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Abstract— Recent work has shown the importance of consid- Aﬁ%e SMex ErEl)[I)Sheyasseema [45A996 . Sex Erﬁlsheasséema
ering the adversary’s background knowledge when reasoning 15 = Cancer 45:69 . C‘;ﬂ’ger
about privacy in data publishing. However, it is very difficult 59 E Flu 45— 69 | * Flu
for the data publisher to know exactly the adversary’s back- 13 = Gasuiis 10 — 49 E Gastrits
ground knowledge. Existing work cannot satisfactorily moctl 12 E Elu 40 — 49 E Flu
background knowledge and reason about privacy in the presere a7 F Cancer 40 — 49 F Cancer
of such knowledge. 50 M Flu 50 — 59 M Flu
This paper presents a general framework for modeling the 56 M | Emphysemal 50 — 59 M | Emphysema
adversary’s background knowledge using kernel estimatiometh- 52 M Gastritis 50 — 59 M Gastritis
ods. This framework subsumes different types of knowledge (a) Original tableT" (b) Generalized tabld™
(e.g., negative association rules) that can be mined from ¢h TABLE |

data. Under this framework, we reason about privacy using
Bayesian inference techniques and propose the skylingB,t)- ORIGINAL TABLE AND ITS GENERALIZED TABLE

privacy model, which allows the data publisher to enforce pivacy )
requirements to protect the data against adversaries with ifer- Because Bob is a 69-year-old male, then based on the above

ent levels of background knowledge. Through an extensive se external knowledge, the adversary can infer that Bob has a

of experiments, we show the effects of probabilistic backgund  mych larger probability of havingEmphysemahan the other
knowledge in data anonymization and the effectiveness of ou two tuples in the first group.

approach in both privacy protection and utility preservation. )
In the above example, the adversary knows the correlations
|. INTRODUCTION between Emphysemaand the attributeAge (and Sey. We

A number of privacy models have been proposed f@all this correlational knowledgeIn general, correlational
data anonymization, e.gk-anonymity [1], ¢-diversity [2], - knowledge describes the relationships between the semsiti
closeness [3], and so on. A key limitation of these models &tribute and the non-sensitive attributes, e.g., males oo
that they cannot guarantee that the sensitive attributeesal haveovarian cancer Correlational knowledge is one kind of
of individuals are protected when the adversary has adédversarial background knowledge.
tional knowledge (called background knowledge). Backgbu  Integrating background knowledge into privacy quantifica-
knowledge can come from diverse sources, such as waibn has been recently studied [4], [5], [6], [7]. They prspo
known facts, demographic information, public records, andlfferent approaches (a formal language [4], [5] or ME con-
information about specific individuals. straints [7]) for expressing background knowledge andyeeal

As an example, consider that a hospital has the origirtale privacy risk when the adversary has a certain amount
patient table7” in Table 1(a), which contains three attribute®f knowledge. These works, however, are unaware of the
Age Sex and Disease The hospital releases a generalizedxact background knowledge possessed by the adversary. The
table 7* in Table I(b) which satisfies3-diversity. Assume injector approach [6] considers only background knowledge
that an adversary knows Bob is a 69-year-old male whotteat can be expressed as negative association rules and does
record is in the table, the adversary can only find out thabt provide an approach to analyze how an adversary can gain
Bob is one of the first three records. Without any additiongknsitive information from the published data.
knowledge, the adversary’s estimate of the probabllltyﬁﬁb In this paper, we try to remedy this drawback by propos-
has Emphysemas 1/3. However, the adversary may knowing a framework for systematically modeling background
the correlations betweeBmphysemaand the non-sensitive knowledge and reasoning about privacy in the presence of
attributesAge and Sex e.g., “the prevalence of emphysem@ackground knowledge. This is a challenging task since it
was appreciably higher for th and older age group than thejs very difficult to know exactly the adversary’s background
45-64 age group for each race-sex group” and “the prevalenggowledge and background knowledge can vary significantly
was hlgher in males than females and in whites than b|aék3"am0ng different adversaries. In this paper, we reduce our

1 . . . scope to background knowledge that is consistent with the

From a data fact sheet published by National Heart, Lung Biodd Insti- . . - . .
tute (uttp : / /www.nhibi.nih.gov/health/public/lung /ther /copd_fac ~data itself. We discuss our rationale for this reduction and
t.pdf). present a general framework for modeling consistent back-



ground knowledge. This framework subsumes different typeabsumes different types of knowledge that exists in the.dat
of background knowledge, including correlational knovged The dataset can be viewed as samples from such distributions
Our problem of inferring background knowledge from the
dataset to be released is similar to the problem of inferaimg
Background knowledge poses significant challenges dlistribution from samples, a problem well studied in statis
defining privacy for the anonymized data [4], [5], [6], [7].and machine learning. We apply the widely used technique of
For example, when background knowledge is present, Wernel regression estimation to this problem. The bandwidt
cannot simply say that no adversary knows any individuaksf the kernel function provides a good parameter of how much
sensitive attribute value after seeing the released datause background knowledge an adversary has, enabling us to model
there may exist an adversary who already knows the valagversaries with different levels of background knowledge
of an individual. While the adversary still knows the value Second, we propose a general formula for computing the
after seeing the anonymized data, we cannot say that #wversary’s posterior belief based on the background knowl
anonymized data violates privacy. Intuitively, privacyosld edge and the anonymized data. However, the computation
mean “no matter what background knowledge an adversaiiyns out to be a hard problem and even known estimation
has, the adversary cannot learn too muuéw about the algorithms have too high a complexity to be practical. To
sensitive attribute of any individual”. This, however, oahbe overcome the complexity of exact inference, we generaliee t
achieved when an adversary has background knowledge thajggroximation technique used by Lakshmanan et al. [9] and
inconsistent with the dataset to be released. Considena-adpropose an approximate inference method cafledstimate.
sary whoincorrectly believes thag0% of the population has a We show thatQ-estimate is practical and accurate through
particular disease and has no other more specific informatiexperimental evaluation.
In reality, only30% of the population has the disease and this Thirdly, we propose a novel privacy model callés, t)-
is reflected in the dataset. In this case, even when one eslegsrivacy. We describe our desiderata for quantifying infarm
only the distribution of the sensitive attribute of the &bltion disclosure (i.e., distance measures between two proba
as a whole (without any potentially identifying informatio bilistic distributions), and show that several existingaseres
the adversary would have a significant knowledge gain abat not satisfy them. We then propose a novel distance measure
every individual. Such knowledge gain cannot be prevent@sht can satisfy all the properties.
by data anonymization, and one can argue that releasing suchourthly, we empirically show that the worst-case disciesu
information is precisely the most important utility of relng risk changes continuously with the background knowledge
data, namely, to correct widely-held wrong beliefs. parameter. In other words, slight changes of th# param-
Thus, we have to limit ourselves to consider only bacleters do not cause a large change of the worst-case disglosur
ground knowledge that is consistent with the data to Bik. Therefore, while it is difficult to know the adversasy’

A. Motivation

released. We come to the following definition: background knowledge when releasing the data, the data
Given a datasefl, we say that an anonymized publisher only needs to use a set of well-chosen parameters
version of T' preserves privacy if and only if, for of B to protect the data against all adversaries.
any adversary that has sorhackground knowledge Finally, through extensive experiments on real datasets, w
that is consistent witf’, and for any individual irff", demonstrate that our approach is efficient, prevents back-
the adversary'«knowledge gairabout the sensitive ground knowledge attacks, and preserves data utility.
attribute of the individual is limited. The rest of this paper is organized as follows. We present the

o o general framework for modeling background knowledge using

B. Contributions & Organization kernel estimation techniques in Section II. We describe teow

In this paper, we formalize the above intuitive definitioncompute posterior beliefs using Bayesian inference teglas
First, we model all background knowledge that is consisteimt Section IIl. In Section IV, we define the skyling3, ¢)-
with the original data. We build on our previous work [6]privacy model, describe the desiderata for quantifyingiize
namely, mining background knowledge from the data to beformation disclosure, and present our distance measure.
released. Our rationale is that if certain facts or knowted@xperimental results are presented in Section V and related
exist in the data (e.g., males cannot havarian cancey, they work is discussed in Section VI. In Section VII, we conclude
should manifest themselves in the data and we should be afle paper and discuss avenues for future research.
to discover them using data mining techniques. The Injector
approach [6], however, considers only negative assoaiatio
rules that hold with 100% confidence. It does not consider In this section, we present a general framework for modeling
probabilistic knowledge or knowledge such as positive eissothe adversary’s background knowledge using kernel reigress
ation rules, summary statistics, and knowledge from ctugle techniques [8]. This framework is able to incorporate défe

Our novel approach in this paper is to apply kernel estiypes of background knowledge that exists in the data. At the
mation techniques [8] to model background knowledge thahd of this section, we analyze the scope of our approach by
is consistent with a dataset. We model the adversary’s pribustrating the types of background knowledge that can be
belief on each individual as a probability distribution, iath described in our framework.

II. MODELING BACKGROUND KNOWLEDGE



A. Knowledge Representation by mining the data irf". We now present a general framework

LetT = {t,,t,,...,t,} be a microdata table maintained byfor modeling bac,kgrc?und knowledge. _
the data publisher where each tupjél < i < n) corresponds The adversarys prior beh_ef funpthﬁpTi_ can be consuderg_d
to an individual.T' containsd quasi-identifier (QI) attributes @S the underlying probability distribution of the senstiv
A1, A, ..., Aq and a single sensitive attributg. Let D[A,] attribute in tableT. And the data in the original table
(1 < i < d) denote the attribute domain of; and D[S] {(t1[Q1], P(t1)), (t2[Q1], P(t2)), ..., (tn[QI], P(tn))} can be
denote the attribute domain sf(let D[S] = {s1, 52, ..., $m })- considered as a data sample that is consistent with the un-
For each tuple € T, let t[A;] denote its value on attributé, known prior belief functionP,,;. Our goal is to find the
andt[QI] denote its value on the QI attributes, i.6QI] = underlying prior belief functiorP,,; that fits the original data.
(t[A1], t[As], ..., t[A4]). One way of constructing an estimate of thg.; function

For simplicity of discussion, we consider only one seneitiS t0 use the maximum likelihood estimator (MLE), where
attribute in our framework. If the data contains multipléhe prior belief for each tuple is estimated as the distiaout
sensitive attributes, one can either consider them sagharafmong tuples with that QI value. There are several problems
or consider their joint distribution. Our framework can bavith this approach: (1) the number of distinct QI values can b

extended to consider multiple sensitive attributes using avery large, in which case the MLE estimator is of high vareanc
of the above two approaches. and does not provide a reliable estimate; (2) the MLE estbmat

does not have parameters to allow estimation of diffefént

Representation of the Adversary’s Prior Belief. Let fynctions; and (3) the MLE estimator models each QI value
D[QI] = D[A1]x D[As]x...x D[A4] be the set of all possible jndependently and does not consider the semantic meanings
Ql values and® = {(p1,p2; .-, pm)| 21 <;<,m Pi = 1} be the  among the QI values.
set of all possible probability distributions on the semeit  Thjs leads us to the kernel regression estimation method.
attributeS. We model the adversary’s prior belief as a functiofihe kernel regression method is a non-parametrical teakniq
Pyri © D[QI] — X. Therefore, for an individual whose Qljn, statistics to estimate the conditional expectation afredom
value isq € D[QI], the adversary’s prior belief of the sensitive/ariable. Specifically, given a dataset, the kernel regpass
attribute values is modeled as a probability distributiyn; (¢)  method tries to find the underlying function that is best-fit
over D[S]. _ . _ match to the data at those data points. The kernel regression

An example of prior belief on a tupleis P(HIV[t) = 0.05  estimator belongs to the smoothing method family. Kernel
and P(nonelt) = 0.95. In other words, the probability that methods have been extensively studied in the statistics, ma
has HIV is 0.05 and the probability that has some non- chine learning, and data mining communities. Existing work
sensitive disease such s is 0.95. In our representation, nas shown that kernel methods have a number of desirable
Pyri (t[Q1]) = (0.05,0.95). properties: (1) they can estimate the underlying functieryv
Representation of the Original DatasetEach tuple in table Effectively and (2) they are simple and efficient to compute.
T can be represented as a paiQ1], P(t)) where P(t) € 3, We cho_qse to use lfernel regression method to approximate the
all components of the distributioff(t) is 0 except thei-th Probability distribution function?,;.
component where[S] = s,. Formally, P(t) = (p1(t), p2(¢),

. . C. Kernel Regression Estimator
..,pm(t)) is defined as follows: for all = 1,2, ...,m, 9 ! !

) Kernel estimation includes two components: (1) the kernel
pi(t) = { L if ¢[S] =5 function K and (2) the bandwidthB. The kernel function
0 otherwise K describes the form of the weight distribution, generally
Therefore, the tabld” can be represented as a setrof distributing most of its weight to points that are close tdte
pairs: {(t1[QI], P(t1)), (t2[QI], P(t2)), ..., (tn|QI], P(t,))}. bandwidthB determines the size of the impact ranges of the
Each pair in our representation is a tuple in the originahsett. data point. The probability distribution at a point is estied
Thus, we can view each pair in our representation as a po#rst the sum of the smoothed distributions of kernel functions
describing the sensitive valug(¢) that a tuplet takes. associated with each point in the dataset.
Finally, our goal of modeling background knowledge is to Formally, for one-dimensional data (i.el = 1), the kernel
calculate estimations of the adversary’s prior belief fiorc regression estimation is defined as follows. Gjwe D[A4;] =
P,:, which is defined over all possible QI valuesiiQI]. D[QI], using Nadaraya-Watson kernel weighted average [10],

B. Estimating the Prior Belief Function the probability distribution at is estimated as:

We build on the work of [6] and generate background ~ > orer P(ty)K(q —t;[A1])
knowledge by mining the data to be released. The general Pori(q) = i: K(q—t;[A1) 1)
rationale is that the adversary’s background knowledgeaiabo tyer ST HA
the data should be consistent with the datal'irand should Note that the denominator is used to normalize the proltgbili
manifest themselves ifi. For example, if the adversary knowsdistribution.
that male cannot have ovarian cancer, this piece of knowledg Thus, the probability distributionP(¢;) of the sensitive
should exist in tabl&” and we should be able to discover itttribute for tuplet; is smoothed by the functiof(.) which




peaks att;[A;]. This allows for tailoring the estimation Given parameter®, let Adv(B) denote the parameterized

problem to thdocal characteristics of the data. adversary whose background knowledge can be modeled by
For d-dimensional data, the kernel function is chosen to H®ndwidthB. In the following, we denote’,,;(B, ¢) as the

the product ofd kernel functionsK;(.)(i = 1,2, ...,d). More prior belief of the parameterized adversatylv(B) on the

formally, given a QI valueg = (¢1,¢2,.--,q4) € D[QI], the sensitive attribute of an individual whose quasi-identi¥iglue

approximate underlying prior belief functia®,,; is estimated is ¢ € D[QI].

as:
D. Scope of the Framework

Porilq) = 2yer P) Thicica Kilai — t5[4i]) 2 We demonstrate the scope of the kernel estimation frame-

> er Hhi<ica Kila — t5[Ai]) work (i.e., the amount of background knowledge that can

where K; is the kernel function for the-th attribute A, . be modeled in the framework). Our framework has three

Again, note that the denominator is used to normalized thBaracteristics: (1) we focus on background knowledgeithat
distribution. consistent with the data; (2) we model background knowledge

The choice of the kernel functioft” is not as important as @S Probability distributions; and (3) we use kernel regogss
the choice of the bandwidtB. It has been shown by [11] that€Stimator to compute background knowledge. We demonstrate
using different kernel function& causes only small effects th® Scope of our framework along these dimensions.

on the accuracy of the estimator as compared with varyiggneral Privacy Models. Several existing privacy models,
the bandwidthB. So preferences are given to the kemel§, -y ag/-diversity (which requires the sensitive attribute val-
with low computatlonal complexﬂy. _We _thus_ choose to_ US§es in each group to be “well-represented”), do not spedifica
the Epanechnikov kernel functipwhich is widely used in congiger the prior belief that an adversary has (we refer

kernel estimation: such an adversary as the ignorant adversary). This ignorant

B (1 (Z2)?) if |[Z]<1 adversary can be viewed as an adversary with a prior belief
Ki(z) = { 0 B othenise that every sensitive attribute value is equally possibteefary
individual in the data, i.e.Py.i(q) = (L, L, ..., 1) for every
where B = (B, Bs, ..., Bg) is the bandwidth vector. g € QI. This knowledge is inconsistent with the data, when

The bandwidth provides a good measurement of how mughe sensitive attribute is not uniformly distributed in thata.
background knowledge an adversary can have. Specificallyiven this background knowledge, the adversary’s knowdedg
a large B; implies that the adversary does not have mudjain is unavoidable. Our framework does not model such an
knowledge about the relationship between the sensitive ativersary. Equation (1) and Equation (2) show that adviessar
tribute S and thei-th quasi-identifierd;. On the contrary, with modeled in our framework always have the correct belief
a smallB;, the adversary is assumed to have more fine-graingBout the overall distribution of the sensitive attributetie
knowledge on the distribution of the sensitive attributéhwi data. This is consistent with thecloseness model (which
respect toA;. Therefore, we are able to tune the bandwidtfequires the distribution® of each group to be analogous
parametersB to model adversaries with different levels ofo the distribution of the whole table with respect to the

background knowledge. sensitive attribute)t-Closeness considers the adversary who
Finally, we define the distance between two values of amows @ from the released data. Our framework can model
attribute. Assume the attribute domain df; is D[A;] = the background knowledge of this adversary as follows. For

{vit, ..., vir } wherer = | D[4;]|. The attributed; is associated each tuplet; € T, t; distributes its probability distribution
with a r x r distance matrix\/; where the (j,k)-th celld;;  P(t;) equally to all tuples in the table and therefore, every
(1 <j,k <r) indicates the semantic distance betwegrand tuple in the table receives the same shai(t;). This type
vir.. The distance matrid/; is specified by the data publisherof adversary is a special adversary modeled by Equation (2).
One way of defining the distance matrix is as followsAlfis  In Equation (2), theB;(1 < i < d) is defined as the range
a continuous attribute, the distance matrix can be defined a$ the domainD;(1 < i < d) and theK,;(1 < i < d) is
[vij — vik| defined as the uniform function. In other words;(z) =
djr = T R, 1A/BZ- for all 0 < =z < B;. Then, Equation (2) reduces to
' Pyri(g) = 130, oy P(t;), which is the distribution of the

where E; is the range of the attributel;, i.e., R = f o o0 the whole table,

max;{v;; } — min;{v;;}. If A; is a categorical attribute, the
distance matrix can be defined based on the domain hierar@hbwledge about Specific Individuals and Relationships

of attribute A;: " among Individuals. We note that our framework does not
djp = P(vi, vik) model all types of background knowledge that an adversary
H; may have. Three types of knowledge have been considered

whereh(v;;, vix) is the height of the lowest common ancestan the literature [5]: (1) knowledge about the target indi-
of v;; andv;,, and H; is the height of the domain hierarchyvidual which are negative associations, e.g., Tom does not
of attribute A;. have Cancer (2) knowledge about others which are positive



associations, e.g., Gary has flu; (3) knowledge about sanigmphysemais unknown. In this paper, we assume that the

value families, e.g.{Alice, Bob, Caro} could belong to the adversary knows who are in the table and their QI values. In

same-value family (i.e., if one of them has a sensitive valuihis case, the adversary’s goal is to infer the exact mapping

all others tend also to have the same sensitive value). between the set of individuals and the set of sensitivebati
Our framework models background knowledge as probealues.

bility distributions and does not consider type-3 backgibu Most existing works consider every mapping between these

knowledge, i.e., knowledge about the relationship between two sets to be equally probable. For example, in the first

dividuals. That is, we make thteple-independerdgssumption: group of Table I(b), each of the three tuples ¢, andts

the sensitive attribute values of the tuples in the tableimre is assumed to have a probability bf3 to take Emphysema

dependent of each other. The first two types of knowledge cllowever, armed with background knowledge, an adversary

be represented using our prior belief functions. For examptan make more precise inference, etg.will have a much

if tuple ¢; does not have the sensitive valsg then thei-th larger probability thanl /3 to take EmphysemaThis section

component of the probability distributioR,,;(¢;[Q1]) is 0.  provides a study on how to compute these probabilities based

) o ) on the adversary’s background knowledge.
Knowledge about Algorithms and Optimization Objec-

tives. Knowledge about the algorithms and optimization oB. An Example

jectives for anonymizing data can be used to help advessarie Consider the example shown in Table Il(a) where we have

infer the original data, as shown recently by Wong et al. [124 group of three tuple§t, , t2, 13} and their sensitive attribute

This kind of knowledge cannot be modeled using prior b&alues are{none,none, HIV}. Suppose that the adversary

lief function about individuals. It is an interesting resg@ wants to find out the probability thas takes the HIV disease.

direction to study this and other kinds of knowledge that may Assume that the adversary has some prior beliefs on the

enable an adversary to breach individuals’ privacy. sensitive attribute of tuples in the table as shown in Talhg).|

For example, she knows that bathand¢s have a probability

of 5% to take HIV and a probability 05% to have some
When we have modeled the adversary’s prior belief abooon-sensitive disease such fas

the sensitive attribute of all individuals in the table, wean  From Table li(a), the adversary knows that exactly one of

explain how an adversary changes her belief when she s#sthree tuplegt,to,t3} takes HIV. With this in mind, the

the released table using Bayesian inference techniques. adversary lists the three possible cases of which tuplestake
Before we present our approach for computing the posteridiV as shown in Table 1l(b). In the following, we ugerob(E)

belief, we describe how the data can be anonymized. We tHendenote the probability the eveht occurs.

give an example showing how an adversary changes her beliefn casel, ¢; takes HIV whilet; andt, take the non-sensitive

when she sees the released table and describe the genalales. Therefore, the probability that calseccurs is:

formula for computing posterior belief. As _exagt in.ferenc%, Case 1) & p1 = P(noneltr) x P(nonelts) x P(HIV|ts)

is hard to compute, we propose an approximation inferenc

method called2-estimate. =0.95x0.95x0.3=0.271

Similarly, we obtain:

IIl. COMPUTING POSTERIORBELIEF

A. Anonymization Techniques

Two widely-studied data anonymization techniques are geﬁic‘we 2) < p2 = P(nonelty) x P(HIV|ty) x P(nonelts)
eralization [13], [1], [14] and bucketization [15], [4], 61 In =0.95 x 0.05 x 0.7 = 0.033
generalization, quasi-identifier values are replaced waines and
that are less-specific but semantically consistent. Bizket
tion, on the other hand, first partitions tuples into groug anP(Case 3) o< ps = P(HIV|t1) x P(nonelts) x P(nonelts)

then separates the _sensitive att_ri!oute frpm the QI a_tHibut —0.95 % 0.05 % 0.7 = 0.033
by randomly permuting the sensitive attribute values inheac
bucket. We are then able to compufe(Case 1) as:

The main difference between the two anonymization tech- P(Case 1) = D1 — 08
niques lies in that bucketization does not generalize the QI p1 + P2 + p3
attribute;. When _the adversary knows who are in.the tableThus, the posterior probability thag takes HIV is:
and their QI attribute values, the two anonymization tech-
niques become equivalent. When these techniques are usedP(Case 1) x 1+ P(Case 2) x 0+ P(Case 3) x 0
to anonymize the data, the adversary always knows that a — P(Case 1) = 0.8
group of individuals take a set of sensitive attribute vajue '
but does not know the exact mapping. For example, in theln summary, the adversary’s belief thgthas HIV changes
generalized table in Table I(b), the first three tugles t2,t3} from 0.3 to 0.8, which is a significant increase. This shows
form a group and take valudEmphysema, Cancer, Flu}. that inferences using probabilistic background knowlecige
But the exact mapping, e.g., which one of the three tuples Ha®ach individuals’ privacy.



tugle d:]soe:;e ?s the prior probabilityP(si|tj) (note that gach_ sensitive value
to none in the multisetS holds a column and it will be & x &
t3 HIV matrix). The problem of computing the permanent is known
(a) A group of three tuples to be_ a#P-complete problem. A number of approximation
algorithms have been proposed to compute the permanent of a
t1 to ts3 . . ol X
POTVIE) =05 | PUHIV]is) =05 [ PUHIVIG) =3 matrix. _The.state of fthe art is the po]ynomlal time randcardllz
P(none|t1) = .05 | P(nonelts) = .95 | P(nonelts) = .7 approximation algorithm presented in [17]. However, thmeeti
0) The ad < orior belief tabl complexity is of order oD (k?2). It is thus not feasible for the
(b) The adversary's prior belief table general formula to work for a large. In the following, we
11 ts i3 turn to approximation algorithms for computing the posteri
Case 1| none | none | HIV belief. The approximation algorithm allows us to compute th

Case 2| none | HIV none
Case 3| HIV none | none

posterior belief accurately enough while in time linearhe t
size of the group.

(c) The three possible cases
TABLE Il D. Approximate Inferenceg$2-estimate
AN EXAMPLE In the following, we consider a heuristic to estimate the
posterior probabilityP*(s;|¢;). We represent the prior beliefs

as a bipartite graph where one set of nodes consists of tuples

~We derive the general formula for computing the postgs the group and the other set of nodes consists of sensitive
rior belief using Bayesian inference techniques (the idea \j5j es in the group. Each edge from tupjeo sensitive value
illustrated in the example above). We consider a gr;bijpf s; is associated with the probabilit§(s; t;).
k tuples (namely.E = {t1,ts,...,tx}). Let the multi-setS  oyr approach is a generalized version of teestimate
denote all sensitive attribute values in used by Lakshmanan et al. [9], where they estimate the number
In the following, we useP(s;|t;) and P*(s;|t;) to denote of correct mappings between original items and anonymized
the prior belief and the posterior belief that tuplél < j < jtems. In that context, a item either can be linked to an
k) takes the sensitive valug(1 < i < m), respectively. anonymized item or cannot be linked to the anonymized item.
We denoteP(S|E) as the likelihood that the tuples inj our context, a tuple can be linked to a sensitive attribute
E take the sensitive attribute value ifi, which can be 5/ e with a certain probability.

computed as the sum of the likelihood of every possible ased on the prior belief;; can be linked tos; with a
assignments betweehA and S. For example, consider theprobability of P(s;|t;) and ¢; can be linked tos; with a

tuples in Table li(a), there are three possible assignmasitsprohapility of P(s,|t;) for all 1 < j' < k. Therefore, the

C. General Formula

shown in Table li(c): probability thatt; takess; is given by
P({nonenone, HIV}|{t1,t2,t3}) P(s;t;)
=P(nonelt1) x P(nonelty) x P(HIV|t3) 25,:1 P(silt;r)
+ P(nonelt) x P(HIV|ts) x P(nonelts) We call this heuristic the2-estimate (denoted as2(s;|t;)).
+ P(HIV|t;) x P(nonelts) x P(nonelts) s; appearsy; times inS and by summing up this probability
across all these; values, we get an estimation of the posterior

Based on Bayes’ rule, the posterior beli€f(s;|t;) is

proportional to the product of the prior belig?(s;|¢;) and probability:

the normalized likelihood that the— 1 tuples inE\{t,} take Qsilts) o s x P(silt))
L. . . illj i
the k — 1 sensitive attribute values i\ {s;}: S Psilty)
P*(silt;)  mi x P(si|tj) x P(S\{s:}|E\{t;}) (3) B normalizing the probability ditribution for each;, we
P(S|E) obtain Plsalts)
N X =p——5-———
P(s;lt; P(S iHE\{t; ! Z?’:l Psilt;r)
=y X — (siltj) x P(S\{si}|E\{t;}) (4) Qsilty) = — eme (5)
> jr=1 P(silty) x P(S\{s:}[E\{t;}) 2pmy o X S, P(s.1t)
wheren; is the frequency o$; in the multisetsS. The above estimation technique makes the random world

We can compute the likelihooB(S|E) by enumerating all assumption [18], where every reasonable mapping between
possible assignments betweéhand S. In general, assume individuals and sensitive attribute values is equally pitab.
that in the multi-setS, the values;(1 < i < m) appearsn; - Specifically, Equation (5) can be directly derived from the
times, the total number of possible as&gnmentsngl'Ti! formula shown in Equation (4) by assumiiy{S — {s; }|E —
where>™"  n; = k. {t;}) = P(S — {si}|E—{t;}) forall 1 <j <k.

This shows that computing the exact formula requires expo-In [2], Machanavajjhala et al. studied the problem of calcu-
nential computation time. We note that the likelihaB@S|E) lating the posterior belief under the frameworkg#neraliza-

is exactly thepermanenbf the matrix where théi, j)-th cell tion by employing the random world theory. Not surprisingly,



t1 to t3 . P : :
POV =0 | POHIVIG) =0 [ PUHIVIG =3 (B., t)-privacy iff the worst-case disclosure risk for all tuples
P(none|t1) =1 | P(nonelts) = 1 | P(nonelts) = .7 (with QI value beingg) in T is at mostt:
TABLE IlI
ANOTHER ADVERSARY S PRIOR BELIEF TABLE Hl;lX D[Ppri (B; q)v Ppos (Bv q, T*)] <t

. o . ~ whereD[P, Q] is the distance measure of two distributioRs
the results they obtained fgeneralizatiorare consistent with and ().

our results forbucketization _ _ The parameteB determines the profile of the adversary
We note that theQ)-estimate is not exact. Consider the(i.e. how much background knowledge she haB). =

example shown in Table li(a) again where we have 2 group o p, . B, is a d-dimensional vector, which allows the
three tuples{t,, t», 3} and their sensitive attribute values argjaa publisher to specify values for different componehta®
{none, none, HIV'}. Now, assume the adversary has differeRjoctor. For example, an adversary may know more information
prior beliefs as shown in Table Il and she wants to find ouf, ;¢ attribute4; than about attributed; of the table. In
the sensitive value thag takes. Using the general formula for,iq case, we would set a smaller vaIuJe 8y than for B,
exact inference, the probability can be calculated as@lo 1, 5ccyrately model the knowledge of the adversary. On the
First, we haveP({none,none}|{t1,12}) = 1 x 1 = 1and giher hand, the parameterdefines the amount of sensitive
P({”_O"e’ HIV}[{t1,t2}) = 1x0+0x1=0. Therefore we j,cormation that is allowed to be learned by this adversary.
have: The above privacy model only protects the data against
PHIV|t) = P(HIV|t;) x 1 1 adversaries with a particular amount of background knogéed
P(HIV|t3) x 1+ P(nonelts) x 0 B. While this model gives the data publisher the flexibility to
It is intuitive that¢t3 must take the HIV disease becaus pecify the parameteB, the main challenge is how to protect

none oft: andt. can take the HIV disease. However based'€ data against all kinds of adversaries with differentlgv
on theQ—lestimaie the probability is calcula'ted as: ' of background knowledge. Of course, the data publisher can

enumerate all possibl® parameters and enforce the above

1x % privacy model for all thesé3 parameters.
Q(HIV|t3) = %03 o= = 0.66 In Section V irically sh h inuitv of th
X 553 T2 %X 5% n Section V, we empirically show the continuity of the

) ) worst-case disclosure risk with respect to the background
Here, the inexactness of tlieestimate results from the faCtknowIedge parameters, i.e., slight changes offihngarameter
that 2-estimate assigns a uniform likelihood to the followingy ;'\ -+ ~2use a large change of the worst-case disclosure risk

two eve|_|nlts: (1H){t1’ t2} tal;}e{none,non? andh(Z){tth}é{:]l;(e Therefore, the data publisher only needs to define the privac
{none,HIV}. However, these two events have very different 4/ ¢or a set of well-choseR parameters.

likelihoods. In fact, the second event cannot occur under t The data publisher can define a set of backaround knowl-
prior beliefs shown in Table IIl. In general, ti&estimate is P 9 .
edge parameter®3;, Bs, ..., B, and enforce the following

accurate enough for use in practice. In Section V, the acgura

of the Q-estimate is empirically evaluated with real datasetss.kyllne (B, t)-privacy principle to protect the data against

adversaries with all levels of background knowledge.

IV. PRIVACY MODEL WITH BACKGROUND KNOWLEDGE Definition 2 (the skyliné B, t)-privacy principle): Given a
The next step is to extend privacy definitions for dat%,liy“n?{.(Bl’tl)’(B?’tQ)"“’(BT’tT)}’ an anonyr_mzeq table
publishing to consider background knowledge. We define our satisfies the skylln_(aB,t)-prlvgcy requirement |ff_f0|z —1
. ; -5 : 0 r, the worst-case disclosure risk for all tuples (with QI \walu
(B, t)-privacy model and describe our definition of dlstancg . i\ T is at it
measure between two probability distribution, which qifas eingq) in T'is at mostt;:
the amount of information disclosed by the released table.
man D[Ppm'(Bia Q)a Ppos (Bi7 q, T*)] <t

In practice, the data publisher specifies a set of background

Given the background knowledge paramedBeand a target knowledge parameterB;, together with thet; parameter for
individual » whose quasi-identifier value ig € D[QI], the eachB;. This allows the data publisher to specify and enforce
adversaryddv(B) has a prior belieP,,.;(B, ¢) onr’s sensitive privacy requirements for different adversaries simulcarsdy.
attribute. When she sees the released talile she has a As we point out above, the worst-case disclosure risk dis-
posterior beliefP,,s(B,q,T*) on r’s sensitive attribute. The tributes continuously with respect to the background kaowl
distance of the two probabilistic beliefs measures the arhowdge parameter. This allows the data publisher to use a set
of sensitive information about individual that the adversary of well-chosen background knowledge parameters to protect
Adv(B) learns from the released data. Based on this rationallee data against adversaries with all levels of background
we define thg B, t)-privacy principle as follows: knowledge. Also, the data publisher can set default parenset

Definition 1 (the(B, t)-privacy principle): Given two pa- and has the flexibility to define their own parameters for
rametersB and ¢, an anonymized tabl&™* is said to have special cases.

A. Privacy Model



B. Distance Measure: Quantifying Information Disclosure However, none of the above distance measures satisfy

We study the problem of measuring the distamie, @] the semantic awarenessroperty. One Qistgnce measure that
between two probabilistic distribution andQ. The distance takes value semantics into consideration is the Earth Mever
measure quantifies the information revealed to an advershfytance (EMD) [20], [3]. The EMD is based on the min-
whose prior belief isP and posterior belief i€). imal amount of work needed to transform one distribution

In this section, we first identify our desiderata for the gasi t0 another by moving distribution mass between each other.
of the distance measure and show that existing distance megfortunately, EMD does not have therobability scaling
sures cannot satisfy some of these properties. We then defif@Perty. For example, the EMD distance between the two
our distance measure that satisfies all of these properties. distributions(0.01,0.99) and(0.11,0.89) is 0.1, and the EMD

1) Desiderata: From our perspective, a useful distancélistance between the two distributiofts4, 0.6) and(0.5,0.5)
measure should display the following properties: is aIs_oO.l. quever, one may argue that the belief change in

1) Identity of indiscernibles: An adversary has no infor- the first pair is much more significant than that between the

mation gain if her belief does not change. Mathematsecond pair. In the first pair, the probability of taking thrstfi
cally, D[P, P] = 0, for any P. value increases from.01 to 0.11, a 1000% increase. While

2) Non-negativity: When the released data is available, thi@ the second pair, the probability increase is opiyt.
adversary has a non-negative information gain. Mathe-2) Distance MeasureWe propose a distance measure that
matically, D[P, Q] > 0, for any P and Q. can satisfy all the five properties. The idea is to apply kerne

3) Probability scaling_: The belief change from probability smoothing [11] before using JS divergence. Kernel smogthin
a 1o o+ is more signification than that from to 8-+~ is a standard statistical tool for filtering out high-frequag
whena < 3 and« is small. D[P, Q] should consider noise from signals with a lower frequency variation. Here, w
reflect the difference. ’ use the technique across the domain of the sensitive adéribu

4) Zero-probability definability: D[P, Q] should be well- value to smooth Ol_Jt_ the distribution. Fpr computin_g diseanc
defined when there are zero probability valuesPimnd P€tween two sensitive values, we definenax m distance
0. matrix for S using the same method as described in Section II-

5) Semantic awarenessWhen the values inP and Q C. The (i, j)-th cell d;; of the matrix indicates the distance
have semantic meaning®[P,Q] should reflect the PeWeens; ands;. _ '
semantic distance among different values. For example, Ve use the Nadaraya-Watson kernel weighted average:

for the “Salary” attribute, the valu80K is closer to > piK (dij)

~

50K than to80K. A semantic-aware distance measure pi = W

should consider this semantics, e.g., the distance be- g=Lmme

tween {30K,40K} and {50K,60K} should be smaller where K(.) is the kernel function, which is chosen to be

than the distance betwedgB0K,40K} and {80K,90K}. the Epanechnikov kernel as described in Section Il. The

Note that we do not requir®[P, Q] to be a distance metric bandwidth is determined based on the sensitive attribate. |

(the symmetry property and the triangle-inequality proger th.e experime_ntsZ we use “Occgpation” as the ;ens.itivebatnfi
First, D[P, Q] does not always have to be the sam®&3, P). with a domain hierarchy of heigl®, the bandwidth is chosen
Intuitively, the information gain frong0.5,0.5) to (0.9,0.1) is to be at leasd.5 so that kernel smoothing can be applied.
larger than that fronf0.9,0.1) to (0.5,0.5). SecondD[P, Q] We then have a smoothed probability distributiéh =
can be larger thaD[P, R] + D[R, Q] where R is also a (p1, P2, ---, Dm) for P. The distributionP reflects the semantic
probabilistic distribution. In fact, the well-known Kubiick- distance among different sensitive values.
Leibler (KL) divergenceis not a distance metric since itag n 10 incorport semantics into the distance betweerand
symmetric and does not satisfy the triangle inequality prop . We compute the distance betweéhand @ as an esti-

The Kullback-Leibler (KL) divergenceis defined as: mate insteadD[P, Q] ~ D[P, Q]. The distanceD[P, Q] can
4 be computed using JS-divergence measure (in Equation (6))
Di which is well-defined even when there are zero probabilities
KL[P,Q] = ; log — . o :
[P, Q] ;p o8 q; in the two distributions. We can see that our distance measur

The KL divergence measure is undefined when> 0 but has all of the five properties described in Section IV-B.1.

g; = 0 for somei € {1,2,...,d} and thus does not satisfy V. EXPERIMENTS

the ze_zro_—probability_definabilit;property. To fix this problem,  The main goals of the experiments are: (1) to demonstrate

a variation of KL divergence called the Jensen-Shannon (J&) effects of probabilistic background knowledge on data

divergence [19] has been proposed. The JS divergence eagiinymization, (2) to evaluate the accuracy of Shestimate,

is defined as: (3) to illustrate the continuity of the worst-case disclastisk
JS[P,Q] = ~[D[P,avg(P, Q)] + D[Q, avg(P,Q)]]  (6) with respect tq t.he background.knowledge paraméie(4)

to show the efficiency of computing3, ¢)-private tables , and

whereavg(P, Q) is the average distributiofP + Q)/2 and (5) to show the effectiveness of the, ¢)-privacy model in

KL[,] is the KL divergence measure. utility preservation.

N =



Attribute Type # of values Number of vulnerable tuples Number of vulnerable tuples
Age Numeric 74 oo distinct-l-diversity mm— oo
Workclass Categorical 8 Zgggg probah\hsllcrlr‘dlversny — : Zgggg
Education Categorical 16 35000 (Eﬁﬁzﬁxii =] =
Marital_Status | Categorical 7 30000 1 e
: 25000 25000

Race Categor!cal 5 20000 20000
Gender Categorical 2 15000 15000

- — 10000 10000
Occupation Sensitive 14 5000 5000

distinct-l-diversity mm—" |
probabilistic--diversity mmm—
t-closeness =1 |
(B/t)-privacy =3 +

~N| O U1 B W N =

0
TABLE IV 02 03 04 05 paral  para2  para3  parad
DESCRIPTION OF THEAdult DATASET USED IN THE EXPERIMENT

b’ value privacy parameter

(a) Variedd' values  (b) Varied privacy parameters

Ele] t b Fig. 1. Probabilistic Background Knowledge Attack
paral || 3 | 3 | 0.25 | 0.3
para2 || 4 | 4 | 0.2 0.3 Aggregate distance error
para3|| 5 | 5 | 0.15 | 0.3 03 v——
parad || 6 [ 6 | 0.1 | 0.3 025 | P=03 —-x—- i
b=0.4
TABLE V 02 f b=05
PRIVACY PARAMETERS USED IN THE EXPERIMENTS 015 F
The dataset used in the experiments is the adult dataset L
. - . . . . b ) %=~
from the UC Irvine machine learning repository, which is 0054 :
comprised of data collected from the US census. We use seven 0 ‘ ‘ ]

attributes of the dataset, as shown in Table IV, where the
sensitive attribute i©Dccupation Tuples with missing values
are eliminated and there are ab@&0tK valid tuples in total.
All algorithms are implemented in Java and the experiments
are performed on 8.4GHZ Pentium4 machine with2.0GB Our first set of experiments investigates the effectbof
of RAM. parameter on the number of vulnerable tuples. We fix the
Given the dataset, we use the variations of Mondrigirivacy parameters = ¢ = 4, t = 0.2, andb = 0.3.
multidimensional algorithm [21] to compute the anonymizeBligure 1(a) shows the number of vulnerable tuples in the
tables using different privacy models: (1) distiretliversity; four anonymized tables with respect to differéhvalues. As
(2) probabilistic ¢-diversity; (3) t-closeness; and (4)B,t)- we can see from the figure, the number of vulnerable tuples
privacy. decreases ab' increases. This is because a largéealue
The variations of Mondrian use the original dimensionorresponds to a less-knowledgeable adversary.
selection and median split heuristics, and check if theifipec The second set of experiment investigates the effect of
privacy requirement is satisfied. Note that we can genehate privacy parameters shown in Table V on the number of
(-diverse table using the anatomizing algorithm [15]. Hogrev vulnerable tuples. We fix the adversary’s paramétet 0.3.
Anatomy does not generalize the quasi-identifiers and ildvouFigure 1(b) shows the experimental result.
be unfair to compare Mondrian with Anatomy. As we can see from these figures, tf®, ¢)-private table
The four privacy models protect the data against attributentains much fewer vulnerable tuples in all cases. Thisisho
disclosure. To protect identity disclosure, we also erddre that the(B,t)-privacy model better protects the data against
anonymity (each group contains at ledstecords) together probabilistic-background-knowledge attacks.
with each of the above privacy models.
For each experiment, we evaluate the performance wifth Accuracy of theé2-estimate
respect to four sets of privacy parameters in Table V. ToTo evaluate the accuracy of the-estimate, we randomly
make the comparisons easier, we use the samalue for pick a group ofN tuples from the table and apply both exact
distinct¢-diversity and probabilisti¢-diversity, the same for  inference and th€-estimate on théV tuples. Each tuple has
t-closeness andB, t), the sameb value, andk = ¢ for all g prior distributionP,,;, the exact inference distributiaR. ..,
cases as shown in Figure V. and theQ-estimate distribution?,,,.. We then compute the

S average distance errgmhich is the estimation error averaged
A. Effects of Probabilistic Background Knowledge over all of the V" tuples:

We assume that adversary’s background knowledge is mod-
eled by thel’ parameter, i.e.B’ = (v, V', ...,b'). To illustrate
the effects of probabilistic background knowledge, we gppl
the prior belief function computed frof’ on each of the four
anonymized tables, compute the posterior beliefs of eqalbtu  We run the experimenti00 times and the average is
and report the number of tuples whose privacy is breachegported. Figure 2 depicts thaverage distance errokith
under that privacy requirement. These tuples are viewed raspect to differentV values. In all cases, th@-estimate is
vulnerable to the probabilistic background knowledgeckga within 0.1-distance with the exact inference. The experiments

N value

Fig. 2. Accuracy of the2-estimate

N
1
pP= N Z |D[P6ma7 Pp’ri] - D[Pome, Pp”*”

J=1



Worst-case disclosure risk ‘ ) Discernibility metric (DM) Global Certainty Penalty (GCP) Cost
Worst-case disclosure risk

1.6e+009 300000
distinct-I-diversity m—. distinct-I-diversity m—.
1424009 - probabilistic--diversity HEEEE 7| 250000 probabilistic--diversity |
1.2e4009 | t-closeness =1 { t-closeness =1
B.{)-privacy =1 B.{)-privacy == |
Les00 - (B.t)-privacy 1 200000 (B.t)-privacy
8e+008
6e+008 -
4e+008
2e+008

1 150000
1 100000

50000

L L L L L L L L L L L 0 0
0.20.2250.250.275 0.30.3250.350.375 0.4 0.4250.450.475.0.5 paral  para2  para3  parad paral  para2  para3  parad
b value privacy parameter privacy parameter

(a) Variedb values (b) Varied by, b2) values (a) Varied privacy models (b) Varied privacy models
Fig. 3. Continuity of worst-case disclosure risk Fig. 5. General Utility Measures

Efficiency (sec) Efficiency (min)
! PN — ul PP against adversaries with all levels of background knowdedg
6 probah\\islic-lidiversity ; 1 ol \npu{-sizef%gﬁ x|
5 Bimey =1 | s o ] D. Efficiency
4 1 L J .. .
, z ] We compare the efficiency of computing the four
2 4t ] anonymized tables. We compare the efficiency with regard to
! s Casa— different privacy parameters. Figure 4(a) shows the resil
R R S — 2 03 04 05 we can see from Figure 4(a), the running time decreases with

prvacy pramett e increasingly stringent privacy requirements becadsadrian
(a) Varied privacy models (b) Varietdvalues is a top-down algorithm.

Fig. 4. Efficiency Comparisons Here, the time to compute theB,t)-private table does

not include the time to run the kernel estimation method to
ompute the background knowledge. As we can see from
linlgure 4(a), without considering the time for estimatingloa
ground knowledge, the running time to compute thg ¢)-
C. Continuity of Disclosure Risk private table is roughly the same as the time to compute the
other tables, usually within seconds.

The goal of this experiment is to show the continuity of \yg then evaluate the efficiency of computing background
the worst-case disclosure risk with regard to the backgloupnqyjedge using the kernel estimation method, which is the

knowledge parameteB. We first fix the_ adversary with the ., efficiency issue of théB, t)-privacy model. Figure 4(b)
background knowledge parametgr which can be one of o5 the results. As we can see from the figures, the time

the four values{0.2,0.3,0.4,0.5}. We then generate a Sely, compute background knowledge is larger than the time to
of (B,t)_—pnvate tables with different parameters. For eaChanonymize the data, partially becausndrian runs much
anonymized table, we compute the worst-case discloste fi§gter than many other anonymization algorithms. Moreover

by the adversary. The worst-case disclosure risk is Cordpu{?omputing background knowledge is still fast enough for
as the maximum knowledge gain for all tuples in the table:

) ‘f'arge-enough datasets, usually within several minutes.
maxy{D[Ppri(B’, q), Ppos(B’, q, T*)]}. Figure 3(a) shows the -
results. As we can see from the figure, the worst-case disck- Data Utility

sure risk increases/decreases continuously with respebet  To compare data utility of the four anonymized tables, we

show that theQ-estimate is accurate enough to be used
practice.

b parameter. evaluate the anonymized data both in terms of generalyutilit
We then evaluate the continuity of the disclosure risiheasures and accuracy in aggregate query answering.
with respect to the background knowledge parameters 1) General Utility MeasuresWe first compare data utility

(b1,b1,b1, b2, b2, b2), i.e., the adversary’s background knowlbased on two general utility measurdsiscernibility Metric
edge on the first three attributes is modeledthyand her (DM) [22] and Global Certainty Penalty (GCP23].
background knowledge on the last three attributes is mddele Figure 5(a) shows the DM cost while Figure 5(b) shows the
by b.. Here, we fix the adversary's parametér= 0.3 and GCP cost for the four anonymized tables. In both experiments
compute the worst-case disclosure risk by the adversaly wite evaluate the utility measure as a function of the privacy
respect to different(b;,b,) values. Figure 3(b) shows theparameters shown in Table V. In both figures, th@,¢)-
results. As we can see the figures, the worst-case disclosprigate table shows comparable utility with the other four
risks increases/decreases continuously among the dorhairaonymized tables.

(b1, b2). 2) Workload ExperimentsWe evaluate data utility in terms
These experiments show that slight changes of the badf-performance in aggregate query answering [24], [15]].[25
ground knowledge parameters will not cause a large changd-igure 6(a) shows the average relative error as a function
of the worst-case disclosure risk, the conjecture we madedhthe query dimension. As the query dimension increases,
Section IV. This validates our approach of using a set of wekverage relative error decreases and therefore, the armeym
chosen background knowledge parameters to protect the didta performs better for queries with a larger query dinmensi



Aggregate relative error(%) Aggregate relative error(%)

modeling to derive the conditional probabilities betweha t
quasi-identifier values and the sensitive attribute values
These methods provide a framework for defining and ana-
lyzing background knowledge, but they are unaware of the
exact background knowledge the adversary may have. The
injector approach [6] considers negative associationsrble
it does not model other types of background knowledge and
does not provide an approach to analyze how an adversary can
gain sensitive information from the published data.

distinct--diversity mm—
probabilistic--diversity mm—
t-closeness =1
(B,t)-privacy ===

distinct-I-diversity mm—
probabilistic--diversity mmm—
t-closeness =1
(B,t)-privacy ===
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(b) Varietsel values

0.12
qd value

(a) Variedqd values

Fig. 6. Aggregate Query Answering Error Anonymization Techniques. Most anonymization solutions

adopt generalization [13], [14], [32], [22], [33], [34], B

Figure 6(b) shows that as the query selectivity increasd36l. [21], [37] and bucketization [15], [16], [4], [38],
average relative error also decreases. This shows that [B@l- Other anonymization techniques include clusteri@] [
anonymized data can answer more accurately on queries vifthl, [42], [43], space mapping [44], spatial indexing [45]
a larger selectivity. In all figures, we can see that tlie¢)- Marginals releasing [46], and data perturbation [47], [43})

private table can answer queries as accurately as all otH theoretical side, optimal k-anonymity has been proeed t
anonymized tables. be NP-hard fork > 3 in [49], and approximation algorithms

for finding the anonymization that suppresses the fewel cel

have been proposed in [49], [50].

V1. RELATED WORK

gackground Knowledge in Other Contexts. The above
orks focus on data anonymization in the context of privacy-
reserving data publishing. A number of research works have
examined background knowledge in other contexts. Yang and
IaUSl] studied the problem of information disclosure in XML
publishing when the adversary has knowledge of functional
dependencies about the XML data. In [9], Lakshmanan et al.
General Privacy Models. The k-anonymity model [1], [14] sStudied the problem of protecting the true identities ofadat
assumes that the adversary has access to some publigljects in the context of frequent set mining when an advgrsa
available databases (e.g., a vote registration list) ared thas partial information of the items in the domain.
adversary knows who is and who is not in the table. A few
subsequent works [2], [26], [27] recognize that the advgrsa , .
also has knowledge of the distribution of the sensitivelatte In this paper, we present a general fram_ework for modeling
in each group. The-closeness model [3] proposes that th@nd computmg backgroun_d knowledg_e using kern_el r_n_ethods.
distribution of the sensitive attribute in the overall &ashould We provide efficient techmgues to estimate pos_tenqr @lstr_
also be public information. tion based on the anonymized table and the prior distributio

Recently, thes-presence measure [28] observes that knov\\//\-/e present a design of thel, t)-privacy model, which

ing an individual is in the database poses privacy risks. Tr%otects privacy in the presence of adversarial background

X ' - : nowledge. Finally, we show that probabilistic background
m-confidentiality model [12] recognizes that knowledge OII%owledge is a real concern and demonstrate the effecgene

the mechanism or algorithm of anonymization can leak ext(r) our aporoach throuah experiments on a real dataset. Here
sensitive information. Dynamic dataset re-publicatio®][2 ur-app ugh exper ’

[30], [25], [31] considers the scenario where an adversasy rare severgl future research directions on. this topic.
knowledge of previous releases of the dataset. None of thesa Relational Background Knowledge: Our knowledge

models consider correlational knowledge. representation assumes theple-independenproperty
and does not model the relationship among individuals,

We first review existing work in data anonymization an
explain how our technique differs from them. We classi
these works into three categories: (1) general privacy fspd
(2) background knowledge integration, and (3) anonynuzati
techniques. We then examine several research works that h
studied background knowledge in other contexts.

VII. CONCLUSION AND FUTURE WORK

Background Knowledge Integration. In [4], Martin et al.
propose a formal language to express background knowledge
as implications. They propose thg, k)-safety model to
protect the data in the worst-case when the adversary has
knowledge ofk implications in the language. Chen et al. [5]
extend the framework of [4] by breaking down the adversary’s
background knowledge into three components which are more
intuitive. They then propose a multidimensional approazth t
protect the data against adversaries with these three tfpes
background knowledge. Du et al. [7] formulate background
knowledge as constraints and propose to use maximal entropy

which is an important piece of background knowledge.
One example of such kinds of knowledge may be “ei-
ther Alice or Bob has flu but not both”. One way to
model relational background knowledge is to use graphs,
where nodes represent individuals and edges represent
relationships. How to discover such knowledge and how
the data publisher can make use of such knowledge in
the data anonymization process are interesting problems
for future research.

Dealing with Other Background Knowledge: This
paper considers background knowledge that can be mined
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from the data to be released. In practice, the adversarg)
may have access to additional background knowledge.
Wong et al. [12] study how to protect the data againﬁg]
an adversary who has knowledge of the mechanism or
algorithm of anonymization. It is interesting to examinél
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