
CERIAS Tech Report 2008-30
Memory Balancing for Large-scale Network Simulation in Power-law Networks

 by Hyojeong Kim
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



Graduate School ETD Form 9 
(Revised 12/07)          

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 
 
 

This is to certify that the thesis/dissertation prepared 
 
By   
 
Entitled  
 
 
 
For the degree of    
 
 
Is approved by the final examining committee: 
 
          
                                              Chair 
 
          
 
 
          
 
 
          
 
 
To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.  
 
      

Approved by Major Professor(s): ____________________________________ 

                                                      ____________________________________ 

 
Approved by:    
     Head of the Graduate Program     Date 
 
 



 
 
Graduate School Form 20 
(Revised 10/07)  

 
PURDUE UNIVERSITY 

GRADUATE SCHOOL 
 

Research Integrity and Copyright Disclaimer 
 
 

 
 
Title of Thesis/Dissertation: 
 
 
 
 
For the degree of ________________________________________________________________ 
 
I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*   
 
Further, I certify that this work is free of plagiarism and all materials appearing in this 
thesis/dissertation have been properly quoted and attributed. 
 
I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with 
the United States’ copyright law and that I have received written permission from the copyright 
owners for my use of their work, which is beyond the scope of the law.  I agree to indemnify and save 
harmless Purdue University from any and all claims that may be asserted or that may arise from any 
copyright violation. 
 
 
 
________________________________ 
Signature of Candidate 
 
 
________________________________ 
Date 
 
 
 
 
 
 
*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html  



MEMORY BALANCING FOR LARGE-SCALE NETWORK SIMULATION IN

POWER-LAW NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

HyoJeong Kim

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2008

Purdue University

West Lafayette, Indiana



ii

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Kihong Park for his persistent guidance

for seven years of my graduate study at Purdue. He has been always available for

meetings even nights and weekends. His keen criticism on research and his earnest

devotion to science have improved my attitude of exploring science. I would like to

thank Professor Sonia Fahmy, Professor Cristina Nita-Rotaru, and Professor Eugene

Spafford for serving on my advisory committee and helping me with the dissertation. I

thank Dr. William J. Gorman for helping me to solve many administrative problems.

Thanks to Steve Plite and Dan Trinkle for helping me manage and set up experimental

environments.

I would like to thank my lab mates at Network Systems Lab: Bhagya Bethala,

Humayun Khan, Asad Awan, and Hwanjo Heo. They have given me technical feed-

back about my research and also moral supports when needed. Since they have been

there always, the long journey of Ph.D. study has been enjoyable. Many thanks to

my friends at Purdue: Mercan Topkara, Umut Topkara, and Nauman Rafique. With

them, I shared many memorable moments outside the lab. Special thanks to my

friends, Wonhong Nam and Hyunyoung Kil, for their constant warm moral supports.

Finally, I would like to express my gratitude to my parents and brothers for their life-

long love and support. I also thank my friends in Korea, Eun-Ju Jwa and Seung-Hyub

Jeon, who have given me warm encouragements throughout my study.



iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Memory Balancing Issues . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Systems Issue: Accurate Memory Cost Estimation . . . . . . 2
1.2.2 Algorithmic Issue: Efficient Memory Cost Estimation . . . . 3
1.2.3 Graph Connectivity Issue: Power-law Topology . . . . . . . 3
1.2.4 Performance Issue: Resource Balancing Trade-off . . . . . . 4
1.2.5 Operating System Issue: Virtual Memory . . . . . . . . . . . 5

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 New Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 12

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Approaches to Large-scale Network Simulation . . . . . . . . . . . . 13

2.1.1 Memory Requirement Optimization . . . . . . . . . . . . . . 13
2.1.2 Topological Down-scaling . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Distributed Simulation . . . . . . . . . . . . . . . . . . . . . 14

2.2 Power-law Network Connectivity . . . . . . . . . . . . . . . . . . . 15
2.3 Network Simulation Partitioning . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Graph Partitioning Tools . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Recent Benchmark-driven Approaches . . . . . . . . . . . . 16

2.4 Load Balancing in Parallel and Distributed Computing . . . . . . . 16
2.4.1 Memory Load Balancing . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Static Load Balancing . . . . . . . . . . . . . . . . . . . . . 17

3 DASSFNET MEASUREMENT SUBSYSTEM . . . . . . . . . . . . . . . 18
3.1 Architecture of Measurement-Enhanced DaSSFNet . . . . . . . . . 18

3.1.1 Background on DaSSFNet . . . . . . . . . . . . . . . . . . . 18
3.1.2 Simulator Architecture . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Overview of DaSSF’s Distributed Synchronization . . . . . . 19

3.2 Message-centric Resource Usage Estimation . . . . . . . . . . . . . 22



iv

Page
3.2.1 Message Event Types . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Message Event Count vs. Memory Usage . . . . . . . . . . . 23
3.2.3 Message Event Aggregation and Synchronization . . . . . . 24
3.2.4 Message Event Evolution and Footprint . . . . . . . . . . . . 26
3.2.5 Demonstration of Memory Cost Estimation . . . . . . . . . 30
3.2.6 Measurement Accuracy and Overhead . . . . . . . . . . . . 30

4 MEMORY BALANCING PROBLEM . . . . . . . . . . . . . . . . . . . . 35
4.1 Space Efficiency in Per-partition Memory Cost Estimation . . . . . 35

4.1.1 Per-node Memory Cost Estimation . . . . . . . . . . . . . . 35
4.1.2 Per-partition Memory Cost Estimation . . . . . . . . . . . . 35
4.1.3 Relative Memory Balancing . . . . . . . . . . . . . . . . . . 36
4.1.4 Effect of Scale . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Impact of Power-law Connectivity on Memory Balancing . . . . . . 40
4.2.1 Overview of Metis’s Multilevel Recursive Partitioning . . . . 40
4.2.2 Benchmark-based Memory Balancing . . . . . . . . . . . . . 41
4.2.3 Impact of Power-law Connectivity . . . . . . . . . . . . . . . 43
4.2.4 Custom Network Partitioning . . . . . . . . . . . . . . . . . 44
4.2.5 Issues with Metis’s Memory Balancing . . . . . . . . . . . . 49
4.2.6 Memory and CPU Balancing Performance of Metis . . . . . 53

5 MEMORY BALANCING PERFORMANCE . . . . . . . . . . . . . . . . 57
5.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Distributed Simulation Environment . . . . . . . . . . . . . 57
5.1.2 Benchmark Applications and Network Models . . . . . . . . 58
5.1.3 Network Topology . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.4 Hardware and OS Set-up . . . . . . . . . . . . . . . . . . . . 59

5.2 Memory Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Performance Results . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Effect of Topology and Application Type . . . . . . . . . . . 63

5.3 Memory vs. CPU Balancing Trade-off . . . . . . . . . . . . . . . . . 66
5.3.1 Performance Results . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Effect of Topology and Application Type . . . . . . . . . . . 70
5.3.3 Robustness of Memory vs. CPU Balancing Trade-off . . . . 73
5.3.4 Impact of Number of Partitions . . . . . . . . . . . . . . . . 74

5.4 Joint Memory-CPU Balancing . . . . . . . . . . . . . . . . . . . . . 75
5.4.1 Multi-constraint Optimization . . . . . . . . . . . . . . . . . 75
5.4.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3 Overcoming Memory-CPU Balancing Trade-off . . . . . . . . 77

5.5 Memory-CPU Balancing with Optimization of Communication Cost 78
5.5.1 Impact of Communication Cost . . . . . . . . . . . . . . . . 79
5.5.2 Performance Results of Variability Reduction Heuristic . . . 79
5.5.3 Effect of the Number of Random Seeds . . . . . . . . . . . . 85



v

Page

5.6 Optimizing the Overhead of Benchmark-based Cost Estimation . . 86

6 MEMORY BALANCING PERFORMANCE WITH VIRTUAL MEMORY
PAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1 Performance Evaluation Framework . . . . . . . . . . . . . . . . . . 89

6.1.1 Overview of Linux’s Virtual Memory Paging . . . . . . . . . 89
6.1.2 Operating System Monitoring . . . . . . . . . . . . . . . . . 90
6.1.3 Application Memory Referencing Behavior . . . . . . . . . . 91
6.1.4 Quantification of Performance Dilation . . . . . . . . . . . . 96
6.1.5 Impact of Message Memory Imbalance to the Thrashing . . 104

6.2 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Impact of Thrashing: Comparison of Uniform vs. Max Cost Metrics 112

6.3.1 Impact of Thrashing . . . . . . . . . . . . . . . . . . . . . . 112
6.3.2 Memory Balancing Performance . . . . . . . . . . . . . . . . 115
6.3.3 Performance Gain: Speed-up . . . . . . . . . . . . . . . . . . 115

6.4 Comparison of Max vs. Total Cost Metrics . . . . . . . . . . . . . . 120
6.4.1 Memory Balancing Performance . . . . . . . . . . . . . . . . 120
6.4.2 Performance Gain: Speed-up . . . . . . . . . . . . . . . . . . 123

6.5 Joint Memory-CPU Balancing . . . . . . . . . . . . . . . . . . . . . 126
6.6 Optimizing the Overhead of Benchmark-based Cost Estimation . . 129

7 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 132
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



vi

LIST OF TABLES

Table Page

3.1 Major message event types. . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Summary of network topologies used in performance evaluation. . . . 59

5.2 CPU configuration of 32 participating machines. . . . . . . . . . . . . . 60

5.3 Memory configuration of 32 participating machines. . . . . . . . . . . . 60

6.1 System variables read from Linux /proc file system. . . . . . . . . . . 91

6.2 Default memory configuration of 16 participating machines for experi-
ments with virtual memory paging. . . . . . . . . . . . . . . . . . . . . 112

6.3 Summary of gain and cost: per-node memory and CPU costs from the
10-hour-long benchmark simulation vs. those obtained right after tu. . 130



vii

LIST OF FIGURES

Figure Page

1.1 Completion time slow down of BGP simulations due to disk I/O overhead
for different memory configurations. . . . . . . . . . . . . . . . . . . . 2

1.2 Growth of the Internet inter-AS network during 1998–2008 based on Route-
Views/NLANR measurement data [23]. . . . . . . . . . . . . . . . . . 4

3.1 (a) DaSSFNet’s system architecture on top of a distributed PC cluster
with our measurement subsystem enhancement. (b) DaSSFNet protocol
stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 (a) Structure of distributed simulation execution from the simulation ker-
nel’s perspective. (b) Demonstration of time dynamics of a single epoch
across 16 PCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 (a) Per-node event count for each message type. (b) Per-node memory
usage for each message type. . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 TCP based message event evolution and footprint spanning application
layer, DaSSFNet protocol stack, and DaSSF simulation kernel. . . . . 28

3.5 UDP based message event evolution and footprint spanning application
layer, DaSSFNet protocol stack, and DaSSF simulation kernel. . . . . 29

3.6 Dynamic monitoring of message related events. (a) tcp-snd-buf dominates
peak memory usage. (b) ipnic-buf, frame, kevt-outch, and kevt-inch dom-
inate peak memory usage. (c) ipnic-buf, frame, and kevt-outch dominate
peak memory usage. (d) app, tcp, tcp-snd-buf, tcp-rcv-buf, and frame
dominate peak memory usage. . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Measurement subsystem memory monitoring accuracy. . . . . . . . . . 32

3.8 (a) Measurement subsystem memory monitoring overhead. (b) Measure-
ment subsystem monitoring overhead with respect to memory usage and
completion time at each participating machine. . . . . . . . . . . . . . 34

4.1 Network partitioning: sum-of-max vs. max-of-sum problem. . . . . . . 36

4.2 The sum-of-max (our estimation) and max-of-sum (actual memory usage)
as a function of machine ID for worm local simulation with 21460-node
topology using 10 machines. . . . . . . . . . . . . . . . . . . . . . . . 37



viii

Figure Page

4.3 Correlation between sum-of-max and max-of-sum balancing as a function
of problem size in random graphs. . . . . . . . . . . . . . . . . . . . . 38

4.4 Per-node cumulative Mi load distribution: worm local. . . . . . . . . . 39

4.5 Per-partition make-up of message vs. table memory: worm local. . . . 40

4.6 Memory load balancing procedure which includes the benchmark-based
cost estimation step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Power-law network vs. random network. . . . . . . . . . . . . . . . . . 43

4.8 (a) Per-node memory cost skew from a BGP simulation of an AS topology
with 6582 nodes. (b) Per-node CPU cost skew from a BGP simulation of
an AS topology with 6582 nodes. . . . . . . . . . . . . . . . . . . . . . 45

4.9 Pseudo code of the power-law balancing algorithm. . . . . . . . . . . . 46

4.10 Pseudo code of the post-processing algorithm. . . . . . . . . . . . . . 47

4.11 Pseudo code of the refinement algorithm. . . . . . . . . . . . . . . . . 49

4.12 Worm global simulation of 4512-node topology with k=24. The uniform
(“1”) node weights are used for network partitioning. (a) Before fixing the
problem. (b) After fixing the problem. . . . . . . . . . . . . . . . . . . 50

4.13 Worm global simulation of 4512-node AS topology with k=24. Per-node
memory cost estimation is used for network partitioning. (a) Before fixing
the problem in balancing per-partition sum of node weights during the
uncoarsening and refinement phase. (b) After fixing problem in balancing
per-partition sum of node weights during the uncoarsening and refinement
phase. (c) After fixing starvation problem during the initial partitioning
phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.14 Memory balancing performance with Metis for a BGP simulation of an
AS topology with 6582 nodes using 16 PCs. (a) Output of Metis. (b)
Run-time measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.15 CPU balancing performance with Metis for a BGP simulation of an AS
topology with 6582 nodes using 16 PCs. (a) Output of Metis. (b) Run-
time measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.16 Partitioning assignment: machine ID as a function of nodes ranked by
degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Network configuration of 32 participating machines. . . . . . . . . . . 61

5.2 Memory balancing performance of Mi (max), Ci (total), and uniform cost
metrics as a function of problem size for different benchmark applications. 62



ix

Figure Page

5.3 Memory balancing performance in a 4512-node random topology for dif-
ferent benchmark applications. . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Per-node Mi load distribution of worm global: power-law topology vs.
random topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Per-node Mi load distribution of distributed client/server application: power-
law topology vs. random topology. . . . . . . . . . . . . . . . . . . . . 65

5.6 Memory balancing performance with k = 16 homogeneous machines. . 67

5.7 Memory balancing performance of Mi (max) and Ci (total) cost metrics
as a function of problem size for different benchmark applications. . . 68

5.8 CPU balancing: computation time (top) and completion time (bottom). 69

5.9 CPU balancing performance of Mi (max) and Ci (total) cost metrics with
respect to computation time as a function of problem size for different
benchmark applications. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.10 Node load distribution as a function of node rank: BGP (top) and worm
local (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.11 Cumulative node load distribution: BGP (top) and worm local (bottom). 72

5.12 Memory and CPU balancing performance of worm local (14577) using
Chaco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.13 Memory balancing performance of distributed client/server simulation (14577)
as a function of the number of machines. . . . . . . . . . . . . . . . . 74

5.14 CPU balancing performance of distributed client/server simulation (14577)
as a function of the number of machines. . . . . . . . . . . . . . . . . 75

5.15 Memory balancing performance under joint max-total cost metric. . . 76

5.16 CPU balancing under joint max-total cost metric. computation time (top)
and completion time (bottom). . . . . . . . . . . . . . . . . . . . . . . 77

5.17 Joint memory-CPU balancing when corr(Mi, Ci) is strong and weak. . 78

5.18 Comparison of communication cost of Mi (max) and Ci (total) cost metrics
as a function of problem size for different benchmark applications. . . 80

5.19 CPU balancing performance of the variability reduction heuristic com-
pared to Mi (max) and Ci (total) cost metrics as a function of problem
size for different benchmark applications for 5 network partitioning in-
stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



x

Figure Page

5.20 Comparison of the variability reduction heuristic and Mi (max) cost metric
against Ci (total) with respect to computation time difference (%) as a
function of problem size for different benchmark applications for 5 network
partitioning instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.21 Comparison of the variability reduction heuristic and Mi (max) cost met-
ric against Ci (total) with respect to memory usage difference (%) as a
function of problem size for different benchmark applications for 5 network
partitioning instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.22 Comparison of CPU balancing performance of the variability reduction
heuristic and Ci (total) cost metrics as a function of the number of random
seeds for different benchmark applications. . . . . . . . . . . . . . . . 85

5.23 Per-node memory cost estimated at 5%, 30%, 50%, and 100% of simulation
execution: worm global. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.24 Memory balancing performance as a function of simulation progress (x%
of wall clock time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 BGP simulation of 4512-node AS topology on a single machine with 1GB
memory. (a) Memory usage as a function of simulation time. (b) Blow-up
of (a). (c) Page fault rate as a function of simulation time. (d) Blow-up
of (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Worm global propagation of 6582-node AS topology on a single machine
with 1GB memory. (a) Memory usage as a function of simulation time.
(b) Blow-up of (a). (c) Page fault rate as a function of simulation time.
(d) Blow-up of (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Worm local propagation of 8063-node AS topology on a single machine
with 1GB memory. (a) Memory usage as a function of simulation time.
(b) Blow-up of (a). (c) Page fault rate as a function of simulation time.
(d) Blow-up of (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Distributed client/server simulation of 6582-node topology on a single ma-
chine with 1GB memory. (a) Memory usage as a function of simulation
time. (b) Page fault rate as a function of simulation time. . . . . . . . 95

6.5 BGP simulation of a 4512-node AS topology on a single machine with 1GB
memory. (a) Completion time as a function of simulation time. (b) Com-
putation time as a function of simulation time. (c) Dilation as a function
of simulation time. (d) Weighted-sum of dilations over all intervals as a
function of simulation time. . . . . . . . . . . . . . . . . . . . . . . . . 98



xi

Figure Page

6.6 (a) Maximum memory usage as a function of physical memory limit for
different benchmark applications. (b) Dilation as a function of physical
memory limit for different benchmark applications. . . . . . . . . . . . 99

6.7 (a) Dilation as a function of average page fault rate and average disk
I/O rate for all benchmark applications with different physical memory
configurations. (b) Average page fault rate vs. average disk I/O rate for all
benchmark applications with different physical memory configurations. 99

6.8 BGP simulation of 6582-node AS topology using 16 PCs with 1GB memory
each. (a) Maximum memory usage at each machine. (b) Average page
fault rate at each machine. (c) Memory usage as a function of simulation
time at machine 1. Blow-up of the period after 90 second simulation time.
(d) Average page fault rate as a function of simulation time at machine
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.9 BGP simulation of 6582-node AS topology using 16 PCs with 1GB memory
each. Blow-up of the period after 90 simulation second. (a) Per-epoch
completion time as a function of simulation time. (b) Per-epoch maximum
computation time across all machines as a function of simulation time. (c)
Per-epoch dilation as a function of simulation time. (d) Weighted-sum of
per-epoch dilations over all epochs as a function of simulation time. . 103

6.10 Worm local simulation over 16 PCs with 1GB memory each. Measure-
ment is made while the simulation is experiencing thrashing. (a) Maxi-
mum memory usage at each machine. (b) Average page fault rate at each
machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.11 Memory usage and page fault rate at the two memory-overloaded ma-
chines as a function of simulation time. (a) Memory usage as a function
of simulation time at machine 5. (b) Page fault rate as a function of sim-
ulation time at machine 5. (c) Memory usage as a function of simulation
time at machine 13. (d) Page fault rate as a function of simulation time
at machine 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.12 Per-machine maximum memory usage showing the memory allocated for
message events and memory allocated for tables. . . . . . . . . . . . . 107

6.13 Estimation of per-partition total memory requirement, message memory
requirement, and table memory requirement for two different network par-
titioning instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.14 Worm local simulation using 16 PCs with 1GB memory each using the
network partitioning in Figure 6.13(b). Measurement is made while the
simulation is experiencing thrashing. (a) Maximum memory usage at each
machine. (b) Average page fault rate at each machine. . . . . . . . . . 110



xii

Figure Page

6.15 Dilation amplification factor as a function of problem size and simula-
tion duration for various benchmark applications using 16 PCs with 1GB
memory each: BGP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.16 Dilation amplification factor as a function of problem size and simula-
tion duration for various benchmark applications using 16 PCs with 1GB
memory each: worm local and worm global. . . . . . . . . . . . . . . . 114

6.17 Memory balancing performance of uniform and Mi (max) cost metrics
using 16 PCs with 1GB memory each. . . . . . . . . . . . . . . . . . . 116

6.18 Memory utilization of the uniform and Mi maximum cost metrics as a
function of problem size for various benchmarks applications. The memory
utilization is calculated at tu simulation time in the case of the uniform;
at tm, in the case of Mi. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.19 Completion time taken to simulate [tu, te] by uniform vs. completion time
taken to simulate [tu, tm] by Mi (max) as a function of problem size for
various benchmark applications. . . . . . . . . . . . . . . . . . . . . . 118

6.20 Total message events processed in percentage during [tu, tm] by Mi without
experiencing thrashing. Results are shown as a function of problem size
for various benchmark applications. . . . . . . . . . . . . . . . . . . . 119

6.21 Memory balancing performance of Mi (max) and Ci (total) cost metrics
using 16 PCs with 1GB memory each. . . . . . . . . . . . . . . . . . . 121

6.22 Memory utilization of Mi (max) and Ci (total) cost metrics using 16 PCs
with 1GB memory each. . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.23 Comparison of Mi and Ci with respect to completion time. Completion
time is measured as the wall clock time taken to simulate tm simulation
seconds. The ratio of Ci’s completion time divided by Mi’s completion
time is plotted as a function of problem size for all benchmark applica-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.24 Performance gain γ(Mi, Ci) of Mi over Ci with respect to simulation
progress as a function of problem size for all benchmark applications.
γ(Mi, Ci) is shown in percentage. . . . . . . . . . . . . . . . . . . . . . 125

6.25 Completion time taken to simulate n message events vs. the total number
of message events processed, n, in the worm local 6582-node simulation,
comparing the Mi, Ci, and joint memory-CPU balancing. The data points
correspond to the total number of message events processed at tu, tt, tm,
and tj from the left, respectively. . . . . . . . . . . . . . . . . . . . . . 127



xiii

Figure Page

6.26 Memory balancing performance of Mi, Ci, and joint memory-CPU balanc-
ing for worm local propagation simulations. . . . . . . . . . . . . . . . 127

6.27 Comparison of joint memory-CPU balancing and Ci with respect to com-
pletion time. Completion time is measured as wall clock time taken to
simulate tj simulation seconds. The ratio of Ci’s completion time divided
by the completion time of joint balancing is plotted as a function of prob-
lem size for the worm local application. . . . . . . . . . . . . . . . . . 128

6.28 Performance gain γ(joint, Ci) of the joint memory-CPU balancing over Ci

with respect to simulation progress as a function of problem size for the
worm local application. For the comparison with the Mi case, we plot
γ(Mi, Ci) as well. γ(joint, Ci) and γ(Mi, Ci) are shown in percentage. 129



xiv

ABSTRACT

Kim, HyoJeong. Ph.D., Purdue University, December 2008. Memory Balancing for
Large-scale Network Simulation in Power-law Networks. Major Professor: Kihong
Park.

Large-scale network simulation has grown in importance due to a rapid increase in

Internet size and the availability of Internet measurement topologies with applications

to computer networks and network security. A key obstacle to large-scale network

simulation over PC clusters is the memory balancing problem, where a memory-

overloaded machine can slow down a distributed simulation due to disk I/O overhead.

Network partitioning methods for parallel and distributed simulation are insufficiently

equipped to handle new challenges brought on by memory balancing due to their focus

on CPU and communication balancing.

This dissertation studies memory balancing for large-scale network simulation in

power-law networks over PC clusters. First, we design and implement a measurement

subsystem for dynamically tracking memory consumption in DaSSFNet, a distributed

network simulator. Accurate monitoring of memory consumption is difficult due to

complex protocol interaction through which message related events are created and

destroyed inside and outside a simulation kernel. Second, we achieve efficient memory

cost monitoring by tackling the problem of estimating peak memory consumption of

a group of simulated network nodes in power-law topologies during network partition-

ing. In contrast to CPU balancing where the processing cost of a group of nodes is

proportional to their sum, in memory balancing this closure property need not hold.

Power-law connectivity injects additional complications due to skews in resource con-

sumption across network nodes. Third, we show that the maximum memory cost

metric outperforms the total cost metric for memory balancing under multilevel re-



xv

cursive partitioning but the opposite holds for CPU balancing. We show that the

trade-off can be overcome through joint memory-CPU balancing—in general not fea-

sible due to constraint conflicts—which is enabled by network simulation having a

tendency to induce correlation between memory and CPU costs. Fourth, we evaluate

memory balancing in the presence of virtual memory (VM) management which ad-

mits larger problem instances to be run over limited physical memory. VM introduces

complex memory management dependencies that make understanding and evaluat-

ing simulation performance difficult. We provide a performance evaluation framework

wherein the impact of memory thrashing in distributed network simulation is incor-

porated which admits quantitative performance comparison and diagnosis. Fifth, we

show that improved memory balancing under the maximum cost metric in the pres-

ence of VM manifests as faster completion time compared to the total cost metric

despite the CPU balancing advantage of the latter. In the cases where the CPU bal-

ancing advantage of the total cost metric is strong, we show that joint memory-CPU

balancing can achieve the best of both worlds.

We carry out performance evaluation using benchmark applications with varying

traffic characteristics: BGP routing, worm propagation under local and global scan-

ning, and distributed client/server system. We use a testbed of 32 Intel x86 machines

running a measurement-enhanced DaSSFNet over Linux.



1

1 INTRODUCTION

1.1 Motivation

Large-scale network simulation is a multi-faceted problem spanning synchroniza-

tion, network modeling, simulator design, partitioning, and resource management [1,

2]. Large-scale network simulation has grown in importance due to a rapid increase

in Internet size and the availability of Internet measurement topologies, with appli-

cations to computer networks and network security. They include Border Gateway

Protocol (BGP) routing in Internet inter-autonomous system (AS) networks, protec-

tion against distributed denial-of-service (DDoS) attacks, Internet worm epidemics,

peer-to-peer systems, and multicasting [3–13].

A key obstacle of large-scale network simulation over PC clusters is the memory

balancing problem where a memory-overloaded machine can slow down a distributed

simulation due to disk I/O overhead. Figure 1.1 illustrates the impact of memory

overload on a BGP routing simulation running on a single Linux PC configured with

2 GB and 1 GB physical memory (“BGP A”). There is a factor 9.4 slow down when

memory is 1GB. “BGP B” compares completion time of a different BGP simulation

instance on 512 MB and 256 MB memory configurations which may be found in older

PC clusters. There is a factor 52.3 difference. Slow down due to disk I/O overhead

can vary significantly depending on physical memory, application memory referencing

behavior, and operating system support [14, 15].

From a user’s perspective, parallel and distributed computing clusters are widely

available, and so are parallel and distributed simulation environments such as SSFNet,

DaSSFNet, Parallel/Distributed NS (PDNS), and JavaSim (J-Sim), that provide soft-

ware support for utilizing hardware resources [16–19]. Network simulators assume

that network partitioning where a network graph is partitioned into subgraphs and



2

 0

 2

 4

 6

 8

 10

256MB512MB1GB2GB

co
m

p
le

tio
n

 t
im

e
 (

h
rs

) BGP A BGP B

Figure 1.1. Completion time slow down of BGP simulations due to
disk I/O overhead for different memory configurations.

subgraphs are mapped to processing nodes is done beforehand and given as part of

the input of a simulation. Network partitioning methods for parallel and distributed

simulation are insufficiently equipped to handle new challenges brought on by mem-

ory balancing due to their hereto focus on CPU and communication balancing where

the main goal has been to facilitate parallel speed-up by balancing CPU load while

reducing network communication cost [20, 21].

1.2 Memory Balancing Issues

We consider several issues that need to be taken into account when performing

memory balancing for large-scale network simulation with power-law topologies.

1.2.1 Systems Issue: Accurate Memory Cost Estimation

The first issue is a systems related feature where, to balance memory load, we

require accurate information about the memory needs of simulated network nodes for

a given problem instance. Due to the dynamic nature of network events, run-time



3

measurement of resource consumption behavior is required which includes memory,

CPU, and communication cost. Accurate gauging of memory cost is difficult because

message related simulation events are created and destroyed via complex protocol

interactions inside and outside a simulation kernel. Whereas the processing cost of

a simulated network node is proportional to the total number of messages processed

over time, its memory cost is determined by the maximum footprint over time which

involves tracking of dynamic memory allocation/deallocation and event synchroniza-

tion.

1.2.2 Algorithmic Issue: Efficient Memory Cost Estimation

A second issue is algorithmic in nature which highlights a key difference between

network partitioning for memory and CPU balancing. In CPU balancing, when the

processing cost of a group of simulated network nodes is considered, it is proportional

to the sum of the processing cost of the individual nodes. There is a closure property

with respect to summation (i.e., integration) since an individual node’s processing

cost is the sum of its processing cost over time. This allows CPU cost accounting to

be done using constant space per network node. Since the memory cost of a network

node is the maximum cost over time but the collective memory cost of a group of

nodes is the maximum over time of the sum of individual memory costs, memory cost

estimation during network partitioning requires that a node’s memory consumption

time series be logged to calculate the maximum over time of the sum of individual

costs. Space complexity dictates that this is infeasible.

1.2.3 Graph Connectivity Issue: Power-law Topology

Advances in Internet measurement research have yielded measurement-based real-

world network topologies [22–27]. They are not only large in size (Figure 1.2 shows

the growth of the Internet AS topology during the past 10 years) but their connectiv-

ity tends to follow a power-law structure [28–33]. Irrespective of whether large-scale



4

 0

 5000

 10000

 15000

 20000

 25000

 30000

200820062004200220001998

n
u

m
b

e
r 

o
f 
d

o
m

a
in

s

year

Figure 1.2. Growth of the Internet inter-AS network during 1998–2008
based on RouteViews/NLANR measurement data [23].

measurement topologies are mathematically power-law, they exhibit a characteristic

skewness that impacts memory balancing: most nodes are connected to a few nodes

and a few nodes are connected to many nodes. In network simulation, high-degree

nodes (“elephants”) tend to consume significantly more memory and CPU resources

than low-degree nodes (“mice”) which introduces difficulties during network parti-

tioning due to the large disparity in resource consumption. In random graphs [34]

all nodes have approximately equal degree which implies that their resource con-

sumption during simulation is similar and therefore interchangeable during network

partitioning. Network partitioning in random graphs is significantly easier than net-

work partitioning in power-law graphs.

1.2.4 Performance Issue: Resource Balancing Trade-off

The difference in the cost metrics between memory balancing and CPU balancing—

i.e., maximum vs. total—suggests that there may be a performance trade-off between

memory and CPU balancing. That is, to balance memory well we may have to incur



5

a penalty in CPU balancing, and vice versa. The trade-off relation may depend on a

number of factors including application type and problem size. In addition to inves-

tigating the trade-off relation, we may ask whether it is possible to achieve the best

of both worlds.

1.2.5 Operating System Issue: Virtual Memory

The preceding issues pertain to memory balancing as a goal unto itself without

specific regard to the performance consequences that memory imbalance may bring

about. If a simulator is run on an operating system (OS) without virtual memory

(VM) support and memory demand exceeds available physical memory, the simula-

tion crashes. With VM support that allows larger problem instances to be run, the

performance bottleneck tends to be onset of memory thrashing where an OS expends

significant effort swapping pages in and out while blocked on the resultant disk I/O.

Higher memory imbalance can translate to earlier onset of thrashing which results in

slower completion time. VM introduces complex memory management dependencies

that make understanding and evaluating simulation performance difficult.

1.3 Thesis Statement

The thesis statement of this dissertation is as follows. It is possible to achieve

memory balancing for facilitating large-scale network simulation in power-law net-

works over PC clusters that achieves significant performance improvement over the

existing state-of-the-art in network simulation partitioning. This is accomplished by

taking a memory-centric approach that tackles key issues spanning accurate and effi-

cient memory cost measurement, influence of power-law connectivity, memory-CPU

balancing trade-off, and impact of virtual memory and thrashing.



6

1.4 Technical Challenges

The key technical challenges addressed in this dissertation are as follows.

(i) Design, implement, and evaluate a measurement subsystem in DaSSFNet that

achieves accurate memory cost estimation. Accurate estimation of per-node mem-

ory cost is difficult because of the need to keep track of dynamic memory alloca-

tion/deallocation that are the result of complex protocol interaction inside and out-

side the DaSSF simulator kernel. The size of data structures of various event types,

their lifetime, synchronization across different simulation events to compute the max-

imum memory footprint over time at per-node granularity, and garbage collection are

challenges that need to be handled. When a frequently instantiated message type

is maintained as a message pool to reduce memory allocation overhead, calling the

destructor may not free memory from the viewpoint of the OS. malloc() performs its

own internal memory pool management so that free() need not necessarily return

memory to the OS. The focus on memory balancing should not come at the expense

of CPU and communication balancing. That is, the measurement subsystem must

provide accurate CPU and communication cost estimation which is also needed for

performance comparison and trade-off analysis.

(ii) Achieve efficient memory cost estimation such that space complexity per node

is O(1). For a graph with n nodes the processing cost of node i ∈ [1, n], denoted

Ci, is proportional to the total number of messages Xi(t) processed at the node over

time, i.e., Ci ∝
∑

t Xi(t). Hence the sum of the CPU costs of two nodes i, j ∈ [1, n]

is given by their sum Cij = Ci + Cj due to closure under summation. The per-node

space complexity for CPU cost is constant. The memory cost of node i, denoted

Mi, is determined by the maximum footprint over time, i.e., Mi = maxt Xi(t). The

memory cost of two nodes i, j ∈ [1, n], however, is not their sum Mi + Mj , but Mij =

maxt(Xi(t) + Xj(t)) which need not equal the sum. Only when peak memory usage

across nodes are synchronized does maxt(Xi(t) + Xj(t)) = maxt Xi(t) + maxt Xj(t)

hold. We refer to this as the max-of-sum vs. sum-of-max problem. Our network



7

simulation results show that memory peak synchronization is an exception, not the

rule. Network partitioning to balance memory requires that the collective memory

cost of a group of nodes be computed so that different balancing choices can be

weighed. Maintaining a per-node time series Xi(t) incurs per-node space complexity

O(t) which in large-scale network simulation with many nodes and long simulation

times is not feasible. How to achieve space efficient memory cost estimation for

network partitioning is a key challenge of memory balancing.

(iii) Power-law connectivity and resource consumption skews. Network simulation

is different from other simulation domains in that the central event is a message that

travels from node to node. All else being equal, a node that is highly connected is

more likely to encounter and process messages. In applications running over Internet

measurement networks that exhibit power-law connectivity, there is a tendency for

the power-law connectivity skew to manifest as severe skews in message load. That

is, if i is a high-degree node and j is a low-degree node, then Xi(t) ≫ Xj(t)
1. This

stands in stark contrast to random graphs where all nodes have approximately the

same degree and the probability of deviating significantly from the mean is expo-

nentially small. Balancing equal size objects across a number of bins/partitions is

easier than balancing unequal size objects since equal size objects are interchange-

able. When the number of objects is many such that an individual object takes up

a fraction of the total space (“grain of sand”), balancing becomes easier compared

to the case where an object takes up a larger space in a bin (“pebbles”). Large-

scale Internet measurement topologies with power-law connectivity skews produce a

small but non-negligible number of very large size objects (“elephants”) which work

against balancing. However, most objects in power-law networks are small (“mice”),

and given their large number, work in favor of balancing. Understanding the impact

of power-law connectivity in memory and CPU balancing is a new challenge.

(iv) Memory-CPU balancing trade-off and joint optimization. Memory and CPU

cost metrics are different since the former depends on the maximum resource footprint

1Recall that Xi(t) is defined as the total number of messages processed at node i



8

over time whereas the latter is proportional to the total footprint over time. This

may result in a conflict between memory and CPU balancing where balancing one

well creates imbalance in the other. Understanding the trade-off relationship between

memory and CPU balancing is important for effective network partitioning. A related

question is joint memory-CPU balancing that aims to achieve the best of both worlds.

Given a graph of n nodes that need to be partitioned into k groups, in the space of all

k-partitions of [1, n] the total cost metric favors a subset of partitions ST where CPU

is well-balanced and the maximum cost metric selects partitions SM where memory

is well-balanced. The joint memory-CPU balancing question asks whether there are

partitions where both memory and CPU are well-balanced (i.e., SM ∩ ST 6= ∅), and,

if so, how to find them.

(v) Framework for memory balancing under VM. Memory balancing aims to min-

imize memory imbalance during network partitioning without regard to the ultimate

effect this will have on simulation performance with respect to completion time. When

a simulation run consumes significantly more memory than available physical mem-

ory, a VM may enter thrashing where an OS continually swaps pages in and out trying

to satisfy application memory references. CPU utilization tends to be low since the

simulation process spends most of its wall clock time blocked on disk I/O. A goal of

memory balancing under VM is to delay the onset of thrashing so that the benefit of

VM—ability to run larger problem instances for longer periods—can be maximally

harnessed. However, this is not the only possible goal. VM introduces complex mem-

ory management dependencies since there is no one-to-one relation between memory

imbalance, page fault rate, and performance slow down. For example, if memory

demand on a PC in distributed simulation exceeds available physical memory by, say,

1 GB, a number of other factors contribute to determining whether thrashing sets in.

Memory occupied by routing tables tend to be more conducive to locality of reference

than memory consumed by messages. Messages, which distinguish network simulation

from other simulation domains, tend to be transient in the sense of being dynamically

created and destroyed. A 1 GB excess demand may not induce thrashing if memory



9

consumption is dominated by routing tables but trigger thrashing if messages are the

dominant factor. Thrashing is a qualitative descriptor that may be accompanied by

a range of page fault rates that in turn lead to severe or less severe simulation per-

formance degradation. A performance evaluation framework with effective metrics is

needed to gauge and diagnose distributed network simulation performance.

(vi) Memory balancing performance under VM. At the end of the day, we are

interested in evaluating how much memory balancing contributes toward facilitating

large-scale network simulation over PC clusters whose operating systems implement

virtual memory management. The impact of the trade-off between memory and CPU

balancing needs to be evaluated after the effect of memory imbalance is quantified

with respect to distributed simulation performance slow down. The same goes for

joint memory-CPU balancing.

1.5 New Contributions

The contributions of the dissertation are as follows. First, we design and imple-

ment a measurement subsystem for dynamically tracking memory consumption in

DaSSFNet, a distributed network simulator that acts as our benchmarking software

environment. We show that the measurement subsystem achieves accurate monitor-

ing of memory consumption at per-node granularity. The measurement subsystem

also accurately tracks CPU and communication cost. Although the specific implemen-

tation details are DaSSFNet dependent, the underlying measurement methodology is

applicable to other distributed network simulation environments.

Second, we achieve efficient memory cost monitoring by showing that the max-

imum cost metric, which has constant per-node space complexity, enables effective

memory balancing during network partitioning. We show that although the max-

of-sum vs. sum-of-max problem cannot be solved in general because peak memory

consumption across simulated nodes is not synchronized, the maximum cost metric

suffices to achieve relative memory balancing. That is, predicting the absolute mem-



10

ory consumption of a group of nodes is inherently difficult but comparing the relative

memory consumption between two or more groups of nodes is solvable. Our perfor-

mance evaluation focuses on PC clusters with uniform memory but the maximum

cost metric approach is extensible to the non-uniform memory case.

Third, we evaluate the impact of power-law connectivity of large-scale measure-

ment networks on memory balancing. On the one hand, high-degree nodes contribute

a large fraction of overall memory consumption and need to be spread out across par-

titions to avoid hot spots that lead to memory imbalance. On the other hand, the

preponderance of low-degree nodes with similarly small memory requirements admits

filling in the gaps left by high-degree nodes in the partitions by virtue of interchange-

ability and smallness. Since the memory cost estimate of a single high-degree node

is accurate, combined memory balancing of high- and low-degree nodes is conducive

to relative memory balancing. We devised and evaluated custom network partition-

ing methods that are sensitive to power-law connectivity and spread out high-degree

nodes followed by filling in via low-degree nodes. However, we found that multilevel

recursive partitioning tends to find partitions that obey this property which obviates

the need to advance new network partitioning methods aimed at power-law topologies.

This also holds for CPU balancing.

Fourth, we show that the maximum memory cost metric outperforms the total cost

metric for memory balancing under multilevel recursive partitioning but the opposite

holds for CPU balancing. The extent of the trade-off depends on the application

type—BGP routing and worm epidemics under global (i.e., random) scanning exhibit

small memory balance gain but high CPU balance gain, and vice versa for worm

epidemics under local (i.e., topological) scanning and distributed client/server—and

problem size. We explain the difference in trade-off across application type by showing

that BGP and worm global exhibit a more pronounced memory cost skew induced

by power-law connectivity that makes balancing more difficult.

Fifth, we show that the performance trade-off can be overcome through joint

memory-CPU balancing which is, in general, not feasible due to constraint conflicts.



11

In network simulation we have SM ∩ ST 6= ∅ which allows achieving the best of

both worlds. This is facilitated by network simulation having a tendency to induce

correlation between memory and CPU costs. The correlation is not strong enough

to prevent maximum cost metric based network partitioning from favoring memory

balancing and total cost metric based partitioning favoring CPU balancing. That is,

individually the former finds partitions in SM − ST and the latter finds partitions in

ST −SM . However, if network partitioning is carried out in joint 2-dimensional search

space, the correlation guides the search to partitions in their intersection SM∩ST . We

use multi-dimensional multilevel recursive partitioning to perform joint memory-CPU

balancing.

Sixth, we advance a performance evaluation framework for evaluating memory

balancing under VM. We define metrics for quantifying distributed simulation slow

down under thrashing and the performance gain achieved by one network partitioning

method over another. We show that onset of thrashing in network simulation is

effected not only by the amount of excess memory demand (beyond physical memory)

but also its composition with respect to message versus routing table memory. We

find that an idiosyncrasy of network simulation is that messages are not conducive to

locality of reference. As a consequence, in a distributed network simulation a PC that

is most message-overloaded may be the weak link that slows down overall completion,

not the PC that is most memory-overloaded.

Seventh, we show that improved memory balancing under the maximum cost met-

ric in the presence of VM manifests as faster completion time compared to the total

cost metric despite the CPU balancing advantage of the latter. The performance gain

is most pronounced in worm local and distributed client/server which is consistent

with the general trade-off between memory and CPU balancing and its dependence

on application type. We show that in the cases where the CPU balancing advantage

of the total cost metric is strong, joint memory-CPU balancing can achieve the best

of both worlds.



12

1.6 Organization of the Dissertation

The dissertation is organized as follows. In Chapter 2, we present related works.

In Chapter 3, we describe the design of our measurement subsystem in DaSSFNet for

accurate resource usage estimation. In Chapter 4, we propose an efficient memory

balancing mechanism targeted at large-scale network simulation in power-law net-

works. In Chapter 5, we evaluate memory balancing performance of the proposed

mechanism. We establish a memory-CPU balancing trade-off, and we show that joint

memory-CPU balancing can overcome the performance trade-off. In Chapter 6, we

evaluate memory balancing performance under virtual memory. In Chapter 7, we

summarize the contributions of this dissertation and discuss the future directions.



13

2 RELATED WORK

2.1 Approaches to Large-scale Network Simulation

2.1.1 Memory Requirement Optimization

The importance of reducing memory footprint for large-scale network simulation is

well recognized, and research has been carried out to reduce application and simulator

memory requirements [13, 35–37]. In BGP routing, it is known that routing tables

are the main memory-consuming component in BGP simulation. In [35], the authors

leverage the redundancy of information in BGP routing tables to reduce BGP routing

table memory requirement. In [36, 37], efforts are directed at designing methods

with the aim of reducing IP routing table memory requirement. In [13], the authors

identify the main memory-consuming components in multicast simulations—multicast

routing states and IP routing tables—and propose a set of techniques to compress

their memory requirement.

2.1.2 Topological Down-scaling

Several works have been carried out in down-scaling large network topologies such

that the size of the resultant network topology is small enough to be simulated within a

reasonable timeline while preserving important characteristics of the original topology

[38–40]. In [38], the authors advanced a number of reduction algorithms targeted

at the Internet inter-AS networks and analyzed the fidelity of the reduced network

topology against the original one with respect to power-law topology characteristics

shown in [28]. In [39], the authors investigated reduction mechanisms also targeted

at the Internet inter-AS networks, where selected vertices are removed and edges are

added to preserve the original topology’s routing path properties. In [40], the authors



14

have focused on down-scaling of an arbitrary network topology that is shared by

TCP flows. They show that end-to-end TCP performance is preserved by retaining

congested links in the sampled topology.

2.1.3 Distributed Simulation

Substantial efforts are directed at designing and implementing parallel and dis-

tributed network simulators with the aim of providing scalable solution to the grow-

ing need of large-scale network simulation. DaSSF/DaSSFNet [17] and SSFNet [16]

implement Scalable Simulation Framework (SSF) API [41] in C++ and in Java, re-

spectively. Parallel/Distributed NS (PDNS) [18] extends the Network Simulator (ns-

2) [42] to enable the parallel and distributed simulation. JavaSim (J-Sim) [19] is a

component-based, compositional simulation environment. The Georgia Tech Network

Simulator (GTNetS) [43] provides distinct separation of protocol stack layers as ac-

tual networks are structured. PDNS [18], DaSSF/DaSSFNet [17], and GTNetS [43]

provide packet-level network simulation environment over parallel and distributed

machine environments. JavaSim (J-Sim) [19] and SSFNet [16] support packet-level

network simulation environment over parallel processor machine environment. Gen-

esis [44] proposes improved synchronization mechanism for distributed simulation.

Distributed simulation research [16–19, 41, 43, 44] has focused on provisioning

transparent network simulation environment to users, addressing issues on simula-

tion time management, synchronization, communication mechanism between remote

machines, and model description mechanism. Nonetheless, in order to run large-

scale network simulation across workstation clusters, users have to overcome resource

barriers. This dissertation focuses on providing effective network partitioning to fa-

cilitate distributed memory and computing power for large-scale network simulation.

Section 2.3 describes main related work in this perspective.



15

2.2 Power-law Network Connectivity

Internet inter-AS and intra-AS networks are shown to have power-law like con-

nectivity [28] where most are connected to a few, but a few are connected to many.

Recent measurements of various information networks, including the World Wide

Web [29], metabolic networks [30], and various social networks [31–33], have shown

such pattern. These networks are sometimes collectively referred to as power-law net-

works as there is a power-law relation between the degree and frequency of nodes of

that degree: Pr{deg(u) = k} ∝ k−β. The impact of power-law network connectivity

on a network security mechanism’s performance has been studied [9]. Recent research

has focused on improvement of multilevel graph partitioning algorithms—specifically,

new clustering-based coarsening scheme—to accommodate power-law network con-

nectivity characteristics [45].

2.3 Network Simulation Partitioning

2.3.1 Graph Partitioning Tools

Multilevel recursive bisection methods have been shown to yield improved parti-

tioning vis-à-vis spectral methods [20], and their fast running time has made Metis

and Chaco [46] commonly used benchmark tools for network partitioning. We use

Metis [47] which implements a multilevel recursive k-way partitioning algorithm [21]

as the default network partitioning tool. We use Chaco [46] as well to confirm our re-

sults with Metis. Some other available tools are as follows. The PARTY partitioning

library [48] is a software library for graph partitioning which provides efficient imple-

mentations of approximation heuristics. JOSTLE [49] is a software tool designed for

mapping unstructured mesh calculations to parallel computers for parallel speed-up.

SCOTCH [50] is a software package for graph partitioning based on the dual recur-

sive bipartitioning algorithm. Among all these tools, Metis [47] is the only tool which

supports multi-dimensional node weights.



16

2.3.2 Recent Benchmark-driven Approaches

Network simulation partitioning has been studied in several papers, perhaps the

most relevant to our work being Benchmark-based, Hardware and Model-Aware Parti-

tioning (BencHMAP) [51]. BencHMAP is a general framework for network simulation

partitioning whose scope included memory balancing. The main concern was man-

aging CPU, communication, and synchronization cost (i.e., lookahead), with memory

balancing receiving a tangential treatment as part of total message balancing given

as node weight input during benchmarking. The latter roughly corresponds to total

cost metric Ci defined in Chapter 4. In [52] topological partitioning is studied for

scaling network emulation where component partitioning is driven by estimated com-

munication cost. In [53] focus is also placed on communication cost with respect to

cross traffic and parallel speed-up in PDNS for partitioning simple topologies. In [54],

the authors demonstrate gradual improvement of network simulation partitioning fol-

lowing a benchmark driven approach to scalable network partitioning. In [55], the

authors propose a scheme combining static partitioning and dynamic load balancing

so that run-time resource usage can be reflected adaptively in load balancing.

2.4 Load Balancing in Parallel and Distributed Computing

2.4.1 Memory Load Balancing

Paucity of memory-centric load balancing also holds in the parallel distributed

computing community where focus has been on computation and communication

balancing [20,21]. In recent work [56], CPU-memory balancing has been studied using

an adaptive application-driven approach targeted at scientific applications. In [57,58],

CPU-memory balancing is evaluated from a dynamic load balancing perspective with

job assignment and migration incorporating CPU and memory balancing constraints.

Note that there were earlier research efforts from operating system (OS)’s point of

view for utilization of distributed memory resources using a remote memory server



17

mechanism [59,60]. The remote memory server mechanism provides dynamic memory

load balancing at OS level, with which a memory-overloaded machine can utilize other

machine’s unused memory transparently.

2.4.2 Static Load Balancing

Graph partitioning is a type of static load balancing, which has been widely used

to map scientific computations onto parallel computers aiming for parallel speed-

up [61]. Another type of static load balancing focuses on the task (or job at a coarser

level) assignment problem to processors. In [62], the authors approach the problem

modeling a parallel program as a task interaction graph, which is appropriate for

iterative parallel programs. In [63], the authors model a parallel program as a task

precedence graph, where computation time and explicit execution dependences are

known a priori.



18

3 DASSFNET MEASUREMENT SUBSYSTEM

3.1 Architecture of Measurement-Enhanced DaSSFNet

3.1.1 Background on DaSSFNet

DaSSFNet is a DaSSF-based implementation of SSFNet. As a general-purpose

simulation environment, the Dartmouth Scalable Simulation Framework (DaSSF) [17]

provides a C++ implementation of the Scalable Simulation Framework (SSF). SSF

[41] defines a unified, object-oriented application programming interface (SSF API)

as a standard user interface for discrete-event simulation, considering usability and

performance as important design goals. Supporting a process-oriented world-view of

discrete-event simulation, SSF helps make full-fledged design and implementation of

network models possible. SSFNet [16] provides simulation models of various network

elements and network protocols on top of a Java-based implementation of SSF.

3.1.2 Simulator Architecture

One of the main features of DaSSFNet is that its simulation kernel, DaSSF, sup-

ports distributed PC clusters as well as shared-memory multiprocessor machines,

incorporating advanced parallel simulation techniques. DaSSF uses Message Passing

Interface (MPI) for synchronization and communication between simulation kernels

on distributed PCs. Figure 3.1(a) shows DaSSFNet’s system architecture on top

of a distributed PC cluster. DaSSFNet’s collection of protocol models is shown in

Figure 3.1(b). DaSSFNet takes a simulation configuration written in Domain Mod-

eling Language (DML) as input. The DML specification includes network topology,

protocol configuration, and network simulation partitioning. We designed and im-

plemented a script for automatic partitioning and model description generation. For



19

(a) System Architecture

CBR, Poisson, file trace, MMPP, LRD


{attackers, traffic generators, fault models, ...}


Applications


BGP


TCP
 UDP


IP


Link Layer


(b) Protocol Stack

Figure 3.1. (a) DaSSFNet’s system architecture on top of a dis-
tributed PC cluster with our measurement subsystem enhancement.
(b) DaSSFNet protocol stack.

network simulation partitioning, the script internally calls Metis [47] library routines.

Our measurement subsystem spans across the DaSSFNet protocol stack and DaSSF

simulation kernel distributed across each PC. The protocol stack in DaSSFNet is

comprised of IP/NIC, TCP, UDP, and BGP which are accessed via a socket API-like

interface.

3.1.3 Overview of DaSSF’s Distributed Synchronization

Distributed synchronization across network partitions is effected through a bar-

rier mechanism that occurs at fixed time granularity (called epoch) which, by default,



20

is determined by the minimum link latency of inter-partition links. Although con-

servative, this method assures causal ordering of distributed simulation events [64,

65]. Each epoch is composed of two phases: (1) computation and (2) communi-

cation/synchronization. Figure 3.2(a) shows the structure of distributed simulation

execution from a simulation kernel’s perspective. During the computation phase, each

simulation kernel processes simulation events scheduled to occur within the epoch and

handles SSF processes nonpreemptively until there are no more ready to run processes.

By definition, the computation phase proceeds independently of events processed in

the same epoch at other machines. During the communication/synchronization phase,

intermediate channel events—carrying remotely protocol messages—and synchroniza-

tion messages are exchanged over MPI. Simulation kernels block until all of them

complete the communication/synchronization phase. Figure 3.2(b) demonstrates the

time dynamics of a single epoch in a BGP simulation over 16 PCs. This snapshot

is obtained from our measurement subsystem, which can monitor computation and

communication/synchronization costs at per-epoch granularity. Note that machine 1

with the most computation load determines the overall completion time of the epoch.

Other machines are blocked in the communication/synchronization phase once they

finish processing their computation load.



21

Universe::expand_epoch (){

}

window_sync ();

comp phase

Timeline::micro_scheduling (){

}

comm/sync phase

Universe::spin (){

Universe::process_epoch (){

while (lp){

}
lp−>run ();

Event Processing Loop

Process Handling Loop

}

  for (  ;  ;  ) {

      }

     expand_epoch ();

     process_epoch ();

}

micro_scheduling();

LogicalProcess:run (){

}

(a) Epoch-loop

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16

w
al

l c
lo

ck
 ti

m
e 

(s
ec

)

machine id

comm/sync cost
comp cost

(b) Single Epoch

Figure 3.2. (a) Structure of distributed simulation execution from the
simulation kernel’s perspective. (b) Demonstration of time dynamics
of a single epoch across 16 PCs.



22

3.2 Message-centric Resource Usage Estimation

Due to the dynamic nature of network events, run-time measurement of resource

consumption is required with respect to memory, CPU, and communication cost.

Memory cost estimation is difficult due to message related simulation events which

are generated, processed, stored, forwarded, and deleted via complex protocol interac-

tions both inside and outside a simulation kernel. Accurate memory cost estimation

requires tracking of dynamic memory allocation and deallocation, and synchroniza-

tion with respect to time is critical. Since simulation time acts as a global clock for

distributed network simulation, it allows synchronization of distributed simulation

events and their resource footprint.

3.2.1 Message Event Types

We define major message event types which contribute to significant resource us-

age. They are listed in Table 3.1. We track all message related events in DaSSFNet

both inside the simulation kernel and the network stack outside the kernel. Inside the

DaSSF simulation kernel, three simulation events—KEVT-OUTCHANNEL, KEVT-

INCHANNEL, and KEVT-CHANNEL—are used for implementing message exchange

between nodes located at different machines. In the network stack outside the kernel,

we define the application message event type, representing message events instanti-

ated in a network application above TCP/IP. We define TCP, TCP-send-buffer, and

TCP-receive-buffer message event types for TCP reflecting DaSSFNet’s “full-fledged”

implementation of TCP; similarly for UDP and UDP-receive-buffer in the case of

UDP. We define IP/NIC and IP/NIC-buffer representing message events inside IP

layer and network interface card (NIC) device driver buffer. We define FRAME mes-

sage event type representing IP packets which consists of network protocol headers

and application payload.

There are important, non-message-related events which contribute to significant

resource usage. First, network protocol tables such as IP route table and BGP table



23

Table 3.1
Major message event types.

Inside DaSSFNet protocol stack:

Application

TCP

TCP-send-buffer

TCP-receive-buffer

UDP

UDP-receive-buffer

IP/NIC

IP/NIC-buffer

FRAME

Inside DaSSF simulation kernel:

KEVT-OUTCHANNEL

KEVT-INCHANNEL

KEVT-CHANNEL

are one of the main memory-demanding components. We take their memory usage

into account when accounting memory cost. Second, non-message-related simulator

events—KEVT-TIMER, KEVT-SEMSIGNAL, and KEVT-TIMEOUT—are created

for implementing timer and process coordination mechanisms. We track their memory

cost and computation cost.

3.2.2 Message Event Count vs. Memory Usage

We distinguish between the count and the memory usage of message events for

each message event type. Though the count of message events is often used as a

measure of computation cost, it is not sufficient to be a measure of memory cost.

We demonstrate a case where the count of message events is not a good measure of



24

memory usage in Figure 3.3 from a BGP simulation of an AS topology with 4512

nodes. Figure 3.3(a) shows per-node the total count of message events for each

message type as a function of nodes ranked by their degree, where the highest degree

node has the lowest rank. The abscissa is shown in log-scale to highlight high-degree

nodes. In terms of event count, FRAME and TCP-receive-buffer messages are the

most frequent. Figure 3.3(b) shows per-node memory usage for each message type as a

function of nodes ranked by their degree. In terms of memory usage, TCP-send-buffer

is the dominant component, not FRAME or TCP-receive-buffer messages. Note that

we aggregate message event count and memory usage at node granularity, which is

described in more detail in the next section.

3.2.3 Message Event Aggregation and Synchronization

Memory cost of a node or a machine is estimated by aggregating message events

which occur at node or machine granularity, respectively. Since memory cost is deter-

mined by the maximum footprint over time, temporal synchronization of allocation

and deallocation of message events is important. We track per-node maximum mem-

ory usage for each message event type at run time which requires per-node O(1) mem-

ory complexity. We also track per-node total event count for each message event type

which requires per-node O(1) memory complexity. Per-machine maximum memory

usage and total event count for each message event type are measured by aggregating

over nodes assigned to a machine.

Simulation time acts as a global clock for distributed network simulation. It allows

synchronization of distributed simulation events and their resource footprint. In terms

of wall clock time, time skew across distributed machines, which may be due to time

of day clock drift for handling high priority interrupts that interfere with the system’s

hardware clock, is an issue for distributed time synchronization. We normalize wall

clock time measurements relative to the wall clock time measured right after main()

is called at each machine. Note that in network simulation partitioning nodes are



25

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1  10  100  1000  10000

co
un

t (
x1

06 )

nodes ranked by degree

FRAME
TCP-RCV-BUF

APP
TCP

TCP-SND-BUF
IPNIC

IPNIC-BUF
KEVT-OUTCH

KEVT-INCH

(a)

 0

 50

 100

 150

 200

 250

 1  10  100  1000  10000

m
em

or
y 

us
ag

e 
(M

B
)

nodes ranked by degree

TCP-SND-BUF
APP
TCP

TCP-RCV-BUF
IPNIC

IPNIC-BUF
FRAME

KEVT-OUTCH
KEVT-INCH

(b)

Figure 3.3. (a) Per-node event count for each message type. (b)
Per-node memory usage for each message type.

mapped to machines, meaning that all message events of a node are simulated in

one machine where the node is mapped to. Hence, when aggregating message events

which occur at node or machine granularity, distributed time synchronization across

machines is not an issue.



26

3.2.4 Message Event Evolution and Footprint

We create message event evolution diagrams that trace the time dynamics of event

creation, processing, queueing, and deletion effected by complex protocol mechanisms,

in particular, TCP.

Message Event

A message related event m is represented by a data structure which has a size

attribute s(m) that is dependent on the event type and whether it is copied or pointer

(i.e., reference) based. m has a start time ts(m) at which it is generated and a finish

time tf(m) at which it is deleted. Time stamps are recorded with respect to both

simulation time and wall clock time. Simulation time acts as a global clock. m has a

location attribute l(m) representing a node where it is assigned.

Message Event Evolution Diagram

Figure 3.4 shows TCP based message event evolution diagram spanning applica-

tion, DaSSFNet protocol stack, and DaSSF simulation kernel. The starting point is

the application layer where a message is created and passed to TCP at simulation

time t. The application message is copied to the TCP send buffer. All instances

where message copying is instituted are highlighted in bold. A queued TCP message

is processed after a delay d1 determined by TCP and forwarded to the IP/NIC layer.

Another copy operation results when a frame message is created which is enqueued in

the IP/NIC output buffer. Queueing delay and transmission time are computed and

passed to the simulation kernel along with the frame message by writing to outChan-

nel of the network link1. This triggers creation of kernel event KEVT OUTCH that

is enqueued in the kernel event queue. These steps occur in zero simulation time.

KEVT OUTCH is dequeued at time t+d1 +d2 where d2 is the sum of queueing delay

1outChannel and inChannel are message interface classes defined as a part of SSF API.



27

and transmission time. If the receiving node is on the same network partition as the

sending node, KEVT OUTCH is transformed to inChannel event KEVT INCH that

is enqueued in the kernel event queue. KEVT OUTCH is deleted. When link latency

d3 has elapsed, KEVT INCH is dequeued and the frame message is popped up the

protocol stack at the receiving node. If the receiving node is on a different network

partition, KEVT OUTCH is mapped to an intermediate channel event that is held

at the machine simulating the sending node until the epoch barrier completes (i.e.,

MPI packs and transfers the channel event to the machine where the receiving node

is simulated). At the receiving machine the intermediate channel event is mapped to

KEVT INCH and enqueued in its kernel event queue with time stamp t+d1 +d2+d3.

UDP based message event evolution spanning application, DaSSFNet protocol

stack, and DaSSF simulation kernel is shown in Figure 3.5. The starting point is the

application layer where a message is created and passed to UDP at simulation time t.

The pointer of the application message is forwarded from UDP to the IP/NIC layer

of DaSSFNet. A frame message is created by copying the application message and

network protocol headers, and it is enqueued in the IP/NIC output buffer. Queueing

delay and transmission time are computed and passed to the simulation kernel along

with the frame message by writing to outChannel of the network link. The following

steps are analogous to that of TCP triggered frame messages.



28

App msg

delete App msg
(17) t+d1+d2+d3+d4,

NIC header IP header

KEVT_OUTCHKEVT_INCH

heap (dynamic)

pointer access

heap (static)

local variable

delete kernel event and frame msg
(13) return, t+d1+d2+d3,

Simulation Kernel (9) t+d1+d2, delete kernel event

received msg buf (per TCP session)(1) send(), t, copy

App buf

...size

APP

(3) t+d1

(14) t+d1+d2+d3+d4, d4 >= 0

size ...
size (768+sz), location (node j)

TCP msg

(10) t+d1+d2+d3

TCP

......

size (2*20+4+20), location (node i)

(6) t+d1

size (16), location (node i)
size (0), location (node j)

...
size (24+20), location (node j)

(12) t+d1+d2+d3, copy

. . .

size (40), location (node j)

(8) t+d1+d2, schedule kernel event

size (40), location (node i)

(7) t+d1

kernel event queue

size (0), location (node j)

(4) t+d1

(16) receive() returns,  t+d1+d2+d3+d4, copy

size (sz), location (node i)

(15) receive(), t’, t’ < t+d1+d2+d3+d4(2) send() returns,  t

(11) t+d1+d2+d3(5) t+d1, copy

TCP receive buf (per TCP session)

TCP header

TCP msg

App msg ...
size (24+2*20+20+2*MSS), location (node i)

size

. . .

size (sz+20), location (node i)

at the next IP/NIC enqueue event

(18) delete handle

IP/NIC buf (per−link)

IP/NIC msg

TCP send buf (per TCP−session)

TCP header sizeNIC headerframe

size (28+4+20+20+sz+4), location (node i)

...IP header

frame msg

when ack for the TCP msg is received

(19) delete App msg 

kernel event kernel eventframe msg frame msg

frame msg

TCP msg

App msg size (sz), location (node j)

App buf

App msg

App msg

...handle

App msg

App msg

IP/NIC

Figure 3.4. TCP based message event evolution and footprint spanning application layer, DaSSFNet protocol
stack, and DaSSF simulation kernel.



29

UDP msg

dynamic, heap

pointer access

static, heap

local var.

frame msg

UDP msg

UDP header App msg

NIC header IP header

...

kernel event frame msg . . .

size (40), location (node i)

KEVT_OUTCHkernel event frame msg . . .
KEVT_INCH

size (40), location (node j)

delete kernel event and frame msg
(11) return, t+d2+d3,

APP

(14) t+d2+d3,

delete App msg

App buf

UDP headerIP headerNIC headerframe

(12) receive(), t’, t’ < t+d2+d3

size (sz), location (node i)

UDP msg

IP/NIC msg

size (2*20+4+20), location (node i)

App msg

frame msg

size (28+4+20+20+sz), location (node i)

...

App msg

(1) send(), t

(2) t

(6) send() returns, t

(9) t+d2+d3

(10) t+d2+d3, copy

(13) receive() returns,

handle

(4) t

(3) t, copy

IP/NIC buf (per link)

UDP receive buf (per UDP session)

App msg App msg

App buf

  t+d2+d3, copy

size (24+2*20+20), location (node i)

size (16), location (node i) size (0), location (node j)

size (?+sz), location (node j)

size

size (sz), location (node j)

at the next IP/NIC enqueue event
(15) delete handle

(5) t

......
kernel event queue

(6) t+d2, schedule kernel event
(7) t+d2, delete kernel event

(8) t+d2+d3

size (0), location (node j)

Sim Kernel

IP/NIC

UDP

Figure 3.5. UDP based message event evolution and footprint spanning application layer, DaSSFNet protocol
stack, and DaSSF simulation kernel.



30

3.2.5 Demonstration of Memory Cost Estimation

We demonstrate memory consumption of message related events over time for

benchmark applications BGP, Internet worm propagation under local and global scan-

ning, and distributed client/server. A description of the benchmark applications is

given in Section 5.1.2. Figure 3.6(a) shows monitored memory consumption of mes-

sage related events of a BGP simulation from a 16-machine distributed simulation.

Message related events are aggregated over nodes assigned to the same machine. Fig-

ure 3.6(a) shows that memory consumption is variable reaching its peak at 1477.81 sec

wall clock time (90.0062 sec simulation time). Figure 3.6(b) demonstrates memory

consumption of message related events of a local worm propagation simulation. Fig-

ure 3.6(c) demonstrates memory consumption of message related events of a global

worm propagation simulation. Figure 3.6(d) demonstrates memory consumption of

message related events of a distributed client/server simulation.

Events are stacked (i.e., cumulative at a time instance). Memory consumption

is dominated by TCP send buffer queueing in BGP. The main memory-demanding

components in local worm propagation are ipnic-buf, frame, kevt-outch, and kevt-

inch message types. The main memory-demanding components in global worm prop-

agation are ipnic-buf, frame, and kevt-outch message types. The main memory-

demanding components in distributed client/server are app, tcp, tcp-snd-buf, tcp-

rcv-buf, and frame message types.

3.2.6 Measurement Accuracy and Overhead

Measurement Accuracy

Garbage collection issues make accurate memory cost estimation difficult. Fig-

ure 3.7 quantifies measurement accuracy of memory consumption monitoring for the

BGP simulation of Figure 3.6. In our measurement enhanced version of DaSSF we

use the malloc library (part of standard C library) to manage dynamic memory al-



31

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000

m
em

or
y 

us
ag

e 
(M

B
)

wall clock time (sec)

app
tcp

tcp-snd-buf
tcp-rcv-buf

ipnic
ipnic-buf

frame
kevt-outch

kevt-inch

(a) BGP

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

-200  0  200  400  600  800  1000 1200 1400

m
em

or
y 

us
ag

e 
(M

B
)

wall clock time (sec)

APP
UDP

UDP-RCV-BUF
IPNIC

IPNIC-BUF
FRAME

KEVT-OUTCH
KEVT-INCH

(b) Worm local

 0

 2

 4

 6

 8

 10

 12

 14

 16

1400120010008006004002000

m
em

or
y 

us
ag

e 
(M

B
)

wall clock time (sec)

app
udp

udp-rcv-buf
ipnic

ipnic-buf
frame

kevt-outch
kevt-inch

(c) Worm global

 0

 20

 40

 60

 80

 100

 120

1400120010008006004002000

m
em

or
y 

us
ag

e 
(M

B
)

wall clock time (sec)

app
tcp

tcp-snd-buf
tcp-rcv-buf

ipnic
ipnic-buf

frame
kevt-outch
kevt-inch

(d) Distributed client/server

Figure 3.6. Dynamic monitoring of message related events. (a) tcp-
snd-buf dominates peak memory usage. (b) ipnic-buf, frame, kevt-
outch, and kevt-inch dominate peak memory usage. (c) ipnic-buf,
frame, and kevt-outch dominate peak memory usage. (d) app, tcp,
tcp-snd-buf, tcp-rcv-buf, and frame dominate peak memory usage.

location and deallocation. We disable DaSSF’s support of the Hoard multiprocessor

memory allocator [66] and memory-pool mechanism for optimizing memory alloca-

tion and deallocation speed. In Figure 3.7 “in-use” indicates memory used by a user

process. The gap between our estimation and in-use represents memory that is not



32

tracked as part of the message event evolution diagrams (i.e., BGP, TCP, and UDP).

The gap tends to be small, in this instance, less than 5.2%. /proc specifies total

memory that malloc has allocated. The gap between in-use and /proc arises when

deallocation calls are made which do not necessarily result in actual garbage collec-

tion due to malloc’s internal memory pool management. The gap between the two

is not small and variable. Since at time instances of maximum memory usage they

coincide, impact on memory estimation and balancing is limited.

 0

 100

 200

 300

 400

 500

 600

 0  1000  2000  3000  4000

m
em

or
y 

us
ag

e 
(M

B
)

wall clock time (sec)

/proc
in-use via malloc()

our estimation

Figure 3.7. Measurement subsystem memory monitoring accuracy.

Measurement Overhead

Figure 3.8(a) quantifies measurement overhead with respect to memory consump-

tion monitoring for the BGP simulation of Figure 3.6. The two curves show measured

memory usage with and without measurement overhead needed to maintain per-node

memory, computation, and communication load. Overhead is small due to constant

per-node space needed of memory cost and computation cost. The same goes for com-

munication cost which requires constant memory per link. In power-law measurement



33

topologies the number of links is about 2–3 times the number of nodes. Figure 3.8(b)

summarizes measurement subsystem’s monitoring overhead with respect to memory

usage and completion time at each participating machine from the same BGP simu-

lation. The memory overhead is about 5% across all machines, but the computation

overhead is about 30% across all machines. The non-trivial computation overhead

is due to detailed per-epoch computation and communication/synchronization cost

measurement. It can be turned off for memory and CPU balancing purposes.



34

 0

 100

 200

 300

 400

 500

 600

 0  1000  2000  3000  4000

m
em

or
y 

us
ag

e 
(M

B
)

wall clock time (sec)

w/ measurement overhead
w/o measurement overhead

(a)

 0

 10

 20

 30

 40

 50

 60

 16  15  14  13  12  11  10  9  8  7  6  5  4  3  2  1 

ov
er

he
ad

 (
%

)

machine ID

memory overhead
comp overhead

(b)

Figure 3.8. (a) Measurement subsystem memory monitoring over-
head. (b) Measurement subsystem monitoring overhead with respect
to memory usage and completion time at each participating machine.



35

4 MEMORY BALANCING PROBLEM

4.1 Space Efficiency in Per-partition Memory Cost Estimation

4.1.1 Per-node Memory Cost Estimation

Computation cost in network simulation is dominated by messages, being propor-

tional to the total number of messages processed over the course of a simulation. If

processing cost varies significantly between message types, weighting may be neces-

sary to arrive at normalized cost. The processing cost, Ci, associated with a single

node i—for sending, receiving, and processing messages—is proportional to the sum

of all messages Xi(t) processed at the node over time, Ci =
∑

t Xi(t), which requires

constant space to record. The memory cost, Mi, of node i depends on the maximum

number of messages over time, Mi = maxt Xi(t), which can significantly differ from

the total Ci. If the memory footprint of different message types varies, weighting is

necessary for accurate accounting. All else being equal, we expect Mi to be superior

for memory balancing while Ci is expected to favor CPU balancing.

4.1.2 Per-partition Memory Cost Estimation

An additional issue that arises in the case of maximum cost metric, but not total

cost metric, is when network partitioning based on Mi provided by the measurement

subsystem is carried out. Suppose that a partitioning algorithm A which receives

M1, . . . , Mn as node weight input assigns two nodes i and j to the same partition

based on their sum Mi + Mj. The problem with doing so is that although their

individual memory peaks are Mi and Mj , their collective memory footprint is given

by maxt{Xi(t)+Xj(t)} which need not equal maxt Xi(t)+maxt Xj(t). This is depicted

in Figure 4.1 for memory consumption dynamics of two nodes in a worm propagation



36

 0

 0.2

 0.4

 0.6

 0.8

 0  20  40  60  80  100  120  140  160

wall clock time (sec)

sum-of-max
max-of-sum

sum

 0

 0.2

 0.4

 0.6

 0.8

m
em

or
y 

(M
B

)

node j

 0

 0.2

 0.4

 0.6

 0.8

node i

Figure 4.1. Network partitioning: sum-of-max vs. max-of-sum problem.

simulation where their memory peaks are not synchronized—both wall clock and

simulation time—leading to significant overestimation of sum-of-max over max-of-

sum. This problem does not arise for the total cost metric due to its closure property.

The sum-of-max vs. max-of-sum problem cannot be addressed by logging per-node

time series of memory consumption due to prohibitive space complexity (i.e., O(nT )

where T is simulation time). We use Mi as input to partitioning algorithms to evaluate

memory and CPU balancing performance and compare it against Ci. In Section 4.1.4

we explain why Mi is effective despite the sum-of-max overestimation problem.

4.1.3 Relative Memory Balancing

As illustrated in the sum-of-max overestimation problem shown in Figure 4.1,

accurate estimation of per-partition memory cost—the max-of-sum, which we name

absolute memory cost estimation—is inherently difficult. In this dissertation, we pro-

pose relative memory balancing, where we aim to balance the sum-of-max across all



37

machines. In the case of relative memory balancing, absolute memory cost estimation

is not necessary. Although sum-of-max does not achieve absolute memory cost esti-

mation, performance results in Chapter 5 show that it is sufficient to achieve balancing

of per-partition memory cost. Figure 4.2 compares sum-of-max (our estimation) and

max-of-sum (actual memory usage) as a function of machine ID for worm local simu-

lation with 21460-node topology using 10 machines. We observe that relative memory

balancing is able to approximate the performance of absolute memory balancing. We

describe relative memory balancing with Mi in Section 4.1.4.

 0

 500

 1000

 1500

 2000

 1  2  3  4  5  6  7  8  9  10

m
em

or
y 

us
ag

e 
(M

B
)

machine id

our estimation
actual usage

Figure 4.2. The sum-of-max (our estimation) and max-of-sum (actual
memory usage) as a function of machine ID for worm local simulation
with 21460-node topology using 10 machines.

4.1.4 Effect of Scale

In Section 4.1.2 we described the sum-of-max vs. max-of-sum problem where the

maximum memory metric can significantly overestimate actual memory load during

partitioning. Despite the fact that the total cost metric does not have this problem

due to its closure property, performance results presented in Chapter 5 show that



38

the maximum cost metric, overall, outperforms the total cost metric with respect to

memory balancing. This is due to two factors.

First, in large-scale network simulation where the number of nodes n is large, the

law of large numbers helps mitigate the sum-of-max overestimation problem by aver-

aging out the time instances where individual nodes reach peak memory. Figure 4.3

quantifies this effect by showing the correlation coefficient between the sum-of-max

and the max-of-sum across machines as problem size is increased from 300 to 3213 for

worm global in random graphs. The number of partitions is held constant at 24 (i.e.,

24 machines participate in distributed simulation). This demonstrates the increasing

prowess of sum-of-max in predicting actual memory consumption (i.e., max-of-sum)

across machines as n is increased. To highlight the law of large number effect, we

use random graphs of the same edge density as power-law Internet measurement

graphs where all nodes have approximately similar degrees. This removes complica-

tions introduced by high-degree nodes in power-law graphs whose memory peaks are

significantly higher than other nodes (the “elephants and mice” feature).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

321320201020300

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

problem size

Figure 4.3. Correlation between sum-of-max and max-of-sum balanc-
ing as a function of problem size in random graphs.



39

The second factor is the increased role of table memory in large problem instances.

In worm local, per-node route table size is fixed (in BGP table sizes are variable),

and in the absence of table memory reduction optimization per-node table memory

grows linearly in n. Figure 4.4 shows per-node cumulative Mi load distribution as

a function of node rank—nodes are ranked by their degree with rank 1 indicating a

node with the largest number of neighbors—for a worm local simulation. The abscissa

is shown in log-scale to highlight the load values of high-degree nodes. We observe

that per-node message memory is about twice that of table memory. Although this

is true on a per-node basis, when multiple nodes are mapped to a common partition

the sum-of-max overestimation problem kicks in which reduces their actual collective

message memory footprint.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

cu
m

ul
at

iv
e

node rank (deg)

max
message

table

Figure 4.4. Per-node cumulative Mi load distribution: worm local.

As shown in Figure 4.5, the per-partition make-up of message vs. table memory of

Figure 4.4 is about half-half. This dampens node load skewness during partitioning

which is conducive to easier memory balancing1.

1If table memory were dominant, memory balancing would be trivial since all nodes would have
approximately equal weight.



40

 0

 20

 40

 60

 80

 100

 120

 140

121110987654321

m
em

or
y 

us
ag

e 
(M

B
)

machine id

max
message

table

Figure 4.5. Per-partition make-up of message vs. table memory: worm local.

4.2 Impact of Power-law Connectivity on Memory Balancing

4.2.1 Overview of Metis’s Multilevel Recursive Partitioning

Metis [47] takes a graph G = (V, E) and the number of partitions k as in-

put. Weights on nodes and weights on edges can be given optionally. The default

weight of each node and each edge is set 1. Metis generates a network partitioning

f : V → [1..k], where it tries to balance the sum of node weights in each parti-

tion over partitions and minimize weighted edgecut. METIS WPartGraphKway() im-

plements the multilevel graph partitioning described in [21] which consists of three

phases—coarsening, initial partitioning, and uncoarsening/refinement. Metis pro-

vides multiple algorithms for coarsening and uncoarsening/refinement phases. We

use the default algorithm for each phase—Sorted Heavy-Edge Matching (SHEM) for

coarsening and random boundary refinement that also minimizes the connectivity

among the subdomains for uncoarsening/refinement.

First, the coarsening phase consists of multiple levels. At each level, a smaller

scale graph G′′ = (V ′′, E ′′) is generated from an input graph G′ = (V ′, E ′) by finding



41

a maximal matching, where a node is matched to an unmatched node with heavier

edge. At the first level, G′ = G. This phase ends when (a) the size of the smaller

scale graph is below a certain number of nodes, (b) a maximal matching fails to

reduce the size of the input graph effectively more than a certain percentage, or (c)

the smaller scale graph is too sparse, not having enough edges to use for finding a

maximal matching at the next level.

Second, the initial partitioning phase takes the smallest-scale graph generated

by the coarsening phase G∗ = (V ∗, E∗) and the number of partitions k as input.

It outputs a network partitioning f : V ∗ → [1..k]. It uses the multilevel recursive

bisection described in [20], bisecting the input graph—splitting the input graph into

two—until the total number of partitions reaches k. In each bisection, additional

coarsening, initial two-way partitioning, and uncoarsening/refinement algorithms are

applied.

Third, the uncoarsening/refinement phase consists of multiple levels. At each

level, a smaller-scale graph G′′ is projected to the next level finer graph G′. Then,

a randomized boundary refinement algorithm, that reduces the connectivity among

partitions, is performed. An important role of this phase is balancing per-partition

sum of node weights. This phase ends when the given graph is projected back to the

original graph (i.e., G′ = G).

4.2.2 Benchmark-based Memory Balancing

In a typical scenario, a user runs a partitioning algorithm A whose input is a

graph G = (V, E), a vector of node weights WV , a vector of edge weights WE , and the

number of partitions k. The output is a function f : V → [1..k], mapping each node

in V to a partition ID, where the sum of node weights in each partition is balanced

across partitions.

In our approach, we need an additional benchmark-based cost estimation step,

where we estimate WV and WE using a benchmark simulation run. Note that we set



42

all edge weights 1, unless otherwise stated. First, we run a partitioning algorithm

A inputting a graph G = (V, E), a vector of node weights whose elements are all 1,

and the number of partitions k. We call the output function the initial partitioning.

Next, we run a benchmark simulation, where nodes are mapped to partitions with

respect to the initial partitioning. At the end of a simulation, we obtain per-node

memory cost Mi and per-node CPU cost Ci. For memory balancing, we provide

Mi to the partitioning algorithm A as WV . For CPU balancing, we give Ci to the

partitioning algorithm A as input. Per-node memory cost Mi and per-node CPU cost

Ci are logical costs that do not depend on partitioning; hence a uniform weight vector

for the initial partitioning suffices. Figure 4.6 illustrates the memory load balancing

procedure which includes the benchmark-based per-node cost estimation step.

Figure 4.6. Memory load balancing procedure which includes the
benchmark-based cost estimation step.

A drawback of our benchmark-based cost estimation is that the completion time

of a benchmark simulation run can be significant. A given simulation scenario may

require significant computation inherently, or CPU load imbalance may delay the

overall simulation completion. In some cases, memory load imbalance may cause the

benchmark simulation to crash before its completion—if VM paging is disabled—or

to run prohibitively long if VM paging is enabled and trashing occurs.



43

We resolve this issue by showing that per-node memory cost Mi and per-node

CPU cost Ci obtained from a partial run are still effective in memory balancing

and CPU balancing, respectively. In particular, in the cases when thrashing occurs

during the benchmark simulation run due to memory load imbalance, we show that

node weights measured at the starting point of thrashing suffice for effective memory

and CPU balancing.

4.2.3 Impact of Power-law Connectivity

Power-law networks have a distinct connectivity structure where a few high de-

gree nodes are connected to many low-degree nodes and many low-degree nodes are

connected to a few high degree nodes resulting in a power-law relation between the

degree and frequency of nodes of that degree: Pr{deg(u) = k} ∝ k−β . Figure 4.7

shows examples of power-law network and random network. Figure 4.7 left shows a

300-node subgraph of the 3023-node Internet AS topology dated on 1997/11/08 based

on RouteViews/NLANR measurement data [23]. Figure 4.7 right shows a random

network which has the same number of nodes and the same number of edges as the

power-law network.

Figure 4.7. Power-law network vs. random network.



44

The problem of partitioning a power-law network with balancing per-partition

total weight is difficult because of the skewness of per-node memory and CPU cost

distributions. The per-node CPU cost at high degree nodes is higher than that of low

degree nodes since high degree nodes tend to process forwarded messages for many

neighboring low degree nodes. Hence, messages are queued at high degree nodes, and

it causes the per-node memory cost at high degree nodes to be higher than that of low

degree nodes. Figure 4.8(a) shows an example of per-node memory cost as a function

of nodes ranked by their degree from a BGP simulation of an AS topology with 6582

nodes. The abscissa is shown in log-scale to highlight high-degree nodes. We observe

a high skew in per-node memory cost distribution. Figure 4.8(b) shows an example

of per-node CPU cost as a function of nodes ranked by their degree from the same

BGP simulation. The abscissa is shown in log-scale to highlight high-degree nodes.

We observe a high skew in per-node CPU cost distribution as well.

4.2.4 Custom Network Partitioning

In selecting a network partitioning algorithm, we first devised a heuristic power-

law network partitioning algorithm, which targets power-law networks and focuses

on balancing per-partition sum of node weights without specific consideration for

minimizing edgecut.

Our heuristic consists of three parts: power-law balancing, post-processing, and

refinement. The power-law balancing algorithm takes as input a network topology

G = (V, E), per-node cost estimation Wv, and the number of partitions k. It outputs

a partitioning instance, mapping each node into a partition ID in the range [1..k].

The power-law balancing algorithm tries to balance the sum of node weights across

partitions, placing a node with heaviest weight into a partition with the least sum

of node weights. In power-law networks, per-node memory or CPU cost distribution

tends to exhibit high skewness as a consequence of the underlying topology’s con-

nectivity structure. Hence, a key element of the heuristic is to distribute high-degree



45

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1  10  100  1000  10000

no
de

 w
ei

gh
t (

M
B

)

nodes ranked by degree

(a)

 0

 50000

 100000

 150000

 200000

 250000

 1  10  100  1000  10000

no
de

 w
ei

gh
t (

co
un

t)

nodes ranked by degree

(b)

Figure 4.8. (a) Per-node memory cost skew from a BGP simulation of
an AS topology with 6582 nodes. (b) Per-node CPU cost skew from
a BGP simulation of an AS topology with 6582 nodes.

nodes evenly across the partitions, reducing the chance of putting heavy-weight nodes

into the same partition to the extent possible. Figure 4.9 shows a pseudo code of the

algorithm.



46

powerlaw-balancing

Input: G=(V,E), Wv, k

Output: f:V → [1..k]

Algorithm:

⊲ Sort each node i by its weight in non-increasing order

⊲ Initialize each machine j’s sum of node weights

j.sumweight← 0;

⊲ Put each machine j into a min priority queue (PQ) w.r.t. j.sumweight

⊲ Visit each node i in sorted order starting from the highest

j ← PQ.get();

j.sumweight += i.weight;

i.part = j;

PQ.put(j);

Figure 4.9. Pseudo code of the power-law balancing algorithm.

We have seen cases where memory balancing with the Mi cost metric achieves

balanced memory usage overall, but there is a partition with non-negligible higher

memory usage than others. In the cases we have seen, such a partition contains heavy-

weight nodes as well as light-weight nodes. Under our per-partition cost estimation,

the case of a partition containing a node with heavy-weight w and the case of a

partition containing many light-weight nodes where the sum of node weights is w are

not distinguishable. The problem here is that when there are two such partitions—

one containing a heavy-weight node and the other containing light-weight nodes equal

total weight, the actual per-partition memory load is not balanced.

Targeting such cases, we devised a post-processing algorithm to improve memory

balancing by redistributing light-weight nodes at overloaded machines with respect

to peak memory usage measurement onto underloaded machines. Figure 4.10 shows a

pseudo code of the post-processing algorithm. It takes a network topology G = (V, E),

the number of partitions k, the network partitioning f , per-node memory cost Mi,



47

post-processing

Input: G=(V,E), k, f:V→[1..k], Mi, per-machine peak memory usage, threshold

Output: f’:V → [1..k]

Algorithm:

⊲ Set node i’s partitioning assignment i.part using the input f

⊲ Set machine j’s peak memory usage j.memusage using the input

⊲ Classify each node into big or small using the input threshold

if i.weight > threshold then i.class ← big;

else i.class ← small;

⊲ Calculate per-machine average weight of small nodes in each machine

⊲ Assign each node i the average node weight

if i.class == small then i.avgweight← i.part.avgweight;

else i.avgweight ← 0;

⊲ Sort each node i by its average weight in non-increasing order

⊲ Put each machine j into a min priority queue (PQ) w.r.t. j.memusage

⊲ Classify each machine into overloaded or underloaded w.r.t. average usage

if j.memusage > avgmemusage then j.overloaded ← true

else j.overloaded← false

⊲ Visit each node i in sorted order starting from the highest

if i.class == big then do nothing;

else if i.class == small and i.part.overloaded == false then do nothing;

else

j ← PQ.get();

j.memusage += i.avgweight;

i.part.memusage -= i.avgweight;

PQ.put(j);

PQ.put(i.part);

Figure 4.10. Pseudo code of the post-processing algorithm.



48

per-machine peak memory usage, and a threshold to classify nodes into heavy-weight

nodes and light-weight nodes. It outputs another network partitioning instance f ′.

The algorithm first loads the given partitioning assignment for each node and peak

memory usage for each machine. It classifies each node into a heavy (big) one or a

light (small) one. It calculates the average weight of light nodes in each partition,

and assign each node the average weight; in the cases of heavy nodes, 0 is assigned.

Then visiting each light node in sorted order from the heaviest average weight, the

algorithm moves a node into a machine with the least memory usage. If the currently

visited node is not in an overloaded machine, the node is skipped.

When designing the power-law balancing algorithm and post-processing algorithm,

we focused only on node weights, ignoring connectivity information between nodes.

As a result, a degree-1 node may be located in a partition different from the parti-

tion where its neighboring node is located. In this case, messages between the two

nodes have to travel across different partitions. Inter-partition communication results

in network communication which incurs higher overhead and delay. We designed a

refinement algorithm, which is aimed at reducing inter-partition communication with-

out negatively affecting memory balancing. Figure 4.2.4 presents a pseudo code of

the refinement algorithm. It takes a network topology G = (V, E), the number of

partitions k, and the network partitioning f . It outputs another network partitioning

instance f ′. Two matrices A[ ][ ] and B[ ][ ] are used. A[i][j] stores the number of

degree-1 nodes at machine i such that one of its neighboring nodes exists at machine

j. B[i][j] stores the number of degree-1 nodes to be exchanged between i and j as

a result of this algorithm. The algorithm first initializes A[ ][ ], visiting each node.

Traversing A[ ][ ], the algorithm fills in B[ ][ ], such that B[i][j] contains the mini-

mum of A[i][j] and A[j][i]. Lastly, the algorithm exchanges B[i][j] number of degree-1

nodes between i and j, traversing B[i][j]. Assuming that weights of degree-1 nodes

are uniform, we try to maintain per-partition sum of node weights the same before

and after the refinement algorithm.



49

refinement-deg1

Input: G=(V,E), k, f:V←[1..k]

Output: f’:V → [1..k]

Data structure: A[1..k][1..k], B[1..k][1..k]

Algorithm:

⊲ Visiting each node i, fill A[1..k][1..k]

if i.deg == 1 and i.part != i.adj.part then A[i.part][i.adj.part]++;

else do nothing;

⊲ Traverse A[1..k][1..k], fill B[1..k][1..k] such that

B[i][j] ← min(A[i][j],A[j][i]);

⊲ Traversing B[1..k][1..k],

exchange B[i][j] number of degree-1 nodes between i and j;

Figure 4.11. Pseudo code of the refinement algorithm.

4.2.5 Issues with Metis’s Memory Balancing

In this section, we describe Metis’s problems in its implementation which affect

memory balancing performance. After fixing the problems, Metis produces compara-

ble memory balancing performance to our power-law network partitioning algorithm.

1. Problem in the uniform (“1”) node weight case: EliminateComponents(),

called during the uncoarsening/refinement phase, tries to reduce the number

of connected components within each partition by moving nodes to other par-

titions. When the function tries to move a node to another partition, it makes

sure that the resulting sum of node weights at the other partition does not ex-

ceed a certain limit. However, if a node’s weight is less than delta, which is set

to 5, the node is allowed to be moved even though the resulting sum of node

weights at the other partition exceeds the given limit.

This is an issue in the case of our initial partitioning which uses the uniform

(“1”) node weight, and the problem is more prevalent and severe in power-



50

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25

su
m

 o
f 

no
de

 w
ei

gh
ts

machine id

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25

su
m

 o
f 

no
de

 w
ei

gh
ts

machine id

(b)

Figure 4.12. Worm global simulation of 4512-node topology with
k=24. The uniform (“1”) node weights are used for network par-
titioning. (a) Before fixing the problem. (b) After fixing the problem.

law networks than random networks, since many nodes are low degree and it is

common for low-degree nodes to be located at a different partition from those of

their neighboring high-degree nodes. Hence, we removed the delta mechanism.

Figure 4.12 demonstrates this problem using a worm global simulation of 4512-

node AS topology with k=24. Figure 4.12(a) shows per-partition sum of node

weights as a function of machine ID before fixing the problem. Figure 4.12(b)

shows the result after fixing the problem. We observe that the imbalance at

machine 8 and machine 9 in Figure 4.12(a) is smoothed out in Figure 4.12(b).

2. Problem in balancing per-partition sum of node weights during the uncoarsen-

ing/refinement phase: We found that the uncoarsening/refinement phase does

not balance per-partition sum of node weights as well as our power-law network

balancing algorithm. We tracked down two sources of this problem. The first

is in a programming optimization while implementing a main balancing condi-

tion in Random KWayEdgeRefineMConn(). The second is a programming error

in MoveGroupMConn(). Both of them are minor problems, but the impact to



51

memory balancing is significant. Figure 4.13 demonstrates this problem using

a worm global simulation of 4512-node AS topology with k=24. Figure 4.13(a)

shows per-partition sum of node weights as a function of machine ID before

fixing this problem. Figure 4.13(b) shows the result after fixing the problem.

We observe that the peak at machine 5 in Figure 4.13(a) is smoothed out in

Figure 4.13(b).

3. Starvation problem: We have frequently encountered cases where some ma-

chine has few nodes assigned to it and the sum of node weights is negligi-

ble. We say such partitions have a “starvation problem”. Figure 4.13(b) has

the starvation problem at machine 4. The starvation problem occurs during

the initial partitioning phase, more precisely the initial two-way partitioning

(GrowBisection() phase).

GrowBisection() takes a graph and produces a bisection using a region growing

algorithm. It first puts all nodes in one partition, moves a randomly-selected

node into the other partition, and does breath-first-search (BFS) starting from

the randomly-selected node trying to move each visited node into the other

partition. A node is allowed to be moved if the resulting sum of node weights

at the initial partition remains above a certain limit. Metis tries to improve

completion time by stopping BFS if a trial of moving a node fails.

This becomes a problem in the case when a star topology is given as input

to GrowBisection(). In power-law networks, the high-degree center nodes of

star-like clusters generally are heavy-weight whereas low-degree nodes are light-

weight. Let us consider a case when a center node’s weight is around half of

the total weight of all nodes in a given star topology. When the center node is

visited after visiting a low-degree node, the trial of moving the center node may

fail. Due to Metis’s optimization BFS stops even though the total weights of the

two partitions are not balanced yet. Hence we removed this feature from Metis.



52

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  5  10  15  20  25

su
m

 o
f 

no
de

 w
ei

gh
ts

machine id

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  5  10  15  20  25

su
m

 o
f 

no
de

 w
ei

gh
ts

machine id

(b)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  5  10  15  20  25

su
m

 o
f 

no
de

 w
ei

gh
ts

machine id

(c)

Figure 4.13. Worm global simulation of 4512-node AS topology with
k=24. Per-node memory cost estimation is used for network parti-
tioning. (a) Before fixing the problem in balancing per-partition sum
of node weights during the uncoarsening and refinement phase. (b)
After fixing problem in balancing per-partition sum of node weights
during the uncoarsening and refinement phase. (c) After fixing star-
vation problem during the initial partitioning phase.

Figure 4.13(c) shows the result after removing this feature where starvation is

gone.



53

4.2.6 Memory and CPU Balancing Performance of Metis

Although per-node memory and CPU costs exhibit high skews as shown in Fig-

ure 4.8, the multilevel recursive partitioning of Metis produces good memory and

CPU balancing performance with our accurate and efficient cost estimation as input.

Figure 4.14 shows memory balancing performance with Metis for a BGP simulation

of an AS topology with 6582 nodes using 16 PCs. Figure 4.14(a) shows per-partition

total weight distribution, an output of Metis. Figure 4.14(b) shows run-time measure-

ment of per-partition memory cost. Figure 4.15 shows CPU balancing performance

with Metis for a BGP simulation of an AS topology with 6582 nodes using 16 PCs.

Figure 4.15(a) shows per-partition total weight distribution, an output of Metis. Fig-

ure 4.15(b) shows run-time measuremnt of per-partition CPU cost.

How does the multilevel recursive partitioning of Metis achieve good memory

and CPU balancing? Recall that large-scale Internet measurement topologies with

power-law connectivity skews produce a few severely unequal size objects (elephants),

(elephants)—which work against balancing—and many small objects (mice) that work

in favor of balancing. With our node weights as input, Metis is able to spread out the

high-degree nodes across the machines. Figure 4.16 shows the details of partitioning

assignment plotting machine ID as a function of nodes ranked by degree. The abscissa

is shown in log-scale to highlight high-degree nodes. We observe that high-degree

nodes are balanced across machines.

In the case of many small nodes, we established in Section 4.1.4 that small nodes

can achieve relative memory balancing in large-scale network simulation. Since the

memory cost estimate of a single high degree node is accurate and many small degree

nodes can fill in the gap effectively, combined memory balancing of high- and low-

degree nodes achieves relative memory balancing. Note that our custom network

partitioning algorithm is based on this property.



54

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  2  4  6  8  10  12  14  16

su
m

 o
f 

no
de

 w
ei

gh
ts

 (
M

B
)

machine id

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  2  4  6  8  10  12  14  16

m
em

or
y 

us
ag

e 
(M

B
)

machine id

(b)

Figure 4.14. Memory balancing performance with Metis for a BGP
simulation of an AS topology with 6582 nodes using 16 PCs. (a)
Output of Metis. (b) Run-time measurement.



55

 0

 50000

 100000

 150000

 200000

 250000

 0  2  4  6  8  10  12  14  16

su
m

 o
f 

no
de

 w
ei

gh
ts

 (
co

un
t)

machine id

(a)

 0

 50

 100

 150

 200

 250

 0  2  4  6  8  10  12  14  16

co
un

t (
x1

06 )

machine id

(b)

Figure 4.15. CPU balancing performance with Metis for a BGP sim-
ulation of an AS topology with 6582 nodes using 16 PCs. (a) Output
of Metis. (b) Run-time measurement.



56

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1  10  100  1000  10000

m
ac

hi
ne

 id

nodes ranked by degree

Figure 4.16. Partitioning assignment: machine ID as a function of
nodes ranked by degree.



57

5 MEMORY BALANCING PERFORMANCE

In this chapter, we investigate memory balancing performance for large-scale network

simulation which admits solutions for memory estimation and balancing not availed

to small-scale or discrete-event simulation in general. First, we evaluate basic mem-

ory balancing performance under the maximum cost metric with comparison to the

uniform and total cost metrics, and we establish a trade-off between memory and

CPU balancing under the maximum and total cost metrics. Second, we show that

joint memory-CPU balancing can overcome the performance trade-off—in general not

feasible due to constraint conflicts—which stems from network simulation having a

tendency to induce correlation between maximum and total cost metrics. We note

that the impact of VM paging is not considered in this performance evaluation. We

present memory balancing performance with VM paging in Chapter 6.

5.1 Experimental Set-up

5.1.1 Distributed Simulation Environment

We use a modified version of DaSSFNet as our distributed network simulation

environment. DaSSF (Dartmouth SSF) [17] is a realization of SSF [41] written in

C++ that is well suited for distributed simulation over PC clusters. DaSSFNet is

an extension of DaSSF that implements a network stack and user API over its sim-

ulation kernel. The main modification we have added is a measurement subsystem

that keeps track of dynamic simulation events spanning memory, computation, and

communication both inside the simulation kernel and in the protocol stack outside

the kernel. Distributed synchronization across network partitions is effected through

a barrier mechanism that occurs at fixed time granularity (i.e., epoch)—the minimum



58

link latency of inter-partition links—which assures causal ordering of distributed sim-

ulation events [64, 65]. To focus on memory and CPU balancing, we set link latency

to a uniform value which limits dependence of synchronization cost with respect to

lookahead on network partitioning. Distributed coordination is implemented over

MPI. Synchronization of distributed simulation events logged by the measurement

subsystem is achieved through the shared simulation time which acts as a global

clock.

5.1.2 Benchmark Applications and Network Models

We consider benchmark applications with varying traffic characteristics—BGP,

worm propagation under local (i.e., topological) and global scanning, and distributed

client/server system—that engage different aspects of the DaSSFNet protocol stack.

BGP is a port of the Java SSF implementation of BGP-4 with both hash and trie

based route table support. In BGP simulations ASes are treated as BGP router nodes.

Worm propagation simulation is done at host IP granularity where IP addresses are

mapped to individual ASes. Thus the higher the number of infected hosts at an AS,

the higher the collective scan rate of the AS. The distributed client/server system

assigns file server nodes to transit ASes that are accessed by clients at stub ASes. File

servers possess heavy-tailed file sizes (Pareto with tail index 1.35) [67] that induce self-

similar burstiness of aggregated traffic [68]. Session arrivals at a client are Poisson.

BGP and distributed client/server system run over TCP whereas local and global

worm propagation use UDP.

5.1.3 Network Topology

We use RouteViews/NLANR Internet autonomous system topologies [23] as our

default benchmark network graphs. Problem size refers to the number of nodes in

the network graphs. Table 5.1 shows a summary of network topologies used for our



59

performance evaluation specifying the date of measurement, the number of nodes,

and the number of edges.

Table 5.1
Summary of network topologies used in performance evaluation.

date (yyyy/mm/dd) nodes edges

1999/01/11 4512 8383

1999/09/01 5663 10898

2000/01/14 6582 13194

2001/01/01 8063 16520

2001/02/03 9068 18233

2001/07/19 11555 24231

2002/01/01 12514 26030

2002/07/01 13532 28082

2003/01/01 14577 30046

2003/06/01 15465 34874

2004/02/24 16921 36767

2004/03/20 17243 37411

2004/08/01 18036 38934

2005/01/01 18960 40782

2006/01/01 21460 45712

2008/03/01 27738 57098

5.1.4 Hardware and OS Set-up

The PC cluster used in benchmark experiments consists of 32 Intel x86 PCs run-

ning Linux 2.4.x and 2.6.x. Ten are Pentium 4, 2 GHz machines with 1 GB memory,

six are 2.4 GHz with 1 GB memory, and six are 2.53 GHz with 1 GB memory. Five

machines are Pentium 2.4 GHz with 2 GB memory and five are Xeon 2.4 GHz with



60

4 GB memory. L1 cache is 8 KB on all machines, and L2 cache is 512 KB except

on the ten 2 GHz machines where it is 256 KB. Table 5.2 and Table 5.3 show CPU

and memory configuration of the testbed machines. When comparing CPU balancing

performance across different partitions processor speed can become a factor. Testing

has shown that the 16 2.4 GHz machines yield approximately similar and predictable

performance. They are used for CPU balancing comparisons. The PCs form a dedi-

cated testbed connected by 2 GigE and 2 FE switches shown in Figure 5.1. Network

congestion is not an issue, i.e., there are no packet drops and end-to-end latency is in

the sub-millisecond range.

Table 5.2
CPU configuration of 32 participating machines.

host name CPU model name clock speed L2 cache L1 cache

6 dpf Intel(R) Pentium(R) 4 2524MHz 512KB 8KB

10 infopod Intel(R) Pentium(R) 4 1993MHz 256KB 8KB

5 4GB-mem greeks Intel(R) Xeon(TM) 2392MHz 512KB 8KB

5 2GB-mem greeks Intel(R) Pentium(R) 4 2391MHz 512KB 8KB

6 others Intel(R) Pentium(R) 4 2391, 2399MHz 512KB 8KB

Table 5.3
Memory configuration of 32 participating machines.

host name RAM size total avail. mem VM paging

6 dpf 1GB 1008MB off

10 infopod 1GB 1009MB off

5 4GB-mem greeks 4GB 3539MB off

5 2GB-mem greeks 2GB 2021MB off

6 others 1GB 1009–1012MB off



61

100Mbps 100Mbps

100Mbps100Mbps

1000Mbps

1000Mbps

6 dpfs

10 greeks & 6 others

10 infopods

Switch 4−28

Switch bb−27

Switch 3−28Switch 2−28

Figure 5.1. Network configuration of 32 participating machines.

5.2 Memory Load Balancing

In this section, we evaluate the basic features and performance traits of memory-

centric load balancing.

5.2.1 Performance Results

Figure 5.2 compares memory balancing performance with respect to memory usage

between Mi (max) and Ci (total) for the BGP, worm, and client/server benchmark

applications for a range of problem sizes. Memory usage is with respect to the max-

imum across all machines. We give M1, . . . , Mn or C1, . . . , Cn as node weight input

to Metis which tries to find a k-way partitioning that minimizes edge cut while bal-

ancing node weight across the k partitions. As a reference point, we include memory

balancing under uniform node weight in which premium is assigned to reducing edge

cut.

We use up to 32 machines (i.e., k ≤ 32) in the distributed simulations, with 32

machines used for the largest problem instances. Figure 5.2 shows that, overall, Mi

outperforms Ci with the magnitude of the gap depending on benchmark application



62

 0

 500

 1000

 1500

 2000

 2500

 3000

150001000050000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

uniform

total

max

(a) BGP

 0

 200

 400

 600

 800

 1000

 1200

 0  5000  10000  15000  20000  25000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

uniform

total

max

(b) Worm local

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  5000  10000  15000  20000  25000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

uniform

total

max

(c) Worm global

 0

 200

 400

 600

 800

 1000

 1200

 0  5000  10000  15000  20000  25000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

uniform

total

max

(d) Distributed client/server

Figure 5.2. Memory balancing performance of Mi (max), Ci (total),
and uniform cost metrics as a function of problem size for different
benchmark applications.

and problem size. Worm local and distributed client/server show the biggest gaps with

BGP and worm global exhibiting marginal difference between maximum and total

cost metrics. We also find that Ci can lead to memory imbalance that is significantly

worse than the uniform cost metric (cf. Figure 5.2(b)).



63

5.2.2 Effect of Topology and Application Type

In this section, we analyze the memory balancing performance of the maximum

cost metric compared to the uniform cost metric shown in Figure 5.2.

Influence of Power-law Connectivity

We show memory balancing performance in a random topology for different bench-

mark applications in Figure 5.3. We use a 4512-node random topology with the same

edge density as that of a power-law topology of the same size. We note that the

set of benchmark applications does not include worm local propagation. Since worm

local propagation simulation shows negligible memory gaps between the uniform and

maximum cost metrics in power-law networks, we expect negligible memory gaps

between them in random networks as well. We observe that the memory balancing

performance of the uniform and maximum cost metrics are comparable in BGP and

worm global propagation simulations which is contrary to the results shown in Figure

5.2.

 0

 10

 20

 30

 40

 50

 60

c/sbgpworm global

m
ax

 m
em

or
y 

us
ag

e 
(M

B
)

uniform
max

Figure 5.3. Memory balancing performance in a 4512-node random
topology for different benchmark applications.



64

Figure 5.4 shows per-node Mi load distribution of a worm global propagation

simulation, contrasting the power-law topology case and the random topology case.

The x-axis represents nodes ranked by degree in decreasing order shown in log-scale.

We observe a significant skew in load distribution of power-law topology in Figure

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100  1000  10000

m
em

or
y 

us
ag

e 
(M

B
)

nodes ranked by degree

(a) Power-law

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  10  100  1000  10000

m
em

or
y 

us
ag

e 
(M

B
)

nodes ranked by degree

(b) Random

Figure 5.4. Per-node Mi load distribution of worm global: power-law
topology vs. random topology.



65

5.4(a), which stands in stark contrast to the uniform distribution of the random

topology in Figure 5.4(b). The skewness in power-law topology is caused by traffic

concentration at high-degree nodes.

 0

 10

 20

 30

 40

 50

 60

 1  10  100  1000  10000

m
em

or
y 

us
ag

e 
(M

B
)

nodes ranked by degree

(a) Power-law

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1  10  100  1000  10000

m
em

or
y 

us
ag

e 
(M

B
)

nodes ranked by degree

(b) Random

Figure 5.5. Per-node Mi load distribution of distributed client/server
application: power-law topology vs. random topology.



66

Influence of Application Behavior

In the case of distributed client/server simulation, we observe that the maximum

cost metric outperforms the uniform cost metric both for power-law topology and

random topology as seen in Figure 5.2 and Figure 5.3.

Figure 5.5 shows per-node Mi load distribution of a distributed client/server sim-

ulation, comparing the power-law topology case and the random topology case. We

observe high memory load at select nodes—i.e., location of file servers—in both power-

law and random topologies. We do not see high memory load at high-degree nodes

in Figure 5.5(a) which differs from memory load distribution for worm global simu-

lation shown in Figure 5.4(a). The main reason is that the most memory-demanding

component in distributed client/server simulation is packet queueing at TCP send

buffers whereas the most memory-demanding component in worm global simulation

is queueing of IP packets at link output buffers which is not directly governed by

TCP’s ARQ and congestion control1.

5.3 Memory vs. CPU Balancing Trade-off

5.3.1 Performance Results

As indicated in Section 5.1, to carry out meaningful CPU balancing comparison

we need to ensure that processor speeds across different PCs are comparable. This

limits us to 16 PCs which also curbs the largest problem instances we can run without

engaging VM paging.

Figure 5.6 shows memory balancing performance comparing the maximum and

total cost metrics. Problem sizes are specified in parentheses. The memory and CPU

balancing results in this section are averages of 5 runs, per problem instance, under

different random seeds in Metis where randomization is used to affect improved bisec-

tioning and matching. We find that the maximum metric, overall, outperforms the to-

1Note that worm application runs on top of UDP, not TCP.



67

 0

 200

 400

 600

 800

 1000

 1200

c/s
(14577)

global
(16921)

local
(14577)

bgp
(6582)

m
em

or
y 

us
ag

e 
(M

B
)

max
total

Figure 5.6. Memory balancing performance with k = 16 homogeneous machines.

tal cost metric with the gap being highest for worm local and distributed client/server

benchmark applications consistent with the results in Section 5.2.

Figure 5.7 shows memory balancing performance of the maximum and total cost

metrics as a function of problem size for different benchmark applications. For each

data point, the minimum and maximum values are shown along with the average

value of 5 runs under different random seeds in Metis. We observe that, overall,

the maximum metric outperforms the total cost metric in BGP, worm local, and

distributed client/server simulations. In the case of worm global, the maximum met-

ric shows marginally better memory balancing performance at bigger problem sizes.

The memory balancing gaps between the maximum and total cost metrics in these

applications are consistent with the results in Figure 5.6.

Figure 5.8 (top) shows CPU balancing performance with respect to computation

time—usr and sys time of the slowest (i.e., highest processing load) machine—for

the same benchmark runs. As expected, the total cost metric, overall, outperforms

the maximum cost metric with respect to CPU balancing. The biggest gaps occur

in the cases of worm global and BGP. Figure 5.8 (bottom) shows CPU balancing

performance with respect to completion time which includes synchronization penalty



68

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  1000  2000  3000  4000  5000  6000  7000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

max
total

(a) BGP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  5000  10000  15000  20000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

max
total

(b) Worm local

 0

 200

 400

 600

 800

 1000

 1200

 0  5000  10000  15000  20000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

max
total

(c) Worm global

 0

 200

 400

 600

 800

 1000

 1200

20000150001000050000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

max
total

(d) Distributed client/server

Figure 5.7. Memory balancing performance of Mi (max) and Ci (to-
tal) cost metrics as a function of problem size for different benchmark
applications.

among PCs in distributed simulation stemming from per-epoch barriers. An across-

the-board upward shift is accompanied by a decrease in the maximum vs. total cost

metric performance gap. Communication cost—processing time expended for sending

and receiving of messages across network partitions—is dominated by MPI packing

and unpacking operations which are accounted for in both computation and comple-

tion time.



69

 0

 2000

 4000

 6000

 8000

co
m

p
u
ta

ti
o
n
 (

se
c)

max
total

 0

 2000

 4000

 6000

 8000

c/s
(14577)

global
(16921)

local
(14577)

bgp
(6582)

co
m

p
le

ti
o
n
 (

se
c)

max
total

Figure 5.8. CPU balancing: computation time (top) and completion
time (bottom).

Figure 5.9 shows CPU balancing performance of the maximum and total cost

metrics with respect to computation time as a function of problem size for different

benchmark applications. For each data point, the minimum and maximum values

are shown along with the average value of 5 runs under different random seeds in

Metis. We observe that the total cost metric outperforms the maximum cost metric

with respect to CPU balancing. The CPU balancing gaps between the maximum and

total cost metrics are consistent with the results in Figure 5.8. One noticeable trend is

that CPU balancing performance of the maximum cost metric is highly variable unlike

the case of memory balancing performance. Furthermore, the minimum computation

time of the maximum cost metric is close to the range of the total’s computation time.

Based on these observations, we further investigate an enhancement of the maximum

cost metric’s CPU balancing performance in Section 5.5.



70

 0

 2000

 4000

 6000

 8000

 10000

 0  1000  2000  3000  4000  5000  6000  7000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

problem size

max
total

(a) BGP

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  5000  10000  15000  20000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

problem size

max
total

(b) Worm local

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  5000  10000  15000  20000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

problem size

max
total

(c) Worm global

 0

 200

 400

 600

 800

 1000

 1200

20000150001000050000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

problem size

max
total

(d) Distributed client/server

Figure 5.9. CPU balancing performance of Mi (max) and Ci (total)
cost metrics with respect to computation time as a function of problem
size for different benchmark applications.

5.3.2 Effect of Topology and Application Type

Influence of Power-law Connectivity

We compare BGP and worm local benchmark applications for which the memory

balancing performance gaps between the maximum and total cost metrics are small



71

and large, respectively. Figure 5.10 (top) shows per-node Mi and Ci load distribution

as a function of node rank—nodes are ranked by their degree with rank 1 indicating a

node with the largest number of neighbors—for the BGP benchmark application. The

abscissa is shown in log-scale to highlight the load values of high-degree nodes. We

observe a pronounced skew in the load distribution—both for the maximum and to-

tal cost metrics—which stems from traffic concentration at high-degree nodes. Traffic

skewness, in turn, is induced by power-law tendencies characteristic of Internet mea-

surement topologies [69]2. The total cost metric Ci exhibits a greater skew than the

maximum metric Mi since the former is the sum over time whereas the latter is the

maximum. Figure 5.10 (bottom) shows the corresponding plots for worm local which

exhibit similar power-law skews.

 0

 0.02

 0.04

 0.06

 1  10  100  1000  10000

lo
ad

 r
at

io

total: BGP
max: BGP

 0

 0.004

 0.008

 0.012

 0.016

 1  10  100  1000  10000

lo
ad

 r
at

io

node rank (deg)

total: worm
max: worm

Figure 5.10. Node load distribution as a function of node rank: BGP
(top) and worm local (bottom).

2Power-law tendencies also exist in router-level topologies [69, 70] although their detailed structure
and causality differ.



72

Influence of Application Behavior

The key difference between BGP and worm local is shown in Figure 5.11 which

plots the cumulative node load distribution corresponding to Figure 5.10. In BGP,

we observe that both total and max increase rapidly initially with Ci climbing a bit

higher than Mi. In worm local the initial rate of increase of Mi is significantly slower

than that of Ci, almost resembling a linear curve. The sharp increase in cumulative

Mi in BGP is caused by a sharp rise in message memory which dominates table

memory (i.e., BGP and IP routing tables). In both BGP and worm local, cumulative

table memory increases gradually.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000

cu
m

u
la

ti
v

e

total: BGP
max: BGP
max (msg)

max (table)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000

cu
m

u
la

ti
v

e

node rank (deg)

total: worm
max: worm
max (msg)

max (table)

Figure 5.11. Cumulative node load distribution: BGP (top) and worm
local (bottom).

All else being equal, the more skewed a node load distribution, the harder it is to

balance due to diminished interchangeability. In both Figure 5.10 and 5.11, total cost

metric has a higher node load skew than maximum cost metric. The key difference

is that worm local has a significantly bigger skew gap between total and maximum



73

cost metrics as shown in Figure 5.11 (bottom) which leads to a commensurately large

memory imbalance under total vs. maximum cost metric seen in Figure 5.6. The

difference in initial ramp-up in message memory can be explained by differences in

application behavior of BGP and worm local.

5.3.3 Robustness of Memory vs. CPU Balancing Trade-off

Section 5.3.1 has established a trade-off relation between memory vs. CPU bal-

ancing. In this section, we show that the trade-off relation is robust with respect

to network partitioning by evaluating memory-CPU balancing using Chaco [46], a

popular network partitioning that implements multilevel recursive k-way partition-

ing. Figure 5.12 shows memory and CPU balancing performance of worm local. The

same Mi and Ci values used for worm local in Figure 5.6 and Figure 5.8 are given as

input to Chaco. We find that the maximum cost metric outperforms the total cost

metric in terms of memory balancing, and there are only negligible gaps between the

maximum and total cost metrics in terms of CPU balancing. This is consistent with

the results shown in Figure 5.6 and Figure 5.8.

 0

 200

 400

 600

 800

 1000

complet.
time

comput.
time

memory
 0

 500

 1000

 1500

 2000

 2500

 3000

m
em

or
y 

us
ag

e 
(M

B
)

ti
m

e 
(s

ec
)

total
max

Figure 5.12. Memory and CPU balancing performance of worm local
(14577) using Chaco.



74

5.3.4 Impact of Number of Partitions

In this section, we show the performance impact of the number of partitions on

memory vs. CPU balancing trade-off using distributed client/server simulation. Fig-

ure 5.13 shows memory balancing performance of distributed client/server simulation

as a function of the number of machines or partitions. The problem size of the ex-

ample case is 14577. Since we have only 16 machines with comparable processor

performance, we conduct experiments with 4, 8, and 16 machines. We observe that

the maximum cost metric outperforms the total cost metric for all machine set-ups.

The relative memory gap between the two cost metrics decreases as the number of

partitions is increased.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  2  4  6  8  10  12  14  16  18

m
em

or
y 

us
ag

e 
(M

B
)

number of machines

max
total

Figure 5.13. Memory balancing performance of distributed
client/server simulation (14577) as a function of the number of ma-
chines.

Figure 5.14 shows CPU balancing performance of distributed client/server sim-

ulation as a function of the number of machines. We find that the CPU balancing

performance of the total cost metric compared to the maximum cost metric improves

as the number of machines is increased. The total cost metric outperforms the maxi-

mum cost metric with respect to CPU balancing only for the set-up with 16 machines.



75

In the cases of 4 and 8 machine cases, the maximum cost metric performs better or

comparable compared to the total cost metric.

 0

 500

 1000

 1500

 2000

 0  2  4  6  8  10  12  14  16  18

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

number of machines

max
total

Figure 5.14. CPU balancing performance of distributed client/server
simulation (14577) as a function of the number of machines.

5.4 Joint Memory-CPU Balancing

Sections 5.2 and 5.3 studied basic properties of memory balancing, established

a trade-off between memory and CPU balancing, and studied their causes. In this

section we examine joint memory-CPU balancing.

5.4.1 Multi-constraint Optimization

Multilevel recursive bisection methods including Metis [47] and Chaco [46] that

implement k-way partitioning seek to find heuristic solutions to the NP-hard con-

strained optimization problem: minimize edge cut subject to node weight balancing.

Multilevel recursive bisection heuristics may be extended to include a memory bal-

ance constraint in which case every node i has a 2-dimensional weight vector (Mi, Ci).



76

Metis has support for multi-dimensional node weights, and to the best of our knowl-

edge Metis is the only tool supporting multi-dimensional node weights. We use this

set-up for joint memory-CPU balancing. In general, a trade-off between two objec-

tives implies that to improve one there has to be a sacrifice of the other. We show

that in network simulation this need not be the case.

5.4.2 Performance Results

Figure 5.15 shows memory balancing performance for the benchmark set-up of

Section 5.3 under joint memory-CPU balancing. We find that joint memory-CPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

c/s
(14577)

global
(16921)

local
(14577)

bgp
(6582)

m
em

or
y 

us
ag

e 
(M

B
)

total
max
joint

Figure 5.15. Memory balancing performance under joint max-total cost metric.

balancing performs as well as memory-centric load balancing which uses only node

weight Mi. Figure 5.16 shows computation and completion time results under joint

memory-CPU balancing. As with memory balancing, we observe that joint memory-

CPU balancing performs as well as CPU-centric balancing that uses node weight

Ci only. The results indicate that joint memory-CPU balancing finds solutions that

match the individual performance of memory and CPU balancing, respectively. Given

the trade-off relationship between the two, this implies that joint balancing outper-

forms both.



77

 0
 2000
 4000
 6000
 8000

co
m

p
u
ta

ti
o
n
 (

se
c)

total
max
joint

 0
 2000
 4000
 6000
 8000

c/s
(14577)

global
(16921)

local
(14577)

bgp
(6582)

co
m

p
le

ti
o
n
 (

se
c)

total
max
joint

Figure 5.16. CPU balancing under joint max-total cost metric. com-
putation time (top) and completion time (bottom).

5.4.3 Overcoming Memory-CPU Balancing Trade-off

How is it possible for joint memory-CPU using the max-total metric to circumvent

the balancing trade-off? The answer lies in network simulation having a tendency to

induce positive correlation between Mi and Ci. For high-degree nodes, this can be

gleaned from Figure 5.10 for both BGP and worm local. For worm local the cor-

relation coefficient, corr(Mi, Ci), is 0.94. Individually they face balancing trade-off

difficulties as discussed in Section 5.3. When combined, their individual feasible re-

gions in the combined solution space have non-empty intersection facilitated by the

correlation such that a partitioning is found that can balance both memory and CPU

well. This property is not available to discrete-event simulation in general which

can be surmised from Figure 5.17 which shows memory and CPU balancing perfor-

mance across 16 machines participating in distributed simulation when corr(Mi, Ci)

is “strong”—original worm local benchmark—or comparatively “weak”. In the lat-



78

 0

 0.02

 0.04

 0.06

 0.08

weak corrstrong corr

no
rm

. n
od

e 
w

ei
gh

t s
um

memory imbalance
CPU imbalance

Figure 5.17. Joint memory-CPU balancing when corr(Mi, Ci) is strong and weak.

ter, node load skew of Mi in Figure 5.10 (bottom) is severely flattened such that

corr(Mi, Ci) = 0.01. The ordinate of Figure 5.17 shows the average and spread of

aggregate node weight sum—both memory (Mi) and CPU (Ci)—across 16 partitions.

For comparison, we normalize node weight values by their total sum. We find that

when Mi and Ci are weakly correlated memory and CPU balancing trade-off is more

difficult to overcome.

5.5 Memory-CPU Balancing with Optimization of Communication Cost

In this section, we investigate an enhancement of the maximum cost metric’s

CPU balancing performance, focusing on the observations in Figure 5.9. Recall that

CPU balancing performance of the maximum cost metric is variable unlike memory

balancing performance where the minimum computation time of the maximum cost

metric is close to the range of the total’s computation time. Given the small variance

associated with memory balancing performance under the maximum cost metric,

we aim to achieve commensurately low variance CPU balancing performance if it is

possible.



79

5.5.1 Impact of Communication Cost

In this section, we will show that communication cost has an impact on balancing

performance variability. As we mentioned when explaining message event evolution

in Section 3.2.4, kernel event KEVT OUTCH is mapped to an intermediate channel

event in the case when the receiving node is on a different machine. The channel event

is sent via MPI to the machine where the receiving node is located. At the receiving

machine the channel event is mapped to kernel event KEVT INCH. Reflecting the

resultant network I/O related overhead, we define communication cost at a machine

as the total number of sent or received channel events over time.

Figure 5.18 compares communication cost of the maximum and total cost metrics

as a function of problem size for different benchmark applications. Communication

cost is with respect to the maximum across all machines. Comparing Figure 5.18

with Figure 5.9, we observe variability in communication cost that is similar to the

variability in CPU balancing performance. One goes with the other because the

time taken for MPI message packing and unpacking operations resulting from inter-

machine communication cost is accounted for in computation time. The high pro-

cessing cost associated with MPI message packing/unpacking causes variability in

communication cost to induce variability in CPU cost and balancing.

5.5.2 Performance Results of Variability Reduction Heuristic

Variability Reduction Heuristic

The objective of the variability reduction heuristic is to find a network partitioning

instance using the maximum cost metric, which achieves CPU balancing performance

as good as that of the total cost metric with respect to variability. We first generate

a set of network partitioning instances under different random seeds in Metis. We

estimate communication cost of each partitioning instance and pick the one with the

minimum communication cost as a solution. We expect the quality of a solution to



80

 0

 10

 20

 30

 40

 50

 60

 0  1000  2000  3000  4000  5000  6000  7000

co
m

m
un

ic
at

io
n 

co
st

 (
x1

06 )

problem size

max
total

(a) BGP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5000  10000  15000  20000

co
m

m
un

ic
at

io
n 

co
st

 (
x1

06 )

problem size

max
total

(b) Worm local

 0

 50

 100

 150

 200

 0  5000  10000  15000  20000

co
m

m
un

ic
at

io
n 

co
st

 (
x1

06 )

problem size

max
total

(c) Worm global

 0

 5

 10

 15

 20

20000150001000050000

co
m

m
un

ic
at

io
n 

co
st

 (
x1

06 )

problem size

max
total

(d) Distributed client/server

Figure 5.18. Comparison of communication cost of Mi (max) and Ci

(total) cost metrics as a function of problem size for different bench-
mark applications.

improve as we increase the number of elements in the set of network partitioning

instances.

We estimate communication cost of a network partitioning instance as follows. We

first obtain the logical communication cost of each link from the benchmark simulation

run where we obtain Mi and Ci. Let us consider logical communication cost Ti,j of

a link between two nodes i and j which is defined as the total number of messages



81

transferred from i to j or from j to i over time. Note that the logical communication

cost is independent of network partitioning. Given a network partitioning instance,

communication cost TK of a machine K is defined as
∑

Ti,j where i ∈ K and j /∈ K

for every pair i, j. We define communication cost of a network partitioning instance

as the maximum TK across all machines.

Performance Results

Figure 5.19 shows CPU balancing performance of the variability reduction heuris-

tic compared against that of the maximum and total cost metrics as a function of

problem size for different benchmark applications for a set of 5 network partitioning

instances. Figure 5.20 shows a comparison of the variability reduction heuristic and

the maximum cost metric relative to the total cost metric with respect to computa-

tion time difference (%) for the results in Figure 5.19. We observe that the variability

reduction heuristic, overall, outperforms the average of the maximum cost metric.

Figure 5.21 shows a comparison of the variability reduction heuristic and the

maximum cost metric relative to the total cost metric with respect to memory usage

difference (%) as a function of problem size for different benchmark applications for

5 network partitioning instances. We observe that the variability reduction heuris-

tic, overall, shows comparable memory balancing performance to the average of the

maximum cost metric.



82

 0

 2000

 4000

 6000

 8000

 10000

 0  1000  2000  3000  4000  5000  6000  7000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

problem size

max, avg
heuristic

total

(a) BGP

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  5000  10000  15000  20000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

problem size

max, avg
heuristic

total

(b) Worm local

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  5000  10000  15000  20000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

problem size

max, avg
heuristic

total

(c) Worm global

 0

 200

 400

 600

 800

 1000

 1200

20000150001000050000

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

problem size

max, avg
heuristic

total

(d) Distributed client/server

Figure 5.19. CPU balancing performance of the variability reduction
heuristic compared to Mi (max) and Ci (total) cost metrics as a func-
tion of problem size for different benchmark applications for 5 network
partitioning instances.



83

 0

 20

 40

 60

 80

 100

658256634512

tim
e 

ga
p 

w
/ a

vg
 o

f 
to

ta
l (

%
)

problem size

max
heuristic

(a) BGP

-20

 0

 20

 40

 60

 80

 100

14577115554512

tim
e 

ga
p 

w
/ a

vg
 o

f 
to

ta
l (

%
)

problem size

max
heuristic

(b) Worm local

-20

 0

 20

 40

 60

 80

 100

18036169211546513532115559068

tim
e 

ga
p 

w
/ a

vg
 o

f 
to

ta
l (

%
)

problem size

max
heuristic

(c) Worm global

 0

 20

 40

 60

 80

 100

14577115554512

tim
e 

ga
p 

w
/ a

vg
 o

f 
to

ta
l (

%
)

problem size

max
heuristic

(d) Distributed client/server

Figure 5.20. Comparison of the variability reduction heuristic and Mi

(max) cost metric against Ci (total) with respect to computation time
difference (%) as a function of problem size for different benchmark
applications for 5 network partitioning instances.



84

 0

 20

 40

 60

 80

 100

658256634512

m
em

or
y 

ga
p 

w
/ a

vg
 o

f 
to

ta
l (

%
)

problem size

max
heuristic

(a) BGP

-20

 0

 20

 40

 60

 80

 100

14577115554512

m
em

or
y 

ga
p 

w
/ a

vg
 o

f 
to

ta
l (

%
)

problem size

max
heuristic

(b) Worm local

-20

 0

 20

 40

 60

 80

 100

18036169211546513532115559068

m
em

or
y 

ga
p 

w
/ a

vg
 o

f 
to

ta
l (

%
)

problem size

max
heuristic

(c) Worm global

 0

 20

 40

 60

 80

 100

14577115554512

m
em

or
y 

ga
p 

w
/ a

vg
 o

f 
to

ta
l (

%
)

problem size

max
heuristic

(d) Distributed client/server

Figure 5.21. Comparison of the variability reduction heuristic and Mi

(max) cost metric against Ci (total) with respect to memory usage
difference (%) as a function of problem size for different benchmark
applications for 5 network partitioning instances.



85

5.5.3 Effect of the Number of Random Seeds

We study the improvement of the quality of a solution as we increase the number of

elements in the set of network partitioning instances. Figure 5.22 shows a comparison

of CPU balancing performance of the variability reduction heuristic and the total cost

metric as a function of the number of random seeds varying from 1 to 10 for different

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  2  4  6  8  10

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

number of random seeds

heuristic
total

(a) BGP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  2  4  6  8  10

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

number of random seeds

heuristic
total

(b) Worm global

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  2  4  6  8  10

co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

number of random seeds

heuristic
total

(c) Distributed client/server

Figure 5.22. Comparison of CPU balancing performance of the vari-
ability reduction heuristic and Ci (total) cost metrics as a function of
the number of random seeds for different benchmark applications.



86

benchmark applications. CPU balancing performance is with respect to computation

time. As we increase the number of random seeds—i.e., increasing the number of

elements in the set of network partitioning instances—the computation time gap

between the variability reduction heuristic and the total cost metric decreases. In the

cases of BGP and worm global simulation, the variability reduction heuristic achieves

CPU balancing performance comparable to that of the total cost metric as the number

of random seeds is increased.

5.6 Optimizing the Overhead of Benchmark-based Cost Estimation

In previous sections, we have considered scenarios where we obtain per-node mem-

ory cost—the maximum cost metric—from a complete run of a benchmark simulation.

Then, we used the maximum cost metric to improve memory balancing. We define

that a benchmark simulation is complete if the simulation duration of a benchmark

simulation is the same as the the simulation duration of a memory-balanced simu-

lation using the maximum cost metric. As discussed in Section 4.2.2, the overhead

of our benchmark-based cost estimation, i.e., the completion time of a benchmark

simulation, can be significant. In this section, we investigate how to optimize the

overhead of the benchmark-based cost estimation.

We investigate the utility of per-node memory cost estimation obtained from x%

of simulation execution in terms of memory balancing performance, varying x. Fig-

ure 5.23 shows per-node memory cost distributions estimated at 5%, 30%, 50%, and

100% execution of a worm global propagation simulation. Figure 5.24 shows memory

balancing performance as a function of simulation progress (x% of wall clock time).

We observe that, in BGP, memory cost estimation from 70% of the simulation execu-

tion shows comparable memory balancing performance to memory cost obtained from

a complete execution. In the worm global and distributed client/server simulations,

memory cost estimation from 30% of the simulation execution shows significant mem-

ory balancing performance. This result is expected from the per-node memory cost



87

 0

 50

 100

 150

 200

 250

 300

 350

 1  10  100  1000  10000  100000

m
em

or
y 

us
ag

e 
(M

B
)

nodes ranked by degree

100%
50%
30%

5%

Figure 5.23. Per-node memory cost estimated at 5%, 30%, 50%, and
100% of simulation execution: worm global.

distributions shown in Figure 5.23. We observe that the per-node memory cost esti-

mation at 30% of simulation execution is similar to that of 100% simulation execution,

especially in high degree nodes.



88

 0

 500

 1000

 1500

 2000

 2500

 0  20  40  60  80  100

m
ax

 m
em

or
y 

us
ag

e 
(M

B
)

x% of wall clock time

(a) BGP

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100

m
ax

 m
em

or
y 

us
ag

e 
(M

B
)

x% of wall clock time

(b) Worm global

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  20  40  60  80  100

m
ax

 m
em

or
y 

us
ag

e 
(M

B
)

x% of wall clock time

(c) Distributed client/server

Figure 5.24. Memory balancing performance as a function of simula-
tion progress (x% of wall clock time).



89

6 MEMORY BALANCING PERFORMANCE WITH VIRTUAL MEMORY

PAGING

6.1 Performance Evaluation Framework

6.1.1 Overview of Linux’s Virtual Memory Paging

In this section, we provide an overview of Linux’s virtual memory paging based

on the Linux 2.4.25 kernel [71]. When a page fault exception occurs for a page, the

page can be still in the memory—specifically, in the swap cache—or on disk. The

first case is called minor page fault and it does not involve disk I/O. The latter is

called major page fault and involves disk I/O to read the missing page in.

There are three main operations which need to be distinguished. The first op-

eration is swapping in. When a page fault exception occurs and its handler detects

that the corresponding page is not in memory, the handler calls a function that swaps

the missing page in from disk. When reading in the missing page from disk, up to 8

pages located close to the missing page are read in together. The second operation is

swapping out (or page frame releasing). A page frame is released when it is removed

from the page tables of all processes that share it. Released page frames are put

into the swap cache—implemented as a part of the page cache with different index-

ing mechanism. Note that page frames in the swap cache still contain previous page

information. The third operation is page frame reclaiming. The goal of page frame

reclaiming is to maintain a minimal pool of free page frames. It is triggered every time

the kernel fails in allocating memory—for its own use or for servicing a user’s memory

requests via sbrk() or mmap()—or the kernel swap daemon (kswapd) discovers that

the number of free page frames in memory is less than a certain limit. To implement

the least recently used (LRU) policy, pages in the page cache are maintained with



90

two lists—active list and inactive list—reflecting accesses to each page. Once page

frame reclaiming is triggered, it frees page frames by writing inactive pages in the

page cache to disk.

6.1.2 Operating System Monitoring

In this section, we describe an operating system (OS) monitoring module which

we included for performance evaluation under the virtual memory paging. The OS

monitoring module reads system variables and dumps readings into a log file period-

ically. A main feature of this measurement module is that OS monitoring is done at

the granularity of an epoch. Initially we designed and implemented this module as

a separate monitoring process outside DaSSFNet which reads system variables and

dumps readings into a log file periodically with 1 second time interval. It turned out

that, under the virtual memory paging, the monitoring process’s periodic activity can

slow down simulation progress significantly. Monitoring at every epoch is sufficient

for our performance evaluation, but epoch is a time interval defined only within the

simulated world. To minimize the number of readings and logs and their impact on

overhead, we ported the monitoring module into DaSSFNet.

Inside the DaSSF kernel, the OS monitoring module reads system variables from

the /proc file system and writes them into a file after simulating each epoch. Table 6.1

shows the main system variables that are monitored by the measurement subsystem.

Linux keeps track of the number of major page faults for every process. However,

other statistics related to paging and disk I/O are provided for the whole system, not

per process. As mentioned in Section 6.1.1, a major page fault can cause up to 8

pages to be read in from disk. Hence, the number of major page faults is less than

or equal to the number of swap pages brought in. Each disk read/write operation

represents a block device request. Since a block device request can handle multiple

pages at the same time, the number of swap pages brought in may not be the same as

the number of disk read operations. The same is true for the number of swap pages



91

brought out and the number of disk write operations. We monitor the memory usage

of each process using vsize, and we confirm low CPU utilization during thrashing

by monitoring the CPU idle time measured as the time spent by the idle process.

Table 6.1
System variables read from Linux /proc file system.

system variables description

majflt, /proc/[pid]/stat the number of major page faults the process

has made which have required loading a

memory page from disk.

swap a b, /proc/stat the number of swap pages brought in (a) and

the number of swap pages brought out (b).

disk io: (a,b):(c,d,e,f ,g), /proc/stat the number of disk read operations (d),

the number of disk write operations (f),

the number of disk blocks read (e), and

the number of disk blocks written (g).

vsize, /proc/[pid]/stat virtual memory size in bytes

/proc/uptime the amount of time spent by the idle process

(in seconds)

6.1.3 Application Memory Referencing Behavior

When a machine’s memory load exceeds its physical memory limit with the sup-

port of VM paging, an application’s memory referencing behavior is a key factor

determining when trashing occurs. In this section, we demonstrate and compare

memory referencing behavior of benchmark applications with respect to memory us-

age and page fault rate over simulation time. Simulations are conducted on a single

machine with 1GB memory. Figure 6.1 shows a BGP simulation of a 4512-node AS

topology. Figure 6.1(a) and Figure 6.1(c) show memory usage and page fault rate as



92

a function of simulation time. Page fault rate is calculated for each 1-msec simulation

time duration, i.e., epoch. Figure 6.1(b) and Figure 6.1(d) show blow-ups of the plots

after simulation time 60 second where thrashing occurs. We observe that memory

 0

 500

 1000

 1500

 2000

 2500

 0  10  20  30  40  50  60  70

m
em

or
y 

us
ag

e 
(M

B
)

simulation time (sec)

(a)

 0

 500

 1000

 1500

 2000

 2500

 60  60.01  60.02  60.03  60.04  60.05  60.06

m
em

or
y 

us
ag

e 
(M

B
)

simulation time (sec)

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60  70

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(c)

 0

 20

 40

 60

 80

 100

 120

 140

 60  60.01  60.02  60.03  60.04  60.05  60.06

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(d)

Figure 6.1. BGP simulation of 4512-node AS topology on a single
machine with 1GB memory. (a) Memory usage as a function of sim-
ulation time. (b) Blow-up of (a). (c) Page fault rate as a function of
simulation time. (d) Blow-up of (c).

usage exceeds 1GB physical limit at 60.007 second simulation time exceeding 2GB



93

eventually. Page fault rate jumps at 60.007 second simulation time and converges to

around 110 page faults per second.

Figure 6.2 shows a worm global propagation simulation of a 6582-node AS topol-

ogy. Figure 6.2(a) and Figure 6.2(c) show memory usage and page fault rate as a

function of simulation time. Figure 6.2(b) and Figure 6.2(d) show their blow-up after

 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6  8  10  12  14

m
em

or
y 

us
ag

e 
(M

B
)

simulation time (sec)

(a)

 0

 500

 1000

 1500

 2000

 2500

 13  13.02  13.04  13.06  13.08
m

em
or

y 
us

ag
e 

(M
B

)
simulation time (sec)

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  2  4  6  8  10  12  14

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(c)

 0

 20

 40

 60

 80

 100

 120

 13  13.02  13.04  13.06  13.08

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(d)

Figure 6.2. Worm global propagation of 6582-node AS topology on a
single machine with 1GB memory. (a) Memory usage as a function of
simulation time. (b) Blow-up of (a). (c) Page fault rate as a function
of simulation time. (d) Blow-up of (c).



94

13 second simulation time where thrashing occurs. We observe that memory usage ex-

ceeds the 1GB physical limit from the start of the simulation reaching around 2.5GB

eventually. The initial memory consumption of around 1.5GB is due to IP routing ta-

bles loaded at each simulation node before simulation starts. A noticeable increase of

memory usage happens from 9 second simulation time at 1 second intervals. In terms

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  5  10  15  20  25  30  35

m
em

or
y 

us
ag

e 
(M

B
)

simulation time (sec)

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 32  32.002 32.004 32.006 32.008  32.01  32.012
m

em
or

y 
us

ag
e 

(M
B

)
simulation time (sec)

(b)

 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25  30  35

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(c)

 0

 20

 40

 60

 80

 100

 120

 32  32.002  32.004  32.006  32.008  32.01  32.012

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(d)

Figure 6.3. Worm local propagation of 8063-node AS topology on a
single machine with 1GB memory. (a) Memory usage as a function of
simulation time. (b) Blow-up of (a). (c) Page fault rate as a function
of simulation time. (d) Blow-up of (c).



95

of page fault rate, we observe fluctuation of page fault rate at 1 second intervals. It

finally converges to around 100 page faults per second. The increase of memory and

page fault rate at 1 second intervals is due to the worm application parameter set-up,

where each worm application sends probing packets at 1 second intervals.

Figure 6.3 shows worm local propagation simulation of a 8063-node AS topology.

Figure 6.3(a) and Figure 6.3(c) show memory usage and page fault rate as a function

of simulation time. Figure 6.3(b) and Figure 6.3(d) show their blow-up of the range

after 32 second simulation time. We observe that memory usage exceeds the 1GB

physical limit from the start reaching around 3GB eventually. The initial memory

consumption of around 2.2GB is due to IP routing tables loaded at each simulation

node before simulation starts. A noticeable increase of memory usage happens from

15 second simulation time at 1 second intervals. In terms of page fault rate, we

observe fluctuation of page fault rate at 1 second intervals. It finally converges to

around 90 page faults per second. The increase of memory and page fault rate at 1

second intervals is due to the worm application parameter set-up.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  1  2  3  4  5  6

m
em

or
y 

us
ag

e 
(M

B
)

simulation time (sec)

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  1  2  3  4  5  6

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(b)

Figure 6.4. Distributed client/server simulation of 6582-node topol-
ogy on a single machine with 1GB memory. (a) Memory usage as
a function of simulation time. (b) Page fault rate as a function of
simulation time.



96

Figure 6.4 shows distributed client/server simulation of a 6582-node AS topology.

Figure 6.4(a) and Figure 6.4(b) show memory usage and page fault rate as a function

of simulation time. Thrashing occurs at around 2.7 second simulation time. We

observe that memory usage exceeds the 1GB physical limit from the start reaching

around 2.7GB eventually. The initial memory consumption of around 1.5GB is due

to IP routing tables loaded at each simulation node before simulation starts. Memory

usage increases linearly over time. Page fault rate is over around 50 page faults per

second over the course of the simulation. It finally settles between 80 and 120 page

faults per second.

6.1.4 Quantification of Performance Dilation

Quantification of Dilation in Single-machine Setting

We define metrics to quantify the degree of performance dilation due to VM pag-

ing. In a single-machine setting, one can simply use the completion time of an entire

simulation measured as wall clock time divided by the computation time of an entire

simulation measured as CPU user time plus system time to quantify performance

dilation due to VM paging. But, this definition is too coarse to identify temporal

regions affected by VM paging. Under the conservative synchronization mechanism

which DaSSFNet employs, simulation progress across distributed simulators is syn-

chronized at a fixed periodic simulation time interval—i.e., epoch. With the intention

of extending metrics defined for a single-machine setting under distributed settings

later, we measure the degree of dilation in the unit of a fixed simulation time interval,

which corresponds to an epoch in distributed simulation. In a single-machine setting,

dilation d(i) of a given fixed simulation time interval i is defined as l(i)/c(i), where

c(i) represents computation time of interval i measured as CPU user time plus system

time and l(i) represents completion time of interval i measured as wall clock time.

If the CPU is fully utilized during interval i, d(i) = 1. The value of d(i) indicates

the degree of performance dilation relative to the case with 100% CPU utilization.



97

We quantify the performance dilation of an entire simulation duration by taking a

weighted sum of dilations of all fixed simulation time intervals. For given fixed sim-

ulation time intervals [1, t] for an entire simulation duration, we define dilation of an

entire simulation duration as
∑t

i=1
w(i) · d(i), where w(i) = l(i)/

∑t

j=1
l(j). The ra-

tionale behind this definition is that we focus on intervals of longer completion time,

since they have a greater impact on simulation performance under VM.

In Figure 6.5, we demonstrate the performance of our metrics in the BGP simula-

tion of a 4512-node AS topology. Figure 6.5 zooms in on the time period following 60

second simulation time where thrashing occurs. We set a fixed simulation time inter-

val to 1 millisecond. Figure 6.5(a) and Figure 6.5(b) show the completion time and

computation time as a function of simulation time. Figure 6.5(c) shows the dilation

as a function of simulation time. Figure 6.5(d) shows the weighted sum of dilations

over all intervals as a function of simulation time. We observe a significant increase of

the dilation and weighted sum of all dilations near 60.02 second simulation time. We

observe that the computation time approaches 0 at around 60.025 simulation time.

Note that, when the computation time approaches 0, computation time alone is not

sufficient for evaluating the degree of dilation.

Impact of Resource Availability across Applications

In this section, we compare the impact of resource availability on benchmark

applications by varying the physical memory of a single machine in the range 512MB,

768MB, 1GB, and 2GB. This also serves as a performance of our dilation metrics.

Simulation duration is fixed for each application across different physical memory

configurations. Figure 6.6(a) shows the maximum memory usage as a function of

physical memory limit. Memory usages across physical memory configurations are

the same for each application due to fixed simulation duration. Figure 6.6(b) shows

dilation as a function of physical memory limit for all benchmark applications. As

physical memory increases, each application experiences less dilation. A comparison



98

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 60  60.01  60.02  60.03  60.04  60.05  60.06

ep
oc

h 
le

ng
th

 (
se

c)

simulation time (sec)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 60  60.01  60.02  60.03  60.04  60.05  60.06

co
m

pu
 ti

m
e 

(s
ec

)

simulation time (sec)

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 60  60.01  60.02  60.03  60.04  60.05  60.06

di
la

tio
n

simulation time (sec)

(c)

 0

 20

 40

 60

 80

 100

 60  60.01  60.02  60.03  60.04  60.05  60.06

w
ei

gh
te

d-
su

m
 o

f 
di

la
tio

n

simulation time (sec)

(d)

Figure 6.5. BGP simulation of a 4512-node AS topology on a single
machine with 1GB memory. (a) Completion time as a function of
simulation time. (b) Computation time as a function of simulation
time. (c) Dilation as a function of simulation time. (d) Weighted-sum
of dilations over all intervals as a function of simulation time.

of BGP and worm local (“Local”) applications in Figure 6.6(a) and Figure 6.6(b)

shows that more memory usage does not imply more severe dilation.

Figure 6.7(a) shows dilation as a function of average page fault rate and average

disk I/O rate for all benchmark applications with different physical memory configu-

rations. Average page fault rate is calculated as a weighted sum of page fault rates for



99

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  500  1000  1500  2000  2500

m
ax

 m
em

or
y 

us
ag

e 
(M

B
)

physical memory size (MB)

BGP
Global
Local

FT

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  500  1000  1500  2000  2500

av
g 

di
la

tio
n 

(s
ec

)

physical memory size (MB)

BGP
Global
Local

FT

(b)

Figure 6.6. (a) Maximum memory usage as a function of physical
memory limit for different benchmark applications. (b) Dilation as
a function of physical memory limit for different benchmark applica-
tions.

 0
 50

 100
 150

 200
 250

 300  0
 100

 200
 300

 400
 500

 600

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

dilation
BGP, 512MB
BGP, 768MB

BGP, 1GB
BGP, 2GB

Global, 512MB
Global, 768MB

Global, 1GB
Global, 2GB

Local, 512MB
Local, 768MB

Local, 1GB
Local, 2GB
FT, 512MB
FT, 768MB

FT, 1GB
FT, 2GB

page fault rate

disk i/o rate

dilation

(a)

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250  300

di
sk

 i/
o 

ra
te

page fault rate

BGP, 512MB
BGP, 768MB

BGP, 1GB
BGP, 2GB

Global, 512MB
Global, 768MB

Global, 1GB
Global, 2GB

Local, 512MB
Local, 768MB

Local, 1GB
Local, 2GB
FT, 512MB
FT, 768MB

FT, 1GB
FT, 2GB

(b)

Figure 6.7. (a) Dilation as a function of average page fault rate and
average disk I/O rate for all benchmark applications with different
physical memory configurations. (b) Average page fault rate vs. av-
erage disk I/O rate for all benchmark applications with different phys-
ical memory configurations.



100

all fixed simulation time intervals, using the same weighting scheme as the weighted

sum of dilations for all intervals. Average disk I/O rate is calculated in the same

way. Its unit is the number of disk I/O operations per second. Figure 6.7(b) shows a

scatter plot of average page fault rate vs. average disk I/O rate. In Figure 6.7(b), we

observe that disk I/O rate is proportional to page fault rate which is approximately

invariant across applications and physical memory configurations. This is due to the

way that Linux handles page faults mapping them to disk I/O operations. As seen

in Figure 6.7(a), when thrashing occurs, applications exhibit a drastic increase in

dilation, encountering around 110 page faults per second and around 220 disk I/O

operations per second.

Quantification of Dilation in Distributed Network Simulation

In this section, we describe our extension of the dilation metrics in distributed

network simulation. The main issue is given by the fact that dilation should reflect

the impact of bottleneck machines that slow down the entire simulation due to heavy

VM paging. As we noted when defining dilation metrics in a single-machine setting,

the accounting of dilation at per epoch granularity is adequate to accurately incor-

porate the impact of bottleneck machines and distinguish delay due to VM paging

at bottleneck machines from delay due to distributed synchronization. In distributed

simulation, dilation d(i) of epoch i is defined as l(i)/cm(i). Here cm(i) represents

the maximum computation time of epoch i across all the machines, which is mea-

sured as CPU user time plus system time, and l(i) represents the completion time

of epoch i measured as wall clock time. Note that l(i) is defined for an epoch i in-

dependently from individual machines. We summarize per-epoch dilation across all

epochs, by taking a weighted sum of per-epoch dilations. For given epochs [1, t] for

an entire simulation duration, we define dilation of an entire simulation duration as
∑t

i=1
w(i)d(i), where w(i) = l(i)/

∑t

j=1
l(j).



101

We demonstrate the performance of the dilation metrics in a BGP simulation of

a 6582-node AS topology using 16 PCs with 1GB memory each. Figure 6.8 shows

the memory usage and memory referencing behavior of distributed BGP simulation.

Figure 6.8(a) shows the maximum memory usage at each of the 16 machines. We

observe that only machine 1 consumes more memory than its 1GB physical memory.

Figure 6.8(b) shows the average page fault rate at each machine. The average page

fault rate is calculated as a weighted sum of per-epoch page fault rate at each ma-

chine, applying the same weighting scheme as the weighted sum of per-epoch dilation.

We observe that only machine 1 exhibits significant page fault rate. Figure 6.8(c) and

Figure 6.8(d) show memory usage and average page fault rate as a function of simu-

lation time at machine 1. We show only the period after 90 simulation second where

thrashing occurs.

In Figure 6.9, we also focus on the period after 90 simulation second where thrash-

ing occurs. Figure 6.9(a) shows per-epoch completion time as a function of simulation

time. Figure 6.9(b) shows per-epoch maximum computation time across all machines

as a function of simulation time. Figure 6.9(c) shows per-epoch dilation as a function

of simulation time. Figure 6.9(d) shows the weighted sum of per-epoch dilations over

all epochs as a function of simulation time. We observe a significant increase of per-

epoch completion time and a decrease of per-epoch maximum computation time at

around 90.1 second simulation time. This translate to the increase of per-epoch dila-

tion at around 90.1 simulation second and, hence, the increase of the weighted sum of

per-epoch dilations at around 90.1 simulation second. The jump of per-epoch dilation

and the weighted sum of per-epoch dilations at around 90.1 simulation second occurs

synchronously with average page fault rate at the bottleneck machine—machine 1—

reaching a plateau as seen in Figure 6.8(d).



102

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2  4  6  8  10  12  14  16

m
em

or
y 

us
ag

e 
(M

B
)

machine id

(a)

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12  14  16

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

machine id

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 90  90.05  90.1  90.15  90.2  90.25  90.3

m
em

or
y 

us
ag

e 
(M

B
)

simulation time (sec)

(c)

 0

 20

 40

 60

 80

 100

 120

 140

 90  90.05  90.1  90.15  90.2  90.25  90.3

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(d)

Figure 6.8. BGP simulation of 6582-node AS topology using 16 PCs
with 1GB memory each. (a) Maximum memory usage at each ma-
chine. (b) Average page fault rate at each machine. (c) Memory
usage as a function of simulation time at machine 1. Blow-up of the
period after 90 second simulation time. (d) Average page fault rate
as a function of simulation time at machine 1.



103

 0

 100

 200

 300

 400

 500

 600

 90  90.05  90.1  90.15  90.2  90.25  90.3

ep
oc

h 
le

ng
th

 (
se

c)

simulation time (sec)

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 90  90.05  90.1  90.15  90.2  90.25  90.3

co
m

pu
 ti

m
e 

(s
ec

)

simulation time (sec)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90  90.05  90.1  90.15  90.2  90.25  90.3

di
la

tio
n

simulation time (sec)

(c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 90  90.05  90.1  90.15  90.2  90.25  90.3

w
ei

gh
te

d-
su

m
 o

f 
di

la
tio

n

simulation time (sec)

(d)

Figure 6.9. BGP simulation of 6582-node AS topology using 16 PCs
with 1GB memory each. Blow-up of the period after 90 simulation
second. (a) Per-epoch completion time as a function of simulation
time. (b) Per-epoch maximum computation time across all machines
as a function of simulation time. (c) Per-epoch dilation as a function
of simulation time. (d) Weighted-sum of per-epoch dilations over all
epochs as a function of simulation time.



104

6.1.5 Impact of Message Memory Imbalance to the Thrashing

Memory Usage vs. Page Fault Rate

High memory usage does not always mean high page fault rate. In this section,

we demonstrate this with worm local simulation of a 14577-node AS topology using

16 PCs with 1GB memory each. We used the Ci (total) cost metric for partitioning.

Let tt be the simulation time when thrashing occurs in Ci (total) cost metric case,

and let tm be the simulation time when thrashing occurs in Mi (max) cost metric

case. Memory usage and average page fault rate are measured at tm simulation

second where tt < tm. It means that measurement is made while the simulation

is experiencing thrashing. Figure 6.10 shows the maximum memory usage at each

machine and the average page fault rate at each machine. In Figure 6.10(a), we

observe that machine 5 and machine 13 consume the most amount of memory, and

machine 9 and machine 11 come next. In terms of the average page fault rate shown in

Figure 6.10(b), machine 13 experiences the most page fault rate, and machine 11 and

machine 9 come next in order. However, machine 5 does not experience a noticeable

page fault rate.

In order to find the causes underlying the difference in page fault rate, we focus on

the two memory-overloaded machines—machine 5 and machine 13. Figure 6.11 shows

the memory usage and page fault rate at the two memory-overloaded machines as a

function of simulation time. In Figure 6.11(a), we observe that machine 5 consumes

significant memory (around 1500MB out of around 1900MB), which exceeds the 1GB

physical memory limit, at the start of the simulation. Figure 6.11(b) shows that ma-

chine 5 undergoes high page fault rate during the initial phase of the simulation, but

not afterwards. On the other hand, in Figure 6.11(c), we observe that machine 13

consumes around 500MB of memory at the start of the simulation and increases its

memory consumption gradually over the course of the simulation, exceeding the 1GB

physical memory limit at around 0.225 simulation second. Figure 6.11(d) shows that

machine 13 experiences an increase in page fault rate from around 0.27 simulation



105

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  2  4  6  8  10  12  14  16

m
em

or
y 

us
ag

e 
(M

B
)

machine id

(a)

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12  14  16

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

machine id

(b)

Figure 6.10. Worm local simulation over 16 PCs with 1GB mem-
ory each. Measurement is made while the simulation is experiencing
thrashing. (a) Maximum memory usage at each machine. (b) Average
page fault rate at each machine.

second, reaching a plateau of around 100 page faults per second at around 0.3 simula-

tion second. The results show that the main difference of the two memory-overloaded



106

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

m
em

or
y 

us
ag

e 
(M

B
)

simulation time (sec)

(a) machine 5

 0

 50

 100

 150

 200

 250

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(b) machine 5

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

m
em

or
y 

us
ag

e 
(M

B
)

simulation time (sec)

(c) machine 13

 0

 20

 40

 60

 80

 100

 120

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

simulation time (sec)

(d) machine 13

Figure 6.11. Memory usage and page fault rate at the two memory-
overloaded machines as a function of simulation time. (a) Memory
usage as a function of simulation time at machine 5. (b) Page fault
rate as a function of simulation time at machine 5. (c) Memory usage
as a function of simulation time at machine 13. (d) Page fault rate as
a function of simulation time at machine 13.

machines in their page fault rate trajectories is due to the difference in their memory

usage trajectories over time. One important fact in their memory usage trajectories

is that, although their maximum memory consumptions are comparable (1859MB

vs. 1790MB), their initial memory consumptions are significantly different (1489MB



107

vs. 464MB). The initial memory consumption is due to loading per-node IP routing

tables.

 0

 500

 1000

 1500

 2000

 0  2  4  6  8  10  12  14  16

m
em

or
y 

us
ag

e 
(M

B
)

machine id

total
message

table

Figure 6.12. Per-machine maximum memory usage showing the mem-
ory allocated for message events and memory allocated for tables.

Figure 6.12 shows per-machine maximum memory usage with respect to memory

allocated for message events and memory allocated for tables. We observe that ta-

ble memory is dominant in machine 5’s memory usage, whereas message memory is

dominant in machine 13’s memory usage. Moreover, we observe that the trajectory

of per-machine message memory and per-machine average page fault rate shown in

Figure 6.10(b) correlate to a high degree.

Discussion

What happens to message memory at machine 13 in Figure 6.12, which is more

than 1GB? In general, message memory—memory allocated for instantiating mes-

sage events—lacks locality of reference for two reasons. First, message memory is

dynamic and short-lived compared to table memory for instantiating protocol tables

such as IP routing tables and BGP tables. In DaSSFNet, in particular, IP routing

table entries—calculated statically—are loaded (i.e., instantiated) during initializa-



108

tion before simulation starts and table memory is released after simulation completes.

Second, messages are stored in queues at various protocol layers. The first-in-first-

out (FIFO)-based access pattern of message queue conflicts with least-recently-used

(LRU) page replacement policy. For example, let us consider a TCP send buffer.

Application messages are stored at the end of the TCP send buffer. When memory

consumption by the TCP send buffer exceeds a given physical memory limit, least

recently used pages containing messages stored at the start of TCP send buffer are

swapped out to disk following LRU page replacement. However, since a TCP segment

is generated from the start of the TCP send buffer upon receipt of TCP acknowledge-

ment, the evicted pages are going to be accessed resulting in page faults. In contrast,

the memory access pattern of table memory obeys a locality of reference. For exam-

ple, let us consider a worm local simulation of a 14577-node AS topology. For each

node, DaSSFNet instantiates an IP routing table with 14576 entries whose the total

size is 469KB. Due to the worm local propagation mechanism, scan packets are sent

to a randomly chosen neighboring node. In the case of a node with three adjacent

nodes, at most 3 out of 14576 entries are accessed (i.e., locality of reference) over the

course of simulation. Hence, the rest of the 14573 entries need not to be present in

main memory when memory usage exceeds the physical memory limit.

Message Memory Balance for Speed-up of Completion Time

In the previous section, we showed that we can use message memory imbalance

across partitions as an indicator of average page fault rate distribution across par-

titions. In this section, we investigate the idea that, if we can estimate message

memory imbalance across partitions, we can delay the start of thrashing for speed-up

of completion time by finding a network partitioning with more balanced message

memory distribution. First, we discuss how to estimate message memory imbalance

for a given network partitioning. Given a network partitioning instance, we estimate

per-partition memory usage by summing up Mi (max) of all nodes in a partition.



109

Table-related memory allocation is not as dynamic as message-related memory allo-

cation. In particular, if IP routing table is the main memory-consuming component

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  2  4  6  8  10  12  14  16

es
t. 

m
em

or
y 

us
ag

e 
(M

B
)

machine id

total
message

table

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  2  4  6  8  10  12  14  16

es
t. 

m
em

or
y 

us
ag

e 
(M

B
)

machine id

total
message

table

(b)

Figure 6.13. Estimation of per-partition total memory requirement,
message memory requirement, and table memory requirement for two
different network partitioning instances.

related to tables, a constant amount of memory is required for each node. We esti-



110

 0

 500

 1000

 1500

 2000

 0  2  4  6  8  10  12  14  16

m
em

or
y 

us
ag

e 
(M

B
)

machine id

(a)

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12  14  16

pa
ge

 f
au

lt 
ra

te
 (

#/
se

c)

machine id

(b)

Figure 6.14. Worm local simulation using 16 PCs with 1GB memory
each using the network partitioning in Figure 6.13(b). Measurement
is made while the simulation is experiencing thrashing. (a) Maximum
memory usage at each machine. (b) Average page fault rate at each
machine.

mate per-partition message memory requirement by subtracting the sum of per-node

table memory requirement from the per-partition memory usage.



111

Next, we consider two network partitioning instances with different random seeds

in Metis. Figure 6.13 shows estimation of per-partition memory requirement, mes-

sage memory requirement, and table memory requirement for two different network

partitioning instances. Figure 6.13(a) shows estimation of message memory distribu-

tion for the case used in Figure 6.10. We observe that estimation of message memory

imbalance in Figure 6.13(a) is strongly correlated with run-time measurement of mes-

sage memory distribution in Figure 6.12 and average page fault rate distribution in

Figure 6.10(b). Figure 6.13(b) shows another network partitioning instance for the

same simulation scenario. Figure 6.14 shows the run-time measurement—maximum

memory usage at each machine and average page fault rate at each machine—for

the network partitioning instance. We observe that message memory distribution in

Figure 6.13(b) is correlated with average page fault rate distribution in Figure 6.14(b).

In the case of the network partitioning in Figure 6.13(a), the peak message memory

estimate is 1099MB, thrashing occurred at 0.291 second simulation time, and the wall

clock time taken to complete tm simulation seconds is 24105 seconds. In the case

of the network partitioning in Figure 6.13(b), the peak message memory estimate

is 985MB, thrashing occurred at 0.303 simulation second, and the wall clock time

taken to complete tm simulation seconds is 13640 seconds. We can delay the start

of thrashing for speed-up of completion time by finding a network partitioning with

more balanced message memory distribution.

6.2 Experimental Set-up

We used the same experimental set-up as Section 5.1 except for a few configuration

changes with respect to hardware and OS set-up. In this section we focus on the

configuration changes. We used the 16 2.4GHz machines that were used for evaluating

Memory-CPU balancing. For experiments with virtual memory paging enabled, we

had to take care of the following. Since Linux’s virtual memory mechanism has

evolved significantly over time, we reconfigured the testbed so that all participating



112

machines run the same version, Linux 2.4.25. We set each machine to have 1GB

physical memory as a default configuration. To do so, we set Linux kernel parameter

‘mem=1024M’ during bootstrapping which sets the memory recognized by the OS to

be 1GB. The size of swap space is set to 7821MB for all machines. Table 6.2 shows

the default memory configuration of 16 participating machines for experiments with

virtual memory paging.

Table 6.2
Default memory configuration of 16 participating machines for exper-
iments with virtual memory paging.

host name RAM size VM paging swap space size

5 4GB-mem greeks 1GB on 7821MB

5 2GB-mem greeks 1GB on 7821MB

6 others 1GB on 7821MB

6.3 Impact of Thrashing: Comparison of Uniform vs. Max Cost Metrics

In this section, we first show the impact of thrashing comparing dilation of net-

work partitionings under uniform and Mi cost metrics. In the remaining section,

we compare their memory balancing performance and performance gain in terms of

speed-up. Note that, when VM paging is turned on, the penalty of memory load

imbalance exceeding a given physical memory limit is translated to delay in simula-

tion completion. Hence, our main focus is evaluating performance gain in terms of

speed-up by memory load balancing.

6.3.1 Impact of Thrashing

We evaluate the impact of thrashing comparing dilation of network partitionings

with the uniform and Mi cost metrics. For this comparison, we define a metric—



113

dilation amplification factor—as dilation of the uniform cost metric divided by dila-

tion of the Mi cost metric. Figure 6.15 and Figure 6.16 show dilation amplification

factor as a function of problem size and simulation duration for various benchmarks

applications using 16 PCs with 1GB memory each. As problem size or simulation

duration is increased, the scale of a network simulation expands. We observe that

the uniform cost metric delays simulation progress up to 26 times compared to the

performance of the Mi cost metric in the case of BGP simulations; up to about 23

times, in worm local simulations; up to about 23 times, in worm global simulations.

This is due to the impact of thrashing which started earlier in the case of the uniform

cost metric stemming from memory load imbalance.

 0
 2000

 4000
 6000

 8000
 10000

 12000
 14000 0

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0

 5

 10

 15

 20

 25

 30

dilation amplification factor

problem size

simulation time (sec)

dilation amplification factor

(a) BGP

Figure 6.15. Dilation amplification factor as a function of problem size
and simulation duration for various benchmark applications using 16
PCs with 1GB memory each: BGP.



114

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000  0  0.1  0.2  0.3  0.4  0.5  0.6

 0

 5

 10

 15

 20

 25

dilation amplification factor

problem size

simulation time (sec)

dilation amplification factor

(a) Worm local

 0
 5000

 10000
 15000

 20000
 25000

 30000 0

 5

 10

 15

 20

 25

 0

 5

 10

 15

 20

 25

dilation amplification factor

problem size

simulation time (sec)

dilation amplification factor

(b) Worm global

Figure 6.16. Dilation amplification factor as a function of problem size
and simulation duration for various benchmark applications using 16
PCs with 1GB memory each: worm local and worm global.



115

6.3.2 Memory Balancing Performance

Figure 6.17 compares the memory balancing performance of the uniform cost

metric and the Mi cost metric as a function of problem size for various benchmark

applications. Memory usage is with respect to the maximum across all machines.

Let tu be the simulation time when thrashing occurs in the case of the uniform

cost metric, and let tm be the simulation time when thrashing occurs in the case of

Mi. We measured the memory usage at tu and tm simulation second in the uniform

and Mi partitioning cases, respectively. Since tu < tm for all cases, our comparison

of memory balancing performance is conservative. We observe that the Mi cost

metric outperforms the uniform cost metric in BGP and worm global propagation

simulations, but in worm local propagation simulations both of the uniform and Mi

cost metrics show comparable memory balancing performance. This is consistent

with the memory balancing performance of the uniform and Mi (max) cost metrics

shown in Figure 5.2 without involvement of VM paging.

We evaluate distributed memory utilization comparing the uniform and Mi (max)

cost metrics. Memory utilization is defined as the sum of memory usage at each

machine divided by the total physical memory size, i.e., 16× 1GB. Figure 6.18 shows

the performance results, where memory utilization of the uniform and Mi (max) cost

metrics is measured at tu and tm simulation time, respectively. In worm local simu-

lations, the Mi (max) cost metric achieves significant increase of memory utilization,

consuming more than 100% with Linux VM paging support. In BGP simulations,

memory utilization under the Mi (max) cost metric compared to that of the uniform

cost metric depends on problem size. In worm global simulations, the Mi (max) cost

metric achieves negligible increase of memory utilization.

6.3.3 Performance Gain: Speed-up

Ideally, speed-up in completion time should be evaluated by comparing completion

time of two simulations—one with Mi cost metric and another with the uniform cost



116

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  2000  4000  6000  8000  10000 12000 14000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

uniform
max

(a) BGP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  2000 4000 6000 8000 10000 12000 14000 16000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

uniform
max

(b) Worm local

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  5000  10000  15000  20000  25000  30000

m
em

or
y 

us
ag

e 
(M

B
)

problem size

uniform
max

(c) Worm global

Figure 6.17. Memory balancing performance of uniform and Mi (max)
cost metrics using 16 PCs with 1GB memory each.

metric—where both of them run till tm simulation time, i.e., the time instance when

both experience thrashing. Recall that generally tu < tm due to higher memory load

imbalance under the uniform cost metric. Simulation progress under the uniform cost

metric case slows down severely once thrashing occurs at tu simulation second. We

stopped a simulation with the uniform cost metric once it has run around 10 hours



117

 0

 20

 40

 60

 80

 100

 120

 140

 0  2000  4000  6000  8000  10000 12000 14000

m
em

or
y 

ut
ili

za
tio

n 
(%

)

problem size

uniform
max

(a) BGP

 0

 20

 40

 60

 80

 100

 120

 140

 0  2000  4000  6000  8000 10000 12000 14000 16000

m
em

or
y 

ut
ili

za
tio

n 
(%

)

problem size

uniform
max

(b) Worm local

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  5000  10000  15000  20000  25000  30000

m
em

or
y 

ut
ili

za
tio

n 
(%

)

problem size

uniform
max

(c) Worm global

Figure 6.18. Memory utilization of the uniform and Mi maximum
cost metrics as a function of problem size for various benchmarks
applications. The memory utilization is calculated at tu simulation
time in the case of the uniform; at tm, in the case of Mi.

of wall clock time even though it has not yet reached tm simulation second. Let te be

the simulation time at which a simulation under the uniform cost metric is stopped.

In this section, we compare the wall clock time taken to simulate [tu, te] in the

uniform case and the wall clock time taken to simulate [tu, tm] in the Mi (max) case.

Figure 6.19 shows completion time as a function of problem size for various benchmark



118

applications. We observe that the Mi cost metric outperforms the uniform cost metric

in all cases, the speed-up ratio ranging from 3.2 times (worm local, 6582) to 20.7 times

(worm global, 10363). As with the comparison of memory balancing performance, the

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  2000  4000  6000  8000 10000 12000 14000

w
al

l c
lo

ck
 ti

m
e 

(s
ec

)

problem size

uniform
max

(a) BGP

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  2000 4000 6000 8000 10000 12000 14000 16000

w
al

l c
lo

ck
 ti

m
e 

(s
ec

)

problem size

uniform
max

(b) Worm local

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  5000  10000  15000  20000  25000  30000

w
al

l c
lo

ck
 ti

m
e 

(s
ec

)

problem size

uniform
max

(c) Worm global

Figure 6.19. Completion time taken to simulate [tu, te] by uniform vs.
completion time taken to simulate [tu, tm] by Mi (max) as a function
of problem size for various benchmark applications.

comparison is done conservatively since the wall clock time taken to simulate [tu, tm]

by the uniform cost metric is expected to be much longer than the time for [tu, te].



119

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000 12000 14000

ga
in

 o
f 

w
or

kl
oa

d 
(%

)

problem size

(a) BGP

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000 10000 12000 14000 16000

ga
in

 o
f 

w
or

kl
oa

d 
(%

)

problem size

(b) Worm local

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000  25000  30000

ga
in

 o
f 

w
or

kl
oa

d 
(%

)

problem size

(c) Worm global

Figure 6.20. Total message events processed in percentage during
[tu, tm] by Mi without experiencing thrashing. Results are shown as
a function of problem size for various benchmark applications.

We consider performance gain of the Mi cost metric compared to that of the

uniform cost metric in terms of the progress of simulation execution. Note that the

completed simulation duration is not an appropriate metric to quantify the simu-

lation progress due to the non-uniform workload distribution over simulation time.

Since workload in network simulations is dominated by message events, we normal-

ize a given simulation duration into the number of message events processed during



120

the simulation duration. Figure 6.20 shows the total message events processed—as

a percentage—during [tu, tm] by Mi without experiencing thrashing. The results are

shown as a function of problem size for various benchmark applications. We observe

significant performance gain for BGP and worm local propagation simulations, rang-

ing from 49.2% to 82.8% in BGP and from 45.8% to 61.3% in worm local. In the case

of worm global propagation simulation, we observe comparatively less performance

gain, ranging from 10.9% to 34.5%.

6.4 Comparison of Max vs. Total Cost Metrics

In this section, we compare the performance of Mi (max) and Ci (total) cost

metrics with respect to memory balancing performance and performance gain in terms

of speed-up for various benchmark applications. Note that, when VM paging is turned

on, the penalty of memory load imbalance exceeding a given physical memory limit

is translated to delay in simulation completion. Hence, our main focus is evaluating

performance gain in terms of speed-up by memory load balancing.

6.4.1 Memory Balancing Performance

Figure 6.21 compares memory balancing performance of Mi (max) and Ci (total)

cost metrics using 16 PCs with 1GB memory each. Let tt be the simulation time

when thrashing occurs in Ci (total) cost metric case, and let tm be the simulation

time when thrashing occurs in Mi (max) cost metric case. Memory balancing perfor-

mance is measured with respect to the maximum memory usage across all machine

at tm simulation second except in the worm global 21460-node topology case. In

the latter, memory balancing performance is measured at tt simulation second since

tm < tt. The time instance for measuring performance is chosen based on the as-

sumption that, once thrashing occurs in both Mi and Ci cost metric cases, the speed

of simulation execution degenerates in both cases and comparing their performance

results is meaningless. The performance results are plotted as a function of problem



121

size for all benchmark applications. We observe that Mi (max) cost metric outper-

forms Ci (total) cost metric overall. In particular, we observe significant performance

gaps in the worm local and distributed client/server simulations. This is consistent

 0

 500

 1000

 1500

 2000

 2500

 0  2000  4000  6000  8000  10000  12000

m
em

or
y 

us
ag

e 
(M

B
) 

problem size

total
max

(a) BGP

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  5000  10000  15000  20000

m
em

or
y 

us
ag

e 
(M

B
) 

problem size

total
max

(b) Worm local

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  5000  10000  15000  20000  25000  30000

m
em

or
y 

us
ag

e 
(M

B
) 

problem size

total
max

(c) Worm global

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  5000  10000  15000  20000

m
em

or
y 

us
ag

e 
(M

B
) 

problem size

total
max

(d) Distributed client/server

Figure 6.21. Memory balancing performance of Mi (max) and Ci

(total) cost metrics using 16 PCs with 1GB memory each.

with the memory balancing performance of Mi (max) and Ci (total) cost metrics

shown in Figure 5.7 without VM paging.



122

Figure 6.22 shows memory utilization of Mi (max) and Ci (total) cost metrics

using 16 PCs with 1GB memory each. Memory utilization is defined as the sum

of memory usage at each machine divided by the total physical memory size, 16 ×

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2000  4000  6000  8000  10000  12000

m
em

or
y 

ut
ili

za
tio

n 
(%

)

problem size

total
max

(a) BGP

 0

 20

 40

 60

 80

 100

 120

 140

 0  5000  10000  15000  20000

m
em

or
y 

ut
ili

za
tio

n 
(%

)

problem size

total
max

(b) Worm local

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  5000  10000  15000  20000  25000  30000

m
em

or
y 

ut
ili

za
tio

n 
(%

)

problem size

total
max

(c) Worm global

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  5000  10000  15000  20000

m
em

or
y 

ut
ili

za
tio

n 
(%

)

problem size

total
max

(d) Distributed client/server

Figure 6.22. Memory utilization of Mi (max) and Ci (total) cost
metrics using 16 PCs with 1GB memory each.

1GB. It is measured at tm simulation time in the case of the Mi; at tt, in the case

of Ci. The memory utilization of Mi (max) and Ci (total) is shown as a function of

problem size for all benchmarks applications. We observe that, overall, Mi achieves



123

increased memory utilization with the magnitude of the gap depending on benchmark

application and problem size. In addition, Mi achieves more than 100% of memory

utilization in most cases.

6.4.2 Performance Gain: Speed-up

Figure 6.23 compares Mi and Ci with respect to completion time. Completion

time is measured as the wall clock time taken to simulate tm simulation seconds (tt

if tm < tt). The ratio of Ci’s completion time divided by Mi’s completion time is

plotted as a function of problem size for all benchmark applications. We observe

that Mi outperforms Ci, overall, even though Ci is more advantageous for CPU load

balancing than Mi as shown in Chapter 5. In BGP simulations, Ci takes up to 3.5

times longer than Mi. In worm local simulations, Ci takes up to around 3 times longer

than Mi. In distributed client/server simulations, Ci takes more than 2 times longer

for all problem sizes. In worm global simulations, Ci outperforms Mi for 14577-node

and 21460-node topologies, but Mi outperforms Ci for the 27738-node topology, Ci

taking 1.5 times longer than Mi.

Let n(t) be the number of message events that are processed from 0 second sim-

ulation time until t second simulation time. We define performance gain γ(Mi, Ci)

of Mi over Ci with respect to simulation progress as (n(tm)− n(tt))/n(tt). γ(Mi, Ci)

denotes the number of message events that the Mi case processes additionally with-

out experiencing thrashing compared to the Ci case. A negative value indicates that

tm < tt. Figure 6.24 shows performance gain γ(Mi, Ci) of Mi over Ci with respect

to simulation progress as a function of problem size for all benchmark applications.

γ(Mi, Ci) is shown in percentage. We observe significant performance gain for the

worm local and distributed client/server simulations. In the case of the worm local

simulation, the performance gain ranges from 15.8% to 48.3%. In the case of the dis-

tributed client/server simulation, the performance gain ranges from 58.3% to 151.9%.

In the case of BGP, the performance gains are 18.8% and 29.3% in the 6582-node



124

 0

 50

 100

 150

 200

 250

 300

 350

 400

906880636582

co
m

pl
et

io
n 

tim
e,

 to
ta

l/m
ax

 (
%

)

problem size

(a) BGP

 0

 50

 100

 150

 200

 250

 300

14577135321036380636582

co
m

pl
et

io
n 

tim
e,

 to
ta

l/m
ax

 (
%

)

problem size

(b) Worm local

 0

 20

 40

 60

 80

 100

 120

 140

 160

277382146014577

co
m

pl
et

io
n 

tim
e,

 to
ta

l/m
ax

 (
%

)

problem size

(c) Worm global

 0

 50

 100

 150

 200

 250

14577103636582

co
m

pl
et

io
n 

tim
e,

 to
ta

l/m
ax

 (
%

)

problem size

(d) Distributed client/server

Figure 6.23. Comparison of Mi and Ci with respect to completion
time. Completion time is measured as the wall clock time taken to
simulate tm simulation seconds. The ratio of Ci’s completion time
divided by Mi’s completion time is plotted as a function of problem
size for all benchmark applications.

and 8063-node AS topologies, respectively; the performance gain in the 9068-node AS

topology is 0%. In the case of the worm global simulation, we observe performance

gain ranging from -6.2% to 20.7%.



125

 0

 5

 10

 15

 20

 25

 30

906880636582

m
es

sa
ge

 c
ou

nt
 g

ap
 (

%
)

problem size

(a) BGP

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

14577135321036380636582

m
es

sa
ge

 c
ou

nt
 g

ap
 (

%
)

problem size

(b) Worm local

-10

-5

 0

 5

 10

 15

 20

 25

277382146014577

m
es

sa
ge

 c
ou

nt
 g

ap
 (

%
)

problem size

(c) Worm global

 0

 20

 40

 60

 80

 100

 120

 140

 160

14577103636582

m
es

sa
ge

 c
ou

nt
 g

ap
 (

%
)

problem size

(d) Distributed client/server

Figure 6.24. Performance gain γ(Mi, Ci) of Mi over Ci with respect
to simulation progress as a function of problem size for all benchmark
applications. γ(Mi, Ci) is shown in percentage.



126

6.5 Joint Memory-CPU Balancing

In general, the impact of CPU and communication cost imbalance can cause the Mi

(max) cost metric to underperform against the Ci (total) with respect to completion

time. This holds true even under the impact of VM paging, which decreases the

completion time gap between the Mi (max) and Ci (total) cost metrics. As we have

seen in Section 5.4, in network simulations, joint memory-CPU balancing using both

the Mi and Ci cost metrics can overcome the memory-CPU balancing trade-off. In this

section, we show analogous results using the worm local application, and we evaluate

joint memory-CPU balancing performance with respect to memory balancing and

performance gain in terms of speed-up.

We first show a worm local 6582-node simulation using 16 PCs with 1GB memory

each. Here, the impact of CPU and communication cost imbalance causes the Mi

(max) cost metric to underperform against the Ci (total) cost metric with respect to

completion time. Figure 6.25 shows the wall clock time taken to simulate n message

events vs. the total number of message events processed (n), comparing Mi, Ci, and

joint memory-CPU balancing. The data points correspond to the total number of

message events processed at tu, tt, tm, and tj from the left, respectively. Here, tu,

tt, tm, and tj represent the simulation time instances where the uniform, Mi (max),

Ci (total), and the joint memory-CPU balancing start to experience thrashing. We

observe that Ci (total) outperforms Mi (max) until tt—i.e., before thrashing sets

in in any of them, although Mi performs better than Ci eventually. Our detailed

analysis showed that Mi’s slower progress compared to Ci without thrashing is due to

CPU and communication cost imbalance. In Figure 6.25, we also observe that joint

memory-CPU balancing achieves reduced completion time matching that of Ci. We

have observed similar patterns in other worm-local simulations with various problem

sizes ranging 8063-node, 10363-node, 13532-node, and 14577-node.

Figure 6.26 shows memory balancing performance of Mi, Ci, and joint memory-

CPU balancing for worm local simulations varying the problem size. We confirm that



127

Mi outperforms Ci in terms of memory balancing and joint memory-CPU balancing

achieves comparable memory balancing performance to that of Mi.

 0

 5000

 10000

 15000

 20000

 25000

 0  2000  4000  6000  8000  10000  12000

w
al

l c
lo

ck
 ti

m
e 

(s
ec

)

total message count (x106)

max
total
joint

Figure 6.25. Completion time taken to simulate n message events vs.
the total number of message events processed, n, in the worm local
6582-node simulation, comparing the Mi, Ci, and joint memory-CPU
balancing. The data points correspond to the total number of message
events processed at tu, tt, tm, and tj from the left, respectively.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  5000  10000  15000  20000

m
em

or
y 

us
ag

e 
(M

B
) 

problem size

total
max
joint

Figure 6.26. Memory balancing performance of Mi, Ci, and joint
memory-CPU balancing for worm local propagation simulations.



128

Figure 6.27 compares joint memory-CPU balancing and Ci with respect to com-

pletion time. Completion time is measured as wall clock time taken to simulate tj

simulation seconds. The ratio of Ci’s completion time divided by the completion

time of joint balancing is plotted as a function of problem size for the worm local

application. For comparison, we plot the ratio of completion times between Mi and

Ci shown in Figure 6.23. We observe that joint memory-CPU balancing outperforms

Ci significantly, achieving increased speed-up compared to Mi.

 0

 50

 100

 150

 200

 250

 300

 350

 400

14577135321036380636582

co
m

pl
et

io
n 

tim
e,

 to
ta

l/j
oi

nt
 (

%
)

problem size

max vs. total
joint vs. total

Figure 6.27. Comparison of joint memory-CPU balancing and Ci with
respect to completion time. Completion time is measured as wall
clock time taken to simulate tj simulation seconds. The ratio of Ci’s
completion time divided by the completion time of joint balancing is
plotted as a function of problem size for the worm local application.

We define performance gain γ(joint, Ci) of the joint memory-CPU balancing over

Ci with respect to simulation progress as (n(tj) − n(tt))/n(tt). γ(joint, Ci) denotes

the number of message events that the joint balancing case processes additionally

without experiencing thrashing compared to the Ci case. A negative value indicates

that tj < tt. Figure 6.28 shows performance gain γ(joint, Ci) of the joint memory-

CPU balancing over Ci with respect to simulation progress as a function of problem

size for the worm local application. For the comparison with the Mi case, we plot

γ(Mi, Ci) as well. γ(joint, Ci) and γ(Mi, Ci) are shown in percentage. We observe



129

that joint memory-CPU balancing achieves comparable performance gain compared

to the Mi case in terms of simulation progress with the magnitude of gap depending

on problem size.

 0

 10

 20

 30

 40

 50

 60

14577135321036380636582

m
es

sa
ge

 c
ou

nt
 g

ap
 (

%
)

problem size

max vs. total
joint vs. total

Figure 6.28. Performance gain γ(joint, Ci) of the joint memory-CPU
balancing over Ci with respect to simulation progress as a function of
problem size for the worm local application. For the comparison with
the Mi case, we plot γ(Mi, Ci) as well. γ(joint, Ci) and γ(Mi, Ci) are
shown in percentage.

6.6 Optimizing the Overhead of Benchmark-based Cost Estimation

As we discussed in Section 4.2.2, from a user’s point of view, reducing the overhead

of our benchmark-based cost estimation, i.e., the completion time of a benchmark

simulation, is important. In particular, if trashing sets in during a benchmark sim-

ulation run, simulation progress becomes excessively slow and the overhead becomes

prohibitively high. In this section, we compare two Mi cost metrics—one obtained

right after tu and another obtained after running for around 10 hours wall clock time.

Let the first be Ms
i and the latter be M l

i . Similarly, we compare two Ci cost metrics—

one Cs
i obtained right after tu and another C l

i obtained after running for around 10

hours. The comparison is done in terms of gain and cost. Let tsm be the simula-



130

tion time instance where a simulation with Ms
i starts to experience thrashing. Let

tlm be the simulation time instance where a simulation with M l
i starts to experience

thrashing. tst and tlt are defined in the same way for the Cs
i and C l

i cases. Recall

that we define n(t) as the number of message events that are processed from 0 second

simulation time until t second simulation time. We define gain δ(M) of the M l
i case

over the Ms
i case as (n(tlm)− n(tsm))/n(tsm). δ(M) denotes the number of additional

message events processed using Mi obtained after a 10-hour run compared to the total

message events using Mi obtained right after tu. Similarly, we define gain δ(C) of the

C l
i case over the Cs

i case as (n(tlt)−n(tst ))/n(tst ). We define cost as the wall clock time

taken for a benchmark simulation. Table 6.3 summarizes three performance results:

Table 6.3
Summary of gain and cost: per-node memory and CPU costs from
the 10-hour-long benchmark simulation vs. those obtained right after
tu.

case δ(M) δ(C) cost of tu cost of tlm

in M l
i case

bgp, 6582 5.4% 8.8% 1hr 20min 2hr 00min

worm-local, 6582 3.5% 1.2% 1hr 43min 2hr 20min

worm-local, 10363 8.4% 7.4% 1hr 30min 2hr 15min

worm-local, 14577 2.1% -2.8% 1hr 30min 2hr 04min

worm-global, 21460 11.1% 10.6% 2hr 30min 3hr 21min

one, gain δ(M) of M l
i from the 10-hour-long benchmark simulation over Ms

i obtained

right after tu, two, gain δ(C) of C l
i from the 10-hour-long benchmark simulation over

Cs
i obtained right after tu, and three, costs. We observe that, in terms of both Mi and

Ci cost metrics, using the cost estimation from 10-hour-long benchmark simulation

achieves marginal gain in terms of total message events processed—i.e., simulation

progress. However, the cost of 10 hours—i.e., the wall clock time taken to complete

a benchmark simulation—is substantial compared to the completion time of tu. In



131

addition, the completion time of tlm in the actual memory-balanced simulation runs

using M l
i is much faster than 10 hours. Hence, a user may stop a benchmark sim-

ulation when thrashing occurs reducing the overhead of benchmark simulation. Not

much simulation progress occurs once thrashing starts.



132

7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

This dissertation studied the memory balancing problem for large-scale network

simulation in power-law networks over PC clusters, taking a memory-centric approach

to network simulation partitioning.

First, we designed and implemented a measurement subsystem for dynamically

tracking memory consumption in DaSSFNet, a distributed network simulator. We

showed that the measurement subsystem achieves accurate monitoring of memory

consumption at per-node granularity. Although the specific implementation details

are DaSSFNet dependent, the underlying measurement methodology is applicable to

other distributed network simulation environments.

Second, we achieved efficient memory cost monitoring by showing that the max-

imum cost metric, which has constant per-node space complexity, enables effective

memory balancing during network partitioning. We showed that although the max-

of-sum vs. sum-of-max problem cannot be solved because peak memory consump-

tion across simulated nodes is, in general, not synchronized, the maximum cost met-

ric suffices to achieve relative memory balancing. Relative memory balancing using

the maximum cost metric is achievable in large-scale network simulation for various

benchmark application types—BGP, Internet worm with global and local scanning,

and distributed file client/server—with diverse communication requirements.

Third, we evaluated the impact of power-law connectivity of large-scale measure-

ment networks on memory and CPU balancing. We showed that multilevel recursive

partitioning [21] implemented by popular graph partitioning tools such as Metis [47]

and Chaco [46] achieves relative memory balancing in power-law network partitioning.



133

Fourth, we identified and established a memory vs. CPU balancing trade-off. We

explained the difference in trade-off across application types by showing that BGP

and worm global exhibit a more pronounced memory cost skew induced by power-law

connectivity that makes balancing more difficult. We showed that the performance

trade-off can be overcome through joint memory-CPU balancing which is, in general,

not feasible due to constraint conflicts. This is facilitated by network simulation

having a tendency to induce correlation between memory and CPU costs. As shown

with the benchmark application types, the memory and CPU balancing performance

gap between the maximum and total cost metrics varies depending on application

type. However, the memory vs. CPU balancing trade-off and the performance of joint

memory-CPU balancing due to network simulation’s tendency to induce correlation

between memory and CPU costs are expected in large scale network simulation over

PC clusters without depending on application types.

Fifth, we advanced a performance evaluation framework for evaluating memory

balancing under VM. We defined metrics for quantifying distributed simulation slow

down under thrashing and the performance gain achieved by one network partitioning

method over another. We showed that onset of thrashing in network simulation is

effected not only by the amount of excess memory demand (beyond physical memory)

but also its composition with respect to message vs. routing table memory. We found

that an idiosyncrasy of network simulation is that messages are not conducive to

locality of reference. The metrics for quantifying distributed simulation slow down

under thrashing and the performance gain achieved by one network partitioning over

another is applicable to distributed simulation environments implementing a barrier-

style global synchronization scheme. Based on our finding of the idiosyncrasy of

network simulation that messages are not conducive to locality of reference, one can

devise a new memory management mechanism for large-scale network simulation

where memory allocated for messages is handled differently from memory for tables

so that onset of thrashing is delayed further.



134

Sixth, we showed that improved memory balancing under the maximum cost met-

ric in the presence of VM manifests as faster completion time compared to the total

cost metric despite the CPU balancing advantage of the latter. We showed that in

the cases where the CPU balancing advantage of the total cost metric is strong, joint

memory-CPU balancing can achieve the best of both worlds.

7.2 Future Work

In this section we present a number of open problems and potentially promising

avenues for extending this research. They include:

Non-uniform memory balancing In this dissertation, we showed that the maxi-

mum cost metric suffices to achieve relative memory balancing in large-scale network

simulation. Our performance evaluation focused on PC clusters with uniform mem-

ory. In reality, it is common to have PC clusters with non-uniform memory. The

maximum cost metric approach is extensible to non-uniform memory cases. One can

conduct the same performance evaluation under non-uniform memory set-up to evalu-

ate the utility of our accurate and efficient memory estimation and memory balancing

mechanism.

Built-in adaptive dynamic load balancer Our methodology for detecting the onset

of thrashing based on the temporal page fault rate reaching a plateau at memory-

overloaded machines can be automated and embedded in distributed simulators as

built-in system support. We expect that one immediate utility is to stretch simula-

tion execution until the onset of thrashing with VM paging support. Dynamic load

balancing has been studied in the context of conservative parallel simulation on a mul-

ticomputer for parallel speed-up based on a process migration mechanism [72]. We

anticipate that one can extend our memory estimation/balancing mechanism with the

automatic thrashing detection support into a built-in dynamic load balancer, which

accurately estimates memory cost at run-time and dynamically relocates nodes from

memory-overloaded machines into other machines with more available memory.



135

Communication and synchronization cost Our performance evaluation in this dis-

sertation focuses on memory and CPU balancing. We considered communication cost

in terms of CPU cost for processing MPI messages and implicitly through edge cut

reduction during network partitioning. We also limited the influence of lookahead

to synchronization cost by setting uniform link latency. Explicit incorporation of

communication and synchronization cost (lookahead) as edge weight during network

partitioning can be explored as part of future work.



LIST OF REFERENCES



136

LIST OF REFERENCES

[1] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and G. Riley. Large-
scale network simulation: How big? How fast? In Proc. IEEE MASCOTS ’03,
pages 116–123, 2003.

[2] E. Page, D. Nicol, O. Balci, R. Fujimoto, P. Fishwick, P. L’Ecuyer, and R. Smith.
Panel: Strategic directions in simulation research. In Proc. 1999 Winter Simu-
lation Conference, pages 1509–1520, 1999.

[3] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed In-
ternet routing convergence. IEEE/ACM Trans. on Networking (TON), 9(3):293–
306, June 2001.

[4] Craig Labovitz, Abha Ahuja, Roger Wattenhofer, and Venkatachary Srinivasan.
The impact of Internet policy and topology on delayed routing convergence. In
Proc. IEEE INFOCOM ’01, pages 537–546, 2001.

[5] Vern Paxson. End-to-end routing behavior in the Internet. In Proc. ACM SIG-
COMM ’96, pages 25–38, 1996.

[6] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Internet routing insta-
bility. IEEE/ACM Trans. on Networking (TON), 6(5):515–528, October 1998.

[7] Xenofontas A. Dimitropoulos and George F. Riley. Large-scale simulation models
of bgp. In Proc. IEEE MASCOTS ’04, pages 287–294, 2004.

[8] Songjie Wei, Jelena Mirkovic, and Martin Swany. Distributed worm simulation
with a realistic internet model. In Proc. IEEE PADS ’05, pages 71–79, 2005.

[9] K. Park and H. Lee. On the effectiveness of route-based packet filtering for
distribut ed dos attack prevention in power-law internets. In In Proc. ACM
SIGCOMM ’01, pages pp. 15–26, 2001.

[10] Wei-Min Yao and Sonia Fahmy. Downscaling network scenarios with denial of
service (dos) attacks. In Proc. IEEE Sarnoff Symposium, 2008, 2008.

[11] Xin Zhang and George F. Riley. Performance of routing protocols in very large-
scale mobile wireless ad hoc networks. In Proc. IEEE MASCOTS ’05, pages
115–124, 2005.

[12] Q. He, M. Ammar, G. Riley, H. Raj, and R. Fujimoto. Mapping peer behavior
to packet-level details: a framework for packet-level simulation of peer-to-peer
systems. In Proc. MASCOTS ’03, 2003.

[13] D. Xu, G. Riley, M. Ammar, and R. Fujimoto. Enabling large-scale multicast
simulation by reducing memory requirements. In Proc. IEEE PADS ’03, pages
69–76, 2003.



137

[14] Peter Denning. Working sets past and present. IEEE Trans. on Software Engi-
neering, 6(1):64–84, 1980.

[15] G. Glass and P. Cao. Adaptive page replacement based on memory reference
behavior. In Proc. ACM SIGMETRICS ’97, pages 115–126, 1997.

[16] SSFNet. http://www.ssfnet.org/ last accessed 17 April 2005.

[17] Dartmouth SSF. Dassf 3.1.5. http://www.cs.dartmouth.edu/∼jasonliu/projects/
ssf/, August 2001.

[18] Georgia tech parallel/distributed NS. pdns 2.1b7a. http://www.cc.gatech.edu/
computing/compass/pdns/, February 2001.

[19] J-Sim. http://www.j-sim.org.

[20] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[21] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing, 48:96–129, 1998.

[22] National Laboratory for Applied Network Research. Routing data, 2000. Sup-
ported by NSF, http://moat.nlanr.net/Routing/rawdata/.

[23] University of Oregon. Oregon route views. http://www.routeviews.org/ and
http://archive.routeviews.org/.

[24] University of Michigan. AS graph data sets, 2002. http://topology.eecs.umich.
edu/data.html.

[25] Mercator Internet AS map. Courtesy of Ramesh Govindan, USC/ISI, 2002.

[26] RIPE. Routing information service raw data, 2002. http://data.ris.ripe.net.

[27] CAIDA. Skitter, 2002. http://www.caida.org/tools/measurement/skitter.

[28] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
Internet topology. In Proc. ACM SIGCOMM, pages 251–262, 1999.

[29] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, and R. Stata. Graph structure
in the Web. Computer Networks, 33:309–320, 2000. Proc. 9th WWW Conference.

[30] H. Jeong, B. Tomber, R. Albert, Z. Oltvai, and A. L. Barabasi. The large-scale
organization of metabolic networks. Nature, pages 378–382, 2000.

[31] A. J. Lotka. The frequency distribution of scientific productivity. The Journal
of the Washington Academy of the Sciences, page 317, 1926.

[32] M. Newman. The structure of scientific collaboration networks. Proc. Natl. Acad.
Sci. USA 98, 4:404–409, 2001.

[33] S. Redner. How popular is your paper? Euro. Phys. J. B, 4:131–134, 1998.

[34] P. Erdős and A. Rényi. On random graphs. Publ. Math. Debrecen, 6:290–291,
1959.



138

[35] X. Dimitropoulos and G. Riley. Efficient large-scale BGP simulations. Computer
Networks, 50(12):2013–2027, 2006.

[36] A. Hiromori, H. Yamaguchi, K. Yasumoto, T. Higashino, and K. Taniguchi.
Reducing the size of routing tables for large-scale network simulation. In Proc.
IEEE PADS ’03, 2003.

[37] Polly Huang and John Heidemann. Minimizing routing state for light-weight
network simulation. In Proc. IEEE MASCOTS ’01, page 108, 2001.

[38] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J.H. Cui, and A. G.
Percus. Reducing large internet topologies for faster simulations. In Proc. IFIP
Networking 2005, 2005.

[39] G. Carl, S. Phoha, G. Kesidis, and B. Madan. Path preserving scale down
for validation of internet inter-domain routing protocols. In Proc. the Winter
Simulation Conference ’06, pages 2210–2218, 2006.

[40] F. Papadopoulos, K. Psounis, and R. Govindan. Performance preserving network
downscaling. In Proc. Annual Simulation Symposium ’05, pages 285–294, 2005.

[41] SSF. Ssfnet 1.5. http://www.ssfnet.org/homePage.html, May 2003.

[42] The network simulator – ns-2. http://www.isi.edu/nsnam/ns/.

[43] George F. Riley. The Georgia tech network simulator. In Proc. ACM MoMeTools
’03, pages 5–12, 2003.

[44] Y. Liu, B. Szymanski, and A. Saifee. Genesis: A scalable distributed system for
large-scale parallel network simulation. Computer Networks, 50(12):2028–2053,
2006.

[45] Amine Abou-Rjeili and George Karypis. Multilevel algorithms for partitioning
power-law graphs. In Proc. IEEE IPDPS 2006, 2006.

[46] B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Technical
Report, SAND94-2692, Sandia National Laboratories, 1994.

[47] G. Karypis and V. Kumar. METIS 4.0: Unstructured graph partitioning and
sparse matrix ordering system. Technical Report, Department of Computer
Science, University of Minnesota. Available at http://www.cs.umn.edu/∼metis,
1998.

[48] Robert Preis and Ralf Diekmann. Party - a software library for graph parti-
tioning. In Advances in Computational Mechanics with Parallel and Distributed
Processing, pages 63–71. Civil-Comp Press, 1997.

[49] C. Walshaw, M. Cross, M. G. Everett, and S. Johnson. Jostle: Partitioning of
unstructured meshes for massively parallel machines. In Parallel Computational
Fluid Dynamics: New Algorithms and Applications. Elsevier, 1994.

[50] Universite Bordeaux I. Scotch 3.1 user’s guide, 1997.

[51] D. Xu and M. Ammar. BencHMAP: Benchmark-based, hardware and model-
aware partitioning for parallel and distributed network simulation. In Proc. IEEE
MASCOTS ’04, pages 455–463, 2004.



139

[52] K. Yokum, E. Eade, J. Degesys, D. Becker, J. Chase, and A. Vahdat. Toward
scaling network emulation using topology partitioning. In Proc. IEEE MAS-
COTS ’03, pages 242–245, 2003.

[53] S. Lee, J. Leaney, T. O’Neill, and M. Hunter. Performance benchmark of a
parallel and distributed network simulator. In Proc. IEEE PADS ’05, 2005.

[54] H. Ohsaki, G. Oscar, and M. Imase. Quasi-dynamic network model partition
method for accelerating parallel network simulation. In Proc. IEEE MASCOTS
’06, pages 255–264, 2006.

[55] B. Gan, Y. Low, S. Jain, S. Turner, W. Cai, W. Hsu, and S. Huang. Load
balancing for conservative simulation on shared memory multiprocessor systems.
In Proc. IEEE PADS ’00, pages 139–146, 2000.

[56] Richard Mills. Dynamic adaptation to CPU and memory load in scientific ap-
plications. PhD thesis, The College of William and Mary, 2004.

[57] L. Xiao, S. Chen, and X. Zhang. Dynamic cluster resource allocations for jobs
with known and unknown memory demands. IEEE Trans. on Parallel and Dis-
tributed Systems, 13(3):223–240, 2002.

[58] X. Zhang, Y. Qu, and L. Xiao. Improving distributed workload performance
by sharing both cpu and memory resources. In Proc. IEEE ICDCS ’00, pages
233–241, 2000.

[59] L. Iftode, K. Li, and K. Petersen. Memory servers for multicomputers. In Proc.
of the 38th IEEE Int’l Computer Conf. (COMPCON Spring’93), pages 534–547,
1993.

[60] Douglas Comer and Jim Griffioen. A new design for distributed systems: The
remote memory model. In USENIX Summer, pages 127–136, 1990.

[61] R. Leland and B. Hendrickson. An empirical study of static load balancing algo-
rithms. Scalable High-Performance Computing Conference, 1994., Proceedings
of the, pages 682–685, May 1994.

[62] F. Ercal and J. Ramanujam. Cluster partitioning approaches to mapping parallel
programs onto a hypercube. Parallel Computing, 13:1–16, 1990.

[63] M. Ashraf Iqbal and Shahid H. Bokhari. Efficient algorithms for a class of parti-
tioning problems. IEEE Trans. on Parallel and Distributed Systems, 06(2):170–
175, 1995.

[64] Jason Liu and David Nicol. Learning not to share. In Proc. IEEE PADS ’01,
pages 46–55, 2001.

[65] D. Nicol and J. Liu. Composite synchronization in parallel discrete-event simu-
lation. IEEE Trans. Parallal and Distributed Systems, 13(5):433–446, 2002.

[66] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
Hoard: A scalable memory allocator for multithreaded applications. SIGARCH
Comput. Archit. News, 28(5):117–128, 2000.

[67] M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence
and possible causes. In Proc. ACM SIGMETRICS ’96, pages 160–169, 1996.



140

[68] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature
of ethernet traffic. In Proc. ACM SIGCOMM ’93, pages 183–193, 1993.

[69] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
Internet topology. In Proc. ACM SIGCOMM ’99, pages 251–262, 1999.

[70] L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach to
understanding the Internet’s router-level topology. In Proc. ACM SIGCOMM
’04, pages 3–14, 2004.

[71] Daniel Bovet and Marco Cesati. Understanding the Linux kernel, second edition.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

[72] A. Boukerche and S.K. Das. A dynamic load balancing algorithm for conservative
parallelsimulations. In Proc. IEEE MASCOTS ’97, 1997.



VITA



141

VITA

HyoJeong Kim received her B.S. degree in Computer Science and Engineering from

Korea University, Seoul, Republic of Korea in 1999. After staying on as a graduate

student for one year at Korea University, she started her graduate studies at Purdue

University in 2001. She received her M.S. degree in Computer Science from Purdue

University in 2003. She received her Ph.D. degree in Computer Science from Purdue

University in 2008. HyoJeong Kim received a state scholarship for oversears study

from the Ministry of Information & Communication, Republic of Korea. She received

teaching assistantships and research assistantships (DARPA) at Purdue University.

She previously worked as a research intern at Simulex Inc.


	form20title:              Memory Balancing for Large-scale Network Simulation in Power-law Networks
	form20degree:            Doctor of Philosophy
	form20date: 12/08/08
	candidate signature: HyoJeong Kim
	Text1:            HyoJeong Kim
	Text2:                  Memory Balancing for Large-scale Network Simulation in Power-law Networks
	Text3:            Doctor of Philosophy
	Text4:            Kihong Park
	Text8: 
	Text5:            Sonia Fahmy
	Text9: 
	Text6:            Eugene Spafford
	Text10: 
	Text7:            Cristina Nita-Rotaru
	Text11: 
	Text12:            Kihong Park
	Text13: 
	Text14:                   Aditya Mathur / William J. Gorman                                         12/05/08


