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ABSTRACT

Ning Shang Ph.D., Purdue University, May, 2009. Low Genus Algebraic Curves in
Cryptography. Major Professors: Samuel S. Wagstaff, Jr. and Michael J. Jacobson,
Jr.

Preserving a strong connection between mathematics and information security,

elliptic and hyperelliptic curve cryptography are playing an increasingly important

role during the past decade. We present some problems that relate low genus curves

and cryptography.

We first discuss a new application of elliptic curve cryptography (ECC) to a real-

world problem of access control in secure broadcasting of data. The asymmetry,

introduced by the elliptic curve discrete logarithm problem, is the key to achieving

the required security feature that existing methods fail to obtain.

We then talk about the use of genus 2 curves in the “real model” in cryptography,

and present explicit divisor doubling formulas for such curves. These formulas are

particularly important for implementation purposes.

Finally, we present a new method for finding cryptographically strong parameters

for the CM construction of genus 2 curves. This method uses the idea of polynomial

parameterization, which allows suitable parameters to be generated in batches. We

give a brief analysis of the algorithm. We also provide algorithms for generating

parameters for genus 2 curves to be used in pairing-based cryptography. Our method

is an adaptation of the Cocks-Pinch construction for pairing-friendly elliptic curves.

Our methods start from a prescribed embedding degree k and a primitive quartic CM

field K, and output a prime subgroup order r of the Jacobian over a prime field Fp,

with ρ = 2 log(p)/ log(r) ≈ 8.
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1. INTRODUCTION

1.1 Background

Information security is playing an increasingly important role as communications

over computer networks and the deployment of digital storage media start to spread

their domination over the world. Cryptography, as the “study of mathematics tech-

niques related to aspects of information security such as confidentiality, data integrity,

entity identification, and data origin authentication” [1], since its first invention in

the ancient times, has seen a remarkably rapid development in recent decades.

The 1976 paper [2] of W. Diffie and M. Hellman brought to people’s attention for

the first time one of the most important discoveries in the history of cryptography, the

notion of public-key cryptography. Based on the idea of trapdoor functions, public-key

cryptography (aka asymmetric cryptography) has provided practical new solutions

to many problems in information security, such as secure key exchange over non-

secure channels, authentication and digital signatures, which traditional secret-key

(aka symmetric-key) cryptography alone is unable to do. Though advantageous to

use for secure communications, public-key cryptography is computationally costly

for encryption/decryption compared to secret-key cryptographic algorithms. Hence

in many cases, public-key cryptography is used to transmit the symmetric keys of

secret-key algorithms. In the meantime, a lot of effort has been put into research of

efficiency improvement for public-key cryptographic schemes.

Nowadays, two types of public-key cryptosystem have survived the examination of

researchers and practitioners in areas of academia and industry, and are regarded as

practical to use. Among these two types, schemes like RSA [3] were first recognized

and studied; these are based on the difficulty of factoring large integers.
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The other type of system is based on the discrete logarithm problem (DLP) in

certain finite cyclic groups. The Pohlig-Hellman algorithm [4] for solving the DLP

implies that only finite groups of prime order are suitable candidates. Such a system

can be implemented in various ways, e.g., by using the multiplicative group of the

invertible elements of a finite field [2] or abelian varieties over finite fields [5, 6]. The

best known generic algorithms such as Shanks’ Baby Step Giant Step, Pollard’s ρ and

λ methods solve the DLP in exponential time O(
√
N), where N is the order of the

cyclic group. In every efficient implementation, besides the intractability of the DLP,

two related fundamental questions need to be addressed: 1) compact representation

(i.e. encoding) of group elements and 2) efficient arithmetic for the group operation.

As abelian varieties, elliptic curves succeed in providing positive answers to both the

above questions. Because no subexponential algorithm is known for solving the elliptic

curve discrete logarithm problem (ECDLP) in general, they outdo the multiplicative

groups F×
q of finite fields Fq in offering the same level of security with a faster speed.

Note that there exist subexponential methods (e.g. the index calculus, see [7]) for

solving the DLP in F×
q .

The theory of elliptic curves has been studied extensively during past centuries.

Their application to cryptography helps promote further research. Motivated by the

case of elliptic curves, cryptographic research on Jacobians of curves of higher genus

has started to emerge and attract attention. The use of Jacobians of curves of higher

genus has the advantage of being suitable for implementation on small processor

architectures. However, for hyperelliptic curves of genus ≥ 3 there are index calculus

attacks (see [8–13]) which are faster than the generic attacks. This implies a potential

insecurity of using such hyperelliptic curves from a cryptographic perspective1. In this

thesis, we discuss problems related to elliptic curves (genus 1) and hyperelliptic curves

of genus 2.

1The best attack described in [13] takes time Õ(q2−
2

g ), which is asymptotically slightly faster than
the generic algorithms. Here Õ(f(q)) is a function that is bounded by f(q) times a polynomial in
log(f(q)) for large enough q.
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We define an algebraic curve C to be a projective variety of dimension one. More-

over, in this thesis, we always work on a nonsingular affine model of the curve defined

over the underlying perfect field K of interest, which usually is a finite field Fq. Fur-

thermore, we assume the curve is absolutely irreducible, i.e., it is irreducible as a closed

set with respect to the Zariski topology of projective space P2 over K̄, a separable

(algebraic) closure of K.

We define an elliptic curve E over K to be a nonsingular absolutely irreducible

algebraic curve defined over K of genus 1 with one K-rational point ∞, and refer to

it by its model given by the following Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K.

We define a hyperelliptic curve C overK to be a nonsingular absolutely irreducible

algebraic curve of genus g ≥ 2, given by a model

C : y2 + h(x)y = f(x), h(x), f(x) ∈ K[x], deg(h) ≤ g + 1, deg(f) ≤ 2g + 2,

such that the associated function field K(C), which is the field of fractions of the

coordinate ring of C, is a separable extension of degree 2 of the rational function field

K(x) of P1
K for some function x; We will introduce another definition of a hyperelliptic

curve and discuss more about it in Chapter 3.

Given an algebraic curve C over a field K, a divisor of C over K is a formal sum

D =
∑

p

npp,

where p runs over all places of the function field K(C), np ∈ Z, and only finitely

many np are different from 0. The degree of the residue field K(C)p/K is defined to

be deg(p); the degree of a divisor D is
∑

p

np deg(p). A divisor D is called effective,

written D ≥ 0, if we have all np ≥ 0. For any function f ∈ K(C)∗ we define the

divisor of f to be

(f) =
∑

p

vp(f)p,
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where vp is the usual discrete valuation defined using uniformizers at p. We also call

a divisor obtained in this way a principal divisor. Note that (f) is a divisor of degree

0. We say two divisors D1 and D2 are equivalent, written D1 ∼ D2 if D1 = D2 + (f)

for some f ∈ K(C).

Definition 1 (Riemann-Roch Space of a Divisor) For a divisor D of an alge-

braic curve C over K, the Riemann-Roch space of D is

L(D) = {f ∈ K(C)∗|(f) +D ≥ 0} ∪ {0}.

It follows easily that L(D) is a vector space over K, and L(D1) ≃ L(D2) as

K-vector spaces if D1 ∼ D2. We write dimL(D) as the K-dimension of L(D).

Theorem 2 (Riemann-Roch [14]) Let C be an absolutely irreducible algebraic curve

over K with function field K(C). There exists an integer g ≥ 0 such that for every

divisor D of C over K

dimL(D) ≥ deg(D)− g + 1.

For all divisors D with deg(D) > 2(g − 1), one has equality

dimL(D) = deg(D)− g + 1.

Definition 3 (Genus [14]) The integer g from Theorem 2 is called the genus of

K(C) or the geometric genus of C. If C is projective nonsingular then g is called the

genus of C.

Note that if C has genus 1, then it is elliptic; if C has genus 2, the it is hyperelliptic.

Let Div0
K(C) be the set of all degree 0 divisors defined over K, i.e., stable under

the Galois action of Gal(K̄/K). Let PrinK (C ) be the set of all principal divisors

(associated with function f ∈ K(C)∗). Then PrinK (C ) is a subgroup of Div0
K(C).

Note that PrinK (C ) is the image of the map

φ : K(C)∗ → Div0
K (C ), f 7→ (f ).
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Definition 4 (Divisor Class Group) The divisor class group of an algebraic curve

C over a field K is the quotient group

Pic0K(C) = Div0
K(C)/PrinK (C ).

From an arithmetic point of view, we define the Jacobian variety, or Jacobian, of

a curve C to be the divisor class group of C over K̄, an algebraic closure of K, i.e.,

JacK̄ (C ) = Pic0
K̄ (C ).

This is equivalent to saying that the following sequence is short exact:

{1} → K̄(C)∗/K̄∗ φ→ Div0
K̄(C)→ JacK̄ (C )→ {0}, (1.1)

where φ : K̄(C)∗/K̄∗ → Div0
K̄

(C) is given by φ(f) = (f).

Let Gal(K̄/K ) be the absolute Galois group of K. ∀σ ∈ Gak(K̄/K ), σ induces

an action on CK̄ by

σ : (x0, y0) 7→ (σ(x0), σ(y0)),

where p ∈ C(K̄) = (x0, y0) is a point in CK̄ , hence it induces an action on JacK̄ (C )

by

σ : D 7→
∑

npσ(p),

where D =
∑
npp. We define the Jacobian over K of C, or the K-rational points of

the Jacobian to be

JacK (C ) = JacK̄ (C )Gal(K̄/K ),

i.e., the elements fixed by the action of Gal(K̄/K ).

Taking Galois cohomology of (1.1), we obtain

1→ K(C)∗/K∗ → Div0
K(C)→ JacK (C )→ H 1 (Gal(K̄/K ),PrinK̄ (C )), (1.2)

where Gal(K̄/K ) acts canonically on PrinK̄ (C ).

Therefore, the divisor class group of C over K is a subgroup of the K-rational

points of the Jacobian. If furthermore, the curve C has a K-rational point, then the

Jacobian of a curve over any field K can be identified with its divisor class group over

K, by the following theorem.



6

Theorem 5 (Galbraith, et al., 1998, [15]) Let C/K be a curve with a K-rational

point. Then

H1(Gal(K̄/K ),PrinK̄ (C )) = {0}.

In this thesis, this is always the case we consider. We shall identify JacK (C ) with

Pic0
K (C ) throughout the discussion.

1.2 Contribution of the Thesis

The research described in this thesis focuses on solving mathematical problems

related to elliptic and hyperelliptic curve cryptography. The thesis makes three main

contributions to the field of elliptic and hyperelliptic curve cryptography.

First, the thesis proposes a encryption/decryption key management scheme for

access control in a hierarchy for which the keys are updated with time. Such a scheme

has a practical important use in settings like communications and e-commerce. The

method proposed in the thesis employs elliptic curve cryptography in construction of

the key management scheme, which makes it resistant to attacks that break earlier

proposals of such schemes. The key management scheme is published in [16]. The

portion of the work described in Chapter 2 of this thesis was done entirely by the

author at the suggestion of Professors E. Bertino and S. Wagstaff.

Schemes like the above can be alternatively implemented by using genus 2 curves.

The arithmetic on such curves needs to be considered. Second, the thesis gives explicit

formulas for divisor doubling for “real” genus 2 hyperelliptic curves over finite fields of

positive characteristic. Such explicit formulas are useful for efficient implementation

of cryptographic protocols (see, e.g. [17]) using the infrastructure of the principal

ideal class of the function field associated with the curve. The formulas presented

in this thesis cover the most common case in divisor doubling arithmetic as well as

all special cases, for two major representations of divisors. This consists of part of

a research project the author participated in with Dr. S. Erickson, Professor M.

Jacobson, Dr. S. Shen and Professor A. Stein. Other formulas and improvements are
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being developed by other researchers. Theorem 8 for equivalent change of coordinates

of real hyperelliptic curves in Section 3.3.3 was suggested and proved by the author.

The divisor class doubling formulas, including the most common case and special

cases, presented in Section 3.6.2 were derived by the author.

In order to use Jacobians of genus 2 hyperelliptic curves for discrete logarithm

based or pairing based cryptography, some parameters, e.g. the underlying finite

field, the cardinality of the Jacobian, and the “embedding degree,” need to be con-

sidered. The third contribution of the thesis includes new approaches to generating

such parameters for the complex multiplication method of constructing equations of

genus 2 curves. The contribution also includes analysis of the polynomial parameter-

ization method of generating cryptographically strong parameters for genus 2 curves,

following the Bateman-Horn philosophy, and a quantitative analysis of the scarcity of

“pairing-friendly” genus 2 curves, based on the Riemann Hypothesis. This research

was suggested by Dr. K. Lauter during the author’s internship at Microsoft Research

in 2007. The portion of the work described in Chapters 4 and 5 was entirely done by

the author.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows: Chapter 2 describes a solution to a

practical problem of access control for secure broadcasting of information which uses

the elliptic curve discrete logarithm problem. Chapter 3 presents some results on the

arithmetic of genus 2 real hyperelliptic curves, which is useful for a class of DLP-

like cryptographic protocols. Chapter 4 shows a method to generate parameters for

constructing genus 2 curves via the complex multiplication (CM) method. Chapter 5

reports progress on finding parameters for generating pairing-friendly genus 2 curves

over prime fields for the CM method. Chapter 6 summarizes and suggests future

work.
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2. A CRYPTOGRAPHIC APPLICATION OF ELLIPTIC

CURVES

In this chapter we present an efficient time-bound hierarchical key management

scheme for secure broadcasting of encrypted data content. Elliptic curve cryptog-

raphy is used in the construction of the scheme to help resist attacks that break

earlier schemes. Part of the research described in this chapter can be found in [16].

2.1 Background

In a web-based environment, such as one involving electronic newspapers, data can

be organized according to different access control policies, encrypted using distinct

encryption keys, then broadcast to all users. Usually these data can be organized as

a hierarchical tree. We need a key management scheme so that a higher class can

retrieve information that a lower class is authorized to access — but not the other

way around. Moreover, in many applications, such as electronic newspaper/journal

subscription, pay TV broadcasting, etc., there is a time bound associated with each

access control policy, so that a user is assigned to a certain class for just a period of

time. The users’ keys need to be updated periodically to ensure that the delivery of

the information follows the access control policies of the data source. An ideal time-

bound hierarchical key management scheme should be able to perform the above

task in an efficient manner and minimize the storage and communication of keys. In

2002, W.G. Tzeng [18] attempted to solve this problem. W.G. Tzeng’s scheme is

efficient in terms of its space requirement, but is computationally inefficient, since

a Lucas function operation is used to construct the scheme, and this incurs heavy

computational load. Moreover, it is insecure against collusion attacks as shown by X.

Yi and Y. Ye [19].
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Another time-bound hierarchical key assignment scheme, based on a tamper-

resistant device and a secure hash function, was proposed by H.Y. Chien [20] in 2004.

This scheme greatly reduces computational load and implementation cost. However,

it has a security hole against X. Yi ’s three-party collusion attack [21]. Inspired by

H.Y. Chien’s idea, we propose in this thesis a new method for access control us-

ing elliptic curve cryptography. This scheme is efficient and secure against X. Yi ’s

three-party collusion attack.

Although there have been attacks on smart cards [22] and some other tamper-

resistant devices, such attacks require special equipment which would cost more than

a subscription. The only really valuable data on the smart cards our scheme uses is

the master key. It must be kept secret because an attacker who obtained it could

derive all the keys for the data that one could get with this smart card. Assuming

the master key can be protected, there is good reason to believe that our scheme that

uses tamper-resistant devices can have practical important applications, in areas such

as digital rights management.

Our original motivation for this work was to provide a better key management

scheme for [23], in which data are encoded in XML and broadcast to a hierarchy.

The rest of this chapter is organized as follows: Section 2.2 presents the notation

and definitions needed to give a hierarchical structure to the data source. Section 2.3

proposes the new time-bound key management scheme applied to a hierarchy. Sec-

tion 2.4 contains further discussion of the key management scheme.

2.2 Definitions and Notation

Let S be the data source to broadcast. We assume S is partitioned into blocks of

data called nodes.

The policy base PB is the set of access control policies defined for S. In our

setting, each access control policy acp ∈ PB contains a temporal interval I among
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its components, which specifies the time period in which the access control policy is

valid. A sample access control policy for XML documents might look like

acp = (I,P, sbj-spec, prot-obj-spec, priv, prop-opt),

where I, P, sbj-spec, prot-obj-spec, priv and prop-opt are the temporal interval, the pe-

riodic expression, the credential specification, the protection object specification, the

privilege and the propagation option of acp, respectively. For example, the temporal

interval I may specify a time period in which a particular resource can be used by a

particular entitiy. Since this chapter does not focus on access control policies, we do

not intend to get into more details about them. Interested readers may refer to [24]

and [23] for details.

It is important to notice that several policies may apply to each node in S. In

what follows we refer to the set of policies applying to a node in S as the policy

configuration associated with the node. Also, in what follows PCPB denotes the set

of all possible policy configurations which can be generated by policies in PB.

We now introduce the notion of a class of nodes, a relevant notion in our approach.

Intuitively, a class of nodes corresponds to a given policy configuration and identifies

all nodes to which the configuration applies. Intuitively, a class of nodes includes the

set of nodes to which the same set of access control policies apply.

Definition 1 (Class of nodes) Let Pci be a policy configuration belonging to

PCPB. The class of nodes marked with Pci, denoted by Ci, is the set of nodes

belonging to the data source S marked by all and only the policies in Pci. Note that

the empty set could be a class of nodes marked with a certain policy configuration.

We denote by C the set of all classes of nodes defined over S marked with the policy

configurations in PCPB, and we have the following requirement: we distinguish and

include in C the empty sets, if marked by policy configurations consisting of only one

access control policy, and exclude from C the empty sets marked by any other policy

configurations. Note that C corresponds to a subset of PCPB.
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We distinguish and include the empty sets corresponding to different singleton

policy configurations so that keys can be assigned to these classes, which enable users

belonging to these classes to derive required decryption keys of lower classes. This

key derivation process will be described in Section 2.3.

The idea for the secure broadcasting mode of the data source is this: the portions

of the source marked by different classes of nodes are encrypted by different secret

keys, and are broadcast periodically to the subscribers. Subscribers receive only the

keys for the document sources that they can access according to the policies.

The following definition introduces a partial order relation defined over C.

Definition 2 (Partial order relation on C) Let Ci and Cj be two classes of

nodes marked by Pci and Pcj, respectively, where Pci and Pcj are policy

configurations in PCPB. We say that Ci dominates Cj, written Cj � Ci, if and only if

Pci ⊆ Pcj. We also write Cj ≺ Ci if Cj � Ci but Cj 6= Ci. We also say that Ci directly

dominates Cj, written Cj ≺d Ci, if and only if Ci 6= Cj and Cj � C∗ � Ci implies

C∗ = Ci or C∗ = Cj. We call “ Cj ≺d Ci” a directed edge. We say Ci dominates Cj via

n directed edges if there exists {Cik}1≤k≤n−1 ⊆ C such that Cj ≺d Ci1, Cin−1
≺d Cj and

Cik−1
≺d Cik for 2 ≤ k ≤ n− 1.

2.3 Key Management Scheme Using Elliptic Curves

2.3.1 Initialization

Suppose we have already generated the set C of classes of nodes of the data source

S marked with the policy configurations Pci in PB. Such a set is partially ordered

with respect to �. Let n be the cardinality of C.
In this step, the system parameters are initialized and the system’s class keys Ki

are generated.
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1. The vendor chooses an elliptic curve E over a finite field Fq so that the discrete

logarithm problem is hard on E(Fq).
1 The vendor also chooses a point Q ∈

E(Fq) with a large prime order, say, p. The vendor then chooses 2n integers ni,

gi, relatively prime to p, such that nigi are all different modulo p for 1 ≤ i ≤ n.

The vendor computes Pi = [ni]Q on E(Fq) and hi such that gihi ≡ 1 (mod

p). The class key Ki = [gi]Pi is computed for class Ci. The points Ri,j =

giKj + ([−1]Ki) are also computed whenever Cj ≺ Ci (not just when Cj ≺d Ci).

2. The vendor chooses two random integers a, b and a keyed-hash message authen-

tication code (HMAC) [26] HK(−) built with a hash function H(−) and a fixed

secret key K. K serves as the system’s master key and is only known to the

vendor.

3. The vendor publishes Ri,j on an authenticated board, whereas the integers gi,

hi, a and b are kept secret. Parties can verify the validity of the Ri,j obtained

from the board. This can be realized by using digital signatures.

The public values Ri,j are constructed in such a way that the owner of the key

Kj of the lower class Cj cannot obtain any information about the class key Ki of

the higher class Ci without knowing the secret value gi, and the owner of the higher

class key Ki cannot compute Kj on its own, due to the the difficulty of solving the

discrete logarithm problem. It turns out that such construction is secure against the

attack [21] which breaks H.Y. Chien’s earlier scheme [20]. We will discuss this in

section 2.4.3.3.

2.3.2 Encrypting Key Generation

In this step we generate the temporal encryption class keys Ki,t at time granule t

by using the system’s class keys Ki.

1For more background on elliptic curve cryptography, see [25].
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The class of nodes Ci ∈ C is encrypted by a symmetric encryption algorithm, e.g.,

AES [27]. We denote by Ki,t the secret key for Ci at time granule t ∈ [Tb, Te] = [1, Z].

The generation process for Ki,t is given by the formula below:

Ki,t = HK

(
Ki ‖ H t(a) ‖ HZ−t(b) ‖ IDi

)
,

where Hm(x) is the m-fold iteration of H(−) applied to x, IDi is the identity of Ci,
all components of the input of H(−) are encoded as bit strings, and ‖ is the bit string

concatenation. Note that we can choose H(−) properly in the initialization process

so that the output of HK is the right length for a key for the symmetric encryption

algorithm we use.

The one-way property of the hash function H ensures that H t(a) and HZ−t(b) can

be calculated only when the values H t1(a) and HZ−t2(b) are available for some t1, t2

with t1 ≤ t ≤ t2. This is the idea for the construction of the “time-bound” of the key

management scheme.

2.3.3 User Subscription

This is the user subscription phase, in which a tamper-resistant device storing

important information is issued to the subscriber.

Upon receiving a subscription request, an appropriate access control policy acpi is

searched until there is a match, then the policy configuration in PB which contains

only acpi is found, and thus the corresponding class of nodes marked with it, say

Ci, is identified. Note that Ci, which could be an empty set, is always in C by the

construction in Definition 1. We define the encryption information, EncInf i, as

follows:

EncInf i = {
(
H t1(a), HZ−t2(b)

)
},

where the set on the right side is defined for all acceptable time intervals [t1, t2] for

acpi.

The vendor distributes the class keyKi to the subscriber through a secure channel.

The vendor also issues the subscriber a tamper-resistant device storing HK (thus H,
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K), E, Fq, IDi, hi and EncInf i. There is also a secure clock embedded in the device

which keeps track of current time. The device is tamper-resistant in the sense that

no one can recover K, hi, EncInf i, change the values of IDi, or change the time of

the clock.

2.3.4 Decrypting Key Derivation

In this step the temporal keys for a class and the classes below it are reconstructed

by the tamper-resistant device.

Assume that the subscription process mentioned above is completed for a sub-

scriber U associated with class Ci. U can then use the information received from the

vendor to decrypt the data in class Cj, with Cj � Ci, as follows:

1. If Cj = Ci, U inputs only Ki into the tamper-resistant device; otherwise if

Cj ≺ Ci, U first retrieves Ri,j from the authenticated public board, then inputs

it together with the class identity IDj of Cj and its secret class key Ki.

2. If Kj is the only input, the next step is executed directly. Otherwise, the

tamper-resistant device computes the secret class key of Cj:

Kj = [hi](Ri,j +Ki).

3. If t ∈ [t1, t2] for some acceptable time interval [t1, t2] of acpi, the tamper-resistant

device computes

H t(a) = H t−t1(H t1(a)), HZ−t(b) = H t2−t(HZ−t2(b)),

and Kj,t = HK(Kj ‖ H t(a) ‖ HZ−t(b) ‖ IDj). Note that the values H t1(a) and

HZ−t2(b) are pre-computed and stored in the tamper-resistant device.

4. At time granule t, the protected data belonging to class Cj can be decrypted by

applying the key Kj,t.
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2.3.5 An Example

We now provide an example to illustrate the above process.

Consider an electronic newspaper system. Let one day be a tick of time in this

system and Z = 70 be the life time of the system, i.e., the system exists in the tempo-

ral interval [1, 70]. Let U be a user wishing to subscribe to the sports portion of the

newspaper for one week, say, the period I = [8, 14]. We could match U with an ac-

cess control policy acp1 = ([8,14], All days, Subscriber/type=”full”, Sports supplement,

view, CASCADE). Then we can find the class of nodes C1 marked with policy config-

uration acp1 from a pre-generated table. These nodes are encrypted and broadcast

periodically. U can derive the decryption key for the subscription period using the

issued class key K1 and the tamper-resistant device storing HK , E, Fq, ID1, h1 and

H8(a), H56(b) = H70−14(b). For example, U inputs K1 into the device. To obtain the

decryption key K1,10 at time granule t = 10, the device computes

H10(a) = H2(H8(a)), H60(b) = H4(H56(b))

then K1,10 = HK(K1 ‖ H10(a) ‖ H60(b) ‖ ID1), the very thing needed. To obtain

the decryption key at t = 13 for a class C2 � C1, U inputs K1, ID2 and R1,2 into the

device. The device first computes the class key of C2

K2 = [h1](R1,2 +K1).

Then it computes

H13(a) = H5(H8(a)), H57(b) = H(H56(b))

and K2,13 = HK(K2 ‖ H13(a) ‖ H57(b) ‖ ID2), the decryption key needed.

Note that all computations are executed by the tamper-resistant device. The

device can prevent the results of the computations from being revealed, so that even

the user U does not know the class key K2 of the class of nodes C2 ≺ C1.
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2.4 Analysis of The Scheme

We have proposed a key assignment scheme for secure broadcasting based on a

tamper-resistant device. A secure hash function and the intractability of the discrete

logarithm problem on elliptic curves over the finite field Fq are also assumed.

2.4.1 Tamper-resistant Devices

The tamper-resistant device plays an important role in our scheme. The system’s

master key, K, must be protected by the device. Leak of EncInf i will not help the

attackers much, because they are not able to compute the HMAC, thus the temporal

class keys, without knowing K. Although it is unlikely to happen, a leak of hi will

enable the user of class Ci to obtain the class keyKj of Cj, where Cj � Ci, by computing

Kj = [hi](Ri,j +Ki),

as is done by the device. As pointed out by Professor Jacobson in a private corre-

spondence, similarly, a leak of hk of class Ck allows the user of class Ci � Ck to obtain

Kk, by computing

Kk = [gk](Ki + [−hi]Rk,i).

Unless K is also discovered, the attacks to retrieve EncInf i and hi on individual

devices are not effective. With the use of a tamper-resistant device, the security of

the scheme is strong enough. From an implementational point of view, the Trusted

Platform Module (TPM) technology [28], which is good for storing and using secret

keys, can well suit our need. We are aware that there are attacks on TPMs [29]. There

are countermeasures against those attacks [29]. Moreover, none of these attacks is

capable of extracting the exact secret information being protected (in our case, e.g.,

the system keyK). Hence the attackers are not able to perform the HMAC operations.

Therefore an attack relying on the knowledge of K is not feasible in practice. We

believe the use of the tamper-resistant hardware is practical and secure in reality.
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One might argue that if we need such a strong tamper-resistant device, then we

might as well store the needed temporal decryption keys on it directly and discard the

key management scheme. However, that approach is not practical, because the num-

ber of needed keys can be large, considering the temporal intervals and hierarchy. And

in that case, the system’s class keys can not be easily updated. Our proposed scheme

is elegant and more efficient in terms of storage on the tamper-resistant devices.

2.4.2 Hash Functions and ECDLP

Some of the most widely used hash functions, e.g. SHA-0, MD4, Haval-128,

RipeMD-128, MD5, were broken years ago; SHA-1 was announced broken early in

the year 2005. Essentially, these hash functions have been proven not to be collision-

free; but it is still hard to find a pre-image to a given digest in a reasonable time. In

view of this, these attacks on hash functions will not affect the security of our scheme,

as long as the discrete logarithm problem on the elliptic curves is still hard. So far

there is no foreseeable breakthrough in solving DLP on elliptic curves.

Without having to keep Q ∈ E(Fq) secret, no one, including the user Ui, can

recover the secret values gi, hi of the system due to the difficulty of the elliptic curve

discrete logarithm problem.

2.4.3 Security Against Possible Attacks

Note that the tamper-resistant device in our scheme is an oracle that does calcu-

lation in the Decrypting Key Derivation process. This raises the question of whether

such a device can be attacked by an adversary to gain secret information to subvert

this process. This concern is necessary since H.Y. Chien’s scheme has been success-

fully attacked (see X. Yi [21]) due to the weakness of the oracle. We face a similar

situation here.
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We set up the attack model for our scheme as follows:

Attack model

We denote the adversary by A, and assume

1. A either contains an individual attacker who is not a valid user but captures

a device belonging to a user of the system, or a team of valid users who have

access to their assigned devices;

2. A can query the device with trial messages;

3. all the members (if there are multiple ones) of A share the information and

resources they have.

The goal of A is to derive any valid temporal key Ki,t which is not supposed to be

used by any member of A.

Based on the attack model above, we shall analyze the security of the proposed

scheme. This analysis will not provide proofs of security (i.e. written in the language

of provable security), but it will give some ideas how the design of the scheme helps

secure the system.

2.4.3.1 Attack From Outside

Suppose an adversary A, who is an individual attacker, captures a device of class

Ci, but it does not know the associated class key Ki. A can query the device with a

value K∗, hoping the device to output the valid decryption key Ki,t at time t.

We claim that any attempt of A to gain the temporal decrypting key with only

one input K∗ to the device with identity IDi has very low probability of success.

This is so because even if we assume A queries the device at time granule t which

is in the subscription period, we have that the probability that the device outputs

the correct decrypting key in response to a randomly chosen query message K∗ is

Prob
{
HK

(
K∗ ‖ H t(a) ‖ HZ−t(b) ‖ ID i

)
= HK

(
Ki ‖ H t(a) ‖ HZ−t(b) ‖ ID i

)}

= Pr 1 + Pr 2,



20

where

Pr 1 = Prob {K∗ = Ki} ,

and

Pr 2 =Prob {K∗ 6= Ki and

HK

(
K∗ ‖ H t(a) ‖ HZ−t(b) ‖ ID i

)
= HK

(
K∗ ‖ H t(a) ‖ HZ−t(b) ‖ ID i

)}

Because Ki is secret to A, the first probability, Pr 1, is not significantly larger

than 1/p. Recall that p is the order of the elliptic curve subgroup in which we do

cryptography. The second probability, Pr 2 is the same as that of finding a collision

for the HMAC HK(−). Both probabilities are negligible. Therefore, it is very unlikely

that A will succeed with a random query message.

The collision resistance of the HMAC also effectively prevents the attacker to

correlate the results of multiple random queries to avoid trying points (messages)

other than those whose y-coordinates are the same as that of the previously tried

points. Therefore the probability of success of the adversary is not significantly better

than a brute-force attack.

2.4.3.2 Collusion Attack

We consider the case that A contains multiple valid users with their assigned

devices as well as class keys. These users collude by trying to use their assigned

class keys and devices to retrieve a valid temporal key that should not be owned

by any of these users. Since it is difficult to combine the HMAC output to infer

useful information about the input, we focus on the case that only one device is being

queried. We assume this device is associated with class Ci, and it is owned by a

member of A.

Assuming the tamper-resistance of the device and the intractability of the discrete

logarithm problem, we claim that any collusion attack on the scheme will fail.

Since the encryption information EncInf i for a device with identity ID i and the

embedded clock cannot be modified because of the tamper-resistance of the device,
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the device will respond to a single input K∗ with a correct decrypting key if and only

if K∗ = Ki. On the one hand, if Ki is one of the attacker’s issued class key, then

this attempt is a valid regular query, and it will not produce any extra information

that the attacker is not supposed to know. On the other hand, if Ki is not owned

by A, for an attack to succeed, then it must be derived by A via collusion, given the

infeasibility of guessing, as analyzed in Section 2.4.3.1 above. However, given that

all gj are kept secret, we do not see any way to accomplish this computation without

solving the discrete logarithm problem on E(Fq), even with all Ri,j on the public

board being available.

Now we consider collusion attacks with more than one input to the device. In this

case, A wants to let the device in class Ci compute temporal decrypting keys for a class

Cm which is no lower than Ci. Note that such an attack must have IDm as one of the

three input messages, and carefully choose the other two query messages. The attack

inevitably involves the computation (by the device) of the class key Km. According

to Step 2 of the Decrypting Key Derivation process, giKm must be computable by

the device in respond to the input parameters. However, we do not know how this

computation can be performed, even with the knowledge of Km, when gi is unknown.

The analysis in this section implies that it is unlikely that a device is able to

effectively compute the temporal keys outside its assigned time period and for classes

no lower than itself. Thus it can only function as designated.

2.4.3.3 X. Yi’s Attack

As a particular case of the collusion attack just described, X. Yi’s attack [21]

against H.Y. Chien’s scheme [20] cannot be replayed here to break our scheme. We

will demonstrate this case to give an impression of how the asymmetry introduced by

elliptic curve cryptography helps to strengthen the scheme.

X. Yi’s attack can not apply directly to our scheme due to our different construc-

tion. The idea of the attack is like this: two users collude to derive certain information
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Inf and pass it to a third user, U , so that U can input Inf together with its secret

key to the tamper-resistant device to derive the decryption keys of a class no lower

than U ’s. We claim that this analogue of X. Yi’s three-party attack does not succeed

for our scheme.

Suppose U belongs to class Cj and U wants to derive decryption keys Ki,t of Ci,
which is no lower than Cj. Then Ki needs to be computed by the device and passed

to the HMAC. An analogue of X. Yi’s attack requires the information passed to U be

Inf = [gj]Ki+([−1]Kj), so that when U inputs Inf , IDi and Kj, the tamper-resistant

device will compute

[hj](Inf +Kj) = [hj]([gj]Ki +Kj + [−1]Kj) = Ki.

In order to obtain Inf , someone must be able to have knowledge of gjKi. Given that

class Ci is no lower than Cj, [gj]Ki is not a summand of any of the published values on

the authenticated board, and thus it cannot be produced via collusion, considering

the fact that all gj are secret and the elliptic curve discrete logarithm problem is hard.

Therefore, an obvious generalization of X. Yi’s attack cannot be modified to attack

our scheme.

2.4.3.4 Remarks on Security Proofs

We want to remark that the analysis above does not provide rigorous security

proofs. We do not know yet if choosing suitable input parameters for a device so

that it is able to compute a class key belonging to a class no lower than the device’s

assigned class is equivalent to the elliptic curve discrete logarithm problem. We have

not shown rigorously that without knowing the valid class key obtaining a useful

decrypting key by querying the device with one input message is equivalent to finding

a collision of the HMAC. We do not know if knowing temporal keys is equivalent to

knowing the corresponding class key.

We suggest some remaining problems like those above as future research topics.

To achieve the security proofs a more formal definition of security will be needed.



23

2.4.4 Yet Another Good Feature

An important advantage of our scheme is that the vendor can change the class

keys of the system at any time without having to re-issue new devices to the users,

while only the user’s class keys and the public information Ri,j need to be updated.

In this case, the class keys need to be delivered to users through a secure channel,

and the vendor can simply update the database with new values of Ri,j on the public

board. However, when an individual user wants to change the subscription, a new

device needs to be issued. This also needs to be done when a different class is desired.

2.4.5 Space and Time Complexity

Our scheme publishes one value Ri,j for each partial order relation Cj ≺ Ci. The

total number of public values is at most
n(n− 1)

2
, when n is the number of classes

in C. On the user’s side, the tamper-resistant device stores only HK , E, Fq, IDi, hi

and EncInf i.

At any time granule t, the tamper-resistant device needs to perform (t − t1) +

(t2− t) + 2 = t2− t1 + 2 ≤ Z hash iterations. Note that there are two hash iterations

per HMAC operation [26]. In a system of life period 5 years which updates user keys

every hour, Z is approximately 43800. We did an experiment using SHA-1 as the

hash function on a Gateway MX3215 laptop computer which has a 1.40GHz Intel(R)

Celeron(R) M processor, 256 MB of memory and runs Ubuntu 6.10 Edgy Eft. The

code is written in C and built with GNU C compiler version 4.1.2. The result showed

that 43800 hash iterations took .0800 second of processing time. In practice, t2 − t1
is usually much smaller than Z and the hash computation is really fast.

The bulk of the computation performed by the tamper-resistant device is the

calculation ofKj = [hi](Ri,j+Ki) in Step 2 of the Decrypting Key Derivation phase. A

rough estimate [30] shows that a 160-bit prime p (the order of Q on E(Fq)) should give

us 80-bit security against the best (generic) elliptic curve discrete logarithm attack in

this situation. In this case, the calculation of Kj is comparable to elliptic curve scalar
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multiplication computation with required precomputation done online. Section 3.7

of [31] gives rough estimates and experimental results for this computational cost,

for NIST-recommended curves P-192, B-163 and K-163. The results show that the

computation can be performed in several milliseconds on an 800MHz Intel Pentium

III using general-purpose registers. A smart card (with a 32-bit processor running at

25 to 32 MHz) can also do this efficiently [32]. Our scheme is in fact slower than H.Y.

Chien’s scheme, in which only hash computations are widely used. However it is still

very efficient from the point of view of application and provides enhanced security.

In Table 2.1 below, we shows a comparison of the three time-bound hierarchical

key management schemes.

Table 2.1: A comparison of three time-bound hierarchical

key management schemes

Comparison of three schemes

Tzeng Chien Ours

Implementation

requirements

Lucas function Tamper-resistant

device

Tamper-resistant

device, ECC

# of public values n+ 6 n− 1 n(n− 1)/2

# of operations to

derive temporal se-

cret key of own class

(t2 − t1)Te,

(t2 − t1)TL, Th

(t2 − t1 + 1)Th (t2 − t1 + 2)Th

# of operations to

derive temporal se-

cret key of direct

child class

(t2 − t1 + r)Te,

(t2 − t1)TL, Th

(t2 − t1 + 2)Th (t2 − t1 + 2)Th, TE
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# of operations to

derive temporal se-

cret key of l-edge-

distance child class

(t2 − t1 + r)Te,

(t2 − t1)TL, Th

(t2 − t1 + 1 + l)Th (t2 − t1 + 2)Th, TE

security against Yi

and Ye’s attack

insecure secure secure

security against X.

Yi’s attack

N/A insecure secure

Suppose Cj � Ci, t ∈ [t1, t2].

Notation:

n: number of classes |C|

r: number of child classes Ci on path from Ci to Cj

Th: hashing operation

Te: modular exponentiation

TL: Lucas function operation

TE: elliptic curve scalar multiplication

2.5 Future Work and Remarks

Some future directions of this research are:

• Construction of an efficient key management scheme which is provably secure.

• Construction of an efficient key management scheme which does not have to use

a tamper-proof device.
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• Implementation of the scheme on smart cards and testing.

We want to remark that the choice of the group of an elliptic curve is not intrinsic

for this key management scheme: it can be alternatively implemented with small

modifications by using any suitable finite group, e.g. the Jacobian of a hyperelliptic

curve. In any case, a compact representation of the group element and an efficient

group operation must be available. The requirement leads to the subject of the

following Chapter 3.
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3. ARITHMETIC ON JACOBIANS OF GENUS 2 REAL

HYPERELLIPTIC CURVES

3.1 Introduction and Motivation

Since first proposed by N. Koblitz [33] in 1989, the use of the Jacobian of a hyper-

elliptic curve in public-key cryptography has drawn attention from both academia and

industry. With the best known attacks running exponential time, hyperelliptic curves

offer a better key-per-bit security compared to conventional schemes like RSA. The

attack described in [13] implies that only genus 2 curves provide the same key-per-

bit security as elliptic curves. For efficient cryptographic implementation, optimized

explicit formulas (e.g. [34]) have been developed for genus 2 imaginary hyperelliptic

curves. In [17], a cryptographic key exchange protocol is presented for genus 2 real

hyperelliptic curves. However, explicit formulas for such curves have not been studied

as widely as their imaginary counterparts.

This chapter contains two contributions to the research of explicit formulas for

real models of genus 2 hyperelliptic curves:

1. It shows a new result in Theorem 8, which presents an equivalent change of co-

ordinates for a hyperelliptic curve in the real model. This is useful for obtaining

a short representation of a curve equation, so that the arithmetic is simplified.

2. The explicit divisor doubling formulas are presented for genus 2 real hyperel-

liptic curves. These formulas cover all cases of positive characteristic except

characteristic 3, for two major representations (i.e. the adapted basis and the

reduced basis) of divisors. Explicit formulas for special cases of divisor doubling

are also presented. The result shown in Section 3.6 supersedes the doubling for-
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mulas found in [35], which deals with characteristic > 3 and divisors represented

in the reduced basis.

3.2 Background

For arithmetic purposes, in this chapter, we consider elliptic curves as hyperelliptic

curves of genus one. For interests in cryptography, we concentrate on curves over finite

fields Fq. We use the definition of hyperelliptic curves by their nonsingular models as

follows.

Definition 6 (Hyperelliptic Curves of Genus g, [35]) A hyperelliptic curve C

of genus g defined over Fq is an absolutely irreducible nonsingular curve defined by

an equation

C : y2 + h(x)y = f(x), (3.1)

where f, h ∈ Fq[x] are such that y2 + h(x)y − f(x) is absolutely irreducible; if b2 +

h(a)b − f(a) = 0 for (a, b) ∈ F̄q
2
, then 2b + h(a) 6= 0 or h′(a)b − f ′(a) 6= 0. A

hyperelliptic curve is called

1. an imaginary hyperelliptic curve if f is monic, deg(f) = 2g + 1, and

deg(h) ≤ g.

2. a real hyperelliptic curve if the following hold: If q is odd, then f is monic,

h = 0, deg(f) = 2g+2. If q is even, then h is monic, deg(h) = g+1, and either

(a) deg(f) ≤ 2g + 1 or (b) deg(f) = 2g + 2 and the leading coefficient of f is

of the form β2 + β for some β ∈ F∗
q.

Let Fq(C) be the corresponding function field. Let Fq[C] = Fq[x, y]/(y
2 +h(x)y−

f(x)) be the coordinate ring of C. Then Fq[C] is the integral closure of Fq[x] in Fq(C).

Let P∞ be the place at infinity of Fq(x). Then an imaginary hyperelliptic curve C

corresponds to the case that P∞ ramifies in Fq(C), and a real hyperelliptic curve C
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corresponds to the case that P∞ splits in Fq(C) (cf. [36], Chapter 14). We say the

curve C has “one point at infinity” or “two points at infinity” accordingly.

Note that according to the above definition, there are models of hyperelliptic

curves that are neither imaginary nor real [35] – those that correspond to an inert

P∞. We call such curves unusual and exclude such curves from our discussion in this

thesis.

Let Cl(Fq[C]) be the ideal class group of the affine algebra Fq[C]. For cryptog-

raphy, it is worth mentioning the connection between Cl(Fq[C]) and the Fq-rational

points of the Jacobian of C, described via the following exact sequences: If C is

imaginary, i.e., P∞ ramifies in K(C), then

0→ JacFq
(C )→ Cl(Fq [C ])→ 0. (3.2)

If C is real, i.e., P∞ splits in K(C), with ∞1 and ∞2 above it, then

0→ 〈∞1 −∞2〉 → JacFq
(C )→ Cl(Fq [C ])→ 0. (3.3)

If P∞ is inert in K(C), then

0→ JacFq
(C )→ Cl(Fq [C ])→ Z/(2 )→ 0.

This is a reinterpretation of [36], Propositions 14.6 and 14.7.

3.3 Equivalent Change of Coordinates

Instead of working on curve equations in the most general form, sometimes it

is more efficient (and more convenient) to deal with curves given by equations with

fewer terms. In this section, we discuss some transformations that can be performed

on a curve equation in the general form to obtain an equivalent model of the curve

given by a shorter equation. We say two models of a curve are equivalent if they

correspond to isomorphic coordinate rings.
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3.3.1 Elliptic Curves

It is well-known (see, e.g., [25]) that an elliptic curve given by the (generalized)

Weierstraß equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Fq, (3.4)

under a change of coordinates, is equivalent to a short Weierstraß equation of the

form

1. y2 = x3 + Ax+B, if the characteristic of the field is not 2 or 3;

2. y2 = x3 + a′2x
2 + a′6, if the characteristic of the field is 3 and j(E) 6= 0;

3. y2 = x3 + a′4x+ a′6, if the characteristic of the field is 3 and j(E) = 0;

4. y2 + xy = x3 + a′2x
2 + a′6, if the characteristic of the field is 2 and a1 6= 0;

5. y2 + a′3y = x3 + a′4x+ a′6, if the characteristic of the field is 2 and a1 = 0.

3.3.2 Imaginary Hyperelliptic Curves

This case occurs when the curve C has an Fq-rational Weierstraß point ∞, i.e.,

dimL(2∞) > 1, where L(2∞) is the Riemann-Roch space of the divisor 2∞. Given

a Weierstraß equation of the form

y2 + h(x)y = f(x), deg(h) ≤ g, deg(f) = 2g + 1, (3.5)

the following theorem gives guidelines for obtaining equivalent models.

Theorem 7 (Lockhart, 1994, [37]) The equation given by (3.5) of a hyperelliptic

curve with genus g is unique up to a change of coordinate of the form

x = u2x̂+ r, y = u2g+1ŷ + t(x̂),

where u ∈ F∗
q, r ∈ Fq and t is a polynomial over Fq of degree ≤ g.
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This allows us to justify the isomorphic transformations of imaginary hyperelliptic

curves of genus 2 described in [34]:

If char(Fq) is odd, then Equation (3.5) can be shortened as y2 = x5 +f4x
4 +f3x

3 +

f2x
2 + f1x+ f0; if in addition char Fq 6= 5, we further have f4 = 0.

If char(Fq) = 2, then Equation (3.5) can be transformed to y2 +(x2 +h1x+h0)y =

x5 + f1x+ f0, or y2 + (h1x+ h0)y = x5 + f4x
4 + f2x

2 + f1x+ f0.

3.3.3 Real Hyperelliptic Curves

This case occurs when the infinite place of the subfield Fq(x) of Fq(C) splits and

the curve is given by the model

y2 + h(x)y = f(x), deg(h) ≤ g + 1, deg(f) ≤ 2g + 2. (3.6)

We adapt the statement and proof of Theorem 7 to the case of real hyperelliptic

curves, and present them as follows.

Theorem 8 The equation given by (3.6) of a hyperelliptic curve is unique up to a

change of coordinates of the form

x = ux̂+ r, y = ±ug+1ŷ + t(x̂),

where u ∈ F∗
q, r ∈ Fq and t is a polynomial over Fq with t = 0 if q is odd, and

deg(t) ≤ g + 1 if q is even.

Proof Let us first briefly review how Equation (3.6) is obtained. Let P∞ be the

place at infinity of Fq(x), which splits in Fq(C) with {∞1,∞2} lying above. Then

by construction, we have that the Riemann–Roch space L(P∞) has basis {1, x}.
For 1 ≤ j ≤ g we have dimL(jP∞) ≥ 2j − g + 1, by the Riemann-Roch theo-

rem, and the elements {1, x, x2, . . . , xj} are linearly independent over Fq in L(jP∞).

We also have dimL (gP∞) = deg (gP∞) − g + 1 = g + 1, dimL ((g + 1)P∞) =

deg ((g + 1)P∞)−g+1 = g+3, for deg (gP∞) = 2g > 2(g−1) and deg ((g + 1)P∞) =

2g + 2 > 2(g − 1). The g + 1 functions 1, x, x2, . . . , xg form a basis for L(gP∞).
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The function xg+1 ∈ L ((g + 1)P∞) \L (gP∞). To form a basis for L ((g + 1)P∞),

there must be another function, y, which is linearly independent of the powers of

x, in L ((g + 1)P∞) \L (gP∞). Now we look at L (2(g + 1)P∞), which is (3g + 5)–

dimensional and contains the 3g + 6 functions

1, x, x2, . . . , xg+1, y, xg+2, xy, . . . , x2g+2, xg+1y, y2. (3.7)

Therefore there is a nontrivial Fq–linear relationship among them. Since the functions

of powers of x in (3.7) are linearly independent over Fq and y /∈ K[x], the coefficient of

y2 must not be 0. Multiplying the linear relation with the multiplicative inverse of the

coefficient of y2 we obtain the model of the curve in the form of (3.6). Furthermore,

W.L.O.G1, we may assume the conditions on coefficients and degrees as in Definition 6

are satisfied.

Now suppose x̂ and ŷ are another such pair of functions as x and y above. Then

x̂ ∈ L (P∞), and we must have x = ax̂ + r for some a ∈ F∗
q, r ∈ Fq. Similarly,

ŷ ∈ L ((g + 1)P∞), and thus we have y = bŷ + t(x̂) for b ∈ F∗
q and t(x̂) ∈ Fq[x̂],

deg(t) ≤ g + 1.

If q is odd, then the monicity of the coefficients for x̂2g+2 and ŷ2 and degeneracy

of the term x̂ŷ implies that b2 = a2g+2 and t(x) = 0. Let u = a. Then u ∈ F∗
q and

b = ±ug+1.

If q is even, then the model in x and y is in the form of (3.6) with h monic of

degree g + 1, and either (a) deg(f) ≤ 2g + 1, or (b) deg(f) = 2g + 2 and f has

a leading coefficient β2 + β for some β ∈ F∗
q. Let t1 be the coefficient of x̂g+1 in

t(x̂). We look at the coefficients of the terms in x̂ and ŷ with pole order 2g + 2

at ∞1 (or ∞2). In case (a), we have b2ŷ2 + ag+1bx̂g+1ŷ = (t21 + ag+1t1) x̂
2g+2, i.e.,

ŷ2 + (ag+1/b)x̂g+1ŷ = (1/b2) (t21 + ag+1t1) x̂
2g+2. Therefore, we must have ag+1/b = 1,

i.e., b = ag+1. Let u = a. Then b = ug+1. And either the coefficient of x̂2g+2 is 0, if

t1 = 0, or it is equal to z2 + z, where z = t1/u
g+1 ∈ F∗

q with t1 6= 0. Similarly, in case

(b), we let u = a. Then we have b = ug+1 and x̂2g+2 has coefficient of the form z2 + z,

where z = β + t1/b. This completes the proof.

1If q is odd, make the change of variable y ← y − h(x)/2; if q is even, cf. [38], Theorem 7.
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A genus 2 real hyperelliptic curve C over a finite field Fq can be given by the

equation

y2 + h(x)y = f(x),

where h(x) = (h3x
3+h2x

2+h1x+h0), f(x) = f6x
6+f5x

5+f4x
4+f3x

3+f2x
2+f1x+f0,

and hi, fj ∈ Fq.

If char(Fq) is odd, then h = 0 and f6 = 1. In particular, if char(Fq) > 3, f(x)

can be written as f(x) = x6 + f4x
4 + f3x

3 + f2x
2 + f1x + f0 with a linear change of

variable x← x+ f5/6. This shorter equation is equivalent to the original one, in the

sense that they give the same coordinate ring.

If char(Fq) = 2, then h(x) is monic, deg(h) = 3, and either deg(f) ≤ 5, or

deg(f) = 6 and f6 is of form β2 + β 6= 0 for some e ∈ F∗
q.

Now suppose C is written in the form

y2 + (x3 + h2x
2 + h1x+ h0)y = f6x

6 + f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0,

where f6 = e2 + e ∈ Fq, which can be zero or nonzero. The change of variable

x← x+ h2 makes the h2 term vanish.

C : y2 + (x3 + h1x+ h0)y = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

Then y ← y + f5x
2 eliminates the f5 term.

C : y2 + (x3 + h1x+ h0)y = f6x
6 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0.

Then y ← y + f4x eliminates the f4 term

C : y2 + (x3 + h1x+ h0)y = f6x
6 + f3x

3 + f2x
2 + f1x+ f0.

Then y ← y + f3 eliminates the f3 term

C : y2 + (x3 + h1x+ h0)y = f6x
6 + f2x

2 + f1x+ f0.

This is the shortest Weierstraß equation we can use.
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3.4 Explicit Formulas for Elliptic and Genus 2 Imaginary Hyperelliptic

Curves

3.4.1 Mumford Representation and Cantor’s algorithm

In order to use the Jacobian of a hyperelliptic curve in cryptography, we must

have a compact encoding of its elements as well as efficient arithmetic operations on

the elements. For imaginary hyperelliptic curves, the Mumford representation of the

degree 0 divisor class and Cantor’s algorithm provide the facilities to do so.

Theorem 9 (Mumford representation, cf. [14, 39]) Let C be a genus g hyper-

elliptic curve given by C : y2 + h(x)y = f(x), where h, f ∈ Fq[x], deg(f) = 2g +

1, deg(h) ≤ g. Each nontrivial divisor class over Fq can be represented via a unique

pair of polynomials u(x) and v(x), u, v ∈ Fq[x], where

1. u is monic,

2. deg(v) < deg(u) ≤ g,

3. u|v2 − vh− f .

Let D =
r∑

i=1

Pi−r∞, where Pi 6=∞, Pi 6= −Pj for i 6= j and r ≤ g. Put Pi = (xi, yi).

Then the divisor class of D is represented by

u(x) =
r∑

i=1

(x− xi)

and if Pi occurs ni times then

(
d

dx

)[
v(x)2 − v(x)h(x)− f(x)

]
|x=xi

= 0, for 0 ≤ j ≤ ni − 1.

Such a pair [u, v] is called a Mumford representation of divisor class of the curve C

(or ideal class of the corresponding affine coordinate ring Fq[C]).

The Mumford representation is usually defined for elements of the Jacobian of an

imaginary hyperelliptic curve, as described above. For real hyperelliptic curves, an
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analogous definition is also achievable for the infrastructure within the Jacobian of

the curve. We will expose more on it in Section 3.5.

As an analogue of the composition of binary quadratic forms originated by Gauss,

the Cantor’s algorithm [33,40] realizes the hyperelliptic curve Jacobian group law by

working on the Mumford representation of the elements.

Algorithm 1 Cantor’s algorithm

Input: Two divisor classes D̄1 = [u1, v1] and D̄2 = [u2, v2] on the curve C : y2 +

h(x)y = f(x).

Output: The unique reduced divisor D = [U, V ] such that D̄ = D̄1 ⊕ D̄2.

1: d1 ← gcd(u1, u2); d1 = e1u1 + e2u2

2: d← gcd(d1, h− v1 − v2); d = c1d1 + c2(h− v1 − v2)

3: s1 ← c1e1, s2 ← c1e2 and s3 ← c2

4: U ← u1u2/d
2 and V ← (s3(v1v2 + f)− s1u1v2 − s2u2v1)/d (mod U)

5: repeat

6: U ′ ← (f + V h− V 2)/U and V ′ ← h− V (mod U ′)

7: U ← U ′ and V ← V ′

8: until deg(U) ≤ g

9: make U monic and return [U, V ]

Again, Cantor’s algorithm is designed to work for hyperelliptic curve in the imag-

inary model, but it can be modified for the infrastructure of real hyperelliptic curves.

We will have more discussion in Section 3.5.

3.4.2 Elliptic Curves And Genus 2 Hyperelliptic Curves in the Imaginary

Model

An elliptic curve E with a point∞ at infinity is isomorphic to its degree 0 divisor

class group Pic0(C). Applying Cantor’s algorithm to E, the well–known group law

can be explicitly described as follows.
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Theorem 10 (Group Law Algorithm 2.3, [41]) Let E be an elliptic curve given

by a Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(a) Let P0 = (x0, y0) ∈ E. Then

−P0 = (x0,−y0 − a1x0 − a3).

Now let

P1 + P2 = P3 with Pi = (xi, yi) ∈ E.

(b) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 =∞.

Otherwise let

λ =
y2 − y1

x2 − x1

, µ =
y1x2 − y2x1

x2 − x1

if x1 6= x2;

λ =
2x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

,

µ =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

if x1 = x2.

(c) P3 = P1 + P2 is given by

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −(λ+ a1)x3 − µ− a3.

(d) As special cases of (c), we have for P1 6= ±P2,

x(P1 + P2) =

(
y2 − y1

x2 − x1

)2

+ a1

(
y2 − y1

x2 − x1

)
− a2 − x1 − x2;

and the doubling formula for P = (x, y) ∈ E,

x([2]P ) =
x4 − b4x2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

,

where

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6 and

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.
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The Riemann Hypothesis for abelian varieties over finite fields (cf. [42]) implies

that the cardinality of the rational points of the Jacobian variety of a genus g curve

over a finite field Fq is approximately qg. This is q2 for the case of genus 2. It is the

1-1 correspondence, as shown in (3.2), between the categories of divisor class groups

of imaginary genus 2 hyperelliptic and ideal class groups of the coordinate ring Fq[C]

of the curve that makes the arithmetic on divisor class groups well understood. Thus

it becomes clear how to do discrete logarithm based cryptography on Jacobians of

imaginary genus 2 curves. Given that the best attacks to the discrete logarithm prob-

lem in a genus 2 Jacobian are the generic ones that have complexity O(
√
N), where

N is the group order (cardinality), the use of Jacobians of genus 2 curves for discrete

logarithm based cryptography versus elliptic curves (genus 1 case), though more com-

plicated, has the advantage that to achieve the same level of security, it requires a

smaller size of the underlying finite field in which we do the actual arithmetic. Genus

2 curves for cryptography are more suitable for smaller processor architectures, and

may potentially offer us extra efficiency, compared to their elliptic curve counter-

part [43]. The rigorous argument cannot be easily made; it is complicated by many

factors, including design and implementation. To make such an estimate feasible, a

first and very important step is to understand better the divisor arithmetic for genus

2 curves.

Following T. Lange’s pioneering work [34], extensive efforts have been put into

the research on explicit formulas, i.e., formulas written in terms of actually field

arithmetic, for imaginary genus 2 hyperelliptic curves of the following form:

C : y2 + h(x)y = f(x), (3.8)

where f(x) is a degree 5 polynomial defined over the finite field Fq, and deg(h) ≤ 2.

Such explicit formulas are computationally more efficient than the generic algo-

rithm (the Cantor’s algorithm) given in polynomial operations, for performing the

group law in the Jacobian of genus 2 curves. The following Tables 3.1 and 3.2 show

a performance comparison of the generic algorithm and the explicit formulas. The

code is written in C++ and built over the libg2hec genus 2 crypto library [44] using
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the gcc compiler version 4.2.3 with flag -O2. The libg2hec library uses field arithmetic

provided by V. Shoup’s NTL library [45], and implements the Cantor’s algorithm

as in Algorithm 1 and the explicit formulas for imaginary genus 2 curves in affine

coordinates. The experiment was done on a Lenovo ThinkPad T61 laptop computer

which has an Intel(R) Core 2 Duo processor (T7300 2.0GHz), 2 GB RAM, and runs

Linux kernel version 2.6.24-19.

Table 3.1: Performance Comparison: average time (in

ms) for one addition/doubling over prime fields of size ℓ

(in bits)

Size ℓ (in bits) Cant. add Expli. add Cant. doub. Expli. doub.

80 0.07608 0.05528 0.08232 0.06728

160 0.09956 0.07396 0.10912 0.08948

256 0.13248 0.103 0.14564 0.1246

324 0.16784 0.13092 0.18616 0.15976

512 0.23188 0.17708 0.26068 0.21864

1024 0.52108 0.37364 0.57692 0.45828

Table 3.2: Ratio of Operational Times

Size ℓ (in bits) 80 160 256 324 512 1024

Cant./Expli. add 1.37627 1.34613 1.28621 1.282 1.30946 1.3946

Cant./Expli. doub. 1.22354 1.21949 1.16886 1.16525 1.19228 1.25888
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3.5 Genus 2 Hyperelliptic Curves in Real Model

We shall consider another type of genus 2 curve, i.e., real genus 2 hyperelliptic

curves. Recall that they have the form

C : y2 + h(x)y = f(x), (3.9)

where f, h ∈ Fq[x] are such that y2 + h(x)y − f(x) is absolutely irreducible, i.e.

irreducible over Fq, and if b2 +h(a)b = f(a) for (a, b) ∈ Fq×Fq, then 2b+h(a) 6= 0 or

h′(a)b− f ′(a) 6= 0. If q is odd, then f is monic, h = 0, deg(f) = 6. If q is even, then

h is monic, deg(h) = 3, and either (a) deg(f) ≤ 5 or (b) deg(f) = 6 and the leading

coefficient of f is of the form β2 + β for some β ∈ F∗
q.

A genus 2 curve of this form has two “points at infinity.” Unlike the case of imagi-

nary genus 2 hyperelliptic curves, the divisor class group of a real genus 2 hyperelliptic

curve does not correspond nicely to the ideal class group of the coordinate ring Fq[C]

of the curve (cf. (3.3) or [36], Proposition 14.7). Moreover, as in the number field

case, each ideal class of the function field K is not uniquely represented by reduced

ideals. This creates obstacles for using the ideal class group of a real hyperelliptic

curve for computation, hence limits the use of real hyperelliptic curves in discrete

logarithm based cryptography. However, the infrastructure of the divisor class group

leads us to look at the problem from a different perspective. The following theorem

sets up a connection between the divisor class group and the set of reduced ideals of

Fq(C).

Theorem 11 (Paulus-Rück, 1999, [46]) There is a canonical bijection between

the divisor class group JacFq(C) and the set of pairs {(a, n)}, where a is a reduced

ideal of Fq[C] and n is a non-negative integer with 0 ≤ deg(a) + n ≤ g.

For arithmetic purposes, we restrict our attention to the special subset R :=

{(a, 0) : a reduced and principal} of the Jacobian (up to isomorphism). Define the
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regulator R of Fq(C) in Fq[C] to be the order of ∞1 −∞2 in JacFq
(C ). Recall from

(3.3) the group isomorphism

JacFq
(C )/〈∞1 −∞2 〉 ≃ Cl(Fq [C ]).

Now it is clear that #R ≤ R.

R can be made into a totally ordered set with an order introduced by a distance

function δ(·) as follows: Fix the trivial ideal a1 = (1) = Fq[C] ∈ R. For any ideal

b ∈ R, by definition, there exists α ∈ Fq(C)∗ such that b = (α)a1. Let δ(b) = −ν1(α)

(mod R), where ν1 is the normalized valuation of Fq(C) at ∞1.
2 It follows that

elements in R are uniquely determined by their distances, and that R is a totally

ordered set by distance [47]. More precisely, we can write R = {a1, a2, . . . , am},
where m ≤ R and 0 = δ(a1) < δ(a2) < . . . < δ(am) < R. Given the one-to-one

correspondence discussed in Theorem 11, this can also be written as

R = {D̄1, D̄2, . . . , D̄m}, where m ≤ R, and 0 = δ(D̄1) < . . . < δ(D̄m) < R,

in divisor class notation. The set R with the distance function δ(·) is called the

infrastructure of the principal ideal class.

An algorithm for performing arithmetic operations inR has been presented in [17,

46,48]. It consists of three steps:

(a) composition of reduced ideals,

(b) reduction of the primitive part of the product, and

(c) baby steps, i.e. adjusting the output of the reduction so that the degree condi-

tion of the theorem is satisfied.

Step (a) and (b) together are called a giant step. A giant step, often written

as ai · aj (or equivalently, D̄i + D̄j), is the analogue of the group operation in the

imaginary case. A baby step is unique to real hyperelliptic curves. As described

in [35], it is the operation ai → ai+1 (or equivalently, D̄i → D̄i+1).

2The normalized valuation ν1 takes value −1 at x.
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Note that R is not a group with respect to the giant step operation, because

associativity does not necessarily hold [49]. However, it is true that for D,D′ ∈ R we

have

δ(D +D′) = δ(D) + δ(D′)− d,where 0 ≤ d ≤ 4,

and d can be efficiently computed (see, for example, Section 2 of [49]). This allows us

to do cryptography in R. Several key-exchange protocols based on arithmetic in R
have been presented in [49]. The need for efficient implementation of these protocols

promotes investigations on explicit arithmetic in divisor class groups of real genus 2

hyperelliptic curves.

Our research focuses on the explicit formulas : we use the (affine) Mumford rep-

resentation (defined in Section 3.6 below) of the divisor classes of real hyperelliptic

curves, apply the composition and reduction algorithms for operations in R, work on

finite field arithmetic directly to derive the baby step and giant step (divisor addition

and doubling) formulas, and optimize the results. We only present the result on divi-

sor doubling formulas for the giant step in detail in this thesis. Further information

about the baby step and addition formulas can be found in [35,50,51]

3.6 Explicit Formulas for the Real Model

We now restrict our attention to the arithmetic of the subset of JacFq
(C ) that

corresponds to R. Note that any element in R corresponds uniquely to a reduced

principal ideal a of F[C], which can be represented by a pair [u, v] of polynomials.

Therefore, we only look at and perform operations on elements of JacFq
(C ) which

are given by a pair D̄ = [u, v] of polynomials over Fq, such that

1. u is monic,

2. deg(u) ≤ g,

3. u|v2 − vh− f ,

4. one of the following conditions is satisfied:
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(a) for the adapted (standard) basis : deg(v) < deg(u), or

(b) for the reduced basis : −ν1(v − h− y) < −ν1(u) < −ν1(v + y).

If only 1, 3, and 4 are satisfied, D̄ is called semi-reduced. If all four conditions are

satisfied, then D̄ is called reduced. For details on the above representation, see [35,47].

This is the Mumford representation of divisor classes in the infrastructure R
(in adapted/reduced basis). As with Cantor’s algorithm in the case of imaginary

hyperelliptic curves, operation can be applied to R to compose or reduce divisors,

and thus implement the baby step and giant step operations. The algorithms are

introduced in [35]. We describe them in Algorithms 2 and 3, as follows:

Algorithm 2 Composition

Input: Two divisor classes D̄1 = [u1, v1] and D̄2 = [u2, v2] on the curve C : y2 +

h(x)y = f(x).

Output: A semi-reduced divisor D = [U, V ] such that D̄ = D̄1 ⊕ D̄2.

1: d← gcd(u1, u2, v1 + v2 + h) = x1u1 + x2u2 + x3(v1 + v2 + h)

2: U ← u1u2/d
2 and V ← (x3(v1v2 + f) + x1u1v2 + x2u2v1)/d (mod U)

Let H(x) = ⌊y⌋ be the principal part of a root y of y2 + h(x)y − f(x) = 0, i.e., if

y =
m∑

i=−∞
yix

i ∈ Fq〈x−1〉, then H(x) =
m∑

i=0

yix
i.

Algorithm 3 Reduction

Input: A divisor class D̄ = [u, v] the curve C : y2 + h(x)y = f(x).

Output: A reduced divisor D′ = [U, V ] such that D̄′ = D̄.

1: a← (v +H(x)) div u.

2: repeat

3: V ← v − au, U ← (f + hV − V 2)/u.

4: until deg(U) ≤ g

5: Make U monic and adjust V to a adapted/reduced basis if necessary.
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Let [u, v] be a Mumford representation of a divisor class in R. We discuss explicit

formulas for divisor class addition (ideal multiplication), divisor class doubling (ideal

squaring), and a baby step (ideal reduction). We present doubling formulas in detail.

The formulas are presented for both the adapted and reduced bases.

While the formulas are given for the hyperelliptic curve in the most general form

C : y2 + h(x)y = f(x), (3.1)

where h(x) = h3x
3 + h2x

2 + h1x+ h0 and f(x) = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 +

f1x+ f0, we make the following assumptions when counting the number of finite field

operations.

• If the characteristic of the field is a prime p > 3, we can transform the general

equation defining the curve to one of the form

C : y2 = f(x)

that is equivalent to the original curve, where f(x) = x6 + f4x
4 + f3x

3 + f2x
2 +

f1x+ f0. i.e., we can assume that h(x) = 0, the leading coefficient of f(x) is 1,

and the x5 term of f(x) is 0.

• If the characteristic of the field is 2, we consider the hyperelliptic curve given

by an equation of the form

C : y2 + h(x)y = f(x),

where f(x) = f6x
6 + f2x

2 + f1x+ f0, and h(x) = x3 + h1x+ h0. In this case, f6

is of the form β2 + β for some β ∈ F∗
q. We ignore the count for multiplications

by f6 or β in explicit formulas.

With the assumptions above, we write y =
m∑

i=−∞
yix

i ∈ Fq〈x−1〉, substitute it into

the curve equation, determine the values yi by comparing coefficients of powers of x,

and pre-compute H(x) = y3x
3 + y2x

2 + y1x+ y0 as follows. If the finite field has odd

characteristic and

f(x) = x6 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0 h(x) = 0,
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we have y3 = 1, y2 = 0, y1 = f4/2 and y0 = f3/2. Therefore a reduced basis [u, v]

in this case has v of the form v(x) = x3 + v1x + v0. If the finite field has an even

characteristic and

f(x) = (β2 + β)x6 + f2x
2 + f1x+ f0, h(x) = x3 + h1x+ 1,

we have y3 = β′, y2 = 0, y1 = β′h1 and y0 = β′h0, where β′ = β or β + 1. Note

that in this case H(x) = β′h(x). In this case, a reduced basis [u, v] has v of the form

(1 + β′)x3 + v1x+ v0.

3.6.1 Baby Step and Addition Formulas

We do not present in this thesis the baby step and addition formulas, which will be

available in [50]. Partial results of the current research is summarized in Table 3.11.

3.6.2 Doubling Formulas

3.6.2.1 Algorithm for Divisor Doubling

Let [u, v] be a degree 2 reduced divisor written in the Mumford representation,

with both points of the divisor not equal to their opposites. To perform divisor

doubling, compute the following expressions. Similar formulas for simplification of

the Cantor’s algorithm for genus 2 imaginary hyperelliptic curves were first suggested
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by R. Harley in [52] and extended by T. Lange [39] et. al. We will show that these

formulas give the desired result.

ṽ ≡ 2v − h (mod u) r = resultant(u, ṽ)

inv ≡ r(ṽ)−1 (mod u) k = (f + hv − v2)/u

s′ ≡ k · inv (mod u) s =
1

r
· s′

ũ = s2 + ((2v − h)s− k)/u u′ = ũ made monic

Adapted basis: v′ = h− su− v (mod u′)

Reduced basis: v′ = H(x) + h(x)− [(H(x) + s · u+ v) (mod u′)]

Let [u, v] = [x2 + u1x+ u0, x
3 + v1x+ v0] be a degree two reduced basis Mumford

representation with both points of the divisor not equal to their opposites. Then

Cantor’s Algorithm for doubling the divisor (u, v) must result in (U1, V1) such that

U0 = u2

V0 ≡ v (mod u)

(V0 = v + su for some s)

V1 = h− V0 +
⌊

V0+H(y)
U0

⌋
U0

U1 = (f + h · V1 − V 2
1 )/U0

Here, s is chosen such that U0 divides V 2
0 − h · V0 − f . Again,

⌊
V0+H(x)

U0

⌋
is zero since

U0 has degree 4 and V0 +H(y) has degree 3. Hence, V1 = h− V0 = h− su− v and

U1 =
(
f + h · (h− su− v)− (h− su− v)2

)
/u2

=
(
f + hv − v2 − us(2v − h)− s2u2

)
/u2

=
(
(f + hv − v2)/u− (2v − h)s

)
/u− s2

= (k − (2v − h)s) /u− s2

where the division in k = (f+hv−v2)/u is exact. To make the division of k−(2v−h)s
by u exact, we choose s ≡ k · (2v − h)−1 (mod u), and obtain

k − (2v − h)s ≡ k − (2v − h) · k · (2v − h)−1 ≡ 0 (mod u) .
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Finally, we reduce [U1, V1] into either adapted or reduced basis. U1 is made monic to

yield

u′ = s2 + (2vs− k)/u made monic .

For the adapted basis, v′ = V1 mod u′. For the reduced basis, v′ = H(x) + h(x) −
[H(x) + h(x)− V1 mod u′] = H(x) + h(x)− [(H(x) + su+ v) mod u′].

3.6.2.2 General Explicit Formulas for Divisor Doubling

Instead of following the doubling formulas described in Section 3.6.2.1 with poly-

nomial operations, we write the result of each step in terms of finite field opera-

tions, optimize manually using techniques like Karatsuba multiplication, subexpres-

sion elimination, etc., and derive the explicit formulas for divisor doubling in this

chapter.

We only count inversions, multiplications and squarings of finite field elements,

which consist of the bulk of the computation when compared with addition and

subtractions. In the tables below, we denote finite field “inversion”, “multiplication,”

and “squaring” by I, M, and S, respectively.

The resulting explicit formulas are presented in Tables 3.3, 3.4 and 3.5.

Throughout the chapter, the total number of operations in parentheses are for the

case of even characteristic.

Table 3.3: Explicit Formulas for Doubling Divisor Classes

Doubling, General Case, deg u = 2

Input [u, v], u = x2 + u1x+ u0, v = v3x
3 + v2x

2 + v1x+ v0

Output [u′, v′] = 2[u, v] := [u, v] + [u, v]

Step Expression adapted reduced

1 ṽ = ṽ1x+ ṽ0 S S,M

w1 = u2
1, ti = 2vi − hi, i = 0, 1, 2, 3 (S, M)

Continued on next page
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Table 3.3 – continued from previous page

Step Expression adapted reduced

ṽ1 = t3(w1 − u0)− t2u1 + t1,

ṽ0 = u0 · (t3u1 − t2) + t0

2 r = res(ṽ, u), inv = inv1x + inv0 4M 4M

w2 = u0 · ṽ1, w3 = u1 · ṽ1,

inv1 = −ṽ1 , inv0 = ṽ0 − w3 ,

r = ṽ0 · inv0 + ṽ1 · w2

3 k′ ≡ (f + hv − v2)/u (mod u) = k′1x+ k′0: 2S, 3M S, 3M

k′4 = f6 + v3(h3 − v3), k
′
3 = f5 − t2v3 + h3v2 −

2k′4u1,

(2S, 2M) (3M)

k′2 = f4 − t1v3 + v2(h2 − v2) + h3v1 − 2k′3u1 −
k′4(w1 + 2u0),

k′1 = f3 − t0v3 − t1v2 + h2v1 + h3v0 − 2u1(k
′
2 +

k′4u0)− k′3(w1 + 2u0),

k′0 = f2 − t0v2 + v1(h1 − v1) + h2v0 − (k′1 +

2k′3u0)u1 − k′2(w1 + 2u0)− k′4u2
0

4 s′ = s′1x+ s′0 4M 4M

s′1 = ṽ0 · k′1 − ṽ1 · k′0, s′0 = w2 · k′1 + inv0 · k ′
0

√
Set r2 = r2. Check conditions to see if ŵ0 will

be 0 in Step 5 below; if it will, see Doubling

Special Cases: Table 3.4 or Table 3.5.

S S

(S, M)

5 Inversion, r−1, s0, s1, ũ
−1
2 I, S, 6M I, 7M

ŵ0 = s′1·(t3r+s′1)−k′4r2(= r2ũ2), ŵ1 = (r·ŵ0)
−1 (I, 6M)

ŵ2 = ŵ0 · ŵ1(=
1
r
), ŵ3 = r · r2 · ŵ1(=

1
eu2

)

s1 = ŵ2 · s′1, s0 = ŵ2 · s′0
6 u′ = x2 + u′1x+ u′0 S, 4M 5M

Continued on next page
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Table 3.3 – continued from previous page

Step Expression adapted reduced

u′1 = ŵ3 · (s1 · (−u1t3 + t2 + 2s0) + s0t3 − k′3) (5M)

u′0 = ŵ3 · (s1 · ṽ1 + s0 · (−u1t3 + t2 + s0)− k′2)
7 v′ = v′3x

3 + v′2x
2 + v′1x+ v′0 5M 5M

z0 = u′0 − u0, z1 = u′1 − u1,

w0 = z0 · s0, w1 = z1 · s1.

Adapted: t̃2 = −h2, t̃3 = −h3. Reduced: t̃2 =

v2 + y2, t̃3 = v3 + y3.

t = t̃2 − t̃3u′1 − w1.

Adapted: v′3 = v′2 = 0. Reduced: v′3 = y3 + h3,

v′2 = y2 + h2.

v′1 = (s0 + s1) · (z0 + z1) − w0 − w1 + u′1 · t +

t̃3u
′
0 − v1 + h1,

v′0 = w0 + u′0 · t− v0 + h0.

Total I, 6S, 26M I, 3S, 29M

(I, 4S, 28M) (I, 2S, 29M)

Note: for adapted basis, v3 = v2 = 0.

Table 3.4: Divisor Doubling Special Case: Adapted Basis

Doubling Special Case, Adapted Basis

Step Expression odd even
√

Set r2 = r2. Check s′21 − s′1h3r − f6r2 = 0. S S, M

5′ Inversion, r−1, s1, s0, ũ
−1
1 I, 5M I, 6M

ŵ0 = (2s′0 + (u1h3 − h2)r)s
′
1 − h3s

′
0r − k′3r2,

Continued on next page
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Table 3.4 – continued from previous page

Step Expression odd even

ŵ1 = (rŵ0)
−1, ŵ2 = ŵ0ŵ1(=

1
r
), ŵ3 = r2rŵ1(=

1
eu1

)

s1 = ŵ2s
′
1, s0 = ŵ2s

′
0

6′ u′ = x+ u′0 S, M 3M

u′0 = ŵ3(s1ṽ1 + s2
0 + (u1h3 − h2)s0 − k′2

7′ v′ = v′0 3M S, 4M

v′0 = (s0−u′0s1)(u
′
0(u1−u′0)−u0)+u

′
0(v1−h1 +

u′0(h2 − u′0h3)) + h1 − v0

Total I, 5S, 20M I, 5S, 25M

Table 3.5: Divisor Doubling Special Case: Reduced Basis

Doubling Special Case, Reduced Basis

Step Expression if s′1 = 0 s′1 =

−t3r
√

Set r2 = r2. Check s1 = 0 or −t3r. S S

5′ Inversion, r−1, s1, s0, ũ
−1
1 I, 4M I, 5M

ŵ0 = s1((−u1t3 + t2) · r + 2s′0) + s′0t3 − k′3r
ŵ1 = (r · ŵ0)

−1, ŵ2 = ŵ0 · ŵ1(=
1
r
), ŵ3 =

r2 · ŵ1(=
1

eu1
)

s0 = ŵ2 · s′0
6′ u′ = x+ u′0 2M 2M

u′0 = ŵ3 · (s1ṽ1 + s0 · (−u1t3 + t2 + s0)− k′2)
7′ v′ = v′3x

3 + v′2x
2 + v′1x+ v′0 S, 3M S, 3M

Continued on next page
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Table 3.5 – continued from previous page

Step Expression if s′1 = 0 s′1 =

−t3r
t̃i = yi + vi, i = 1, 2, 3

v′3 = y3 + h3, v
′
2 = y2 + h2, v

′
1 = y1 + h1,

v′0 = u′0 · (u′0 · (u′0t̃3− t̃2)+ t̃1)+ (u′0 · (u′0−u1)+

u0) · (s1u
′
0 − s0) + h0 − v0

Total I, 4S, 21M I, 4S, 22M

(I, 3S, 21M) (I, 3S, 22M)

The general explicit formulas can be used regardless of the field characteristic

and the choice of basis (i.e., adapted or reduced). However, in practice, we do not

follow the general formulas literally. Instead, assuming isomorphic transformations

as introduced in Section 3.3, we rewrite the explicit formulas with respect to different

bases and characteristics, so that they are efficient and ready to implement. The

results are presented in the following sections 3.6.2.3 and 3.6.2.4.

3.6.2.3 Doubling Formulas in Adapted Basis

Let [u, v] = [x2 + u1x+ u0, v1x+ v0] be a degree two divisor in adapted basis with

both points of the divisor not equal to their opposites.

We assume the isomorphic transformations in Section 3.3 apply so that the hy-

perelliptic curve is given in the short Weierstraß form, and count the number of

operations accordingly. The resulting explicit formulas are presented in Tables 3.6,

3.7 and 3.8. In Table 3.6, “Odd” and “Even” refer to the parity of the characteristic

of K.
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Table 3.6: Explicit Formulas for Doubling Divisor Classes

in Adapted Basis

Doubling, Adapted Basis, deg u = 2

Input [u, v], u = x2 + u1x+ u0, v = v1x+ v0

Output [u′, v′] = 2[u, v] := [u, v] + [u, v]

Step Expression # of Opera-

tions

1 ṽ = ṽ1x+ ṽ0, w1 = u2
1. S

Odd: ṽ1 = 2v1, ṽ0 = u0 + 2v0. Even: ṽ1 = w1 + u0 + h1, ṽ0 =

u0 · u1 + h0.

(S, M)

2 r = res(ṽ, u), inv = inv1x + inv0 4M

w2 = u0 · ṽ1, w3 = u1 · ṽ1

inv1 = −ṽ1 , inv0 = ṽ0 − w3

r = ṽ0 · inv0 + ṽ1 · w2

3 k′ ≡ (f + hv − v2)/u (mod u) = k′1x+ k′0: 2S, 3M

Odd: k′3 = −2u1, k
′
2 = f4 + 3w1 − 2u0, k

′
1 = f3 + 2(w1 + u0 −

k′2) · u1,

(2S, 2M)

k′0 = f2 − v2
1 − k′1 · u1 − (k′2 − 4u0) · (w1 + 2u0)− 9u2

0.

Even: k′2 = v1 +w1, k
′
1 = v0, k

′
0 = f2 + v1 · (v1 + h1 +w1) + v0 ·

u1 + w2
1 + u2

0

4 s′ = s′1x+ s′0 4M

s′1 = ṽ0 · k′1 − ṽ1 · k′0, s′0 = inv0 · k ′
0 + w2 · k ′

1

√
Set r2 = r2. S

Odd: if s′1 = ±r, see Table 3.7. (S, M)

Even: if s′1 · (s′1 + r) + r1 = 0, see Table 3.8

5 Inversion, r−1, s0, s1, ũ
−1
2 I, S, 6M

Continued on next page
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Table 3.6 – continued from previous page

Step Expression # of Opera-

tions

Odd: ŵ0 = s′21 − r2. Even: ŵ0 = s′1 · (s′1 + r) + f6r2. (I, 6M)

ŵ1 = (r · ŵ0)
−1,

ŵ2 = ŵ0 · ŵ1(=
1
r
), ŵ3 = r · r2 · ŵ1(=

1
eu2

),

s1 = ŵ2 · s′1, s0 = ŵ2 · s′0.
6 u′ = x2 + u′1x+ u′0 S, 4M

Odd: u′1 = 2ŵ3 · (u1 + s1 · s0), u
′
0 = ŵ3 · (−k′2 + s1 · ṽ1 + s2

0). (5M)

Even: u′1 = ŵ3 ·(s1 ·u1+s0), u
′
0 = ŵ3 ·(k′2+s1 · ṽ1+s0 ·(s0+u1)).

7 v′ = v′1x+ v′0 5M

z0 = u′0 − u0, z1 = u′1 − u1,

w0 = z0 · s0, w1 = z1 · s1.

Odd: v′1 = (z0 + z1) · (s0 + s1) − w0 − w1 − u′1 · w1 − v1, v
′
0 =

w0 − u′0 · w1 − v0.

Even: v′1 = (z0+z1)·(s0+s1)+w0+w1+u
′
1·(u′1+w1)+h1+v1+u

′
0,

v′0 = w0 + u′0 · (u′1 + w1) + h0 + v0.

Total I,6S,26M

(I, 4S, 28M)

Table 3.7: Divisor Doubling Special Case: Adapted Ba-

sis, Odd Characteristic

Doubling Special Case, Adapted Basis, Odd Characteristic

Step Expression # of Operations
√

r2 = r2. Check s′1 = ±r. S

Continued on next page
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Table 3.7 – continued from previous page

Step Expression # of Opera-

tions

5′ s = s1x+ s0 I, 5M

s1 = ±1, ŵ0 = 2(r·u1+s
′
0s1), ŵ1 = (r·ŵ0)

−1, ŵ2 = ŵ0·ŵ1(=
1
r
),

ŵ3 = r2 · ŵ1(= ũ−1
1 ), s0 = ŵ2 · s′0

6′ u′ = x+ u′0 S, M

u′0 = ŵ3 · (2v1s1 + s2
0 − k′2)

7′ v′ = v′0 3M

v′0 = (s0 − u′0s1) · (u′0 · (u1 − u′0)− u0) + u′0 · v1 − v0

Total I, 5S, 20M

Table 3.8: Divisor Doubling Special Case: Adapted Ba-

sis, Even Characteristic

Doubling Special Case, Adapted Basis, Even Characteristic

Step Expression # of Operations
√

r2 = r2. Check s′1 · (s′1 + r) + r2 = 0. S, M

5′ s = s1x+ s0 I, 6M

ŵ0 = u1 · s′1 + s′0, ŵ1 = (r · ŵ0)
−1, ŵ2 = ŵ0 · ŵ1(=

1
r
),

ŵ3 = r2 · ŵ1(= ũ−1
1 ), s1 = ŵ2 · s′1, s0 = ŵ2 · s′0

6′ u′ = x+ u′0 3M

u′0 = ŵ3 · (ṽ1 · s1 + (s0 + u1) · s0 + k′2)

7′ v′ = v′0 S, 4M

w = u′20 , v′0 = (s0 + u′0 · s1) · (u′0 · u1 +w + u0) + u′0 · (v1 + h1 +

w) + h0 + v0

Continued on next page
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Table 3.8 – continued from previous page

Step Expression # of Opera-

tions

Total I, 5S, 25M

3.6.2.4 Doubling Formulas in Reduced Basis

Let [u, v] = [x2+u1x+u0, v3x
3+v2x

2+v1x+v0] be a degree two divisor in reduced

basis with both points of the divisor not equal to their opposites.

Again, we assume the isomorphic transformations in Section 3.3 apply so that the

hyperelliptic curve is given in the short Weierstraß form, and count the number of

operations accordingly. The resulting explicit formulas are presented in Tables 3.9

and 3.10.

Table 3.9: Explicit Formulas for Doubling Divisor Classes

in Reduced Basis

Doubling, Reduced Basis, deg u = 2

Input [u, v], u = x2 + u1x+ u0, v = v3x
3 + v2x

2 + v1x+ v0

Output [u′, v′] = 2[u, v] := [u, v] + [u, v]

Step Expression # of Opera-

tions

1 ṽ = ṽ1x+ ṽ0 w1 = u2
1. S, M

Odd: ṽ1 = 2(w1 − u0 + v1), ṽ0 = 2(u0 · u1 + v0).

Even: ṽ1 = w1 + u0 + h1, ṽ0 = u0 · u1 + h0.

2 r = res(ṽ, u), inv = inv1x + inv0 4M

w2 = u0 · ṽ1, w3 = u1 · ṽ1,

Continued on next page
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Table 3.9 – continued from previous page

Step Expression # of Opera-

tions

inv1 = −ṽ1 , inv0 = ṽ0 − w3 ,

r = ṽ0 · inv0 + ṽ1 · w2 .

3 k′ ≡ (f + hv − v2)/u (mod u) = k′1x+ k′0: S,3M

Odd: k′2 = f4− 2v1, k
′
1 = f3− 2v0− 2u1 · k′2, k′0 = f2− v2

1 − k′1 ·
u1 − k′2 · (w1 + 2u0).

(3M)

Even: k′2 = h1v3 + v1, k
′
1 = h0v3 + v0, k

′
0 = v1 · (v1 + h1) + f2 +

k′1 · u1 + k′2 · w1.

4 s′ = s′1x+ s′0 4M

s′1 = ṽ0 · k′1 − ṽ1 · k′0, s′0 = w2 · k′1 + inv0 · k ′
0 .

√
If s′1 = 0 or s′1 = −t3r, see Table 3.10: Doubling Special Case.

5 Inversion, r−1, s0, s1, ũ
−1
2 I,S,7M

r2 = r2.

Odd: ŵ0 = s′1 · (2r + s′1). Even: ŵ0 = s′1 · (r + s′1).

ŵ1 = (r · ŵ0)
−1

ŵ2 = ŵ0 · ŵ1(=
1
r
), ŵ3 = r · r2 · ŵ1(=

1
eu2

),

s1 = ŵ2 · s′1, s0 = ŵ2 · s′0.
6 u′ = x2 + u′1x+ u′0 5M

Odd: u′1 = 2ŵ3 · (s1 · (−u1 + s0) + s0), u
′
0 = ŵ3 · (s1 · ṽ1 + s0 ·

(−2u1 + s0)− k′2).
Even: u′1 = ŵ3 ·(s1 ·u1+s0), u

′
0 = ŵ3 ·(s1 · ṽ1+s0 ·(u1+s0)+k

′
2).

7 v′ = v′3x
3 + v′2x

2 + v′1x+ v′0 5M

z0 = u′0 − u0, z1 = u′1 − u1,

w0 = z0 · s0, w1 = z1 · s1.

Odd: t = 2u′1 + w1, v
′
3 = 1, v′2 = 0, v′1 = (z0 + z1) · (s0 + s1) −

w0 − w1 − u′1 · t+ 2u′0 − v1, v
′
0 = w0 − u′0 · t− v0.

Continued on next page
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Table 3.9 – continued from previous page

Step Expression # of Opera-

tions

Even: t = u′1 + w1, v
′
3 = y3 + h3, v

′
2 = y2 + h2, v

′
1 = (z0 + z1) ·

(s0+s1)+w0 +w1+u′1 ·t+u′0+v1+h1, v
′
0 = w0 +u′0 ·t+v0+h0.

Total I,3S,29M

(I,2S,29M)

Table 3.10: Divisor Doubling Special Case: Reduced Ba-

sis

Doubling Special Case, Reduced Basis

Step Expression if s′1 = 0 s′1 =

−t3r
5′ Inversion, r−1, s1, s0, ũ

−1
1 I, S, 4M I, S, 5M

t3 = 2v3 − h3, t2 = 2v2 − h2

s1 = 0 or −t3r, ŵ0 = s1((−u1t3 + t2) · r+ 2s′0) +

s′0t3 − k′3r
ŵ1 = (r ·ŵ0)

−1, ŵ2 = ŵ0 ·ŵ1(=
1
r
), ŵ3 = r2 ·ŵ1(=

1
eu1

)

s0 = ŵ2 · s′0
6′ u′ = x+ u′0 2M 2M

u′0 = ŵ3 · (s1ṽ1 + s0 · (−u1t3 + s0)− k′2).
7′ v′ = v′3x

3 + v′2x
2 + v′1x+ v′0 S, 3M S, 3M

t̃i = yi + vi, i = 1, 2, 3

v′3 = y3 + h3, v
′
2 = 0, v′1 = y1 + h1,

Continued on next page
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Table 3.10 – continued from previous page

Step Expression if s′1 = 0 s′1 =

−t3r
v′0 = u′0 · (u′20 t̃3 + t̃1)+(u′0 · (u0−u1)+u0) · (s1u

′
0−

s0) + h0 − v0

Total I,4S,21M I,4S,22M

(I,3S,21M) (I, 3S, 22M)

Note: In Step 5′, let ŵ0 = t3s
′
0 if we are in the case s′1 = 0, and let ŵ0 = t23u1·r−t3s′0

if we are in the case s′1 = −t3r.
The correctness of the explicit doubling formulas were checked with the computer

algebra system MAGMA [53]. We generated test cases, and compared the result of

divisor doubling using the explicit formulas and that using MAGMA’s built-in generic

divisor addition algorithm. We checked that the output divisors were the same with

respect to the same input divisors. Note that the divisor representation [u, v] we

use in our explicit formulas corresponds to MAGMA’s divisor representation [u,−v].
This difference was considered in the test.

3.6.3 Summary of Results

The best known results for the imaginary case are found in [34]. Compared to

the imaginary case, the addition/doubling formulas for the real case require more

multiplications/squarings than the imaginary case. The baby step operation is the

cheapest among all operations, and there is no analogue for this operation in the

imaginary case. Table 3.11 summarizes the comparison .
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Table 3.11: Comparison of Operation Counts for Explicit

Formulas (Reduced Basis in Real Case)

Imaginary Real

odd even odd even

Baby Step none none I, 2S, 4M I, S, 5M 3

Addition I, 2S, 22M [34] I, 2S, 22M [34] I, 2S, 26M I, S, 27M

Doubling I, 5S, 22M [34] I, 5S, 22M [34] I, 3S, 29M I, 2S, 29M

Key exchange protocols using imaginary and real genus 2 curves have been imple-

mented over large prime fields with explicit formulas. The numerical results can be

found in [35]. From the results shown in Table 6 of [35], we conclude that although

a bit slower, the operation (field inversion, multiplication and doubling) counts of

the divisor addition and doubling formulas for real genus 2 curves are comparable to

that of the imaginary genus 2 curves. In certain scenarios of real hyperelliptic curve

cryptography, such as the case of “fixed distance” as described in Section 3 of [49],

some giant step operations (additions) can be replaced by computationally cheaper

baby step operations, under reasonable heuristics that predict the value change of

the distance functions involved in the baby step and the giant step (see Section 3

of [49]). With such potential efficiency introduced by the baby step operation, which

is unique for the real case, being considered, the use of real genus 2 hyperelliptic

curves in cryptography is promising.

3This result came from Professor Jacobson, in a private communication.



59

3.7 Future Work

I mention some future directions of this research as follows:

• Derivation of explicit formulas for real genus 2 hyperelliptic curves in projective

and mixed coordinates, with which finite field element inversions can be avoided.

Explicit formulas using these coordinates may further reduce computational

load by trading more expensive field inversions with cheaper field multiplications

and squarings.

• Implementation and standardization of cryptographic protocols using real genus

2 hyperelliptic curves. More suitable for small processor architectures, genus 2

curves have their advantage to attract commercial interests. For adoption of

cryptosystems using (imaginary or real) genus 2 curves, security, performance,

and implementation cost are all among industrial concerns. There are problems

like the bandwidth consumption (point compression techniques), generation of

suitable curve parameters, compatibility with other cryptographic components

(eg., cryptographic hash algorithms), and so on. Like the case of elliptic curves,

industrial and governmental acceptance of genus 2 curve based cryptosystems

will require a lot of effort. More careful and exhaustive research is needed to

justify their usefulness and adoptability.
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4. GENERATING SUITABLE PARAMETERS FOR

DISCRETE-LOG BASED CRYPTOGRAPHY WITH

POLYNOMIAL PARAMETERIZATION

In this chapter, we propose an improved method that uses polynomial parameter-

ization to find suitable parameters for generating cryptographically strong genus 2

curves via the complex multiplication (CM) method. The proposed method is more

efficient than the existing method in that it replaces the need for integer factorization

with factorization of polynomials with small integral coefficients, which can be done

as precomputation, and evaluation of polynomials. We also analyze the probability

of success of the proposed method, based on the Bateman-Horn philosophy.

4.1 Introduction

In order to use the Jacobian variety of a curve over a finite field for discrete loga-

rithm based cryptography, suitable parameters must be chosen. One such parameter

is the underlying finite field Fq over which the curve is defined. Another important

parameter is the cardinality N of the Fq-rational Jacobian of the curve. For many

implementations of discrete logarithm based cryptographic protocols, Fq is a prime

field, i.e., q is a prime number, and N is prime or “close to” a prime number, to resist

the Pohlig-Hellman attack [4] to the discrete logarithm problem.

The genus 2 “points counting” methods choose a random curve equation over a

finite field and compute the number of points on the Jacobian of the curve until one

that is good for cryptography is found. Examples of such methods are [54–56].

An alternative to point counting is to use the genus 2 Complex Multiplication

(CM) algorithm to construct curves with a given number of points on its Jacobian.
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Like the case of elliptic curve CM method, the genus 2 CM method is very efficient

provided that the class polynomials of the complex multiplication field are computed,

and that the finite field order q and the order of the Jacobian of the curve N are

suitably selected. The genus 2 CM method is a useful alternative, when the genus 2

point counting methods are still slow; and it is especially important for generating

pairing-friendly curves as we will see in Chapter 5. For a history of the genus 2 CM

method, the reader can refer to [57]. In brief, the algorithm works as follows: Let K

be a primitive quartic CM field (explained in 4.2).

1. Find a prime p such that ∃ω ∈ K with ωω̄ = p, and an integer N depending on

p and OK which will be the group order of the Jacobian of the genus 2 curve

having CM by OK . Such p and N can be identified by using a method in [58].

2. Compute the Igusa class polynomials Hi(x), i = 1, 2, 3 of K. This step can be

done using the methods described in [57–59] or [60].

3. Construct a curve C from the a set of roots of Hi(x) over Fp via the Mestre-

Cardona-Quer Algorithm [61,62], and check if the Jacobian of the curve has the

desired order until a suitable curve is found.

The algorithms described in the following section take as input a given primitive

quartic CM field K, and output good cryptographic parameters p and N for a curve

C so that C has CM by K and that #JacFp
(C ) = N .

4.2 Algorithms

Let K := Q(η), where

η =





i
√
a+ b

√
d if d ≡ 2, 3 (mod 4)

i
√
a+ b−1+

√
d

2
if d ≡ 1 (mod 4)

,

be a fixed primitive quartic CM field, where d > 0 is squarefree and Q(
√
d) has class

number 1. The condition that K is primitive is equivalent to ∆ > 0 is not a square,
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where ∆ = a2 − b2d, if d ≡ 2, 3 (mod 4), and ∆ = a2 − a · b − b2
(

d−1
4

)
, if d ≡ 1

(mod 4). We want to construct a genus 2 hyperelliptic curve C over a finite field Fp
1

of prime order such that End(JacFp
(C ))⊗Q = K , and N := #JacFp

(C ) is “almost

prime”, meaning that N is a product of a large prime number and a small cofactor.

If such a curve C is found, then there exists a element, called the Frobenius

element, π ∈ End(JacFp
(C )) that satisfies the condition |π| = √q, where |π| is the

usual absolute value of the complex number π.

Assume for simplicity that the Frobenius element π is in an order

O :=





Z +
√
dZ + ηZ + η

√
dZ if d ≡ 2, 3 (mod 4)

Z + −1+
√

d
2

Z + ηZ + η−1+
√

d
2

Z if d ≡ 1 (mod 4)
.

We first look at the case d ≡ 2, 3 (mod 4) and write π = c1 +c2
√
d+η(c3 +c4

√
d),

ci ∈ Z.

The relationship ππ̄ = p gives us

(c21 + c22d+ c23a+ c24ad+ 2c3c4bd) + (2c1c2 + 2c3c4a+ c23b+ c24bd)
√
d = p.

Since 1 and
√
d are linearly independent over Q we must have

c21 + c22d+ c23a+ c24ad+ 2c3c4bd = p (4.1)

2c1c2 + 2c3c4a+ c23b+ c24bd = 0 (4.2)

Let ᾱ and ασ denote the imaginary and real embeddings of K into K. The

characteristic polynomial of π is

h(x) = (x− π)(x− π̄)(x− πσ)(x− π̄σ)

= x4 − 4c1x
3 + (2p+ 4(c21 − c22d))x2 − 4c1px+ p2

The fact that #JacFq
(C ) = h(1 ) gives the condition

N = (p+ 1)2 − 4(p+ 1)c1 + 4(c21 − c22d). (4.3)

1In general, the Mestre’s algorithm generates a real model of the genus 2 curve: y2 = f(x),deg(f) =
6. This real model can be transformed to an isomorphic imaginary model if and only if f(x) has a
zero in Fp [58].
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We want N to be almost prime, i.e., N = c·r with r prime and c small (say, c < 2000).

We have p ∼ N
1

2 . Based on the discussions above, A. Weng (see [58]) gives a

probabilistic method of searching for parameters, which produces prime p and almost

prime N . In this method, factorization of big integers is used repeatedly in every step

of the search2, which makes the algorithm slow.

We give a more efficient algorithm which generates parameters for genus 2 cryp-

tography. The idea is to parameterize the coefficients ci’s as polynomials ci(x), then

generate “families of parameters” by factorizing quartic polynomials with small inte-

gral coefficients.

To this end, we try to find polynomials c1(x), c2(x), c3(x), c4(x) ∈ Q[x] satisfying

−2c1(x)c2(x) = 2c3(x)c4(x)a+c23(x)b+c
2
4(x)bd. Then we write p(x) = c21(x)+c

2
2(x)d+

c23(x)a+c24(x)ad+2c3(x)c4(x)bd and let x range through integer values of certain sizes

until the value p(x) is a prime number. Now we can use Equation (4.3) to compute

the cardinality of the Jacobian and check if it is almost prime.

The following lemma helps us avoid some bad choices of ci(x).

Lemma 12 Let c1(x), c2(x), c3(x), c4(x) be linear polynomials in Q[x] such that

2c1(x)c2(x) + 2c3(x)c4(x)a+ c23(x)b+ c24(x)bd = 0.

Then

p(x) = c21(x) + c22(x)d+ c23(x)a+ c24(x)ad+ 2c3(x)c4(x)bd

is reducible in Q[x].

Proof Let c1(x), c2(x), c3(x), c4(x) be linear polynomials in Q[x] such that 2c1(x)c2(x)+

2c3(x)c4(x)a+ c23(x)b+ c24(x)bd = 0. Then we have

−2c1(x)c2(x) = 2c3(x)c4(x)a+ c23(x)b+ c24(x)bd. (4.4)

Let α ∈ Q be a root of c1(x). Clearly,

0 = −2c1(α)c2(α) = bc23(α) + 2ac3(α)c4(α) + bdc24(α) = 0. (4.5)

2This method chooses random c3 and c4 in Equation (4.2), and factors 2c3c4a+ c2

3
b+ c4bd to obtain

possible choices of c1 and c2.
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Now we look at the quadratic equations

bX2 + 2aX + bd = 0 (4.6)

bdX2 + 2aX + b = 0. (4.7)

Both equations (4.6) and (4.7) have discriminant ∆ = (2a)2−4b(bd) = 4(a2−b2d) > 0,

which is not a square in Q by the assumption on a, b and d, namely, that K is

primitive. Therefore Equation (4.5) holds if and only if c3(α) = c4(α) = 0. Hence

c3(α) = c4(α) = 0. By Equation (4.5) we conclude that α is a zero of −2c1(x)c2(x)

with multiplicity 2. Since c1(x) and c2(x) are linear, we must have c2(α) = 0.

Therefore, the polynomial

p(x) = c21(x) + c22(x)d+ c23(x)a+ c24(x)ad+ 2c3(x)c4(x)bd

has α as a zero of multiplicity 2. So (x−α)2|p(x) in Q[x]. Obviously, p(x) is reducible.

Since we want p(x) to be prime for some values x ∈ Z, we expect p(x) to be

irreducible and have no fixed prime divisors. Here we say that a prime number p is

a fixed prime divisor of a polynomial f(x) with rational coefficients if p divides every

integer-valued f(n) for n ∈ Z. We also define the greatest fixed divisor GFD(f ) to be

the largest positive integer d such that d divides all integral values of f(n) for n ∈ Z.

We say that a polynomial f(x) with integral coefficients has the Bunyakovsky’s

property if f(x) has no fixed prime divisors. We need to check that the irreducible

p(x) has no fixed prime divisors, i.e., it satisfies Bunyakovsky’s property. This can be

easily checked by using Newton’s interpolation formula (see, e.g., [63], Section 2.2)

to write p(x) in terms of polynomials basis {x(x− 1)(x− 2) . . . (x− k + 1)/k!}k∈Z+ ,

then verifying that the coefficients are relatively prime [64].

Lemma 12 implies that we cannot choose linear polynomials c3(x) and c4(x) to

obtain such p(x). Therefore, we choose c3(x) and c4(x) to be quadratic polynomials

in the following algorithm3.

3Alternatively, we can choose one of c3(x) and c4(x) to be a quadratic polynomial and the other is
a linear polynomial or a constant. According to the discussion in Section 4.3, the performance of
the proposed algorithms will not be affected much with such alternatives.
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Algorithm 4 Parameter generator polynomials for K = Q(η), d ≡ 2, 3 (mod 4)

Input: Integers a, b, d with d > 0 squarefree, d ≡ 2, 3 (mod 4), a2 − b2d > 0 not a

square.

Output: Four quadratic polynomials c1(x), c2(x), c3(x), c4(x) and a quartic polyno-

mial p(x) are generated such that they satisfy the equations (4.1) and (4.2).

Polynomials N1(x) and N2(x) of degree 8 are generated as possible group orders.

1: repeat

2: repeat

3: Choose quadratic polynomials c3(x) and c4(x) in Z[x] with small coefficients

and gcd(c3(x), c4(x)) = 1.

4: Set n(x) = 2c3(x)c4(x)a+ c23(x)b+ c24(x)bd.

5: until deg n(x) = 4 and n(x) = c̃1(x) · c̃2(x), deg c̃1(x) = 2 = deg c̃2(x),

gcd(c̃1(x), c̃2(x)) = 1, n(x) and c̃1(x) have the same content.

6: Set c1(x) = −1
2
c̃1(x), c2(x) = c̃2(x).

7: Set p(x) = c21(x) + c22(x)d+ c23(x)a+ c24(x)ad+ 2c3(x)c4(x)bd.

8: until p(x) is irreducible and has no fixed prime divisor.

9: Set N1(x) = (p(x) + 1)2 − 4(p(x) + 1)c1(x) + 4(c21(x)− c22(x)d),
N2(x) = (p(x) + 1)2 + 4(p(x) + 1)c1(x) + 4(c21(x)− c22(x)d).

We have a similar result for the case d ≡ 1 (mod 4).

In this case, we write

π = c1 + c2
−1 +

√
d

2
+ η

(
c3 + c4

−1 +
√
d

2

)
, ci ∈ Z.

Again, ππ̄ = p gives
(
c21 +

(
d−1
4

)
c22 + ac23 + 2b

(
d−1
4

)
c3c4 + (a− b)

(
d−1
4

)
c24
)

+
(
2c1c2 − c22 + bc23 + 2(a− b)c3c4 +

(
b
(

d+3
4

)
− a
)
c24
) −1+

√
d

2
= p.

The linear independence of 1 and −1+
√

d
2

over Q implies the following two equations
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c21 +

(
d− 1

4

)
c22 + ac23 + 2b

(
d− 1

4

)
c3c4 + (a− b)

(
d− 1

4

)
c24 = p (4.8)

2c1c2 − c22 + bc23 + 2(a− b)c3c4 +

(
b

(
d+ 3

4

)
− a
)
c24 = 0 (4.9)

The corresponding cardinality of the Jacobian

N = (p+ 1)2 − (4c1 − 2c2)(p+ 1) + 4

(
c21 − c1c2 −

(
d− 1

4

)
c22

)
. (4.10)

The algorithm is given as follows.

Algorithm 5 Parameter generator polynomials for K = Q(η), d ≡ 1 (mod 4)

Input: Integers a, b, d with d > 0 squarefree, d ≡ 1 (mod 4), a2 − ab− b2
(

d−1
4

)
> 0

not a square.

Output: Four quadratic polynomials c1(x), c2(x), c3(x), c4(x) and a quartic polyno-

mial p(x) are generated such that they satisfy the equations (4.8) and (4.9).

Polynomials N1(x) and N2(x) of degree 8 are generated as possible group orders.

1: repeat

2: repeat

3: Choose quadratic polynomials c3(x) and c4(x) in Z[x] with small coefficients

and gcd(c3(x), c4(x)) = 1.

4: Set n(x) = 2c3(x)c4(x)a− c24(x)a+ c23(x)b− 2c3(x)c4(x)b+ c24(x)b(
d+3
4

).

5: until deg n(x) = 4 and n(x) = c̃1(x) · c̃2(x), deg c̃1(x) = 2 = deg c̃2(x),

gcd(c̃1(x), c̃2(x)) = 1, n(x) and c̃1(x) have the same content.

6: Set c2(x) = c̃2(x), c1(x) = 1
2
(−c̃1(x) + c2(x)).

7: Set p(x) = c21(x) + c22(x)
(

d−1
4

)
+ c23(x)a + c24(x)a

(
d−1
4

)
+ 2c3(x)c4(x)b

(
d−1
4

)
−

bc24(x)
(

d−1
4

)
.

8: until p(x) is irreducible and has no fixed prime divisor.

9: Set N1(x) = (p(x) + 1)2 − (p(x) + 1)(4c1(x) − 2c2(x)) +

4
(
c21(x)− c1(x)c2(x)− c22(x)

(
d−1
4

))
,

N2(x) = (p(x) + 1)2 + (p(x) + 1)(4c1(x) − 2c2(x)) +

4
(
c21(x)− c1(x)c2(x)− c22(x)

(
d−1
4

))
.
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The polynomials returned from Algorithms 4 and Algorithm 5 are candidates of

parameter generator polynomials. We then insert integer values of a suitable size into

them until p(x) is prime and N1(x) or N2(x) is almost prime. This process is written

formally in Algorithm 6 as follows.

Algorithm 6 Algorithm for generating parameters for HEC cryptography

Input: Polynomials c1(x), p(x), N1(x) and N2(x) generated by Algorithm 4 or Algo-

rithm 5; bit length, µ, of the desired size of the prime field over which the curve

is defined; maximum number of trials, M .

Output: Triples (p,N1, N2) for constructing hyperelliptic curves over Fp with CM

by K = Q(η) whose Jacobians have almost prime group orders N1 or N2 ∼ 22µ;

or “Not found”.

1: number of trial = 0.

2: repeat

3: Choose an integer x0 ∼ 2
µ
4 .

4: if c1(x0) is an integer then

5: p← p(x0).

6: if p is prime and 2µ−1 < p < 2µ, and either N1 ← N1(x0) or N2 ← N2(x0) is

almost prime then

7: Return (p,N1, N2).

8: end if

9: end if

10: number of trial← number of trial + 1.

11: until number of trial = M .

12: Return “Not found”.

In Step 6 of Algorithm 6, to test if Ni(i = 1, 2) is almost prime, we can find

the maximum factor hmax of Ni below a specified upper bound (i.e., 10, 000), and

perform a primality test for Ni/hmax. In this way, factorization for large integers can

be avoided in our method.
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We implemented Algorithms 4, 5 and 6 as well as the Weng’s method for gener-

ating (prime, group order) pairs (p,N) with respect to randomly chosen quartic CM

fields, specified by small parameters a, b, d, randomly chosen so that 0 < d ≤ 50 is

squarefree, Q(
√
d) has class number one, 0 < |a|, |b| ≤ 50, and ∆ > 0 is not a square.

Trial factorization of integers up to a fixed bound (10,000) is used for the old method.

1. 128-bit p: In the case d ≡ 2, 3 (mod 4), our method generates parameter pairs

(p,N) at an average rate of 2.1402 seconds per pair, while Weng’s algorithm

generates pairs at 7.7538 seconds per pair. In the case d ≡ 1 (mod 4), our

method generates parameter pairs at an average rate of 3.6423 seconds per

pair, and Weng’s method at 11.4407 seconds per pair.

2. 256-bit p: In the case d ≡ 2, 3 (mod 4), our method generates parameter

pairs at an average rate of 21.7344 seconds per pair, while Weng’s algorithm

generates pairs at 97.9592 seconds per pair. In the case d ≡ 1 (mod 4), our

method generates parameter pairs at an average rate of 41.0917 seconds per

pair, and Weng’s method at 108.5106 seconds per pair.

However, we notice that there are rare cases in which the algorithm fails to find

suitable parameters. We expect our method to perform much better on average as the

size of the prime p increases, if complete factorization of integers is used for Weng’s

method.

The implementation is performed in PARI/GP [65]. We include in Appendix A

some parameters found by the above algorithms.

4.3 Probability That p(x) is Prime and Ni(x) is Almost Prime

Although in practice we allow polynomials with rational coefficients, for simplicity

of the analysis of Algorithms 6 above, we choose ci(x) to be polynomials with integral

coefficients. We set N(x) to be one of N1(x) and N2(x). We also require that N(x)

be irreducible over Q. Experiment shows that if p(x) is irreducible then N(x) is also

irreducible with very high probability.
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We do not intend to provide an exhaustive analysis in this thesis. Rather, we give

some intuition about how often it happens that p(m) is prime and N(m) is almost

prime simultaneously for an integer m. Our argument is related to the Bateman-Horn

Conjecture [66,67] and its generalized version for the case of a single polynomial [64].

The Bateman-Horn Conjecture is a quantitative form of Hypothesis H of A.

Schinzel [68, 69]. It approximates the density of the positive integers at which a

given set of polynomials have simultaneous integer values. It is stated as follows.

Conjecture 1 (Bateman-Horn, [66]) Suppose f1, f2, . . . , fk are polynomials in one

variable with all coefficients integral and leading coefficients positive, their degree being

h1, h2, . . . , hk respectively. Suppose each fi is irreducible over Q and no two of them

differ by a constant factor (i.e., they are not associated). Let Q(f1, f2, . . . , fk;M)

denote the number of positive integers n between 1 and M inclusive such that f1(n),

f2(n), . . ., fk(n) are all primes (ignoring the finitely many values of n for which some

fi(n) is negative). Then we have

Q(f1, f2, . . . , fk;M) ∼ h−1C

∫ M

2

(log u)−k du,

where

C =
∏

p prime

(
1− 1

p

)−k (
1− W (p)

p

)
, h = h−1

1 h−1
2 . . . h−1

k ,

and W (p) is the number of solutions of the congruence

f1(x)f2(x) . . . fk(x) ≡ 0 (mod p).

For the case of one polynomial f , the Bateman-Horn Conjecture is generalized by

M. Adleman and A. Odlyzko to deal with the situation GFD(f) 6= 1. We summarize

it as follows.

Conjecture 2 (Adleman-Odlyzko, [64]) Suppose f(x) ∈ Z[x] is irreducible with

greatest fixed divisor d = GFD(f ) and has a positive leading coefficient. For a prime

p, let r = rp be the least nonnegative integer such that the values of f(m)d−1, when
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reduced modulo p, are periodic in m with period pr+1. (It can be shown that r ≤ deg(f)
p−1

.)

Let

W (pr+1) = #
{
m : 0 ≤ m < pr+1, f(m) ≡ 0 (mod p)

}
.

Let Q(f ;M) = # {m : 1 ≤ m ≤M, f(m)d−1 is a prime}. Then

Q(f ;M) ∼ M

h log(M)
C,

where h = deg(f) and

C =
∏

p prime

(
1− 1

p

)−1(
1− W (pr+1)

pr+1

)
.

Based on the above two conjectures, we conjecture, for analysis of our algorithm, as

follows.

Conjecture 3 Let p(x) ∈ Z[x] be irreducible with no fixed prime divisor and a pos-

itive leading coefficient. Let N(x) ∈ Z[x] be irreducible with greatest fixed divisor

d = GFD(N ) and a positive leading coefficient. Let f(x) = p(x) · d−1N(x) and

let r = rp be the least nonnegative integer such that the values of f(m), when re-

duced modulo a prime p, are periodic in m with period pr+1. We have the fact that

r ≤ deg(f)
p−1

[64]. Let

W (pr+1) = #
{
m : 0 ≤ m < pr+1, f(m) ≡ 0 (mod p)

}
.

Let Q(p,N ;M) = # {m : 1 ≤ m ≤M, p(m) and d−1N(m) are both prime}. Then

Q(p,N ;M) ∼ h−1C

∫ M

2

(log u)−2 du, (4.11)

where h = deg(p) deg(N) and

C =
∏

p prime

(
1− 1

p

)−2(
1− W (pr+1)

pr+1

)
.

Example 1. Let p(x) = x2 + 1 and N(x) = x2 + x + 2 with d = GFD(N ) = 2 .

We consider the number of prime pairs (p(m), d−1N(m)) for 222 ≤ m ≤ 223. We
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have h = 4, C ≈ 2.6741 and

∫ 223

222

log(u)−2 du ≈ 17165. Thus the estimated value

of Q1 := Q(p,N ; 223) − Q(p,N ; 222) is approximated 11475. On the other hand, an

explicit counting shows that Q1 = 11844.

Conjecture 3 suggests a lower bound for the number of pairs (p(m), N(m)) with

p(m) prime and N(m) almost prime. And it must be noted that this lower bound

does not work well for the case of polynomials p(x) and N(x) obtained in Algorithm 4

and 5, because N(m) is always divisible by 4 when p(m) is odd, in particular, prime,

and this will lead to C = 0. But N(m) is odd when p(m) is even. However, in this

situation, it seems natural to consider pairs of primes of the form (p(m), d−1N(x)/4).

We claim that an estimate in the form of (4.11) still holds, but the computation of the

constant C needs to be modified accordingly, by considering the case p = 2 separately.

We will show a way to do this in the following example.

Example 2. Let p(x) = x2+1 and N(x) = (p(x)+1)2+4(p(x)+1)+8 = x4+8x2+20.

Then neither p(x) nor N(x) have a fixed prime divisor and N(m) has 4 as a divisor

if p(m) is odd. Let f(x) = p(x) · N(x) and W (p) be the number of solutions for

the equation f(m) ≡ 0 (mod p). If we let Q(M) be the number of prime pairs

(p(m), N(m)/4) for 1 ≤ m ≤M , then we claim that Q(M) can be estimated as

Q(M) ∼ h−1C

∫ M

2

(log u)−2 du, (4.12)

where h = 2 · 4 = 8 and

C = C2 ·
∏

p≥3 prime

(
1− 1

p

)−2(
1− W (p)

p

)
≈ C2 · 2.3775,
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where C2 is computed, based on the philosophy of Bateman-Horn, as

C2 =
Prob {N(m)/4 ∈ Z and both p(m) and N(m)/4 are not divisible by 2}

Prob {two random numbers are not divisible by 2}

=
Prob {p(m) is odd} · Prob {N(m)/4 is odd | p(m) is odd}

(1− 1/2)2

= 4 · Prob {m is even}Prob {N(m)/4 is odd | m is even}

= 4 · 1
2
· 1 = 2.

Therefore, we have Q := Q(223)−Q(222) ≈ 10202 by (4.12). A direct counting gives

Q = 10483, close to the estimate.

We want to keep the degrees of p(x) and N(x) as small as possible so that the

probability of obtaining suitable parameters of a fixed size is as high as possible, as

indicated by the above heuristic. Our algorithms produce p(x) of degree 4 and Ni(x)

of degree 8.

Note that c3(x) and c4(x) can also be chosen in such a way that one is a linear

polynomial and the other is a quadratic polynomial. In this case, the resulting p(x)

and Ni(x) are still of degree 4 and 8, respectively. Therefore the probability of getting

suitable pairs (p(m), N(m)) should not differ significantly.

4.4 Conclusion and Further Discussion

We present in this chapter a method of generating cryptographically strong pa-

rameters for constructing genus 2 hyperelliptic curves. The method shows an improve-

ment over the existing method by using polynomial parameterization. It efficiently

generates parameters p and N approximately of a certain size by choosing a suitable

sized x0 in Algorithm 6. However, if an exact size (of p or N) is specified by the

practical requirement, the value of x0 should be chosen more carefully.

Future research directions include improvement of the algorithms so that they

can effectively output parameters of exact lengths, and more efficient implementa-

tion. Although it seems hard to prove the conjectures like Bateman-Horn, general-
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izing Conjecture 3 so that it works for multiple polynomials that do not have the

Bunyakovsky’s property is another topic of research.

Generating pairing-friendly parameters is another direction of research. We shall

discuss this extension in the chapter that immediately follows.
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5. GENERATING PARAMETERS FOR

PAIRING-FRIENDLY GENUS 2 CURVES OVER PRIME

FIELDS

We present two contributions in this chapter.

First, we give a quantitative analysis of the scarcity of pairing-friendly genus 2

curves, assuming the Riemann Hypothesis. This result shows an improvement relative

to prior work [70], which does a heuristic estimation of the density of pairing-friendly

genus 2 curves.

Second, we present a method for generating pairing-friendly parameters for which

ρ ≈ 81 This method applies the idea of [71] to a setting given in terms of coefficients

of the Frobenius element. It is easy to understand and implement.

5.1 Introduction

For a (multiplicatively written) cyclic group G of order q, with a generator g ∈ G,

the Decision Diffie-Hellman Problem is the following problem: Given ga and gb for

randomly-chosen a, b ∈ {0, . . . , q − 1}, and h ∈ G, determine if c = gab; and the

Computational Diffie-Hellman Problem is the following problem: Given ga and gb for

randomly-chosen a, b ∈ {0, . . . , q − 1}, compute gab.

Many cryptographic algorithms and protocols make use of “bilinear maps”, with

which there are groups in which the Decision Diffie-Hellman Problem is easy and the

Computational Diffie-Hellman Problem is hard [72]. Such maps have application in

identity-based encryption [73], aggregate signatures [72], short signatures [74], tripar-

tite key agreement protocols [75], non-interactive key distribution protocols [76], and

1The definition of ρ can be found in Section 5.4.
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so on. Pairings for elliptic curves and Jacobian varieties of hyperelliptic curves provide

efficient implementation of such bilinear maps, which are suitable for cryptography.

In addition to the requirements that must be satisfied for discrete-log based cryp-

tography, pairing-based cryptography poses further restrictions on the curves — for

many applications, a low “embedding degree” is desired. The low density of pairing-

friendly curves among cryptographically strong ones makes it extremely hard to find

suitable curves for pairing-based crypto via point counting. This indicates that the

CM method is probably the only suitable method for finding pairing-friendly genus 2

curves nowadays. For the pairing-friendly setting, a bound on the desired embedding

degree is an additional input to the CM algorithm.

5.2 Weil and Tate-Lichtenbaum Pairings

For an abelian variety A over a finite field F and an integer r coprime to the

characteristic of F , a Weil pairing is a nondegenerate, skew-symmetric bilinear map

eW
r : A(F̄ )[r]×A(F̄ )[r]→ µr(F̄ ),

where F̄ is an algebraic closure of F and µr(F̄ ) is the group of rth roots of unity in

F̄ ; a Tate-Lichtenbaum pairing is a nondegenerate bilinear map

eTL
r : A(F )[r]×A(F )/rA(F )→ F ∗/(F ∗)r.

F ∗/(F ∗)r is isomorphic to µr(F̄ ) if and only if µr(F̄ ) ⊆ F . In many pairing-based

cryptographic applications, we want the target group of a pairing map to have an

element of order r, so we need to work over a field containing the rth roots of unity.

Definition 13 (Embedding degree) Let A be an abelian variety over a finite field

F = Fq. Let r be an integer coprime to q which divides #A(F ). The field F (µr(F̄ ))

is a finite extension Fqk of F . The number k is called the embedding degree of A
with respect to r, and it is the smallest integer such that r|qk − 1.



77

We also call the embedding degree of the Jacobian of a nonsingular projective

curve C the “embedding degree of the curve C.”

In many settings relevant to pairing-based cryptography, we need an abelian va-

riety A with #A almost prime, i.e., #A = h · r, where h is a small positive integer

and r is a prime number; and the embedding degree k of A with respect to r is not

too large.

Definition 14 (Pairing-friendly abelian variety) Let H and K be positive inte-

gers. Let A be an abelian variety over a finite field Fq. We say A is pairing-friendly

with respect to parameters H and K if #A = h · r for some positive integer

h ≤ H and a prime number r, and the embedding degree k of A with respect to r is

no larger than K.

By convention, we call an abelian variety “pairing-friendly” if H and K are

“small”. We also say a nonsingular projective curve C is “pairing-friendly” if C

has a pairing-friendly Jacobian.

5.3 Pairing-friendly Genus 2 Curves Are Rare

In this section, we shall show (assuming the Riemann Hypothesis) that there are

very few pairing-friendly genus 2 hyperelliptic curves among all genus 2 hyperelliptic

curves over prime fields whose Jacobians have almost prime orders. A similar result

for elliptic curves is proved in [77].

Let p be an odd prime number, and let log(·) denote the natural logarithm.

The main result of this section is Theorem 18. Before proving it, we first introduce

several lemmas.

Lemma 15 Let M and c be positive constants with c < 4. For a fixed positive

integer a, let Sa,c,M denote the set of pairs of primes (x, y) such that M
2
≤ x ≤M and
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|x2 − a · y| ≤ c · x3/2. If the Riemann Hypothesis (R.H.) holds, then for large enough

M , we have

|Sa,c,M | ≥
1

15
· c
a
· M5/2

(logM)2
.

Proof Let π(x) be number of primes in the interval [1, x]. Let N = π(M) − π(M
2

)

be the number of primes in (M/2,M ]. The Prime Number Theorem (P.N.T.) implies

N > 1
3
· M

log M
for M large enough.

Now let p be a prime number in (M/2,M ]. We look at the number of primes y

such that |p2 − a · y| ≤ c · p3/2, i.e., 1
a

(
p2 − c · p3/2

)
≤ y ≤ 1

a

(
p2 + c · p3/2

)
. Denote

this number by Np. By a theorem of von Koch (see [78], Theorem 8.3.3), if the R.H.

is true,

π(x) = li(x) +O(
√
x log x),

where li(x) =
∫ x

2
dt/ log t. Moreover, by a result of L. Schoenfeld (see [79], Corollary

1), if R.H. is true, there exists an effectively computable positive constant c1 such

that |π(x) − li(x)| < c1 ·
√
x log x, when x ≥ 2657. According to this result, when p

is large, we have

Np ≥ π

(
1

a

(
p2 + c · p3/2

))
− π

(
1

a

(
p2 − c · p3/2

))

> li

(
1

a

(
p2 + c · p3/2

))
− li

(
1

a

(
p2 − c · p3/2

))

−1

a
· c1(p2 + c · p3/2)1/2 log

(
p2 + c · p3/2

)

−1

a
· c1
(
p2 − c · p3/2

)1/2
log
(
p2 − c · p3/2

)

>

∫ 1

a(p2+c·p3/2)

1

a(p2−c·p3/2)

dt

log t
− 1

a
· 2c1

(
p2 + c · p3/2

)1/2
log
(
p2 + c · p3/2

)

>
1

log
(

1
a
· (M2 + c ·M3/2)

) · 1
a

(
2c

(
M

2

)3/2
)
− 1

a
· 2c1

(
2M2

)1/2
log
(
2M2

)

>
1

log (2M2)− log a
· c

a
√

2
M3/2 − 1

a
· 8c1M logM

>
1

a

(
cM3/2

4 logM
− 8c1(M logM)

)

>
1

5
· c
a
· M

3/2

logM
.
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Note that the inequality above is independent of the value p. Summing over all

suitable primes p, we obtain

|Sa,c,M | =
∑

M
2
≤p≤M

p prime

Np ≥
1

5
· c
a
· M

3/2

logM
· 1
3
· M

logM
=

1

15
· c
a
· M

5

2

(logM)2

for large enough M .

Lemma 16 Let M and K be positive constants. For a fixed positive integer a, let

Ta,M,K denote the set of pairs of primes (x, y) such that M
2
≤ x ≤M , |x2−a·y| ≤ 5x3/2

and y|xk − 1 for some k ≤ K. Then |Ta,M,K | < 45
8
M3/2(K + 1)2 log(53/2M).

Proof For every nonzero integer h with |h| ≤ 5M3/2, let B(e)
h be the set of primes

y such that y|hk/2 − 1 for some even integer k with 0 < k ≤ K. Since hk/2 − 1 has

fewer than log(|h|k/2) distinct prime divisors, we have

|B(e)
h | <

K∑

k=2
k even

k

2
log |h| ≤ 1

2

(
K

2

)(
K

2
+ 1

)
log |h|

≤ 1

2

(
K

2

)(
K

2
+ 1

)
(3/2) log(53/2M)

≤ 3

16
K(K + 2) log(53/2M).

Now for the same h, let B(o)
h denote the set of primes y such that y|hk−1 for some

odd integer k with 0 < k ≤ K. Since hk − 1 has fewer than log(|h|k) distinct prime

divisors,

|B(o)
h | <

K∑

k=1
k odd

k log |h| ≤ ⌈
K
2
⌉(K + 1)

2
log |h|

≤ 1

4
(K + 1)2 (3/2) log

(
53/2M

)

=
3

8
(K + 1)2 log

(
53/2M

)
.
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Let Bh be the set of pairs of primes (x, y) such that x2 − a · y = h. When k is

even, we have

hk/2 =
(
x2 − a · y

)k/2
= xk + y · (polynomial in x and y);

thus y|hk/2 − 1 is equivalent to y|xk − 1. Similarly, when k is odd, y|xk − 1 implies

y|x2k − 1, which again implies y|hk − 1. Therefore, we must have

|Bh| ≤ |B(e)
h |+ |B

(o)
h |

≤ 3

16
K(K + 2) log

(
53/2M

)
+

3

8
(K + 1)2 log

(
53/2M

)

<
9

16
(K + 1)2 log(53/2M).

Summing over all such integer h and note that M
2
≤ x ≤M , we have

|Ta,M,K | ≤
∑

0<|h|≤5M3/2

|Bh| <
45

8
M3/2(K + 1)2 log(53/2M).

Lemma 17 Let S̃H,c,M denote the set of pairs of primes (x, y) such that M
2
≤ x ≤M

and |x2 − a · y| ≤ c · x3/2 for some a ∈ Z, 1 ≤ a ≤ H. Let T̃H,M,K denote the set of

pairs of primes (x, y) such that M
2
≤ x ≤ M , |x2 − a · y| ≤ 5x3/2 for some a ∈ Z,

1 ≤ a ≤ H, and y|xk − 1 for some k ≤ K. If the R.H. holds, then for large M ,

T̃H,M,K

S̃H,c,M

< c′
H · (K + 1)2(logM)3

c ·M

for an effectively computable positive constant c′. A possible choice of such a constant

is c′ = 90 .

Proof Let a be an integer such that 1 ≤ a ≤ H. By Lemma 15 and Lemma 16, we

have

Ta,M,K

Sa,c,M

<
45
8
M3/2(K + 1)2 log(53/2M)

1
15
· c

a
· M

5
2

(log M)2

< 90 · a · (K + 1)2(logM)3

c ·M
< 90 · H · (K + 1)2(logM)3

c ·M
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for M large enough. Note that T̃H,M,K =
∑

1≤a≤H

Ta,M,K and S̃H,c,M =
∑

1≤a≤H

Sa,c,M .

Hence we have
T̃H,M,K

S̃H,c,M

< 90 · H · (K + 1)2(logM)3

c ·M
for large M .

According to a result of D. Jao et al. [80], the discrete logarithm problem has the

same difficulty for all elliptic curves over a given finite field with the same order. With

this, it is reasonable to conjecture that the same result holds for genus 2 curves, i.e.,

the discrete logarithm problem has the same difficulty for all genus 2 hyperelliptic

curves C over given a finite field Fq such that #JacFq(C) is the same. From this

cryptographic point of view, in the following theorem, we treat all genus 2 curves C

over a given prime field Fp as the same curve, if all JacFq(C) have the same cardinality.

Theorem 18 Assume the Riemann Hypothesis. Let H and K be positive constants.

Let (p, C) be a randomly (w.r.t. uniform distribution) chosen pair in which p is a

prime in the interval [M
2
,M ] and C is a genus 2 hyperelliptic curve defined over Fp

such that #JacFp
(C ) = h · r with 1 ≤ h ≤ H and r prime. For M large enough, the

probability that C is pairing-friendly with respect to parameters H and K is less than

c′′
H · (K + 1)2(logM)3

M

for an effectively computable positive constant c′′.

Proof The Riemann Hypothesis for abelian varieties over finite fields, proved by A.

Weil in [42], implies the Hasse-Weil bound for genus 2 curves, i.e.,

#JacFp(C) ∈
[
(
√
p− 1)4, (

√
p+ 1)4

]
.

For p large enough, we have #JacFp(C) ∈
[
p2 − 5p3/2, p2 + 5p3/2

]
.

Let c = 1
9
. By Proposition 2.4 of [81], almost all integers z ∈

[
p2 − cp3/2, p2 + cp3/2

]

can be assumed as the cardinality of the Jacobian of a genus 2 hyperelliptic curve

(given by a quintic or sextic polynomial) over Fp.
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The conclusion then follows from Lemma 17. Note that we can choose c′′ = 10c′,

where c′ is the constant from Lemma 17.

Theorem 18 says there are very few pairing-friendly genus 2 hyperelliptic curves

with respect to parameters H and K much smaller than p.

5.4 Algorithms for Generating Pairing-friendly Genus 2 Curves over Prime

Fields

Let k be a desired embedding degree. Let C be a genus 2 hyperelliptic curve

defined over a finite field Fp whose Jacobian over Fp has a subgroup of order r such

that JacFp
(C ) has embedding degree k with respect to r. The ratio of the bit length

of #JacFp
(C ) to the bit length of r is a good measure of efficiency in pairing-based

cryptography. If we define

ρ = 2 log(p)/ log(r),

then this value is a good approximation of the above ratio. In many cryptographic

applications, we prefer this value to be close to 1.

In [71], a method to generate genus 2 curves with ordinary Jacobians over prime

fields with low embedding degrees is proposed. An important part of this method is

a parameterization of the CM field. The method generates curves with value ρ ≈ 8.

We propose another way of generating good parameters, without parameterizing the

CM field, which gives a similar ρ value.

We continue to use the same notation and assumptions as in Chapter 4. Again

we let K := Q(η) be the fixed quartic CM field and want to construct a genus 2

hyperelliptic curve C over a prime field Fp such that JacFp
(C ) has CM by K, and

such that JacFp
(C ) has a subgroup of prime order r and JacFp

(C ) has a prescribed

embedding degree k with respect to r. For cryptographic applications, we also need

p and r to be large. We will present the algorithm for the case d ≡ 2, 3 (mod 4) in

this thesis. The case d ≡ 1 (mod 4) can be treated similarly.



83

In the case d ≡ 2, 3 (mod 4), such a curve can be constructed if we can find a

simultaneous integral solution (c1, c2, c3, c4, p, r), in which p and r are large prime

numbers, to the following system of equations:

c21 + c22d+ c23a+ c24ad+ 2c3c4bd = p (5.1)

2c1c2 + 2c3c4a+ c23b+ c24bd = 0 (5.2)

(p+ 1)2 − 4c1(p+ 1) + 4(c21 − dc22) ≡ 0 (mod r) (5.3)

Φk(p) ≡ 0 (mod r). (5.4)

Here a, b, d and k are fixed, and Φk(x) is the kth cyclotomic polynomial. Equations

(5.1) and (5.2) mean that the prime p corresponds to a good Weil number, as in

Chapter 4. Equation (5.3) makes sure that the Jacobian has a subgroup of prime

order r. Equation (5.4) guarantees that the Jacobian of the curve has an embedding

degree with respect to r at most k.
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Algorithm 7 Generating pairing parameters for K = Q(η), d ≡ 2, 3 (mod 4)

Input: Integers a, b, d with d > 0 squarefree, d ≡ 2, 3 (mod 4), a2 − b2d > 0 not

a square; a prescribed embedding degree k; a bit size n of the desired subgroup

order; maximum numbers of trials, M1 and M2.

Output: Integers c1, c2, c3, c4, prime numbers p and r, where r has n bits, satisfying

Equations (5.1), (5.2), (5.3), (5.4); or “Not found.”

1: Let c1 = ±1.

2: repeat

3: Choose a prime number r of n bits such that r ≡ 1 (mod k).

4: With c1 fixed as above, try to solve the system of equations given by (5.1), (5.2),

(5.3), (5.4) over the finite field Fr for a simultaneous solution (c̄2, c̄3, c̄4, p̄).

5: if Such a solution exists then

6: repeat

7: Choose lifts c3 and c4 of c̄3 and c̄4 to Z such that f := bc23 + 2ac3c4 + bdc24

is even. Set c2 = −c1f/2.

8: Let p = ac23 + 2bdc3c4 + 2adc24 + 1 + dc22.

9: if p is prime then

10: Return (c1, c2, c3, c4, p, r).

11: end if

12: until Lines 7 through 11 have been tried M2 times.

13: end if

14: until M1 primes r have been tried.

15: Return “Not found.”

Theorem 19 If (c1, c2, c3, c4, p, r) is returned by Algorithm 7, then it provides a so-

lution to the system of equations (5.1), (5.2), (5.3), (5.4).

Proof It is clear that if (c1, c2, c3, c4, p, r) is returned, then Equations (5.3) and (5.4)

are automatically satisfied. Equations (5.1) and (5.2) are satisfied by the construc-

tions in Step 7 and 8. Step 9 ensures that p is prime.
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Depending on p andOK , there are 2 or 4 possibilities for the group order #JacFq
(C )

[57,58]. However, we are only interested in the curve C whose Jacobian has an exact

group order given by

N = (p+ 1)2 − 4c1(p+ 1) + 4(c21 − dc22).

Algorithm 7 is difficult to analyze because we do not know how likely a solution

is found in Step 4. However, experimental result shows that the algorithm returns

valid parameters with high probability.

Example 3. In the case of a = 2, b = −1, d = 2, some suitable pairing parameters

are found as in Appendix B.1, where r are 160, 256, 512 and 1024 bits, respectively.

The computations were performed by the computer algebra system MAGMA [53].

Note that this is the case that K = Q[i
√

2−
√

2] 6= Q(ξ5) is Galois, so there are only

two possibilities for the group order #JacFp
(C ) [58], namely,

N1 = (p+ 1)2 − 4c1(p+ 1) + 4(c21 − dc22),

which corresponds to the curve we need, or

N2 = 2(p+ 1)2 + 8(c21 − c22d)−N1,

which corresponds to a quadratic twist of the desired curve.

5.5 Generating Pairing Parameters with Polynomial Parameterization

The parameter c1 produced by Algorithm 7 is always ±1 and the size of c2 dom-

inates that of c1, c3 and c4. In fact, this is not necessary. We can modify the search

method with the idea of polynomial parameterization and produce pairing parameters

with c1, c2, c3 and c4 are roughly of the same size. The algorithm is given as follows.
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Algorithm 8 Generating pairing parameters for K = Q(η), d ≡ 2, 3 (mod 4) with

polynomial parameterization

Input: Integers a, b, d with d > 0 squarefree, d ≡ 2, 3 (mod 4), a2 − b2d > 0 not

a square; a prescribed embedding degree k; a bit size n of the desired subgroup

order; maximum numbers of trials, M1 and M2.

Output: Integers c1, c2, c3, c4, prime numbers p and r, where r has n bits, satisfying

Equations (5.1), (5.2), (5.3), (5.4); or “Not found.”

1: Choose degree 2 bivariate polynomials C3(x, y) and C4(x, y) ∈ Z[x, y] such that

there is a factorization in Z[x, y]

bC2
3 + 2aC3C4 + bdC2

4 = U · V,

where U and V are bivariate polynomials of degree 2. Let C1(x, y) = U(x, y) and

C2(x, y) = −1
2
V (x, y).

2: repeat

3: Choose a prime number r of n bits such that r ≡ 1 (mod k).

4: Try to solve the system of equations given by (5.2), (5.3), (5.4), with ci replaced

by Ci(x, y), i = 1, 2, 3, 4, over the finite field Fr for a simultaneous solution

(x̄, ȳ, p̄).

5: if Such a solution exists then

6: repeat

7: Choose lifts x and y of x̄ and ȳ to Z such that ci := Ci(x, y), i = 1, 2, 3, 4

are all integers. Let p = ac23 + 2bdc3c4 + 2adc24 + c21 + dc22.

8: if p is prime then

9: Return (c1, c2, c3, c4, p, r).

10: end if

11: until Lines 7 through 10 have been tried M2 times.

12: end if

13: until M1 primes r have been tried.

14: Return “Not found.”
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Similarly, we have

Theorem 20 If (c1, c2, c3, c4, p, r) is returned by Algorithm 8, then it provides a so-

lution to the system of equations (5.1), (5.2), (5.3), (5.4).

In Algorithm 8, it is clear that we need gcd(C1, C2, C3, C4) = 1 ∈ Z[x, y] so that

a prime p can be found.

Example 3. Let C3(x, y) = C4(x, y) = xy, C1(x, y) = x2 and C2(x, y) = −(a +

b(1 + d)/2)y2. Then they satisfy bC2
3 + 2aC3C4 + bdC2

4 + 2C1C2 = 0. Using these

polynomials in the above algorithm, we have found for K = Q(i
√

2−
√

2) (i.e.,

a = 2, b = −1, d = 2) parameters in which r are 160, 256, 512 and 1024 bits,

respectively. These parameters are presented in Appendix B.2.

Since x and y are roughly of the size of r, the value of p obtained by this method

is ≈ r4. It is thus a natural thought that if we parameterize the polynomials Ci(x, y)

with degree 1 polynomials in Z[x, y], then the size of p may be reduced to ≈ r2. The

following proposition shows that such parameterizations will not succeed.

Proposition 21 Let a, b, d be integers such that d is squarefree and a2 − b2d > 0 is

not a square. Let f(X,Y ) = bX2+2aXY +bdY 2 be a bivariate polynomial in Q[X,Y ].

Let F,G be polynomials of total degree 1 in Q[X1, X2, . . . , Xn] such that F and G are

not associated with one another. Then f(F,G) is irreducible in Q[X1, X2, . . . , Xn].

Proof First we note that b 6= 0, as indicated by the condition that a2 − b2d > 0 is

not a square. Let D = a2− b2d. Let α = −a/b+
√
D/b and β = −a/b−

√
D/b. Then

f(X,Y ) can be factored over Q̄ as

f(X,Y ) = bX2 + 2aXY + bdY 2 = b(X − αY )(X − βY ),

where Q̄ is an algebraic closure of Q.
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Let F and G be polynomials of total degree 1 in Q[X1, X2, . . . , Xn]. Write

F (X1, X2, . . . , Xn) =
n∑

i=1

fiXi + f0,

G(X1, X2, . . . , Xn) =
n∑

i=1

giXi + g0,

where fi, gi ∈ Q. Suppose f(F,G) is reducible in Q[X1, X2, . . . , Xn]. Then we can

write

f(F,G) = bH1 ·H2,

where Hj =
∑n

i=1 h
(j)
i Xi + h

(j)
0 ∈ Q[X1, X2, . . . , Xn], j = 1, 2, both of total degree 1.

Now we have

b(F − αG)(F − βG) = f(F,G) = bH1 ·H2.

Note that Q(
√
D)[X1, X2, . . . , Xn] is a uniform factorization domain. Because F−αG,

F −βG, H1 and H2 are of degree 1, they are irreducible. without of loss of generality,

we may assume

F − αG = γH1, (5.5)

for some γ ∈ Q(
√
D)×. We can write γ = s + t

√
D with s, t ∈ Q and t 6= 0. Here

we require t 6= 0 as the polynomial on the left hand side of Equation (5.5) is in

Q(
√
D)[X1, X2, . . . , Xn]\Q[X1, X2, . . . , Xn].

Equation (5.5) gives

F − (−a/b+
√
D/b)G = (s+ t

√
D)H1. (5.6)

Equating the coefficients of Xi and the constant terms on both sides of the above

equation, we obtain

fi + (a/b)gi + (gi/b)
√
D = s · h(1)

i + t · h(1)
i

√
D, 0 ≤ i ≤ n. (5.7)
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This in turn gives

fi + (a/b)gi = s · h(1)
i , (5.8)

gi/b = t · h(1)
i . (5.9)

If gi = 0 for some i, we must have h
(1)
i = 0 by (5.9), which again implies fi = 0 by

(5.8). Otherwise, if gi 6= 0, we can divide both sides of (5.8) and (5.9) to obtain

b(fi/gi) = s/t,

thus

fi/gi = s/(b · t). (5.10)

Therefore, for all 0 ≤ i ≤ n, we have fi = c·gi, where the constant c = s/(b·t) ∈ Q.

Hence F = c ·G, i.e., F and G are associated.

An alternative way of polynomial parameterization in Step 1 of Algorithm 8 is to

use degree 1 and degree 2 polynomials for C3(x, y) and C4(x, y). This will produce

different kinds of ci’s, but the resulting ρ value is still approximately 8 in general.

The on-going research is aiming at reducing further the value of ρ. Our next goal is

to find an efficient algorithm that produces a ρ value close to 4 for the CM method.

Our ultimate goal is to find an efficient method that gives genus 2 curves over large

prime fields with ρ ≈ 1.

5.6 Updates on Related Research and Future Work

In 2002, K. Rubin and A. Silverberg [82] showed that supersingular Jacobians

of genus 2 hyperelliptic curves have small embedding degrees (≤ 12). In 2007, L.

Hitt [83] presented, for characteristic 2, the existence of families of genus 2 curves

with small embedding degree and small ρ value (< 2). D. Freeman [71] gave a method

in 2007 for constructing genus 2 curves with ordinary Jacobians over prime fields, with

ρ ≈ 8. Freeman’s method uses parameterization of the CM fields to obtain conditions

that lead to the result.
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We describe in this chapter a new method for generating pairing-friendly param-

eters, without parameterizing the CM fields. The method is easy to understand and

easy to implement.

After the research described in this chapter was done, other methods [84, 85] for

finding pairing-friendly parameters were proposed, and they produce parameters with

smaller ρ values (≈ 4 or ≤ 4).

The next step of our research is to allow non-integral values for the coefficients

of the Frobenius element, and try to find further relations between the parameters.

Based on this, we want to find better solutions to a system of equations as described

in this chapter, which provide smaller ρ values.
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6. CONCLUSIONS AND FUTURE WORK

The thesis contributes to both applied and theoretical cryptography. We summarize

the contributions as follows.

In Chapter 2, a time-bound hierarchical key management scheme for access control

is proposed. Deployment of elliptic curve cryptography makes the scheme resistant

against attacks that break prior proposals of such schemes. The scheme is designed for

broadcasting of encrypted data, and is useful in real-world applications like electronic

newspaper subscription and Pay TV.

In Chapter 3, explicit doubling formulas are presented for genus 2 hyperelliptic

curves in the real model. The most general case and special cases of divisor doubling

are handled by these formulas. They are useful for efficient implementation of crypto-

graphic protocols using genus 2 real hyperelliptic curve. Equivalent transformations

for obtaining short equations of genus 2 real hyperelliptic curves are also investi-

gated and presented. This extends the existing work on equivalent transformations

for imaginary hyperelliptic curves.

Chapter 4 shows a method which generates suitable parameters for the complex

multiplication construction of genus 2 curves that can be used in cryptography. The

proposed method uses polynomial parameterization to improve the efficiency over

earlier published literature, by avoiding factorization of large integers. Analysis of

the method is presented based on the Bateman-Horn heuristics. We also give a new

conjecture that extends the existing work. The new conjecture deals with the case of

two polynomials and the “almost prime” condition. Examples are given to provide

numerical evidence of our conjecture.

In Chapter 5, following a quantitative analysis of the scarcity of pairing-friendly

genus 2 curves, a method of finding parameters for generating such curves via the

genus 2 complex multiplication construction is presented. The method finds parame-
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ters that give ρ ≈ 8. The analysis about the scarcity of pairing-friendly genus 2 curve

improves a prior heuristic result. And our algorithm for finding parameters is easy

to understand and to implement.

We describe some of the directions for further research as follows.

The work in Chapter 2 can be extended to achieve a complete security proof.

It is also desirable to construct an efficient time-bound hierarchical key management

scheme that does not use a tamper-resistant device. Implementation and performance

evaluation of the scheme are also to be done in future research.

Future work in Chapter 3 includes optimization of current formulas, derivation

of more efficient explicit addition, doubling, and baby step formulas for genus 2

real hyperelliptic curve using coordinates other than affine coordinates. Efficient

implementation and application oriented performance evaluation is another direction

of further research.

Research work in Chapters 4 and 5 can be regarded as being in the same framework

as finding cryptographically strong parameters in the construction of genus 2 curves.

Further research needs to improve the current methods, and/or discover new meth-

ods so that parameters can be produced more efficiently, and that pairing-friendly

parameters are generated with smaller ρ value. Again, implementation is part of the

future work.
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A. Parameters for Discrete Log Based Cryptography

In the following, we present some parameters found by our method. The primes

p(x0), corresponding to value x0, are of 128 bits and the group orders N1(x0) or

N2(x0) are almost prime (in this case, a product of a positive integer < 2000 and a

prime number).

a = 20, b = 1, d = 19.

c1(x) = −(5/2)x2 − 24x− 39/2,

c2(x) = 12x2 + 42x + 5,

c3(x) = x2 + 2x + 4,

c4(x) = x2 + 9x + 1,

p(x) = (12721/4)x4 + 26610x3 + (138247/2)x2 + 17520x + 6829/4,

N1(x) = (161823841/16)x8 + 169252905x7 + (4591135697/4)x6 + 3790760034x5

+ (45798567295/8)x4 + 2521811013x3 + (2200243933/4)x2 + 61359456x + 48815721/16,

N2(x) = (161823841/16)x8 + 169252905x7 + (4590881277/4)x6 + 3789617226x5

+ (45742665623/8)x4 + 2504037741x3 + (2143518849/4)x2 + 58298352x + 44551929/16.

x0 = 548050991,

p(x0) = 286909637977764067855221276777587727961,

N2(x0) = 82317140364531637515130621054159952023115110860990352140958946602968889685624

= 23 · 103 · 998994421899655795086536663278640194455280471613960584234938672366127

30201.

x0 = 507822535,

p(x0) = 211499402528761325611378043169347082601,

N1(x0) = 44731997270023012615201443067044482876392989995456465952479290805233356211416

= 23 · 32 · 6212777398614307307666867092645067066165693054924509160066568167393521

69603.
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a = 49, b = 2, d = 43.

c1(x) = −19x2 − 81x− 57,

c2(x) = 25x2 + 77x + 37,

c3(x) = 3x2 + 9x + 7,

c4(x) = 2x2 + 8x + 4,

p(x) = 37137x4 + 245922x3 + 534667x2 + 411094x + 103045,

N1(x) = 1379156769x8 + 18265610628x7 + 100192309254x6 + 293537074164x5

+ 495845231429x4 + 490539243800x3 + 279450495148x2 + 84849357864x + 10641750132,

N2(x) = 1379156769x8 + 18265610628x7 + 100186664430x6 + 293475629244x5

+ 495587670117x4 + 490018152864x3 + 278924635092x2 + 84595125192x + 10594761156.

x0 = 269037344,

p(x0) = 194561585104011195498898535676821242693,

N1(x0) = 378542103981853911199097346032135418109388519198214748958636145964698444609

16

= 22 · 7 · 17 · 7952565209702813260485238362019651640953540319290225818458742562283

5807691

x0 = 272775528,

p(x0) = 205602527203239038572121987052863495221,

N1(x0) = 42272399192358648873426271719066469393935346629841579846207943767125190226868

= 22 · 3 · 101 · 348782171554114264632229964678766249124879097605953629094124948573

64018339.
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a = 24, b = 7, d = 21.

c1(x) = −7x2 − 43x− 15,

c2(x) = 7x2 + 36x + 23,

c3(x) = x2 + 8x + 7,

c4(x) = 2x2 + 9x + 3,

p(x) = 798x4 + 8316x3 + 26156x2 + 22938x + 6281,

N1(x) = 636804x8 + 13272336x7 + 110934348x6 + 472179624x5 + 1078878880x4

+ 1312636376x3 + 863392212x2 + 292135424x + 40121116,

N2(x) = 636804x8 + 13272336x7 + 110867316x6 + 471091656x5 + 1072454392x4

+ 1296182464x3 + 846125708x2 + 284206952x + 38789332

x0 = 690918783,

p(x0) = 181848990878426194442759846747024276669,

N1(x0) = 33069055483501933273197540182643492422771446574415202943269985210245986359

248

= 24 · 20668159677188708295748462614152182764232154109009501839543740756403741

47453.

x0 = 788336903,

p(x0) = 308212554264460561682107015586616490669,

N2(x0) = 94994978606223046358527917755472879305246966478154462196668039263663901851

088

= 24 · 5937186162888940397407994859717054956577935404884653887291752453978993

865693.
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a = 29, b = 5, d = 37.

c1(x) = −(1/2)x2 + 24x + 23/2,

c2(x) = 14x2 + 96x + 30,

c3(x) = 3x2 + 8x + 3,

c4(x) = x2 + 8x + 1,

p(x) = (10045/4)x4 + 31896x3 + (228005/2)x2 + 60120x + 35917/4,

N1(x) = (100902025/16)x8 + 160197660x7 + (6360030839/4)x6 + 7575598140x5

+ (135066868587/8)x4 + 14293625076x3 + (22676894823/4)x2 + 1081276596x

+ 1291797801/16,

N2(x) = (100902025/16)x8 + 160197660x7 + (6359428139/4)x6 + 7573202220x5

+ (134962592611/8)x4 + 14267236308x3 + (22615799123/4)x2 + 1077869028x

+ 1287774649/16

x0 = 558110127,

p(x0) = 243651770406870114098910643106437464421,

N1(x0) = 59366185222402147088423186429975169231560942759037695692632492437442791846

592

= 26 · 33 · 3435543126296420549098564029512451923122739742999866648879195164203

8652689

x0 = 556747959,

p(x0) = 241281761119813502902407304706517574357,

N2(x0) = 58216888249078746955854475856559517495479835454491180632120016819914968258

608

= 24 · 36385555155674216847409047410349698434674897159056987895075010512446855

16163.
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B. Pairing-friendly Genus 2 Curves: Numerical Data

B.1 Parameters produced by Algorithm 7

Here are some parameters found by Algorithm 7 for the CM fieldK = Q

(
i
√

2−
√

2
)

and embedding degree k = 5. Corresponding to this CM field there is a genus 2 curve

defined over the rationals [59].

C : y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x+ 1.

The curves over prime fields corresponding to these parameters are either C reduced

modulo p, or its quadratic twist C ′.

On average, a MAGMA script found one set of parameters with r = 160, 256, 512

and 1024 bits in 0.0918, 0.3486, 2.9938, and 46.5615 seconds, respectively. The com-

putations were performed on an AMD Quad-Core Opteron(TM) 2.4GHz computer

running Linux kernel release 2.6.9-34.0.1.ELsmp; only one processor was used for

computation.

r : 160 bits. k = 5.

p = 252823257935282285362732638695054084330470208363294037922085422639242

9740214286170166852568584783960631710497763211466425437626783979662947366

79271737114219377482492730434694368080216503567747137

r = 1461501637330902918203684832716283019655932544881

N = 639195997530102770743719375835116542403184563967996666440138384615623

1104135942006766949461178052253303126123108270449109818252877992852236693

9854055782191379965677314562703378699008278543675026648680068400692359055

6954728131135395897277972576354640367835735384699586219721088378014250469

0516520543753456431447895666619342429338048350855555475511765095933553626

5110336972288875552378947584
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c1 = 1

c2 = 11243292621276079848206331730630023731174251699959569954973786

210137165821520551831056883188430192

c3 = −64248144848395594424557829122788871673183688623832

c4 = −109802017909327381229794505154259988889529711346380

ρ ≈ 8.072

The equation of the curve over Fp is y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x+ 1.

r : 256 bits. k = 5.

p = 704881071480907162078296670102869074389758456316878620976045254499487

7530570186125117122017350141805247723779624730169393101671127446215490847

0128180097731192247524353202667866344441677798408664226182036087805320910

7260269920646366156330351242218700528276622717003991911130319025660067745

840160149952389932917329

r = 115792089237316195423570985008687907853269984665640564039457584007913

129642241

N = 496857324932071752145912383893889169489835622033784989598880614229969

9600573805281453411826215444363606741797229694154849558866843478727700264

1105324414001856604997470007681554137437103159261172089255501470358581691

0913734818476522890003367060634939104658599174570132609823174216276573137

8669572028319853268929729746434758497120580756345226145068054586116990212

0443929992312351457834418288528071757692892289663780177801079095634553929

6480701514721219823943376856364544844490404257431312550838391605233331165

2091324748046447124154493757683497657698145122503447211715505414438313883

50786300229054528190120614531020814267875552

c1 = 1

c2 = −5936670242993572074752240216934048675593535867493623642911929101631

1737731409117467973049416437737755512483626195984512654911475975189673396

5375133869149502
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c3 = −3548809313566683873624287099133190257445712680595264225876058829990

309058529874

c4 = −5936979480813871848895779658124341164096655715011808647348987318596

163181064168

ρ ≈ 8.093

The equation of the curve over Fp is y2 = 3(−x5 + 3x4 + 2x3 − 6x2 − 3x+ 1).

r : 512 bits. k = 5.

p = 335008079246530563726120681491057120190326476848023623418849270705403

0253238698668048647226759936701559780322989116122989707725878072570950482

3393826167580117775836092982425128998276893329958269942211723639168424122

8351929812128363566524057316884029567572265384311417529404664215461037273

3353865463608385075181352709471231603405311385897330385810832338290229373

6294338649262511145063001791292976677361329758157462716163633299688099612

7618596240815615173319378872876871786165018955762954859448055121846503592

5208127732483912161205605409575775454551500537672963301201423736706763777

892828879742492044527038799989475169171601

r = 13407807929942597099574024998205846127479365820592393377723561443721

7640300735469768018742981669034276900318581864860508537538828119465699464

33649006084241

N = 11223041316044970219812686210809865338358600148378566732477018902868

5912987024069365912804169295175953132440473697878809332547443118956511048

9242158278622800616441049995563290068412636643886181267534617699906471680

1356840851597729984858864409121981674885233373536205919494825317906165114

8863550561816504672841593088819917679757264093993063292019292441659811890

9644299155846155145481933364003109894928933468509697157723993097373099424

7310617074050249835332596597617054353048947640627844593265846616744048203

5899908082811005474300101537695729743203995579239020981567065529890804328

5865472748289633014781054417871877062095215800661352832471093397550996581
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0829728607020925640934426760598315154081455815137896599996710082414116153

8758202861255529762349798235467307536842306680966547151560250464614627467

6280304178440896265086071976771393960186645433788202385227748354046664705

6043288274614079409654013832022798780433108257704454285600069637475601685

5668345721561150631035189424388958386770625722839174844558732827061335359

7396272574949736113573879375049271428943518090660991488549981999730343603

3701081705291652436301765100985664448658782887010301577613746326586686201

8085897066563266988620046862925185064744694134875859933038557645346837870

24780000

c1 = 1

c2 = −409272573749164484449600432894012850529545698940416902410733686700

2808092727796979553126208534683675299755340836017188106288532761674422535

3601980879470278089965300447863592472705865956276784032006978786587497708

3277847405605138878998017257380919270399211683599748285124901246581378306

92782953607297388401060850

c3 = 4071832224705716002619557835718952464698817177619249950112440225311

7091727946183228269616280872992381120870809967134479817010530596677389181

2505702756277750

c4 = 202312944109255719410832990595883665860453403468322976506716160344204

4459739081672395276631140889276720174612101185345113541079509366213836026

00192437308270

ρ ≈ 8.0651

The equation of the curve over Fp is y2 = 11(−x5 + 3x4 + 2x3 − 6x2 − 3x+ 1).

r : 1024 bits. k = 5.

p = 104943131781796780351315553703114714164750614732347362357070555738689

3013554313587137667850332005668823676933992122450896524826300645632284443

9709861761660664716766381039287716630666669243461281309213121059856150137

7408203980329843513963646096773624098217875284460094793183625579561324596
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8608356367730215580187226775879901480970602565674238249031703056709423217

2131239853395900609409094397511164152363166477953010966113471921040846307

8296833046650930606393166184513292546742223326863687877494477464894473322

2580146352337166889019971413579722767523423370025599511111529312594779244

3541781393930719783466273872212843028790991003473843776986927819327031948

1713342165746135751191878684098557803535563450960706349481094799353674300

8633415032924583446378352447284142570110821165206981149264650477089508811

9114904402397502070681808025695867624940513358394564535019224685066746008

2416569948913907053025787910545410464358848282304832473112320828765889470

5604263949159057936370898664269118285653927024520802671750165732759812026

0688501468623837134188046046394520454894280067905925470874214764925409025

3851496741235700604148213969967287016951389613690467928986300565066816752

9053570183646180548072142460476120051703950764320138969111552605587351896

0657

r = 179769313486231590772930519078902473361797697894230657273430081157732

6758055009631327084773224075360211201138798713933576587897688144166224928

4743063947412437776789342486548527630221960124609411945308295208500576883

8150682342462881473913110540827237163350510684586298239947245938479716304

835356329624224142551

N = 110130609081715654827788741168901425346848959713454373250473995973061

6759350987673635370386661323144384147441478939900055680762860287128384105

4902665836927719237593406042804513684315739066059397771282895303010787292

2179757197582159028597547853246866745923598008900586551168111551022146642

7797892056997175653567482674277676776365175778879398392915988749773939288

6435705233055514759060289001789676697626524970048461677042565997116692632

1574514938662017298145090019935086860014508760684579132668330742154526790

6729756575365103858396417152258336224360945964101533318634906150998015840

2926739626469233845687108138465424889309069890167784506422380877885738677

8486497648498874904198469516015126562709058573529499230570720716609495114
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5176652748355956410449190437147438437365360933789948231562936734446248562

7333464760364261479389502053771882656875842881008586953138121719289691218

8758279287588811439673945582167757652834133685656149967100183974970665666

8301508675081476762833629781778446743401408792912743813248465789160097609

4907483265468514579887878917829916217551992851105645558151863186904311915

0897161484888708685607650964899796756659515412310704366815387550234691315

8131818826772780505198203396288812795508345351027967383176379701435096670

6087687519514932573232984872490858110150153420011230071225803878990363639

0228155715688332006641078957349065854370415790123363912464828804129733848

9175696250693127007079671001962884229986939989639986327089602241629610698

2541461860784718937644401952697781463951184575190864828437905119167020164

3344473177237375537182909982694143170480035384871367555930058478945286874

7897752470806228849738428129325218708334019884558804413088114397314208082

9684618582720600127298888204020537916245798945760355562052390503198184841

3388707887323066157837964264892073291036971698537389349632090868071247021

5487116535358735807812813655196187306147452925445662352702598796196616210

5611237005879204757511953065284647610819115873731988933920480554898200228

3914188267109522018962565363987515033850846271990633326448625370796130891

6187780991045712242162464946706937745089418294838706299085709554979040290

6303467139111643335427409219418781483564037022764043131466539004625154594

6209963899733654040406326188041008785111305118300000241509541850382046427

9921348250445947811452089231802857382987378154131554070179868476678463358

0643767635905430275544733949993084829695263010882447387128654441638838688

6796417377560269667075669849950440569287085578562873023654943240390761349

344

c1 = 1

c2 = 724372596740782223909406054653818076964153956231753653007456714190398

3083544386878828065677547992138075585030934397420775737590127163517898465

0846109282344565484417070274587173691100946634714875141158627632996168956
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7766495789352183805458433940894170433679708077909086439456475244369359438

9518081325497632105610564738309170848248014811242603672360833841226847675

9481606098563108470451607635559144562515764965397762341417794410217622519

4338497201942951403070267420975047429409587019711286902398751160111773836

5807578038205778723458526333750943907335694407938046725757613069297767153

8493287402688569461431917776945750946818

c3 = −165351051667168444715785481069322973156717038193134515677640165475

6356287031722889250259390454834982137350158483356777003123281295331023971

1393360455936205111439243887010818642160393233292858255502407201894108071

9149943387259685239578041196541694819919059869390598882816649918129689175

47027543464862829090783742

c4 = −207335869157521775738895119259620293971923286445368600757752050786

1398853142551817062560786443520326893830924572045474412814928410396990573

6933573731383048372745200257985204644144837697573959688350508891779753127

3479259087733008907698262801412853472379355142666972763160082464948044116

7446683063036638423281152

ρ ≈ 8.045

The equation of the curve over Fp is y2 = 5(−x5 + 3x4 + 2x3 − 6x2 − 3x+ 1).

B.2 Parameters produced by Algorithm 8

Below are some examples of the parameters found by Algorithm 8 for K =

Q(i
√

2−
√

2) and embedding degree k = 3. Here, we choose C3(x, y) = C4(x, y) =

xy, C1(x, y) = x2 and C2(x, y) = −(a+ b(1 + d)/2)y2 in Step 1 of Algorithm 8.

On average, our MAGMA implementation found one set of parameters with

r = 160, 256, 512 and 1024 bits in 0.1092, 0.4468, 4.1718, and 50.0140 seconds, re-

spectively. The computations were performed on an AMD Quad-Core Opteron(TM)

2.4GHz computer running Linux kernel release 2.6.9-34.0.1.ELsmp; only one processor

was used for computation.
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r : 160 bits. k = 3.

p = 276032206782791857604308501919988591136740885931343898740256384866241

6467553702979623124723634053832810065253894017495098779682257468497626596

054621968600128109029276968729859800558964868162387810481

r = 1461501637330902918203684832716283019655932543447

N = 761937791813779631994733941106633708154739036303135746201414612683681

3740229511268625176061099440881442259428060861564412453929893287845956340

3416154738013818777886228088337842186582031203981403522971082031628644450

8345243160595796537771020027471372909123195630278485253513049270650615256

4351364423861208959016750122994621253699118662098804381727358336213778156

291342604171682918546278978314937568

c1 = 853413751674246325960655910542033278192644078137851807206531855460335

897482560901762777003565546321

c2 = −467312771754171603865894820458465529298297100229438686497717835334

951148694691783854304471959958498

c3 = c4 = −89309702244271126870314830090645570026648145619900427099516737

4051672546438742749426798352836518846

ρ ≈ 8.2401

The equation of the curve over Fp is y2 = 3(−x5 + 3x4 + 2x3 − 6x2 − 3x+ 1).

r : 256 bits. k = 3.

p = 822920761971611209794051125149779261868007917105814333422807428702492

4832300832671377221070075398952222821601421270215446432556547906612969293

7035389322967570019147721601855015109361465658238392802910598977307884581

9669931262786638243789783462295242237448794562285423898483720827257224421

582887155754347373346337

r = 115792089237316195423570985008687907853269984665640564039457584007913

129640743
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N = 677198580483937194263730753359784807376570572162519246889869342280825

3032215444487859365278749079347589549730845666733117453777198238279219494

5280678988988024443378725219717152986643553771096267443036427016707389095

7249248397038280644492111218229707870352901997265602267012008190367799204

2490892895555013596712575651692176016210908268738361775620639618631060792

5033229572686474111206272193416927126310352656009315433216497023049930883

5373318602217711383763542668793170469526104112283163915538814071400367342

3775883028281057290061738442630720051414075948315034087299281022702814170

14852155526683323382176465726972979082574048

c1 = 899567387391479217381476947274351584712780874649839002409060884043691

7034478629557785770257234423972877031276763948663931761267676699233257997

62748414274889

c2 = −379916236281151103764633380973143102421074912906860994641809351833

4237736166615736185164181781338965280295434753862169111244409012722954687

785372266393538

c3 = c4 = 8267529934618186873729771614246762778267959823408343148411442228

8087906493405752740627824201485645210824879536505195273507388849360615838

257032702979376742

ρ = 8.0950

The equation of the curve over Fp is y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x+ 1.

r : 512 bits. k = 3.

p = 626094627977785411761504336964367530509161001161397733772648139606108

7968126017678724733192354804393642278933710530797321862269310580976745634

6116911345645395717388268813930138137331860478986610924439831778326927171

6845062886926383345031759550556693174884602128438118374664571060501824065

9100037203110165020080488984639114234906464443216520747556803744300494494

6992418036349155347397250087843163119953929796859079789902695120224849161

7516608669145239915106433027259815435477015548796801852943295822260576268
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0312122940392880866229093627162407463271989320163774597151730679749981207

4520165383987203676880458831491740818004881

r = 134078079299425970995740249982058461274793658205923933777235614437217

6403007354697680187429816690342769003185818648605085375388281194656994643

3649006090369

N = 391994483182641515281785253074790586383950605773634828312281914553924

3061707221673758639139282363145408855965317887631405805835749929634571139

0330645883769407087588861368306783250067815987192235846514496539626229241

5128721256333873972328886852452626592795563193044001806373755174746127697

4913776250590156235654168569031460055438321507312533156958693751264516612

0298264279408059464649976075153909251124903466418613010749549204730675846

5305413344668678489009959610077493059661578116828224277333381864198106931

4969600128611455597908602721583515189378420093004273093884398029362925993

2341674782220853825107820445471454896497607745368481116313557548784332268

7796729507732431685513919823156566659462906593188486451200387150374902776

0105964928972428689260615132021701481808474635277813843355927973435247029

5011903576974979898694593744266772555427406571416731601344160182507921496

6551243340598491022827199240313187293157869635450549847771358787519056427

3326616317234524241060571605260645374153601311186978452560825053956450408

7388524613098970682086686742156827007879617577585219269695723764760354784

3100053880490393282167646769429486051573840407058031255629065599849203951

2356454400454065862900412848959891358737669822106458972996079046061649215

565533184

c1 = 174026622103036049001443203672787317165709960825483879547761528701105

3512989069046938399420163234615664391377465320988248278172579953713379386

0373544454124284273225423842889374337640211063105958131440397513480175766

3372334033129899280958554564869576559123328284414263988094293104625480288

017644016650053649851049
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c2 = −414898830634725511579876261796925209423483197180808499033365137192

7558171176108301510977080798335020411125167778584725421392063859461695138

4087271477429444214749212952259453844250997349939835035354149654600838848

4697319851167904916270475649949946784682228312403248649006236852585156268

41625371289867006618563072

c3 = c4 = −12016941541828430890387541295049543238634890141937497877421825

3608511313770187340039750897734731896175653227833547978740517617931580691

9494419145235744346056001344596541225696787382859793476317869029518461205

0052095264627090978218925706008532351098389876395449170546152881538676448

6819410816179248899825935663584

ρ = 8.0816

The equation of the curve over Fp is y2 = 11(−x5 + 3x4 + 2x3 − 6x2 − 3x+ 1).

r : 1024 bits. k = 3.

p = 717748645781505731120599269684910693590944029612987068440967012314130

6637827393231944795966268238394707373418250637693458042904697055796191300

6988518257403915714005639997828602961606379818049724696348918738839210978

4884097588161710751447842237401094267825596641326555653496480397321236084

3359687016377451991881531057275736765140557796850130723269247861970378423

4747661610312631323994375446803092065579965869275407690364653384443149636

1358359960327719785761624131833934060542855381519429968298504355243330594

8128051188598482445090960279949827080200814185109371664267078220279517108

4593441499198308986503899040312785820990605173937322268693944141897213905

0350040373032830045642801185170518236713373491710503302901558703113134368

3241826353657585244175657105742633183737223279548444715679485406276250355

1201137915874208065998822573397075248659377281765538966698467194444038688

2544976363374550235175548720819849709645412976171386385886955140368425643

5595018639856563961113295199752946528182355932639678152695494113031640748

6915218894642959537179051946992663567484366871922820680694703814552225520
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4643739689679297558549156573384073054580960265102343844077312858660618523

0160019449034269795423287562037274184579733091032396846997359646292442899

233

r = 179769313486231590772930519078902473361797697894230657273430081157732

6758055009631327084773224075360211201138798713933576587897688144166224928

4743063947412437776789342486548527630221960124609411945308295208500576883

8150682342462881473913110540827237163350510684586298239947245938479716304

835356329624224143009

N = 515163118521185384753840122583010856382709249428671962661423211365050

3129398738377837129859375413710599513894886791237829979441147675879587101

8127804378985878592579181400716796052289400311200947321963638645846291833

0857201279570232911828631126106983909288992133615876799837606636919422956

7351326074555066087476219572520158518412302877542241298357393898729494197

1319602257770442738478014191985146371862333191710935743881263765267281476

9491676501952662215123398419548713350196515912899875089314080328865621094

8368815210583815481976896530063644394824452690393274033183817051091321233

4558015734113942305624121302388802782452074234332784265647457344528815239

4145262367638033740914525744492164174893960793366077457574624749895904144

3224212517886681444497758168130813071513119892288550062556608549522777955

6107323788126796346915049020177765794083510916576463035792778812767338874

2560158169465116549884763976539224460110112379859330536323064985645100245

8918889366215809001344984570638298998091057594440413590449220723188779764

7149920048571025964239936587368171467444207742960713087347884078989609874

1715434568346654898950235710593089411735027741069348198520447971857532339

9166005168540220389651352232315703722217758741261058325972849030390971912

6778901553525188540653726309907324768061473679392970730644751229367451898

2861775806497402529537437475158404056265952129051854121790370481225753838

6957927004995613283010833912683616334217359696231189689499303611266955331

3939555492471860484630000856664302452824150794096867637988697308682265590
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6133242863267943605360732832950584508750182506668160375930488838808196330

8321237485300246428442097317214290631861287510288955910881362062874360853

5360183755807572962437618631563317241283618789061604351451958568659453355

5085328642120047173695576212225431262429587305870554292547099393283843789

8778772339629902350231517065379800315959172287505333819272066820058506445

1486781599426285596652733281850226828122246033844848187647739088611155954

4990708805981662320939385423098611058587644744015264671940931506576574796

6574945135893523272284538857096770034016880047082680580540618565741917115

6981433598158488000847546249792572546753218368775523920043139133607183248

7570805707999371196914500444836433288499776969698483926470544505629385606

7742312323325978499157829066471585493650335737156015959885576560769234421

7163798948736397105796266249161358253213474072307345140179161963167234174

9770068842895220487754663826788480959975507429493447607951826211093618442

24

c1 = 241046809911331744829734214849495338288383033422516562343952911153215

8192841241473577315249020488024863361377610028395777932327114358923433565

0936466052461749239726108485714966836992014266020206655946581519964385429

0867445800142955439023414996484770332209901425758580132297217861282561935

4736005546869003077727086069051848857786861113120469969485021821036783977

1394120658420848096491899664988059309107088706236032356462445760157820395

8309864823697346438670189432998903144987790168082978899647052970353731903

1854636379409714950811422783948892128814057829596138961269831112117378178

5834323588656726946891815197141810787025

c2 = −381790331864082701677964116490390471323211246420800974547315434670

6247391478402571173301059272864468354483707354443499461488099833644412239

0172406114284649073743487814335212519672617012878831879092793266950084898

9331284076284350734797021226156120050658417295790918253642974591025047786

9753645596675223611665212263778651718415338373723285748183989896258950882

3445742838796314746308762938191147456388442030672510020289063226826761151
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0081936557223540221762353892404437580032102361006544450667983601104738821

9389899280359343500130139317382478591643895605668046928280358535915688362

8782859425827958436920858894640806217611552

c3 = c4 = 4290206091805516194493363207649719423301112671503877845589183063

9458650143462822106634617937244089757608691079278986899772953479194078187

2237336835363728067907805981340329142519259486742039801072153487833600205

7878075549325526390089803421276206571588408476626851426511497427228425974

5771996026235812265475888681834988691541451183610643465792889944147364509

2650017464186109565807982995082482570257409381080420765708156039949566712

3124251369150129370628038300054703313801314218156317327585593578706812567

6815147103415272424675034157667902311183100298814367256007564896238960083

760308633592317742627253038661001979530245160

ρ = 8.0444

The equation of the curve over Fp is y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x+ 1.
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C. Some Source Code

C.1 PARI/GP scripts for finding parameters for cryptographically-strong

genus 2 curves

Code for case d ≡ 2, 3 (mod 4).

\\ Timing for generating suitable pairs (p, N) for genus 2

\\ cryptography.

\\

\\ Script outputs results for generating $count (p, N) in

\\ $time seconds. It returns either when $count_max pairs

\\ are generated or when $time_max has been reached.

\\

\\ d = 2, 3 (mod 4)

\\-------------------------------------------

allocatemem(40*10^6);

default(debugmem,0);

default(timer,0);

prmbitsize = 400;

MAX_COFACTOR = 2000;

\\---------------- D = 0 mod 4 ---------------

\\ Set count_max and time_max

count_max = 500;

time_max = 600;

outfile = "search_result_D0.txt";

{

\\ Generate good a, b, d for CM field K = Q(i*sqrt(a + b*sqrt(d)))

Good_abd = 0;

while (!Good_abd,

d = random(20) + 1;

if (Mod(d, 4) != 1 && issquarefree(d) && qfbclassno(4*d) == 1,

a = (random(20) + ceil(sqrt(d)))*(-1)^random(2);

b = random(ceil(sqrt(a^2/d))); \\ This ensures a^2 - b^2*d >= 0.

if ( !issquare(a^2 - b^2*d) && issquarefree(a^2 - b^2*d) && 1+d+a+a*d+2*b*d >

0, Good_abd = 1);
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); \\ end if

); \\ end while

}

\\------------Polynomial to be factors ------------

{

f(x, y) = 2*x*y*a + x^2*b + y^2*b*d;

}

\\------------- p(x) ----------------------------

{

p(x1, x2, x3, x4) = x1^2 + x2^2*d + x3^2*a + x4^2*a*d + 2*x3*x4*b*d;

}

\\---------- Possible group orders ---------------

{

N1(x, x1, x2) = (x + 1)^2 - 4*(x + 1)*x1 + 4*(x1^2 - x2^2*d);

}

{

N2(x, x1, x2) = (x + 1)^2 + 4*(x + 1)*x1 + 4*(x1^2 - x2^2*d);

}

\\------------- Old Method --------------------

\\ Takes on input [count_max, time_max].

\\ Function returns if either count reaches count_max or time reaches time_max.

\\ Returns [count, time] - count primes found in time seconds.

\\

Timing_D0_old(count_max, time_max) =

{

local(OK, count, prm, c1, c2, c3, c4, time_start, time_end, fact, factN, factsiz

e, myN);

local(idx);

OK = 1;

prm = 4; \\ isprime(p) == 0

count = 0;

time_start = gettime();

time_end = 0;

while ( OK,

c3 = random(2*2^(prmbitsize/4)) - 2^(prmbitsize/4);

c4 = random(2*2^(prmbitsize/4)) - 2^(prmbitsize/4);

while (gcd(c3, c4) != 1, c4 = random(2*2^(prmbitsize/4)) - 2^(prmbitsize/4));
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if (Mod(c3^2*b - c4^2*b*d, 2) == 0,

n = (1/2)*(-2*c3*c4*a-c3^2*b-c4^2*b*d);

fact = factorint(n);

c1 = prod(row = 1, matsize(fact)[1], fact[row, 1]^random(fact[row, 2]+1))*(

-1)^random(2);

c2 = n/c1;

prm = c1^2+c2^2*d+c3^2*a+c4^2*d*a+2*c3*c4*b*d;

if ( isprime(prm),

\\ && prm >= 2^(prmbitsize-1) && prm < 2^prmbitsize,

myN = [(prm+1)^2-4*(prm+1)*c1+4*(c1^2-c2^2*d), (prm+1)^2+4*(prm+1)*c1+4*(

c1^2-c2^2*d)];

for (idx = 1,2,

for (cofactor=1, MAX_COFACTOR,

if (myN[idx] % cofactor == 0, max_cofactor_test = cofactor);

); \\ end for cofactor

if (isprime(myN[idx]/max_cofactor_test),

write(outfile, "[p, N] = [", prm, ", ", myN[idx], "]");

count++;

time_end += gettime();

); \\ end if isprime

); \\ end for idx

);\\ end if

); \\ end if

OK = OK && count < count_max && time_end/1000 < time_max;

); \\ end while

return ([count, floor(time_end/1000)]);

}

\\------------ New Method -----------------

\\ Takes on input [count_max, time_max].

\\ Function returns if either count reaches count_max or time reaches time_max.

\\ Returns [count, time] - count primes found in time seconds.

\\

Timing_D0_new(count_max, time_max) =

{

local(OK, count, upper, a2, a1, a0, b2, b1, b0, myf, myc1, myc2, \

prm, c1, c2,c3, c4, ppoly, fact, factN, factsize, idx, i, j);
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local(time_start, time_end);

OK = 1;

polyfound = 0;

count = 0;

upper = 10;

for (a2 = 1, upper,

for (a1 = 1, upper,

for ( a0 = 1, upper,

for (b2 = 1, upper,

for (b1 = 1, upper,

for ( b0 = 1, upper,

if (!polyfound && gcd(a2*x^2 + a1*x + a0, b2*x^2 + b1*x + b0) == 1,

myf = f(a2*x^2 + a1*x + a0, b2*x^2 + b1*x + b0);

fact = factor(myf);

if (OK && poldegree(myf) == 4 && matsize(fact)[1] == 2,

c3 = a2*x^2 + a1*x + a0;

c4 = b2*x^2 + b1*x + b0;

c1 = -1/2*polcoeff(myf,4)/(polcoeff(fact[1,1]^fact[1,2],2) \

*polcoeff(fact[2,1]^fact[2,2], 2))*fact[1,1]^fact[1,2];

c2 = fact[2,1]^fact[2,2];

ppoly = p(c1, c2, c3, c4);

if (OK && polisirreducible(ppoly) && numerator(gcd(ppoly)) == 1,

for ( j = 1, 100000,

\\print("j = ", j);

value = random(2^(prmbitsize/4) - 2^(prmbitsize/4-1));

myc1 = subst(c1, x, value);

if (myc1 == round(myc1),

prm = subst(ppoly, x, value);

if (isprime(prm), polyfound = 1; break(7);)

);

); \\ end for j

); \\ end if OK

); \\ end if OK

); \\ end if polyfound

); \\ end for b0

); \\ end for b1

); \\ end for b2

); \\ end for a0

); \\ end for a1

); \\ end for a2
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\\ Now polynomials are found

print("Poly found!");

gettime();

time_end = 0;

while(1,

value = random(2^(prmbitsize/4) - 2^(prmbitsize/4 - 1));

myc1 = subst(c1, x, value);

if (myc1 == round(myc1),

myc2 = subst(c2, x, value);

prm = subst(ppoly, x, value);

if (isprime(prm),

myN = [N1(prm, myc1, myc2), N2(prm, myc1, myc2)];

for (idx = 1,2,

for (cofactor=1, MAX_COFACTOR,

if (myN[idx] % cofactor == 0, max_cofactor_test = cofactor);

); \\ end for cofactor

if (isprime(myN[idx]/max_cofactor_test),

\\ write(outfile, "[c1, c2, c3, c4] = [", c1, ", ", c2, ", ", c3, ", ", c4,

"]");

write(outfile, "[value, p, N] = [", value, ", ", prm, ", ", myN[idx], "]")

;

count++;

); \\ end if isprime

); \\ end for idx

); \\ end if isprime

time_end += gettime();

OK = OK && (count < count_max) && (time_end/1000 < time_max);

if (!OK, return ([count, floor(time_end/1000)]));

); \\ end if myc1

); \\ end while 1

}

\\------------- Benchmarking --------------

{
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print("[a, b, d] = [", a, ", ", b, ", ", d, "]");

write(outfile, "[a, b, d] = [", a, ", ", b, ", ", d, "]");

print("Searching for suitable parameters...");

write(outfile, "NEW METHOD");

Time_new = Timing_D0_new(count_max, time_max);

print("New method finds ", Time_new[1], " suitable pair(s) (p, N) in ", Time_new

[2], " seconds");

write(outfile, "OLD METHOD");

Time_old = Timing_D0_old(count_max, time_max);

print("Old method finds ", Time_old[1], " suitable pair(s) (p, N) in ", Time_old

[2], " seconds");

}

\\-------------- EOF ----------------------

C.2 MAGMA scripts for finding parameters for pairing-friendly genus 2

curves

‘‘PFfinder1.txt’’

// Magma script finding parameters of PF genus 2 curves

// rho =~ 8

// Set c1 = +/-1

// Embedding degree k = 5

// Start of timing

tstart := Cputime();

para_count := 0;

bitsize := 160; // Bit size of r

// For Windows users, the following line may not work.

// Change to outfile := "file_name_you_prefer" should do.

outfile := "result." * IntegerToString(bitsize) * "bit." * \

Pipe("tr -d \"\n\"", Pipe("date \"+%Y.%m.%d.%H.%M.%S.txt\"",""));

a := 2;

b := -1;

d := 2;
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//a := 24;

//b := 7;

//d := 21;

c1 := 1;

k := 5;

fprintf outfile, "bitsize = %o, [a, b, d, k] = [%o, %o, %o, %o]\n", bitsize, a, b, d, k;

twiceC2 := function(x3, x4)

return -(b*x3^2 + 2*a*x3*x4 + b*d*x4^2)*c1;

end function;

NeededPrime := function(x2, x3, x4)

return (a*x3^2 + 2*b*d*x3*x4 + a*d*x4^2 + 1 + x2^2*d);

end function;

r:= NextPrime(2^bitsize: Proof := false);

while r mod k ne 1 do

r := NextPrime(r + 1: Proof := false);

end while;

solution_found := false;

while not solution_found do

P<c2,c3,c4,p> := PolynomialRing(GF(r),4);

D1 := a^2 - b^2*d;

D2 := -d*(a^2 - b^2*d);

dr := Sqrt(GF(r)!4);

I := ideal<P | \

b*c3^2 + 2*a*c3*c4 + b*d*c4^2 + 2*c1*c2,\

c1^2 + d*c2^2 + a*c3^2 + 2*b*d*c3*c4 +a*d*c4^2 - p,\

(p+1)^2 - 4*(p+1)*c1 + 4*(c1^2-c2^2*d),\

p^4 + p^3 + p^2 + p + 1>;

Solution_over_GFr := Variety(I);

if not IsEmpty(Solution_over_GFr) then

para := Solution_over_GFr[1];

solution_found := true;

else

solution_found := false;

r := NextPrime(r+1: Proof := false);

end if;



124

end while;

CC2 := Integers()!para[1];

CC3 := Integers()!para[2];

CC4 := Integers()!para[3];

PP := Integers()!para[4];

for i:= -100 to 100 do

cc3 := CC3 + i*r;

for j:= -100 to 100 do

cc4 := CC4 + j*r;

cc2 := twiceC2(cc3, cc4);

cc1 := c1;

if IsEven(cc2) then

cc2 := (cc2 div 2);

pp := NeededPrime(cc2, cc3, cc4);

if IsPrime(pp: Proof := false) then

N := (pp+1)^2 - 4*(pp+1)*cc1 + 4*(c1^2-cc2^2*d);

fprintf outfile, "p = %o\n", pp;

fprintf outfile, "r = %o\n", r;

fprintf outfile, "N = %o\n", N;

fprintf outfile, "c1 = %o\n c2 = %o\n c3 = %o\n c4 = %o\n\n",

cc1, cc2, cc3, cc4;

fprintf outfile, "rho = %o\n", 2*Log(pp)/Log(r);

para_count := para_count+1;

end if;

end if;

end for;

end for;

//CC2;

// Cputime

tspent := Cputime(tstart);

fprintf outfile, "\nCputime: %o, pairs found: %o\n", tspent, para_count;
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