
CERIAS Tech Report 2009-04
Implementation Challenges in Spatio-temporal Multigranularity

 by Elena Camossi, Michela Bertollo
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Implementation Challenges in

Spatio-temporal Multigranularity

Elena Camossi ∗

School of Computer Science and Informatics - University College Dublin, Belfield,

Dublin 4, Ireland. Phone: +353 (0)1 7162-913. Fax: +353 (0)1 2697-262

Michela Bertolotto

School of Computer Science and Informatics - University College Dublin, Belfield,

Dublin 4, Ireland. Phone: +353 (0)1 7162-913. Fax: +353 (0)1 2697-262

Elisa Bertino

CERIAS - Purdue University, 250 N. University Street West Lafayette, Indiana,

USA 47907-2066. Phone: +1 765 496-2399 Fax: +1 765 494-0739

Abstract

Multiple granularities are essential to extract significant knowledge from spatio-

temporal datasets at different levels of detail. They enable to zoom-in and zoom-out

spatio-temporal datasets, thus enhancing the data modelling flexibility and improv-

ing the analysis of information. In this paper we discuss effective solutions to imple-

mentation issues arising when a data model and a query language are enriched with

spatio-temporal multigranularity. We propose appropriate representations for space

and time dimensions, granularities, granules, and multi-granular values. In partic-

ular the design of granularities and their relationships is illustrated with respect to

Preprint submitted to Elsevier 8 April 2009

the application of multigranular conversions for data access. Finally, we describe

how multigranular spatio-temporal conversions affect data usability and how such

important property may be guaranteed. In our discussion, we refer to an exist-

ing multigranular spatio-temporal model, whose design was previously proposed as

extension of the ODMG data model.

Key words: Spatio-temporal databases, spatial and temporal granularities,

multiresolution, multirepresentation

1 Introduction

The capability of representing spatio-temporal datasets with respect to both

their spatial layout and their temporal evolution is fundamental to analyse and

monitor the changes in the spatial configuration of a geographical area over a

period of time. Moreover, to trace modifications according to different tempo-

ral frequencies, the history of the areas under observation has to be maintained

and retrieved at multiple temporal granularities (e.g., years, months, decades).

Similarly, multigranular modelling offers interesting capabilities in the spatial

domain: from support to automated cartography, to efficient browsing over

large datasets, to structured solutions in wayfinding, planning and design, to

rendering of virtual reality environments. The approaches able to present the

data at different granularities represent an effective solution to facilitate the

analysis when fewer or additional details are required for specific subsets of

∗ Corresponding author
Email addresses: elena.camossi@ucd.ie (Elena Camossi),

michela.bertolotto@ucd.ie (Michela Bertolotto), bertino@cs.purdue.edu

(Elisa Bertino).

2

the data. For example, zoom-out operations may improve the efficiency of

spatio-temporal data mining algorithms, which are time consuming [3]. On

the other hand, zoom-in operations may help in refining the mining of specific

data subsets.

Granularities intuitively represent the units of measure of a dataset, and

may be defined on all data dimensions (i.e., Space and Time for spatio-

temporal data). For each dimension, a connected set of granularities may be

defined, and the different sets are independent. Multigranularity, multires-

olution and multiple representation have been investigated first for tempo-

ral [11,28] and spatial data [6,27,35] separately, and more recently for spatio-

temporal data [14,19,23,34].

The choice of the correct granularity allows the system to store the minimal

amount of data, according to the most appropriate level of detail. In many

applications different granularities may exist, neither of which is inherently

better than the others. Therefore, a database system for such applications

should support a wide range of granularities and allow the user to define

his/her own application-specific granularities.

Extending a data model with spatio-temporal multigranularity entails to ad-

dress several design and implementation issues. The first category of problems

one has to face with **is** modelling issues, that are related to the formal

design of the base entities that make up the multigranular data model. First

of them, the modelling of the spatial and the temporal domains on which the

granularity mappings are given, that, for instance, may be considered discrete

or continuous, mutually dependent or independent, and may be application

driven. It is equally important to find a proper design for granularities and

3

granules, whose implementation affects the efficiency of the representation of

multigranular values, that in turn impacts on the performance of queries exe-

cution.

Another category of problems, which arise when implementing the query lan-

guage, **is** comparison issues. Indeed, in multigranular queries it is crucial

to guarantee that a common level of detail for two multigranular data of the

same type (i.e., number, alphanumeric, geometric information) always exists

in order these data be compared in queries. To obtain that, granularities must

be mutually related and multigranular data have to be converted to different

levels of detail. Furthermore, the functions we use to shift granularity levels,

namely multigranular conversions, must preserve data semantics and usability

and do not introduce errors on the converted data.

Finally, optimization issues must be considered in order to improve the perfor-

mance of all the data storage and retrieval process. Strategies for a fast access

to multigranular spatio-temporal data include the definition of auxiliary data

structure, both as extension of existing spatio-temporal indexes and through

the definition of novel techniques for the optimization of queries involving

multigranular aggregates.

In this paper we discuss these issues, proposing different implementation so-

lutions. In particular, the advisability of two separate representations for the

temporal and spatial domains is discussed. Furthermore, we illustrate the de-

sign requirements for granularities and granules, proposing a data type design

to implement them and suggesting how user defined granularities may be spec-

ified. Moreover, optimizations for the storage and the retrieval of multigranular

values are described. Finally, the inconsistencies arising from the application

4

of multigranular conversions are discussed, proposing effective solutions to

prevent them.

In this discussion, we refer to the multigranular model and query language

we formally defined in [19,21]. This model extends ODMG [22], the reference

model for object-oriented databases, with multigranular spatio-temporal ca-

pabilities. The design in [19,21] is formal: it relies on de facto standards, like

the ODMG and OQL, and on agreed definitions for granularities [11]. Fur-

thermore, it provide formal proposal for all the main components of a multi-

granular data model like granularities and their relationships and a validated

spatio-temporal type system. Moreover, differently from other multigranular

models proposed in the literature, granularity conversions and data access

have been properly defined. Therefore, it is an appropriate candidate to refer

in our discussion, which aim to investigates very closely how to provide an

established implementation to spatio-temporal multigranularity.

To demonstrate the feasibility of the proposed solutions, we developed an

object-relational spatio-temporal prototype which supports spatio-temporal

multigranularity, built on top of ORACLER© 11g (www.oracle.com), which is

based on the implementation considerations we provide,. In its design, we take

advantage of the object-relational features, like extensibility of the design and

data type encapsulation, and of the spatial type system already provided by

the DBMS. However, this does not represent a limit to the proposed implemen-

tation because the same capabilities are also provided by other mainstream

spatial database products, like MicrosoftR© SQL ServerR© 1 , PostgreSQL with

1 http://www.microsoft.com/sqlserver/2008/en/us/default.aspx (accessed Febru-

ary 2009).

5

its spatial extension PostGIS 2 , MySQLR© 3 . Moreover, we describe some im-

plementation details of two existing multigranular object-oriented prototypes

implementations which solve other issues we consider in our dissertation. In

particular, we describe a DLL extension for the automatic implementation of

multiple temporal granularities.

This paper extends the work presented in [20], where a preliminary discussion

on multigranularity issues was presented. With respect to [20], we discuss feasi-

ble solutions to multigranular issues. In particular, we describe how multigran-

ular issues have been addressed in both object-oriented and object-relational

multigranular prototypes we developed.

The paper is organized as follows. First, In Section 2 we present the scientific

literature related to this work. Then, we discuss modelling, comparison and

optimization issues, respectively in Sections 3, 4 and Section 5. In Section 6

we describe the design of a multigranular spatio-temporal object-relational

prototype that adopts the implementation solutions we propose. Moreover,

we show also a working solution to the automatic implementation of user

defined temporal granularities. Finally, in Section 7 we give a final discussion,

and outline future research directions.

2 http://www.postgresql.org and http://postgis.refractions.net/ (accessed Febru-

ary 2009).
3 http://www.mysql.com/ (accessed February 2009).

6

2 Background and Related Work

Spatio-temporal multigranularity has been mainly investigated separately in

the temporal and spatial domains. The pioneering research work on temporal

granularities is by Anderson [2], but many other proposals aimed at formalising

temporal granularities (e.g., [28]). A consensus among the different disciplines

interested in temporal granularity representation has been achieved with the

formalization proposed by Bettini et al. [11], who give a comprehensive dis-

cussion on temporal granularities for databases, data mining, and temporal

reasoning.

Temporal granularity issues related to temporal databases have been investi-

gated both for the relational and the object-oriented data models. In its first

release [44] TSQL2, the temporal extension of the SQL-92 standard, supported

multiple granularities, but many important issues, such as scaling from one

granularity to another, were not considered. Elaborating on the theoretical

framework of Bettini et. al [11], Dyreson et al. [25] solve some of the problems

of TSQL2 related to the treatment of multiple granularities. In particular, they

introduce the notion of “scaling mass function” to address the indeterminacy

of temporal conversions, and discuss how to deal with multiple calendars.

The introduction of multiple temporal granularities in an object-oriented data

model poses additional issues with respect to the relational context, due to

the semantic richness of such a model. In contrast to the relational context,

the introduction of temporal granularities in object-oriented data models is, in

most cases, informal. By contrast, Bertino et al. [9] investigate the impact of

temporal granularities in an object-oriented model compliant with the ODMG

7

standard.

In the spatial domain, plenty of research has been undertaken on multiple

representations [6] (i.e., sequences of representations of a given object based

on different decompositions, each corresponding to a given level of detail) and

multiple resolutions (i.e., the data model reporting the different representa-

tions includes also information on how the representations are linked together).

In the GIS context, much research addresses the development of data mod-

els for the multiresolution representation of geographic maps [32]. Stell and

Worboys [45] formally define a “stratified map space”, which denotes a set of

maps representing the same spatial extent at different granularities related to

form a granularity lattice by conversion operators.

Research on multiple resolutions addresses in particular model-oriented gen-

eralization [37], which applies techniques used in cartography for representing

spatial data at different levels of abstraction, by taking into account also the

semantics of data and some notion of consistency to preserve data usability.

Several model-oriented generalization operators [48] have been defined in the

literature (e.g., aggregation, line simplification).

Recently, also the area of qualitative spatial reasoning has shown a growing

interest in spatial representation at multiple levels of detail [16]. Most of the

work in this area has focused on the imprecision, the imperfection, and on the

vagueness of spatial representations [24]. All these concepts are closely related

to the notion of spatial granularity. Indeed, granularities are intended as a

fundamental issue for the definition of a spatial ontology that formalize all

the above mentioned concepts.

Few proposals in the literature address the multigranular representation of

8

spatio-temporal data. Claramunt and Juang [23] propose the application of

nested hierarchies for modelling space and time to extract quantitative infor-

mation about spatio-temporal relationships in a data set. Griffiths et al. [29]

define the Tripod spatio-historical model, which integrates the definition of

granular histories. No operators are provided to convert multigranular data,

but the histories are always internally represented at the chronon [31] gran-

ularity. Katri et al. [34] define an annotation-model for the specification of

spatio-temporal data at multiple granularities. Their granularity model relies

on the concepts of temporal indeterminacy [26] and spatial imprecision [24].

The resulting model and the granularity systems are effective only for data

specification, because the conversion from a granularity to another is com-

pletely left to the user.

3 Modelling Issues

With modelling issues we indicate the difficulties of multigranular data mod-

elling strictly related to data representation. Representation issues are mod-

elling problems, which arise when representing information at different levels

of detail. They include the effective implementation of the spatio-temporal

domain, and the design of efficient data-types and structures for granules,

granularities, and multigranular values.

3.1 Temporal and Spatial Domains

It is often debated whether the temporal and the spatial domains in a spatio-

temporal model have to be orthogonal or should instead space depend on

9

time, reflecting the historical change of geo-referenced data. The choice may

depend on the specific application, but the first solution enables to represent

also how the spatial domain may depend on time. Moreover, it is more flexible

to represent space and time separately, to reflect the intrinsic differences of the

two domains. Indeed, in most applications, the time domain is linear, discrete

and one-dimensional. The spatial domain, may be either continuous, as in the

raster representation, or discrete, as it is provided by the vector support. Space

is usually two- (e.g., in carthography), two and half (e.g., in digital elevation

models), or three-dimensional (e.g., in urban models).

A crucial difference between the spatial and the temporal domains is that all

the operations connected with the temporal domain rely strictly on its mono-

tonic order. By contrast, operations involving spatial objects mainly depend

on the topological relationships holding among them.

For the implementation of the spatial representation, whenever the multigran-

ular model is built on top of a SDBMS, one may rely on the internal support

for spatial data such systems already provide. By contrast, the representation

of the temporal time line, whenever discrete, may rely directly on the CPU

time, which is accessible by programming languages. In this case, the chronon

granularity [31], that is the finest temporal granularity supported by the sys-

tem, corresponds to the smallest unit of time the programming language can

handle.

If space and time have an orthogonal representations, also the spatial and

temporal granularities, which reflect the intrinsic characteristics of the domain

on which they are defined, must belong to orthogonal sets.

10

3.2 Granularities and Granules

Different proposals exist formalizing the notions of granularities, in particular

for the temporal domain (see Section 2). Relying on the approach given in [11],

in[19] temporal and spatial granularities are defined as mappings from an in-

dex set IS to the power set of the temporal and the spatial domains, respec-

tively. For instance, days, weeks, years are temporal granularities; meters,

kilometers, feet, yards, provinces and countries are spatial granularities.

The temporal domain is totally ordered.

Each subset of the temporal and spatial domains corresponding to a single

granularity mapping is referred to as a (temporal or spatial) granule, i.e., given

a granularity G and an index i ∈ IS, G(i) is a granule of G that identifies

a subset of the corresponding domain. Granules give the temporal bounds

and the areas where spatio-temporal values are valid. For instance, we may

say that a value reporting the measure of the daily temperature in Rome is

defined for the first and the second day of January 2000. In this example, we

may apply the labels “01/01/2000”, “02/01/2000”, and “Rome” to denote two

temporal granules at granularity days and one spatial granule at granularity

municipalities, respectively. The interior of granules of the same granularity

cannot overlap 4 . Moreover, non-empty temporal granules must preserve the

order of the temporal domain.

According to the formalization adopted, various granularities and granules

representations may be adopted in a multigranular model. Dyreson et al. [25]

4 Temporal granules, according to the definition in [11], do not overlap, while spatial

granules may touch along the boundaries.

11

discuss the implementation of temporal granularities, but the approach they

propose may be used also for spatial granularities.

A granularity may be conveniently specified with respect to its relationships

with other granularities, avoiding its exhaustive mapping onto the domain.

Indeed, granularities differ according to how they partition their domain of

reference. In [19] spatial and temporal granularities are related by the finer-

than relationship [11] and its inverse coarser-than (see Fig. 1. When finer-than

holds between two granularities G and H, we may say that given a granule

g of the finer granularity G, a granule h of the coarser granularity H always

exists that properly includes g. In this case we also say that H is coarser-than

G. Both finer-than and coarser-than are transitive relationships. According

to this relationship, for example, granularity days is finer-than months, and

granularity months is finer-than years. Likewise, municipalities is finer-than

countries.

Fig. 1: The finer-than relationship.

Assuming that granularities are related by the finer-than relationship, spa-

tial and temporal granularities form two Directed Acyclic Graphs (DAG). In

these graphs, the nodes represent the granularities, and the edges represent

the relationships among the granularities. We denote each of these graphs as

granularity graph. Examples of granularities graphs for spatial and temporal

granularities are depicted in Fig. 2. To simplify the illustration, the edges rep-

resenting instances of finer-than that may be derived by transitivity are not

drown in the figure. Note that the finest granularities in the granularity graphs

12

(a)

minutes

hours

days

weeksmonths

years

(b)

µms

ms inches

kms feet

Fig. 2: Examples of granularity graphs. (a) Temporal granularities. (b) Spatial gran-

ularities.

give the measure of the precision applied for multigranular values, i.e., they

represent the tolerance on the stored data. Often such granularities correspond

to the chronon and quantum granularities.

Given a granularity system as that depicted in Fig. 2, an explicit representa-

tion is needed only for the chronon and quantum granularities [31], that are

minutes and µms, which are implemented as direct mappings with the tem-

poral and the spatial domains, respectively. Other granularities, that may be

regularly subdivided in terms of minutes and µms, may conveniently use these

mappings. Straightforward definitions may be obtained whenever other rela-

tionships, such as partition and groups-periodically-into [11], hold among the

granularities. For instance, months groups-periodically-into years, because

one year always corresponds to twelve months. These granularity properties

have been exploited to extend the DDL of the multigranular temporal model

described in [9] with the syntax for user-defined granularities, which are auto-

matically generated by the model engine. This prototype is briefly described

in Section 6. Such a specification, which is particularly suitable for temporal

granularities, may be applied also to spatial granularities with even subdivi-

13

sions (e.g., ms and ks). Symbolic specifications for temporal granularities are

proposed in [12], relying on collection and slice formalisms.

Granularities that may not be regularly represented may be effectively mod-

elled adopting weaker granularity relationships. If we assume for example a

model relying on finer-than and coarser-than, such as that described in [19],

we have two possibilities to map a granularity G: we may either specify all

granularities coarser-than (finer-than) G, or represent only those for which

G is the coarser among the finer granularities. In this second case the set

of relationships represented is similar to those represented in the graphs of

Fig. 2, because the instances of finer-than we may derive by transitivity are

discarded. Moreover, we may represent both finer-than and coarser-than, giv-

ing the specification for a bi-directional granularity graph.

A design that implements this specification of granules and granularities is

given in Fig. 3, where the corresponding UML abstract data types are depicted.

Fig. 3: Granularity and Granule data types

For each granularity, two operations, namely getFiner() and getCoarser(),

14

are given for retrieving its finer and its coarser granularities. Moreover, we

specify also the conversions among different granule representations (i.e., la-

bel, index, and physical representation). In particular, the physical represen-

tation of each granule in the corresponding domain as anchored temporal

interval [31] or as a set of geo-referenced features is given by the operation

getExtension(index int). For example, given granule g with index i, repre-

senting county Dublin in Ireland, getExtension(i) vould return the geometry

reported in Fig. 4.

Fig. 4: County Dublin

For temporal granularities, the label format of granules (e.g., “mm/dd/yyyy”

for days) is also stored.

Spatial and temporal granules have to conform to data type Granule, speci-

fying the granularity of reference, a numeric index and an alphanumeric label.

Given granule g at granularity G, the granules of a finer granularity K that

are included in g are retrieved by applying getFiner(). For example, given

the granule at granularity years 2010, through such operation we retrieve

the finer granules at granularity months that represent the months of year

2010. Similarly, getCoarser() returns the unique coarser granule of a spec-

ified granularity H that includes g (see Fig. 1). For example, given granule

g representing the month of May 2010, g.getCoarser() would retrieve the

15

granule representing year 2010.

3.3 Storage of Multigranular Spatio-temporal Values

A multigranular spatio-temporal database schema may include conventional,

multigranular spatial, temporal, and spatio-temporal attributes. In [19] multi-

granular data are defined as instances of the types Spatial and Temporal,

which are specified by a granularity (spatial and temporal, respectively) and

an inner type. The inner type for Spatial may be a conventional type, i.e., a

type without spatio-temporal characteristics, or a geometric type, i.e., a vec-

tor type, e.g., Point, Line, Polygon. The inner type for Temporal may be a

conventional type, or a Spatial type. In the latter case, the resulting type

is multigranular spatio-temporal. In Figures 5 and 6 we report the Unified

Modeling Language (UML, http://www.uml.org/) schemas that define multi-

granular spatio-temporal types.

Fig. 5: Spatio-Temporal data types

The following is an example of spatio-temporal value, defined at temporal

granularity years and at spatial granularity countries, with an alphanumeric

inner type, which represents (the names of) some of the European Heads of

16

Fig. 6: Spatio-Temporal inner types

(a) 1946 (b) 1989

Fig. 7: A spatio-temporal geometric value representing the German borders

government:

{〈2004, {〈France,‘Raffarin’〉, 〈UK,‘Blair’〉}countries〉,

〈2007, {〈France,‘Fillon’〉, 〈UK,‘Brown’〉}countries〉}years.

By contrast, in Fig. 7, where the historical changes in the German political

boundaries are shown, we represent a spatio-temporal value defined at granu-

larities years and countries, where each country is depicted through a closed

polyline.

Various policies may be adopted to reduce the size of multigranular spatio-

temporal values and to improve the efficiency of values retrieval.

To improve the efficiency in space of the representation of multigranular val-

ues, we may coalesce the values defined for contiguous granules. Coalescing

17

is straigthforward for temporal values, because intervals of granules may be

used whenever the value defined for contiguous granules is the same (e.g.,

{〈2000,100〉, 〈2001,100〉, 〈2003, 100〉}years could be represented as {〈2000-

2003,100〉}years).

With the same purpose, we may enrich the data type specification with tem-

poral semantic assumptions [13]. For instance, in a data structure storing the

historical values of a bank account, one may assume that the value of the de-

posit does not change between two operations. In this case, the following value:

{〈1/1/2000,1500〉, 〈1/2/2000,1500〉, . . ., 〈1/10/2000,1500〉, 〈1/11/2000,2100〉}days

could be equivalently represented as: {〈1/1/2000,1500〉,〈1/11/2000,2100〉}days

specifying that for this value the persistence semantic assumption [13] holds 5 .

Similar strategies may be adopted for multigranular spatial values, whenever

homogeneous areas may be identified in the represented data. In this case, the

values may be conveniently converted to coarser granularities, improving the

complexity in space of the representation. For instance, in a map storing the

values of temperature of a given area, the spatial values may be coalesced in

homogeneous (coarser) areas, and, at request, the value may be easily refined

to a finer granularity.

4 Comparison Issues

With comparison issues we indicate the problems arising when comparing

multigranular data, in particular in queries, including how to guarantee the

existence of a common level of detail for performing a comparison, and the

issues involved by converting values at different granularities.

5 Note that this representation requires the values be ordered.

18

4.1 Guaranteeing a common representation

Expressing the relationships among different granularities is important not

only for obtaining smart representations, but also for enabling the comparison

of multigranular values in queries. For instance, in a query we might require

to compare the values of seasonal sales of two similar products, one stored

at spatial granularity countries and one at temporal granularity provinces,

to decide which one to sell in our chain of shops. To perform a meaningful

comparison, we may not compare such values as they are, but they have to be

expressed at the same spatial granularity.

Assuming a granularity system relying on finer-than, such as that described

in [19], it is sufficient to convert one of the two values at the other granu-

larity with a suitable granularity conversion, because provinces is finer-than

countries. For example, the value at granularity countries may be split among

the different provinces of each country or viceversa. But what if the two granu-

larities were for example feet and kms in Fig. 2 In this case a third granularity,

for example µms, which is finer-than both granularities, may be used.

In the most general case, given two multigranular values, one at granularity

G and one at granularity H such that G and H are not directly related by

finer-than, such values may be compared if the two values may be represented

(i.e., converted) at the same granularity K, that is finer-than or coarser-than

both G and H. K is chosen as the granularity that minimizes the number of

conversions applied, that correspond to the number of hops in the granularity

graph (see Fig. 2). If K is the coarsest among the granularities in the graph

that are finer-than G and H, K is referred to as the greatest lower bound

19

(GLB) of G and H. For example µms is the GLB of feet and kms. Otherwise,

if K is the finest among the granularities in the graph that are coarser-than

G and H, it is referred to as the least upper bound (LUB) of G and H.

The existence of one between the GLB or the LUB is essential to guarantee

the comparison of every granular value with another expressed at different

granularity (but with the same inner type). Dyreson et al. [25] observe that

pairs of granularities that do not have a unique GLB are very rare. The lack

of a unique GLB is a situation that arises much less frequently than the lack

of a unique LUB. Furthermore, the assumption of the existence of a unique

GLB for each pair of granularities is enforced whenever a granularity is used

to represent the domain, i.e., the chronon and the quantum granularities are

included in the granularities graphs, as suggested in the previous section.

4.2 Multigranular Conversions

Multigranular models should enable to convert multigranular spatio-temporal

information at different granularities, to improve or reduce the level of detail

used for data representation. Conversions are essential in order to represent

data at the most appropriate level of detail for each task, and they enable

the consistent comparison of data at different granularities, thus improving

the expressive power of spatio-temporal query languages. In this respect, a

key feature in a multigranular model is the support for different conversion

semantics, that is, for different transformations for converting values between

different granularities.

Specific problems arise for the implementation of conversions, like the defini-

tion of the domain of a conversion, the design of optimal strategies for im-

20

proving the execution performance. Moreover, additional issues arise because

of the multigranular representation. For example, guaranteeing that data con-

sistency and usability are preserved is more challenging than in traditional

models, specifically for spatial data. Moreover, the interpretation of aggre-

gated values at coarser granularities require to deal with imprecise values, and

conversion to finer granularities introduce indeterminacy on values. Finally,

granularity conversions are usually non-invertible, and this may affect the def-

inition of the query execution plan. All these problems must be addressed

when implementing granularity conversions, and their side effects must be

considered when defining the strategy for answering queries on multigranular

values. In the rest of the section they are discussed separately, figuring out

design solutions to address them.

4.2.1 Spatial Conversions Problems

A DBMS which enables to maintain geographical representations of the same

area at different resolutions has to guarantee the topological consistency be-

tween different representation of the same entity at different resolutions: a

query evaluated at a coarser level must give a result consistent with that

we would obtain at a more detailed level. In Fig. 8 a topological consistent

transformation of a spatial value representing a city is reported. The city is

represented at progressively coarser levels of detail as (a) set of regions; (b)

single region; (c) point; and the topological relationships with the roads cross-

ing it, represented in red as polylines, are preserved along the transformations.

If the spatial operators applied to solve the query do not assure to generate

consistent maps, a posteriori check must be performed.

In [19] the conversion of multigranular geometrical features is obtained through

21

(a) (b) (c)

Fig. 8: A topological consistent transformation

the composition of model-oriented and cartographic map generalisation opera-

tors that guarantee topological consistency [10,41]. In particular, in [10] it has

been proved that each consistent (i.e., preserving topological relationships)

map transformation may be defined as a composition of the set of atomic

operators supported in [19], which are characterized in terms of minimal mor-

phisms in the category of a specific class of abstract cell complexes. This set

has been extended with the topologically consistent algorithm proposed by

Saalfeld [41] for line simplification, and with the refinement operators that

perform the inverse functions. Such operators, which are represented in Ta-

ble 1, may be classified with respect to the semantics of the conversion per-

formed. Contraction and thinning operators reduce the dimension of vector

features, whereas expansion operators increase it; merge operators merge adja-

cent features of the same dimension into a single one, while splitting operators

subdivide single features in adjacent features of the same dimension; abstrac-

tion and simplification operators discard isolated features from polygons and

remove shape points from a line, respectively, whereas addition operators add

isolated features to polygons and shape points to lines.

22

Operator Generalization Refinement

l contr−−−−→
←−−−−
exp p2l

l contr: Contracts an open
line to a point

exp pl2: Expands a point
into a line

r contr−−−−→
←−−−−−
exp p2r

r contr: Contracts a sim-
ple connected region and its
boundary to a point

exp p2r: Expands a point
into a region

r thin−−−−→
←−−−−
exp l2r

r thin: Reduces a region
and its boundary to an
open line

exp l2r: Expands an open
line into a region

l merge
−−−−−→
←−−−
l split

l merge: Merge two lines
sharing an endpoint into a
single line

l split: Splits a line into
two lines

r merge
−−−−−→
←−−−−
r split

r merge: Merge two regions
sharing a boundary line
into a single region

r split: Splits a region
into two regions sharing a
boundary line

p abs
−−−→
←−−−−−
add p2r

p abs: Eliminates an iso-
lated point from a region

add p2r: Add a point inside
a region

l abs−−→
←−−−−
add l2r

l abs: Eliminates an iso-
lated line from a region

add l2r: Add a line inside a
region

l simpl
−−−−→
←−−−−−
add p2l

l simpl: Removes a shape
point from a line

add p2l: Add a shape point
to a line

Table 1: Geometric Operators

4.2.2 Partial Mappings of Conversions

Granularity conversions may be either total or partial functions depending non

only on the values domain to which they are applied, but depending also on

the relationships among granularities. Therefore, even when applied to legal

spatio-temporal values, for some granular values, they may be undefined.

For instance, when the finer-than relationship holds between granularities,

conversions to coarser granularities may be defined as total functions, whereas

conversions to finer granularities may be partial functions. Indeed, according

to the definition of finer-than, given two granularities G and H such that G is

finer-than H, a (unique) H-granule that includes each G-granule always exists

(see Fig. 1). Then, supposing a conversion function that maps G-values into H-

23

values is defined on the inner domain of the multigranular values, it is always

defined. By contrast, the inverse condition may not hold. Therefore, when

converting from coarser to finer granules, the conversion may be undefined.

Consider for example the situation depicted in Fig. 9, where granules of gran-

ularities weeks, days, and schooldays are shown. Between these granularities,

finer-than holds. In particular, schooldays is finer-than weeks. When convert-

ing from schooldays to weeks, no problem arises, because when the conversion

function is defined on a school day or on a set of school days, a week that in-

cludes them always exist (e.g., the days from the 17th to the 21st of December

are included in the 51st week). By contrast, the inverse conversion may be un-

defined for vacation weeks (the 52nd week in the example). In this case, the

domain of the function is defined (i.e., the 52nd week), but no school days

exist for these weeks.

Fig. 9: Example of granularities related by the finer-than relationship.

The inverse situation arises when the groups-into relationship holds between

granularities (see Fig. 10). In this case, conversions to finer granularities are

(potentially) total functions, but when converting a value to a coarser granu-

larity we have to be aware that a target granule may not exist.

Fig. 10: The groups-into relationship.

24

In the above cases, the system could check in advance the existence of the

target granules, thus avoiding the execution of a granularity conversion when

they do not exist, even if values are defined for the corresponding portion of the

spatio-temporal domain. This a-priori check would enable to save execution

time, because usually granularity conversions are expensive operations. To

distinguish these cases from situations where no value is actually defined at

other granularities, a message error or warning may be returned, instead of a

generic ”undefined value”.

To prevent partial mappings of the spatio-temporal domain between differ-

ent granularities, other, more restrictive relationships may be adopted. For

instance, a total definition for all conversions is given by the relationship

partitions, that holds whenever both finer-than and groups-into hold [11]).

However, supporting partition would not allow to support a wide range of

granularities, such as businessweeks (-days, -months). In particular, gran-

ularities with gaps between granules may not be supported if granularities

with completely partition the domain are considered (e.g., Gregorian calendar

granularities, boundary subdivisions).

4.2.3 Conversions to Coarser Granularities of Quantitative Values

Conversions of quantitative values to coarser granularities involving the com-

putation of aggregates may be affected by anomalies that have been widely

studied, in particular in the spatial field, where they are known as the Modifi-

able Area Unit Problem (MAUP) and the Ecological Fallacy (EF) [5]. MAUP

occurs when the geographical units considered in an aggregation are arbitrary

and consequently modifiable according to the purpose of the operation. For

example, in countries where the polical elections rely on the intermediate re-

25

sults obtained in political subdivisions and there is not a direct proportion

of the results with respect to the votes obtained, (for which, in turn, overall

the rule ”one man one vote” does not hold), different results may be obtained

considering different intermediate aggregations (e.g., introducing new regions

or provinces, or removing some of them on purpose).

By contrast, EF arises when aggregated data are misused for making infer-

ences about individuals. For instance, knowing that the average salary of the

population of a country is 1,500 Euro, does not mean that every person in

that area earns exactly 1,500 Euro.

Both anomalies rely in turn due on how aggregations are performed and inter-

preted, thus the same problems may occur also for scaling of temporal data.

To give the user the possibility to evaluate correctly a granular value, this

should give also a measure of the imprecision, or the indeterminacy, it is af-

fected with. This error should be computed every time a multigranular conver-

sion is applied. Moreover, a support wider as possible of conversion functions

for quantitative (non-geometric) values should give the user the possibility to

chose which conversion less affect the value.

For instance, in [19] the conversions to coarser granularities described in Ta-

ble 2 are supported. They are referred to as coercion functions, and perform

selection and aggregation.

4.2.4 Conversion to Finer Granularities

Even when they are defined functions, conversions to finer granularities in-

trinsically result in undetermined values [34,26]. This is particularly evident

for geometric conversions. The conversion of regions to their barycenters, for

26

conversion family conversion semantics

Aggregation

max Selects the maximum value defined
min Selects the minimum value defined
avg Computes the average of the values defined
sum Computes the sum of the values defined

Selection

main Selects the most frequent value
all If all the finer values are the same, selects this value; otherwise

it is undefined
proj(n) Selects the nth defined value
first Selects the first defined value
last Selects the last defined value

Table 2: Coercion functions [19]

instance, is usually considered an appropriate choice for representing them

at a coarser granularity. By contrast, when scaling to a finer granularity and

converting points to regions, for instance, the choice of the region to repre-

sent may be totally arbitrary. Similarly, the conversion of non-geometric data

to a finer representation is affected by indeterminacy. For instance, given the

value of rainfall stored for the 1st of June 2000 in Rome, we may not infer

from this value the exact value of rainfall in a particular neighbourhood of

Rome, at 12:00 AM (See also [15]). Therefore, when converting from coarser

to finer granularities, we have to be aware of the error, or indeterminacy, we

are introducing on data.

In [19], refinement functions enable to convert multigranular values to finer

granularities. As described in Table 3, they perform restriction and splitting

of values. Restriction functions apply downward inheritance property [43] that

assumes that if a multigranular value is defined as v in a granule g, value v

also refers to any finer granule g′ included in g. For each attribute value for

which downward inheritance is not appropriate (e.g., a temporal value storing

the salary of an employee), split functions subdivide each coarser value among

the finer granules included in it either uniformly (i.e., all the finer values will

be the same), or according to a non-uniform distribution (split[p(n)] and

restr[p(n)]).

27

Operations split[p(n)] and restr[p(n)] defined in [19], which implement

“scale mass functions” as defined by Dyreson et al. [25], specifically address

the indeterminacy arising from non-geometric conversions to finer granulari-

ties. The probability distribution considered in the computation may be de-

fined, for instance, taking into account the semantics of the attribute value

converted, or considering the distributions of legacy values. Different imple-

mentations for these functions have to be provided for each probability dis-

tribution supported. The parameterization of restriction and split functions

with a probability distribution

conversion family conversion semantics

Restriction
restr The coarser value is assigned to each finer granule
restr[p(n)] The coarser value is assigned to the finer granules, according to

the probability distribution [p(n)]

Split
split The coarser value is split among the finer granules
split[p(n)] The coarser value is split among finer granules, according to the

probability distribution [p(n)]

Table 3: Refinement functions [19]

4.2.5 Invertibility of Conversions

Intuitively, when converting a multigranular value to a different granular-

ity, and then performing the inverse conversion, we would expect to obtain

the original value. Unfortunately, granularity conversions rarely are invert-

ible: when converting from a finer to a coarser granularity, we loose some

details that we cannot usually re-obtain by applying the inverse conversion

to the finer granularity, unless we do not save the finer values in an auxiliary

structure. By contrast, when converting from a coarser to a finer granular-

ity, we introduce details that we should be able to forget, if we are no longer

interested in them; in this case we may re-obtain the original value.

Then, we may identify pair of conversions which are invertible, and pairs that

are not. For instance, we shown in [8] that sum is the inverse of split, restr is

28

the quasi-inverse of avg (see Tables 2 and 3), because restr(avg(v)) = ±∆,

where ∆ is a maximum quantifiable error introduced by the application of

conversions.

The property of invertibility is important for the definition of the query exe-

cution plan, whenever more values at different granularities are available for

the same spatio-temporal snapshot (see Fig. 11). In this case, a query result

may be affected by a quantifiable error, according to it is computed starting

from available values at coarser or finer granularities [8].

5 Optimization Issues

The application of granularity conversion can be expensive in term of the use

of computational resources, in particular for geometric conversions whenever

they are applied to extensive geographic areas. Optimizations, in this case, are

possibile only at algorithm level [38]. Performance may improve also applying

techniques for parallel computations [30].

Other optimization strategies may be applied to reduce the amount of data

on which conversions are applied. For instance, rewriting algebraic techniques

such those applied by database query engines when preparing the queries

execution plans could improve the performance of data access. These tech-

niques should give precedence to the application of target clauses, to reduce

the amount of data affected by conversions, as well as to the execution of

temporal conversions on spatio-temporal data on that of spatial conversions.

Traditional Index structures for ordered (e.g., temporal) and spatial vector

data, like BTree+ and RTree and its variants (e.g., R+-Tree [42], R∗-Tree [7],

29

Hilbert R-Tree [33], PR-Tree [4]), may be applied to improve the efficiency of

the retrieval of spatio-temporal values. Moreover, auxiliary data structures for

spatio-temporal data have been proposed in the literature, and some of them

may be extended to the multigranular case (HR+-Tree [46], MV3R-Tree [47],

2-3TR-tree [1]).

Whenever the queries to enhance involve value aggregates, auxiliary structures

that summarize spatio-temporal multigranular values at coarser granularities

may be used (e.g., aggregate Historical RB-tree [39]). For example, in [18] a

data structure for the efficient storage and access to dynamic attributes has

been proposed. Dynamic attributes are historical attributes whose values are

tuples of temporal values, maintained at different levels of detail according to

the age of data and to the execution of expiration conditions. An expiration

condition is given by an expiration frequency and by a reaction policy to be

applied when data expire: either evolution at a coarser granularity, or deletion

of values, or both. For instance, it is possible to specify that an attribute may

be evolved to a coarser granularity after a period of time, obtaining summa-

rized information (through aggregation, selection, or user defined operations)

from historical data.

In [17], such evolution capability has been extended to the spatio-temporal

domain, enabling to obtain summarized information also from spatial and

spatio-temporal data, according to given areas of interest. In Fig. 11 an ex-

ample of such an auxiliary structure for a spatio-temporal value recording tax

information is depicted. For this value (represented on top of the figure), two

different aggregate structures are provided (at the figure bottom). The first

one stores temporal aggregates (computed every five years), while the second

summarizes tax information according to the macro area of reference.

30

2000 Italy 2400 Germany 1300 2001 Italy 2000 . . .

2000− 2005 Italy 7500 Germany 6000 France 4000 . . .

2000 EU 3700 2001 EU 4500 . . .

Fig. 11: Auxiliary structure for spatio-temporal data

6 Implementing Multigranularity

In our previous work [9,19] we have exploited the potentiality of object-

oriented (OO) databases for supporting temporal multigranularity. In partic-

ular, the design of the temporal prototype described in [9] has been extended

according to the model described in [19] integrating vector data and their

conversions, thus enabling the application to the the spatio-temporal domain.

The use of OODBMS models for supporting multigranularity implies to face

with additional issues regarding object inheritance, such as attribute redefini-

tion and method override.

In what follows, we exploit the potentiality offered by the object-relational

(OR) model, which integrate the benefits of relational models (i.e., simple

design, declarative query language) with the advanced capabilities provided

by the object-oriented approach (e.g., support for defining user defined data

types, object inheritance, data types encapsulation), for implementing multi-

ple spatio-temporal granularities.

Although the object-relational features supported by commercial products

are somehow limited, the resulting design has the advantage of relying on the

widely accepted standard SQL:99 [36]. Indeed, despite the considerable effort

done to achieve the same result, ODMG, which is the reference model for

object-oriented databases, is not yet a standard and thus it has not been fully

31

acknowledged by commercial products.

Furthermore, some commercial DBMS adopting the OR approach already pro-

vide a preliminary extension for handling spatial data. They may be preferred

to GIS products for user-defined queries, because the latter are proprietary

systems, thus difficult to extend. Moreover, in GIS products, spatial and non-

spatial attributes are stored and manipulated separately according to a loosely

coupled storage model [40]. By contrast the so-called Spatial DBMS (SDBMS)

provide an integrated approach to the representation of spatial data that en-

ables to store both spatial and non-spatial aspects of data within the same

tables. Therefore SQL (extended with functionalities to directly support spa-

tial queries) may be used to manipulate and query spatial data. However,

current SDBMS and GIS packages do not provide either effective functionali-

ties to manipulate temporal data, or multigranular support.

To enhance its computational capability, ORDBMS products provide the so

called imperative extensions of SQL. OODBMS do not need similar extensions,

because the query languages may be uniformly integrated with OO program-

ming languages, which rely on the same paradigm. As a matter of fact, the

complexity of use of OO query languages, if compared to the simplicity of the

declarative approach of SQL, often encompasses this advantage.

Therefore, in the following we give the implementation detail of an OR multi-

granular implementation realized on Oracle 11g, which adopts the design so-

lutions discussed in the previous section.

To conclude the section, we briefly describe also a syntax for the definition

of user defined granularities which is included in the prototype in [9], that

demonstrates the effectiveness of an efficient representation for granularities.

32

6.1 A Multigranular OR Spatio-temporal Type System

As we pointed out above, commercial DBMS products currently implement

only a subset of object-relational features: for instance, methods override is

not supported, and only very simple operations may be performed through

types methods. Therefore, in what follows the data types for granularities,

granules and multigranular types are somewhere redundant from a design

point of view, and method declaration appears only in the leaves of the type

hierarchy. The operations that have not been implemented as methods of

user defined data types are realized through PL/SQL stored procedures and

functions, which allow for improved performances than external procedures.

In particular, functions may be used directly in SQL queries.

6.1.1 Granularities and Granules

In our prototype, we followed the design guidelines we described in Sections 3

and 4. The design of granularities and granules, whose Oracle data types are

reported in Fig. 12, is compliant with the abstract data types of Fig. 3.

CREATE TYPE Granularity AS (
granID NUMBER,
granName VARCHAR(32),
labelFormat VARCHAR(32),
finer List<REF(Granularity)>,
coarser List<REF(Granularity)>
)
METHOD getFiner() RETURN LIST<Granularity>,
METHOD getCoarser() RETURN LIST<Granularity>;

CREATE TYPE Granule AS (
g REF(Granularity),
label VARCHAR(32),
index NUMBER
);

Fig. 12: Oracle Data Types for granularities and granules

Each granularity is represented by a unique identifier, its name, and the format

of the labels of its granules. The lists of finer and coarser granularities are also

33

provided, with the methods getFiner and getCoarser for returning them.

Type Granularity may be conveniently used to create a table storing the

main information on the granularities supported by the system. Once a new

granularity is created, it is sufficient to add a new tuple in this table. Each

granularity is completely represented thanks to the implementation of the

operations that convert the different granules representations: index2label,

label2index and getExtension. In particular, the last operation maps a

granularity granule (identified through its index) to the corresponding domain.

These operations have been implemented as stored procedures and functions

for each granularity supported by the model. We have for example the follow-

ing functions for granularity days

days index2label(index NUMBER) RETURN VARCHAR

days label2index(label VARCHAR) RETURN NUMBER

days getExtension(IN index NUMBER) RETURN Anch TemporalInterval

and the following operations for granularity countries:

countries index2label(index NUMBER) RETURN VARCHAR

countries label2index(IN label VARCHAR) RETURN NUMBER

countries getExtension(IN index NUMBER) RETURN SDO Geometry.

The data type SDO Geometry , returned by the function countries getExtension,

represents the top hierarchy type for vector features as provided by the SDBMS

(e.g., ORACLE SDO Geometry). Anch TemporalInterval is a data type for

anchored temporal interval [31] (i.e., temporal intervals specified by the start-

ing and the ending instants, then referring to the time domain).

34

CREATE TYPE SpatialValue AS (
granule Granule,
value Value S
);

CREATE TYPE Spatial AS (
g Granularity,
value List(SpatialValue)
) UNDER Value T;

CREATE TYPE TemporalValue AS (
granule Granule,
value Value T
);

CREATE TYPE Temporal AS (
g Granularity,
value TemporalValue
);

Fig. 13: Multigranular Data Types

A Granule is represented by the reference to its granularity, by its label and

granularity index (cf. Fig. 12). Other stored procedures are required to im-

plement the operations getFiner and getCoarser defined for type Granule

that return the (set of) finer or coarser granules of a granularity that inter-

sect a given granule. The implementation differs according to the granularity

cathegory. For instance, for temporal granularities such operations rely on the

inclusion property of the anchored temporal intervals representing temporal

granules, and the algorithm applied is similar for all granularities without

gaps among granules and holes within the granules [11]. For those particular

granularities, specific implementations are required.

The implementation of these operations for spatial granularities is more diffi-

cult, and requires to handle the extensive mapping of each granularity to the

spatial domain.

6.1.2 Multigranular Spatio-temporal Values

Spatio-temporal values are implemented as structured lists of pairs of granules

and values (< granule, value >) as defined in Figures 5. The corresponding

ORACLE data types are shown in Fig. 13.

Data types SpatialValue and TemporalValue define a single pair (< granule,

35

CREATE TYPE Value S AS (
);

CREATE TYPE Value T AS (
);

CREATE TYPE Number S AS (
value number
) UNDER Value S;

CREATE TYPE Number T AS (
value number
) UNDER Value T;

CREATE TYPE String S AS (
value VARCHAR(128)
) UNDER Value S;

CREATE TYPE String T AS (
value VARCHAR(128)
) UNDER Value T;

CREATE TYPE Geometry S AS (
value Geometry
) UNDER Value S;

Fig. 14: Inner Data Types for Multigranular Values

value >), while the granularity is referred to in the “wrapping” types Spatial

and Temporal , that include the list of the pairs (< granule, value >) that

represent the granular values. Note that type Spatial may be an inner type

of Temporal , then spatio-temporal values are implemented as nested lists.

Inner types of granular values are defined according to the design specification

given in Section 3, and are reported in Fig. 14. Two types hierarchies are

created, Value S and Value T , that give inner types for spatial and temporal

values, respectively. In particular, the definition of inner types of multigranular

vector data relies on the data type already provided by the DBMS, that is

SDO Geometry .

Given such a specification, the internal representation of a spatio-temporal

value storing the names of the European Heads of government would be rep-

resented as in Fig. 15.

36

2004 France ’Raffarin’ UK ’Blair’

2007 France ’Fillon’ UK ’Brown’

Fig. 15: List for spatio-temporal data

6.2 Automatic Implementation of User-Defined Granularities

The prototype in [9] includes a base set of temporal granularities implementing

Gregorian calendar granularities. This set may be further extended with user

defined granularities, whose implementation is automatically provided by the

prototype, provided a granularity definition given by the user in the database

schema. Indeed, the multigranular temporal Data Definition Language (DDL)

has been extended with a set of instructions to specify new granularities relying

on their relationships with existing ones, as discussed in Section 3. The user

specification is processed and the new granularities are then implemented,

relying on the implementation of the existing granularity.

For instance, we could define granularities bimesters (2 months) and semesters

(6 months) relying on granularities months and years, exploiting the relation-

ship groups-periodically-into [11]. In the prototype DDL such a relationship

is specified by the use of the keywords composedBy and compose within the

same definition, as illustrated in the following example:

granularity bimesters {

1 composedBy 2 months;

3 compose 1 semesters;

}

granularity semesters {

37

1 composedBy 3 bimesters;

2 compose 1 years;

}

Given the above specifications, the prototype automatically generates the im-

plementation for the new granularities bimesters and semesters, relying on

the existing implementation of months and years. In particular, the conver-

sion among different granules representations (e.g., indexes, temporal intervals,

label) relies on the regular subdivisions of these temporal granularities.

With this support we may easily specify a set of granularities for each applica-

tion, allowing to tailor granularities to the domain represented and to specific

requirements.

7 Conclusions

In this paper we have discussed implementation issues of spatio-temporal

multigranularity. For a better comprehension of the details, we referred to

a multigranular model we previously defined [19]. Nevertheless the problems

we discussed apply to every data model providing a multigranular support.

Among these problems, the issues related to the efficient representation of

granules, granularities and spatio-temporal values are particularly relevant.

We showed a possible solution defined as extension of the object-relational

model as supported by most commercial database products. Furthermore,

multigranular conversions presented in the paper are specifically designed to

prevent data inconsistency and to reduce indeterminacy.

We have also described an existing multigranular temporal object-oriented

38

prototype implementation addressing some of the issues we discussed, thus

demonstrating the solutions we propose are feasible. We plan the porting of

this implementation to the object-relational paradigm, and its extension to

the spatio-temporal domain. The resulting prototype would enable to store

and query spatio-temporal datasets at different levels of details. Thus we will

be able to test its performances on real world datasets such as the Hurricane

Isabel dataset (http://www.tpc.ncep. noaa.gov/2003isabel.shtml).

Acknowledgements

Research presented in this paper was funded by a Strategic Research Cluster

grant (07/SRC/I1168) by Science Foundation Ireland under the National De-

velopment Plan. The authors gratefully acknowledge this support. The work

of Elena Camossi is supported by the Irish Research Council for Science, En-

gineering and Technology.

References

[1] M. Abdelguerfi, J. Givaudan, K. Shaw, and R. Ladner. The 2-3TR-tree, a
trajectory-oriented index structure for fully evolving valid-time spatio-temporal
datasets. In Proc. of the 10th ACM international symposium on Advances in
geographic information systems, pages 29–34, 2002.

[2] T.L. Anderson. Modeling time at the conceptual level. In Proceedings
of the International Conference on Databases: Improving Usability and
Responsiveness, pages 273–297, 1982.

[3] G. Andrienko, D. Malerba, M. May, and M. Teisseire. Mining spatio-temporal
data. Journal of Intelligent Information Systems, 27(3):187–190, 2006.

[4] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The Priority R-Tree: A
Practically Efcient and Worst-Case Optimal R-Tree. In Proc. of SIGMOD
International Conference on Management of Data, pages 347–358. ACM, 2004.

[5] T. C. Bailey and A. C. Gatrell. Interactive Spatial Data Analysis, Second
Edition. Longman, 1995.

39

[6] S. Balley, C. Parent, and S. Spaccapietra. Modelling Geographic Data with
Multiple Representations. International Journal of Geographical Information
Science, 18(4):327–352, 2004.

[7] N. Beckmann, H-P. Kriegel, R. Schneider, and B. Seeger. The R∗-Tree: an
efficient and robust access method for points and rectangles. In ACM SIGMOD
Record, pages 322–331, 1990.

[8] E. Bertino, E. Camossi, and G. Guerrini. Access to Multigranular Temporal
Objects. In Proceedings of the 6th Int. Conference On Flexible Query Answering
Systems (FQAS 2004), number 3055 in Lecture Notes in Artificial Intelligence,
pages 320–333. Springer-Verlag, 2004.

[9] E. Bertino, E. Ferrari, G. Guerrini, and I. Merlo. T ODMG: An
ODMG Compliant Temporal Object Model Supporting Multiple Granularity
Management. Information Systems, 28(8):885–927, 2003.

[10] M. Bertolotto. Geometric Modeling of Spatial Entities at Multiple Levels of
Resolution. PhD thesis, Università degli Studi di Genova, 1998.

[11] C. Bettini, S. Jajodia, and X. Wang. Time Granularities in Databases, Data
Mining, and Temporal Reasoning. Springer-Verlag, 2000.

[12] C. Bettini and R. De Sibi. Symbolic Representation of User-defined Time
Granularities. Annals of Mathematics and Artifical Intelligence, Special Issues
on Temporal Representation and Reasoning, 30(1-4):53–92, 1999.

[13] C. Bettini, X.S. Wang, and S. Jajodia. Temporal semantic assumptions and
their use in databases. IEEE Transactions on Knowledge and Data Engineering,
10(2):277–296, 1998.

[14] T. Bittner. Reasoning about qualitative spatio-temporal relations at multiple
levels of granularity. In F. van Harmelen, editor, Proceedings of the 15th

European Conference on Artificial Intelligence. IOS Press, 2002.

[15] T. Bittner. Indeterminacy and Rough Approximation. In Proceedings of the
16th International FLorida Artificial Intelligence Research Society (FLAIRS)
Conference, pages 450–454. AAAI Press, 2003.

[16] T. Bittner and J.G. Stell. Stratified Rough Sets and Vagueness. In Proceedings
of the 2003 Conference on Spatial Information Theory, number 2825 in Lecture
Notes in Computer Science, pages 270–286, 2003.

[17] E. Camossi. Spatio-temporal Multigranularity in an Object Data Model. PhD
thesis, Università degli Studi di Milano, 2005.

[18] E. Camossi, E. Bertino, G. Guerrini, and M. Mesiti. Handling Expiration
of Multigranular Temporal Objects. Special Issue of Journal of Logic and
Computation, 14(1):23–50, 2004.

[19] E. Camossi, M. Bertolotto, and E. Bertino. A multigranular Object-oriented
Framework Supporting Spatio-temporal Granularity Conversions. International
Journal of Geographical Information Science, 20(5):511–534, 2006.

40

[20] E. Camossi, M. Bertolotto, and E. Bertino. Multigranular Spatio-temporal
Models: Implementation Challenges. In Proceedings of the 16th International
Symposium on Advances in Geographic Information Systems (ACM GIS08),
2008.

[21] E. Camossi, M. Bertolotto, and E. Bertino. Querying multi-granular spatio-
temporal objects. In Proceedings 19th International Conference on Database and
Expert Systems Application (to appear), Lecture Notes in Computer Science,
pages 390–403. Springer Verlag, Berlin, 2008.

[22] R. Cattel, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russel, O. Schadow,
T. Stanienda, and F. Velez. The Object Database Standard: ODMG 3.0.
Morgan-Kaufmann, 2000.

[23] C. Claramunt and B. Jiang. Hierarchical Reasoning in Time e Space. In
Proceedings of 9th International Symposium on Spatial Data Handling, pages
41–51, 2000.

[24] M. Dukham, K. Mason, J.G. Stell, and M.F. Worboys. A formal approach to
imperfection in geographic information. Computer, Environment and Urban
Systems, 25:89–103, 2001.

[25] C.E. Dyreson, W.S. Evans, H. Lin, and R.T. Snodgrass. Efficently
Spporting Temporal Granularities. IEEE Transactions on Knowledge and Data
Engineering, 12(4):568–587, 2000.

[26] C.E. Dyreson and R.T. Snodgrass. Supporting Valid-time Indeterminacy. ACM
Transactions on Database Systems, 23(1):1–57, 1998.

[27] F. Fonseca, M.J. Egenhofer, C. Davis, and G. Cãmara. Semantic Granularity
in Ontology Driven Geographic Information Systems. Annals of Mathematics
and Artificial Intelligence, Special Issue on Spatial and Temporal Granularity,
36(1-2), 2002.

[28] I.A. Gorawalla, Y. Leontiev, M.T.Öszu, D. Szafron, and C. Combi. Temporal
Granularity: Completing the Puzzle. Journal of Intelligent Information
Systems, 16(1):41–63, 2001.

[29] T. Griffiths, A.A.A. Fernandes, N.W. Paton, and R. Barr. The Tripod spatio-
historical data model. Data Knowledge and Engineering, 49(1):23–65, 2004.

[30] R. Healey, S. Dowers, B. Gittings, and M. J. Mineter, editors. Parallel
Processing Algorithms For GIS. CRC, 1997.

[31] C.S. Jensen, C.E. Dyreson, M. Bohlen, J. Clifford, and al. A Consensus Glossary
of Temporal Database Concepts. In O. Etzion, S. Jajodia, and S.Sripada,
editors, Temporal Databases: Research and Practice, number 1399 in Lecture
Notes in Computer Science, pages 366–405. Springer-Verlag, 1998.

[32] B. Jiang and C. Claramunt. A Structural Approach to the Model Generalization
of a Urban Street Network. Geoinformatica, 8(2):157–171, 2004.

41

[33] I. Kamel and C. Faloutsos. Hilbert R-Tree: An Improved R-Tree Using Fractals.
In Proc. of the 20th Int’l Conf. on Very Large Databases, pages 500–509, 1994.

[34] V. Khatri, S. Ram, R.T. Snodgrass, and G. O’Brien. Supporting User
Defined Granularities and Indeterminacy in a Spatiotemporal Conceptual
Model. Annals of Mathematics and Artificial Intelligence, Special Issue on
Spatial and Temporal Granularity, 36(1-2):195–232, 2002.

[35] L. Kulik, M. Duckham, and M.J. Egenhofer. Ontology driven Map
Generalization. Journal of Visual Language and Computing, 16(2):245–267,
2005.

[36] J. Melton, A. Simon, and J. Gray. SQL:1999 - Understanding Relational
Language Components. Morgan Kaufmann, 2001.

[37] J-C. Muller, J.P. Lagrange, and R.Weibel, editors. GIS and Generalization:
methodology and practice. London: Taylor and Francis, 1995.

[38] M. Neun, D. Burghardt, and R. Weibel. Automated processing for map
generalization using web services (to appear). GeoInformatica, 2009.

[39] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing Spatio-Temporal Data
Warehouses. In Proc. of the 18th International Conference on Data Engineering,
pages 166–175. IEEE, 2002.

[40] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases with Application to
GIS. Morgan Kaufmann, Academic Press, 2002.

[41] A. Saalfeld. Topologically Consistent Line Simplification with the Douglas-
Peucker Algorithm. Cartography and Geographic Information Science, 26(1):7–
18, 1999.

[42] T Sellis, N Roussopoulos, and C Faloutsos. The R+-Tree: A Dynamic Index
for Multi-dimensional Data. In Proc. of the 13th Int’l Conf. on Very Large
Databases, pages 507–518, 1987.

[43] Y. Shoham. Temporal Logics in AI: Semantical and Ontological Considerations.
Artificial Intelligence, 33(1):89–104, 1987.

[44] R.T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, 1995.

[45] J.G. Stell and M. Worboys. Stratified Map Spaces: A Fomal Basis for
Multi-Resolution Spatial Databases. In T.K. Poiker and N. Chrisman,
editors, Proceedings of 8th International Symposium on Spatial Data Handling
(International Geographical Union), pages 180–189, 1998.

[46] Y. Tao and D. Papadias. Indexing Spatio-Temporal Data Warehouses. In Proc.
of the 13th Int’l Conf. on Scientific and Statistical Database Management, pages
223–232. IEEE, 2001.

[47] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method for
Timestamp and Interval Queries. In Proc. of the 27th International Conference
on Very Large Data Bases, pages 431–440, 2001.

42

[48] R. Weibel and G. Dutton. Generalizing Spatial Data and Dealing with
Multiple Representations. In P.A. Longley, D.j Maguire, M.F. Goodchild, and
D.W. Rhind, editors, Geographical Information Systems: Principles, techniques,
management and applications, chapter 10. New York: John Wiley, 1999.

43

