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Abstract. In applications involving spatio-temporal modelling, granu-
larities of data may have to adapt according to the evolving semantics
and significance of data. To address such a problem, in this paper we
define ST2 ODMGe, a multigranular spatio-temporal model supporting
evolutions, which encompass the dynamic adaptation of attribute gran-
ularities, and the deletion of attribute values. Evolutions are specified
as Event - Condition - Action rules and are performed at run-time. The
event, the condition and the action may refer to a period of time and a
geographical area. Periodic evolutions may be specified, referring to both
transaction and valid time dimensions. The evolution may also be con-
strained by the attribute values. Evolutions greatly enhance flexibility in
multigranular spatio-temporal data handling but require revisiting the
notion of object consistency with respect to class definitions and access
to multigranular object values.

1 Introduction

The ability of representing datasets with respect to both their spatial layout
and their historical evolution is crucial when performing analysis and monitoring
changes in the spatial configuration of geographical areas. Moreover, approaches
able to present data at different granularities [3] represent an effective solution
to facilitate information analysis [1].

The granularity to represent information depends on the application task,
and on the data domain and semantics. The selection of the appropriate gran-
ularity allows the system to store the minimal amount of data thus reducing

? Research presented in this paper was funded by a Strategic Research Cluster grant
(07/SRC/I1168) by Science Foundation Ireland under the National Development
Plan. The authors gratefully acknowledge this support. The work of Elena Camossi
is supported by the Irish Research Council for Science, Engineering and Technology.



storage costs. Often the selection of attribute granularities is based on a trade-
off between application efficiency and modelling requirements. Therefore, the
model at hand must support the ability to dynamically set and change the
spatio-temporal granularity. Current multigranular models only support a static
definition of attribute granularities in the database schema. For instance, in a
spatio-temporal database for environmental monitoring, the collection of meteo-
rological parameters like the amount of rainfall, the strength and direction of the
wind, the value of atmospheric pressure, must be collected more frequently in the
presence of exceptional events like hurricanes and storms. Furthermore, such a
granularity modification may involve only specific geographical areas (e.g., those
affected by the phenomenon), and is required for limited periods of time (e.g.,
the time when the phenomenon occurs).

In our effort to address these issues we have defined ST2 ODMGe (Spatio-
(Bi)Temporal ODMG supporting Evolutions), a spatio-temporal data model
that enables the evolution of attributes values, that is, the modification of the
granularities used in attribute definitions, and the deletion of attribute values at
run-time.

Evolutions reflect modifications about data significance. Such modifications
arise for several reasons, including 1) periodic phenomena (e.g., rain and snow-
falls usually increase during predetermined seasons); 2) modification of the value
of an attribute, or its occurrence (e.g., in monitoring systems); 3) the execution
of an operation (e.g., in diagnostic systems); 4) data aging (e.g., older data
may be aggregated and then maintained at coarser granularities); 5) privacy re-
strictions (e.g., individual information on user locations, which are collected in
traffic analysis, must be aggregated to coarser granularities in order to become
public). Hence, evolutions enhance the flexibility in the management of multi-
granular spatio-temporal data. They allow one to dynamically modulate adapt
the granularities to dynamic events and situations, reflected by updates on the
spatio-temporal attribute values and the execution of operations.

In this paper we describe the types of evolutions supported by ST2 ODMGe.
These include: granularity evolution, granularity acquisition, and value deletion.
Granularity evolution aggregates existing detailed data at a coarser granularity
(e.g., older data that may be stored for future reference), or even refines infor-
mation at a finer granularity (e.g., in data analysis)1. By contrast, granularity
acquisition re-defines the granularity of an attribute changing at run-time the
granularity used when inserting new values in the database, whenever the do-
main conditions change (e.g., sales recording during Christmas). Finally, value
deletion removes attribute values from the database, whenever they are no longer
useful at a given granularity (e.g., detailed data).

The ST2 ODMGe model design extends our previous multigranularity models
ST ODMG [7] and T ODMGe [6] with respect to the data definition language,
the type system, and multigranular conversions by providing support of both
the bitemporal domain and the evolution of spatio-temporal values.

1 This second operation would introduce indeterminacy on converted data, as dis-
cussed in the paper.



Granularity evolutions and value deletions had been originally defined for
historical data [6], and are herein extended to the spatio-temporal domain. Ac-
cording to our new model, they may be specified and executed at run-time, based
on the execution model of active databases, instead of being defined statically in
the database schema. Unlike T ODMGe [6], evolutions of an attribute value may
be triggered according to database conditions involving also other attributes, as
well as relying on execution of methods, thus making our evolution approach
very flexible. Moreover, unlike our previous model [6], where granularity evolu-
tions enable to summarize older data at coarser granularities, in ST2 ODMGe
they may be specified also to refine data at finer granularities. Furthermore,
granularity acquisition is a novel feature introduced in ST2 ODMGe in order
to remove one of the major limiting assumption of our previous model [6], that
is, that the granularity used for acquiring new data is immutable. ST2 ODMGe
enriches the expressive power of our previous models, and provides a flexible and
comprehensive support for run-time modifications of attribute granularities.

In the following, we first discuss related work in Section 2. In Section 3 we
introduce the ST2 ODMGe type system, and the formalisation of objects and
classes. Therefore, in Section 4 we address the definition of evolutions for spatio-
temporal data, introducing their syntax and discussing their execution model by
means of illustrative examples. In Section 5 we investigate how object consistency
is affected by evolutions. Indeed, as a consequence of the execution of granularity
evolutions and acquisitions, the run-time type of a multigranular object attribute
is a Cartesian product of multigranular types at different granularities. We define
in Section 6 the access strategies to take advantage of attribute run-time values
at multiple granularities. We demonstrate that, under certain assumptions, ob-
ject access is invariant to the execution of evolutions. In particular, the stored
information may be preserved after value deletion, because the same value may
be present in the database at a different granularity, and recovered when needed.
Furthermore, object access may benefit from evolutions with respect to both ef-
fectiveness and efficiency. The values resulting from the execution of granularity
conversions are already materialized in the database, thus improving the perfor-
mance of queries involving aggregates and granularity refinement. The existence
in the database of values at different granularities makes it possible to apply
two different strategies for object access. Such strategies optimize, respectively,
execution efficiency and result accuracy. Finally, Section 7 concludes the paper
outlining future research directions.

2 Related Work

ST2 ODMGe assumes and extends previous work on computing efficiently histor-
ical aggregates for the On-Line Analytical Processing (OLAP) of spatio-temporal
data streams [16, 13, 12, 11]. Zhang et al. [16] defined a spatio-temporal exten-
sion of the SB-Tree [15] structure, that, like our previous work [6], proposes an
aggregated indexing approach whereby older data are stored using coarser gran-
ularities than recent data. Tao and Papadias [13], relying on a seminal work on



aggregate R∗-trees [10], presented over the years several indexing structures for
the efficient historical aggregation of spatio-temporal data. Recent work focuses
on the issues of aggregates on moving objects trajectories [12, 11]. Unlike those
approaches, ST2 ODMGe supports different time granularities and multiple lev-
els of aggregation and refinement, that is, different indexing forms; moreover
the appropriate level can be selected on a per-attribute basis thus supporting
different semantics (i.e., different queries). Furthermore, our notion of evolution
refers to the bounds of granules at a given granularity, instead of referring to
a given amount of time. Moreover, ST2 ODMGe relies on an agreed notion of
temporal granularity [5] that considers granularities as data integrity constraints
and formalises how different granularities are related to each other.

The approach to deletion we adopt has been inherited from literature on
temporal databases, where data removal is an issue because answers against his-
torical queries must be preserved [8, 14]. Garcia-Molina et al. [8] have addressed
data deletion in historical databases by proposing an approach whereby data
may be removed (i.e., they expire) without affecting related views. A similar ap-
proach has been proposed by Toman [14] for historical data warehouses, whereby
automatic data deletion is supported by preserving, at the same time, answers to
a known and fixed set of first-order queries. This approach assumes that condi-
tions for data evolution are not declared in the schema, rather they are inferred
from a given set of queries. Such an approach is adequate if no information about
data evolution is known at schema definition time. Only deletions from detailed
data are supported. This approach is not exclusive with respect to ours, rather it
may complement our work, since conditions for data evolution may be inferred
for those attributes for which they are not known at schema definition time.

3 Preliminaries

In this section we illustrate the main characteristics of ST2 ODMGe, that is, the
spatio-temporal dimensions, the granularities formalization, the multigranular
type system, and granularity conversions. Moreover, we describe ST2 ODMGe
classes and objects.

3.1 Time, Space, and Granularities

The ST2 ODMGe model is a 4-dimensional multigranular spatio-temporal model
that supports two-dimensional space and two temporal dimensions: valid time
and transaction time. In the following, valid time dimension in ST2 ODMGe
(denoted by VT ) refers to the time a fact is true in the reality [9]. Transaction
time dimension (denoted by T T ) represents the time at which database transac-
tions are executed [9]. Moreover, ST2 ODMGe supports two-dimensional space
denoted by S, that refers to the space in which an object is actually located.
Spatio-temporal attributes values refer to valid time and to the space dimen-
sions. By contrast, database events, including those triggering the evolutions of



attributes, refer to transaction time. Unlike the valid time dimension, transaction
time includes references to the current time denoted by the NOW variable.

In each ST2 ODMGe database a set of temporal granularities [5] GT and a
set of spatial granularities GS are defined. We further distinguish between valid
time granularities GVT and transaction time granularities GT T . Temporal and
spatial granularities are mappings from an index set IS to the power sets of
the temporal and the spatial domains, respectively. For instance, days, weeks,
years are temporal granularities; meters, kilometers, feet, yards, provinces
and countries are spatial granularities. Valid time and transaction time are
totally ordered. Temporal and spatial granularities in GVT , GT T and GS are used
to represent ST2 ODMGe objects attributes and database events at different
levels of detail, with respect to the corresponding dimension.

A (temporal or spatial) granule is a subset of a (temporal or spatial) domain
corresponding to a single granularity mapping, i.e., given a granularity G and an
index i ∈ IS, G(i) is a granule of G that identifies a subset of the corresponding
domain. Granules of the same granularity have disjoint interiors. Moreover, non-
empty temporal granules must preserve the order of the temporal domains.

Temporal granules give the temporal bounds of spatio-temporal values: specif-
ically, valid time granules bound attribute values, while transaction time granules
bounds database events. Similarly, spatial granules specify the geographical ar-
eas where spatio-temporal attribute values are defined. For instance, the value
of the daily temperature in Rome may be defined for the first and the second
day of January. In this example, the labels “01/01”, “02/01”, and “Rome” may
be used to denote two temporal granules at granularity days and one spatial
granule at granularity municipalities, respectively, that refer to the given time
and space.

Granularities differ according to how they partition their domain of reference.
Granularities in GT and in GS are related by the finer-than transitive relation-
ship [5] and its inverse coarser-than. According to this relationship, for example,
granularity days is finer-than months, which in turn is finer-than years (ac-
cordingly, years is coarser-than months, which is coarser-than days). Likewise,
municipalities is finer-than countries. The finer-than relationship is denoted by
�, while ≺ denotes the anti reflexive finer-than.

Given two multigranular values, one at granularity G and one at granularity
H such that G and H are not directly related by finer-than, such values may
be compared if the two values may be represented (i.e., converted) at the same
granularity K, that is finer-than G and H. K is chosen as the granularity that
minimizes the number of conversions applied. If K is the coarsest, among the
granularities finer-than G and H, K is referred to as the greatest lower bound
(GLB) of G and H.

3.2 Multigranular Types and Conversions

Besides conventional database values, a multigranular spatio-temporal database
schema may include multigranular spatial, temporal, and spatio-temporal val-
ues. Multigranular values are defined as partial functions from the set of gran-



Fig. 1. Examples of multigranular attribute values

ules of the corresponding granularity(ies) to the set of values of the given in-
ner type. Fig. 1 illustrates examples of multigranular attributes: taxpayer id
is spatial, with type Spatialcountries(string); address is temporal, with type
Temporalyears(string); finally, taxes is spatio-temporal, and its functional type
specification is Temporalyears(Spatialcountries(float)).

In a multigranular database data may be converted at different granularities
to improve or reduce the level of detail of data. In ST2 ODMGe, the conversion
of multigranular geometrical features is obtained through the compositions of
model-oriented and cartographic map generalisation operators that guarantee
topological consistency [7], and refinement operators that perform the inverse
functions (e.g., merge, split, abstraction, add feature). On the other hand, to
retrieve, for instance, the annual trend of a phenomenon having a daily repre-
sentation (e.g., the values of sales in shops located in several countries), also
conversion operations for non geometric attribute values are provided (e.g., av-
erage, sum, selection, aggregation, restriction, split).

An interesting property for evaluating the correctness of attribute access
refers to conversions invertibility [4]. When converting a temporal value to a dif-
ferent granularity, and then performing the inverse conversion, we would expect
the original value to be returned. Unfortunately, when converting from a finer
to a coarser granularity, we loose some details that we cannot usually recover
by applying the inverse conversion to the finer granularity. By contrast, when
converting from a coarser to a finer granularity, we introduce some details that
we should be able to forget; thus we can recover the original value. Given a pair
of conversion functions, we denote this pair as quasi-inverse or inverse functions,
according to whether they refer to the first or the second situation, respectively.
In the first case, a measurable indeterminacy is introduced. For example, the
pair (avg,split) is quasi-inverse, while the pair (split,sum) is inverse.

3.3 ST2 ODMGe Classes and Objects

Given the multigranular type system described above, in the following example
we illustrate an ST2 ODMGe class specification.

Example 1. Given an object type for describing taxpayers, reporting the value
of taxes paid by a person over time in different countries, its definition will in-
clude: a spatial attribute taxpayer id at granularity countries to store the fiscal
identifiers that the taxpayer holds in different countries; a temporal attribute



address at granularity years to store the history of his/her fiscal domiciles; and
a spatio-temporal attribute taxes, defined at temporal granularity years and
at spatial granularity countries, which stores the amount of taxes the taxpayer
pays every year in each country where he/she works (for simplicity we suppose
the values are stored according to the same currency). 2

Given an ST2 ODMGe class, such as the one described in the previous ex-
ample, an ST2 ODMGe object is formally defined as follows.

Definition 1. (ST2 ODMGe Object). Given a class c, an ST2 ODMGe object
o of c is defined as a 6-tuple (id,N, v, c, ΥGIT

VT × Υ
GIS

S , ΥGIT

T T ) where: id is the
object identifier, unique in the database; N is the set of object names; v is the
object state, given as a tuple of attribute values: (a1:v1, . . ., an:vn); c is the class
to which the object belongs; ΥGIT

VT × Υ
GIS

S is the spatio-temporal object lifespan,
represented as set of granules at the temporal chronon and the spatial quantum
granularities2 , with respect to valid dimensions; ΥGIT

T T is the transactional tem-
poral lifespan of the object. 3

Example 2. Let o be an object of class taxpayer as described in Example 1. Ac-
cording to Definition 1, the values of attributes taxpayer id, address and taxes
in Fig. 1 define a legal object state v for o. An example of spatio-temporal lifes-
pan for o is GIT ({1998, 1999, . . . , 2030}years

VT ) × GIT ({1998, 1999, . . . , NOW}years
T T )

× GIS({Italy, Germany, Switzerland}countries
S ), where G(ΥG

′
) denotes the conver-

sion of the set of G′−granules ΥG
′

to granularity G. 2

4 Evolutions

Evolutions are defined and executed at run time on ST2 ODMGe objects. They
perform three different operations that affect multigranular object attribute val-
ues and definitions: granularity evolution, granularity acquisition, value deletion.

Granularity evolutions and acquisitions modify the granularity(ies) of an at-
tribute. The granularity evolution operation, previously introduced by us [6] in
a more limited form, allows one to define a new portion of an attribute value,
specified at different granularities. The new value (target) is obtained by con-
verting values already stored in the database at different granularities (source),
through the application of granularity conversions. By contrast, granularity ac-
quisitions do not change the database state, but re-define the granularity(ies)
that can then be used to insert new attribute values. They have the same effect
of a modification of the database schema, likewise an SQL ALTER statement
would be executed. Finally, a value deletion eliminates portions of an attribute
value at a given granularity.

Evolutions are performed according to the general execution model of active
databases. Given an instance of an ST2 ODMGe database and a set of evolu-
tions specified for it, a continuous monitoring of the database is performed. The
execution of database transactions modifies the database state and triggers the
2 These are the finest granularities on the spatio-temporal domain.



evolutions whose events refer to such transactions. Therefore, the corresponding
conditions are evaluated. For those triggered evolutions whose conditions eval-
uate to TRUE, the corresponding actions are executed. An evolution action is
a sequence of operations that may modify the attribute granularities and delete
the attribute values. As a consequence, the database state (or schema, in case
of granularity acquisition) may be modified.

The temporal behaviour of ST2 ODMGe evolutions differs according to their
recurrence. ST2 ODMGe supports periodic and non-periodic evolutions. Peri-
odic evolutions repeat regularly over time. They are triggered by periodic events,
or result from the evaluation of periodic conditions. Non-periodic evolutions are
triggered by extemporary events and conditions on database values. In both
cases, evolution elements (i.e., event, condition and action, and all the sub-
elements that compose them) may explicitly refer to both the ST2 ODMGe
temporal time dimensions, i.e., transactional and valid time, thus enabling evo-
lutions with different temporal behaviours. Specifically, temporal events refer
to transaction time, and may be either periodic or not. Valid time checks are
temporal conditions that refer to valid time.

These different behaviours may be further characterized with the support of
spatio-temporal bounds. Bounds may apply to each of the elements of an evo-
lution, restricting the occurrence of the evolution event, the evaluation of the
condition, and the effects of the action to given temporal periods and geograph-
ical areas. As a consequence of the execution of evolutions, the type of an object
state in the ST2 ODMGe model, that is, of the values of their attributes, changes
dynamically. Let a be a multigranular attribute defined in class c. In the general
case, the run-time type of a is a Cartesian product of multigranular types, as
illustrated by the following example.

Example 3. Let o be the identifier of an object of class taxpayer described in
Example 1. An example state of o is shown in Fig. 2. The example state in-
cludes a spatial value for attribute taxpayer id, representing the different fiscal
identifiers the contributor has in different countries, and a temporal value rep-
resenting the history of the contributor residence. The value of attribute taxes
shown in Fig. 2 is a set of spatio-temporal values at different spatial and tem-
poral granularities. The first value is the value corresponding to the attribute
definition, and is given at temporal granularity years and at spatial granularity
countries. The other two values are obtained from this value through granu-
larity evolutions. They are specified at granularities 5years and countries, and
years and ecAlliances (i.e., economic alliances), respectively. According to the
different granularities, they temporally and spatially aggregate the value defined
at granularities years and countries. The domain of attribute taxes is thus:
Temporalyears(Spatialcountries(float)) × Temporal5years(Spatialcountries(float)) ×
Temporalyears(SpatialecAlliances(float)). 2

Evolutions have the form: ON Event [IF Condition] DO Action. An evolution de-
fined on an attribute a is specified on a single value in the Cartesian product
that defines the value of a. Each value is referred to as granularity level. More
precisely, given an object o of class c, the value of attribute a at a given (either



Fig. 2. Example of object state

temporal or spatial) granularity G (at temporal granularity Gt and at spatial
granularity Gs, respectively) is referred to as the granularity level < G > of a (re-
spectively, the granularity level < Gt, Gs > if the attribute is spatio-temporal).
Given for instance attribute taxes of Example 3, with the object state de-
picted in Fig. 2, we have three different granularity levels: < years, countries >,
< 5years, countries >, < years, ecAlliances >. In the following example we
illustrate the syntax to define evolutions.

Example 4. Given class taxpayer of Example 1, the following evolution sum-
marises the older record of taxes at a coarser temporal granularity, according to
the current Italian fiscal law.

ON update taxpayer.taxes< years, countries > during years({1995,1996,. . . ,2014}decades
VT )

IF every 5
years
VT

DO evolve < years, countries > to < 5years, countries > using

avgyears→5years, restr5years→years

in {Italy}countries .

The evolution is defined for attribute taxes, which evolves from granular-
ity level < years, countries > to granularity level < 5years, countries >. It is
triggered by the update of the evolution source granularity level, and involves
groups of 5 years of data recorded for this level, as specified by the the valid
time check every 5yearsVT . The evolution involves only the taxes paid between
year 1995 and 2014 in Italy, according to the event temporal bound years({1995,
1996, . . . , 2014} decadesVT ), and by the action spatial bound in {Italy}countries.
Note that the spatio-temporal behavior of the evolution is completely specified
by the spatio-temporal bounds and the temporal condition. Granularity conver-
sion averageyears→5years is applied for creating the target level, and conversion
restriction5years→years, is used to recover the original values whenever these are
deleted from the database.

Now suppose that the following evolution is specified from granularity level <
years, countries > to granularity level < years, ecAlliance >, where ecAlliance



is a granularity that represent (non-overlapping) economical alliances among
different countries:

ON update taxpayer.taxes< years, countries >

IF after 1
years
VT

DO evolve < years, countries > to < years, ecAlleance > using

sumcountries→ecAlliance, splitecAlliance→countries

in countries({EC}ecAlliance) .
Note that the spatial bound in countries({EC}ecAlliance) constraints the

action execution, and accordingly the evolution aggregates only the tax logs that
refer to European Countries. The evolution is executed periodically, according
to the valid time check after 1yearsVT .

After some years, because of the evolutions, the state of the attribute is as
shown in Fig. 2. 2

5 Object Consistency

Consistency is a critical property for data usability. As such it should be formal-
ized and preserved within a database model. Evolutions as defined in ST2 ODMGe
affect the conventional notion of object consistency. Indeed, an object o of a class
c, after the execution of evolutions, at run-time may be inconsistent with respect
to c, because its state no longer matches the class definition. As a consequence,
a new formalization of object consistency is required for ST2 ODMGe objects,
in order to take into account how evolutions modify their state.

In the following, we introduce some preliminary notion to illustrate the con-
sistency conditions of an ST2 ODMGe object. Then, we formally define the
consistency of ST2 ODMGe objects.

5.1 Preliminary Notions

Let a be a multigranular attribute defined in class c. The granularity levels that
compose the value of a are pairwise linked by pairs of quasi-inverse granularity
conversions, to form an acyclic graph that we refer to as the granularity levels
graph (GLG) of the attribute, formalised by the following definition. In this
definition, and in the rest of the paper, for simplicity we consider a multigranular
attribute that refers to either the spatial or the temporal domain, whenever
the case of spatio-temporal values may be inferred straightforwardly. Whenever
needed, we point out the differences of the spatio-temporal case.

Definition 2. (Granularity level graph - GLG) Given a set of temporal or spa-
tial granularity levels < Gi > defined for attribute a, where ∀i = 1 . . . n, Gi ∈ G
is either a temporal or a spatial granularity, the granularity level graph of a, de-
noted by aGLG, is an acyclic graph (V,E) such that V={< G1 >, . . ., < Gn >},
and E= { < Gq > → < Gr >, if Gq ≺ Gr or Gr ≺ Gq, and two quasi-inverse
granularity conversions fGq→Gr

and gGr→Gq
have been defined; 1 ≤ q ≤ n,

1 ≤ r ≤ n }. 3



Similarly, given a spatio-temporal attribute a and the set of its spatio-temporal
granularity levels < Gti , Gsi

>, and given the granularity conversions defined
among these granularity levels through evolution specifications, a GLG is defined
for a. Given an attribute a, let aGLG denote its GLG. In the following, the set
of nodes and edges of aGLG are denoted by aGLG.V and aGLG.E, respectively.

Example 5. Given attribute taxes of class taxpayer of Example 1, and given
the evolutions of Example 4 have been specified. Hence, taxesGLG = (V,E) is
specified as follows:
taxesGLG.V ={< years, countries >,< 5years, countries >,< years, ecAlliance >};
taxesGLG.E={< years, countries > → < 5years, countries >,

< years, countries > → < years, ecAlliance >}. 2

The following property formalizes the notion that, given two granularity lev-
els in an attribute GLG, it is always possible to compare them, directly or indi-
rectly, through finer-than, even if they are not directly related by the finer-than
relationship, and even if the granularity levels are not directly linked through
granularity conversions in the GLG. As a consequence, to solve an attribute ac-
cess, we may navigate among the values defined in the attribute GLG by using
the defined granularity conversions, as we will see in the following section.

Property 1. Let < Gi > and < Gj > be two granularity levels in aGLG. Then,
one of the following conditions holds:

– Gi ≺ Gj ;
– Gj ≺ Gi;
– < GGLB(i,j) > ∈ aGLG.V , where GGLB(i,j) is the GLB of Gi and Gj . O

We introduce also the concepts of bottom and top granularities for an at-
tribute in the ST2 ODMGe model.

Definition 3. (Bottom and Top granularities in a GLG). G⊥ is the set of the
(temporal or spatial) bottom granularities of a, that is the finest granularities of
the granularity levels in aGLG for which no granularity G, < G > ∈ aGLG.V
exists such that, ∀ G′ ∈ G⊥, G ≺ G′. Symmetrically, G> is the set of the
(temporal or spatial) top granularities of a, that is, the coarsest granularities of
the granularity levels in aGLG for which no granularity H, < H > ∈ aGLG.V
exists such that, ∀ H ′ ∈ G>, H ′ ≺ H. 3

Example 6. Given attribute taxes of Example 1 with the GLG of Example 5,
G⊥VT ={years} and G>VT ={5years}. Similarly, G⊥S={countries}, while
G>S={ecAlliance}. 2

5.2 Consistency Conditions for ST2 ODMGe objects

Relying on attribute GLGs we now revisit the consistency of ST2 ODMGe ob-
jects. We define consistency constraints that are useful to define the access strate-
gies and must be preserved when manipulating object states. Such constraints



are expressed with respect to all the dimensions supported by the ST2 ODMGe
model. To guarantee object consistency, every ST2 ODMGe attribute value must
satisfy the following conditions:

1. each attribute value belongs to the set of legal values of the corresponding
type;

2. whenever the attribute value is an object identifier, the referred object exists
in the database sometimes during the temporal transactional lifespan of the
object;

3. the spatial and/or the temporal domain of the attributes of an object at
each granularity level does not exceed the spatial and temporal lifespan of
the object; thus for each defined value, the corresponding granule intersects
the object lifespan3;

4. the edges of a GLG must reflect the anti-reflexive finer-than (and coarser-
than) relationship holding among granularity levels.

The previous constraints are formalised in Definition 4, which expresses the
notion of run-time consistency for objects in an ST2 ODMGe database.

Definition 4. (ST2 ODMGe Consistent Instance). Let o be a ST2 ODMGe ob-
ject defined as (id,N, (a1 : v1, . . . , ap : vp) , c, ΥGIT

VT × Υ
GIS

S , ΥGIT

T T ). Let c be
a class and attr its attribute specification {(b1, τ1), . . . , (bm, τm)}, where ∀j,
1 ≤ j ≤ m, bj be an attribute name and τj be an attribute type. Let LT and
OT be the sets of literal and object types, respectively, and let Tgeom be the set
of geometric vector types (e.g., point, line, polygon). Let [[ τ ]] be the set of legal
values for type τ , and [[ τ ′ ]]GIT

i be the set of legal values defined for τ ′ in granule
GIT (i). Object o is a consistent instance of c if the following conditions hold:

1. ∀i, 1 ≤ i ≤ p, ∃(b, τ) ∈ attr such that b = ai;
2. ∀(b, τ) ∈ attr, ∃k, 1 ≤ k ≤ p, such that b = ak and the following conditions

hold:
(a) if τ ∈ LT , vk ∈ [[ τ ]]
(b) if τ ∈ OT ∪ Tgeom, vk ∈

⋃
Υ

GIT
T T
{ [[ τ ]]GIT

h | h ∈ IS};
(c) if τ is a multigranular type at granularity G, all the following conditions

hold:
i. vk = (vk1 , vk2 , . . . , vkn), with n ≥ 1

ii. ∀j, 1 ≤ j ≤ n, such that vkj
is defined,

A. ∃τj, where τj is a multigranular type at granularity Gj, such that
vkj
∈ [[ τj ]] ;

B. ∀i ∈ IS such that vkj (i) is defined, Gj(i)∩(
⋃
Υ

GIT
VT ×Υ

GIS
S
{GIS(h) |

h ∈ IS}) 6= ∅;
iii. a granularity (level) graph (Vk, Ek) is defined, such that:

A. Vk = {< G1 >, . . . , < Gn > | vkj ∈ [[ τj ]] is defined, with
1 ≤ j ≤ n};

3 Border granules may not be completely included in the object lifespan, but their
intersection with it must be non-empty.



B. Ek = {< Gq >→< Gr >, if Gq ≺ Gr or Gr ≺ Gq}, with
1 ≤ q ≤ n, 1 ≤ r ≤ n. 3

Example 7. Given object o of Example 3, we assume the evolutions of Exam-
ple 4 have been executed on o.taxes, with taxesGLG as defined in Example 4.
Given GIT ({1998, 1999, . . . , 2030}years

VT ) × GIT ({1998, 1999, . . . , NOW}years
T T ) ×

GIS({Italy, Germany, Switzerland}countries
S ) the spatio-temporal lifespan of o, if

updates on o have been executed after 1998, then object o, with the object state
of Fig. 2, is a consistent instance of class taxpayer according to Definition 4. By
contrast, it would be inconsistent if its lifespan was GIT ({2000, 2001, 2002}years

VT )

× GIS({Italy}countries
S ) × GIT ({1998, 1999, . . . , NOW}GIT

T T ), because it does not
intersect nor the values defined before year 2000, neither the countries different
from Italy. 2

6 Object Access

In this section we discuss the access to attribute values in ST2 ODMGe. We
consider a basic form of access that requires the attribute value defined in a
single granule. The syntax and semantics of such an access are first introduced.
We further distinguish two forms of access, qualified and unqualified, depending
on a granularity conversion be specified. The strategies to solve these accesses
are discussed separately. Therefore, we discuss the invariance of object accesses
with respect to evolutions, and characterize unsolvable object accesses.

6.1 Qualified and Unqualified Access

The object access we discuss is formalised by the following definition.

Definition 5. (ST2 ODMGe object access). Let o be an object identifier, and
let a be the name of an attribute defined for o. If a is a multigranular temporal
attribute, let G be a temporal granularity. If a is a multigranular spatial attribute,
let G be a spatial granularity. Given a granule label lG, an object access is an
expression of the form o.a ↓[f ] lG, requiring the value of attribute a of object o
in granule lG. If a granularity conversion f is specified, f is applied to compute
the access result. The latter access request is referred to as qualified. Otherwise
it is unqualified. 3

The (qualified) access to a multigranular spatio-temporal attribute a is ex-
pressed as o.a ↓[f ] lGt ↓[f ′] lGs , where Gt and Gs are a temporal and a spatial
granularity, respectively, lGt , lGs are two granule labels for Gt and Gs, f and f ′

are granularity conversions.

Example 8. Given the class taxpayer of Example 1 and object o whose state is
shown in Fig. 2. o.taxes ↓ {1998}yearsVT ↓ {Italy}countriesS is the unqualified access
to the payments made during 1998 to the Italian revenue service. By contrast,
object access o.taxes ↓ {1998}yearsVT ↓split[p(x)] {Italy}countriesS is the qualified
access to the same payments, requiring that application of the refinement func-
tion split[p(x)], where p(x) is the probability distribution: p(x) = {(Italy, 0.5),
(Germany, 0.5)}. 2



6.2 Solving Unqualified Object Access o.a ↓ lG

To solve the unqualified object access o.a ↓ lG we check whether the requested
value is available, i.e., if < G > is a granularity level defined for a and the
value of a for o at lG is defined. If so, such value, that we denote as o.aG(lG),
is returned, where o.aG is the granularity level < G > defined for a. Otherwise,
the requested value must be computed starting from the values, stored in other
granularity levels, that intersect the requested granule.

In the latter case, two different strategies may be applied for solving o.a ↓ lG,
depending on whether the user wants to maximize the accuracy of the result or
the efficiency to return it. The efficiency maximization strategy minimizes the
number of intermediate accesses needed to solve the user access. According to
this strategy the application of conversion functions from coarser to finer gran-
ularities is preferred to the inverse function, because just one value is required
to solve the access. By contrast, when maximizing accuracy, the highest preci-
sion is required in computing the result. Therefore the application of granularity
conversions from finer to coarser granularities takes precedence, because they
minimize the indeterminacy in the returned values.

Fig. 3 summarizes the execution strategy for solving o.a ↓ lG. The strategy
to solve the spatio-temporal access o.a ↓ lGt ↓ lGs follows straightforwardly.
We assume that the granularity levels in a GLG are ordered according to the
finer-than relationship. Spatio-temporal granularity levels are ordered first ac-
cording to temporal granularities, and then with respect to spatial granularities.
ACCURATE denotes that an accurate answer is preferred, whilst efficiency is the
default.

if ∃o.aG(lG) 6=⊥ then return o.aG(lG)
else if ACCURATE then

while ∃o.aK s.t. K � G and ∀lKk ∈ K(lG)

s.t. o.aK(lKk ) 6=⊥
return fK→G(o.aK)(lG)

return null
else while ∃o.aH s.t. G � H

return gH→G(o.aH)(lG)
while ∃o.aK s.t. K � G

return fK→G(o.aK)(lG)
return null

Fig. 3. Algorithm for object access o.a ↓ liG

The computational complexity of the algorithm in Fig. 3 is O(n). Indeed,
assuming that the set of granularity levels defined for each attribute value is
finite, and the time required for the application of granularity conversions is
linear, the complexity of the algorithm is mainly given by the sequential access
to a given value in a granularity level. If we assume that indexing is applied
on granularity levels (e.g., BTree+ for temporal values and R-Tree for spatial



values), the complexity may improve to O(log(n)) if the internal nodes of the
R-Tree do not overlap. An optimal worst-case complexity is guaranteed also if
the indices for spatial data are, for example, PR-Trees [2].

An important result of our work is thus that the introduction of evolutions
does not increase the complexity of the access, with respect to the conventional
multigranular case. Furthermore, complexity improves whenever the access in-
volves the application of granularity conversions computation for granularities
for which granularity levels are already defined, because the access result is al-
ready pre-computed in the database.

In both execution strategies, the access follows an iterative approach, and to
solve it we may need to move across several granularity levels. Once a value is
found (or a set of values, in the accuracy maximization strategy) that satisfies
the access, a sequence of conversions must be performed. If some precomputed
value is already available at an intermediate granularity, these values need not
to be recomputed, thus improving performance.

Example 9. Given access o.taxes ↓ {1998}yearsVT ↓ {Italy}countriesS introduced in
Example 8, and object o of class taxpayer whose state is shown in Fig. 2. The
access results in 14, 650. 2

6.3 Solving Qualified Object Access o.a ↓f lG

If the access is qualified by a granularity conversion f , this function will be
used to compute the access result, taking precedence over the functions already
specified in granularity evolutions and acquisitions. Differently from unqualified
access, if the accuracy maximization strategy is adopted, an existing value for the
specified granule is discarded, if it was constructed with a different function. The
value would be used instead by the efficiency maximization strategy. If this value
is not defined, we distinguish whether f is a conversion to a coarser granularity
(namely, a coercion function, CF), or to a finer granularity.

Fig. 4 reports the algorithm for solving qualified accesses. The spatio-temporal
object access o.a ↓f lGt ↓f

′
lGs follows straightforwardly. As above, ACCURATE de-

notes that an accurate answer is preferred.
As in the case of unqualified access, the algorithm for qualified access shown

in Fig. 4 has computational complexity O(n), which may reach the optimum if
indexing is used on the granularity level values as in the previous case.

Example 10. Given the access o.taxes ↓ {1998}yearsVT ↓split[p(x)] {Italy}countriesS
of Example 8, with p(x) = {(Italy, 0.5), (Germany, 0.5)}, and object o of class
taxpayer with the object state depicted in Figure 2. When accuracy is required,
the access results in 15,027. This value is computed starting from the aggregate
value at granularities < years, ecAlliances >. 2

6.4 Evolution Invariant Object Accesses

In order to preserve the consistency of the query answers, evolution execution
must not affect access results. In what follows, after a preliminary definition



if ∃o.aG(lG) 6=⊥ then
if ACCURATE then

if ∃o.aK s.t. K � G
and fK→G is defined between o.aK and o.aG

then return o.aG(lG)

else return o.aG(lG)
if f is a CF then

while ∃o.aK s.t. K � G
if ACCURATE then

if ∀lKk ∈ K(lG) s.t. o.aK(lKk ) 6=⊥ then

return fK→G(o.aK)(lG)
else return null

else return fK→G(o.aK)(lG)
return null

else while ∃aH s.t. G � H
return fH→G(o.aH)(lG)

Fig. 4. Algorithm to solve the qualified object access o.a ↓f liG

introducing the notion of evolution invariant access, we show that unqualified
object access is invariant with respect to the three forms of evolution discussed
in this paper, given a bounded approximation introduced by granularity conver-
sions.

Suppose that < G > is one of the granularity levels defined for attribute a,
and suppose that from < G > an evolution has been executed involving granule
lG. In the case of acquisitions we consider the insertion of new values in the
target granularity level.

Suppose the evolution has not been performed yet. Assuming that no updates
occurred, if the access o.a ↓ lG results in the same value when executed just
before and just after the evolution execution, the access is referred to as evolution
invariant. Considering how we build granularity levels, and the specification of
granularity conversions, the following result holds.

Proposition 1. Given a granularity level < G > defined for a, and provided
that a granularity level < G′ > exists such that o.aG′(G′(lG)) is defined, every
object access o.a ↓ liG is evolution invariant. 3

In case of granularity evolutions, in the two cases, i.e., just before and just
after the evolution execution, the access will result in the same value if the gran-
ularity level < G > is the target level of a granularity evolution defined from
< G′ >. By contrast, for granularity acquisitions and deletions the access is evo-
lution invariant but with a bounded imprecision, which is due to the application
of granularity conversions. Indeed, if the value defined for granule lG is deleted,
we can recover it if the value has been involved in a granularity evolution to
granularity level < G′ >. In the case of granularity acquisition, the old and the
new acquisition levels are related by a pair of (quasi-inverse) granularity conver-
sions, which guarantees the value consistency among the two levels, modulo a
bounded error.



6.5 Unsolvable Object Accesses

In this section we characterize ST2 ODMGe object accesses that can be statically
detected as unsolvable. So far, null is returned whenever not enough information
is available to solve the access. However, we can distinguish between accesses
that are statically known to be unsolvable, that is, for which no database state
exists such that these accesses will produce a value different from null, and
accesses that can produce or not an answer depending on the actual content of
the database. Detecting object accesses that are statically unsolvable reduces
query execution times, because the system does not need to execute them, but
it may return immediately null. Given an object access o.a ↓ lG (the case of
o.a ↓ lGt ↓ lGs follows straightforwardly), the following result holds.

Proposition 2. Given attribute a defined for an object o, and given value v for
a, such that aGLG includes the granularity levels < G1 >, . . ., < Gn >, the
object access o.a ↓ lG is unsolvable if one of the following conditions holds:
– G is not related by � to any of G1, . . . , Gn;
– G ≺ K, K ∈ G⊥;
– H ≺ G, H ∈ G>. 3

7 Concluding Remarks

In this paper we have investigated issues related to the evolution of multigranular
spatio-temporal objects. The approach we propose supports an adaptive man-
agement of multigranular spatio-temporal attributes. The main contribution of
our research is the definition of ST2 ODMGe, a multigranular spatio-temporal
model that allows the run-time modification of the attribute granularities, and
the deletion of attribute values. Evolutions adopt the model of active databases:
they are executed at run-time, whenever the specified events occur and the cor-
responding conditions are satisfied. The events that trigger an evolution may
involve also complex conditions on attribute values and their occurrence, as well
as the execution of user-defined operations. Differently from our previous tempo-
ral evolution model [6], we introduce a new form of evolution, that is, granularity
acquisition, and extend granularity evolutions and value deletion to the spatio-
temporal domain, enhancing the flexibility of the evolution specification. Our
approach to evolutions allows one to model a large variety of situations. As a
consequence, consistency constraints on attribute values have been relaxed with
respect to the previous version of our model. In the current model, the run-
time value of a multigranular attribute is a Cartesian product of multigranular
values, linked in a connected acyclic graph through the specification of granular-
ity conversions. Relying on such a structure, the object accesses may be solved
according to different strategies and error tolerances.

The ST2 ODMGe model may be considered as a basis for future investiga-
tions on issues involved in evolutions on multigranular spatio-temporal objects.
In particular, the development of a prototype of the model will allow us to in-
vestigate the trade off between the flexibility, provided by the model, and the
consistency that is guaranteed by the statical specification of evolutions.
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