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Abstract

Dealing with sensitive data has been the focus of much ofnteesearch. On one hand data disclosure may
incur some risk due to security breaches, but on the othed Hata sharing has many advantages. For example,
revealing customer transactions at a grocery store may mefioil when studying purchasing patterns and market
demand. However, a potential misuse of the revealed infoomanay be harmful due to privacy violations. In
this paper we study the tradeoff between data disclosuredatadretention. Specifically, we address the problem
of minimizing the risk of data disclosure while maintainiitg utility above a certain acceptable threshold. We
formulate the problem as a discrete optimization problem kwerage the special monotonicity characteristics
for both risk and utility to construct an efficient algorithim solve it. Such an algorithm determines the optimal
transformations that need to be performed on the microdefard it gets released. These optimal transformations
take into account both the risk associated with data disctoand the benefit of it (referred to as utility). Through
extensive experimental studies we compare the performaioar proposed algorithm with other date disclosure
algorithms in the literature in terms of risk, utility, anidne. We show that our proposed framework outperforms
other techniques for sensitive data disclosure.

Index Terms

rivacy, Security, Risk Management, Data Sharing, Datatytihnonymity.rivacy, Security, Risk Manage-
ment, Data Sharing, Data Utility, Anonymity.P

. INTRODUCTION

Maximizing data usage and minimizing privacy risk are twaftioting goals. Disclosing the minimum
amount of information (or no information at all) is compedispecially when organizations try to protect
the privacy of individuals. To achieve such goal, the orgatons typically try to (1) hide the identity
of individual to whom data pertains, and (2) apply a set ohgfarmations to the microdata before
releasing it. These transformations include data supjeresdata generalization, and data perturbation.
Data suppression refers to suppressing certain attritaitees (or equivalently disclosing the valug.
Data generalization [15] refers to releasing a less specé#itation of the original data; for example,
releasing 479** for the zip code instead of 47906. In dataegalization a value generalization hierarchy
(VGH) for each attribute is constructed and consulted whena generalization is to take place (see
Fig. 1(a) for an example of the VGH for thaty attribute). Data perturbation [9] adds noise directly to
the original data values; for example, perturbing a numeloe such as a salary by a Gaussian noise. In
this paper, we focus on the technique of data generalizattuoh includes data suppression as a special
case.
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G. Lebanon is with the Department of Statistics, Purdue é&lsity, USA, E-mail: lebanon@stat.purdue.edu



U
{0} {0} {0}

/Mig WSSt\ Sk, I+80k] T T

Indiana {9 sis a state} {Asian, Non-Asian}

N

Tippecanoe Indianapolis $§(’ X+40k] ) .

\ {clcis a county} {African American,

Great T T American Indian,
Lafr:;efte Battle Ground Buck Creek Clarks Hill - DaytoRomney Bk, x+20K] Chinese, Filipino,...}

/ \ T {ct|ctis a city}
Wes
Lafayette Lafayette $
(a) A partial VGH for city (b) DGHs forsalary, city, andrace

Fig. 1. Value generalization hierarchy (VGH) and domainegatization hierarchy (DGH)

We measure the harmful effect due to the disclosure of midatta using the notion of an expected
loss or a risk. This loss could be incurred, for example, agsult of privacy violations, financial
loss due to identity theft, and security breaches. On theradtland, releasing data has its own merits.
Released data could be useful for data mining and researgog®es, data sharing, and improved service
provisioning. Examples of risk-utility conflicts includeut not limited to, (i) medical research benefits vs.
fear of patients’ privacy violation, (ii) detecting puraiag patterns of customers vs. privacy of customers
transactions, and (iii) benefits of disclosing sensitivegpatial data (for example, maps) vs. threats to
national security.

Releasing more general information seems to have a dinmg&ifect on both risk and utility. However,
the fact that we have opposite goals for risk and utility (mizing the risk and maximizing the utility)
raises the following crucial question: “Up to what level @gralization can we tolerate?”. Indeed, without
the help of powerful models that asses the risk and utilityaajiven information item, answering the
above question is impossible. Many models have been prdgosguantify data utility all of which show
that data generalization has negative impact on how useatal id. Xiao et al. [17] define the information
loss of a more general attribute valug in terms of the number of values that it represents. Under the
approach by Bayardo and Agrawal [1] and Xu et al. [18], a pgnebst is assigned to a generalized
or suppressed tuple to reflect the information loss in sughstormations. Fung et al. [3] define a tuple
information in terms of the number of records that could beegalized to this tuple. An entropy-based
model to assess information gain/loss is adopted in theoapprby Wang et al. [16]. From the proposed
models it is evident that when the released records are glezest to a greater extent, a larger information
loss is incurred.

Assessing the risk of releasing a given information item &las been the subject of recent research.
Assessing the risk is a more challenging task than quangfyie utility and there exist only very few
models for assessing risk. Intuitively, releasing morecgeinformation will incur a higher risk than
releasing general information. Cheng et al. [2] model thk of a tuple in terms of the value of information
contained in it. A privacy risk model has been proposed byabein et al. [6] that takes into account
both the entity identification and the sensitivity of thealtised information.

In this paper we propose an efficient algorithm (ARUBA) to i@dd the tradeoff between data utility



Fig. 2. Space of disclosure rules and their risk and expeuatiéity. The shaded region correspond to all achievableld&ire policies

and data privacy. ARUBA operates on the microdata to idernhkié optimal set of transformations that
need to be applied in order to minimize the risk and in the rtieenmaintain the utility above a certain
threshold.

The rest of the paper is organized as follows. The probletarsint is presented in Section II. Section Ill
introduces the basic definitions and terminology used dinout the paper. Different risk and utility models
are discussed in Section IV. In section V, we develop an efiicécalable algorithm for data disclosure.
Experimental results that show the superiority of our pemgabalgorithm over existing algorithms are
reported in Section VI. Section VIl surveys related workadtly, Section VIII presents concluding remarks
and outlines future work.

[I. PROBLEM STATEMENT

In this paper we consider the problem of identifying the wyati set of transformations which, when
carried out on a given table, generate a resulting tabledhgfies a set of optimality constraints. The
optimality constraints are defined in terms of a preset divedunction as well as risk and utility
conditions.

The relationship between the risk and expected utility iestatically depicted in Fig. 2 which displays
different instances of a disclosed table by their 2-D cawathis(r, u) representing their risk and expected
utility, respectively. In other words, different generaliion procedures poss different utility and risk which
lead to different locations in thé-, u)-plane. The shaded region in the figure corresponds to thefset
feasible pointgr,u) (i.e., the risk and utility are achievable by a certain disare policy) whereas the
unshaded region corresponds to the infeasible points. &teal line corresponds to all instances whose
risk is fixed at a certain level. Similarly, the horizontaidi corresponds to all instances whose expected
utility is fixed at a certain level. Since the disclosure gmato obtain both low risk and high expected
utility, we are naturally most interested in disclosureigiek occupying the boundary of the shaded region.
Policies in the interior of the shaded region can be imprayeon by projecting them to the boundary.

The vertical and horizontal lines suggest the following tways of resolving the risk-utility tradeoff.
Assuming that it is imperative that the risk remains belowedain level, we can define the problem as

maximizeu subjectto r <c. (2)



Alternatively, insisting on having the expected utilitylbe no less than a certain level we can define the
problem as

minimize r subjectto  u > c. (2)
A more symmetric definition of optimality is given by
minimize (r — Au) 3

where A € R, is a parameter controlling the relative importance of miring risk and maximizing
utility.

In this paper, without loss of generality, we model our peoblas in (2). Specifically, we address the
problem of identifying the optimal transformations thabguce the minimum risk and lower bound the
utility above a given threshold. Given a specific tupes (a, as, -+, a;,- -, ai), the following problem
has to be solved:

t" = arg mtin r(t) subject tou(t) > ¢ 4)

wheret is a generalization oh.

IIl. NOTATIONS AND DEFINITIONS

Throughout the paper, we will usually refer to an arbitraegard asa or b and to a specific record
in a particular database using a subscaptAttributes are denoted by, (or simply A). Attribute values
of A are represented using the notati@j; [(or [a;],) or justa; (or a;;). Note the bold” typesetting
representing vector notation and the “non-bold” typesgttiepresenting attribute values. A collection of
n records such as a database is denotedaby.( a,).

Definition 1: The depthof an attribute value:; corresponding to attributel, denoted bydepth(a;),
is the length of the path from; to L in the VGH corresponding tai, that is, the maximum possible
number of generalization steps applicable to this value.

Example 1:In the VGH shown in Fig. 1(a)depth(Greater Lafayette= 4.

Definition 2: The generalization sebf an attribute value:; corresponding to attributd, GFE(qa;), is
the set of all ancestors afin the VGH corresponding tel. We denote any element {iF(a;) asa. The
parentof a; is the immediate ancestor and is denotedbyent(a;). On the other hand, thepecialization
setof an attribute values;, SP(a;), is the set of all descendants @f in the VGH corresponding to!.
That is,Ve,csp@a) @i € GE(a;). Thechild of g; is the immediate descendent and is denotedHayd(a;).

Example 2:In the VGH shown in Fig. 1(a)-E(Lafayettg = {Greater Lafayette, Tippecanoe, Indiana,
Midwest, L}, and S P(Greater Lafayette= {West Lafayette, Lafayet}e

Definition 3: An immediate generalizatioof a recorda = (ay,as, -+ ,a;, -+ ,a;) With respect to
an attributeq; is a transformation on this record in which the valueis replaced byparent(a;) from
the corresponding VGH. It is denoted by,, (a), that is,ig,,(a) = (a1, as, - - - , parent(a;),- - -ax). The
set of all immediate generalizations of a recards denoted by/G(a) = ", ig.,(a). The set of all
generalizations of a recomis denoted byG(a).

Lemma 1:The risk and utility associated with a reca@r(a) andu(a), respectively) have the following
property:

r(a) > r(ig,(a)) andu(a) > u(ig,,(a)), Vi:1,2,... k.



This property, which we refer to as theonotonicity propertycan be easily verified for most standard
definitions of utility and risk.

Definition 4: An immediate specializationf a recorda = (a;,as,- - ,a;,- - ,ax) With respect to an
attribute a; is a transformation on this record in which the valyeis replaced bychild(a;) from the
corresponding VGH. It is denoted by, (a), that is,is,, (a) = (a1, as, - - - , child(a;), - - - a). The set of all
immediate specializations of a reccaids denoted by/ S(a) = Ule isq,(a). The set of all specialization
of a recorda is denoted byS(a). Note that|/G(a)| < k and|IS(a)| < k.

Example 3:In Fig. 3(a),/G({Chinese, Tippecanpe= {(Asian, Tippecanage
(Chinese,Indiang and /.5((Chinese, Tippecanpe= {(Chinese,Daytor}.

Definition 5: A generalization latticfor a given recorda = (ay,as, -+ ,a;, -,
ar) is the lattice formed by the immediate generalization iefabn the set({a;} U GE(a1)) x ({az} U
GE(az)) -+ -x ({ax}UGE(ay)). Itis a graph(V, E) whereV = ({a1 }UGE(a1)) x ({a2} UGE(ay)) - - - X
({ar} UGE(ay)) and E = {(v1,v2)| v1,v5 € V' A vy € IG(v2) U1S(v2)}. Thedimensionof the lattice
is the number of attributes of the initial record, that#ks,

Lemma 2: The generalization lattice for a given recarek (a1, as, - -+ ,a;,- - -, ax) haslly_, (depth(a;)+
1) nodes.

Definition 6: A border nodea is a lattice vertex that satisfies the following conditiohz(a)| < k or
|IS(a)| < k. It is the node in which at least one of the attributes canmofuther generalized or cannot
be further specialized. Otherwise,|ifG(a)| = |/S(a)| = k, ais called aninner node

Example 4:In Fig. 3(a), (Chinese, Tippecan®és a border node wheredésian, Indiana is an inner
node.

<0, O, 0>
<0, 0>
<Chinese 0, 0>
/ \ <0, Lafayette, 0>
<Asian, 0> <[, Indiana>
/ \ / \ r\()\( / salary
<Chinese,[J> <Asian, Indiana> €, Tippecanoe > )\(
<Chinese, Indiana> <Asian, Tippecanoe> OJ,<Dayton> )\0\0/
<Chinese,[], $85k>
\/ \ / <[, Lafayette, $85k>
~N <Chinese, Tippecanoe> <Asian, Dayton>
City <Chinese, Lafayette, $85k>
N \ / /7 -~ Cit /
Race Race "y
<Chinese, Dayton> v ™~ ~
(a) 2 attributes (b) 3 attributes

Fig. 3. Example of 2D and 3D lattices

Fig. 1(b) shows examples of domain generalization hierascfor therace city, and salary attributes.

Using these hierarchies, two lattices representing spe@tords with different number of attributes are
depicted in Fig. 3. Notice that moving in one dimension isiegjent to generalizing the attribute that
corresponds to this dimension. Moreover, the dimensiomefiattice is the number of attributes and the



size of each dimension is the number of generalization dtapthe corresponding attribute.

Definition 7: A feasible nodas the lattice vertex that satisfies all the given constsathait are men-
tioned in equations (1) and (2). Otherwise, it is callettasible nodeThe best feasible node is called
the optimal node

Note that all the children of a feasible node are also feasabld all the parents of an infeasible node
are also infeasible.

IV. RISK AND UTILITY COMPUTATION

Our proposed algorithms make use of existing tools to gfyattie utility and risk of a given tuple.
In order to determine whether a tupdeis feasible, one needs to computé). On the other hand, the
proposed algorithms consider the objective function ofimining the risk. Therefore, it is imperative
that, given a tuplea, a tool for quantifying riskr(a) exists. In this section, we describe some models
that have been proposed in the literature for utility an& assessment. It is worth to note that all these
models intuitively adhere to the fact that both risk anditytincrease as the disclosed data becomes more
specific and decrease as the disclosed data becomes moralgene

A. Utility Assessment Models
Utility assessment models are often specified in terms oftimeber of leaves of the VGH subtree rooted

at each attribute value. Specifically, one way to assesstility of a recorda = (ay,as, - ,a;, -, ax)
IS
k
u(a) =Y 1/n;, (5)
i=1

where n,; is the number of leaf nodes of the VGH rooted &t Note that, this model has a few
disadvantages. According to this model, a non-zero (aghaminimum) value is assigned to the most
general node and the utility of the leaf nodes:isA variation of (5) is to use a logarithmic function as
in

k
u(a) = Z In(m;/n;), (6)

wherem,; andn; are the total number of leaf nodes of the VGH and the numbeealf hodes of the
VGH subtree rooted at;, respectively. In agreement with our intuition, equatiéj &ssigns zero utility
for the most general node.

Instead of taking into account the number of leaf nodes as taiarfer utility assessment, one may
consider attribute depths as defined in Definition 1, for gxam " depth(a;) (the sum of the heights
of all VGHs minusthe number of lattice generalization steps that are peddrto obtain the record).
As data gets more specific, its depth increases and, acgtydso does the utility. As in the previous
case, the utility of the most general node., L,---, 1)) is zero.

In some cases, information loss, denote/y, can be used in lieu of utility. Maximizing the utility
u IS analogous to minimizing the information logsu and, therefore, it is straightforward to transfer
the optimization problem from one of these utility measuxeshe other. Xiai and Tao [17] defined the
information loss as followsAu(a) = Zle(ni —1)/m;, wherem; andn; are defined as above. Likewise,
lyengar [4] proposes the LM loss metric which is based on suimgrmap normalized information losses

for each attribute i.e. LM= Au(a) = 2% (n; — 1)/(m; — 1).

i=1



B. Risk Assessment Models

Lebanon et al. [6] have proposed an analytical model to dgfyahe privacy risk. The risk of disclosing
a recorda is decomposed into two parts: (i) the user-specified datsitbdty ¢(a), and (ii) the attacker’s
probability of identifying the data owner based @rand side informatiof. Data sensitivity is a subjective
and personalized measure, for exampler) = >, , ., w;, wherew; represents the sensitivity of the
attribute values; to the user who owns this data. The second component of thearsesponding to the
attacker’s probability of identifying the data owner is @ivby1/|p(a, 6)| where|p(a,0)| is the number
of entries in the databageconsistent with the disclosed datalanonymity number). Multiplying the two
components we obtain
r(a,0) = @)

p(a,0)]

The databasé is assumed to be the side information available to the atamkt, assuming it is unknown,
replacing it with the original database of pre-disclosetbrds provides an upper bound of the risk.

In this paper we consider as risk a more general combinafidheodata sensitivityp and anonymity
number|p| given by an arbitrary function

r(a,0) = f(®(a),[p(a,0)]).

Three examples which we concentrate on are:

« Modd I: fi(z,y) = x/y which leads to the risk proposed by Lebanon et al. [6].
« Mode II: fy(x,y) = 1/y which leads to non-personalized and constant data setysitiv
o Modd III: f5(z,y) = xlog(1/y) corresponding to an entropic measure emphasizing smaiésaif

/lpl.
By means of each of the above risk models, in the next sect@oompute the risk associated with data
disclosure to compare between our proposed algorithmsedesoptimization algorithm, andanonymity.

V. ALGORITHMS FOR OPTIMAL DATA DISCLOSURE

Taking into account the special the nature of the optimmaproblem at hand as well as the mono-
tonicity property of both risk and utility, the discrete opization problem (4) reduces to the following
problem: Given a record, it is required to

minimize (@@ 2 TisTk))
subject to
ngl Shz, Vi - 1,2,,]€

where: h; = depth(a;), z; represents the number of generalization steps applied @n‘thattribute
value of the record, andal®1#2-%2) js the resulting record after applying these generalinasieps.
Moreover, the risk and utility satisfy the following:

,r,(a(zl,mg ..... Tiyeos a:k)) S ,r,(a(arl,mg ..... zit+1,..., xk))’

u(a(azl,zg ..... Tiyeens xk)) < u(a(zl,acg ..... zi+1,..., xk))7 Vi - 17 2’ e k.



A brute-force method for obtaining the optimal transforioias is to try all possible combinations of
attribute values and their generalizations and selectr#mstormation that produces a feasible anonymized
table which poses the minimum risk. Note that

« a crucial difference between our algorithm and most of tHeeloanonymization algorithms is that
we apply the transformations on a record-by-record basteaud of dealing with sets of equivalent
records and we capture record similarities by means of tmabeu of consistent record§y(a, 6)|,
that is embedded in the risk models;

« the proposed algorithms do not require the constructiomeflattice beforehand,;

« the risk and utility functions are called as needed;

« checking whether a node has been visited (i.ey € V) can be implemented by inserting the nodes
in V' in a hash table and checkingf when hashed using the same hashing function, collides with
any existing node; and

« the proposed algorithms can be easily extended to handléudleproblem of maximizing the utility
subject to a risk constraint.

A. Basic Top-Down Algorithm (BTDA)

In this section we propose a modification of the brute-folgerhm that uses theriority queuedata
structure to navigate through lattice nodes until it reactme optimal point.
Definition 8: A priority queueis a linked list of lattice nodes sorted by risk in ascendindeo.

Algorithm 1: BTDA Algorithm
Input: A recorda = {(a,a9, - ,a4---,ag) , a utllity thresholde, and risk and utility
functionsr(a), u(a), respectively.
Output: The optimal node*.
BTDA()
() initialize Q, V
/[ @ is priority queue where r() is used to insert a
node. V is the set of visited nodes. x/

(2) insert(Ll,Ll,--- 1) in both@ andV

(3)  while (The front node, call its, of @ is infeasible, i.eu(v) < )
4) deletev from @

(5) insert/S(v) —Vin Q andV

6) [/* vis the first feasible node with mn risk =/

return v

Theorem 1:Algorithm 1 generates the optimal node.
Proof: We prove the theorem by contradiction. Assume that the fnoake of (), sayv, is feasible
but not optimal. This implies that the optimal node is onelw hodes already inserted dp after v or



one of their children yet to be inserted. Since children isdal@ve higher risk than their parents and the
parents have higher risk than(because they are inserted aftein the priority queue), the optimal node
a* has higher risk thawr which contradicts with the optimality definition. [ |

B. ARUBA

In this section we propose an efficient algorithm, referredas A Risk-Utility Based Algorithm
(ARUBA), to identify the optimal node for data disclosurehelalgorithm scans a significantly smaller
subset of nodes (the so call&édntier node$ that is guaranteed to include the optimal node.

Definition 9: A frontier nodeis a lattice vertex that is feasible and that has at least ofeasible
immediate generalization.

Theorem 2:The optimal node is a frontier node.

Proof: First, it is evident that the optimal node, say, is feasible. Second, we prove that all its
immediate generalizations are infeasible by contradictidssume that at least one of its parents, say
b € IG(a"), is feasible. Since(b) < r(a*) andb is feasible, therb is better thara* which contradicts
the fact thata® is the optimal node. Therefore, all immediate generaliregtiofa* are infeasible an@*

is thus a frontier node. [ |
Definition 10: An adjacency cubassociated with a lattice vertex=(vy,vq, - ,v;, -+ ,vx) IS the
set of all nodes{ (Ur,ugy -+ ugy - u)|u; € {v;, parent(v;), child(v;) }

Vi:l,2,--- ,k:} \ {(vi, v, ,v;, -+ ,vx) }. The number of nodes in the adjacency cubg® — 1.
Example 5:Fig. 4 displays the adjacency cube associated Wwiik {a, b, c, d, e, g, h, i}.
Theorem 3:Let £ be a generalization lattice of dimensiénExcept for border nodes, a frontier node
f € £ has at least frontier neighbors in the adjacency cube associated with it
Proof: We prove the theorem for the case of 2D lattice. This prookegaizes to more than 2D but
the details are omitted due to lack of space. Fig. 4 shows argkesection of a 2D lattice. Assume that
the nodef is a frontier node. There are 2 cases:
« Bothc ande are infeasible. Ib is feasible, then it is a frontier node (sincés infeasible). Otherwise,
c is a frontier node. The same argument applies to nedgs andh.
« One ofc ande is infeasible. Assume, without loss of generality, thas infeasible ance is feasible.
Sincec is infeasible, theml is infeasible and, therefore,is a frontier node. Moreover, lf is feasible,
then it is a frontier node (sinceis infeasible). Otherwisea is a frontier node.

In both cases, the frontier nodehas two frontier neighbors in its adjacency cube. [ |
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Algorithm 2: ARUBA Algorithm

Input: A recorda = {(ay,a9, - ,a; - ,ax) , a utility thresholde, and risk and utility

functionsr(a), u(a), respectively.

Output: The optimal nodea*.

ARUBA()

(1) initialize S, V
/+ S is the set of uninvestigated frontier nodes, V is
the set of visited nodes. =*/

(2) locate an initial frontier nod& updatel”
(3) setr* =r(f)

(4) seta*=f

B) S=S5uf

(6) while (S # @)

(7 extractv from S

(8) if r(v) <r*

9 setr* = r(v)

(20) seta* =v

11 locate the set of uninvestigated neighboring fromiedes in the adjacency cube

associated witlv, call it NF
(12) updatelV/
(13) S=SUNF

(24) /+ Al frontier nodes are scanned and a* is the node with
mn risk */

return a*

Theorem 4:Algorithm 2 generates the optimal node.

Proof: The proof follows directly from Theorem 3 in that all frontirodes will have been visited
when Algorithm 2 terminates. Since the optimal node is atfesmode (from Theorem 2), Algorithm 2
will generate the optimal node. [ |

The initial frontier node may be obtained by (i) using binagarch to locate the node with a utility
closest toc given the maximum utility (utility for the most specific ngder (ii) navigating through a
random path.

C. Example

For the sake of illustration, consider the simple 2D lattic€ig. 5. The subscripts assigned to each node
are hypothetical risks and utilities satisfying the momatay property. The figure show the feasible nodes
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Fig. 4. Neighboring frontier nodes
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Fig. 5. lllustrative example fominr s.t. w > 18 (the feasible nodes are shown, the frontier nodes arerlumett the subscripts of each
node give the hypothetical risk and utility, respectively)

Iter. | Front of @ Visited Iter. | Unvisited frontier | Visited
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15 | js517 €021 feo1s  Des2s | tsrpgokl
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16 €60,21 f62,18 b63’23 tsr pgo kl
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efb

Fig. 6. For the lattice shown in Fig. 5, a list of visited vgitnodes at different iterations of Algorithm 1 (left) andgétithm 2 (right)
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with the frontier nodes underlined and the optimal node tified ase*. We assume a risk minimization
problem subject ta > 18.

First, we apply Algorithm 1 on the displayed lattice. Fig. ltow/s the status of the priority quelg
and the set of visited noddg after the execution of each iteration of the algorithm (st8p4,5). The
algorithm starts off by inserting the most general nodle ) and V. Due to the fact that it is infeasible,

t is removed from@ and its unvisited immediate specializations are inseme@ in ascending order of
risk (s thenr). The algorithm goes on until the node at the frontbfs feasible (node in iteration #16).
At the end of the execution the queue contains the frontidesa@and the number of visited nodes is 18.

We also apply Algorithm 2 on the same lattice. The algorithiarts from nodea and assume that the
first frontier node to be visited i Along the path td, the nodes, c, f, | are visited before determining
thatf is a frontier node. Nodé is inserted inS. In the next iteration, the uninvestigated nodes in the
adjacency cube df are visited (nodes, i, n) where it is determined thatis a frontier node and needs
to be inserted inS. The algorithm continues unti$ is empty. Fig. 6 shows the status of the set of
uninvestigated frontier nodes and the set of visited nodds after the execution of each iteration of the
algorithm (steps 6 through 13). At the end of execution, tigerghm has visited all frontier nodes and
determined that is the optimal node. The number of visited nodes in this cadd iwhich is, considering
the small scale of the lattice, still a good improvement oAkgorithm 1.

VI. EXPERIMENTS

We conducted our experiments on a real Wal-Mart database.tAm descri pti on table of more
than 400,000 records each with more than 70 attributes id uséhe experiments. Part of the table is
used to represent the disclosed data whereas the wholeisalded to generate the attacker’s dictionary.
Throughout all our experiments, the risk components arepced as follows. First, the identification
risk is computed by using the Jaro distance functionto iélemhe dictionary items consistent with a
released record to a certain extent (we used 80% simildrigshold to imply consistency.) Second, the
sensitivity of the disclosed data is assessed by means ofiditive function and random weights that
are generated using a uniform random number generator. &ighite of the generalization taxonomies
VGHs are chosen to be in the range from 1 to 5.

We use a modified harmonic mean to compute the sensitivity érant nodew, with [ immediate
children given the sensitivities of these children w, = ﬁ with the exception that the root node
(corresponding to suppressed data) has a sensitivity weigh. Clearly, the modified harmonic mean
satisfies the following properties: (i) the sensitivity afyanode is greater than or equal to zero provided
that the sensitivity of all leaves are greater than or equaetro, (ii) the sensitivity of a parent node is
always less than or equal (in caselo€hild) the sensitivity of any of its descendent nodes, angtfie
higher the number of children a node has the lower the semgitf this node is. For example, given a
constant city weighto,., the weight of theCount y node; in the VGH for theCi ty is ﬁ = ”;’7
wherel; is the number of cities in the counfy Moreover, the sensitivity of th&t at e node in the same
VGH is Zlg; - = Zlgzj;mlj = =, wherem is the number of counties in the state ane- >, /;
is the number of cities in the state. Due to the randomnesseaf the sensitivity weights, each of the
obtained result points is averaged over 5 runs.
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We use a simplified utility function:(a) to capture the information benefit of releasing a record
a :u(a) =S¥  depth(a;). For each record, the minimum risk is obtained subject to the constraint
u(a) > c. Fig. 8 summarizes the parameters and function settingd tiseughout the experimental
evaluation.

The impact of varying the utility threshold while maintaining a full set of attributes is shown in
Fig. 7(a) and Fig. 7(b). The percentage of frontier nodedatqr asc varies from 30 to 240 in Fig. 7(a).

It is evident that the number of frontier nodes is not dinggtloportional toc. Whenc is large, all lattice
nodes tend to be infeasible leading to zero or a small numbgouwtier nodes. Likewise, when is too
small, all lattice nodes tend to be feasible leading to zersnwall number of frontier nodes (refer to the
definition of frontier nodes in Section V). In Fig. 7(b), thenning time for both algorithms is measured
at various values of. It shows that ARUBA almost always outperforms BTDA espligitor large values
of c. Intuitively, asc increases towards the high extreme, the number of frontdes rapidly decreases
(as shown in Fig. 7(a)) and, consequently, ARUBA convergay quickly. On the other hand, for large
values forc more lattice nodes will be visited by BTDA before the optimisrreached. Therefore, the
performance of BTDA deteriorates asncreases. Interestingly, for small valuescpthere is no significant
difference between ARUBA and BTDA. The reason is that the Imemof frontier nodes decreases rapidly
asc approaches the lower extreme as well and ARUBA tends to perieell.

Throughout the following set of experiments, we fix the tyilihresholdc at a certain level which
is intentionally chosen to be midway through the lattice.(ic = %Zle h;) where ARUBA tends to
perform the worst. We implement a heuristic discrete oation algorithm, Branch and Bound [5],
to obtain the heuristic optimum disclosure rule. Fig. 7(odl &ig. 7(d) show that ARUBA outperforms
BTDA in terms of both execution time and number of latticeiteid nodes. Moreover, ARUBA exhibits a
comparable performance with the discrete optimizatiowrigm in terms of time as shown in Fig. 7(c)
but with a lower risk as shown in Fig. 9.

We compare the risk and utility associated with a disclosédetbased on our proposed algorithm and
arbitrary k-anonymity rules foik from 1 to 100. At each value of;, we generate a set of Z8Banonymous
tables and then compute the average utility associatedtietfe tables using the simplified utility measure
mentioned earlier. For each specific utility valtewe run both our proposed algorithm and the discrete
optimization algorithm to identify the table that has notyothe minimum risk but also a utility greater
than or equal ta.. We use each of the three risk models when solving these izatiion problems. In
Fig. 9 we plot the utility and risk of ARUBA (optimally selead disclosure policies), discrete optimization
algorithm, and standark-anonymity rules for different risk models. It is clear tRUBA consistently
outperforms both of the discrete optimization algorithnd atandards-anonymity rules regardless the
nature of the model used to compute the risk. It is worth nosiig that a crucial difference between
our algorithm and most of the other anonymization algorghmthat we apply the transformations on a
record-by-record basis instead of dealing with sets ofvedieint records and we capture record similarities
by means of the number of consistent recotdéa, ¢)|, that is embedded in the risk models.

VIl. RELATED WORK

Much of the research carried out on data transformationsskdt on anonymizing a disclosed table
so that every record that belongs to it is made indistingabtd from as many other released records as
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possible [13], [14], [8], [10], [1], [7]. This approach, Btiugh may sometimes achieve privacy, does not
address the privacy-utility tradeoff.

Samarati et al. [12] introduced the concept of minimal galEation in which k-anonymized tables
are generated without distorting data more than neededhieack-anonymity. Such approach, although
it tries to minimize suppressions and generalizationssdus take into account sensitivity and utility of
different attribute values at various levels of the geneatibn hierarchies.

The tradeoff between privacy and utility is investigatedRastogi et al. [11]. A data-perturbation-based
algorithm is proposed to satisfy both privacy and utilityaigo However, they define privacy based on a
posterior probability that the released record existechan driginal table. This kind of privacy measure
does not account for sensitive data nor does it make any pttenhide the identity of the user to whom
data pertains. Moreover, they define the utility as how ateuthe results of theoun{() query are. Indeed,
this definition does not capture many aspects concerningigb@ulness of data.

A top-down specialization algorithm is developed by Funglef3] that iteratively specializes the data
by taking into account both data utility and privacy conistt® A genetic algorithm solution for the same
problem is proposed by lyengar [4]. Both approaches considssification quality as a metric for data
utility. However, to preserve classification quality, thegasure privacy as how uniquely an individual can
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be identified by collapsing every subset of records into @o®nd. The per-record customization nature
of our algorithm makes it much more practical than other @llgms in terms of both privacy and utility.

A personalized generalization technique is proposed by diad Tao [17]. Under such approach users
define maximum allowable specialization levels for theffedlent attributes. That is, sensitivity of different
attribute values are binary (either released or not rethase contrast, our proposed scheme provides
users with the ability to specify sensitivity weights forethattribute values.

VIIl. CONCLUSIONS

In this paper we propose an efficient algorithm to addressrdeoff between data utility and data
privacy. Maximizing data usage and minimizing privacy riate two conflicting goals. Our proposed
algorithm (ARUBA) deals with the microdata on a record-lkegard basis and identifies the optimal set of
transformations that need to be applied in order to minirttizerisk and in the meantime keep the utility
above a certain acceptable threshold. We use predefinedsrfoddata utility and privacy risk throughout
different stages of the algorithm. We show that the prop@dgdrithm is consistently superior in terms of
risk when compared witih-anonymity and discrete optimization algorithm withoutigngficant sacrifice
in the execution time.

As future work, we plan to elaborate more on the impact ofeddht risk and utility models on
the performance of our algorithm. Estimating the dictignaf the attacker and the required set of
transformations based on incremental disclosure of inédion is also a subject of future research. Finally,
as an ongoing work, we are working on improving the scalghdf the proposed algorithm.
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APPENDIX
PROOF OFTHEOREM 3 FOR THE CASE OF3D LATTICE

Proof: Consider the section of the 3D lattice shown in Fig. 10 andirassthatf is a frontier node.
There are 3 cases:

« All nodes in/G(f) = {a,b, c} are infeasible. Consider the nodelf ig,, (€) is infeasible, there is a
frontier node. Otherwisey,, (e) a frontier node. The exact same argument applies to nodesl g.

. Exactly two nodes ifG/(f) are infeasible. Assume, without loss of generality, thaséhtwo nodes
area andb. Sincec is feasible andg,, (¢) = ig.,(@) is infeasible (since is infeasible), therc is a
frontier node. Now, consider the noéelf ig,, (e) is infeasible, there is a frontier node. Otherwise,
igq, (€) a frontier node. The exact same argument applies to dode

. Exactly one node ifG(f) are infeasible. Assume, without loss of generality, tha$ tiode isc.
Sincea is feasible andg,, (c) = ig.,(a) is infeasible (since is infeasible), thera is a frontier node.
Likewise, it can be proved thdtis a frontier node. Now, ifg,,(e) is infeasible, there is a frontier
node. Otherwiseig,, (e) is a frontier node since = ig,, (ig.,(€)) is infeasible.

In all of the above case$, has at least 3 neighboring frontier nodes. [ |



