CERIAS Tech Report 2009-07

Low Genus Algebraic Curves in Cryptography
by Ning Shang
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

PURDUE UNIVERSITY
 GRADUATE SCHOOL
 Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared
By Ning Shang
Entitled Low Genus Algebraic Curves in Cryptography

For the degree of Doctor of Philosophy

Is approved by the final examining committee:
$\xrightarrow[\text { Samuel Wagstaff, Jr. }]{\text { Chair }}$
Tzuong-Tsieng Moh

Michael Jacobson, Jr.

To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University's "Policy on Integrity in Research" and the use of copyrighted material.

Approved by Major Professor(s): Samuel Wagstaff, Jr.
Michael Jacobson, Jr.

Approved by: Steven Bell
Head of the Graduate Program
1/23/2009
Date

PURDUE UNIVERSITY
 GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
Low Genus Algebraic Curves in Cryptography

For the degree of Doctor of Philosophy
I certify that in the preparation of this thesis, I have observed the provisions of Purdue University Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the United States' copyright law and that I have received written permission from the copyright owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless Purdue University from any and all claims that may be asserted or that may arise from any copyright violation.

Ning Shang
Signature of Candidate

3/12/2009
Date
*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

LOW GENUS ALGEBRAIC CURVES IN CRYPTOGRAPHY

A Thesis
Submitted to the Faculty of Purdue University by
Ning Shang
In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2009
Purdue University

West Lafayette, Indiana

To my family.

ACKNOWLEDGMENTS

I would like to take the opportunity to express my thanks to all the people who have helped, supported and encouraged me in these years. Without you, this thesis work would have been Mission Impossible.

My deepest gratitude goes to my advisor, Dr. Samuel Wagstaff, Jr., and my co-advisor, Dr. Michael Jacobson, Jr., for their invaluable support and guidance.

I thank all my thesis committee members, Dr. Edray Goins, Dr. Tzuong-Tsieng Moh and Dr. Freydoon Shahidi. I appreciate their guidance, encouragement, and providing very helpful comments to this thesis.

I am deeply grateful to Dr. Elisa Bertino for her enormous support and encouragement. It is my honor to work as a member of her research team.

I appreciate the hospitality I received from Microsoft Corportation during my internship in summer 2007. I wish to express my warmest thanks to my mentor, Dr. Kristin Lauter. I learned a great deal from working with her. Her knowledge, spirit, and positive attitude always stimulate me to explore new areas and to work harder. I also very much enjoyed the soccer games we played together.

I would like to convey my thanks to Dr. Joseph Lipman, Dr. Jiu-Kang Yu, and all other wonderful professors in mathematics, computer science, and electrical engineering. I have broadened my knowledge by receiving the various valuable lectures from them. I benefited greatly from useful discussions with them, and am grateful for their patience and kindness.

The 2006 summer school in Wyoming was an unforgettable experience. I am grateful to Dr. Renate Scheidler, Dr. Andreas Stein for their supervision on the research project, and to Dr. Stefan Erickson, Dr. Shuo Shen, and other team members for helpful meetings and discussions. Hiking in snow-covered mountain trails under the beautiful summer sky of Wyoming was definitely among the best parts of life.

To my dearest family and friends, I owe too much love. Their contant support, care, and friendship have accompanied me through many hard times and joyful moments.

Finally, I wish to thank Mary Gitzen, who helped me improve my English when I first came to the States, Dr. Shelborne, who magically fixed my broken knee, and all the nice people I met at Purdue. A thesis is a result of years of hard work. Their help is priceless!

TABLE OF CONTENTS

Page
ABSTRACT vii
1 INTRODUCTION 1
1.1 Background 1
1.2 Contribution of the Thesis 6
1.3 Structure of the Thesis 7
2 A CRYPTOGRAPHIC APPLICATION OF ELLIPTIC CURVES 9
2.1 Background 9
2.2 Definitions and Notation 10
2.3 Key Management Scheme Using Elliptic Curves 12
2.3.1 Initialization 12
2.3.2 Encrypting Key Generation 13
2.3.3 User Subscription 14
2.3.4 Decrypting Key Derivation 15
2.3.5 An Example 16
2.4 Analysis of The Scheme 17
2.4.1 Tamper-resistant Devices 17
2.4.2 Hash Functions and ECDLP 18
2.4.3 Security Against Possible Attacks 18
2.4.4 Yet Another Good Feature 23
2.4.5 Space and Time Complexity 23
2.5 Future Work and Remarks 25
3 ARITHMETIC ON JACOBIANS OF GENUS 2 REAL HYPERELLIPTIC CURVES 27
3.1 Introduction and Motivation 27
3.2 Background 28
3.3 Equivalent Change of Coordinates 29
3.3.1 Elliptic Curves 30
3.3.2 Imaginary Hyperelliptic Curves 30
3.3.3 Real Hyperelliptic Curves 31
3.4 Explicit Formulas for Elliptic and Genus 2 Imaginary Hyperelliptic Curves 34
3.4.1 Mumford Representation and Cantor's algorithm 34
3.4.2 Elliptic Curves And Genus 2 Hyperelliptic Curves in the Imag- inary Model 35
Page
3.5 Genus 2 Hyperelliptic Curves in Real Model 39
3.6 Explicit Formulas for the Real Model 41
3.6.1 Baby Step and Addition Formulas 44
3.6.2 Doubling Formulas 44
3.6.3 Summary of Results 57
3.7 Future Work 59
4 GENERATING SUITABLE PARAMETERS FOR DISCRETE-LOG BASED CRYPTOGRAPHY WITH POLYNOMIAL PARAMETERIZATION 61
4.1 Introduction 61
4.2 Algorithms 62
4.3 Probability That $p(x)$ is Prime and $N_{i}(x)$ is Almost Prime 69
4.4 Conclusion and Further Discussion 73
5 GENERATING PARAMETERS FOR PAIRING-FRIENDLY GENUS 2 CURVES OVER PRIME FIELDS 75
5.1 Introduction 75
5.2 Weil and Tate-Lichtenbaum Pairings 76
5.3 Pairing-friendly Genus 2 Curves Are Rare 77
5.4 Algorithms for Generating Pairing-friendly Genus 2 Curves over Prime Fields 82
5.5 Generating Pairing Parameters with Polynomial Parameterization 85
5.6 Updates on Related Research and Future Work 89
6 CONCLUSIONS AND FUTURE WORK 91
LIST OF REFERENCES 93
A Parameters for Discrete Log Based Cryptography 99
B Pairing-friendly Genus 2 Curves: Numerical Data 103
B. 1 Parameters produced by Algorithm 7 103
B. 2 Parameters produced by Algorithm 8 109
C Some Source Code 117
C. 1 PARI/GP scripts for finding parameters for cryptographically-strong genus 2 curves 117
C. 2 MAGMA scripts for finding parameters for pairing-friendly genus 2 curves 122
VITA 125

Abstract

Ning Shang Ph.D., Purdue University, May, 2009. Low Genus Algebraic Curves in Cryptography. Major Professors: Samuel S. Wagstaff, Jr. and Michael J. Jacobson, Jr.

Preserving a strong connection between mathematics and information security, elliptic and hyperelliptic curve cryptography are playing an increasingly important role during the past decade. We present some problems that relate low genus curves and cryptography.

We first discuss a new application of elliptic curve cryptography (ECC) to a realworld problem of access control in secure broadcasting of data. The asymmetry, introduced by the elliptic curve discrete logarithm problem, is the key to achieving the required security feature that existing methods fail to obtain.

We then talk about the use of genus 2 curves in the "real model" in cryptography, and present explicit divisor doubling formulas for such curves. These formulas are particularly important for implementation purposes.

Finally, we present a new method for finding cryptographically strong parameters for the CM construction of genus 2 curves. This method uses the idea of polynomial parameterization, which allows suitable parameters to be generated in batches. We give a brief analysis of the algorithm. We also provide algorithms for generating parameters for genus 2 curves to be used in pairing-based cryptography. Our method is an adaptation of the Cocks-Pinch construction for pairing-friendly elliptic curves. Our methods start from a prescribed embedding degree k and a primitive quartic CM field K, and output a prime subgroup order r of the Jacobian over a prime field \mathbb{F}_{p}, with $\rho=2 \log (p) / \log (r) \approx 8$.

1. INTRODUCTION

1.1 Background

Information security is playing an increasingly important role as communications over computer networks and the deployment of digital storage media start to spread their domination over the world. Cryptography, as the "study of mathematics techniques related to aspects of information security such as confidentiality, data integrity, entity identification, and data origin authentication" [1], since its first invention in the ancient times, has seen a remarkably rapid development in recent decades.

The 1976 paper [2] of W. Diffie and M. Hellman brought to people's attention for the first time one of the most important discoveries in the history of cryptography, the notion of public-key cryptography. Based on the idea of trapdoor functions, public-key cryptography (aka asymmetric cryptography) has provided practical new solutions to many problems in information security, such as secure key exchange over nonsecure channels, authentication and digital signatures, which traditional secret-key (aka symmetric-key) cryptography alone is unable to do. Though advantageous to use for secure communications, public-key cryptography is computationally costly for encryption/decryption compared to secret-key cryptographic algorithms. Hence in many cases, public-key cryptography is used to transmit the symmetric keys of secret-key algorithms. In the meantime, a lot of effort has been put into research of efficiency improvement for public-key cryptographic schemes.

Nowadays, two types of public-key cryptosystem have survived the examination of researchers and practitioners in areas of academia and industry, and are regarded as practical to use. Among these two types, schemes like RSA [3] were first recognized and studied; these are based on the difficulty of factoring large integers.

The other type of system is based on the discrete logarithm problem (DLP) in certain finite cyclic groups. The Pohlig-Hellman algorithm [4] for solving the DLP implies that only finite groups of prime order are suitable candidates. Such a system can be implemented in various ways, e.g., by using the multiplicative group of the invertible elements of a finite field [2] or abelian varieties over finite fields [5, 6]. The best known generic algorithms such as Shanks' Baby Step Giant Step, Pollard's ρ and λ methods solve the DLP in exponential time $O(\sqrt{N})$, where N is the order of the cyclic group. In every efficient implementation, besides the intractability of the DLP, two related fundamental questions need to be addressed: 1) compact representation (i.e. encoding) of group elements and 2) efficient arithmetic for the group operation. As abelian varieties, elliptic curves succeed in providing positive answers to both the above questions. Because no subexponential algorithm is known for solving the elliptic curve discrete logarithm problem (ECDLP) in general, they outdo the multiplicative groups \mathbb{F}_{q}^{\times}of finite fields \mathbb{F}_{q} in offering the same level of security with a faster speed. Note that there exist subexponential methods (e.g. the index calculus, see [7]) for solving the DLP in \mathbb{F}_{q}^{\times}.

The theory of elliptic curves has been studied extensively during past centuries. Their application to cryptography helps promote further research. Motivated by the case of elliptic curves, cryptographic research on Jacobians of curves of higher genus has started to emerge and attract attention. The use of Jacobians of curves of higher genus has the advantage of being suitable for implementation on small processor architectures. However, for hyperelliptic curves of genus ≥ 3 there are index calculus attacks (see [8-13]) which are faster than the generic attacks. This implies a potential insecurity of using such hyperelliptic curves from a cryptographic perspective ${ }^{1}$. In this thesis, we discuss problems related to elliptic curves (genus 1) and hyperelliptic curves of genus 2 .

[^0]We define an algebraic curve C to be a projective variety of dimension one. Moreover, in this thesis, we always work on a nonsingular affine model of the curve defined over the underlying perfect field K of interest, which usually is a finite field \mathbb{F}_{q}. Furthermore, we assume the curve is absolutely irreducible, i.e., it is irreducible as a closed set with respect to the Zariski topology of projective space \mathbb{P}^{2} over \bar{K}, a separable (algebraic) closure of K.

We define an elliptic curve E over K to be a nonsingular absolutely irreducible algebraic curve defined over K of genus 1 with one K-rational point ∞, and refer to it by its model given by the following Weierstraß equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in K .
$$

We define a hyperelliptic curve C over K to be a nonsingular absolutely irreducible algebraic curve of genus $g \geq 2$, given by a model

$$
C: y^{2}+h(x) y=f(x), \quad h(x), f(x) \in K[x], \operatorname{deg}(h) \leq g+1, \operatorname{deg}(f) \leq 2 g+2,
$$

such that the associated function field $K(C)$, which is the field of fractions of the coordinate ring of C, is a separable extension of degree 2 of the rational function field $K(x)$ of \mathbb{P}_{K}^{1} for some function x; We will introduce another definition of a hyperelliptic curve and discuss more about it in Chapter 3.

Given an algebraic curve C over a field K, a divisor of C over K is a formal sum

$$
D=\sum_{\mathfrak{p}} n_{\mathfrak{p}} \mathfrak{p}
$$

where \mathfrak{p} runs over all places of the function field $K(C), n_{\mathfrak{p}} \in \mathbb{Z}$, and only finitely many $n_{\mathfrak{p}}$ are different from 0 . The degree of the residue field $K(C)_{\mathfrak{p}} / K$ is defined to be $\operatorname{deg}(\mathfrak{p})$; the degree of a divisor D is $\sum_{\mathfrak{p}} n_{\mathfrak{p}} \operatorname{deg}(\mathfrak{p})$. A divisor D is called effective, written $D \geq 0$, if we have all $n_{\mathfrak{p}} \geq 0$. For any function $f \in K(C)^{*}$ we define the divisor of f to be

$$
(f)=\sum_{\mathfrak{p}} v_{\mathfrak{p}}(f) \mathfrak{p},
$$

where $v_{\mathfrak{p}}$ is the usual discrete valuation defined using uniformizers at \mathfrak{p}. We also call a divisor obtained in this way a principal divisor. Note that (f) is a divisor of degree 0 . We say two divisors D_{1} and D_{2} are equivalent, written $D_{1} \sim D_{2}$ if $D_{1}=D_{2}+(f)$ for some $f \in K(C)$.

Definition 1 (Riemann-Roch Space of a Divisor) For a divisor D of an algebraic curve C over K, the Riemann-Roch space of D is

$$
L(D)=\left\{f \in K(C)^{*} \mid(f)+D \geq 0\right\} \cup\{0\} .
$$

It follows easily that $L(D)$ is a vector space over K, and $L\left(D_{1}\right) \simeq L\left(D_{2}\right)$ as K-vector spaces if $D_{1} \sim D_{2}$. We write $\operatorname{dim} L(D)$ as the K-dimension of $L(D)$.

Theorem 2 (Riemann-Roch [14]) Let C be an absolutely irreducible algebraic curve over K with function field $K(C)$. There exists an integer $g \geq 0$ such that for every divisor D of C over K

$$
\operatorname{dim} L(D) \geq \operatorname{deg}(D)-g+1
$$

For all divisors D with $\operatorname{deg}(D)>2(g-1)$, one has equality

$$
\operatorname{dim} L(D)=\operatorname{deg}(D)-g+1
$$

Definition 3 (Genus [14]) The integer g from Theorem 2 is called the genus of $K(C)$ or the geometric genus of C. If C is projective nonsingular then g is called the genus of C.

Note that if C has genus 1, then it is elliptic; if C has genus 2 , the it is hyperelliptic.
Let $\operatorname{Div}{ }_{K}^{0}(C)$ be the set of all degree 0 divisors defined over K, i.e., stable under the Galois action of $\operatorname{Gal}(\bar{K} / K)$. Let $\operatorname{Prin}_{K}(C)$ be the set of all principal divisors (associated with function $\left.f \in K(C)^{*}\right)$. Then $\operatorname{Prin}_{K}(C)$ is a subgroup of $\operatorname{Div}_{K}^{0}(C)$. Note that $\operatorname{Prin}_{K}(C)$ is the image of the map

$$
\phi: \quad K(C)^{*} \rightarrow \operatorname{Div}_{K}^{0}(C), \quad f \mapsto(f) .
$$

Definition 4 (Divisor Class Group) The divisor class group of an algebraic curve C over a field K is the quotient group

$$
\operatorname{Pic}_{K}^{0}(C)=\operatorname{Div}_{K}^{0}(C) / \operatorname{Prin}_{K}(C)
$$

From an arithmetic point of view, we define the Jacobian variety, or Jacobian, of a curve C to be the divisor class group of C over \bar{K}, an algebraic closure of K, i.e.,

$$
J a c_{\bar{K}}(C)=\operatorname{Pic}_{\bar{K}}^{0}(C)
$$

This is equivalent to saying that the following sequence is short exact:

$$
\begin{equation*}
\{1\} \rightarrow \bar{K}(C)^{*} / \bar{K}^{*} \xrightarrow{\phi} \operatorname{Div}_{\bar{K}}^{0}(C) \rightarrow J a c_{\bar{K}}(C) \rightarrow\{0\}, \tag{1.1}
\end{equation*}
$$

where $\phi: \bar{K}(C)^{*} / \bar{K}^{*} \rightarrow \operatorname{Div}_{\bar{K}}^{0}(C)$ is given by $\phi(f)=(f)$.
Let $\operatorname{Gal}(\bar{K} / K)$ be the absolute Galois group of $K . \forall \sigma \in \operatorname{Gak}(\bar{K} / K)$, σ induces an action on $C_{\bar{K}}$ by

$$
\sigma:\left(x_{0}, y_{0}\right) \mapsto\left(\sigma\left(x_{0}\right), \sigma\left(y_{0}\right)\right)
$$

where $\mathfrak{p} \in C(\bar{K})=\left(x_{0}, y_{0}\right)$ is a point in $C_{\bar{K}}$, hence it induces an action on $J a c_{\bar{K}}(C)$ by

$$
\sigma: D \mapsto \sum n_{\mathfrak{p}} \sigma(\mathfrak{p})
$$

where $D=\sum n_{\mathfrak{p}} \mathfrak{p}$. We define the Jacobian over K of C, or the K-rational points of the Jacobian to be

$$
J a c_{K}(C)=J a c_{\bar{K}}(C)^{\operatorname{Gal}(\bar{K} / K)}
$$

i.e., the elements fixed by the action of $\operatorname{Gal}(\bar{K} / K)$.

Taking Galois cohomology of (1.1), we obtain

$$
\begin{equation*}
1 \rightarrow K(C)^{*} / K^{*} \rightarrow \operatorname{Div}_{K}^{0}(C) \rightarrow \operatorname{Jac}_{K}(C) \rightarrow H^{1}\left(\operatorname{Gal}(\bar{K} / K), \operatorname{Prin}_{\bar{K}}(C)\right) \tag{1.2}
\end{equation*}
$$

where $\operatorname{Gal}(\bar{K} / K)$ acts canonically on $\operatorname{Prin}_{\bar{K}}(C)$.
Therefore, the divisor class group of C over K is a subgroup of the K-rational points of the Jacobian. If furthermore, the curve C has a K-rational point, then the Jacobian of a curve over any field K can be identified with its divisor class group over K, by the following theorem.

Theorem 5 (Galbraith, et al., 1998, [15]) Let C / K be a curve with a K-rational point. Then

$$
H^{1}\left(\operatorname{Gal}(\bar{K} / K), \operatorname{Prin}_{\bar{K}}(C)\right)=\{0\} .
$$

In this thesis, this is always the case we consider. We shall identify $J a c_{K}(C)$ with Pic ${ }_{K}^{0}(C)$ throughout the discussion.

1.2 Contribution of the Thesis

The research described in this thesis focuses on solving mathematical problems related to elliptic and hyperelliptic curve cryptography. The thesis makes three main contributions to the field of elliptic and hyperelliptic curve cryptography.

First, the thesis proposes a encryption/decryption key management scheme for access control in a hierarchy for which the keys are updated with time. Such a scheme has a practical important use in settings like communications and e-commerce. The method proposed in the thesis employs elliptic curve cryptography in construction of the key management scheme, which makes it resistant to attacks that break earlier proposals of such schemes. The key management scheme is published in [16]. The portion of the work described in Chapter 2 of this thesis was done entirely by the author at the suggestion of Professors E. Bertino and S. Wagstaff.

Schemes like the above can be alternatively implemented by using genus 2 curves. The arithmetic on such curves needs to be considered. Second, the thesis gives explicit formulas for divisor doubling for "real" genus 2 hyperelliptic curves over finite fields of positive characteristic. Such explicit formulas are useful for efficient implementation of cryptographic protocols (see, e.g. [17]) using the infrastructure of the principal ideal class of the function field associated with the curve. The formulas presented in this thesis cover the most common case in divisor doubling arithmetic as well as all special cases, for two major representations of divisors. This consists of part of a research project the author participated in with Dr. S. Erickson, Professor M. Jacobson, Dr. S. Shen and Professor A. Stein. Other formulas and improvements are
being developed by other researchers. Theorem 8 for equivalent change of coordinates of real hyperelliptic curves in Section 3.3.3 was suggested and proved by the author. The divisor class doubling formulas, including the most common case and special cases, presented in Section 3.6.2 were derived by the author.

In order to use Jacobians of genus 2 hyperelliptic curves for discrete logarithm based or pairing based cryptography, some parameters, e.g. the underlying finite field, the cardinality of the Jacobian, and the "embedding degree," need to be considered. The third contribution of the thesis includes new approaches to generating such parameters for the complex multiplication method of constructing equations of genus 2 curves. The contribution also includes analysis of the polynomial parameterization method of generating cryptographically strong parameters for genus 2 curves, following the Bateman-Horn philosophy, and a quantitative analysis of the scarcity of "pairing-friendly" genus 2 curves, based on the Riemann Hypothesis. This research was suggested by Dr. K. Lauter during the author's internship at Microsoft Research in 2007. The portion of the work described in Chapters 4 and 5 was entirely done by the author.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows: Chapter 2 describes a solution to a practical problem of access control for secure broadcasting of information which uses the elliptic curve discrete logarithm problem. Chapter 3 presents some results on the arithmetic of genus 2 real hyperelliptic curves, which is useful for a class of DLPlike cryptographic protocols. Chapter 4 shows a method to generate parameters for constructing genus 2 curves via the complex multiplication (CM) method. Chapter 5 reports progress on finding parameters for generating pairing-friendly genus 2 curves over prime fields for the CM method. Chapter 6 summarizes and suggests future work.

2. A CRYPTOGRAPHIC APPLICATION OF ELLIPTIC CURVES

In this chapter we present an efficient time-bound hierarchical key management scheme for secure broadcasting of encrypted data content. Elliptic curve cryptography is used in the construction of the scheme to help resist attacks that break earlier schemes. Part of the research described in this chapter can be found in [16].

2.1 Background

In a web-based environment, such as one involving electronic newspapers, data can be organized according to different access control policies, encrypted using distinct encryption keys, then broadcast to all users. Usually these data can be organized as a hierarchical tree. We need a key management scheme so that a higher class can retrieve information that a lower class is authorized to access - but not the other way around. Moreover, in many applications, such as electronic newspaper/journal subscription, pay TV broadcasting, etc., there is a time bound associated with each access control policy, so that a user is assigned to a certain class for just a period of time. The users' keys need to be updated periodically to ensure that the delivery of the information follows the access control policies of the data source. An ideal timebound hierarchical key management scheme should be able to perform the above task in an efficient manner and minimize the storage and communication of keys. In 2002, W.G. Tzeng [18] attempted to solve this problem. W.G. Tzeng's scheme is efficient in terms of its space requirement, but is computationally inefficient, since a Lucas function operation is used to construct the scheme, and this incurs heavy computational load. Moreover, it is insecure against collusion attacks as shown by X. Yi and Y. Ye [19].

Another time-bound hierarchical key assignment scheme, based on a tamperresistant device and a secure hash function, was proposed by H.Y. Chien [20] in 2004. This scheme greatly reduces computational load and implementation cost. However, it has a security hole against X. Yi 's three-party collusion attack [21]. Inspired by H.Y. Chien's idea, we propose in this thesis a new method for access control using elliptic curve cryptography. This scheme is efficient and secure against X. Yi 's three-party collusion attack.

Although there have been attacks on smart cards [22] and some other tamperresistant devices, such attacks require special equipment which would cost more than a subscription. The only really valuable data on the smart cards our scheme uses is the master key. It must be kept secret because an attacker who obtained it could derive all the keys for the data that one could get with this smart card. Assuming the master key can be protected, there is good reason to believe that our scheme that uses tamper-resistant devices can have practical important applications, in areas such as digital rights management.

Our original motivation for this work was to provide a better key management scheme for [23], in which data are encoded in XML and broadcast to a hierarchy.

The rest of this chapter is organized as follows: Section 2.2 presents the notation and definitions needed to give a hierarchical structure to the data source. Section 2.3 proposes the new time-bound key management scheme applied to a hierarchy. Section 2.4 contains further discussion of the key management scheme.

2.2 Definitions and Notation

Let \mathcal{S} be the data source to broadcast. We assume \mathcal{S} is partitioned into blocks of data called nodes.

The policy base $\mathcal{P B}$ is the set of access control policies defined for \mathcal{S}. In our setting, each access control policy acp $\in \mathcal{P B}$ contains a temporal interval I among
its components, which specifies the time period in which the access control policy is valid. A sample access control policy for XML documents might look like

$$
\text { acp }=(I, P, \text { sbj-spec, prot-obj-spec, priv, prop-opt }),
$$

where I, P, sbj-spec, prot-obj-spec, priv and prop-opt are the temporal interval, the periodic expression, the credential specification, the protection object specification, the privilege and the propagation option of acp, respectively. For example, the temporal interval I may specify a time period in which a particular resource can be used by a particular entitiy. Since this chapter does not focus on access control policies, we do not intend to get into more details about them. Interested readers may refer to [24] and [23] for details.

It is important to notice that several policies may apply to each node in \mathcal{S}. In what follows we refer to the set of policies applying to a node in \mathcal{S} as the policy configuration associated with the node. Also, in what follows $\mathcal{P} \mathcal{C}_{\mathcal{P B}}$ denotes the set of all possible policy configurations which can be generated by policies in $\mathcal{P B}$.

We now introduce the notion of a class of nodes, a relevant notion in our approach. Intuitively, a class of nodes corresponds to a given policy configuration and identifies all nodes to which the configuration applies. Intuitively, a class of nodes includes the set of nodes to which the same set of access control policies apply.

Definition 1 (Class of nodes) Let $P c_{i}$ be a policy configuration belonging to $\mathcal{P C}_{\mathcal{P B}}$. The class of nodes marked with $P c_{i}$, denoted by \mathcal{C}_{i}, is the set of nodes belonging to the data source \mathcal{S} marked by all and only the policies in Pc c_{i}. Note that the empty set could be a class of nodes marked with a certain policy configuration. We denote by \mathcal{C} the set of all classes of nodes defined over \mathcal{S} marked with the policy configurations in $\mathcal{P} \mathcal{C}_{\mathcal{P B}}$, and we have the following requirement: we distinguish and include in \mathcal{C} the empty sets, if marked by policy configurations consisting of only one access control policy, and exclude from \mathcal{C} the empty sets marked by any other policy configurations. Note that \mathcal{C} corresponds to a subset of $\mathcal{P} \mathcal{C}_{\mathcal{P B}}$.

We distinguish and include the empty sets corresponding to different singleton policy configurations so that keys can be assigned to these classes, which enable users belonging to these classes to derive required decryption keys of lower classes. This key derivation process will be described in Section 2.3.

The idea for the secure broadcasting mode of the data source is this: the portions of the source marked by different classes of nodes are encrypted by different secret keys, and are broadcast periodically to the subscribers. Subscribers receive only the keys for the document sources that they can access according to the policies.

The following definition introduces a partial order relation defined over \mathcal{C}.
Definition 2 (Partial order relation on \mathcal{C}) Let \mathcal{C}_{i} and \mathcal{C}_{j} be two classes of nodes marked by $P c_{i}$ and $P c_{j}$, respectively, where $P c_{i}$ and $P c_{j}$ are policy configurations in $\mathcal{P C}_{\mathcal{P B}}$. We say that \mathcal{C}_{i} dominates \mathcal{C}_{j}, written $\mathcal{C}_{j} \preceq \mathcal{C}_{i}$, if and only if $P c_{i} \subseteq P c_{j}$. We also write $\mathcal{C}_{j} \prec \mathcal{C}_{i}$ if $\mathcal{C}_{j} \preceq \mathcal{C}_{i}$ but $\mathcal{C}_{j} \neq \mathcal{C}_{i}$. We also say that \mathcal{C}_{i} directly dominates \mathcal{C}_{j}, written $\mathcal{C}_{j} \prec_{d} \mathcal{C}_{i}$, if and only if $\mathcal{C}_{i} \neq \mathcal{C}_{j}$ and $\mathcal{C}_{j} \preceq \mathcal{C}_{*} \preceq \mathcal{C}_{i}$ implies $\mathcal{C}_{*}=\mathcal{C}_{i}$ or $\mathcal{C}_{*}=\mathcal{C}_{j}$. We call " $\mathcal{C}_{j} \prec_{d} \mathcal{C}_{i}$ " a directed edge. We say \mathcal{C}_{i} dominates \mathcal{C}_{j} via n directed edges if there exists $\left\{\mathcal{C}_{i_{k}}\right\}_{1 \leq k \leq n-1} \subseteq \mathcal{C}$ such that $\mathcal{C}_{j} \prec_{d} \mathcal{C}_{i_{1}}, \mathcal{C}_{i_{n-1}} \prec_{d} \mathcal{C}_{j}$ and $\mathcal{C}_{i_{k-1}} \prec_{d} \mathcal{C}_{i_{k}}$ for $2 \leq k \leq n-1$.

2.3 Key Management Scheme Using Elliptic Curves

2.3.1 Initialization

Suppose we have already generated the set \mathcal{C} of classes of nodes of the data source \mathcal{S} marked with the policy configurations $P c_{i}$ in $\mathcal{P B}$. Such a set is partially ordered with respect to \preceq. Let n be the cardinality of \mathcal{C}.

In this step, the system parameters are initialized and the system's class keys K_{i} are generated.

1. The vendor chooses an elliptic curve E over a finite field \mathbb{F}_{q} so that the discrete logarithm problem is hard on $E\left(\mathbb{F}_{q}\right) .{ }^{1}$ The vendor also chooses a point $Q \in$ $E\left(\mathbb{F}_{q}\right)$ with a large prime order, say, p. The vendor then chooses $2 n$ integers n_{i}, g_{i}, relatively prime to p, such that $n_{i} g_{i}$ are all different modulo p for $1 \leq i \leq n$. The vendor computes $P_{i}=\left[n_{i}\right] Q$ on $E\left(\mathbb{F}_{q}\right)$ and h_{i} such that $g_{i} h_{i} \equiv 1(\bmod$ $p)$. The class key $K_{i}=\left[g_{i}\right] P_{i}$ is computed for class \mathcal{C}_{i}. The points $R_{i, j}=$ $g_{i} K_{j}+\left([-1] K_{i}\right)$ are also computed whenever $\mathcal{C}_{j} \prec \mathcal{C}_{i}$ (not just when $\left.\mathcal{C}_{j} \prec_{d} \mathcal{C}_{i}\right)$.
2. The vendor chooses two random integers a, b and a keyed-hash message authentication code (HMAC) [26] $H_{K}(-)$ built with a hash function $H(-)$ and a fixed secret key $K . K$ serves as the system's master key and is only known to the vendor.
3. The vendor publishes $R_{i, j}$ on an authenticated board, whereas the integers g_{i}, h_{i}, a and b are kept secret. Parties can verify the validity of the $R_{i, j}$ obtained from the board. This can be realized by using digital signatures.

The public values $R_{i, j}$ are constructed in such a way that the owner of the key K_{j} of the lower class \mathcal{C}_{j} cannot obtain any information about the class key K_{i} of the higher class \mathcal{C}_{i} without knowing the secret value g_{i}, and the owner of the higher class key K_{i} cannot compute K_{j} on its own, due to the the difficulty of solving the discrete logarithm problem. It turns out that such construction is secure against the attack [21] which breaks H.Y. Chien's earlier scheme [20]. We will discuss this in section 2.4.3.3.

2.3.2 Encrypting Key Generation

In this step we generate the temporal encryption class keys $K_{i, t}$ at time granule t by using the system's class keys K_{i}.

[^1]The class of nodes $\mathcal{C}_{i} \in \mathcal{C}$ is encrypted by a symmetric encryption algorithm, e.g., AES [27]. We denote by $K_{i, t}$ the secret key for \mathcal{C}_{i} at time granule $t \in\left[T_{b}, T_{e}\right]=[1, Z]$. The generation process for $K_{i, t}$ is given by the formula below:

$$
K_{i, t}=H_{K}\left(K_{i}\left\|H^{t}(a)\right\| H^{Z-t}(b) \| I D_{i}\right),
$$

where $H^{m}(x)$ is the m-fold iteration of $H(-)$ applied to $x, I D_{i}$ is the identity of \mathcal{C}_{i}, all components of the input of $H(-)$ are encoded as bit strings, and $\|$ is the bit string concatenation. Note that we can choose $H(-)$ properly in the initialization process so that the output of H_{K} is the right length for a key for the symmetric encryption algorithm we use.

The one-way property of the hash function H ensures that $H^{t}(a)$ and $H^{Z-t}(b)$ can be calculated only when the values $H^{t_{1}}(a)$ and $H^{Z-t_{2}}(b)$ are available for some t_{1}, t_{2} with $t_{1} \leq t \leq t_{2}$. This is the idea for the construction of the "time-bound" of the key management scheme.

2.3.3 User Subscription

This is the user subscription phase, in which a tamper-resistant device storing important information is issued to the subscriber.

Upon receiving a subscription request, an appropriate access control policy $a c p_{i}$ is searched until there is a match, then the policy configuration in $\mathcal{P B}$ which contains only $a_{c} p_{i}$ is found, and thus the corresponding class of nodes marked with it, say \mathcal{C}_{i}, is identified. Note that \mathcal{C}_{i}, which could be an empty set, is always in \mathcal{C} by the construction in Definition 1. We define the encryption information, EncInf ${ }_{i}$, as follows:

$$
\operatorname{EncInf}_{i}=\left\{\left(H^{t_{1}}(a), H^{Z-t_{2}}(b)\right)\right\}
$$

where the set on the right side is defined for all acceptable time intervals $\left[t_{1}, t_{2}\right]$ for $a c p_{i}$.

The vendor distributes the class key K_{i} to the subscriber through a secure channel. The vendor also issues the subscriber a tamper-resistant device storing H_{K} (thus H,
$K), E, \mathbb{F}_{q}, I D_{i}, h_{i}$ and $\operatorname{EncInf}_{i}$. There is also a secure clock embedded in the device which keeps track of current time. The device is tamper-resistant in the sense that no one can recover K, h_{i}, EncInf $_{i}$, change the values of $I D_{i}$, or change the time of the clock.

2.3.4 Decrypting Key Derivation

In this step the temporal keys for a class and the classes below it are reconstructed by the tamper-resistant device.

Assume that the subscription process mentioned above is completed for a subscriber U associated with class \mathcal{C}_{i}. U can then use the information received from the vendor to decrypt the data in class \mathcal{C}_{j}, with $\mathcal{C}_{j} \preceq \mathcal{C}_{i}$, as follows:

1. If $\mathcal{C}_{j}=\mathcal{C}_{i}, U$ inputs only K_{i} into the tamper-resistant device; otherwise if $\mathcal{C}_{j} \prec \mathcal{C}_{i}, U$ first retrieves $R_{i, j}$ from the authenticated public board, then inputs it together with the class identity $I D_{j}$ of \mathcal{C}_{j} and its secret class key K_{i}.
2. If K_{j} is the only input, the next step is executed directly. Otherwise, the tamper-resistant device computes the secret class key of \mathcal{C}_{j} :

$$
K_{j}=\left[h_{i}\right]\left(R_{i, j}+K_{i}\right)
$$

3. If $t \in\left[t_{1}, t_{2}\right]$ for some acceptable time interval $\left[t_{1}, t_{2}\right]$ of $a c p_{i}$, the tamper-resistant device computes

$$
H^{t}(a)=H^{t-t_{1}}\left(H^{t_{1}}(a)\right), \quad H^{Z-t}(b)=H^{t_{2}-t}\left(H^{Z-t_{2}}(b)\right)
$$

and $K_{j, t}=H_{K}\left(K_{j}\left\|H^{t}(a)\right\| H^{Z-t}(b) \| I D_{j}\right)$. Note that the values $H^{t_{1}}(a)$ and $H^{Z-t_{2}}(b)$ are pre-computed and stored in the tamper-resistant device.
4. At time granule t, the protected data belonging to class \mathcal{C}_{j} can be decrypted by applying the key $K_{j, t}$.

2.3.5 An Example

We now provide an example to illustrate the above process.
Consider an electronic newspaper system. Let one day be a tick of time in this system and $Z=70$ be the life time of the system, i.e., the system exists in the temporal interval $[1,70]$. Let U be a user wishing to subscribe to the sports portion of the newspaper for one week, say, the period $I=[8,14]$. We could match U with an access control policy acp $_{1}=([8,14]$, All days, Subscriber/type $=$ "full", Sports_supplement, view, CASCADE). Then we can find the class of nodes \mathcal{C}_{1} marked with policy configuration $a c p_{1}$ from a pre-generated table. These nodes are encrypted and broadcast periodically. U can derive the decryption key for the subscription period using the issued class key K_{1} and the tamper-resistant device storing $H_{K}, E, \mathbb{F}_{q}, I D_{1}, h_{1}$ and $H^{8}(a), H^{56}(b)=H^{70-14}(b)$. For example, U inputs K_{1} into the device. To obtain the decryption key $K_{1,10}$ at time granule $t=10$, the device computes

$$
H^{10}(a)=H^{2}\left(H^{8}(a)\right), H^{60}(b)=H^{4}\left(H^{56}(b)\right)
$$

then $K_{1,10}=H_{K}\left(K_{1}\left\|H^{10}(a)\right\| H^{60}(b) \| I D_{1}\right)$, the very thing needed. To obtain the decryption key at $t=13$ for a class $\mathcal{C}_{2} \preceq \mathcal{C}_{1}, U$ inputs $K_{1}, I D_{2}$ and $R_{1,2}$ into the device. The device first computes the class key of \mathcal{C}_{2}

$$
K_{2}=\left[h_{1}\right]\left(R_{1,2}+K_{1}\right) .
$$

Then it computes

$$
H^{13}(a)=H^{5}\left(H^{8}(a)\right), H^{57}(b)=H\left(H^{56}(b)\right)
$$

and $K_{2,13}=H_{K}\left(K_{2}\left\|H^{13}(a)\right\| H^{57}(b) \| I D_{2}\right)$, the decryption key needed.
Note that all computations are executed by the tamper-resistant device. The device can prevent the results of the computations from being revealed, so that even the user U does not know the class key K_{2} of the class of nodes $\mathcal{C}_{2} \prec \mathcal{C}_{1}$.

2.4 Analysis of The Scheme

We have proposed a key assignment scheme for secure broadcasting based on a tamper-resistant device. A secure hash function and the intractability of the discrete logarithm problem on elliptic curves over the finite field \mathbb{F}_{q} are also assumed.

2.4.1 Tamper-resistant Devices

The tamper-resistant device plays an important role in our scheme. The system's master key, K, must be protected by the device. Leak of $\operatorname{EncInf}_{i}$ will not help the attackers much, because they are not able to compute the HMAC, thus the temporal class keys, without knowing K. Although it is unlikely to happen, a leak of h_{i} will enable the user of class \mathcal{C}_{i} to obtain the class key K_{j} of \mathcal{C}_{j}, where $\mathcal{C}_{j} \preceq \mathcal{C}_{i}$, by computing

$$
K_{j}=\left[h_{i}\right]\left(R_{i, j}+K_{i}\right),
$$

as is done by the device. As pointed out by Professor Jacobson in a private correspondence, similarly, a leak of h_{k} of class \mathcal{C}_{k} allows the user of class $\mathcal{C}_{i} \preceq \mathcal{C}_{k}$ to obtain K_{k}, by computing

$$
K_{k}=\left[g_{k}\right]\left(K_{i}+\left[-h_{i}\right] R_{k, i}\right) .
$$

Unless K is also discovered, the attacks to retrieve $\operatorname{EncInf}_{i}$ and h_{i} on individual devices are not effective. With the use of a tamper-resistant device, the security of the scheme is strong enough. From an implementational point of view, the Trusted Platform Module (TPM) technology [28], which is good for storing and using secret keys, can well suit our need. We are aware that there are attacks on TPMs [29]. There are countermeasures against those attacks [29]. Moreover, none of these attacks is capable of extracting the exact secret information being protected (in our case, e.g., the system key K). Hence the attackers are not able to perform the HMAC operations. Therefore an attack relying on the knowledge of K is not feasible in practice. We believe the use of the tamper-resistant hardware is practical and secure in reality.

One might argue that if we need such a strong tamper-resistant device, then we might as well store the needed temporal decryption keys on it directly and discard the key management scheme. However, that approach is not practical, because the number of needed keys can be large, considering the temporal intervals and hierarchy. And in that case, the system's class keys can not be easily updated. Our proposed scheme is elegant and more efficient in terms of storage on the tamper-resistant devices.

2.4.2 Hash Functions and ECDLP

Some of the most widely used hash functions, e.g. SHA-0, MD4, Haval-128, RipeMD-128, MD5, were broken years ago; SHA-1 was announced broken early in the year 2005. Essentially, these hash functions have been proven not to be collisionfree; but it is still hard to find a pre-image to a given digest in a reasonable time. In view of this, these attacks on hash functions will not affect the security of our scheme, as long as the discrete logarithm problem on the elliptic curves is still hard. So far there is no foreseeable breakthrough in solving DLP on elliptic curves.

Without having to keep $Q \in E\left(\mathbb{F}_{q}\right)$ secret, no one, including the user U_{i}, can recover the secret values g_{i}, h_{i} of the system due to the difficulty of the elliptic curve discrete logarithm problem.

2.4.3 Security Against Possible Attacks

Note that the tamper-resistant device in our scheme is an oracle that does calculation in the Decrypting Key Derivation process. This raises the question of whether such a device can be attacked by an adversary to gain secret information to subvert this process. This concern is necessary since H.Y. Chien's scheme has been successfully attacked (see X. Yi [21]) due to the weakness of the oracle. We face a similar situation here.

We set up the attack model for our scheme as follows:

Attack model

We denote the adversary by \mathcal{A}, and assume

1. \mathcal{A} either contains an individual attacker who is not a valid user but captures a device belonging to a user of the system, or a team of valid users who have access to their assigned devices;
2. \mathcal{A} can query the device with trial messages;
3. all the members (if there are multiple ones) of \mathcal{A} share the information and resources they have.

The goal of \mathcal{A} is to derive any valid temporal key $K_{i, t}$ which is not supposed to be used by any member of \mathcal{A}.

Based on the attack model above, we shall analyze the security of the proposed scheme. This analysis will not provide proofs of security (i.e. written in the language of provable security), but it will give some ideas how the design of the scheme helps secure the system.

2.4.3.1 Attack From Outside

Suppose an adversary \mathcal{A}, who is an individual attacker, captures a device of class \mathcal{C}_{i}, but it does not know the associated class key K_{i}. \mathcal{A} can query the device with a value K_{*}, hoping the device to output the valid decryption key $K_{i, t}$ at time t.

We claim that any attempt of \mathcal{A} to gain the temporal decrypting key with only one input K_{*} to the device with identity $I D_{i}$ has very low probability of success.

This is so because even if we assume \mathcal{A} queries the device at time granule t which is in the subscription period, we have that the probability that the device outputs the correct decrypting key in response to a randomly chosen query message K_{*} is

$$
\begin{aligned}
& \operatorname{Prob}\left\{H_{K}\left(K_{*}\left\|H^{t}(a)\right\| H^{Z-t}(b) \| I D_{i}\right)=H_{K}\left(K_{i}\left\|H^{t}(a)\right\| H^{Z-t}(b) \| I D_{i}\right)\right\} \\
& =\operatorname{Pr}_{1}+\operatorname{Pr}_{2}
\end{aligned}
$$

where

$$
\operatorname{Pr}_{1}=\operatorname{Prob}\left\{K_{*}=K_{i}\right\},
$$

and

$$
\begin{aligned}
& \operatorname{Pr}_{2}=\operatorname{Prob}\left\{K_{*} \neq K_{i}\right. \text { and } \\
& \left.\qquad H_{K}\left(K_{*}\left\|H^{t}(a)\right\| H^{Z-t}(b) \| I D_{i}\right)=H_{K}\left(K_{*}\left\|H^{t}(a)\right\| H^{Z-t}(b) \| I D_{i}\right)\right\}
\end{aligned}
$$

Because K_{i} is secret to \mathcal{A}, the first probability, Pr_{1}, is not significantly larger than $1 / p$. Recall that p is the order of the elliptic curve subgroup in which we do cryptography. The second probability, Pr_{2} is the same as that of finding a collision for the HMAC $H_{K}(-)$. Both probabilities are negligible. Therefore, it is very unlikely that \mathcal{A} will succeed with a random query message.

The collision resistance of the HMAC also effectively prevents the attacker to correlate the results of multiple random queries to avoid trying points (messages) other than those whose y-coordinates are the same as that of the previously tried points. Therefore the probability of success of the adversary is not significantly better than a brute-force attack.

2.4.3.2 Collusion Attack

We consider the case that \mathcal{A} contains multiple valid users with their assigned devices as well as class keys. These users collude by trying to use their assigned class keys and devices to retrieve a valid temporal key that should not be owned by any of these users. Since it is difficult to combine the HMAC output to infer useful information about the input, we focus on the case that only one device is being queried. We assume this device is associated with class \mathcal{C}_{i}, and it is owned by a member of \mathcal{A}.

Assuming the tamper-resistance of the device and the intractability of the discrete logarithm problem, we claim that any collusion attack on the scheme will fail.

Since the encryption information EncInf f_{i} for a device with identity $I D_{i}$ and the embedded clock cannot be modified because of the tamper-resistance of the device,
the device will respond to a single input K_{*} with a correct decrypting key if and only if $K_{*}=K_{i}$. On the one hand, if K_{i} is one of the attacker's issued class key, then this attempt is a valid regular query, and it will not produce any extra information that the attacker is not supposed to know. On the other hand, if K_{i} is not owned by \mathcal{A}, for an attack to succeed, then it must be derived by \mathcal{A} via collusion, given the infeasibility of guessing, as analyzed in Section 2.4.3.1 above. However, given that all g_{j} are kept secret, we do not see any way to accomplish this computation without solving the discrete logarithm problem on $E\left(\mathbb{F}_{q}\right)$, even with all $R_{i, j}$ on the public board being available.

Now we consider collusion attacks with more than one input to the device. In this case, \mathcal{A} wants to let the device in class \mathcal{C}_{i} compute temporal decrypting keys for a class \mathcal{C}_{m} which is no lower than \mathcal{C}_{i}. Note that such an attack must have $\mathcal{I} \mathcal{D}_{m}$ as one of the three input messages, and carefully choose the other two query messages. The attack inevitably involves the computation (by the device) of the class key K_{m}. According to Step 2 of the Decrypting Key Derivation process, $g_{i} K_{m}$ must be computable by the device in respond to the input parameters. However, we do not know how this computation can be performed, even with the knowledge of K_{m}, when g_{i} is unknown.

The analysis in this section implies that it is unlikely that a device is able to effectively compute the temporal keys outside its assigned time period and for classes no lower than itself. Thus it can only function as designated.

2.4.3.3 X. Yi's Attack

As a particular case of the collusion attack just described, X. Yi's attack [21] against H.Y. Chien's scheme [20] cannot be replayed here to break our scheme. We will demonstrate this case to give an impression of how the asymmetry introduced by elliptic curve cryptography helps to strengthen the scheme.
X. Yi's attack can not apply directly to our scheme due to our different construction. The idea of the attack is like this: two users collude to derive certain information

Inf and pass it to a third user, U, so that U can input Inf together with its secret key to the tamper-resistant device to derive the decryption keys of a class no lower than U's. We claim that this analogue of X. Yi's three-party attack does not succeed for our scheme.

Suppose U belongs to class \mathcal{C}_{j} and U wants to derive decryption keys $K_{i, t}$ of \mathcal{C}_{i}, which is no lower than \mathcal{C}_{j}. Then K_{i} needs to be computed by the device and passed to the HMAC. An analogue of X. Yi's attack requires the information passed to U be Inf $=\left[g_{j}\right] K_{i}+\left([-1] K_{j}\right)$, so that when U inputs Inf, ID D_{i} and K_{j}, the tamper-resistant device will compute

$$
\left[h_{j}\right]\left(I n f+K_{j}\right)=\left[h_{j}\right]\left(\left[g_{j}\right] K_{i}+K_{j}+[-1] K_{j}\right)=K_{i}
$$

In order to obtain Inf, someone must be able to have knowledge of $g_{j} K_{i}$. Given that class \mathcal{C}_{i} is no lower than $\mathcal{C}_{j},\left[g_{j}\right] K_{i}$ is not a summand of any of the published values on the authenticated board, and thus it cannot be produced via collusion, considering the fact that all g_{j} are secret and the elliptic curve discrete logarithm problem is hard.

Therefore, an obvious generalization of X. Yi's attack cannot be modified to attack our scheme.

2.4.3.4 Remarks on Security Proofs

We want to remark that the analysis above does not provide rigorous security proofs. We do not know yet if choosing suitable input parameters for a device so that it is able to compute a class key belonging to a class no lower than the device's assigned class is equivalent to the elliptic curve discrete logarithm problem. We have not shown rigorously that without knowing the valid class key obtaining a useful decrypting key by querying the device with one input message is equivalent to finding a collision of the HMAC. We do not know if knowing temporal keys is equivalent to knowing the corresponding class key.

We suggest some remaining problems like those above as future research topics. To achieve the security proofs a more formal definition of security will be needed.

2.4.4 Yet Another Good Feature

An important advantage of our scheme is that the vendor can change the class keys of the system at any time without having to re-issue new devices to the users, while only the user's class keys and the public information $R_{i, j}$ need to be updated. In this case, the class keys need to be delivered to users through a secure channel, and the vendor can simply update the database with new values of $R_{i, j}$ on the public board. However, when an individual user wants to change the subscription, a new device needs to be issued. This also needs to be done when a different class is desired.

2.4.5 Space and Time Complexity

Our scheme publishes one value $R_{i, j}$ for each partial order relation $\mathcal{C}_{j} \prec \mathcal{C}_{i}$. The total number of public values is at most $\frac{n(n-1)}{2}$, when n is the number of classes in \mathcal{C}. On the user's side, the tamper-resistant device stores only $H_{K}, E, \mathbb{F}_{q}, I D_{i}, h_{i}$ and EncInf ${ }_{i}$.

At any time granule t, the tamper-resistant device needs to perform $\left(t-t_{1}\right)+$ $\left(t_{2}-t\right)+2=t_{2}-t_{1}+2 \leq Z$ hash iterations. Note that there are two hash iterations per HMAC operation [26]. In a system of life period 5 years which updates user keys every hour, Z is approximately 43800 . We did an experiment using SHA-1 as the hash function on a Gateway MX3215 laptop computer which has a $1.40 \mathrm{GHz} \operatorname{Intel}(\mathrm{R})$ Celeron(R) M processor, 256 MB of memory and runs Ubuntu 6.10 Edgy Eft. The code is written in C and built with GNU C compiler version 4.1.2. The result showed that 43800 hash iterations took .0800 second of processing time. In practice, $t_{2}-t_{1}$ is usually much smaller than Z and the hash computation is really fast.

The bulk of the computation performed by the tamper-resistant device is the calculation of $K_{j}=\left[h_{i}\right]\left(R_{i, j}+K_{i}\right)$ in Step 2 of the Decrypting Key Derivation phase. A rough estimate [30] shows that a 160 -bit prime p (the order of Q on $E\left(\mathbb{F}_{q}\right)$) should give us 80 -bit security against the best (generic) elliptic curve discrete logarithm attack in this situation. In this case, the calculation of K_{j} is comparable to elliptic curve scalar
multiplication computation with required precomputation done online. Section 3.7 of [31] gives rough estimates and experimental results for this computational cost, for NIST-recommended curves P-192, B-163 and K-163. The results show that the computation can be performed in several milliseconds on an 800 MHz Intel Pentium III using general-purpose registers. A smart card (with a 32-bit processor running at 25 to 32 MHz) can also do this efficiently [32]. Our scheme is in fact slower than H.Y. Chien's scheme, in which only hash computations are widely used. However it is still very efficient from the point of view of application and provides enhanced security.

In Table 2.1 below, we shows a comparison of the three time-bound hierarchical key management schemes.

Table 2.1: A comparison of three time-bound hierarchical key management schemes

Comparison of three schemes			
	Tzeng	Chien	Ours
Implementation requirements	Lucas function	Tamper-resistant device	Tamper-resistant device, ECC
$\#$ of public values	$n+6$	$n-1$	$n(n-1) / 2$
$\#$ of operations to derive temporal se- cret key of own class	$\left(t_{2}-t_{1}\right) T_{e}$, $\left(t_{2}-t_{1}\right) T_{L}, T_{h}$	$\left(t_{2}-t_{1}+1\right) T_{h}$	$\left(t_{2}-t_{1}+2\right) T_{h}$
$\#$ of operations to derive temporal se- cret key of direct child class	$\left(t_{2}-t_{1}+r\right) T_{e}$, $\left(t_{2}-t_{1}\right) T_{L}, T_{h}$	$\left(t_{2}-t_{1}+2\right) T_{h}$	$\left(t_{2}-t_{1}+2\right) T_{h}, T_{E}$

\# of operations to derive temporal se- cret key of l-edge- distance child class	$\left(t_{2}-t_{1}+r\right) T_{e}$, $\left(t_{2}-t_{1}\right) T_{L}, T_{h}$	$\left(t_{2}-t_{1}+1+l\right) T_{h}$	$\left(t_{2}-t_{1}+2\right) T_{h}, T_{E}$
security against Yi and Ye's attack	insecure	secure	secure
security against X. Yi's attack	N/A	insecure	secure

Suppose $\mathcal{C}_{j} \preceq \mathcal{C}_{i}, t \in\left[t_{1}, t_{2}\right]$.
Notation:
n : number of classes $|\mathcal{C}|$
r : number of child classes \mathcal{C}_{i} on path from \mathcal{C}_{i} to \mathcal{C}_{j}
T_{h} : hashing operation
T_{e} : modular exponentiation
T_{L} : Lucas function operation
T_{E} : elliptic curve scalar multiplication

2.5 Future Work and Remarks

Some future directions of this research are:

- Construction of an efficient key management scheme which is provably secure.
- Construction of an efficient key management scheme which does not have to use a tamper-proof device.
- Implementation of the scheme on smart cards and testing.

We want to remark that the choice of the group of an elliptic curve is not intrinsic for this key management scheme: it can be alternatively implemented with small modifications by using any suitable finite group, e.g. the Jacobian of a hyperelliptic curve. In any case, a compact representation of the group element and an efficient group operation must be available. The requirement leads to the subject of the following Chapter 3.

3. ARITHMETIC ON JACOBIANS OF GENUS 2 REAL HYPERELLIPTIC CURVES

3.1 Introduction and Motivation

Since first proposed by N. Koblitz [33] in 1989, the use of the Jacobian of a hyperelliptic curve in public-key cryptography has drawn attention from both academia and industry. With the best known attacks running exponential time, hyperelliptic curves offer a better key-per-bit security compared to conventional schemes like RSA. The attack described in [13] implies that only genus 2 curves provide the same key-perbit security as elliptic curves. For efficient cryptographic implementation, optimized explicit formulas (e.g. [34]) have been developed for genus 2 imaginary hyperelliptic curves. In [17], a cryptographic key exchange protocol is presented for genus 2 real hyperelliptic curves. However, explicit formulas for such curves have not been studied as widely as their imaginary counterparts.

This chapter contains two contributions to the research of explicit formulas for real models of genus 2 hyperelliptic curves:

1. It shows a new result in Theorem 8, which presents an equivalent change of coordinates for a hyperelliptic curve in the real model. This is useful for obtaining a short representation of a curve equation, so that the arithmetic is simplified.
2. The explicit divisor doubling formulas are presented for genus 2 real hyperelliptic curves. These formulas cover all cases of positive characteristic except characteristic 3 , for two major representations (i.e. the adapted basis and the reduced basis) of divisors. Explicit formulas for special cases of divisor doubling are also presented. The result shown in Section 3.6 supersedes the doubling for-
mulas found in [35], which deals with characteristic >3 and divisors represented in the reduced basis.

3.2 Background

For arithmetic purposes, in this chapter, we consider elliptic curves as hyperelliptic curves of genus one. For interests in cryptography, we concentrate on curves over finite fields \mathbb{F}_{q}. We use the definition of hyperelliptic curves by their nonsingular models as follows.

Definition 6 (Hyperelliptic Curves of Genus g, [35]) A hyperelliptic curve C of genus g defined over \mathbb{F}_{q} is an absolutely irreducible nonsingular curve defined by an equation

$$
\begin{equation*}
C: y^{2}+h(x) y=f(x) \tag{3.1}
\end{equation*}
$$

where $f, h \in \mathbb{F}_{q}[x]$ are such that $y^{2}+h(x) y-f(x)$ is absolutely irreducible; if $b^{2}+$ $h(a) b-f(a)=0$ for $(a, b) \in \overline{\mathbb{F}}_{q}^{2}$, then $2 b+h(a) \neq 0$ or $h^{\prime}(a) b-f^{\prime}(a) \neq 0$. A hyperelliptic curve is called

1. an imaginary hyperelliptic curve if f is monic, $\operatorname{deg}(f)=2 g+1$, and $\operatorname{deg}(h) \leq g$.
2. a real hyperelliptic curve if the following hold: If q is odd, then f is monic, $h=0, \operatorname{deg}(f)=2 g+2$. If q is even, then h is monic, $\operatorname{deg}(h)=g+1$, and either (a) $\operatorname{deg}(f) \leq 2 g+1$ or $(b) \operatorname{deg}(f)=2 g+2$ and the leading coefficient of f is of the form $\beta^{2}+\beta$ for some $\beta \in \mathbb{F}_{q}^{*}$.

Let $\mathbb{F}_{q}(C)$ be the corresponding function field. Let $\mathbb{F}_{q}[C]=\mathbb{F}_{q}[x, y] /\left(y^{2}+h(x) y-\right.$ $f(x)$) be the coordinate ring of C. Then $\mathbb{F}_{q}[C]$ is the integral closure of $\mathbb{F}_{q}[x]$ in $\mathbb{F}_{q}(C)$. Let \mathcal{P}_{∞} be the place at infinity of $\mathbb{F}_{q}(x)$. Then an imaginary hyperelliptic curve C corresponds to the case that \mathcal{P}_{∞} ramifies in $\mathbb{F}_{q}(C)$, and a real hyperelliptic curve C
corresponds to the case that \mathcal{P}_{∞} splits in $\mathbb{F}_{q}(C)$ (cf. [36], Chapter 14). We say the curve C has "one point at infinity" or "two points at infinity" accordingly.

Note that according to the above definition, there are models of hyperelliptic curves that are neither imaginary nor real [35] - those that correspond to an inert P_{∞}. We call such curves unusual and exclude such curves from our discussion in this thesis.

Let $C l\left(\mathbb{F}_{q}[C]\right)$ be the ideal class group of the affine algebra $\mathbb{F}_{q}[C]$. For cryptography, it is worth mentioning the connection between $C l\left(\mathbb{F}_{q}[C]\right)$ and the \mathbb{F}_{q}-rational points of the Jacobian of C, described via the following exact sequences: If C is imaginary, i.e., P_{∞} ramifies in $K(C)$, then

$$
\begin{equation*}
0 \rightarrow J a c_{\mathbb{F}_{q}}(C) \rightarrow C l\left(\mathbb{F}_{q}[C]\right) \rightarrow 0 \tag{3.2}
\end{equation*}
$$

If C is real, i.e., P_{∞} splits in $K(C)$, with ∞_{1} and ∞_{2} above it, then

$$
\begin{equation*}
0 \rightarrow\left\langle\infty_{1}-\infty_{2}\right\rangle \rightarrow J a c_{\mathbb{F}_{q}}(C) \rightarrow C l\left(\mathbb{F}_{q}[C]\right) \rightarrow 0 \tag{3.3}
\end{equation*}
$$

If P_{∞} is inert in $K(C)$, then

$$
0 \rightarrow J a c_{\mathbb{F}_{q}}(C) \rightarrow C l\left(\mathbb{F}_{q}[C]\right) \rightarrow \mathbb{Z} /(\mathcal{Z}) \rightarrow 0
$$

This is a reinterpretation of [36], Propositions 14.6 and 14.7.

3.3 Equivalent Change of Coordinates

Instead of working on curve equations in the most general form, sometimes it is more efficient (and more convenient) to deal with curves given by equations with fewer terms. In this section, we discuss some transformations that can be performed on a curve equation in the general form to obtain an equivalent model of the curve given by a shorter equation. We say two models of a curve are equivalent if they correspond to isomorphic coordinate rings.

3.3.1 Elliptic Curves

It is well-known (see, e.g., [25]) that an elliptic curve given by the (generalized) Weierstraß equation of the form

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in \mathbb{F}_{q}, \tag{3.4}
\end{equation*}
$$

under a change of coordinates, is equivalent to a short Weierstraß equation of the form

1. $y^{2}=x^{3}+A x+B$, if the characteristic of the field is not 2 or 3 ;
2. $y^{2}=x^{3}+a_{2}^{\prime} x^{2}+a_{6}^{\prime}$, if the characteristic of the field is 3 and $j(E) \neq 0$;
3. $y^{2}=x^{3}+a_{4}^{\prime} x+a_{6}^{\prime}$, if the characteristic of the field is 3 and $j(E)=0$;
4. $y^{2}+x y=x^{3}+a_{2}^{\prime} x^{2}+a_{6}^{\prime}$, if the characteristic of the field is 2 and $a_{1} \neq 0$;
5. $y^{2}+a_{3}^{\prime} y=x^{3}+a_{4}^{\prime} x+a_{6}^{\prime}$, if the characteristic of the field is 2 and $a_{1}=0$.

3.3.2 Imaginary Hyperelliptic Curves

This case occurs when the curve C has an \mathbb{F}_{q}-rational Weierstraß point ∞, i.e., $\operatorname{dim} L(2 \infty)>1$, where $L(2 \infty)$ is the Riemann-Roch space of the divisor 2∞. Given a Weierstraß equation of the form

$$
\begin{equation*}
y^{2}+h(x) y=f(x), \quad \operatorname{deg}(h) \leq g, \operatorname{deg}(f)=2 g+1 \tag{3.5}
\end{equation*}
$$

the following theorem gives guidelines for obtaining equivalent models.

Theorem 7 (Lockhart, 1994, [37]) The equation given by (3.5) of a hyperelliptic curve with genus g is unique up to a change of coordinate of the form

$$
x=u^{2} \hat{x}+r, \quad y=u^{2 g+1} \hat{y}+t(\hat{x})
$$

where $u \in \mathbb{F}_{q}^{*}, r \in \mathbb{F}_{q}$ and t is a polynomial over \mathbb{F}_{q} of degree $\leq g$.

This allows us to justify the isomorphic transformations of imaginary hyperelliptic curves of genus 2 described in [34]:

If $\operatorname{char}\left(\mathbb{F}_{q}\right)$ is odd, then Equation (3.5) can be shortened as $y^{2}=x^{5}+f_{4} x^{4}+f_{3} x^{3}+$ $f_{2} x^{2}+f_{1} x+f_{0}$; if in addition char $\mathbb{F}_{q} \neq 5$, we further have $f_{4}=0$.

If $\operatorname{char}\left(\mathbb{F}_{q}\right)=2$, then Equation (3.5) can be transformed to $y^{2}+\left(x^{2}+h_{1} x+h_{0}\right) y=$ $x^{5}+f_{1} x+f_{0}$, or $y^{2}+\left(h_{1} x+h_{0}\right) y=x^{5}+f_{4} x^{4}+f_{2} x^{2}+f_{1} x+f_{0}$.

3.3.3 Real Hyperelliptic Curves

This case occurs when the infinite place of the subfield $\mathbb{F}_{q}(x)$ of $\mathbb{F}_{q}(C)$ splits and the curve is given by the model

$$
\begin{equation*}
y^{2}+h(x) y=f(x), \quad \operatorname{deg}(h) \leq g+1, \operatorname{deg}(f) \leq 2 g+2 \tag{3.6}
\end{equation*}
$$

We adapt the statement and proof of Theorem 7 to the case of real hyperelliptic curves, and present them as follows.

Theorem 8 The equation given by (3.6) of a hyperelliptic curve is unique up to a change of coordinates of the form

$$
x=u \hat{x}+r, \quad y= \pm u^{g+1} \hat{y}+t(\hat{x}),
$$

where $u \in \mathbb{F}_{q}^{*}, r \in \mathbb{F}_{q}$ and t is a polynomial over \mathbb{F}_{q} with $t=0$ if q is odd, and $\operatorname{deg}(t) \leq g+1$ if q is even.

Proof Let us first briefly review how Equation (3.6) is obtained. Let P_{∞} be the place at infinity of $\mathbb{F}_{q}(x)$, which splits in $\mathbb{F}_{q}(C)$ with $\left\{\infty_{1}, \infty_{2}\right\}$ lying above. Then by construction, we have that the Riemann-Roch space $L\left(P_{\infty}\right)$ has basis $\{1, x\}$. For $1 \leq j \leq g$ we have $\operatorname{dim} L\left(j P_{\infty}\right) \geq 2 j-g+1$, by the Riemann-Roch theorem, and the elements $\left\{1, x, x^{2}, \ldots, x^{j}\right\}$ are linearly independent over \mathbb{F}_{q} in $L\left(j P_{\infty}\right)$. We also have $\operatorname{dim} L\left(g P_{\infty}\right)=\operatorname{deg}\left(g P_{\infty}\right)-g+1=g+1, \operatorname{dim} L\left((g+1) P_{\infty}\right)=$ $\operatorname{deg}\left((g+1) P_{\infty}\right)-g+1=g+3$, for $\operatorname{deg}\left(g P_{\infty}\right)=2 g>2(g-1)$ and $\operatorname{deg}\left((g+1) P_{\infty}\right)=$ $2 g+2>2(g-1)$. The $g+1$ functions $1, x, x^{2}, \ldots, x^{g}$ form a basis for $L\left(g P_{\infty}\right)$.

The function $x^{g+1} \in L\left((g+1) P_{\infty}\right) \backslash L\left(g P_{\infty}\right)$. To form a basis for $L\left((g+1) P_{\infty}\right)$, there must be another function, y, which is linearly independent of the powers of x, in $L\left((g+1) P_{\infty}\right) \backslash L\left(g P_{\infty}\right)$. Now we look at $L\left(2(g+1) P_{\infty}\right)$, which is $(3 g+5)-$ dimensional and contains the $3 g+6$ functions

$$
\begin{equation*}
1, x, x^{2}, \ldots, x^{g+1}, y, x^{g+2}, x y, \ldots, x^{2 g+2}, x^{g+1} y, y^{2} \tag{3.7}
\end{equation*}
$$

Therefore there is a nontrivial \mathbb{F}_{q}-linear relationship among them. Since the functions of powers of x in (3.7) are linearly independent over \mathbb{F}_{q} and $y \notin K[x]$, the coefficient of y^{2} must not be 0 . Multiplying the linear relation with the multiplicative inverse of the coefficient of y^{2} we obtain the model of the curve in the form of (3.6). Furthermore, W.L.O.G ${ }^{1}$, we may assume the conditions on coefficients and degrees as in Definition 6 are satisfied.

Now suppose \hat{x} and \hat{y} are another such pair of functions as x and y above. Then $\hat{x} \in L\left(P_{\infty}\right)$, and we must have $x=a \hat{x}+r$ for some $a \in \mathbb{F}_{q}^{*}, r \in \mathbb{F}_{q}$. Similarly, $\hat{y} \in L\left((g+1) P_{\infty}\right)$, and thus we have $y=b \hat{y}+t(\hat{x})$ for $b \in \mathbb{F}_{q}^{*}$ and $t(\hat{x}) \in \mathbb{F}_{q}[\hat{x}]$, $\operatorname{deg}(t) \leq g+1$.

If q is odd, then the monicity of the coefficients for $\hat{x}^{2 g+2}$ and \hat{y}^{2} and degeneracy of the term $\hat{x} \hat{y}$ implies that $b^{2}=a^{2 g+2}$ and $t(x)=0$. Let $u=a$. Then $u \in \mathbb{F}_{q}^{*}$ and $b= \pm u^{g+1}$.

If q is even, then the model in x and y is in the form of (3.6) with h monic of degree $g+1$, and either (a) $\operatorname{deg}(f) \leq 2 g+1$, or (b) $\operatorname{deg}(f)=2 g+2$ and f has a leading coefficient $\beta^{2}+\beta$ for some $\beta \in \mathbb{F}_{q}^{*}$. Let t_{1} be the coefficient of \hat{x}^{g+1} in $t(\hat{x})$. We look at the coefficients of the terms in \hat{x} and \hat{y} with pole order $2 g+2$ at $\infty_{1}\left(\right.$ or $\left.\infty_{2}\right)$. In case (a), we have $b^{2} \hat{y}^{2}+a^{g+1} b \hat{x}^{g+1} \hat{y}=\left(t_{1}^{2}+a^{g+1} t_{1}\right) \hat{x}^{2 g+2}$, i.e., $\hat{y}^{2}+\left(a^{g+1} / b\right) \hat{x}^{g+1} \hat{y}=\left(1 / b^{2}\right)\left(t_{1}^{2}+a^{g+1} t_{1}\right) \hat{x}^{2 g+2}$. Therefore, we must have $a^{g+1} / b=1$, i.e., $b=a^{g+1}$. Let $u=a$. Then $b=u^{g+1}$. And either the coefficient of $\hat{x}^{2 g+2}$ is 0 , if $t_{1}=0$, or it is equal to $z^{2}+z$, where $z=t_{1} / u^{g+1} \in \mathbb{F}_{q}^{*}$ with $t_{1} \neq 0$. Similarly, in case (b), we let $u=a$. Then we have $b=u^{g+1}$ and $\hat{x}^{2 g+2}$ has coefficient of the form $z^{2}+z$, where $z=\beta+t_{1} / b$. This completes the proof.

[^2]A genus 2 real hyperelliptic curve C over a finite field \mathbb{F}_{q} can be given by the equation

$$
y^{2}+h(x) y=f(x)
$$

where $h(x)=\left(h_{3} x^{3}+h_{2} x^{2}+h_{1} x+h_{0}\right), f(x)=f_{6} x^{6}+f_{5} x^{5}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}$, and $h_{i}, f_{j} \in \mathbb{F}_{q}$.

If $\operatorname{char}\left(\mathbb{F}_{q}\right)$ is odd, then $h=0$ and $f_{6}=1$. In particular, if $\operatorname{char}\left(\mathbb{F}_{q}\right)>3, f(x)$ can be written as $f(x)=x^{6}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}$ with a linear change of variable $x \leftarrow x+f_{5} / 6$. This shorter equation is equivalent to the original one, in the sense that they give the same coordinate ring.

If $\operatorname{char}\left(\mathbb{F}_{q}\right)=2$, then $h(x)$ is monic, $\operatorname{deg}(h)=3$, and either $\operatorname{deg}(f) \leq 5$, or $\operatorname{deg}(f)=6$ and f_{6} is of form $\beta^{2}+\beta \neq 0$ for some $e \in \mathbb{F}_{q}^{*}$.

Now suppose C is written in the form

$$
y^{2}+\left(x^{3}+h_{2} x^{2}+h_{1} x+h_{0}\right) y=f_{6} x^{6}+f_{5} x^{5}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}
$$

where $f_{6}=e^{2}+e \in \mathbb{F}_{q}$, which can be zero or nonzero. The change of variable $x \leftarrow x+h_{2}$ makes the h_{2} term vanish.

$$
C: y^{2}+\left(x^{3}+h_{1} x+h_{0}\right) y=f_{6} x^{6}+f_{5} x^{5}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}
$$

Then $y \leftarrow y+f_{5} x^{2}$ eliminates the f_{5} term.

$$
C: y^{2}+\left(x^{3}+h_{1} x+h_{0}\right) y=f_{6} x^{6}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}
$$

Then $y \leftarrow y+f_{4} x$ eliminates the f_{4} term

$$
C: y^{2}+\left(x^{3}+h_{1} x+h_{0}\right) y=f_{6} x^{6}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0}
$$

Then $y \leftarrow y+f_{3}$ eliminates the f_{3} term

$$
C: y^{2}+\left(x^{3}+h_{1} x+h_{0}\right) y=f_{6} x^{6}+f_{2} x^{2}+f_{1} x+f_{0}
$$

This is the shortest Weierstraß equation we can use.

3.4 Explicit Formulas for Elliptic and Genus 2 Imaginary Hyperelliptic Curves

3.4.1 Mumford Representation and Cantor's algorithm

In order to use the Jacobian of a hyperelliptic curve in cryptography, we must have a compact encoding of its elements as well as efficient arithmetic operations on the elements. For imaginary hyperelliptic curves, the Mumford representation of the degree 0 divisor class and Cantor's algorithm provide the facilities to do so.

Theorem 9 (Mumford representation, cf. $[14,39]$) Let C be a genus g hyperelliptic curve given by $C: y^{2}+h(x) y=f(x)$, where $h, f \in \mathbb{F}_{q}[x], \operatorname{deg}(f)=2 g+$ $1, \operatorname{deg}(h) \leq g$. Each nontrivial divisor class over \mathbb{F}_{q} can be represented via a unique pair of polynomials $u(x)$ and $v(x), u, v \in \mathbb{F}_{q}[x]$, where

1. u is monic,
2. $\operatorname{deg}(v)<\operatorname{deg}(u) \leq g$,
3. $u \mid v^{2}-v h-f$.

Let $D=\sum_{i=1}^{r} P_{i}-r \infty$, where $P_{i} \neq \infty, P_{i} \neq-P_{j}$ for $i \neq j$ and $r \leq g$. Put $P_{i}=\left(x_{i}, y_{i}\right)$. Then the divisor class of D is represented by

$$
u(x)=\sum_{i=1}^{r}\left(x-x_{i}\right)
$$

and if P_{i} occurs n_{i} times then

$$
\left.\left(\frac{d}{d x}\right)\left[v(x)^{2}-v(x) h(x)-f(x)\right]\right|_{x=x_{i}}=0, \text { for } 0 \leq j \leq n_{i}-1
$$

Such a pair $[u, v]$ is called a Mumford representation of divisor class of the curve C (or ideal class of the corresponding affine coordinate ring $\mathbb{F}_{q}[C]$).

The Mumford representation is usually defined for elements of the Jacobian of an imaginary hyperelliptic curve, as described above. For real hyperelliptic curves, an
analogous definition is also achievable for the infrastructure within the Jacobian of the curve. We will expose more on it in Section 3.5.

As an analogue of the composition of binary quadratic forms originated by Gauss, the Cantor's algorithm $[33,40]$ realizes the hyperelliptic curve Jacobian group law by working on the Mumford representation of the elements.

Algorithm 1 Cantor's algorithm
Input: Two divisor classes $\bar{D}_{1}=\left[u_{1}, v_{1}\right]$ and $\bar{D}_{2}=\left[u_{2}, v_{2}\right]$ on the curve $C: y^{2}+$ $h(x) y=f(x)$.

Output: The unique reduced divisor $D=[U, V]$ such that $\bar{D}=\bar{D}_{1} \oplus \bar{D}_{2}$.
1: $d_{1} \leftarrow \operatorname{gcd}\left(u_{1}, u_{2}\right) ; d_{1}=e_{1} u_{1}+e_{2} u_{2}$
$d \leftarrow \operatorname{gcd}\left(d_{1}, h-v_{1}-v_{2}\right) ; d=c_{1} d_{1}+c_{2}\left(h-v_{1}-v_{2}\right)$
$s_{1} \leftarrow c_{1} e_{1}, s_{2} \leftarrow c_{1} e_{2}$ and $s_{3} \leftarrow c_{2}$
$U \leftarrow u_{1} u_{2} / d^{2}$ and $V \leftarrow\left(s_{3}\left(v_{1} v_{2}+f\right)-s_{1} u_{1} v_{2}-s_{2} u_{2} v_{1}\right) / d(\bmod U)$
repeat
$U^{\prime} \leftarrow\left(f+V h-V^{2}\right) / U$ and $V^{\prime} \leftarrow h-V\left(\bmod U^{\prime}\right)$
$U \leftarrow U^{\prime}$ and $V \leftarrow V^{\prime}$
until $\operatorname{deg}(U) \leq g$
make U monic and return $[U, V]$

Again, Cantor's algorithm is designed to work for hyperelliptic curve in the imaginary model, but it can be modified for the infrastructure of real hyperelliptic curves. We will have more discussion in Section 3.5.

3.4.2 Elliptic Curves And Genus 2 Hyperelliptic Curves in the Imaginary Model

An elliptic curve E with a point ∞ at infinity is isomorphic to its degree 0 divisor class group $\operatorname{Pic} c^{0}(C)$. Applying Cantor's algorithm to E, the well-known group law can be explicitly described as follows.

Theorem 10 (Group Law Algorithm 2.3, [41]) Let E be an elliptic curve given by a Weierstraß equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} .
$$

(a) Let $P_{0}=\left(x_{0}, y_{0}\right) \in E$. Then

$$
-P_{0}=\left(x_{0},-y_{0}-a_{1} x_{0}-a_{3}\right)
$$

Now let

$$
P_{1}+P_{2}=P_{3} \quad \text { with } \quad P_{i}=\left(x_{i}, y_{i}\right) \in E .
$$

(b) If $x_{1}=x_{2}$ and $y_{1}+y_{2}+a_{1} x_{2}+a_{3}=0$, then

$$
P_{1}+P_{2}=\infty
$$

Otherwise let

$$
\begin{gathered}
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \mu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}} \quad \text { if } x_{1} \neq x_{2} ; \\
\lambda=\frac{2 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}, \\
\mu=\frac{-x_{1}^{3}+a_{4} x_{1}+2 a_{6}-a_{3} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}} \quad \text { if } x_{1}=x_{2} .
\end{gathered}
$$

(c) $P_{3}=P_{1}+P_{2}$ is given by

$$
\begin{gathered}
x_{3}=\lambda^{2}+a_{1} \lambda-a_{2}-x_{1}-x_{2}, \\
y_{3}=-\left(\lambda+a_{1}\right) x_{3}-\mu-a_{3} .
\end{gathered}
$$

(d) As special cases of (c), we have for $P_{1} \neq \pm P_{2}$,

$$
x\left(P_{1}+P_{2}\right)=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}+a_{1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)-a_{2}-x_{1}-x_{2} ;
$$

and the doubling formula for $P=(x, y) \in E$,

$$
x([2] P)=\frac{x^{4}-b_{4} x^{2}-2 b_{6} x-b_{8}}{4 x^{3}+b_{2} x^{2}+2 b_{4} x+b_{6}},
$$

where

$$
\begin{gathered}
b_{2}=a_{1}^{2}+4 a_{2}, \quad b_{4}=2 a_{4}+a_{1} a_{3}, \quad b_{6}=a_{3}^{2}+4 a_{6} \quad \text { and } \\
b_{8}=a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} .
\end{gathered}
$$

The Riemann Hypothesis for abelian varieties over finite fields (cf. [42]) implies that the cardinality of the rational points of the Jacobian variety of a genus g curve over a finite field \mathbb{F}_{q} is approximately q^{g}. This is q^{2} for the case of genus 2. It is the 1-1 correspondence, as shown in (3.2), between the categories of divisor class groups of imaginary genus 2 hyperelliptic and ideal class groups of the coordinate ring $\mathbb{F}_{q}[C]$ of the curve that makes the arithmetic on divisor class groups well understood. Thus it becomes clear how to do discrete logarithm based cryptography on Jacobians of imaginary genus 2 curves. Given that the best attacks to the discrete logarithm problem in a genus 2 Jacobian are the generic ones that have complexity $O(\sqrt{N})$, where N is the group order (cardinality), the use of Jacobians of genus 2 curves for discrete logarithm based cryptography versus elliptic curves (genus 1 case), though more complicated, has the advantage that to achieve the same level of security, it requires a smaller size of the underlying finite field in which we do the actual arithmetic. Genus 2 curves for cryptography are more suitable for smaller processor architectures, and may potentially offer us extra efficiency, compared to their elliptic curve counterpart [43]. The rigorous argument cannot be easily made; it is complicated by many factors, including design and implementation. To make such an estimate feasible, a first and very important step is to understand better the divisor arithmetic for genus 2 curves.

Following T. Lange's pioneering work [34], extensive efforts have been put into the research on explicit formulas, i.e., formulas written in terms of actually field arithmetic, for imaginary genus 2 hyperelliptic curves of the following form:

$$
\begin{equation*}
C: y^{2}+h(x) y=f(x) \tag{3.8}
\end{equation*}
$$

where $f(x)$ is a degree 5 polynomial defined over the finite field \mathbb{F}_{q}, and $\operatorname{deg}(h) \leq 2$.
Such explicit formulas are computationally more efficient than the generic algorithm (the Cantor's algorithm) given in polynomial operations, for performing the group law in the Jacobian of genus 2 curves. The following Tables 3.1 and 3.2 show a performance comparison of the generic algorithm and the explicit formulas. The code is written in C++ and built over the libg2hec genus 2 crypto library [44] using
the gec compiler version 4.2 .3 with flag -O2. The libg2hec library uses field arithmetic provided by V. Shoup's NTL library [45], and implements the Cantor's algorithm as in Algorithm 1 and the explicit formulas for imaginary genus 2 curves in affine coordinates. The experiment was done on a Lenovo ThinkPad T61 laptop computer which has an $\operatorname{Intel}(\mathrm{R})$ Core 2 Duo processor (T7300 2.0GHz), 2 GB RAM, and runs Linux kernel version 2.6.24-19.

Table 3.1: Performance Comparison: average time (in ms) for one addition/doubling over prime fields of size ℓ (in bits)

Size ℓ (in bits)	Cant. add	Expli. add	Cant. doub.	Expli. doub.
80	0.07608	0.05528	0.08232	0.06728
160	0.09956	0.07396	0.10912	0.08948
256	0.13248	0.103	0.14564	0.1246
324	0.16784	0.13092	0.18616	0.15976
512	0.23188	0.17708	0.26068	0.21864
1024	0.52108	0.37364	0.57692	0.45828

Table 3.2: Ratio of Operational Times

Size ℓ (in bits)	80	160	256	324	512	1024
Cant./Expli. add	1.37627	1.34613	1.28621	1.282	1.30946	1.3946
Cant./Expli. doub.	1.22354	1.21949	1.16886	1.16525	1.19228	1.25888

3.5 Genus 2 Hyperelliptic Curves in Real Model

We shall consider another type of genus 2 curve, i.e., real genus 2 hyperelliptic curves. Recall that they have the form

$$
\begin{equation*}
C: y^{2}+h(x) y=f(x) \tag{3.9}
\end{equation*}
$$

where $f, h \in \mathbb{F}_{q}[x]$ are such that $y^{2}+h(x) y-f(x)$ is absolutely irreducible, i.e. irreducible over \mathbb{F}_{q}, and if $b^{2}+h(a) b=f(a)$ for $(a, b) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$, then $2 b+h(a) \neq 0$ or $h^{\prime}(a) b-f^{\prime}(a) \neq 0$. If q is odd, then f is monic, $h=0, \operatorname{deg}(f)=6$. If q is even, then h is monic, $\operatorname{deg}(h)=3$, and either $($ a) $\operatorname{deg}(f) \leq 5$ or $(\mathrm{b}) \operatorname{deg}(f)=6$ and the leading coefficient of f is of the form $\beta^{2}+\beta$ for some $\beta \in \mathbb{F}_{q}^{*}$.

A genus 2 curve of this form has two "points at infinity." Unlike the case of imaginary genus 2 hyperelliptic curves, the divisor class group of a real genus 2 hyperelliptic curve does not correspond nicely to the ideal class group of the coordinate ring $\mathbb{F}_{q}[C]$ of the curve (cf. (3.3) or [36], Proposition 14.7). Moreover, as in the number field case, each ideal class of the function field K is not uniquely represented by reduced ideals. This creates obstacles for using the ideal class group of a real hyperelliptic curve for computation, hence limits the use of real hyperelliptic curves in discrete logarithm based cryptography. However, the infrastructure of the divisor class group leads us to look at the problem from a different perspective. The following theorem sets up a connection between the divisor class group and the set of reduced ideals of $\mathbb{F}_{q}(C)$.

Theorem 11 (Paulus-Rück, 1999, [46]) There is a canonical bijection between the divisor class group $J \operatorname{Jac}_{\mathbb{F}_{q}}(C)$ and the set of pairs $\{(\mathfrak{a}, n)\}$, where \mathfrak{a} is a reduced ideal of $\mathbb{F}_{q}[C]$ and n is a non-negative integer with $0 \leq \operatorname{deg}(\mathfrak{a})+n \leq g$.

For arithmetic purposes, we restrict our attention to the special subset $\mathcal{R}:=$ $\{(\mathfrak{a}, 0): \mathfrak{a}$ reduced and principal $\}$ of the Jacobian (up to isomorphism). Define the
regulator R of $\mathbb{F}_{q}(C)$ in $\mathbb{F}_{q}[C]$ to be the order of $\infty_{1}-\infty_{2}$ in $J a c_{\mathbb{F}_{q}}(C)$. Recall from (3.3) the group isomorphism

$$
J a c_{\mathbb{F}_{q}}(C) /\left\langle\infty_{1}-\infty_{2}\right\rangle \simeq C l\left(\mathbb{F}_{q}[C]\right)
$$

Now it is clear that $\# \mathcal{R} \leq R$.
\mathcal{R} can be made into a totally ordered set with an order introduced by a distance function $\delta(\cdot)$ as follows: Fix the trivial ideal $\mathfrak{a}_{1}=(1)=\mathbb{F}_{q}[C] \in \mathcal{R}$. For any ideal $\mathfrak{b} \in \mathcal{R}$, by definition, there exists $\alpha \in \mathbb{F}_{q}(C)^{*}$ such that $\mathfrak{b}=(\alpha) \mathfrak{a}_{1}$. Let $\delta(b)=-\nu_{1}(\alpha)$ $(\bmod R)$, where ν_{1} is the normalized valuation of $\mathbb{F}_{q}(C)$ at $\infty_{1} .{ }^{2}$ It follows that elements in R are uniquely determined by their distances, and that \mathcal{R} is a totally ordered set by distance [47]. More precisely, we can write $\mathcal{R}=\left\{\mathfrak{a}_{1}, \mathfrak{a}_{2}, \ldots, \mathfrak{a}_{m}\right\}$, where $m \leq R$ and $0=\delta\left(\mathfrak{a}_{1}\right)<\delta\left(\mathfrak{a}_{2}\right)<\ldots<\delta\left(\mathfrak{a}_{m}\right)<R$. Given the one-to-one correspondence discussed in Theorem 11, this can also be written as

$$
\mathcal{R}=\left\{\bar{D}_{1}, \bar{D}_{2}, \ldots, \bar{D}_{m}\right\}, \quad \text { where } m \leq R, \text { and } 0=\delta\left(\bar{D}_{1}\right)<\ldots<\delta\left(\bar{D}_{m}\right)<R,
$$

in divisor class notation. The set \mathcal{R} with the distance function $\delta(\cdot)$ is called the infrastructure of the principal ideal class.

An algorithm for performing arithmetic operations in \mathcal{R} has been presented in [17, $46,48]$. It consists of three steps:
(a) composition of reduced ideals,
(b) reduction of the primitive part of the product, and
(c) baby steps, i.e. adjusting the output of the reduction so that the degree condition of the theorem is satisfied.

Step (a) and (b) together are called a giant step. A giant step, often written as $\mathfrak{a}_{i} \cdot \mathfrak{a}_{j}$ (or equivalently, $\bar{D}_{i}+\bar{D}_{j}$), is the analogue of the group operation in the imaginary case. A baby step is unique to real hyperelliptic curves. As described in [35], it is the operation $\mathfrak{a}_{i} \rightarrow \mathfrak{a}_{i+1}$ (or equivalently, $\bar{D}_{i} \rightarrow \bar{D}_{i+1}$).

[^3]Note that \mathcal{R} is not a group with respect to the giant step operation, because associativity does not necessarily hold [49]. However, it is true that for $D, D^{\prime} \in \mathcal{R}$ we have

$$
\delta\left(D+D^{\prime}\right)=\delta(D)+\delta\left(D^{\prime}\right)-d, \text { where } 0 \leq d \leq 4
$$

and d can be efficiently computed (see, for example, Section 2 of [49]). This allows us to do cryptography in \mathcal{R}. Several key-exchange protocols based on arithmetic in \mathcal{R} have been presented in [49]. The need for efficient implementation of these protocols promotes investigations on explicit arithmetic in divisor class groups of real genus 2 hyperelliptic curves.

Our research focuses on the explicit formulas: we use the (affine) Mumford representation (defined in Section 3.6 below) of the divisor classes of real hyperelliptic curves, apply the composition and reduction algorithms for operations in \mathcal{R}, work on finite field arithmetic directly to derive the baby step and giant step (divisor addition and doubling) formulas, and optimize the results. We only present the result on divisor doubling formulas for the giant step in detail in this thesis. Further information about the baby step and addition formulas can be found in $[35,50,51]$

3.6 Explicit Formulas for the Real Model

We now restrict our attention to the arithmetic of the subset of $J a c_{\mathbb{F}_{q}}(C)$ that corresponds to \mathcal{R}. Note that any element in \mathcal{R} corresponds uniquely to a reduced principal ideal \mathfrak{a} of $\mathbb{F}[C]$, which can be represented by a pair $[u, v]$ of polynomials. Therefore, we only look at and perform operations on elements of $J a c_{\mathbb{F}_{q}}(C)$ which are given by a pair $\bar{D}=[u, v]$ of polynomials over \mathbb{F}_{q}, such that

1. u is monic,
2. $\operatorname{deg}(u) \leq g$,
3. $u \mid v^{2}-v h-f$,
4. one of the following conditions is satisfied:
(a) for the adapted (standard) basis: $\operatorname{deg}(v)<\operatorname{deg}(u)$, or
(b) for the reduced basis: $-\nu_{1}(v-h-y)<-\nu_{1}(u)<-\nu_{1}(v+y)$.

If only 1,3 , and 4 are satisfied, \bar{D} is called semi-reduced. If all four conditions are satisfied, then \bar{D} is called reduced. For details on the above representation, see [35,47].

This is the Mumford representation of divisor classes in the infrastructure \mathcal{R} (in adapted/reduced basis). As with Cantor's algorithm in the case of imaginary hyperelliptic curves, operation can be applied to \mathcal{R} to compose or reduce divisors, and thus implement the baby step and giant step operations. The algorithms are introduced in [35]. We describe them in Algorithms 2 and 3, as follows:

Algorithm 2 Composition

Input: Two divisor classes $\bar{D}_{1}=\left[u_{1}, v_{1}\right]$ and $\bar{D}_{2}=\left[u_{2}, v_{2}\right]$ on the curve $C: y^{2}+$ $h(x) y=f(x)$.
Output: A semi-reduced divisor $D=[U, V]$ such that $\bar{D}=\bar{D}_{1} \oplus \bar{D}_{2}$.
1: $d \leftarrow \operatorname{gcd}\left(u_{1}, u_{2}, v_{1}+v_{2}+h\right)=x_{1} u_{1}+x_{2} u_{2}+x_{3}\left(v_{1}+v_{2}+h\right)$
2: $U \leftarrow u_{1} u_{2} / d^{2}$ and $V \leftarrow\left(x_{3}\left(v_{1} v_{2}+f\right)+x_{1} u_{1} v_{2}+x_{2} u_{2} v_{1}\right) / d(\bmod U)$

Let $H(x)=\lfloor y\rfloor$ be the principal part of a root y of $y^{2}+h(x) y-f(x)=0$, i.e., if $y=\sum_{i=-\infty}^{m} y_{i} x^{i} \in \mathbb{F}_{q}\left\langle x^{-1}\right\rangle$, then $H(x)=\sum_{i=0}^{m} y_{i} x^{i}$.

```
Algorithm 3 Reduction
Input: A divisor class \(\bar{D}=[u, v]\) the curve \(C: y^{2}+h(x) y=f(x)\).
Output: A reduced divisor \(D^{\prime}=[U, V]\) such that \(\bar{D}^{\prime}=\bar{D}\).
    1: \(a \leftarrow(v+H(x)) \operatorname{div} u\).
    repeat
        \(V \leftarrow v-a u, U \leftarrow\left(f+h V-V^{2}\right) / u\).
    until \(\operatorname{deg}(U) \leq g\)
    5: Make \(U\) monic and adjust \(V\) to a adapted/reduced basis if necessary.
```

Let $[u, v]$ be a Mumford representation of a divisor class in \mathcal{R}. We discuss explicit formulas for divisor class addition (ideal multiplication), divisor class doubling (ideal squaring), and a baby step (ideal reduction). We present doubling formulas in detail. The formulas are presented for both the adapted and reduced bases.

While the formulas are given for the hyperelliptic curve in the most general form

$$
\begin{equation*}
C: y^{2}+h(x) y=f(x) \tag{3.1}
\end{equation*}
$$

where $h(x)=h_{3} x^{3}+h_{2} x^{2}+h_{1} x+h_{0}$ and $f(x)=f_{6} x^{6}+f_{5} x^{5}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+$ $f_{1} x+f_{0}$, we make the following assumptions when counting the number of finite field operations.

- If the characteristic of the field is a prime $p>3$, we can transform the general equation defining the curve to one of the form

$$
C: y^{2}=f(x)
$$

that is equivalent to the original curve, where $f(x)=x^{6}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+$ $f_{1} x+f_{0}$. i.e., we can assume that $h(x)=0$, the leading coefficient of $f(x)$ is 1 , and the x^{5} term of $f(x)$ is 0 .

- If the characteristic of the field is 2 , we consider the hyperelliptic curve given by an equation of the form

$$
C: y^{2}+h(x) y=f(x)
$$

where $f(x)=f_{6} x^{6}+f_{2} x^{2}+f_{1} x+f_{0}$, and $h(x)=x^{3}+h_{1} x+h_{0}$. In this case, f_{6} is of the form $\beta^{2}+\beta$ for some $\beta \in \mathbb{F}_{q}^{*}$. We ignore the count for multiplications by f_{6} or β in explicit formulas.
With the assumptions above, we write $y=\sum_{i=-\infty}^{m} y_{i} x^{i} \in \mathbb{F}_{q}\left\langle x^{-1}\right\rangle$, substitute it into the curve equation, determine the values y_{i} by comparing coefficients of powers of x, and pre-compute $H(x)=y_{3} x^{3}+y_{2} x^{2}+y_{1} x+y_{0}$ as follows. If the finite field has odd characteristic and

$$
f(x)=x^{6}+f_{4} x^{4}+f_{3} x^{3}+f_{2} x^{2}+f_{1} x+f_{0} \quad h(x)=0,
$$

we have $y_{3}=1, y_{2}=0, y_{1}=f_{4} / 2$ and $y_{0}=f_{3} / 2$. Therefore a reduced basis $[u, v]$ in this case has v of the form $v(x)=x^{3}+v_{1} x+v_{0}$. If the finite field has an even characteristic and

$$
f(x)=\left(\beta^{2}+\beta\right) x^{6}+f_{2} x^{2}+f_{1} x+f_{0}, \quad h(x)=x^{3}+h_{1} x+1,
$$

we have $y_{3}=\beta^{\prime}, y_{2}=0, y_{1}=\beta^{\prime} h_{1}$ and $y_{0}=\beta^{\prime} h_{0}$, where $\beta^{\prime}=\beta$ or $\beta+1$. Note that in this case $H(x)=\beta^{\prime} h(x)$. In this case, a reduced basis $[u, v]$ has v of the form $\left(1+\beta^{\prime}\right) x^{3}+v_{1} x+v_{0}$.

3.6.1 Baby Step and Addition Formulas

We do not present in this thesis the baby step and addition formulas, which will be available in [50]. Partial results of the current research is summarized in Table 3.11.

3.6.2 Doubling Formulas

3.6.2.1 Algorithm for Divisor Doubling

Let $[u, v]$ be a degree 2 reduced divisor written in the Mumford representation, with both points of the divisor not equal to their opposites. To perform divisor doubling, compute the following expressions. Similar formulas for simplification of the Cantor's algorithm for genus 2 imaginary hyperelliptic curves were first suggested
by R. Harley in [52] and extended by T. Lange [39] et. al. We will show that these formulas give the desired result.

$$
\text { Adapted basis: } \quad v^{\prime}=h-s u-v \quad\left(\bmod u^{\prime}\right)
$$

$$
\text { Reduced basis: } \quad v^{\prime}=H(x)+h(x)-\left[(H(x)+s \cdot u+v) \quad\left(\bmod u^{\prime}\right)\right]
$$

Let $[u, v]=\left[x^{2}+u_{1} x+u_{0}, x^{3}+v_{1} x+v_{0}\right]$ be a degree two reduced basis Mumford representation with both points of the divisor not equal to their opposites. Then Cantor's Algorithm for doubling the divisor (u, v) must result in $\left(U_{1}, V_{1}\right)$ such that

$$
\begin{aligned}
U_{0} & =u^{2} \\
V_{0} & \equiv v \quad(\bmod u) \\
\left(V_{0}\right. & =v+s u \text { for some } s) \\
V_{1} & =h-V_{0}+\left\lfloor\frac{V_{0}+H(y)}{U_{0}}\right\rfloor U_{0} \\
U_{1} & =\left(f+h \cdot V_{1}-V_{1}^{2}\right) / U_{0}
\end{aligned}
$$

Here, s is chosen such that U_{0} divides $V_{0}^{2}-h \cdot V_{0}-f$. Again, $\left\lfloor\frac{V_{0}+H(x)}{U_{0}}\right\rfloor$ is zero since U_{0} has degree 4 and $V_{0}+H(y)$ has degree 3 . Hence, $V_{1}=h-V_{0}=h-s u-v$ and

$$
\begin{aligned}
U_{1} & =\left(f+h \cdot(h-s u-v)-(h-s u-v)^{2}\right) / u^{2} \\
& =\left(f+h v-v^{2}-u s(2 v-h)-s^{2} u^{2}\right) / u^{2} \\
& =\left(\left(f+h v-v^{2}\right) / u-(2 v-h) s\right) / u-s^{2} \\
& =(k-(2 v-h) s) / u-s^{2}
\end{aligned}
$$

where the division in $k=\left(f+h v-v^{2}\right) / u$ is exact. To make the division of $k-(2 v-h) s$ by u exact, we choose $s \equiv k \cdot(2 v-h)^{-1}(\bmod u)$, and obtain

$$
k-(2 v-h) s \equiv k-(2 v-h) \cdot k \cdot(2 v-h)^{-1} \equiv 0 \quad(\bmod u) .
$$

$$
\begin{aligned}
& \widetilde{v} \equiv 2 v-h \quad(\bmod u) \quad r=\operatorname{resultant}(u, \widetilde{v}) \\
& i n v \equiv r(\widetilde{v})^{-1} \quad(\bmod u) \quad k=\left(f+h v-v^{2}\right) / u \\
& s^{\prime} \equiv k \cdot i n v \quad(\bmod u) \quad s=\frac{1}{r} \cdot s^{\prime} \\
& \widetilde{u}=s^{2}+((2 v-h) s-k) / u \quad u^{\prime}=\widetilde{u} \text { made monic }
\end{aligned}
$$

Finally, we reduce $\left[U_{1}, V_{1}\right]$ into either adapted or reduced basis. U_{1} is made monic to yield

$$
u^{\prime}=s^{2}+(2 v s-k) / u \text { made monic } .
$$

For the adapted basis, $v^{\prime}=V_{1} \bmod u^{\prime}$. For the reduced basis, $v^{\prime}=H(x)+h(x)-$ $\left[H(x)+h(x)-V_{1} \bmod u^{\prime}\right]=H(x)+h(x)-\left[(H(x)+s u+v) \bmod u^{\prime}\right]$.

3.6.2.2 General Explicit Formulas for Divisor Doubling

Instead of following the doubling formulas described in Section 3.6.2.1 with polynomial operations, we write the result of each step in terms of finite field operations, optimize manually using techniques like Karatsuba multiplication, subexpression elimination, etc., and derive the explicit formulas for divisor doubling in this chapter.

We only count inversions, multiplications and squarings of finite field elements, which consist of the bulk of the computation when compared with addition and subtractions. In the tables below, we denote finite field "inversion", "multiplication," and "squaring" by I, M, and S, respectively.

The resulting explicit formulas are presented in Tables 3.3, 3.4 and 3.5.
Throughout the chapter, the total number of operations in parentheses are for the case of even characteristic.

Table 3.3: Explicit Formulas for Doubling Divisor Classes

Doubling, General Case, $\operatorname{deg} u=2$			
Input	$[u, v], u=x^{2}+u_{1} x+u_{0}, v=v_{3} x^{3}+v_{2} x^{2}+v_{1} x+v_{0}$		
Output	$\left[u^{\prime}, v^{\prime}\right]=2[u, v]:=[u, v]+[u, v]$	adapted	reduced
Step	Expression	S	S, M
1	$\frac{\widetilde{v}=\widetilde{v}_{1} x+\widetilde{v}_{0}}{w_{1}=u_{1}^{2}, t_{i}=2 v_{i}-h_{i}, i=0,1,2,3}$		
Continued on next page			

Table 3.3 - continued from previous page

Step	Expression	adapted	reduced
	$\begin{aligned} & \widetilde{v}_{1}=t_{3}\left(w_{1}-u_{0}\right)-t_{2} u_{1}+t_{1}, \\ & \widetilde{v}_{0}=u_{0} \cdot\left(t_{3} u_{1}-t_{2}\right)+t_{0} \end{aligned}$		
2	$\begin{aligned} & \frac{r=\operatorname{res}(\widetilde{v}, u), i n v=i n v_{1} x+i n v_{0}}{w_{2}=u_{0} \cdot \widetilde{v}_{1}, w_{3}=u_{1} \cdot \widetilde{v}_{1},} \\ & i n v_{1}=-\widetilde{v}_{1}, i n v_{0}=\widetilde{v}_{0}-w_{3}, \\ & r=\widetilde{v}_{0} \cdot i n v_{0}+\widetilde{v}_{1} \cdot w_{2} \end{aligned}$	4M	4M
3	$\begin{aligned} & \frac{k^{\prime} \equiv\left(f+h v-v^{2}\right) / u(\bmod u)=k_{1}^{\prime} x+k_{0}^{\prime}:}{k_{4}^{\prime}=f_{6}+v_{3}\left(h_{3}-v_{3}\right), k_{3}^{\prime}=f_{5}-t_{2} v_{3}+h_{3} v_{2}-} \\ & 2 k_{4}^{\prime} u_{1}, \\ & k_{2}^{\prime}=f_{4}-t_{1} v_{3}+v_{2}\left(h_{2}-v_{2}\right)+h_{3} v_{1}-2 k_{3}^{\prime} u_{1}- \\ & k_{4}^{\prime}\left(w_{1}+2 u_{0}\right), \\ & k_{1}^{\prime}=f_{3}-t_{0} v_{3}-t_{1} v_{2}+h_{2} v_{1}+h_{3} v_{0}-2 u_{1}\left(k_{2}^{\prime}+\right. \\ & \left.k_{4}^{\prime} u_{0}\right)-k_{3}^{\prime}\left(w_{1}+2 u_{0}\right), \\ & k_{0}^{\prime}=f_{2}-t_{0} v_{2}+v_{1}\left(h_{1}-v_{1}\right)+h_{2} v_{0}-\left(k_{1}^{\prime}+\right. \\ & \left.2 k_{3}^{\prime} u_{0}\right) u_{1}-k_{2}^{\prime}\left(w_{1}+2 u_{0}\right)-k_{4}^{\prime} u_{0}^{2} \end{aligned}$	$\begin{array}{r} 2 \mathrm{~S}, 3 \mathrm{M} \\ (2 \mathrm{~S}, 2 \mathrm{M}) \end{array}$	$\begin{array}{r} \mathrm{S}, 3 \mathrm{M} \\ (3 \mathrm{M}) \end{array}$
4	$\begin{aligned} & \frac{s^{\prime}=s_{1}^{\prime} x+s_{0}^{\prime}}{s_{1}^{\prime}=\widetilde{v}_{0} \cdot k_{1}^{\prime}-\widetilde{v}_{1} \cdot k_{0}^{\prime}, s_{0}^{\prime}=w_{2} \cdot k_{1}^{\prime}+i n v_{0} \cdot k_{0}^{\prime}} \end{aligned}$	4M	4M
$\sqrt{ }$	Set $r_{2}=r^{2}$. Check conditions to see if \widehat{w}_{0} will be 0 in Step 5 below; if it will, see Doubling Special Cases: Table 3.4 or Table 3.5.	S (S, M)	S
5	$\begin{aligned} & \frac{\text { Inversion, } r^{-1}, s_{0}, s_{1}, \widetilde{u}_{2}^{-1}}{\widehat{w}_{0}=s_{1}^{\prime} \cdot\left(t_{3} r+s_{1}^{\prime}\right)-k_{4}^{\prime} r_{2}\left(=r^{2} \widetilde{u}_{2}\right), \widehat{w}_{1}=\left(r \cdot \widehat{w}_{0}\right)^{-1}} \\ & \widehat{w}_{2}=\widehat{w}_{0} \cdot \widehat{w}_{1}\left(=\frac{1}{r}\right), \widehat{w}_{3}=r \cdot r_{2} \cdot \widehat{w}_{1}\left(=\frac{1}{\widetilde{u}_{2}}\right) \\ & s_{1}=\widehat{w}_{2} \cdot s_{1}^{\prime}, s_{0}=\widehat{w}_{2} \cdot s_{0}^{\prime} \end{aligned}$	$\begin{array}{r} \mathrm{I}, \mathrm{~S}, 6 \mathrm{M} \\ (\mathrm{I}, 6 \mathrm{M}) \end{array}$	I, 7M
6	$\underline{u^{\prime}=x^{2}+u_{1}^{\prime} x+u_{0}^{\prime}}$	S, 4M	5M
Continued on next page			

Table 3.3 - continued from previous page

Step	Expression	adapted	reduced
	$u_{1}^{\prime}=\widehat{w}_{3} \cdot\left(s_{1} \cdot\left(-u_{1} t_{3}+t_{2}+2 s_{0}\right)+s_{0} t_{3}-k_{3}^{\prime}\right)$	$(5 \mathrm{M})$	
	$u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(s_{1} \cdot \widetilde{v}_{1}+s_{0} \cdot\left(-u_{1} t_{3}+t_{2}+s_{0}\right)-k_{2}^{\prime}\right)$		
7	$\underline{v^{\prime}=v_{3}^{\prime} x^{3}+v_{2}^{\prime} x^{2}+v_{1}^{\prime} x+v_{0}^{\prime}}$	5 M	5 M
$z_{0}=u_{0}^{\prime}-u_{0}, z_{1}=u_{1}^{\prime}-u_{1}$,			
	$\underline{w}_{0}=z_{0} \cdot s_{0}, \underline{w}_{1}=z_{1} \cdot s_{1}$.		
	Adapted: $\widetilde{t}_{2}=-h_{2}, \widetilde{t}_{3}=-h_{3}$. Reduced: $\widetilde{t}_{2}=$		
	$v_{2}+y_{2}, \widetilde{t}_{3}=v_{3}+y_{3}$.		
	$t=\widetilde{t}_{2}-\widetilde{t}_{3} u_{1}^{\prime}-\underline{w}_{1}$.		
	Adapted: $v_{3}^{\prime}=v_{2}^{\prime}=0$. Reduced: $v_{3}^{\prime}=y_{3}+h_{3}$,		
	$v_{2}^{\prime}=y_{2}+h_{2}$.		
	$v_{1}^{\prime}=\left(s_{0}+s_{1}\right) \cdot\left(z_{0}+z_{1}\right)-\underline{w}_{0}-\underline{w}_{1}+u_{1}^{\prime} \cdot t+$		
	$\widetilde{t}_{3} u_{0}^{\prime}-v_{1}+h_{1}$,		
	$v_{0}^{\prime}=\underline{w}_{0}+u_{0}^{\prime} \cdot t-v_{0}+h_{0}$.	$\mathrm{I}, 6 \mathrm{~S}, 26 \mathrm{M}$	$\mathrm{I}, 3 \mathrm{~S}, 29 \mathrm{M}$
Total		$(\mathrm{I}, 4 \mathrm{~S}, 28 \mathrm{M})$	$(\mathrm{I}, 2 \mathrm{~S}, 29 \mathrm{M})$

Note: for adapted basis, $v_{3}=v_{2}=0$.

Table 3.4: Divisor Doubling Special Case: Adapted Basis

Doubling Special Case, Adapted Basis			
Step	Expression	odd	even
\checkmark	Set $r_{2}=r^{2}$. Check $s_{1}^{\prime 2}-s_{1}^{\prime} h_{3} r-f_{6} r_{2}=0$.	S	S, M
5^{\prime}	Inversion, $r^{-1}, s_{1}, s_{0}, \widetilde{u}_{1}^{-1}$ $\widehat{w}_{0}=\left(2 s_{0}^{\prime}+\left(u_{1} h_{3}-h_{2}\right) r\right) s_{1}^{\prime}-h_{3} s_{0}^{\prime} r-k_{3}^{\prime} r_{2},$	I, 5 M	I, 6 M
Continued on next page			

Table 3.4 - continued from previous page

Step	Expression	odd	even
	$\widehat{w}_{1}=\left(r \widehat{w}_{0}\right)^{-1}, \widehat{w}_{2}=\widehat{w}_{0} \widehat{w}_{1}\left(=\frac{1}{r}\right), \widehat{w}_{3}=r_{2} r \widehat{w}_{1}(=$		
6^{\prime}	$\left.\frac{1}{\widehat{u}_{1}}\right)$		
$s_{1}=\widehat{w}_{2} s_{1}^{\prime}, s_{0}=\widehat{w}_{2} s_{0}^{\prime}$			
$7^{\prime}=x+u_{0}^{\prime}$			
	$u_{0}^{\prime}=\widehat{w}_{3}\left(s_{1} \widetilde{v}_{1}+s_{0}^{2}+\left(u_{1} h_{3}-h_{2}\right) s_{0}-k_{2}^{\prime}\right.$ $v_{0}^{\prime}=\left(s_{0}^{\prime}-u_{0}^{\prime} s_{1}\right)\left(u_{0}^{\prime}\left(u_{1}-u_{0}^{\prime}\right)-u_{0}\right)+u_{0}^{\prime}\left(v_{1}-h_{1}+\right.$ $\left.u_{0}^{\prime}\left(h_{2}-u_{0}^{\prime} h_{3}\right)\right)+h_{1}-v_{0}$	$\mathrm{~S}, \mathrm{M}$	3 M
Total		$\mathrm{I}, 5 \mathrm{~S}, 20 \mathrm{M}$	$\mathrm{I}, 5 \mathrm{~S}, 25 \mathrm{M}$

Table 3.5: Divisor Doubling Special Case: Reduced Basis

Doubling Special Case, Reduced Basis

Step	Expression	if $s_{1}^{\prime}=0$	$\begin{aligned} & s_{1}^{\prime}= \\ & -t_{3} r \end{aligned}$
$\sqrt{ }$	Set $r_{2}=r^{2}$. Check $s_{1}=0$ or $-t_{3} r$.	S	S
5^{\prime}	$\begin{aligned} & \frac{\text { Inversion, } r^{-1}, s_{1}, s_{0}, \widetilde{u}_{1}^{-1}}{\widehat{w}_{0}=s_{1}\left(\left(-u_{1} t_{3}+t_{2}\right) \cdot r+2 s_{0}^{\prime}\right)+s_{0}^{\prime} t_{3}-k_{3}^{\prime} r} \\ & \widehat{w}_{1}=\left(r \cdot \widehat{w}_{0}\right)^{-1}, \widehat{w}_{2}=\widehat{w}_{0} \cdot \widehat{w}_{1}\left(=\frac{1}{r}\right), \widehat{w}_{3}= \\ & r_{2} \cdot \widehat{w}_{1}\left(=\frac{1}{\widetilde{u}_{1}}\right) \\ & s_{0}=\widehat{w}_{2} \cdot s_{0}^{\prime} \end{aligned}$	I, 4 M	I, 5M
6^{\prime}	$\frac{u^{\prime}=x+u_{0}^{\prime}}{u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(s_{1} \widetilde{v}_{1}+s_{0} \cdot\left(-u_{1} t_{3}+t_{2}+s_{0}\right)-k_{2}^{\prime}\right)}$	2 M	2 M
7^{\prime}	$\underline{v^{\prime}=v_{3}^{\prime} x^{3}+v_{2}^{\prime} x^{2}+v_{1}^{\prime} x+v_{0}^{\prime}}$	S, 3M	S, 3M
Continued on next page			

Table 3.5 - continued from previous page

Step	Expression	if $s_{1}^{\prime}=0$	$s_{1}^{\prime}=$
	$\tilde{t}_{i}=y_{i}+v_{i}, i=1,2,3$ $v_{3}^{\prime}=y_{3}+h_{3}, v_{2}^{\prime}=y_{2}+h_{2}, v_{1}^{\prime}=y_{1}+h_{1}$, $v_{0}^{\prime}=u_{0}^{\prime} \cdot\left(u_{0}^{\prime} \cdot\left(u_{0}^{\prime} \widetilde{t}_{3}-\widetilde{t}_{2}\right)+\widetilde{t}_{1}\right)+\left(u_{0}^{\prime} \cdot\left(u_{0}^{\prime}-u_{1}\right)+\right.$ $\left.u_{0}\right) \cdot\left(s_{1} u_{0}^{\prime}-s_{0}\right)+h_{0}-v_{0}$		
Total		$\mathrm{I}, 4 \mathrm{~S}, 21 \mathrm{M}$	$\mathrm{I}, 4 \mathrm{~S}, 22 \mathrm{M}$
		$(\mathrm{I}, 3 \mathrm{~S}, 21 \mathrm{M})$	$(\mathrm{I}, 3 \mathrm{~S}, 22 \mathrm{M})$

The general explicit formulas can be used regardless of the field characteristic and the choice of basis (i.e., adapted or reduced). However, in practice, we do not follow the general formulas literally. Instead, assuming isomorphic transformations as introduced in Section 3.3, we rewrite the explicit formulas with respect to different bases and characteristics, so that they are efficient and ready to implement. The results are presented in the following sections 3.6.2.3 and 3.6.2.4.

3.6.2.3 Doubling Formulas in Adapted Basis

Let $[u, v]=\left[x^{2}+u_{1} x+u_{0}, v_{1} x+v_{0}\right]$ be a degree two divisor in adapted basis with both points of the divisor not equal to their opposites.

We assume the isomorphic transformations in Section 3.3 apply so that the hyperelliptic curve is given in the short Weierstraß form, and count the number of operations accordingly. The resulting explicit formulas are presented in Tables 3.6, 3.7 and 3.8. In Table 3.6, "Odd" and "Even" refer to the parity of the characteristic of K.

Table 3.6: Explicit Formulas for Doubling Divisor Classes in Adapted Basis

Doubling, Adapted Basis, $\operatorname{deg} u=2$		
Input Output	$\begin{aligned} & {[u, v], u=x^{2}+u_{1} x+u_{0}, v=v_{1} x+v_{0}} \\ & {\left[u^{\prime}, v^{\prime}\right]=2[u, v]:=[u, v]+[u, v]} \end{aligned}$	
Step	Expression	\# of Operations
1	$\widetilde{\widetilde{v}}=\widetilde{v}_{1} x+\widetilde{v}_{0}, w_{1}=u_{1}^{2} .$ Odd: $\widetilde{v}_{1}=2 v_{1}, \widetilde{v}_{0}=u_{0}+2 v_{0}$. Even: $\widetilde{v}_{1}=w_{1}+u_{0}+h_{1}, \widetilde{v}_{0}=$ $u_{0} \cdot u_{1}+h_{0}$.	$\begin{array}{r} \mathrm{S} \\ (\mathrm{~S}, \mathrm{M}) \end{array}$
2	$\begin{aligned} & \frac{r=\operatorname{res}(\widetilde{v}, u), i n v=i n v_{1} x+i n v_{0}}{w_{2}=u_{0} \cdot \widetilde{v}_{1}, w_{3}=u_{1} \cdot \widetilde{v}_{1}} \\ & i n v_{1}=-\widetilde{v}_{1}, i n v_{0}=\widetilde{v}_{0}-w_{3} \\ & r=\widetilde{v}_{0} \cdot i n v_{0}+\widetilde{v}_{1} \cdot w_{2} \end{aligned}$	4M
3	$\underline{k^{\prime} \equiv\left(f+h v-v^{2}\right) / u(\bmod u)=k_{1}^{\prime} x+k_{0}^{\prime}}:$ Odd: $k_{3}^{\prime}=-2 u_{1}, k_{2}^{\prime}=f_{4}+3 w_{1}-2 u_{0}, k_{1}^{\prime}=f_{3}+2\left(w_{1}+u_{0}-\right.$ $\begin{aligned} & \left.k_{2}^{\prime}\right) \cdot u_{1} \\ & k_{0}^{\prime}=f_{2}-v_{1}^{2}-k_{1}^{\prime} \cdot u_{1}-\left(k_{2}^{\prime}-4 u_{0}\right) \cdot\left(w_{1}+2 u_{0}\right)-9 u_{0}^{2} \end{aligned}$ Even: $k_{2}^{\prime}=v_{1}+w_{1}, k_{1}^{\prime}=v_{0}, k_{0}^{\prime}=f_{2}+v_{1} \cdot\left(v_{1}+h_{1}+w_{1}\right)+v_{0}$. $u_{1}+w_{1}^{2}+u_{0}^{2}$	$\begin{array}{r} 2 \mathrm{~S}, 3 \mathrm{M} \\ (2 \mathrm{~S}, 2 \mathrm{M}) \end{array}$
4	$\begin{aligned} & \frac{s^{\prime}=s_{1}^{\prime} x+s_{0}^{\prime}}{s_{1}^{\prime}=\widetilde{v}_{0} \cdot k_{1}^{\prime}-\widetilde{v}_{1} \cdot k_{0}^{\prime}, s_{0}^{\prime}=i n v_{0} \cdot k_{0}^{\prime}+w_{2} \cdot k_{1}^{\prime}} \end{aligned}$	4M
$\sqrt{ }$	Set $r_{2}=r^{2}$. Odd: if $s_{1}^{\prime}= \pm r$, see Table 3.7. Even: if $s_{1}^{\prime} \cdot\left(s_{1}^{\prime}+r\right)+r_{1}=0$, see Table 3.8	$\begin{array}{r} \mathrm{S} \\ (\mathrm{~S}, \mathrm{M}) \end{array}$
5	Inversion, $r^{-1}, s_{0}, s_{1}, \widetilde{u}_{2}^{-1}$	I, S, 6M
Continued on next page		

Table 3.6 - continued from previous page

Step	Expression	\# of Operations
	Odd: $\widehat{w}_{0}=s_{1}^{\prime 2}-r_{2}$. Even: $\widehat{w}_{0}=s_{1}^{\prime} \cdot\left(s_{1}^{\prime}+r\right)+f_{6} r_{2}$. $\begin{aligned} & \widehat{w}_{1}=\left(r \cdot \widehat{w}_{0}\right)^{-1}, \\ & \widehat{w}_{2}=\widehat{w}_{0} \cdot \widehat{w}_{1}\left(=\frac{1}{r}\right), \widehat{w}_{3}=r \cdot r_{2} \cdot \widehat{w}_{1}\left(=\frac{1}{\widehat{u}_{2}}\right), \\ & s_{1}=\widehat{w}_{2} \cdot s_{1}^{\prime}, s_{0}=\widehat{w}_{2} \cdot s_{0}^{\prime} \end{aligned}$	(I, 6M)
6	$\begin{aligned} & \frac{u^{\prime}=x^{2}+u_{1}^{\prime} x+u_{0}^{\prime}}{\text { Odd: } u_{1}^{\prime}=2 \widehat{w}_{3} \cdot\left(u_{1}+s_{1} \cdot s_{0}\right), u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(-k_{2}^{\prime}+s_{1} \cdot \widetilde{v}_{1}+s_{0}^{2}\right)} \\ & \text { Even: } u_{1}^{\prime}=\widehat{w}_{3} \cdot\left(s_{1} \cdot u_{1}+s_{0}\right), u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(k_{2}^{\prime}+s_{1} \cdot \widetilde{v}_{1}+s_{0} \cdot\left(s_{0}+u_{1}\right)\right) . \end{aligned}$	$\mathrm{S}, 4 \mathrm{M}$ $(5 \mathrm{M})$
7	$\begin{aligned} & \frac{v^{\prime}=v_{1}^{\prime} x+v_{0}^{\prime}}{z_{0}=u_{0}^{\prime}-u_{0}, z_{1}=u_{1}^{\prime}-u_{1},} \\ & \underline{w}_{0}=z_{0} \cdot s_{0}, \underline{w}_{1}=z_{1} \cdot s_{1} . \\ & \text { Odd: } v_{1}^{\prime}=\left(z_{0}+z_{1}\right) \cdot\left(s_{0}+s_{1}\right)-\underline{w}_{0}-\underline{w}_{1}-u_{1}^{\prime} \cdot \underline{w}_{1}-v_{1}, v_{0}^{\prime}= \\ & \underline{w}_{0}-u_{0}^{\prime} \cdot \underline{w}_{1}-v_{0} . \end{aligned}$ Even: $v_{1}^{\prime}=\left(z_{0}+z_{1}\right) \cdot\left(s_{0}+s_{1}\right)+\underline{w}_{0}+\underline{w}_{1}+u_{1}^{\prime} \cdot\left(u_{1}^{\prime}+\underline{w}_{1}\right)+h_{1}+v_{1}+u_{0}^{\prime}$, $v_{0}^{\prime}=\underline{w}_{0}+u_{0}^{\prime} \cdot\left(u_{1}^{\prime}+\underline{w}_{1}\right)+h_{0}+v_{0} .$	5M
Total		$\begin{array}{r} \mathrm{I}, 6 \mathrm{~S}, 26 \mathrm{M} \\ (\mathrm{I}, 4 \mathrm{~S}, 28 \mathrm{M}) \end{array}$

Table 3.7: Divisor Doubling Special Case: Adapted Basis, Odd Characteristic

Doubling Special Case, Adapted Basis, Odd Characteristic

Step	Expression	\# of Operations
$\sqrt{ }$	$r_{2}=r^{2}$. Check $s_{1}^{\prime}= \pm r$.	S
Continued on next page		

Table 3.7 - continued from previous page

Step	Expression	$\#$ of tions
5^{\prime}	$\frac{s=s_{1} x+s_{0}}{s_{1}= \pm 1, \widehat{w}_{0}}=2\left(r \cdot u_{1}+s_{0}^{\prime} s_{1}\right), \widehat{w}_{1}=\left(r \cdot \widehat{w}_{0}\right)^{-1}, \widehat{w}_{2}=\widehat{w}_{0} \cdot \widehat{w}_{1}\left(=\frac{1}{r}\right)$,	
$\widehat{w}_{3}=r_{2} \cdot \widehat{w}_{1}\left(=\widetilde{u}_{1}^{-1}\right), s_{0}=\widehat{w}_{2} \cdot s_{0}^{\prime}$	$\mathrm{I}, 5 \mathrm{M}$	
6^{\prime}	$\frac{u^{\prime}=x+u_{0}^{\prime}}{u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(2 v_{1} s_{1}+s_{0}^{2}-k_{2}^{\prime}\right)}$	
7^{\prime}	$\frac{v^{\prime}=v_{0}^{\prime}}{v_{0}^{\prime}=\left(s_{0}-u_{0}^{\prime} s_{1}\right) \cdot\left(u_{0}^{\prime} \cdot\left(u_{1}-u_{0}^{\prime}\right)-u_{0}\right)+u_{0}^{\prime} \cdot v_{1}-v_{0}}$	$\mathrm{~S}, \mathrm{M}$
Total		3 M

Table 3.8: Divisor Doubling Special Case: Adapted Basis, Even Characteristic

Doubling Special Case, Adapted Basis, Even Characteristic

Step	Expression	\# of Operations
$\sqrt{ }$	$r_{2}=r^{2} \cdot$ Check $s_{1}^{\prime} \cdot\left(s_{1}^{\prime}+r\right)+r_{2}=0$.	S, M
5^{\prime}	$\frac{s=s_{1} x+s_{0}}{\widehat{w}_{0}=u_{1} \cdot s_{1}^{\prime}+s_{0}^{\prime}, \widehat{w}_{1}=\left(r \cdot \widehat{w}_{0}\right)^{-1}, \widehat{w}_{2}=\widehat{w}_{0} \cdot \widehat{w}_{1}\left(=\frac{1}{r}\right),}$$\mathrm{I}, 6 \mathrm{M}$ $\widehat{6}_{3}=r_{2} \cdot \widehat{w}_{1}\left(=\widetilde{u}_{1}^{-1}\right), s_{1}=\widehat{w}_{2} \cdot s_{1}^{\prime}, s_{0}=\widehat{w}_{2} \cdot s_{0}^{\prime}$	
7^{\prime}	$\frac{u^{\prime}=x+u_{0}^{\prime}}{u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(\widehat{v}_{1} \cdot s_{1}+\left(s_{0}+u_{1}\right) \cdot s_{0}+k_{2}^{\prime}\right)}$	
$\frac{v^{\prime}=v_{0}^{\prime}}{w=u_{0}^{\prime 2}}, v_{0}^{\prime}=\left(s_{0}+u_{0}^{\prime} \cdot s_{1}\right) \cdot\left(u_{0}^{\prime} \cdot u_{1}+w+u_{0}\right)+u_{0}^{\prime} \cdot\left(v_{1}+h_{1}+\right.$ $w)+h_{0}+v_{0}$	3 M	

Continued on next page

Table 3.8 - continued from previous page

Step	Expression	$\#$ of Opera- tions
Total		$\mathrm{I}, 5 \mathrm{~S}, 25 \mathrm{M}$

3.6.2.4 Doubling Formulas in Reduced Basis

Let $[u, v]=\left[x^{2}+u_{1} x+u_{0}, v_{3} x^{3}+v_{2} x^{2}+v_{1} x+v_{0}\right]$ be a degree two divisor in reduced basis with both points of the divisor not equal to their opposites.

Again, we assume the isomorphic transformations in Section 3.3 apply so that the hyperelliptic curve is given in the short Weierstraß form, and count the number of operations accordingly. The resulting explicit formulas are presented in Tables 3.9 and 3.10.

Table 3.9: Explicit Formulas for Doubling Divisor Classes in Reduced Basis

Table 3.9 - continued from previous page

Step	Expression	\# of Operations
	$\begin{aligned} & i n v_{1}=-\widetilde{v}_{1}, i n v_{0}=\widetilde{v}_{0}-w_{3} \\ & r=\widetilde{v}_{0} \cdot i n v_{0}+\widetilde{v}_{1} \cdot w_{2} \end{aligned}$	
3	$\begin{aligned} & \frac{k^{\prime} \equiv\left(f+h v-v^{2}\right) / u(\bmod u)=k_{1}^{\prime} x+k_{0}^{\prime}}{\text { Odd: } k_{2}^{\prime}=f_{4}-2 v_{1}, k_{1}^{\prime}=f_{3}-2 v_{0}-2 u_{1} \cdot k_{2}^{\prime}, k_{0}^{\prime}=f_{2}-v_{1}^{2}-k_{1}^{\prime}} \\ & u_{1}-k_{2}^{\prime} \cdot\left(w_{1}+2 u_{0}\right) \end{aligned}$ Even: $k_{2}^{\prime}=h_{1} v_{3}+v_{1}, k_{1}^{\prime}=h_{0} v_{3}+v_{0}, k_{0}^{\prime}=v_{1} \cdot\left(v_{1}+h_{1}\right)+f_{2}+$ $k_{1}^{\prime} \cdot u_{1}+k_{2}^{\prime} \cdot w_{1}$.	$\begin{aligned} & \mathrm{S}, 3 \mathrm{M} \\ & (3 \mathrm{M}) \end{aligned}$
4		4M
$\sqrt{ }$	If $s_{1}^{\prime}=0$ or $s_{1}^{\prime}=-t_{3} r$, see Table 3.10: Doubling Special Case.	
5	$\begin{aligned} & \text { Inversion, } r^{-1}, s_{0}, s_{1}, \widetilde{u}_{2}^{-1} \\ & r_{2}=r^{2} \end{aligned}$ Odd: $\widehat{w}_{0}=s_{1}^{\prime} \cdot\left(2 r+s_{1}^{\prime}\right)$. Even: $\widehat{w}_{0}=s_{1}^{\prime} \cdot\left(r+s_{1}^{\prime}\right)$. $\begin{aligned} & \widehat{w}_{1}=\left(r \cdot \widehat{w}_{0}\right)^{-1} \\ & \widehat{w}_{2}=\widehat{w}_{0} \cdot \widehat{w}_{1}\left(=\frac{1}{r}\right), \widehat{w}_{3}=r \cdot r_{2} \cdot \widehat{w}_{1}\left(=\frac{1}{\widehat{u}_{2}}\right), \\ & s_{1}=\widehat{w}_{2} \cdot s_{1}^{\prime}, s_{0}=\widehat{w}_{2} \cdot s_{0}^{\prime} \end{aligned}$	I,S,7M
6	$\begin{aligned} & \frac{u^{\prime}=x^{2}+u_{1}^{\prime} x+u_{0}^{\prime}}{\text { Odd: } u_{1}^{\prime}=2 \widehat{w}_{3} \cdot\left(s_{1} \cdot\left(-u_{1}+s_{0}\right)+s_{0}\right), u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(s_{1} \cdot \widetilde{v}_{1}+s_{0}\right.} \\ & \left.\left(-2 u_{1}+s_{0}\right)-k_{2}^{\prime}\right) . \end{aligned}$ Even: $u_{1}^{\prime}=\widehat{w}_{3} \cdot\left(s_{1} \cdot u_{1}+s_{0}\right), u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(s_{1} \cdot \widetilde{v}_{1}+s_{0} \cdot\left(u_{1}+s_{0}\right)+k_{2}^{\prime}\right)$.	5M
7	$\begin{aligned} & \underline{v^{\prime}}=v_{3}^{\prime} x^{3}+v_{2}^{\prime} x^{2}+v_{1}^{\prime} x+v_{0}^{\prime} \\ & z_{0}=u_{0}^{\prime}-u_{0}, z_{1}=u_{1}^{\prime}-u_{1}, \\ & \underline{w}_{0}=z_{0} \cdot s_{0}, \underline{w}_{1}=z_{1} \cdot s_{1} . \\ & \text { Odd: } t=2 u_{1}^{\prime}+\underline{w}_{1}, v_{3}^{\prime}=1, v_{2}^{\prime}=0, v_{1}^{\prime}=\left(z_{0}+z_{1}\right) \cdot\left(s_{0}+s_{1}\right)- \\ & \underline{w}_{0}-\underline{w}_{1}-u_{1}^{\prime} \cdot t+2 u_{0}^{\prime}-v_{1}, v_{0}^{\prime}=\underline{w}_{0}-u_{0}^{\prime} \cdot t-v_{0} . \end{aligned}$	5M
	Continued on next page	

Table 3.9 - continued from previous page
$\left.\begin{array}{|l|l|l|}\hline \text { Step } & \text { Expression } & \begin{array}{l}\# \text { of Opera- } \\ \text { tions }\end{array} \\ \hline & \text { Even: } t=u_{1}^{\prime}+\underline{w}_{1}, v_{3}^{\prime}=y_{3}+h_{3}, v_{2}^{\prime}=y_{2}+h_{2}, v_{1}^{\prime}=\left(z_{0}+z_{1}\right) \cdot \\ & \left(s_{0}+s_{1}\right)+\underline{w}_{0}+\underline{w}_{1}+u_{1}^{\prime} \cdot t+u_{0}^{\prime}+v_{1}+h_{1}, v_{0}^{\prime}=\underline{w}_{0}+u_{0}^{\prime} \cdot t+v_{0}+h_{0} .\end{array}\right]$.

Table 3.10: Divisor Doubling Special Case: Reduced Basis

Doubling Special Case, Reduced Basis

Step	Expression	if $s_{1}^{\prime}=0$	s_{1}^{\prime} $-t_{3} r$		
5^{\prime}	$\frac{\text { Inversion, } r^{-1}, s_{1}, s_{0}, \widetilde{u}_{1}^{-1}}{t_{3}=2 v_{3}-h_{3}, t_{2}=2 v_{2}-h_{2}}$ $s_{1}=0$ or $-t_{3} r, \widehat{w}_{0}=s_{1}\left(\left(-u_{1} t_{3}+t_{2}\right) \cdot r+2 s_{0}^{\prime}\right)+$ $s_{0}^{\prime} t_{3}-k_{3}^{\prime} r$ $\widehat{w}_{1}=\left(r \cdot \widehat{w}_{0}\right)^{-1}, \widehat{w}_{2}=\widehat{w}_{0} \cdot \widehat{w}_{1}\left(=\frac{1}{r}\right), \widehat{w}_{3}=r^{2} \cdot \widehat{w}_{1}(=$ $\left.\frac{1}{\widetilde{u}_{1}}\right)$ $s_{0}=\widehat{w}_{2} \cdot s_{0}^{\prime}$	$\mathrm{I}, \mathrm{S}, 4 \mathrm{M}$	$\mathrm{I}, \mathrm{S}, 5 \mathrm{M}$		
6^{\prime}	$\frac{u^{\prime}=x+u_{0}^{\prime}}{u_{0}^{\prime}=\widehat{w}_{3} \cdot\left(s_{1} \widetilde{v}_{1}+s_{0} \cdot\left(-u_{1} t_{3}+s_{0}\right)-k_{2}^{\prime}\right) .}$				
7^{\prime}	$v^{\prime}=v_{3}^{\prime} x^{3}+v_{2}^{\prime} x^{2}+v_{1}^{\prime} x+v_{0}^{\prime}$ $\widetilde{t}_{i}=y_{i}+v_{i}, i=1,2,3$ $v_{3}^{\prime}=y_{3}+h_{3}, v_{2}^{\prime}=0, v_{1}^{\prime}=y_{1}+h_{1}$,	2 M			
Continued on next page					2 M

Table 3.10 - continued from previous page

Step	Expression	if $s_{1}^{\prime}=0$	$s_{1}^{\prime}=$ $-t_{3} r$
	$v_{0}^{\prime}=u_{0}^{\prime} \cdot\left(u_{0}^{\prime 2} \widetilde{t}_{3}+\widetilde{t}_{1}\right)+\left(u_{0}^{\prime} \cdot\left(u_{0}-u_{1}\right)+u_{0}\right) \cdot\left(s_{1} u_{0}^{\prime}-\right.$ $\left.s_{0}\right)+h_{0}-v_{0}$		
Total		 $(\mathrm{I}, 4 \mathrm{~S}, 21 \mathrm{~S}, 21 \mathrm{M})$	$(\mathrm{I}, 4 \mathrm{~S}, 22 \mathrm{~S}, 22 \mathrm{M})$

Note: In Step 5^{\prime}, let $\widehat{w}_{0}=t_{3} s_{0}^{\prime}$ if we are in the case $s_{1}^{\prime}=0$, and let $\widehat{w}_{0}=t_{3}^{2} u_{1} \cdot r-t_{3} s_{0}^{\prime}$ if we are in the case $s_{1}^{\prime}=-t_{3} r$.

The correctness of the explicit doubling formulas were checked with the computer algebra system MAGMA [53]. We generated test cases, and compared the result of divisor doubling using the explicit formulas and that using MAGMA's built-in generic divisor addition algorithm. We checked that the output divisors were the same with respect to the same input divisors. Note that the divisor representation $[u, v]$ we use in our explicit formulas corresponds to MAGMA's divisor representation $[u,-v]$. This difference was considered in the test.

3.6.3 Summary of Results

The best known results for the imaginary case are found in [34]. Compared to the imaginary case, the addition/doubling formulas for the real case require more multiplications/squarings than the imaginary case. The baby step operation is the cheapest among all operations, and there is no analogue for this operation in the imaginary case. Table 3.11 summarizes the comparison .

Table 3.11: Comparison of Operation Counts for Explicit Formulas (Reduced Basis in Real Case)

	Imaginary		Real	
	odd	even	odd	even
Baby Step	none	none	I, 2S, 4M	I, S, $5 \mathrm{M}^{3}$
Addition	I, 2S, 22M [34]	I, 2S, 22M [34]	I, 2S, 26M	I, S, 27M
Doubling	I, 5S, 22M [34]	I, 5S, 22M [34]	I, 3S, 29M	I, 2S, 29M

Key exchange protocols using imaginary and real genus 2 curves have been implemented over large prime fields with explicit formulas. The numerical results can be found in [35]. From the results shown in Table 6 of [35], we conclude that although a bit slower, the operation (field inversion, multiplication and doubling) counts of the divisor addition and doubling formulas for real genus 2 curves are comparable to that of the imaginary genus 2 curves. In certain scenarios of real hyperelliptic curve cryptography, such as the case of "fixed distance" as described in Section 3 of [49], some giant step operations (additions) can be replaced by computationally cheaper baby step operations, under reasonable heuristics that predict the value change of the distance functions involved in the baby step and the giant step (see Section 3 of [49]). With such potential efficiency introduced by the baby step operation, which is unique for the real case, being considered, the use of real genus 2 hyperelliptic curves in cryptography is promising.

[^4]
3.7 Future Work

I mention some future directions of this research as follows:

- Derivation of explicit formulas for real genus 2 hyperelliptic curves in projective and mixed coordinates, with which finite field element inversions can be avoided. Explicit formulas using these coordinates may further reduce computational load by trading more expensive field inversions with cheaper field multiplications and squarings.
- Implementation and standardization of cryptographic protocols using real genus 2 hyperelliptic curves. More suitable for small processor architectures, genus 2 curves have their advantage to attract commercial interests. For adoption of cryptosystems using (imaginary or real) genus 2 curves, security, performance, and implementation cost are all among industrial concerns. There are problems like the bandwidth consumption (point compression techniques), generation of suitable curve parameters, compatibility with other cryptographic components (eg., cryptographic hash algorithms), and so on. Like the case of elliptic curves, industrial and governmental acceptance of genus 2 curve based cryptosystems will require a lot of effort. More careful and exhaustive research is needed to justify their usefulness and adoptability.

4. GENERATING SUITABLE PARAMETERS FOR DISCRETE-LOG BASED CRYPTOGRAPHY WITH POLYNOMIAL PARAMETERIZATION

In this chapter, we propose an improved method that uses polynomial parameterization to find suitable parameters for generating cryptographically strong genus 2 curves via the complex multiplication (CM) method. The proposed method is more efficient than the existing method in that it replaces the need for integer factorization with factorization of polynomials with small integral coefficients, which can be done as precomputation, and evaluation of polynomials. We also analyze the probability of success of the proposed method, based on the Bateman-Horn philosophy.

4.1 Introduction

In order to use the Jacobian variety of a curve over a finite field for discrete logarithm based cryptography, suitable parameters must be chosen. One such parameter is the underlying finite field \mathbb{F}_{q} over which the curve is defined. Another important parameter is the cardinality N of the \mathbb{F}_{q}-rational Jacobian of the curve. For many implementations of discrete logarithm based cryptographic protocols, \mathbb{F}_{q} is a prime field, i.e., q is a prime number, and N is prime or "close to" a prime number, to resist the Pohlig-Hellman attack [4] to the discrete logarithm problem.

The genus 2 "points counting" methods choose a random curve equation over a finite field and compute the number of points on the Jacobian of the curve until one that is good for cryptography is found. Examples of such methods are [54-56].

An alternative to point counting is to use the genus 2 Complex Multiplication (CM) algorithm to construct curves with a given number of points on its Jacobian.

Like the case of elliptic curve CM method, the genus 2 CM method is very efficient provided that the class polynomials of the complex multiplication field are computed, and that the finite field order q and the order of the Jacobian of the curve N are suitably selected. The genus 2 CM method is a useful alternative, when the genus 2 point counting methods are still slow; and it is especially important for generating pairing-friendly curves as we will see in Chapter 5 . For a history of the genus 2 CM method, the reader can refer to [57]. In brief, the algorithm works as follows: Let K be a primitive quartic CM field (explained in 4.2).

1. Find a prime p such that $\exists \omega \in K$ with $\omega \bar{\omega}=p$, and an integer N depending on p and \mathcal{O}_{K} which will be the group order of the Jacobian of the genus 2 curve having CM by \mathcal{O}_{K}. Such p and N can be identified by using a method in [58].
2. Compute the Igusa class polynomials $H_{i}(x), i=1,2,3$ of K. This step can be done using the methods described in [57-59] or [60].
3. Construct a curve C from the a set of roots of $H_{i}(x)$ over \mathbb{F}_{p} via the Mestre-Cardona-Quer Algorithm [61,62], and check if the Jacobian of the curve has the desired order until a suitable curve is found.

The algorithms described in the following section take as input a given primitive quartic CM field K, and output good cryptographic parameters p and N for a curve C so that C has CM by K and that $\# J a c_{\mathbb{F}_{p}}(C)=N$.

4.2 Algorithms

Let $K:=\mathbb{Q}(\eta)$, where

$$
\eta=\left\{\begin{array}{lr}
i \sqrt{a+b \sqrt{d}} & \text { if } d \equiv 2,3 \\
i \sqrt{a+b \frac{-1+\sqrt{d}}{2}} & \text { if } d \equiv 1 \\
i \bmod 4) \\
(\bmod 4)
\end{array},\right.
$$

be a fixed primitive quartic CM field, where $d>0$ is squarefree and $\mathbb{Q}(\sqrt{d})$ has class number 1. The condition that K is primitive is equivalent to $\Delta>0$ is not a square,
where $\Delta=a^{2}-b^{2} d$, if $d \equiv 2,3(\bmod 4)$, and $\Delta=a^{2}-a \cdot b-b^{2}\left(\frac{d-1}{4}\right)$, if $d \equiv 1$ $(\bmod 4)$. We want to construct a genus 2 hyperelliptic curve C over a finite field $\mathbb{F}_{p}{ }^{1}$ of prime order such that $\operatorname{End}\left(J a c_{\mathbb{F}_{p}}(C)\right) \otimes \mathbb{Q}=K$, and $N:=\# J a c_{\mathbb{F}_{p}}(C)$ is "almost prime", meaning that N is a product of a large prime number and a small cofactor.

If such a curve C is found, then there exists a element, called the Frobenius element, $\pi \in \operatorname{End}\left(\operatorname{Jac}_{\mathbb{F}_{p}}(C)\right)$ that satisfies the condition $|\pi|=\sqrt{q}$, where $|\pi|$ is the usual absolute value of the complex number π.

Assume for simplicity that the Frobenius element π is in an order

$$
\mathcal{O}:=\left\{\begin{array}{lrr}
\mathbb{Z}+\sqrt{d} \mathbb{Z}+\eta \mathbb{Z}+\eta \sqrt{d} \mathbb{Z} & \text { if } d \equiv 2,3 & (\bmod 4) \\
\mathbb{Z}+\frac{-1+\sqrt{d}}{2} \mathbb{Z}+\eta \mathbb{Z}+\eta \frac{-1+\sqrt{d}}{2} \mathbb{Z} & \text { if } d \equiv 1 & (\bmod 4)
\end{array}\right.
$$

We first look at the case $d \equiv 2,3(\bmod 4)$ and write $\pi=c_{1}+c_{2} \sqrt{d}+\eta\left(c_{3}+c_{4} \sqrt{d}\right)$, $c_{i} \in \mathbb{Z}$.

The relationship $\pi \bar{\pi}=p$ gives us

$$
\left(c_{1}^{2}+c_{2}^{2} d+c_{3}^{2} a+c_{4}^{2} a d+2 c_{3} c_{4} b d\right)+\left(2 c_{1} c_{2}+2 c_{3} c_{4} a+c_{3}^{2} b+c_{4}^{2} b d\right) \sqrt{d}=p
$$

Since 1 and \sqrt{d} are linearly independent over \mathbb{Q} we must have

$$
\begin{align*}
c_{1}^{2}+c_{2}^{2} d+c_{3}^{2} a+c_{4}^{2} a d+2 c_{3} c_{4} b d & =p \tag{4.1}\\
2 c_{1} c_{2}+2 c_{3} c_{4} a+c_{3}^{2} b+c_{4}^{2} b d & =0 \tag{4.2}
\end{align*}
$$

Let $\bar{\alpha}$ and α^{σ} denote the imaginary and real embeddings of K into \bar{K}. The characteristic polynomial of π is

$$
\begin{aligned}
h(x) & =(x-\pi)(x-\bar{\pi})\left(x-\pi^{\sigma}\right)\left(x-\bar{\pi}^{\sigma}\right) \\
& =x^{4}-4 c_{1} x^{3}+\left(2 p+4\left(c_{1}^{2}-c_{2}^{2} d\right)\right) x^{2}-4 c_{1} p x+p^{2}
\end{aligned}
$$

The fact that $\# J a c_{\mathbb{F}_{q}}(C)=h(1)$ gives the condition

$$
\begin{equation*}
N=(p+1)^{2}-4(p+1) c_{1}+4\left(c_{1}^{2}-c_{2}^{2} d\right) \tag{4.3}
\end{equation*}
$$

[^5]We want N to be almost prime, i.e., $N=c \cdot r$ with r prime and c small (say, $c<2000$).
We have $p \sim N^{\frac{1}{2}}$. Based on the discussions above, A. Weng (see [58]) gives a probabilistic method of searching for parameters, which produces prime p and almost prime N. In this method, factorization of big integers is used repeatedly in every step of the search ${ }^{2}$, which makes the algorithm slow.

We give a more efficient algorithm which generates parameters for genus 2 cryptography. The idea is to parameterize the coefficients c_{i} 's as polynomials $c_{i}(x)$, then generate "families of parameters" by factorizing quartic polynomials with small integral coefficients.

To this end, we try to find polynomials $c_{1}(x), c_{2}(x), c_{3}(x), c_{4}(x) \in \mathbb{Q}[x]$ satisfying $-2 c_{1}(x) c_{2}(x)=2 c_{3}(x) c_{4}(x) a+c_{3}^{2}(x) b+c_{4}^{2}(x) b d$. Then we write $p(x)=c_{1}^{2}(x)+c_{2}^{2}(x) d+$ $c_{3}^{2}(x) a+c_{4}^{2}(x) a d+2 c_{3}(x) c_{4}(x) b d$ and let x range through integer values of certain sizes until the value $p(x)$ is a prime number. Now we can use Equation (4.3) to compute the cardinality of the Jacobian and check if it is almost prime.

The following lemma helps us avoid some bad choices of $c_{i}(x)$.
Lemma 12 Let $c_{1}(x), c_{2}(x), c_{3}(x), c_{4}(x)$ be linear polynomials in $\mathbb{Q}[x]$ such that

$$
2 c_{1}(x) c_{2}(x)+2 c_{3}(x) c_{4}(x) a+c_{3}^{2}(x) b+c_{4}^{2}(x) b d=0
$$

Then

$$
p(x)=c_{1}^{2}(x)+c_{2}^{2}(x) d+c_{3}^{2}(x) a+c_{4}^{2}(x) a d+2 c_{3}(x) c_{4}(x) b d
$$

is reducible in $\mathbb{Q}[x]$.
Proof Let $c_{1}(x), c_{2}(x), c_{3}(x), c_{4}(x)$ be linear polynomials in $\mathbb{Q}[x]$ such that $2 c_{1}(x) c_{2}(x)+$ $2 c_{3}(x) c_{4}(x) a+c_{3}^{2}(x) b+c_{4}^{2}(x) b d=0$. Then we have

$$
\begin{equation*}
-2 c_{1}(x) c_{2}(x)=2 c_{3}(x) c_{4}(x) a+c_{3}^{2}(x) b+c_{4}^{2}(x) b d \tag{4.4}
\end{equation*}
$$

Let $\alpha \in \mathbb{Q}$ be a root of $c_{1}(x)$. Clearly,

$$
\begin{equation*}
0=-2 c_{1}(\alpha) c_{2}(\alpha)=b c_{3}^{2}(\alpha)+2 a c_{3}(\alpha) c_{4}(\alpha)+b d c_{4}^{2}(\alpha)=0 \tag{4.5}
\end{equation*}
$$

[^6]Now we look at the quadratic equations

$$
\begin{align*}
& b X^{2}+2 a X+b d=0 \tag{4.6}\\
& b d X^{2}+2 a X+b=0 \tag{4.7}
\end{align*}
$$

Both equations (4.6) and (4.7) have discriminant $\Delta=(2 a)^{2}-4 b(b d)=4\left(a^{2}-b^{2} d\right)>0$, which is not a square in \mathbb{Q} by the assumption on a, b and d, namely, that K is primitive. Therefore Equation (4.5) holds if and only if $c_{3}(\alpha)=c_{4}(\alpha)=0$. Hence $c_{3}(\alpha)=c_{4}(\alpha)=0$. By Equation (4.5) we conclude that α is a zero of $-2 c_{1}(x) c_{2}(x)$ with multiplicity 2 . Since $c_{1}(x)$ and $c_{2}(x)$ are linear, we must have $c_{2}(\alpha)=0$.

Therefore, the polynomial

$$
p(x)=c_{1}^{2}(x)+c_{2}^{2}(x) d+c_{3}^{2}(x) a+c_{4}^{2}(x) a d+2 c_{3}(x) c_{4}(x) b d
$$

has α as a zero of multiplicity 2. So $(x-\alpha)^{2} \mid p(x)$ in $\mathbb{Q}[x]$. Obviously, $p(x)$ is reducible.

Since we want $p(x)$ to be prime for some values $x \in \mathbb{Z}$, we expect $p(x)$ to be irreducible and have no fixed prime divisors. Here we say that a prime number \mathfrak{p} is a fixed prime divisor of a polynomial $f(x)$ with rational coefficients if \mathfrak{p} divides every integer-valued $f(n)$ for $n \in \mathbb{Z}$. We also define the greatest fixed divisor $G F D(f)$ to be the largest positive integer d such that d divides all integral values of $f(n)$ for $n \in \mathbb{Z}$. We say that a polynomial $f(x)$ with integral coefficients has the Bunyakovsky's property if $f(x)$ has no fixed prime divisors. We need to check that the irreducible $p(x)$ has no fixed prime divisors, i.e., it satisfies Bunyakovsky's property. This can be easily checked by using Newton's interpolation formula (see, e.g., [63], Section 2.2) to write $p(x)$ in terms of polynomials basis $\{x(x-1)(x-2) \ldots(x-k+1) / k!\}_{k \in \mathbb{Z}^{+}}$, then verifying that the coefficients are relatively prime [64].

Lemma 12 implies that we cannot choose linear polynomials $c_{3}(x)$ and $c_{4}(x)$ to obtain such $p(x)$. Therefore, we choose $c_{3}(x)$ and $c_{4}(x)$ to be quadratic polynomials in the following algorithm ${ }^{3}$.

[^7]```
Algorithm 4 Parameter generator polynomials for \(K=\mathbb{Q}(\eta), d \equiv 2,3(\bmod 4)\)
Input: Integers \(a, b, d\) with \(d>0\) squarefree, \(d \equiv 2,3(\bmod 4), a^{2}-b^{2} d>0\) not a
``` square.

Output: Four quadratic polynomials \(c_{1}(x), c_{2}(x), c_{3}(x), c_{4}(x)\) and a quartic polynomial \(p(x)\) are generated such that they satisfy the equations (4.1) and (4.2). Polynomials \(N_{1}(x)\) and \(N_{2}(x)\) of degree 8 are generated as possible group orders.

\section*{repeat}

\section*{repeat}

Choose quadratic polynomials \(c_{3}(x)\) and \(c_{4}(x)\) in \(\mathbb{Z}[x]\) with small coefficients and \(\operatorname{gcd}\left(c_{3}(x), c_{4}(x)\right)=1\).
4: \(\quad\) Set \(n(x)=2 c_{3}(x) c_{4}(x) a+c_{3}^{2}(x) b+c_{4}^{2}(x) b d\).
5:
until \(\operatorname{deg} n(x)=4\) and \(n(x)=\widetilde{c_{1}}(x) \cdot \widetilde{c_{2}}(x), \operatorname{deg} \widetilde{c_{1}}(x)=2=\operatorname{deg} \widetilde{c_{2}}(x)\), \(\operatorname{gcd}\left(\widetilde{c}_{1}(x), \widetilde{c}_{2}(x)\right)=1, n(x)\) and \(\widetilde{c}_{1}(x)\) have the same content.

6: \(\quad\) Set \(c_{1}(x)=-\frac{1}{2} \widetilde{c}_{1}(x), c_{2}(x)=\widetilde{c}_{2}(x)\).
Set \(p(x)=c_{1}^{2}(x)+c_{2}^{2}(x) d+c_{3}^{2}(x) a+c_{4}^{2}(x) a d+2 c_{3}(x) c_{4}(x) b d\).
until \(p(x)\) is irreducible and has no fixed prime divisor.
Set \(N_{1}(x)=(p(x)+1)^{2}-4(p(x)+1) c_{1}(x)+4\left(c_{1}^{2}(x)-c_{2}^{2}(x) d\right)\), \(N_{2}(x)=(p(x)+1)^{2}+4(p(x)+1) c_{1}(x)+4\left(c_{1}^{2}(x)-c_{2}^{2}(x) d\right)\).

We have a similar result for the case \(d \equiv 1(\bmod 4)\).
In this case, we write
\[
\pi=c_{1}+c_{2} \frac{-1+\sqrt{d}}{2}+\eta\left(c_{3}+c_{4} \frac{-1+\sqrt{d}}{2}\right), c_{i} \in \mathbb{Z} .
\]

Again, \(\pi \bar{\pi}=p\) gives
\[
\begin{aligned}
& \left(c_{1}^{2}+\left(\frac{d-1}{4}\right) c_{2}^{2}+a c_{3}^{2}+2 b\left(\frac{d-1}{4}\right) c_{3} c_{4}+(a-b)\left(\frac{d-1}{4}\right) c_{4}^{2}\right) \\
+ & \left(2 c_{1} c_{2}-c_{2}^{2}+b c_{3}^{2}+2(a-b) c_{3} c_{4}+\left(b\left(\frac{d+3}{4}\right)-a\right) c_{4}^{2}\right) \frac{-1+\sqrt{d}}{2}=p .
\end{aligned}
\]

The linear independence of 1 and \(\frac{-1+\sqrt{d}}{2}\) over \(\mathbb{Q}\) implies the following two equations
\[
\begin{align*}
c_{1}^{2}+\left(\frac{d-1}{4}\right) c_{2}^{2}+a c_{3}^{2}+2 b\left(\frac{d-1}{4}\right) c_{3} c_{4}+(a-b)\left(\frac{d-1}{4}\right) c_{4}^{2} & =p  \tag{4.8}\\
2 c_{1} c_{2}-c_{2}^{2}+b c_{3}^{2}+2(a-b) c_{3} c_{4}+\left(b\left(\frac{d+3}{4}\right)-a\right) c_{4}^{2} & =0 \tag{4.9}
\end{align*}
\]

The corresponding cardinality of the Jacobian
\[
\begin{equation*}
N=(p+1)^{2}-\left(4 c_{1}-2 c_{2}\right)(p+1)+4\left(c_{1}^{2}-c_{1} c_{2}-\left(\frac{d-1}{4}\right) c_{2}^{2}\right) . \tag{4.10}
\end{equation*}
\]

The algorithm is given as follows.
```

Algorithm 5 Parameter generator polynomials for $K=\mathbb{Q}(\eta), d \equiv 1(\bmod 4)$
Input: Integers a, b, d with $d>0$ squarefree, $d \equiv 1(\bmod 4), a^{2}-a b-b^{2}\left(\frac{d-1}{4}\right)>0$

```
    not a square.

Output: Four quadratic polynomials \(c_{1}(x), c_{2}(x), c_{3}(x), c_{4}(x)\) and a quartic polynomial \(p(x)\) are generated such that they satisfy the equations (4.8) and (4.9). Polynomials \(N_{1}(x)\) and \(N_{2}(x)\) of degree 8 are generated as possible group orders.

1: repeat

\section*{repeat}

Choose quadratic polynomials \(c_{3}(x)\) and \(c_{4}(x)\) in \(\mathbb{Z}[x]\) with small coefficients and \(\operatorname{gcd}\left(c_{3}(x), c_{4}(x)\right)=1\).
4: \(\quad\) Set \(n(x)=2 c_{3}(x) c_{4}(x) a-c_{4}^{2}(x) a+c_{3}^{2}(x) b-2 c_{3}(x) c_{4}(x) b+c_{4}^{2}(x) b\left(\frac{d+3}{4}\right)\).
5: until \(\operatorname{deg} n(x)=4\) and \(n(x)=\widetilde{c_{1}}(x) \cdot \widetilde{c_{2}}(x), \operatorname{deg} \widetilde{c}_{1}(x)=2=\operatorname{deg} \widetilde{c}_{2}(x)\), \(\operatorname{gcd}\left(\widetilde{c}_{1}(x), \widetilde{c}_{2}(x)\right)=1, n(x)\) and \(\widetilde{c}_{1}(x)\) have the same content.
6: \(\quad\) Set \(c_{2}(x)=\widetilde{c}_{2}(x), c_{1}(x)=\frac{1}{2}\left(-\widetilde{c}_{1}(x)+c_{2}(x)\right)\).
7: \(\quad\) Set \(p(x)=c_{1}^{2}(x)+c_{2}^{2}(x)\left(\frac{d-1}{4}\right)+c_{3}^{2}(x) a+c_{4}^{2}(x) a\left(\frac{d-1}{4}\right)+2 c_{3}(x) c_{4}(x) b\left(\frac{d-1}{4}\right)-\) \(b c_{4}^{2}(x)\left(\frac{d-1}{4}\right)\).
until \(p(x)\) is irreducible and has no fixed prime divisor.
9: Set \(N_{1}(x)=(p(x)+1)^{2}-(p(x)+1)\left(4 c_{1}(x)-2 c_{2}(x)\right)+\) \(4\left(c_{1}^{2}(x)-c_{1}(x) c_{2}(x)-c_{2}^{2}(x)\left(\frac{d-1}{4}\right)\right)\),
\(N_{2}(x)=(p(x)+1)^{2}+(p(x)+1)\left(4 c_{1}(x)-2 c_{2}(x)\right)+\) \(4\left(c_{1}^{2}(x)-c_{1}(x) c_{2}(x)-c_{2}^{2}(x)\left(\frac{d-1}{4}\right)\right)\).

The polynomials returned from Algorithms 4 and Algorithm 5 are candidates of parameter generator polynomials. We then insert integer values of a suitable size into them until \(p(x)\) is prime and \(N_{1}(x)\) or \(N_{2}(x)\) is almost prime. This process is written formally in Algorithm 6 as follows.

Algorithm 6 Algorithm for generating parameters for HEC cryptography
Input: Polynomials \(c_{1}(x), p(x), N_{1}(x)\) and \(N_{2}(x)\) generated by Algorithm 4 or Algo-
rithm 5; bit length, \(\mu\), of the desired size of the prime field over which the curve is defined; maximum number of trials, \(M\).

Output: Triples \(\left(p, N_{1}, N_{2}\right)\) for constructing hyperelliptic curves over \(\mathbb{F}_{p}\) with CM by \(K=\mathbb{Q}(\eta)\) whose Jacobians have almost prime group orders \(N_{1}\) or \(N_{2} \sim 2^{2 \mu}\); or "Not found".
number_of_trial \(=0\).
repeat
Choose an integer \(x_{0} \sim 2^{\frac{\mu}{4}}\).
if \(c_{1}\left(x_{0}\right)\) is an integer then \(p \leftarrow p\left(x_{0}\right)\).
if \(p\) is prime and \(2^{\mu-1}<p<2^{\mu}\), and either \(N_{1} \leftarrow N_{1}\left(x_{0}\right)\) or \(N_{2} \leftarrow N_{2}\left(x_{0}\right)\) is almost prime then

Return \(\left(p, N_{1}, N_{2}\right)\).
end if
end if
number_of_trial \(\leftarrow\) number_of_trial +1 .
until number_of_trial \(=M\).
Return "Not found".

In Step 6 of Algorithm 6, to test if \(N_{i}(i=1,2)\) is almost prime, we can find the maximum factor \(h_{\max }\) of \(N_{i}\) below a specified upper bound (i.e., 10,000 ), and perform a primality test for \(N_{i} / h_{\max }\). In this way, factorization for large integers can be avoided in our method.

We implemented Algorithms 4, 5 and 6 as well as the Weng's method for generating (prime, group order) pairs ( \(p, N\) ) with respect to randomly chosen quartic CM fields, specified by small parameters \(a, b, d\), randomly chosen so that \(0<d \leq 50\) is squarefree, \(\mathbb{Q}(\sqrt{d})\) has class number one, \(0<|a|,|b| \leq 50\), and \(\Delta>0\) is not a square. Trial factorization of integers up to a fixed bound \((10,000)\) is used for the old method.
1. 128-bit \(p\) : In the case \(d \equiv 2,3(\bmod 4)\), our method generates parameter pairs \((p, N)\) at an average rate of 2.1402 seconds per pair, while Weng's algorithm generates pairs at 7.7538 seconds per pair. In the case \(d \equiv 1(\bmod 4)\), our method generates parameter pairs at an average rate of 3.6423 seconds per pair, and Weng's method at 11.4407 seconds per pair.
2. 256-bit \(p\) : In the case \(d \equiv 2,3(\bmod 4)\), our method generates parameter pairs at an average rate of 21.7344 seconds per pair, while Weng's algorithm generates pairs at 97.9592 seconds per pair. In the case \(d \equiv 1(\bmod 4)\), our method generates parameter pairs at an average rate of 41.0917 seconds per pair, and Weng's method at 108.5106 seconds per pair.

However, we notice that there are rare cases in which the algorithm fails to find suitable parameters. We expect our method to perform much better on average as the size of the prime \(p\) increases, if complete factorization of integers is used for Weng's method.

The implementation is performed in PARI/GP [65]. We include in Appendix A some parameters found by the above algorithms.

\subsection*{4.3 Probability That \(p(x)\) is Prime and \(N_{i}(x)\) is Almost Prime}

Although in practice we allow polynomials with rational coefficients, for simplicity of the analysis of Algorithms 6 above, we choose \(c_{i}(x)\) to be polynomials with integral coefficients. We set \(N(x)\) to be one of \(N_{1}(x)\) and \(N_{2}(x)\). We also require that \(N(x)\) be irreducible over \(\mathbb{Q}\). Experiment shows that if \(p(x)\) is irreducible then \(N(x)\) is also irreducible with very high probability.

We do not intend to provide an exhaustive analysis in this thesis. Rather, we give some intuition about how often it happens that \(p(m)\) is prime and \(N(m)\) is almost prime simultaneously for an integer \(m\). Our argument is related to the Bateman-Horn Conjecture [66,67] and its generalized version for the case of a single polynomial [64].

The Bateman-Horn Conjecture is a quantitative form of Hypothesis \(H\) of A. Schinzel \([68,69]\). It approximates the density of the positive integers at which a given set of polynomials have simultaneous integer values. It is stated as follows.

Conjecture 1 (Bateman-Horn, [66]) Suppose \(f_{1}, f_{2}, \ldots, f_{k}\) are polynomials in one variable with all coefficients integral and leading coefficients positive, their degree being \(h_{1}, h_{2}, \ldots, h_{k}\) respectively. Suppose each \(f_{i}\) is irreducible over \(\mathbb{Q}\) and no two of them differ by a constant factor (i.e., they are not associated). Let \(Q\left(f_{1}, f_{2}, \ldots, f_{k} ; M\right)\) denote the number of positive integers \(n\) between 1 and \(M\) inclusive such that \(f_{1}(n)\), \(f_{2}(n), \ldots, f_{k}(n)\) are all primes (ignoring the finitely many values of \(n\) for which some \(f_{i}(n)\) is negative). Then we have
\[
Q\left(f_{1}, f_{2}, \ldots, f_{k} ; M\right) \sim h^{-1} C \int_{2}^{M}(\log u)^{-k} d u
\]
where
\[
C=\prod_{\mathfrak{p} \text { prime }}\left(1-\frac{1}{\mathfrak{p}}\right)^{-k}\left(1-\frac{W(\mathfrak{p})}{\mathfrak{p}}\right), \quad h=h_{1}^{-1} h_{2}^{-1} \ldots h_{k}^{-1},
\]
and \(W(\mathfrak{p})\) is the number of solutions of the congruence
\[
f_{1}(x) f_{2}(x) \ldots f_{k}(x) \equiv 0 \quad(\bmod \mathfrak{p})
\]

For the case of one polynomial \(f\), the Bateman-Horn Conjecture is generalized by M. Adleman and A. Odlyzko to deal with the situation \(G F D(f) \neq 1\). We summarize it as follows.

Conjecture 2 (Adleman-Odlyzko, [64]) Suppose \(f(x) \in \mathbb{Z}[x]\) is irreducible with greatest fixed divisor \(d=G F D(f)\) and has a positive leading coefficient. For a prime \(\mathfrak{p}\), let \(r=r_{\mathfrak{p}}\) be the least nonnegative integer such that the values of \(f(m) d^{-1}\), when
reduced modulo \(\mathfrak{p}\), are periodic in \(m\) with period \(\mathfrak{p}^{r+1}\). (It can be shown that \(r \leq \frac{\operatorname{deg}(f)}{\mathfrak{p}-1}\).) Let
\[
W\left(\mathfrak{p}^{r+1}\right)=\#\left\{m: 0 \leq m<\mathfrak{p}^{r+1}, f(m) \equiv 0 \quad(\bmod \mathfrak{p})\right\}
\]

Let \(Q(f ; M)=\#\left\{m: 1 \leq m \leq M, f(m) d^{-1}\right.\) is a prime \(\}\). Then
\[
Q(f ; M) \sim \frac{M}{h \log (M)} C
\]
where \(h=\operatorname{deg}(f)\) and
\[
C=\prod_{\mathfrak{p} \text { prime }}\left(1-\frac{1}{\mathfrak{p}}\right)^{-1}\left(1-\frac{W\left(\mathfrak{p}^{r+1}\right)}{\mathfrak{p}^{r+1}}\right) .
\]

Based on the above two conjectures, we conjecture, for analysis of our algorithm, as follows.

Conjecture 3 Let \(p(x) \in \mathbb{Z}[x]\) be irreducible with no fixed prime divisor and a positive leading coefficient. Let \(N(x) \in \mathbb{Z}[x]\) be irreducible with greatest fixed divisor \(d=\operatorname{GFD}(N)\) and a positive leading coefficient. Let \(f(x)=p(x) \cdot d^{-1} N(x)\) and let \(r=r_{\mathfrak{p}}\) be the least nonnegative integer such that the values of \(f(m)\), when reduced modulo a prime \(\mathfrak{p}\), are periodic in \(m\) with period \(\mathfrak{p}^{r+1}\). We have the fact that \(r \leq \frac{\operatorname{deg}(f)}{\mathfrak{p}-1}\) [64]. Let
\[
W\left(\mathfrak{p}^{r+1}\right)=\#\left\{m: 0 \leq m<\mathfrak{p}^{r+1}, f(m) \equiv 0 \quad(\bmod \mathfrak{p})\right\}
\]

Let \(Q(p, N ; M)=\#\left\{m: 1 \leq m \leq M, p(m)\right.\) and \(d^{-1} N(m)\) are both prime \(\}\). Then
\[
\begin{equation*}
Q(p, N ; M) \sim h^{-1} C \int_{2}^{M}(\log u)^{-2} d u \tag{4.11}
\end{equation*}
\]
where \(h=\operatorname{deg}(p) \operatorname{deg}(N)\) and
\[
C=\prod_{\mathfrak{p} \text { prime }}\left(1-\frac{1}{\mathfrak{p}}\right)^{-2}\left(1-\frac{W\left(\mathfrak{p}^{r+1}\right)}{\mathfrak{p}^{r+1}}\right) .
\]

Example 1. Let \(p(x)=x^{2}+1\) and \(N(x)=x^{2}+x+2\) with \(d=G F D(N)=2\). We consider the number of prime pairs \(\left(p(m), d^{-1} N(m)\right)\) for \(2^{22} \leq m \leq 2^{23}\). We
have \(h=4, C \approx 2.6741\) and \(\int_{2^{22}}^{2^{23}} \log (u)^{-2} d u \approx 17165\). Thus the estimated value of \(Q_{1}:=Q\left(p, N ; 2^{23}\right)-Q\left(p, N ; 2^{22}\right)\) is approximated 11475 . On the other hand, an explicit counting shows that \(Q_{1}=11844\).

Conjecture 3 suggests a lower bound for the number of pairs \((p(m), N(m))\) with \(p(m)\) prime and \(N(m)\) almost prime. And it must be noted that this lower bound does not work well for the case of polynomials \(p(x)\) and \(N(x)\) obtained in Algorithm 4 and 5 , because \(N(m)\) is always divisible by 4 when \(p(m)\) is odd, in particular, prime, and this will lead to \(C=0\). But \(N(m)\) is odd when \(p(m)\) is even. However, in this situation, it seems natural to consider pairs of primes of the form \(\left(p(m), d^{-1} N(x) / 4\right)\). We claim that an estimate in the form of (4.11) still holds, but the computation of the constant \(C\) needs to be modified accordingly, by considering the case \(\mathfrak{p}=2\) separately. We will show a way to do this in the following example.

Example 2. Let \(p(x)=x^{2}+1\) and \(N(x)=(p(x)+1)^{2}+4(p(x)+1)+8=x^{4}+8 x^{2}+20\). Then neither \(p(x)\) nor \(N(x)\) have a fixed prime divisor and \(N(m)\) has 4 as a divisor if \(p(m)\) is odd. Let \(f(x)=p(x) \cdot N(x)\) and \(W(\mathfrak{p})\) be the number of solutions for the equation \(f(m) \equiv 0(\bmod \mathfrak{p})\). If we let \(Q(M)\) be the number of prime pairs \((p(m), N(m) / 4)\) for \(1 \leq m \leq M\), then we claim that \(Q(M)\) can be estimated as
\[
\begin{equation*}
Q(M) \sim h^{-1} C \int_{2}^{M}(\log u)^{-2} d u \tag{4.12}
\end{equation*}
\]
where \(h=2 \cdot 4=8\) and
\[
C=C_{2} \cdot \prod_{\mathfrak{p} \geq 3}\left(1-\frac{1}{\mathfrak{p}}\right)^{-2}\left(1-\frac{W(\mathfrak{p})}{\mathfrak{p}}\right) \approx C_{2} \cdot 2.3775
\]
where \(C_{2}\) is computed, based on the philosophy of Bateman-Horn, as
\[
\begin{aligned}
C_{2} & =\frac{\operatorname{Prob}\{N(m) / 4 \in \mathbb{Z} \text { and both } p(m) \text { and } N(m) / 4 \text { are not divisible by } 2\}}{\operatorname{Prob}\{\text { two random numbers are not divisible by } 2\}} \\
& =\frac{\operatorname{Prob}\{p(m) \text { is odd }\} \cdot \operatorname{Prob}\{N(m) / 4 \text { is odd } \mid p(m) \text { is odd }\}}{(1-1 / 2)^{2}} \\
& =4 \cdot \operatorname{Prob}\{m \text { is even }\} \operatorname{Prob}\{N(m) / 4 \text { is odd } \mid m \text { is even }\} \\
& =4 \cdot \frac{1}{2} \cdot 1=2 .
\end{aligned}
\]

Therefore, we have \(Q:=Q\left(2^{23}\right)-Q\left(2^{22}\right) \approx 10202\) by (4.12). A direct counting gives \(Q=10483\), close to the estimate.

We want to keep the degrees of \(p(x)\) and \(N(x)\) as small as possible so that the probability of obtaining suitable parameters of a fixed size is as high as possible, as indicated by the above heuristic. Our algorithms produce \(p(x)\) of degree 4 and \(N_{i}(x)\) of degree 8 .

Note that \(c_{3}(x)\) and \(c_{4}(x)\) can also be chosen in such a way that one is a linear polynomial and the other is a quadratic polynomial. In this case, the resulting \(p(x)\) and \(N_{i}(x)\) are still of degree 4 and 8 , respectively. Therefore the probability of getting suitable pairs \((p(m), N(m))\) should not differ significantly.

\subsection*{4.4 Conclusion and Further Discussion}

We present in this chapter a method of generating cryptographically strong parameters for constructing genus 2 hyperelliptic curves. The method shows an improvement over the existing method by using polynomial parameterization. It efficiently generates parameters \(p\) and \(N\) approximately of a certain size by choosing a suitable sized \(x_{0}\) in Algorithm 6. However, if an exact size (of \(p\) or \(N\) ) is specified by the practical requirement, the value of \(x_{0}\) should be chosen more carefully.

Future research directions include improvement of the algorithms so that they can effectively output parameters of exact lengths, and more efficient implementation. Although it seems hard to prove the conjectures like Bateman-Horn, general-
izing Conjecture 3 so that it works for multiple polynomials that do not have the Bunyakovsky's property is another topic of research.

Generating pairing-friendly parameters is another direction of research. We shall discuss this extension in the chapter that immediately follows.

\section*{5. GENERATING PARAMETERS FOR PAIRING-FRIENDLY GENUS 2 CURVES OVER PRIME FIELDS}

We present two contributions in this chapter.
First, we give a quantitative analysis of the scarcity of pairing-friendly genus 2 curves, assuming the Riemann Hypothesis. This result shows an improvement relative to prior work [70], which does a heuristic estimation of the density of pairing-friendly genus 2 curves.

Second, we present a method for generating pairing-friendly parameters for which \(\rho \approx 8^{1}\) This method applies the idea of [71] to a setting given in terms of coefficients of the Frobenius element. It is easy to understand and implement.

\subsection*{5.1 Introduction}

For a (multiplicatively written) cyclic group \(G\) of order \(q\), with a generator \(g \in G\), the Decision Diffie-Hellman Problem is the following problem: Given \(g^{a}\) and \(g^{b}\) for randomly-chosen \(a, b \in\{0, \ldots, q-1\}\), and \(h \in G\), determine if \(c=g^{a b}\); and the Computational Diffie-Hellman Problem is the following problem: Given \(g^{a}\) and \(g^{b}\) for randomly-chosen \(a, b \in\{0, \ldots, q-1\}\), compute \(g^{a b}\).

Many cryptographic algorithms and protocols make use of "bilinear maps", with which there are groups in which the Decision Diffie-Hellman Problem is easy and the Computational Diffie-Hellman Problem is hard [72]. Such maps have application in identity-based encryption [73], aggregate signatures [72], short signatures [74], tripartite key agreement protocols [75], non-interactive key distribution protocols [76], and

\footnotetext{
\({ }^{1}\) The definition of \(\rho\) can be found in Section 5.4.
}
so on. Pairings for elliptic curves and Jacobian varieties of hyperelliptic curves provide efficient implementation of such bilinear maps, which are suitable for cryptography.

In addition to the requirements that must be satisfied for discrete-log based cryptography, pairing-based cryptography poses further restrictions on the curves - for many applications, a low "embedding degree" is desired. The low density of pairingfriendly curves among cryptographically strong ones makes it extremely hard to find suitable curves for pairing-based crypto via point counting. This indicates that the CM method is probably the only suitable method for finding pairing-friendly genus 2 curves nowadays. For the pairing-friendly setting, a bound on the desired embedding degree is an additional input to the CM algorithm.

\subsection*{5.2 Weil and Tate-Lichtenbaum Pairings}

For an abelian variety \(\mathcal{A}\) over a finite field \(F\) and an integer \(r\) coprime to the characteristic of \(F\), a Weil pairing is a nondegenerate, skew-symmetric bilinear map
\[
e_{r}^{W}: \mathcal{A}(\bar{F})[r] \times \mathcal{A}(\bar{F})[r] \rightarrow \mu_{r}(\bar{F}),
\]
where \(\bar{F}\) is an algebraic closure of \(F\) and \(\mu_{r}(\bar{F})\) is the group of \(r^{\text {th }}\) roots of unity in \(\bar{F}\); a Tate-Lichtenbaum pairing is a nondegenerate bilinear map
\[
e_{r}^{T L}: \mathcal{A}(F)[r] \times \mathcal{A}(F) / r \mathcal{A}(F) \rightarrow F^{*} /\left(F^{*}\right)^{r}
\]
\(F^{*} /\left(F^{*}\right)^{r}\) is isomorphic to \(\mu_{r}(\bar{F})\) if and only if \(\mu_{r}(\bar{F}) \subseteq F\). In many pairing-based cryptographic applications, we want the target group of a pairing map to have an element of order \(r\), so we need to work over a field containing the \(r^{\text {th }}\) roots of unity.

Definition 13 (Embedding degree) Let \(\mathcal{A}\) be an abelian variety over a finite field \(F=\mathbb{F}_{q}\). Let \(r\) be an integer coprime to \(q\) which divides \(\# \mathcal{A}(F)\). The field \(F\left(\mu_{r}(\bar{F})\right)\) is a finite extension \(\mathbb{F}_{q^{k}}\) of \(F\). The number \(k\) is called the embedding degree of \(\mathcal{A}\) with respect to \(r\), and it is the smallest integer such that \(r \mid q^{k}-1\).

We also call the embedding degree of the Jacobian of a nonsingular projective curve \(C\) the "embedding degree of the curve \(C\)."

In many settings relevant to pairing-based cryptography, we need an abelian variety \(\mathcal{A}\) with \(\# \mathcal{A}\) almost prime, i.e., \(\# \mathcal{A}=h \cdot r\), where \(h\) is a small positive integer and \(r\) is a prime number; and the embedding degree \(k\) of \(\mathcal{A}\) with respect to \(r\) is not too large.

Definition 14 (Pairing-friendly abelian variety) Let \(H\) and \(K\) be positive integers. Let \(\mathcal{A}\) be an abelian variety over a finite field \(\mathbb{F}_{q}\). We say \(\mathcal{A}\) is pairing-friendly with respect to parameters \(H\) and \(K\) if \(\# \mathcal{A}=h \cdot r\) for some positive integer \(h \leq H\) and a prime number \(r\), and the embedding degree \(k\) of \(\mathcal{A}\) with respect to \(r\) is no larger than \(K\).

By convention, we call an abelian variety "pairing-friendly" if \(H\) and \(K\) are "small". We also say a nonsingular projective curve \(C\) is "pairing-friendly" if \(C\) has a pairing-friendly Jacobian.

\subsection*{5.3 Pairing-friendly Genus 2 Curves Are Rare}

In this section, we shall show (assuming the Riemann Hypothesis) that there are very few pairing-friendly genus 2 hyperelliptic curves among all genus 2 hyperelliptic curves over prime fields whose Jacobians have almost prime orders. A similar result for elliptic curves is proved in [77].

Let \(p\) be an odd prime number, and let \(\log (\cdot)\) denote the natural logarithm.
The main result of this section is Theorem 18. Before proving it, we first introduce several lemmas.

Lemma 15 Let \(M\) and \(c\) be positive constants with \(c<4\). For a fixed positive integer \(a\), let \(\mathcal{S}_{a, c, M}\) denote the set of pairs of primes \((x, y)\) such that \(\frac{M}{2} \leq x \leq M\) and
\(\left|x^{2}-a \cdot y\right| \leq c \cdot x^{3 / 2}\). If the Riemann Hypothesis (R.H.) holds, then for large enough M, we have
\[
\left|\mathcal{S}_{a, c, M}\right| \geq \frac{1}{15} \cdot \frac{c}{a} \cdot \frac{M^{5 / 2}}{(\log M)^{2}}
\]

Proof Let \(\pi(x)\) be number of primes in the interval [1, \(x\) ]. Let \(N=\pi(M)-\pi\left(\frac{M}{2}\right)\) be the number of primes in \((M / 2, M]\). The Prime Number Theorem (P.N.T.) implies \(N>\frac{1}{3} \cdot \frac{M}{\log M}\) for \(M\) large enough.

Now let \(p\) be a prime number in \((M / 2, M]\). We look at the number of primes \(y\) such that \(\left|p^{2}-a \cdot y\right| \leq c \cdot p^{3 / 2}\), i.e., \(\frac{1}{a}\left(p^{2}-c \cdot p^{3 / 2}\right) \leq y \leq \frac{1}{a}\left(p^{2}+c \cdot p^{3 / 2}\right)\). Denote this number by \(N_{p}\). By a theorem of von Koch (see [78], Theorem 8.3.3), if the R.H. is true,
\[
\pi(x)=\operatorname{li}(x)+O(\sqrt{x} \log x),
\]
where \(\operatorname{li}(x)=\int_{2}^{x} \mathrm{~d} t / \log t\). Moreover, by a result of L. Schoenfeld (see [79], Corollary 1 ), if R.H. is true, there exists an effectively computable positive constant \(c_{1}\) such that \(|\pi(x)-\operatorname{li}(x)|<c_{1} \cdot \sqrt{x} \log x\), when \(x \geq 2657\). According to this result, when \(p\) is large, we have
\[
\begin{aligned}
N_{p} \geq & \pi\left(\frac{1}{a}\left(p^{2}+c \cdot p^{3 / 2}\right)\right)-\pi\left(\frac{1}{a}\left(p^{2}-c \cdot p^{3 / 2}\right)\right) \\
> & \operatorname{li}\left(\frac{1}{a}\left(p^{2}+c \cdot p^{3 / 2}\right)\right)-\operatorname{li}\left(\frac{1}{a}\left(p^{2}-c \cdot p^{3 / 2}\right)\right) \\
& -\frac{1}{a} \cdot c_{1}\left(p^{2}+c \cdot p^{3 / 2}\right)^{1 / 2} \log \left(p^{2}+c \cdot p^{3 / 2}\right) \\
& -\frac{1}{a} \cdot c_{1}\left(p^{2}-c \cdot p^{3 / 2}\right)^{1 / 2} \log \left(p^{2}-c \cdot p^{3 / 2}\right) \\
> & \int_{\frac{1}{a}\left(p^{2}-c \cdot p^{3 / 2}\right)}^{\frac{1}{a}\left(p^{2}+c \cdot p^{3 / 2}\right)} \frac{\mathrm{d} t}{\log t}-\frac{1}{a} \cdot 2 c_{1}\left(p^{2}+c \cdot p^{3 / 2}\right)^{1 / 2} \log \left(p^{2}+c \cdot p^{3 / 2}\right) \\
> & \frac{1}{\log \left(\frac{1}{a} \cdot\left(M^{2}+c \cdot M^{3 / 2}\right)\right)} \cdot \frac{1}{a}\left(2 c\left(\frac{M}{2}\right)^{3 / 2}\right)-\frac{1}{a} \cdot 2 c_{1}\left(2 M^{2}\right)^{1 / 2} \log \left(2 M^{2}\right) \\
> & \frac{1}{\log \left(2 M^{2}\right)-\log a} \cdot \frac{c}{a \sqrt{2}} M^{3 / 2}-\frac{1}{a} \cdot 8 c_{1} M \log M \\
> & \frac{1}{a}\left(\frac{c M^{3 / 2}}{4 \log M}-8 c_{1}(M \log M)\right) \\
> & \frac{1}{5} \cdot \frac{c}{a} \cdot \frac{M^{3 / 2}}{\log M} .
\end{aligned}
\]

Note that the inequality above is independent of the value \(p\). Summing over all suitable primes \(p\), we obtain
\[
\left|\mathcal{S}_{a, c, M}\right|=\sum_{\substack{\frac{M}{2} \leq p \leq M \\ p \text { prime }}} N_{p} \geq \frac{1}{5} \cdot \frac{c}{a} \cdot \frac{M^{3 / 2}}{\log M} \cdot \frac{1}{3} \cdot \frac{M}{\log M}=\frac{1}{15} \cdot \frac{c}{a} \cdot \frac{M^{\frac{5}{2}}}{(\log M)^{2}}
\]
for large enough \(M\).

Lemma 16 Let \(M\) and \(K\) be positive constants. For a fixed positive integer a, let \(\mathcal{T}_{a, M, K}\) denote the set of pairs of primes \((x, y)\) such that \(\frac{M}{2} \leq x \leq M,\left|x^{2}-a \cdot y\right| \leq 5 x^{3 / 2}\) and \(y \mid x^{k}-1\) for some \(k \leq K\). Then \(\left|\mathcal{T}_{a, M, K}\right|<\frac{45}{8} M^{3 / 2}(K+1)^{2} \log \left(5^{3 / 2} M\right)\).

Proof For every nonzero integer \(h\) with \(|h| \leq 5 M^{3 / 2}\), let \(\mathcal{B}_{h}^{(e)}\) be the set of primes \(y\) such that \(y \mid h^{k / 2}-1\) for some even integer \(k\) with \(0<k \leq K\). Since \(h^{k / 2}-1\) has fewer than \(\log \left(|h|^{k / 2}\right)\) distinct prime divisors, we have
\[
\begin{aligned}
\left|\mathcal{B}_{h}^{(e)}\right| & <\sum_{\substack{k=2 \\
k \text { even }}}^{K} \frac{k}{2} \log |h| \leq \frac{1}{2}\left(\frac{K}{2}\right)\left(\frac{K}{2}+1\right) \log |h| \\
& \leq \frac{1}{2}\left(\frac{K}{2}\right)\left(\frac{K}{2}+1\right)(3 / 2) \log \left(5^{3 / 2} M\right) \\
& \leq \frac{3}{16} K(K+2) \log \left(5^{3 / 2} M\right)
\end{aligned}
\]

Now for the same \(h\), let \(\mathcal{B}_{h}^{(o)}\) denote the set of primes \(y\) such that \(y \mid h^{k}-1\) for some odd integer \(k\) with \(0<k \leq K\). Since \(h^{k}-1\) has fewer than \(\log \left(|h|^{k}\right)\) distinct prime divisors,
\[
\begin{aligned}
\left|\mathcal{B}_{h}^{(o)}\right| & <\sum_{\substack{k=1 \\
k \text { odd }}}^{K} k \log |h| \leq \frac{\left\lceil\frac{K}{2}\right\rceil(K+1)}{2} \log |h| \\
& \leq \frac{1}{4}(K+1)^{2}(3 / 2) \log \left(5^{3 / 2} M\right) \\
& =\frac{3}{8}(K+1)^{2} \log \left(5^{3 / 2} M\right) .
\end{aligned}
\]

Let \(\mathcal{B}_{h}\) be the set of pairs of primes \((x, y)\) such that \(x^{2}-a \cdot y=h\). When \(k\) is even, we have
\[
h^{k / 2}=\left(x^{2}-a \cdot y\right)^{k / 2}=x^{k}+y \cdot(\text { polynomial in } x \text { and } y) ;
\]
thus \(y \mid h^{k / 2}-1\) is equivalent to \(y \mid x^{k}-1\). Similarly, when \(k\) is odd, \(y \mid x^{k}-1\) implies \(y \mid x^{2 k}-1\), which again implies \(y \mid h^{k}-1\). Therefore, we must have
\[
\begin{aligned}
\left|\mathcal{B}_{h}\right| & \leq\left|\mathcal{B}_{h}^{(e)}\right|+\left|\mathcal{B}_{h}^{(o)}\right| \\
& \leq \frac{3}{16} K(K+2) \log \left(5^{3 / 2} M\right)+\frac{3}{8}(K+1)^{2} \log \left(5^{3 / 2} M\right) \\
& <\frac{9}{16}(K+1)^{2} \log \left(5^{3 / 2} M\right)
\end{aligned}
\]

Summing over all such integer \(h\) and note that \(\frac{M}{2} \leq x \leq M\), we have
\[
\left|\mathcal{T}_{a, M, K}\right| \leq \sum_{0<|h| \leq 5 M^{3 / 2}}\left|\mathcal{B}_{h}\right|<\frac{45}{8} M^{3 / 2}(K+1)^{2} \log \left(5^{3 / 2} M\right)
\]

Lemma 17 Let \(\widetilde{\mathcal{S}}_{H, c, M}\) denote the set of pairs of primes \((x, y)\) such that \(\frac{M}{2} \leq x \leq M\) and \(\left|x^{2}-a \cdot y\right| \leq c \cdot x^{3 / 2}\) for some \(a \in \mathbb{Z}, 1 \leq a \leq H\). Let \(\widetilde{\mathcal{T}}_{H, M, K}\) denote the set of pairs of primes \((x, y)\) such that \(\frac{M}{2} \leq x \leq M,\left|x^{2}-a \cdot y\right| \leq 5 x^{3 / 2}\) for some \(a \in \mathbb{Z}\), \(1 \leq a \leq H\), and \(y \mid x^{k}-1\) for some \(k \leq K\). If the R.H. holds, then for large \(M\),
\[
\frac{\widetilde{\mathcal{T}}_{H, M, K}}{\widetilde{\mathcal{S}}_{H, c, M}}<c^{\prime} \frac{H \cdot(K+1)^{2}(\log M)^{3}}{c \cdot M}
\]
for an effectively computable positive constant \(c^{\prime}\). A possible choice of such a constant is \(c^{\prime}=90\).

Proof Let \(a\) be an integer such that \(1 \leq a \leq H\). By Lemma 15 and Lemma 16, we have
\[
\begin{aligned}
\frac{\mathcal{T}_{a, M, K}}{\mathcal{S}_{a, c, M}} & <\frac{\frac{45}{8} M^{3 / 2}(K+1)^{2} \log \left(5^{3 / 2} M\right)}{\frac{1}{15} \cdot \frac{c}{a} \cdot \frac{M^{\frac{5}{2}}}{(\log M)^{2}}} \\
& <90 \cdot \frac{a \cdot(K+1)^{2}(\log M)^{3}}{c \cdot M} \\
& <90 \cdot \frac{H \cdot(K+1)^{2}(\log M)^{3}}{c \cdot M}
\end{aligned}
\]
for \(M\) large enough. Note that \(\widetilde{\mathcal{T}}_{H, M, K}=\sum_{1 \leq a \leq H} \mathcal{T}_{a, M, K}\) and \(\widetilde{\mathcal{S}}_{H, c, M}=\sum_{1 \leq a \leq H} \mathcal{S}_{a, c, M}\). Hence we have
\[
\frac{\widetilde{\mathcal{T}}_{H, M, K}}{\widetilde{\mathcal{S}}_{H, c, M}}<90 \cdot \frac{H \cdot(K+1)^{2}(\log M)^{3}}{c \cdot M}
\]
for large \(M\).

According to a result of D. Jao et al. [80], the discrete logarithm problem has the same difficulty for all elliptic curves over a given finite field with the same order. With this, it is reasonable to conjecture that the same result holds for genus 2 curves, i.e., the discrete logarithm problem has the same difficulty for all genus 2 hyperelliptic curves \(C\) over given a finite field \(\mathbb{F}_{\|}\)such that \(\# J a c_{\mathbb{F}_{q}}(C)\) is the same. From this cryptographic point of view, in the following theorem, we treat all genus 2 curves \(C\) over a given prime field \(\mathbb{F}_{p}\) as the same curve, if all \(J a c_{\mathbb{F}_{q}}(C)\) have the same cardinality.

Theorem 18 Assume the Riemann Hypothesis. Let \(H\) and \(K\) be positive constants. Let \((p, C)\) be a randomly (w.r.t. uniform distribution) chosen pair in which \(p\) is a prime in the interval \(\left[\frac{M}{2}, M\right]\) and \(C\) is a genus 2 hyperelliptic curve defined over \(\mathbb{F}_{p}\) such that \(\# J a c_{\mathbb{F}_{p}}(C)=h \cdot r\) with \(1 \leq h \leq H\) and \(r\) prime. For \(M\) large enough, the probability that \(C\) is pairing-friendly with respect to parameters \(H\) and \(K\) is less than
\[
c^{\prime \prime} \frac{H \cdot(K+1)^{2}(\log M)^{3}}{M}
\]
for an effectively computable positive constant \(c^{\prime \prime}\).

Proof The Riemann Hypothesis for abelian varieties over finite fields, proved by A. Weil in [42], implies the Hasse-Weil bound for genus 2 curves, i.e.,
\[
\# J a c_{\mathbb{F}_{p}}(C) \in\left[(\sqrt{p}-1)^{4},(\sqrt{p}+1)^{4}\right]
\]

For \(p\) large enough, we have \(\# J a c_{\mathbb{F}_{p}}(C) \in\left[p^{2}-5 p^{3 / 2}, p^{2}+5 p^{3 / 2}\right]\).
Let \(c=\frac{1}{9}\). By Proposition 2.4 of [81], almost all integers \(z \in\left[p^{2}-c p^{3 / 2}, p^{2}+c p^{3 / 2}\right]\) can be assumed as the cardinality of the Jacobian of a genus 2 hyperelliptic curve (given by a quintic or sextic polynomial) over \(\mathbb{F}_{p}\).

The conclusion then follows from Lemma 17. Note that we can choose \(c^{\prime \prime}=10 c^{\prime}\), where \(c^{\prime}\) is the constant from Lemma 17 .

Theorem 18 says there are very few pairing-friendly genus 2 hyperelliptic curves with respect to parameters \(H\) and \(K\) much smaller than \(p\).

\subsection*{5.4 Algorithms for Generating Pairing-friendly Genus 2 Curves over Prime Fields}

Let \(k\) be a desired embedding degree. Let \(C\) be a genus 2 hyperelliptic curve defined over a finite field \(\mathbb{F}_{p}\) whose Jacobian over \(\mathbb{F}_{p}\) has a subgroup of order \(r\) such that \(J a c_{\mathbb{F}_{p}}(C)\) has embedding degree \(k\) with respect to \(r\). The ratio of the bit length of \(\# J a c_{\mathbb{F}_{p}}(C)\) to the bit length of \(r\) is a good measure of efficiency in pairing-based cryptography. If we define
\[
\rho=2 \log (p) / \log (r),
\]
then this value is a good approximation of the above ratio. In many cryptographic applications, we prefer this value to be close to 1 .

In [71], a method to generate genus 2 curves with ordinary Jacobians over prime fields with low embedding degrees is proposed. An important part of this method is a parameterization of the CM field. The method generates curves with value \(\rho \approx 8\). We propose another way of generating good parameters, without parameterizing the CM field, which gives a similar \(\rho\) value.

We continue to use the same notation and assumptions as in Chapter 4. Again we let \(K:=\mathbb{Q}(\eta)\) be the fixed quartic \(C M\) field and want to construct a genus 2 hyperelliptic curve \(C\) over a prime field \(\mathbb{F}_{p}\) such that \(J \operatorname{cac}_{\mathbb{F}_{p}}(C)\) has CM by \(K\), and such that \(J a c_{\mathbb{F}_{p}}(C)\) has a subgroup of prime order \(r\) and \(J a c_{\mathbb{F}_{p}}(C)\) has a prescribed embedding degree \(k\) with respect to \(r\). For cryptographic applications, we also need \(p\) and \(r\) to be large. We will present the algorithm for the case \(d \equiv 2,3(\bmod 4)\) in this thesis. The case \(d \equiv 1(\bmod 4)\) can be treated similarly.

In the case \(d \equiv 2,3(\bmod 4)\), such a curve can be constructed if we can find a simultaneous integral solution \(\left(c_{1}, c_{2}, c_{3}, c_{4}, p, r\right)\), in which \(p\) and \(r\) are large prime numbers, to the following system of equations:
\[
\begin{align*}
c_{1}^{2}+c_{2}^{2} d+c_{3}^{2} a+c_{4}^{2} a d+2 c_{3} c_{4} b d & =p  \tag{5.1}\\
2 c_{1} c_{2}+2 c_{3} c_{4} a+c_{3}^{2} b+c_{4}^{2} b d & =0  \tag{5.2}\\
(p+1)^{2}-4 c_{1}(p+1)+4\left(c_{1}^{2}-d c_{2}^{2}\right) & \equiv 0 \quad(\bmod r)  \tag{5.3}\\
\Phi_{k}(p) & \equiv 0 \quad(\bmod r) . \tag{5.4}
\end{align*}
\]

Here \(a, b, d\) and \(k\) are fixed, and \(\Phi_{k}(x)\) is the \(k^{\text {th }}\) cyclotomic polynomial. Equations (5.1) and (5.2) mean that the prime \(p\) corresponds to a good Weil number, as in Chapter 4. Equation (5.3) makes sure that the Jacobian has a subgroup of prime order \(r\). Equation (5.4) guarantees that the Jacobian of the curve has an embedding degree with respect to \(r\) at most \(k\).

Algorithm 7 Generating pairing parameters for \(K=\mathbb{Q}(\eta), d \equiv 2,3(\bmod 4)\)
Input: Integers \(a, b, d\) with \(d>0\) squarefree, \(d \equiv 2,3(\bmod 4), a^{2}-b^{2} d>0\) not a square; a prescribed embedding degree \(k\); a bit size \(n\) of the desired subgroup order; maximum numbers of trials, \(M_{1}\) and \(M_{2}\).

Output: Integers \(c_{1}, c_{2}, c_{3}, c_{4}\), prime numbers \(p\) and \(r\), where \(r\) has \(n\) bits, satisfying Equations (5.1), (5.2), (5.3), (5.4); or "Not found."

Let \(c_{1}= \pm 1\).
repeat
Choose a prime number \(r\) of \(n\) bits such that \(r \equiv 1(\bmod k)\).
With \(c_{1}\) fixed as above, try to solve the system of equations given by (5.1), (5.2), (5.3), (5.4) over the finite field \(\mathbb{F}_{r}\) for a simultaneous solution \(\left(\bar{c}_{2}, \bar{c}_{3}, \bar{c}_{4}, \bar{p}\right)\).

9: \(\quad\) if \(p\) is prime then
10: \(\quad\) Return \(\left(c_{1}, c_{2}, c_{3}, c_{4}, p, r\right)\).
11: end if
until Lines 7 through 11 have been tried \(M_{2}\) times.
end if
until \(M_{1}\) primes \(r\) have been tried.
Return "Not found."

Theorem 19 If \(\left(c_{1}, c_{2}, c_{3}, c_{4}, p, r\right)\) is returned by Algorithm 7, then it provides a solution to the system of equations (5.1), (5.2), (5.3), (5.4).

Proof It is clear that if \(\left(c_{1}, c_{2}, c_{3}, c_{4}, p, r\right)\) is returned, then Equations (5.3) and (5.4) are automatically satisfied. Equations (5.1) and (5.2) are satisfied by the constructions in Step 7 and 8. Step 9 ensures that \(p\) is prime.

Depending on \(p\) and \(\mathcal{O}_{K}\), there are 2 or 4 possibilities for the group order \(\# J a c_{\mathbb{F}_{q}}(C)\) \([57,58]\). However, we are only interested in the curve \(C\) whose Jacobian has an exact group order given by
\[
N=(p+1)^{2}-4 c_{1}(p+1)+4\left(c_{1}^{2}-d c_{2}^{2}\right) .
\]

Algorithm 7 is difficult to analyze because we do not know how likely a solution is found in Step 4. However, experimental result shows that the algorithm returns valid parameters with high probability.

Example 3. In the case of \(a=2, b=-1, d=2\), some suitable pairing parameters are found as in Appendix B.1, where \(r\) are 160, 256, 512 and 1024 bits, respectively. The computations were performed by the computer algebra system MAGMA [53]. Note that this is the case that \(K=\mathbb{Q}[i \sqrt{2-\sqrt{2}}] \neq \mathbb{Q}\left(\xi_{5}\right)\) is Galois, so there are only two possibilities for the group order \(\# J a c_{\mathbb{F}_{p}}(C)\) [58], namely,
\[
N_{1}=(p+1)^{2}-4 c_{1}(p+1)+4\left(c_{1}^{2}-d c_{2}^{2}\right),
\]
which corresponds to the curve we need, or
\[
N_{2}=2(p+1)^{2}+8\left(c_{1}^{2}-c_{2}^{2} d\right)-N_{1},
\]
which corresponds to a quadratic twist of the desired curve.

\subsection*{5.5 Generating Pairing Parameters with Polynomial Parameterization}

The parameter \(c_{1}\) produced by Algorithm 7 is always \(\pm 1\) and the size of \(c_{2}\) dominates that of \(c_{1}, c_{3}\) and \(c_{4}\). In fact, this is not necessary. We can modify the search method with the idea of polynomial parameterization and produce pairing parameters with \(c_{1}, c_{2}, c_{3}\) and \(c_{4}\) are roughly of the same size. The algorithm is given as follows.
\(\overline{\text { Algorithm } 8 \text { Generating pairing parameters for } K=\mathbb{Q}(\eta), d \equiv 2,3(\bmod 4) \text { with }}\) polynomial parameterization
Input: Integers \(a, b, d\) with \(d>0\) squarefree, \(d \equiv 2,3(\bmod 4), a^{2}-b^{2} d>0 \operatorname{not}\) a square; a prescribed embedding degree \(k\); a bit size \(n\) of the desired subgroup order; maximum numbers of trials, \(M_{1}\) and \(M_{2}\).

Output: Integers \(c_{1}, c_{2}, c_{3}, c_{4}\), prime numbers \(p\) and \(r\), where \(r\) has \(n\) bits, satisfying Equations (5.1), (5.2), (5.3), (5.4); or "Not found."

1: Choose degree 2 bivariate polynomials \(C_{3}(x, y)\) and \(C_{4}(x, y) \in \mathbb{Z}[x, y]\) such that there is a factorization in \(\mathbb{Z}[x, y]\)
\[
b C_{3}^{2}+2 a C_{3} C_{4}+b d C_{4}^{2}=U \cdot V
\]
where \(U\) and \(V\) are bivariate polynomials of degree 2 . Let \(C_{1}(x, y)=U(x, y)\) and \(C_{2}(x, y)=-\frac{1}{2} V(x, y)\).

\section*{repeat}

Choose a prime number \(r\) of \(n\) bits such that \(r \equiv 1(\bmod k)\).
Try to solve the system of equations given by (5.2), (5.3), (5.4), with \(c_{i}\) replaced by \(C_{i}(x, y), i=1,2,3,4\), over the finite field \(\mathbb{F}_{r}\) for a simultaneous solution \((\bar{x}, \bar{y}, \bar{p})\).
5: if Such a solution exists then

\section*{repeat}

Choose lifts \(x\) and \(y\) of \(\bar{x}\) and \(\bar{y}\) to \(\mathbb{Z}\) such that \(c_{i}:=C_{i}(x, y), i=1,2,3,4\) are all integers. Let \(p=a c_{3}^{2}+2 b d c_{3} c_{4}+2 a d c_{4}^{2}+c_{1}^{2}+d c_{2}^{2}\).
8: \(\quad\) if \(p\) is prime then
9: \(\quad\) Return \(\left(c_{1}, c_{2}, c_{3}, c_{4}, p, r\right)\).
10: end if
11: \(\quad\) until Lines 7 through 10 have been tried \(M_{2}\) times.

\section*{end if}

13: until \(M_{1}\) primes \(r\) have been tried.
14: Return "Not found."

\section*{Similarly, we have}

Theorem 20 If \(\left(c_{1}, c_{2}, c_{3}, c_{4}, p, r\right)\) is returned by Algorithm 8, then it provides a solution to the system of equations (5.1), (5.2), (5.3), (5.4).

In Algorithm 8, it is clear that we need \(\operatorname{gcd}\left(C_{1}, C_{2}, C_{3}, C_{4}\right)=1 \in \mathbb{Z}[x, y]\) so that a prime \(p\) can be found.

Example 3. Let \(C_{3}(x, y)=C_{4}(x, y)=x y, C_{1}(x, y)=x^{2}\) and \(C_{2}(x, y)=-(a+\) \(b(1+d) / 2) y^{2}\). Then they satisfy \(b C_{3}^{2}+2 a C_{3} C_{4}+b d C_{4}^{2}+2 C_{1} C_{2}=0\). Using these polynomials in the above algorithm, we have found for \(K=\mathbb{Q}(i \sqrt{2-\sqrt{2}})\) (i.e., \(a=2, b=-1, d=2\) ) parameters in which \(r\) are 160, 256, 512 and 1024 bits, respectively. These parameters are presented in Appendix B.2.

Since \(x\) and \(y\) are roughly of the size of \(r\), the value of \(p\) obtained by this method is \(\approx r^{4}\). It is thus a natural thought that if we parameterize the polynomials \(C_{i}(x, y)\) with degree 1 polynomials in \(\mathbb{Z}[x, y]\), then the size of \(p\) may be reduced to \(\approx r^{2}\). The following proposition shows that such parameterizations will not succeed.

Proposition 21 Let \(a, b, d\) be integers such that \(d\) is squarefree and \(a^{2}-b^{2} d>0\) is not a square. Let \(f(X, Y)=b X^{2}+2 a X Y+b d Y^{2}\) be a bivariate polynomial in \(\mathbb{Q}[X, Y]\). Let \(F, G\) be polynomials of total degree 1 in \(\mathbb{Q}\left[X_{1}, X_{2}, \ldots, X_{n}\right]\) such that \(F\) and \(G\) are not associated with one another. Then \(f(F, G)\) is irreducible in \(\mathbb{Q}\left[X_{1}, X_{2}, \ldots, X_{n}\right]\).

Proof First we note that \(b \neq 0\), as indicated by the condition that \(a^{2}-b^{2} d>0\) is not a square. Let \(D=a^{2}-b^{2} d\). Let \(\alpha=-a / b+\sqrt{D} / b\) and \(\beta=-a / b-\sqrt{D} / b\). Then \(f(X, Y)\) can be factored over \(\overline{\mathbb{Q}}\) as
\[
f(X, Y)=b X^{2}+2 a X Y+b d Y^{2}=b(X-\alpha Y)(X-\beta Y)
\]
where \(\overline{\mathbb{Q}}\) is an algebraic closure of \(\mathbb{Q}\).

Let \(F\) and \(G\) be polynomials of total degree 1 in \(\mathbb{Q}\left[X_{1}, X_{2}, \ldots, X_{n}\right]\). Write
\[
\begin{aligned}
& F\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} f_{i} X_{i}+f_{0} \\
& G\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} g_{i} X_{i}+g_{0}
\end{aligned}
\]
where \(f_{i}, g_{i} \in \mathbb{Q}\). Suppose \(f(F, G)\) is reducible in \(\mathbb{Q}\left[X_{1}, X_{2}, \ldots, X_{n}\right]\). Then we can write
\[
f(F, G)=b H_{1} \cdot H_{2},
\]
where \(H_{j}=\sum_{i=1}^{n} h_{i}^{(j)} X_{i}+h_{0}^{(j)} \in \mathbb{Q}\left[X_{1}, X_{2}, \ldots, X_{n}\right], j=1,2\), both of total degree 1.
Now we have
\[
b(F-\alpha G)(F-\beta G)=f(F, G)=b H_{1} \cdot H_{2} .
\]

Note that \(\mathbb{Q}(\sqrt{D})\left[X_{1}, X_{2}, \ldots, X_{n}\right]\) is a uniform factorization domain. Because \(F-\alpha G\), \(F-\beta G, H_{1}\) and \(H_{2}\) are of degree 1, they are irreducible. without of loss of generality, we may assume
\[
\begin{equation*}
F-\alpha G=\gamma H_{1}, \tag{5.5}
\end{equation*}
\]
for some \(\gamma \in \mathbb{Q}(\sqrt{D})^{\times}\). We can write \(\gamma=s+t \sqrt{D}\) with \(s, t \in \mathbb{Q}\) and \(t \neq 0\). Here we require \(t \neq 0\) as the polynomial on the left hand side of Equation (5.5) is in \(\mathbb{Q}(\sqrt{D})\left[X_{1}, X_{2}, \ldots, X_{n}\right] \backslash \mathbb{Q}\left[X_{1}, X_{2}, \ldots, X_{n}\right]\).

Equation (5.5) gives
\[
\begin{equation*}
F-(-a / b+\sqrt{D} / b) G=(s+t \sqrt{D}) H_{1} . \tag{5.6}
\end{equation*}
\]

Equating the coefficients of \(X_{i}\) and the constant terms on both sides of the above equation, we obtain
\[
\begin{equation*}
f_{i}+(a / b) g_{i}+\left(g_{i} / b\right) \sqrt{D}=s \cdot h_{i}^{(1)}+t \cdot h_{i}^{(1)} \sqrt{D}, \quad 0 \leq i \leq n . \tag{5.7}
\end{equation*}
\]

This in turn gives
\[
\begin{align*}
f_{i}+(a / b) g_{i} & =s \cdot h_{i}^{(1)}  \tag{5.8}\\
g_{i} / b & =t \cdot h_{i}^{(1)} . \tag{5.9}
\end{align*}
\]

If \(g_{i}=0\) for some \(i\), we must have \(h_{i}^{(1)}=0\) by (5.9), which again implies \(f_{i}=0\) by (5.8). Otherwise, if \(g_{i} \neq 0\), we can divide both sides of (5.8) and (5.9) to obtain
\[
b\left(f_{i} / g_{i}\right)=s / t
\]
thus
\[
\begin{equation*}
f_{i} / g_{i}=s /(b \cdot t) \tag{5.10}
\end{equation*}
\]

Therefore, for all \(0 \leq i \leq n\), we have \(f_{i}=c \cdot g_{i}\), where the constant \(c=s /(b \cdot t) \in \mathbb{Q}\). Hence \(F=c \cdot G\), i.e., \(F\) and \(G\) are associated.

An alternative way of polynomial parameterization in Step 1 of Algorithm 8 is to use degree 1 and degree 2 polynomials for \(C_{3}(x, y)\) and \(C_{4}(x, y)\). This will produce different kinds of \(c_{i}\) 's, but the resulting \(\rho\) value is still approximately 8 in general. The on-going research is aiming at reducing further the value of \(\rho\). Our next goal is to find an efficient algorithm that produces a \(\rho\) value close to 4 for the CM method. Our ultimate goal is to find an efficient method that gives genus 2 curves over large prime fields with \(\rho \approx 1\).

\subsection*{5.6 Updates on Related Research and Future Work}

In 2002, K. Rubin and A. Silverberg [82] showed that supersingular Jacobians of genus 2 hyperelliptic curves have small embedding degrees ( \(\leq 12\) ). In 2007, L. Hitt [83] presented, for characteristic 2, the existence of families of genus 2 curves with small embedding degree and small \(\rho\) value ( \(<2\) ). D. Freeman [71] gave a method in 2007 for constructing genus 2 curves with ordinary Jacobians over prime fields, with \(\rho \approx 8\). Freeman's method uses parameterization of the CM fields to obtain conditions that lead to the result.

We describe in this chapter a new method for generating pairing-friendly parameters, without parameterizing the CM fields. The method is easy to understand and easy to implement.

After the research described in this chapter was done, other methods [84, 85] for finding pairing-friendly parameters were proposed, and they produce parameters with smaller \(\rho\) values ( \(\approx 4\) or \(\leq 4\) ).

The next step of our research is to allow non-integral values for the coefficients of the Frobenius element, and try to find further relations between the parameters. Based on this, we want to find better solutions to a system of equations as described in this chapter, which provide smaller \(\rho\) values.

\section*{6. CONCLUSIONS AND FUTURE WORK}

The thesis contributes to both applied and theoretical cryptography. We summarize the contributions as follows.

In Chapter 2, a time-bound hierarchical key management scheme for access control is proposed. Deployment of elliptic curve cryptography makes the scheme resistant against attacks that break prior proposals of such schemes. The scheme is designed for broadcasting of encrypted data, and is useful in real-world applications like electronic newspaper subscription and Pay TV.

In Chapter 3, explicit doubling formulas are presented for genus 2 hyperelliptic curves in the real model. The most general case and special cases of divisor doubling are handled by these formulas. They are useful for efficient implementation of cryptographic protocols using genus 2 real hyperelliptic curve. Equivalent transformations for obtaining short equations of genus 2 real hyperelliptic curves are also investigated and presented. This extends the existing work on equivalent transformations for imaginary hyperelliptic curves.

Chapter 4 shows a method which generates suitable parameters for the complex multiplication construction of genus 2 curves that can be used in cryptography. The proposed method uses polynomial parameterization to improve the efficiency over earlier published literature, by avoiding factorization of large integers. Analysis of the method is presented based on the Bateman-Horn heuristics. We also give a new conjecture that extends the existing work. The new conjecture deals with the case of two polynomials and the "almost prime" condition. Examples are given to provide numerical evidence of our conjecture.

In Chapter 5, following a quantitative analysis of the scarcity of pairing-friendly genus 2 curves, a method of finding parameters for generating such curves via the genus 2 complex multiplication construction is presented. The method finds parame-
ters that give \(\rho \approx 8\). The analysis about the scarcity of pairing-friendly genus 2 curve improves a prior heuristic result. And our algorithm for finding parameters is easy to understand and to implement.

We describe some of the directions for further research as follows.
The work in Chapter 2 can be extended to achieve a complete security proof. It is also desirable to construct an efficient time-bound hierarchical key management scheme that does not use a tamper-resistant device. Implementation and performance evaluation of the scheme are also to be done in future research.

Future work in Chapter 3 includes optimization of current formulas, derivation of more efficient explicit addition, doubling, and baby step formulas for genus 2 real hyperelliptic curve using coordinates other than affine coordinates. Efficient implementation and application oriented performance evaluation is another direction of further research.

Research work in Chapters 4 and 5 can be regarded as being in the same framework as finding cryptographically strong parameters in the construction of genus 2 curves. Further research needs to improve the current methods, and/or discover new methods so that parameters can be produced more efficiently, and that pairing-friendly parameters are generated with smaller \(\rho\) value. Again, implementation is part of the future work.

\section*{LIST OF REFERENCES}

\section*{LIST OF REFERENCES}
[1] A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot. Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.
[2] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, IT-22(6):644-654, 1976.
[3] ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf. PKCS \#1: RSA Cryptography Standard.
[4] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over \(G F(p)\) and its cryptographic significance. IEEE Trans. Information Theory, 24:106-110, 1978.
[5] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203209, 1987.
[6] V. S. Miller. Use of elliptic curves in cryptography. In Lecture Notes in Computer Sciences; 218 on Advances in cryptology-CRYPTO 85, pages 417-426, New York, NY, USA, 1986. Springer-Verlag New York, Inc.
[7] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. In Theory and Application of Cryptographic Techniques, pages 224-314, 1984.
[8] L. M. Adleman, J. DeMarrais, and M-D A. Huang. A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields. In ANTS-I: Proceedings of the First International Symposium on Algorithmic Number Theory, pages 28-40, London, UK, 1994. Springer-Verlag.
[9] V. Müller, A. Stein, and C. Thiel. Computing discrete logarithms in real quadratic congruence function fields of large genus. Mathematics of Computation, 68(226):807-822, 1999.
[10] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves. In Advances in Cryptology - Eurocrypt2000, volume 1807, pages 19-34, Berlin, 2000. Springer-Verlag.
[11] A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponential time. Mathematics of Computation, 71(238):729-742, 2002.
[12] N. Theriault. Index calculus attack for hyperelliptic curves of small genus. In Advances in Cryptology - ASIACRYPT 2003, volume 2894 of LNCS, pages 7592. Springer, 2003.
[13] P. Gaudry, E. Thome, N. Theriault, and C. Diem. A double large prime variation for small genus hyperelliptic index calculus. Mathematics of Computation, 76:475-492, 2007.
[14] H. Cohen and G. Frey. Handbook of Elliptic and Hyperelliptic Curve Cryptography: Theory and Practice. CRC Press, 2005.
[15] S. Galbraith, S. Paulus, and N. Smart. Arithmetic on superelliptic curves. Mathematics of Computation, 71(237):393-405, 2002.
[16] E. Bertino, N. Shang, and S. S. Wagstaff, Jr. An efficient time-bound hierarchical key management scheme for secure broadcasting. IEEE Transactions on Dependable and Secure Computing, 5(2):65-70, 2008.
[17] R. Scheidler, A. Stein, and H.C. Williams. Key-exchange in real quadratic congruence function fields. Design, Codes and Cryptography, 7:153-174, 1996.
[18] W.G. Tzeng. A time-bound cryptographic key assignment scheme for access control in a hierarchy. IEEE Transactions on Knowledge and Data Engineering, 14(1):182-188, Jan./Feb. 2002.
[19] X. Yi and Y. Ye. Security of Tzeng's time-bound key assignment scheme for access control in a hierarchy. IEEE Transactions on Knowledge and Data Engineering, 15(4):1054-1055, Jul./Aug 2003.
[20] H.Y. Chien. Efficient time-bound hierarchical key assignment scheme. IEEE Transactions on Knowledge and Data Engineering, 16(10):1302-1304, October 2004.
[21] X. Yi. Security of Chien's efficient time-bound hierarchical key assignment scheme. IEEE Transactions on Knowledge and Data Engineering, 17(9):12981299, September 2005.
[22] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. 5th International Workshop on Security Protocols (LNCS 1361), pages 125-136, 1997.
[23] E. Bertino, B. Carminati, and E. Ferrari. A temporal key management scheme for secure broadcasting of XML documents. CCS'02, pages 31-40, November 2002.
[24] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model supporting periodicity constraints and temporal reasoning. ACM Transactions on Database Systems, 23(3):231-285, September 1998.
[25] L. C. Washington. Elliptic Curves, Number Theory and Cryptography. Chapman \& Hall/CRC, 2003.
[26] FIPS Pub 198, The Keyed-Hash Message Authentication Code (HMAC). http: //csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.
[27] Advanced Encryption Standard. http://csrc.nist.gov/CryptoToolkit/ aes/.
[28] Trusted Platform Module. https://www.trustedcomputinggroup.org/groups/tpm/.
[29] Evan R. Sparks. A Security Assessment of Trusted Platform Modules. Technical Report TR2007-597, Dartmouth College, Computer Science, Hanover, NH, June 2007.
[30] A. Jurisic and A. J. Menezes. Elliptic curves and cryptography. Dr. Dobb's Journal, pages 23-36, April 1997.
[31] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.
[32] http://www.cardwerk.com/smartcards/smartcard_technology.aspx. Web article: Smart Card Technology.
[33] N. Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1(3):139-150, 1989.
[34] T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable Algebra in Engineering, Communication, and Computing, 15:295-328, 2005.
[35] S. Erickson, M. J. Jacobson, Jr., N. Shang, S. Shen, and A. Stein. Explicit formulas for real hyperelliptic curves of genus 2 in affine representation. In WAIFI, pages 202-218, 2007.
[36] M. Rosen. Number Theory in Function Fields. Springer-Verlag, New York, NY, USA, 2002.
[37] P. Lockhart. On the discriminant of a hyperelliptic curve. Transactions of the American Mathematical Society, 342(2):729-752, April 1994.
[38] A. Enge. How to distinguish hyperelliptic curves in even characteristic. In PublicKey Cryptography and Computational Number Theory, pages 49-58, 2001.
[39] T. Lange. Efficient Arithmetic on Hyperelliptic Curves. PhD thesis, UniversitätGesamthochschule Essen, 2002.
[40] D. Cantor. Computing in the Jacobian of a hyperelliptic curve. Mathematics of Computation, 48(177):95-101, January 1987.
[41] J. H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
[42] A. Weil. Variétés Abéliennes et Courbes Algébriques. Paris, Hermann, 1948.
[43] D. Bernstein and T. Lange. Elliptic vs. hyperelliptic, parts 1, 2. Talks given at The 10th Workshop on Elliptic Curve Cryptography (ECC 2006).
[44] N. Shang. G2HEC: A Genus 2 Crypto C++ Library. http://www.math.purdue.edu/~nshang/libg2hec.html.
[45] V. Shoup. NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/.
[46] S. Paulus and H.-G. Rück. Real and imaginary quadratic representations of hyperelliptic function fields. Mathematics of Computation, 68:1233-1241, 1999.
[47] M. J. Jacobson, Jr., R. Scheidler, and A. Stein. Fast arithmetic on hyperelliptic curves via continued fraction expansions. In Advances in Coding Theory and Cryptology, Series on Coding Theory and Cryptology 3. Ed, pages 201-244, 2007.
[48] A. Stein. Sharp upper bounds for arithmetics in hyperelliptic function fields. Journal of the Ramanujan Mathematical Society, 9-16(2):1-86, 2001.
[49] M. J. Jacobson, Jr., R. Scheidler, and A. Stein. Cryptographic protocols on real hyperelliptic curves. Advances in Mathematics of Communications, 1(2):197221, 2007.
[50] S. Erickson, M. J. Jacobson, Jr., N. Shang, S. Shen, and A. Stein. More explicit formulas for real hyperelliptic curves of genus 2. In preparation.
[51] S. Shen. Finite Fields of Low Characteristic in Elliptic Curve Cryptography. PhD thesis, Purdue University, 2007.
[52] R. Harley. Efficient algorithm for computing the group law in the jacobian of a genus-2 curve. http://cristal.inria.fr/ harley/hyper/adding.text.
[53] W. Bosma, J. Cannon, and C. Playoust. The MAGMA algebra system I: the user language. J. Symb. Comput., 24(3-4):235-265, 1997.
[54] N. Koblitz, A. J. Menezes, Y-H Wu, and R. J. Zuccherato. Algebraic aspects of cryptography. Springer-Verlag New York, Inc., New York, NY, USA, 1998.
[55] P. Gaudry and R. Harley. Counting points on hyperelliptic curves over finite fields. In ANTS, pages 313-332, 2000.
[56] E. Furukawa, M. Kawazoe, and T. Takahashi. Counting points on the Jacobian variety of a hyperelliptic curve defined by \(y^{2}=x^{5}+a x\) over a prime field, 2002.
[57] K. Eisenträger and K. Lauter. A CRT algorithm for constructing genus 2 curves over finite fields, 2004. http://arxiv.org/abs/math.NT/0405305v2.
[58] A. Weng. Constructing hyperelliptic curves of genus 2 suitable for cryptography. Mathematics of Computation, 72(241):435-458, 2002.
[59] P. Van Wamelen. Examples of genus two CM curves defined over the rationals. Mathematics of Computation, 68(225):307-320, 1999.
[60] P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler, and A. Weng. The 2adic CM method for genus 2 curves with application to cryptography. In ASIACRYPT, pages 114-129, 2006.
[61] J-F Mestre. Construction de courbes de genre 2 à partir de leurs modules. (Construction of genus 2 curves starting from their moduli). Effective methods in algebraic geometry, Proc. Symp., Castiglioncello/Italy 1990, Prog. Math. 94, 313-334 (1991)., 1991.
[62] G. Cardona and J. Quer. Field of moduli and field of definition for curves of gens 2. In Computational aspects of algebraic curves, volume 13, pages 71-83, 2005.
[63] W. Gautschi. Numerical Analysis: An Introduction. Birkhauser Boston Inc., Cambridge, MA, USA, 1997.
[64] L. M. Adleman and A. M. Odlyzko. Irreducibility testing and factorization of polynomials. Mathematics of Computation, 41(164):699-709, 1983.
[65] The PARI Group, Bordeaux. PARI/GP, version 2.1.7, 2005. Available from http://pari.math.u-bordeaux.fr/.
[66] P. T. Bateman and R. A. Horn. A heuristic asymptotic formula concerning the distribution of prime numbers. Mathematics of Computation, 16(79):363-367, July 1962.
[67] P. T. Bateman and R. A. Horn. Primes represented by irreducible polynomials in one variable. Proc. Sympos. Pure Math., 8:119-132, 1965.
[68] A. Schinzel and W. Sierpinski. Sur certaines hypotheses concernant les nombres premiers. Actu Arith., 4:185-218, 1958. erratum, v. 5, 1959, p. 259.
[69] A. Schinzel. Remarks on the paper "sur certaines hypotheses concernant les nombres premiers. Acta Arith., 7:1-8, 1961/1962.
[70] S. D. Galbraith, J. Mckee, and P. Valena. Ordinary abelian varieties having small embedding degree. In Proc. Workshop on Mathematical Problems and Techniques in Cryptology, pages 29-45, 2004.
[71] D. Freeman. Constructing pairing-friendly genus 2 curves over prime fields with ordinary Jacobians. In Proceedings of Pairing-Based Cryptography (Pairing 2007), volume 4575 of \(L N C S\), pages 152-176. Springer, 2007.
[72] D. Boneh and C. Gentry. Aggregate and verifiably encrypted signatures from bilinear maps. In Proceedings of Eurocrypt 2003, volume 2656 of \(L N C S\), pages 416-432. Springer-Verlag, 2003.
[73] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput., 32(3):586-615, 2003.
[74] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. J. Cryptol., 17(4):297-319, 2004.
[75] A. Joux. A one round protocol for tripartite Diffie-Hellman. In ANTS-IV: Proceedings of the 4 th International Symposium on Algorithmic Number Theory, pages 385-394, London, UK, 2000. Springer-Verlag.
[76] R. Dupont and A. Enge. Provably secure non-interactive key distribution based on pairings. Discrete Appl. Math., 154(2):270-276, 2006.
[77] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has subexponential discrete log problem under the Menezes - Okamoto - Vanstone algorithm. Journal of Cryptology, 11(2):141-145, 1998.
[78] E. Bach and J. Shallit. Algorithmic Number Theory, Volume I: Efficient Algorithms. The MIT Press, August 1996.
[79] L. Schoenfeld. Sharper bounds for the Chebyshev functions \(\theta(x)\) and \(\psi(x)\). II. Mathematics of Computation, 30(134):337-360, April 1976.
[80] D. Jao, S. D. Miller, and R. Venkatesan. Do all elliptic curves of the same order have the same difficulty of discrete log? In ASIACRYPT, pages 21-40, 2005.
[81] H. W. Lenstra, Jr, J. Pila, and C. Pomerance. A hyperelliptic smoothness test, II. Proc. London Math. Soc., 84(1):105-146, 2002.
[82] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In CRYPTO '02: Proceedings of the 22nd Annual International Cryptology Conference on Advances in Cryptology, pages 336-353, London, UK, 2002. SpringerVerlag.
[83] L. Hitt. Families of genus 2 curves with small embedding degree. Cryptology ePrint Archive, Report 2007/001, 2007.
[84] D. Freeman. A Generalized Brezing-Weng Algorithm for Constructing PairingFriendly Ordinary Abelian Varieties. In Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing, volume 5209 of Lecture Notes in Computer Science, pages 146-163. Springer, 2008.
[85] M. Kawazoe and T. Takahashi. Pairing-friendly hyperelliptic curves of type \(y^{2}=x^{5}+a x\). In Symposium on Cryptography and Information Security (SCIS), 2008.

APPENDICES

\section*{A. Parameters for Discrete Log Based Cryptography}

In the following, we present some parameters found by our method. The primes \(p\left(x_{0}\right)\), corresponding to value \(x_{0}\), are of 128 bits and the group orders \(N_{1}\left(x_{0}\right)\) or \(N_{2}\left(x_{0}\right)\) are almost prime (in this case, a product of a positive integer \(<2000\) and a prime number).
\(\underline{a=20, b=1, d=19 .}\)
\[
\begin{aligned}
c_{1}(x) & =-(5 / 2) x^{2}-24 x-39 / 2, \\
c_{2}(x) & =12 x^{2}+42 x+5, \\
c_{3}(x) & =x^{2}+2 x+4, \\
c_{4}(x) & =x^{2}+9 x+1, \\
p(x) & =(12721 / 4) x^{4}+26610 x^{3}+(138247 / 2) x^{2}+17520 x+6829 / 4, \\
N_{1}(x) & =(161823841 / 16) x^{8}+169252905 x^{7}+(4591135697 / 4) x^{6}+3790760034 x^{5} \\
& +(45798567295 / 8) x^{4}+2521811013 x^{3}+(2200243933 / 4) x^{2}+61359456 x+48815721 / 16, \\
N_{2}(x) & =(161823841 / 16) x^{8}+169252905 x^{7}+(4590881277 / 4) x^{6}+3789617226 x^{5} \\
& +(45742665623 / 8) x^{4}+2504037741 x^{3}+(2143518849 / 4) x^{2}+58298352 x+44551929 / 16 . \\
x_{0} & =548050991, \\
p\left(x_{0}\right) & =286909637977764067855221276777587727961, \\
N_{2}\left(x_{0}\right) & =82317140364531637515130621054159952023115110860990352140958946602968889685624 \\
& =2^{3} \cdot 103 \cdot 998994421899655795086536663278640194455280471613960584234938672366127 \\
& 30201 . \\
x_{0} & =507822535, \\
p\left(x_{0}\right) & =211499402528761325611378043169347082601, \\
N_{1}\left(x_{0}\right) & =44731997270023012615201443067044482876392989995456465952479290805233356211416 \\
& =2^{3} \cdot 3^{2} \cdot 6212777398614307307666867092645067066165693054924509160066568167393521
\end{aligned}
\]
        69603.
\[
a=49, b=2, d=43 .
\]
\[
\begin{aligned}
c_{1}(x) & =-19 x^{2}-81 x-57, \\
c_{2}(x) & =25 x^{2}+77 x+37, \\
c_{3}(x) & =3 x^{2}+9 x+7, \\
c_{4}(x) & =2 x^{2}+8 x+4, \\
p(x) & =37137 x^{4}+245922 x^{3}+534667 x^{2}+411094 x+103045, \\
N_{1}(x) & =1379156769 x^{8}+18265610628 x^{7}+100192309254 x^{6}+293537074164 x^{5} \\
& +495845231429 x^{4}+490539243800 x^{3}+279450495148 x^{2}+84849357864 x+10641750132, \\
N_{2}(x) & =1379156769 x^{8}+18265610628 x^{7}+100186664430 x^{6}+293475629244 x^{5} \\
& +495587670117 x^{4}+490018152864 x^{3}+278924635092 x^{2}+84595125192 x+10594761156 . \\
x_{0} & =269037344, \\
p\left(x_{0}\right) & =194561585104011195498898535676821242693, \\
N_{1}\left(x_{0}\right) & =378542103981853911199097346032135418109388519198214748958636145964698444609 \\
& 16 \\
& =2^{2} \cdot 7 \cdot 17 \cdot 7952565209702813260485238362019651640953540319290225818458742562283
\end{aligned}
\] 5807691
\[
x_{0}=272775528,
\]
\[
p\left(x_{0}\right)=205602527203239038572121987052863495221,
\]
\[
N_{1}\left(x_{0}\right)=42272399192358648873426271719066469393935346629841579846207943767125190226868
\]
\[
=2^{2} \cdot 3 \cdot 101 \cdot 348782171554114264632229964678766249124879097605953629094124948573
\] 64018339.
\[
a=24, b=7, d=21 .
\]
\[
\begin{aligned}
c_{1}(x) & =-7 x^{2}-43 x-15, \\
c_{2}(x) & =7 x^{2}+36 x+23, \\
c_{3}(x) & =x^{2}+8 x+7, \\
c_{4}(x) & =2 x^{2}+9 x+3, \\
p(x) & =798 x^{4}+8316 x^{3}+26156 x^{2}+22938 x+6281, \\
N_{1}(x) & =636804 x^{8}+13272336 x^{7}+110934348 x^{6}+472179624 x^{5}+1078878880 x^{4} \\
& +1312636376 x^{3}+863392212 x^{2}+292135424 x+40121116, \\
N_{2}(x) & =636804 x^{8}+13272336 x^{7}+110867316 x^{6}+471091656 x^{5}+1072454392 x^{4} \\
& +1296182464 x^{3}+846125708 x^{2}+284206952 x+38789332 \\
x_{0} & =690918783, \\
p\left(x_{0}\right) & =181848990878426194442759846747024276669, \\
N_{1}\left(x_{0}\right) & =33069055483501933273197540182643492422771446574415202943269985210245986359 \\
& 248 \\
& =2^{4} \cdot 20668159677188708295748462614152182764232154109009501839543740756403741 \\
& 47453 . \\
x_{0} & =788336903, \\
p\left(x_{0}\right) & =308212554264460561682107015586616490669, \\
N_{2}\left(x_{0}\right) & =94994978606223046358527917755472879305246966478154462196668039263663901851
\end{aligned}
\] 088 \(=2^{4} \cdot 5937186162888940397407994859717054956577935404884653887291752453978993\) 865693.
```

a=29,b=5,d=37.
c
c
c3}(x)=3\mp@subsup{x}{}{2}+8x+3
c
p(x)=(10045/4) \mp@subsup{x}{}{4}+31896\mp@subsup{x}{}{3}+(228005/2)\mp@subsup{x}{}{2}+60120x+35917/4,
N
+(1350668685887/8) 苂+14293625076x 3 + (22676894823/4) 午+1081276596x
+ 1291797801/16,
N N}(x)=(100902025/16)\mp@subsup{x}{}{8}+160197660\mp@subsup{x}{}{7}+(6359428139/4)\mp@subsup{x}{}{6}+7573202220\mp@subsup{x}{}{5
+(134962592611/8) 午+14267236308\mp@subsup{x}{}{3}+(22615799123/4) 午+1077869028x
+ 1287774649/16
x (}=558110127

```

```

N
5 9 2
= 2 ' . 3 3}\cdot3435543126296420549098564029512451923122739742999866648879195164203
8652689
x = 556747959,

```

```

N
6 0 8
= 2 }\mp@subsup{}{}{4}\cdot36385555155674216847409047410349698434674897159056987895075010512446855

```
            16163.

\section*{B. Pairing-friendly Genus 2 Curves: Numerical Data}

\section*{B. 1 Parameters produced by Algorithm 7}

Here are some parameters found by Algorithm 7 for the CM field \(K=\mathbb{Q}(i \sqrt{2-\sqrt{2}})\) and embedding degree \(k=5\). Corresponding to this CM field there is a genus 2 curve defined over the rationals [59].
\[
C: y^{2}=-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1 .
\]

The curves over prime fields corresponding to these parameters are either \(C\) reduced modulo \(p\), or its quadratic twist \(C^{\prime}\).

On average, a MAGMA script found one set of parameters with \(r=160,256,512\) and 1024 bits in \(0.0918,0.3486,2.9938\), and 46.5615 seconds, respectively. The computations were performed on an AMD Quad-Core Opteron(TM) 2.4GHz computer running Linux kernel release 2.6.9-34.0.1.ELsmp; only one processor was used for computation.
\(r: 160\) bits. \(k=5\).
\(p=252823257935282285362732638695054084330470208363294037922085422639242\)
9740214286170166852568584783960631710497763211466425437626783979662947366 79271737114219377482492730434694368080216503567747137
\(r=1461501637330902918203684832716283019655932544881\)
\(N=639195997530102770743719375835116542403184563967996666440138384615623\)
1104135942006766949461178052253303126123108270449109818252877992852236693
9854055782191379965677314562703378699008278543675026648680068400692359055 6954728131135395897277972576354640367835735384699586219721088378014250469 0516520543753456431447895666619342429338048350855555475511765095933553626 5110336972288875552378947584
```

c
c
210137165821520551831056883188430192
c}\mp@subsup{c}{3}{}=-64248144848395594424557829122788871673183688623832
c}\mp@subsup{c}{4}{}=-109802017909327381229794505154259988889529711346380
\rho\approx8.072

```

The equation of the curve over \(\mathbb{F}_{p}\) is \(y^{2}=-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\).
\(\underline{r: 256}\) bits. \(k=5\).
\(p=704881071480907162078296670102869074389758456316878620976045254499487\) 7530570186125117122017350141805247723779624730169393101671127446215490847 0128180097731192247524353202667866344441677798408664226182036087805320910 7260269920646366156330351242218700528276622717003991911130319025660067745 840160149952389932917329 \(r=115792089237316195423570985008687907853269984665640564039457584007913\) 129642241
\(N=496857324932071752145912383893889169489835622033784989598880614229969\) 9600573805281453411826215444363606741797229694154849558866843478727700264 1105324414001856604997470007681554137437103159261172089255501470358581691 0913734818476522890003367060634939104658599174570132609823174216276573137 8669572028319853268929729746434758497120580756345226145068054586116990212 0443929992312351457834418288528071757692892289663780177801079095634553929 6480701514721219823943376856364544844490404257431312550838391605233331165 2091324748046447124154493757683497657698145122503447211715505414438313883 50786300229054528190120614531020814267875552
\(c_{1}=1\)
\(c_{2}=-5936670242993572074752240216934048675593535867493623642911929101631\) 1737731409117467973049416437737755512483626195984512654911475975189673396 5375133869149502
\(c_{3}=-3548809313566683873624287099133190257445712680595264225876058829990\) 309058529874
\(c_{4}=-5936979480813871848895779658124341164096655715011808647348987318596\)
163181064168
\(\rho \approx 8.093\)
The equation of the curve over \(\mathbb{F}_{p}\) is \(y^{2}=3\left(-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\right)\).
\(r: 512\) bits. \(k=5\).
\(p=335008079246530563726120681491057120190326476848023623418849270705403\) 0253238698668048647226759936701559780322989116122989707725878072570950482 3393826167580117775836092982425128998276893329958269942211723639168424122 8351929812128363566524057316884029567572265384311417529404664215461037273 3353865463608385075181352709471231603405311385897330385810832338290229373 6294338649262511145063001791292976677361329758157462716163633299688099612 7618596240815615173319378872876871786165018955762954859448055121846503592 5208127732483912161205605409575775454551500537672963301201423736706763777 892828879742492044527038799989475169171601
\(r=13407807929942597099574024998205846127479365820592393377723561443721\) 7640300735469768018742981669034276900318581864860508537538828119465699464 33649006084241
\(N=11223041316044970219812686210809865338358600148378566732477018902868\) 5912987024069365912804169295175953132440473697878809332547443118956511048 9242158278622800616441049995563290068412636643886181267534617699906471680 1356840851597729984858864409121981674885233373536205919494825317906165114 8863550561816504672841593088819917679757264093993063292019292441659811890 9644299155846155145481933364003109894928933468509697157723993097373099424 7310617074050249835332596597617054353048947640627844593265846616744048203 5899908082811005474300101537695729743203995579239020981567065529890804328 5865472748289633014781054417871877062095215800661352832471093397550996581

0829728607020925640934426760598315154081455815137896599996710082414116153 8758202861255529762349798235467307536842306680966547151560250464614627467 6280304178440896265086071976771393960186645433788202385227748354046664705 6043288274614079409654013832022798780433108257704454285600069637475601685 5668345721561150631035189424388958386770625722839174844558732827061335359 7396272574949736113573879375049271428943518090660991488549981999730343603 3701081705291652436301765100985664448658782887010301577613746326586686201 8085897066563266988620046862925185064744694134875859933038557645346837870 24780000
\(c_{1}=1\)
\(c_{2}=-409272573749164484449600432894012850529545698940416902410733686700\) 2808092727796979553126208534683675299755340836017188106288532761674422535 3601980879470278089965300447863592472705865956276784032006978786587497708 3277847405605138878998017257380919270399211683599748285124901246581378306 92782953607297388401060850
\(c_{3}=4071832224705716002619557835718952464698817177619249950112440225311\) 7091727946183228269616280872992381120870809967134479817010530596677389181 2505702756277750
\(c_{4}=202312944109255719410832990595883665860453403468322976506716160344204\) 4459739081672395276631140889276720174612101185345113541079509366213836026 00192437308270
\(\rho \approx 8.0651\)
The equation of the curve over \(\mathbb{F}_{p}\) is \(y^{2}=11\left(-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\right)\).
\(r: 1024\) bits. \(k=5\).
\(p=104943131781796780351315553703114714164750614732347362357070555738689\)
3013554313587137667850332005668823676933992122450896524826300645632284443 9709861761660664716766381039287716630666669243461281309213121059856150137 7408203980329843513963646096773624098217875284460094793183625579561324596

8608356367730215580187226775879901480970602565674238249031703056709423217 2131239853395900609409094397511164152363166477953010966113471921040846307 8296833046650930606393166184513292546742223326863687877494477464894473322 2580146352337166889019971413579722767523423370025599511111529312594779244 3541781393930719783466273872212843028790991003473843776986927819327031948 1713342165746135751191878684098557803535563450960706349481094799353674300 8633415032924583446378352447284142570110821165206981149264650477089508811 9114904402397502070681808025695867624940513358394564535019224685066746008 2416569948913907053025787910545410464358848282304832473112320828765889470 5604263949159057936370898664269118285653927024520802671750165732759812026 0688501468623837134188046046394520454894280067905925470874214764925409025 3851496741235700604148213969967287016951389613690467928986300565066816752 9053570183646180548072142460476120051703950764320138969111552605587351896 0657
\(r=179769313486231590772930519078902473361797697894230657273430081157732\) 6758055009631327084773224075360211201138798713933576587897688144166224928 4743063947412437776789342486548527630221960124609411945308295208500576883 8150682342462881473913110540827237163350510684586298239947245938479716304 835356329624224142551
\(N=110130609081715654827788741168901425346848959713454373250473995973061\) 6759350987673635370386661323144384147441478939900055680762860287128384105 4902665836927719237593406042804513684315739066059397771282895303010787292 2179757197582159028597547853246866745923598008900586551168111551022146642 7797892056997175653567482674277676776365175778879398392915988749773939288 6435705233055514759060289001789676697626524970048461677042565997116692632 1574514938662017298145090019935086860014508760684579132668330742154526790 6729756575365103858396417152258336224360945964101533318634906150998015840 2926739626469233845687108138465424889309069890167784506422380877885738677 8486497648498874904198469516015126562709058573529499230570720716609495114

5176652748355956410449190437147438437365360933789948231562936734446248562 7333464760364261479389502053771882656875842881008586953138121719289691218 8758279287588811439673945582167757652834133685656149967100183974970665666 8301508675081476762833629781778446743401408792912743813248465789160097609 4907483265468514579887878917829916217551992851105645558151863186904311915 0897161484888708685607650964899796756659515412310704366815387550234691315 8131818826772780505198203396288812795508345351027967383176379701435096670 6087687519514932573232984872490858110150153420011230071225803878990363639 0228155715688332006641078957349065854370415790123363912464828804129733848 9175696250693127007079671001962884229986939989639986327089602241629610698 2541461860784718937644401952697781463951184575190864828437905119167020164 3344473177237375537182909982694143170480035384871367555930058478945286874 7897752470806228849738428129325218708334019884558804413088114397314208082 9684618582720600127298888204020537916245798945760355562052390503198184841 3388707887323066157837964264892073291036971698537389349632090868071247021 5487116535358735807812813655196187306147452925445662352702598796196616210 5611237005879204757511953065284647610819115873731988933920480554898200228 3914188267109522018962565363987515033850846271990633326448625370796130891 6187780991045712242162464946706937745089418294838706299085709554979040290 6303467139111643335427409219418781483564037022764043131466539004625154594 6209963899733654040406326188041008785111305118300000241509541850382046427 9921348250445947811452089231802857382987378154131554070179868476678463358 0643767635905430275544733949993084829695263010882447387128654441638838688 6796417377560269667075669849950440569287085578562873023654943240390761349 344
\(c_{1}=1\)
\(c_{2}=724372596740782223909406054653818076964153956231753653007456714190398\) 3083544386878828065677547992138075585030934397420775737590127163517898465 0846109282344565484417070274587173691100946634714875141158627632996168956

7766495789352183805458433940894170433679708077909086439456475244369359438 9518081325497632105610564738309170848248014811242603672360833841226847675 9481606098563108470451607635559144562515764965397762341417794410217622519 4338497201942951403070267420975047429409587019711286902398751160111773836 5807578038205778723458526333750943907335694407938046725757613069297767153 8493287402688569461431917776945750946818 \(c_{3}=-165351051667168444715785481069322973156717038193134515677640165475\) 6356287031722889250259390454834982137350158483356777003123281295331023971 1393360455936205111439243887010818642160393233292858255502407201894108071 9149943387259685239578041196541694819919059869390598882816649918129689175 47027543464862829090783742
\(c_{4}=-207335869157521775738895119259620293971923286445368600757752050786\) 1398853142551817062560786443520326893830924572045474412814928410396990573 6933573731383048372745200257985204644144837697573959688350508891779753127 3479259087733008907698262801412853472379355142666972763160082464948044116 7446683063036638423281152 \(\rho \approx 8.045\)

The equation of the curve over \(\mathbb{F}_{p}\) is \(y^{2}=5\left(-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\right)\).

\section*{B. 2 Parameters produced by Algorithm 8}

Below are some examples of the parameters found by Algorithm 8 for \(K=\) \(\mathbb{Q}(i \sqrt{2-\sqrt{2}})\) and embedding degree \(k=3\). Here, we choose \(C_{3}(x, y)=C_{4}(x, y)=\) \(x y, C_{1}(x, y)=x^{2}\) and \(C_{2}(x, y)=-(a+b(1+d) / 2) y^{2}\) in Step 1 of Algorithm 8.

On average, our MAGMA implementation found one set of parameters with \(r=160,256,512\) and 1024 bits in \(0.1092,0.4468,4.1718\), and 50.0140 seconds, respectively. The computations were performed on an AMD Quad-Core Opteron(TM) 2.4 GHz computer running Linux kernel release 2.6.9-34.0.1.ELsmp; only one processor was used for computation.
\(\underline{r: 160 \text { bits. } k=3}\).
\(p=276032206782791857604308501919988591136740885931343898740256384866241\) 6467553702979623124723634053832810065253894017495098779682257468497626596 054621968600128109029276968729859800558964868162387810481
\(r=1461501637330902918203684832716283019655932543447\)
\(N=761937791813779631994733941106633708154739036303135746201414612683681\) 3740229511268625176061099440881442259428060861564412453929893287845956340 3416154738013818777886228088337842186582031203981403522971082031628644450 8345243160595796537771020027471372909123195630278485253513049270650615256 4351364423861208959016750122994621253699118662098804381727358336213778156 291342604171682918546278978314937568
\(c_{1}=853413751674246325960655910542033278192644078137851807206531855460335\) 897482560901762777003565546321
\(c_{2}=-467312771754171603865894820458465529298297100229438686497717835334\) 951148694691783854304471959958498
\(c_{3}=c_{4}=-89309702244271126870314830090645570026648145619900427099516737\) 4051672546438742749426798352836518846
\(\rho \approx 8.2401\)
The equation of the curve over \(\mathbb{F}_{p}\) is \(y^{2}=3\left(-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\right)\).
\(r: 256\) bits. \(k=3\).
\(p=822920761971611209794051125149779261868007917105814333422807428702492\) 4832300832671377221070075398952222821601421270215446432556547906612969293 7035389322967570019147721601855015109361465658238392802910598977307884581 9669931262786638243789783462295242237448794562285423898483720827257224421 582887155754347373346337
\(r=115792089237316195423570985008687907853269984665640564039457584007913\) 129640743
\(N=677198580483937194263730753359784807376570572162519246889869342280825\) 3032215444487859365278749079347589549730845666733117453777198238279219494 5280678988988024443378725219717152986643553771096267443036427016707389095 7249248397038280644492111218229707870352901997265602267012008190367799204 2490892895555013596712575651692176016210908268738361775620639618631060792 5033229572686474111206272193416927126310352656009315433216497023049930883 5373318602217711383763542668793170469526104112283163915538814071400367342 3775883028281057290061738442630720051414075948315034087299281022702814170 14852155526683323382176465726972979082574048
\(c_{1}=899567387391479217381476947274351584712780874649839002409060884043691\) 7034478629557785770257234423972877031276763948663931761267676699233257997 62748414274889
\(c_{2}=-379916236281151103764633380973143102421074912906860994641809351833\) 4237736166615736185164181781338965280295434753862169111244409012722954687 785372266393538
\(c_{3}=c_{4}=8267529934618186873729771614246762778267959823408343148411442228\) 8087906493405752740627824201485645210824879536505195273507388849360615838 257032702979376742
\(\rho=8.0950\)
The equation of the curve over \(\mathbb{F}_{p}\) is \(y^{2}=-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\).
\(\underline{r: 512 \text { bits. } k=3}\).
\(p=626094627977785411761504336964367530509161001161397733772648139606108\) 7968126017678724733192354804393642278933710530797321862269310580976745634 6116911345645395717388268813930138137331860478986610924439831778326927171 6845062886926383345031759550556693174884602128438118374664571060501824065 9100037203110165020080488984639114234906464443216520747556803744300494494 6992418036349155347397250087843163119953929796859079789902695120224849161 7516608669145239915106433027259815435477015548796801852943295822260576268

0312122940392880866229093627162407463271989320163774597151730679749981207 4520165383987203676880458831491740818004881
\(r=134078079299425970995740249982058461274793658205923933777235614437217\) 6403007354697680187429816690342769003185818648605085375388281194656994643 3649006090369
\(N=391994483182641515281785253074790586383950605773634828312281914553924\) 3061707221673758639139282363145408855965317887631405805835749929634571139 0330645883769407087588861368306783250067815987192235846514496539626229241 5128721256333873972328886852452626592795563193044001806373755174746127697 4913776250590156235654168569031460055438321507312533156958693751264516612 0298264279408059464649976075153909251124903466418613010749549204730675846 5305413344668678489009959610077493059661578116828224277333381864198106931 4969600128611455597908602721583515189378420093004273093884398029362925993 2341674782220853825107820445471454896497607745368481116313557548784332268 7796729507732431685513919823156566659462906593188486451200387150374902776 0105964928972428689260615132021701481808474635277813843355927973435247029 5011903576974979898694593744266772555427406571416731601344160182507921496 6551243340598491022827199240313187293157869635450549847771358787519056427 3326616317234524241060571605260645374153601311186978452560825053956450408 7388524613098970682086686742156827007879617577585219269695723764760354784 3100053880490393282167646769429486051573840407058031255629065599849203951 2356454400454065862900412848959891358737669822106458972996079046061649215 565533184
\(c_{1}=174026622103036049001443203672787317165709960825483879547761528701105\) 3512989069046938399420163234615664391377465320988248278172579953713379386 0373544454124284273225423842889374337640211063105958131440397513480175766 3372334033129899280958554564869576559123328284414263988094293104625480288 017644016650053649851049
\(c_{2}=-414898830634725511579876261796925209423483197180808499033365137192\) 7558171176108301510977080798335020411125167778584725421392063859461695138 4087271477429444214749212952259453844250997349939835035354149654600838848 4697319851167904916270475649949946784682228312403248649006236852585156268 41625371289867006618563072
\(c_{3}=c_{4}=-12016941541828430890387541295049543238634890141937497877421825\) 3608511313770187340039750897734731896175653227833547978740517617931580691 9494419145235744346056001344596541225696787382859793476317869029518461205 0052095264627090978218925706008532351098389876395449170546152881538676448 6819410816179248899825935663584
\(\rho=8.0816\)
The equation of the curve over \(\mathbb{F}_{p}\) is \(y^{2}=11\left(-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\right)\).
\(\underline{r}: 1024\) bits. \(k=3\).
\(p=717748645781505731120599269684910693590944029612987068440967012314130\) 6637827393231944795966268238394707373418250637693458042904697055796191300 6988518257403915714005639997828602961606379818049724696348918738839210978 4884097588161710751447842237401094267825596641326555653496480397321236084 3359687016377451991881531057275736765140557796850130723269247861970378423 4747661610312631323994375446803092065579965869275407690364653384443149636 1358359960327719785761624131833934060542855381519429968298504355243330594 8128051188598482445090960279949827080200814185109371664267078220279517108 4593441499198308986503899040312785820990605173937322268693944141897213905 0350040373032830045642801185170518236713373491710503302901558703113134368 3241826353657585244175657105742633183737223279548444715679485406276250355 1201137915874208065998822573397075248659377281765538966698467194444038688 2544976363374550235175548720819849709645412976171386385886955140368425643 5595018639856563961113295199752946528182355932639678152695494113031640748 6915218894642959537179051946992663567484366871922820680694703814552225520

4643739689679297558549156573384073054580960265102343844077312858660618523 0160019449034269795423287562037274184579733091032396846997359646292442899 233
\(r=179769313486231590772930519078902473361797697894230657273430081157732\) 6758055009631327084773224075360211201138798713933576587897688144166224928 4743063947412437776789342486548527630221960124609411945308295208500576883 8150682342462881473913110540827237163350510684586298239947245938479716304 835356329624224143009
\(N=515163118521185384753840122583010856382709249428671962661423211365050\) 3129398738377837129859375413710599513894886791237829979441147675879587101 8127804378985878592579181400716796052289400311200947321963638645846291833 0857201279570232911828631126106983909288992133615876799837606636919422956 7351326074555066087476219572520158518412302877542241298357393898729494197 1319602257770442738478014191985146371862333191710935743881263765267281476 9491676501952662215123398419548713350196515912899875089314080328865621094 8368815210583815481976896530063644394824452690393274033183817051091321233 4558015734113942305624121302388802782452074234332784265647457344528815239 4145262367638033740914525744492164174893960793366077457574624749895904144 3224212517886681444497758168130813071513119892288550062556608549522777955 6107323788126796346915049020177765794083510916576463035792778812767338874 2560158169465116549884763976539224460110112379859330536323064985645100245 8918889366215809001344984570638298998091057594440413590449220723188779764 7149920048571025964239936587368171467444207742960713087347884078989609874 1715434568346654898950235710593089411735027741069348198520447971857532339 9166005168540220389651352232315703722217758741261058325972849030390971912 6778901553525188540653726309907324768061473679392970730644751229367451898 2861775806497402529537437475158404056265952129051854121790370481225753838 6957927004995613283010833912683616334217359696231189689499303611266955331 3939555492471860484630000856664302452824150794096867637988697308682265590

6133242863267943605360732832950584508750182506668160375930488838808196330 8321237485300246428442097317214290631861287510288955910881362062874360853 5360183755807572962437618631563317241283618789061604351451958568659453355 5085328642120047173695576212225431262429587305870554292547099393283843789 8778772339629902350231517065379800315959172287505333819272066820058506445 1486781599426285596652733281850226828122246033844848187647739088611155954 4990708805981662320939385423098611058587644744015264671940931506576574796 6574945135893523272284538857096770034016880047082680580540618565741917115 6981433598158488000847546249792572546753218368775523920043139133607183248 7570805707999371196914500444836433288499776969698483926470544505629385606 7742312323325978499157829066471585493650335737156015959885576560769234421 7163798948736397105796266249161358253213474072307345140179161963167234174 9770068842895220487754663826788480959975507429493447607951826211093618442 24
\(c_{1}=241046809911331744829734214849495338288383033422516562343952911153215\) 8192841241473577315249020488024863361377610028395777932327114358923433565 0936466052461749239726108485714966836992014266020206655946581519964385429 0867445800142955439023414996484770332209901425758580132297217861282561935 4736005546869003077727086069051848857786861113120469969485021821036783977 1394120658420848096491899664988059309107088706236032356462445760157820395 8309864823697346438670189432998903144987790168082978899647052970353731903 1854636379409714950811422783948892128814057829596138961269831112117378178 5834323588656726946891815197141810787025
\(c_{2}=-381790331864082701677964116490390471323211246420800974547315434670\) 6247391478402571173301059272864468354483707354443499461488099833644412239 0172406114284649073743487814335212519672617012878831879092793266950084898 9331284076284350734797021226156120050658417295790918253642974591025047786 9753645596675223611665212263778651718415338373723285748183989896258950882 3445742838796314746308762938191147456388442030672510020289063226826761151

0081936557223540221762353892404437580032102361006544450667983601104738821 9389899280359343500130139317382478591643895605668046928280358535915688362 8782859425827958436920858894640806217611552
\(c_{3}=c_{4}=4290206091805516194493363207649719423301112671503877845589183063\) 9458650143462822106634617937244089757608691079278986899772953479194078187 2237336835363728067907805981340329142519259486742039801072153487833600205 7878075549325526390089803421276206571588408476626851426511497427228425974 5771996026235812265475888681834988691541451183610643465792889944147364509 2650017464186109565807982995082482570257409381080420765708156039949566712 3124251369150129370628038300054703313801314218156317327585593578706812567 6815147103415272424675034157667902311183100298814367256007564896238960083 760308633592317742627253038661001979530245160
\(\rho=8.0444\)
The equation of the curve over \(\mathbb{F}_{p}\) is \(y^{2}=-x^{5}+3 x^{4}+2 x^{3}-6 x^{2}-3 x+1\).

\section*{C. Some Source Code}

\section*{C. 1 PARI/GP scripts for finding parameters for cryptographically-strong genus 2 curves}

Code for case \(d \equiv 2,3(\bmod 4)\).
```


 Timing for generating suitable pairs (p, N) for genus 2

 cryptography.

 Script outputs results for generating \$count (p, N) in

 \$time seconds. It returns either when \$count_max pairs

 are generated or when \$time_max has been reached.

d = 2, 3 (mod 4)

allocatemem(40*10^6);
default(debugmem,0);
default(timer,0);
prmbitsize = 400;
MAX_COFACTOR = 2000;

----------------- D = 0 mod 4 -----------------

```
\\ Set count_max and time_max
count_max = 500;
time_max \(=600\);
outfile = "search_result_DO.txt";
\{
\\ Generate good \(a, b, d\) for \(C M\) field \(K=Q(i * s q r t(a+b * s q r t(d)))\)
Good_abd = 0;
while (!Good_abd,
\(\mathrm{d}=\operatorname{random}(20)+1\);
if (Mod(d, 4) != 1 \&\& issquarefree(d) \&\& qfbclassno(4*d) == 1 ,
    \(\mathrm{a}=(\operatorname{random}(20)+\operatorname{ceil}(\operatorname{sqrt}(\mathrm{d}))) *(-1)^{\wedge}\) random(2);
    \(\mathrm{b}=\operatorname{random}\left(\operatorname{ceil}\left(\operatorname{sqrt}\left(\mathrm{a}^{\wedge} 2 / \mathrm{d}\right)\right)\right)\) ) \(\backslash \backslash\) This ensures \(\mathrm{a}^{\wedge} 2-\mathrm{b}^{\wedge} 2 * d>=0\).
    if ( !issquare ( \(\mathrm{a}^{\wedge} 2-\mathrm{b}^{\wedge} 2 * d\) ) \&\& issquarefree ( \(\mathrm{a}^{\wedge} 2-\mathrm{b}^{\wedge} 2 * d\) ) \&\& \(1+\mathrm{d}+\mathrm{a}+\mathrm{a} * \mathrm{~d}+2 * \mathrm{~b} * \mathrm{~d}>\)
0 , Good_abd = 1);
```

);
 end if
);
 end while
}

------------Polynomial to be factors ------------
{
f(x, y) = 2*x*y*a + x^2*b + y^2*b*d;
}

------------- p(x) -----------------------------
{
p(x1, x2, x3, x4) = x1^2 + x2^2*d + x3^2*a + x4^2*a*d + 2*x3*x4*b*d;

```
\}
\\---------- Possible group orders ----------------
\{
\(\mathrm{N} 1(\mathrm{x}, \mathrm{x} 1, \mathrm{x} 2)=(\mathrm{x}+1)^{\wedge} 2-4 *(\mathrm{x}+1) * \mathrm{x} 1+4 *(\mathrm{x} 1 \wedge 2-\mathrm{x} 2 \wedge 2 * \mathrm{~d})\);
\}
\{
\(\mathrm{N} 2(\mathrm{x}, \mathrm{x} 1, \mathrm{x} 2)=(\mathrm{x}+1)^{\wedge} 2+4 *(\mathrm{x}+1) * \mathrm{x} 1+4 *(\mathrm{x} 1 \wedge 2-\mathrm{x} 2 \wedge 2 * \mathrm{~d})\);
\}

\\Takes on input [count_max, time_max].
\\ Function returns if either count reaches count_max or time reaches time_max.
\\ Returns [count, time] - count primes found in time seconds.
\\
Timing_DO_old(count_max, time_max) =
\{
```

local(OK, count, prm, c1, c2, c3, c4, time_start, time_end, fact, factN, factsiz
e, myN);
local(idx);
OK = 1;
prm = 4;
 isprime(p) == 0
count = 0;
time_start = gettime();
time_end = 0;
while (OK,
c3 = random(2*2^(prmbitsize/4)) - 2^(prmbitsize/4);
c4 = random(2*2^(prmbitsize/4)) - 2^(prmbitsize/4);
while (gcd(c3, c4) != 1, c4 = random(2*2^(prmbitsize/4)) - 2^(prmbitsize/4));

```
```

 if (Mod(c3^2*b - c4^2*b*d, 2) == 0,
 n = (1/2)*(-2*c3*c4*a-c3^2*b-c4^2*b*d);
 fact = factorint(n);
 c1 = prod(row = 1, matsize(fact)[1], fact[row, 1]^random(fact[row, 2]+1))*(
 -1)^random(2);
c2 = n/c1;
prm = c1^2+c2^ 2*d+c3^2*a+c4^2*d*a+2*c3*c4*b*d;
if (isprime(prm),

 \&\& prm >= 2^(prmbitsize-1) \&\& prm < 2^prmbitsize,
myN = [(prm+1)^2-4*(prm+1)*c1+4*(c1^2-c2^2*d), (prm+1)^2+4*(prm+1)*c1+4*(
c1^2-c2^2*d)];
for (idx = 1,2,
for (cofactor=1, MAX_COFACTOR,
if (myN[idx] % cofactor == 0, max_cofactor_test = cofactor);
);
 end for cofactor
if (isprime(myN[idx]/max_cofactor_test),
write(outfile, "[p, N] = [", prm, ", ", myN[idx], "]");
count++;
time_end += gettime();
);
 end if isprime
;
 end for idx
);
 end if
);
 end if
OK = OK \&\& count < count_max \&\& time_end/1000 < time_max;
);
 end while
return ([count, floor(time_end/1000)]);
}

------------ New Method --------------------

 Takes on input [count_max, time_max].

 Function returns if either count reaches count_max or time reaches time_max.

 Returns [count, time] - count primes found in time seconds.

Timing_D0_new(count_max, time_max) =
{
local(OK, count, upper, a2, a1, a0, b2, b1, b0, myf, myc1, myc2, \
prm, c1, c2,c3, c4, ppoly, fact, factN, factsize, idx, i, j);

```
```

local(time_start, time_end);
OK = 1;
polyfound = 0;
count = 0;
upper = 10;
for (a2 = 1, upper,
for (a1 = 1, upper,
for (a0 = 1, upper,
for (b2 = 1, upper,
for (b1 = 1, upper,
for (b0 = 1, upper,
if (!polyfound \&\& gcd(a2*x^2 + a1*x + a0, b2*x^2 + b1*x + b0) == 1,
myf = f(a2*x^2 + a1*x + a0, b2*x^2 + b1*x + b0);
fact = factor(myf);
if (OK \&\& poldegree(myf) == 4 \&\& matsize(fact)[1] == 2,
c3 = a2*x^2 + a1*x + a0;
c4 = b2*x^2 + b1*x + b0;
c1 = -1/2*polcoeff(myf,4)/(polcoeff(fact[1,1]^fact[1,2],2) \
*polcoeff(fact[2,1]^fact[2, 2], 2))*fact[1,1]^fact[1, 2];
c2 = fact[2,1]^fact[2,2];
ppoly = p(c1, c2, c3, c4);
if (OK \&\& polisirreducible(ppoly) \&\& numerator (gcd(ppoly)) == 1,
for (j = 1, 100000,

```
\\print("j = ", j);
                                    value \(=\) random(2^(prmbitsize/4) - 2^(prmbitsize/4-1));
                                    myc1 = subst(c1, \(x\), value);
                                    if (myc1 == round(myc1),
                                    prm = subst(ppoly, \(x\), value);
                                    if (isprime(prm), polyfound = 1; break(7);)
                                    );
                                    ); \(\backslash \backslash\) end for \(j\)
                                    ); \\ end if OK
                                    ) ; \\ end if OK
                        ); \\ end if polyfound
            ); \(\backslash \backslash\) end for bo
            ); \(\backslash \backslash\) end for b 1
            ); \(\backslash \backslash\) end for b2
        ); \(\backslash \backslash\) end for a0
        ); \\ end for a1
    ); \(\backslash \backslash\) end for a2
```


 Now polynomials are found
print("Poly found!")
gettime();
time_end = 0;
while(1,
value = random(2^(prmbitsize/4) - 2^(prmbitsize/4 - 1));
myc1 = subst(c1, x, value);
if (myc1 == round(myc1),
myc2 = subst(c2, x, value);
prm = subst(ppoly, x, value);
if (isprime(prm),
myN = [N1(prm, myc1, myc2), N2(prm, myc1, myc2)];
for (idx = 1,2,
for (cofactor=1, MAX_COFACTOR,
if (myN[idx] % cofactor == 0, max_cofactor_test = cofactor);
);
 end for cofactor
if (isprime(myN[idx]/max_cofactor_test),

 write(outfile, "[c1, c2, c3, c4] = [", c1, ", ", c2, ", ", c3, ", ", c4,
"]");
write(outfile, "[value, p, N] = [", value, ", ", prm, ", ", myN[idx], "]")
;
count++;
);
 end if isprime
);
 end for idx
);
 end if isprime
time_end += gettime();
OK = OK \&\& (count < count_max) \&\& (time_end/1000 < time_max);
if (!OK, return ([count, floor(time_end/1000)]));
);
 end if myc1
);
 end while 1
}

------------- Benchmarking --------------
{

```
```

print("[a, b, d] = [", a, ", ", b, ", ", d, "]");
write(outfile, "[a, b, d] = [", a, ", ", b, ", ", d, "]");
print("Searching for suitable parameters...");
write(outfile, "NEW METHOD");
Time_new = Timing_DO_new(count_max, time_max);
print("New method finds ", Time_new[1], " suitable pair(s) (p, N) in ", Time_new
[2], " seconds");
write(outfile, "OLD METHOD");
Time_old = Timing_DO_old(count_max, time_max);
print("Old method finds ", Time_old[1], " suitable pair(s) (p, N) in ", Time_old
[2], " seconds");
}

-------------- EOF -------------------------

```

\section*{C. 2 MAGMA scripts for finding parameters for pairing-friendly genus 2} curves
```

''PFfinder1.txt''
// Magma script finding parameters of PF genus 2 curves
// rho =~ 8
// Set c1 = +/-1
// Embedding degree k = 5
// Start of timing
tstart := Cputime();
para_count := 0;
bitsize := 160; // Bit size of r
// For Windows users, the following line may not work.
// Change to outfile := "file_name_you_prefer" should do.
outfile := "result." * IntegerToString(bitsize) * "bit." * \
Pipe("tr -d \"\n\"", Pipe("date \"+%Y.%m.%d.%H.%M.%S.txt\"",""));
a := 2;
b := -1;
d := 2;

```
```

//a := 24;
//b := 7;
//d := 21;
c1 := 1;
k := 5;
fprintf outfile, "bitsize = %o, [a, b, d, k] = [%o, %o, %o, %o]\n", bitsize, a, b, d, k;
twiceC2 := function(x3, x4)
return -(b*x3^2 + 2*a*x3*x4 + b*d*x4^2)*c1;
end function;
NeededPrime := function(x2, x3, x4)
return (a*x3^2 + 2*b*d*x3*x4 + a*d*x4^2 + 1 + x2^2*d);
end function;
r:= NextPrime(2^bitsize: Proof := false);
while r mod k ne 1 do
r := NextPrime(r + 1: Proof := false);
end while;
solution_found := false;
while not solution_found do
P<c2,c3,c4,p> := PolynomialRing(GF(r),4);
D1 := a^2 - b^2*d;
D2 := -d*(a^2 - b^2*d);
dr := Sqrt(GF(r)!4);
I := ideal<P | \
b*c3^2 + 2*a*c3*c4 + b*d*c4^2 + 2*c1*c2,\
c1^2 + d*c2^2 + a*c3^2 + 2*b*d*c3*c4 +a*d*c4^2 - p,\
(p+1)^2 - 4*(p+1)*c1 + 4*(c1^2-c2^2*d),\
p^4 + p^3 + p^2 + p + 1>;
Solution_over_GFr := Variety(I);
if not IsEmpty(Solution_over_GFr) then
para := Solution_over_GFr[1];
solution_found := true;
else
solution_found := false;
r := NextPrime(r+1: Proof := false);
end if;

```
```

end while;
CC2 := Integers()!para[1];
CC3 := Integers()!para[2];
CC4 := Integers()!para[3];
PP := Integers()!para[4];
for i:= -100 to 100 do
cc3 := CC3 + i*r;
for j:= -100 to 100 do
cc4 := CC4 + j*r;
cc2 := twiceC2(cc3, cc4);
cc1 := c1;
if IsEven(cc2) then
cc2 := (cc2 div 2);
pp := NeededPrime(cc2, cc3, cc4);
if IsPrime(pp: Proof := false) then
N := (pp+1)^2 - 4*(pp+1)*cc1 + 4*(c1^2-cc2^2*d);
fprintf outfile, "p = %o\n", pp;
fprintf outfile, "r = %o\n", r;
fprintf outfile, "N = %o\n", N;
fprintf outfile, "c1 = %o\n c2 = %o\n c3 = %o\n c4 = %o\n\n",
cc1, cc2, cc3, cc4;
fprintf outfile, "rho = %o\n", 2*Log(pp)/Log(r);
para_count := para_count+1;
end if;
end if;
end for;
end for;
//CC2;
// Cputime
tspent := Cputime(tstart);
fprintf outfile, "\nCputime: %o, pairs found: %o\n", tspent, para_count;

```

VITA

\section*{VITA}

Ning Shang was born in Anyang, Henan, China. He pursued his undergraduate studies at Wuhan University, China. He earned his Bachelor of Science degree in mathematics in June 2002.

Ning Shang started his graduate studies at Purdue University, USA, in August 2002. He received a Master of Science degree in electrical and computer engineering in December 2007. He earned the degree of Doctor of Philosophy in mathematics in May 2009.```


[^0]:    ${ }^{1}$ The best attack described in $[13]$ takes time $\tilde{O}\left(q^{2-\frac{2}{9}}\right)$, which is asymptotically slightly faster than the generic algorithms. Here $\tilde{O}(f(q))$ is a function that is bounded by $f(q)$ times a polynomial in $\log (f(q))$ for large enough $q$.

[^1]:    ${ }^{1}$ For more background on elliptic curve cryptography, see [25].

[^2]:    ${ }^{1}$ If $q$ is odd, make the change of variable $y \leftarrow y-h(x) / 2$; if $q$ is even, cf. [38], Theorem 7 .

[^3]:    ${ }^{2}$ The normalized valuation $\nu_{1}$ takes value -1 at $x$.

[^4]:    ${ }^{3}$ This result came from Professor Jacobson, in a private communication.

[^5]:    ${ }^{1}$ In general, the Mestre's algorithm generates a real model of the genus 2 curve: $y^{2}=f(x), \operatorname{deg}(f)=$ 6. This real model can be transformed to an isomorphic imaginary model if and only if $f(x)$ has a zero in $\mathbb{F}_{p}$ [58].

[^6]:    ${ }^{2}$ This method chooses random $c_{3}$ and $c_{4}$ in Equation (4.2), and factors $2 c_{3} c_{4} a+c_{3}^{2} b+c_{4} b d$ to obtain possible choices of $c_{1}$ and $c_{2}$.

[^7]:    ${ }^{3}$ Alternatively, we can choose one of $c_{3}(x)$ and $c_{4}(x)$ to be a quadratic polynomial and the other is a linear polynomial or a constant. According to the discussion in Section 4.3, the performance of the proposed algorithms will not be affected much with such alternatives.

