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ABSTRACT

Wang, Qihua. Ph.D., Purdue University, May 2009. Access Control Policy Management.
Major Professor: Ninghui Li.

Access control is the traditional center of gravity of computer security [1]. People

specify access control policies to control accesses to resources in computer systems. The

management of access control policies include policy specification and policy analysis. In

this dissertation, we design a new language for policy specification, propose a new type

of access control policy, and study the computational complexity of a variety of policy

analysis problems. In particular,

• We design a novel algebra that enables the specification of high-level security poli-

cies that combine qualification requirements with quantity requirements. Our algebra

contains six operators and is expressive enough to specify many natural high-level

security policies. We study the properties of the algebra, as well as several computa-

tional problems related to the algebra.

• Traditional access control policy analysis focuses on restricting access. However, an

equally important aspect of access control is to enable access. With this in mind, we

introduce the notion of resiliency policies for access control systems. We formally

define resiliency policies and study computational problems on checking whether

an access control state satisfies a resiliency policy. We also study the consistency

between resiliency policies and separation of duty policies.

• The workflow authorization system is a popular access control model. We study

fundamental problems related to policy analysis in workflow authorization systems,

such as determining whether a set of users can complete a workflow in a certain

access control state. In particular, we apply tools from parameterized complexity



xi

theory to better understand the complexities of such problems. We also introduce the

notion of resiliency to workflow authorization systems.

• Delegation is an important tool to provide flexibility and enforce resiliency in ac-

cess control systems. However, delegation may also allow colluding users to bypass

security policies. We study the security impact of delegation and formally define

the notion of security with regard to delegation. We propose mechanisms to en-

force delegation security. In particular, we design a novel source-based enforcement

mechanism for workflow authorization systems so as to achieve both security and

efficiency. Finally, we discuss how to use delegation to meet resiliency requirements.
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1 INTRODUCTION

Access control is the traditional center of gravity of computer security [1]. People specify

access control policies to control accesses to resources in computer systems. A high-level

access control policy states an overall requirement for a sensitive task. A well-known high-

level access control policy is Separation of Duty (SoD), which is widely recognized as a

fundamental principle in computer security [2, 3]. In its simplest form, the principle states

that a sensitive task should be performed by two different users acting in cooperation. The

concept of SoD has long existed before the information age; it has been widely used in, for

example, the banking industry and the military, sometimes under the name “the two-man

rule”. More generally, an SoD policy requires the cooperation of at least k different users

to complete a task. SoD has been identified as a high-level mechanism that is “at the heart

of fraud and error control” [2].

In many situations, however, it is not enough to require only that k different users be

involved in a sensitive task; there are also minimal qualification requirements for these

users. For example, one may want to require users involved in a task to be physicians,

certified nurses, certified accountants, or directors of a company. It is thus desirable to

introduce a concise language that enables the formal specification of high-level policies

that combine requirements on users’ attributes with requirements on the number of users

motivated by separation of duty considerations.

Furthermore, while policy specification and analysis has been a main research area in

access control for several decades, almost all existing work focuses on properties which

ensure that users who should not have access do not get access. Such focus on safety

properties probably stems from the fact that access control has been mostly viewed as

a tool for restricting access. However, an equally important aspect of access control is

to enable access (selectively). In this dissertation, we introduce the notion of resiliency
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policies for access control systems, which require an access control system to be resilient

to the absence of users.

Both SoD policies and resiliency policies are high-level security policies. They state

an overall requirement without referring to individual steps in the task. High-level secu-

rity policies are enforced by lower-level schemes such as workflow authorization systems

and the delegation of users’ privileges. Workflows are used in numerous domains, includ-

ing production, purchase order processing, and various management tasks. A workflow

divides a task into a set of well-defined sub-tasks (called steps here). Workflow autho-

rization systems manage access control in workflows and have gained popularity in the

research community [4–8]. Security policies in workflow authorization systems are usu-

ally specified using authorization constraints. One may specify, for each step, which users

are authorized to perform it. In addition, one may specify the constraints between users

who perform different steps in the workflow. For example, one may require that two steps

must be performed by different users for the purpose of separation of duty [2]. For another

example, one may need two steps be performed by the same user so to enforce binding of

duty policies [6]. As we can see in the two examples, equality and inequality are two binary

relations widely used in constraints of workflow authorization systems. In this dissertation,

we introduce and study more complex workflow constraints that support user-defined bi-

nary relations, such as “be supervisor of” and “no conflict of interests”.

We have discussed workflow authorization system as a mechanism to enforce high-

level security policies, such as SoD policies. To enforce resiliency policies, one may intro-

duce enough redundancy of human resources in the system configuration. An alternative

approach is to use user-to-user delegation (or delegation for short). Delegation is a mech-

anism that allows a user A to act on another user B’s behalf by making B’s access rights

available to A. It is well recognized as an important mechanism to provide fault-tolerance

and flexibility in access control systems, and has gained popularity in the research commu-

nity [9–17].

Essentially, a delegation operation temporarily changes the access control state so as

to allow a user to use another user’s access privileges. While delegation can make an



3

access control system more resilient to the absence of users, it may lead to violation of

security policies, especially static separation of duty policies. For instance, if role r1 and

role r2 are mutually exclusive, then a user who is a member of r1 should not be allowed to

receive r2 from others through delegation. In contrast to normal access right administration

operations, which are performed centrally, delegation operations are usually performed in a

distributed manner. That is to say, users have certain control on the delegation of their own

rights. As we will see in Section 5.1.1, delegation may introduce security breaches into an

access control system, which allow colluding users to circumvent security policies. Due to

the decentralized nature of delegation and the fact that not all the users in the system are

trusted, collusion is a threat that must not be overlooked. In this dissertation, we study the

security impact of delegation on access control systems in detail.

Thesis Statement

The goal of this dissertation is to improve the state-of-the-art of access control policy

management. More specifically, our goal is to design new types of access control policies

that are useful in practice, propose formal languages to specify such policies, and study

effective mechanisms to enforce such policies.

Contributions

The contributions of this dissertation are summarized as follows.

• We propose a novel algebra that enables the specification of high-level security poli-

cies that combine qualification requirements with quantity requirements. Our alge-

bra contains six operators and is expressive enough to specify many natural high-

level security policies. For example, the term (AccountanttTreasurer)+ requires

that all participants must be either an Accountant or a Treasurer; while the term

((Physician t Nurse)⊗ (Manager ∧ ¬Accountant)) requires two different users,

one of who is either a Physician or a Nurse, and the other is a Manager but not
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an Accountant. We study the algebraic properties of the algebra, as well as several

computational problems related to the algebra.

• We formally define resiliency policies, which require an access control system to be

resilient to the absence of users. In its general form, a resiliency policy states that

upon removal of any s users, there should still exist d disjoint sets of users such that

the users in each set together possess certain permissions of interest. We study com-

putational problems on checking whether an access control state satisfies a resiliency

policy. We study the consistency between resiliency policies and separation of duty

policies.

• We propose the role-and-relation-based access control (R2BAC) model for workflow

authorization systems. In R2BAC, in addition to a user’s role memberships, the user’s

relationships with other users help determine whether the user is allowed to perform

a certain step in a workflow. For example, a constraint may require that two steps

must not be performed by users who have conflicts of interests. R2BAC is a natural

step beyond Role-Based Access Control (RBAC) [18], especially in the setting of

workflows. As a role defines a set of users, which can be viewed as a unary relation

among the set of all users, a binary relation is the natural next step.

• We study fundamental problems in workflow authorization systems, such as deter-

mining whether a set of users can complete a workflow and checking whether a

workflow is resilient to the absence of users. In particular, we apply tools from pa-

rameterized complexity theory to better understand the complexities of some of these

problems.

• We study the impact of delegation on the security of workflow authorization systems.

We formally define the notion of security with respect to delegation and propose

mechanisms to enforce delegation security in workflow authorization systems. We

also discuss how to use delegation to meet resiliency requirements.
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Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, we propose an algebra for

high-level security policy specification. In Chapter 3, we introduce the notion of resiliency

policy for access control systems. We then study the satisfiability and resiliency problems

in workflow authorization systems in Chapter 4. After that, we study delegation, which is

an important mechanism to enforce delegation, in Chapter 5. Finally, we discuss related

work in Chapter 6 and conclude in Chapter 7.
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2 AN ALGEBRA FOR HIGH-LEVEL ACCESS CONTROL

POLICY SPECIFICATION

As the focus of the first step of secure task design, a high-level access control policy (or

equivalently, a high-level security policy) states an overall requirement that must be satis-

fied by any set of users that together complete a task. As stated in Chapter 1, a well-known

high-level security policy is Separation of Duty (SoD), which requires the cooperation of

at least k different users to complete a task.

In many situations, however, it is not enough to require only that k different users be

involved in a sensitive task; there are also minimal qualification requirements for these

users. For example, one may want to require users involved in a task to be physicians,

certified nurses, certified accountants, or directors of a company. Partly due to the lack of

a concise-yet-expressive language for specifying such high-level security policies, people

usually skip the formal specification of high-level security policies (perhaps expressing

high-level security policies in a natural language) and specify qualification requirements at

the level of enforcement mechanism. For example, if a designer believes that a task should

involve a manager and two clerks, she may create a workflow with three steps and require

two clerks to each perform Step 1 and Step 3, and a manager to perform Step 2.

However, formal specification of high-level security policies provides a number of im-

portant advantages. First of all, formal specification minimizes the possibility of misunder-

standing between policy designers and system designers. Using a natural language could

lead to ambiguity and misinterpretation, and are thus inappropriate to specify security poli-

cies, as a flaw in a policy could lead to major security breaches. Second, formal spec-

ification facilitates the analysis of security policies. Given a formal policy specification

language, we may develop tools to analyze formally-specified policies, such as checking

whether certain groups of users satisfy a policy, so as to detect policies that are too restric-

tive or too permissive when compared to actual needs in practice. It is beneficial to detect
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design flaws at an early stage, because low-level enforcement schemes, which contain exe-

cution details of tasks, are usually more difficult to analyze than high-level policies. As we

will see in Example 2 in Section 5.2.2, low-level enforcement schemes such as workflows

with security constraints may involve other factors in addition to security requirements,

which complicates the analysis on those enforcement schemes. Finally, formal specifica-

tion of high-level policies allows us to develop tools to verify whether a low-level enforce-

ment scheme is compliant with a high-level security policy. For example, a workflow may

contain branches and loops; it is important to verify that no route in the workflow bypasses

the high-level security policy. As manual verification is time-consuming and error-prone,

formal verification tools are highly desirable.

In this chapter, we introduce a novel algebra that enables the formal specification of

high-level policies that combine qualification requirements with quantity requirements mo-

tivated by separation of duty considerations. A term in our algebra specifies a require-

ment on sets of users (we call these usersets). A high-level policy, which associates a

task with a term in the algebra, requires that all sets of users that complete an instance

of the task satisfy the term. Our algebra has four binary operators: t,u,�,⊗, and two

unary operators ¬,+. An SoD policy that requires 3 different users can be expressed using

the term (All ⊗ All ⊗ All), where All is a keyword that refers to the set of all users. A

policy that requires either a manager or two different clerks is expressed using the term

(Manager t (Clerk⊗ Clerk)).

The remainder of this chapter is organized as follows. We introduce the syntax and

semantics of the algebra in Section 2.1. We then discuss different enforcement mechanisms

for policies specified in the algebra in Section 2.2. In Sections 2.3, 2.4, and 2.5, we study

computational problems related to analysis and enforcement of policies. In Section 2.6, we

discuss extensions to the syntax of the algebra, the relationship between the algebra and

regular expressions, as well as limitations of the expressive power of the algebra. Proofs

not included in the main body are included in the appendices unless otherwise stated.
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2.1 The Algebra

In this section, we introduce an algebra for expressing high-level security policies.

2.1.1 Syntax, Semantics, and Examples

In our definition of the algebra, we use the notion of roles. We use a role to denote a

set of users that have some common qualification or common job responsibility. We em-

phasize, however, that the algebra is not restricted to Role-Based Access Control (RBAC)

systems [18]. In our algebra, a role is simply a named set of users. The notion of roles can

be replaced by groups or user attributes. We use U to denote the set of all users, and R to

denote the set of all roles.

Definition 2.1.1 (Terms in the Algebra) Terms in the algebra are defined as follows:

• An atomic term takes one of the following three forms: a role r ∈ R, the keyword

All, or a set S ⊆ U of users.

• An atomic term is a unit term; furthermore, if φ1 and φ2 are unit terms, then ¬φ1,

(φ1 u φ2) and (φ1 t φ2) are also unit terms.

• A unit term is a term; if φ is a unit term, then φ+ is a term; if φ1 and φ2 are terms,

then (φ1 t φ2), (φ1 u φ2), (φ1 ⊗ φ2), and (φ1 � φ2) are also terms.

The unary operator ¬ has the highest priority, followed by the unary operator +, then by

the four binary operators (namely u, t, �, ⊗), which have the same priority.

We now give several simple example terms to illustrate the intuition behind the oper-

ators in the algebra. The term “(Manager u Accountant)” requires a user that is both a

Manager and an Accountant. The term “(Manageru¬{Alice,Bob})” requires a user that

is a manager, but is neither Alice nor Bob; here, the sub-term “¬{Alice,Bob}” implements

a blacklist. The term “(Physician t Nurse)” requires a user that is either a Physician

or a Nurse. The term “(Manager � Clerk)” requires a user who is a Manager and a user
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who is a Clerk; in particular, when one user is both a Manager and a Clerk, that user by

himself also satisfies the requirement. The term “((All⊗All)⊗All)” requires three different

users. The keyword All allows us to refer to the set of all users. The term “Accountant+”

requires a set of one or more users, where each user in the set is an Accountant.

To formally assign meanings to terms, we need to first assign meanings to the roles

used in the term. For this, we introduce the notion of configurations.

Definition 2.1.2 (Configurations) A configuration is given by a pair 〈U,UR〉, where U

denotes the set of all users in the configuration, and UR ⊆ U × R determines role mem-

berships. When (u, r) ∈ UR, we say that u is a member of the role r.

Note that in a configuration 〈U,UR〉, UR should not be confused with the user-role

assignment relation UA in RBAC. When an RBAC system has both UA and a role hierarchy

RH , the two relations UA and RH together determine UR.

When describing the UR relation, we often use Ur to denote the set of users assigned

to role r, i.e. Ur = {u | (u, r) ∈ UR}.

Definition 2.1.3 (Satisfaction of a Term) Given a configuration 〈U,UR〉, we say that a

userset X ⊆ U satisfies a term φ under 〈U,UR〉 if and only if one of the following holds1:

• The term φ is the keyword All, and X is a singleton set {u} such that u ∈ U .

• The term φ is a role r, and X is a singleton set {u} such that (u, r) ∈ UR.

• The term φ is a set S of users, and X is a singleton set {u} such that u ∈ S.

• The term φ is of the form ¬φ0 where φ0 is a unit term, and X is a singleton set that

does not satisfy φ0.

• The term φ is of the form φ+
0 where φ0 is a unit term, and X is a nonempty userset

such that for every u ∈ X , {u} satisfies φ0.

• The term φ is of the form (φ1 t φ2), and either X satisfies φ1 or X satisfies φ2.

1We sometimes sayX satisfies φ, and omit “under 〈U,UR〉” when the configuration is clear from the context.
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• The term φ is of the form (φ1 u φ2), and X satisfies both φ1 and φ2.

• The term φ is of the form (φ1 ⊗ φ2), and there exist usersets X1 and X2 such that

X1 ∪X2 = X , X1 ∩X2 = ∅, X1 satisfies φ1, and X2 satisfies φ2.

• The term φ is of the form (φ1 � φ2), and there exist usersets X1 and X2 such that

X1 ∪ X2 = X , X1 satisfies φ1, and X2 satisfies φ2. This differs from the definition

for ⊗ in that it does not require X1 ∩X2 = ∅.

For example, given the term (Manager � Clerk), and the configuration 〈U =

{Alice,Bob}, UR〉, in which UR is such that: UManager = {Alice} and UClerk =

{Alice,Bob}, we have {Alice} satisfies the term and {Alice,Bob } also satisfies the term.

Intuitively, a configuration 〈U,UR〉 represents the access control state of an organiza-

tional unit, a term φ defines the security requirement of a sensitive task T , and X ⊆ U

is a set of users in the organizational unit who are about to perform T . X satisfying φ

indicates that the set of users meet the security requirement of T . Also, it is clear from

Definition 2.1.3 that no term can be satisfied by an empty set.

The following examples help illustrate that one can express sophisticated policies in the

algebra.

• {Alice,Bob,Carl} ⊗ {Alice,Bob,Carl}

This term is satisfied by any two users out of the list of three.

• (Accountant t Treasurer)+

This term requires that all participants must be either an Accountant or a

Treasurer. But there is no restriction on the number of participants except that

the number is non-zero.

• ((Manager� Accountant)⊗ Treasurer)

This term is satisfied by a userset consisting of a Manager, an Accountant, and a

Treasurer; the first two requirements can be satisfied by a single user.
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• ((Physician t Nurse)⊗ (Manager u ¬Accountant))

This term is satisfied by a userset consisting of two different users, one of who is

either a Physician or a Nurse, and the other is a Manager, but not an Accountant.

• ((Manager� Accountant� Treasurer) u (Clerk u ¬{Alice,Bob})+)

This term is satisfied by a userset consisting of a Manager, an Accountant and a

Treasurer. In addition, everybody in the userset must be a Clerk and must not be

Alice or Bob.

2.1.2 Satisfaction Trees

When a userset X satisfies a term φ under a configuration 〈U,UR〉, some subterms of

φ are satisfied by subsets of X . We formalize this by the notion of a satisfaction tree. A

satisfaction tree serves as an evidence of X satisfying φ that can be easily verified.

Definition 2.1.4 (Satisfaction Tree) Given a term φ and a configuration 〈U,UR〉, we say

that T is a satisfaction tree of φ under 〈U,UR〉 if and only if the following three conditions

hold.

1. T is a syntax tree of φ, where each inner node of T denotes a binary operator in φ,

and each leaf node denotes a sub-term of φ that is either a unit term or takes the form

φ+
0 . That is, sub-terms of the form φ+

0 are not not further decomposed in T and are

represented as leaves.

2. Each node N in T is labeled with a (possibly empty) set of users, which is denoted

as LT (N), and the following rules hold for every node N in T . We denote N1 and

N2 as the left and right children of N , respectively.

• When N is a leaf node representing a unit term φ0: either LT (N) = ∅ or

LT (N) = {u} satisfies φ0 under 〈U,UR〉.

• When N is a leaf node representing a sub-term φ+
0 : either LT (N) = ∅ or

LT (N) = X satisfies φ+
0 under 〈U,UR〉.
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• When N represents t: either (LT (N) = LT (N1)∧LT (N2) = ∅) or (LT (N) =

LT (N2) ∧ LT (N1) = ∅).

• When N represents u: LT (N) = LT (N1) = LT (N2).

• When N represents �: LT (N) = LT (N1) ∪ LT (N2), and (LT (N) 6= ∅) ⇒

(LT (N1) 6= ∅ ∧ LT (N2) 6= ∅), where⇒ denote logic implication.

• When N represents ⊗: LT (N) = LT (N1) ∪ LT (N2), LT (N1) ∩ LT (N2) = ∅,

and (LT (N) 6= ∅)⇒ (LT (N1) 6= ∅ ∧ LT (N2) 6= ∅).

3. LT (Nr) 6= ∅, where Nr is the root of the tree T .

According to the conditions in the above definition, it can be easily shown that

LT (N) ⊆ LT (N ′), when N ′ is an ancestor of N in the satisfaction tree T .

Intuitively, in a satisfaction tree T , a node is either labeled with a userset that satisfies

the sub-term represented by the sub-tree of T rooted at the node, or labeled with ∅, indicat-

ing that the node is in a branch connected by t and the sub-term represented by that branch

does not need to be satisfied (because the other branch is satisfied). The following lemma

formalizes this intuition.

Lemma 2.1.1 Let T be a satisfaction tree of φ under 〈U,UR〉, for each node N in T , if

LT (N) 6= ∅, then LT (N) satisfies the sub-term of φ represented by the sub-tree of T rooted

at N .

The following theorem relates the existence of a satisfaction tree for a term φ with the

satisfiability of φ.

Theorem 2.1.2 Given a configuration 〈U,UR〉 and a term φ, a userset X satisfies φ under

〈U,UR〉 if and only if there exists a satisfaction tree of φ such that LT (Nr) = X , where

Nr is the root of T .

The proofs of Lemma 2.1.1 and Theorem 2.1.2 are given in Appendix A.1.
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2.1.3 Evaluating a Term to a Set of Usersets

Given a configuration 〈U,UR〉 and a term φ, φ may be satisfied by multiple usersets,

thus we can say that φ evaluates to a set of usersets.

Definition 2.1.5 (Value of a Term) Given a configuration 〈U,UR〉 and a term φ,

S〈U,UR〉(φ) denotes the set of all usersets that satisfy φ under 〈U,UR〉, and is called the

value of term φ under the configuration.

Example 1 Consider the term φ = ((Manager � Accountant �

Treasurer) u (Clerk u ¬{Alice,Bob})+) and the configuration 〈U =

{Alice,Bob,Carl ,Doris ,Elaine,Frank}, UR〉, in which UR is such that:

UManager = {Alice,Doris ,Elaine}

UAccountant = {Doris ,Frank}

UTreasurer = {Bob,Carl ,Doris}

UClerk = {Alice,Bob,Carl ,Doris ,Frank}.

The sub-term (Clerk u ¬{Alice,Bob})+ blacklists Alice and Bob so that only subsets of

{Carl ,Doris ,Frank} may satisfy φ. We have

S〈U,UR〉(φ) = { {Doris}, {Carl ,Doris}, {Doris ,Frank}, {Carl ,Doris ,Frank} }

That is, there are four usersets that satisfy the term φ.

2.1.4 Algebraic Properties

We now introduce the notion of equivalence among terms, which enables us to study

the algebraic properties of the operators in the algebra.

Definition 2.1.6 (Term Equivalence) We say that two terms φ1 and φ2 are equivalent (de-

noted by φ1 ≡ φ2) when for every userset X and every configuration 〈U,UR〉, X satisfies

φ1 under 〈U,UR〉 if and only if X satisfies φ2 under 〈U,UR〉. In other words, φ1 ≡ φ2 if

and only if ∀〈U,UR〉
[
S〈U,UR〉(φ1) = S〈U,UR〉(φ2)

]
.



14

Using a straightforward induction on the structure of terms, one can show that if φ1 ≡

φ2, then, for any term φ in which φ1 occurs, let φ′ be the term obtained by replacing in φ

one or more occurrences of φ1 with φ2, we have φ ≡ φ′.

Theorem 2.1.3 The operators have the following algebraic properties:

1. The operators t,u,�,⊗ are commutative and associative. That is, for each op ∈

{t,u,�,⊗}, and any terms φ1, φ2, and φ3, we have (φ1 op φ2) ≡ (φ2 op φ1) and

((φ1 op φ2) op φ3) ≡ (φ1 op (φ2 op φ3)).

2. The operators t and u distribute over each other. That is, (φ1 t (φ2 u φ3)) ≡ ((φ1 t

φ2) u (φ1 t φ3)) and (φ1 u (φ2 t φ3)) ≡ ((φ1 u φ2) t (φ1 u φ3)).

3. The operator� distributes over t. That is, (φ1�(φ2tφ3)) ≡ ((φ1�φ2)t(φ1�φ3)).

4. The operator⊗ distributes over t. That is, (φ1⊗(φ2tφ3)) ≡ ((φ1⊗φ2)t(φ1⊗φ3)).

5. No other ordered pair of binary operators has the distributive property. (There are 12

such pairs altogether; the four of them listed above have the distributive property.)

6. (φ1 u φ2)
+ ≡ (φ+

1 u φ+
2 )

7. DeMorgan’s Law: ¬(φ1 u φ2) ≡ (¬φ1 t ¬φ2), ¬(φ1 t φ2) ≡ (¬φ1 u ¬φ2)

See Appendix A.1 for the proof of the above theorem, which also gives a counterexam-

ple for each case that the distributive property does not hold.

Because of the associativity properties, in the rest of this chapter we omit parentheses

in a term when doing so does not cause any confusion.

We now describe some other facts about the operators, to further illustrate the operators

and their relationships.

• Any userset that satisfies (φ1 u φ2) also satisfies (φ1 t φ2), but not the other way

around.

• Any userset that satisfies (φ1 u φ2) also satisfies (φ1 � φ2), but not the other way

around.
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• Any userset that satisfies (φ1 ⊗ φ2) also satisfies (φ1 � φ2), but not the other way

around.

• Any userset that satisfies φ+
1 t φ+

2 also satisfies (φ1 t φ2)
+, but not the other way

around.

Proofs to the first three relationships are straightforward. Here, we prove the last one. If

X satisfies (φ+
1 t φ+

2 ), then X satisfies either φ+
1 or φ+

2 . Without loss of generality, assume

that X satisfies φ+
1 . Then, for every u ∈ X , {u} satisfies φ1 and thus satisfies (φ1 t φ2).

Hence, X satisfies (φ1 t φ2)
+. For the other direction, if {u1} satisfies φ1 but not φ2, and

{u2} satisfies φ2 but not φ1, then {u1, u2} satisfies (φ1 t φ2)
+ but not φ+

1 t φ+
2 .

2.1.5 Rationale of the Design of the Algebra

We now discuss the rationale underlying some of the decisions we made in designing

the algebra.

Monotonicity. SoD policies satisfy the property of monotonicity; that is, if an SoD policy

requires two users to perform a task, then having three or more users certainly satisfies this

policy. Similarly, one may want a security algebra like ours to also satisfy the monotonicity

property; that is, if a userset X satisfies a term φ, then any superset of X also satisfies φ.

McLean [19] adopts this property in his security algebra for N -person policies.

Our algebra is designed to support both monotonic policies and policies that are not

monotonic. For example, the term (Accountant ⊗ Accountant) can be satisfied only by

a set of two users; a set that contains more than two users cannot satisfy the term. More

generally, in Definition 2.1.3, term satisfaction is defined in such a way that every user in

the userset is used to satisfy certain component of the term. No “extra” user is allowed.

We have considered a design having the monotonicity property, in which we call the

notion of satisfaction in Definition 2.1.3 “strict satisfaction” and define that a userset X

satisfies a term φ if and only if X contains a subset that strictly satisfies φ. We chose our

current design over the one that has the monotonicity property because the current design
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is more expressive. Consider the following example. When one says that “a task requires

two Accountants”, this may mean one of the following three policies:

1. The task must be performed by a set of two users, both of whom are Accountants.

A group containing more (or less) than two people is not allowed.

2. The task must be performed by a set that contains two Accountants. In particular, a

userset that contains two Accountants and a third user who is not an Accountant

is allowed to perform the task.

3. The task must be performed by a set of two or more Accountants. In particular, a

set of three Accountants can perform the task, but a set of two Accountants and

one non-Accountant cannot. This ensures that everyone involved in the task has the

qualification of an Accountant.

Policies 1 and 3 cannot be expressed using an algebra that has the monotonicity prop-

erty. Suppose that one tries to use a term φ to express policy 1 (or policy 3) in an algebra

that has the monotonicity property, then a setX of two Accountants satisfies φ. By mono-

tonicity property, any superset ofX also satisfies φ. This violates the intention of policies 1

and 3. More generally, a monotonic algebra cannot express policies that disqualify usersets

that contain extra users, nor can it express security requirements in the form of “all involved

users must meet certain qualification requirements”.

By dropping the monotonicity property, our algebra is able to express all the three

policies. Policy 1 is expressed using the term (Accountant ⊗ Accountant). Policy 2 is

expressed using the term ((Accountant⊗Accountant)�All+). Note that the term All+ can

be satisfied by any nonempty userset. Policy 3 is expressed using the term (Accountant⊗

Accountant+).

Restrictions on “¬” and “+”. The syntax of our algebra (Definition 2.1.1) restricts that the

two operators “¬” and “+” be applied only to unit terms, i.e., those terms that do not contain

�, ⊗, or +. The motivation for this design decision is the psychological acceptability

principle [3]. We would like each operator to have a clear and intuitive meaning so that
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when one writes down a policy as a term, there is less chance to make mistakes and one is

more confident that the term expresses the intended policy.

When ¬ is applied to a unit term, it expresses negative qualification about a single user;

this has a clear meaning; the term ¬φ0 means a user that does not satisfy φ0. However,

if ¬ is applied to a term that involves �, ⊗, or +; then the meaning becomes less clear.

Consider the term ¬(Accountant � Manager). Any userset of size three does not satisfy

(Accountant � Manager); therefore, it should satisfy ¬(Accountant � Manager), even

if every user in the userset is both an Accountant and a Manager. It is unclear to us what

kind of real-world security policies such a term expresses.

The term φ+
0 , when φ0 is a unit term, has a clear meaning; it means that every user must

satisfy φ0. The same term, when φ0 involves operators such as � and ⊗, has at least two

possible meanings. One is to interpret + as the closure operator of �, that is, a userset X

satisfies φ+
0 if and only if X can be divided into a number of (possibly overlapping) subsets

such that each subset satisfies φ0. The other is to interpret + as the closure operator for ⊗,

that is, a userset X satisfies φ+
0 if and only if X can be divided into a number of mutually

disjoint subsets such that each subset satisfies φ0. The two meanings coincide when φ0

is a unit term. We could use two operators, one for each meaning, and allow them to be

applied to non-unit terms. However, this adds complexity to the algebra and we have not

seen a need for this. For simplicity and usability, we chose to allow + only be applied to

unit terms. The algebra can be extended to have two closure operators that can be applied

to non-unit terms, if a need for them arises in other application domains.

2.2 Enforcing Policies Specified in the Algebra

Once a high-level security policy has been specified in the algebra, we may proceed to

enforcement design step. Before doing so, it is beneficial to perform certain analyses on

the high-level policy to detect design flaws at an early stage.

A basic level of sanity check is to determine whether a term is satisfiable at all, as a term

that cannot be satisfied in any configuration is probably not what a policy author intended.
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We define the Term Satisfiability (TSAT) problem for such an analysis. A problem similar

to TSAT is the Term-Configuration Satisfiability (TCSAT) problem, which asks whether a

term is satisfiable under a given configuration. This is useful when determining whether a

term is meaningful in the current configuration of an organization. Formal definitions of

TSAT and TCSAT are given in below, and we will study their computational complexity in

Section 2.3.

Definition 2.2.1 (TSAT) Given a term φ, the Term Satisfiability (TSAT) problem deter-

mines whether there exists a configuration 〈U,UR〉 and a userset X such that X satisfies φ

under 〈U,UR〉.

Definition 2.2.2 (TCSAT) Given a term φ and a configuration 〈U,UR〉, the Term-

Configuration Satisfiability (TCSAT) problem determines whether there exists a userset X

that satisfies φ under 〈U,UR〉.

Besides basic sanity checks on satisfiability, it is useful to select a number of targeted

usersets and determine whether these usersets satisfy the term. If a set of users who are

expected to perform the task guarded by the policy does not satisfy the term, the policy

is too restrictive; if a set of users who should not be able to perform the task satisfies

the term, the policy is too permissive. In either case, the policy is flawed and must be

redesigned. We define the Userset-Term Satisfaction (UTS) problem for such an analysis.

The computational complexity of UTS will be studied in Section 2.4.

Definition 2.2.3 (UTS) Given a term φ, a configuration 〈U,UR〉, and a userset X , the

Userset-Term Satisfaction (UTS) problem determines whetherX satisfies φ under 〈U,UR〉.

It is worth mentioning that UTS and TCSAT are related problems: given a configura-

tion and a term, UTS is a decisional problem which asks whether a given userset satisfies

the term, while TCSAT can be solved by searching for a userset in the configuration that

satisfies the term.

If a high-level security policy passes all the tests, we need to enforce the policy cor-

rectly. A high-level security policy can be enforced statically or dynamically. In static en-

forcement, one ensures that in a configuration, any set of users who together have enough
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permissions to perform the task satisfy the high-level policy. In dynamic enforcement, one

records the history of who performs which steps in a task instance and determines whether

the set of users involved in the task instance satisfies the policy. In the rest of this section,

we discuss these two enforcement approaches.

2.2.1 Static Enforcement

Static enforcement can be achieved either directly or indirectly. In direct static en-

forcement, one verifies whether an access control state is safe with respect to a high-level

security policy. In indirect static enforcement, one specifies constraints so that any access

control state satisfying the constraints is safe with respect to the policy.

Direct static enforcement of SoD policies, which are a subclass of the policies that

can be specified in the algebra, has been studied in [20]. It has been shown that checking

whether an access control state statically satisfies an SoD policy, i.e., whether every set of

users who together have all the permissions for the task contains at least k users, is coNP-

complete [20]. As SoD policies can be specified in the algebra, direct statement enforce-

ment of policies in the algebra requires solving an intractable problem. Computationally

expense notwithstanding, we argue that the study of direct enforcement of static high-level

policies is necessary for the following reasons. First, direct static enforcement is the most

simple and straightforward enforcement mechanism for high-level security policies. Its per-

formance will be used as a benchmark for comparison when evaluating other enforcement

mechanisms. Second, even though direct static enforcement is computationally intractable

in theory, it is interesting and necessary to study its performance for instances that are

likely to occur in practice. Third, direct enforcement cannot be entirely replaced by indi-

rect enforcement. It is oftentimes difficult or even impossible to create efficiently-verifiable

constraints to precisely capture a high-level policy. For example, Li et al. studied indirect

enforcement by using Static Mutually Exclusive Roles (SMER) to enforce SoD policies in

the context of role-based access control (RBAC), and showed that there exist SoD policies

such that no set of SMER constraints can precisely capture them [20]. Most of the time, the



20

set of constraints created for a security policy is more restrictive than the policy itself. That

is to say, some access control states that are safe with respect to the security policy will

be ruled out by the constraints. In situations where precise enforcement is desired, direct

enforcement may be the only option.

Direct static enforcement requires solving the Static Safety Checking (SSC) problem,

which we formally define through the following definitions.

Definition 2.2.4 (State) An access control system state is given by a triple 〈U,UR,UP〉,

where UR ⊆ U × R determines user-role memberships and UP ⊆ U × P determines

user-permission assignment, where P is the set of all permissions.

Note that a state 〈U,UR,UP〉 uniquely determines a configuration 〈U,UR〉 used by

term satisfaction. Hence, we may discuss term satisfaction in a state without explicitly

mentioning the corresponding configuration. Note also that a user may be assigned a per-

mission directly or indirectly (e.g. via role membership), and the relation UP has taken

both ways into consideration.

We say that a usersetX covers a set P of permissions if and only if the following holds:

{ p | ∃u ∈ X[(u, p) ∈ UP ] } ⊇ P.

Next, we define the notion of safety in direct static enforcement. As we mentioned

earlier, the idea of static enforcement is that, by careful design of access control states, one

can guarantee that every set of users who together have enough permissions to complete

a task satisfies the security policy of the task, and thus runtime checking is unnecessary.

While introducing no runtime overhead, static enforcement has a limitation, that is, only

monotonic security policies can be enforced statically. The reason is that permission cover-

age is monotonic with respect to usersets. In other words, if X covers P , then any superset

of X also covers P . However, as we emphasized in Section 2.1.5, term satisfaction does

not have the monotonicity property. In order to specify monotonic policies, we may use

terms in the form of (φ � All+). A userset U satisfies (φ � All+) if and only if U contains

a subset that satisfies φ.
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When static enforcement is the only enforcement approach, all policies need to be im-

plicitly monotonic to be enforceable. We thus introduce the notion of static safety, which

implicitly assumes each term means its monotonic closure.

Definition 2.2.5 (Static Safety) A high-level security policy is given as a pair sp〈P, φ〉,

where P ⊆ P is a set of permissions and φ is a term in the algebra. An access control state

〈U,UR,UP〉 is statically safe with respect to sp〈P, φ〉, if and only if, for every userset X

that covers P , X satisfies the monotonic closure of φ (i.e. X satisfies (φ�All+)). If a state

is statically safe with respect to a policy, we say that it satisfies the policy.

Note that in the above definition, we require that, for each userset X that covers P , X

satisfies the monotonic closure of φ rather than φ itself. Equivalently, an access control

state is statically safe with respect to sp〈P, φ〉 if and only if for every userset X that covers

P , there exists X ′ ⊆ X , such that X ′ satisfies φ.

The problem of checking static safety is defined as follows; its computational complex-

ity will be studied in Section 2.5.1.

Definition 2.2.6 (SSC) Given a static safety policy sp〈P, φ〉, the problem of determining

whether a given state 〈U,UR,UP〉 is statically safe with respect to sp〈P, φ〉 is called the

Static Safety Checking (SSC) problem.

Note also that Definition 2.2.5 does not require 〈U,UR,UP〉 to contain a userset that

covers P in sp〈P, φ〉. If a state does not contain any userset that covers P , then it trivially

satisfies sp〈P, φ〉. Checking whether there exists a userset in 〈U,UR,UP〉 that covers P

can be done in linear time with respect to the size of UP .

To check static safety, one needs to determine whether a set of users contains a subset

that satisfy a term. This problem is defined as follows.

Definition 2.2.7 (SAFE) Given a term φ, a configuration 〈U,UR〉, and a usersetX , a user-

setX is safe with respect to a term φ under configuration 〈U,UR〉, if and only if there exists

X ′ ⊆ X such that X ′ satisfies φ under 〈U,UR〉.

The Userset-Term Safety (SAFE) problem determines whether X is safe with respect to

a term φ under configuration 〈U,UR〉.



22

SAFE can be viewed as a special case of UTS, becauseX is safe with respect to φ if and

only if X satisfies (φ�All+); however, it may be solved more efficiently when treated as a

separate problem. The computational complexity of SAFE will be studied in Section 2.5.

We point out that SAFE is technically the same problem as TCSAT, even though they

are motivated by different purposes. In SAFE, we ask whether a userset X contains a sub-

set that satisfies φ under 〈U,UR〉, where X ⊆ U . Since users in U/X are irrelevant in

answering such a question, the problem is equivalent to whether X contains a subset that

satisfies φ under 〈X,UR〉, which is the same as whether there is a userset in the configura-

tion 〈X,UR〉 that satisfies φ.

As we mentioned earlier, static enforcement can only enforce security policies with

the monotonicity property. To enforce non-monotonic policies, we may use a dynamic

enforcement scheme.

2.2.2 Dynamic Enforcement

Similar to static enforcement, dynamic enforcement can be achieved either directly or

indirectly as well.

To directly enforce a policy 〈task , φ〉, one identifies the steps in performing the task.

The system maintains a history of each instance of the task, which includes information

on who have performed which steps. For any task instance, one can compute the set of

users (denoted as Upast) who have performed at least one step of the instance. Before

a user u performs a step of the instance, the system checks to ensure that there exists a

superset of Upast ∪ {u} that can satisfy φ upon finishing all steps of the task. In particular,

if u is about to perform the last step of the task instance, it is required by the policy that

Upast∪{u} satisfies φ. As we will see in Section 2.4, checking whether a userset satisfies a

term is computationally expensive. In practice, people usually use workflows with security

constraints to indirectly enforce high-level security policies.

In the rest of this section, we give an example of the secure task design process. The

example demonstrates how to use a workflow as an indirect dynamic enforcement scheme
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for a high-level security policy specified in the algebra. We would like to point out that

in the design of workflows, a designer may take efficiency, quality of service, and other

practical restrictions into account in addition to security requirements.

Example 2 Company XYZ newly established a plan to share some of its classified docu-

ments with its business partners. As the task (denoted as Ts) involves disclosure of clas-

sified documents, it is considered to be sensitive by XYZ and has to go through a security

design procedure. The first step is the high-level policy design, which is performed by a

security officer Alice. After evaluating the risks and effects of Ts, Alice decides that at least

two Managers must be involved in the task. She then creates a high-level security policy

(Manager⊗ Manager)� All+ for Ts.

The second step is to design a workflow to model Ts in compliance with the high-

level security policy. This is performed by a system designer Bob. Ts consists of four

physical steps: 1) a business partner coordinator (denoted as Coordinator) receives a

request from a business partner; 2) a document administrator (denoted as DocAdmin) re-

trieves the document from company archives; 3) a DocAdmin performs pre-releasing prepa-

ration on the document, such as anonymizing certain items; 4) a Coordinator sends

the post-preparation document to the business partner. To begin with, Bob creates a

workflow W1 with the four physical steps of Ts, which is shown in Figure 2.1-a. He

then introduces two additional steps into W1 so as to comply with the security policy

(Manager ⊗ Manager) � All+. He adds two steps to W1 so that a classified document

will not be retrieved until two Managers have approved the request on disclosure. Further-

more, in order to provide better quality of service, Bob adds a binding of duty constraint

to the workflow so that the coordinator who received the request is responsible to send

the document to the business partner. The final workflow W2 modeling Ts is shown in

Figure 2.1-b. It can be verified that any team of users who completes W2 must satisfy

(Manager⊗ Manager)� All+.

It is interesting future work to study how to verify whether a workflow is compliant

with a high-level security policy specified in the algebra. In the upcoming sections, we will
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a.  A workflow (W1) consisting of physical steps of the task on releasing classified documents to 
corporate partners.  Request and Send are authorized to the role Coordinator, while 
Retrieval and Preparation are authorized to DocAdmin. 

Constraint 1: Approve_A and Approve_B must be performed by different users 

Constraint 2: Request and Send must be performed by the same user 

b.  A workflow (W2) consisting of physical steps, security-oriented steps and constraints in 
compliance with a high-level security policy.  Approve_A and Approve_B are authorized to 
Manager and may be performed in parallel.  Constraint 2 is specified for the purpose of 
quality of service. 

Figure 2.1. Workflows in Example 2

study the computational problems (i.e. TSAT, TCSAT, UTS, SAFE and SSC) defined in

this section. As we have seen, these problems are important in the analysis and enforcement

of high-level security policies, and are of both theoretical and practical interest.

2.3 Two Term Satisfiability Problems

In this section, we study the computational complexities of TSAT and TCSAT.

2.3.1 The Term Satisfiability (TSAT) Problem

As the algebra supports negation, it is not surprising that unsatisfiable terms exist.

A simple example of a term that is not satisfiable is (r u ¬r). Another source of un-

satisfiable terms is the use of explicit sets of users in a term. For example, the term

({Alice,Bob} u {Carl}) is not satisfiable. However, even if a term does not contain nega-
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tion or explicit sets of users, it may still be unsatisfiable. An example of such a term is

φ = (r1 u (r2 ⊗ r3)), where r1, r2 and r3 are roles. In the example, r1 is satisfiable only by

a singleton userset, and (r2⊗ r3) is satisfiable only by a userset of cardinality 2. Therefore,

there does not exist a userset that satisfies φ.

We now show that TSAT is NP-complete in general. We identify the source of

intractability by identifying two special cases that are NP-hard. One special case

(Lemma 2.3.1 below) involves the negation operator, and the other (Lemma 2.3.2 below)

involves explicit sets of users. In Section 2.3.2, we show that for terms that are free of

negation and explicit sets of users, TSAT can be efficiently solved.

Lemma 2.3.1 TSAT over terms built using only roles and the operators ¬, u, and t is

NP-hard.

Lemma 2.3.2 TSAT over terms built using only explicit sets of users and the operators u,

t, and � is NP-hard.

To show that TSAT is in NP, we need the following lemma, which shows that if a term

is satisfiable, then there exists an evidence of polynomial size.

Lemma 2.3.3 If a term φ is satisfiable, then there exists a userset U and a configuration

〈U,UR〉, such that U satisfies φ under 〈U,UR〉, |U | ≤ |φ| and |UR| ≤ |φ|2, where |φ| is

the number of occurrences of atomic terms in φ.

Theorem 2.3.4 TSAT is NP-complete.

Please refer to Appendix A.2 for the proofs of Lemmas 2.3.1, 2.3.2, 2.3.3 and Theo-

rem 2.3.4.

2.3.2 TSAT for the Sub-Algebra Free of Negation and Explicit Sets of Users

Lemmas 2.3.1 and 2.3.2 show that if a term involves negation or explicit sets of users,

then determining whether it is satisfiable or not may be intractable. We now study the
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term satisfiability problem for terms that are free of explicit sets of users and negation. For

convenience, we call such terms SNF (Set-and-Negation Free) terms. The following lemma

states an important property of terms that are free of negation.

Lemma 2.3.5 Let φ be a term that does not contain the operator ¬. If userset X satisfies

φ under configuration 〈U,UR〉, then X satisfies φ under configuration 〈U,UR′〉, where

UR ⊂ UR′.

Lemma 2.3.5 essentially states that, for terms that are free of negation, satisfaction is

monotonic with respect to user-role assignment. The proof of the lemma is straightforward

and is omitted.

We have the following theorem.

Theorem 2.3.6 Checking whether an SNF term is satisfiable is in P.

To prove Theorem 2.3.6, we first introduce the notion of characteristic sets for SNF

terms in Definition 2.3.1. Definition 2.3.1 essentially gives an algorithm to compute the

characteristic set of a given SNF term. Then, we show that the algorithm given in Def-

inition 2.3.1 is a polynomial time algorithm. Finally, we prove an important property of

characteristic set, that is, an SNF term is satisfiable if and only if its characteristic set is

non-empty. To determine whether an SNF term is satisfiable, we can run a polynomial-

time algorithm to compute its characteristic set and check whether the characteristic set is

empty or not.

To begin with, we introduce the notion of characteristic sets. A key observation is that,

in order to satisfy a term, a userset must be of certain size. For example, (r1�(r2⊗r3)) can

be satisfied by a set of 2 or 3 users, but not by a set containing 1 or 4 or any other number

of users. We thus call {2, 3} the characteristic set of the term (r1 � (r2 ⊗ r3)).

Definition 2.3.1 (Characteristic Set) The characteristic set of an SNF term φ, which is

denoted as C(φ), is a set of natural numbers computed as follows:

• C(All) = C(r) = {1}, where r is a role
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• C(φ1 t φ2) = C(φ1) ∪ C(φ2)

• C(φ1 u φ2) = C(φ1) ∩ C(φ2)

• C(φ+) = {i | i ∈ [1,∞)}, where φ is a unit term free of explicit sets of users and

negations

• C(φ1 � φ2) = {i | ∃ c1 ∈ C(φ1) ∃ c2 ∈ C(φ2) [max(c1, c2) ≤ i ≤ c1 + c2 ]}

• C(φ1 ⊗ φ2) = { c1 + c2 | c1 ∈ C(φ1) ∧ c2 ∈ C(φ2) }

An integer k is called a characteristic number of φ if and only if k ∈ C(φ).

Note that the above definition states how to compute the characteristic set of a given

SNF term. As examples, we give the characteristic sets of some terms in below.

• C(All⊗ All⊗ All) = {3}

• C(Manager� Accountant)⊗ Treasurer) = {2, 3}

The term (Manager � Accountant) can be satisfied by two users as well as by a

single user who is both a Manager and an Accountant. An additional user is needed

to satisfy Treasurer.

• C((Clerk t Accountant)⊗ (Clerk u Manager)) = {2}

One user is required for (Clerk t Accountant), and for (Clerk u Manager), and

the ⊗ mandates that the two terms be satisfied by different users.

• C((Manager�Accountant�Treasurer)uClerk+) = {1, 2, 3}∩{i|i ∈ [1,∞)} =

{1, 2, 3}

Given a term φ, computing C(φ) requires at most 2|φ| − 1 steps according to the algo-

rithm in Definition 2.3.1, where |φ| is the number of occurrences of atomic terms in φ and

φ contains |φ| − 1 binary operators. A step in the algorithm may require such operations:

set union, set intersection, computing the sums of all pairs of elements from two different

sets. If the size of intermediate results (which are sets) is bounded by |φ|, then each step
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can be performed in polynomial time, and thus the algorithm finishes in polynomial time.

However, when a term contains +, its characteristic set could be an infinite set. Fortunately,

the following Lemma 2.3.7 shows that if C(φ) is an infinite set, it must always contain all

the numbers that are greater than |φ|. In this case, we do not have to deal with infinitely

many elements in a characteristic set individually, as {|φ| + 1, |φ| + 2, . . . } can be treated

as one unit during computation.

Lemma 2.3.7 Let φ be an SNF term and |φ| be the number of occurrences of atomic terms

in φ. One of the following two cases holds:

• C(φ) ⊆ {1, 2, . . . , |φ|}

• C(φ) = W ∪ {|φ|+ 1, |φ|+ 2, . . . }, where W ⊆ {1, 2, . . . , |φ|}

With Lemma 2.3.7, we can prove the following lemma. The proofs of Lemmas 2.3.7

and 2.3.8 are given in Appendix A.2.2.

Lemma 2.3.8 Given an SNF term φ, C(φ) can be computed in polynomial time with re-

spect to |φ|.

The following theorem states an important property of characteristic sets.

Theorem 2.3.9 Given an SNF term φ and a positive integer k, there exists a userset U of

size k and a configuration such that U satisfies φ under the configuration, if and only if k is

a characteristic number of φ (i.e. k ∈ C(φ)).

The proof of Theorem 2.3.9 is given in Appendix A.2.2.

Corollary 2.3.10 An SNF term φ is satisfiable if and only if C(φ) 6= ∅

With Lemma 2.3.8 and the above corollary, we can see that TSAT over SNF terms is in

P.

Another usage of characteristic set is to determine whether a term satisfies some mini-

mal SoD requirements. If the smallest characteristic number of the term is k, then no k− 1

users can satisfy the term.
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Finally, we can extend the notion of characteristic set to non-SNF terms by defining

C(¬φ) = {1}, where φ is a unit term, and C(S) = {1}, where S is an explicit set of users.

But in that case, it is no longer true that for every integer k ∈ C(φ), there is a userset

of size k that satisfies φ. For example, C ({Alice,Bob} u {Carl}) = C({Alice,Bob}) ∩

C({Carl}) = {1}, even though the term ({Alice,Bob} u {Carl}) is not satisfiable. But it

remains true that for any userset X that satisfies a term φ, |X| ∈ C(φ).

2.3.3 The Term-Configuration Satisfiability (TCSAT) Problem

We have discussed the TSAT problem, which asks whether a term is satisfiable at all.

We now examine the TCSAT problem, which asks whether a term is satisfiable under a

certain configuration. When a security officer comes up with a term for a high-level security

policy of a task, he/she may want to know whether there exists a set of users that satisfies

the term and hence is able to perform the task under the current configuration.

Observe that TCSAT is equivalent to TSAT for terms using only explicit sets of users

but not roles or the keyword All. Given an instance of TCSAT, which consists of a term

φ and a configuration 〈U,UR〉, one can replace each role (or the keyword All) in φ with

the corresponding set of users in the configuration, which results in a new term φ′. In this

case, φ′ is independent of configuration, and φ is satisfiable under 〈U,UR〉 if and only if

φ′ is satisfiable. Therefore, it follows from Lemma 2.3.2 and Theorem 2.3.4 that TCSAT is

NP-complete; this is stated in the following theorem.

Theorem 2.3.11 TCSAT is NP-complete.

We mentioned earlier that TCSAT is equivalent to SAFE. In Section 2.5 we will ex-

amine the computational complexities of SAFE when only some subsets of operators are

allowed. Those results for SAFE apply to TCSAT as well.
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Table 2.1
Various sub-cases of the Userset Term Satisfaction (UTS) problem and the
corresponding time-complexity

¬ + t u � ⊗ Complexity Reduction

X X X X X X NP-complete

X X NP-complete Set Covering

X X NP-complete Set Packing

X X NP-complete Set Covering

X X NP-complete Set Covering

X X NP-complete Domatic Number

X X X X P

X X X P

X X X P

2.4 The Userset-Term Satisfaction (UTS) Problem

In this section, we study the computational complexities of the Userset-Term Satisfac-

tion (UTS) problem, which asks: Given a configuration 〈U,UR〉, a userset X , and a term

φ, whether X satisfies φ under 〈U,UR〉? We will show that UTS in the most general case

(i.e., arbitrary terms in which all operators are allowed) is NP-complete. In order to under-

stand how the operators affect the computational complexities, we consider sub-algebras in

which only some subset of the six operators {¬,+,u,t,�,⊗} is allowed. For example,

UTS〈¬,+,t,u〉 denotes the sub-case of UTS where φ does not contain operators � or

⊗, while UTS〈⊗〉 denotes the sub-case of UTS where ⊗ is the only kind of operator in

φ. UTS〈¬,+,t,u,�,⊗〉 denotes the general case. Observe that unlike in the case of

TSAT, whether to allow explicit sets of users in a term or not does not affect the computa-

tional complexities of UTS, because a fixed configuration is given in UTS, and one can thus

replace each occurrence of a role in the term with the explicit set of the role’s members.
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Theorem 2.4.1 The computational complexities of UTS and its subcases are given in Ta-

ble 2.1.

The proof of Theorem 2.4.1 is done in two parts. First, in Appendix A.3.1, we prove

that the five cases UTS〈t,�〉, UTS〈u,�〉, UTS〈t,⊗〉, UTS〈u,⊗〉, and UTS〈�,⊗〉 are

NP-hard by reducing the NP-complete problems SET COVERING, DOMATIC NUMBER,

and SET PACKING to them. Second, in Appendix A.3.2, we prove that the general case

UTS〈¬,+,t,u,�,⊗〉 is in NP. In Section 2.4.1, we identify a wide class of syntactically

restricted terms for which the UTS problem is tractable. The class of restricted terms

subsumes all the cases listed as in P in Table 2.1.

2.4.1 UTS is Tractable for Terms in Canonical Forms

From Table 2.1, UTS is NP-complete in all but one sub-algebras that contain at least

two binary operators; however, using any one binary operator by itself remains tractable. In

this subsection, we show that if a term satisfies certain syntactic restrictions, then even if all

operators appear in the term, one can still efficiently determine whether a userset satisfies

the term.

Definition 2.4.1 (Canonical Forms for Terms) The canonical forms for terms are defined

as follows:

• A term is in level-1 canonical form (called a 1CF term) if it is t or t+, where t is a

unit term. Recall that a unit term can use the operators ¬, u, and t. We call t the

base of the 1CF term.

• A term is in level-2 canonical form (called a 2CF term) if it consists of one or more

sub-terms that are 1CF terms, and these sub-terms are connected only by the operator

u.

• A term is in level-3 canonical form (called a 3CF term) if it consists of one or more

sub-terms that are 2CF terms, and these sub-terms are connected only by the operator

⊗.
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• A term is in level-4 canonical form (called a 4CF term) if it consists of one or more

sub-terms that are 3CF terms, and these sub-terms are connected only by the operator

�.

• A term is in level-5 canonical form (called a 5CF term) if it consists of one or more

sub-terms that are 4CF terms, and these sub-terms are connected only by operators

in the set {t,u}.

We say that a term is in canonical form if it is in level-5 canonical form. Observe that any

term that is in level-i canonical form is also in level-(i+1) canonical form for any i ∈ [1, 4].

To check whether a term φ is in canonical form, one parses φ into a syntax tree and

then traverses the tree in a depth-first manner to see if any syntactical restriction described

in Definition 2.4.1 is violated. This can be done in polynomial time in the size of φ.

Theorem 2.4.2 Given a term φ in canonical form, a set X of users, and a configuration

〈U,UR〉, checking whether X satisfies φ under 〈U,UR〉 can be done in polynomial time.

Proof Recall that, by definition, X satisfies φ1 u φ2 if and only if X satisfies both φ1 and

φ2, andX satisfies φ1tφ2 if and only ifX satisfies either φ1 or φ2. Therefore, to determine

whetherX satisfies a 5CF term, one can first determine whetherX satisfies each of the 4CF

sub-terms, and then combine these results using logical conjunction and disjunction.

For a 1CF term φ, if it is a unit term, then it is straightforward to determine whether X

satisfies φ, because a unit term can be satisfied only by a singleton set, and because of the

definitions of u and t. If φ is of the form t+, where t is a unit term, then one just needs to

determine whether each user in X satisfies t. Therefore, one can efficiently check whether

X satisfies a 1CF term.

Given a 2CF term, if at least one sub-term is a unit term, then one can get an equivalent

1CF term by removing all occurrences of +. For example, (t1 u t+2 ) is equivalent to t1 u t2.

Given a 2CF term where all sub-terms have +, it may be rewritten as an equivalent 1CF

term, according to algebraic properties. For example, (t+1 u t+2 ) is equivalent to (t1 u t2)+.

Hence, any 2CF term can be transformed into an equivalent 1CF term. We assume that the
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transformation is performed whenever applicable so that we don’t need to consider 2CF

terms explicitly.

Given a 3CF term P = (φ1 ⊗ · · · ⊗ φm), where each φi is a 1CF term. Let us first

consider a special case that each φi is a unit term ti. In this case, one can determine whether

X satisfies φi by solving the following bipartite graph maximal matching problem. One

constructs a bipartite graph such that one set of nodes consists of users in X and the other

consists of them unit terms t1, t2, . . . , tm; and there is an edge between u ∈ X and ti if and

only if {u} satisfies ti. One then computes a maximal matching of the graph (which can be

done in polynomial time); if the size of the matching is max(|X|,m), then X satisfies P ;

otherwise, X does not satisfy P .

The case that a 3CF term contains + is more complicated, as is the case for a 4CF term.

The proof for the 4CF case (which subsumes the 3CF case) is long and offers limited new

insights. We thus leave the proof in Appendix A.3.3.

Terms in canonical forms appear to be general enough to specify many high-level se-

curity policies in practice. We arrive at these canonical forms by excluding the intractable

cases used in the NP-hardness proofs, and by studying how to efficiently handle terms

involving the binary operators.

2.5 The Userset-Term Safety (SAFE) Problem and the Static Safety Checking (SSC)

Problem

In this section, we study the Userset-Term Safety (SAFE) problem and the Static Safety

Checking (SSC) problem. As we have pointed out in Section 2.3.3, SAFE is technically

equivalent to TCSAT, even though the two problems are motivated by different purposes.

Since TCSAT is NP-complete, SAFE is NP-complete in general.

Also, SAFE is related to yet different from UTS. SAFE asks whether X is safe with

respect to a term φ under a configuration; this is monotonic in that if X is safe, then any

superset of X is also safe. However, UTS is not monotonic. This difference has subtle

but important effects. For example, under SAFE, the operator � is equivalent to logical



34

conjunction, that is, X is safe with respect to φ1 � φ2 if and only if X is safe with respect

to both φ1 and φ2. This is because X is safe with respect to φ1 � φ2 if and only if X

contains a subset X0 that is the union of two subsets X1 and X2 such that X1 satisfies

φ1 and X2 satisfies φ2. This is equivalent to X containing two subsets X1 and X2 such

that X1 satisfies φ1 and X2 satisfies φ2. In contrast, the operator � is different from logical

conjunction under UTS. ThatX satisfies φ1�φ2 does not implyX satisfies both φ1 and φ2.

For example, {u1, u2} satisfies All�All, but does not satisfy All, because term satisfaction is

not monotonic. Another difference regards the operator u. The operator u is equivalent to

logical conjunction under UTS, by definition of term satisfaction. However, u is stronger

than logical conjunction under SAFE. That X is safe with respect to φ1 u φ2 implies that

X is safe with respect to both φ1 and φ2, but the other direction is not true. For example,

given UR = {(u1, r1), (u2, r2)}, X = {u1, u2} is safe with respect to both r1 and r2, but is

not safe with respect to r1 u r2.

Because of these and other differences, the computational complexity results about

UTS do not imply computational complexity results for SAFE. In the rest of this section,

we give the computational complexities of SAFE and its subcases, and compare them with

those of UTS. Similar to the discussion of UTS in Section 2.4, we consider all sub-algebras

in which only some subset of the six operators in {¬,+,u,t,�,⊗} is allowed.

Theorem 2.5.1 The computational complexities of SAFE and its subcases are given in

Table 2.2.

Please refer to Appendix A.4 for proofs of the above theorem. In the appendix, we first

prove that the three cases SAFE〈¬,+,u,t〉, SAFE〈¬,+,t,�〉, and SAFE〈¬,+,⊗〉

are in P. As we mentioned at the beginning of the section, SAFE is NP-complete in

general, which implies that all of its subcases are in NP. Hence, to prove all the NP-

completeness results, it suffices to prove that the four cases SAFE〈u,�〉, SAFE〈t,⊗〉,

SAFE〈u,⊗〉, and SAFE〈�,⊗〉 are NP-hard.

Comparing Table 2.2 with Table 2.1, we found that the computational complexities of

all subcases of SAFE are the same as those of UTS except for the subcase in which only
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Table 2.2
Various sub-cases of the Userset-Term Safety (SAFE) problem and the
corresponding time-complexity

¬ + t u � ⊗ Complexity Reduction

X X X X X X NP-complete

X X NP-complete Set Packing

X X NP-complete Set Covering

X X NP-complete Set Covering

X X NP-complete Domatic Number

X X X X P

X X X X P

X X X P

operators in {¬,+,t,�} are allowed. SAFE〈¬,+,t,�〉 is in P, while UTS〈t,�〉 is

NP-hard. Intuitively, UTS〈t,�〉 is computationally more expensive than SAFE {t,�}

for the following reason: given a term φ = (φ1 � · · · � φm) and a userset U , U is safe

with respect to φ if and only if U is safe with respect to φi for every i ∈ [1,m]. In other

words, for SAFE, one may check whether U is safe with respect to φi independently from

φj (i 6= j). However, when it comes to UTS, such independency no longer exists and one

has to take into account whether every user in U is used to satisfy some φi in the term φ.

2.5.1 Static Safety Checking (SSC) Problem

Given a high-level security policy sp〈P, φ〉, the Static Safety Checking (SSC) problem

asks whether a given state 〈U,UR,UP〉 is statically safe with respect to sp〈P, φ〉. We

study the computational complexities of SSC, and consider all subcases where only some

subset of the operators in {¬,+,u,t,�,⊗} is allowed. We show that the general case of

SSC is both NP-hard and coNP-hard and is in coNPNP, which is a complexity class in

Polynomial Hierarchy. The proof of the following theorem is given in Appendix A.5.
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Table 2.3
Various sub-cases of the Static Safety Checking (SSC) problem and the
corresponding time-complexity

¬ + t u � ⊗ Complexity Reduction

X X X X X X NP-hard, coNP-hard, in coNPNP

X X coNP-hard Validity

X X NP-hard SAFE〈u,�〉

X coNP-complete Set Covering

X X X X P

X X X P

Theorem 2.5.2 The computational complexities of SSC and its subcases are given in Ta-

ble 2.3.

2.6 Discussions

In this section we discuss potential extensions to the syntax of the algebra, the rela-

tionship between the algebra and regular expressions, and the limitations of the algebra’s

expressive power.

2.6.1 Extensions to the Syntax of the Algebra

In this chapter, we have defined the basic operators in the algebra and examined their

properties. We now discuss some additional operators that could be added to the algebra as

syntactic sugars.

As discussed in Section 2.1.5, SoD policies are monotonic, as are policies in McLean’s

formulation of N -person policies [19]; our algebra supports both monotonic policies and

policies that are not monotonic. To express a monotonic policy that requires a task to be
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performed by a userset that either satisfies a term φ or contains a subset that satisfies φ, one

can use (φ � All+). As monotonic policies may be quite common, we introduce a unary

operator5 as a syntactic sugar. That is,5φ is defined to be (φ� All+).

Besides monotonic policies, another type of policy mentioned in Section 2.1.5 states

that every user involved in a task must satisfy certain requirements and there need to be

at least a certain number of users involved. Let φ be a unit term that expresses the re-

quirements. A policy that requires two or more users that satisfy φ can be expressed as

((φ⊗ φ)� φ+). To simplify the expression of these policies, we define φ2+ as a syntactic

sugar for ((φ⊗ φ)� φ+). In general, φk+ means that at least k (k ≥ 2) users are required

and every user involved must satisfy φ.

Similar to the above, φk is a syntactic sugar for a term using operator ⊗ to connect

k unit terms φ. For instance, Accountant3 is defined as (Accountant ⊗ Accountant ⊗

Accountant). More generally, φk states that exactly k users are required and every user

involved must satisfy φ. Writing a term in φk rather than (φ ⊗ · · · ⊗ φ) explicitly states

that all the k sub-terms connected together by ⊗ are the same. This makes the policy more

succinct and easier to process.

2.6.2 Relationship with Regular Expressions

The syntax of terms in our algebra may remind readers of regular expressions. A regular

expression is a string that describes or matches a set of strings, while a term in the algebra

is a string that describes or matches a set of sets. Given an alphabet, a regular expression

evaluates to a set of strings. Given a configuration, a term in our algebra evaluates to a set

of sets. In the following, we compare our algebra with regular expressions.

For example, the regular expression “a(b|c)[̂ abc]+” matches all strings that start with

the letter a, followed by either b or c, and then by one or more symbols that are not in

{a, b, c}. A term that is close in spirit to the regular expression is {a} ⊗ ({b} t {c}) ⊗

(¬{a, b, c})+, which is satisfied by all sets that contain a, either b or c, and one or more

symbols that are not in {a, b, c}.
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From the example, one can draw some analogies between the operators in regular ex-

pressions and the ones in our algebra. The operator | in regular expressions is similar to

t. Concatenation in regular expression may seem to be related to ⊗. One clear difference

is that concatenation is order sensitive, whereas ⊗ is not, because a string is order sensi-

tive but a set is not. A more subtle difference comes from the property that ⊗ requires

the two sub-terms be satisfied by disjoint sets. For instance, {a} ⊗ {a} cannot be satis-

fied by any set. The usage of negation in regular expressions is similar to negation in the

algebra; in both cases, negation can be applied only to an expression corresponding to a

single element. In regular expression, the closure operator (∗ or +) can be applied to arbi-

trary sub-expressions. Our algebra requires that repetition (using operator +) can only be

applied to unit terms. As we discussed in Section 2.1.5, since the algebra is proposed for

security policy specification, we impose such restriction so as to clearly capture real-word

security requirements. If the algebra is used in areas other than security policy specifica-

tion, it is certainly possible to release such restriction so that the algebra can define a wider

range of sets. The remaining binary operators � and u have the flavor of set intersection,

which does not have counterparts in regular expressions.

Observe that determining whether a string satisfies a regular expression is in NL-

complete, where NL stands for Nondeterministic Logarithmic-Space, and is contained in

P. On the other hand, determining whether a userset satisfies a term is NP-complete, even

if the term uses only t and ⊗ or only t and �. It appears that this increase in complexity

is due to the unordered nature of sets. Checking a string against a regular expression can

be performed from the beginning of a string to its end; on the other hand, there is no such

order in checking a set against a term in the algebra.

As a fundamental tool for defining sets of strings, regular expression is used in many

areas. Analogically, because our algebra is about the fundamental concept of defining

sets of sets, we conjecture that, besides expression of security policies, the algebra could

be used in other areas where set specification is desired. For example, we may use the

algebra to specify some sorts of reaction formula, in which each element must have certain

properties and in some cases we may be able to choose among several properties. For
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another example, our algebra could be used to specify digital-right-management licenses

that entitle users to play a set of songs. An example of such licenses is, Alice can play

a song in Album A once, and two other songs in either Album B or Album C. Barth and

Mitchell studied how to specify such licenses using linear logic in [21].

2.6.3 Limitations of the Algebra’s Expressive Power

It is well-known that using regular expression, one cannot express languages that re-

quire counting to an unbounded number; for example, one cannot express all strings over

the alphabet {a, b} that contain the same number of a’s as of b’s.

Similarly, the algebra as defined in Section 2.1.1 cannot express a policy that requires

a set of users in which the number of members of r1 equals the number of members of

r2. The proof is similar to that of the Pumping Lemma in regular language. We illustrate

the sketch of the proof here. Assume, for the purpose of contradiction, that there exists a

term φ in the algebra that is satisfied only by usersets with an equal number of members

of r1 and members of r2. Let X1 be a userset consisting of n users who are members of

r1 but not r2, and X2 be another userset consisting of n users who are members of r2 but

not r1, where n > |φ|. Let X = X1 ∪ X2. By assumption, X satisfies φ. Let T be the

satisfaction tree of φ, whose root is labeled with X . Since |X| > |φ|, T must have leaves

corresponding to sub-terms in the form of φ+
0 . Also, since n > |φ|, there must exist a leaf

N1 with φ1 = φ+
2 and LT (N1) contains a user u ∈ X1 that does not appear in usersets

labeling leaves without +. We may now “pump” (i.e. add) another m copies of u to every

node in T whose associated userset contains u. By following the rules in Definition 2.1.4,

it can be proved that the tree T ′, which is acquired from T after pumping, is a satisfaction

tree of φ. Note that the root of T ′ is labeled with X ′, which contains n+m members of r1

and n members of r2. According to Theorem 2.1.2, X ′ satisfies φ, which is a contradiction

to the assumption.

If we allow the application of + to non-unit terms and define it as follows:

φ+ def
= φ t (φ⊗ φ) t (φ⊗ φ⊗ φ) t . . .
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then we can express the policy that requires an equal number of members of r1 and mem-

bers of r2 using the term

[(r1 u r2) t ((r1 u ¬r2)⊗ (r2 u ¬r1)) t (¬r1 u ¬r2)]+

Note that the subterm ((r1 u ¬r2) ⊗ (r2 u ¬r1)) matches one user who is a member of r1

but not r2 with a user who is a member of r2 but not r1.

Even with the extension, however, there are sets of usersets that cannot be expressed.

For example, one cannot express a policy that requires that the number of users who are r1

equals the square of the number of users who are r2. 2 Further discussions of expressive

power and more general algebras are interesting future research topics.

2Intuitively, since + does not record the number of users, there is no way for a term to compute the square of
the number of users in a userset.
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3 RESILIENCY POLICIES IN ACCESS CONTROL

In the last chapter, we have introduced an algebra for high-level security policy specifica-

tion. Similar to most existing work on access control policy specification and analysis, our

work on the algebra focuses on security properties which ensure that users who should not

have access do not get access. However, an equally important aspect of access control is to

enable access (selectively).

In this chapter, we introduce the notion of resiliency policies which state properties

about enabling access in access control. Resiliency policies require that the access control

state is resilient to absent users. For example, the access control system of an institution has

three separate permissions regarding release of funds: one permission is an endorsement

that the request for funds is legitimate, the second permission is the issuance of a check, and

the third one is for logging the transaction. The institution’s financial office, which takes

charge of funding, is composed of a senior treasurer and a number of junior treasurers.

In compliance of the separation of duty principle, the senior treasurer has all permissions

except the one for logging, while each of the junior treasurers has only one of the three

permissions. As issuing funds is a critical task, the institution would like to ensure that

even if a few (e.g., two) treasurers (that may include the senior treasurer) are absent (e.g.,

due to sickness), the remaining personnel in the financial office still have enough privileges

to release funds.

Another example resiliency policy requirement is as follows: There must exist three

mutually disjoint sets of users such that each set has no more than four users and the users

in each set together have all permissions to carry out a critical task. Such a policy would

be needed when one needs to be able to send up to three teams of users to different sites to

perform a certain task, perhaps in response to some events. One needs to ensure that each

team has enough permissions to perform the task, and each team consists of no more than

four users (e.g., due to the limit of transportation means).
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Such policies are particularly useful when evaluating whether the access control config-

uration of a system is ready for emergency response. These policies ensure that even when

emergency situations cause some users to be absent, there still exist independent teams of

users that have the necessary permissions for carrying out critical tasks. In other words,

these policies mandate that there is a certain level of redundancy in assigning permissions

to users so that the system can tolerate some users being absent.

The remainder of this chapter is organized as follows. In Section 3.1, we define re-

siliency policies and the Resiliency Checking problem. We present computational com-

plexities of the Resiliency Checking problem in Section 3.2. Finally, we explore the policy

consistency problem, in Section 3.3

3.1 Resiliency Policies and the Resiliency Checking Problem

Definition 3.1.1 (Resiliency Policies) A resiliency policy takes the form

rp〈P, s, d, t〉

where rp is a keyword, P = {p1, . . . , pn} is a set of permissions, s ≥ 0 and d ≥ 1 are

integers, and t is either a positive integer or the special symbol∞.

We say that an access control state satisfies such a resiliency policy if and only if upon

removal of any set of s users, there still exist dmutually disjoint sets of users such that each

set contains no more than t users and the users in each set together are authorized for all

permissions in P .

Example 3 Consider the access control state from Figure 3.1. To issue funds, all three

permissions Endorse, Issue and Log must be possessed by a set of users. In our resiliency

policy, we set P = {Endorse, Issue, Log}. If we set s = 1 in our policy, then we want

the system to be resilient to the absence of any (one) user. If we set d = 2, this means that

we require two sets of users such that users in each set together possess all permissions. If

we set t = ∞, this means that the set of users that together possess all permissions can be

of any size.
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Endorse Issue Log

Bob Doris

Alice Carl Earl

Figure 3.1. An example of an access control state with five users and three permissions

We observe that in our example, rp〈P, 1, 2,∞〉 is satisfied. For instance, after remov-

ing Alice, the two users Carl and Earl together have all three permissions, as are Bob

and Doris . The cases in which another user is removed can be verified similarly. How-

ever, rp〈P, 2, 2,∞〉 is not satisfied because if Alice and Bob are absent, the only user

that possesses Endorse is Carl , and one user cannot belong to two disjoint sets. Similarly,

rp〈P, 2, 1,∞〉 is satisfied, but rp〈P, 3, 1,∞〉 is not satisfied because if Alice, Bob and Carl

are absent, then no user possesses Endorse. And finally, we observe that rp〈P, 1, 1, 2〉 is

satisfied, but not rp〈P, 1, 1, 1〉 because for the latter case, there exists no single user that

has all three permissions.

Intuitively, a resiliency policy rp〈P, s, d, t〉 specifies a fault tolerance requirement with

respect to a certain critical task. The set P includes all permissions that are needed to carry

out the task. The faults that we would like to tolerate are absent users. The parameter s

specifies the number of absent users that we want to be able to tolerate. The parameter

d is motivated by the requirement that several teams may be needed to carry out multiple

instances of the task. If only one team is needed, then d can be set to 1. The parameter

t specifies the size limit of each team. This is motivated by limitations on the maximal

number of users that can be involved in any instance of task. If no such limitation exists,

then t can be set to∞.
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The two parameters s and d are related. If an access control state satisfies rp〈P, s, d, t〉,

then it also satisfies rp〈P, s+ i, d− i, t〉 for any i such that 0 < i < d. For example, if, after

removing any 2 users, there exist 3 mutually disjoint sets of users such that each set covers

all permissions in P , then after removing any 3 users, there are at least 2 sets left. However,

if a state satisfies rp〈P, s + 1, d − 1, t〉, it may not satisfy rp〈P, s, d, t〉. For our example

shown in Figure 3.1, we observe that rp〈P, 1, 2,∞〉 is satisfied. However rp〈P, 0, 3,∞〉

is not satisfied because we need the 3 users Alice, Bob and Carl that possess Endorse to

belong to distinct sets; this still leaves one permission that needs to covered by each set,

and we have only two users that remain.

Resiliency policies can be defined in any access control system in which there are users

and permissions. This includes almost all access control systems, including Discretionary

Access Control systems [22, 23] and Role Based Access Control systems [18]. We assume

that an access control state is given by a binary relation UP ⊆ U × P , where U represents

the set of all users, and P represents the set of all permissions. Note that by assuming that

a state is given by a binary relation UP ⊆ U × P , we are not assuming permissions are

directly assigned to users; rather, we assume only that one can calculate the relation UP

from the access control state.

Definition 3.1.2 (Resiliency Checking Problem (RCP)) Given a resiliency policy r and

an access control state UP , determining whether UP satisfies r is called the Resiliency

Checking Problem (RCP).

A resiliency policy has three parameters: s, d, and t. In some situations, one may need

to consider only those policies with one or more of these parameters degenerated. The

parameter s, which denotes the number of absent users that the system needs to tolerate,

may be degenerated to always be 0. The parameter d, which denotes the number of sets of

users required, may be degenerated to always be 1. Finally, the parameter t, which denotes

the size bound on each set, may be degenerated to always be ∞. There are eight cases

where some of the three parameters are degenerated. For example, a resiliency policy in

the subcaseRCP 〈s = 0, d = 1〉 has the form rp(P, 0, 1, t), which asks whether there exists
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Figure 3.2. Time complexity of the Resiliency Checking Problem (RCP)
and its various subcases.

a set of users of size at most t that together have all permissions in P ; while the subcase

RCP 〈t =∞〉 asks whether there exist several distinct sets of users (d sets) each of whose

users together have all permissions in P , even after any set of s users is removed from the

state. In particular, RCP 〈 〉 is the general case of the problem.

3.2 Computational Complexities of the Resiliency Checking Problem

The following theorem summarizes the computational complexity results for RCP and

its various subcases. These results are also shown in Figure 3.2.

Theorem 3.2.1 The computational complexities of the Resiliency Policy Checking prob-

lem are as follows.

• RCP 〈 〉, the most general case, is NP-hard and is in coNPNP, as are the two

subcases RCP 〈d = 1〉 and RCP 〈t =∞〉.

• RCP 〈s = 0, d = 1〉, RCP 〈s = 0, t =∞〉, and RCP 〈s = 0〉 are NP-complete.

• RCP 〈d = 1, t =∞〉 and RCP 〈s = 0, d = 1, t =∞〉 can be solved in linear time.
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Our complexity results show that RCP is in coNPNP. This means that the complement

of RCP can be solved by a nondeterministic Oracle Turing Machine that has oracle access

to a machine that can answer any NP queries. Intuitively, given an access control state

and a resiliency policy r = rp(P, s, d, t), to decide nondeterministically that the state does

not satisfy r, one can guess a set of s users to be removed, and then query the NP oracle

whether the remaining users contain d mutually disjoint sets of users such that each set is

of size at most t and the users in each set together have all the permissions in P .

Another way to understand the computational complexity of RCP is to observe that an

RCP instance has the form ∀ size-s subset, ∃d sets of users that satisfy some requirements

that can be efficiently verified. Problems in NP have the form of ∃ an evidence that satisfies

some polynomial-time verifiable requirements. Problems in coNP has the form ∀ choices,

some polynomial-time verifiable requirements hold. RCP has one alternation of ∀ followed

by ∃, which makes it in coNPNP.

We have shown that RCP (and its two subcases RCP 〈d = 1〉 and RCP 〈t =∞〉)

are NP-hard and are in coNPNP. It remains open whether these three problems are

coNPNP-complete or not. Readers who are familiar with computational complexity the-

ory will recognize that coNPNP is a complexity class in the Polynomial Hierarchy. Be-

cause the Polynomial Hierarchy collapses when P = NP, showing that an NP-hard de-

cision problem is in the Polynomial Hierarchy, although is not equivalent to showing that

the problem is NP-complete, has the same consequence: the problem can be solved in

polynomial time if and only if P =NP.

In the rest of this section, we prove the results in Theorem 3.2.1. The following lemmas

prove that RCP 〈s = 0〉 is in NP, RCP 〈s = 0, d = 1〉 and RCP 〈s = 0, t = ∞〉 are

NP-hard, RCP 〈 〉 is in coNPNP, and RCP 〈d = 1, t =∞〉 is in P. The complexities of

other subcases can be implied from these results.

Lemma 3.2.2 RCP 〈s = 0〉 is in NP.

Proof An instance consists of an access control state UP and a policy rp〈P, 0, d, t〉. UP

satisfies rp〈P, 0, d, t〉 if and only if there exist d mutually disjoint sets of users such that the
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users in each set together cover all permissions in P and each set has at most t users. If

these d sets are given, they can be verified in polynomial time. Therefore, RCP 〈s = 0〉 is

in NP.

Lemma 3.2.3 RCP 〈s = 0, d = 1〉 is NP-hard.

Proof We reduce the NP-complete SET COVERING problem [24] (also referred to as

MINIMUM COVERING problem in [25]) to RCP 〈s = 0, d = 1〉. In SET COVERING,

we are given a set S, n subsets of S: S1, . . . , Sn, and a budget K, and need to determine

whether the union of K subsets is the same as S. An instance of RCP 〈s = 0, d = 1〉 asks

whether an access control state UP satisfies a policy rp〈P, 0, 1, t〉. In our reduction, each

element in S is mapped to a permission in P and each subset Si is mapped to a user ui. In

other words, if the subset Si contains an element, then ui is authorized for the permission

corresponding to the element. We now argue that the mapping ensures that there exists a

set of users of size at mostK together have all the permissions in P if and only ifK subsets

cover S. Assume that a set of users of size at most K exists such that those users together

have all the permissions in P . Then, we pick the subsets that are mapped to those users,

and their union gives us S. For the other direction, assume that K subsets cover S. Then,

the K users to which the subsets are mapped together have all the permissions in P .

Lemma 3.2.4 RCP 〈s = 0, t =∞〉 is NP-hard.

Proof We reduce the NP-complete DOMATIC NUMBER problem [25] to RCP 〈s =

0, t = ∞〉. Given a graph G(V,E), the DOMATIC NUMBER problem asks whether V

can be partitioned into k disjoint sets V1, V2, · · · , Vk, such that each Vi is a dominating set

for G. V ′ is a dominating set for G = (V,E) if for every node u in V − V ′, there is a node

v in V ′ such that (u, v) ∈ E. An instance of RCP 〈s = 0, t = ∞〉 asks whether an access

control state UP satisfies a policy rp〈P, 0, d,∞〉. Given a graph G = (V,E), we construct

an access control state UP with n users u1, u2, · · · , un and n permissions p1, p2, · · · , pn,

where n is the number of nodes in V . Each user corresponds to a node in G, and v(ui)

denotes the node corresponding to user ui. In UP , user ui is authorized for the permission



48

pj if and only if either i = j or (v(ui), v(uj)) ∈ E. Let P denote the set {p1, p2, · · · , pn}.

A dominating set in G corresponds to a set of users that together have all the permissions

in P . UP satisfies rp〈P, 0, k,∞〉 if and only if V contains k disjoint dominating sets.

Lemma 3.2.5 RCP 〈 〉 is in coNPNP.

Proof We show that the complement of RCP 〈 〉 is in NPNP. Assume that we have an

oracle that decides the Resiliency Checking problem when s = 0, which, as we know,

is NP-complete. We construct a nondeterministic oracle Turing machine M that accepts

UP and rp〈P, s, d, t〉 when UP does not satisfy rp〈P, s, d, t〉. M nondeterministically re-

moves s users, and then queries the oracle. If the oracle machine returns “yes”, M rejects;

otherwise, M accepts, because it has found a set of users, the removal of which violates

the Resiliency policy. The construction of M shows that the complement of RCP 〈 〉 is in

NPNP. Therefore, RCP 〈 〉 is in coNPNP.

Lemma 3.2.6 RCP 〈d = 1, t =∞〉 can be solved in linear time.

Proof An instance in RCP 〈d = 1, t = ∞〉 asks whether an access control state satisfies

a policy rp〈P, s, 1,∞〉. We observe that the answer is “no” if and only if some permission

in P is assigned to no more than s users. In this case, removing the s users who have

that permission would result in no user having that permission. On the other hand, if each

permission is assigned to at least s + 1 users, after removing any set of s users, each

permission is still assigned to at least one user, which means that the set of all remaining

users together have all the permissions in P .

Definition 3.2.1 (The Tolerance Bound) Given an access control state UP and a set

{p1, · · · , pm} of permissions, we define the tolerance bound of UP and {p1, · · · , pm},

denoted by tb(UP , {p1, · · · , pm}), to be min1≤i≤m #(pi), where #(pi) denotes the number

of users who are authorized for pi in the state UP .

Given an RCP 〈d = 1, t = ∞〉 instance that asks whether UP satisfies rp〈P, s, 1,∞〉,

the answer is yes if and only if the tolerance bound is at least s+ 1. More generally, given
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an RCP instance that asks whether UP satisfies rp〈P, s, d, t〉, if s + d > tb(UP , P ), then

the answer is “no”. On the other hand, when d ≥ 2 and s + d ≤ tb(UP , P ), we do not

immediately know whether UP satisfies rp〈P, s, d, t〉 or not.

We now give a linear-time algorithm for calculating the tolerance bound. This, together

with the above observations, suffices to prove Lemma 3.2.6. The algorithm maintains a

counter for each permission. It first goes through all pairs in UP to count how many users

each permission is assigned to. It then returns the minimal value among the counters.

3.3 The Consistency of Resiliency and Separation of Duty Policies

As we have discussed earlier, resiliency policies are a natural complement to traditional

safety policies in access control. Consequently, a question arises regarding the consistency

of resiliency policies with other policies. In this section, we explore the consistency of

resiliency policies and static separation of duty (SSoD) policies.

The intent of an SSoD policy is to preclude any group of users from possessing too

many permissions. We adopt the concrete formulation of such policies from Li et al. [26].

An SSoD policy is of the form ssod〈P, k〉, where P is a set of permissions and 1 < k ≤ |P |

is an integer. An access control state satisfies the policy if there exists no set of fewer than

k users that together possess all permissions in P . In the policy ssod〈P, k〉, P denotes the

set of permissions that are needed to perform a sensitive task, and k denotes the minimal

number of users that are allowed to perform the task. If the policy is satisfied, then no set of

k−1 users can together perform the task, because they do not have all the permissions; thus

at least k users need to be involved, achieving the goal of separation of duty. For example,

the policy ssod〈{p1, p2}, 2〉 means that no single user is allowed to have both p1 and p2.

In many cases, it is desirable for an access control system to have both resiliency and

SSoD policies. If an access control system has only resiliency policies, then they can be

satisfied by giving all permissions to all users, resulting in each single user can perform

any task. Similarly, if an access control system has only SSoD policies, then they can be

satisfied by not giving any permission to any user, resulting in no task can be performed.
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It is clear that neither kind of policies by itself is sufficient to capture the security require-

ments. When both kinds of policies coexist, safety and functionality requirements can all

be specified.

Due to their opposite focus, resiliency policies and separation of duty policies can con-

flict with each other. For example, a separation of duty policy ssod〈P, 2〉 requires that no

user possess all permissions in P . A resiliency policy rp〈P, s, d, 1〉 requires the existence

of a user that has all permissions in P . Clearly, the two policies cannot be satisfied si-

multaneously. We formally define our notion of consistency amongst such policies in the

following definition.

Definition 3.3.1 Given a set F of resiliency and separation of duty policies, the policies in

F are consistent if and only if there exists an access control state UP such that UP satisfies

every policy in F . Determining whether F is consistent is called the Policy Consistency

Checking Problem (PCCP).

The following lemma asserts that the actual value of s and d in a resiliency does not

affect its compatibility with SSoD policies. This enables us to replace all resiliency policies

in the form of rp〈Pi, si, di, ti〉 in F with the special form rp〈Pi, 0, 1, ti〉 when studying

PCCP . This greatly simplifies the problem.

Lemma 3.3.1 F is a set of policies and R = rp〈P, s, d, t〉 ∈ F . Let R′ = rp〈P, 0, 1, t〉 and

F ′ = (F − {R}) ∪ {R′}. F is consistent if and only if F ′ is consistent.

Proof It is clear that if F is consistent then F ′ is consistent. In the following, we prove

that if F ′ is consistent then F is consistent. Assume that state UP ′ satisfies all policies in

F ′. UP ′ satisfying R′ implies that there is a set U of no more than t users together have

all the permissions in P . We then construct a new state UP by adding s + d − 1 copies

of all users in U to UP ′. Note that adding copies of existing users in UP ′ will not lead to

violation of SSoD policies in F ′. In this case, UP satisfies R plus all policies in F ′. In

other words, UP satisfies all policies in F and F is consistent.
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The following theorem gives the computational complexity results about general cases

of PCCP. Observe that the case with one SSoD policy and an arbitrary number of resiliency

policies is coNP-hard, and the case with one resiliency policy and an arbitrary number of

SSoD policies is NP-hard. Therefore, it is unlikely that the general case is in NP or in

coNP; however, we show that the problem is in NPNP.

Theorem 3.3.2 The computational complexities for PCCP are as follows:

1. PCCP 〈1, n〉 is coNP-hard, where PCCP 〈1, n〉 denotes the subcase that there is a

single SSoD policy, and an arbitrary number of resiliency policies.

2. PCCP 〈m, 1〉 is NP-hard, where PCCP 〈m, 1〉 denotes the subcase that there is an

arbitrary number of SSoD policies, and a single resiliency policy.

3. PCCP 〈m,n〉, i.e., the most general case of PCCP, is in NPNP.

We prove Theorem 3.3.2 by proving Lemmas 3.3.3, 3.3.4 and 3.3.5. Without loss

of generality, we assume that for any static separation of duty policy sod〈P, k〉, we have

k ≤ |P |. We also assume that in any resiliency policy rp〈P, s, d, t〉, we have either t = ∞

or t ≤ |P |.

Lemma 3.3.3 PCCP 〈1, n〉 is coNP-hard, where PCCP 〈1, n〉 denotes the subcase that

there is a single SSoD policy, and an arbitrary number of resiliency policies.

Proof We reduce the NP-complete SET COVERING problem [24] (also referred to as

MINIMUM COVERING problem in [25]) to the complement of PCCP . In SET COVERING,

we are given a set X = {e1, · · · , em}, n subsets of X: X1, . . . , Xn, and a budget b, and

need to determine whether the union of b subsets is the same as X . Given an instance of

the SET COVERING problem, we construct one SSoD policy S = sod〈P, b + 1〉 and b rp

policies Ri = rp〈Pi, 0, 1, 1〉 (1 ≤ i ≤ b), where P = {p1, · · · , pm} corresponds to X and

Pi = {pj | ej ∈ Xi} corresponds to Xi. Let F = {S,R1, · · · , Rn}. In the following, we

prove that F is inconsistent if and only if the answer to the SET COVERING problem is

“yes”.
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On the one hand, if F is inconsistent, there does not exist any state that satisfies all

polices in F . In other words, if a state satisfies all resiliency policies in F , there exists

no more than b users in the state who together have all the permission in P . Let UP be a

state with n users u1, · · · , un such that (ui, pj) ∈ UP if and only if pj ∈ Pi. It is clear

that UP satisfies all resiliency policies in F , and hence there exist no more than b users

together have all the permissions in P . In other words, there exist no more than b elements

in {P1, · · · , Pn} whose union is P . Thus, the answer to the set covering problem is “yes”.

On the other hand, if the answer to the set covering problem is “yes”, then there exist no

more than b elements in {P1, · · · , Pn} whose union is P . For any state UP that satisfies all

resiliency policies in F , let U be the set of users that satisfy at least one resiliency policy.

u ∈ U if and only if there exists Pi such that u has all permissions in Pi. In this case, there

exist no more than b users in U who together have all the permissions in P . Hence, UP

does not satisfy S, which implies that no state satisfies all policies in F .

Lemma 3.3.4 PCCP 〈m, 1〉 is NP-hard, where PCCP 〈m, 1〉 denotes the subcase that

there is an arbitrary number of SSoD policies, and a single resiliency policy.

Proof We reduce the NP-complete SET SPLITTING problem to PCCP . In the SET

SPLITTING problem, we are given a set X = {e1, · · · , en}, m subsets of X: X1, . . . , Xm,

and need to determine whether there exist Y1 and Y2 such that Y1 ∪ Y2 = X and there

does not exist Xi (1 ≤ i ≤ m) such that Xi ⊆ Y1 or Xi ⊆ Y2. Given an instance of

the SET SPLITTING problem, construct a resiliency policy R = rp〈P, 0, 1, 2〉 and m SSoD

policies Si = sod〈Pi, 2〉 (1 ≤ i ≤ m), where P = {p1, · · · , pn} corresponds to X and

Pi = {pj | ej ∈ Xi} corresponds to Xi. Let F = {R, S1, · · · , Sm}. In the following, we

prove that F is consistent if and only if the answer to the SET SPLITTING problem is “yes”.

On the one hand, if F is consistent, then there exists a state UP that satisfies all policies

in F . UP satisfying R implies that there exist two users u1 and u2 in UP such that u1

and u2 together have all the permissions in P . Furthermore, UP satisfying Si implies

that neither u1 nor u2 has all permissions in Pi. Let Y1 = {ei | (u1, pi) ∈ UP} and

Y2 = {ei | (u2, pi) ∈ UP}. We have Y1 ∪ Y2 = X and neither Y1 nor Y2 is a superset of

any Xi. The answer to the set splitting problem is “yes”.
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On the other hand, if the answer to the set splitting problem is “yes”, then such Y1

and Y2 exist. We construct a state UP containing only two users u1 and u2 such that

(ui, pj) ∈ UP (1 ≤ i ≤ 2) if and only if pj ∈ Yi. Since Y1 ∪ Y2 = X , u1 and u2 together

have all the permissions in P . Furthermore, since there does not exist Xi such that Xi is

a subset of Y1 or Y2, neither u1 nor u2 has all permissions in Pi, which implies that UP

satisfies Si. Therefore, UP satisfies all policies in F .

Lemma 3.3.5 Let F = {S1, S2, · · ·Sm, R1, · · · , Rn}, where Si = sod〈Pi, ki〉 (1 ≤ i ≤

m) and Rj = rp〈Qj, sj, dj, tj〉 (1 ≤ j ≤ n). Checking whether policies in F are consistent

is in NPNP.

Proof We construct a set of policies F ′ by replacing every Ri (1 ≤ i ≤ n) in F with

rp〈Pi, 0, 1, ti〉. From Lemma 3.3.1, F is consistent if and only if F ′ is consistent.

We construct a nondeterministic Oracle Turing machine M that makes use of an NP

oracle machine to determine whether F ′ is consistent. M first nondeterministically selects

an integer a such that max(k1, · · · , km) ≤ a ≤ Σn
i=1|Qi| and then generates a users. Note

that at least max(k1, · · · , km) users are needed to satisfy all SSoD policies in F ′, and

at most Σn
i=1|Qi| users are needed to satisfy all resiliency policies in F ′. (The state can

have more than Σn
i=1|Qi| users, but in order to show that all resiliency policies in F ′ are

satisfied, at most Σn
i=1|Qi| users need to be involved.) Then M constructs a state UP by

nondeterministically assigning a subset of Q to u, where Q =
⋃n
i=1Qi is the set of all

permissions that appear in the resiliency policies. Next, M nondeterministically construct

n sets U1, · · · , Un of users in UP , and then, for every i ∈ [1, n], checks whether users

in Ui together have all the permissions in Pi and |Ui| ≤ ti. If the answer is “no”, then M

returns False. Finally,M invokes the NP oracle to check whether UP violates any SSoD

policy. (In order to prove that a state violates a static separation of duty policy sod〈P, k〉,

we just need to present a set of no more than k users in the state who together have all the

permissions in P . Therefore, checking whether a state violates an SSoD policy is in NP.)

If the oracle machine answers “yes”, M returns False. Otherwise, M returns True,

which means that UP satisfies all policies in F ′ and hence F ′ is consistent. It is clear that
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M terminates in polynomial time if the oracle machine returns an answer instantaneously.

Therefore, PCCP is in NPNP in general.
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4 SATISFIABILITY AND RESILIENCY IN WORKFLOW

AUTHORIZATION SYSTEMS

In the last two chapters, we have discussed high-level access control policies, such as poli-

cies specified by the algebra and resiliency policies, that apply to general access control

systems. In this chapter, we study a lower-level access control scheme, the workflow au-

thorization system.

Workflows are used in numerous domains, including production, purchase order pro-

cessing, and various management tasks. A workflow divides a task into a set of well-

defined sub-tasks (called steps here). Workflow authorization systems manage access con-

trol in workflows and have gained popularity in the research community [4–8]. As stated

in Chapter 1, security policies in workflow authorization systems are usually specified us-

ing authorization constraints. One may specify, for each step, which users are authorized

to perform it. In addition, one may specify the constraints between users who perform

different steps in the workflow. For example, one may require that two steps must be per-

formed by different users for the purpose of separation of duty [2]. Oftentimes, constraints

in workflow authorization systems need to refer to relationships among users. For example,

the rationale under a separation of duty policy that requires 2 users to perform the task is

that this deters and controls fraud, as the collusion of 2 users are required for a fraud to

occur. However, when two users are close relatives, then collusion is much more likely.

To achieve the objective of deterring and controlling fraud, the policy should require that

two different steps in a workflow must be performed by users who are not in conflict of

interest with each other. In different environments, the conflict-of-interest relation need to

be defined differently. For instance, inside an organization’s system, relationships such as

close relatives (e.g., spouses and parent-child) can be maintained and users who are close

relatives may be considered to be in conflict of interest. In a peer-review setting, conflict

of interest may be based on past collaborations, common institutions, etc. For another ex-
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ample on user relations, one university may have a policy that a graduate student’s study

plan must be first approved by the student’s advisor and then by the graduate officer in

the student’s department. To specify such constraints, one needs to define and refer to the

advisor-student binary relation as well as the in-the-same-department binary relation.

In this chapter, we introduce the role-and-relation-based access control (R2BAC) model

for workflow authorization systems. The model is role-based in the sense that individual

steps of a workflow are authorized to roles. The model is relation-based in the sense that

user-defined binary relations can be used to specify constraints and an authorized user is

prevented from performing a step unless the user satisfies these constraints. R2BAC is a

natural step beyond Role-Based Access Control (RBAC) [18], especially in the setting of

workflows. As a role defines a set of users, which can be viewed as a unary relation among

the set of all users, a binary relation is the natural next step.

A fundamental problem in workflow authorization systems is the workflow satisfiability

problem (WSP), which asks whether a workflow can be completed in a certain access con-

trol state. We show that WSP is NP-complete in R2BAC. Furthermore, we show that the

intractability is inherent in any workflow authorization systems that support some simple

kinds of constraints. In particular, we show that WSP is NP-hard in any workflow system

that supports either constraints that require two steps must be performed by different users

or constraints that require one step must be performed by a user who also performs at least

one of several other steps. Such intractability results are somewhat surprising and discour-

aging, because the constraints involved are simple and natural. It is also unsatisfying as

such results do not shed light on the computation cost one has to pay to enhance expres-

sive power by introducing user-defined binary relations such as conflict-of-interest relation,

since WSP is NP-complete with or without user-defined relations. Finally, the practical

significance of such intractability results is unclear, as in real world, certain aspects such

as the number of steps in a workflow should be small. To address these issues, we apply

tools from parameterized complexity [27] to WSP. Parameterized complexity is a measure

of computational complexity of problems with multiple input parameters. Parameterized
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complexity enables us to perform finer-grained study on the computational complexity of

WSP.

In many situations, it is not enough to ensure that a workflow can be completed in

the current access control state. In particular, when the workflow is designed to complete

a critical task, it is necessary to make sure that the workflow can be completed even if

certain users become absent in emergency situations. In other words, resiliency is important

in workflow authorization systems. Resiliency in workflow authorization systems differs

from the resiliency policies proposed in Chapter 3 in two major aspects. First, due to

the existence of authorization constraints, even if a set of users together are authorized

to perform all steps in a workflow, it is still possible that they cannot complete the task.

Second, as a workflow consists of a sequence of steps and finishing all these steps may

take a relatively long time, it is possible that certain users become absent at some point and

come back later. In other words, the set of available users may change during the execution

of a workflow. Therefore, more refined notions of resiliency for workflow authorization

systems are needed. In this chapter, we introduce three levels of resiliency in workflow

authorization systems and study the complexity of resiliency checking.

The remainder of this chapter is organized as follows. We introduce the R2BAC model

in Section 4.1. After that, we study the workflow satisfiability problem in Section 4.2 and

study parameterized complexity of the problem in Section 4.3. Finally, we define and study

resiliency problems in workflow systems in Section 4.4.

4.1 The Role-and-Relation-Based Access Control Model for Workflow Systems

In this section, we introduce the Role-and-Relation-Based Access Control (R2BAC)

model for workflow systems. We start with a motivating example.

Example 4 In an academic institution, submitting a grant proposal to an outside sponsor

via the sponsor program services (SPS) is modeled as a workflow with five steps1 (see

Figure 4.1).
1This is a simplified version of the process in the authors’ institution, which also requires signatures of the
department head and the dean’s office.
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  Prepare budget
(Account Clerk)      (Faculty)

Prepare proposal    Submit proposal
(Account Manager)

   Account review
(Account Manager)

     (Expert)
Expert review

Figure 4.1. A workflow for grant proposal submission to outside sponsor
via the sponsor program services (SPS).

1. Preparation: A faculty member prepares a proposal and sends it to the business

office of his or her department.

2. Budget: An account clerk prepares the budget, checks the proposal, and submits it

to the SPS office.

3. Expert Review: A regulation expert in the SPS office reviews the proposal to

check whether the proposal satisfies various regulations, e.g., those governing export

control and human subject research.

4. Account Review: An account manager reviews the proposal and the budget.

5. Submission: An account manager submits the proposal to the outside sponsor.

In the workflow, steps expert review and account review may be per-

formed concurrently while all other steps must be carried out sequentially. The step

preparation can be performed by any personnel who can serve as a primary inves-

tigator, while the step budget must be carried out by an account clerk. A regulation

expert is authorized to review the proposal in the step expert review. The privilege to

perform steps account review and submission is granted to account managers.

The workflow has the following constraints.
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1. Steps preparation, budget, expert review and account reviewmust

be performed by four different users.

2. The account clerk who signs the proposal must be in the same department as the

faculty member who prepares the proposal.

3. The persons who review the proposal must not have a conflict of interest with the one

submitting the proposal.

4. The account manager who reviews the proposal is responsible to submit it to the

outside sponsor.

In the above, Constraint 2 reflects certain procedural and duty requirements, while Con-

straint 1 enforces the principle of separation of duty. Constraint 3 follows the spirit of

separation of duty and goes beyond that. Rather than simply requiring that the two steps

must be performed by different people, the constraint requires that the people who perform

the two steps must not have a conflict of interest. Constraint 4 enforces a binding-of-duty

policy [6] by requiring two tasks be performed by the same user.

As security and practical requirements vary from tasks to tasks, specification of con-

straints plays a crucial role in expression of workflows. As demonstrated in Example 4,

binary relations play an important role in expressing authorization constraints. Most exist-

ing workflow authorization models support only a few pre-defined binary relations, which

limits the expressive power of these models. For example, the model proposed in [7] sup-

ports only six pre-defined binary relations {=, 6=, <,≤, >,≥} between users and roles.

Hence, there is no way to express relations like “in the same department” or “is a family

member”. The model in [6] supports user-defined relations. Our role-and-relation-based

access control (R2BAC) model for workflow systems extends the model in [6] by explicitly

combining roles and relations and by supporting more sophisticated forms of constraints

using these relations.

We now introduce formal definitions for R2BAC. Note that U , R and B are names of

all possible users, roles and binary relations in the system, respectively.
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Definition 4.1.1 (Access Control State) An access control state is given by a tuple

〈U,UR, B〉, where U ⊆ U is a set of users, UR ⊆ U × R is the user-role mem-

bership relation and B = {ρ1, · · · , ρm} ⊆ B is a set of binary relations such that

ρi ⊆ U × U (i ∈ [1,m]). For convenience, we assume that when ρ is in B, ρ is also

in B, and (u1, u2) ∈ ρ if and only if (u1, u2) 6∈ ρ. Also, ρ is the same as ρ. Furthermore,

we assume that B contains two predefined binary relations “=” and “ 6=”, which denote

equality and inequality, respectively.

An access control state 〈U,UR, B〉 defines the environment in which a workflow is to

be run. In particular, B should define all the binary relations that appear in any constraint

in workflows to be run in the environment.

Definition 4.1.2 (Workflow and Constraints) A workflow is represented as a tuple 〈S,�

, SA, C〉, where S is a set of steps, �⊆ S × S defines a partial order among steps in S,

SA ⊆ R×S, and C is a set of constraints, each of which takes one of the following forms:

1. 〈ρ(s1, s2)〉: the user who performs s1 and the user who perform s2 must satisfy the

binary relation ρ.

2. 〈ρ(∃X, s)〉: there exists a step s′ ∈ X such that 〈ρ(s′, s)〉 holds, i.e., the user who

performs s′ and the user who performs s satisfy ρ.

3. 〈ρ(s,∃X)〉: there exists a step s′ ∈ X such that 〈ρ(s, s′)〉 holds.

Intuitively, in a workflow 〈S,�, SA, C〉, that si � sj (i 6= j) indicates that step si must

be performed before step sj . Steps si and sj may be performed concurrently, if neither

si � sj nor sj � si. SA is called role-step authorization and (r, s) ∈ SA indicates that

members of role r are authorized to perform step s.

Also, we may introduce a new type of constraint 〈ρ(∀X)〉 to require that for any two

steps si, sj ∈ X , 〈ρ(si, sj)〉 must hold. Such a constraint can be equivalently represented

using |X|2 constraints in the form of 〈ρ(s1, s2)〉. The new constraint is a syntactic sugar

when we would like to express a requirement that users who perform certain steps must



61

have relation ρ with each other. For instance, the constraint 〈6= (∀X)〉 states that no user

may perform more than one steps in X . Similarly, we may define another syntactic sugar

〈ρ(s,∀X)〉 which requires that the user who performs s has relation ρ with every user who

performs a step in X .

Example 5 Consider the workflow for submitting a grant proposal in Example 4. Let

sprepare, sbudget, sxp review, sac review and ssubmit denote the five steps in the workflow. The

constraints of the workflow can be represented in tuple-based specification as follows.

1. 〈6= (∀{sprepare, sbudget, sxp review, sac review})〉

These require that the first four steps in the workflow must be performed by four

different users.

2. 〈ρsame dept(sbudget, sprepare)〉

(ux, uy) ∈ ρsame dept when ux and uy are in the same department. The constraint

requires that the person who signs the proposal must be in the same department as

the person who prepares it.

3. 〈ρconflict interest(sxp review, sprepare)〉

〈ρconflict interest(sac review, sprepare)〉

(ux, uy) ∈ ρconflict interest when ux and uy have a conflict of interest. The constraint

requires that the person who reviews the proposal must not have a conflict of interest

with the person who prepares it.

4. 〈= (ssubmit, sac review)〉

The constraint requires that account review and submission must be per-

formed by the same person.

Definition 4.1.3 (Plans and Partial Plans) A plan P for workflow W = 〈S,�, SA, C〉 is

a subset of U × S such that, for every step si ∈ S, there is exactly one tuple (ua, si) in P ,

where ua ∈ U .
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A partial plan PP for W is a subset of U × S such that, for every step si ∈ S, there is

at most one tuple (ua, si) in PP , where ua ∈ U . And (ua, si) ∈ PP implies that, for every

sj � si, there exists ub ∈ U such that (ub, sj) ∈ PP .

Intuitively, a plan assigns exactly one user to every step in a workflow, while a partial

plan does this for only a portion of the steps in the workflow. Furthermore, if a step is in a

partial plan, then its prerequisite steps must also be in the partial plan.

Definition 4.1.4 (Valid Plan) Given a workflow W = 〈S,�, SA, C〉, and an access con-

trol state γ = 〈U,UR, B〉, we say that a user u is an authorized user of a step s ∈ S under

γ if and only if there exists a role r such that (u, r) ∈ UR and (r, s) ∈ SA.

We say that a plan P is valid for W under γ if and only if for every (u, s) ∈ P , u is an

authorized user of s, and no constraint in C is violated. We say that W is satisfiable under

γ if and only if there exists a plan P that is valid for W under γ.

Note that there can be multiple valid plans for a workflow W in an access control

state. In fact, it is the existence of multiple valid plans that makes it possible for W to

be completed even if a number of users are absent. In situations where the access control

state changes during the execution of a workflow instance (e.g. users become absent), we

will have to change our plan at runtime and thus constraints need to be checked at runtime

as well. Constraints are checked before the last step restricted by the constraint is to be

executed.

Definition 4.1.5 (Valid Partial Plan) Given a workflow 〈S,�, SA, C〉 and an access con-

trol state 〈U,UR, B〉, let s1, · · · , sm be a sequence of steps such that si 6� sj when i > j. A

partial plan PP is valid with respect to the sequence s1, · · · , si if it assigns one user to each

step in s1, · · · , si and no constraint that is checked before the execution of si is violated by

PP .
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4.2 The Workflow Satisfiability Problem

A fundamental problem in workflow authorization systems is the Workflow Satisfia-

bility Problem (WSP), which checks whether a workflow W is satisfiable under an access

control state γ. Note that, given an access control state 〈U,UR, B〉, checking whether W

is satisfiable under γ is equivalent to checking whether there is a valid plan for W under γ.

In this section, we study the computational complexity of WSP.

4.2.1 Computational Complexity of WSP for R2BAC

Theorem 4.2.1 WSP is NP-complete in R2BAC.

The proof of Theorem 4.2.1 consists of two parts. The first part is Lemma 4.2.2, which

shows that WSP is in NP in R2BAC. In the second part, Lemma 4.2.3 and Lemma 4.2.4

show that WSP is NP-hard in two restricted cases.

Lemma 4.2.2 WSP is in NP in R2BAC.

Proof The length of a plan is bounded by the number of steps in the workflow. Given a

plan for a workflow, checking whether a user is authorized to perform a step can be done

in linear time. Also, checking whether a constraint is satisfied by the plan can be done in

polynomial time. Hence, checking whether a plan is valid can be done in polynomial time.

A nondeterministic Turing machine can thus guess a plan and check whether it is valid in

polynomial time.

Lemma 4.2.3 WSP is NP-hard in R2BAC, if the workflow uses constraints of the form

〈6= (s1, s2)〉.

Please refer to Appendix B.1 for the proof of the above lemma. In the proof, we use

a reduction from the NP-complete GRAPH K-COLORABILITY problem. In the reduction,

vertices in a graph are mapped to steps in the workflow, while colors are mapped to users.

In the GRAPH K-COLORABILITY problem, the number of vertices is normally much larger
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than the number of colors. Hence, the number of steps in the constructed workflow is much

larger than the number of users, which is rarely the case in practice. Such a phenomenon

indicates that classical complexity framework is inadequate to study the complexity of

WSP in a real-word setting. This motivates us to apply the tool of parameterized complex-

ity to perform finer-grained study of the complexity of WSP, which will be discussed in

Section 4.3.

Lemma 4.2.4 WSP is NP-hard in R2BAC, if the workflow uses constraints of the form

〈= (s,∃X)〉.

Please refer to Appendix B.1 for the proof of the above lemma. In the proof, we use a

reduction from the NP-complete HITTING SET problem.

Although WSP is intractable in general in R2BAC, the problem is in P for certain

special cases. Lemma 4.2.5 states a tractable case of WSP.

Lemma 4.2.5 WSP is in P in R2BAC, if the workflow only has constraints in the forms of

〈= (s1, s2)〉.

Proof Given a step s, let AU(s) be the set of users authorized to perform step s. A

constraint 〈= (s1, s2)〉 requires s1 and s2 be performed by the same user. In this case, if

AU(s1) ∩ AU(s2) = ∅, then it is impossible to perform the two steps without violating

the constraint and the answer to the WSP instance is “no”. Otherwise, we replace AU(s1)

and AU(s2) with AU(s1) ∩ AU(s2) and then repeat the process for another constraint

in the workflow until all constraints in the workflow have been processed. If we finish

processing all constraints without answering “no”, the answer to the WSP instance is “yes”.

Since set intersection can be done in polynomial time and we need to compute at most |C|

intersections, a given WSP instance can be answered in polynomial time.

4.2.2 The Inherent Complexity of Workflow Systems

In Section 4.2.1, we show that WSP is NP-hard in R2BAC in general. In this section,

we point out that the intractability of WSP is inherent to certain fundamental features of
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workflow authorization systems and is independent of modeling approaches. We say that

a workflow system supports the feature of user-step authorization if it allows one to spec-

ify (either directly or indirectly) which users are allowed to perform which steps in the

workflow. User-step authorization is probably the most fundamental feature and almost all

workflow systems found in existing literature support such a feature. A user-inequality con-

straint states that certain two steps cannot be performed by the same user, i.e., 〈6= (s1, s2)〉

in R2BAC. An existence-equality constraint states that a certain step must be performed by

a user who performs at least one step in a given set of steps, i.e., 〈= (s,∃X)〉 in R2BAC.

Theorem 4.2.6 Checking whether a set of users can complete a workflow is NP-hard for

any workflow system that supports user-step authorization and user-inequality constraints.

Proof The reduction from GRAPH K-COLORABILITY in the proof of Lemma 4.2.3 only

makes use of user-step authorization and user-inequality constraints offered by R2BAC.

Therefore, the reduction also applies to the satisfiability problem for any workflow system

that supports these two features.

Note that user-inequality constraints are widely used in existing literature to enforce

separation of duty in workflow systems. Many workflow models [5–7] support such type

of constraints.

Theorem 4.2.7 Checking whether a set of users can complete a workflow is NP-hard

for any workflow system that supports user-step authorization and existence-equality con-

straints.

Proof The reduction from HITTING SET in the proof of Lemma 4.2.4 only makes use

of user-step authorization and existence-equality constraints offered by R2BAC. Therefore,

the reduction also applies to the satisfiability problem for any workflow system that sup-

ports these two features.

Note that existence-equality constraint is a natural way to enforce the general form of

binding of duty policies, which require a step be performed by one of those users who have

performed some prerequisite steps.
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4.3 Beyond Intractability of WSP

In Section 4.2, we have shown that WSP is NP-complete in R2BAC for the general case

as well as the two special cases where only a simple form of constraints are used. Such

results, however, are unsatisfying, as they do not shed light on the computation cost associ-

ated with introducing additional expressive features such as user-defined binary relations,

since the complexity of WSP is NP-complete in all the three cases. Such a phenomenon

indicates that classical computational complexity does not precisely capture the computa-

tional difficulty of different cases of WSP. Furthermore, the practical significance of such

intractability results is unclear. The input to WSP consists of many aspects, such as the

number of steps in the workflow, the number of constraints and the number of users in the

access control state etc. In practice, some aspects of the input do not take a large value.

For instance, even though the number of users may be large, the number of steps in the

workflow is expected to be small. An interesting question that arises is whether WSP can

be solved efficiently given the restriction that the number of steps is small.

To address these issues, we apply tools from the theory of parameterized complex-

ity [27] to WSP.

4.3.1 Why Parameterized Complexity?

Parameterized complexity is a measure of complexity of problems with multiple input

parameters. The theory of parameterized complexity was developed in the 1990s by Rod

Downey and Michael Fellows. It is motivated, among other things, by the observation that

there exist hard problems that (most likely) require exponential runtime when complex-

ity is measured in terms of the input size only, but that are computable in a time that is

polynomial in the input size and exponential in a (small) parameter k. Hence, if k is fixed

at a small value, such problems can still be considered ‘tractable’ despite their traditional

classification as ‘intractable’.

In classical complexity, a decision problem is specified by two items of information: (1)

the input to the problem, and (2) the question to be answered. In parameterized complexity,
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there are three parts of a problem specification: (1) the input to the problem, (2) the aspects

of the input that constitute the parameter, and (3) the question to be answered. Normally,

the parameter is selected because it is likely to be confined to a small range in practice.

The parameter provides a systematic way of specifying restrictions of the input instances.

Some NP-hard problems can be solved by algorithms that are exponential only in a fixed

parameter while polynomial in the size of the input. Such an algorithm is called a fixed-

parameter tractable algorithm. More specifically, an algorithm for solving a problem is a

fixed-parameter tractable algorithm, if when given any input instance of the problem with

parameter k, the algorithm takes time O(f(k)nα), where n is the size of the input, k is the

parameter, α is a constant (independent of k), and f is an arbitrary function.

If a problem has a fixed-parameter tractable algorithm, then we say that it is a fixed-

parameter tractable problem and belongs to the class FPT. For example, the NP-complete

VERTEX COVER asks, given a graph G and an integer k, whether there is a size-k set V ′ of

vertices, such that every edge inG is adjacent to at least one vertex in V ′. This problem is in

FPT when taking k as the parameter, as there exists a simple algorithm with running time

of O(2kn), where n is the size of G. Note that not all intractable problems are in FPT.

For instance, the NP-complete DOMINATING SET problem is fixed-parameter intractable.

Given a graph G and an integer k, DOMINATING SET asks whether there is a size-k set V ′

of vertices such that every vertex in G is either in V ′ or is connected to a vertex in V ′ by an

edge. For DOMINATING SET, there is no significant alternative to trying all size-k subsets

of vertices in G and there are O(nk) such subsets, where n is the number of vertices.

Finally, we would like to point out that a problem in FPT does not necessarily mean

that it can be efficiently solved as long as the parameter is small. Note that f(k) may be

a function that grows very fast over k. For instance, an O(kk
k
n) algorithm is not practi-

cal even if k is as small as 5, just as we cannot claim that a problem in P can be solved

efficiently when the best algorithm takes time O(n100). However, showing that a prob-

lem is in FPT has significant impact as experiences have shown that improvement on

fixed-parameter tractable algorithms are oftentimes possible. For instance, when VERTEX

COVER was first observed to be solvable in O(f(k)n3), f(k) was such a function that the
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algorithm is utterly impractical even for k = 1. An O(2kn) algorithm was proposed later,

and then an algorithm with running timeO(kn+(4/3)kk2) was revealed. Right now, VER-

TEX COVER is well-solved for input of any size, as long as the parameter value is k ≤ 60.

Parameterized complexity offers a fresh angle into designing algorithms for such problems.

In this dissertation, we only study which subcases of WSP are in FPT and which are

not. Improvement on the fixed-parameter tractable algorithms for the FPT cases is beyond

the scope of this dissertation.

4.3.2 Fixed Parameter Tractable Cases of WSP

As the number of steps in a workflow is likely to be small in practice, we select the

number of steps as the parameter for WSP. We first show that a special case of WSP in

which only the 6= relation is allowed is in FPT. The proof gives a fixed-parameter tractable

algorithm and illustrates the intuition why this problem is in FPT.

Lemma 4.3.1 WSP in R2BAC is in FPT, if 6= is the only binary relation used by con-

straints in the workflow. In particular, given a workflow W and an access control state γ,

WSP can be solved in time O(kk+1n), where k is the number of steps in W and n is the

size of the entire input to the problem.

Proof A constraint using binary relation 6= requires a certain step to be performed by a

user who does not perform certain other step(s). Since there are k steps in W , if step s

is authorized to no less than k users in U , then we can always find an authorized user of

s, who is not assigned to any other steps in W . In other words, we only need to consider

those steps that are authorized to less than k users in U , and there are at most k such steps.

We construct partial plans for these steps by trying all combinations of authorized users

and there are no more than kk such combinations. Verifying whether a plan is valid can be

done in O(kn), as there are O(n) constraints and each constraints restricts at most k steps.

Therefore, checking whether U can complete W can be done in time O(kk+1n).
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The following Theorem subsumes Lemma 4.3.1.

Theorem 4.3.2 WSP is in FPT in R2BAC, if = and 6= are the only binary relations used

by constraints in the workflow.

Please refer to Appendix B.1 for the proof of Theorem 4.3.2. In the proof of Theo-

rem 4.3.2, we focus on showing that the problem is in FPT. Improving the fixed-parameter

tractable algorithm in the proof is beyond the scope of this dissertation.

4.3.3 WSP Is Fixed Parameterized Intractable in General

A natural question to ask is whether WSP is still in FPT when user-defined binary

relations are allowed in the workflow. We show that the answer is “no”. Similar to proving

a problem is intractable in classical complexity framework, we prove that a problem is

fixed-parameter intractable by reducing another fixed-parameter intractable problem to the

target problem. To preserve fixed-parameter tractability, we need to use a kind of reduction

different from the classical ones used in NP-completeness proofs. We say that L reduces

to L′ by a fixed-parameter reduction if given an instance 〈x, k〉 for L, one can compute

an instance 〈x′ = g1(〈x, k〉), k′ = g2(k)〉 in time O(f(k)|x|α) such that 〈x, k〉 ∈ L if and

only if 〈x′, k′〉 ∈ L′, where g1 and g2 are two functions and α is a constant. Note that

many classical reductions are not fixed-parameter reduction as they do not carry enough

structure, which leads to lose of control for the parameter.

Under parameterized complexity, each problem falls somewhere in the hierarchy: P ⊆

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ NP. If a problem is W [1]-hard, then it is

believed to be fixed-parameter intractable. To understand the classes W [t], we can start

by viewing a 3CNF formula as a (boolean) decision circuit, consisting of one input for

each variable and structurally a large and gate taking inputs from a number of small or

gates. (Some wires in the circuit may include a negation.) The or gates are small in

that each of them takes 3 inputs, and the and gate is large in that it takes an unbounded

number of inputs. The weft of a decision circuit is the maximum number of large gates on

any path from the input variable to the output line. The weighted satisfiability problem for
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decision circuits asks whether a decision circuit has a weight k satisfying assignment (i.e., a

satisfying assignment in which at most k variables are set to true). The class W [t] includes

all problems that are fixed parameter reducible to the weighted satisfiability problem for

decision circuits of weft t.

The following theorem states that WSP is fixed-parameter intractable in R2BAC when

user-defined binary relations are allowed in the workflow. The proof of the theorem is in

Appendix B.1.

Theorem 4.3.3 WSP is W [1]-hard in R2BAC if user-defined binary relations are used in

constraints.

We conclude from Theorem 4.3.2 and Theorem 4.3.3 that supporting user-defined bi-

nary relations introduces additional complexity to WSP in R2BAC. Parameterized com-

plexity reveals such a fact that is hidden by classical complexity framework and allows us

to better understand the source of complexity of WSP in R2BAC. We point out that a naive

algorithm solving WSP for R2BAC, which enumerates all possible plans and verifies each

of them, takes time O(knk+1), which may be acceptable when k and n are small. We also

note that it is possible to develop algorithms with heuristic optimizations that can solve

WSP efficiently for practical instances; the study of such algorithms is beyond the scope of

this dissertation.

Finally, we provide an upperbound of the complexity of WSP in R2BAC in the param-

eterized complexity framework.

Theorem 4.3.4 WSP in R2BAC is in W [2].

Please refer to Appendix B.1 for the proof of Theorem 4.3.4. It remains open whether

WSP is W [1]-complete or W [2]-complete.

4.4 Resiliency in Workflow Systems

We have studied the workflow satisfiability problem (WSP) in previous sections. In

many situations, it is not enough to ensure that a workflow is satisfiable in the current
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access control state. In particular, when the workflow is designed to complete a critical

task, it is necessary to guarantee that even if certain users are absent unexpectedly, the

workflow can still be completed. Resiliency is a property of those system configurations

that can satisfy the workflow even with absence of some users.

In this section, we define and study resiliency in workflow systems. The workflow

model we use is R2BAC. Before giving formal definitions of resiliency in workflow sys-

tems, let’s consider three scenarios.

1. The execution of instances of a workflow is done in a relatively short period of time,

say within fifteen minutes. Although it is possible that certain users are absent before

the execution of a workflow instance, it is unlikely that available users become absent

during the execution of the workflow instance. In other words, the set of users who

are available for a workflow instance is stable.

2. The execution of instances of a workflow takes a relatively long period of time, say

within one day. Some users may not come to work on the day when a workflow

instance is executed. Furthermore, some users may have to leave at some point (e.g.

between the execution of two steps) before the workflow instance is completed and

will not come back to work until the next day. In such a situation, the set of users

available to the workflow instance becomes smaller and smaller over time. Such a

scenario would also be possible in potentially hazardous situations such as battlefield

and fire-fighting.

3. The execution of instances of a workflow takes a long period of time. For example,

only a single step of the workflow is performed each day. Since the set of users who

come to work may differ from day to day, the set of available users may differ from

step to step.

We capture the above three scenarios by proposing three levels of resiliency in workflow

systems. They are static (level-1) resiliency, decremental (level-2) resiliency and dynamic

(level-3) resiliency. In static resiliency, a number of users are absent before the execution
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of a workflow instance, while remaining users will not be absent during the execution; in

decremental resiliency, users may be absent before or during the execution of a workflow

instance, and absent users will not become available again; in dynamic resiliency, users

may be absent before or during the execution of a workflow instance and absent users may

become available again. In all cases, we assume that the number of absent users at any

point is bounded by a parameter t. We now give formal definitions of the three levels of

resiliency.

Definition 4.4.1 (Static Resiliency) Given a workflow W and an integer t ≥ 0, an access

control state 〈U,UR, B〉 is statically resilient for W up to t absent users if and only if for

every size-t subset U ′ of U , W is satisfiable under 〈(U − U ′),UR, B〉.

Intuitively, an access control state is statically resilient for a workflow if the workflow

is still satisfiable after removing t users from the access control state.

Definition 4.4.2 (Decremental Resiliency) Given a workflow W = 〈S,�, SA, C〉 and an

integer t, an access control state 〈U,UR, B〉 is decrementally resilient for W up to t absent

users, if and only if Player 1 can always win the following two-person game when playing

optimally.

Initialization: PP ← ∅, U0 ← U , S0 ← S, t0 ← t and i← 1.

Round i of the Game:

1. Player 2 selects a set U ′i−1 such that |U ′i−1| ≤ ti−1.

Ui ← (Ui−1 − U ′i−1) and ti ← (ti−1 − |U ′i−1|).

2. Player 1 selects a step sai
∈ Si−1 such that ∀sb(sb ≺ sai

⇒ sb 6∈ Si−1).

Player 1 selects a user u ∈ Ui.

PP ← PP ∪ {(u, sai
)} and

Si ← (Si−1 − {sai
}).

If PP is not a valid partial plan with respect to the sequence sa1 , · · · , sai
, then Player

1 loses.
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3. If Si = ∅, then Player 1 wins; otherwise, let i← (i+ 1) and the game goes on to the

next round.

In each round, Player 2 may remove a certain number of users and then Player 1 has to pick

a remaining step that is ready to be performed and assign an available user to it. The total

number of users Player 2 may remove throughout the game is bounded by t. An access

control state is decrementally resilient for a workflow if there is always a way to complete

the workflow no matter when and which users are removed, as long as the total number of

absent users is bounded by t.

Also, in Definition 4.4.2, we assume that Player 1 plays optimally, which implies that

in each round, Player 1 has to consider not only the next step but also all future steps.

Example 6 There is a workflow W = 〈S,�, SA, C〉 and an access control state

〈U,UR, B〉, where S = {s1, s2}, s1 � s2, C = {〈6= (s1, s2)〉}, SA =

{(r1, s1), (r2, s2)}, and UR = {(Alice, r1), (Alice, r2), (Bob, r1), (Carl , r2)}. All users in

U = {Alice,Bob,Carl} are available before the execution of s1. Consider the following

two choices of user assignment for s1.

1. Alice is assigned to perform s1: If Carl becomes absent after the execution of s1,

then Alice is the only user authorized to perform s2. However, assigning Alice to

s2 violates the constraint 〈6= (s1, s2)〉. That is to say, the remaining users cannot

complete the workflow.

2. Bob is assigned to perform s1: In this case, no matter which single user becomes

absent after the execution of s1, we can always find an authorized user (either Alice

or Carl ) to perform s2 without violating the constraint 〈6= (s1, s2)〉.

Thus it is clear that having Bob perform s1 is a better choice than having Alice with respect

to resiliency. Actually, it can be proved that this access control state is decrementally

resilient for W up to one absent user.

Definition 4.4.3 (Dynamic Resiliency) Given a workflow W = 〈S,�, SA, C〉 and an in-

teger t, an access control state 〈U,UR, B〉 is dynamically resilient for W up to t absent
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users, if and only if Player 1 can always win the following two-person game when playing

optimally.

Initialization: PP ← ∅, S0 ← S and i← 1.

Round i of the Game:

1. Player 2 selects a set U ′i−1 of up to t users.

Ui ← (U − U ′i−1).

2. Player 1 selects a step sai
∈ Si−1 such that ∀sb(sb ≺ sai

⇒ sb 6∈ Si−1).

Player 1 selects a user u ∈ Ui.

PP ← PP ∪ {(u, sai
)} and

Si ← (Si−1 − {sai
}).

If PP is not a valid partial plan with respect to the sequence sa1 , · · · , sai
, then Player

1 loses.

3. If Si = ∅, then Player 1 wins; otherwise, let i← (i+ 1) and the game goes on to the

next round.

Intuitively, Player 2 may temporarily remove up to t users from the access control state

at the beginning of each round. Then, Player 1 has to select a remaining step that is ready

to be performed and assign an available user to it. After that, the access control state is

restored and the next round of the game starts.

The following theorem states a relationship among the three levels of resiliency in work-

flow systems: dynamic (level-3) resiliency is stronger than decremental (level-2) resiliency,

which is in turn stronger than static (level-1) resiliency.

Theorem 4.4.1 Given a workflow W , an access control state γ and an integer t, the fol-

lowing are true.

• If γ is dynamically resilient for W up to t absent users, then it is also decrementally

resilient for W up to t absent users.
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• If γ is decrementally resilient for W up to t absent users, then it is also statically

resilient for W up to t absent users.

But the reverse of either of the above statements is not true.

Proof The game defining dynamic resiliency allows Player 2 to play any strategy he/she

can in the game defining decremental resiliency. The same relation holds between the

game defining decremental resiliency and the definition of static resiliency. Therefore, the

theorem holds.

4.4.1 Computational Complexities of Checking Resiliency

Theorem 4.4.2 Checking whether an access control state γ is statically resilient for a

workflow W up to t users, which is called the Static Resiliency Checking Problem (SRCP),

is NP-hard and is in coNPNP.

Proof When t = 0, SRCP degenerates to WSP. Since WSP is NP-complete, SRCP is

NP-hard.

Next, we prove that the problem is in coNPNP. From Lemma 4.2.2, checking whether

a workflow is satisfiable under an access control state 〈U,UR, B〉 is in NP. We now

construct a nondeterministic oracle Turing machine M that decides the complement of the

problem. Assume that M has access to an NP oracle N which checks whether a workflow

is satisfiable under an access control state. M nondeterministically selects a set U ′ of t

users and asks N whether the workflow is satisfiable under 〈(U − U ′),UR, B〉. If the

answer is “yes”, M returns “no”; otherwise, M returns “yes”. In this case, M returns “yes”

if and only if the answer to the SRCP instance is “no”. In general, SRCP is in coNPNP.

It remains open whether SRCP is coNPNP-complete or not. Readers who are familiar

with computational complexity theory will recognize that coNPNP is a complexity class

in the Polynomial Hierarchy. Because the Polynomial Hierarchy collapses when P = NP,

showing that an NP-hard decision problem is in the Polynomial Hierarchy, although is not
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equivalent to showing that the problem is NP-complete, has the same consequence: the

problem can be solved in polynomial time if and only if P =NP.

Theorem 4.4.3 Checking whether an access control state γ is decremental resilient for a

workflow W up to t users, which is called the Decremental Resiliency Checking Problem

(CRCP), is PSPACE-complete.

Theorem 4.4.4 Checking whether an access control state γ is dynamically resilient for

a workflow W up to t users, which is called the Dynamic Resiliency Checking Problem

(DRCP), is PSPACE-complete.

Please refer to Appendix B.2 for proofs of Theorem 4.4.3 and 4.4.4. In the proofs,

we reduce the PSPACE-complete QUANTIFIED SATISFIABILITY problem to CRCP or

DRCP. Intuitively, we use user-step assignments in workflow to simulate truth assignments

for boolean variables.

Note that given a workflow W = 〈S,�, SA, C〉, there may not exist an access control

state that is decrementally or dynamically resilient for W even just up to one absent user,

when the equality relation is used in constraints. For instance, assume that S = {s1, s2},

s1 � s2 and C = {〈= (s1, s2)〉}. Constraint 〈= (s1, s2)〉 requires s1 and s2 be performed

by the same user. (Such constraints appear in [6] under the name binding-of-duty con-

straints.) If the user who executed s1 becomes absent before the execution of s2, then there

is no way to finish the workflow without violating the constraint no matter which users re-

main available. This illustrate that bind-of-duty constraints can make it difficult to achieve

decremental or dynamic resiliency. This problem can be addressed either by not using such

constraints in settings where such resiliency is desirable, or by introducing mechanisms

such as delegation.
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5 DELEGATION IN WORKFLOW AUTHORIZATION SYSTEMS

In the last chapter, we have studied satisfiability and resiliency in workflow authorization

systems. There are a couple of ways to enforce resiliency policies in workflow authoriza-

tion systems. One approach is to have enough redundancy of human resources in the system

configuration. However, this approach leads to high costs. An alternative approach is to

use user-to-user delegation (or delegation for short). Delegation is a mechanism that allows

a user A to act on another user B’s behalf by making B’s access rights available to A. It

is well recognized as an important mechanism to provide fault-tolerance and flexibility in

access control systems, and has gained popularity in the research community [9–17].

Essentially, a delegation operation temporarily changes the access control state so as to

allow a user to use another user’s access privileges. While delegation can make an access

control system more resilient to absence of users, it may lead to violation of security poli-

cies, especially static separation of duty policies. For instance, if role r1 and role r2 are

mutually exclusive, then a user who is a member of r1 should not be allowed to receive

r2 from others through delegation. In contrast to normal access right administration op-

erations, which are performed centrally, delegation operations are usually performed in a

distributed manner. That is to say, users have certain control on the delegation of their own

rights. In order to prevent abuse, some delegation models support specification of autho-

rization rules, which control who can delegate what privileges to other users as well as who

can receive what privileges from others.

Delegation may be viewed as a module that introduces additional functionalities into

access control systems. To enhance existing access control systems with delegation, one

needs to incorporate a delegation module into those systems. A naive approach is to place

the delegation module on top of the access control module, and let the delegation module

handle delegation operations and manipulate access control configuration. For example,

when Alice delegates the role r to Bob, the access control configuration is modified so that
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Bob is authorized for r in the new configuration. The underlying access control module

consults the access control configuration without concerning delegation. Even though such

a naive approach is simple and allows reusing existing implementation of access control

modules, it introduces security breaches into the system. As we point out in Section 5.1.1,

colluding users could exploit such breaches to circumvent security policies in the access

control system. Due to the decentralized nature of delegation and the fact that not all the

users in the system are trusted, collusion is a threat that must not be overlooked.

Since the naive approach could be insecure, more sophisticated methods are needed to

create a secure system with delegation support. Surprisingly, even though delegation is

well recognized as a very useful component of access control systems, to our knowledge,

no work has performed in-depth study on how to incorporate a delegation module into

access control systems in a secure manner. In this chapter, we formally define the notion of

security with respect to delegation. Intuitively, if an access control system is secure, then

any group of users cannot “enhance the power” (i.e. become capable to complete more

tasks than before) of the group through mutual delegation within the group. To justify this

intuition, by delegating her privileges to user A, user B allows A to work on her behalf.

This indicates that A gains no more than what B has, and thus, A should not be able to do

more than A and B together can do before the delegation operation. This further implies

that, after the delegation operation, A and B as a group cannot do more than before. If a

system does not have such a property, whenA andB collude, they may gain extra power by

delegating privileges to each other. In that case, a group of colluding users can do more than

they are supposed to do with the “help” of delegation, and the system is thus considered to

be insecure with respect to delegation.

The remainder of this chapter is organized as follows. We first provide a formal def-

inition of security with respect to delegation in Section 5.1 and then study enforcement

mechanisms for delegation security in Section 5.2. Finally, we discuss how to use delega-

tion to enforce resiliency in Section 5.3.
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5.1 Delegation in Workflow Authorization Systems

Delegation is a mechanism that allows a user A to act on another user B’s behalf by

making B’s access rights available to A. Delegation is an effective approach to enforce

resiliency in workflow authorization systems. To achieve resiliency, we may delegate the

privileges of absent users to available users so that steps that are only authorized to absent

users can now be completed. We will discuss how to enforce resiliency using delegation in

detail in Section 5.3.

Even though delegation is effective in achieving resiliency, simply adding delegation

support to a workflow authorization system may lead to security breaches. In particular,

colluding users may circumvent security constrains in workflows using delegation. In this

section, we study the impact of delegation on the security of workflow authorization sys-

tems. We first provide definitions related to delegation and formalize delegation operations

as access control state transition operations. Next, in Section 5.1.1, we give examples on

delegation-based attacks on workflow authorization systems. Finally, in Section 5.1.2, we

formally define the notion of security with respect to delegation in access control systems.

Definition 5.1.1 (Access Control State with Delegation) An access control state γ is

given as a tuple 〈UR,PA,DR, B〉, where UR ⊆ U ×R is user-role membership relation,

DR ⊆ U × U × R × {“g”, “t”} is delegation relation, and B is a set of binary relations

between users.

The representation of access control state in Definition 5.1.1 is similar to that in Defi-

nition 4.1.1, except that a delegation relation DR is included in the new definition. In the

delegation relation DR, (u1, u2, r, “g”) indicates that u1 has delegated the role r to u2 via a

grant operation, while (u1, u2, r, “t”) indicates that u1 has delegated the role r to u2 via a

transfer operation. The difference between grant and transfer will be discussed later in this

section.

Given a state γ, each user has a set of roles for which the user is authorized. A user

is authorized for a role r if and only if he/she is a member of r or he/she received r from
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another user through delegation. We formalize this by defining a function authR : U×Γ→

2R, where Γ is the set of all states.

authR(u, 〈UR,PA,DR, B〉) = {r | (u, r) ∈ UR

∨ ∃u′((u′, u, r, “g”) ∈ DR ∨ (u′, u, r, “t”) ∈ DR)}

When a user u is authorized for the role r, he/she is authorized for the permissions assigned

to r.

Next, we introduce the notations related to delegation. Assume that Alice delegates

the role Accountant to Bob. In such an operation, Alice, who is the granter of privilege,

is called delegator; Bob, who is the receiver of privilege, is called delegatee; the role

Accountant is the delegated privilege. We assume that each delegation operation has only

one delegated privilege. If a user wants to delegate multiple privileges to the same receiver,

he/she can perform multiple delegation operations.

A delegation operation is essentially an access control state transition operation, which

takes one of the following three forms:

• grant(u1, u2, r): user u1 grants role r to user u2. After the delegation operation, u2

gains r and u1 still keeps r.

• trans(u1, u2, r): user u1 transfers role r to user u2. After the delegation operation,

u2 gains r and u1 (temporarily) loses r.

• revoke(u1, u2, r): user u1 revokes the delegated privilege, role r, from u2.

Note that a user can grant or transfer only the roles he/she is a member of to others.

To simplify delegation relation, we assume that a delegatee cannot further delegate the

delegated privilege to other users, and only the corresponding delegator can revoke the

delegated privilege from the delegatee.

Since delegation is performed in a distributed manner, in the sense that everyone may

perform delegation operations, it is undesirable to allow a user to delegate his/her roles

in a completely unrestricted way. Delegation operations are thus subject to the control of

authorization rules, which takes one of the following three forms:
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• can grant(cond, r): a user who satisfies condition cond can grant r to other users,

where cond is an expression formed using roles, the binary operators ∧ and ∨, the

unary operator ¬, and parentheses.

• can transfer(cond, r): a user who satisfies condition cond can transfer r to other

users.

• can receive(cond, r): a user who satisfies condition cond can receive r from other

users.

For example, the rule can receive(Clerk ∧ ¬Treasurer, Accountant) states that

anyone who is a member of Clerk but not a member of Treasurer can receive the

role Accountant.

Definition 5.1.2 (Administrative State) An administrative state consists of a set RL of

authorization rules. Given RL, a delegation operation grant(u1, u2, r) (or similarly,

trans(u1, u2, r)) succeeds in the state 〈UR,PA,DR, B〉 if and only if

(u1, r) ∈ UR ∧ can grant(c1, r) ∈ RL ∧ (u1 satisfies c1)

∧ can receive(c2, r) ∈ RL ∧ (u2 satisfies c2)

Otherwise, the delegation operation fails.

To simplify management, we assume that if a user u1 granted or transferred a role r to

u2 and has not revoked r from u2 yet, then u1 can neither grant nor transfer r to u2 again.

That is to say, at any moment, a user may receive a role from the same user at most once.

But a user may receive the same role from different users.

We use γ →RL
op γ′ to denote the state transition from γ to γ′ after applying the delegation

operation op under administrative state RL. Let γ = 〈UR,PA,DR, B〉. The state transition

rules are described as follows:

• op = grant(u1, u2, r): If op fails, then γ′ = γ. Otherwise, γ′ = 〈UR,PA,DR′,B〉,

where DR′ = DR ∪ {(u1, u2, r, “g”)}.
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• If op = trans(u1, u2, r): If op fails, then γ′ = γ. Otherwise, γ′ =

〈UR′,PA,DR′,B〉, where UR′ = UR/{u1, r} and DR′ = DR ∪ {(u1, u2, r, “t”)}.

• If op = revoke(u1, u2, r): There are three cases. Let γ′ = 〈UR′,PA,DR′,B〉.

– If (u1, u2, r, “g”) ∈ DR, then UR′ = UR and DR′ = DR/{(u1, u2, r, “g”)}.

– If (u1, u2, r, “t”) ∈ DR, then UR′ = UR ∪ {(u1, r)} and DR′ =

DR/{(u1, u2, r, “t”)}.

– Otherwise, γ′ = γ. It indicates that u2 did not receive r from u1 in γ, and thus

the revocation fails.

Note that PA and B are not affected by state transition rules.

With the above state transition rules, we may apply a sequence Q of delegation opera-

tions one by one to γ and acquire γ′. We say that γ′ is reachable from γ under administra-

tive state RL, which is denoted as γ  RL
Q γ′.

An access control system with delegation support is defined in below.

Definition 5.1.3 An access control system is represented as a 3-tuple 〈γ,W,RL〉, where γ

is the initial access control state, W is a set of workflows and RL is the administrative state.

We assume that in the initial state γ = 〈UR,PA,DR, B〉 of an access control system,

we always have DR = ∅. That is to say, no delegation operations have been performed in

the initial state.

5.1.1 Circumventing Security Policies Using Delegation

In this section, we consider how malicious users may collude to circumvent security

policies in access control systems. We present two examples describing two scenarios,

in which colluding users successfully complete those tasks that they would not be able to

complete without the “help” of delegation. After each example, we summarize the charac-

teristic of the attack in the scenario.
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Example 7 In an institution, a sensitive task t must be completed by a single user who is a

member of both roles r1 and r2. Task t is modeled as workflow w1 = 〈S,�, SA, C〉, where

S ={s1, s2}, s1 ≺ s2

C ={〈= (s1, s2)〉}

Permissions to perform s1 and s2 are assigned to r1 and r2, respectively. The constraint in

C requires that the two steps must be performed by the same user, which enforces that an

instance of w1 can be completed only by a user who is a member of both r1 and r2.

Alice and Bob are employees of the institution. Alice is a member of r1 but not r2,

while Bob is a member of r2 but not r1. Clearly, neither Alice nor Bob is qualified to

complete an instance of w1. However, if Alice delegates (either by grant or transfer) r1 to

Bob, then Bob is authorized to perform both s1 and s2 and he is thus able to complete an

instance of w1. In other words, if Alice and Bob collude, they can complete a task which

they should not be able to complete.

In Example 7, Alice “lends” her role membership of r1 to Bob to make him more “pow-

erful” than before. The example demonstrates that, using delegation, a group of colluding

users may create a “more powerful” user by aggregating role memberships of different in-

dividuals in the group. In that case, security policies that require a single user (rather than

multiple users) with multiple role memberships to complete a task could be circumvented.

Example 8 In a company, the task of issuing checks is modeled as a workflow consisting of

two steps spre and sapp , which stand for “check preparation” and “approval”, respectively.

In order to prevent fraudulent transactions, spre and sapp must be performed by two different

members of the role Treasurer (or two Treasurers for short). The workflow can be

represented as w2 = 〈S,�, SA, C〉, where

S ={spre , sapp}, spre ≺ sapp

C ={〈6= (spre , sapp)〉}

Also, for the sake of resiliency, the company allows a Treasurer to transfer his/her

role to a Clerk in case he/she is not able to work due to sickness or some
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other reasons. In other words, can transfer(Treasurer, Treasurer) ∈ RL and

can receive(Clerk, Treasurer) ∈ RL.

Alice and Bob are employees of the company and they decided to collude to issue

checks for themselves. Alice is a Treasurer, while Bob is a Clerk and is thus not qualified

to perform any step in w2. To achieve the goal, Alice and Bob do the followings:

1. Alice performs trans(Alice,Bob, Treasurer), which makes Bob a member of the

role Treasurer.

2. Bob performs spre to prepare a check for Alice.

3. Alice performs revoke(Alice,Bob, Treasurer) to revoke Treasurer from Bob and

regains the role.

4. Alice performs sapp to approve the check prepared by Bob.

What the workflow system sees is that spre and sapp are performed by two different

users. Thus, the constraint 〈6= (spre , sapp)〉 is satisfied and the operation succeeds.

After all of the above being done, a check is issued and Alice and Bob may share the

money.

In Example 8, Alice’s role membership of Treasurer is used twice by two different

users in the same workflow instance. This example demonstrates that colluding users can

make “copies” of their access privileges using delegation to bypass security constraints that

enforce separation of duty.

5.1.2 Formal Definition of Security

We have seen examples on how colluding users may circumvent security policies in

access control systems with the help of delegation. It is clear that if an access control

system allows colluding users to bypass security policies, then the system is insecure. But,

how can we tell whether a security policy has been circumvented by delegation operations?
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What should a “secure” system look like? We answer these fundamental questions by

formally defining the notion of security with respect to delegation.

First of all, we present a general definition of security, which is independent of the

concrete design of access control systems. Given an access control system, we define the

predicate can complete, such that can complete(t, U1, U2, γ) is “true” if and only if users

in U1 together can complete task t when the initial access control state is γ and only users

in U2 can perform delegation operations. The concrete definition of can complete depends

on how tasks are modeled and the concrete design of access control systems. We say that a

group of users becomes more powerful (or gain power enhancement) when they eventually

complete a task that they are not able to complete in the initial state (delegation is needed to

change the state in this case). Intuitively, if an access control system is secure with respect

to delegation, then a group of users cannot enhance the power of the group by performing

delegation operations within the group. The following definition formally states such an

intuition.

Definition 5.1.4 (Delegation Security) An access control system with initial access con-

trol state γ is secure with respect to delegation if and only if the following is true:

∀t∈T ∀U⊆U can complete(t, U, U, γ)⇒ can complete(t, U, ∅, γ)

where T is the set of all tasks and U is the set of all users in the system.

In the above definition, can complete(t, U, U, γ) is “true” if and only if users in U

together can complete t when the initial state is γ and delegation is available in such a way:

the users may perform delegation operations to change the access control state, but no user

outside of U is allowed to perform delegation operations. That is to say, users in U cannot

get “help” from outsiders. In contrast, can complete(t, U, ∅, γ) is “true” if and only if users

in U together can complete t in state γ and no delegation operation is allowed. In general,

Definition 5.1.4 essentially states that, in a secure access control system, if a set of users

can complete a task without receiving any privilege from outsiders, then they must be able

to compete the task without delegation at all. That is to say, delegation does not enable a

set of users to enhance their own power by themselves.
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The notion of security introduced in Definition 5.1.4 respects the definition of delega-

tion. Delegation is defined as a mechanism that allows a user A to act on another user B’s

behalf by making B’s access rights available to A. Let γ and γ′ be the states before and

after a delegation operation from B to A, respectively. The fact that A is working on B’s

behalf in γ′ indicates that A should not be able to do more than A and B together (i.e.

{A,B}) can do in γ. Furthermore, since B does not gain anything by delegating his/her

privileges to A, {A,B} in γ′ cannot be more powerful than {A,B} in γ. By generaliz-

ing such an argument to groups with arbitrary number of users, we acquire the notion of

security in Definition 5.1.4.

We now illustrate the effect of delegation in a secure access control system by giving

an example. Assume that Alice grants (or transfers) a role r to Bob. Then, Bob may

become more powerful by acquiring r. Furthermore, every groupG such that Bob ∈ G and

Alice 6∈ G may become more powerful as well, because one of its member (Bob) received

a privilege from an outsider (Alice). However, every group G′ such that Alice,Bob ∈

G′ should not gain power enhancement. Otherwise, G′ enhances its own power after a

delegation operation between its members and the access control system is insecure by

Definition 5.1.4. In general, in a secure access control system, a group of users may gain

power enhancement only if they receive privileges from outsiders.

Definition 5.1.4 is general and independent of concrete access control systems. In this

chapter, tasks are modeled as workflows. We provide a more concrete definition of security

for workflow authorization systems in below.

Definition 5.1.5 (Delegation Security for Workflow) An access control system

〈γ,W,RL〉 is secure with respect to delegation if and only if an adversary can never

win the following one-person game.

Round 0:

The adversary selects a workflow w ∈ W and a set U of users, such that U cannot

complete w in γ without delegation. If such a combination of w and U does not exist,
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then the adversary loses (in this case, the system is trivially secure as everyone is able

to complete every task).

PP ← ∅ and SS ← S, where PP records past user-step assignments and SS records

the remaining steps.

i← 1 and γ0 ← γ.

Round i:

1. The adversary designs a sequence Qi of delegation operations such that every

delegation operation in Qi involves only users in U 1. The adversary applies Qi

to γi−1 and acquires a new state γi.

2. The adversary selects a step s from SS such that ∀s′∈S(s′ ≺ s ⇒ s′ 6∈ SS).

The adversary selects a user u from U as well.

If u is not authorized for s in γi, then the adversary loses.

Otherwise, PP ← PP ∪ {(u, s)} and SS ← SS/{s}.

3. If SS = ∅, then

If no constraint in C is violated by PP , then

The adversary wins;

Otherwise, the adversary loses.

Otherwise, i← i+ 1 and the game continues to the next round.

Note that in the above game, the effect of delegation operations is subject to RL. The

adversary can perform a sequence of delegation operations to change the access control

state at the beginning of each round. The game allows delegation operations between the

execution of two steps (i.e. between two rounds) so that users can perform revocation to

regain the roles that were transferred to other users in previous rounds. This gives the

adversary more advantage than allowing the adversary to perform delegation operations

1We may allow users in U delegate privileges to outsiders. But this does not help the adversary to win the
game.
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only at the beginning of the game. In Example 8, delegation operations are performed

between the execution of two steps.

The adversary winning the game indicates that there exit a group of users that can

enhance themselves with the help of delegation. In that case, the access control system is

vulnerable to collusion and is thus insecure with respect to delegation.

5.2 Enforcing the Security of Delegation

We have defined the formal notion of security with respect to delegation. A natural next

step is to study mechanisms to enforce security. In this section, we study three enforcement

approaches. In Section 5.2.1, we study static enforcement, in which security is ensured by

careful design of administrative state. In Section 5.2.2, we discuss dynamic enforcement,

where a verification procedure is performed by the end of the execution of each work-

flow instance to ensure that the participants have not enhanced their own power through

delegation. In Section 5.2.3, we propose a third approach, the source-based enforcement

mechanism, which employs a novel security policy evaluation method that is customized

for delegation.

5.2.1 Static Enforcement

Given a set of workflows and an initial access control state, a straightforward approach

to enforce security is to carefully design the administrative state RL so that no “dangerous”

delegation operation would succeed. For instance, in Example 7, if RL does not allow

members of r2 to receive r1 and vice versa, the collusion between Alice and Bob could not

succeed. Such an enforcement mechanism is called static enforcement, as the security of

the system relies on (administrative) state configuration and can be verified in an off-line

manner. An access control system that enforces security via a static enforcement mecha-

nism is called a statically secure system. The following example illustrates the idea of static

enforcement.
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Example 9 The set W consists of a single workflow w = 〈S,�, SA, C〉, where

S = {s1, s2, s3}, s1 ≺ s2 ≺ s3

C = {〈6= (s1, s2)〉}

Let γ be an access control state such that UR = {(Alice, r1), (Bob, r1), (Carl , r2)} and the

permissions to perform s1 and s2 are assigned to r1, while the permission to perform s3 is

assigned to r2.

It is easy to see that {Alice,Bob,Carl} is the only set of users in γ that can complete

w. We can have Alice performed s1, Bob performed s2 and Carl performed s3.

An access control system 〈γ,W,RL〉 is statically secure if and only if neither of the

followings is true:

• can grant(r1, r1) ∈ RL ∧ can receive(r2, r1) ∈ RL

• can transfer(r1, r1) ∈ RL ∧ can receive(r2, r1) ∈ RL

To see this, on the one hand, if RL contains both can grant(r1, r1) and can receive(r2, r1),

then Alice (or Bob) can first complete s1 and then grant r1 to Carl , who can then complete

s2 and s3. This violates the security requirement, because {Alice,Carl} cannot completew

in γ without delegation. The system is vulnerable to the collusion between Alice and Carl

(or Bob and Carl ). Similar argument holds when RL contains both can transfer(r1, r1)

and can receive(r2, r1).

On the other hand, if RL does not contain both rules, then Carl cannot acquire r1 from

Alice (or Bob). In that case, both Alice and Bob must be involved to complete s1 and s2

so as to satisfy the constraint 〈6= (s1, s2)〉. Hence, even if Alice and Carl (or Bob and

Carl collude), they cannot complete w. Also, Alice and Bob together cannot complete w,

because Carl is the only member of r2. Therefore, no size-2 sets of users may enhance

their own power by delegation.

We would like to point out that it is fine that RL contains both can grant(r2, r2) (or

can transfer(r2, r2)) and can receive(r1, r2). In that case, Carl can grant r2 to Alice
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and/or Bob, so that {Alice,Bob} can complete w. This does not violate the security re-

quirement, because Carl is involved through delegation and {Alice,Bob,Carl} can com-

plete w in γ.

The advantage of static enforcement is that, if we have already implemented an access

control system with delegation support, we just need to modify the administrative state

to enforce security. There is no need to change the existing implementation. However,

static enforcement could make the administrative state more restrictive than necessary. For

instance, assume that there are two workflows w1 and w2 in the system. Alice and Bob are

two users who are not supposed to complete w1. But the system setting is such that if Alice

can successfully grant or transfer role r to Bob, then Alice and Bob together can complete

w1. In order to prevent the potential collusion between Alice and Bob, the administrative

state must prevent Alice from delegating r to Bob. But this is too restrictive as Bob may

only intend to perform w2 (instead of w1) after receiving r, which could be allowed. But

static enforcement mechanism does not take the actual usage of delegated privileges into

account. Finally, the design of the administrative state is usually subject to administrative

policies as well as practical considerations. It may be undesirable to dramatically alter the

administrative state due to security concerns, for security should not significantly affect the

usability of the system.

5.2.2 Dynamic Enforcement

Static enforcement is too restrictive as it does not take into account how delegatees use

the delegated privileges. This motivates the proposal of dynamic enforcement for delega-

tion security.

To begin with, we describe the high-level idea of dynamic enforcement. In dynamic

enforcement, the initial state γ of the access control system is recorded. For every workflow

instance X , the system maintains a list UX of the participants for the instance. Every user

who executed a step of X is added to UX . When a user u requests to execute a step s, the

system checks whether he/she needs to use a delegated privilege. If a delegated privilege r
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should be used by u to perform s, then both u and the delegator of the privilege are added

to UX . Note that if u has received r from multiple delegators, u has to specify the delegator

of r for the execution of s. At the end of the instance, the system checks whether the users

in UX can complete the workflow in γ without delegation. If they can, then the execution

of X is confirmed. Otherwise, the system gives warning that users in UX have enhanced

their own power through delegation. The execution of X is rejected.

The problem of checking whether a set of users can complete a workflow in an access

control state without delegation is called the Workflow Satisfaction Problem (WSP).

Definition 5.2.1 (Workflow Satisfaction Problem) Given a set U of users, a workflow

w = 〈S,�, SA, C〉 and an access control state γ, the Workflow Satisfaction Problem (WSP)

asks whether we can assign a user u ∈ U to every step s ∈ S such that u is authorized for

s in γ and no constraint in C is violated by the overall assignments.

An instance of WSP is denoted as wsp(U,w, γ).

Detailed description of dynamic enforcement is given in Figure 5.1. Dynamic enforce-

ment ensures that a workflow instance may be successfully completed only if the partici-

pants (including those users who perform a step and those delegators who contribute nec-

essary privileges through delegation operations) can complete the same workflow instance

in the initial state. Hence, the correctness of dynamic enforcement follows directly from

Definition 5.1.4.

Dynamic enforcement monitors the usage of delegated privileges rather than placing

restrictions on administrative states. It is thus less restrictive and more practical than static

enforcement. However, dynamic enforcement introduces a performance overhead as the

system needs to solve a WSP instance by the end of every workflow instance. According

to Theorem 4.2.1, WSP is NP-complete, which indicates that the runtime overhead of

dynamic enforcement for each workflow instance could be exponential in the size of the

workflow.

In real-world, the number of steps in a workflow is normally small. Hence, it is possible

that the performance of dynamic enforcement is acceptable in practice. Also, dynamic
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Let γ be the initial state of the access control system. For every workflow instance, the

system does the followings. Let X be an instance of workflow w.

• When X is created: UX ← ∅

• When a step s is performed by a user u: Let ps be the permission to perform s and

γ′ = 〈UR,PA,DR, B〉 be the current state.

– If there exists a role r such that ((u, r) ∈ UR ∧ (ps, r) ∈ PA), then UX ←

UX ∪ {u}.

This indicates that u can use his/her own privilege to perform the step.

– Otherwise, u specifies a user u′ such that ((u′, u, r) ∈ DR ∧ (ps, r) ∈ PA).

UX ← UX ∪ {u, u′}.

This indicates that u is using a delegated privilege r received from u′ to perform

the step. When the choice of u′ and r is unique, the system may do the selection

itself rather than asking the user to specify the choice.

• After X is finished: The system solves wsp(UX , w, γ). If the answer to

wsp(UX , w, γ) is “yes”, then the result of X is confirmed; otherwise, the result of

X is voided and necessary roll-back is performed.

Figure 5.1. Description of dynamic enforcement
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enforcement does not require changing existing implementation of workflow modules. All

we need to do is to add a module to the system to perform recording and the closing

verification procedure for workflow instances.

5.2.3 Source-Based Enforcement

We have discussed two mechanisms to enforce delegation security in access control

systems. Even though both approaches have the advantage of allowing the reuse of existing

workflow implementation, they have major drawbacks: static enforcement is too restrictive

and dynamic enforcement may introduce large performance overhead. A natural question

is, if we are willing to redo the workflow module, can we have a better mechanism to

enforce delegation security?

In this section, we propose the source-based enforcement mechanism, which employs a

novel method to evaluate constraints in workflow systems. We describe the idea of source-

based enforcement mechanism by presenting a design of a secure workflow system. Our

workflow system is secure with respect to Definition 5.1.5 and introduces almost no per-

formance overhead.

The high-level idea of source-based enforcement is that, when a user Alice requests to

perform a step s of a workflow instance, he/she must specify the privilege to be used and

the source of the privilege. For instance, assume that Alice requests to perform a step swith

role r. If Alice is a member of r, then Alice may specify herself as the source of r. If Alice

received r from others, then Alice may pick a delegator of r and specify the delegator as

the source. Note that, even if Alice is a member of r herself, she may still specify another

user as the source of r as long as she has received r from that user.

Given the privilege r and its source uo specified by Alice, the system checks the con-

straints on s as if it is uo rather than Alice who is performing s. For example, assume that

workflow w consists of two steps s1 and s2, both of which can be performed by members of

role Accountant. There is a constraint inw, which states that the users who perform s1 and

s2 must not have conflicts of interests. Assume that Alice has executed s1 using her own
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membership of Accountant. Now, Carl tries to use the delegated privilege Accountant

received from Bob to perform s2. Instead of checking conflict of interests between Carl

and Alice as what traditional workflow systems do, our system checks conflict of interests

between Bob and Alice. The intuition is that, since Carl is using a delegated privilege

from Bob, he is working on Bob’s behalf. Hence, Bob and Alice must not have conflicts

of interests. By evaluating constraints in this way, we can ensure that the system is secure

with respect to delegation.

Sometimes, in addition to sources of privileges, we want to take the actual performers

into account while evaluating constraints. To achieve this, our system supports two types

of constraints. Type-1 constraint only ensures that the sources of privileges satisfy the

constraint; Type-2 constraint is more restrictive: if either the actual performer or the source

violates the constraint, then the constraint is violated. For instance, if the constraint in the

example in the previous paragraph is a Type-2 constraint, then Alice must not have conflict

of interests with either Bob (source) or Carl (actual performer).

Next, we describe the design of a secure workflow system, which employs the

source-based enforcement mechanism.

System Description: The system adopts the representations of access control state and the

state transition rules introduced in Section 5.1. The only major change in this system is the

way workflow constraints are evaluated.

A workflow is represented as 〈S,�, SA, C〉, where S is a set of steps, ≺ ⊆ S × S

defines a partial order among steps in S, and C is a set of constraints. s1 ≺ s2 indicates

that s1 must be performed before s2.

A constraint takes the form of 〈ρ(s1, s2, i)〉 where s1 and s2 are two steps, ρ is a binary

relation between users and i = 1 or 2. When i = 1, the constraint is of Type-1, while when

i = 2, the constraint is of Type-2.

Let w = 〈S,�, SA, C〉. γ = 〈UR,PA,DR, B〉 is the current access control state.

When a user u requests to perform a step s of an instance X of w, u presents a pair 〈uo, r〉,
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where uo is a user identity and r is a role. uo is called the source of r. The pair 〈uo, r〉 is

valid if and only if one of the followings is true:

• u = uo∧(u, r) ∈ UR. In other words, u is using his own role membership to perform

s.

• u 6= uo∧ ((uo, u, r, “g”) ∈ DR∨ (uo, u, r, “t”) ∈ DR). That is to say, uo has granted

or transferred r to u and u requests to perform s on uo’s behalf.

With the pair 〈uo, r〉, u can successfully execute s if and only if both of the followings

hold:

1. u is authorized to perform s with role r. That is, (ps, r) ∈ PA, where ps is the

permission to perform s.

2. No constraint is violated. That is, for every constraint c on s:

• Case c = 〈ρ(s, s′, 1)〉: (uo, u
′
o) ∈ ρ

where u′o is the source of the privilege used to perform s′

• Case c = 〈ρ(s′, s, 1)〉: (u′o, uo) ∈ ρ

where u′o is the source of the privilege used to perform s′

• Case c = 〈ρ(s, s′, 2)〉:

(u, u′) ∈ ρ ∧ (uo, u
′) ∈ ρ ∧ (u, u′o) ∈ ρ ∧ (uo, u

′
o) ∈ ρ

where u′ is the user who actually performed s′ and u′o is the source of the privi-

lege used to perform s′.

• Case c = 〈ρ(s′, s, 2)〉:

(u′, u) ∈ ρ ∧ (u′, uo) ∈ ρ ∧ (u′o, u) ∈ ρ ∧ (u′o, uo) ∈ ρ

where u′ is the user who actually performed s′ and u′o is the source of the privi-

lege used to perform s′.
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Note that in the first two cases, c is a Type-1 constraint and only the sources must

satisfy the constraint. In the latter two cases, c is a Type-2 constraint, and both the

sources and the actual performers are taken into account.

After a step is executed, the system records the identities of both the actual performer

and the source of privilege for future reference.

The following example illustrates how the system works.

Example 10 In a bank, task t is modeled as a workflow w = 〈S,�, SA, C〉, where

S ={s1, s2}, s1 ≺ s2

C ={〈6= (s1, s2, 1)〉}

The permissions to perform s1 and s2 are assigned to r1 and r2, respectively. Alice is a

member of r1 and Bob is a member of r2.

Alice becomes too busy to work on t and would like to balance the workload with Bob

by delegating r1 to Bob. Let X be an instance of w. Bob performs s1 in X by presenting

〈Alice, r1〉 to the system. The system records that Bob is the actual performer of s1 in X

and Alice is the source of privilege. Next, Bob requests to perform s2 in X by presenting

〈Bob, r2〉, which indicates that himself is the source of r2. The system found that the

constraint 〈6= (s1, s2, 1)〉 needs to be checked. Since the constraint is of Type-1, the system

only considers the sources of privilege for s1 and s2, which are Alice and Bob respectively.

Because Alice 6= Bob, the constraint is satisfied, and Bob completesX . Note that this does

not violate the notion of security, because Alice is involved in X by allowing Bob to work

on her behalf, and Alice and Bob together can complete w before the delegation operation.

Now, assume that the constraint in C is of Type-2 (i.e. 〈6= (s1, s2, 2)〉). In this case,

Bob cannot complete w. When 〈6= (s1, s2, 2)〉 is checked, the system takes both the actual

performers and the sources into account. When the system compares the actual performer

of s1 with the source of privilege (or the actual performer) of s2, it has Bob = Bob, which

indicates that Bob 6= Bob does not hold. Hence, the constraint is violated and Bob is

rejected from performing s2.
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It is clear that Type-2 constraints provide stronger security than Type-1 constraints.

People may wonder why we support the seemingly less secure Type-1 constraints in our

system. First of all, as we will prove later in this section, Type-1 constraints are sufficient

to enforce the notion of security defined in Definition 5.1.5. Secondly, in certain situations,

we may gain flexibility by using Type-1 constraints. For instance, a workflow may have a

constraint c stating that s1 and s2 must be performed by the same user. Assume that Alice

has performed s1 in an instance X of the workflow but she has to leave before performing

s2. If c is a Type-1 constraint (i.e. c = 〈= (s1, s2, 1)〉), then Alice may delegate her

privilege r to another user Bob who may complete s2 in X by presenting the pair 〈Alice, r〉

to the system; but if c is a Type-2 constraint, then s2 of X cannot be completed until Alice

comes back. In situations where it is more beneficial to complete the task, we should

declare c as Type-1. In particular, in order for an access control state to be resilient to

user absence, all binding of duty constraints (i.e. constraints that use =) must be Type-1

constraints. In contrast, in situations where security is given high priority and we would

rather have the task uncompleted than allow another user to involve, we should declare c as

Type-2. The choice between Type-1 and Type-2 constraints can be viewed as a flexibility-

security trade-off. Our system provides the options and leave the decisions to security

policy designers.

Next, we prove that our workflow system is secure with respect to delegation. The

overall idea of the proof is that, for every workflow instance that is completed, we modify its

user-step assignment by replacing the actual performer of each step with the corresponding

source of privilege. Since our constraint evaluation procedure always takes sources into

account, the modified user-step assignment must be valid for the workflow in the initial

state of the system. This implies that the set of sources can complete the workflow in the

initial state. Recall that in the initial state of the system, DR = ∅. Also, recall that we

assume that a delegatee cannot further delegate the delegated privilege to others. At the

end of this section, we will discuss extending our system to allow further delegation of

privileges.
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Theorem 5.2.1 The workflow system employing source-based enforcement mechanism is

secure with respect to delegation.

Proof We show that any workflow system, all of whose constraints are of Type-1, is se-

cure with respect to delegation. This is sufficient to prove that workflow systems using

only Type-2 constraints or both types of constraints are secure as well, because Type-2

constraints are more restrictive than Type-1 constraints.

Given a workflow system in which all constraints are of Type-1, assume for the purpose

of contradiction that the adversary can win the game in Definition 5.1.5. Let γ be the initial

state of the system, w = 〈S,�, SA, C〉 be the workflow and U be a set of users selected

by the adversary. By Definition 5.1.5, U cannot complete w in γ without delegation (i.e.

wsp(U,w, γ) is false). The user-step assignment for instance X of w has been stored in

PP . We define a predicate Source(s ,X ), which returns the source of the privilege used to

perform step s in workflow instance X .

We construct another user-step assignment PP ′ forw such that for every step s, (u, s) ∈

PP ⇒ (Source(s,X), s) ∈ PP ′. Next, we show that PP ′ is a valid user-step assignment

for w in γ.

First of all, for every step s in w, we show that Source(s,X) is authorized to perform

s in γ. Let Source(s,X) = uo. (u, s) ∈ PP implies that u is authorized to perform

s in an access control γ′, which is reachable from γ. Let γ = 〈UR,PA,DR, B〉 and

γ′ = 〈UR′,PA,DR′, B〉. If uo = u, then the statement is trivially true, because UR ⊇ UR′.

Otherwise, there exists a role r, such that (ps, r) ∈ PA and (uo, u, r) ∈ DR′, where ps is

the permission to perform s. (uo, u, r) ∈ DR′ implies that (uo, r) ∈ UR, because a user

can only delegate the roles which he/she is a member of. In general, uo is authorized to

perform s in γ.

Second, for every constraint c ∈ C, we show that PP ′ satisfies c. Let c = 〈ρ(s1, s2, 1)〉.

Since c is Type-1, the system takes into account the sources of privileges for s1 and

s2 whenever c is checked. Hence, the fact that PP does not violate c indicates that

(Source(s1, X), Source(s2, X)) ∈ ρ. Therefore, PP ′ does not violate c.



99

In general, in PP ′, all steps in w are assigned to authorized users and no constraint in C

is violated. That is to say, users in U can completew in γ, which contradicts the assumption

that wsp(U,w, γ) is false. Therefore, the adversary could not have won the game and the

workflow system is secure.

The design of our secure workflow system is based on a delegation model where a

delegatee cannot further delegate the privileges he/she received to other users. We can

easily extend the design to apply to situations where further delegation is supported. In

those cases, the system maintains chains of delegation operations. For instance, assume

that u1 grants role r to u2, who further grants r to u3. When u3 uses r to perform a step

in a workflow instance, u1 is considered to be the source of r, and should be taken into

account in constraint checking so as to ensure security. We may design different types

of constraints that take the actual performer (i.e. u3) and even intermediate users in the

delegation chain (e.g. u2) into consideration. We believe the ideas introduced in the source-

based enforcement mechanism will also be useful in the design of other types of access

control systems that support delegation.

5.3 Enforcing Resiliency Using Delegation

We have studied the security of delegation in workflow authorization systems. In this

section, we discuss how to enforce resiliency using delegation.

When Alice is about to be absent, she may select a suitable person based on the current

situations and delegate her privileges to that person so that the latter may perform Alice’s

tasks on her behalf. This may allow the system be resilient to Alice’s absence. Consider

the following example.

Example 11 Task t is modeled as workflow w1 = 〈S,�, SA, C〉, where

S ={s1, s2}, s1 ≺ s2

C ={〈ρ(s1, s2, 2)〉}
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Permissions to perform s1 and s2 are assigned to r1 and r2, respectively. Bob

and Carl are members of r1, while Alice is a member of r2. Also, we have

(Bob,Alice), (Bob,Dave), (Carl, Alice), (Carl, Elaine) ∈ ρ.

Since Alice is the only user in the system who is authorized to perform s2, she would

like to delegate r2 to another user before she leaves. Alice may choose who she should

delegate r2 to based on the situation right before she leaves. If Bob performed step s1 of

the workflow instance, Alice may delegate r2 to Dave so that Dave can finish the workflow

without violating the constraint in C, as we have (Bob,Dave) ∈ ρ (recall that for type-2

constraint, both the sources of privilege and actual performers must have the corresponding

relation). In contrast, if it was Carl who performed s1, Alice should delegate r2 to Elaine

instead, because (Carl, Elaine) ∈ ρ.

Sometimes unexpected events may happen and Alice may be absent without specifying

how to delegate her privileges. A natural solution to handle unexpected absence of users is

to have default delegation plans for users so that when a user is absent, the delegated oper-

ations in the corresponding default delegation plan is executed to delegate the absent user’s

privileges to other users. Certain commercial access control systems employ default dele-

gation plans determined by software developers. For example, using IBM Tivoli Identity

Manager (ITIM) [28], if a user does not perform a task assigned to her after a certain period

of time, her supervisor will be asked to perform the task for her. This can be viewed as the

absent user’s privilege to perform the task is automatically delegated to her supervisor. In

ITIM, one cannot change the default delegation plan. This is problematic in cases where

one’s supervisor is not the right person to perform a task on one’s behalf. In this section,

we consider a more flexible approach by allowing every user to specify her own default

delegation plan.

A default delegation plan of a user, say Alice, is a set of delegation operations which

will be performed automatically when Alice is absent. A delegation operation in the plan

specifies which one of Alice’s privileges will be delegated to whom. The delegation op-

erations in the plan must not violate delegation administrative rules in the system so as to

be valid. Note that Alice may specify more than one delegation operations for the same
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role, and she may choose one of the following three options for the multiple delegation

operations regarding role r: (1) All: all the delegation operations for r will be executed

when Alice is absent; in other words, r will be delegated to multiple users. (2) First: the

delegation operations for r are ordered, and when Alice is absent, the first operation whose

delegatee is available will be executed. (3) Any: Alice lets the system to choose which del-

egation operations for r to be executed; the system will make selections based on realtime

situations. For example, if Bob is very busy when Alice is absent, the system may execute

the operation that delegates r to Carl rather than the one that delegates r to Bob.

In this dissertation, we assume that every user designs their own default delegation

plans independently. This is the simplest approach and is easy to carry out in practice.

A more complex approach is to ask users to collaborate in their delegation planning. For

example, assume that Alice and Bob are both members of role r and they would like to

delegate r to either Carl or Dave. If Bob delegates role r to Carl in his plan, it may be

better for Alice to delegate r to Dave rather than to Carl so that even if Alice, Bob, and

Carl are all absent, there is still a member of r (i.e. Dave) in the system. Even though the

collaborative approach can potentially achieve higher level of resiliency, it may be difficult

to carry out in practice due to a number of reasons. First, it takes more effort for a user

to setup her plan as she has to coordinate with others. Second, one may have to give up

her favorite choices to achieve better overall results, and some users may be reluctant to do

so. Third, if a user change her plan later, then multiple related plans of other users’ may

need to be changed as well, which leads to large overhead and inconvenience. Due to such

practical difficulties, we leave the collaborative approach as interesting future work.

A natural question arises is how does a user design a “good” default delegation plan

for herself. On the one hand, to be compliant with the principle of least privilege, one may

not want to delegate too many privileges to others. On the other hand, one would like to

have all the necessary delegation operations in her plan to make the system be resilient to

the absence of herself. In the following, we provide a guideline on designing an effective

default delegation plan.
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Assume that Alice would like to design a default delegation plan so as to let the system

be resilient to her absence. Given an access control state 〈UR,PA,DR, B〉, for every

workflow W and every step s in W that Alice is authorized to performed, we ask the

following questions in order. Let r be the role that is authorized to perform s.

1. Is Alice the only one who is authorized to perform s? In other words, is Alice the

only member of role r?

Yes: A delegation operation for role r is recommended to be added to Alice’s default

delegation plan. Otherwise, when Alice is absent, no one is authorized to perform s

and thus W cannot be completed.

No: Go to the next question.

2. Is there any constraint on s?

No: A delegation operation for r may not be necessary. Since there is no constraint

on s, another member of r can perform s even if Alice is absent.

Yes: Go to the next question.

3. For every constraint c = 〈ρ(s′, s, i)〉 in W where i = 1 or i = 2, let Us′ and Us be

the set of users who are authorized to perform s′ and s, respectively. Is there a user

u ∈ U ′ such that Alice is the only one in Us such that (u,Alice) ∈ ρ?

Yes: A delegation operation for role r is recommended. Otherwise, if u performs

s′ and Alice becomes absent before performing s, then no one is able to perform

s without violating c. Recall that a type-1 constraint only requires the sources of

privilege satisfy the relation. So, if i = 1, Alice may delegate r to any user (without

violating administrative rules) and the user who receives r from Alice is able to

perform s while satisfying c. In contrast,if i = 2, then Alice must delegate r to a user

u1 such that (u, u1) ∈ ρ so that u1 may perform s when u performs s′.
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Note that c = 〈= (s′, s, 1)〉 is a special case where we may have u = Alice. And if

c = 〈= (s′, s, 2)〉, then delegation cannot help complete W if Alice becomes absent

after performing s′ but not s.

No: No recommendation on whether to setup a delegation operation for r. When

this branch is reached, there must exist a constraint in the form of 〈ρ(s,∃X, i)〉 or in

the form of 〈ρ(s′,∃X, i)〉 where s ∈ X . Alice may further examine the privileges

and relations of users authorized to perform steps in X and s′ so as to determine

whether a delegation operation for r is necessary to make the system be resilient to

her absence. But the number of users that need to be checked may be large. Thus,

we do not provide a suggestion in this case and leave the decision to the user.

Furthermore, when Alice is considering adding a delegation operation for role r to her

default delegation plan, she may check if existing operations in her plan for role r suffice

to meet her goal. If so, she may avoid setting up another delegation operation for r.

We have provided a guideline for users to design their default delegation plans. In

practice, users may have other considerations when setting up their delegation plans. An

interesting question is to check whether the system meets resiliency requirements after de-

fault delegation plans have been set up for all users. We study such a problem in the rest

of this section. We assume that an absent user does not perform any delegation operation

when the user becomes absent, except that her default delegation plans are automatically

executed. Note that such a problem is computationally at least as difficult as the corre-

sponding resiliency checking problem without delegation, as the latter is a special case of

the former when the default delegation plan for every user is empty.

Static resiliency In static resiliency, the set of absent users is known before the execution

of a workflow. To check that if the system is statically resilient to the absence of a certain

set U ′ of users with regards to a workflow W , we may remove users in U ′ and execute

their default delegation plans to change the access control state. We then check whether
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the remaining users can complete W in the new access control state, which is an instance

of the WSP problem.

Decremental resiliency In decremental resiliency, users may become absent during the

execution of a workflow instance and absent users will not come back. An algorithm, which

checks whether a system is decrementally resilient to the absence of k users with respect to

workflow W , is given in Figure 5.2. Intuitively, we enumerate all possible scenarios of the

absence of k users; when a user u is absent, we execute her default delegation plan and go

on to check if the system is resilient to the absence of k − 1 users for the remaining steps

of W in the new access control state.

Dynamic resiliency In dynamic resiliency, up to k users may be absent when a step in the

workflow is performed and absent users may return after the step is finished. An algorithm,

which checks that if a system is dynamically resilient to the absence of k users with respect

to workflowW , is given in Figure 5.3. Intuitively, we try every possible way to remove a set

U ′ of k users before the execution of a step, execute the default delegation plans for users

in U ′, assign a step to an available user, and then repeat such a process for the remaining

steps.

Note that the above algorithms employ a brute-force strategy. In practice, the proba-

bility that multiple users become absent simultaneously or within a short period of time

is small. Hence, we are mostly interested in the case where k = 1. Also, the number of

steps in W is normally small. Hence, the performance of the above algorithms should be

acceptable in real-world scenarios.
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The function check-decremental checks if the access control state γ is decrementally re-

silient to the absence of k users with regards to workflow W , where U is the set of avail-

able users in γ, S is the set of incomplete steps in W , and P is the current partial plan.

Auth(s, U, γ) is the set of users in U that are authorized to perform step s in state γ.

Function check-decremental(γ, U , k, W , S, P )

If S = ∅ Then

Return “yes”;

If exists s ∈ S such that Auth(s, U, γ) = ∅ Then

Return “no”;

If k > 0 Then

For every ui ∈ U Do

Execute the default delegation plan of ui to change γ to γ′

If (check-decremental(γ′, U − {ui}, k, W , S, P ) == “no”) Then

Return “no”;

EndFor;

EndIf;

For every s ∈ S that is ready to be executed based on P

For every u ∈ Auth(s, U, γ) Do

P ′ = P ∪ {(s, u)};

If (check-decremental(γ′, U , k − 1, W , S − {s}, P ′) == “yes”) Then

Return “yes”;

EndFor;

EndFor;

Return “no”;

End

Figure 5.2. Algorithm for checking decremental resiliency with default delegation plans
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The function check-dynamic checks if the access control state γ is dynamically resilient to

the absence of k users with regards to workflow W , where U is the set of available users in

γ and S is the set of incomplete steps in W . Auth(s, U, γ) is the set of users in U that are

authorized to perform step s in state γ.

Function check-dynamic(γ, U , k, W , S, P )

If S = ∅ Then

Return “yes”;

For every size-k subset U ′ of U Do

Execute the default delegation plans of users in U ′ to change γ to γ′;

If (make-assignment(γ′, U − U ′, k,W, S, P ) == “no”) Then

Return “no”;

EndFor;

Return “yes”;

End

Function make-assignment(γ, U , k, W , S, P )

For every s ∈ S that is ready to be executed based on P

For every u ∈ Auth(s, U, γ) Do

P ′ = P ∪ {(s, u)};

If (check-dynamic(γ, U , k, W , S − {s}, P ′) == “yes”) Then

Return “yes”;

EndFor;

EndFor;

End

Figure 5.3. Algorithm for checking dynamic resiliency with default delegation plans
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6 RELATED WORK

6.1 Access Control Policy Specification

The concept of SoD has long existed in the physical world, sometimes under the name

“the two-man rule”, for example, in the banking industry and the military. To our knowl-

edge, in the information security literature the notion of SoD first appeared in Saltzer and

Schroeder [3] under the name “separation of privilege.” Clark and Wilson’s commercial

security policy for integrity [2] identified SoD along with well-formed transactions as two

major mechanisms of fraud and error control. Nash and Poland [29] explained the differ-

ence between dynamic and static enforcement of SoD policies. In the former, a user may

perform any step in a sensitive task provided that the user does not also perform another

step on that task. In the latter, users are constrained a-priori from performing certain steps.

Sandhu [30,31] presented Transaction Control Expressions, a history-based mechanism

for dynamically enforcing SoD policies. A transaction control expression associates each

step in the transaction with a role. By default, the requirement is such that each step must

be performed by a different user. One can also specify that two steps must be performed

by the same user. In Transaction Control Expressions, user qualification requirements are

associated with individual steps in a transaction, rather than a transaction as a whole.

Li et al [20] studied both direct and indirect enforcement of static separation of duty

(SSoD) policies. They showed that directly enforcing SSoD policies is intractable (NP-

complete). They also discussed using static mutually exclusive roles (SMER) constraints to

indirectly enforce SSoD policies. They defined what it means for a set of SMER constraints

to precisely enforce an SSoD policy, characterize the policies for which such constraints

exist, and show how they are generated. In Section 2.2, we study the enforcement of

policies specified in our algebra, which include SoD policies as a sub-class; however, our

computational results (those on SSC) are on direct static enforcement only.
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There exists a wealth of literature on constraints in the context of RBAC [32–39]. They

either proposed and classified new kinds of constraints [35,38] or proposed new languages

for specifying sophisticated constraints [32–34,37,39]. Most of these constraints are moti-

vated by SoD and are variants of role mutual exclusion constraints, which may declare two

roles to be mutually exclusive so that no user can be a member of both roles.

McLean [19] introduced a framework that includes various mandatory access control

models. Security models are instances of the framework; and they differ in which users are

allowed to change the security levels. These models form a boolean algebra. McLean also

looked at the issue ofN -person policies, where a policy may allow multiple subjects acting

together to perform some action. McLean adopted the monotonicity requirement in such

N -person policies. McLean [19] does not discuss how to specify N -person policies, and

the examples in the paper list explicitly the usersets that are allowed access. Our algebra, on

the other hand, is about how to define policies that require multiple users with qualification

requirements.

Abadi et al. [40] developed a calculus for access control in distributed systems. The

calculus allows compound principals to be formed from basic ones using two operations

∧ (and) and | (quoting). Some principals are groups, when a principal u is a member of

a group g, then u speaks for g. One can express multi-user policies in this calculus. An

access control policy is specified as an access control list (ACL), where each entry is an

expression in the calculus. The ∧ corresponds to � in our algebra. That is, if an ACL entry

contains g1 ∧ g2, then a single user that is a member of both g1 and g2 is allowed access,

as are two users such that one is a member of g1 and the other is a member of g2. The t

operator in our algebra can be partially supported in the calculus by having multiple ACL

entries, which has the effect of supporting logical OR, but only at the top level. The other

operators ¬, +, u and ⊗ cannot be expressed in the calculus.

Several algebras have been proposed for combining security policies. These include

the work by Bonatti et al. [41, 42], Wijesekera and Jajodia [43], Pincus and Wing [44].

These algebras are designed for purpose that are different from ours; therefore, they are

quite different from our algebra. Each element in their algebra is a policy that specifies
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what subjects are allowed to access which resources, whereas each element in our algebra

maps to a user.

The two operators � and ⊗ in our algebra are taken from the RT family of role-based

trust-management languages designed by Li et al. [45]. In [45], the notion of manifold

roles was introduced, which are roles that have usersets, rather than individual users, as

their members. The two operators ⊗ and � are used to define manifold roles. Our work

differs in that we propose to combine these two operators together with four other operators

t, u, ¬, and + (which are not in RT ) in an algebra for specifying high-level security poli-

cies. In addition, we also study the algebraic properties of these operators, the satisfaction

problems, and the term satisfiability problem related to the algebra.

Readers who are familiar with description logic (DL) may find similarities between the

algebra and DL. However, there is a fundamental difference between the two: a term in

DL describes a set of individuals, while a term in the algebra describes a set of sets of

individuals. A concept in DL defines a set of individuals, which corresponds to a role in

the algebra; a “role” in DL defines a binary relation between individuals. DL supports

operators ¬,u and t, which stand for complement of concepts, intersection of concepts

and union of concepts, respectively. If we interpret a unit term in our algebra as a set of

individuals1, then unit terms may be viewed as a strict subset of terms in DL. But in general

case, there is no operator in DL that corresponds to operators +,� and ⊗ in our algebra.

Hence, computational complexity problems studied in this chapter are not directly related

to those in DL.

6.2 Access Control in Workflow Systems

Bertino et al. [5] introduced a language to express workflow authorization constraints

as clauses in a logic programming language. The language supports a number of predefined

relations for constraint specification. Bertino et al. [5] also proposed searching algorithms

to assign users to complete a workflow. This work does not support user-defined binary

1A unit term in our algebra describes a set of singletons.
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relations, nor does it formally study computational complexity of the workflow satisfiability

problem. Tan et al. [7] studied the consistency of authorization constraints in workflow

systems. The model in [7] supports six predefined binary relations: {=, 6=, <,≤, >,≥},

but not user-defined relations. Atluri and Huang [4] proposed a workflow authorization

model that focuses on temporal authorization. This model does not support constraints

about users performing different steps in a task. In [8], Warner and Atluri considered

authorization constraints that span multiple instances of a workflow. Their model supports

predefined relations with emphasis on inter-instance constraints. Inter-instance problems

in workflow systems is an interesting research area. The model in [8] does not support

user-defined relations. Finally, Kang et al. [46] investigated access control mechanisms for

inter-organizational workflow. Their workflow model authorizes steps to roles and supports

dynamic constraints. However, they do not explicitly point out how constraints are specified

and what kinds of constraints are supported besides separation of duty. Their paper mainly

focuses on infrastructure design and implementation.

The workflow authorization model proposed by Crampton [6] is probably the one that

is most closely related to R2BAC. The model in [6] supports user-defined binary rela-

tions; however, it does not support quantifiers in constraints, so that constraints of the form

〈ρ(∃X, s)〉 cannot be expressed in that model. Crampton [6] also studied the workflow sat-

isfiability problem and presented a polynomial time algorithm for their model. However,

the algorithm is incorrect.2 Each constraint in [6] relates two steps in an workflow. The

algorithm (Figure 2 in [6]) tries to gradually reduce the set of users that can be applied to

each step. One first calculates the set of authorized users for each individual step, and then

for each constraint that involves steps s1 and s2, one remove from the sets for steps s1 and

s2 those users that cannot be paired with a user satisfying the constraint. If no set can be re-

duced further and no set is empty, the algorithm declares that a workflow is satisfiable. The

problem with this algorithm is that, while it ensures that each individual constraint can be

satisfied, it does not ensure the combination of them can. For a counter example, consider

a workflow with 4 steps and 3 users, where every user is authorized to perform every step.

2We have verified the bug with the author of [6].
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The constraints are such that no two steps can be performed by the same user. Obviously, a

valid execution assignment would not exist. However, the algorithm would return true. As

we have pointed out in Theorem 4.2.6, the workflow satisfiability problem is NP-hard in

general for any workflow model that supports user-inequality constraints. Since the model

in [6] supports such type of constraints, a polynomial time algorithm for the satisfiability

problem in their model could not exist.

None of the work mentioned above has given the computational complexity results

of the Workflow Satisfiability Problem, whereas we give a clear characterization using

parameterized complexity. Also, the resiliency problem in workflows has not been studied

before in the literature.

6.3 Delegation in Access Control

Delegation has received considerable attention from the research community. In [9,10],

Barka and Sandhu proposed a framework for role-based delegation models (RBDM), which

identifies a number of characteristics related to delegation. Example characteristics are (1)

monotonicity: grant is a monotonic delegation operation, while transfer is non-monotonic;

(2) totality: whether one can delegate only a portion of the permissions of a role rather than

the entire role; (3) levels of delegation: the number of times delegatees may further delegate

the received privileges. Many characteristics identified by RBDM are used in delegation

models proposed later.

There exist a wealth of delegation models in literature [11–17]. L. Zhang et al. [13] pre-

sented a role-based delegation model called RDM2000. Their model supports the specifica-

tion of delegation authorization rules to impose restrictions on which roles can be delegated

to whom. They proposed a language to specify and enforce rules regarding how users del-

egate their roles and how delegated roles can be revoked. Furthermore, they have designed

and implemented a web-based application as a prototype of their delegation framework.

In RDM2000, the unit of delegation is a role. X. Zhang et al. [12] proposed a role-based

delegation model called PBDM, which supports both role and permission level delegation.
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Their model controls delegation operations through the notion of delegatable roles such that

only permissions assigned to these roles can be delegated to others. Another model that

supports permission-level delegation was proposed by Wainer and Kumar in [14]. Their

model also supports constraints (or rules) that determine whether a user can receive a cer-

tain right through delegation.

A delegation operation can either be a grant or a transfer operation. Most exiting

work either focuses on grant or does not explicitly distinguish the two types of operations.

In [17], Crampton and Khambhammettu proposed a delegation model that supports both

grant and transfer. Furthermore, they proposed to use administrative scope in role hierarchy

to determine delegation authorization rules.

Atluri and Warner [15] studied how to support delegation in workflow systems. They

extended the notion of delegation to allow conditional delegation, where conditions can be

based on time, workload and task attributes. One may specify rules to determine under what

condition a delegation operation should be performed. For example, Alice may specify a

rule to delegate a task t to Bob when she has five or more tasks assigned. Such rules may

result in cycles (e.g. u1 delegates t to u2, who further delegates t to u3, who delegates t

back to u1). To address this issue, they studied the delegation consistency problem which

determines whether it is possible to satisfy all rules in the system.

All the above work mainly focus on the modeling and management of delegation, while

our dissertation focuses on the security impact of delegation on access control systems.

None of the above work proposes a formal notion of security regarding delegation or studies

mechanisms to enforce security in access control systems with delegation support.

In [47], Shaad observed that delegation and revocation features of a system may be

used to circumvent separation of duty properties. He gave an example to illustrate an

attack conducted by a single user. In his example, there is a separation of duty policy

which requires that no single user may first access an object o using privilege auth1 and

then access o again with privilege auth2. The system he designed enforces such a policy by

allowing a user to access o only if the user does not have both auth1 and auth2 at the time

of access. Let Alice be a malicious user having both auth1 and auth2. Alice first transfers
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auth2 to another user Bob so as to temporarily lose auth2. Next, she accesses o with auth1

and then revokes auth2 from Bob to regain the privilege. Finally, Alice transfers auth1

to Bob and then accesses o again using auth2. In this case, the separation of duty policy

is circumvented. This example differs from our examples in Section 5.1.1 in a couple of

ways:

1. The attack in [47] is conducted by a single user (Alice), as the delegatee (Bob) is not

actively involved. In contrast, our examples are on multi-user collusion, where all

principles are actively involved in the attack.

2. The attack in [47] relies on a specific way in which separation of duty is implemented.

In particular, it is assumed that the system does not maintain any historical record.

But this is not the case in most of the existing workflow authorization systems [5–

8], as these systems keep track of which users have performed which steps so as

to enforce constraints. In contrast, our examples apply to workflow authorization

systems in existing literature.

In general, the example in [47] has a very different nature from our examples in Sec-

tion 5.1.1. Shaad’s paper [47] is about an access control framework and the interaction

between delegation and security policies is not the main focus of the paper. Problems such

as collusion and enforcement mechanisms for security, which are studied in our disserta-

tion, are not discussed in [47].

6.4 Other Related Work on Policy Analysis

In [48], Li and Tripunitara proposed the notion of security analysis in RBAC. They

formally defined the notions of RBAC states, state transition rules and a family of secu-

rity analysis problems. An example security analysis problem is whether a certain set of

users can gain a certain set of permissions in a state that is reachable from the initial state.

However, in workflow systems, possessing the set of necessary permissions is not sufficient

for the users to complete a workflow, as there may be constraints on the relations of users
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performing different steps. For instance, if there is a constraint requiring Step 1 and Step 2

be performed by different users, then even if Alice has permissions to perform both steps,

she is not able to complete both of them by herself. Li and Tripunitara did not consider

workflows and constraints in [48]. Hence, the security regarding delegation in workflow

systems is beyond the security analysis problems proposed in [48].

In [49], Stoller et al also applied parameterized complexity theory to computational

problems on access control policy analysis. They studied policies in Administrative RBAC

(ARBAC), while we focused on workflow authorization systems, especially in the R2BAC

model in Chapter 4. Policies in ARBAC are role-based, while security constraints in

R2BAC are based on binary relations between users. The parameterized complexity re-

sults in [49] and those in Chapter 4 of this dissertation cannot be easily reduced to each

other.
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7 SUMMARY

In this dissertation, we have proposed an algebra as a novel policy-specification language,

resiliency policy as a new family of access control policies, and R2BAC as a new access

control model for workflows. We have also studied a number of fundamental policy-

analysis problems, such as the workflow satisfiability problem and the security of dele-

gation. The contributions of this dissertations are summarized as follows.

• We have proposed a novel algebra that enables the specification of high-level security

policies that combine qualification requirements with quantity requirements. Our

algebra contains six operators and is expressive enough to specify many natural high-

level security policies. We have studied the algebraic properties of the algebra, as

well as several computational problems related to the algebra.

• We have formally defined resiliency policies, which require an access control system

to be resilient to the absence of users. We have studied computational problems on

checking whether an access control state satisfies a resiliency policy. We have also

studied the consistency between resiliency policies and separation of duty policies.

• We have proposed the role-and-relation-based access control (R2BAC) model for

workflow authorization systems. In R2BAC, in addition to a user’s role memberships,

the user’s relationships with other users help determine whether the user is allowed

to perform a certain step in a workflow.

• We have studied fundamental problems in workflow authorization systems, such as

determining whether a set of users can complete a workflow and checking whether

a workflow is resilient to the absence of users. In particular, we have applied tools

from parameterized complexity theory to better understand the complexities of the

workflow satisfiability problem.
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• We have studied the impact of delegation on the security of workflow authorization

systems. We have formally defined the notion of security with respect to delegation

and proposed mechanisms to enforce delegation security in workflow authorization

systems. We have also discussed how to use delegation to meet resiliency require-

ments.
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Appendix A Proofs in Chapter 2

A.1 Proofs of Theorems in Section 2.1

Proof of Lemma 2.1.1

Given a node N in T , let Φ(N) be the sub-term of φ represented by the sub-tree rooted

at N . In the following, we prove by induction that for every node N , if LT (N) 6= ∅, then

LT (N) satisfies Φ(N).

Base case: When N is a leaf node, by Definition 2.1.4, LT (N) is either ∅ or it satisfies

Φ(N). Since LT (N) 6= ∅, LT (N) satisfies Φ(N).

Inductive case: Assume that the statement holds for both childrenN1 andN2 ofN and

LT (N) 6= ∅.

• When N represents u: According to Definition 2.1.4, LT (N) = LT (N1) = LT (N2).

Since LT (N) 6= ∅, LT (N1) and LT (N2) are non-empty. By inductive assumption,

LT (N1) and LT (N2) satisfy Φ(N1) and Φ(N2), respectively. Since Φ(N) = Φ(N1)u

Φ(N2), by Definition 2.1.3, LT (N) satisfies Φ(N).

• When N represents t: According to Definition 2.1.4, LT (N) = LT (N1) or LT (N) =

LT (N2). Without loss of generality, assume that LT (N) = LT (N1). Since LT (N) 6=

∅, LT (N1) is non-empty. By inductive assumption, LT (N1) satisfies Φ(N1). Since

Φ(N) = Φ(N1) t Φ(N2), by Definition 2.1.3, LT (N) satisfies Φ(N).

• When N represents �: According to Definition 2.1.4, LT (N) = LT (N1) ∪ LT (N2),

and since LT (N) 6= ∅, LT (N1) and LT (N2) are also non-empty. By inductive

assumption, LT (N1) and LT (N2) satisfy Φ(N1) and Φ(N2), respectively. Since

Φ(N) = Φ(N1) u Φ(N2), by Definition 2.1.3, LT (N) satisfies Φ(N).

• When N represents ⊗: This is very similar to the above case.
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Proof of Theorem 2.1.2

Clearly, if there exists a satisfaction tree of φ with root labeled X , then X satisfies φ.

Now we show the other direction. If a userset X satisfies φ under 〈U,UR〉, we construct

a satisfaction tree for φ. First of all, we construct the syntax tree T of φ and label its root

with X . We then recursively label other nodes in T in a top-down manner. Let N be an

inner node labeled with a non-empty userset. We label the children N1 and N2 of N in the

following manner.

• When N represents u: We label N1 and N2 with LT (N). This satisfies the rules

specified in Definition 2.1.4. Since LT (N) satisfies Φ(N) and Φ(N) = Φ(N1) u

Φ(N2), we have LT (N1) = LT (N) satisfies Φ(N1) and LT (N2) = LT (N) satisfies

Φ(N2).

• When N represents t: Since LT (N) satisfies Φ(N) and Φ(N) = Φ(N1) t Φ(N2),

either LT (N) satisfies Φ(N1) or LT (N) satisfies Φ(N2). Without loss of generality,

assume that LT (N) satisfies Φ(N1). We labelN1 with LT (N) andN2 with ∅. We also

label all the nodes in the sub-tree rooted atN2 with ∅. This satisfies the rules specified

in Definition 2.1.4.

• When N represents �: Since LT (N) satisfies Φ(N) and Φ(N) = Φ(N1) � Φ(N2),

according to Definition 2.1.3, we have non-empty sets X1 and X2 such that LT (N) =

X1 ∪ X2 and X1 satisfies Φ(N1) and X2 satisfies Φ(N2). We label N1 with X1 and

N2 with X2. Since LT (N) = X1 ∪ X2, the labeling satisfies the rules specified in

Definition 2.1.4.

• When N represents ⊗: we label it in ways similar to the above case.

According to the above, when X satisfies φ, we can construct a satisfaction tree whose

root is labeled with X .

Proof of Theorem 2.1.3 on Algebraic Properties

1. The operators t,u,⊗,� are commutative and associative.

This is straightforward from Definition 2.1.3.
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2. The operator t distributes over u.

If a userset X satisfies (φ1 t (φ2 u φ3)), then either X satisfies φ1, or X satisfies both

φ2 and φ3. It follows that X satisfies ((φ1 t φ2) u (φ1 t φ3)).

If X satisfies ((φ1 t φ2)u (φ1 t φ3)), then X satisfies (φ1 t φ2) and (φ1 t φ3). There

are only two cases: (1) X satisfies φ1; and (2) X satisfies both φ2 and φ3. In either

case, X satisfies (φ1 t (φ2 u φ3)).

The operator u distributes over t.

If X satisfies (φ1 u (φ2 t φ3)), then X satisfies both φ1 and (φ2 t φ3), which means

X satisfies either φ2 or φ3. It follows that X satisfies ((φ1 u φ2) t (φ1 u φ3)).

If X satisfies ((φ1 u φ2) t (φ1 u φ3)), then either (1) X satisfies (φ1 u φ2) or (2) X

satisfies (φ1 u φ3). In both cases, X satisfies φ1; furthermore, X satisfies either φ2 or

φ3. It follows that X satisfies (φ1 u (φ2 t φ3)).

3. The operator � distributes over t.

If X satisfies (φ1 � (φ2 t φ3)), then there exist X1 and X2 such that X1 ∪X2 = X ,

X1 satisfies φ1, and X2 satisfies (φ2 t φ3). By Definition 2.1.3, X2 satisfies φ2 or φ3.

In the former case, X satisfies (φ1 � φ2), which implies that X satisfies ((φ1 � φ2)t

(φ1 � φ3)), as desired. The argument is analogous if X2 satisfies φ3 but not φ2.

If X satisfies ((φ1� φ2)t (φ1� φ3)), then either X satisfies (φ1� φ2) or X satisfies

(φ1 � φ3). Without loss of generality, assume that X satisfies (φ1 � φ2), then there

exist X1, X2 such that X1 ∪X2 = X , X1 satisfies φ1 and X2 satisfies φ2. Therefore,

X2 satisfies (φ2 t φ3), and consequently, X satisfies (φ1 � (φ2 t φ3)) as desired.

4. The operator ⊗ distributes over t.

If X satisfies (φ1 ⊗ (φ2 t φ3)), X can be partitioned into two disjoint sets X1 and

X2 such that X1 satisfies φ1 and X2 satisfies φ2 or φ3. In this case, by definition, X

satisfies (φ1 ⊗ φ2) or (φ1 ⊗ φ3), which means X satisfies ((φ1 ⊗ φ2) t (φ1 ⊗ φ3)).

For the other direction, ifX satisfies ((φ1⊗φ2)t(φ1⊗φ3)), it satisfies either (φ1⊗φ2)

or (φ1 ⊗ φ3). Without loss of generality, assume that X satisfies (φ1 ⊗ φ2). Then, X

can be partitioned into two disjoint sets X1 and X2 such that X1 satisfies φ1 and X2
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satisfies φ2. By definition, X2 satisfies (φ2 t φ3). Therefore, X satisfies (φ1 ⊗ (φ2 t

φ3)).

5. No other ordered pair of operators have the distributive property.

We show a counterexample for each case. In the following, Ur = {u|(u, r) ∈ UR}.

(a) The operator � does not distribute over u.

If X satisfies (φ1 � (φ2 u φ3)), then X also satisfies ((φ1 � φ2) u (φ1 � φ3)).

However, the other direction of implication does not hold. Counterexample: Let

Ur1 = {u1, u2}, Ur2 = {u1}, and Ur3 = {u2}, then {u1, u2} satisfies ((r1� r2)u

(r1 � r3)), but does not satisfy (r1 � (r2 u r3)).

(b) The operator u does not distribute over �. Neither direction holds.

Counterexample: Let Ur1 = Ur3 = {u1} and Ur2 = Ur4 = {u2}, let φ1 =

(r1�r2), then {u1, u2} satisfies (φ1u (r3�r4)), but does not satisfy ((φ1ur3)�

(φ1 u r4)).

Counterexample: Let Ur1 = {u1, u2}, Ur2 = {u1}, and Ur3 = {u2}, then

{u1, u2} satisfies ((r1 u r2)� (r1 u r3)), but does not satisfy (r1 u (r2 � r3)).

(c) The operator t does not distribute over �.

If X satisfies (φ1 t (φ2 � φ3)), then X satisfies ((φ1 t φ2)� (φ1 t φ3)).

However, the other direction of implication does not hold. Counterexample: Let

Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u1}, then {u1, u2} satisfies ((r1 t r2)�

(r1 t r3)), but does not satisfy (r1 t (r2 � r3)).

(d) The operator t does not distribute over ⊗. Neither direction holds.

Counterexample: Let Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u1}, then {u1, u2}

satisfies ((r1 t r2)⊗ (r1 t r3)) , but does not satisfy (r1 t (r2 ⊗ r3)).

Counterexample: Let Ur1 = Ur2 = Ur3 = {u1}, then {u1} satisfies (r1 t (r2 ⊗

r3)), but does not satisfy ((r1 t r2)⊗ (r1 t r3)).

(e) The operator ⊗ does not distribute over u.

If X satisfies (φ1 ⊗ (φ2 u φ3)), then X satisfies ((φ1 ⊗ φ2) u (φ1 ⊗ φ3)).
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However, the other direction of implication does not hold. Counterexample: Let

Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u2}, then {u1, u2} satisfies ((r1 ⊗ r2) u

(r1 ⊗ r3)), but does not satisfy (r1 ⊗ (r2 u r3)).

(f) The operator u does not distribute over ⊗. Neither direction holds.

Counterexample: Let Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u2}, then {u1, u2}

satisfies ((r1 u r2)⊗ (r1 u r3)), but does not satisfy (r1 ⊗ (r2 u r3)).

Counterexample: Let Ur1 = Ur3 = {u1} and Ur2 = Ur4 = {u2}, and let φ1 =

(r1�r2), then {u1, u2} satisfies (φ1u (r3⊗r4)), but does not satisfy ((φ1ur3)⊗

(φ1 u r4)).

(g) The operator � does not distribute over ⊗. Neither direction holds.

Counterexample: Let Ur1 = {u1, u4}, Ur2 = {u2} and Ur3 = {u3}, then

{u1, u2, u3, u4} satisfies ((r1 � r2) ⊗ (r1 � r3)), but does not satisfies (r1 �

(r2 ⊗ r3)).

Counterexample: Let Ur1 = {u1}, Ur2 = {u1} and Ur3 = {u2}, then {u1, u2}

satisfies (r1 � (r2 ⊗ r3)), but does not satisfy ((r1 � r2)⊗ (r1 � r3)).

(h) The operator ⊗ does not distribute over �.

If X satisfies (φ1 ⊗ (φ2 � φ3)), then X satisfies ((φ1 ⊗ φ2)� (φ1 ⊗ φ3)).

However, the other direction of implication does not hold. Counterexample: Let

Ur1 = {u1, u2}, Ur2 = {u2} and Ur3 = {u1}, then {u1, u2} satisfies ((r1 ⊗ r2)�

(r1 ⊗ r3)), but does not satisfy (r1 ⊗ (r2 � r3)).

6. (φ1 u φ2)
+ ≡ (φ+

1 u φ+
2 ).

If a userset X satisfies (φ1 u φ2)
+, then for every u ∈ X , {u} satisfies (φ1 u φ2) and

thus satisfies φ1 and φ2. Hence, X satisfies φ+
1 and φ+

2 , which means that X satisfies

(φ+
1 u φ+

2 ).

If X satisfies (φ+
1 u φ+

2 ), then X satisfies both φ+
1 and φ+

2 . For every u ∈ X , {u}

satisfies both φ1 and φ2. Hence, X satisfies (φ1 u φ2)
+.

7. DeMorgan’s Law: ¬(φ1 u φ2) ≡ (¬φ1 t ¬φ2), ¬(φ1 t φ2) ≡ (¬φ1 u ¬φ2)

The proof is straightforward by definition of ¬,u and t.
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A.2 Proofs of Theorems in Section 2.3

In the following proofs, (opkφ) denotes k copies of φ connected together by opera-

tor op and (opni=1ri) denotes (r1 op . . . op rn). Given R = {r1, . . . , rm}, (opR) denotes

(r1 op . . . op rm).

A.2.1 Proof of Lemma 2.3.1, Lemma 2.3.2, and Theorem 2.3.4

Proof of Lemma 2.3.1

To prove that TSAT over terms built using only roles, ¬, u, and t is NP-hard, we

reduce the NP-complete SAT problem to it. Given a propositional logic formula e, let

{v1, . . . , vn} be the set of propositional variables that appear in e. Construct a term φ

by substituting every occurrence of vi (i ∈ [1, n]) in e with the atomic term ri, every

occurrence of ¬vi (i ∈ [1, n]) with ¬ri, and replacing logical AND with u and logical OR

with t. The result is a unit term. By Definition 2.1.3, a term without �,⊗ and + can be

satisfied by singletons only. If φ is satisfiable, then there exists a configuration 〈U,UR〉

and a user u such that {u} satisfies φ. We can construct a truth assignment T in which vi is

TRUE if and only if (u, ri) ∈ UR. It is clear that e evaluates to TRUE under T . Similarly, if

there exists a truth assignment T such that e evaluates to TRUE under T , we can construct

UR in which u is a member of ri if and only if vi is TRUE in T . In that case, {u} satisfies

φ under 〈U,UR〉. Therefore, e is satisfiable if and only if φ is satisfiable.

Proof of Lemma 2.3.2

To prove that TSAT over terms built using only explicit sets of users, u, t, and � is

NP-hard, we reduce the NP-complete SET COVERING problem to it. In the SET COVER-

ING problem, we are given a finite set U = {u1, . . . , un}, a family F = {U1, . . . , Um} of

subsets of U , and an integer k no larger than m, and we ask whether there is a sub-family

F ′ ⊆ F of sets whose union is U and |F ′| ≤ k.

We view each element in U as a user. For every j ∈ [1,m], we construct a term

φj =
⊙
{{ui} | ui ∈ Uj}; that is, φj = {uj1} � {uj2} � · · · � {ujx}, where Uj =
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{uj1 , uj2 , . . . , ujx}. It is clear that φj can only be satisfied by Uj . Finally, we construct a

term φ = ((
⊙

k(
⊔m
i=1 φi)) u (

⊙n
i=1{ui})). Since (

⊙n
i=1{ui}) can be satisfied only by U ,

U is the only userset that may satisfy φ.

We now demonstrate that φ is satisfiable if and only if there are no more than k sets in

family F whose union is U . On the one hand, if φ is satisfiable, then it must be satisfied by

U . In this case, U satisfies (
⊙

k(
⊔m
i=1 φi)), which means that there exist k sets U ′1, . . . , U

′
k

such that
⋃k
i=1 U

′
i = U and each U ′i satisfies (

⊔m
i=1 φi). Since φi can be satisfied only by

Ui ∈ F , we have U ′j ∈ F for every j ∈ [1, k]. The answer to the SET COVERING problem

is thus “yes”. On the other hand, without loss of generality, assume that
⋃k
i=1 Ui = U .

We have, for every i ∈ [1, k], Ui satisfies φi and thus satisfies (
⊔m
i=1 φi). Therefore, U

satisfies (
⊙

k(
⊔m
i=1 φi)). Since U also satisfies (

⊙n
i=1{ui}), U satisfies ((

⊙
k(
⊔m
i=1 φi)) u

(
⊙n

i=1{ui})).

Proof of Lemma 2.3.3

First, assume that a userset X satisfies φ under 〈U,UR〉. According to Theorem 2.1.2,

there exists a satisfaction tree T of φ under 〈U,UR〉 and LT (Nr) = X . Now, we show that

if |X| > |φ|, then there must exist X ′ ⊆ X such that X ′ satisfies φ under 〈U,UR〉 and

|X ′| ≤ |φ|. In the following, we construct a satisfaction tree T ′ of φ based on T .

Initially, X ′ = ∅. For every leaf node Ni of T , if LT (Ni) 6= ∅, then we arbitrarily select

u ∈ LT (Ni) and add u to X ′. Since the number of leaves in T is no larger than |φ|, we have

|X ′| ≤ |φ|. Also, X ′ ⊆ X because LT (Ni) ⊆ LT (Nr) = X according to Definition 2.1.4.

Next, for every node N in T , we relabel N with LT ′(N) such that LT ′(N) = LT (N)∩X ′.

When the relabeling is done, we acquire a new tree T ′. In particular, the root of T ′ is labeled

with X ∩X ′ = X ′. Now, we show that T ′ is a satisfaction tree by proving that it satisfies

the conditions in Definition 2.1.4. Given a node N in T , we denote Φ(N) as the sub-term

of φ that is represented by the sub-tree rooted at N . When LT (N) = ∅, LT ′(N) = ∅. In

the following, we only discuss the cases when LT (N) 6= ∅.

• When N is a leaf node: If Φ(N) is a unit term, then LT (N) must be a singleton and

the only user inLT (N) must have been added toX ′. Thus, we haveLT ′(N) = LT (N)
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which satisfies Φ(N). Otherwise, Φ(N) is in the form of φ+
1 . LT (N) satisfying φ+

1

indicates that every user in LT (N) satisfies φ1. Since at least one user in LT (N) has

been added toX ′, LT ′(N) = LT (N)∩X ′ is a non-empty subset of LT (N). Therefore,

LT ′(N) satisfies φ+
1 .

• WhenN representsu: BecauseLT (N) = LT (N1), we haveLT ′(N) = LT (N)∩X ′ =

LT (N1) ∩ X ′ = LT ′(N1). Similarly, LT (N) = LT (N2) implies that LT ′(N) =

LT ′(N2).

• When N represents t: If LT (N) = LT (N1), we have LT ′(N) = LT (N) ∩ X ′ =

LT (N1) ∩ X ′ = LT ′(N1). Otherwise, if LT (N) = LT (N2), we can prove similarly

that LT ′(N) = LT ′(N2). Therefore, LT ′(N) = LT ′(N1) or LT ′(N) = LT ′(N2).

• When N represents �: Because LT (N) = LT (N1) ∪ LT (N2), we have LT ′(N) =

LT (N) ∩ X ′ = (LT (N1) ∪ LT (N2)) ∩ X ′ = (LT (N1) ∩ X ′) ∪ (LT (N2) ∩ X ′) =

LT ′(N1) ∪ LT ′(N2).

• When N represents ⊗: Similar to the above, we have LT (N) = LT ′(N1) ∪ LT ′(N2).

Also, LT (N1) ∩ LT (N2) = ∅ indicates that LT ′(N1) ∩ LT ′(N2) = ∅.

Therefore, T ′ is a satisfaction tree for φ. And since the root of T is labeled with X ′, X ′

satisfies φ according to Theorem 2.1.2.

According to the above argument, if φ is satisfiable, then there exists a set X ′ of no

more than |φ| users and a configuration 〈U,UR〉, such that X ′ satisfies φ under 〈U,UR〉.

Users not in X ′ can be removed from the configuration without affecting the satisfaction of

φ. Also, those roles in UR that do not appear in φ can be removed too. Since there are no

more than |φ| roles in φ and there are no more than |φ| users in X ′, we have |UR| ≤ |φ|2.

Therefore, the lemma holds.

Proof of Theorem 2.3.4

Since we have already proved that certain subcases of TSAT are NP-hard, to prove the

theorem, we just need to show that the problem is in NP. Given a term φ, a nondeterminis-

tic Turing machine may guess a configuration 〈U,UR〉, a userset X , and a satisfaction tree

T whose root is labeled with X . According to Lemma 2.3.3, the size of X and 〈U,UR〉 is
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bounded by |φ|2. Also, according to Theorem 2.1.2, X satisfies φ if and only if there is a

satisfaction tree of φ whose root is labeled with X . There are no more than 2|φ| − 1 nodes

in T and the size of the set labeling a node is bounded by |X|. Therefore, the size of T is

polynomial in the size of input. The Turing machine may verify whether T is a satisfaction

tree by following the rules specified in Definition 2.1.4. It is clear that the verification can

be done in polynomial time by following the structure of T . Therefore, TSAT is in NP.

A.2.2 Proof of Lemma 2.3.7, Lemma 2.3.8, and Theorem 2.3.9

Proof of Lemma 2.3.7

Proof by induction on the structure of term φ.

Base case: When φ = r or φ = All, we have C(φ) = {1} ⊆ {1, 2, . . . , |φ|}. Otherwise,

when φ is in the form of φ+
1 where φ1 is a unit term, according to Definition 2.3.1, we have

C(φ) = {i|i ∈ [1,∞)} = W ∪ {|φ|+ 1, |φ|+ 2, . . . }, where W = {1, 2, . . . , |φ|}.

Inductive case: When φ is in the form of (φ1 op φ2), assume that the lemma holds

for φ1 and φ2. Let W1 denote a subset of {1, 2, . . . , |φ1|} and W2 denote a subset of

{1, 2, . . . , |φ2|}. We have the following three cases:

Case 1: Both C(φ1) and C(φ2) are finite. Let C(φ1) = W1 and C(φ2) = W2. Since

|φ| = |φ1|+ |φ2|, it follows from Definition 2.3.1 that C(φ) ⊆ {1, 2, . . . , |φ|}, because for

any c1 ∈ C(φ1) and c2 ∈ C(φ2), c1 + c2 ≤ |φ1|+ |φ2| = |φ|.

Case 2: Exactly one of C(φ1) and C(φ2) is an infinite set. Without loss of generality,

assume that C(φ1) = W1 and C(φ2) = W2 ∪ {|φ2| + 1, |φ2| + 2, . . . }. We compute C(φ)

according to op :

• op = t: C(φ) = C(φ1) ∪ C(φ2) = W1 ∪ W2 ∪ {|φ2| + 1, |φ2| + 2, . . . } =

W1∪W2∪{|φ2|+1, . . . , |φ|}∪{|φ|+1, |φ|+2, . . . }, in whichW1∪W2∪{|φ2|, . . . , |φ|}

is a subset of {1, 2, . . . , |φ|}.

• op = u: C(φ) = C(φ1)∩C(φ2) is a subset ofW1, which is a subset of {1, 2, . . . , |φ|}.
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• op = �:

C(φ) ={i | ∃c1 ∈ W1 ∃c2 ∈ W2 [max(c1, c2) ≤ i ≤ c1 + c2]}

∪ {max(min(W1), |φ2|+ 1),max(min(W1), |φ2|+ 1) + 1, . . . }

={i | ∃c1 ∈ W1 ∃c2 ∈ W2 [max(c1, c2) ≤ i ≤ c1 + c2]}

∪ {max(min(W1), |φ2|+ 2, . . . , |φ|} ∪ {|φ|+ 1, |φ|+ 2, . . . }

Note that {i | ∃c1 ∈ W1 ∃c2 ∈ W2 [max(c1, c2) ≤ i ≤ c1 + c2]} ∪

{max(min(W1), |φ2| + 1), . . . , |φ|} is a subset of {1, 2, . . . , |φ|}, as c1 + c2 ≤

|φ1|+ |φ2| = |φ|.

• op = ⊗:

C(φ) ={c1 + c2|c1 ∈ W1 ∧ (c2 ∈ W2 ∨ c2 ∈ [|φ2|,∞))}

={c1 + c2|c1 ∈ W1 ∧ c2 ∈ W2}

∪ {min(W1) + |φ2|+ 1,min(W1) + |φ2|+ 2, . . . }

={c1 + c2|c1 ∈ W1 ∧ c2 ∈ W2}

∪ {min(W1) + |φ2|+ 1, . . . , |φ|} ∪ {|φ|+ 1, |φ|+ 2, . . . }

Note that {c1 + c2|c1 ∈ W1 ∧ c2 ∈ W2} ∪ {min(W1) + |φ2|, . . . , |φ|]} is a subset of

{1, 2, . . . , |φ|}.

Case 3: Both C(φ1) and C(φ2) are infinite sets, where C(φ1) = W1∪{i|i ∈ [|φ1|,∞)}

and C(φ2) = W2 ∪ {i|i ∈ [|φ2|,∞)}. The argument is similar to Case 2. We omit the

details here.

Proof of Lemma 2.3.8

When φ = All or φ = r or φ = φ+
1 , C(φ) can be computed in constant time according

to Definition 2.3.1.

There are |φ| − 1 binary operators in φ. Hence, to prove the lemma, we just need to

prove that, given C(φ1) and C(φ2), C(φ) can be computed in time polynomial in the size

of |φ|, where φ = (φ1 op φ2).
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According to Lemma 2.3.7, we may represent the characteristic set of a term φ as a

tuple. Let W ⊆ {1, . . . , |φ|}. When C(φ) = W , we represent C(φ) as a tuple 〈|φ|,W, 0〉;

when C(φ) = W ∪ {|φ| + 1, |φ| + 2, . . . }, we represent C(φ) as a tuple 〈|φ|,W, 1〉. In

other words, the last element (either 0 or 1) of the tuple indicates whether C(φ) contains

{|φ|+ 1, |φ|+ 2, . . . } or not.

Given C(φ1) and C(φ2), we represent them as tuples 〈|φ1|,W1, f1〉 and 〈|φ2|,W2, f2〉,

where f1, f2 ∈ {0, 1}. Now, we show that computing the tuple-representation 〈|φ|,W, f〉

of C(φ) can be done in polynomial time. Note that |φ| = |φ1| + |φ2|. We just need to

determine W and f .

• Case f1 = f2 = 0: According to Definition 2.3.1, it is clear that f = 0. Computing

W from W1 and W2, by following Definition 2.3.1, involves set union/intersection or

computing the sums of pairs of elements, which can be done in O(|φ1| · |φ2|).

• Case f1 = 0 and f2 = 1: According to Definition 2.3.1, if op = u, then f = 0;

otherwise, f = 1. Computing W from W1 and W2 ∪ {|φ2|+ 1, . . . , |φ|} can be done

in O(|φ1| · |φ|).

• Case f1 = 1 and f2 = 0: Similar to the above.

• Case f1 = 1 and f2 = 1: According to Definition 2.3.1, we have f = 1. Computing

W from W1∪{|φ1|+1, . . . , |φ|} and W2∪{|φ2|+1, . . . , |φ|} can be done in O(|φ|2).

In summary, computing C(φ) takes polynomial time.

Proof of Theorem 2.3.9

Given a term φ, let C ′(φ) be the set of all integers k’s such that there is a userset of size

k that satisfies φ under some configuration. We would like to prove that C ′(φ) ≡ C(φ).

We prove this by induction on the structure of φ.

Base case: when φ = All, φ is satisfied by any userset that is singleton; when φ = r,

φ is satisfied by a singleton containing a user who is a member of r. Hence, we have

C ′(All) = C ′(r) = {1}. According to Definition 2.3.1, C ′(φ) ≡ C(φ).

Inductive case: assume that C ′(φ) ≡ C(φ) when |φ| < k, where |φ| is the number of

atomic terms in φ. When |φ| = k, we have:
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• Case φ = φ1 t φ2: It follows from the definition of satisfaction (Definition 2.1.3)

that C ′(φ1 t φ2) = C ′(φ1) ∪ C ′(φ2). By inductive assumption, C ′(φ1) ≡ C(φ1) and

C ′(φ2) ≡ C(φ2). According to Definition 2.3.1, we have C ′(φ) ≡ C(φ).

• Case φ = φ1uφ2: It follows from Definition 2.1.3 thatC ′(φ1uφ2) ⊆ C ′(φ1)∩C ′(φ2).

In the following, we prove that C ′(φ1 u φ2) ⊇ C ′(φ1) ∩ C ′(φ2), where φ1 and φ2 are

free of negation and explicit sets of users.

Assume that X1 is a size-k userset that satisfies φ1 under configuration 〈U,UR1〉

and X2 is a size-k userset that satisfies φ2 under configuration 〈U,UR2〉. Since φ1

and φ2 do not contain explicit sets of users, the names of users are not important.

Hence, we can assume that X1 = X2. Also, since φ1 does not contain negation, X1

still satisfies φ1 even if we assign more roles to users in X1. Therefore, X1 satisfies

φ1 under 〈U,UR1 ∪ UR2〉. Also, X1 (which is equivalent to X2) satisfies φ2 under

〈U,UR1 ∪ UR2〉. Therefore, X1 satisfies φ1 u φ2. Since |X1| = k, we have k ∈

C ′(φ1 u φ2). Hence, C ′(φ1 u φ2) ⊇ C ′(φ1) ∩ C ′(φ2).

In summary, we have C ′(φ1 u φ2) = C ′(φ1) ∩ C ′(φ2). By inductive assumption,

C ′(φ1) ≡ C(φ1) and C ′(φ2) ≡ C(φ2). According to Definition 2.3.1, we have

C ′(φ) ≡ C(φ).

• Case φ = φ+
0 : It follows from the computation of C ′(All), C ′(r), C ′(φ1 t φ2) and

C ′(φ1 u φ2) that C ′(φ0) = {1}, where φ0 is a unit term free of explicit sets of users

and negation. Given a configuration 〈U,UR〉 and a singleton {u1} such that {u1}

satisfies φ0, we create u2, . . . , un such that ui (i ∈ [2, n]) is assigned to precisely the

same set of roles as u1. In this case, {u1, . . . , un} satisfies φ+
0 . In other words, φ+

0

may be satisfied by n users for any n ≥ 1. That is to say, C ′(φ+
0 ) = {i | i ∈ [1,∞)}.

According to Definition 2.3.1, we have C ′(φ) ≡ C(φ).

• Case φ = φ1� φ2: Let X be a userset that satisfies (φ1� φ2). There exist X1 and X2

such that X1 satisfies φ1, X2 satisfies φ2, and X1 ∪X2 = X . By the definition of C ′,

there exist c1 ∈ C ′(φ1) and c2 ∈ C ′(φ2) such that |X1| = c1 and |X2| = c2. Hence,

max(c1, c2) ≤ |X| ≤ c1 + c2.
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Given c1 ∈ C ′(φ1) and c2 ∈ C ′(φ2), there exist X1 and X2 such that X1 satisfies

φ1 under 〈U1,UR1〉, X2 satisfies φ2 under 〈U2,UR2〉, |X1| = c1 and |X2| = c2.

For any integer k ∈ [max(c1, c2), c1 + c2], we may name users in such a way that

|X1 ∩ X2| = c1 + c2 − k. In this case, X = X1 ∪ X2 satisfies (φ1 � φ2) under

〈U1 ∪ U2,UR1 ∪ UR2〉 and |X| = k.

In summary, C ′(φ1 � φ2) = { i | ∃ c1 ∈ C ′(φ1) ∃ c2 ∈

C ′(φ2) [max(c1, c2) ≤ i ≤ c1 + c2 ]}. By inductive assumption, C ′(φ1) ≡ C(φ1) and

C ′(φ2) ≡ C(φ2). According to Definition 2.3.1, we have C ′(φ) ≡ C(φ).

• Case φ = φ1 ⊗ φ2: On the one hand, userset X satisfies (φ1 ⊗ φ2) if and only if

there exist X1 and X2 such that X1 ∪ X2 = X , X1 ∩ X2 = ∅ and X1, X2 satisfy

φ1, φ2 respectively. By definition of C ′, we have |X1| ∈ C ′(φ1) and |X2| ∈ C ′(φ2).

Therefore, |X| = (|X1|+ |X2|) ∈ { c1 + c2 | c1 ∈ C ′(φ1) ∧ c2 ∈ C ′(φ2) }.

On the other hand, given any c1 ∈ C ′(φ1) and c2 ∈ C ′(φ2), by definition of C ′, there

exist X1 and X2 that satisfy φ1 and φ2 under 〈U1,UR1〉 and 〈U1,UR1〉 respectively,

such that |X1| = c1 and |X2| = c2. Name the users in such a way that X1 ∩X2 = ∅.

We have X = X1 ∪ X2 satisfies (φ1 ⊗ φ2) under 〈U1 ∪ U2,UR1 ∪ UR2〉, where

|X| = |X1|+ |X2| = c1 + c2.

In summary, C ′(φ1 ⊗ φ2) = { c1 + c2 | c1 ∈ C ′(φ1) ∧ c2 ∈ C ′(φ2) }. By inductive

assumption, C ′(φ1) ≡ C(φ1) and C ′(φ2) ≡ C(φ2). According to Definition 2.3.1,

we have C ′(φ) ≡ C(φ).

In conclusion, we have C ′(φ) ≡ C(φ) and Theorem 2.3.9 holds.

A.3 Proofs of Theorems in Section 2.4

In the following proofs, (opkφ) denotes k copies of φ connected together by opera-

tor op and (opni=1ri) denotes (r1 op . . . op rn). Given R = {r1, . . . , rm}, (opR) denotes

(r1 op . . . op rm).
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A.3.1 The Five Intractability Subcases of UTS

Lemma A.3.1 UTS 〈t,�〉 is NP-hard.

Proof We use a reduction from the NP-complete SET COVERING problem [25]. In the

SET COVERING problem, we are given a finite set S = {e1, . . . , en}, a family of S’s subsets

F = {S1, . . . , Sm}, and an integer k < m, and we ask whether there exists a sub-family of

sets F ′ ⊆ F whose union is S and |F ′| ≤ k. Given such an instance, our reduction maps

each element in S to a user and to a role. We construct a configuration 〈U,UR〉 such that

U = {u1, . . . , un} and UR = {(ui, ri) | i ∈ [1, n]}, and a term φ = (
⊙

k(
⊔m
i=1(
⊙

Ri))),

where Ri is a set of roles such that rj ∈ Ri if and only if ej ∈ Si.

We now demonstrate that U satisfies φ under 〈U,UR〉 if and only if there exist k sets

in F whose union is S. On the one hand, assume that U satisfies φ, by definition. U has k

subsets U1, . . . , Uk such that
⋃k
i=1 Ui = U and every Ui satisfies (

⊔m
i=1(
⊙

Ri)). Ui satisfies

(
⊔m
i=1(
⊙

Ri)) if and only if Ui satisfies a certain (
⊙

Rxi
), where xi ∈ [1,m]. From the

construction of Rxi
, Ui satisfies (

⊙
Rxi

) if and only if Ui = {ua | ea ∈ Sxi
}. Since⋃k

i=1 Ui = U , we have
⋃k
i=1 Sxi

= S. The answer to the set covering problem is “yes”.

On the other hand, assume that there are k sets in F whose union is S. Without loss of

generality, we assume that
⋃k
i=1 Si = S. In this case, we divide U into k sets U1, . . . , Uk

such that Ui = {uj | ej ∈ Si}. Since
⋃k
i=1 Si = S, we have

⋃k
i=1 Ui = U . Furthermore,

since Ui = {uj | ej ∈ Si}, from the construction of Ri, we have Ui satisfies (
⊙

Ri) for

every i ∈ [1, k]. Therefore, U satisfies φ = (
⊙

k(
⊔m
i=1(
⊙

Ri))).

Lemma A.3.2 UTS 〈u,�〉 is NP-hard.

Proof We use a reduction from the NP-complete SET COVERING problem [25]. Given

S = {e1, . . . , en}, a family of S’s subsets F = {S1, . . . , Sm}, and an integer k < m, our

reduction maps each element ej ∈ S to a role rj and each Si ∈ F to a user ui. We construct

a configuration 〈U,UR〉 such that U = {u1, . . . , um} and UR = {(ui, rj) | ej ∈ Si}, and

a term φ = (((
⊙

k All) u (
⊙n

i=1 ri))� (
⊙

m All)).

We now demonstrate that U satisfies φ under 〈U,UR〉 if and only if there exist k sets

in family F whose union is S. On the one hand, assume that U satisfies φ. Since (
⊙

m All)
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can be satisfied by any nonempty userset with no more than m users, U always satisfies

(
⊙

m All) and it satisfies φ if and only if there is U ′ ⊆ U such that U ′ satisfies ((
⊙

k All) u

(
⊙n

i=1 ri)). U ′ satisfying (
⊙

k All) indicates that |U ′| ≤ k, while U ′ satisfying (
⊙n

i=1 ri)

indicates that users in U ′ together have membership of all roles in {r1, . . . , rn}. Without

loss of generality, suppose U ′ = {u1, . . . , ut}, where t ≤ k. Because (ui, rj) ∈ UR if and

only if ej ∈ Si, the union of {S1, . . . , St} is S. The answer to the SET COVERING problem

is “yes”.

On the other hand, assume that k subsets in F cover S. Without loss of generality,

we assume that
⋃k
i=1 Si = S. From the construction of UR, users u1, . . . , uk together

have membership of all roles in {r1, . . . , rn}. In this case, {u1, . . . , uk} satisfies (
⊙n

i=1 ri).

Also, {u1, . . . , uk} satisfies (
⊙

k All). Hence, {u1, . . . , uk} satisfies ((
⊙

k All)u(
⊙n

i=1 ri)).

(
⊙

m All) is also satisfied by U . Therefore, U satisfies φ.

Lemma A.3.3 UTS 〈�,⊗〉 is NP-hard.

Proof We use a reduction from the NP-complete DOMATIC NUMBER problem [25].

Given a graph G(V,E), the Domatic Number problem asks whether V can be partitioned

into k disjoint nonempty sets V1, V2, . . . , Vk, such that each Vi is a dominating set for G. V ′

is a dominating set for G = (V,E) if for every node u in V − V ′, there is a node v in V ′

such that (u, v) ∈ E.

Given a graph G = (V,E) and a threshold k, let U = {u1, u2, . . . , un} and R =

{r1, r2, . . . , rn}, where n is the number of nodes in V . Each user in U corresponds to a

node in G, and v(ui) denotes the node corresponding to user ui. UR = {(ui, rj) | i =

j or (v(ui), v(uj)) ∈ E}. Let φ = (
⊗

k(
⊙n

i=1 ri)).

A dominating set in G corresponds to a set of users that together have membership of

all the n roles. U satisfies φ under 〈U,UR〉 if and only if U can be divided into k pairwise

disjoint sets, each of which has role membership of r1, r2, . . . , rn. Therefore, the answer to

the Domatic Number problem is “yes” if and only if U satisfies φ under 〈U,UR〉.
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Lemma A.3.4 UTS 〈⊗,t〉 is NP-hard.

Proof We use a reduction from the NP-complete SET PACKING problem [25], which

asks: Given a finite set S = {e1, . . . , en}, a family of S’s subsets F = {S1, . . . , Sm},

and an integer k, whether there are k pairwise disjoint elements (which are sets) in F ?

Without loss of generality, we assume that Si 6⊆ Sj when i 6= j. (If Si ⊆ Sj , one can

remove Sj without affecting the answer.) Let U = {u0, u1, . . . , un}, R = {r1, . . . , rn} and

UR = {(ui, ri) | 1 ≤ i ≤ n}. Note that u0 is a user that is not assigned to any role. We

then construct a term φ = ((
⊗

k (
⊔m
i=1 (

⊗
Rj)))⊗ φnonempty), where Rj = {ri | ei ∈ Sj}

and φnonempty = (All t (All⊗ All) t · · · t (
⊗

m All)).

We show that U satisfies φ under 〈U,UR〉 if and only if there are k pairwise disjoint

elements in family F . As the only member of ri is ui, the only userset that satisfies φi =

(
⊗

Rj) is Uj = {ui | ei ∈ Sj}. Hence, a userset X satisfies φ′ = (
⊔m
i=1 φi) if and only if

X equals to some Uj .

Without loss of generality, assume that S1, . . . , Sk are k pairwise disjoint sets. Then,

U1, . . . , Uk are k pairwise disjoint sets of users. U1 satisfies φ1, and thus satisfies φ′. Sim-

ilarly, we have Ui satisfies φ′ for every i from 1 to k. Furthermore, since u0 6∈ Ui for any

i ∈ [1, k], we have
⋃k
i=1 Ui ⊂ U . Hence, U can be divided into two nonempty subset⋃k

i=1 Ui and U ′ = U −
⋃k
i=1 Ui such that

⋃k
i=1 Ui satisfies (

⊗
k (
⊔m
i=1 (

⊗
Rj))) and U ′

satisfies φnonempty. In other words, U satisfies φ.

On the other hand, suppose that U satisfies φ. Then, U has a strict subset U ′ with

u0 6∈ U ′, such that U ′ can be divided into k pairwise disjoint sets Û1, . . . , Ûk, such that each

Ûi satisfies φ′. In order to satisfy φ′, Ûi must satisfy a certain φai
and hence be equivalent to

Uai
, where ai ∈ [1,m]. The assumption that Û1, . . . , Ûk are pairwise disjoint indicates that

Ua1 , . . . , Uak
are also pairwise disjoint. Therefore, their corresponding sets Sa1 , . . . , Sak

are pairwise disjoint. The answer to the SET PACKING problem is “yes”.

Lemma A.3.5 UTS 〈u,⊗〉 is NP-hard.

Proof We use a reduction from the NP-complete SET COVERING problem, which asks:

Given a family F = {S1, . . . , Sm} of subsets of a finite set S = {e1, . . . , en} and an integer
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k no larger than m, whether there is a subfamily of sets F ′ ≤ F whose union is S and

|F ′| ≤ k?

Given S and F , let U = {u1, u2, . . . , um}, R = {r1, r2, . . . , rn} and UR = {(ui, rj) |

ej ∈ Si}. Let φ = ((un
i=1

(
ri ⊗

(⊗
k−1 All

))
) ⊗ (

⊗
m−k All)). We now demonstrate that

U satisfies φ under 〈U,UR〉 if and only if there are k sets in family F whose union is S.

Without loss of generality, assume that k < m.

First, assume that U satisfies φ. Since (
⊗

m−k All) can be satisfied by any userset with

m − k users, U satisfies φ if and only if there is a size-k subset U ′ of U that satisfies(
ri ⊗

(⊗
k−1 All

))
for every i ∈ [1, n]. This means that users in U ′ together have member-

ship of all roles in {r1, . . . , rn}. Suppose U ′ = {ua1 , . . . , uak
}, where ai ∈ [1,m]. Because

(ui, rj) ∈ UR if and only if ej ∈ Si, the union of {Sa1 , . . . , Sak
} is S. The answer to the

Set Covering problem is “yes”.

Second, without loss of generality, assume that
⋃k
i=1 Si = S. From the construction of

UR, users u1, . . . , uk together have membership of r1, . . . , rn. In this case, {u1, . . . , uk}

satisfies
(
ri ⊗

(⊗
k−1 All

))
for every i ∈ [1, n]. Since k < m, {u1, . . . , uk} is a

strict subset of U . Therefore, U can be divided into two nonempty subset {u1, . . . , uk}

and U − {u1, . . . , uk} such that {u1, . . . , uk} satisfies (un
i=1

(
ri ⊗

(⊗
k−1 All

))
) and

U − {u1, . . . , uk} satisfies (
⊗

m−k All). In other words, U satisfies φ.

A.3.2 Proof that UTS Is in NP

Lemma A.3.6 UTS 〈¬,+,t,u,�,⊗〉 is in NP.

Proof Given a term φ, a configuration 〈U,UR〉 and a userset X , according to Theo-

rem 2.1.2, X satisfies φ if and only if there exists a satisfaction tree of φ whose root is

labeled with X . A non-deterministic Turing machine may guess a satisfaction tree T of

φ such that the root of T is labeled with X . From the proof of Theorem 2.3.4, the size

of T is polynomial in the size of φ and verifying whether T is a satisfaction tree can

be done in polynomial time by following the rules in Definition 2.1.4. Therefore, UTS

〈¬,+,t,u,�,⊗〉 is in NP.
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A.3.3 The Tractable Cases

Lemma A.3.7 UTS for 4CF terms is in P.

Proof Given a 4CF term φ = (P1 � · · · � Pn), where for each k such that 1 ≤ k ≤ n, Pk

is a 3CF term of the form (φk,1 ⊗ φk,2 ⊗ · · · ⊗ φk,mk
), and each φk,j is a 1CF term. Let tk,j

be the base (which is a unit term) of φk,j . Tk = {tk,1, tk,2, . . . , tk,mk
} is a multiset of the

base of the 1CF terms in Pk.

Given a userset X = {u1, . . . , un} and configuration 〈U,UR〉, we present an algorithm

that determines whether X satisfies φ under 〈U,UR〉.

Step 1 The first step checks that each Pk is satisfied by some subset of X . For each k such

that 1 ≤ k ≤ n, do the following. Construct a bipartite graph G(X,Tk), in which one

partition consists of users in X and the other consists of all the tk,j’s in Tk; and there is an

edge between u ∈ X and tk,j if and only if {u} satisfies tk,j . Compute a maximal matching

of the graph G(X,Tk), if the size of the matching is less than mk, returns “no”, as this

means that X does not contain a subset that satisfies Pk; thus X does not satisfy φ.

Step 2 The second step checks that each user in X can be “consumed” by some unit term

in φ. Let G(A,B) denote the bipartite graph in which one partition, A, consists of users in

X , and the other partition, B, consists of all the tk,j’s in T1 ∪ T2 ∪ · · · ∪ Tn. Furthermore,

for any unit term t that occurs as t+ in φ, we make sure that B has at least |X| copies of t

by adding additional copies of t if necessary. There is an edge between u ∈ A and t ∈ B

if and only if {u} satisfies t. Compute a maximal matching of the graph G(X,T ), if the

matching has size less than |X|, returns “no”.

Step 3 Return “yes”.

It is not difficult to see that if the algorithm returns “no”, then X does not satisfy φ. We

now show that if the algorithm returns “yes”, then X satisfies φ. If the algorithm returns

“yes”, then for each k, the graph G(X,Tk) has a matching of size mk. Let Xk be the set

of users involved in the matching. Xk satisfies Pk. Let X ′ = X1 ∪ X2 ∪ · · · ∪ Xn. If

X ′ = X , then clearly X satisfies φ. If X ′ ⊂ X , then find a user u in X \ X ′, and do the

following: Find the term t that is matched with u in the maximal matching computed in
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step 2. Such a term must exist, since the matching has size |X|. Without loss of generality,

assume that t appears in P1, and X1 contains a user w that is matched with t; then change

X1 by replacing w with u. Clearly, the new X1 still satisfies P1. Compute X ′ again, and

if X ′ ⊂ X , find another user in X \X ′ and repeat the previous process. Note that X ′ will

grow if w appears in some other Xk. Also observe that, the newly added matching between

u and twill never be removed again in future, because no other user is matched with t in the

maximal matching computed in step 2; as a result, u will always remain in X ′. Therefore,

after each step, one new user will be added to X ′ and will never be removed. After at most

|X| steps, we will have X ′ = X .

A.4 Proof of Theorem 2.5.1

Proofs of the P results in Theorem 2.5.1

We first prove the following lemma, which will be useful.

Lemma A.4.1 The following properties hold.

1. A userset X satisfies a unit term t if and only if X is a singleton and the only user in

X satisfies t.

2. A userset X satisfies a term t+, where t is a unit term, if and only if every user in X

satisfies t.

3. If a userset X satisfies a term φ that is built using only ¬,+,u,t, then every user in

X satisfies φ.

4. A userset X is safe with respect to a 1CF term φ if and only if there exists a user in

X that satisfies t.

Proof Properties 1 and 2 follow from the definition of term satisfaction. Observe that a

unit term can be satisfied only by a singleton.

Property 3. The term φ can be decomposed into subterms in 1CF form, connected using

u and t. By definition, X satisfies φ1 uφ2 if and only if X satisfies both φ1 and φ2, and X

satisfies φ1 t φ2 if and only if X satisfies either φ1 or φ2. Identify all 1CF subterms that X
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satisfies, it follows from Properties 1 and 2 that each user in X satisfies all these subterms.

Therefore, each user satisfies φ.

Property 4. For the “if” direction, if X contains a user u that satisfies t, then {u}

satisfies the term φ, and thus X is safe with respect to φ. For the “only if” direction, if X

is safe with respect to φ, then X contains a subset X0 that satisfies φ. Any user in X0 must

satisfy t according to Properties 1 and 2.

Lemma A.4.2 SAFE 〈¬,+,t,�〉 is in P.

Proof A userset X is safe with respect to (φ1 t φ2) if and only if either X is safe with

respect to φ1 orX is safe with respect to φ2. Furthermore,X is safe with respect to (φ1�φ2)

if and only if X is safe with respect to both φ1 and φ2. Therefore, one can determine

whether U is safe with respect to φ, which is built using only the operators in {¬,+,t,�},

by following the structure of the term until reaching subterms in 1CF. From Property 4 of

Lemma A.4.1, checking whether U is safe with respect to such a term amounts to checking

whether there exists a user in U that satisfies t, which can be done in polynomial time.

Lemma A.4.3 SAFE 〈¬,+,t,u〉 is in P.

Proof Given a term φ which is built using only operators in {¬,+,t,u}, we prove that

a userset X is safe with respect to φ if and only if there exists a user u ∈ X such that u

satisfies φ. The “if” direction follows by definition. For the “only if” direction: Suppose

that X contains a nonempty subset X0 that satisfies φ, then by Property 3 of Lemma A.4.1,

every user in X0 satisfies φ; thus X must contain a user that satisfies φ. Therefore, to

determine whether X is safe with respect to φ, one can, for each user in X , check whether

the user satisfies φ. Checking whether one user satisfies a term using only operators in

{¬,+,t,u} can be done in polynomial time.

Lemma A.4.4 SAFE 〈¬,+,⊗〉 is in P.

Proof Given a term φ which does not contain any binary operator but ⊗, we show that

determining whether a userset X is safe with respect to φ under a configuration 〈U,UR〉
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can be reduced to the maximum matching problem on bipartite graphs, which can be solved

in O(MN) time, where M is the number of edges and N is the number of nodes in G [50].

Let s be the number of 1CF terms in φ and t = |X|. Since ⊗ is associative, φ can

be equivalently expressed as (φ1 ⊗ φ2 ⊗ · · · ⊗ φs), where each φi is a 1CF term . Let

X = {u1, . . . , ut}. We construct a bipartite graph G(V1 ∪ V2, E), where each node in V1

corresponds to a 1CF term in φ and each node in V2 corresponds to a user in X . More

precisely, V1 = {a1, . . . , as}, V2 = {b1, . . . , bt}, and (ai, bj) ∈ E if and only if {uj}

satisfies φi. The resulting graph G has s+ t nodes and O(st) edges, and can be constructed

in time polynomial in the size of G. Solving the maximal matching problem for G takes

time O((s+ t)st).

We now show that X is safe with respect to φ if and only if the maximal matching in

the graph G has size s. If the maximal matching has size s, then each node in V1 matches

to a certain node in V2, which means that the s 1CF terms in φ are satisfied by s distinct

users in X; thus X contains a subset that satisfies φ. If X is safe with respect to φ, by

definition, there exist s disjoint subsets X1, . . . , Xs such that Xi (i ∈ [1, s]) satisfies φi and⋃s
j=1Xj ⊆ X . From our construction of G, we may match a node corresponding to a user

in Xi to the node corresponding to φi. In this case, a maximal matching of size s exists.

Proving the NP-completeness results in Table 2.2

Lemma A.4.5 SAFE〈u,�〉 is NP-hard.

Proof We use a reduction from the NP-complete SET COVERING problem [25]. In the

SET COVERING problem, we are given a family F = {S1, . . . , Sm} of subsets of a finite

set S = {e1, . . . , en} and an integer k no larger than m, and we ask whether there is a

subfamily of sets F ′ ⊆ F whose union is S and |F ′| ≤ k.

Given S and F , we construct a configuration 〈U,UR〉 such that (ui, rj) ∈ UR if and

only if ej ∈ Si. Let U = {u1, . . . , um} and φ = ((
⊙

k All) u (
⊙n

i=1 ri)).

We now demonstrate that U is safe with respect to φ under 〈U,UR〉 if and only if there

are no more than k sets in family F whose union is S.
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First, ifU is safe with respect to φ, by definition, a subsetU ′ ofU satisfies both (
⊙

k All)

and (
⊙n

i=1 ri). U ′ satisfying (
⊙

k All) indicates that |U ′| ≤ k, whileU ′ satisfying (
⊙n

i=1 ri)

indicates that users in U ′ together have membership of ri for every i ∈ [1, n]. Without loss

of generality, suppose U ′ = {u1, . . . , ut}, where t ≤ k. Since (ui, rj) ∈ UR if and only

if ej ∈ Si, the union of {S1, . . . , St} is S. The answer to the SET COVERING problem is

“yes”.

Second, without loss of generality, assume that
⋃k
i=1 Si = S. From the construction

of UR, users u1, . . . , uk together have membership of ri for every i ∈ [1, n], which indi-

cates that {u1, . . . , uk} is safe with respect to (
⊙n

i=1 ri). Also, any non-empty subset of

{u1, . . . , uk} satisfies (
⊙

k All). Hence, U is safe with respect to φ.

Lemma A.4.6 SAFE〈�,⊗〉 is NP-hard.

Proof We use a reduction from the NP-complete DOMATIC NUMBER problem [25].

Given a graph G(V,E), the Domatic Number problem asks whether V can be partitioned

into k disjoint sets V1, V2, . . . , Vk, such that each Vi is a dominating set for G. V ′ is a dom-

inating set for G = (V,E) if for every node u in V − V ′, there is a node v in V ′ such that

(u, v) ∈ E.

Given a graph G = (V,E) and an integer k, let U = {u1, u2, . . . , un} and R =

{r1, r2, . . . , rn}, where n is the number of nodes in V . Each user in U corresponds to a

node in G, and v(ui) denotes the node corresponding to user ui. Let UR = {(ui, rj) | i =

j or (v(ui), v(uj)) ∈ E} and φ = (
⊗

k(
⊙n

i=1 ri)).

A dominating set in G corresponds to a set of users who together have membership of

all the n roles. U is safe with respect to φ if and only if U has a subset U ′ that can be

divided into k pairwise disjoint sets, each of which have role membership of r1, r2, . . . , rn.

Therefore, the answer to the Domatic Number problem is “yes” if and only if U is safe with

respect to φ.

Lemma A.4.7 SAFE〈⊗,t〉 is NP-hard.

Proof We use a reduction from the NP-complete SET PACKING problem [25], which

asks, given a family F = {S1, . . . , Sm} of subsets of a finite set S = {e1, . . . , en} and an
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integer k, whether there are k pairwise disjoint sets in family F . Without loss of generality,

we assume that Si 6⊆ Sj if i 6= j.

Given S and F , let U = {u1, . . . , un}, R = {r1, . . . , rn} and UR = {(ui, ri) | 1 ≤

i ≤ n}. We then construct a term φ = (
⊗

k (
⊔m
i=1 (

⊗
Rj))), where Rj = {ri | ei ∈ Sj}.

We show that U is safe with respect to φ under 〈U,UR〉 if and only if there are k pairwise

disjoint sets in family F .

As the only member of ri is ui, the only userset that satisfies φi = (
⊗

Rj) is Uj = {ui |

ei ∈ Sj}. A userset X satisfies φ′ = (
⊔m
i=1 φi) if and only if X equals to some Uj .

First, without loss of generality, assume that S1, . . . , Sk are k pairwise disjoint sets.

Then, U1, . . . , Uk are k pairwise disjoint sets of users. U1 satisfies φ1, and thus satisfies φ′.

Similarly, Ui satisfies φ′ for every i from 1 to k. Since Ui ⊆ U , U is safe with respect to φ.

Second, suppose U is safe with respect to φ. Then, U has a subset U ′ that can be divided

into k pairwise disjoint sets Û1, . . . , Ûk, such that Ûi satisfies φi. In order to satisfy φ′, Ûi

must satisfy a certain φai
and hence be equivalent to Uai

. The assumption that Û1, . . . , Ûk

are pairwise disjoint indicates that Ua1 , . . . , Uak
are also pairwise disjoint. Therefore, their

corresponding sets Sa1 , . . . , Sak
are pairwise disjoint. The answer to the Set Packing prob-

lem is “yes”.

Lemma A.4.8 SAFE 〈u,⊗〉 is NP-hard.

Proof We use a reduction from the NP-complete SET COVERING problem, which asks,

given a family F = {S1, . . . , Sm} of subsets of a finite set S = {e1, . . . , en} and an integer

k no larger than m, whether there is a subfamily of sets F ′ ⊆ F whose union is S and

|F ′| ≤ k.

Given S and F , let U = {u1, u2, . . . , um}, R = {r1, r2, . . . , rn} and UR = {(ui, rj) |

ej ∈ Si}. Let φ = (un
i=1

(
ri ⊗

(⊗
k−1 All

))
). We now demonstrate that U satisfies φ

under 〈U,UR〉 if and only if there are k sets in family F whose union is S.

If U is safe with respect to φ, by definition, a subset U ′ of U satisfies
(
ri ⊗

(⊗
k−1 All

))
for every i ∈ [1, n], which indicates users in U ′ together have membership of ri for every

i ∈ [1, n]. For any i ∈ [1, n], U ′ satisfying (ri ⊗ (
⊗

k−1 All)) indicates that |U ′| = k.
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Suppose U ′ = {ua1 , . . . , uak
}. Because (ui, rj) ∈ UR if and only if ej ∈ Si, the union of

{Sa1 , . . . , Sak
} is S. The answer to the SET COVERING problem is “yes”.

On the other hand, without loss of generality, assume that
⋃k
i=1 Si = S. From the

construction of UR, users u1, . . . , uk together have membership of ri for every i ∈ [1, n],

which indicates that {u1, . . . , uk} satisfies φi for every i ∈ [1, n]. Hence, {u1, . . . , uk}

satisfies φ and U is safe with respect to φ.

A.5 Proof of Theorem 2.5.2

Lemma A.5.1 SSC〈¬,+,t,u,�,⊗〉 is in coNPNP.

Proof We show that the complement of SSC〈¬,+,t,u,�,⊗〉 is in NPNP. Because

SAFE is in NP (see Table 2.2), an NP oracle can decide whether a userset is safe with

respect to a term. We construct a nondeterministic Oracle Turing Machine M that accepts

an input consisting of a state 〈U,UR,UP〉 and a policy sp〈P, φ〉 if and only if 〈U,UR,UP〉

is not safe with respect to sp〈P, φ〉. M nondeterministically selects a set U of users in

〈U,UR,UP〉. If U does not cover P , then M rejects. Otherwise, M invokes the NP

oracle to check whether U is safe with respect to φ. If the oracle answers “yes”, then M

rejects; otherwise, M accepts, as it has found a userset that covers P but is not safe with

respect to φ, which violates the static safety policy. The construction of M shows that the

complement of SSC〈¬,+,t,u,�,⊗〉 is in NPNP. Hence, SSC〈¬,+,t,u,�,⊗〉 is in

coNPNP.

Lemma A.5.2 SSC〈t,�〉 is coNP-hard.

Proof We reduce the coNP-complete VALIDITY problem for propositional logic to

SSC〈t,�〉. Given a propositional logic formula ϕ in disjunctive normal form, let

{v1, . . . , vn} be the set of propositional variables in ϕ.

We create a state 〈U,UR,UP〉with n permissions p1, p2, . . . , pn, 2n users u1, u
′
1, u2, u

′
2,

. . . , un, u
′
n, and 2n roles r1, r′1, r2, r

′
2, . . . , rn, r

′
n. We have UP = {(ui, pi), (u′i, pi) | 1 ≤

i ≤ n} and UR = {(ui, ri), (u′i, r′i) | 1 ≤ i ≤ n}. We also construct a term φ from the
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formula ϕ by replacing each literal vi with ri, each literal ¬vi with r′i, each occurrence of

∧ with � and each occurrence of ∨ with t.

Note that X is safe with respect to φ1 t φ2 if and only if X is safe respect to either φ1

or φ2, and X is safe with respect to φ1 � φ2 if and only if X is safe respect to both φ1 and

φ2. Thus the logical structure of φ follows that of ϕ.

We now show that the formula ϕ is valid if and only if 〈U,UR,UP〉 is safe with respect

to the policy sp〈{p1, p2, . . . , pn}, φ〉. On the one hand, if the formula ϕ is not valid, then

there is an assignment I that makes it false. Using that assignment, we construct a userset

X = {ui | I(vi) = true} ∪ {u′i | I(vi) = false}. X covers all permissions in P , but X

is not safe with respect to φ. On the other hand, if 〈U,UR,UP〉 is not safe with respect to

sp〈{p1, p2, . . . , pn}, φ〉, then there exists a set X of users that covers P but X is not safe

with respect to φ. In order to cover all permissions in P , for each i ∈ [1, n], at least one

of ui, u′i is in X . Without loss of generality, assume that for each i, exactly one of ui, u′i is

in X . (If both ui, u′i are in X , we can remove either one, the resulting set is a subset of X

and still covers P .) Then we can derive a truth assignment I from X by setting vi to true if

ui ∈ X and to false if u′i ∈ X . Then the formula evaluates to false, because X is not safe

with respect to φ.

Lemma A.5.3 SSC〈u,�〉 is NP-hard.

Proof There is a straightforward reduction from SAFE〈u,�〉 to SSC〈u,�〉. Given a

term φ using only operators u or �, in order to check whether a userset X is safe with

respect to φ, we can construct a policy sp〈P, φ〉 and a state 〈U,UR,UP〉 such that X is the

only set of users in the state that covers P . In this case, X is safe with respect to φ if and

only if the state we constructed satisfies sp〈P, φ〉. Since SAFE〈u,�〉 is NP-hard (see

Table 2.2), SSC〈u,�〉 is NP-hard.

Lemma A.5.4 SSC〈⊗〉 is coNP-hard.

Proof We can reduce the NP-complete SET COVERING problem to the complement of

SSC〈⊗〉. In SET COVERING, we are given a family F = {S1, . . . , Sm} of subsets of a
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finite set S = {e1, . . . , en} and an integer k, where k is an integer smaller than m and n.

We are asking whether there is a subfamily of sets F ′ ⊆ F whose union is S and |F ′| ≤ k.

Given an instance of the Set Covering problem, construct a state 〈U,UR,UP〉 such that

UR = {(ui, ri) | i ∈ [1,m]} and UP = {(ui, pj) | ej ∈ Si}. Construct a safety policy

sp〈P, φ〉, where P = {p1, . . . , pn} and φ = (
⊗

k+1 All). φ is satisfied by any set of no less

than k + 1 users.

First, if 〈U,UR,UP〉 is safe, no k users together have all permissions in P . In this case,

since ui corresponds to Si, there does not exist k sets in family F whose union is S. The

answer to the Set Covering problem is “no”.

Second, if 〈U,UR,UP〉 is not safe, there exist a set of no more than k users together

have all permissions in P . Accordingly, the answer to the Set Covering problem is “yes”.

Since the SET COVERING problem is NP-complete, we conclude that the complement

of SSC〈⊗〉 is NP-hard. Hence, SSC〈⊗〉 is coNP-hard.

Tractable cases of SSC:

Lemma A.5.5 SSC〈¬,+,u,t〉 is in P.

Proof Given a term φwith operators¬,+,u andt, construct another term φ′ by removing

+ in φ. For example, if φ = ((r1 u r2)+ t r+
3 ), then φ′ = ((r1 u r2) t r3). When only

operators ¬,+,u and t are allowed, if a set U of users satisfies φ, then there exists U ′ ⊆ U

such that U ′ satisfies φ′. This indicates that U is safe with respect to φ if and only if U is

safe with respect to φ′. Therefore, in order to show that SSC〈¬,+,u,t〉 is tractable, it

suffices to prove that SSC〈¬,u,t〉 is in P.

A term φ′ with operators ¬,u and t may be satisfied only by singleton. A state

〈U,UR,UP〉 is safe with respect to sp〈{p1, . . . , pm}, φ′〉, if and only if for any set U

of users who together have all permissions in {p1, . . . , pm}, there exists a user u ∈ U

such that {u} satisfies φ′. This is equivalent to checking whether there exists a permis-

sion pi (i ∈ [1,m]) such that for every user u having pi, {u} satisfies φ′. The following

algorithm performs such a check.
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isSafe(P, φ′, UR, UP)

begin

For each pi in {p1, . . . , pm} do

flag = true;

For each u such that (u, pi) ∈ UP do

If u does not satisfy φ′ then

flag = false;

break;

EndIf;

EndFor;

If flag then return true;

EndFor;

return false;

end

The worst-case time complexity of the above algorithm is O(m × |U | × t), where t

is the time taken to check whether a singleton satisfies a term with operators ¬,u and t,

which is polynomial in the size of input according to Theorem 2.4.1.

Lemma A.5.6 SSC 〈¬,+,�〉 is in P.

Proof The general form of terms built using only ¬,+ and � is (γ1 � · · · � γn), where

γi is of the form r, ¬r, r+ or (¬r)+, where r is a role. Given a term φ with operators ¬,+

and �, construct another term φ′ by removing + in φ. It is clear that if a set U of users

satisfies φ, then there exists U ′ ⊆ U such that U ′ satisfies φ′. This indicates that U is safe

with respect to φ if and only if U is safe with respect to φ′. Therefore, in order to show that

SSC 〈¬,+,�〉 is tractable, it suffices to prove that SSC 〈¬,�〉 is in P.

Given a policy sp〈{p1, . . . , pm}〉, without loss of generality, assume that φ′ = (γ1 �

· · · � γn), where γi = r or ¬r. The following algorithm checks whether 〈U,UR,UP〉 is

safe with respect to φ′.
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isSafe(P, φ′, UR, UP)

begin

Γ = {γ1, . . . γn};

For each pi in {p1, . . . , pm} do

Gpi = ∅

For each u such that (u, pi) ∈ UP do

Gpi = Gpi ∪

{ γi ∈ φ′ | u does not satisfy γi; }

EndFor;

Γ = Γ ∩ Gpi

EndFor;

if (Γ == ∅) return true

else return false

end

In the above algorithm, Gpi
stores the set of sub-terms in φ′ such that, for every γj ∈

Gpi
, there exists a user who has pi but does not satisfy γj . At the end of the algorithm,

on the one hand, if Γ contains a sub-term γi, it means that for every permissions pj in

{p1, . . . , pn}, there exists a user upj
such that upj

has permission pj but does not satisfy γi.

In this case, the set of users {up1 , . . . , upn} have all permissions in {p1, . . . , pn} but does

not satisfy γi, and hence does not satisfy φ′. On the other hand, Γ = ∅ indicates that if

users in U have all permissions in {p1, . . . , pn} then every sub-term γi in φ′ is satisfied by

a certain user in U . Therefore, there exists U ′ ⊆ U such that U ′ satisfies φ′.

The worst-case time complexity of the above algorithm is O(m × |U | × t), where t is

the time taken to check whether a singleton satisfies a term with operators ¬ and �, which

is polynomial according to Theorem 2.4.1.
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Appendix B Proofs in Chapter 4

B.1 Proofs in Section 4.2

Proof to Lemma 4.2.3: WSP is NP-hard in R2BAC, if the workflow uses constraints of

the form 〈6= (s1, s2)〉.

Proof To prove the problem is NP-hard, we reduce the NP-complete GRAPH K-

COLORABILITY problem to this problem. In the GRAPH K-COLORABILITY problem, we

are given a graph G(V,E) and an integer k, and are asked whether we can assign no more

than k colors to vertices in V such that every vertex has one color and vertices ni and nj

have different colors whenever (ni, nj) ∈ E.

Given a graph G(V,E), we construct a workflow W = 〈S,�, SA, C〉 and an access

control state γ = 〈U,UR, B〉 such that there is a one-to-one correspondence between steps

in S and vertices in V . Let U = {u1, · · · , uk}, where each ui ∈ U corresponds to a color.

Construct UR and SA in such a way that every user in U is authorized to perform every

step in S. For every (ni, nj) ∈ E, construct a constraint 〈6= (si, sj)〉, which requires that

si and sj must be performed by different users. If G is k-colorable, then we can construct

a plan P such that sj is performed by ui if and only if nj is assigned the ith color. Since

no pair of adjacent vertices have the same color, no pair of steps restricted by a constraint

is assigned to the same user in P . Hence, P satisfies all constraints and is a valid plan.

Similarly, if there is a valid plan P for W in γ, we can find a way to color G with no more

than k colors based on plan P . In general, G is k-colorable if and only if W is satisfiable.

Proof to Lemma 4.2.4: WSP is NP-hard in R2BAC, if the workflow uses constraints of

the form 〈= (s,∃X)〉.
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Proof To prove the problem is NP-hard, we reduce the NP-complete HITTING SET

problem to this problem. In the HITTING SET problem, we are given a set Z and a family

F = {Z1, · · · , Zm} of subsets of Z and are asked whether there exists a size-k subset H of

Z such that, for every Zi ∈ F , H ∩ Zi 6= ∅.

We construct a workflow W = 〈S ∪ A,�, SA, C〉 and an access control state γ =

〈U,UR, B〉 such that the answer to the HITTING SET problem is “yes” if and only if W is

satisfiable under γ. Let U = {ui | ei ∈ Z} be a set of users. Let S = {s1, · · · , sk} be a set

of k steps. Construct UR and SA in such a way that every step in S is authorized to all users

in U . Furthermore, letA = {a1, · · · , am} be a set ofm steps and S∩A = ∅. Construct UR

and SA in such a way that ui is authorized to perform aj if and only if ei ∈ Zj . Intuitively,

S corresponds to H and each step ai ∈ A corresponds to Zi ∈ F . Finally, construct a set

C = {c1, · · · , cm} of m constraints, where ci = 〈= (ai, ∃S)〉.

On the one hand, assume that P is a valid plan. Let H = {ei | ∃sj
(ui, sj) ∈ P}. For

every ai ∈ A, let uj be the user such that (uj, ai) ∈ P . P being valid indicates that uj

is authorized to perform ai. From our construction, we have ej ∈ Zi. Furthermore, for

every i ∈ [1,m], 〈= (ai, ∃S)〉 being satisfied indicates that there exists sl ∈ S such that

(uj, sl) ∈ P . And (uj, sl) ∈ P indicates that ej ∈ H . Therefore, we have H ∩ Zi = ej . In

general, for every Zi ∈ F , H ∩Zi 6= ∅. The answer to the HITTING SET problem is “yes”.

On the other hand, assume that the answer to the HITTING SET problem is “yes”. We

now construct a plan P that satisfies the workflow. Without loss of generality, assume

that H = {e1, · · · , ek}. We initialize P to ∅ and add (ui, si) to P for every i ∈ [1, k].

Recall that si is authorized to every user in U . For every Zj ∈ F , add (ui, aj) to P when

H ∩ Zj = ei. ei ∈ Zj implies that ui is authorized to perform aj . Furthermore, for every

cj ∈ C (remind that cj = 〈= (aj,∃S)〉), (ui, aj) ∈ P and (ui, si) ∈ P indicate that cj is

satisfied. Therefore, P is a valid plan.

Proof to Theorem 4.3.2: WSP is in FPT in R2BAC, if = and 6= are the only binary

relations used by constraints in the workflow.

Proof Given a workflow W = 〈S,�, SA, C〉 and an access control state γ = 〈U,UR, B〉,

let k be the number of steps in W . The description of the algorithm is as follow.
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1. For every step si ∈ S, compute the set AU(si) of users who are authorized to perform

si according to UR and SA.

2. Process every constraint c in the form of 〈= (s1, s2)〉. Let U ′ = AU(s1)∩AU(s2) be

the set of users who are authorized to perform both s1 and s2. If U ′ = ∅, then c is not

satisfiable and neither nor W . Otherwise, we set AU(s1) and AU(s2) to be U ′.

3. Let C ′ be the set of all constraints in C that are in the form of 〈= (s,∃X)〉. We

construct a search tree as follow.

Label the root of the tree with C ′ and UA = {AU(si) | si ∈ S}. Choose a constraint

c from C ′. Without loss of generality, assume that c = 〈= (s0,∃{s1, · · · , sm})〉 (m ≤

k − 1). s0 must be performed by the same user as s1, or s2, · · · , or sm. We create

m children of the root corresponding to these m possibilities. Let U0,1 = AU(s0) ∩

AU(s1). If U0,1 = ∅, then the first child of the root is marked as “invalid” and will

not be further processed, because it is impossible to find a user who is authorized to

perform both s0 and s1. Otherwise, the first child is labeled with C ′ − {c} and UA1,

where UA1 is the same as UA except that AU(s0) and AU(s1) are set to be U0,1.

Intuitively, the set of constraints labeling a node represents the remaining constraints,

while the set UA labeling a node represents the user-step authorization that satisfies

those constraints that have been processed. The other m − 1 children of the root are

processed similarly. We then recursively process the children of the children of the

root and so on until all nodes in the tree have been processed. We then say that the

search tree is fully-developed.

In a fully-developed search tree, a leave node that is not marked as “invalid” (in this

case, it must have been labeled with an empty set of constraints) is called “alive”. If

there is no “alive” leave node in the search tree, then it is impossible to satisfy all

constraints in C ′ and thus W is not satisfiable.

Note that there are no more than k2k−1 different constraints in the form of 〈= (s,∃X)〉

as s and X can take at most k and 2k−1 different values, respectively 1. Therefore,

1The 2k−1 upper-bound is loose and can be improved, but it suffices to prove the result we want.
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the depth of the fully-developed search tree is no more than k2k−1. Furthermore, the

number of children of each node is bounded by k − 1. Hence, the size of the fully-

developed search tree is bounded by (k− 1)k2
k−1 . Processing each node in the search

tree involves computing no more than k − 1 intersections and can be done in O(kn).

4. For each “alive” leave node v in the search tree, we check whether all constraints

using 6= can be satisfied with the user-step authorization UA labeling v. According

to Lemma 4.3.1, this can be done in O(kk+1n), where n is the size of the entire input

to the problem. If the answer is “yes” for any “alive” leave node, the workflow W is

satisfiable; otherwise, W is not satisfiable.

In general, the above algorithm finishes in O(f(k)n) where f(k) = kk+1(k − 1)k2
k−1 .

Hence, the problem is in FPT.

Proof to Theorem 4.3.3: WSP is W [1]-hard in R2BAC if user-defined binary relations are

used in constraints.

Proof We show that WSP is W [1]-hard even if the workflow only has constraints in the

form of 〈ρ(s1, s2)〉, where ρ is a user-defined binary relation. Because 〈ρ(s1, s2)〉 can be

equivalently represented as 〈ρ(s1, ∃{s2})〉, the problem is W [1]-hard even if the workflow

only has constraints in the form of 〈ρ(s,∃X)〉.

We reduce INDEPENDENT SET to WSP. In INDEPENDENT SET, we need to determine

whether there is a size-k independent set in graph G(V,E). An independent set of G is a

set of vertices V ′ such that V ′ ⊆ V and no pair of vertices in V ′ are adjacent to each other

in G. INDEPENDENT SET with parameter k is W [1]-complete.

Given an integer k and a graph G(V,E) where V = {v1, · · · , vm}, we construct a

workflow W = 〈S,�, SA, C〉 and an access control state γ = 〈U,UR, B〉, where U =

{u1, · · · , um}. There is a one-to-one correspondence between users in U and vertices in

V . S = {s1, · · · , sk} and s1 � · · · � sk. Let UR = {(ui, r) | i ∈ [1,m]} and SA =

{(r, si) | i ∈ [1, k]}. In other words, every user in U is authorized to perform every step

in S. B contains one binary relation ρ, and ρ = {(ui, uj) | i 6= j ∧ (vi, vj) 6∈ E}.

Intuitively, (ui, uj) ∈ ρ if and only if ui 6= uj and the vertices corresponding to the two
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users are not adjacent to each other inG. For every i ∈ [2, k], we construct i−1 constraints

ci,1, · · · , ci,i−1 such that ci,j = 〈ρ(si, sj)〉 where j ∈ [1, i− 1].

Next, we show that G has a size-k independent set if and only if W is satisfiable under

γ.

On the one hand, without loss of generality, assume that {v1, · · · , vk} is an independent

set of G. By definition of independent set, we have (vi, vj) 6∈ E, for any i, j ∈ [1, k] and

i 6= j. We construct a plan P = {(ui, si) | i ∈ [1, k]}. For any i, j ∈ [1, k] and i 6= j,

(vi, vj) 6∈ E implies that (ui, uj) ∈ ρ. Therefore, no constraint is violated by P and P is a

valid plan.

On the other hand, assume that there is a valid plan P for W . From the construction

of ρ, the k steps in W must be performed by k different users. Without loss of generality,

assume that P = {(ui, si) | i ∈ [1, k]}. Since no constraint is violated by P , we have

(ui, uj) ∈ ρ for any i, j ∈ [1, k] and i < j. Let V ′ = {v1, · · · , vk}. For any pair of vertices

(vi, vj) where i, j ∈ [1, k] and i < j, (ui, uj) ∈ ρ implies that (vi, vj) 6∈ E. Hence, V ′ is a

size-k independent set of G.

Finally, we show that the above reduction is a fixed-parameter reduction. In our re-

duction, the parameter k of the INDEPENDENT SET instance has the same value as the

number of steps in the corresponding WSP instance. Furthermore, the number m of users

in the workflow is the same as the number of vertices in the graph. ρ can be generated in

quadratic time to the size of G. There are no more than k2/2 constraints in the workflow,

and UR contains m items while SA contains k items. In general, the WSP instance can

be generated from the INDEPENDENT SET instance in O(n2 + k2), where n is the size of

graph G. Hence, the reduction is a fixed-parameter reduction.

Proof to Theorem 4.3.4: WSP in R2BAC is in W [2].

Proof We reduce WSP to the weighted satisfiability problem of decision circuits of weft

2 (denoted as WCS[2]). In the following, we encode an WSP instance into a boolean

expression that can be represented as a decision circuit of weft 2. And the answer to the

WSP instance is “yes” if and only if the answer to the WCS[2] instance is “yes”.
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Given a workflow W = 〈S,�, SA, C〉 and an access control state γ = 〈U,UR, B〉, let

S = {s1, · · · , sk} and U = {u1, · · · , un}. We construct kn variables vi,j where i ∈ [1, k]

and j ∈ [1, n]. Intuitively, setting vi,j to true corresponds to assigning user uj to si.

Let AU(s) be the set of authorized users for step s. For every si ∈ S, we construct a

clause Hsi
=
∨
uj∈AU(si)

vi,j , which indicates that si must be performed by an authorized

user. The length of such a clause is no more than n and there are k such clauses. Note that a

weight-k truth assignment that satisfy all the k clauses (i.e. Hs1 , · · · , Hsk
) must set exactly

one vi,j to true for every i ∈ [1, k], which indicates that every step is assigned to exactly

one user.

For every constraint c ∈ C, we construct clauses for c as follows. Given a set F =

{f1, · · · , fm} of clauses, we define
∨
F as f1 ∨ · · · ∨ fm and

∧
F as f1 ∧ · · · ∧ fm.

• When c = 〈ρ(si1 , si2)〉: Let F = {vi1,j1 ∧ vi2,j2 | uj1 ∈ AU(si1) ∧ uj2 ∈ AU(si2) ∧

(uj1 , uj2) ∈ ρ}. We construct a clause Hc =
∨
F , which indicates that si1 and si2

must be performed by a pair of authorized users that satisfies ρ.

• When c = 〈ρ(s, ∃X)〉: Without loss of generality, assume that c =

〈ρ(s0,∃{s1, · · · , sm})〉. For every i ∈ [1,m], let Fi = {v0,j1 ∧ vi,j2 | uj1 ∈ AU(s0) ∧

uj2 ∈ AU(si) ∧ (uj1 , uj2) ∈ ρ}. We construct a clause Hc =
∨
F1 ∨ · · · ∨

∨
Fm,

where
∨
Fi indicates that s0 and si must be performed by a pair of authorized users

that satisfies ρ.

Let F = {Hsi
| si ∈ S} ∪ {Hc | c ∈ C}. H =

∧
F is a clause encoding the WSP

instance in the sense that H has a weight-k satisfying truth assignment if and only if W is

satisfiable under γ. H can be represented by a decision circuit using a large “∧” gate that

connects a number of large “∨” gates that connect either a number of variables or a number

of small “∧” gates, each of which connects two variables. The decision circuit is thus a

weft 2 decision circuit.

In the above reduction, the number of step in the WSP instance is the same as the weight

k of the correspondingWCS[2] instance. There are k Hs clauses, each of which has length

no more than n, where n is the size of the WSP instance. And there are n Hc clauses, each
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of which has length no more than kn2. Hence, the construction of the decision circuit can

be done inO(kn3). Therefore, the above reduction is a fixed-parameter reduction and WSP

is in W [2].

B.2 Proofs in Section 4.4.1

Proof to Theorem 4.4.3: CRCP is PSPACE-complete.

Proof The two-person game of decremental resiliency has the following two properties,

which indicates that it can be solved in PSPACE.

1. The number of rounds is bounded by a polynomial in the size of the input. In particu-

lar, the game must come to a conclusion after at most k rounds, where k is the number

of steps in the workflow.

2. Given an intermediate state, which consists of a partial plan, the set of remaining users

and the set of unfinished steps, there is a polynomial-space algorithm that constructs

all possible combinations of actions of the two users in the next round, and determines

if the game is over.

To show PSPACE-hardness, we reduce the PSPACE-complete QUANTIFIED SATIS-

FIABILITY (or QSAT) problem to CRCP. In the QSAT, we are given a boolean expression

φ in conjunction normal form (CNF), with boolean variables x1, · · · , xm. Is it true that

there is a truth value for x1 such that for both truth value of x2 there exists a truth value for

x3, and so on up to xm, φ is satisfied by the overall truth assignment? In other words,

∃x1∀x2∃x3 · · ·Qxmφ?

where Q is “exists” if m is odd, or “for all” if m is even. Without loss of generality, we

assume that m is odd.

The QSAT problem can be modeled as a two-person game, in which Player 1 and

Player 2 control the truth assignment of variables in {xi | i ∈ [1,m] ∧ i is odd} and

{xj | j ∈ [1,m]∧ j is even}, respectively. Player 1 tries to satisfy φ, while Player 2 tries to

prevent this.
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Given a QSAT instance ∃x1∀x2∃x3 · · · ∃xmφ where φ = φ1 ∧ · · · ∧ φk, we construct a

CRCP instance. The detailed construction of the CRCP instance is given in Figure B.1.

Next, we prove that the answer to the CRCP instance is “yes” if and only if the answer

to the QSAT instance is “yes”. In the constructed workflow W = 〈S,�, SA, C〉, S consists

of three parts A, B and D. Steps in A determine truth values of variables x1, · · · , xm.

Intuitively, assigning user ui (or vi) to ai represents setting xi to “true” (or “false”). Steps

in B correspond to the k clauses in φ. Steps in D are used to restrict the behaviors of the

two players.

We need to to prove the following four claims.

1. For every even number i ∈ [1,m], Player 2 should remove either ui or vi right after

the execution of ai−1. In other words, Player 2 controls the user-step assignment for

steps in {ai | ai ∈ A ∧ i is even}.

2. For every step ai ∈ A, Player 1 should assign either ui or vi to ai, when Player 2 plays

optimally.

3. If Player 1 plays optimally, then steps in D can always be completed.

4. If both players play optimally, all steps in B can be completed if and only if the truth

assignment of boolean variables x1, · · · , xm corresponding to the user-step assign-

ment of steps in A satisfies φ.

If Claim 1 and Claim 2 are true, then Player 1 and Player 2 control the truth assignment

of variables in {xi | i ∈ [1,m]∧ i is odd} and {xj | j ∈ [1,m]∧ j is even}, respectively. If

Claim 3 and Claim 4 are true, then the workflow instance can be completed if and only if φ

is satisfied by the truth assignment. In general, the answer to the CRCP instance is “yes” if

and only if the answer to the QSAT instance is “yes”.

The proofs to the four claims are listed as follows.

Proof to Claim 1: First of all, since the total number of absent users is bounded by t,

Player 2 should not remove any of those users with t + 1 copies. Users in {ui, vi | i ∈

[1,m] ∧ i is even} are unique and are the only users with less than than t+ 1 copies.
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Secondly, given an even number i, if Player 2 removes both ui and vi, then there must

exist an even number j ∈ [1,m] such that both uj and vj are available throughout the game,

as Player 2 can remove at most (m − 1)/2 users. In this case, Player 1 can assign u′ to

all remaining even steps in A as well as all steps in B, and then assign uj to d1 and vj to

d2. Such an assignment complete the workflow without violating any constraint. Player 1

wins. Therefore, Player 2 should remove either ui or vi for every even number i.

Finally, we would like to point out that Player 2 should remove ui or vi before the

execution of ai, where i is a even number. If Player 2 does this after the execution of ai,

then Player 1 gains advantage by being able to choose between ui and vi for ai. However,

removing ui or vi after ai does not affect future user-step assignment, as it is pi and qi rather

than ui and vi that will be performing steps in B.

Proof to Claim 2: The statement is true when i is odd, since ui and vi are the only users

authorized to perform ai. In the following, we only discuss the case when i is even.

From Claim 1, when Player 2 plays optimally, he/she removes either ui or vi for every

even number i ∈ [1,m]. Given an even number i, without loss of generality, assume that

Player 2 removes ui. In this case, Player 1 may either assign vi or u′ to ai. If, by contra-

diction, Player 1 assigns u′ to ai, then according to constraint 〈ρ1(d1,∀Aeven)〉, Player 1

cannot assign v′ to d1 as (v′, u′) ∈ ρ1. Thus, Player 1 has to choose a certain uj or vj for d1,

where j is even. By the time d1 is to be executed, either uj or vj must have been removed

by Player 2. Without loss of generality, assume that uj is available and is thus assigned to

d1. According to 〈ρ2(d2, d1)〉, Player 1 has to assign vj to d2, but vj is not available. Hence,

d2 cannot be completed and Player 1 losses. Therefore, Player 1 must not assign u′ to ai

when Player 2 plays optimally. The only choice for Player 1 is to assign vi to ai.

Proof to Claim 3: We have shown that if Player 2 does not follow the strategy in Claim

1, then Player 1 can complete all steps in the workflow. When both players play optimally,

according to Claim 1 and Claim 2, only users in {ui, vi | i ∈ [1,m]} are assigned to steps

inA. In this case, Player 1 can assign v′ to d1 and u′ to d2 without violating any constraints.

Proof to Claim 4: From Claim 1 and Claim 2, when both players play optimally, only

users in {ui, vi | i ∈ [1,m]} are assigned to steps in A. For any bj ∈ B, according to
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constraint 〈ρ0(bj, ∃A)〉, u′ cannot be assigned to bj , as (u′, ui), (u
′, vi) 6∈ ρ0. Furthermore,

pi and qi correspond to ui and vi respectively according to ρ0. From the construction of

SA and UR, pi (or qi) is authorized to perform bj if and only if setting xi to true (or false)

satisfies clause φj . Hence, Player 1 can assign a user to bj if and only if the truth assignment

determined by the user-step assignment of steps in A satisfies φj . In general, all steps in B

can be completed if and only if φj is satisfied for every j ∈ [1, k], which indicates that φ is

satisfied.

Proof to Theorem 4.4.4: DRCP is PSPACE-complete.

Proof The proof that DRCP is in PSPACE is similar to the case of CRCP. In the fol-

lowing, we only prove that the problem is PSPACE-hard.

We reduce the PSPACE-complete QUANTIFIED SATISFIABILITY (or QSAT) prob-

lem to DRCP. Given a QSAT instance ∃x1∀x2∃x3 · · · ∃xmφ where φ = φ1 ∧ · · · ∧ φk, we

construct a DRCP instance. The detailed construction of the DRCP instance is given in

Figure B.2.

We need to prove that the answer to the DRCP instance is “yes” if and only if the

answer to the QSAT instance is “yes”. In the constructed workflow W = 〈S,�, SA, C〉, S

consists of two parts A and B. Steps in A determine truth values of variables x1, · · · , xm.

Intuitively, assigning user ui (or vi) to ai represents setting xi to “true” (or “false”). Steps

in B correspond to the k clauses in φ.

First of all, it is clear that Player 2 should remove one user in each round. However,

since there are two copies of ui and vi for odd number i ∈ [1,m], and two copies of

pj and qj for j ∈ [1, k], Player 2’s action only affects the user-step assignment of ai for

even number i ∈ [1,m]. Therefore, Player 1 and Player 2 has control over the user-step

assignment of odd number steps inA and even number steps inA, respectively. A user-step

assignment for steps in A represents a truth assignment for variables x1, · · · , xm.

Secondly, according to relation ρ, pi and qi correspond to ui and vi respectively. Ac-

cording to the construction of SA and UR, pi (or qi) is authorized to perform bj if and only

if setting xi to true (or false) satisfies clause φj . Due to the constraint 〈ρ(bj,∃A)〉, Player 1
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can assign a user to bj if and only if the truth assignment determined by user-step assign-

ment in A satisfies φj . Therefore, Player 1 can complete all steps in B if and only if the

truth assignment satisfies φ.

In general, Player 1 can always win the game if and only if the answer to the QSAT

instance is “yes”.
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Input: ∃x1∀x2∃x3 · · · ∃xmφ, where φ = φ1 ∧ · · · ∧ φk

Output: A workflow W = 〈S,�,SA, C〉, an integer t = (m − 1)/2, an access control state

γ = 〈U,UR, {ρ0, ρ1, ρ2}〉

Construction of W and γ:

• Steps and Step-Authorization:

S = A ∪B ∪D

We have A = {a1, · · · , am}, B = {b1, · · · , bk}, D = {d1, d2}, and a1 � · · · � am �

d1 � d2 � b1 � · · · � bk

SA = {(rai , ai) | ai ∈ A} ∪ {(rbi , bi) | bi ∈ B} ∪ {(rd1 , d1), (rd2 , d2)}

• Configuration:

U = {ui, vi, pi, qi | i ∈ [1,m]} ∪ {u′, v′}

For every odd number i in [1,m], there are t+1 copies of ui and vi. For every j ∈ [1,m],

there are t+ 1 copies of pj and qj . There are t+ 1 copies of u′ and v′ as well.

UR ={(ui, rai), (vi, rai) | i ∈ [1,m] ∧ i is odd}

∪ {(ui, rai), (vi, rai), (u
′, rai) | i ∈ [1,m] ∧ i is even}

∪ {(u′, rbi) | i ∈ [1,m]} ∪Υ1 ∪ · · · ∪Υk

∪ {(v′, rd1)} ∪ {(ui, rd1), (vi, rd1) | i ∈ [1,m] ∧ i is even}

∪ {(u′, rd2)} ∪ {(ui, rd2), (vi, rd2) | i ∈ [1,m] ∧ i is even}

Construction of Υi: Let Li be the set of literals in clause φi. (pj , rbi) ∈ Υi if and only if

there exists a literal l ∈ Li such that l = xj ; and (qj , rbi) ∈ Υi if and only if there exists

a literal l ∈ Li such that l = ¬xj .

• Constraints:

C = {〈ρ0(bi,∃A)〉 | i ∈ [1, k]} ∪ {〈ρ1(d1, ∀Aeven)〉, 〈ρ2(d2, d1)〉}

where Aeven = {ai | i is even}. We have

– ρ0 = {(pi, ui), (qi, vi) | i ∈ [1,m]} ∪ {(u′, u′)}

– ρ1 = {(v′, u′)}

– ρ2 = {(ui, vi), (vi, ui) | i is even} ∪ {(u′, v′)}.

Figure B.1. Generating a CRCP instance for a QSAT instance.
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Input:

∃x1∀x2∃x3 · · · ∃xmφ, where φ = φ1 ∧ · · · ∧ φk

Output:

A workflow W = 〈S,�,SA, C〉, an integer t = 1, an access control state γ = 〈U,UR, {ρ}〉

Construction of W and γ:

• Steps and Step-Authorization:

S = A ∪B

We have A = {a1, · · · , am}, B = {b1, · · · , bk}, and a1 � · · · � am � b1 � · · · � bk

SA = {(rai , ai) | ai ∈ A} ∪ {(rbi , bi) | bi ∈ B}

• Configuration:

U = {ui, vi, pi, qi | i ∈ [1,m]}

For every odd number i in [1,m], there are 2 copies of ui and vi. For every j ∈ [1,m],

there are 2 copies of pj and qj .

UR = {(ui, rai), (vi, rai) | i ∈ [1,m]} ∪Υ1 ∪ · · · ∪Υk

Construction of Υi: Let Li be the set of literals in clause φi. (pj , rbi) ∈ Υi if and only if

there exists a literal l ∈ Li such that l = xj ; and (qj , rbi) ∈ Υi if and only if there exists

a literal l ∈ Li such that l = ¬xj .

• Constraints:

C = {〈ρ(bi, ∃A)〉 | i ∈ [1, k]}

where ρ = {(pi, ui), (qi, vi) | i ∈ [1,m]}

Figure B.2. Generating a DRCP instance for a QSAT instance.
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