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Abstract

Modern computer systems permit mobile users to access protected information from remote
locations. In certain secure environments, it would be desirable to restrict this access to a
particular computer or set of computers. Existing solutions of machine-level authentication
are undesirable for two reasons. First, they do not allow fine-grained application layer access
decisions. Second, they are vulnerable to insider attacks in which a trusted administrator acts
maliciously.

In this work, we describe a novel approach using secure hardware that solves these problems.
In our design, multiple administrators are required for installation of a system. After installation,
the authentication privileges are physically linked to that machine, and no administrator can
bypass these controls. We define an administrative model and detail the requirements for an
authentication protocol to be compatible with our methodology. Our design presents some
challenges for large-scale systems, in addition to the benefit of reduced maintenance.

1 Introduction

Modern information systems are designed to give users the ability to access data and perform tasks
from a variety of settings and locations. In a typical environment, a user must enter a valid username
and password to gain access to the system. Although this combination of policy and mechanism
often provides a sufficient level of security, there are many cases in which more protection is needed.
Specifically, in certain settings, it would be desirable to bind an authentication request to a single
computer or set of computers, thus requiring the user’s physical presence at an authorized location.

There are many applications of such a restricted authentication mechanism. In a corporate or
government setting, users at multiple sites may need to access sensitive data stored on a remote
server. Critical infrastructure systems may require strong assurances of provenance to guarantee
that only trusted devices can generate data. The security of sensitive web-enabled transactions
could also be strengthened by allowing a user to voluntarily restrict his own access to his personal
computer.

In this work, we introduce a novel approach to multifactor authentication that uses the physical
properties of the device itself. Our motivating example application is that of an organization, such
as a corporation, that possesses a server storing data at multiple levels of sensitivity. Users are
granted access to the most secure data only from particular secured workstations. Physical access
to the workstations is restricted and monitored.

A naive approach to this problem is to authenticate the machine and to use end-to-end encryp-
tion. Examples of this approach would be the use of Challenge-Handshake Authentication Protocol
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(CHAP), Transport Layer Security (TLS), or Internet Protocol Security (IPsec). We consider these
cryptographic techniques to be a necessary part of our design, but they are not sufficient for the
level of security that we require. Specifically, we identify two problems with this approach.

First, we require fine-grained authentication at the application layer of the protocol stack, not
just the network or transport layers. For example, a user may use the same client software from
multiple workstations to connect to the same server. However, only one of the workstations is
secured for use with the protected data. From an unprotected workstation, the client should be
granted access to some of the data, according to the security level. This fine-grained decision can
only be made by the server application.

Second, we aim to ensure protection against insider threats. Government and academic re-
searchers have shown that the insider threat problem is difficult and more common than many
believe [16, 4, 25, 5]. A system administrator, who is a trusted insider, can abuse his privileges to
reconfigure the network settings to grant access to an unprotected workstation with the intent of
sending the data to an external recipient. An insider with sufficient knowledge and access could
do irreversible damage before detection occurs. Our approach prevents any single insider from
bypassing the security mechanism.

Our work is motivated in part by recent work in access control, such as the integration of
spatial and temporal constraints into role-based access control [6, 14, 1], and the use of contextual
information in pervasive systems [17]. These approaches consider the user’s location or ambient
conditions as part of the criteria for access control decisions. However, these approaches primarily
focus on abstract models for access control and do not describe how the user proves his location.
Our work accomplishes this task by binding authentication to machines in fixed locations.

Our design is enabled by advancements in binding software and data to specific hardware
through the use of Physical Unclonable Functions (PUFs) [2, 23, 12, 11]. Given a challenge input
Ci, a PUF uses slight variations that exist in hardware to create a unique response Ri. For
example, PUFs based on Static Random Access Memory (SRAM) use the initial fluctuations in
memory locations during power-up to create a unique binary result that is intrinsically different for
each SRAM instance. These results are tamper-proof and unpredictable outside of the hardware.

While Trusted Platform Modules (TPM) [24] and secure coprocessors [7] can be use for a number
of trusted computing tasks, our interest in PUFs is driven by the following factors. First, PUFs use
characteristics of the hardware that cannot be modified, forged or reset, even with physical access
to the device. Thus, PUFs provide a high level of integrity. Next, PUFs exist for a wide range of
technologies for which TPM is inappropriate. For example, PUFs can be created for magnetic strip
cards, and embedded devices built on FPGAs can use SRAM-based PUFs without modification of
the hardware. Consequently, our approach can be applied to a variety of settings, ranging from
remote access using a workstation to large-scale interconnected networks of embedded devices.

An example usage of PUF technology is to protect a cryptographic key K. From a high-level
perspective1, K is stored by computing the XOR W = K⊕Ri for some challenge response Ri. The
value W is then stored locally. To reconstruct the key at run-time, the challenge Ci is presented
to the PUF, which recovers the key as K = W ⊕ Ri. In the case of SRAM-based PUFs, this
computation and the resultant cryptographic operations all occur on the processor, so K exists
only in registers and is never present even in memory.

1PUFs involve noisy data, so the details of the key storage mechanism are actually more complex than presented
here, as regeneration of the key requires the use of a fuzzy extractor algorithm. We refer the reader to [11] for a more
detailed description of the process.

2



In this paper, we define an architecture and administrative model that combines these hardware-
binding techniques with the goal of physically restricted authentication. Our approach requires k -
of-n threshold cryptography [21] during installation of the secret key to the protected workstation.
That is, no single administrator can install a new key unilaterally. Additionally, we define the
required behavior for an authentication protocol that will work with our design, using the Feige-
Fiat-Shamir [9] identification scheme as a basis. We provide a sketch of our security evaluation and
describe our future work for this project.

2 Related Work

The literature of computer science contains a long history of identification schemes and authen-
tication protocols [19, 20, 18, 9, 10]. Modern research in this area has become more focused on
addressing issues of identity under specialized circumstances, such as internet banking [8], secure
roaming with ID metasystems [15], digital identity in federation systems [3], and authentication for
location-based services [13]. None of this work has addressed the issue of binding authentication
to an individual computer.

The use of PUFs for cryptographic applications has been proposed in recent work [23, 12, 11].
These works have described the technical details of PUFs and how they can be used to protect
cryptographic keys. However, these works do not focus on specific applications and do not examine
the use of PUF against insider threats. Our work focuses on identifying a key problem of restricted
authentication and showing how PUF can be used as a solution at the application layer.

3 Restricted Authentication

In this section, we start by describing the main goals underlying our system design, then describe
an architecture and administrative model for performing the restricted multifactor authentication.
We then detail the required behavior for an authentication protocol under our design.

3.1 Design Goals

In designing our protocol for restricted authentication, we set the following goals.
Prevent transfer of keys. As the goal of our system is to restrict authentication to a particular

device, we must prevent the transfer of keys from one machine to another.
Mandatory enforcement. Legitimate users should not be able to circumvent the mechanism

in an attempt to violate policy. Thus, there should be no way for users or administrators to bypass
the system controls.

No administration. Once a machine is initially configured, we do not want to permit or require
an administrator to be involved in future changes with regard to the authentication mechanism.
That is, if a workstation is moved to a new location (with a new IP address), no administrator
should be required to change any settings related to our protocols. Note that this does not preclude
changes that occur as part of routine system maintenance. Rather, our goal is only to prevent any
change to the installed key after the system initialization.

Resilience to attacks. A protocol used in our architecture must be resilient against known
attacks on authentication systems. These attacks include replay and key leakage.
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3.2 Architecture

Our architecture consists of the following principals:

Client C A secured workstation initiating the authentication session. Our vision assumes a num-
ber of such clients located at remote physical locations, although we generally refer to a single
client for simplicity.

Server S The centralized server hosting the requested service. The server can store both protected
and unprotected data.

Administrator A A system administrator. When multiple administrators are required, we refer
to the group as A∗.

In our design, C is assumed to be more secure than other workstations in the organization.
For instance, physical access to C is restricted and monitored, Mandatory Access Control (MAC)
policies are enforced to prevent unauthorized configuration changes, and remote execution of code
on C (e.g., access through SSH) is disabled. Furthermore, appropriate network layer technologies,
such as TLS, SSL, or IPsec, are in place to secure communication to and from C.

We also assume C has a tamper-proof key storage mechanism, specifically a PUF. Recall that
PUFs compute challenge-response pairs (Ci, Ri) that are unique to the hardware, and a key K can
be stored by computing W = K ⊕Ri. Thus, K is not explicitly stored and exists only at run-time.
In the case of SRAM PUFs, K exists only on the processor and is never even present in main
memory. Transferring W to another machine is useless, as the PUF on that device cannot compute
the same response Ri.

It would be unrealistic to assume C is completely trusted, as malicious or vulnerable code is
always a possibility. As such, we aim to minimize any assumption of trust in the software on C. As
in [11], we assume the hardware contains a module that restricts PUF access to trusted applications.
In our approach, our protocols require only that the installation and authentication be trusted.
Given the design of these protocols, we find this assumption to be a reasonable compromise. As a
result of our assumptions regarding C, we can make the following statements:

• If C initiates an authentication session to S, the program is guaranteed to be executing on C
and not from a remote workstation using C as an intermediate resource.

• C enforces MAC policies that prevent information flow to insecure channels, such as removable
storage devices. That is, we do not consider the challenge of securing the application after
authentication occurs.

• Only the installation and authentication routines have access to execute the PUF, and they
are trusted to behave according to the protocol design.

Finally, we must address the configuration of S itself. S is a centralized server that is storing
both sensitive and unprotected data. The goal of our work is to provide controlled remote access
to the protected data. As such, we assume that S is trusted to store keys securely. That is, if an
attacker can steal a key K from S, he can steal the sensitive data directly without having to bypass
our security mechanism.

Note, though, that the attacker can be an administrator with valid access to S. One threat
in relation to S that we do consider is if the administrator is trying to steal a copy of the list of
workstation secret keys. As we will show in Section 4, this attack will fail.
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3.3 Administrative Model

One of the keys to the success of our approach is that administrative actions must be tightly
controlled. Specifically, no single administrator should be able to install a key for a machine by
himself. Then, once the key has been installed, no user should be able to extract and store the key.

To guarantee separation of duty for administrators, we use k-of-n threshold cryptography, such
as Shamir’s secret sharing. In these schemes, a secret is split into n parts, k of which can be used
to reconstruct the secret. When a new secured workstation is set up, S generates a new secret key
K that is specific to that new machine, storing a copy of K locally on S for the authentication
process. S splits the key into n parts, and each administrator retrieves his share accordingly.

While we do not make specific requirements regarding the values k and n, it is important to
prevent reuse of the secret shares. For example, if k < n/2, then there are at least 2 distinct
subsets of the secret shares that can be used to reconstruct the secret key x twice. Similarly, k
administrators should not be able to enter their secret share on two different workstations. As
such, C must inform S when k shares have been entered, and S must then invalidate the shares to
prevent reuse. The next section describes the installation process in more detail.

3.4 Protocols

We define the following protocols for installing cryptographic keys and authenticating the machine.

3.4.1 Installation

When a new machine is to be installed, S generates a symmetric key K and a number N = pq,
where p and q are large primes. K is split into K1, . . . ,Kn, and distributed to the n administrators
A∗. One approach to secure key distribution is described in [22]. As such, we do not address this
topic in detail and simply assume the distribution is handled securly. At least k of A∗ enter their
shares Ki and their identifiers IDi to C. For the sake of simplicity, we will refer to the k shares
entered as K1, . . . ,Kk, although these may not necessarily correspond to the first k shares of the
n. C creates and stores a random C0 to present as a challenge to the PUF, which responds with
R0. C then stores W = K ⊕ R0 for future communication with S.

In addition, C evaluates the PUF using C0 ⊕ IDi as a challenge for each i, yielding Ri. For
our authentication scheme, we need gcd(Ri, N) = 1, but that may not necessarily be the case. As
a result, C must create bit strings bi such that Xi = Ri ⊕ bi and gcd(Xi, N) = 1. These bit strings
bi are then stored locally on C. Assuming C has a hardware identifier IDhw, the following protocol
describes the installation process.

1. [A∗
→ C ] : Ki, IDi, N , k2

2. [C → S ] : eK(ID1, . . . , IDk,H(K1, . . . ,Kk), IDhw,X2
1
, . . . ,X2

k (mod N))

3. [S → C ] : eK(accept, IDhw, T ), or reject

2Note that allowing the administrators to state the value of k does not lead to a vulnerability. If one or more
lies about the value of k, then the reconstructed key K would be incorrect and the installation would fail. Thus,
incorporating the distribution of k in the protocol is just a matter of convenience, as k does not have to be stored
anywhere.
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S decrypts the message in step 2 and uses the list of IDi values to reconstruct the hash
H(K1, . . . ,Kk). If the hash does not match, S destroys K and rejects the installation. Other-
wise, it responds with an encrypted accept message with a timestamp T 3.

3.4.2 Authentication

Assuming the installation was performed and S was able to confirm the shares used, we define the
following authentication protocol, which is based on the Feige-Fiat-Shamir identification scheme [9].

1. [C → S ] : IDuser, IDhw, x ≡ +/ − r2 (mod N)

2. [S → C ] : eK(ID∗)

3. [C → S ] : eK(y ≡ r · Π(Ri ⊕ bi)
ei (mod N), p,Ks)

Here, r is a random value and ID∗ indicates a random subset of ID1, . . . , IDk. The exponents
ei = 1 if IDi ∈ ID∗, and ei = 0 otherwise. For each IDi, C presents the challenge C0 ⊕ IDi to
the PUF, which returns Ri. This response is then XORed with the correction bits bi to ensure
gcd(Ri⊕bi, N) = 1, ensuring our protocol works identically to that of Feige-Fiat-Shamir. S accepts
the proof if y2

≡ +/−x ·ΠX2ei

i (mod N), and the user’s password p is correct. Ks is a session key
derived from using r as a challenge input to the PUF.

3.5 Scalability

Our architecture and protocols were designed with the goal of restricting device authentication using
trusted hardware techniques. The use of secret sharing for key distribution and PUF evaluation
for authentication accomplish these goals. However, providing a robust level of security while at
the same time achieving scalability entails addressing many challenges.

The choice of k requires consideration. If k is large, there may not be enough administrators
available at any given time for an installation, which may be prohibitive. Reducing k would solve
this problem, but S would have fewer combinations of ID∗ to present as a challenge, which would
weaken the protocol. A possible compromise would be to have a smaller k while having C generate
additional challenge-response pairs using random identifiers IDi. An additional challenge for large-
scale systems is the storage of k or more pairs of i(IDi,Xi) for each machine. If many devices have
been installed, allocating enough storage may not be trivial. Addressing this challenge requires
further consideration and detailed analysis of storage requirements.

Although our design presents challenges for scalability, it also presents benefits. Specifically,
the administrative cost resulting from our protocols is paid entirely in the installation. Once the
keys have been installed and the device registered, administrators do not need to perform additional
work when devices are moved. This advantage is a direct result of binding the authentication to the
hardware, rather than to transient properties, such as an IP address. As a result, our design allows
devices to be redeployed as necessary without explicit reconfiguration. For applications where
devices are repeatedly used for short periods of time then moved to new locations, this approach
could enhance the scalability of the system. Assessing the actual administration costs would require
to develop a detailed cost model that also includes costs of user activities, as in models found in
information system management.

3The intent of the encryption in this response is to serve as a digital signature. If a public key infrastructure
exists, such could be used instead of symmetric key encryption.
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4 Security Analysis

In examining the security guarantees of our system, we focus on replay and collusion attacks, as
other classes of attacks are not applicable. Specifically, our assumption that end-to-end encryption
protects network traffic prevents eavesdropping and modification attacks. Typing attacks are only
applicable to implementations of protocols, not the protocol definitions themselves.

The only attack in which we distinguish between an administrator and a regular user is in
attacking the secret sharing scheme. In any other potential attack scenario, having administrator
privileges are of no benefit, so we do not make the distinction. In our analysis, we show that our
design is resilient under very few assumptions regarding an attack profile.

Malicious administrator. As one of the primary motivations for our work is to defend
against an insider threat, we examine that scenario first. Specifically, we consider the case where
an administrator (or group of administrators) wishes to bypass the security mechanisms of our
design to grant illicit access to an untrusted workstation. Note that, in some circumstances, the
attacker may not care if he gets caught. Thus, if he succeeds in getting access for even a moment,
we consider his attack successful.

The goal for a malicious administrator, then, is to grant access to an untrusted workstation.
Note that the k-of-n secret sharing assumption is that k must be large enough that a colluding
group of that size is unlikely to happen. If there are at least k colluding administrators, their attack
will be successful, because there is no mechanism to distinguish between an attack and a legitimate
installation. Thus, if k is sufficiently large, this scenario cannot occur.

If there are j < k colluders, attempting to guess the missing shares can succeed with negligible
probability. Using Shamir’s scheme to distribute the key K, the shares are constructed as (x, f(x))
where x is randomly chosen between 0 and q − 1 (for a large q) and f is a polynomial of degree
k − 1. Assuming all the x inputs are chosen separately, guessing the k − j shares occurs with a
probability that is approximately 1/qk−j . That is, such an attempt is certain to fail in practice.

The other possible attack would be for the administrator to steal the list of secret values from
S, with the goal of enabling a new machine. This attack will fail, though, because the responses
Ri are never explicitly revealed to S. Under the assumption that performing a modular square root
is difficult, as used in the Feige-Fiat-Shamir scheme, an attacker cannot extract (Ri ⊕ bi) from
(Ri ⊕ bi)

2 (mod N). Thus, stealing the list of challenge responses is of no avail to such an attacker.
Attacks from C. Assume an attacker has a valid username and password, and is attempting

to launch an attack from C. The goals of such an attack could be to connect to S through C (e.g.,
via SSH) to bypass the physical restriction, to connect from another machine posing as C, or to
steal the secret key for installation on different hardware. Recall that our architecture stipulated
that only trusted applications can execute the PUF. Assuming the authentication module has been
designed to prevent attempts to launch it from such a service, the attempt will fail. Furthermore,
if the attacker tries to modify the authentication code, the application will no longer be trusted to
execute the PUF. Hence, the attacker cannot bypass the physical restriction.

The second goal, to connect from a machine posing as C will also fail, even if he has the key
K. S maintains a mapping of the secret values and keys, so K is bound to the values X2

i . Again,
using the modular square root assumption, the attacker cannot retrieve Xi from X2

i , so he cannot
complete the protocol without having access to the PUF responses Ri for that machine.

The last possibility is that the attacker would attempt to steal the key K and the values
X1, . . . ,Xk. As we have described previously, only trusted applications have access to execute the
PUF, and the values X1, . . . ,Xk exist only at run-time on the processor. Thus, the attacker cannot
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reconstruct these values from any stored data.
Policy-violating user. This scenario assumes that a legitimate user wishes to bypass the

restricted authentication policy, but without the presumption of malice. Rather, the user attempts
to violate the policy as a matter of convenience, to gain access from a workstation of his choice.
However, as before, the user must be able to bypass both the secure hardware and the network
protections. Even if the user is capable of these attacks, the user would be accepting too great a
risk in doing so. Specifically, the user’s activity is likely to be detected by an auditing mechanism
or an intrusion detection system. Thus, the risk of this user getting caught is high. As we assumed
this user was not malicious, we find that the challenges and the risks involved provide a strong
disincentive to such a user. Consequently, we do not believe this to be a realistic threat.

Replay attacks. Here, we assume that an attacker has a transcript of a successful authentica-
tion session. That is, he can see both the random commitment x ≡ +/−r2 (mod N), eK(ID∗), and
the encrypted response. Without knowledge of K, the attacker must simply replay the encrypted
response in its original form. However, as r and the subset ID∗ are different at each session,
squaring the response y will not yield the correct result. Thus, our approach is resilient to such
attacks.

5 Conclusion and Future Work

While authentication systems have long been studied, our work is unique in addressing the issue
of restricting authorization to a pre-defined set of computers at the application layer. We have
defined an architecture and an administrative model to enforce the policy restriction. Under our
design, no single administrator can act unilaterally to enable access from an additional workstation.
Rather, installation of a new workstation uses k-of-n threshold cryptography to require multiple
administrators act in coordination. This administrative model reduces the threat of an insider
attack on protected data. We have also detailed the architectural requirements and devised an
authentication protocol for our scheme. We have provided a sketch of the security guarantees of
our approach.

Our work, which has focused on the architectural assumptions and protocols necessary for
using PUFs to defend against insider threats, has many open research directions. Our future work
involves implementing such a design on hardware enabled with PUFs, such as a Field-Programmable
Gate Array (FPGA), to evaluate the performance overhead involved in our scheme. We also plan
to develop a comprehensive cost-benefit analysis to assess the “administration scalability” of our
approach. Additionally, we have provided rudimentary analyses of the security guarantees of our
system. In future work, we plan to offer a more formal analysis and prove the resilience of our
design against certain types of attacks.
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