of maximizing survivability and tolerating new 
types of attacks (Sec. 1.1). The experiments (Sec. 8.6 and Sec. 8.8) indicate improved 
survivability from SWIFT compared to ADEPTS I, the ability of SWIFT to adapt its 
responses as increasing numbers of attack instances are seen, and its ability to handle 
attack variants (Sec. 8.9). 
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5.1. Deficiency and Sub-Optimality in ADEPTS I Response 

 

 
Figure 5.1. Deficiency in ADEPTS I response location 

 
A deficiency in ADEPTS I response mechanism is that the set of the potential 

responses on an edge e are restricted to the responses whose opcodes match with the 
channel type of edge e and whose operands are compatible with the alerts on the source 
node of edge e, and this constraints ADEPTS I from applying precautionary responses. For 
example, in Figure 5.1, let’s assume that node a, b, c, d, and f are achieved by the attacker. 
Also, assume that nodes c, d, and f are flagged by ADEPTS for deploying responses. 
Consequently, only responses Rfk, Rdg, Rdh, and Rce will be consider by ADEPTS I at this 
point in time.  

Let’s define Ivx to be the overall impact from the compromised node a, b, c, d, 
and f and the deployed responses Rfk, Rdg, Rdh, and Rce. Also, let’s define the impact from 
losing node e is Ive, and the impact from deploying response Rej to be Ivr. Finally, let’s 
define the impact from losing node j to be Ivj.  

Now, let’s assume that responses Rfk, Rdg, and Rdh are 100% effective, which 
means they are always effective in blocking the propagation of the intrusion on the 
corresponding edges. And let’s assume that response Rce is a partially effective response, 
which has a probability of p in successfully blocking the attack propagation. Let’s assume 
that Rej takes the same time as the attack propagating from node e to j to deployment, 
which means that Rej will be effective when it is deployed before node e is flagged and 
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ineffective otherwise. So depending on whether Rej will be pre-deployed, the expected 
impact on the end-scene from this response mechanism with respect to this intrusion will 
be: 

 
If Rej is pre-deployed, 

 
Expected impact = Iv1  

= Ivx + Ivr + p*Ive  
= (Ivx + p*Ive) + Ivr 

 
If Rej is not pre-deployed (current ADEPTS), 
 

Expected impact = Iv2  
= Ivx + p*(Ive + Ivj + Ivr) 
= (Ivx + p*Iv eee)+ [p*Ivr + p*Ivj] 

 
Therefore, in the case when |Ivr| is small, |Ivj| is high and p is high, one would 

expect |Iv2| > |Iv1|. And in this case, the ADEPTS I response would be sub-optimal. The 
adaptation process in ADEPTS I won’t be able to fix this deficiency as the current 
adaptation mechanism doesn’t deal with this kind of precautionary responses (responses 
acting on nodes which haven’t been reached by the attacker).    
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Optimal 
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Attacks x 
ADEPTS I 
Responses

Space of Attacks x Responses

Attacks x 
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Figure 5.2. ADEPTS I/II with respect to optimal response 
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The relation of ADEPTS I with respect to the optimal response in the space of 
attacks x responses can be seen as Figure 5.2. Here we are going to present a improved 
version of ADEPTS named SWIFT (ADEPTS II) to pursue the optimal response set.  

 
5.2. Framework for Global Optimal Response 

 
SWIFT is set to pursue the global optimal response combination RCi,opt mentioned 

in Sec. 3.6. This involves selecting response actions that maximize the survivability (Eq. 
(3.3) in Sec. 3.6). We prove this optimal response determination to be an NP-Hard 
problem as shown in the following. SWIFT therefore uses genetic algorithm to 
approximate the optimal response combination. The details are presented in Sec. 5.7.  

 

5.2.1 Intractability of Optimal Response Determination 
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Figure 5.3. Transformation to map set covering problem to ORD 

 
Consider the small I-GRAPH in Figure 5.3. Let E = {e1, …, et}. Each edge in E has 

a  set of possibly overlapping responses. Each response has the same probability of 
success and identical Iv’s. The Iv of each node N1, …, Nt is ∞. Thus ORD will deploy a 
response on each edge in E. By definition of ORD, it will generate a response 
combination R such that the cost is minimized, which for the special settings implies that 
the number of responses is minimized. Thus the responses in R cover the set E. This is 
the solution to the set covering problem. The reduction is obviously polynomial. Hence, 
ORD is an NP-hard problem in terms of the input size of number of responses and 
number of nodes. 
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In practice, for a reasonable-sized distributed system, there are many possible 
attack steps and therefore many possible response steps. For example, there are several 
research efforts aimed at scalable generation of attack graphs with tens of thousands of 
nodes [40]. Also, there are many possible services and therefore attack graph nodes. 
Again, notice the significant research efforts aimed at diagnosing root cause problem in 
services which aim at scalability to a large number of services [50, 51]. The intractability 
is observed in practice not just for a few corner cases, but in the average cases as well. 
This is due to the dependences between responses and attack steps. 

 
5.3. Design Overview 

The overall execution flow in SWIFT’s search for optimal response combination is 
shown in Figure 5.4.  

 

 
Figure 5.4. Overall flow for the steps in SWIFT to respond to an attack 

 

5.4. Attack Template Library (ATL) and Attack Snapshots 

SWIFT seeks to adapt its responses based on previous attack snapshots. Thus it is 
important to store the history of attack snapshots and prior responses. This is maintained 
in the Attack Template Library (ATL).  

The ATL houses snapshots of attacks seen so far. Each snapshot entry s in the 
template library contains the following information: s.g: the sub-graph of the I-GRAPH 
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with nodes that have been achieved at snapshot s and the corresponding edges; s.predict: 
the path prediction table used to predict the propagation trend in the I-GRAPH from the 
snapshot s (Section 5.5); s.rc: the most effective response combinations previously found 
by SWIFT for snapshot s, s.r: the responses used previously for this attack snapshot and 
their EI values. Thus, the EI value of a response is maintained per snapshot, rather than 
globally for the response. This acknowledges that a response’s effectiveness also depends 
on how far ahead of the attack front reaching the response node, i.e, on the time to 
successfully deploy a response. Also when the EI value is used by SWIFT, it picks it up 
from a Normal distribution with the mean and the variance of the EI observed so far. This 
design, called fuzzy EI, ensures that a response that falsely has a low EI value will 
eventually be redeemed, deployed in a response combination, and its EI reevaluated. 

When the detection framework sends attack graph gN to SWIFT, SWIFT will check 
in the ATL if there is an existing attack snapshot se with se.g = gN. If it does, se is loaded 
from the ATL as sN (step 2, Figure 5.4) for subsequent SWIFT operations. Otherwise a 
new snapshot is created. If space is a constraint, SWIFT deletes snapshots from the ATL 
by various criteria—by time of creation or time of last access, frequency of access, or the 
snapshot with the lowest cumulative |Iv| of its nodes. 

 

5.5. Predicting the Escalation of Attack 

Given an attack snapshot s, while there are many possible follow-on attack steps, 
in practice, some are much more likely. SWIFT estimates the likely follow-on steps so that 
the search space is restricted and unnecessary responses are not deployed. The attack 
snapshot prediction table and the edge propagation factor tuning algorithms are used for 
this purpose. 

To track the likelihood of follow-on steps, SWIFT maintains a prediction table 
s.predict for each snapshot s. The table entry s.predict[e], which is called edge 
propagation factor for edge e (e.EPF), tracks the likelihood of an attack propagating on 
the edge e.EPF is a real number in the range [0, 1] and is used in the creation of the so 
called Domain Graph in next paragraph, which defines the search space explored by 
SWIFT in making the response decision. SWIFT increases EPF on an edge if attack 
propagation is perceived on the edge and decreases EPF otherwise. For example, in 
Figure 3.5, assuming response r is not deployed and detector Dx fires, e.EPF will be 
increased if detector Dy fires subsequently. Otherwise, it will be decreased. EPF on edge 
e is used to tone down the contribution to the probability P(y) from node x. Therefore, if 
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the EPF value e.EPF is low, this would decrease the likelihood of SWIFT deploying 
responses around y.  

If Bayesian Network is used to provide inference on I-GRAPH, s.predict[e] is 
modeled by the corresponding entry in the conditional probability table (CPT) of the 
destination node of edge e as shown in Figure 3.6. There’s no need to use additional 
structures to hold the values. The equivalence to EPF tuning is the Bayesian Network 
parameter learning for the CPT entries[42]. 
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Figure 5.5. Relations between attack snapshot/domain graph/I-Graph 

 
5.5.1 Domain Graph 

The Domain Graph D(s) ⊇ s.g and is a subgraph of I-GRAPH, which provides an 
approximate bound on the nodes that may be reached by an adversary from a snapshot s 
(Figure 5.5). In Eq.(3.1), when we calculate the expected impact vectors due to the nodes 
in the I-GRAPH, we consider all the nodes in the I-GRAPH. This can adversely affect the 
performance since the I-GRAPH is likely a large structure for any large real-world 
distributed systems and many nodes in it will have vanishingly low probability of being 
achieved based on the current snapshot. The Domain Graph subsets the nodes to be 
considered so that a more timely and more accurate reaction to the attack can be taken.  

Given the I-GRAPH I and a snapshot s, the Domain Graph D(s) = (V, E) where V = 
{{node n∈I such that P(n) × |Iv(n)| is greater than a given threshold T} ∪  {node n∈I 
such that n is on the path from nx to ny in I where nx, ny∈V }} and E={e|e∈edges(I) and e: 
(u, v) , where u, v∈V} . This is computed in step 4 of Figure 5.4. 
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Essentially, domain graph gives the worst case estimate, assuming no responses 
are going to be deployed, on the extent of an attack and bounds the search space of the 
Genetic Algorithm that we discuss next. The estimation of domain graph is refined 
through the tuning of the EPF values (Section 5.5) and the EI values of the responses 
already deployed. In the ideal case, the estimated domain graph should coincide with the 
actual extent of an attack. (e.g. C=D in Figure 5.5) 

 

5.6. Similarity of Attack Snapshots SA(SN) 

Similar attack snapshots SA(sN)={sX: sX∈ATL and |sX.g-sN.g| < threshold} are 
used in the creation of the domain graph and the preparation of response candidates (Step 
3b in Figure 5.4). The objective is to rely on knowledge learnt previously from similar 
attack snapshots for helping provide responses to the current attack snapshot sN. This is 
useful when sN by itself does not contain enough historical information for deriving low-
cost responses.  
The difference |gx-gy| between two I-GRAPH fragments gx and gy is defined as  
 

|gx-gy| = x y x y

x y
1

(# nodes in g g ) (# edges in g g )
# nodes and edges in g g

∩ ∩
−

+
∪

 

 

5.7. Genetic Algorithm (GA)-based Response Mechanism 

As the problem of deciding the optimal response combination (ORD) for an attack 
snapshot has been proved to be NP-hard, we focus on an approximate solution using a 
GA framework [49]. Following Figure 5.4 step 6, this corresponds to designing a 
response mechanism Respond(.) (algorithm shown in Table 5.1), which takes the 
snapshot sN from Step 2 and generates the approximate optimal response combination 
RCN. The history information used here is embedded in sN and Rdeployed, the responses 
deployed thus far.  

Within this framework, we map each response combination onto a chromosome, 
and the problem of searching for the best response for an attack snapshot is then 
translated into looking for the best chromosome from the chromosome pool over multiple 
evolutions. Often using genetic algorithm to perform optimization is an expensive 
process [38] due to the requirement of search through a huge chromosome pool over 
many evolution cycles to get a good solution. We reduce the execution time by 
selectively initializing the chromosome pool.  
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SWIFT only considers the responses within the Domain Graph that have not been 
deployed yet. This set of applicable responses is given by RA. The encoding scheme is 
that each chromosome c is an |RA|-sized bit vector, with each bit uniquely mapped to a 
response r∈RA. 

To populate the chromosome pool (Step 5 in Figure 5.4), first, SWIFT relies on the 
history information from the snapshot, namely sN.rc and sN.r (i.e., the best response 
combination found so far for this snapshot and responses deployed and their EIs). Second, 
SWIFT relies on this same information from past similar attacks. Third, SWIFT populates 
the chromosome pool with heuristic-based responses from ADEPTS I and fourth, with a set 
of randomly filled chromosomes.  

The fitness of a chromosome c, is determined by the response combination RC for 
c. The fitness of chromosome c is defined as | ( )|/dimension( )( ) 10 Iv RC Ivfitness c −= . This fitness 

function satisfies some desirable properties – high |Iv| translates to low fitness and |Iv| of 
zero or infinity are handled. A Genetic Algorithm Solver (Step 6 in Figure 5.4) is then 
invoked to systematically probe through the space of response combination RC through 
the typical GA evolution process [49]. The high-level concept here is those response 
combinations that yield low cost values will be returned by the GA Solver in the end. 

The ORD problem is a NP-Hard combinatorial global optimization problem. 
Techniques such as Simulated Annealing [52] or Monte Carlo Method can also be used. 
We chose GA because it has been widely used and is easy to implement. The framework 
of automated response and the ORD problem are generic with respect to the optimization 
techniques used to solve them. 
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Table 5.1. GA based response mechanism 
Algorithm: Respond 
Input: latest attack snapshot sN 
Output: approximated optimal response combination RCN 
Pre-defined Constants:  

chromosome_pool_size: a constant on the chromosome pool size. 
v% : the percentage of top chromosomes to be kept in the history. 
max_evolutions: maximum number of evolutions per iteration for the GA. 
rc_size: the maximum size of the set sN.rc of best response combinations previously 

found. 
Rdeployed : responses deployed thus far 
RA : The set of applicable responses 

Method: 
1. Create Domain Graph DN=D(sN). 
2. Derive RA from Rdeployed and DN. 
3. Initialize GA chromosome pool  through four sources defined in Section 5.7. 

pool = GA_PopulateChromosomePool (ATL, sN, DN, chromosome_pool_size). 
4. Perform GA evolution cycles 

for i=1 to max_evolutions { 
pool = GA_NextChromosomeGeneration(pool). 

}  
5. Update the best response combinations 

best_chromosomes = {the top v% of chromosomes in pool (wrt fitness)}. 
sN.rc = the top rc_size chromosomes from (sN.rc ∪ best_chromosomes).    

6. Find chromosome RCN∈sN.rc with highest fitness. 
7. Return RCN. 

 
5.8. Limitations 

Both CCI Inference (Sec. 3.7) and Bayesian Network Inference (Sec. 3.8) use the 
statistical means of past observations to estimate the attack escalation and response 
effectiveness. This assumes a probability distribution with small variance. In our 
experiments (e.g. Sec. 8.8), we notice non-smooth patterns in the |Iv| plot due to non-
deterministic attack escalation and response effectiveness. If the variances of the 
corresponding distributions are too large, further unstable performance from the system 
can be expected. For future work, it may be useful to estimate the variance and account 
for it as well.  

The current design on dealing with attack variants in SWIFT assumes that similar 
attacks share similar EPF values (attack escalation parameters) and EI values (response 
effectiveness). This is by and large an open research question, which requires a thorough 
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study of existing multi-stage attacks to prove or disprove it. Such a dataset is 
unfortunately not available in the public domain at present. 
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Equation Chapter (Next) Section 1 

 

 
6. RESPONDING TO ZERO-DAY ATTACKS 

 
Zero-day attack [53] is the kind of attack which exploits undisclosed 

vulnerabilities or vulnerabilities for which patches are not yet known. The typical way to 
deal with it is to limit the possibility of zero-day attack. One approach is to strip 
unnecessary functionalities thus eliminating potential vulnerabilities [45]. Another 
approach is to harden the existing system through tighter security policies such as 
SELiunx. However, both approaches can significantly hamper the flexibility and the 
diverse functionality of a system. Another approach is to use detection technologies that 
rely on detecting the “manifestations” of each attack stage rather than the mechanism of 
launching the attack, which is unknown for zero-day attacks. One example is code 
emulation based malware detection [54], where they determine if a malware is malicious 
or not based on its observed behaviors when running on an emulator. They usually have 
high false positive rates and therefore are typically used on an advisory basis mostly.  

A zero-day multi-stage attack has two characteristics: (1) some or all the stages 
are based on unknown exploits; (2) some or all the interconnections among the stages are 
unknown. In short, the complete mechanism behind a multi-stage zero-day attack is not 
known a priori. Current work on dealing with multi-stage attacks fall short of handling 
zero-day multi-stage attacks. Existing work on alert correlation and attack graph 
generation [9, 55] and prevention based on attack graph analysis [32, 40] are explicitly 
predicated on known vulnerabilities. Automated intrusion response systems such as 
SWIFT or ADEPTS I are designed to work on a prebuilt attack graph that captures all 
escalation paths for attacks. Host-based solution such as pH [56] provides only local 
responses to intrusions detected on the corresponding host and is not designed to deal 
with multi-stage attacks. Most existing IRS [19, 46, 56-58] are static in that the response 
mechanism is tied to the specific alerts by a rule and cannot adapt to new kinds of attacks.  

Here, we come up with a solution that enables automated response to zero-day 
multi-stage attacks. There are two major contributions from this work. 

The first contribution is a modeling technique for zero-day attacks. This 
comprises an object-oriented hierarchical model for the component, the detector alerts in 
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the system and the interconnections between the components that allow attack escalation. 
The model is used to represent a system configuration specification for the protected 
system, which is currently a manual input. This is then used for online attack graph 
generation. Distinct from the extensive body of work on attack graph generation, we 
generate the graph at runtime based on received alerts, and the graph only captures the 
local part of the system for which the alerts have been observed. Also, we map the alerts 
to manifestations of each attack stage, rather than the mechanism of achieving the stage. 
For example, an alert may flag that the access control list has changed (maliciously in this 
case), but not the steps used by the adversary to achieve this. 

The second contribution is a technique called conceptualization of an attack 
graph. We observe that even for zero-day attacks, the concepts behind them are not 
always new. For example, a conceptual description of many distinct attacks is memory 
overflow followed by data execution. This concept is so commonly seen that to deal with 
it processor manufacturers have introduced the NX-bit, and OS manufacturers have 
introduced the idea of data execution prevention. We conceptualize the component and 
the detector associated with an attack graph node by moving each up to a super-class in 
the object-oriented hierarchy. For example, an Apache Web Server and a Microsoft IIS 
Web Server can both be conceptualized into a “Web Server” or simply a “Program”. 
Similarly, an alert corresponding to “Java array out of bound exception” can be 
conceptualized into a “Buffer Overflow”, a “Memory”, or a “Got Effect” (something is 
wrong) alert. Essentially, we use conceptualization to map two distinct attacks into the 
same (or closely similar) attack graph at a high-enough level of conceptualization.  Then 
we use the ability of our IRS, ADEPTS to leverage information from the previously-seen 
attack to deploy effective responses to the zero-day attack. The proposed system is named 
ADEPTS III / ORIGIN. 
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6.1. Design Overview 
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Figure 6.1. Abstraction on attack steps 

 
An issue concerning IDS and IRS is their effectiveness on handling zero-day 

attacks. A classical approach in IDS application is the use of looser detection rules. By 
that it means the use of a detection rule which can potentially detect a whole class of 
attacks, and not just a single attack. For example, using a Snort rule signature pattern 
‘/bin/sh’ can potentially match against a couple of different variants of shell creation 
exploits, some of which can be owing to unknown zero-day attacks.  

Typically, the nodes in I-GRAPH are specific to a detector alert, so if the detector 
rule for this alert is too strict, a slight variation in an attack could cause a missed mapping 
between an I-GRAPH node and an attack step, which in turn could result in a less effective 
response action.  

To address this issue, our approach relies on the abstraction of I-GRAPH nodes. As 
shown in Figure 6.1, the rectangular boxes contain the abstractions on the corresponding 
oval-shaped I-GRAPH nodes. Therefore, what happen here is that when an exact mapping 
between an alert and an I-GRAPH node is impossible, ORIGIN will fall back to the 
abstractions and try to perform the mapping on the abstraction layers. By doing so, we 
hope ORIGIN can better tolerate variations in attacks and provide equally well responses 
to the unknown zero-day variants of an attack. For instance, in the example in Figure 6.1, 
there’s no ‘DNS-HINFO Query to find SQL server’ node, which could result in a 



60 

 

mismatching with the attack pattern in the template library. That attack pattern, however, 
resembles the attack instance almost perfectly. By using the abstractions, this 
mismatching can then be resolved, and the optimized responses from that attack pattern 
can be applied to this attack instance as well.  

Table 6.1 gives a high-level summary of how different types of IRS technologies 
perform against different types of attacks through the life-time of attacks. Existing local 
response technologies take responses based on an alert flagged by a detector on the local 
machine and the response is hard-coded statically for each kind of alert. This is the most 
prevalent form of IRS in use today, such as, anti-virus software quarantining a file when 
the detector matches a virus signature in the file. Existing multi-stage capable IRSs such 
as SWIFT perform significantly better than the local response technologies for known 
attacks. This is due to the fact that they consider the global effect from a multi-stage 
attack and from the use of responses. However, for zero-day attacks, they are no better 
than the local response technologies, since they do not find the attack in the pre-built 
knowledge structure, such as the I-GRAPH used in SWIFT. 

 

Table 6.1. Capability of ORIGIN/ADEPTS III for different kinds of attacks 

 
First Attack 

Instance 
Repeated Attack Instances 

IRS Learning Phase IRS Fully Adapted

Known Attack 
Good / 

Excellent 
Excellent Excellent 

Zero-day 
Attack with 
known 
concept 

Good / 
Excellent 

Good / Excellent Excellent 

Zero-day 
attack with 
new concept 

Poor / 
Moderate 

Moderate / Good Excellent 

Local responses : “Poor” for all 9 cases 
ADEPTS I/II : “Poor” for the 6 Zero-day attack cases. 

(A range of performance is shown for some cells since the exact performance depends on 
the parameter setting of the IRS.) 
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The contribution of our work is highlighted in the bold box in Table 6.1, which 
corresponds to the cases of zero-day attacks. We categorize zero-day attacks into two 
types: one with known concepts, and another with new concepts. The first kind 
corresponds to the case, where after conceptualization, the zero-day attack will become 
identical (or closely similar) to a previously seen attack. The second kind corresponds to 
the case, where not even a conceptually similar attack has been seen before. ORIGIN 
greatly improves the state-of-the-art for the first kind of zero-day attacks, while it still 
improves the state-of-the-art, but less significantly, for the second kind of zero-day 
attacks. Note also that as in previous ADEPTS systems, ORIGIN shows the capability of 
learning – the effectiveness of deployed responses, the escalation paths of attacks – 
through observing multiple instances of an attack type and therefore the performance 
improves with repeated instances, till it is fully adapted to the attack type. 

Figure 6.2 shows the overall system design of ORIGIN, which we will describe in 
the next few sections. 

 

 
 

Figure 6.2. Building Blocks and Operational Flow in ADEPTS III / ORIGIN 

 
6.2. System Configuration Specification 

Rather than assuming prior knowledge of attacks by utilizing a pre-built attack 
graph as done in existing work [32, 40, 59], ORIGIN is designed to rely on the knowledge 
about the configuration of a system. Our hypothesis is that for a system owner it is easier 
to provide the system configuration, than to enumerate all possible attacks against her 
system. It is still a challenge to represent the configuration of a real world system which 
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can consist of multiple heterogeneous components with complex dependency 
relationships among them.  While prior works have introduced the idea of using system 
configuration information for attack graph generation, they use a simple and coarse 
system model. For example [8, 40, 60] use each host in the system as the unit in the 
configuration.  

In our specification, an application system is viewed as a collection of 
components. A component is a generic term for any resource in the system and can be an 
OS, a program, a file, etc. To model the interconnections between two components, we 
define a connection between them, which can allow the spread of attack.  

We use C++ [61] as the specification language, which allows us the use of an 
inheritance hierarchy for components. Then we can move common specifications to a 
base component (base class in C++ terminology). One example is two machines running 
the same operating system but having different customizations (e.g. different programs 
installed and different settings). In this case, there can be a base component representing 
the original OS and two derived components representing the customized OSs (machines). 
The specification is compiled into a dynamic linked library (DLL), which can be 
loaded/unloaded from ORIGIN at runtime.  
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Figure 6.3. Example of Component Memberships 
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6.2.1 Component Definition 

 

Table 6.2. Component Definition 

class ComponentName : baseComponentName 
/// baseComponentName is optional 
{ 

GetID() 
GetHost() 
EnumerateDetectors() 
EnumerateMembers() 
EnumerateOutConnections(d) 
GetIV(d) 

} 

 
Table 6.2 shows a component definition. We omit the detailed C++ syntax 

keywords/types/qualifiers for presentation simplicity. GetID returns the identifier for this 
component. GetHost returns the hosting component of this component. For example, a 
Linux component can be the hosting component of a sendmail component installed on 
that Linux box. EnumerateDetectors returns the detectors associated with this component. 
EnumerateMembers returns the member components. In ORIGIN, the membership relation 
between components x and y means x is hosted within y, either physically (e.g., in a 
machine) or logically (e.g., the sendmail component as a member of the Linux 
component.) Figure 6.3 shows an example of the member associations of some of the 
components in our testbed. In Figure 6.3, a component x within the rectangle of 
component y means x is a member of y. EnumerateOutConnections(d) returns the applicable 
outgoing connections where attack effect can propagate outward from this component 
given the detector alert from detector d. For example, 
Apache.EnumerateOutConnections(StackOverflow) may have a connection leading to a code 
execution on that machine while it is unlikely for 
Apache.EnumerateOutConnections(NetworkDoS) to have a connection leading to code execution. 
GetIV(d) returns the impact vector Iv for this component given an alert from detector d. 
This represents the damage cost to the component when the alert is triggered. We have 
defined Iv in Section 3.5 to be a vector with each element value ∈[0, 1] representing the 
damage to each transaction and each security goal in the system. The object-oriented 
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design allows ORIGIN to concisely represent components using inheritance of shared 
properties. 

 

 
Figure 6.4. Component Inheritance Chart 

 
Figure 6.4 shows an excerpt of the inheritance hierarchy of the components in our 

prototype implementation.  
 

6.2.2 Connection Definition  

 

 
Figure 6.5. Connection Inheritance Chart 

 
In a multi-stage attack, attack effect can propagate from one component to 

another following certain conditions / rules [8, 32]. To incorporate this concept into our 
design, we introduce the information flow connection. We use an information flow 
connection from component X to component Y if data can be transmitted from X to Y. 
Typically, this assumes a network connection from X to Y [40, 60, 62] though this can 
also be a shared memory, a shared file, or a procedure call between X and Y.   
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Less obviously, and distinct from prior work, we use another kind of connection 
between components – a privilege propagation connection. This captures spread of 
attacks without any explicit computing connection, but say through social channels, or by 
breaking into an email account and accessing privileged information to say access an 
online bank account. Formally, if compromising X can give an attacker the ability to 
carry out actions on Y, which are otherwise not possible, a privilege propagation 
connection is created from X to Y. 

A connection also has an inheritance hierarchy (Figure 6.5) starting from a base 
class baseConnectionName. Its members are: source and destination components, PF – the 
propagation factor ∈ [0, 1] which gives the prior likelihood of attack propagation on this 
connection (refer to EPF in Section 3.7); Responses for the responses that can halt the 
attack propagation on this connection. Each response has an associated effectiveness 
index (EI) value (Section 3.7) indicating how effective it is believed to be when used on 
this connection. 

 

6.2.3 Detector Definition 

A component can have associated detectors, which are returned by the 
EnumerateDetectors function of a component. Each associated detector generates alerts that 
pertain to certain attack manifestations observed on the component.  

 

 
Figure 6.6. Detector Inheritance Chart 

 
Figure 6.6 shows an excerpt of the inheritance relationship among detectors in our 

prototype implementation. Right below the base, there are two derived detectors : 
NoEffect and GotEffect. The NoEffect detector is used in the attack graph generation 
process (Section 6.3) to model the “silent” nodes on an attack path that do not generate 
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actual detector alerts, either because detectors are not present or the installed detectors 
failed to generate alerts, but can logically fit into an attack path. In the complete chart, the 
level beneath GotEffect has eight high level manifestations {VirusPattern, UnAuthExec, 
SecPolicyChange, OtherRuntimeError, MemError, DoS, ContentChange, and 
ConfidentialityLoss} that we find in practice have high coverage for all different attack 
stages, even for zero-day attacks. We show only the part of the inheritance hierarchy 
which applies to the attack scenarios we use later in the evaluation section. 

 

6.3. Online Attack Graph Generation Process 

In the attack graph, each node v has the following fields: the detector alert 
(v.detector), the component where the detector is installed (v.component), the identifier (v.id), 
the conceptualized detector alert after the node has gone through the conceptualization 
process (v.cdetector), the conceptualized component (v.ccomponent), the CPT table (v.cpt), 
and state of the node (v.state). A response node r has the following fields: the response 
command (r.cmd), the impact vector for this response (r.iv), and state of the node (r.state). 
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6.3.1 Attack Graph Generation 

 

Table 6.3. Updating Attack Graph 

UpdateGraph(G,dk,NodeState) 
// G: an existing attack graph which was created based on prior alerts d1,d2,…,dk-1. 
// dk: a detector alert 
{ 

 
1. Create node vk 
2. vk.detector := dk 
3. vk.component := Component where dk is generated from. 
4. vk.id = string_concate(vk.detector, vk.component)  
5. if vk already exists in G (as identified by vk.id) discard vk and return. 
6. Connect node vs ∈ G to vk through edge ePm : vs → vk for each path P: 

vs → {vsk1 → vsk2 → … → vskq}Pm → vk such that the following conditions hold: 
 

6.1. vski∉G for i = 1..q 
6.2. q is minimized 
6.3. For each consecutive nodes pair va → vb on P, there exists a connection 

c ∈ va.component.EnumerateOutConnections(va.detector) such that 
c.GetDstComponent() = vb.component. 

6.4. vski.detector = NoEffect for i = 1..q 
6.5. All the nodes on P are distinct with respect to the nodes’ identifiers. 

7. For each consecutive nodes pair va → vb on P 
7.1. c := the connection from va to vb 
7.2. For each response R in c.EnumerateResponses() 

If !∃ response node r such that r.cmd == R { 
Create node r in G 
Set r.cmd:=R and r.iv := impact vector of R. 
r.state = NA 

} 
Connect r to vk 

8. Initialize the vk.cpt with default values or load it from attack template library if 
a past attack exists. 

9. vk.state := NodeState 
} 

 
Table 6.3 shows the algorithm for updating an attack graph when receiving a new 

detector alert. At the beginning, G is set to be empty, so calling UpdateGraph(…) for 
each incoming detector alert essentially generates the resulting attack graph. 
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The idea behind this algorithm is to chain up detector alerts that are considered to 
have causal relationships. Our assumption on the casual relations between two alerts is 
based on connections between the underlying components where the alerts originate from. 
This assumption is widely used in prior work [34, 40, 62] though prior work has dealt 
with offline analysis of known vulnerabilities. 

 

Table 6.4. Generating Attack Graph 

GenAttackGraph({d1,d2,..,dk},{sd1,sd2,…,sdm}) 
// {d1,d2,…,dk}:detector alerts received in order 
// {sd1,sd2,…,sdk}:speculative detector alerts 
{ 
1. G := NULL 
2. For i = 1 to k 

UpdateGraph(G,di,true) 
3. For i=1 to m 

UpdateGraph(G,sdi,NA) 
4. return G 
} 

 
Table 6.4 shows the algorithm which generates the attack graph where 

{d1,d2,…,dk} are detector alerts received and {sd1,sd2,…,sdm} are “speculative” detector 
alerts. Speculative alerts are not actually triggered yet, but are provided here so that the 
attack graph can grow to include them. Speculative alerts are used to populate those 
attack graph nodes which are likely to be but haven’t been achieved by the adversary in 
an ongoing attack (Region [B,D] in Figure 5.5). This is required so that the IRS engine 
can consider a pro-active response, i.e., a response on a component that has not been 
affected yet, but due to the spread of the current attack. They are also useful to evaluate 
how effective deployed responses have been in preventing those nodes from being 
reached.  

Similar to ADEPTS I / II, ORIGIN maintains an attack template library (ATL) of 
attack graphs of past attacks. Assuming an ongoing attack has triggered detector alerts 
{d1,d2,…,dk} and  there’s a past attack with “triggered” detector alerts 
{d1,d2,…,dk,dk+1,…,dk+j}. ORIGIN will then use {dk+1,dk+2,…,dk+j} as part of the 
speculative alerts for the generation of attack graph for this attack.  
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At Step 6.2 of the algorithm in Table 6.3  we assume attack escalates through the 
shortest path (minimum number of connections). Technically, one needs to consider all 
possible escalation paths. In practice, we find that many of these paths share some of the 
connections used in the shortest path, which means the responses from the connections on 
the shortest path suffice to break the corresponding edge in the attack graph.  

 

6.4. Conceptualization of Attack Graph 

 

 
Figure 6.7. Example of conceptualization 

 
Existing attack graph models are typically bound to specific vulnerabilities or 

specific detector alerts. This becomes an issue when dealing with zero-day attacks where 
the information about the underlying vulnerabilities is not known. Even if there are 
detectors that flag the manifestations from the attack, these do not map to the pre-built 
attack graphs available to the IRS results in either ineffective or disruptive response 
choices due to the lack of prior knowledge about the attack and consequently, no 
opportunity for the IRS to learn based on past responses. Typical disruptive responses are 
of the form of killing a process or shutting down a machine, responses that can be 
deployed with little knowledge of the specifics of an attack.  

We therefore come up with a technique that allows ORIGIN to link a zero-day 
attack with past knowledge. The idea is to conceptualize an attack graph by generalizing 
a node’s component ID (n.component) and detector ID (n.detector). After conceptualization, 
ORIGIN can potentially find from its database a past attack which, after a similar process, 
looks similar to the new attack graph. ORIGIN can then leverage the CPTs learned from 
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the past attack, to more accurately estimate the attack escalation and to provide better 
responses. We first provide an example of the conceptualization process before giving the 
algorithm. 

In Figure 6.7, there are two distinct attacks to the WebPortal site. The attack in the 
top part of the figure (AS1) has the attacker exploit a bug in the user account management 
application, which triggers a JavaArrayIndexOutOfBound exception. This bug causes a 
user data corruption in the back-end database, which triggers a DBDataInconsist alert 
from MySQL. As the user data is corrupted, a new instance of the Java based user 
account management application refuses to start, thereby causing a DoS to the WebPortal 
site. The attack in the bottom part of Figure 6.7 (AS2) has the attacker exploit a bug in the 
Tomcat Java application server, which leads to a privileged access to the machine 
running MySQL with the side-effect of a heap buffer overflow alert. The attacker 
accesses the MySQL machine and deletes the data files used by the MySQL server. This 
causes the server to stop functioning correctly due to the missing files, again resulting in 
a DoS to the WebPortal site.  

The two attacks AS1 and AS2 are radically different from the point of view of the 
alerts generated and the vulnerabilities exploited. When a traditional IRS such as SWIFT 
faces the two attacks in sequence, it will consider both of them to be two distinct fresh 
zero-day attacks and deploy ineffective or disruptive responses. However, looking at the 
center part of Figure 6.7 (ASC), we see that AS1 and AS2, after being conceptualized with 
component level = 2 and detector level = 3, look identical. (Details on the 
conceptualization process is mentioned in next paragraph.) At this level of generalization, 
AS1 and AS2 share the concept which has a sequence of three steps – causing a memory 
error at some program, followed by changing some contents at some program, and 
eventually a DoS of some program. From ORIGIN’s point of view, the two attacks can 
share the same effective response r1 and r2. Since it takes time for an IRS such as ADEPTS 
to adapt its responses, the mapping of a zero-day attack to a known concept allows it to 
deploy an effective response on the first instance of the attack. Thus, if AS1 has been seen 
in ORIGIN, then a subsequent occurrence of AS2 can be handled better than in existing 
IRS such ADEPTS I or SWIFT. 
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Table 6.5. Update Node IDs 

UpdateNodeIDs(G) 
////   G(N,E): An existing attack graph 
{ 
1. Sort nodes in G into topological order {n1,n2,…,nN} 

 
2. for i = 1..N   { 

2.1. m := number of parent nodes of ni 
2.2. Sort parent nodes of ni into {p1,p2,..,pm} by the parent nodes IDs 
2.3. count := 0 
2.4. do { 

ni.id := Hash( {p1.id, p2.id,..,pm.id} , {ni.ccomponent, ni.cdetector}, count )
count := count + 1 

}while (ni.id is already used by a node in G) 
} 

} 
 

 

Table 6.6. Conceptualization of Attack Graph 

Conceptualize(G, ComponentConceptLevel, DetectorConceptLevel) 
// G: an attack graph to be conceptualized 
// ComponentConceptLevel: concept level for component 
// DetectorConceptLevel: concept level for detector 
{ 
1. For each attack step node v in G do  

1.1. ConceptualizeNode(v, ComponentConceptLevel, DetectorConceptLevel) 
 

2. UpdateNodeIDs(G) 
} 
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Table 6.7. Conceptualization of Attack Graph Node 

ConceptualizeNode(v, ComponentConceptLevel, DetectorConceptLevel) 
// v: attack graph node to be conceptualized 
// ComponentConceptLevel: concept level for component 
// DetectorConceptLevel: concept level for detector 
{ 
1. v.ccomponent = v.component 
2. v.cdetector := v.detector 

 
3. depth_c := depth of v.compoent in the component inheritance chart (Figure 6.4) 

from the root “Base”.  
4. depth_d := depth of v.detector in the detector inheritance chart (Figure 6.6) from the 

root “Base”.   
 

5. while(depth_c > ComponentConceptLevel) { 
5.1. v.ccomponent := base_component(v.ccomponent)   
5.2. depth_c := depth_c – 1 
} 

 
6. while(depth_d > DetectorConceptLevel) { 

6.1. v.cdetector := base_detector(v.cdetector) 
6.2. depth_d := depth_d - 1 
} 

} 
 
Table 6.6 shows the algorithm for conceptualizing an attack graph. The 

parameters ComponentConceptLevel and DetectorConceptLevel determines the degree 
of conceptualization. The word “conceptualization” means moving the component ID or 
the detector ID of an attack graph node upward toward the respective base of the 
inheritance hierarchy (Figure 6.4 and Figure 6.6). ComponentConceptLevel specifies the 
target level a component should be moved to (base is at level 1). Similarly, 
DetectorConceptLevel specifies the target level a detector should be moved to. The 
algorithm in Table 6.7 is invoked by the algorithm in Table 6.6 to carry out the actual 
conceptualization process for each node. The UpdateNodeIDs(G) (Table 6.5) used in 
Table 6.6 generates the identifier for each attack step node in the attack graph. A node’s 
ID is the hash value of its parent nodes’ IDs and its conceptualized component and 
detector fields. This design ensures a node’s ID to be representative of the graph topology 
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leading to it. Conceptually, two nodes from two separate attacks bear the same IDs, then 
ORIGIN knows they have the same preceding attack steps. This makes identifying 
similarities between attacks easier. 

 

6.5. Limitations 

The conceptualization level (DetectorConceptLevel and ComponentConceptLevel 
in Sec. 6.4) is considered an input value to the system. The system administrator needs to 
set the value at the start of the system. Future research should look at how to determine 
the appropriate conceptualization level automatically. 

The proposed approach to deal with zero-day attack is built on the assumption 
that two similar attacks will share similar attack escalation and response effectiveness. 
This requires an exhaustive study of a database of multi-stage attacks. This kind of 
database is not available in the public domain, and the assumption is still an open 
problem. 
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Equation Chapter (Next) Section 1 

 

 
7. IMPLEMENTATION OF ADEPTS AND TESTBED 

 
7.1. Description of e-Commerce Application 

Figure 7.1 depicts the testbed that we use for experiments. The payload system 
mimics an e-Commerce webstore, which has two Apache web servers running webstore 
applications, which are based on Cubecart (http://www.cubecart.com) and are written in 
the PHP scripting language. In the backend, there’s a MySQL database which stores all 
the store’s information, which includes products inventory, products description, 
customer accounts, and order history. There are two other organizations with which the 
webstore interacts – a Bank and a Warehouse. The Bank is a home-grown application 
which verifies credit card requests from the webstore. The Warehouse is also a home-
grown application, which takes shipping requests from the webstore, checks inventory, 
applies charges on the customer’s credit card account, and ships the product. The clients 
submit transactions to the webstore through a browser. Some important transactions are 
given in Table 7.1. 
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Figure 7.1. Layout of e-Commerce testbed 

 
We set certain security goals for the system, the complement of which are 

specified in Table 7.2, along with the weights. Thus adding the word “prevent” before 
each gives the goal. The attached weights to the transactions and security goals are used 
for survivability computation in Section 8.3. The weights are hypothetical but the 
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magnitudes represent the relative importance to the overall system. In an actual 
deployment, these weights would be set by the system owner using methods such as 
analysis of the Total Cost of Ownership (TCO).  

 

Table 7.1. List of e-Commerce transactions 

Name Services involved Weight 
Browse webstore Apache, MySQL 10 
Add to shopping cart Apache, MySQL 10 
Place order Apache, MySQL 10 
Charge credit card Warehouse, Bank 5 
Admin work Variable 10 

 

Table 7.2. List of e-Commerce security goals 

Name Weight 
Illegal read of file 20 
Illegal write to file 30 
Unauthorized credit card charges 80 
Cracked administrator password 90 
Illegal process being run 50 
Corruption of Apache docs / MySQL DB 70 
Confidentiality leak of customer info 100 
Unauthorized orders created or shipped 80 

 

7.2. Detectors 

For our testbed, multiple detectors which communicate with ADEPTS through 
secure channels are used. We use two off-the-shelf detectors − Snort and Libsafe, and 
create three home-grown detectors. Snort is used for detecting intrusion patterns in 
network traffic while Libsafe is used to detect buffer overflows in protected C-library 
calls. We create a kernel-based File Access Monitor, which can detect file access 
attempts of monitored processes and compare these access attempts against preset rules to 
detect illegitimate activity. Also, we create a Transaction Response Monitor, which 
monitors the transaction response time of the webstore using requests from the Apache 
Benchmark (http://httpd.apache.org/docs-2.0/programs/ab.html). Finally, there is an 
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Abnormal Account Activity Detector at the Bank, which detects abnormal account 
activities such as excessive number of credit card transactions on one account. The 
detectors used are all imperfect ones, with the possibility of missed alarms and false 
alarms. In Section 8.1, false alarms and missed alarms are artificially generated to test the 
detection algorithms. The frequency of false alarms is controlled manually and missed 
alarms are generated by non-deterministically discarding real alerts (or artificially setting 
a low alert confidence) based on a user-defined missed alarm probability for an alert. The 
detectors are not optimized for each attack scenario that the system is tested with. This is 
because the process is clearly labor-intensive and relies heavily on administrator 
expertise. For the off-the-shelf detectors, the rules are taken from the public distribution, 
else the rules are created by a researcher separate from the group that generates the attack 
scenarios. 

 

7.3. Attack Scenarios 

The ADEPTS implementation is tested with different attack scenarios classified 
into three categories − illegal transaction, DoS, and leaking/corrupting information. Each 
attack scenario consists of a set of attack steps, with an ultimate high-level goal. Each 
step of the attack scenario may be detected by none, one, or more of the detectors. We 
show in Table 7.3 ~ Table 7.6 and Figure 7.2 one sample scenario from each category – 
Scenario 1 is placing unauthorized orders (illegal transaction), Scenario 4 is a DoS attack 
on the webstore, and Scenario 8 is vandalizing webstore (leaking/corrupting information). 
Scenario 9, which is stealing/corrupting the SQL database (leaking/corrupting 
information) is different from the other attack scenarios shown in Table 7.3 ~ Table 7.6. 
The difference is that Scenario 9 is a dynamic attack scenario while the other three are 
the static ones. In a dynamic attack scenario, an adversary proceeds through the scenario 
graph in a depth first manner and if any step is unsuccessful, possibly due to a successful 
deployed response, the adversary attempts an alternate path. Thus, a branch out point 
indicates multiple alternate strategies available to the adversary. Dynamic scenarios are 
used to better reflect the actions from a real-world adversary. 
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Table 7.3. Attack Scenario 0 
Scenario 0 

1. Exploit Apache mod buffer overflow. 
2. Insert malicious code. 
3. IP/port scanning to find vulnerable SQL server. 
4. Buffer overflow MYSQL to create a shell (/bin/sh). 
5. Use malicious shell to steal information stored in 

MySQL. 
 

Table 7.4. Attack Scenario 1 

Scenario 1 
1. Apache php_mime_split buffer overflow  
2. ‘ls’ to list webstore document root and identify code 

regarding warehouse shipments  
3. Send shipping request to warehouse, crafting request form to 

cause buffer overrun to fill form with victim’s credit card 
number 

4. Make unauthorized orders 
 

Table 7.5. Attack Scenario 4 

Scenario 4 
1. DDoS attack via issuing huge amount of legal transactions (i.e. 

product search) 

 

Table 7.6. Attack Scenario 8 

Scenario 8 
1. Buffer overflow Apache. 
2. Create a shell with Apache Privilege 
3. Attacker issues crontab command to exploit a vulnerability 

which can create a root privilege shell 
4. Root privilege shell created out of the vulnerable cron deamon 
5. Attacker corrupts the data stored in web server document root 
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We also test ADEPTS with other attack scenarios (e.g. Figure 8.13, Figure 8.18, 
Figure 8.19, Figure 8.20, and etc.) involving buffer overflow attacks to steal client info, 
and other DoS attack scenarios entailing memory exhaustion in the Apache MIME 
handling components. The entire I-GRAPH generated by the PIG algorithm consists of 57 
nodes and 1148 edges and is too large to be shown. A fragment of the I-GRAPH was 
shown in Figure 2. 

 

 
Figure 7.2. Example of a dynamic attack scenario (Attack Scenario 9) 

[Thicker blue circles denote an associated detector] 

 

7.4. Response Repository 

Four types of response commands are included in the Response Repository − 
general, file, network, and denial-of-service types. The general-type commands can be 
deployed to block any types of intrusion-centric channels in the I-GRAPH, corresponding 
to the super channel. The other types of commands have a one-to-one map to the kinds of 
intrusion channels introduced in Section 3.2. The implementation of the file-type 
commands is achieved by using the Linux Intrusion Detection System (LIDS) version 
2.2.0. The implementation of the network-type commands is performed by using iptables. 
The general type commands are killing a process and restarting or shutting down a 
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service or a host. The file-type commands are to deny any access to a file, or selectively 
disable read, write, or execute access. The network-type commands are to block 
incoming or outgoing network connections, parameterized by source or destination port, 
IP, or protocol. The DoS-type commands are to limit the rates of various types of packets, 
such as SYN, ICMP echo, ICMP host not reachable, and SYN-ACK. 
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Equation Chapter (Next) Section 1 

 

 
8. EXPERIMENTS AND RESULTS 

 
We perform experiments on the e-Commerce testbed using both synthetic and 

real-world attack scenarios. The experiments have the goals of demonstrating the 
following – (i) Ability of the missed alarm and false alarm detection algorithms to 
identify inaccuracies in the detectors, (ii) Ability of ADEPTS to adapt the responses 
without and with reference attack patterns, (iii) Scalability of ADEPTS, (iv) Effect of 
survivability with time as multiple instances of an attack scenario impact the payload, (v) 
Comparing global optimal response determination (ADEPTS II / SWIFT) with heuristic-
based response determination (ADEPTS I), (vi) Effectiveness of (ADEPTS III / ORIGIN) to 
deal with zero-day attacks. 

Due to the constraints of space, the results for a sample number of attack 
scenarios are shown. Comparing ADEPTS to other dedicated IRSs is difficult since they 
are not publicly available. For the experiments, survivability is defined as 1000 - |Iv| or 
more specifically 1000 – Σ unavailable transactions – Σ failed security goals. Each 
response is pre-configured with an expiry time. When a transaction becomes unavailable 
or the security goal is violated, the survivability drops by its corresponding weight (e.g. 
Table 7.1 and Table 7.2). Transactions become unavailable due to responses, such as 
rebooting a host, or attacks. Security goals may be violated due to the successful 
execution of an attack step. After a run of an attack scenario is completed, any drop in 
survivability (or increase in |Iv|) due to non-permanent security goal violations (e.g. 
running a malicious process only to reach another goal) is reversed.  

 

8.1. Missed Alarm and False Alarm Estimation 

The objective of this experiment is to demonstrate the behavior of the false alarm 
and missed alarm algorithms given in Section 3.7. The scaling parameter qγ  and pγ  are 

set at 0.2.  
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Figure 8.1. Behavior of false and missed alarm computation algorithms 

 
Figure 8.1 (a) shows how the false alarm probability fluctuates as real attacks are 

interspersed with false alarms. Repeatedly, sets of nine false alarms are generated 
successively at node 30 with attack scenario 14 run after each set of false alarms. 
Scenario 14 is a static scenario where the attacker attempts to buffer overflow Apache 
and MySQL through their process stacks, to try and illegally access the MySQL database. 
Scenario 14 generates a real alert at node 30, along alerts at other nodes. The last set of 
false alarms has forty false alarms instead of nine. As can be seen, false alarms will cause 
the false alarm probability for alerts at node 30 to increase. The increase with the first set 
is the highest since there is no prior evidence of real attacks.  

Due to the variation of the (α,β) bias parameters (they are dependent on the 
present and past links probabilities), the rate of increase increases as more false alarms 
occur but decreases as it converges to one. The large drop when a real alarm occurs is due 
to the conservative nature of the algorithm which tries not to miss alarms for which 
response action is to be taken. 

Figure 8.1 (b) shows how the missed alarm probability of a node in the present I-
GRAPH varies when consecutive missed alarms are continuously generated. This is 
achieved by repeatedly running attack scenario 14 with node 30 having hardwired alert 
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confidences of 0.0, 0.1, and 0.2. Due to the highly connected nature of the I-GRAPH, the 
compromised child node of node 30 is also connected to the compromised parent node of 
node 30. This results in a failure to detect a missed alarm when the alert confidence is 0.0 
(i.e. no alert occurs at node 30). This is explained by the fact that a compromised child 
node can lead to a parent of node 30 being compromised bypassing node 30 because of 
the existence of an edge between them. Therefore it is not possible for the algorithm to 
determine that there was a missed alarm at node 30 without any other evidence. If the I-
GRAPH was not that connected, or probabilities were assigned to each I-GRAPH edge 
based on the likelihood of traversal, then it is very likely that the completely missed alert 
(alert confidence 0.0) would be detected. Only when the alert confidences are small non-
zero values were missed alarms detected. The growth rate is inversely proportional to the 
alert confidence. The missed alarm probability can grow to a maximum 1-alert 
confidence. 

Figure 8.1 (c) shows the Libsafe detector’s calculated missed alarm rate as attack 
scenario 14 is repeatedly executed with varying missed alarm rates. This rate is calculated 
by taking the number of times ADEPTS concludes there is a missed alarm with probability 
greater than 0.5 and dividing it by the number of times the attack scenario has been run. 
This mimics the situation where a detector is unpredictable and misses a fraction of alerts 
corresponding to different variants of an attack. Every time scenario 14 is run, the alert 
confidence of node 30 is set to 0.1 with a probability equal to the missed alarm rate (5%, 
20%, 50% in the experiments) and to 1.0 otherwise. As we can see, the missed alarms are 
detected with regularity, resulting in a calculated missed alarm rate that asymptotically 
tends to the actual missed alarm rates. For the experimental setting of ADEPTS, only when 
the missed alarm probability is greater than 50% will a possible missed alert be 
considered an actual missed alert. As a result, the initial missed alarm rate is at 0% and 
gradually grows later. 

 

8.2. Adaptation of Response Action 

In this experiment we demonstrate the adaptation in ADEPTS in taking more 
appropriate responses as multiple instances of an attack are observed in the system. 
Recollect that an attack sub-graph is induced from the I-GRAPH for each attack instance. 
After the attack instance ceases, the sub-graph is distilled into a raw reference attack 
pattern (attack snapshot) and the state regarding the effectiveness of the responses is 
maintained in this pattern.  
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Four instances of attack scenario 9 shown in Figure 7.2 are executed. The 
instances are not identical since the dynamic attack scenario 9 allows for diversity of 
paths. Instance 1 and 3 follow the same attack steps while instance 2 and 4 follow the 
same attack steps.  Raw attack pattern 1 is created after instance 1 and reused in instance 
3, while raw attack pattern 2 has the same role for instances 2 and 4.  

The steps for the attack instances are as follows. Attack instances 1 and 3 have the 
steps: S5 - Attacker sends packet for Apache chunk buffer overflow; S11 - Stack-based 
buffer overflow on Apache; S1 - Insert malicious code into Apache; S2 - IP/Port scanning 
to find SQL server; S13 - Send packets to SQL server for creating a shell; S3 – Stack-
based buffer overflow SQL; S14 – Create a shell out of SQL process; S4 – Access 
/var/lib/mysql via the malicious shell. For attack instances 2 and 4, the steps are: S0 – 
Attacker sends packets for Apache mod_ssl buffer overflow; S12 – Heap-based buffer 
overflow at Apache; S1, S2 – Same as above; S6 - Guess the root password on SQL 
server; S7 – Login to SQL server as a root. S10 – Modify SQL executable image to create 
a malicious SQL daemon; S9 – Access /var/lib/mysql via the spawned malicous process. 

 

Table 8.1. Placement of testbed services (symbolic addresses are used subsequently) 

Client IPC : 128.10.247.110 
Apache Replica 1 IPA : 128.10.247.105 
MySQL Server IPM : 128.10.247.106 
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Table 8.2. Explanation of the responses for attack scenario 9 

R0 iptables -A INPUT -p tcp -j DROP -s 
IPC --dport 80 

Block attacker’s IP  from 
accessing port 80 on Apache 
Server Replica 1 

R1 ./lids-file.sh IPA READ 
/usr/local/apache2/bin/httpd 

Make Apache Replica 1’s image 
read-only 

R2, R5, 
R8, R96 

iptables -A INPUT -j DROP -s IPC  Block attacker’s IP from 
accessing Apache Server Replica 
1 

R3, R7 restart.sh IPA  
/usr/local/apache2/bin/httpd 

Restarting Apache Server 
Replicate 1 

R4 iptables -A INPUT -p tcp -j DROP -s 
IPC –dport 443  

Block attacker’s IP from 
accessing port 443 on Apache 
Server Replica 1 

R6 restart.sh IPM  /usr/sbin/mysqld Restart MySQL Server 
 
In Table 8.3, we show the different responses taken after each instance of the 

attack. The second column gives the tuples with the responses and the EIs, both before 
and after the attack. The third column gives the response that was taken and if it was a 
success or a failure. Only a response that is deployed has its EI changed. The fourth 
column gives the steps in the attack instance that were executed before it was contained 
and therefore the attack sub-graph (AS) creation was stopped. After attack instances 1 
and 2, the two raw attack patterns are created in the template library, which are shown in 
Figure 8.2. In instance 2, responses R5 and R6 are noted as successful because they 
prevent data on the SQL Server from being accessed henceforth, though the attacker’s 
goal of accessing some data has already been achieved. After instance 3, a more precise 
and effective set of responses is chosen using the raw pattern and the attack is stopped 
two steps ahead compared to instance 1. Similarly for instance 4, a more effective 
response R9 is chosen and the attack is stopped four steps ahead compared to instance 2. 

                                                 
 
 

6 Although R2, R5, R8, R9 are all the same, they are actually four independent responses deployed in the 
four instances of scenario 9. 
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Table 8.3. Response adaptation for attack scenario 9 

Instance 
of 

Attack 
(Response, EI) 

(Response 
Taken, 
After 
which 

step) (S|F)

Steps executed 
before AS stopped

I1 

Before: (R0, 1.1); (R1, 1.1); (R2,1.1); 
R3(,1.1) 

R0,11 (F) 
R1,11 (F) 
R2,2(S) 
R3,2 (S) 

S5 => S11 => S1 
=> S2  
 After: (R0, 0.935); (R1, 0.935);  

I2 
Before: (R4, 1.1); (R5, 1.1); (R6, 1.1) 
 

R4,2 (F) 
R5,9 (S) 
R6,9 (S) 

S0 => S12 => S1 
=> S2 => S6 => S7 
=> S10 => S9 After: (R4, 0.935) 

I3 

Load EI values from Raw Attack 
pattern #1 
EI(R1): 0.935 
 ⇒ Another response as R1 is less 
favorable in this attack instance. 
EI(R3). 1.1 
⇒ Set R7’s EI to 1.1 because R7 is the 
same as R3 
Before: (R7, 1.1); (R8, 1.1) 

R7,11 (S) 
R8,11 (S) 

S5 => S11 

After:  (All responses are successful. 
No decreasing of EI values occurs.) 

I4 

Load EI values from Raw Attack 
pattern #2 
EI(R4): 0.935 
⇒ Another response as R4 is less 
favorable in this attack instance. 
EI(R5): 1.1 
Before: (R9, 1.1) 

R9,2 (S) S0 => S12 => S1 
=> S2 

After: (All responses are successful. 
No decreasing of EI values occurs.) 
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rid:1
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/var/lib/mysql

Pattern #2

 
Figure 8.2. Raw Patterns #1 and #2 after instance 1 and 2 of attack scenario 9 

 

Table 8.4. Responses associated with the static attack pattern in Figure 8.3. 

[16. Apache buffer overflow at Apache rid:1] [34. Port scan 
MySQL] 

− iptables -A INPUT -j DROP -s IPC 
−./lids-file.sh IPM DENY “/var/lib/mysql" 
− Reboot Apache’s host machine 
− Wait for 15 minutes before deploying next 

response for this node. 
− Re-enable access to “/var/lib/mysql” on IPM 

− Shutdown IPA 

− Shutdown IPM 
 
 

 

 
Figure 8.3. Static attack pattern with optimized responses for experiment 2 

                                                            
As mentioned earlier in Section 4.5, one can populate static attack patterns with 

optimal responses in the attack template library. For this part of the experiment, we build 
a static attack pattern as shown in Figure 8.3. The associated responses are shown in 
Table 8.4. We use a preset threshold 0.5 for the threshold parameter in the algorithm 
outlined in Table 4.2. For this part of experiment, we still use Scenario 9 and we take the 
same attack path as the one used in Instance 1. It is observed that with the pre-configured 
static attack pattern, the attack is stopped one step earlier when compared to the result of 
instance 1 in Table 8.3. The recovery step of re-enabling access to “/var/lib/mysql” is also 
advantageous since it improves the system survivability. For demonstrating the matching 
with static attack pattern even better, another instance of scenario 9 is executed and the 
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successful response “Reboot Apache’s host machine” is suppressed for demonstration. 
The result in Table 8.5 (column 2) shows that the attack moves one step further and the 
responses stored on the node [34. Port scan MySQL] are deployed in which both the 
Apache server and MySQL server are both shut down.  

 

Table 8.5. Response selection with matching against static attack pattern 

Instance of Attack 
Scenario  

Matching score, 
Step at which 
match is 
successful 

Step : Responses taken 
(S|F)   

Steps executed 
before AS is 
stopped 

I1 0.64, S11 S11 : R1(S), R2(S), 
R3(S), R4(S)  
… after 15 minutes 
R5(S) 

S5 => S11 
=>S1  

I2 (Response 
“Reboot Apache 
machine” is 
suppressed) 

0.64, S11 
0.72,  S2 

S11 : R1(S), R2(S), 
R3(F) 
S2 : R6(S), R7(S) 

S5 => S11 => 
S1 => S2 

 

8.3. Survivability Improvement from Automated Response (ADEPTS) 

In this experiment, the objective is to show how the survivability of the e-
Commerce system is affected by repeatedly stressing the system through the injection of 
successive instances of a given attack scenario. The results of running three scenarios are 
shown, where static scenarios 1 and 8 cover two of the three general attack categories 
(DoS attacks are not shown here) and scenario 9 is a dynamic scenario. The survivability 
is measured with and without ADEPTS. The static attack template library was kept empty. 
The initial survivability value without ADEPTS is fixed as 1000 while with ADEPTS it is 
1010, so as to provide clarity in the graphs through non overlapping plot lines. In the 
graphs displayed, when the survivability returns to its initial value, it means that a single 
instance of an attack scenario has ended and responses that were deployed have expired. 
Permanent violations of security goals (e.g. illegal transaction, corruption of a database) 
will not result in the survivability returning to its initial value unless the administrator 
resets/restores/repairs the system. Multiple violations of a security goal are assumed to be 
from different attackers and therefore cause a decrease in survivability multiple times. 
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Figure 8.4. Effect of attack scenarios on survivability 

(x-axis corresponds to logical time) 

 
In Figure 8.4(a), attack scenario 1 is executed twice by different attackers. With 

ADEPTS, the response (restart httpd) deployed during step 2 of the attack scenario 
prevents the leakage of system information regarding warehouse shipments. This results 
in the termination of the attack scenario and a return to the initial survivability after the 
response has expired. This contrasts with the survivability without ADEPTS, which further 
degrades due to the continuing attack that finally results in unauthorized orders being 
made. The survivability degrades further because a separate illegal transaction has 
occurred in the second instance. Since the response was effective in the first instance, it is 
deployed again in the second instance.  

Table 8.6 shows the cause of the survivability drop during an instance of scenario 
1. In Figure 8.4(b), attack scenario 8 is executed five times. Due to the ineffective nature 
of the responses deployed by ADEPTS initially, the survivability degrades similarly (a 
little worse due to deployment of ineffective responses) to the system without ADEPTS. 
Survivability returns to the initial value during the first three instances because manual 
intervention occurs, that is, an administrator repairs the system. During the fourth and the 
fifth instances, due to the feedback from earlier instances, a relatively disruptive response 
of rebooting the Apache host machine is deployed much earlier, resulting in an effective 
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termination of the attack scenario. The webstore transactions are unavailable for the 
period when the response is active, resulting in a lower survivability.  

In Figure 8.4(c), dynamic attack scenario 9 is executed six times. Due to the 
dynamic nature of the attack, different optimal responses are learned for different attack 
paths taken by the attacker. Two different attack paths are tried in this experiment. That is 
why an effective response in the first instance does not apply to the second instance. As 
more instances occur, the optimal responses are determined based on feedback. For path 
1, because the attack does not require a persistent connection from outside the network, 
the initial responses that block incoming packets fail. Due to the earlier failures, another 
response that restarts the http daemon is deployed. The response is effective in stopping 
the attack because a clean copy of the daemon will be running after the restart. Through 
feedback, ADEPTS deploys this response earlier in instance 3 and instance 6 when the 
attacker uses path 1 again. The survivability degradation is still the same, but by 
deploying the response earlier, the likelihood that the malicious code is successfully 
injected is minimized. The initial steps through path 2 consist of causing a buffer 
overflow using the heap, which is undetectable by the available detectors in the system. 
This allows the attacker to compromise Apache silently. Then the attacker determines the 
IP address of the MySQL server and the port it is listening to. This is detected, but the 
response of blocking incoming TCP packets from the attacker’s IP to port 443 fails 
because the attacker is using another port to communicate with the malicious Apache 
process. The attacker then buffer overflows the heap of the MySQL daemon using 
another vulnerability, and this is undetected. Then the attacker illegally accesses 
/var/lib/mysql and is detected. The effective response deployed is to restart the MySQL 
daemon. This relatively late response results in a significant drop in survivability. In 
instance 4 and instance 5 when path 2 is repeated, instead of blocking packets specific to 
port 443, the effective response of blocking all incoming packets from the attacker is 
deployed. The result is a smaller drop in survivability. Without ADEPTS, the survivability 
only degrades once because the attack is successful and the database is corrupted and not 
repaired. 
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Table 8.6. Cause of survivability drop with and without ADEPTS in scenario 1 

Cause of survivability drop in scenario 1 
[Penalty] 

Without ADEPTS 

Cause of survivability drop in scenario 1 
[Penalty] 

With ADEPTS 
Compromised Apache invoking 
unauthorized program (bin/bash) [-50] 

Compromised Apache invoking 
unauthorized program (bin/bash) [-50] 

Compromised Apache invoking 
unauthorized program (bin/ls) [-50] 

Restart /usr/local/apache2/bin/httpd [-30] 

Illegal read in /usr/local/apache2/htdocs [-
20] 

 

Illegal order created [-80]  
 
 

8.4. Survivability Improvement : ADEPTS v.s BASELINE Local Response 

This experiment shows the comparative performance of ADEPTS in maintaining 
the survivability of the e-commerce system with respect to having no responses and only 
BASELINE local responses. Two different attack scenarios are executed and the 
survivability calculated at each step of the attack scenario. For the local response case, 
the responses that came with the deployed detectors are used – Snort (IP blocking) and 
bank monitor (freeze credit card). 
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Figure 8.5. Survivability vs. Attack Steps from Attack Scenario 0 

 

 
Figure 8.6. Survivability vs. Attack Steps from Attack Scenario 1 

 
For Attack Scenario 0 (Figure 8.5), ADEPTS far outperforms the other two. The 

File Access Monitor detects a malicious shell being created with Apache privileges while 
Snort detects an Apache SSL module buffer overflow packet. Consequently, ADEPTS 
deploys aggressive responses to kill the process and block all following incoming packets 
from the attacker. The inability of the BASELINE local response implemented by Snort to 
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drop the IP packets in time causes the attack to continue to spread. For Attack Scenario 1 
(Figure 8.6), the performance of the local response is noticeably worse than ADEPTS. 
ADEPTS deploys a successful response of disallowing shell commands with Apache 
privileges, earlier than the local response at the bank monitor.  

 

8.5. Scalability of ADEPTS 

In this experiment, we examine the performance benefits that accrue from this 
capacity for parallelism. The benefit is brought out by comparing the performance of 
ADEPTS with the ability to handle multiple independent attack instances with multiple 
attack sub-graphs, one for each attack instance, against an early prototype of ADEPTS 
(referred to as version 0 in Section 4.2) that lacks this ability and therefore operates on 
the entire I-GRAPH. 

In this experiment, we synthesized 8 random I-GRAPHS, each with 700 nodes and 
1050 edges differing in topology. For each run of this experiment, we insert a given 
number of concurrent alerts into ADEPTS. We then measure the time for processing them 
measured as the time between receiving the alerts and determining the nodes for 
responses. It is assumed that there exist enough computational resources to work on the 
parallelized parts of the computation in parallel. 

  

 
Figure 8.7. Degree of parallelization in ADEPTS I 

 



95 

 

 
Figure 8.8. Speed up in ADEPTS I with increasing number of concurrent alerts 

 
From Figure 8.8, we see that ADEPTS I gives considerable speedup over ADEPTS 0, 

with an increasing trend as the number of concurrent alerts increases. Looking at the 
absolute values of times in ADEPTS I, we find that the time increases as the number of 
alerts increases even though unlimited computation resources are assumed to be available. 
This is because the number of parallelizable sub-graphs grows with the number of alerts 
as shown in Figure 8.7 (only results from 4 out of the total 8 I-GRAPHS are shown for 
presentation clarity). However, the growth is sub-linear and therefore the relative speedup 
between ADEPTS I and ADEPTS 0 increases only sub-linearly with increasing number of 
alerts. The sub-linear growth is explained by the fact that the spatial locality algorithm 
will tend to cluster alerts close by in the I-GRAPH into the same attack sub-graph. The 
second comparatively less significant contributor to the increasing time with increasing 
number of alerts is that the non parallelizable part of the computation – determining 
which sub-graph an incoming alert belongs to – becomes more resource intensive. Figure 
8.8 gives the average speed up of all the 8 cases between ADEPTS I and ADEPTS 0. The 
vertical bar shows 2 standard deviations. With a small number of alerts (say, 50), ADEPTS 
I performs only slightly better than ADEPTS 0. This is due to the inherently higher 
constant overhead of ADEPTS I nullifies the performance gain from limited parallelization 
of 3-6 generated sub-graphs. However, from around 100 alerts, ADEPTS I starts to 
significantly out-perform ADEPTS 0. Of course, it is not reasonable to expect such a huge 
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number of concurrent alerts for a relatively small scale testbed like ours, but could be 
close to reality were ADEPTS to be deployed on a huge corporate system.  

 

8.6. Survivability for Micro-Benchmark (SWIFT v.s ADEPTS I) 

 
Figure 8.9. Improvement in lowering |Iv| with SWIFT for Micro-benchmark 

 
We consider as a micro-benchmark an attack scenario that has the form shown in 

Table 8.7. This is a regular structure with each node representing a unique service being 
affected. The multi-stage attack starts at svc0 and proceeds through all the four possible 
paths with the goal of achieving svc21. There are ‘single-node’ responses on each node 
which if successful has the effect of preventing the node and its children nodes from 
being achieved. The other responses are ‘dual-node’ responses, which can contain the 
attack on two nodes at a time. In general, a dual-node response has lower cost than the 
total cost from two counterpart single-node responses but has higher cost than an 
individual single-node response. Still, one has to consider the overall effectiveness and 
the overlapping cost from other responses. This is one of the key strength of SWIFT in 
judging the whole situation and seeking for the global optimal response combination. The 
attack scenario is injected individually into SWIFT and ADEPTS I at the root node and is 
executed multiple times. The initial EI values for all responses are taken to be 1, a 
consciously chosen overly optimistic decision to investigate how the system unlearns it.  
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The survivability result from the experiment is shown in Figure 8.9. Overall, 
SWIFT chooses responses which yield lower |Iv| than those from ADEPTS. This clearly 
shows the advantage from considering responses in a system-wide global manner in 
SWIFT (Eq. (3.2)). This is true even for the first attack instance where no history 
information is available as shown in Figure 8.9. With the history built up over each attack 
instance, we can see the decreasing of |Iv| from both cases due to the adaption processes 
employed. Over the 25 attack instances, SWIFT yields an averaged |Iv| of 15.9 while 
ADEPTS yields an averaged 21.9, a 27% improvement. 

 

Table 8.7. Detailed attack snapshots from attack instance 24 
Attack Instance 24 

(a) SWIFT 
After attack snapshot 1 

(b) ADEPTS I (|Iv|=19) 
At the end of the attack 

(C) SWIFT (|Iv|=12.6) 
At the end of the attack 

 

 
Table 8.7 shows the selected attack snapshots at different time points for SWIFT 

and ADEPTS for attack instance 24. Octagonal node means adversary has achieved the 
node, elliptical means it has not; solid node means response has been deployed. In (a), we 
see the response of SWIFT after only the first attack snapshot has been observed. SWIFT 
has already deployed proactive responses, as far ahead as the fourth stage of the attack. 
Having seen 23 previous attack instances for this specific attack, SWIFT has deduced that 
responses in the fourth stage (at nodes svc4, svc9, svc14, svc19) have to be deployed 
early enough to be successful. (b) and (c) show the cases at the end of the attack for 
ADEPTS I and SWIFT respectively. ADEPTS I selects locally optimal responses and 
therefore prefers the single-node responses, deploying a total of 11 responses and 
effectively preventing the end goal of the adversary from being achieved. However, 
SWIFT due to the property of searching for globally optimal responses, selects 4 dual-
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node responses (ID: 0x4E20, 0x4E23, 0x4E26, 0x4E27) and 1 single-node response (ID: 
0xC), again preventing the end goal from being achieved, but at a lower cost. 

 

8.7.  SWIFT : Learning from History to Reduce Search Space Size  

 

 

 
Figure 8.10. # of edges in the domain graph generated out of the 3rd snapshot 
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Figure 8.11. Time used by SWIFT in response decision 

 

 

 
Figure 8.12. |Iv| v.s Attack Instance 
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This experiment shows the effect of EPF tuning on reducing the size of the 
domain graph for an attack scenario as SWIFT gets adapted to the attack steps (Section 
5.5.). Here we assume a system with an I-GRAPH containing 42 nodes and 103 edges. We 
use two attack scenarios EPFAS.1, which can be potentially deterred with deployed 
responses, and EPSAS.2, which doesn’t have any applicable responses available on its 
attack paths and can’t be deterred. 30 attack instances are injected into the system. Attack 
instances 0-9 follow attack scenario EPFAS.1, 10-19 follow EPFAS.2, and 20-29 revert 
to EPFAS.1. Here we discuss the results on the 3rd attack snapshot from a few 
representative attack instances. (In the last few attack instances, when SWIFT fully adapts 
itself to the attack, the attack is only able to populate three attack snapshots before being 
effectively stopped by SWIFT. Therefore, for presentation consistency, we use the 3rd 
attack snapshot even though in the first few attack instances, there do have more than 
three attack snapshots available.) 

As we can see EPF Tuning not only reduces the size of the domain graph, which 
speeds up the execution time of SWIFT, but also improves the quality of the generated 
response solutions i.e., reduces the overall system |Iv|. This happens since SWIFT searches 
through follow-on attack steps which are more likely and avoids deploying responses on 
nodes that are unlikely. From Figure 8.10, we can see a clear decreasing trend in the size 
of the domain graph from 77 edges to 12 edges for the first 10 attack instances with EPF 
tuning. On the other hand, the number of edges without EPF tuning is significantly higher. 
The fluctuation of the number of edges without EPF tuning is due to the different 
responses deployed prior to the 3rd attack snapshot for each different attack instance.  

From Figure 8.12 we can see that for attack instances 10-19, all the responses are 
totally ineffective, which translates into the higher |Iv| values. From Figure 8.10, we see 
the sudden increase in the size of the domain graph at instance 10 as the unseen attack 
scenario EPFAS.2 emerges. With EPF tuning, SWIFT adapts itself quickly and the size 
drops to 12 edges per domain graph starting from attack instance 13 again. When the 
system is injected with EPFAS.1 again (instances 20-29), we observe that SWIFT is able 
to use its memory of EPFAS.1—the domain graph is small and the |Iv| does not shoot up. 
The spike in |Iv| at attack instance 22 is due to the probabilistic nature of the occasional 
failure of the response on [svcs3].  

Overall, we conclude that reducing the size of a domain graph through EPF tuning 
not only improves the efficiency in response searching but also improves the quality of 
the resulting responses. 
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8.8. SWIFT : Survivability for Real Attack Scenarios 
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Figure 8.13. Attack scenarios 3 and 4 (AS3, AS4) 

 

 
Figure 8.14. |Iv| for AS3 
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Figure 8.15. | Iv | for AS4 

 
Figure 8.13 shows the two attack scenarios AS3 and AS4 used in this experiment. 

These are real in so far as they are created from the publicly available vulnerability and 
attack databases by chaining individual attack steps. The numbers on the edges 
correspond to the response IDs which can prevent propagation of the attack. Some 
responses (R9, R25, R56, R57, and R66) require longer lag time for effective deployment. 
They are useful for SWIFT due to its ability to deploy them proactively, but useless for 
ADEPTS I, which considers only local optimal responses. Besides, we have initial EI value 
for R60 set erroneously low and those of the other responses set overly high. The goal is 
to see if SWIFT can recover from this situation. The end node N37 is a critical node with a 
high |Iv|. We inject 15 instances each of AS3 and AS4 and compare the achieved 
survivability at the end of each attack instance for ADEPTS I and SWIFT. Figure 8.14 
shows that ADEPTS I’s performance is widely fluctuating for AS3. This is primarily due 
to the fact that ADEPTS I considers responses close to the nodes that have been achieved. 
For example, R71 has about 50% probability of success in deterring the propagation from 
node N50 to N53 when it is deployed by ADEPTS I at the time when N9 is flagged. SWIFT 
consistently has lower |Iv| than ADEPTS I. This is due primarily to SWIFT’s ability to 
redeem R60 through the fuzzy EI mechanism (Section 5.4) even though it had a low initial 
value. In ADEPTS I R60 is not considered till the EIs of the other responses also diminish 
to this low value. For AS4 (Figure 8.15), while the general pattern is similar to that of 
AS3, the difference in the |Iv| is negligible for some instances. This is due to the fact that 
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there are more available responses in AS4, and therefore ADEPTS I does not suffer as 
much from underestimated response R60. 

 

8.9. SWIFT : Responding to Attack Variants 

 

 
Figure 8.16. |Iv| with SWIFT leveraging history from an attack variant (AS3) 

 

 
Figure 8.17. |Iv| with SWIFT leveraging history from an attack variant (AS4) 
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In this experiment we consider AS3 and AS4 to be variants of each other (due to 
their shared nodes as shown in Figure 8.13). The results are shown in Figure 8.16 and 
Figure 8.17. In the first sub-experiment, we execute AS4 15 times and use its snapshot 
from the ATL (which includes the optimized responses that SWIFT had determined) in 
responding to AS3. In the second sub-experiment, we reverse the roles of AS3 and AS4. 
The key difference between using history and not using it expectedly lies in the first 
attack instance. In both AS3 and AS4, SWIFT is able to use the historical information 
from the variant and limit the damage to the system from the first attack instance 
compared to the case without history. This would be valuable in dealing with very 
destructive attacks when they are observed for the first time. 

 

8.10. ORIGIN : Responding to Zero-Day Attacks 

 

 
Figure 8.18. AS: MIT LLDoS 
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Figure 8.19. AS: MalExec 

 

 
Figure 8.20. AS: ModSSL 

 
To evaluate the design, we inject attacks from different attack scenarios into our 

testbed (the application system) which is protected by ORIGIN. We use two attack 
scenarios from previous representative works in this field. One is the MIT LLDoS attack 
scenario (Figure 8.18) as seen in [8, 62]. The other (Figure 8.19) is from the work by Ou 
in a system called MulVAL [40]. We create a third attack scenario called “ModSSL” 
(Figure 8.20). In the attack scenario, the oval nodes correspond to attack steps. The 
rectangular nodes correspond to responses. In each attack scenario, the adversary follows 
pre-specified probabilities which determine how likely he is to proceed from one step to 
the next step in the absence of any response. For both LLDoS and MalExec, from step 1 
to step 2 the value is 0.8, and for the rest, the probabilities are 0.9. For ModSSL, from 
step 1 to step 2, the value is 0.1. For responses, the probability of success is a function of 
the timing when they are deployed (response can take time to be fully deployed.). None 
of these values are known to ORIGIN and it is left to the learning mechanism of ORIGIN. 
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Table 8.8. Overall |Iv| for each attack scenario injected to the testbed (IRS in absence) 
LLDoS MalExec ModSSL 

30 21 10 

 
After we inject an attack scenario into the system, we sum the impact vectors 

from the achieved attack steps and the impact vectors from the deployed responses. Table 
8.8 shows the |Iv| for each attack scenario when ORIGIN is not present and all the attack 
steps are achieved. Note that these values result from a subjective decision by the 
sysadmin about the importance of the different transactions and the security goals in the 
testbed system. The absolute values do not matter but the reduction by IRS is important.  

We run ORIGIN with the conceptualization ON/OFF and study the results from 
both cases. Since we are assuming all three attack scenarios are unknown to ORIGIN at the 
beginning, there is no pre-built attack graph for any of them. Thus for previous IRS 
systems including our previous ADEPTS I and ADEPTS II, no response will be considered, 
and the attack will always go through. This means they can only achieve the same |IV|s as 
for an unprotected system as given in Table 8.8. 

 
Table 8.9. Nodes (in component ID / detector ID pair) generated by ORIGIN 

LLDoS: 1.Sadmind (StackOverflow) => 2.PasswdShadowFiles (UpdateFiles) => 
3.Telnetd (NewUserLogin) => 5.Apache (NetworkDoS) 

MalExec: 1.Apache (HeapOverflow) => 2.NFSFile (CreateFiles) => 3.Windows_wn 
(UnAuthExec) 

ModSSL: 1.Apache (StackOverflow) => 2.Linux_wsvr (SpawnShell) 

 

Table 8.10. Conceptualized nodes (Conceptualize(G,2,3)) 
LLDoS: 1.Program (MemError) => 2.File (ContentChange) => 3.Program 

(SecPolicyChange) => 5.Program (DoS) 
MalExec: 1.Program (MemError) => 2.File (ContentChange) => 3.OS (UnAuthExec) 
ModSSL: 1.Program (MemError) => 2.OS (UnAuthExec) 

 

Table 8.11. Conceptualized nodes (Conceptualize(G,1,2)) 
LLDoS: 1.Base (GotEffect) => 2.Base (GotEffect) => 3.Base (GotEffect) => 

5.Base (GotEffect) 
MalExec: 1.Base (GotEffect) => 2.Base (GotEffect) => 3.Base (GotEffect) 
ModSSL: 1.Base (GotEffect) => 2.Base (GotEffect) 
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Table 8.9 shows the nodes (in component ID / detector ID pair) and the edges 

created by the attack graph generation process for each of the three attack scenarios. For 
LLDoS, there is no corresponding node for step 4. “Install DoS code on X” because in 
our system configuration specification, there’s no detector to detect that step. Table 8.10 
shows the nodes and edges after conceptualization with Conceptualize(G,2,3). Each node 
shows the conceptualized component and the conceptualized detector alert. As shown in 
Table 8.11, all three attack scenarios become identical in terms of their prefixes with 
Conceptualize(G,1,2). 

Next we present the results showing situations when conceptualization gives 
benefits and also situations when conceptualization has drawbacks. For each experiment, 
we conduct three batches of executions and take the average. In each batch of experiment, 
we inject 100 instances of attacks (from the same scenario) into the testbed.  We then plot 
the averaged |Iv| readings for each corresponding attack instance. 

 

 

 
Figure 8.21. w/o conceptualization. LLDoS w/ and w/o history from MalExec 
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Figure 8.22. w/o conceptualization. MalExec w/ and w/o history from LLDoS 

 

 

 
Figure 8.23. Conceptualize(G,2,3). LLDoS w/ and w/o history from MalExec 
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Figure 8.24. Conceptualize(G,2,3). MalExec w/ and w/o history from LLDoS 

 

 

 
Figure 8.25. Conceptualize(G,1,2). LLDoS w/ and w/o history from MalExec 
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Figure 8.26. Conceptualize(G,1,2). MalExec w/ and w/o history from LLDoS 

 

8.10.1 Benefits from Conceptualization 

For this experiment, we use LLDoS and MalExec as the attack scenarios. This is 
because we found they share similarities after being conceptualized. Specifically, they 
share the first two steps in Table 8.10 and the first three steps in Table 8.11. To start with, 
we first experiment on LLDoS and MalExec without any conceptualization. The results 
are shown in Figure 8.21 and Figure 8.22. Figure 8.21 shows the result on injecting 
LLDoS into the testbed without any history in ORIGIN’s ATL and also pre-injecting 
MalExec followed by injecting LLDoS (referred to as “with history”). The significant 
discontinuities in the data points are due to the non-determinism in both the attack 
escalations (the attacker can fail at any step) and the deployed responses (a response can 
also fail). Like previous adaptation-capable IRS such as [48], we see the |Iv| value 
decreases as more attack instances are seen. This is due to ORIGIN having a more accurate 
estimate on both the attack escalations and effectiveness of responses for the specific 
attack. 

From both Figure 8.21 and Figure 8.22, we see no significant differences between 
with and without history. This is understandable as the vulnerabilities exploited by 
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LLDoS and MalExec are completely different. Therefore, even with history from one 
attack, the other attack is still regarded as a zero-day attack. 

For the next run, we proceed with Conceptualize(G,2,3) in ORIGIN. The 
conceptualized attack graph nodes are shown in Table 8.10. The results are shown in 
Figure 3.5 and Figure 5.3. Still not much difference is observed between when history is 
available and when history is not available. This is because the Conceptualize(G,2,3) 
conceptualized attack graphs for LLDoS and MalExec only shares the first two nodes. 
And after checking with Figure 8.18 and Figure 8.19, we know that they share only two 
responses: ‘Kill XXX process’ and ‘Disable Write access to YYY’. A further 
investigation turns out that these two responses are not very effective. So knowing one 
attack does not really facilitate the response to the other attack. 

We then proceed further to Conceptualize(G,1,2). This results in attack graph 
nodes as shown in Table 8.11. The results are shown in Figure 8.25 and Figure 8.26. 
Eventually, we observe distinctive improvement in the case where history is available. 
This means that the originally zero-day attack is no-longer totally unknown to the IRS. 
The improvement is more significant for the case of injecting MalExec with history from 
LLDoS (Figure 8.26) and less significant in the other case (Figure 8.25). This is due to 
the fact that even with the history from MalExec, ORIGIN still needs to figure out the 
likelihood of escalation to Step 5 and the effectiveness of response M,D,E, and F in 
LLDoS (Figure 8.18). While with the history from LLDoS, ORIGIN only needs to figure 
out if responses J and K (Figure 8.19) are effective. Actually, we found that in both cases, 
the most effective response is the “Disable Read Access”, which corresponds to 
responses C and I. These responses are in the shared part of the conceptualized attack 
graphs for the two attacks and hence history benefits from them. 

In summary, ORIGIN is able to respond to a zero-day attack most notably MalExec, 
having seen a distinct attack LLDoS before. 
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Figure 8.27. Conceptualize(G,1,2). LLDoS w/ and w/o history from ModSSL 

 

 

 
Figure 8.28. Conceptualize(G,1,2). MalExec w/ and w/o history from ModSSL 
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Figure 8.29. Conceptualize(G,2,3). MalExec w/ and w/o history form ModSSL 

 
8.10.2 Drawbacks from Conceptualization 

In our experiment, we found that for both LLDoS and MalExec, the likelihood of 
attack propagation from the first step to the second step is roughly 80%. We create the 
attack ModSSL for further investigation into the capabilities of conceptualization (Figure 
8.20). When injecting the ModSSL attack, the attacker is intentionally restrained from 
proceeding to step 2 from step 1 with a low propagation probability of 10%. Figure 8.27 
and Figure 8.28 present the result from first injecting ModSSL to the system and then 
followed by LLDoS and MalExec respectively. The conceptualization level is set at 
Conceptualize(G,1,2) as this is the level when the system will consider all three attack 
scenarios as identical concept. 

From both Figure 8.27 and Figure 8.28, we see worse performance with history 
from ModSSL. This is because the pre-injected ModSSL has made ORIGIN believe that 
propagation from step 1 and step 2 for attacks of that concept is very unlikely (around 
10%).  This decreases the likelihood of early proactive responses such as C and I when 
the first attack step is achieved. These responses are useful for both LLDoS and MalExec 
for they have a much higher chance of escalating from step 1 to step 2.  
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In Figure 8.29, we increase the concept level to Conceptualize(G,2,3). At this 
level, ModSSL is no longer following the same concept as either LLDoS or MalExec 
(Figure 8.18, Figure 8.19, and Figure 8.20). Therefore, the performance against MalExec 
with ModSSL pre-injected is back to normal as if ModSSL has not been seen. 

One thing to note is that even in the cases of Figure 8.27 and Figure 8.28, ORIGIN 
is still able to self-correct itself and approach the better response choice as more attack 
instances are being seen. 

Overall, there exists an optimal conceptualization level for different cases the 
experiments indicate. The fact that conceptualization is causing a degradation in response 
quality can be automatically deduced by ORIGIN since the values in CPTs will change 
sharply. Therefore, ORIGIN can increase the conceptualization levels (deconceptualization) 
or turn it off completely for specific multi-stage attacks. This is left as a topic for future 
work. 
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9. CONCLUSIONS 

 
We propose a new model for automated response in distributed systems. The 

proposed model is first instantiated by the design and implementation of an automated 
response systems called ADEPTS I. ADEPTS I uses a directed graph representation called I-
GRAPH to model the spread of the failure and attack through the system. It provides 
algorithms to determine the possible path of spread and appropriately choose the response. 
The mapping between detectors and response actions are dynamic and not restricted to a 
pre-assigned set pairs. ADEPTS I creates attack sub-graphs from the I-GRAPH for each 
incident instance and processes each sub-graph independently, thus making it scalable 
with the number of alerts. ADEPTS I is demonstrated on an e-Commerce system with real 
attack scenarios. The effect on the system is measured through a high level survivability 
metric which captures the effect of transactions that can be supported as well as system 
goals that are preserved under the attack. Empirical results comparing ADEPTS I and 
BASELINE (Sec. 8.4) constitutes the evidence to thesis claim C2.  

We develop a system named SWIFT (ADEPTS II) as an improved instantiation of 
the proposed model over ADEPTS I to pursue  globally optimal responses. The optimality 
criterion takes into account the impact on the whole system from a deployed response in 
reducing functionality and from the spread of the attack. We proved that the optimal 
response determination problem for multi-stage attacks is NP-hard, fundamentally 
because responses at different services are inter-dependent. Hence, we proposed using a 
Genetic Algorithm (GA) based framework. The proposed GA framework enables the use 
of history information from past attacks that are similar to the current one through 
seeding the initial chromosome pool with the learnt effective response combinations from 
those similar attacks. The evaluation brings out the fact that survivability improves with 
the global response determination process of SWIFT over a heuristic based response 
determination (e.g. 27% improvement based on experiment in Section 8.6) used in 
ADEPTS I. History information from past similar attacks is used to deal with attack 
variants in SWIFT with corresponding empirical results (Sec. 8.9) supporting thesis claim 
C3.  
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We develop a third system named ORIGIN (ADEPTS III) as a further improved 
instantiation  of the proposed model. The focus of ORIGIN is to provide automated 
response for zero-day multi-stage attacks. For a zero-day attack, the corresponding attack 
graph is not known a priori. Therefore, existing IRSs, which use pre-built attack graphs, 
are ineffective for such kind of attacks. A multi-stage attack can have non-deterministic 
escalations from one stage to another and many response choices may be available to 
deter the escalation. Therefore knowledge from prior attacks is useful. However, for zero-
day attack such prior knowledge is not available to the IRS. We firstly propose an object-
oriented system configuration specification methodology. We also present an online 
attack graph generation process to generate a Bayesian Network based attack graph based 
on detector alerts and the system configuration specification. We propose a technique 
called “conceptualization of attack graph” which manages to establish linkage between a 
zero-day attack and past attacks to improve the performance of intrusion response for the 
zero-day attacks. We validate the ORIGIN system by two representative attack scenarios 
used in two independent previous papers [40, 62] and one custom-built attack scenario. 
We show that conceptualization to an appropriate level enables ORIGIN to respond 
effectively to LLDoS and MalExec when they are zero-day attacks. This is another 
evidence when history may help reduce the impact from an attack (thesis claim C3). 
However, we find that the performance is sensitive to the conceptualization level chosen 
and how to determine the appropriate conceptualization level remains an open problem. 

There are many issues yet to be addressed following this work. For example, the 
current design does not consider the use of recovery responses. Typically, recovery of 
compromised parts of a system can be achieved through system checkpoints and rollback. 
Existing work such as virtual machine snapshot and volume shadow copy service (on MS 
Windows) can serve as the building blocks for this task. However, a response action, 
whether containment or recovery, may have unintended consequences, such as disruption 
of normal functionality and violation of system integrity, and these will have to be 
factored in carrying out a recovery response. In addition, another important work is 
reconfiguration of a system after an attack, which is also not addressed in this work. The 
goal of reconfiguration is to fix the vulnerabilities exploited by the attack and prevent the 
same attack from compromising the system again. Reconfiguration can be simply 
changing the settings in system configuration files or applying software patches. A recent 
work [63] attempts to generate patches for software bugs automatically through genetic 
programming, which can potentially be extended to generate patches for security 
vulnerabilities and serve as a means to reconfigurate the system. 
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