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ABSTRACT 

Kukula, Eric, P., Ph.D., Purdue University, August, 2008. Design and Evaluation 
of the Human-Biometric Sensor Interaction Method.  Major Professor:  Stephen 
J. Elliott. 
 

 This research investigates the development and testing of the Human-

Biometric Sensor Interaction Evaluation Method that used ergonomics, usability, 

and image quality criteria as explanatory variables of overall biometric system 

performance to evaluate swipe-based fingerprint recognition devices. The HBSI 

method was proposed because of questions regarding the thoroughness of 

traditional testing and performance evaluation metrics such as FTA, FTE, FAR, 

and FRR used in standardized evaluation methods; questioning if traditional 

metrics were acceptable enough to fully test and understand biometric systems, 

or determine if important data were not being collected.  

 The Design and Evaluation of the Human-Biometric Sensor Interaction 

Method had four objectives: (a) analyze the literature to determine what 

influences the interaction of humans and biometric devices, (b) develop a 

conceptual model based on previous research, (c) design two alternative swipe 

fingerprint sensors, and (d) to compare how people interact with the commercial 

and designed swipe fingerprint sensors, to examine if changing the form factor 
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improves the usability of the device in terms of the proposed HBSI evaluation 

method.  

 Data was collected from 85 individuals over 3 visits that accounted for 

33,394 interactions with the 4 sensors used. The HBSI Evaluation Method 

provided additional detail about how users interact with the devices collecting 

data on: image quality, number of detected minutiae, fingerprint image size, 

fingerprint image contrast, user satisfaction, task time, task completeness, user 

effort, number of assists; in addition to traditional biometric testing and reporting 

metrics of: acquisition failures (FTA), enrollment failures (FTE), and matching 

performance (FAR and FRR). 

 Results from the HBSI Evaluation Method revealed that traditional 

biometric evaluations that focus on system-reported metrics are not providing 

sufficient reporting details. For example, matching performance for right and left 

index finger reported a FRR under 1% for all sensors at the operational point 

0.1% FAR: UPEK (0.24%), PUSH (0.98%), PULL (0.36%), and large area 

(0.34%). However, the FTA rate was 11.28% and accounted for 3,768 

presentations. From this research, two metrics previously unaccounted for and 

contained in the traditional FTA rate: Failure to Present (FTP) and False Failure 

to Present (FFTP) were created to better understand human interaction with 

biometric sensors and attribute errors accordingly. The FTP rate accounted for 

1,187 of the 3,768 (31.5%) of interactions traditionally labeled as FTAs. The 

FFTP was much smaller at 0.35%, but can provide researchers further insight to 

help explain abnormal behaviors in matching rates, ROC and DET curves.  In 
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addition, traditional metrics of image quality and number of detected minutiae did 

not reveal a statistical difference across the sensors, however HBSI metrics of 

fingerprint image size and contrast did reveal a statistical difference, indicating 

the design of the PUSH sensor provided images of less gray level variation, while 

the PULL sensor provided images of larger pixel consistency during some of the 

data collection visits. The level of learning or habituation was also documented in 

this research through three metrics: task completion, Maximum User Effort 

(MUE), and the number of assists provided. All three reported the PUSH with the 

lowest rates, but improved the most over the visits, which was a function of 

learning how to use a “push”-based swipe sensor, as opposed to the “pull” swipe 

type. 

 Overall the HBSI Evaluation Method provided the foundation for the future 

of biometric evaluations as it linked system feedback from erroneous interactions 

to the human-sensor interaction that caused the failure. This linkage will enable 

system developers and researchers the ability to re-examine the data to see if 

the errors are the result of the algorithm or human interaction that can be solved 

with revised training techniques, design modifications, or other adjustments in the 

future.
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CHAPTER 1. INTRODUCTION 

1.1. Objectives 

The goal of this research was to provide the biometrics community with a 

comparative evaluation method for a swipe-based fingerprint recognition device 

that uses ergonomics, usability, and image quality criteria as explanatory 

variables of performance of the independent variable – form factor design. There 

were four objectives: 

1. Analyze literature in the fields of: biometrics, ergonomics, Human-

Computer Interaction (HCI), and usability in order to determine what 

influences the interaction between the human and the biometric device 

and what aspects of ergonomics, Human-Computer Interaction (HCI), and 

usability can be applied to the design of biometric devices, specifically a 

swipe-based fingerprint device. 

2. Develop a conceptual model for the design of biometric devices in 

general. 

3. Create two alternative swipe-based fingerprint form factors based on the 

conceptual model developed in (2) that includes concepts from 

biomechanics and anthropometry of the hand and fingers, biometrics, and 

the qualitative data results from the interviews to gather personal 
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perceptions and common interaction problems for swipe-based fingerprint 

recognition devices. 

4. Evaluate the commercially available and new form factor devices, created 

in (3), in a comparative performance evaluation using the proposed 

Human-Biometric System Interaction (HBSI) evaluation method, which 

was discussed in (2).  

 

This study manipulated the form factor of the fingerprint sensor. The form 

factor, typically a plastic composite or metal material, is the material surrounding 

the electrical components and circuitry, shown in Figure 1. The fingerprint sensor 

was the same across all three swipe-based devices, meaning the capacitance 

chip that was used in the commercial device and two form factors designed in 

this study were the same model.  

 
Figure 1 Fingerprint sensor and form factor diagram for the commercial swipe-

based sensor (left) and large area sensor (right).  
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1.2. Organization 

This dissertation covers numerous aspects concerning the proposed 

Human-Biometric Sensor Interaction evaluation method. This dissertation covers 

five chapters: the introduction, review of literature, methodology, results, and the 

conclusions and recommendations. 

1.3. General Introduction 

The term biometrics has two distinct meanings. Biometrics, or biometry, 

has been commonly used since the early twentieth century to describe a field 

that develops statistical and mathematical methods for data analysis problems in 

the biological sciences (International Biometric Society, 2006). The other 

meaning, developed during the early 1970s to describe emerging technologies 

that use physical and behavioral traits of humans, which are defined by the 

International Organization for Standardization (2007) as the automated 

recognition of behavioral and physiological characteristics of individuals. This 

research involves the latter definition. 

Biometric technologies are used to authenticate individuals in a multitude 

of applications; they may be stand-alone systems or utilized as part of a multi-

factor authentication system (i.e., combined with physical possessions, such as 

an identification card, or knowledge, such as a personal identification number). 

Biometric technologies are typically discussed as belonging to one of two 

different types, namely behavioral and biological (also sometimes referred to as 

physiological). Behavioral biometrics include signature and voice recognition; 
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biological or physiological biometrics include face, finger, hand geometry, and iris 

recognition. Some modalities overlap these two categories, as they are functions 

of both behavioral and biological characteristics; for example, voice, face, and 

signature have components that are dependent upon each other.  

1.4. Statement of the Problem 

While personal identification techniques using physical and behavioral 

characteristics date back to almost 3000 B.C., it was not until the middle of the 

twentieth century that academics developed automated techniques, which is the 

differentiating factor between other identification techniques and biometrics as it 

is currently defined. However, it was not until the 1970s that the first 

commercially available biometric systems emerged. Since biometrics entered the 

commercial marketplace, most research has been dedicated to the development 

in three areas: improving performance, increasing throughput, and decreasing 

the size of the sensor or hardware device. Moreover, limited research has 

focused on usability and issues relating to how users interact and use biometric 

devices, thus user interaction errors have been coded and analyzed as system 

errors. But as biometric performance evaluations continue to grow in complexity 

and standardized testing protocols and technical reports emerge such as ISO 

19795-1(2006a), ISO 19795-2 (2007a), and ISO TR19795-3 (2007b), many 

physical, behavioral, and social factors can now be attributed to degradation of 

biometric system performance. Thus, if we can attribute these factors to the user 
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and not the sensing technology or algorithm, it must be examined in order to 

continue improving the overall biometric system. 

Looking at fingerprint recognition, one can see the importance of 

investigating how users interact with different biometric devices. Fingerprint 

recognition is the most widely used of the biometric technologies, with popular 

applications in law enforcement (e.g., the Integrated Automatic Fingerprint 

Identification System — IAFIS), access control, time and attendance, and 

personal computer/network access. The current biometrics industry report 

published by the International Biometric Group (2006) states that fingerprint 

recognition holds approximately 44% of the biometric market. Traditionally, the 

high market share has been due to law enforcement applications, but over the 

last two years, the list of applications for fingerprint technologies has grown 

tremendously due to sensors evolving at a rapid pace and to a wider spread of 

applications. Applications for fingerprint recognition have expanded from law 

enforcement and computer desktop single sign-on applications to personal data 

assistants (PDA), mobile phones, laptop computers, desktop keyboards, mice, 

and universal serial bus (USB) flash media drives, to name a few. In particular, 

the growth of one fingerprint vendor (in terms of volume) reached new highs last 

fiscal year — shipping one million sensors between 1998-2003, four million 

between 2003-2005, and five million sensors in 2006 (Burke, 2006). This 

broadening of markets can be explained by the following – as devices get 

smaller, cost decreases, as less material is required, thus the number of potential 
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applications increases. This statement is supported by the increase in revenue, 

as well as market projections, which are shown in Figure 2. 

 
Figure 2 Industry reports of real and projected biometric revenue (Allied Business 

Intelligence, 2002; International Biometric Group, 2002, , 2006). 

The successful deployment of biometric systems, regardless of modality 

or application, needs to take into consideration how individuals interact with the 

device. Failure to do so may cause a degradation of the optimal performance of 

the biometric sensor, causing problems such as: Failure to Acquire, Failure to 

Enroll, and impact on the False Rejection Rate. And if an individual cannot 

successfully interact with a biometric device, there is a potential for failure to use, 

especially if they have had previous negative experiences with a biometric 

sensor.  
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Therefore the use of biometrics will likely be dependent on individuals’ 

ability to not only use it more effectively, but also find it more useful than the 

technology that it replaces (such as the username / password combination in a 

computer sign-on application), and like it, which are the components of usability 

as outlined in ISO 9241-11 (1998). Therefore, as utilization of biometric 

technology becomes more pervasive, understanding the interaction between the 

human and the biometric sensor becomes imperative and must be investigated. 

This research attempts to gain a better understanding of how users interact with 

swipe-based fingerprint devices by taking into account the following: 

" Biomechanics and anthropometry of the hand and fingers, 

" Individual perceptions and issues related to biometric devices, and 

" Common interaction problems between the human and device. 

By taking into account the bulleted list above in the design of a swipe-based 

fingerprint form factor, it may be possible to reduce one or more of the following: 

" Failure to Acquire (FTA) rate, 

" Failure to Enroll (FTE) rate, 

" Number of placement/interaction errors, and  

" Amount of task/movement time. 

The preceding items are measured in the proposed HBSI evaluation method 

because if a reduction in amount of assistance (training), errors, or time is 

achieved, it may be possible to increase overall user satisfaction, which is also 

measured separately in the HBSI method.  
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1.5. Significance of the Problem 

While biometric sensors and the supporting technologies have advanced 

over the last five years; driven by improved sensor technology, improved data 

storage and compression capabilities, and improved computing power, there has 

been limited research and literature that examines the design or usability of 

biometric devices even though the literature has discussed the need for work in 

this area. The following five items discuss the significance for this research.  

1.5.1. 2003 Biometric Research Agenda: Report of the NSF Workshop 

In 2003, over fifty-five leading biometric experts met under the 

sponsorship of the National Science Foundation (Grant EIA-0240689) to 

“develop a rational and practical description of crucial scholarly research to 

support the development of biometric systems” (Rood & Jain, 2003, p. 3). Even 

though the focus of much research has been on improving mathematical 

performance, the group did recognize ergonomics and usability. Moreover, the 

proposed research agenda did contain an item stating the need for research on 

ergonomic design of the capture system and usability studies to evaluate what 

the effects are on biometric system performance (Rood & Jain, 2003).  

1.5.2. Biometrics: A Grand Challenge 

Literature in biometrics has recognized that ergonomics and usability may 

affect the performance of the system but have not provided results to further 
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quantify this. In Biometrics: A Grand Challenge, co-authors Jain, Pankanti, 

Prabhakar, Hong, and Ross (2004) state that the complexity of designing a 

biometric system is based on three main attributes – accuracy, scale (size of the 

database), and usability, which is illustrated in Figure 3. Jain et al. (2004) discuss 

that many applications only require a biometric system to operate at one of the 

three extremes and the real challenge is to design a system that operates at the 

extreme of all three axes. However, in the next section which frames the rest of 

the paper, Jain et al. (2004) “categorize the fundamental barriers in biometrics 

into four main categories (i) accuracy, (ii) scale, (iii) security, and (iv) privacy” (p. 

937). Note, usability is not included in this statement, but was one of three 

supporting legs to the characterization proposed in the paper. 

 
Figure 3 Biometric system characterization with axis representing the intrinsic 1:1 

accuracy of the matcher (Jain, Pankanti, Prabhakar, Hong, & Ross, 2004). 
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1.5.3. UK Passport Service Biometrics Enrollment Trial 

In 2004, the United Kingdom Passport Service (UKPS) along with other 

government agencies and consultant Atos Origin implemented a trial contributing 

towards a national identity cards scheme that investigated the test processes, 

customer experience, and attitudes during enrollment and verification of face, iris 

and fingerprint biometric systems (Atos Origin, 2005). The report discusses 

exception cases that include physical and mental impairments, process times, as 

well as an assessment of customer perceptions and reactions to the systems. 

While the report discusses multiple issues regarding the usability of biometric 

systems, the following three points indicate the need for continued research 

regarding the human-system interaction. First, the enrollment rates for the 

disabled, which combined both learning and physical impairments, were much 

lower than the UK “representative” group. Second, users fifty-five and older found 

it much more difficult to position themselves to interact with the fingerprint device 

than the 18-34 and 35-54 age groups. Lastly, the report recommends that 

“further trials are needed specifically targeted towards those disabled groups 

where enrollment difficulties occurred because of environment design or because 

of the ergonomics of the biometric device design” (Atos Origin, 2005, p. 15). 

1.5.4. 2005 National Research Council Workshop on Technology, Policy, and 

Cultural Dimensions of Biometric Systems 

On March 15-16, 2005, members from government, industry, and 

academia met to discuss and present their views on issues involving biometric 
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technologies and systems. In the first of five sessions participants discussed “the 

state of the art of biometric systems, the current bottlenecks, and areas where 

performance could be improved” (Batch, Millett, & Pato, 2006, p. 2). The 

panelists agreed that “biometric systems cannot be made perfect – that is, the 

focus should be on how to evaluate and reduce, rather than eliminate, error 

rates” (Batch, Millett, & Pato, 2006, p. 2). Moreover, they grouped the challenges 

on biometric systems into three groups: 

" Improving accuracy through research on sensor resolution, ergonomics, 

algorithms, fusion techniques, etc…, 

" Integrating biometric systems with other security systems,  and 

" Promoting interoperability of biometric systems (Batch, Millett, & Pato, 

2006, p. 2). 

Furthermore, the report states the “capture of biometric identifiers by the sensors 

is affected by both the human interaction with the sensor and by the precision of 

the acquisition device itself” and “given that users of biometric systems may not 

be familiar with the technology, the ergonomics of the sensor and associated 

data capture hardware may affect the biometric information that is collected” 

(Batch, Millett, & Pato, 2006, p. 6).  

1.5.5. National Institute of Standards and Technology Internal Report 7382 

The most recent work regarding usability or ergonomics outside of 

Purdue’s Biometric Standards, Performance, and Assurance Laboratory has 
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been conducted by the National Institute of Standards and Technology (NIST). At 

the time of writing, the NIST biometrics usability group has published three 

reports on the usability of biometric devices, one conference proceeding article, 

and one document that outlines a taxonomy of usability and biometric definitions. 

One of these reports, NISTIR 7382 (2006) investigates if the height of a 

fingerprint sensor has an effect on fingerprint image quality for the Department of 

Homeland Security in accordance with section 303 of the Border Security Act, 

codified as 8 U.S.C. 1732. The study attempted to answer three questions:  

1. Does work surface height affect the time required to capture fingerprint 

images? 

2. Does work surface height affect the quality of captured fingerprints? 

3. Do users prefer a particular work surface height for capturing fingerprints 

(Theofanos, Orandi, Micheals, Stanton, & Zhang, 2006)? 

Results from the study, which the setup is shown in Figure 4, consisted of 

seventy-five NIST employees using a fingerprint scanner that was six inches tall 

revealed significantly different results for each of the three questions. The height 

of 36 inches (914 mm) resulted in fastest performance, a second height – 26 

inches (660 mm) produced the best quality fingerprint images, and yet users 

found a third counter height of 32 or 36 inches (813 or 914 mm) to be most 

comfortable (Theofanos, Orandi, Micheals, Stanton, & Zhang, 2006). In addition, 

starting the fingerprint capture with the right hand for the slap based prints was 

most efficient as 76% of the participants preferred starting with the right hand, 
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which is in line with traditional handedness statistics of 11-13% being left 

handed. 

 
Figure 4 Test apparatus showing the four scanner height adjustments 

(Theofanos, Orandi, Micheals, Stanton, & Zhang, 2006). 

1.6. Statement of Purpose 

The purpose of this study was to develop two alternative swipe-based 

fingerprint form factors using a commercially available fingerprint sensor based 

upon the biomechanics and anthropometry of the hand and fingers, ergonomic 

principles, common interaction problems, and errors users perform, as well as 

user perceptions. The comparative study evaluated the performance and 

usability of the two form factors created in this study, the commercially available 

swipe-based fingerprint form factor, and one large-area fingerprint sensor. The 

study used participants from Purdue University and the Greater Lafayette area. 

The test was conducted on Purdue University’s West Lafayette campus in the 

Biometric Standards, Performance, and Assurance (BSPA) Laboratory located in 
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Knoy Hall room 378. The BSPA laboratory was also used for the qualitative data 

collection to during times when the lab was minimally occupied to minimize 

distractions and auxiliary input on individuals participating in the interviews. 

1.7. Definition of Terms 

Terms and definitions are used throughout this dissertation that may be 

unfamiliar to the reader. Most definitions are included in context of the document, 

however the terminology that is unfamiliar to the biometrics community is 

included in this section. 

Anthropometry - empirical science that evaluates body measurements; such 

as size, strength, shape, mobility, flexibility, and working 

capacity, as well as defines physical dimensions and 

characteristics of a person such as: weights (masses), 

volumes, centers of gravity, and body segments 

(Bhattacharya & McGlothlin, 1996; Pheasant, 2006; Tayyari 

& Smith, 2003). 

Dactyloscopy - Forensic identification science that is associated with 

ridges on the finger tip areas only (Ashbaugh, 1991). 

Ergonomics - scientific discipline concerned with the understanding of 

interactions among humans and other elements of a 

system, and the profession that applies theory, principles, 

data and methods to design in order to optimize human 
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well-being and overall system performance (International 

Ergonomics Association (IEA), 2006). 

Form factor - material in which a biometric sensor is embedded in. 

Human-
Computer 
Interaction 

- discipline concerned with the design, evaluation and 

implementation of interactive computing systems for human 

use and with the study of major phenomena surrounding 

them (Hewett et al., 1996). 

Usability - extent to which a product can be used by specified users to 

achieve specified goals with effectiveness,  

efficiency and satisfaction in a specified context of use 

(International Standards Organization, 2006b). 

1.8. Assumptions 

1. The swipe-based fingerprint capacitance sensor functioned consistent with 

the manufacturer’s specifications, regardless of the form factor. 

2. The designed composite material that the form factor was constructed with 

did not affect the availability of the swipe-based fingerprint capacitance 

sensor. 

3. The pseudo-random ordering of the fingerprint devices mitigated 

habituation effects to one sensor over another for the tested population. 
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4. The pseudo-random ordering of the fingerprint devices mitigated personal 

preferences and user satisfaction over the three visits for the tested 

population. 

5. The composite material of the designed fingerprint devices versus the 

material of the commercial fingerprint devices did not affect the personal 

preference and user satisfaction for the tested population. 

1.9. Delimitations 

1. Testing of fingerprint technologies other than capacitance was outside the 

scope of this study. 

2. Testing of large or small area fingerprint sensors was outside the scope of 

this study. Although, one large area sensor is included in the study to 

collect a baseline measure that can be used to evaluate the three swipe-

based sensors. 

3. Testing of fingerprint sensors embedded in devices such as cell phones, 

PDAs, laptops, etc… was outside the scope of the study.  

4. Testing of various swipe based fingerprint capacitance sensors was 

outside the scope of this study. 

5. Testing of algorithms was outside the scope of this study. 

6. The HBSI conceptual model was designed for general biometrics, but the 

evaluation method was designed for only physical interactive biometrics. 

Testing of non-physical interactive biometrics was outside the scope of the 

evaluation method, and thus this study. 
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7. Testing was limited to the following classification shown in Table 1. 

Table 1 Evaluation Classification (Mansfield & Wayman, 2002). 

Experimental Application Types Classification for this research 
Application Classification Scenario 

Co-operative or Non Co-operative Co-operative Users 
Overt versus Covert Overt 

Habituated versus Non-Habituated Both 
Attended versus Non-Attended Attended 

Standard Environment Yes 
Public versus Private N/A 

Open versus Closed System Closed 
 

8. Spoofing of the swipe fingerprint sensor and housing was outside the 

scope of this study. 

9. The methodology and protocol used ISO 19795-1(2006a), ISO 19795-2 

(2007a), and ISO 25062 (2006b) as a guide, but deviations occurred due 

to the nature of the study. Please refer to the Chapter 3. 

10. Aware WSQ Image Quality software and NFIQ were used, but were not 

compared. 
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CHAPTER 2. REVIEW OF LITERATURE 

2.1. Introduction 

The following review of literature is composed of eight sections. The first 

section discusses the history of personal identification, the history of biometrics, 

and foundations of fingerprinting. The second section discusses the Integumetary 

system, specifically the structure of the skin, ridge formations, and fingerprint 

patterns. The third section discusses the different fingerprint acquisition 

technologies and algorithms. The fourth section discusses the uniqueness of 

fingerprints, the size of the sensor, and finger selection and usage. The fifth 

section discusses the biometric model and typical characteristics found in a 

biometric system. This section will explore issues and problems satisfying these 

criteria and properties and reveal problematic areas in the human-biometric 

sensor interaction (HBSI). Here the business drivers for investigating this 

problem will be discussed. Section six will introduce anthropometry, ergonomics, 

usability, and user-centered design to show how using these tools could solve 

some of the issues discussed in section five. The seventh links the tools in 

section six and introduces the Human Biometric Sensor Interaction (HBSI) 

conceptual model. The last section introduces the proposed HBSI evaluation 
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method, relating hypotheses, and an explanation of the statistical analyses that 

were used.  

2.2. History of Personal Identification and Origins of Biometrics 

 The notion of utilizing personal information, characteristics, or human 

physiology for identification purposes is not a new concept. Throughout human 

history, man was often identified with his family, tribe, or clan through visual 

characteristics such as, but not limited to, clothing and personal artifacts, tattoos, 

or caste marks (Allison, 1973). Ancient Egyptian civilizations dating back to the 

fourth dynasty (circa 2575-2465 B.C.) used demographic information, behavioral 

characteristics, and anatomical measurements to identify individuals and ensure 

proper and fair distribution of food and supplies to workers. Ashbourn (2000) 

discuses the story of Khasekem, an assistant, who was responsible for 

administering and controlling food and supplies to Egyptian construction workers 

for King Chephren during which time The Great Sphinx and second pyramid in 

Giza were built. During his post, Khasekem became increasingly wary of 

fraudulent claims by workers attempting to claim their monthly food and supply 

allowance and sought to develop a system to better identify individuals. 

Khasekem’s system included the worker’s name, age, place of origin, and 

occupation, as well as unique physical and behavioral characteristics (Ashbourn, 

2000). According to Ashbourn (2000) anatomical measurements supplemented 

the individual’s record if few distinctive features were apparent, which included 

“the distance between the tip of an outstretched thumb and the elbow” (p. 2).  
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2.3. History of Fingerprinting 

Fingerprints have been found during excavations in ancient civilizations 

dating as far back as 7000 B.C. on bricks in the ancient city of Jericho and in the 

walls of the ancient city of Paphos (Kenyon, 1970; Maier & Karageorghis, 1984). 

Over the years fingerprints have also been found on everyday utensils and 

pottery, but according to Berry and Stoney (2001) the earliest trace of finger 

imprints left with intent occurred in Mesopotamia circa 3,000 B.C. to verify 

construction work of buildings for the king were built by respected masons. The 

Babylonians also understood that no two hands were exactly alike and used 

imprints of the hand to authenticate engravings and types of artwork for kings 

(Ashbourn, 2000). Berry and Stoney (2001) also infer that the Chinese were 

“aware of the individuality of fingerprints well over 5000 years ago” (p. 13). This 

inference is based on a left thumbprint embedded in the seal of an ancient 

Chinese script dated before 300 B.C., which is similar to the Chinese land 

contract shown in Figure 5. Berry and Stoney (2001) quoted Mr. Laufer, a 

researcher at the Field Museum of Natural History in the United States, about the 

Chinese’s use of fingerprints stating “before the first century B.C., clay seals 

were used extensively in sealing documents such as official letters and 

packages” and that this left thumbprint is “deep and sunk into the surface of the 

clay seal and beyond any doubt was effected with intentional energy and 

determination”  and “belongs to the owner of the seal who has made his name on 

the reverse side” (p. 13). According to Mr. Laufer, this thumbprint is the oldest 

manuscript on record documenting the history of the fingerprint system (Berry & 
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Stoney, 2001). In addition to fingerprints, the Chinese recognized the uniqueness 

of palm and foot prints (Allison, 1973). The novel The Story of the River, by 

twelfth century author Shi-naingan discusses the use of children’s sole and palm 

prints for completing transactions, for which the children were sold. The earliest 

reference linking fingerprinting to criminals dates back to Babylon during the 

reign of Hammurabi, circa 1792-1750 B.C. (Ashbaugh, 1991).  

 
Figure 5 A Chinese land contract with thumbprint (Ashbaugh, 1991). 

Moving ahead in time, ambassadors and foreign merchants around Persia 

during the fourteenth century had their fingerprints taken upon arrival for 

identification purposes. Rashid, a Persian physician, discusses his work with 

fingerprints in Cyclopaedic History which states that in Rashid’s experience “no 

two individuals have fingers precisely alike” (Morland, 1950).  
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2.3.1. Scientific Research in Fingerprints 

2.3.1.1. Nehemiah Grew 

While various applications and uses of fingerprints were used as far back 

as 3,000 B.C., the scientific research into fingerprints did not occur until the 

seventeenth century. Dr. Nehemiah Grew, M.D., an English botanist, physician, 

and microscopist published a paper in 1684 describing fingerprints as ridges, 

furrows, and pores in Philosophical Transactions (Allison, 1973; Ashbaugh, 1991; 

Block, 1969). Specifically, Grew (1684) described fingerprints as: 

Those great Lines to which some men have given Names, and 

those of a middle size call’d [called] the Grain of the skin 

innumerable little Ridges, of equal bigness and distance, and 

everywhere running parallel one with another. And especially, upon 

the ends and first Joynts [joints] of the Fingers and Thumb, upon 

the top of the Ball, and near the root of the Thumb a little above the 

Wrist. In all which places they are regularly disposed in to Spherical 

Triangles, and Ellipticks… Upon these Ridges stand the Pores, all 

in even Rowsand of the magnitude, as to be visible to a very good 

Eye without a Glass [magnifying glass]…. That which Nature 

intends in the position of these Ridges, is, That they may the better 

suit with the use and motion of the Hand: those of the lower side of 

every Triangle, to the bending in or clutching of the Fingers: and 

those of the other two sides, and one of the Ellipticks to the 
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pressure of the Hand or Fingers ends against any body, requiring 

them to the right and left. Upon these Ridges, the Pores are very 

providently placed, and not in the Furrows which lie between them; 

that so their structure might be more sturdy, and less liable to be 

depraved by compression; whereby only the Furrows are dilated or 

contracted, the Ridges constantly maintaining themselves, and so 

the Pores unalter’d [unaltered] (pp. 566-567). 

In addition to Grew’s detailed descriptions of the ridges and pores, Grew 

provided illustrations of the fingers and palm, as well as ridge and pore detail, 

which are depicted in Figure 6. However, Grew did not discuss the uniqueness of 

fingerprints or even consider it as a viable way for personal identification 

(Ashbaugh, 1991). 

 
Figure 6 Illustrations by Grew in 1684 displaying the ridge flow of the fingers and 
palm [left] and a partial thumbprint depicting ridge detail and pores [right] (Grew, 

1684). 
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2.3.1.2. Govard Bidloo 

Studies concerning friction ridges were also ongoing in Holland around the 

same time as Grew published his research. In 1685, Govard Bidloo published a 

book on human anatomy titled Anatomica Humani Corporis that illustrated friction 

ridges and the structure of the pore (Allison, 1973; Ashbaugh, 1991). It is also of 

interest that Bidloo, like Grew, did not discuss individuality or uniqueness of 

fingerprints. Bidloo’s illustration of a thumbprint can be seen in Figure 7.  

 
Figure 7 Bidloo's illustration of a thumbprint exaggerating the friction ridges 

(Ashbaugh, 1991). 

2.3.1.3. Marcello Malipighi 

Marcello Malipighi, an Italian doctor and anatomy professor at the 

University of Bologna, made many contributions to science. The one of 

importance to this research is Malipighi’s seminal research in a field called 

microscopic anatomy. It is believed that Grew and Malipighi were in 

correspondence, but the language barrier proved difficult to continue 
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collaboration. Malipighi’s contribution to the fingerprinting community surrounded 

his research that examined the functions of the human skin, specifically the lower 

epidermis, which is named the “Malipighian layer”. Specifically, Malipighi 

discussed the function of the friction ridges for enhancing grasping objects 

(Ashbaugh, 1991; Berry & Stoney, 2001; Block, 1969). 

2.3.1.4. J.C.A. Mayer 

  The next major contribution to the fingerprinting community took another 

century to emerge. In 1788, a German doctor and anatomist named Mayer 

published Anatomische Kupfertafeln nebst dazu gehörigen Erklörungen, which 

illustrates friction skin, and is depicted in Figure 8. More impressive than Mayer’s 

illustrations are the comments concerning friction ridges and individuality:  

Although the arrangements of skin ridges is never duplicated in two 

persons, nevertheless the similarities are closer among some 

individuals. In others the differences are marked, yet in spite of their 

peculiarities of arrangement all have a certain likeness. 

According to Ashbaugh (1991) this was the foundation of friction ridge 

identification, which is based upon two principles: fingerprints can be classified 

and ridge formation is random thus duplication never occurs. 
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Figure 8 Mayer's illustration of fingerprints (Ashbaugh, 1991). 

2.3.1.5. Thomas Bewick 

While Mayer is believed to have been the first to scientifically disseminate 

knowledge on the uniqueness of fingerprints, Thomas Bewick deserves notice as 

he utilized engravings of his fingerprints for his signature, which is shown in 

Figure 9. While it can be deduced that Bewick thought ridge detail was unique, 

scholars are unsure how he determined this (Berry & Stoney, 2001; Block, 1969).   

 
Figure 9 Thomas Bewick's signature including fingerprint (Berry & Stoney, 2001). 
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2.3.1.6. Joannes E. Purkinje 

Continuing the discussion on classification, Joannes Evanelista Purkinje, a 

Professor of Anatomy at the University of Breslau in Prussia, published a thesis 

titled Commentatio de examine physiologico organi visus et systematis cutanei in 

1823 that discussed research concerning the eye, fingerprints, and other skin 

features. Focusing on the fingerprint research, Purkinje was studying sweat 

glands and realized the sweat glands opened out into the furrows or grooves of 

the skin and observed the ridge patterns appeared to be unique for the 

individuals he studied (Ashbourn, 2000). More importantly, Purkinje listed nine 

classes or types of fingerprints (Figure 10), which was the first attempt at a 

classification system (Allison, 1973; Ashbaugh, 1991; Berry & Stoney, 2001; 

Block, 1969; Cummins & Wright-Kennedy, 1940). Purkinje’s classification system 

of nine types is shown in Table 2. However, like those before him, Purkinje never 

states that the observed ‘individual differences’ in fingerprints, the palm, or hair 

might be useful in the recognition of individuals (Cummins & Wright-Kennedy, 

1940). Purkinje also made many observations concerning the integumentary 

system, which includes the skin, hair, and nails. Purkinje’s observations during 

tactual examinations classified skin as: “hard or soft, moist, oily, clammy, or dry, 

warm or cold, elastic, rigid, or spongy, smooth or rough, loose or taut, pliant or 

non-pliant” (Cummins & Wright-Kennedy, 1940). Moreover Purkinje stated that 

furrows become ‘occluded in advanced age’, which is one of the first statements 

discussing the wearing of friction ridges (Cummins & Wright-Kennedy, 1940).  



 

 

28

 

 
 

Figure 10 Purkinje’s fingerprint classification patterns (Cummins & Wright-
Kennedy, 1940). 
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Table 2 Purkinje’s classification system with descriptions. 

Pattern 
shown in 
Figure 10 

Purkinje’s 
Classification

Known 
today as: 

Purkinje’s description 
(Cummins & Wright-Kennedy, 

1940): 
7 Transverse 

curves 
Plain arch The ridges and furrows are 

almost in straight lines 
transversely from one side to 
the other except in the middle 
where they become more 
curved. 

8 Central 
longitudinal 
stria 

Tented arch Similar to the transverse curve 
except the ridges are wrapped 
over a little perpendicular stria 
[column of ridges]. 

9 Oblique 
stripe 

Radial or 
ulnar loop 

Between the transverse 
curves an oblique line is 
interpolated from one side to 
the other and runs distally and 
ends almost in the center. 

10 Oblique loop Radial or 
ulnar loop 

Similar to the oblique stripe 
except the curve returns to the 
side from which it came. 

11 Almond Whorl A loop that runs back on itself 
enclosing an almond-shape 
gyrus and composed of 
concentric ridges. 

12 Spiral Whorl Similar to the almond but the 
curves change from straight 
lines to loops suddenly and 
typically bear to one side. 

13 Elliptical Whorl Similar to the other whorls, but 
the ridges form concentric 
ellipses that surround a simple 
short line placed in the center. 

14 Circle Whorl Similar to the elliptical, except 
the simple line is replaced with 
a tubercle [island]. 

15 Double whorl Double 
whorl 

Two whorls are formed 
entwined on themselves. 
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2.3.1.7. Who Came First: Dr. Henry Faulds or Sir William Herschel? 

Controversy has plagued the next two fingerprint pioneers and their 

findings therefore will be discussed in the order in which their publications in 

Nature appeared.  

2.3.1.7.1. Dr. Henry Faulds 

The first publication regarding the practical use of fingerprints and their 

use to identify criminals was published by Dr. Henry Faulds, a Scottish physician 

working at the Tsukiji Hospital in Japan as a surgeon, in Nature in October of 

1880. In Faulds’s letter “On the Skin-furrows of the Hand”, he describes his 

research on monkey fingerprints and their similarities to the human. However, the 

most important part of Faulds’s letter described five uses of finger patterns: 

1. We may perhaps be able to extend to other animals the 

analogies found by me to exist in the monkeys. 

2. These analogies may admit of further analysis, and may assist, 

when better understood in ethnological classifications. 

3. If so, those which are found in ancient pottery may become of 

immense historical importance. 

4. The fingers of mummies, by special preparation, may yield 

results for comparison. I am very doubtful of this. 

5. When bloody finger-marks or impressions on clay, glass, & c., 

[etc…] exist, they may lead to the scientific identification of 

criminals (p. 605). 
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Faulds also conducted research on the permanence of friction ridges, as did 

Herschel, amongst others. These experiments will be discussed in section 2.5.8. 

2.3.1.7.2. Sir William Herschel 

In response to Faulds, Sir William Herschel published in Nature a month 

later in November 1880. In his letter, “Skin Furrows of the Hand” Herschel 

discussed his usage of fingerprints in applications such as identifying prisoners 

and for pensioners in India twenty years before Faulds (Herschel, 1880). Also, 

according to Block (1969) by 1860 Herschel became convinced that “the 

fingerprints of no two people were exactly alike – not even those of identical 

twins” (pp. 4-5).   

 Upon hearing word of Herschel’s work Faulds wrote a letter to the British 

Home Secretary in Scotland Yard claiming priority in his discovery of fingerprints, 

but his request was ignored (Block, 1969). Pressing the issue, Faulds sent a 

letter to Charles Darwin on February 15, 1880 requesting aid to gather finger 

impressions to ‘throw light on human ancestry’ (Berry & Stoney, 2001). Darwin 

replied that he could not offer assistance, but would forward Faulds’s letter to his 

cousin, who would later become Sir Francis Galton. 

2.3.1.8. Sir Francis Galton 

While the letter was passed onto Galton, it did not obtain the attention of 

him and was deposited into the Anthropological Institute where it stayed until 

1894 (Berry & Stoney, 2001). During this time Galton was considered an expert 
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in Bertillonage, a measurement system of the body that will be discussed in 

section 2.7.1. However, in 1888 Galton became very interested in fingerprints, 

first only with thumb impressions, then in 1890 moved to collect full sets of 

impressions, and after extensive study became convinced that fingerprints 

remained unchanged throughout life (Berry & Stoney, 2001; Block, 1969). Galton 

also proposed a system of classification that reduced Purkinje’s classification 

system of nine types to three common classes: the arch, loop, and whorl, which 

is shown in Figure 11 (Allison, 1973). Galton also described minute details in 

fingerprints, called minutiae points and commonly called “Galton features”, which 

are shown in Figure 12.  

 
Figure 11 The five common fingerprint classes. 

 
Figure 12 Minutiae structures Galton identified in fingerprints. From left to right: 
bifurcation, ridge ending, enclosure, island, trifurcation, crossover, bridge, and 

hook. 
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It is also reported by Galton (1892) in Finger Prints that: 

I [Galton] was exceedingly obliged to him [William Herschel] for 

much valuable information when first commencing this study, and 

have been almost wholly indebted to his kindness for the materials 

used in this book for proving the persistence of the lineations 

throughout life (p. 27).  

Galton also states in Finger Prints that “if the use of finger prints ever becomes of 

general importance, Sir William Herschel must be regarded as the first who 

devised a feasible method for regular use, and afterwards officially adopted it” 

(Galton, 1892, pp. 28-29). As already mentioned, Galton was an expert in 

Bertillonage prior to his work in fingerprints. After only five years working in 

fingerprints Galton was summoned by the Home Secretary appointed Asquinth 

Committee to inquire into: 

(1) the existing methods of registering and identifying habitual 

criminals in England; (2) the Bertillon system of anthropometric 

criminal identification; and (3) the suggested system of identification 

by means of a record of fingermarks, and to report whether either of 

such (2) and (3) methods could with advantage be adopted either in 

substitution for or to supplement the existing records (Morland, 

1950, p. 30). 
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The committee decided to add Galton’s fingerprint classification to the Bertillon 

cards and it remained that way until the turn of the twentieth century (Morland, 

1950). 

2.3.1.9. Sir Edward Henry 

The other name typically mentioned in the same breath as Galton is Sir 

Edward Henry. Henry followed Herschel in India, utilizing fingerprints for payroll 

and pension systems to insure that the proper person was being paid (Allison, 

1973; Berry & Stoney, 2001). Controversy has surrounded the Henry 

Classification System in the past, as according to Berry and Stoney (2001) Henry 

gave his name to the system worked out by Indian co-workers Khan Bahadur 

Azizul Haque and Rai Bahadur Hem Chandra Bose, which Haque allegedly 

stated that Henry could not understand the system when it was patiently 

explained to him. In 1926, Henry addressed Haque stating that Haque 

contributed more than any other on Henry’s staff (Berry & Stoney, 2001).  

2.4. Fingerprint Classification Systems 

2.4.1. Henry System 

Henry’s system further developed Galton’s ideas and classified 

fingerprints by categorizing 10-print records based upon fingerprint patterns, 

which reduced the effort required to search fingerprint records found in 
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databases (IBG, 2003). The system is organized into three classification 

schemes: primary, secondary, and sub-secondary. The Federal Bureau of 

Investigation’s (FBI) fingerprint system, now known as the Integrated Automatic 

Fingerprint Identification System, or IAFIS, is based upon the Henry system, 

although it has been modified for further differentiation between fingerprint cards 

with similar classification patterns. 

2.4.1.1. Primary Classification 

The first step in classification is to assign a number to each digit – the right 

thumb is 1, the right little finger is 5, with the left hand following the same pattern 

thumb (6) to the little finger (10). The goal is to pair up all 10 digits – 1 and 2, 3 

and 4, 5 and 6, 7 and 8, and 9 and 10. According to the FBI (1973) the system 

also assigns a numerical value based on if the pattern is a whorl and which finger 

it is. The other two patterns, the loop and arch, receive a value of zero. Table 3 

demonstrates the numerical system used in the Henry System.  Using the values 

in Table 3, the calculation can be performed using ( 1 ), which would produce the 

primary group of 17/3. The Henry System can be segmented into 1,024 primary 

groupings (Berry & Stoney, 2001; IBG, 2003).



 

 

36

 

Table 3 Henry System’s numerical values for the fingers. 

Right Hand Left Hand  
Thumb Index Middle Ring Little Thumb Index Middle Ring Little

# 1 2 3 4 5 6 7 8 9 10 
Whorl  
value 

16 16 8 8 4 4 2 2 1 1 

Pattern Whorl Whorl Loop Arch Arch Arch Whorl Loop Loop Loop
Finger 
Value 

0 16 0 0 0 0 2 0 0 0 

 

1 + (Sum of even fingers with whorl patterns)  =  1 + (16) = 17 
1 + (Sum of odd fingers with whorl patterns)        1 + (2)       3 

 

( 1 ) 

2.4.1.2. Secondary Classification 

The secondary classification scheme for the Henry System is also known 

as the small letter group as prints with an arch, tented arch, or radial loop in any 

digit besides the index finger are represented as a small letter (Federal Bureau of 

Investigation, 1973). Whorls are not utilized at all in the secondary scheme and 

ulnar loops are not recognized except if the pattern is on the index finger. The 

right hand is contained in the numerator, with the left hand falling in the 

denominator. The pattern of the index finger is listed with an uppercase letter. 

For example, the classification (in order from fingers 1-10) for the following:  

" Tented arch (T),  

" Ulnar loop (U),  

" Radial loop (R),  
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" Radial loop (R),  

" Tented arch (T), 

" Tented arch (T), 

" Radial loop (R), 

" Radial loop (R), 

" Ulnar loop (U),  

" Radial loop (R), 

 

Or T U R R T, would be t U r-r , or in simplified form would be  t U 2r. 
     T R R U R                t R r-r                                                    t R 2r 

2.4.1.3. Sub-secondary Classification 

The sub-secondary classification in the Henry system organizes or groups 

loops and whorls, typically in the middle and index fingers (Allison, 1973; Federal 

Bureau of Investigation, 1973). Classification involves ridge counting of loops and 

ridge (whorl) tracing of whorls. According to the FBI (1973) the ridge count is “the 

number of ridges intervening between the delta and the core” (p. 23). Whorl 

tracing depends on the placement of the deltas, which whorls typically have two 

or more (Federal Bureau of Investigation, 1973). Once located, the whorl is 

traced to determine classification as either inner or outer. For further information 

on sub-secondary classification consult Allison (1973) and Federal Bureau of 

Investigation (1973).  
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2.4.2. Government Classification Systems 

2.4.2.1. Classification System in Great Britain 

According to Allison (1973), Sir Edward Henry returned to England when 

he finished his service in India and subsequently published Classification and 

Uses of Finger Prints, describing the Henry System mentioned earlier in section 

2.4.1. Moreover in 1900, the Belper Committee was commissioned to decide 

which identification system should be used in Great Britain. In 1901, the 

committee reported the Bertillon system should no longer be used and should be 

replaced by Henry’s Classification System, which was in perfect coordination of 

Henry’s book being published (Allison, 1973; Berry & Stoney, 2001). The same 

year, Henry was appointed Assistant Commissioner at Scotland Yard. 

2.4.2.2. Argentina 

Prior to the Henry System being adopted in Great Britain, Dr. Juan 

Vucetich, an Argentinean police officer, established a fingerprint system in the 

Central Police Department of La Plata, Argentina in 1891. Vucetich became 

interested in fingerprints through a journal article written by Galton in Revue 

Scientific that contained Galton’s research on fingerprints in 1894 (Allison, 1973; 

Berry & Stoney, 2001). About a year later, Vucetich created a unique fingerprint 

system, known as “vucetichissimo”, which utilized four fingerprint patterns as 

described in his book Dactilospia Comparada (Berry & Stoney, 2001). His system 
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uses a combination of letters and numbers and is divided into three divisions: 

primary, secondary, and final, which overlap the Henry System (Allison, 1973). 

For further information on the Vucetich System, refer to Allison (1973). Vucetich’s 

system is widespread throughout South America, and is often credited with being 

the foundation of systems created by Bertillon, Brussels, Oloriz, Lyonnese, 

Pessoa, and Mirando Pinto, as well as contributing to others (Allison, 1973). 

2.4.2.3. Canada 

The Canadians began using fingerprints in 1910, when an Order of 

Council passed requiring the use of a fingerprint system (Berry & Stoney, 2001). 

Edward Foster, known as the Father of Canadian Fingerprinting, collected and 

identified the first set of prints in 1911. According to Berry and Stoney (2001) 

after nine years of operation Foster had received more than 11,000 sets of 

fingerprints and identified more than 1,000 of them. 

2.4.2.4. Cuba 

In 1904, the Cuban fingerprint pioneer, Juan Francisco Steegers y Perera 

introduced a fingerprint system to identify delinquents. According to Berry and 

Stoney (2001) a commemorative booklet issued by the Cuban Ministry of 

Communications in 1957 outlined Steegers as the first to introduce dactyloscopic 

information, which his research created a new dactyloscopic-photographic 

medium. 
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2.4.2.5. United States of America 

2.4.2.5.1. New York City’s Civil Service 

The United States entered the world of fingerprinting for identification in 

1902. However, the program was limited to the state of New York, specifically 

New York City’s Civil Service Commission. Dr. Henry de Forest, the Chief 

Medical Examiner, implemented the fingerprint system in order to prevent 

people, except the patient filing the application from receiving an examination 

(Allison, 1973). 

2.4.2.5.2. New York Prison Department 

The New York State Prison System was introduced to fingerprints in 

March of 1903 by Captain James Parke. Parke received his information and 

training from Baker and Lamb which according to Allison (1973) were sent to 

Europe to study the fingerprint system of Cornelius Collins, who was the 

Superintendent of Prisons. When Baker and Lamb returned they had copies of 

Galton’s Finger Prints and Henry’s Classification and Uses of Finger Prints. 

Parke modified Henry’s system which formed the basis of the American system.  

2.5. The Integumental System  

Before a biometric system can acquire a sample from an individual, an 

individual must present their biometric characteristic(s) or trait(s) to the sensor. 

This research focuses on fingerprint recognition, thus the acquired characteristics 
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or traits are physiological. Fingerprints are part of the human skin; thus this 

section will focus on the anatomy and function of the human skin. The human 

body consists of eleven classified systems of organs that carry out complex 

functions. The Integumental system includes skin, hairs, nails, sweat and 

sebaceous glands; subcutaneous fat and deep fascia; the mucocutaneous 

junctions around the openings of the body orifices; and the breasts (Standring, 

2004). The human skin, classified as an organ, is the heaviest in the body, 

ranging between eight to sixteen percent of the total body mass of an individual 

(Standring, 2004; Zhang, 1999). 

2.5.1. The Skin 

The skin is one of the best indicators of general health and is an effective 

protector against biological, chemical, mechanical, osmotic, thermal, and Ultra-

Violet (UV) radiation damage (Standring, 2004; Swartz, 2001; Zhang, 1999). 

Other important functions of the skin include regulation of body temperature and 

a receptor to touch, pressure, pain, and temperature stimuli (Standring, 2004; 

Zhang, 1999). The skin can be classified into two types: thick and thin; and 

ranges in thickness from approximately 1.5 mm to 4.0 mm, dependent upon the 

area of the body, maturation, and aging (Standring, 2004). Thick, or glabrous, 

skin is only found in areas of the body that do not contain hair, which are the 

palms of the hands, flexor surfaces of the digits, and soles of the feet. Thin, or 

hirsute, skin covers the rest of the body. The structure of thick and thin skin can 
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be found in Figure 13. Further examining the skin, it can be differentiated into two 

main layers: the dermis and epidermis. 

2.5.2. Dermis 

The “dermis”, which is Greek for skin, is the thick layer that serves as the 

foundation for the upper layers. The dermis contains arteries and veins; blood 

capillaries and vessels; lymphatic capillaries; and nerve fibers (Ashbaugh, 1991; 

Zhang, 1999). The main functions of the dermis are to provide strength and 

elasticity to the skin. Various collagen fibers and arrangements provide the 

tensile strength to the skin, while elastic fibers allow the skin to deform and return 

to its original shape. The density of the fibers and arrangements varies across 

the body, by sex, and with age (Standring, 2004).  Moreover, Ashbaugh (1991) 

mentions the ridges and furrows have their roots in the dermis, meaning the 

pattern of the friction ridges are formulated long before reaching the outermost, 

or cornified, layer. However, while the ridges are formed before they reach the 

cornified layer, Ashbaugh (1991) states that 

Cuts that penetrate completely through the bottom layer of the 

epidermis and reach the dermal papillae [in the dermis] will leave a 

scar as new healthy skin cells cannot be regenerated due to the 

cell damage in the generating layer” (p. 26).  

Therefore if a cut penetrates through the epidermis down to the dermis, the 

friction ridge will be altered, which may cause problems for fingerprint recognition 

algorithms. Moreover, Moore and Dalley (2006) discuss the effects of aging on 
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the skin, stating “the elastic fibers of the dermis deteriorate with age and are not 

replaced; consequently, in older people the skin wrinkles and sags as it loses its 

elasticity” (p. 13). This can also negatively affect fingerprint recognition 

performance, as individuals may not be able to produce repeatable samples, 

which is discussed in sections 2.6.3.1 and 2.6.4.3.  

The dermis consists of three layers: the papillary layer, reticular layer, and 

the hypodermis, also known as the superficial fascia. The three layers will be 

discussed next from the deepest layer to the outermost layer. 

 
Figure 13 The structure of the thick or hairless skin (left) and the thin or hairy skin 

(right) (Standring, 2004). 
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2.5.2.1. Hypodermis 

The hypodermis is composed of loose connective tissue called 

subcutaneous tissue, which is of varying degrees of thickness. The main 

functions of the hypodermis are for: 

" Thermal insulation, 

" Shock absorption, 

" Storage for metabolic energy, and 

" Mediating the mobility of the skin (Standring, 2004). 

The hypodermis varies in density across the body. According to Standring (2004) 

the hypodermis is “particularly dense in the scalp, palms, and soles, where it is 

crossed by numerous strong connective tissue bands binding the hypodermis 

and skin to underlying structures” (p. 163). 

2.5.2.2. Reticular Layer 

The reticular layer connects the deep tissues of the hypodermis to the 

papillary layer. This layer consists of large bundles of collagen fibers which 

interact with the collagen found in the papillary layer to form a strong yet 

deformable three-dimensional lattice (Standring, 2004). In adults, eighty to 

eighty-five percent of collagen is Type I, which is coarser than Type III, which is 

found in the papillary layer (Standring, 2004).  
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2.5.2.3. Papillary Layer 

The papillary layer is proximate to the epidermis and provides structure to 

the skin, metabolic support, nutrition, as well as supplies sensory nerve endings 

and blood vessels (Standring, 2004). Another minor type of collagen (type VII) 

links the epidermis deep into the papillary dermis and provides a strong 

foundation for the epidermis (Standring, 2004). The strength of the epidermis is 

due to the two rows of papillae (rete ridges) of the dermis on each side of the 

epidermal rete pegs that lie under each epidermal ridge. It is here where the 

dense collagen fibers are located and provide strength to the epidermis 

(Standring, 2004; Zhang, 1999). The rete ridges of the dermis join the rete pegs 

of the epidermis much like two connecting puzzle pieces interlock. 

2.5.3. Epidermis 

The “epidermis”, which is Greek for upon the skin is a compound tissue 

that consists of mostly self-renewing cells, called keratinocytes (Standring, 2004). 

The epidermis consists of several small layers, where keratinocytes continually 

produce new cells, which begin formation in the innermost layer (basal layer) and 

continually change until reaching the outermost layer (cornified or horny layer). In 

this layer, a substance called desmosome prevents skin cells from dispersing 

immediately after reaching the cornified layer (Ashbaugh, 1991). The layers of 

the epidermis are: basal layer, spinous or prickle cell layer, granular layer, clear 

layer, and the cornified layer (Standring, 2004).  
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2.5.3.1. Basal Layer 

As previously mentioned, the basal layer is the innermost layer of the 

epidermis, which is adjacent to the dermis (papillary layer) and is where cell 

production occurs. This joint area of the epidermis and dermis is complex, 

especially in the thick skin, as the dermal papillae project into this layer to 

interlock with the rete pegs of the basal layer, which is shown in Figure 14 

(Standring, 2004). 

 
Figure 14 Side view of the complex interface of the epidermis and dermis 

(Ashbaugh, 1991). 

2.5.3.2. Prickle Cell Layer 

The prickle cell layer is proximate to the basal layer and consists of 

numerous layers of closely packed keratinocytes, which project upwards from the 

basal layer. This layer provides tensile strength and cohesion to the epidermis 

(Standring, 2004). 
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2.5.3.3. Granular Layer 

The main function of the granular layer is to form a permeable barrier 

(Standring, 2004). Other functions of the granular layer, while interesting, are 

outside the scope of this study. For more information, refer to Standring (2004). 

2.5.3.4. Clear Layer 

According to Standring (2004), the clear layer “represents a poorly 

understood stage” (p. 160). This layer is located in thick skin of the hands and 

feet only. 

2.5.3.5. Cornified Layer 

The outermost layer of the epidermis and skin is the cornified layer. This 

layer is approximately fifty cells deep in thick skin and only a few cells deep in the 

thin skin (Standring, 2004). Moreover, according to Standring (2004) cornified 

layer thickness is affected by environmental factors, such as abrasion, which 

leads to epidermal thickening of the whole epidermis, commonly called calluses. 

This layer also consists of keratinocyte cells, called squames that interlock with 

each other. Figure 15 reveals an image of a human digit and the closely packed 

squames, as well as friction ridges and sweat pores. 
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Figure 15 Fingerprint image taken with a scanning electron microscope showing 

the cornified layer of numerous squames, friction ridges, and a sweat pore 
[indicated by an arrow] (Standring, 2004). 

2.5.4. The Sweat Glands and Pores 

Sweat glands are rooted deep in the dermis in the hypodermis layer. The 

tubular structure, or duct, passes up through the dermis and into the epidermis, 

which opens on the surface of the skin, which is known as a pore. The tubular 

structure can be up to 0.4 mm in diameter with the pore opening being narrower 

(Standring, 2004). Pores contained in the skin of the volar areas of the palms and 

feet only appear in ridges in order to provide the support of the pore opening, 

which is shown in Figure 16. The role of sweat glands in the body is for 

regulation of body temperature and contribute “significantly to excretion and their 

secretion enhances grip and sensitivity of the palms and soles” (Standring, 2004, 

p. 166). The frequency of pores in the skin varies from eighty to over six hundred 

per square centimeter, with total number between 1.4 and 4.5 million and is 

dependent upon area of the skin and genetic variation (Standring, 2004). 

Moreover, Standring (2004) states that certain races that live in warmer climates 

tend to have more sweat glands than those in cooler regions. 
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Figure 16 Illustration of friction ridges and furrow with pores (Allison, 1973). 

2.5.4.1. Poroscopy 

Pores have also been studied as a method of identification. Dr. Edmond 

Locard of Lyon, France in 1912 established the science of poroscopy and 

suggested that pore size, shape, relative position, and frequency of appearance 

or pores could be used to identify individuals (Ashbaugh, 1991). Moreover, 

Ashbaugh (1991) states numerous studies have shown that pores can be used to 

identify individuals, however “pore structure does not record accurately enough in 

inked or crime scene prints to facilitate this type of absolute comparison and 

evaluation” (p. 48). While Ashbaugh discussed inked prints, there was no 

mention of automatic capture of fingerprints through the use of biometric devices. 

Current fingerprint recognition technologies can capture sufficient pore detail, 

which can be used for identification, as depicted in Figure 17. 
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Figure 17 Magnified finger image showing friction ridges and pores (left) 
(Mainguet, 2006). Right thumbprint showing pore detail (right). 

2.5.5. Skin and Friction Ridge Development 

In 1929, Cummins published a report in Contributions to Embryology 

which discusses the formation of the volar pads of the human hands and feet. In 

this report titled “Topographic History of the Volar Pads (Walking Pads; 

Tastballen) in the Human Embryo” Cummins states that the thick skin of the 

digits and palms appear in their typical formation around the sixth week of 

gestation up until around the thirteenth week when the pads begin to regress 

(Cummins, 1929). During the first four to five weeks the embryonic epidermis 

consists of a layer of cells that is one cell deep (Ashbaugh, 1991; Standring, 

2004). As fetal development continues, the epidermal cells divide and grow, 

thickening this layer. The primary ridges begin to develop during the second and 

thirds months on the hands and feet (Standring, 2004). Primary ridges develop 
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pores and lie underneath the surface friction ridges (Ashbaugh, 1991). As 

gestation continues, the secondary ridges develop around the fifth month 

between the primary ridges, which do not develop pores or become as large as 

the primary ridges (Ashbaugh, 1991; Standring, 2004). The primary ridges supply 

kertatinocyte cells to the surface friction ridge areas, while the secondary ridges 

supply cells to the surface friction ridge furrows (Ashbaugh, 1991). The primary 

and secondary ridge structures are shown in Figure 18. 

 
Figure 18 Fetal development of friction ridges: primary and secondary 

(Ashbaugh, 1991). 

2.5.6. Skin Aging 

According to Standring (2004) there are two main factors that cause skin 

aging: chronological and environmental. The first, chronological changes, are 

physiological (intrinsic) in nature, while the latter are dependent upon external 

factors; such as exposure to the sun. 
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2.5.6.1. Physiological Factors 

The natural aging process begins around the age of 30 where the skin 

undergoes gradual changes in appearance as well as the mechanical properties. 

Natural aging is characterized by epidermal and dermal atrophy causing changes 

in appearance, structure, and function; which include wrinkling, dryness, loss of 

elasticity, thinning, and a tendency towards bleeding under the skin (purpura) 

when minor injuries or trauma are sustained (Standring, 2004).  

Dermal atrophy is characterized by “general thinning and loss of the basal 

rete pegs [Figure 14 labeled primary papillae rete pegs in the dermis] with 

flattening of the dermo-epidermal junction” (Standring, 2004, p. 175). The results 

of this can affect epidermal nutrition. Moreover, the flattening of the junction 

“decreases resistance to shear, leading to poor adhesion of [the] epidermis and 

its separation following minor injury” (Standring, 2004, p. 175). While the 

thickness of the cornified layer does not reduce during the aging process, cell 

replacement can be reduced up to fifty percent (Standring, 2004). As mentioned 

above, dermal atrophy can affect epidermal nutrition, thus is mainly responsible 

for appearance and mechanical properties changing, especially the skin’s 

stiffness, flaccidity, wrinkling, and loss of elasticity. While the thickness of the 

cornified layer does not decrease, the dermis does in general as a result of a 

decline in collagen synthesis of Type I, which is the coarser and provides the 

tensile strength in the dermis (Standring, 2004).  

Summarizing the physiological changes of the skin – atrophy of the dermis 

occurs which causes a loss of strength at the dermal and epidermal junction. In 
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addition Type I collagen declines with age, causing the dermis to lose its 

strength. Thus, these two factors along with others cause aging skin to deform 

and wrinkle, which affects image quality and performance of fingerprint systems. 

2.5.7. Ridge Characteristics 

While the skin forms in a predetermined process, ridge alignment and 

shape; minutiae location, and the location of pores all occur randomly 

(Ashbaugh, 1991). More importantly, these variables define most of the 

characteristics for the three levels of classifying fingerprints. 

2.5.7.1. Level 1 – Patterns 

The first level of classification is the overall pattern of the fingerprint, or 

ridge configuration. All fingerprints fall under three patterns: arches, loops, and 

whorls. Finger patterns were discussed in sections 2.3.1.6 and 2.3.1.8. Figure 19 

shows the three pattern types. 

 
Figure 19 Three types of pattern lines in fingerprints (Allison, 1973). 
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2.5.7.2. Levels 2 – Minutiae Type and Position 

The second level of classification examines the fingerprint more closely, 

specifically the minutiae. Minutiae points were discussed in section 2.3.1.8 as 

Galton features. 

2.5.7.3. Level 3 – Shape of Minutiae, Ridges, and Location of Pores 

The third level of detail for classification looks even more closely at the 

structure of the fingerprint and examines individual minutiae on the ridges as well 

as locations on the pores. With biometric systems, each minutiae based 

algorithm operates uniquely and locates, identifies, and maps minutiae 

differently. 

2.5.8. Ridge Permanence 

Many of the nineteenth century fingerprint pioneers were intrigued by how 

well fingerprints withstood the test of time, as well as being purposefully 

damaged. The following subsections will discuss experiments in ridge 

permanence and are presented in chronological order. 

2.5.8.1. Dr. Henry Faulds 

Faulds performed research on the permanence of fingerprints. In one 

experiment conducted by Faulds, he fingerprinted patients, removed the skin of 

the fingertips, and fingerprinted them again when the skin healed, and noted that 
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the details of the ridges were in the exact same position as the earlier set of 

prints (Berry & Stoney, 2001). 

2.5.8.2. Sir William Herschel 

Herschel also conducted experiments on the permanence of prints; taking 

his palm impression in 1860 and again in 1890 with the ridge pattern remaining 

the same, however creases appeared on the fingers and palms and the ridges 

appeared to be coarser than the earlier print (Berry & Stoney, 2001; Galton, 

1892; Morland, 1950). 

2.5.8.3. Welker 

A third individual, a German anthropologist named Welker experimented 

with the permanence of fingerprints, taking his own palm impression in 1856 and 

again in 1897, which again revealed no changes in ridge detail on the palm and 

hand (Berry & Stoney, 2001; Morland, 1950).  

2.5.8.4. Dr. Leonard and Dr. Witkowski 

Even more painful than Faulds’s experiment, Dr. Leonard, a student of 

Bertillon, who later explained the existence of trace evidence at crime scenes, 

along with Dr. Witkowski of Lyon, France conducted experiments on the 

permanence of fingerprints. According to Morland (1950) these experiments 

“subjected their fingers to the action of boiling water, hot oil, and to pressure on 



 

 

56

 

hot plates” (p. 26). While the epidermis was damaged, the corium, or true skin, 

remained unaffected by the harsh treatment that was exposed to the fingers 

(Morland, 1950, , 1971). Once the new tissue grew, the original friction ridge 

pattern returned as it was prior to the exposure to the hot materials. 

2.5.9. Testing the Permanence of Fingerprints 

2.5.9.1. Roscoe Pitts 

The Federal Bureau of Investigation (FBI) in 1941 had a case that dealt 

with the permanence of fingerprints. Roscoe Pitts, a man with multiple identities, 

was arrested on the charge of for not being registered in the U.S. Selective 

Service program. More interestingly, Pitts was found to have no fingerprints, just 

scars which appeared to be from surgery (Morland, 1950). When compared 

against previous files, a record matching Pitts was found with fingerprints. In an 

attempt to evade law enforcement Pitts hired a New Jersey doctor named 

Brandenburg to cut the flesh of Pitts’s fingers down to the bone and attach them 

to the side of his chest (Morland, 1950). When the tissue had healed, the fingers 

were removed from the chest, resulting in Pitts now having no fingerprints, 

however what remained were very unique and identifiable scars. 
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2.5.9.2. John Dillinger 

In a similar case, John Dillinger, a notorious and vicious thief from the 

Midwest, had extensive plastic surgery on his fingers to remove his fingerprints. 

However, when examined, the underlying tissue of the corium remained 

undamaged, and the scars left by surgery made identification even more exact 

(Morland, 1950). 

2.6. The Biometric Model 

Applying fingerprint classification to a biometric system functions in a 

similar manner to the other biometric modalities. A general biometric model was 

originally proposed by Mansfield and Wayman (2002) to visually represent and 

explain the functionalities in a biometric system, which is shown in Figure 20; and 

has been subsequently modified in ISO 19795-1 (2006a), and shown in Figure 

21. In general, there are five internal processes or sections in a biometric system: 

data capture, signal processing, data storage, matching, and decision.  
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Figure 20 The general biometric model (Mansfield & Wayman, 2002). 

 
Figure 21 Updated general biometric model (International Standards 

Organization, 2006a). 
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2.6.1. Data Capture 

Navigating through the model, an individual first presents their biometric 

characteristic(s) to a sensor, camera, or other collection device. In order for a 

biometric system to function, it must capture the physiological or behavioral 

characteristic(s) of interest, for example fingerprints, voice patterns, face or iris 

images, or an electronic signature. Once the system acquires the characteristics 

from the sensor, the sample transfers to the signal-processing silo. However, 

before signal processing is discussed, the different fingerprint acquisition devices 

will be discussed. 

2.6.2. Sensors - Fingerprint Acquisition Source 

The next component of the biometric model is the sensor. Biometric 

sensors include an expansive list of devices, including simple microphones for 

voice recognition, web cameras for iris and face recognition, optical and 

capacitive sensors for fingerprint recognition, and expensive sensors like 

stereoscopic high-resolution cameras (three dimensional face recognition). 

Since modern fingerprinting began in the late nineteenth century, many 

methods of collection have been utilized, which fall under two main categories: 

inked impressions and live-scan images (inkless impressions). The first category, 

inked impressions, includes methods which are used by law enforcement. The 

most basic type of inked impressions are created by physically applying ink to 

fingers and rolling, dabbing, or slapping a finger or group of fingers on a 

substrate. Other methods of fingerprint acquisition for forensic science 
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applications emerged in the 1950s for crime scene investigations which used 

mercury-based white powders which have been discontinued due to the health 

hazards (Berry & Stoney, 2001; Rabjerg, Jennum, & Morck, 1983; Thomas, 

1978). Developments soon appeared using a mixture of ninhydrin and fluorisol, 

commonly known as Freon in the United States. Ninhydrin reacts with amino 

acids found in perspiration causing a colored imprint to form on the paper, while 

the Freon prevents ink from smudging on paper (Berry & Stoney, 2001). Other 

developments over the last fifteen years include a technique detectives in Great 

Britain use, which uses a Camtac machine that “lifts” the fingerprint as a negative 

and can produce an enhanced copy of the fingerprint in ninety seconds with 

acceptable ridge detail (Berry & Stoney, 2001).  Other techniques to enhance 

and collect latent fingerprints include: cyanoacrylate, or superglue fuming, black 

and light colored powders depending on the color of the surface, and 

magnapowder, which black powder mixed with metal shavings for use on shiny 

surfaces (Lee, Palmbach, & Miller, 2003).  

The second category of prints is live-scan or inkless prints, which is 

associated with biometrics, as fingerprint acquisition is automatic. Of the five 

common families of fingerprint sensors optical, capacitance, thermal, ultrasound, 

and touchless, the two most widely used are optical and capacitance; they tend 

to be used for specific and exclusive applications. Optical sensors are more 

commonly used in law enforcement, border control, and desktop authentication 

applications, whereas capacitance sensors are found in laptops, cellular phones, 

personal data assistants (PDAs), and flash drives. There is some degree of 
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overlap between capacitance sensors and optical sensors, particularly in access 

control and desktop security applications. 

Furthermore, over the last few years the size of fingerprint sensors has 

decreased. This can be attributed to a number of factors, such as an increase in 

applications that require different sizes due to available space, as well as a 

reduction of raw material cost, to name two. Table 4 shows four capacitance-

based sensor images in decreasing size, as well as lists the technical 

specifications for each respective sensor. One may ask “which sensor is best?” 

The answer depends on many factors, some of which include: the intended 

application, the available space for a sensor, and the available power, to name a 

few. 



 

 

62

 

Table 4 Range of sensor sizes and specifications (UPEK Inc., 2007). 

  
Large Area 

Sensor 
Medium Area 

Sensor 

TouchStrip™ 
Fingerprint 

Authentication 
Solution 

TouchStrip 
Strip Sensor

ID TCS1 TCS2 TCS3-TCD42 TCS4 

Picture  
 

 

17.65 x 5 x 
1.915 mm 
(TCS3) 

Size 20.4 x 27 x 3.5 
mm 

20.4 x 27 x 
3.5 mm 

10 x 10 x 1.26 
mm (TCD42) 

14 x 4.5 x 
1.5 mm 

Active Array 
Size 12.8 x 18.0 mm 

10.4 x 14.4 
mm 12.4 x 0.2 mm 

9.6 x 0.2 
mm 

Array size 
256 x 360 pixels

208 x 288 
pixels 248 x 4 pixels 

192 x 4 
pixels 

Power 
supply 4.4V ~ 5.5V* 4.4V ~ 5.5V 2.7V ~ 3.6V 2.4V ~ 3.6V 
Imaging 

20mA @ 5V 20mA @ 5V 

<156mA @ 
3.3V (Sensor 

<51mA, 
Companion 

Chip <105mA) 11mA 
TCS3: -30°C to 

+70°C 
Operating 
Temps 

-30°C to +85°C 
-30°C to 
+85°C 

TCD42: -40°C 
to +85°C 

-30°C to 
+70°C 

Acquisition 
speed 14 frames/sec 15 frames/sec 20 cm/sec 

20 cm/sec 
typical 

Image 
Resolution 508 DPI 
Technology 

CMOS active capacitance pixel-sensing 
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2.6.2.1. Optical 

Optical technologies were the first live-scan method used due to the 

adoption of the Federal Bureau of Investigation’s Automatic Fingerprint 

Identification System (AFIS), now known as IAFIS during the 1960s. According to 

Bolle, Connell, Pankanti, Ratha, and Senior (2004), one the first uses of optical 

technologies besides law enforcement was in medicinal studies in 1966. 

The technology behind optical sensors is similar to that of digital cameras, 

as typically a charged coupled device (CCD) or complementary metal oxide 

semiconductor (CMOS) camera is used to image the finger. Imaging is possible 

through the use of a prism which the user places their finger on. A light source, 

typically a light emitting diode (LED) illuminates the finger, specifically the friction 

ridges that are placed upon the prism (platen). The Frustrated Total Internal 

Reflection (FTIR) is the reflection caused by the presence of ridges and valleys 

on the prism, which is shown in Figure 22. The ridges appear dark in the 

resulting image, while the furrows appear clear or white. The main issues 

surrounding optical technologies, which are based on reflection, are a function of 

personal skin characteristics such as dry and moist or sweaty fingers (Bolle, 

Connell, Pankanti, Ratha, & Senior, 2004) According to Bolle et al. (2004), “if the 

skin is wet or dry, the fingerprint impression can be “saturated” or faint, 

respectively, and hard to process” (p. 33). 
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Figure 22 Optical fingerprint technology using FTIR (Elliott, Sickler, Kukula, & 

Modi, 2005) 

 Depending on the purpose of the imaging system, the size will vary for 

dabbed, slapped, or rolled prints. The platen or prism size for dabbed optical 

technologies is typically the smallest within the optical technologies, but largest 

for the various fingerprint technologies, with an average acquisition surface of 

one square inch. The United States Visitor and Immigrant Status Indicator 

Technology (US-VISIT) program uses a sensor with a 1.2 square inch prism.  

2.6.2.2. Ultrasound 

Ultrasound (ultrasonic) sensing techniques utilize ultrasonic energy to 

detect the fingerprint pattern as the energy in the form of a beam passes across 

the finger surface to measure the depth of the valleys from the reflected signal 

(Bicz, Gurnienny, & Pluta, 1995; Setlak, 2004). According to Setlak (2004), there 
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are two main types of ultrasonic systems. The first examines the differences in 

ultrasonic absorption between the ridges and valleys. The second is based upon 

echo reflection techniques that generate images of the internal layers of the skin. 

The benefit of ultrasonic sensors is that wet and dry skin conditions do not affect 

imaging, and they could possibly be implemented as a non-contact sensor (Bicz, 

Gurnienny, & Pluta, 1995; Bolle, Connell, Pankanti, Ratha, & Senior, 2004). 

However, current ultrasonic technologies are bulkier, more expensive than other 

available technologies, and require more time for imaging a finger than other 

technologies (Bicz, Gurnienny, & Pluta, 1995; Setlak, 2004). 

2.6.2.3. Thermal 

Thermal sensing techniques utilize pyroelectric material that measure 

changes in temperature, called thermal energy flux, to detect the pattern of 

ridges and furrows of a finger when swiped across a sensor (Bolle, Connell, 

Pankanti, Ratha, & Senior, 2004; Mainguet, Pegulu, & Harris, 1999; Setlak, 

2004). Thermal sensors use the properties of skin beneficially, as skin is a better 

conductor than air. Therefore, when ridges contact the heated thermal sensor, a 

difference is realized, as heat dissipates and flows between the ridges in contact 

with the sensor surface (Bolle, Connell, Pankanti, Ratha, & Senior, 2004; 

Mainguet, Pegulu, & Harris, 1999; Setlak, 2004). According to Setlak (2004) the 

change in temperature “can be measured by an array of tiny differential sensors 

and converted into an electrical signal” (p. 30).  
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2.6.2.4. Capacitance 

Electrical fingerprint sensing have several advantages over mechanical, 

optical, thermal, and ultrasonic techniques when integrated with other electrical 

components as the electrical sensing mechanisms do not need to be converted 

into an electrical form of energy (Setlak, 2004). Electrical sensing technologies 

began to emerge according to Setlak (2004) in the late 1960s. One of the 

seminal patents in conductive sensing technologies was granted to Killen (1973) 

that describes an array of conductive sensing spots that captured fingerprint 

information. This work was advanced in the 1980s through patents by Tsikos 

(1982) and Abramov (1986). Please see the patent sources and Setlak (2004) for 

further information. 

According to Setlak (2004), capacitive fingerprint sensors were in a sense 

able to be conceived due to researchers work on memory devices and chips 

during the 1980s. The researchers:  

Discovered (undoubtedly by accident, as the touching of a 

semiconductor chip usually contaminates it beyond recovery) that a 

finger placed on top of the memory array caused data errors that 

followed the spatial pattern of the fingerprint. Recall that dynamic 

random access memories (DRAM) use a periodically refreshed 

charge stored on a small capacitor in the memory cell; clearly, the 

differences in capacitance between a ridge or valley and the 

individual memory cell caused bit flips in some cells (Setlak, 2004, 

p. 33). 
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Electrical fingerprint sensors can be categorized into three technologies; 

conductive, capacitance, and Radio Frequency (RF) imaging (Setlak, 2004). As 

this research uses only capacitance technologies, subsequent discussion will be 

limited to such technologies only. 

The first commercial capacitance sensors became available during the 

1990s, which according to Setlak (2004) are “constructed using a two-

dimensional array of small conductive plates covered by a thin dielectric 

protective layer” (p. 33). When the finger is placed above the array of sensors, 

the ridges make contact and the valleys do not, which pass an electrical charge 

through the sensor, which is shown in Figure 23. More specifically, there are two 

classes of capacitance finger sensors: single plate and double plate, or 

differential. In single plate sensors, each sensor plate corresponds to a particular 

pixel in the fingerprint image where the electrical charge of each plate is 

measured and compared to ground, the typical global environment (Setlak, 

2004). The other class is known as double-plate sensors, which utilize two 

adjacent sensor plates that correspond to a particular pixel in a fingerprint image. 

Whereas the single plate method measures the electrical charge of the 

fingerprint using ground, double-plate sensors use the capacitance between the 

two plates to generate the value of the pixel (Setlak, 2004). 
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Figure 23 General capacitance fingerprint sensor (Elliott, Sickler, Kukula, & Modi, 

2005). 

UPEK’s sensors, which were used in this study, are classified as double-

plate active capacitance sensors. In UPEK’s patent, which is assigned to 

STMicroelectronics, Inc. double-plate active capacitance sensors are described 

as follows: 

The input and output of the solid state amplifier are respectively 

connected to two relatively large and ungrounded capacitor plates, 

or electrodes, that are associated with, but physically and 

electrically isolated from, the switch's external dielectric surface. A 

person's ungrounded fingertip forms a third capacitor plate on, or 

closely adjacent to, the switch's external surface. The solid state 

amplifier circuit detects the presence of a fingertip on the switch's 

external surface by way of a change in capacitance that is created 

within a compound, three electrode or three plate, capacitor that 

includes the two ungrounded capacitor plates and the ungrounded 

fingertip that is closely adjacent to, or resident on, the switch's 

external surface (Gupta & Kramer, 1999). 
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For more information regarding UPEK’s active capacitance sensors, please refer 

to patent 5,973,623 (1999). 

2.6.3. Presentation 

The focus of this dissertation surrounds how users interact with the 

biometric system, primarily how they present their characteristics to a biometric 

sensor. In general, a sensor can be either covert, meaning the user may not be 

aware that a sensor is collecting their biometric characteristics, for example face 

recognition where photographs are taken without approval of the individual being 

photographed, or overt, meaning the user is fully aware of an interaction taking 

place with a biometric sensor. The goal of the presentation stage is for a user to 

present their biometric characteristics to the sensor in a repeatable and 

consistent manner to produce images or samples that are of sufficient or high 

quality. Good quality images are important to collect during presentation so that 

the subsequent signal-processing sub-processes, including: segmentation, 

feature extraction, and quality control can successfully occur. In the case of 

fingerprint recognition, the sensor, the enclosure, or form factor, and the cues or 

guidance provided by the sensor/system, facilitate the presentation. 
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2.6.3.1. Problems Presenting to the Sensor 

2.6.3.1.1. Biometric Properties and Ergonomic Implications 

 In addition to classifying biometric modalities as either physiological or 

behavioral, the technologies can also be classified by five desirable properties, 

outlined by Clarke (1994) which are:  

" Universal,  

" Unique and exclusive,  

" Permanent over the course of one’s life,  

" Collectable and digitally storable, and  

" Acceptable to social standards.  

While these five properties have been well established in the biometrics 

community, the majority of biometric sensors and systems, as a whole, still have 

problems satisfying these criteria. Moreover, these five properties have not been 

exhaustively researched to the point where issues and problems with biometric 

sensors and systems can fully be understood. Consider the following cases that 

challenge the performance of a biometric system.  

2.6.3.1.2. Universality of biometric characteristics 

 Not everyone will necessarily have a particular biometric trait. 

Alternatively, an individual’s biometric trait may be significantly different from the 

“average” expected trait. For example, in hand geometry, an individual might be 

missing a digit, which could cause the acquisition problem of a FTA. A hand 

geometry system requires the user to place his or her hand on the platen such 
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that all of the digits touch all of the guide pins simultaneously for a set period of 

time (Figure 24a). If the digits do not touch all of the guide pins, then the 

individual with small hands (Figure 24b) or missing digits (Figure 24c) must 

compensate by rotating the hand, causing either ulnar or radial deviation of the 

wrist. While the effects of the wrist deviation may cause only slight discomfort 

during each interaction, over time, the motion may cause damage that is more 

lasting, possibly resulting in a musculoskeletal disorder (MSD). In terms of 

biometric system performance, this hand/wrist rotation and deviation causes 

image repeatability problems — each time the user interacts with the device, the 

resulting image will be different. 

 

   
A) “Normal” User B) Small Hand C) Partial Missing Digit 

  
Figure 24 Top and Side Views of a “Normal” User (left), Problematic User with 
Small Hands and CTS (center), and Problematic User with Partial Missing Digit 

(right). 
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An individual may not be able to produce a repeatable hand placement 

due to disorders such as carpel tunnel syndrome or arthritis. One specific case is 

shown in Figure 24b. This individual is afflicted with carpal tunnel syndrome 

(CTS) and reported some discomfort when interacting with the platen, as this 

individual has small hands, therefore had to stretch their hand and fingers to 

touch each of the guide pins in order to pass the system requirements. 

Successful enrollment may be difficult to repeat due to pain or stiffness in the 

hand or fingers, which could result in an increase in either the false rejection rate 

(section 2.8.4.2.2.6) or failure to enroll rate (section 2.8.4.2.2.1). If the user 

cannot touch all the pins at the same time, then the system will time out, causing 

a Failure to Acquire (section 2.8.4.2.2.2).  

It is almost impossible to assess which characteristics a population will or 

will not exhibit; this means there is no guarantee of universality of a particular 

biometric characteristic. Only empirical data and experience can aid in resolution 

of matters involving universality.  

2.6.3.1.3. Variability of biometric characteristics 

 Although it is desired for a biometric characteristic to be stable over time, 

this may be difficult to achieve. Over time, general and occupational wear can 

alter or change characteristics. An individual can also alter their appearance by 

growing facial hair, losing weight, injuring specific features, such as cutting or 

scarring a finger, or intentionally altering the way an individual walks (gait) or 

signs their name. In the case of fingerprints, occupational wear and tear or aging 
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can cause scarring or wrinkling of fingerprints, which may affect its image quality, 

ultimately affecting the performance of the biometric recognition algorithm. Figure 

25 provides an example for age and image quality of fingerprints. In this 

example, one can visually see a difference in the raw images (Figure 25a and c). 

Figure 25a is an image of a 22 year old, which is supple and of good quality. 

Alternatively, Figure 25c is a fingerprint image of an 88 year old and has many 

wrinkles. When the biometric system processes the images, the system returns a 

processed image with minutiae points (circles) located (Figure 25b and d). 

Examining the processed image of the 88 year old (Figure 25d), the wrinkles 

have been mapped as minutiae points.  

The receiver operating characteristic (ROC) curve is a graphical 

representation of the performance of a biometric system and is further discussed 

in section 2.8.4.2.2.3. Figure 26 shows the ROC curves of the algorithm’s 

performance on the populations typified by these two fingerprints. Line (a) shows 

the 18-25-year-old population; line (b) shows the 62 and older population. Note 

that line (b) is shifted up and to the right, indicating poorer performance of the 

algorithm on that age group, compared to the algorithm’s performance on the 

age group represented by line (a). This poses a potential problem as the wrinkles 

may change shape or location over time, posing a problem for fingerprint 

recognition systems. Moreover, the way in which an individual presents his/her 

finger to the device can potentially cause problems for the biometric system. For 

example, if an individual does not provide uniform contact (pressure or speed) 

when interacting with a fingerprint sensor, the system may capture an image of 



 

 

74

 

insufficient quality, which can be seen in Figure 27. In addition to non-uniform 

contact, a dry finger may also look similar to the left image in Figure 27. For more 

discussion on fingerprint image quality and performance see section 2.6.4.3 as 

well as Modi and Elliott (2006b) and Sickler and Elliott (2005). 

 
Figure 25 Raw and processed fingerprint images of a 22 year old (A & B) versus 

an 88 year old (C & D) (Sickler & Elliott, 2005). 

 
Figure 26 ROCs comparing performance of young and elderly fingerprints. Line 

(a) shows the 18-25-year-old population; line (b) shows the 62 and older 
population. Note that line (b) is shifted up and to the right, indicating poorer 

performance of the algorithm on that age group, compared to the algorithm’s 
performance on the age group represented by line (a) (Modi & Elliott, 2006b). 
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Figure 27 Image of a low quality fingerprint (left) and image of a good quality 

fingerprint (right) (Elliott, Kukula, & Modi, 2007). 

2.6.3.1.4. Environmental factors affecting biometric system performance 

 Environment and physical design vary over time, by application, and by 

implementation. For example, the U.S. Visitor and Immigrant Status Indicator 

Technology (US-VISIT) program utilizes face and fingerprint systems in multiple 

locations, namely all major U.S. airports, seaports, and border crossing 

immigration posts. Concentrating on the face component of this multimodal 

system, the positioning of the sensor (that is, its orientation or accessibility 

relative to the individual) and its surrounding environment can have a significant 

impact on the system’s performance. Continuing the US-VISIT example, many 

airports in the United States were designed well before biometric systems were 

implemented in them, thus the environmental conditions, i.e. illumination levels, 

direction of the light, camera angle, and background are different in each 

location, which can have serious implications on system performance when 

images from different locations (airports) are compared and analyzed. Figure 28 

provides examples of some of the potential variations that can cause problems 

with face recognition systems.  
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Figure 28 Examples of variations in facial images that cause problems with facial 

recognition (Elliott, Sickler, Kukula, & Modi, 2005). 

Changes in illumination have historically been problematic for face 

recognition as discussed in Kukula and Elliott (2003), although emerging face 

recognition technologies such as near infrared and three-dimensional face 

systems have shown some resistance to illumination changes. Kukula and Elliott 

(2004) discusses the performance improvements of a three-dimensional face 

system under different illumination conditions. Figure 29 shows multiple 

examples of illumination levels and light directions which were used in Kukula 

and Elliott (2004). While these images were collected under ideal conditions in a 

laboratory environment, one can imagine the effects of that these different 

illumination conditions and directions can have on a system. 
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Figure 29 Six light levels and directions used for the 3D face evaluation (Elliott, 

Kukula, & Modi, 2007). 

Because these four situations are not as uncommon as might be 

presumed, research must be undertaken to assess the impact of such 

problematic or difficult to collect samples on biometric system performance in 

general and on Human Biometric Sensor Interaction (HBSI) in particular. 

2.6.3.1.5. Common Design Concerns 

Biometric systems are heavily dependent upon the sensor to acquire the 

sample, segment it, and extract features from samples in order for the matcher to 

determine the correct response. By observing how users interact with biometric 

sensors, several design issues are apparent but could be resolved by integrating 

knowledge of industrial design, ergonomics and human factors, and usability. 

Rubin (1994) discusses five reasons why products and systems are difficult to 

use. The main problem is that the emphasis and focus has been on the 

machine/system and not on the end user during development. Common design 

misconceptions are:  

" Humans are flexible and will adjust to a product or device;  

" Engineers work well with technology but not with people;  
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" Engineers are hired to solve technology problems and not people skills; 

and  

" Designers create products for users like themselves in terms of both 

usage and level of knowledge (Rubin, 1994).  

These factors are true within the context of the biometric sensor. Humans will 

adapt to the sensor, as shown in Figure 24’s examples of a hand geometry 

sensor and users’ rotation of the hands. Many times, sensors and the form 

factors that surround the sensors are not tested on sufficiently large numbers of 

the general populations, namely due to the cost of doing so. Moreover, the 

biometric community may test the algorithms exhaustively off-line, using pre-

collected images, but lapse on collecting images with a new sensor to examine 

how the user interacts with the device. 

As technology becomes more pervasive, the target audience continually 

changes, causing design techniques, such as machine- or system- orientated 

approaches that focus on individuals like the designer, which are now outdated. 

Some organizations treat ergonomics and system design as common sense, 

thus as a lower priority than design of an algorithm. Lastly, design typically 

involves specialized teams and/or approaches for product and overall system 

development, but do not integrate well with each other, resulting in independent 

“parts” that do not function soundly as an integrated “product”.  

Investigation of how the user interacts with the device and development of 

system functionality are typically conducted separately. The skill sets and 

individuals required to perform these tasks are different (i.e., the test group 
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typically sends data back to the client on a beta or production unit). Many times, 

problems inherent to the design of the form factor are blamed on the engineered 

sensor. This points to the need for research that examines how technology is 

intended to function in the field and how users actually use it (specifically, the 

interaction between humans and biometric sensors), as opposed to the 

traditional focus on functionality of the technology. According to Smith (2003), 

some members of the Human-Computer Interaction (HCI) community believe 

that interfaces of security systems do not reflect good thinking in terms of 

creating a system that is easy to use, while maintaining an acceptable level of 

security (p. 75).  Moreover, according to Adams and Sasse (1999), security 

systems are one of the last areas to embrace user-centered design and training 

as essential. This is also true for biometrics as Coventry, De Angeli, and Johnson 

(2003b) stated the Human Computer Interaction (HCI) community has had 

limited involvement in the design or evaluation of biometric systems. Before 

further discussing human factors and ergonomic issues, the remaining 

components of the biometric model will be discussed. 

2.6.4. Signal Processing 

Next, the biometric system sends what the biometric model refers to as 

the sample on to the next silo – signal processing, which consists of three sub-

processes: segmentation, feature extraction, and a quality control component. 

From quality control, three processes could follow: a subsequent presentation to 

the sensor if the quality did not meet the system criteria, which is known as a 
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Failure to Acquire (FTA), template creation for an enrollment process, or 

matching if the user is attempting identification or verification within the biometric 

system.  

2.6.4.1. Segmentation 

Segmentation is the first biometric signal processing sub-process and is 

responsible for determining if the acquired biometric sample consists of biometric 

characteristics, noise, or other features that are not of interest to the system. This 

task is completed using signal-to-noise ratios and analyses. Furthermore, if the 

segmentation algorithm determines that the sample does not contain the proper 

features, the system returns will return an FTA, meaning the user will have to 

perform a subsequent presentation to the sensor.  

2.6.4.2. Feature Extraction 

Once the segmentation sub-process determines the sample is, in fact, the 

proper biometric features of interest, the feature extraction sub-process 

processes the sample and extracts features of interest that can be used by either 

the template creation process or the matching algorithm. Extracted features for 

fingerprints include ridge presence, minutiae points, deltas, cores, and ridge 

patterns, to name a few. Again, if feature extraction fails, an FTA occurs and the 

user must present their biometric characteristics again to the sensor. 
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2.6.4.3. Image Quality 

Once features are extracted, the next sub-process is image quality, where 

the features must meet or exceed a certain threshold of quality to continue 

through the system. If the quality of the features does not meet the threshold, an 

FTA occurs and the user is asked to present their biometric characteristics to the 

sensor again. Furthermore, it is well documented in the literature that image 

quality effects the biometric matching algorithm (Jain, Chen, & Dass, 2005; Modi 

& Elliott, 2006b; Tabassi & Wilson, 2005; Yao, Pankanti, & Haas, 2004). 

Yao, Pankanti, and Haas (2004) state that “in a deployed system, the poor 

acquisition of samples perhaps constitutes the single most important reason for 

high false reject/accept rates” (p. 55). Yao, et al. (2004) state there are two 

solutions to reducing poor images. First, one can model and weight all adverse 

situations for the feature extraction and matching system. Second, which relates 

to this research, “one can try to dynamically and interactively obtain a desirable 

input sample” (Yao, Pankanti, & Haas, 2004, p. 55). Yao, et al. (2004) further 

narrows precise fingerprint image acquisition and image quality to contact 

problems, which can be decomposed into three main groups: 

" Inconsistent contact 

" Non-uniform contact 

" Irreproducible contact (p. 56). 

Moreover, most errors are due to inconsistent and non-uniform contact, therefore 

will be focused on in the following sections. 
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2.6.4.3.1. Inconsistent contact 

As mentioned above, image quality affects biometric matching 

performance. Inconsistent contact is a significant problem for matching because 

it is known to decrease the similarity between fingerprints from the same person 

(Yao, Pankanti, & Haas, 2004). Yao, Pankanti, and Haas (2004) suggest two 

reasons for inconsistent contact, which both deal with the presentation to the 

sensor: presentation of differently distorted fingerprints and presentation of 

different portions of the finger to the sensor. Factors such as swiping speed, and 

pressure (force) are causes of the first item. While Levine et al. (2000) were 

awarded a patent to detect distortion due to pressure, it remains a factor in the 

biometrics community. Specifically, Kang, Lee, Kim, Shin, and Kim (2003) 

examined finger force and indicated force does impact quality, but did not specify 

quantitative measures, and classified force in three levels: low (softly pressing), 

middle (normally pressing), and high (strongly pressing).  

Kukula, Elliott, Kim, and San Martin (2007) followed on the previous 

research of Kang, et al. (2003) and quantitatively examined the impact of the 

amount of force an individual applies to a large-area optical fingerprint sensor 

has on the image quality. Two experiments were performed with a CrossMatch 

VerifierTM 300 LC single optical fingerprint capture device. Experiment 1 

consisted of 29 participants between the age of 18 and 25, which took place in 

October of 2006. Experiment 2 consisted of 43 participants aged between 18-25 

years old and took place in January of 2007. Both experiments used the right 

index finger, with two exception cases, due to scarring or other irregularities, thus 
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one used the right middle, and the other the left index finger. Four force levels 

were used in experiment one, while five were used in experiment two, that 

primarily investigated the three to nine Newton range (Figure 30). Results from 

the first experiment indicated that there was no incremental benefit in terms of 

image quality when using more than 9N of force when interacting with an optical 

fingerprint sensor. The second experiment investigated the 3-9N interval with 

results indicating that the optimal image quality is arrived between a force level is 

5-7N, as shown in the frequency plots of the image quality scores by force level 

(Figure 31). 

 

Figure 30 Finger force levels and resulting images with image quality scores 
(Kukula, Elliott, Kim, & San Martin, 2007). 
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Figure 31 Experiment two frequency plot of quality scores by force level (Kukula, 

Elliott, Kim, & San Martin, 2007). 

Swipe-based fingerprint sensors add another dimension to inconsistent 

contact, due to the individual being required to swipe their finger across the 

sensor. Comparing the fingerprint images in Figure 32, one can see there is 

limited variability in the image size for those captured with the large area optical 

sensor. However, for the images captured with the swipe-based fingerprint 
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sensor, there is variability both within subject and across subject, which will pose 

problems for the image quality and matching algorithms, thus impact the overall 

performance of the biometric system. 

 

 

 

 

 

Figure 32 Images captured with different type and size sensors. 

 This difference between sensor technologies is further illustrated in an 

unpublished report by Kukula, Elliott, Wolleschensky, Parsons, & Whitaker 

(2007) which revealed that the variability in the mean number of enrollment 

attempts is lower with the small-area sensor than swipe-based sensor. While 

different acquisition and extraction algorithms were used for each of the sensors, 

one can see from Figure 33 the consistency for the small-area sensor and the 

extreme variability with the swipe-based sensor. 
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Figure 33 Number of attempts to enroll per user with two different sensor 
technologies (Kukula, Elliott, Wolleschensky, Parsons, & Whitaker, 2007). 

Finally, methods to evaluate inconsistent contact have been examined in 

the literature. Lim, Jiang, and Yau (2002) evaluated inconsistent contact using 

three metrics. First, the strength and direction of the ridge orientation was 

assessed to determine the contrast of the fingerprint image. Secondly, an 

examination of the structure between ridges and valleys was conducted using the 

gray-level profile of the fingerprint image. Lastly, Lim, Jiang, and Yau (2002) 

analyzed the change in ridge direction. This research also utilizes a number of 

metrics to examine consistency of contact with the biometric sensor and will be 

discussed in section 2.8.4.2.1. 

2.6.4.3.2. Non-uniform Contact 

There are many factors reported in the literature that affect fingerprint 

image quality, such as: age, gender, ethnicity, moisture content of the skin, 

diseases of the skin, dirt, humidity, and temperature. These factors are just a few 
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that contribute to non-uniform and non-ideal contact situation (Elliott, Kukula, & 

Sickler, 2004; Jain, Chen, & Dass, 2005; Kang, Lee, Kim, Shin, & Kim, 2003; 

Maio, Maltoni, Cappelli, Wayman, & Jain, 2000; Modi & Elliott, 2006b; Tabassi & 

Wilson, 2005; Wayman, 2000; Yao, Pankanti, & Haas, 2004; M. Young & Elliott, 

2007). While these factors cause dry looking or smudgy prints, this can only be 

minimally improved by altering the design of the form factor. Rather this is a 

problem that the signal processing and matching researchers need to focus on, 

thus is outside the scope of this study. 

2.6.5. Storage 

Storage of individuals’ biometric information in the form of a sample or 

samples is typically referred to as a template. If users are not stored in the 

database, they undergo the process of enrollment. During enrollment, users 

present their characteristics to the sensor and the system performs the 

operations discussed up to this point. However, the sample, which may consist of 

one or more images, features, or data will be stored in the database as a 

template. This template is what the matching algorithm uses for subsequent 

identification or verification attempts. If the samples do not meet the criteria to 

create the biometric template, a Failure to Enroll (FTE) occurs. In cases where 

this happens, the individual is asked to present their biometric characteristics to 

the sensor again. 
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2.6.6. Matching 

If the individual previously enrolled in the biometric system, the extracted 

features that exceeded the quality metric will be compared to the template using 

a matching algorithm. For fingerprint recognition, there are two main matching 

algorithms: minutiae and pattern based. Since there is inherent variability with a 

human interacting with a biometric sensor, meaning that no two interactions will 

be the same, the resulting features will never exactly match to the template 

stored in the database. Refer to section 2.6.3.1.3 for more information on 

variability in biometric characteristics. Since an exact match is highly unlikely, a 

matching score, which is also referred to as a similarity score, is typically 

produced by the matching algorithm, which indicates a likelihood of the match. 

Typically, fingerprint-matching algorithms indicate strong matches with higher 

scores, with lower scores representing lower matches, but this does not hold for 

all systems. In addition, there is not one common methodology for computing the 

score, and is thus algorithm dependent. Once the score is generated, it is sent to 

the decision silo. 

2.6.7. Decision 

Once the decision silo receives the similarity score from the matching 

algorithm, the decision module compares the similarity score to a system-defined 

threshold. If the similarity score meets or exceeds the criteria of the threshold 

and the individual is in fact the correct individual that is claiming to be enrolled in 

the database, the individual presenting the sample is “matched’ to the template 
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stored in the database, also known as verified. However, there are systems that 

function where individuals do not have to make an explicit claim to an identity. In 

such cases, the similarity score is used to determine if the user is a candidate, by 

comparing against the threshold. If the individual appears on the returned list of 

candidates, the system may require further comparison or ranking. If the correct 

individual is included in the candidate list, and is matched, they are referred to as 

identified. The two cases presented above are called verification and 

identification, respectively. Verification systems match individuals based on a 

one-to-one basis. Users explicitly claim to be enrolled in the database and 

provide either knowledge or token-based information to claim that they are 

indeed in the database. Contrary to this, identification systems require no claim 

of identity. Rather, biometric characteristics are presented to the sensor and the 

system searches either the entire database (one-to-many) or a partial database 

(one-to-few) for possible matches.  

In the case where the similarity score does not meet the threshold criteria, 

the claim is rejected for verification, or not matched for identification. In previous 

sections, we discussed FTA and FTE. However, the decision module can have 

errors relating to it as well, as an individual may be falsely accepted or rejected. 

These error rates are discussed in section 2.8.4.2.2. These error rates are 

variable and are dependent upon the threshold level. There are multiple reasons 

for individuals being falsely accepted or rejected, but a majority of errors are due 

to sample variability, which may be due to the presentation to the sensor, 

environmental factors, or changes to the biometric characteristics of interest. 
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2.6.8. Framing Research within the Biometric Model 

A large number of research papers and books have focused on biometric 

systems and technologies. In addition, most of the research in biometrics has 

investigated sensor technologies, extraction algorithms, image quality algorithms, 

and matching algorithms. However, there has been limited research in how the 

user interacts with and presents to the biometric sensor and attributes the 

subsequent errors or failures to the actions or behaviors of the user separate 

from the biometric system. These two areas are represented in Figure 34, which 

segregates the general biometric model into two components: data capture (left 

and squared) and the remaining 4 silos: signal processing, data storage, 

matching, and decision (right and covered). This dissertation is primarily 

concerned with the data capture portion of the model, as it is where the human 

interacts with the sensor. 

 
Figure 34 Segregated general biometric model indicating the focus of the 

dissertation (International Standards Organization, 2006a). 
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2.7. Human Factors and Ergonomics 

2.7.1. Anthropometry 

Anthropometry derives from the Greek words “anthropos,” meaning man, 

and “metron,” meaning measure. It is the empirical science that evaluates body 

measurements; such as size, strength, shape, mobility, flexibility, and working 

capacity, as well as defines physical dimensions and characteristics of a person 

such as: weights (masses), volumes, centers of gravity, and body segments 

(Bhattacharya & McGlothlin, 1996; Pheasant, 2006; Tayyari & Smith, 2003). 

Albrecht Dürer, one of Leonardo da Vinci’s young contemporaries, is regarded as 

the pioneer of modern scientific anthropometry. Dürer wrote Four Books of 

Human Proportion, which attempted to categorize the diversity of human physical 

types based on systematic observations and measurement of large numbers of 

people (Pheasant, 2006). Moreover, Alphonse Bertillon created an identification 

system based upon anthropometric measurements, which were used to identify 

and classify criminals. The measurements he used are shown in Figure 35.  
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Figure 35 Bertillon's anthropometric identification system (U.S. National Library of 

Medicine, 2006). 

According to Pheasant (2006) anthropometry attempts to match two 

things: the physical form and dimensions of the product to the user and the 

physical demands of the working task to the capacities of the workforce (p. 7).  
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Once the designer or engineer understands the demands and capabilities of the 

user population and evaluation of the interaction of the products or system and 

human must be completed. This is known as ergonomics and will be discussed 

after anthropometric measurements and the relation to work performance are 

discussed. 

2.7.1.1. Hand Size and Performance 

Salvendy (1971) investigated the effect of hand size and other 

anthropometric measurements have on assembly performance. Three tasks 

were performed that involved repetitive psychomotor tasks in the electronics, 

electro-mechanical, and confectionary industries. In particular, the test sought 

information to determine if performing manual repetitive tasks have an effect on 

production performance or tests of manual dexterity. This study involved one 

hundred eighty one right-handed females that were either industrial operators 

performing the tasks (N=127) or being trained to perform the tasks (N=54). 

Twelve anthropometric measurements were collected and are shown in Figure 

36. 

Results revealed that individual anthropometric data had a non-significant 

effect on the performance of the psychomotor tests – One-Hole Test, Purdue 

Pegboard, and the production performance of the workers in the three tasks 

(Salvendy, 1971). However, when age, personality scores, intelligence, and 

dexterity tests were covaried as influencing factors of the anthropometric data, a 

significant multiple correlation coefficient was yielded with production 
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performance (Salvendy, 1971). Moreover, Salvendy (1971) states that “11 out of 

12 anthropometric correlation coefficients with the production performance are 

positive indicating that big hands go with high performance” (p. 36).  

 
Figure 36 Twelve anthropometric measurements used in Salvendy (1971). 

2.7.1.2. Finger Selection and Biometric Performance 

Although the biometric community has not gathered anthropometric data 

explicitly in prior studies, one can deduce information regarding anthropometric 

data, specifically with the fingers. In Wayman (2000), fingerprint classification 

statistics were released based on an unpublished report using twenty-two million 

human-classified fingerprint records from the FBI, which is shown in Table 5. 

This shows the dependence of finger classification on the finger itself. More 

importantly, Wayman (2000) discussed the matching performance of the digits of 
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each hand. Specifically, as one moves from the thumbs to the ring fingers, there 

is an increase in the number of matching errors (Figure 37). The dataset included 

fingerprints from over 510 Philippine adults, 55% of which were female, which 

were collected with an Identicator DF-90 “flat” scanner.  

Table 5 Single finger classification statistics on 22M human-classified fingerprint 
records (Torpey, 1995). 

    Pattern Type 

Hand Finger Arch Tented 
Arch 

Right 
Loop 

Left 
Loop Whorl Scar Amp

Thumb 3.0% 0.4% 51.3% 0.5% 44.8% 0.0% 0.1%
Index 6.1% 7.7% 36.4% 17.0% 32.5% 0.2% 0.2%
Middle 4.4% 3.2% 73.4% 1.5% 17.2% 0.1% 0.2%
Ring 1.2% 1.0% 51.2% 1.1% 45.2% 0.1% 0.1%

Right 

Little 0.9% 0.7% 83.0% 0.3% 15.0% 0.1% 0.1%
Thumb 5.2% 0.6% 0.6% 58.4% 35.0% 0.0% 0.1%
Index 6.3% 8.0% 16.5% 39.0% 29.9% 0.1% 0.2%
Middle 5.9% 4.5% 1.7% 70.3% 17.3% 0.1% 0.2%
Ring 1.8% 1.5% 0.5% 61.5% 34.6% 0.1% 0.2%

Left 

Little 1.2% 1.1% 0.1% 86.1% 11.3% 0.1% 0.1%
Average 3.6% 2.9% 31.5% 33.6% 28.3% 0.1% 0.2%

 
Figure 37 Left and right hand ROC curves by finger (Wayman, 2000). 
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 Young and Elliott (2007) conducted a similar test on a small scale sample 

size of fifty participants, of which 66% were males, with age range of 19 to 65 

years old, with a mean of 32.87. The sensor used for capturing fingerprints was 

the Identix, Inc. DFR®-2080U2 Single Finger Reader (Figure 43 right), which 

operates at 500 dpi. Fingerprint matching performance was similar to the results 

of Wayman (2000), with the only difference being the little fingers were tested 

instead of thumbs. However, the results were the same; as the acquisition finger 

changed from the index finger outward, the number of errors increased, which is 

shown in Figure 38. 

 
Figure 38 Left and right hand ROC curves by finger (M. Young & Elliott, 2007). 
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2.7.2. Ergonomics and User-Centered Design 

The term ergonomics was conceived in 1949 by Professor Hywell Murrell 

in a meeting that created a society for “the study of human beings in their 

working environment” in London (Pheasant, 2006).  Ergonomics derives from the 

Greek words “ergon,” or work, and “nomos,” meaning laws. While the term work 

has been traditionally associated with occupation, a broader sense of the term 

can be applied to any unplanned activity requiring skill or effort. In 2000, the 

International Ergonomics Association [IEA] (2006) defined ergonomics or human 

factors as:  

The scientific discipline concerned with the understanding of 

interactions among humans and other elements of a system, and 

the profession that applies theory, principles, data and methods to 

design in order to optimize human well-being and overall system 

performance. 

In design, ergonomics attempts to achieve an optimal relationship between 

humans and machines in a particular environment. The goal of ergonomics, 

according to Tayyari & Smith (2003), is to “fit (adapt) work to individuals, as 

opposed to fitting individuals to the work” (p. 1). Figure 39a presents the model 

proposed by Tayyari & Smith (2003) to show where ergonomics fits in the 

human-machine interaction. Pheasant (2006) further summarized ergonomic 

design by the principle of user-centered design. This principle states “If an object, 

a system, or environment is intended for human use, then its design should be 

based upon the physical and mental characteristics of its human users” (p. 5). 
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Moreover Woodson (1982) states the design should allow users to complete the 

desired functions and tasks with minimal stress and maximum efficiency. 

Therefore, the object of ergonomics and user-centered design is to achieve the 

best possible match between the product and users in the context of the task to 

be performed, which Figure 39a represents (Pheasant, 2006).  

(a) 

 

(b) (c) 

 
Figure 39 (a) The fit of ergonomics in the human and machine interaction 

(Tayyari & Smith, 2003), (b) the user-centered design approach (Pheasant, 
2006), and (c) Bailey’s Human Performance Model (Bailey, 1982). 

Chignell and Hancock (1992) referred to this as the “design triad”, which 

consists of three primary relationships. The first is the user-task relationship, 

which is much like task analysis and answers the following questions: “What is 

the task?” and “How is it carried out by the user?” The second relationship is 

user-artifact, which is the relationship between the user and the system and lies 

at the heart of ergonomics (Figure 39b) (Chignell & Hancock, 1992). Lastly, the 

artifact-task relationship represents the methodology for using the system to 

perform the task, which is also known as methods improvement (Chignell & 

Hancock, 1992). Yet a third model describes a similar set of three components to 

consider when examining a human-performance situation: 1) the human, 2) the 
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context, and 3) the activity, which form Bailey’s Human Performance Model 

(Figure 39c). The importance of this generic model is to consider all three 

components – they all affect how humans perform. 

 Traditionally engineers, designers, and programmers have placed the 

greatest amount of emphasis on the activity, some emphasis on the context and 

human, but have neglected the relationship between the components (Rubin, 

1994). In order to see if the end product is useful, effective, efficient, and 

satisfactory to the users, which are common metrics for usability, the relationship 

between the three components must be further evaluated. Specifically, 

understanding of the user demands and capabilities, the system design that fits 

these, and the desired end application. 

2.7.3. Usability 

Good design must address not only ergonomics and anthropometry, but 

also usability. Usability has been defined by the International Organization for 

Standardization (ISO) (1998) as the extent to which a product can be used by 

specified users to achieve specified goals (p. 2). Usability testing employs 

techniques to collect empirical data during the observation of users using the 

product for a specific task in order to rectify usability deficiencies of a product 

(Rubin, 1994). The ISO document 9241-11 (1998) discusses three factors that 

compose usability: effectiveness, efficiency, and satisfaction. Almost 10 years 

earlier, Booth (1989) identified four factors, some of these overlap with the later 

ISO 9241-11 document, that operationally define usability: usefulness, 
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effectiveness, learnability, and likeability. Table 6 organizes the factors of 

usability by factor, description, and a possible measurement metric. The IEEE 

Standard Computer Dictionary (1990) further describes usability as the “ease 

with which a user can learn to operate, prepare inputs for, and interpret outputs 

of a system or component”. 

Table 6 Common Usability Factors, Descriptions, and Metrics (Booth, 1989; 
International Organization for Standardization, 1998). 

Usability 
Factor Description Metric 

Metrics found in the 
literature 

Usefulness An assessment of 
the user’s 
motivation for using 
a product. 
 
Most likely to be 
overlooked during 
experiments and 
studies in the lab 
(Rubin, 1994). 

User 
Motivation 

User satisfaction 
questionnaires  
(Kirakowski, 2007; Lewis, 
1993) 

Effectiveness Accuracy and 
completeness that 
users will achieve 
specified goals. 
 
Provide utility and 
functionality that is 
highly valued by 
the user (Gould & 
Lewis, 1985). 

Quantitative 
metrics, such 
as speed of 
use or error 
rates. 

Counting of errors: 
! Incorrect/ forgetting 
! Skipping a step 
! Accepting a wrong 

answer (J. Young, 
2005) 

 
Acceptability/ 
Conformance taxonomy 
(Micheals, Stanton, 
Theofanos, & Orandi, 
2006) 
 
Number of participants 
who were unable to 
complete the task 
(Theofanos, Stanton, 
Orandi, Micheals, & 
Zhang, 2007) 
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Number of errors incurred 
by the participants who 
successfully completed 
the task (Theofanos, 
Stanton, Orandi, 
Micheals, & Zhang, 2007)

Efficiency, 
Learnability 

Resources 
expended in 
relation to the 
accuracy and 
completeness of 
the goals. 
 
Ability to operate 
the system to some 
defined level of 
competence after a 
period of training or 
ability to relearn 
after a period of 
inactivity. 

Activity time, 
number of 
errors, pre- 
and post-
testing. 

! Time to complete 
each session (J. 
Young, 2005) 

! Time to complete 
each task (Theofanos, 
Stanton, Orandi, 
Micheals, & Zhang, 
2007; J. Young, 2005) 

 

Satisfaction, 
Attitude 
(Likeability) 

Freedom from 
discomfort. 
 
User’s perceptions, 
feelings, and 
opinions of the 
product. 

Surveys, 
ranking of 
products. 

! 5 point Likert scale 
usability Survey (J. 
Young, 2005, p. 12) 

! 5 point Likert scale 
satisfaction survey 
(Theofanos, Stanton, 
Orandi, Micheals, & 
Zhang, 2007, pp. 40-
42) 

2.7.3.1. User-Centered Design 

One methodology that supplements the factors of usability is User-

Centered Design (UCD). UCD are processes that provide engineers a method to 

design from the human-out. Gould and Lewis (1985) named three principles of a 

user centered design: 
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" Focus early on users and tasks and have contact between designers and 

users throughout the development cycle. 

" Collect behavioral measurements of the product-user interaction, the ease 

of learning, and the ease of use through prototype testing. 

" Perform iterative design and testing. 

Other techniques, methods, and practices of UCD besides usability testing and 

audits include: participatory design, focus group research, surveys, design or 

structured walk-throughs, paper and pencil evaluations, expert evaluations, field 

studies, and follow-up studies (Rubin, 1994). 

2.7.3.2. Issues in the Usability Literature 

 Upon reviewing a number of papers from the usability community, one 

can see they suffer from too many metrics that often has a baseline 

measurement that is hard to determine for comparison purposes. In addition, the 

number of subjects the usability studies have used as evaluators or participants 

is problematic. For example, Andre, Hartson, and Williges (2003) proposed an 

evaluation method and tested it using a class of nineteen computer science or 

engineering students, who were not in the usability field and only received 

approximately one to two hours of training on the particular method.  

The other main limitation is sample size, which is also an issue for the 

biometrics community. Moreover, the question: “How much testing is enough?” 

plagues most researchers in all fields. While the biometrics community has 
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adopted a two hundred and fifty person test as the industry standard for large-

scale evaluations, most ergonomics and usability studies are limited to five to 30 

participants, which if usability studies are adopted in the biometrics community, 

would be dismissed by many if presented with a study of such magnitude. While 

the biometrics community believes in large-scale evaluations for commercial 

products, many research and academic studies face the same challenges of 

small or uneven sample sizes. For example, a study performed by Andre, 

Hartson, and Williges (2003) that compared three Usability Evaluation Methods 

(UEM) revealed that fewer than twenty users would have been needed to detect 

most of the real problems found in the address book that was used for testing, 

which is shown in Figure 40. Furthermore, Table 7 lists some of the more 

referenced literature in usability, the methods used, and number of subjects 

tested, illustrating the problem discussed above. 

 
Figure 40 Fraction of problems expected to be found based on individual real 
problems detection rates for three UEMs (Andre, Hartson, & Williges, 2003).
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Table 7 Usability literature: methods and subjects tested. 

Study Method(s) Subjects 
Bastien and Scapin (1995) Ergonomic Criteria 

No Method 
10 
10 

Bastien, Scapin, and Leulier (1996) Ergonomic Criteria 
ISO 
No Method 

6 
5 
6 

Beer, Anodenko, and Sears (1997) Cognitive Walkthrough 
Think Aloud 

6 
6 

Cuomo and Bowen (1992; , 1994) Heuristic Evaluation 
Cognitive Walkthrough 
Guidelines Review 

2 
2 
1 

Desurvire, Kondziela, and Atwood 
(1992) 

Heuristic Evaluation 3 

Desurvire and Thomas (1993) Cognitive Walkthrough 
Programmed Amplification 
of Valuable Experts 
Usability Laboratory Test 

3 
3 
 

18 
Doubleday, Ryan, Springett, and 
Sutcliffe (1997) 

Heuristic Evaluation 
Usability Laboratory Test 

5 
20 

Dutt, Johnson, and Johnson (1994) Heuristic Evaluation 
Cognitive Walkthrough 

3 
3 

Jeffries, Miller, Wharton, and Uyeda 
(1991) 

Heuristic Evaluation 
Cognitive Walkthrough 
Guidelines Review 
Usability Laboratory Test 

4 
3 
3 
6 

John and Marks (1997) Claims analysis 
Cognitive Walkthrough 
GOMS 
Heuristic Evaluation 
User action notation 
Specifications 

1 
1 
1 
1 
1 
1 

John and Mashyna (1997) Cognitive Walkthrough 
Usability Laboratory Test 

1 
4 

Karat, Campbell, and Fiegel (1992) Individual walk through 
Team walk through 
Usability Laboratory Test 

6 
6 
6 

Nielsen and Molich (1990) Heuristic evaluation 34, 77 
Nielsen (1990) Think aloud 36 
Nielsen (1992) Heuristic Evaluation 31, 19, 

14 
Sears (1997) Heuristic Evaluation 

Cognitive Walkthrough 
Heuristic Walkthrough 

6 
7 
7 
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Virzi, Sorce, and Herbert (1993) Heuristic Evaluation 
Think aloud 
Usability Laboratory Test 

6 
10 
10 

Virzi (1990) Think aloud 20 
Virzi (1992) Think aloud 12 
Fu, Salvendy, and Turley (2002) Heuristic Evaluation 

Usability Testing Methods 
6 
6 

2.7.4. Related Ergonomic, Usability, and Human-Computer Interaction Literature 

Some research analogous to HBSI exists in the ergonomic literature, 

usually from the study of computer keyboard typing. These studies examine 

ergonomic issues concerning the upper extremities, including the hands, wrists, 

and fingers. These studies are important to biometric system designers, as 

commercially available fingerprint and hand geometry systems require some sort 

of interaction or contact with a sensor or device using the same upper 

extremities. Typically, sensors that use these upper extremities are becoming 

increasingly popular. One can argue that one of the most influential inventions of 

the twentieth century with regards to information technology was the computer 

mouse. The invention of the mouse in 1963 changed the way users interacted 

with computer interfaces; decreasing the level of complexity required to interact 

and manipulate items on a computer visual display terminal. While other devices 

were crafted, comparative testing undertaken by NASA in the 1960s between 

light pens, cursor keys, joysticks, trackballs, revealed that mouse designed by 

Engelbart and English resulted in their device outperforming the other devices 

due to its ease of use (Moggridge, 2007). Figure 41 shows early designs of the 

mouse. Stu Card, one of the pioneers of the mouse, recalls that Fitts’ Law was 
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used to test the movement of the hand with and without the mouse device 

(Moggridge, 2007). Observations and tests showed that the slope of that curve 

was about 10 bits per second, which was very similar to the measurements for 

just moving the hand alone without a device, revealing the limitation was not the 

mouse device, rather was the hand-eye coordination system of the user. Since 

the time to move the hand with and without the device was very similar English 

and Card concluded the design was nearly optimal.  

 
Figure 41 First mouse design 1963-64 (left), first production mouse (3rd picture 
from left). Xerox mouse designs during the 1980s (3 images to the right in order 

of increasing radical design) (Moggridge, 2007).  

Therefore, those working with examining the human-biometric sensor 

interaction can learn much from the early pioneers in HCI, especially from the 

development of the mouse, as it was a vital component of humans interacting 

with computers. Moreover, according to Greenberg and Chaffin (1977) by not 

taking human factors into consideration during design, common problems that 

often arise are: injuries, stressors on the body, pain, physical and mental fatigue, 

as well as an increased learning time, which can be seen in the following 

examples with hand geometry and fingerprint recognition devices.  

In the case of hand geometry, the platen or acquisition surface is typically 

flat; depending on the height of the device, the extension/flexion angle of the 
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distal wrist could potentially be uncomfortable to users. Figure 42 shows a hand 

geometry acquisition platen that forces users to flex their wrist. For fingerprint 

recognition, the interaction between the thumb and a fingerprint swipe sensor 

forces extensive ulnar deviation to the wrist (see Figure 43 left). The middle and 

right images in Figure 43 shows a capacitance and optical fingerprint sensor and 

the form factors. The three images in Figure 43 reveal three things. First, the 

small size of the capacitance sensor housing can result in users overextending 

their fingers to reach the device. Second, the height of the sensor, relative to the 

top of the table, could cause the other digits of the hand to collide with the table, 

causing discomfort. Compared to the capacitance sensor, the optical sensor is 

positioned well off of the table surface, allowing for clearance of the digits not 

interacting with the sensor. Third, the finger guide impression of the capacitance 

sensor accommodates larger fingers, but does not produce appropriate feedback 

for those with smaller fingers, allowing more variability to occur between 

placements over time. In a similar fashion, the plastic lip of the optical sensor is 

angled in such a way that those with smaller fingers try to align their finger with 

the lip and not the glass surface of the sensor, causing repeatability issues.  

 
Figure 42 Image acquisition on a flat platen causing wrist extension. 
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Figure 43 Interaction between thumb and fingerprint swipe sensor produces ulnar 
deviation (left), Capacitance sensor (middle) and optical fingerprint sensor (right) 
with finger alignment and guidance impression (Kukula, Elliott, & Duffy, 2007). 

2.7.4.1. Computer input device research 

As the sensors in the figures above show, users of these devices may 

experience stressors on the body. These stressors could be exacerbated when 

individuals have tendonitis, tenosynovitis, arthritis, or any other MSDs that might 

impede their ability to efficiently use the biometric device. Armstrong (1986) 

noted that a deviated wrist posture on the flexion/extension plane is implicated in 

the etiology of diseases or abnormal physiological conditions of work-related 

musculoskeletal disorders of the wrist. Further research on the wrist revealed 

carpal tunnel pressure decreases as the wrist moves toward a neutral posture in 

the flexion and extension planes (Rempel, Kier, Smutz, & Hargens, 1997; Weiss, 

Bloom, & Rempel, 1992). Moreover, as the wrist moves from the neutral position 

in the positive direction, the force on the carpal bones and tendons increases 

(Armstrong & Chaffin, 1978a, , 1978b; Schoenmarklin & Marras, 1990).  

A study by Rempel et al. (1997) measured carpal tunnel pressure at 

multiple wrist extensions and found that, at 15° wrist extension, carpal tunnel 

pressure was 18.55 mm Hg, which increased to 27.7 mm Hg at 30° with no 
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fingertip loading. Under a fingertip loading of 6 Newtons (1.47 lb), comparable to 

typing on a keyboard, carpal tunnel pressure increased to 41.1 and 53.5 mm Hg, 

respectively, at 15° and 30° wrist extension angles. This reveals the second 

concern for biometric systems. The device orientation, wrist extension angles, 

and motion or orientation of the fingers may cause discomfort and pain, resulting 

in users not being able to use the device, individuals not being able to provide an 

acceptable sample or image to the system, or in the worst-case scenario, not 

being able to provide repeatable placements or images over time. The impact of 

non-repeatable placements or images is significant, as it challenges the 

algorithm and system to match samples or images from users with varying 

characteristics and attributes.  

2.7.4.2. Human factors and usability studies in biometrics 

At the time of writing, literature on the subject of ergonomics and usability 

in the biometrics community is limited. Coventry, De Angeli, and Johnson (2003a; 

, 2003b), Theofanos, Michaels, Scholtz, Morse, and May (2006), Theofanos, 

Orandi, Micheals, Stanton, and Zhang (2006), Theofanos, Stanton, Orandi, 

Micheals, and Zhang (2007), Young (2005) and Maple and Norrington (2006) 

have focused on biological biometrics, while Deane, Barrelle, Henderson, and 

Mahar (1995), Deane, Henderson, Mahar, and Saliba (1995), and Henderson, 

Mahar, Saliba, Deane, and Napier (1998) focused primarily with perceived 

acceptability of behavioral biometrics.  
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2.7.4.2.1. User perceptions and acceptability of biometrics 

Deane, Barrelle, Henderson, and Mahar (1995) conducted a survey of 

perceived acceptability of biometric security systems using 76 test participants 

from the banking sector and university administration. The survey assessed the 

acceptability of seven biometric technologies (fingerprint, hand geometry, 

keystroke dynamics, retinal imaging, signature, voice verification, and pointing 

device verification) in relation to participants’ present jobs and compared to 

traditional knowledge based systems, such as passwords. The results of the 

survey revealed that physiological biometrics — in this case finger, hand, and 

retina — were considered more acceptable than behavioral modalities — in this 

case, signature, voice, keystroke dynamics, and pointing device — with scores of 

3.34 and 2.66, respectively, based on a five-point Likert scale, where 1 was 

“totally unacceptable” and 5 was “totally acceptable.” Deane et al. (1995) also 

polled the acceptability level of passwords with the same five-point Likert scale, 

generating a result of 3.85. Paired t-tests revealed a significant difference 

between password acceptability and both physiological biometric acceptability, 

t(64) = 2.75,  p < 0.01) and behavioral biometric acceptability, t(62) = 7.73, p < 

0.001). Deane et al. (1995) also examined acceptability of biometric methods 

based on the sensitivity of information handled. This analysis revealed that, as 

the sensitivity of information increased, the acceptability of biometrics did as well 

for keystroke dynamics and fingerprint, while password acceptability decreased. 

Since this study was published in 1995, the way in which privacy and security of 

personal and company data are handled has drastically changed. The United 
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States has recently passed several regulations that require companies to take 

into account general concerns such as physical and logical security. Specifically, 

the Sarbanes-Oxley Act ("Sarbanes-Oxley Act of 2002", 2002) and the Food and 

Drug Administration’s 21 CFR Part 11 (1997) are two such regulations that 

require companies to apply specific controls or procedures to ensure authenticity, 

integrity, and auditability of electronic records (Modi & Elliott, 2006a).  

2.7.4.2.2. Fingerprint swipe-sensor usability research 

2.7.4.2.2.1. NCR 

Coventry, De Angeli, and Johnson (2003a) examined fingerprint swipe 

sensors, but from the perspective of the relationship between image quality and 

user feedback. In order for Coventry et al. (2003a) to evaluate user support, 

three levels of instruction and feedback were used: Level 0 – no instruction and 

limited feedback, Level 1 – instruction and limited feedback, and Level 2 – full 

instruction and feedback. The results revealed that successful verification was 

not affected by the type of instruction and feedback received and that some 

individuals have problems that cannot be solved through instruction, training, or 

feedback. One possible explanation could be the design and placement of the 

sensor and/or the digit chosen for the attempt. It is also interesting to note that in 

Coventry et al. (2003a), participants chose which finger to use. The results 

revealed that, of 82 subjects, 64 chose their right index finger (78%), 16 used 

their right middle finger (20%), while 2 participants used their left middle finger.  
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2.7.4.2.2.2. Purdue 

These results were similar to Kukula and Elliott (2006), which evaluated a 

capacitance swipe sensor embedded in a commercially available laptop 

computer. The purpose of the evaluation was to examine issues related to 

fingerprint acquisition of all 10 digits to evaluate the biometric-user interface in 

terms of biometric performance metrics, error rates, in particular the FTA and 

FTE rates. The study involved 88 participants, most of which were between the 

ages of 18 and 30. The research identified multiple factors warranting 

consideration when designing a biometric system in order to better understand 

why failures occur and how individuals react to systems. The results of this 

experiment revealed that the medial digits (thumb, pointer/index, and middle) had 

fewer acquisition problems than the lateral digits (ring and little fingers) of both 

hands, which can be attributed to a decrease in finger dexterity as one moves 

from the index to the little finger, which is shown in Table 8. Moreover, an 

examination of the left image in Figure 43 left, the ulnar deviation required for a 

user’s thumb to interact with the sensor can be seen. Lastly, the finger error rate 

results are similar to the matching performance errors found in Wayman (2000) 

and Young and Elliott (2007) that were discussed in Section 2.7.1.2. 
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Table 8 Individual and combined FTA rates for a swipe-based fingerprint sensor 
integrated in a commercially available laptop (Kukula & Elliott, 2006). 

Finger FTA  
Totals 

Good 
Attempts

Total Finger  
FTA % 

Overall  
Contribution 

to FTA % 
LI 30 88 118 25.42% 6% 

LM 35 88 123 28.46% 7% 
LR 45 88 133 33.83% 10% 
LL 84 88 172 48.84% 18% 
LT 17 88 105 16.19% 4% 
RI 24 88 112 21.43% 5% 
RM 42 88 130 32.31% 9% 
RR 62 88 150 41.33% 13% 
RL 102 88 190 53.68% 22% 
RT 31 88 119 26.05% 7% 

 Overall 472   1352 34.91%   

2.7.4.3. NIST 

To date, the NIST biometrics usability group has published three reports 

on the usability of biometric devices, one conference proceeding, and one 

document that outlines a taxonomy of usability and biometric definitions. In the 

subsequent sections, these five documents will be reviewed. 

2.7.4.4. Portable biometrics workstation: session interface 

The first biometric usability study released by NIST was performed by 

Young (2005). The purpose of the study was to assess how long data collection 

took for face, iris, and fingerprint recognition using a testing interface in order to 

maximize throughput and minimize stressors and unnecessary movements of the 

operator (J. Young, 2005). Contrary to most biometric testing evaluations, 

participants played the role of the operator, as the goal was to measure time to 
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capture data using the interface. Data collection occurred in three scenarios: all 

three biometric modalities were in normal working condition, two devices were 

offline due to errors, and all devices appeared normal but there were three 

scanning errors. Results of the study showed that the average time to collect 

finger, face, and iris data was 208 seconds and 239 seconds in the first and last 

scenarios. It was also found that the participants committed few errors, with a 

majority being caused by incorrect prompting. Young (2005) also reports that the 

average time per scenario appeared to decrease as the scenarios progressed 

inferring that as the operator gets more experience, the time to collect the 

biometric data will decrease (p. 9). A survey was also provided to each 

participant after each scenario to capture data on the ease of use. Most 

participants felt the interface was easy to use and satisfaction generally 

increased with use (p. 11).  

2.7.4.4.1. Strengths 

Young (2005) outlined a number of procedures that are useful to 

measuring usability during a biometrics evaluation. This evaluation was also 

unique in that it examined techniques to streamline data collection. Also, this was 

the first reported document that classified the usability metrics in the realm of 

biometrics: 

" Effectiveness – number of errors which were classified by (a) incorrectly or 

forgetting to prompt the assistant, (b) skipping a step that could be done, 

(c) accepting a corrupt image 
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" Efficiency – time to complete each session and task (finger, face, iris) 

" Satisfaction – results of the questionnaire using a Likert scale on the ease 

and difficulty to collect data, remember tasks, time to perform the tasks, as 

well as using the interface (J. Young, 2005). 

2.7.4.4.2. Weaknesses 

While Young (2005) is useful for adapting usability to biometrics, the paper 

has limitations. First, the study only consisted of eight participants, which were 

very familiar with the interface, and specifically aided in the development of the 

interface. This fulfills one of the five design fallacies presented in Pheasant 

(2006) which is “if the design is satisfactory for me and will therefore be good for 

everyone else.” Thus, the participants used definitely threaten the conclusion 

validity of the report. Secondly, the report is difficult to follow and the testing 

protocol was vague, limiting the ability to replicate the study. Lastly, the report 

states that video was taken during of each test session and an observer took 

notes of the evaluation. However, none of this data was presented in the report. 

This data would have been interesting to examine for the biometrics community 

to evaluate for future research. 

2.7.4.5. Does habituation affect fingerprint image quality 

Theofanos, Micheals et al. (2006) reports a repeated measures 

experiment that sought to determine the effects of age, gender, and type of 

feedback, as well as habituation have on the image quality of fingerprints. The 
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first two factors are well understood, but this study sought to understand the 

implications of different feedback: telling a user to start/stop a presentation, or 

indicate if the attempt was accepted, rejected, or was an acquisition failure. The 

experimental design occurred in two phases: no feedback and feedback. Both 

phases occurred over a three-week period, with participants interacting with the 

sensor before and after their lunch break. Right and left index fingers were used 

for approximately twenty images per participant. During phase one, participants 

were directed to place their finger on a sensor and received no feedback, in 

terms of quality or when the transaction was complete. The operator manually 

captured prints when the image stabilized on the computer display terminal. 

During phase two participants received feedback in real-time regarding image 

quality score and determined which fingerprint they wanted to save. In addition, 

participants were encouraged to continue interacting with the sensor until they 

received an NFIQ image quality score of three or better. Twenty-nine subjects 

participated in the phase one test that showed younger participants submitted 

higher quality prints than older subjects and the quality of the women’s 

fingerprints were on average twenty percent worse than the males. There was 

also no presence of a habituation effect over the fourteen-day collection period. 

Phase two image quality scores mimicked those in phase one. In addition, 

feedback had no effect on the fingerprint quality of the young group, but 

improved with the older group over the course of the study, inferring older 

participants learned how to present better quality prints with more use of the 

sensor. Thus, it can be said people produced better quality fingerprints in fewer 
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attempts when they received feedback. However, since participants were not 

given instructions on how to correct a “bad placement” in terms of position, 

pressure, et cetera, participants could not fully correct their interaction with the 

sensor.  

2.7.4.5.1. Strengths 

Theofanos, Micheals et al. (2006) evaluated the affect of feedback and 

habituation on the quality of fingerprint images and reveals a relationship 

between feedback and an improvement of quality / decrease in number of 

attempts, warranting more work in terms of habituation and type of feedback 

users need to receive to improve the human-biometric sensor interaction. 

Furthermore, the study confirms the conclusions made in Elliott, Kukula, and 

Sickler (2004), although with a smaller sample size and different image quality 

measurement. 

2.7.4.5.2. Weaknesses 

Theofanos, Micheals et al. (2006) cites Elliott, Kukula, and Sickler (2004) 

regarding the work on image quality and age. While the NIST study consisted of 

twenty nine and twenty eight subjects in the two respective phases, they claimed 

to have verified the claims made in the small scale study in Elliott, et al. (2004). It 

is interesting that the balanced block design with age as the factor had fifty-four 

subjects in each of the young and elderly groups for a total of one hundred eight 

subjects, where the combined NIST study was fifty-seven participants. Also, the 
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paper offers no statistical analyses of the results, rather reports summary 

statistics and simple graphs. 

2.7.4.6. A taxonomy of definitions for usability studies in biometrics 

NISTIR 7378 (2006) is not a research report, rather it outlines a taxonomy 

to map terminology used in ISO/IEC JTC1/SC37 Standing Document 2 (SD2) – 

Harmonized Biometric Vocabulary (2007) to traditional terms used in usability 

studies. Moreover, the taxonomy presented attempts to use SD2 terminology, 

however the usability terms presented focus on user behavior as opposed to the 

traditional biometrics system-orientated viewpoint (International Organization for 

Standardization, 2007). To connect user behavior to the traditional biometrics 

terminology NISTIR 7378 (2006) presents the taxonomy by discussing 

presentations, attempts, and tasks to build a rubric that outlines the four results 

for a given biometric task. This is documented by four attempt classifications: 

acceptable conformant, unacceptable conformant, acceptable non-conformant, 

and unacceptable non-conformant, which the relationship is shown in Table 9, 

which has been adapted in this study. The parameters for this table are defined 

by acceptability, tasks, and conformance. Acceptability, or acceptable attempts 

fulfill the minimal capture requirements of a system and changes across the 

horizontal axis. Next, a task is a set of user behavior that defines an attempt. 

Lastly, conformance or a conformant attempt fulfills the requirements set out by a 

task and changes across the vertical axis (Micheals, Stanton, Theofanos, & 

Orandi, 2006).  
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Table 9 Taxonomy of types of user interactions (Micheals, Stanton, Theofanos, & 
Orandi, 2006) 

   Acceptability 

Acceptable Conformant (A) 
Right Index swipe that is 

presented and approved by the 
system 

Unacceptable Conformant (B) 
Right Index swipe that is presented 

but rejected by the system 

C
on

fo
rm

an
ce

 

Acceptable Non-Conformant (C)
Left index that is presented and 

approved by the system 

Unacceptable Non-Conformant (D)
No presentation and system timeout 

 

2.7.4.6.1. Strengths 

NISTIR 7378 (2006) maps the different classes of definitions between two 

related fields. Moreover, the objective of NISTIR 7378 (2006) is to be a reference 

point for the biometrics community with the expectation that practitioners will 

further “refine the terminology to best fit their particular needs” (p. 1). This 

document served as starting point for the classification taxonomy created for the 

measurement of effectiveness / Failure to Acquire (FTA) used in this research. 

2.7.4.6.2. Weaknesses 

NISTIR 7378 (2006) falls short of discussing basic definitions for usability: 

effectiveness, efficiency, and satisfaction, and how they fit into the biometrics 

taxonomy. This is of importance as the biometrics community may choose to 

ignore this taxonomy since there is limited background for where this taxonomy 

derived from. 
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2.7.4.7. Effects of scanner height on fingerprint capture 

NISTIR 7382 (2006) investigated if the height of a fingerprint sensor has 

an effect on fingerprint image quality for the Department of Homeland Security 

(DHS) in accordance with section 303 of the Border Security Act, codified as 8 

U.S.C. 1732 and was briefly discussed in section 1.5.5. 

NISTIR 7382 (2006) also used the usability metrics in ISO 9241-11 (1998) 

as the baseline for their measurements. Specifically, efficiency was measured, as 

the time required completing a task – the right slap, left slap, simultaneous 

thumbs, and single thumbs. Since the data did not follow a normal distribution, 

non-parametric tests were done. Friedman’s two-way non-parametric tests, sign 

and signed rank tests, multiple range test were performed on the data. Results 

showed that the right slap was most efficient at the 30-six inch work surface 

height, although the only statistically significant value was found in the right slap 

task.  

Effectiveness was measured in terms of NFIQ image quality across the 

four heights. To examine the data, the frequencies were computed for each 

finger across the table heights, which were analyzed with a chi-square test to 

investigate the significance of the differences among the distributions of quality 

scores (Theofanos, Orandi, Micheals, Stanton, & Zhang, 2006). The results 

showed the differences among the observed/expected frequencies were reliable, 

except for the right index finger, suggesting the distribution of NFIQ image quality 

scores for the right index was the same across all four heights (Figure 44), but 

different for all other fingers. According to NISTIR 7382 (2006), this suggests the 
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right index finger is not sensitive to height. Furthermore, the thumbs were found 

to be more sensitive to height than the slap-based fingerprints, as well as the left 

hand being more sensitive than the right slap. 

 
Figure 44 Right index finger quality distribution by height (Theofanos, Orandi, 

Micheals, Stanton, & Zhang, 2006). 

  Lastly, user satisfaction was measured using a survey, which was 

distributed after completing the test. Results showed that participants found the 

32 and 36 inch heights most comfortable and preferred the 32 inch height as 

shown in Figure 45. 
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Figure 45 Participant response for comfort (left) and preference (right) 
(Theofanos, Orandi, Micheals, Stanton, & Zhang, 2006). 

2.7.4.7.1. Strengths 

NISTIR 7382 (2006) was an evaluation for integrating usability research 

into biometrics. Furthermore it was similar to unpublished work by Kukula, Elliott, 

Tamer, and Senarith (2007) that investigated hand geometry match scores 

across four similar working heights. This document provides valuable information 

to base metrics and the testing protocol on for this dissertation.  

2.7.4.7.2. Weaknesses 

The main weakness of NISTIR 7382 (2006) is in the conclusion of the 

report, threatening the conclusion validity of the study. For example, the 

efficiency result is that the right slap required the least amount of time, thus is 

more efficient than the other tasks. However, in general, the work surface height 

was not a significant factor for time it took to complete a task. Additionally, the 
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study only used NFIQ to assess image quality, rather than a continuous scale 

quality algorithm such as Aware WSQ. 

2.7.4.8. Usability testing of 10-print fingerprint capture 

The most recent work regarding usability or ergonomics outside of 

Purdue’s Biometric Standards, Performance, and Assurance (BSPA) Laboratory 

has been conducted by the National Institute of Standards and Technology 

(NIST), which performed a usability test of 10-print fingerprint capture system 

(Theofanos, Stanton, Orandi, Micheals, & Zhang, 2007). The purpose of this test 

was to evaluate the time required to collect a 10-print slap fingerprint image, as 

well as which method of instruction: poster, verbal, or a video was most effective. 

Specifically NISTIR 7403 (2007) had three research questions: 

1. How long does it take to capture a 10-print image? 

2. What is the impact of instructional mode on user performance? 

3. What are the frequency and nature of the errors that occur in this 

process (p. 5)? 

The study consisted of 300 participants that ranged in age from 18-65. 151 males 

and 149 females participated in the right and left slap, and simultaneous thumbs 

experiment. The instructional methods all portrayed similar information to 

complete the 10-print collection. The poster was a 76 cm by 115 cm, verbal 

consisted of instructions dictated by an operator, and the video was a soundless 

presentation of instructions approximately 50 seconds in length. 
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 Results of the study showed that average time for 10-print capture without 

operator assistance was 48-64 seconds, with median range of 45-59 seconds 

and 50-54 seconds on average for operator assistance (median range of 45-46), 

suggesting that operators are critical to the acquisition process. In addition, 98% 

of the participants were able to complete the test with operator assistance. 

Regarding the instructional modes, participants using the poster had most 

difficulty with the fingerprint task as opposed to the other two methods. The 

average (median) times for the three methods were: 114.40 seconds (91.50 sec) 

for the poster, 86.40 seconds (65 sec) for the verbal, and 76.30 seconds (65 sec) 

for the video. Other times are shown in Table 10. Furthermore, only 17 

participants trained with the poster completed the process error free, as opposed 

to 68 and 70 participants with the verbal and video modes. Forty four participants 

did not successfully complete the task with the poster, 5 with the verbal, and 13 

with the video.  

Table 10 NISTIR 7403 timings for the three instructional methods (Theofanos, 
Stanton, Orandi, Micheals, & Zhang, 2007). 

Instruction Time 

Approach to 
sensor to end of 

capture 
Software capture 

time Total Time 
Method S

ub
je

ct
s 

µ Median µ Median µ Median µ Median 
Poster 52 31.27 29.6 114.4 91.5 64.13 58.5 145.67 126.85 
Verbal 85 65.34 58.85 86.4 65 48.21 45 151.73 129.32 
Video 85 86.93 81.15 76.3 65 50.87 46 163.22 152.18 
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2.7.4.8.1. Strengths 

While NISTIR 7403 (2007) had severe limitations, the metrics outlined to 

measure effectiveness, efficiency, and satisfaction for biometrics were useful and 

transferable for this research. 

2.7.4.8.2. Weaknesses 

NISTIR 7403 (2007) evaluated the time to complete a 10-print capture and 

the effectiveness of three different methods of instruction, which were the 

variables of interest. However, during the presentation of the various instructional 

materials, different times were allotted for each of the methods. Specifically, a 

minimum of 45 seconds for audio, 50 seconds minimum for video, and the time 

for the poster was left to the participants’ discretion (Theofanos, Stanton, Orandi, 

Micheals, & Zhang, 2007). It is no wonder why the poster was significantly worse 

than the other two methods, as on average participants only spent about 31.27 

seconds viewing the poster, whereas they spent 65.34 and 86.93 seconds for the 

verbal and video instruction methods, respectively. While it is interesting to know 

how long individuals would spend looking at a poster, when instructional method 

is the independent variable, this design is unacceptable as any conclusions 

made regarding the instruction are affected by not receiving the same amount of 

treatment. 

In addition, there were data collection failures during the test, making 

about half the poster instruction method data unusable, resulting in an 
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unbalanced design across the three methods: 52 subjects for the poster and 85 

each for the verbal and video method. 

2.7.4.9. UK Passport Trial 

Maple and Norrington (2006) reported on the usability issues of United 

Kingdom’s Passport Service (UKPS) Trial Program that utilized fingerprint, face, 

and iris recognition systems. The first problem found during the evaluation 

involved the working surface, which was positioned above the typical work 

height, forcing the user to sit with his or her feet not completely touching the floor 

(Maple & Norrington, 2006). Not only could prolonged exposure to a working 

environment such as this be harmful to individuals, but could ultimately affect the 

interaction and performance of the biometric system. Next, the face recognition 

system was evaluated. The physical setup was acceptable, as the camera was 

on an adjustable pole. However, the system orally instructed users to their 

remove glasses, and in some cases, the users had difficulty in seeing the 

equipment when their glasses were removed. The face system gave oral 

instructions to correct positioning, but the user could not judge how much to 

move based solely on these oral instructions. The iris system was investigated 

and the problem identified was again vision-related, as the ovals for alignment of 

the eye were almost indiscernible; users could not align using the oral 

instructions. Lastly, the fingerprint system was evaluated. The system was 

placed on a bench and required prints of all 10 digits. The author observed his 

fingers were wider than the surface area provided. Moreover, the two thumbs 
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were collected at the same time, which was reported as awkward to reach by the 

user, who had to stand up to interact with the sensor.  

Summarizing the findings reported by Maple and Norrington (2006), these 

observations on the practicality of the biometric systems could be made: 

" Every user has his or her own unique set of personal physical and 

cognitive abilities, 

" The physical environment of processes may impact results, and 

" Delivery of instructions may affect successful user interaction with a 

system (p. 962). 

2.8. Human-Biometric Sensor Interaction Conceptual Model 

By combining the various methodologies discussed in the previous 

sections of this chapter, a new model outlining the characteristics of human-

biometric sensor interaction can be developed. The HBSI applies components 

from biometrics, ergonomic principles, including anthropometry and 

biomechanics, as well as usability metrics shown together in Figure 46 to create 

a new conceptual model, which is shown in Figure 47. 
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(a) 
 
 

(b) 
 
 

(c) 

Figure 46 (a) General biometric model (International Standards Organization, 
2006a); (b) general ergonomic model (Tayyari & Smith, 2003); and (c) general 

usability model (International Organization for Standardization, 1998). 

 
Figure 47 The Human-Biometric Sensor Interaction or HBSI conceptual model 

(Elliott, Kukula, & Modi, 2007; Kukula, 2007; Kukula, Elliott, & Duffy, 2007). 
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2.8.1. Human-Sensor 

The human and sensor components of the HBSI model are similar to 

Tayyari & Smith’s (2003) human-machine interaction model. Much like the 

traditional model, the human and biometric sensor components look to achieve 

the optimal relationship between humans and a biometric sensor in a particular 

environment. For the purposes of this research, this sensor is limited to physical 

interactive biometrics, meaning there is an actual “touching” of a sensor by a 

human. The overlap of these two sections is best summarized by ergonomics, 

which for the HBSI conceptual model means adapting the sensor so the physical 

interaction with a biometric sensor is more natural to the users.  

2.8.2. Human-Biometric System 

The human and biometric system components of the HBSI model are 

arranged in the model to accommodate the way biometric sensors, software, and 

implementations occur and are presented to users. A biometric sensor must not 

only be designed so a user can interact with it in a repeatable fashion, but the 

sensor(s), software, and the way the entire “system” is packaged must be usable. 

Usability according to ISO 9241-11 (1998) breaks down usability into three 

factors: effectiveness, efficiency, and satisfaction. Each of the three metrics is 

distinctively different and important to understand for products to strike a balance 

between the three. First, biometric systems must be effective, meaning users are 

able to complete the desired tasks without too much effort. Second, biometric 

systems must be efficient, meaning users must be able to accomplish the tasks 
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easily and in a timely manner. Third, users must like, or be satisfied, with the 

biometric system, or will discontinue use and find alternative methods to 

accomplish the task. 

2.8.3. Sensor-Biometric System 

As mentioned in the previous two sections, users must be able to interact 

with a sensor in a consistent manner over time, while users must find the entire 

biometric system usable. To enable this to happen the third relationship of the 

HBSI conceptual model emerges, which is the sensor-biometric system, which 

measurable metric is image quality. Image quality is the important link between 

these two components because the image or sample acquired by the biometric 

sensor must contain the characteristics or features needed by the biometric 

system to enroll or match a user in the biometric system. So not only does the 

human-sensor relationship need to be functional and the human-biometric 

system need to be usable, the sensor-biometric system needs to be functional 

and this only occurs if the sensor captures and passes usable features onto the 

biometric system. 

2.8.4. The Human-Biometric Sensor Interaction 

In order to evaluate the model, the overlap of the Venn diagram has been 

expanded to reveal the proposed evaluation method for how each component 

that entails the HBSI can be measured, which is shown in Figure 48. Each 
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component that is in the HBSI evaluation method has been shown to impact 

results in previous experiments from the respective field it was adapted from. 

Since the conceptual model is derived from different fields, each component 

usability, ergonomics, and biometrics produces a unique output. Thus, the final 

determination of the results is dependent upon the goals, objectives, and criteria 

the researcher, designer, or engineer is seeking, which is in-line with the 

ergonomics, usability, and design literature. Since work in this area is limited in 

biometrics, this study sought to find relationships within the HBSI evaluation 

method to report back to the biometrics community more insight when designing 

biometric devices. Moreover, the metrics used in this study may reveal a trade-off 

between performance versus usability, thus professional experience may be 

required to make the final determination of what aspects of a form factor design 

was most functional.  

In prior iterations of the proposed HBSI evaluation method Fitts’ Law was 

included as a dependent variable under the quantitative usability section. 

However, the data collected as the movement time in this study would have to 

include positioning computer mouse or other computer peripheral to start and 

stop a timer, thus the collected data would not be entirely of interest, and would 

likely bias the results. Therefore, in this evaluation Fitts’ Law was not included. 

Like optimization, Fitts’ Law may be included in future research, especially if task 

time is shown to be a significant factor in the evaluation method.  

The following sections will describe each component of the proposed 

Human-Biometric Sensor Interaction evaluation method in terms of background 
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literature, the components that were used in this study, and the type of analyses 

that were conducted.  

 
Figure 48 The HBSI evaluation method (Kukula, 2007; Kukula, Elliott, & Duffy, 

2007).
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2.8.4.1. Usability 

As discussed in section 2.7.3 the usability metrics fall into two measurable 

categories: quantitative and qualitative, which will now be discussed.  

2.8.4.1.1. Qualitative 

2.8.4.1.1.1. Satisfaction 

Multiple surveys and sources were considered to evaluate user 

satisfaction (International Standards Organization, 2006b; Kirakowski, 2007; 

Lewis, 1993; Rubin, 1994; Theofanos, Orandi, Micheals, Stanton, & Zhang, 

2006; Theofanos, Stanton, Orandi, Micheals, & Zhang, 2007; J. Young, 2005). 

Two major factors in determining which survey to follow were reliability and 

number of questions. Since participants were tasked with returning for three visits 

to interact with four fingerprint sensors, asking them to complete a survey taking 

longer than five to 10 minutes seemed unreasonable.  

From the surveys in the literature, Lewis’s (1993) Post-Study System 

Usability Questionnaire (PSSUQ) and Kirakowski’s (2007) Software Usability 

Measurement Inventory (SUMI). Both surveys provided previous results and 

validation, which were critical for use in this research; however SUMI contained 

fifty questions while the PSSUQ contained 19 questions. Thus, the PSSUQ was 

chosen and adapted for this study. 

The PSSUQ consisted of nineteen 7-point Likert scale questions that was 

evaluated with 48 participants using a factor analysis (Lewis, 1993). Three 

factors emerged that accounted for 87% of the variability in the data, which were 
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named: System Usefulness (SYSUSE), Information Quality (INFOQUAL), and 

Interface Quality (INTERQUAL) (Lewis, 1993). The survey was also measured in 

terms of reliability, validity, and sensitivity, which results appear in Table 11.  

Table 11 Results of PSSUQ reliability, validity, and sensitivity analyses (Lewis, 
1993). 

Scale Reliability * Validity ** Sensitivity *** 

Overall 0.97 
r(20) = .80, p = 0.0001 
r(29) = -0.40, p = 0.026 F(2,29) = 4.35, p = 0.02 

SYSUSE 0.96 r(36) = -0.40, p = 0.006 F(2.36) = 6.9, p = 0.003 
INFOQUAL 0.91 N/A F(2,33) = 3.68, p = 0.04 
INTERQUAL 0.91 r(35) = -0.29, p = 0.08 F(2,33) = 3.74, p = 0.03 
* Coefficient alpha analyses 
** Correlation analysis 
*** Sensitivity ANOVA 

 

For the purpose of this research, the 19 questions were adapted to 

evaluate user satisfaction for the three swipe-based fingerprint sensors that were 

used in the study. Note, the large area sensor was not evaluated for user 

satisfaction. Appendix A shows the original and adapted question sets, as well as 

the instructions that were given to the participants. The instrument was delivered 

online after completing the third visit. The data was analyzed using the 

appropriate analysis of variance test.
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2.8.4.1.2. Quantitative 

2.8.4.1.2.1. Effectiveness 

Effectiveness was measured by number of errors in this study. User-

interaction attempt errors are those that result in the user not performing the task 

as they were trained to do. This includes, but is not limited to: placing their finger 

in the wrong area, swiping the wrong segment/area of their finger, forgetting how 

to use the device, the system not returning an image when the subject interacted 

with the sensor, etc. To document these errors, an adapted form of the taxonomy 

from NISTIR 7378 (2006) was used in this research, which are documented by 

four attempt classifications: acceptable conformant, unacceptable conformant, 

acceptable non-conformant, and unacceptable non-conformant, which the 

relationship was presented earlier in Table 9. The parameters for this table are 

defined by acceptability, tasks, and conformance. Acceptability or acceptable 

attempts fulfill the minimal capture requirements of a system. Next, a task is a set 

of user behavior that defines an attempt. Lastly, conformance or a conformant 

attempt fulfills the requirements set out by a task (Micheals, Stanton, Theofanos, 

& Orandi, 2006). 

The number of participants who were unable to complete a task (by 

sensor and finger) was also recorded. To further investigate the attempt level 

errors, the type of acquisition failure returned by the fingerprint system was also 

analyzed. Also, the number of errors that occurred by participants who 

successfully completed the task (by sensor and finger) was collected. The results 
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of the taxonomy of attempts will be analyzed using chi-square tests, while the 

remaining data was presented in tables using frequencies. 

2.8.4.1.2.2. Efficiency 

Efficiency was measured by task time. Task time is the amount of time a 

participant needs to complete the training, enrollment, or matching mode for each 

sensor/finger combination. In order to maintain a consistent measure of task time 

each participant used a starting location marked in tape on the experimental 

setup area. Between each interaction the participant had to return their hand to 

this area. These metrics will then be analyzed across the three visits using the 

appropriate analysis of variance technique. 

2.8.4.1.2.3. Learnability 

Learnability was measured in terms of assisting users, completion 

percentage, and user effort. Assists are attempts, which the author provided an 

audio, visual, or physical cue to the participant.  

Completeness was defined for this study as the sequence of events 

required to complete the overall task from for each finger/sensor/visit 

combination. Percent task completion was the percentage of the task that was 

successfully completed. This was computed for each sensor/visit combination.  

Maximum user effort, or MUE, is a metric that compares the proportion of 

attempts needed to enroll/match on a particular sensor to the maximum number 

of interaction attempts allowed for that particular segment of the test. This was 

reported by sensor/visit/finger combination. 
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Appendix B outlines possible questions and actions that that were 

forecasted to occur and the author’s anticipated response. The response was 

also marked as an assist and categorized appropriately. The general rule from 

NISTIR 7403 (2007) was adopted for this study, which states: “only prompt and 

make corrections during a session [interaction] if the participant communicates 

that a mistake was made” (p. 52). In addition to this rule, assistance was 

provided after four acquisition failures where the test administrator experienced 

the participant making an error. 

2.8.4.2. Image Quality 

As discussed in section 2.6.4.3, image quality is documented to impact the 

biometric matching algorithm (Jain, Chen, & Dass, 2005; Modi & Elliott, 2006b; 

Tabassi & Wilson, 2005; Yao, Pankanti, & Haas, 2004). As such, the image that 

results from the human-biometric sensor interaction may be influenced by the 

participant’s anthropometry, attitude, ailment, etc, as well as the effectiveness of 

the biometric capture algorithm. However, limited work has focused on user 

anthropometry, attitude, and musculoskeletal disorders (MSDs). Studies have 

been conducted in the following areas and were discussed in the review of 

literature section: applied fingerprint pressure and image quality (Kukula, Elliott, 

Kim, & San Martin, 2007), FTA and FTE rates of swipe- and small- area 

fingerprint sensors (Kukula, Elliott, Wolleschensky, Parsons, & Whitaker, 2007), 

sensor height and performance of fingerprints (Theofanos, Orandi, Micheals, 

Stanton, & Zhang, 2006) and hand geometry (Kukula, Elliott, Senarith, & San 
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Martin, 2006), swipe-based fingerprint FTA problems (Kukula & Elliott, 2006), 

user perspectives and performance of an implemented hand geometry device 

(Kukula & Elliott, 2005), and fingerprint performance by finger selection 

(Wayman, 2000; M. Young & Elliott, 2007). Since the biometric capture algorithm 

is outside the scope of this study, the focus is on the user. Thus, the image 

quality components of the HBSI evaluation method are based upon the resulting 

image from the human-sensor interaction.  

2.8.4.2.1. Ergonomics 

To account for human variability the following anthropometric 

measurements were collected to further understand the relationship of 

ergonomics and image quality: hand dimensions, finger dimensions, and finger 

circumference. In addition, the moisture level of the fingers was collected from 

the index finger of the dominant hand at the beginning of each visit. The specific 

anthropometric measurements are shown in Figure 49, with estimates shown in 

Table 12 are: 

" Hand length (Middle finger to base of the hand) [1], 

" Hand breadth (metacarpal) [12], 

" Length of Index finger [4], 

" Breadth of Index proximal interphalangeal joint (PIPJ) [10], 

" Circumference of Index distal interphalangeal joint (DIPJ), and 

" Skin Moisture, temperature, and elasticity. 
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Figure 49 Anthropometry of the hand (Pheasant, 2006). 

Table 12 Anthropometric estimates for the hand (in mm) (Pheasant, 2006). 

 Men Women 
Dimension 5th 50th 95th SD 5th 50th 95th SD

Hand Length (1) 173 189 205 10 159 174 189 9 
Hand Breadth (12) 78 87 95 5 69 76 83 4 
Index length (4) 64 72 79 5 60 67 74 4 
Breadth of PIPJ (10) 19 21 23 1 16 18 20 1 

 

2.8.4.2.1.1. Image Size 

Image size was the first ergonomic variable of interest for the study. Image 

size was defined in this study as the maximum length of the fingerprint ridges in 

the image of interest and the maximum width of the fingerprint ridges. This 

variable was the first of multiple metrics that examine how well participants 

interacted with the swipe-based fingerprint sensor. Comparing the fingerprint 

images in Figure 32, one can see there is limited variability in the image size for 

those captured with the large area sensor. However, for the images captured 

with the swipe-based fingerprint sensor, there is variability both within subjects 

and across subjects, which can cause problems for the image quality and 
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matching algorithms, and thus could impact the overall performance of a 

biometric system. This metric examined image size variability over time and 

across sensors and was analyzed using the appropriate analysis of variance 

technique. 

2.8.4.2.1.2. Image Quality Score 

The second measurement for ergonomics was the image quality score. 

Two measurements for image quality were used, one of which reported a 

continuous score and the other a nominal score. The two software packages 

were: Aware Wavelet Scalar Quantization (WSQ) VBQuality software v2.42E and 

the image quality algorithm in NIST Biometric Image Software (NBIS) package 

called NFIQ. The Aware WSQ software reported both image quality score and 

number of detected minutiae. The image quality score for Aware WSQ is a 

continuous variable with score values ranging from 0-99, with zero being a bad 

quality image score and 99 being the best quality score. The NIST NFIQ 

algorithm reported quality scores on a nominal scale from one to five, with one 

being best quality and five an image of lowest quality. The image quality score for 

Aware WSQ and the rank for NFIQ, as well as the number of detected minutiae 

were analyzed with the appropriate analysis of variance technique. 

2.8.4.2.1.3. Image Contrast 

The last measurement examined the variability in the fingerprint image 

attributes, or image contrast; specifically the gray levels that makeup the 

fingerprint image, to examine if a user could produce similar images repeatedly 
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over time. This metric was one method of measuring it. If a device is easy to use, 

the user should have been able to swipe his or her finger with consistent speed, 

pressure, and direction across the sensor. Thus, this metric evaluated the gray 

levels of each fingerprint image and reported variations in the images as the 

standard deviation, and was analyzed with the appropriate analysis of variance 

technique. 

2.8.4.2.2. Biometric System Performance 

 Technical performance testing has been used widely in the literature to 

measure the accuracy of biometric systems. Technical performance testing 

seeks to determine error and throughput rates, with the goal of understanding 

and predicting the real-world error and throughput performance of biometric 

systems (International Standards Organization, 2006a, p. vi). Throughout the 

literature, there are many metrics, protocols, and as can be expected with 

multiple protocols, contradictory results due to the variations. The following 

citations are only a small segment of testing protocols and evaluations that can 

be found in the biometrics literature, but reveal the need for a common standard 

set of metrics, definitions, and protocol outline (Barrett, 2000; Bone & Blackburn, 

2002; Bouchier, Ahrens, & Wells, 1996; Fejfar & Myers, 1977; Holmes, Wright, & 

Maxwell, 1991; Maio, Maltoni, Cappelli, Wayman, & Jain, 2000; Mansfield, Kelly, 

Chandler, & Kane, 2001; Mansfield & Wayman, 2002; P. Phillips et al., 2003; P 

Phillips, Rauss, & Der, 1996; Zwiesele, Munde, Busch, & Daum, 2000). Likewise, 

Gray and Salzman (1998) discussed the importance of experimental design in 

their review of five of the more popular (in terms of citations) experiments that 
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compared usability evaluation methods (UEMs) for practitioners in the field of 

Human-Computer Interaction (HCI). The authors discussed that small problems 

in design called into serious question the recommendations and advice given 

from the results of those experiments due to experimental design, statistical 

power, and other validity issues (Gray & Salzman, 1998). Thus, this research 

followed many of the definitions, criteria, and protocols contained in ISO/IEC 

19795-1 (2006a) and 19795-2 (2007a) as they have been created from legacy 

reports, proceedings, and journal articles, as well as contributions from biometric 

experts from around the world. 

 The biometric system performance component of the HBSI model 

consisted of multiple metrics, which include FTA, FTE, FRR,FAR, and Detection 

Error Tradeoff (DET) curves, which will be discussed in the following sections. 

2.8.4.2.2.1. Failure to Enroll (FTE) Rate 

 The FTE rate is defined as the proportion of the population that the 

biometric system fails to complete the enrollment process. This metric includes: 

" Those unable to present the required biometric characteristic(s) or 

feature(s), 

" Those unable to produce a sample of sufficient quality during enrollment, 

" Those who cannot reliably produce a match decision with their newly 

created template during attempts to confirm the enrollment is usable 

(International Standards Organization, 2006a; Mansfield, Kelly, Chandler, 

& Kane, 2001). 
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FTE attempts were measured and reported for each sensor, finger, and visit 

combination. Each participant received one attempt to enroll on each fingerprint 

recognition system used in the evaluation. The enrollment attempt consisted of 

30 presentations to produce 10 acceptable fingerprint images, which was defined 

as a successful enrollment. 

 The failure to enroll rate was an important metric for the HBSI evaluation 

method since if users cannot enroll on a swipe fingerprint device, there are likely 

issues with the device. However, there are no agreed upon standards for failure 

to enroll. Furthermore, enrollment algorithms vary from application to application 

and vendor-to-vendor, thus FTE analysis is dependent upon external factors 

besides the acquisition of an image or sample. Since all of the swipe-based 

fingerprint sensors are the same type of sensor and use the same acquisition 

algorithm, this rate can be compared to evaluate the performance of the different 

form factors. However, FTA is considered a more robust measure for this study 

and will be discussed in the next section. 

 Data analysis for the FTE rate included a comparison of the rate, as well 

as the number of attempts and transactions across the four evaluated sensors 

and for the right and left index fingers.
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2.8.4.2.2.2. Failure to Acquire (FTA) 

 Similar to the FTE rate is the FTA rate. The FTA rate is defined as the 

proportion of verification or identification attempts for which the system fails to 

capture or locate an image or signal of sufficient quality; which may include 

attempts where extracted features are substandard. The acquisition or quality 

control threshold will be documented as (#) in this study. This metric includes:  

! Attempts where the biometric characteristic cannot be presented, 

! Attempts for which the segmentation or feature extraction fail, 

! Attempts in which the extracted features do not meet the quality 

control thresholds (International Standards Organization, 2006a). 

The metric for FTA was separated into two levels in this evaluation: presentation 

and transaction. Both were measured and reported for each sensor, finger, and 

visit combination. Each participant received one transaction, which they had to 

provide 10 acceptable fingerprint images on each of the four sensors. Each 

participant was allowed 30 presentations to produce the 10 images. Therefore, 

the transaction level FTA rate was the proportion of transactions that failed to 

produce any of the required 10 images. The presentation level FTA rate was the 

proportion of presentations that failed to produce an image. 

 The FTA rate was also an important metric for the HBSI evaluation 

method since if users cannot produce fingerprint images over time on a swipe 

fingerprint device, there are likely issues with the device. Since all swipe-based 

fingerprint sensors were the same type of sensor, this rate was compared to 
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evaluate the performance of the different form factors. The FTA was reported by 

number of FTA attempts, as well as a rate by sensor, finger, and visit. 

Moreover, unlike the FTE rate, the FTA rate was a more appropriate 

measure for this study because even though samples are acquired during an 

enrollment sequence, the enrollment may fail due to extraneous constraints the 

enrollment procedure must satisfy. Furthermore, this study examined the 

usability of fingerprint recognition devices, and a sensor that provides the most 

repeatable images, thus the binary result of a sensor acquiring an image or 

failing to acquire is of much more importance. In addition, the fingerprint 

technology that is used changes the parameters of an FTA. For example, optical 

fingerprint sensors function much like a digital camera, thus maybe able to 

capture fingerprints from a wider range of the population with varying properties, 

whereas capacitance sensors may not be able to acquire images from individuals 

with dry fingerprints, for example. Furthermore, large area fingerprint sensors 

require users to place and hold their finger pad on a fairly large area for the 

sensor to acquire an image, whereas with swipe-based fingerprint technologies 

users have to align their finger with the width of the sensor and swipe the 

appropriate part of the finger along the sensor to acquire an image. Thus, the 

acquisition process for swipe-based sensors is much more complex than for 

large-area sensors and the resulting FTA rates may be higher.
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2.8.4.2.2.3. Receiver Operator Characteristic (ROC) Curves 

 Computer vision, machine intelligence, and image analysis originates from 

Artificial Intelligence (AI) in the 1950s and early 1960s which can be defined into 

three generations: mathematics, algorithms, and testing (Clark & Clark, 2005). 

First generation techniques were based on mathematics that examined pixel 

values in surrounding areas of images. Processing was done in batch jobs line 

by line. As the area developed so did the complexity of the programs. Thus 

second-generation techniques utilized algorithms to do comparisons, which 

significantly reduced processing time. According to Clark & Clark (2005) the field 

is currently in the early years of the third generation that is concerned with issues 

relating to testing and comparing algorithms. This research extends the 

comparison to evaluate differences in sensors and fingers, like previous research 

conducted by Wayman (2000) and Young and Elliott (2007). One of the main 

tools developed to evaluate images is with receiver operating characteristic 

(ROC) curves. ROC curves were developed during World War II to assess 

performance of radar operators and distinguish between friends and enemies 

(Clark & Clark, 2005). Since WWII, ROC curves have been adapted by the 

medical field to separate sensitivity and specificity and more recently in the 

biometrics community to determine correct and incorrect trials or matches. 

A receiver operating characteristic (ROC) curve is a plot of false acceptance rate 

against the true match rate, as a parameter, the decision threshold ($) in 

biometrics, is varied, which can be seen in Figure 50. The plot “highlights the 
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trade-off between the true positive rate and the false positive rate” (Clark & Clark, 

2005, p. 7). 

 
Figure 50 Example signal and non-signal probability density functions (PDF) 

(Courtney & Thacker, 2001). 

Specifically, the plot places the false positives on the x-axis against the 

corresponding rate of true positives, or 1-FNMR, on the y-axis plotted 

parametrically as a function of the decision threshold (International Standards 

Organization, 2006a; Mansfield & Wayman, 2002). A general equation is shown 

in ( 2 ) and example ROC curves are shown in Figure 51. 

ROC($) = [FMR($), TAR($)]; where $ is the system threshold 

 

( 2 ) 
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Figure 51 Example ROC curves (Clark & Clark, 2005). 

 Confidence limits can also be added to the plot as error bars or error 

ellipses around the points of interest to provide a more accurate depiction of the 

trial. An ROC curve is assessed in the following way. The closer the curve 

approaches the top-left corner of the plot, the more accurate the test, while the 

closer the curve is to a forty-five degree diagonal, the worse the test. In addition, 

the area under the curve is an accuracy measure of the test (Clark & Clark, 

2005). There is no convention for orientating the ROC curve, however the two 

most common use raw data and log-log.  

 The ROC curve assesses performance by running an algorithm with data 

where the truth is known and counting correct and incorrect trials. Each test can 

produce four results: 
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1. True positive, also known as true acceptance or true match, yields a 

correct match. 

2. True negative, also known as true rejection or true non-match, yields a 

correct non-match. 

3. False negative, also known as false rejection or a false non-match, or 

Type I error, as it yields a non-match when it should have matched. 

4. False positive, also known as false acceptance, false match, false alarm, 

or Type II error, as it yields a correct match when it should have produced 

a non-match (Clark & Clark, 2005). 

An alternative method for graphically comparing the performance of biometric 

systems is called a Detection Error Trade-off (DET) curve, which is a modified 

ROC curve (Doddington, Kamm, Martin, Ordowski, & Przybocki, 1997). A DET 

curve is a plot of the false acceptance rate versus the false rejection rate, giving 

“equal emphasis to both types of error”, as shown in Figure 52 (Clark & Clark, 

2005). 

 
Figure 52 Example DET curves (Clark & Clark, 2005). 
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A DET curve typically places the False Accept Rate (FAR) or False Match Rate 

(FMR) on the x-axis and False Reject Rate (FRR) or False Non-Match Rate 

(FNMR) on the y-axis as function of decision threshold (International Standards 

Organization, 2006a). A general DET equation is shown in( 3 ). 

DET($) = [FMR($), FNMR($)]; where $ is the system threshold 

 

( 3 ) 

 According to Clark & Clark (2005), “DET curves usually utilize logarithmic 

scales on both axes”, which “tend to be more spread out than ROC curves, 

making it easier to distinguish individual algorithm’s results” (p. 8). DET curves 

that appear as a straight line show that the distributions are likely normal; 

meaning if the log-log scale were not used the curve would be bell shaped (Clark 

& Clark, 2005). Another method of analysis of the plot is the equal error rate 

(EER), which is the point where FAR and FRR intersect, where the smaller the 

EER the better. 

 The analysis for this study was performed offline, once all the data was 

collected. DET curves were generated, one for each finger/system/visit 

combination. If data analysis provided insight to a particular component that was 

interesting to investigate, post hoc analyses were developed. This is of interest to 

the HBSI evaluation method as the same participants using the index finger of 

both hands interacted with three swipe fingerprint sensors that are exactly alike, 

using the same extraction and matching algorithm, with the only difference being 
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the form factor. Furthermore, it was interesting to compare the performance of 

the large area capacitance sensor of the same vendor with their swipe-based 

sensors with both commercial and developed form factors. 

2.8.4.2.2.4. True Positive 

 True positives are defined as transactions made by users who are 

enrolled in the system and the user’s correct identifier is the one returned 

indicating a correct match. The true positive rate is also known as true 

acceptance or true match rate. 

 This metric was originally to be measured in terms of verification, or a one-

to-one matching scenario and performed by the matching algorithm online, which 

recorded the result of each match attempt and store the time-stamped result in a 

log file. The verification rates were also to be reported as a percentage. Due to 

modifications that will be discussed later in the methodology, this rate is no 

longer included in the analysis. 

2.8.4.2.2.5. True Negative 

 True negatives are defined as transactions made by users who are either 

not enrolled in the system or claim a different identity and the claimed user’s 

identifier is not returned indicating a correct non-match. The true negative rate is 

also known as true rejection or true non-match rate. 

 This metric was not measured in this study, as it was outside the scope of 

the performance criteria established in the HBSI evaluation method. 
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2.8.4.2.2.6. False Negative 

 False negatives are defined as transactions made by users who are 

enrolled in the system but the user’s correct identifier is not returned indicating a 

non-match when it should have matched. This metric is also known as the FRR, 

FNMR, or Type I error (Clark & Clark, 2005). The biometrics community has 

categorized false negatives into two common metrics: false rejections and false 

non-matches. Both metrics are inter-related as the FNMR  is part of the FRR. 

 FNMR is defined as the proportion of genuine attempt samples falsely 

declared not to match the template of the same characteristic from the same user 

supplying the sample (International Standards Organization, 2006a). The false 

declaration was caused by a genuine attempt that was passed to the matching 

subsystem or algorithm and the resulting similarity score produced was below the 

decision threshold. 

 Similarly, the FRR is defined as the proportion of verification transactions 

with truthful claims of identity that are incorrectly denied (International Standards 

Organization, 2006a). Moreover, the FRR includes transactions denied from both 

matching errors and those due to FTA presentations, which is shown in ( 4 ). 

FRR($) = FTA(#) + FNMR($) * [1 – FTA(#)], where $ is the decision threshold and 
# is the quality control or acquisition threshold 

 

( 4 ) 

 This was measured offline once data collection was complete, in order to 

correctly fulfill the components of the equation. This was an important component 
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of the HBSI evaluation method as it examines not only the matching performance 

but also combines the individuals who had issues interacting with the sensor and 

produced acquisition failures. FRR were computed for each sensor/finger 

combination, as well as by visit and reported on the y-axis of the DET curves. 

2.8.4.2.2.7. False Positive 

 The last performance classification is false positives. False positives are 

defined as transactions made by users who may or may not be enrolled in the 

system and produce a correct match to a user’s identifier that is not their own 

and should have produced a non-match. This metric is also known as the False 

Acceptance or Alarm Rate (FAR), False Match Rate (FMR), or a Type II error 

(Clark & Clark, 2005). The biometrics community has categorized false positives 

into two common metrics: false accepts and false matches. Both metrics are 

inter-related as the FMR is part of the FAR. 

 FMR is defined as the proportion of zero-effort impostor attempt samples, 

meaning the individual submits their own biometric characteristics as if they were 

attempting to match themselves, but are falsely declared to match the compared 

non-self template (International Standards Organization, 2006a). Moreover, false 

matches are caused by genuine or zero-effort impostor attempt that are passed 

to the matching subsystem or algorithm that results in a similarity score that is 

above the decision threshold. 

 Similarly, the false acceptance rate (FAR) is the proportion of verification 

transactions with wrongful claims of identity that are incorrectly confirmed 
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(International Standards Organization, 2006a). Moreover, the FAR requires that 

samples submitted for comparison are not rejected by the quality control or 

acquisition threshold (#), which is shown in ( 5 ). 

FAR($) = FMR($) * [1 – FTA(#)], where $ is the decision threshold and # is the 
quality control or acquisition threshold 

 

( 5 ) 

 Like the FRR, the FAR was measured offline once data collection was 

complete, in order to correctly fulfill the components of the equation. This was 

included in the HBSI evaluation method but is not as central as the FRR 

calculation. FAR were computed for each sensor/finger combination, as well as 

by visit and reported on the x-axis of the DET curves. 

2.8.5. Hypotheses 

Hypothesis testing is used in research experiments to test a pair of 

competing assertions made by researchers involving two or more variables. The 

competing hypotheses are known as the null and the alternate. The null 

hypothesis is typically created such that it is the inverse of what the researcher 

expects to happen to the dependent variable, allowing the data to contradict it. 

Conversely, the alternate hypothesis is designed so the independent variable(s) 

will have an effect on the dependent variable. The proposed evaluation model 

enables one to evaluate each component: usability – both qualitatively and 

quantitatively, as well as the image quality, which is the overarching measure for 

both ergonomics and typical biometric performance metrics. 
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In this study, the independent variable was the form factor design, which 

contains four levels:  

1. Commercial swipe-based sensor (UPEK) 

2. Ergonomic form factor design 1 (PUSH) 

3. Ergonomic form factor design 2 (PULL). 

4. Commercial large-area sensor (LA) 

There were many dependent and controlled variables in this study, some of 

which have been discussed in previous sections, while the controlled variables 

will be discussed in the methodology section. All hypotheses were evaluated 

against an alpha level (%) of 0.05. 

2.8.5.1. Efficiency, Effectiveness, Learnability, and User Satisfaction 

There is much literature that discusses efficiency, effectiveness, 

learnability, and user satisfaction and possible metrics that are used to evaluate 

them (Bailey, 1982; Booth, 1989; Chignell & Hancock, 1992; Gould & Lewis, 

1985; Grandjean, 1988; International Organization for Standardization, 1998; 

Mayhew, 1999; Micheals, Stanton, Theofanos, & Orandi, 2006; NIOSH, 1997; 

Rubin, 1994; Theofanos, Orandi, Micheals, Stanton, & Zhang, 2006; Theofanos, 

Stanton, Orandi, Micheals, & Zhang, 2007; Woodson, 1982). Metrics that were 

used in this evaluation included: number of errors per participant, number of 

assists the administrator provided to participants, and the percent of task 

completion. The hypotheses that evaluated the quantitative usability metrics 

were: 
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1. The new form factor(s) will be significantly different in terms of the number 

of errors a user produces during interaction with a swipe based fingerprint 

sensor than the commercially available form factor. 

2.  The new form factor(s) will be significantly different in terms of the 

number of assists a user requires during interaction with a swipe based 

fingerprint sensor than the commercially available form factor. 

3. The new form factor(s) will be significantly different in terms of the task 

completion rate with a swipe based fingerprint sensor than the 

commercially available form factor. 

4. The new form factor will be significantly different in terms of the maximum 

user effort (MUE) required with a swipe based fingerprint sensor than the 

commercial available form factor. 

5. The new form factor(s) will be significantly different in terms of the user 

satisfaction score with a swipe based fingerprint sensor than the 

commercially available form factor. 

6. The new form factor(s) will be significantly different in terms of the amount 

of time a user requires to complete the task with a swipe based fingerprint 

sensor than the commercially available form factor. 

2.8.5.2. Ergonomics: Biomechanics & Anthropometry 

The measures for ergonomics investigated the anthropometric 

measurements and biomechanics of the hand and wrist through the 

measurements in the vertical green bars of Figure 48: fingerprint image size, the 

image quality score, the contrast of the image, and the minutiae count. The 
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ergonomics literature discusses larger hands being more productive (Salvendy, 

1971), whereas the biometric literature states that larger fingers are better 

performing in terms of matching (Wayman, 2000; M. Young & Elliott, 2007). 

Thus, the hypotheses are as follows: 

7. The new form factor(s) will be significantly different in terms of the 

reported gray level (image contrast) within a swipe-based fingerprint 

image for all hand and finger sizes compared to the commercially 

available sensor. 

8. The new form factor(s) will be significantly different in terms of the image 

quality score of a swipe-based fingerprint image for all hand and finger 

sizes compared to the commercially available sensor. 

9. The new form factor(s) will be significantly different in terms of the 

fingerprint image size of a swipe-based fingerprint image for all hand and 

finger sizes compared to the commercially available sensor. 

10. The new form factor(s) will be significantly different in terms of the number 

of minutiae detected in a swipe-based fingerprint image for all hand and 

finger sizes compared to the commercially available sensor. 

2.8.5.3. Biometric Performance 

It is well documented in the biometrics literature that image quality affects 

biometric system performance. In addition, interaction errors also contribute to 

acquisition and enrollment errors as discussed earlier in this chapter. Thus the 

hypotheses that will evaluate biometric performance are: 
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11. There is a significant difference in the Failure to Acquire (FTA) rate of the 

new form factor(s) and the commercially available form factor. 

12. There is a significant difference in the Failure to Enroll (FTE) rate of the 

new form factor(s) and the commercially available form factor. 

13. There is a significant difference in the match rate of the new form factor(s) 

and the commercially available form factor. 

2.8.6. Statistical Analysis 

 In addition to reporting the results in tables, as ratios, and in the form of 

ROC or DET curves as discussed in section 2.8.4.2.2.3, the data was further 

investigated using statistical analyses, which will be discussed in this section. As 

this study attempted to validate the HBSI evaluation model, numerous variables 

from three areas: usability, ergonomics, and biometric performance were 

collected and analyzed. The following statistical analyses were planned, however 

further post hoc tests may be formulated if the data warranted further 

investigation. 

 The rationale for conducting the statistical analyses was to provide further 

understanding of the collected data to validate the proposed HBSI evaluation 

method for swipe-based fingerprint recognition devices. While ratios and rates 

are fundamental to understanding performance, conclusions and 

recommendations based entirely upon them would be a severe threat to the 

conclusion validity of the study. Therefore, statistical analyses helped to 

understand if there are relationships in the data and the significance of it. Thus to 
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investigate if relationships are indeed in the data, the following statistical 

methods were used if appropriate: diagnostics, correlation matrices, chi-square, 

t-tests, analysis of variance, and regression. The following sections will be 

dedicated to each of the following methods and how the statistics will be applied. 

Once all the different statistical models are discussed, tables will be presented as 

to which methods will be used to analyze the factors of interest. 

2.8.6.1. Diagnostics 

 Before beginning the statistical analyses, the data were examined for 

violations of normality, independence, and homogeneity of variance, as well as 

multicollinearity for regression. Each statistical model used has certain 

assumptions that must be met in order for the result to be valid. Each of the 

diagnostic measures will now be discussed. 

2.8.6.1.1. Normality 

 The first step is to check the normality of the data, because underlying 

most statistical tests is the assumption of multivariate normality, which is the 

assumption that each variable and all linear combinations of the variables are 

normally distributed (Tabachnick & Fidell, 1996). Therefore, the data was 

analyzed for normality by creating normal probability plots (qq plots) for each 

examined variable, residual plots such as predicted versus residuals and 

sequence versus residuals. The latter is crucial to this study as it involves 

repeated measures – multiple attempts per sensor and multiple visits. If the data 



 

 

160

 

violates this assumption, the appropriate remedial measure, such as 

transformation were sought to correct it, if possible. If the violation cannot be 

mitigated, non-parametric tests were conducted. Furthermore, statistical 

analyses performed with percentages will likely cover a broad range, the arcsine 

transformation will likely be used as Neher (2003) states it is appropriate when 

the percentages range is greater than forty percent. 

2.8.6.1.2. Independence 

 The next step examined the data for relationships between the collected 

variables. In order to check the strength and direction of existing linear 

relationships between the data, Pearson correlation matrices were performed on 

the data and reported in the results section if needed. If there are relations 

amongst the variables, it will pose problems for regression, particularly the model 

selection, which is known as multicollinearity. 

2.8.6.1.3. Homogeneity of Variance 

 Another diagnostic measure before proceeding with analysis of variance 

statistical tests is to satisfy the assumption of homogeneity of variance, which is 

the assumption that the variance amongst the groups is equal. If they are not 

equal, the data is referred to as heteroscedastic. To test for homogeneity of 

variance, Levene or Bartlett’s test was performed on the data. 
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2.8.6.2. Chi-square test for independence 

 According to Tabachnick and Fidell (1996), chi-square test of 

independence examines relationships between two discrete variables, which is 

also known as contingency analysis. In this study, it analyzed the classification 

type of attempts: acceptable conformant (A), unacceptable conformant (B), 

Acceptable non-conformant (C), and Unacceptable non-conformant (D) versus 

the form factor type: ergonomic 1 (PUSH), ergonomic 2 (PULL), commercial 

(UPEK), and large area (LA). Chi-square tests are defined by the hypothesis: Ho: 

the attempt type is independent of the form factor and Ha: the attempt type is not 

independent of the form factor, with the test statistic shown in ( 6 ). 
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where Oi is the observed frequency for bin i and Ei  is the expected frequency for 
bin i. The expected frequency is calculated by & ' & ', -lui YFYFNE .) , where F is the 
cumulative distribution function for the distribution being tested, Yu is the upper 
limit for class i, Yl is the lower limit for class i, and N is the sample size 
(NIST/SEMATECH, 2006). 

 

 

( 6 ) 

Furthermore, if +2 small, meaning the observed frequencies are similar to the 

expected value, the null hypothesis is retained, and the conclusion that the two 

variables are independent (Tabachnick & Fidell, 1996). However if +2 is large, the 

two variables are said to be related and the null hypothesis is rejected. This study 

explored the data to see if a tested form factor is related to a particular attempt 

classification. 
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 In order to compare proportions for a particular factor and determine if 

statistically significant differences exist in all possible pairs of proportions, the 

Marascuillo procedure for multiple proportions was used (NIST/SEMATECH, 

2006). The procedure, which is outlined in NIST’s e-Handbook of Statistical 

Methods (2006), consists of three steps. First, it assumes samples of size ni (I = 

1, 2, …, k) from k populations and computes the differences (pi – pj , where i ! j) 

among all k(k – 1 ) / 2 pairs of proportions. The absolute values of the computed 

differences are the test-statistics. The second step uses the +2 table to find the 

table value based on the number of factors and significance value to compare to 

the computed critical values computed from ( 7 ). Lastly, compare each all k(k-

1)/2 test statistics against the corresponding critical rij value against the defined 

significance value (NIST/SEMATECH, 2006). 
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2.8.6.3. Two-Sample t-Test for Equal Means 

 One method to determine if the new form factor designs improve the 

human-biometric sensor interaction is to compare results from each of the new 

form factor designs (i) to each other, then (ii) to the commercially available form 

factor. In addition, the post-study satisfaction survey was evaluated using t-tests. 

This test will seek to answer if the form factors are equivalent or if one is better 

than the others or if a change in satisfaction occurred with one form factor over 
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another. ( 8 ) reveals the two-sample t-test equation, with hypothesis Ho: "1 = "2 

and Ha "1 ! "2.  
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sYYT , where N is the sample size, Y is the sample 

means, and s are the sample variances. 

 

( 8 ) 

2.8.6.4. Analysis of Variance 

 The selected method for analysis of variance will depend entirely upon the 

diagnostic results. There are two basic types: parametric and non-parametric. 

Parametric testing is the preferred method of analysis, however will be 

dependent upon meeting model assumptions.  

2.8.6.4.1. Parametric 

 The parametric method is known as Analysis of Variance, or ANOVA. 

ANOVA tests are an instrument to compare the effect of multiple levels of one or 

more factor(s) on a response variable, which is also a generalization of the two-

sample t-test. Parametric tests involve hypothesis testing and require a stringent 

set of assumptions that must be met (NIST/SEMATECH, 2006). The ANOVA is 

partitioned into two segments: the variation that is explained by the model ( 9 ) 

and the variation not explained, or error ( 10 ), which are both used to calculate 

the F-statistic ( 11 ) testing the hypotheses Ho: µ1 = µ2 = … = µI and Ha: not all µ’s 

are the same. In practice, p values are used, but the Fobserved test statistic can 

also be compared to the F distribution table as shown in ( 12 ). Typically, when 
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the Ho is rejected the variation of the model (SSM) tends to be larger than the 

error (SSE), which corresponds to a larger F value.  

& ' dfMSSMMSMdfMYYSSM i )).)( ,1,ö 2

 
( 9 ) 

& ' dfESSEMSEndfEYYSSE ii ).).) ( ,2,ö 2
 ( 10 )

),(~ dfEdfMFMSEMSMF )  ( 11 )

),,1( dfEdfMFF %.5  ( 12 )

2.8.6.4.2. Non-parametric 

 According to Montgomery (1997), in situations where normality 

assumptions fail to be met, alternative statistical methods to the F test analysis of 

variance can be used. Non-parametric methods are those that are distribution 

free and are typically used in the following situations: 

" Measurements are categorical, 

" Parametric model assumptions cannot be met, or 

" Analysis requires investigation into features such as: randomness, 

independence, symmetry, or goodness of fit, rather than testing 

hypotheses about values of population parameters (NIST/SEMATECH, 

2006). 

One of the more common non-parametric methods was developed by Kruskal 

and Wallis (1952; , 1953). The Kruskal-Wallis test examines the equality of 

medians for two or more populations and examines the hypotheses Ho: the 

population medians are all equal and Ha: the medians are not all the same, with 
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the assumptions that samples from the different populations are independent 

random samples from continuous distributions with similar shapes (Minitab, 

2000). The Kruskal-Wallis test computes the H statistic, which is shown in ( 13 ).  
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where a equals the number of samples (groups), ni is the number of observations 
for the ith sample, N is the total number of observations, and Ri is the sum of ranks 
for group i (NIST/SEMATECH, 2006). 

( 13 )

2.8.6.5. Regression 

 In addition to the analyses that examined the relationship between the four 

form factor types (independent variable) and the multiple dependent and 

controlled variables, regression was used to examine if relationships existed 

between the continuous variables, such as the image quality scores, gray level 

variance, or image area and the controlled variables (anthropometric data or 

collected meta-data) in order to predict a result of one variable from one or more 

variables (Tabachnick & Fidell, 1996). A general equation with k predictors for 

multiple regression is shown in ( 14 ). 

Y = =0 + =1X1 + =2X2 +… +=kXk + E,  

where Y is the response variable, =’s are the regression coefficients, X’s are the 
independent variables, E is the error component reflecting the difference between 
an individual’s observed response Y and the true average response (Tabachnick 
& Fidell, 1996).  

( 14 ) 
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 Since the purpose of multiple regression analysis is to “describe the 

extent, direction, and strength of the relationship between several independent 

variables and [one or more] continuous dependent variable[s]”, specifying the 

maximum model and selecting a viable model was of utmost importance in this 

exploratory study of the human-biometric sensor interaction (Tabachnick & Fidell, 

1996, p. 12). Once the maximum model was specified, model selection was 

performed in SAS using the following criteria: R2, adjusted R2, Mallow’s Cp, AIC, 

and SBC. After a viable model was chosen, the assumptions were checked to 

ensure the model is reasonable.  

2.8.6.6. Repeated Measures 

The various statistical methodologies that were planned in this study were 

outlined. However, in those discussions, one crucial component was missing; the 

fact that multiple measures were taken over multiple attempts and visits. This is 

known as repeated measures. According to Montgomery (1997) much 

experimental work uses people, thus the measured unit differs in experience, 

training, and background therefore the responses of each individual to the same 

treatment may be vary substantially and must be controlled. One control for this 

is the amount of demographic, user experience, and explanatory variables that 

were collected during the study, which are outlined in the Methodology section. 

Furthermore, a balanced design is sought to include equal groups of experienced 

versus inexperienced users, young versus old, gender types, and anthropometric 

data to form the randomized blocks according to Kleinbaum, Kupper, Muller, and 
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Nizam (1998). Also, recall that a correlation matrix was computed for all collected 

variables to account for human variation across the tested population.  

 Similarly, this study consists of three visits where participants interact with 

four fingerprint sensors. Thus, the ordering of the sensors will be pseudo-random 

using an program developed in the Biometric Standards, Performance, and 

Assurance Laboratory to reduce the possibility of systematic error due to 

expected improvement on the last device compared to the first (habituation), 

which may threaten the validity of the study (Zevecic, Miller, & Harburn, 2000). 

Each sensor and finger combination was randomly ordered. 

2.8.6.7. Outline of Statistical Methods 

 In the previous sections, overviews of various statistical methods were 

presented. To assist in choosing which statistical tests were appropriate 

Tabachnick and Fidell (1996) and Hartman (2000) were referenced. 

Table 13 reveals which statistical methods were used, except for regression, 

which is outlined in Table 14. 
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Table 13 Outline of statistical methods used with listed variables. 

HBSI component 
Statistical 
Method Dependent Variable 

DV 
Type IV 

Control 
Variable 

Effectiveness 
chi- 
square 

Total number (and 
classification type) of 
attempts Cat 

Form 
Factor 

Usability ANOVA Survey scales Con 
Form 
Factor 

Efficiency ANOVA Training Task Time Con 
Form 
Factor 

  ANOVA Enrollment Task Time Con 
Form 
Factor 

  ANOVA 
Matching Task Time 
(v1,2,3) Con 

Form 
Factor 

Learnability ANOVA Number of Assists Cat 
Form 
Factor 

 ANOVA Task Completion   

 ANOVA 
Maximum User Effort 
(MUE)   

Ergonomics ANOVA Image Size (area) Con 
Form 
Factor 

  ANOVA Image Quality Con 
Form 
Factor 

  ANOVA Number of Minutiae Con 
Form 
Factor 

  ANOVA Gray Level variation Con 
Form 
Factor 

Biometric 
Performance ANOVA 

FTA attempts (see 
Effectiveness) Con 

Form 
Factor 

  ANOVA FTE transactions Con 
Form 
Factor 

See 
bottom of 
table 

Controlled Variables: age, experience with biometrics, MSDs, Anthropometric measurements, 
hand, finger, Ethnic origin 
KEY: Cat = categorical, Con = continuous, Pro = proportion, (x) = number of levels 
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Table 14 Outline of regression models to be examined. 

HBSI 
Component Dependent Variable Independent Variables 

Effectiveness Number of Attempts 
Efficiency Training Task Time 

  Enrollment Task Time 
  Verification Task Time 

Learnability Number of Assists 
Ergonomics Image Size (area) 

  Image Quality 

  
Variance in gray levels / 

Image Contrast 
  Minutiae Count 

All possible combinations of 
variables will be considered. 
Model selection will examine if 
any of the collected variables 
can predict the 
response/dependent variable. 
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CHAPTER 3. METHODOLOGY 

This study had four objectives: (a) analyze the literature to determine what 

influences the interaction of humans and biometric devices, (b) develop a 

conceptual model based on previous research, (c) design two alternative swipe 

fingerprint sensors, and (d) to compare how people interact with the commercial 

and designed swipe fingerprint sensors, to examine if changing the form factor 

improves the usability of the device in terms of the proposed HBSI evaluation 

method. 

This research consists of three studies or phases. The first phase was the 

qualitative component, which consisted of single visit interviews of fingerprint 

users, ergonomic experts, and non-users to gather feedback on their use of a 

commercial swipe-based fingerprint sensor to aid in the design of the two 

alternative swipe-based fingerprint sensors based on the results of the 

interviews. The second phase was design and fabrication of the two form factor 

devices. Alongside the results of the qualitative study, principles in the usability, 

ergonomic, and biometric literature were also used to create the swipe-based 

fingerprint form factors. The third phase of this research evaluated the two 

designed swipe-fingerprint sensors to a commercial swipe fingerprint sensor 

using the HBSI evaluation method. This chapter is presented by phase and 
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consists of three parts: 1) Qualitative data collection, 2) Design and fabrication of 

the swipe sensors, and 3) Quantitative data collection. The research timeline for 

the three parts is shown in Table 15. 

Table 15 HBSI research timeline. 

Time Action 
8/2004 - 7/2007 Literature review and development of the HBSI 

conceptual model 
8/2005 - 12/2007 Preliminary experiments involving human interaction 
11/2006 HBSI evaluation method established and revised 

through 7/2007 
9/2007 - 11/ 2007 Formulation of qualitative study materials. 
11/2007 - 12/2007 Phase 1: Qualitative data collection 
12/2007 - 1/2008 Phase 1: Qualitative data analysis 
1/2008 - 2/2008 Phase 2: Form factor prototype design and fabrication 
2/2008 - 4/2008 Phase 3: Quantitative data collection 
4/2008 - 5/2008 Phase 3: Quantitative data analysis 
5/2008 - 6/2008 Final documentation preparation 

3.1. Phase 1: Qualitative Data Collection 

 The purpose of the qualitative phase was to obtain feedback from 

individuals to design a more usable swipe-based form factor. The population 

sample was drawn from individuals ranging from biometric novices, ergonomic 

experts, and non-users.  

Qualitative research typically presents findings that stem from three 

different types of data collection efforts: 1) in-depth, open-ended interviews; 2) 

direct observation; and 3) written documents (Patton, 2002). Interviews were 

chosen as the method of interest as they yield “direct quotations from people 

about their experiences, opinions, feelings, and knowledge” (Patton, 2002, p. 4). 
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These methods are data rich and are better equipped to inform researchers 

about participant experiences, as opposed to surveys and questionnaires that 

quantify experiences as a simple statistic. Prior quantitative investigations in the 

area of swipe-based fingerprint recognition revealed problematic areas with the 

human-sensor interaction, thus qualitative data was needed to give substance to 

why users were having issues with the swipe sensors, and furthermore if they 

liked using them. Thus, the purpose in using qualitative methods was to more 

fully understand biometric users, non-users, and ergonomic experts experience 

with biometrics, specifically swipe-based fingerprint recognition devices, their 

thoughts and feelings regarding commercial devices, as well as components that 

they like, dislike, or feel that are missing in current swipe-based fingerprint 

devices in order to design a device that was intended to be more usable.  

3.1.1. Theoretical Framework for Phase 1 

The theoretical framework for the qualitative study was based upon two 

qualitative research and evaluation methods: phenomenology and systems 

theory. According to Patton (2002) phenomenology derives from research in 

philosophy and aims to find the “meaning, structure, and essence of the lived 

experience of this phenomenon for this person or a group of people” (p. 104). 

Systems theory answers the foundational question of how and why a system as 

a whole function as it does (Patton, 2002). In this study, systems theory is the 

relationship and interaction between the human and fingerprint devices, with the 

guiding question for the qualitative inquiry being based on the interaction 
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between the human and the device. In addition, phenomenology was used to 

learn more about participants lived experiences; either with ergonomics, 

biometrics, or by choosing not to use biometrics. The purpose of including such 

data underlies the goal of usability; separating what works in theory and what is 

effective and allows the user to be more efficient in an everyday environment that 

individuals also find satisfying. The central question the interviews attempted to 

answer was: what criteria do users, non-users, and ergonomic experts believe 

should be included in the form factor of a swipe-based fingerprint sensor to make 

it more usable, comfortable, and efficient for users? 

3.1.2. Research Design for Phase 1 

The design of the qualitative study consisted of three data sources to 

strategically triangulate the results and allow for a comprehensive analysis. The 

three sources of data were: audio recordings, video recordings of the interaction 

between the interviewee and fingerprint sensors, and notes made by the author. 

The three methods ensured information rich details would not be lost. Including 

the different methods allowed the author to listen and watch what the participant 

was doing. In addition, the notes the author took during the interview sessions 

allowed for improved recall if a statement or action of interest occurred. The 

interview instrument developed for this study was based upon the four interview 

variations discussed in Patton (2002), which are shown in Table 16.  
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Table 16 The different variations in developing interview instrumentation (Patton, 
2002, p. 349). 

Type of Interview Characteristics 
Informal 
conversational 
interview 

Questions emerge from the immediate context and are 
asked in the natural course of things; there is no 
predetermination of questions topics or wording. 

Interview guide 
approach 

Topics and issues to be covered are specified in 
advance, in outline form; interviewer decides sequence 
and wording of questions in the course of the interview. 

Standardized open-
ended interview 

The exact wording and sequence of questions are 
determined in advance. All interviewees are asked the 
same basic questions in the same order. Questions are 
worded in a completely open-ended format. 

Closed, fixed-
response interview 

Questions and response categories are determined in 
advance. Responses are fixed; respondent chooses 
from among these fixed responses. 

 

The interview instrument used combined three methods: the informal 

conversational interview, the interview guide approach, and the standardized 

open-ended interview, as the topics and issues were specified in advance. The 

questions were worded the same for each participant, but question sequencing 

was dependent upon the course of the interview. If a participant response was 

interesting, additional probing questions were asked for improved comprehension 

of the participant’s response. The probing questions were not scripted, but were 

based upon simple inquiry questioning strategies, such as: 

" You stated ______ , could you further explain what you mean? 

" Why? 

" To make sure I understand what you are explaining, could you please 

show me with the sensors in front of you? 
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The author was extremely careful to not state questions that led a participant to 

respond in a particular way, but to elicit responses based upon the experience of 

the participants. Combining the three strategies assisted in overcoming some of 

the weaknesses discussed in Patton (2002) for each interview type. First, the list 

of questions provided for comparable data across all participants as each 

responded to each question, yet provided more flexibility than a traditional 

standardized open-ended interview as the questioning strategy was dependent 

upon the course of the interview and the flow of participant responses. Secondly, 

the use of the standard set of questions overcomes the weakness of a traditional 

guide approach that results in questions that are worded differently, which can 

cause variations in results. Lastly, the informal conversational interview 

components that were used in this study helped to increase the relevance of the 

results by building on previous responses and observations to more fully 

understand a participants’ response, interaction issue, or design issue. 

3.1.3. Volunteer Crew for Phase 1 

This sampling strategy for the qualitative component was criterion 

sampling, which investigates individuals that meet some criteria (Patton, 2002). 

For this investigation, participation was open to everyone, but specific groups 

were targeted during recruitment, especially ergonomic experts from Purdue 

University, individuals who have used swipe-based fingerprint recognition and 

other biometric devices prior to this research, and individuals who have not used 
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biometrics, or who oppose the use of biometrics. These three groups were 

chosen to reduce the bias towards the technology and ergonomics perspective. 

3.1.4. Recruitment of Subjects for Phase 1 

Participants were informed of the study through one of the following 

channels: announcements before and after classes, email distribution to past 

biometric testing participants, and email and discussions with ergonomic and 

usability colleagues. Those who agreed to participate in the interview made an 

appointment. Upon arrival on the day of the interview, participants were 

instructed to read, understand, and sign a consent form (Appendix C). After the 

consent form was signed, the author explained the type of questions and the 

format of the interview to the participant to inform them about the purpose and 

procedures of the study and to inform what information was being collected from 

them. Personal demographic information was collected, including gender, 

occupation, ethnicity, age, handedness, questions about familiarity with 

biometrics, and if the participant suffered from musculoskeletal ailments. 

3.1.5. Confidentiality in Phase 1 

To participate in the study, each participant provided consent to the 

collection of his or her personal demographic information, the audio recording of 

their voice, and the video recording of their interaction with the fingerprint 

sensors. Each participant was given a unique identification number that was 
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associated with the audio and video data stored on the storage media along with 

the demographic information. Names were not associated with the data 

collected. Video recordings only included the participants’ hands interacting with 

the sensors, which recorded area is shown in Figure 53. 

 
Figure 53 Area that was video recorded during the qualitative interviews. 

3.1.6. Testing Procedure for Phase 1 

Upon completion of the consent form paperwork and introduction to the 

study, the author started the audio and video recording. The video recording 

device was setup such that the participant’s face was not in the field of view of 

the camera (Figure 53). The audio recording device recorded both the author and 

the participant’s voice so that the data could be transcribed and analyzed offline. 

The experimental setup area that the participant interacted with is shown in 

Figure 54.  
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Figure 54 Experimental setup for the qualitative data interview. 

3.1.6.1. Interview Questionnaires for Phase 1 

Two interview guides were developed, one for biometric users, and one 

for biometric non-users, and ergonomic experts. The different questionnaire 

guides were developed to collect similar data across the three groups, however 

questions had to be worded differently due to each participant’s experience with 

biometrics or knowledge of ergonomics and usability. Thus, one interview guide 

was used for the biometric users, whereas a second guide was developed for the 

ergonomic experts and biometric non-users. Both questionnaire guides included 

questions regarding usefulness, effectiveness, efficiency, satisfaction, and 

designing an alternative device. The questionnaire for biometric users can be 
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found in Appendix D, while Appendix E contains the questionnaire for non-users 

and ergonomic experts. As mentioned earlier, the interview questions were open 

ended and the participant had the opportunity to illustrate with the sensors what 

they were attempting to communicate to the author. During the entire interview, 

the commercially available UPEK sensor was positioned in the black square area 

(Figure 53), as this was the sensor the fingerprint recognition users had 

previously used. During the questions regarding alternative designs, two 

additional commercial swipe-based fingerprint sensors were introduced along 

with the UPEK sensor (Figure 55) to allow participants to illustrate what they 

were attempting to communicate to the author.  

 
Figure 55 Swipe fingerprint sensors used as visual aides during the qualitative 
interviews. Sensors were labeled long silver [UPEK] (left), round (middle), and 

square (right). 

All interviews were audio and video taped. Observation logs were also 

kept for each participant so the author could make notes that would aid 

transcription of the interviews. An example interview/observation guide for one 
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fingerprint user, ergonomic expert, and fingerprint non-user can be found in 

Appendix F. Transcription of the data occurred as soon as practically possible 

after the interview to ensure as much information from the interview session 

could be recalled. All interviews were moderated and transcribed by the author, 

reducing the threats to internal validity due to multiple interviewers collecting or 

individuals transcribing the data. 

3.1.7. Equipment in Phase 1 

A Dell Optiplex GX620 Pentium 4 3.4Ghz computer was used throughout 

the qualitative data collection and analysis portion of this study. Audacity 1.2.6 

was used to record and encode the audio of the interviews, while Microsoft 

Windows Movie Maker 5.1 was used to record the interaction of the participant 

with the fingerprint sensors during the interviews. NCH Swift Sound’s Express 

Scribe v4.16 was used for transcribing the interviews. Weft QDA v1.0.1 was used 

to perform a textual analysis on the transcripts and create the initial coding 

scheme based on the three interview groups. Once this was complete, the 

information was exported to Microsoft Excel 2007 for further manipulation and 

data analysis. 
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3.2. Phase 2: Design and Fabrication of the Swipe-Based Fingerprint Form 

Factors 

The qualitative analysis (Phase 1) results were analyzed with principles of 

ergonomic design to create the two designed form factors for this study. This 

comparison was done to assure that the results of phase 1 were inline with the 

literature. Solid Works 2007 SP3.1 software was used to create solid models of 

the two form factors. Once the solid models were complete, CAM Works 2007 

SP4.0, a Computer-Aided Manufacturing (CAM) software solution created the 

automated tool paths in the form of Computer Numerical Control (CNC) code. 

Once the simulations were successful, the parts were milled in the College of 

Technology’s Machine Tool Laboratory located in MGL 1208. The Hurco VM1 

vertical machine center (Figure 56) was used to mill the form factors using the 

tools listed in Table 17. As the author was not trained to operate the Hurco 

machine center, a systems technologist from the Department of Manufacturing 

Engineering Technology operated the mill. However, the author created the 

models and CNC code.  
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Figure 56 Hurco VM1 vertical machine center used to fabricate the swipe-based 

form factor devices. 

Table 17 Machine tools used in the Hurco VM1.  

Tool Description 
3 ¼ inch End Mill 
8 ¼ inch Ball Nose 
10 1/8 inch End Mill 
12 Center Drill 
13 1/16 inch End Mill 
21 ¼ - 20 Tap (7)  

3.3. Phase 3: Quantitative Data Collection 

Once the fabrication and assembly of the two designed form factors was 

complete the experimental setup area was finalized, pilot tested, and process 

mapped. Upon completion of the tasks mentioned above, the quantitative data 

collection on three swipe sensors and one large area sensor began. The 
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quantitative data collection was described as a scenario-based test, which is 

classified in Table 18. 

Table 18 Evaluation Classification (Mansfield & Wayman, 2002). 

Experimental Application Types Classification for this research 
Application Classification Scenario 

Co-operative or Non Co-operative Co-operative Users 
Overt versus Covert Overt 

Habituated versus Non-Habituated Both 
Attended versus Non-Attended Attended 

Standard Environment Yes 
Public versus Private N/A 

Open versus Closed System Closed 

3.3.1. Volunteer Crew for Phase 3 

The methodology for the quantitative data collection was based upon the 

cross-sectional framework that consisted of participants from a population of 

students, faculty, university employees, and individuals from the Greater 

Lafayette community that were over the age of 18. The data collection effort 

consisted of three visits. Criterion and chain sampling were utilized to attempt to 

collect data from a broad spectrum of participants so a block design could be 

developed and subsequently used for data analysis. Approximately one hundred 

appointment slots were made available for this study. Data collection occurred 

between 8:00 A.M. and 9:00 P.M. for the duration of the study. The final sample 

size, completing all three visits, was 85. The volunteer crew was examined by the 

following demographic information: 

! Age: Less than 30, 30 – 50, and over 50 

! Gender: Female and Male 
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! Ethnic origin 

o American Indian / Alaska Native 

o Asian 

o Black 

o Hispanic 

o White 

! Handedness: Right, Left, and Ambidextrous  

! Experience with biometrics: self-report fingerprint sensor types 

! Musculoskeletal Disorders of hands and fingers: Self-reported 

! Anthropometric measurements, which were ranked according to the 

volunteer crew as small (0-33rd percentile), medium (34-66th 

percentile), and large (67-100th percentile) for: 

o Hand size: Length and breadth 

o Index finger length 

o Breadth of the index proximal interphalangeal joint 

o Breadth of the index distal interphalangeal joint 

o Circumference of the index distal interphalangeal joint of the 

dominant hand.  

3.3.2. Recruitment of Subjects in Phase 3 

Participants were informed of the study through announcements made at 

the end of class, through posters displayed around campus, and emails that were 

sent out to various groups, list serves, and to prior participants through the 
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appointment management website. Those wishing to participate in the study 

made an appointment online. When an individual arrived for their first visit, they 

were instructed to read, ask questions, and sign the quantitative study consent 

form (Appendix F) if they decided to participate in the study. After signing the 

consent form, participants were instructed to watch an audio and video based 

MS PowerPoint presentation (Appendix H), outlining the procedures that were to 

be completed during the study, as well as what information was to be collected. 

Since participation in this study was entirely voluntary, participants were allowed 

to withdrawal from the study at any time. Only two participants, who completed 

visit one, did not complete the study. These two individuals did not indicate that 

they wished to withdraw from participation; rather, they did not show up to the 

subsequent appointments they made during visit one. The dropout rate of the 

final volunteer crew was 2.29%, whereas the recruitment effort resulted in 103 

total visit 1 appointments, which 18 did not show and failed to reschedule, 

producing a failure to participate rate of 17.48%. 

3.3.3. Confidentiality in Phase 3 

A unique identification number was assigned to each participant, which 

was located on the front of the consent form in both plain text and in the form of a 

matrix bar code. These unique identification numbers were the only association 

with the individual’s collected personal characteristics and fingerprint images 

collected. All fingerprint images stored on the computer are only identifiable by 

the unique identification number only. Personal characteristics and background 
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information were collected through a survey instrument using the participant’s 

assigned unique identification number and stored on a computer hard drive 

protected by password. Fingerprint Images collected were also stored on a 

computer hard drive that was protected by password. All fingerprint images were 

analyzed offline once data collection was completed. 

3.3.4. Potential Risks to Subjects in Phase 3 

This study had minimal risk on the participants, which was no more than 

one would encounter in everyday life. The study consisted of three visits that 

required participants to swipe or place their right and left index fingers on a 

fingerprint sensor over repeated attempts. Each participant was given as much rest 

as needed between attempts to maintain an acceptable level of comfort during the 

study. As these sensors are available in the marketplace in multiple forms, such 

as: personal data assistants (PDAs), USB flash drives, cellular telephones, and 

commercial laptops, participants were subjected to no additional risk than they 

would encounter in everyday life. Furthermore, participation was voluntary and 

participants could have chosen to withdraw from the study at any time. 

3.3.5. Record Keeping in Phase 3 

All fingerprint image data collected as part of this research was stored, 

organized, and followed a naming convention that is shown below. This promotes 

repeatability of research, as well as an understanding of the data for future 
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experiments involving the data. 

  In addition, any manipulation of the original data set, such as format 

changes of a face image, are saved as separate files which are traceable to the 

original image, maintaining a continuous progression of the experiments and 

analysis process. For example, all original images were collected as .PGM files, 

but were converted to both .BMP and .WSQ for data analysis. The data exists in 

all three forms, which is shown in Table 19. The two fingers used were the right 

and left index fingers and were abbreviated as RI and LI, respectively. There 

were 3 data collection components (DCC): training (T), enrollment (E), and 

matching (V); and three visits: visit 1 (V1), visit 2 (V2), and visit 3 (V3). The 

sensors were UPEK (1), PUSH (2), PULL (3), and the large area (4).  

Table 19 Fingerprint image naming convention for the three formats used. 

SUBJECT FINGER DCC SAMPLE VISIT SENSOR EXTENSION
001 RI E 01 V1 1 .pgm 
001 RI E 01 V1 1 .bmp 
001 RI E 01 V1 1 .wsq 

3.3.6. Room Specifications 

The evaluation took place in Knoy Hall of Technology in the Biometrics 

Standards, Performance, and Assurance Laboratory in room 378. Figure 57 

shows the author and participant data collection areas that were used. 
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Figure 57 Full view of experimental testing area. The computer on the left is the 

researcher station. The computer on the right is the data collection computer 
where participants interacted with the fingerprint sensors. 

3.3.7. Equipment Used in Phase 3 

This section discusses the equipment used for the quantitative data collection 

study. Each section below discusses the computer equipment, biometric devices, 

and other measurement and recording devices used in detail. Appendix N 

contains a listing of all equipment used in the study.  

3.3.7.1. Biometric Devices 

The biometric hardware devices that were used in this evaluation were 

donated by UPEK, Inc. Three commercially available fingerprint swipe-based 
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sensors and one large area fingerprint sensor were donated for the purpose of 

this study. The commercial swipe sensors are the UPEK Eikon 3C/42 USB 

fingerprint reader. The commercial large area sensor is the UPEK TCRU1C 

TouchChip USB fingerprint reader. The four fingerprint sensor form factors can 

be seen in Figure 58. All four sensors remained in the author’s possession since 

arriving in the laboratory and were not used except during pilot testing and the 

actual data collection. Two of the commercial swipe sensors were disassembled, 

so the swipe sensors and cables could be used in the PUSH and PULL designed 

form factors. 

 
Figure 58 Fingerprint sensors used (from left to right): 1) Eikon swipe sensor, 2) 
PUSH designed sensor, 3) PULL designed sensor, and 4) TouchChip large area 

sensor. 

3.3.7.2. Computer Equipment 

Two computers were used for the quantitative data collection, one for the 

research administrator and one for the participant to interact with (Figure 57). 
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The research administrator computer was a Dell Optiplex GX620 with Dual 17 

inch monitors. The data collection computer that the participants interacted with 

was a Dell Optiplex 150 with a Single 17” monitor. To minimize complexity for the 

participant a TRENDnet 2-port KVM Switch was used to control the data 

collection computer so the participant was only responsible for interacting with 

the fingerprint sensors and not the mouse or keyboard. For a complete listing of 

what software each computer ran during testing, please refer to Appendix N. 

3.3.7.2.1. Research computer screen capture and user interaction video 

recording 

Recordings of both the data collection computer’s screen and user-

fingerprint sensor interaction were recorded for each visit using the researcher’s 

computer, which is shown in Figure 59. 

 
Figure 59 Screenshot of the researcher’s computer showing video recordings of 

the participant’s computer monitor (left), the participant’s interaction with the 
sensor (lower right), and the interaction counter the researcher used to count 

presentations (top right). 
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The video sources were segmented by type (Computer screen and human 

interaction) and visit (1, 2, and 3). Both of the video sources were used to 

perform the usability analysis of the devices. The usability analysis occurred in 

real-time after all of the data were collected. However, the author counted the 

number of interactions/presentations in real time using the HBSI counter (Figure 

59 top right). All human interaction video sessions were stored on a computer 

hard drive using the Logitech Quickcam v11.5 program. All computer screen 

capture recordings were performed with MatchWare ScreenCorder 4.0. 

3.3.7.2.2. Fingerprint Data Collection Software 

Two fingerprint data collection software programs were used in the study. 

The same software was used in all three visits and for training, enrollment, and 

matching. The first was UPEK Internal DBCollection 4.5.0.19, which was used for 

the three swipe-based fingerprint sensors, which is shown in Figure 60. The 

other software tool was the UPEK TouchChip DataBase Collection 1.1.0.0, which 

was used for the large area sensor and is shown in Figure 61. 
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Figure 60 Screenshot of the software used for the swipe-based sensors. 

 
Figure 61 Screenshot of the software used for the large area sensor. 
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3.3.7.2.3. Anthropometric Devices 

Anthropometric measurements were collected using a Hewlett-Packard 

ScanJet 4600 flatbed scanner. This was to ensure measurements were accurate 

and measured in a repeatable fashion throughout the test, so threats to internal 

validity could be minimized. The following measurements were taken from the 

scanned images using the Adobe Photoshop CS3 Comprehensive image 

analysis measurement toolkit:  

" Hand length (Middle finger to base of the hand) 

" Hand breadth (metacarpal) 

" Length of Index finger 

" Breadth of Index proximal interphalangeal joint (PIPJ). 

To obtain the measurements from the hand scans, each image was analyzed 

manually using the Adobe Photoshop CS3 Comprehensive image analysis 

toolkit. The measurements were taken based on the dimensions discussed in 

section 2.8.4.2.1. Boundaries of the fingers and palms were found by inverting 

the hand scan image, as this process revealed clearer edges of the finger and 

palms. The ruler in the analysis measurement toolkit was then utilized to record 

each of the measurements, which were then exported to Microsoft Excel for 

further analysis. The entire measurement process was similar to Salvendy 

(1971), which was discussed in section 2.7.1.1. An example hand scan that was 

inverted to find the edges, with measurements is shown in Figure 62.  
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Figure 62 Inverted hand scan image with example anthropometric measurements 

used in this research. 

The circumference of index finger Distal Interphalangeal Joint (DIPJ) was 

measured using the Richardson Products finger circumference gauge (Figure 

63). 

 
Figure 63 Richardson Products finger circumference gauge. 
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3.3.7.2.4. Skin Characteristic Measurement Devices 

Skin characteristics of the dominant index finger were taken prior to the 

participants presenting their fingers to the sensor in each visit. Skin surface 

temperature was measured with the RayTek MiniTemp Infrared sensor. Moisture, 

oiliness, and elasticity were measured using the Moritex TripleSense device. 

Both can be seen in Figure 64. 

 
Figure 64 Skin measurement devices: RayTek surface temperature sensor (left) 

and Moritex TripleSense device (right). 

3.3.8. Experimental Design 

Data collection occurred over three visits in a repeated-measures 

experimental design that took a minimum of four weeks to complete. Visits one 

and two were preferred to occur in consecutive weeks, but alterations were made 

due to appointment and participant availability. Visit three occurred with a 

minimum of one academic week separation between visit two. The 

preferred/minimal time requirements for data collection are shown in Table 20. 
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Table 20 Preferred/Minimal time requirements for data collection. 

  Week 
 1 2 3 4 
 Visit 1 Visit 2 Visit 3 

Data collection 
components 

(DCC) 

Training 
Enrollment 
Matching 1 

Matching 
2 

 
Matching 

3 

 

During each visit, each participant interacted with four fingerprint form factors, 

which was the independent variable in the study to determine if measurements 

and principles from usability, ergonomics, and biometrics can lead to 

improvements captured by the proposed HBSI evaluation method. The four 

levels of the independent variable are: 

1. Commercial swipe sensor (UPEK) 

2. Form Factor Design 1 (PUSH) 

3. Form Factor Design 2 (PULL) 

4. Commercial large area sensor (LA). 

The ordering of the sensors was pseudo-random, which was controlled 

with a software tool developed in the BSPA Laboratory to reduce the possibility 

of systematic error due to expected improvement on the last device compared to 

the first (habituation), which could have threatened the validity of the study if it 

was not controlled (Zevecic, Miller, & Harburn, 2000). While the sensors were 

randomly ordered, participants always began with their right hand, regardless of 

dominant hand, due to limitations of the fingerprint collection software. The 

limitation of the software required images from the right hand to be collected first, 

followed by the left hand. This was important to adhere to because the software 
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named the image with a marker indicating which hand and finger the image was 

collected from. Therefore, participants could have been more familiar with a 

particular device with the left hand, as the protocol always required right hand 

interaction first. During each visit, each participant interacted with all four sensors 

with two fingers unless an acquisition level FTE occurred with a particular 

sensor/finger combination during the enrollment data collection component of 

visit 1. In the case of an acquisition level FTE, the sensor/finger combination 

producing the acquisition level FTE was not revisited for the remaining visits. The 

two digits used in the study were the right and left index fingers. The general data 

collection protocol is shown in Table 21. During the training, enrollment, and 

matching data collection components, the author observed and recorded each 

interaction with the sensor that acquired a fingerprint image and that did not 

acquire an image when the participant was in contact with the sensor.  

Table 21 General data collection test protocol. 

Sensor 

Visit 

Interaction Data 
collection 

component UPEK PUSH PULL Large Area
1 Training 4/15 4/15 4/15 4/15 
1 Enrollment 10/30 10/30 10/30 10/30 
1 Matching 10/30 10/30 10/30 10/30 
2 Matching 10/30 10/30 10/30 10/30 
3 Matching 10/30 10/30 10/30 10/30 

Key: # of successful interactions desired / # presentations allowed per sensor 

 

Information about the number of presentations required to complete the 

interaction data collection component during a visit was counted by the author, 
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recorded through screen capture and a video camera, and automatically logged 

to a file for later analysis. These three measurements of the interaction activity 

allowed for triangulation techniques to be used to ensure errors were not made 

during analysis.  

In addition to the items listed above; the user task time, number of user-

interaction attempt errors, and number of assists were recorded for each 

participant by sensor/visit. Data collection targeted between 75 to 100 

participants, which was in-line with previous biometric usability evaluations 

(Kukula & Elliott, 2006; Theofanos, Orandi, Micheals, Stanton, & Zhang, 2006; 

Theofanos, Stanton, Orandi, Micheals, & Zhang, 2007). The final number of 

participants in this study was 85. 

3.3.8.1. Testing Procedure 

The testing procedure for the quantitative data collection effort followed 

three main procedures: the daily startup process (Appendix I), the HBSI data 

collection process (Appendix J), and the daily/weekly backup and shutdown 

process (Appendix K). The following sections will further describe the HBSI data 

collection process. 

3.3.8.1.1. Modifications from the Pilot Test 

Prior to beginning the actual data collection, a two person pilot test was 

conducted. After the second individual completed the test, no changes were 

made to the setup or procedures, thus was finalized and data collection began. 
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 The largest change from the pilot test involved the participant 

disengagement from the fingerprint sensor. Originally, the protocol called for 

participants to interact with a computer mouse and perform a click task with the 

right hand for right index fingerprint presentations, and the left hand for left index 

fingerprint presentations. However observing the first individual going through the 

pilot, revealed that the mouse task was burdensome and complicated for the 

participant to complete as well as interact with the fingerprint sensors. Thus the 

setup was modified so the author controlled the participant computer. 

Additionally, instead of performing the mouse click task, black tape was added to 

each side of the force plate, and participants were asked to tap their finger 

between each presentation to the sensor. 

3.3.8.1.2. Visit 1: Protocol Introduction and Training 

During the first half of each participant’s first visit, the study was 

introduced, demographic and anthropometric data were collected, and the 

consent form was signed. The protocol introduction and training procedure is 

outlined in Figure 65.  
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Figure 65 Protocol introduction and training procedure. 

After completing the consent form, participants were familiarized with the 

overall testing area (Figure 57) that consisted of the researcher and participant 

workstations. Figure 66 shows a front view of the participant workstation that 

includes a computer, four fingerprint sensors, a flat bed scanner, force plate, and 

video camera. 
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Figure 66 Front view of data collection computer that participants interacted with. 

Video that was collected of the participants’ interaction with the fingerprint 

sensors only included the hands to maintain human subject confidentiality 

requirements (Figure 67 and Figure 68). The defined area, which was colored 

black, was established within the experimental area to allow for the field of view 

of the camera to record the interaction and provide feedback to where 
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participants had to interact with the fingerprint sensors. The square area, which 

was a Vernier force plate, was overlaid with soft Velcro, enabled participants to 

fasten the devices in such a manner that was most comfortable for them. The 

Velcro also helped maintain sensor stability. This area is shown in Figure 67. 

Participants were also instructed that they could place the sensor wherever they 

wanted as long as it was on the black surface. After placing the sensor on the 

surface, the participants were asked to remove their hand from the surface so the 

Vernier force sensor could be tared. Lastly, participants were instructed that after 

each interaction, swipe or placement, with the sensors to remove their hand from 

the sensor and touch the square black tape on the right side for interactions with 

the right hand and left side for interactions with the left hand. This was to ensure 

participants disengaged briefly from the sensor between each presentation to the 

sensor. This was important for two reasons. First, this research was investigating 

the interaction of the human and sensor and if the participant continuously 

interacted with the sensor without short breaks or disengagements, the 

measurements would have been corrupted and not valid. Therefore, the short 

break from the tap between interactions allowed for unique and independent 

presentations that simulated a real-world implementation of fingerprint 

recognition, as opposed to continuous and rhythmic presentations that can occur 

during data collection. Secondly, the short break from the tap allowed the author 

time to analyze each presentation to ensure data analysis errors were minimize. 

An example of the sensor interaction and disengagement that was repeated after 

each swipe and placement is shown in Figure 68. After these instructions were 
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given, any remaining questions regarding the experimental setup or fingerprint 

sensors were answered.  

 
Figure 67 Experimental area that the video camera recorded showing 

disengagement markers. 

 
Figure 68 Sensor interaction and disengagement, or tapping, process that was 

followed by participants with each sensor for the right (top) and left (bottom) 
hands. 
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Next, a demographic questionnaire (Appendix L) was completed. The 

participant was then asked to adjust the height of the desk to the working height 

of their choice. This value was recorded and was set to the same height before 

each subsequent visit to limit variability within the subject. Next, one scan of each 

hand was taken using the HP ScanJet 4600 scanner at 300 dpi to obtain all the 

anthropometric measurements except finger circumference, which was taken for 

both right and left index finger using the finger circumference gauge (see section 

3.3.7.2.2). Lastly, the participant’s dominant index finger was measured for 

surface temperature, moisture, elasticity, and oiliness (Figure 64). At this point, 

the author initiated the MatchWare ScreenCorder 4.0 screen capture software to 

record the visual display of the data collection computer. The Logitech Quickcam 

v11.5 was then started to record the interaction between the participant and the 

fingerprint sensors. Next, the subject began learning how to use the fingerprint 

sensors and software in the training data collection component that simulated 

what the data collection process looked like. Training occurred for both index 

fingers and will be further discussed in the next section. 

3.3.8.1.3. Training data collection component 

The training data collection component acclimated participants to the 

testing procedure, including: interacting with the fingerprint sensors, appearance 

of the software, and potential questions the author could have asked throughout 

the three visits. The procedures for the training phase are shown in Figure 69. 

Each participant had up to 15 presentations to acquire four images that captured 
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with both the right and left index fingers. These interactions served as a baseline 

measure to determine if additional training or other intervention was needed prior 

to beginning the enrollment and matching data collection components. FTA 

calculations were conducted for training presentations that failed to produce 

images. Assistance was provided if the participant performed four presentations 

without a successful image capture. Assistance throughout the study had two 

forms: verbal instructions or physical intervention. The same assistance protocol 

was followed for training, enrollment, and matching. 

 
Figure 69 Training procedure for the 4 fingerprint sensors. 

3.3.8.1.4. Enrollment data collection component 

Each user had one attempt to enroll in each sensor, which consisted of 30 

presentations. Enrollment was deemed successful if 10 images were acquired. In 

most commercial fingerprint software applications enrollment typically requiring 

three to five presentations. 10 successful presentations were used to collect 

more data and analyze if participants improved their interaction in terms of the 

HBSI ergonomics and image quality measures and performance over time. The 

enrollment procedure is shown in Figure 70. 
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Figure 70 Enrollment procedure for the 4 fingerprint sensors. 

Both FTA and FTE calculations were conducted for the enrollment data 

collection component. FTA classifications were conducted in the same manner 

as in training. If a participant failed to produce sufficient images after 30 allotted 

presentations in the provided attempt with a given sensor, it was recorded as a 

failure to enroll (FTE). If an acquisition level FTE was registered, the participant 

was not allowed to use that particular sensor with the finger that failed to enroll 

for any of the matching visits. 

3.3.8.1.5. Matching data collection component 

The matching data collection component utilized the same software 

applications that were used during training and enrollment. Matching was the 

only data collection component that occurred each visit. Matching required each 

participant to successfully interact with each fingerprint sensor 10 times with 

each finger. The protocol allowed for up to 30 presentations with each finger. 

Each presentation that failed to produce an acceptable image was recorded as 

an FTA. If a participant did not achieve 10 successful image captures within the 

30 allotted presentations, subjects were asked to stop and move onto the next 
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task, however they were required to interact with that particular combination 

during the next matching visit. The visit 1 procedure is shown in Figure 71 and 

the procedure for visits 2 and 3 are shown in Figure 72. Upon completion of visit 

3, each participant was asked to complete the HBSI post study usability 

questionnaire (Appendix A).  

 
Figure 71 Matching visit 1 procedure for the 4 fingerprint sensors. 

 
Figure 72 Matching visit 2-3 procedure for the 4 fingerprint sensors. 
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3.3.9. User Interaction Data Analysis 

Once all the data were collected, data analysis occurred with Noldus 

Information Technology’s Observer XT 7.0 software package with two video 

modules. This software suite allowed the author to create the coding scheme 

based upon the tasks defined in the testing protocol.  

The coding scheme was based upon the actions, behaviors, and system 

results encountered during data collection. The original coding scheme included 

metrics for task time, sensor position, FTA analysis, and assists, but the final 

coding scheme was created prior to starting the usability analysis and derived 

from the subject specific observation documents taken for each participant. 

Appendix L contains an example observation document for one participant. This 

ensured all observed behaviors could be included during the analysis. Finalizing 

the coding scheme prior to beginning the analysis, as well as using the same 

researcher to code the data, enabled all the data to be analyzed against the 

same criteria by the same individual, limiting threats to internal validity. The 

coding scheme used in the usability analysis can be seen in the following tables: 

" Table 22 - Training, enrollment, and matching v1, 2, and 3 data collection 

component selection: 

" Table 23 - Finger selection: 

" Table 24 and 25 - FTA analysis, 

" Table 26 - Assistance: 

" Table 27 - Other behavior 

" Table 28 - Sensor position and location 
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Table 22 Usability coding scheme for data collection component selection. 

Time! Code!
Training! e!
Enrollment! r!
Matching v1! t!
Matching v2! y!
Matching v3! u!

 

Table 23 Usability coding scheme for finger selection. 

  Finger Code 
 UPEK PUSH PULL LA

RI 1 2 3 4 
LI 5 6 7 8 

 

Table 24 Usability coding scheme behaviors for FTA analysis. 

Behavior Name Start Modifiers 
  RI Acceptable Conformant *  
  LI Acceptable Conformant /  
  RI Unacceptable Conformant 9 FTA 
  LI Unacceptable Conformant 8 FTA 

  RI Acceptable Non-Conformant 6 
Acceptable non-
conformant 

  LI Acceptable Non-Conformant 5 
Acceptable non-
conformant 

  RI Unacceptable Non-Conformant 3  
  LI Unacceptable Non-Conformant 2   
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Table 25 Usability coding scheme modifiers for FTA analysis. 

Modifier Name Start 
FTA i 
  Too Fast f 
  Too Short h 
  Center & Press Harder j 
  Too Skewed k 
  Wrong Movement (backwards) z 
  Too Strange x 
Acceptable non-conformant M 
  wrong finger w 
  wrong direction r 
  other o 

 

Table 26 Usability coding scheme assistance instructions. 

Test Admin Instructions Code 
  Flatten hand / open hand a1 
  Press harder a2 
  How to use – direction/placement a3 
  Slow down a4 
  Keep fingers straight (no curl/flick) a5 
  alignment – start position a6 
  Faster a7 
  Physical Intervention a8 
  Alignment – Center finger over 
sensor a9 
  User Fingertip pad a0 
  Software – LA a- 
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Table 27 Usability coding scheme for other behaviors. 

Other User Behavior Code 
  Used 2 hands to swipe o1 
  Held sensor w/ off hand o2 
  Participant rushing through visit o3 
  Moved sensor during session o4 
Behavior_Other_GOOD o5 
Behavior_Other_BAD o6 
  Behavior_TIMER oo 

 

Table 28 Usability coding scheme for sensor position on the force plate. 

Sensor Angle   
    Vertical (0 degree) w5 
    Left Tilt MINOR (90-135) w4 
    Right Tilt MINOR (90-45) w6 
    Left Tilt MAJOR (135-180) w1 
    Right Tilt MAJOR (45-0) w3 
Sensor Location   
    Center/Middle q5 
    Lower Right q3 
    Upper Left q7 
    Upper Right Quadrant q9 
    Lower Left q1 
    Vertical Top q8 
    Vertical Bottom q2 
    Horizontal Left q4 
    Horizontal Right q6 
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Once all the data were collected the author analyzed each video for 

particular actions, behaviors, and biometric system results and documented the 

occurrence of each. Thus, each of the defined variables discussed earlier: task 

time for training, enrollment, and each matching visit, number of acquisition and 

enrollment errors, and number of assists were documented and analyzed. Figure 

73 shows a screenshot of the Noldus software displaying the event log, partial 

coding scheme, and two video modules. 

 
Figure 73 Usability software used to code task time, interactions, and assists in 

real time using the two video modules. 
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3.4. Threats to Internal Validity 

Internal validity was defined for this study as the extent the experimental 

design allowed for the form factor type to impact usability, image 

quality/ergonomics, and biometric performance. In any experimental design, 

there are a number of threats that can arise in research that may impact internal 

validity, namely instrumentation, history effects, testing effects, statistical or 

regression-toward-the-mean, mortality, maturation, and selection bias (Asher & 

Lauer, 1988; Sekaran, 2003). The following sections discuss how each of 

potential threats were accounted for or acknowledged. 

 Instrumentation threats were minimal as the measuring instruments, 

devices, and testing area were unchanged for all participants for the duration of 

the study. If anything out of the ordinary was observed, it was noted. In terms of 

the qualitative interviews, internal validity was kept to a minimum due to the 

interview question guide sheets, which ensured that all participants responded to 

the same questions. In addition only one researcher coded, transcribed, and 

administered the testing, removing the inter-rater effect of multiple researchers. 

 Mortality could not be eliminated from this research. According to the 

Committee on the Use of Human Research Subjects at Purdue University, 

participants must voluntarily consent to partake in any research. To account for 

mortality, participants withdrawing from the study were documented. 

 Maturation, or habituation, occurred as participants became more 

acclimated to the fingerprint sensors, software, and testing protocol. To account 

for habituation to the devices, participants were asked if they have previously had 
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experience with fingerprint recognition during the initial visit. In addition, the 

ordering of the sensors was pseudo-random, meaning the order was different 

each visit. This mitigated order effects as well as one sensor outperforming 

another due to its position in usage. 

 Selection bias was a major concern in this research. Over 90% of the 

participants interacting with the fingerprint sensors had prior experience with 

fingerprint sensors, with a majority using the UPEK sensor before. This could 

negatively bias the results of the usability survey as their preference may already 

be made before interacting with the alternative devices. Furthermore, participants 

who have used fingerprint recognition prior to this study, may interact at a higher 

level than those who have not used biometrics before. Selection bias was 

accounted for with the demographic and background analysis. 

 Lastly, statistical regression could have impacted the internal validity of 

the study. Individuals who perform very well or badly can threaten the validity of 

the study. In biometrics research the “outliers” are of extreme interest, as a 

majority of individuals can successfully interact with biometric devices. Statistical 

regression was accounted for in the analysis section by providing descriptive 

statistics and plots of the data to provide further information on the results of the 

tests.  
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3.5. Threats to External Validity 

During the process of an evaluation, many threats to the generalizability of 

the research results to other groups or populations can occur, which is known as 

external validity (Asher & Lauer, 1988). In any scenario based lab research, there 

will be threats to generalizability, due to the assumptions and delimitations that 

are made within the scope of the particular study. Please see sections 1.8 and 

1.9 for the assumptions and delimitations made in this research. Furthermore, 

the HBSI evaluation method was stated to specifically be for physical interactive 

biometrics, meaning transfer to imaging based biometrics, such as iris or face 

recognition would likely be problematic in the evaluation method’s current state. 

Additionally, to not predispose participants to the usability questionnaire they 

completed in visit 3, a pre-test was not given, as this would bias the results for a 

particular response. In addition, participants were not informed that the author 

designed the alternative form factors until after the participant completed the 

entire study, as this would have compromised the results of the individual, as 

they may have felt the need to rank the sensors the author created above the 

others.  
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CHAPTER 4. DATA AND ANALYSIS 

This study had four objectives: (a) review the literature to determine what 

influences the interaction of humans and biometric devices, (b) develop a 

conceptual model based on previous research, (c) design two alternative swipe 

fingerprint sensors, and (d) evaluate the commercially available and alternative 

form factor devices in a comparative performance evaluation using the HBSI 

evaluation method. 

This chapter presents the data and analyses from each of the three parts 

in the following order: 1) qualitative interviews, 2) design and fabrication of the 

alternative fingerprint form factors, and 3) quantitative performance evaluation.  

The first phase was the qualitative component, which consisted of a single 

visit interview of fingerprint users, ergonomic experts, and non-users to collect 

data and gather interaction feedback from their use of a commercial swipe-based 

fingerprint sensor to aid in the design of the two alternative swipe-based 

fingerprint sensors.  

The second phase was the design and fabrication of the two form factor 

devices. The results from the qualitative study, as well as principles in the 

usability, ergonomic, and biometric literature were used to create the swipe-

based fingerprint form factors.  
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The third phase of this research evaluated the two designed swipe-

fingerprint sensors (PUSH and PULL) to a commercial swipe fingerprint sensor 

(UPEK) and a baseline large area (LA) sensor using the HBSI evaluation 

method. 

4.1. Phase 1: Qualitative Study 

The qualitative component of this study consisted of 22 interviews. The 

use of qualitative interviews allowed the author to collect data rich in details to 

gain an understanding of the human element for designing a swipe-based 

fingerprint form factor. Two qualitative research and evaluation methods, 

phenomenology and systems theory were followed to collect and analyze the 

data from interviews of biometric users, non-users, and ergonomic experts. The 

goal of the interviews and analysis were designed to provide design guidelines 

for the two alternative swipe-based sensors from the user perspective. The 

interviews were based around the central question:  

What criteria do users, non-users, and ergonomic experts believe should 

be included in the design of a swipe-based fingerprint sensor form factor 

to make it more usable, comfortable, and efficient for users? 

The qualitative results are discussed in four sections: volunteer crew, data 

collection, data analysis, and key findings for design and fabrication. 
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4.1.1. Volunteer Crew for Phase 1 

The volunteer crew for the qualitative study consisted of 22 individuals. 

Fourteen were fingerprint users, meaning they had participated in at least one 

fingerprint study in the Biometric Standards, Performance, and Assurance 

Laboratory involving swipe-based fingerprint sensors. Four individuals were 

classified as ergonomic experts. Of the four individuals, one was a faculty 

member, two were doctoral students, and one was pursuing a Master of Science 

degree in ergonomics or usability. Half of the 22 participants were less than 30 

years of age, with 59.1% being female. 77.3% of the participants self-reported 

their ethnicity as White, 9.1% self-reported Asian, 4.5% Hispanic and Black, and 

one participant reported Other. Participant demographics are shown in Figure 74. 

Also, over 81% of the participants had used some form of fingerprint recognition 

prior to this study, which is broken down by technology type in Figure 75. 
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Age Gender 

 

Ethnicity  

 

Prior Usage of Fingerprint Recognition
 

 

Figure 74 Participant age, gender, ethnicity and prior fingerprint usage 
demographic information. 

 
Figure 75 Prior fingerprint usage by technology. 
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4.1.2. Data Analysis for Phase 1 

Once the data were collected and transcribed, it was analyzed using 

inductive data analysis. As discussed in the qualitative methodology section, 

inductive analysis involves discovering patterns, themes, and categories in the 

data (Patton, 2002). During data analysis, the author created a code book of 

common themes and categories that was used to discover possible connections 

in the data. Approximately four iterations occurred to create the final design 

categories for the swipe-based fingerprint sensors. The following three sections 

describe the analysis strategies that were taken to create the final design from 

the interviews. 

4.1.2.1. Initial Data Investigation 

The initial data analysis enabled the author to become immersed in the 

data in order to better understand participant responses. In order to do this, each 

interview answer was grouped within the three interview types: fingerprint 

recognition users, non-users, and ergonomic experts. Weft QDA v1.0.1 (Figure 

76) was used to perform a textual analysis on the transcripts and create the initial 

coding scheme, which can be found in Appendices O – Q for each of the three 

interview groups. Each of the three schemes were created by the author using 

the software. Once the initial coding was complete, the output for each group 

was exported to Microsoft® Excel®. Next, each item was printed and organized 

into condensed themes and combined amongst the three groups. Once each 
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printed item was listed in a category or theme, reanalysis of the data occurred to 

ensure each response was under the appropriate preliminary theme.  

 
Figure 76 Screenshot of Weft QDA software that performed the initial data 

investigation. Image shows initial coding structure for users [Appendix O](right), 
participant statements about the width of the sensor (top), and participant 

statements regarding guidance (bottom). 
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4.1.2.2. Secondary and Tertiary Data Investigations 

Next, the initial coding bins were examined to see if relationships or over 

arching themes existed within the initial coding structure. Once this was 

complete, the data were reanalyzed by more specific categories and themes. 

This process was repeated to continue developing the natural patterns and 

themes in the data. 

4.1.2.3. Final Data Investigation 

Following the third pass through the data, a fourth analysis was completed 

to further cleanse the data. After this investigation, the themes or principal design 

components were readily apparent with only slight modifications occurring from 

the third analysis, thus the coding structure was considered complete. The final 

design component structure from the qualitative analysis is shown in Figure 77. 

Appendix R contains the qualitative results from the interviews sorted by the 

principal design components shown in Figure 77.  
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Figure 77 Principal design components from the qualitative data. 
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To provide the reader a better understanding of the data collected, 

excerpts from the final data (Appendix R) regarding design issues are presented 

below.  

 

 

Participant 33 stated the following with respect to designing an alternative device: 

Well I might add some sense of this guiding or indention here [guide on 

round swipe] on something like this. I like that this is sleek and a little 

lower [pointing to black part of long silver swipe]. This [round swipe] is also 

cold to the touch [but that is due to the materials used]. The sense of 

starting and stopping [pointed to round swipe finger impression guide], so 

this might be helpful (Appendix R, 033 [6001-6418]). 

 

 

Participant 13 discussed providing more guidance: 

[referencing the round swipe] It is just easier. I think it gives you a better 

place to put the finger. It is easier to control factor for lack of better word. 

This one [long silver swipe] as I said but going across the sensor is a lot 

smoother. Maybe adjust it because I don’t know as I said those are 

sticking up. But the design of it [round swipe], I like better, the going 

across the sensor I like better here [long silver swipe] (Appendix R, 013 

[6946-7401]). 
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Participant 14 stated the following in terms of designing a device: 

I would take this device [round swipe] here and superimpose it on top of 

this device [long silver swipe], so that there is a little bit of a angled sides 

in the beginning. There is a little bit but a little more upward channel to 

keep your finger in a straight path through the sensor (Appendix R, 014 

[5107-5410]). 

 

 

Participant 31 stated the following about device usability and comfort: 

Yea, I think the design of this one [round swipe] it tells you and guides you 

with the two sides coming up. To me it tells me like “that is where you put 

your finger” [places finger down correctly on the round swipe]. It is telling 

you where to finger in that space. That is why this is my favorite it terms of 

design and being comfortable (Appendix R, 031 [7438-7800]). 

 

 

Participant 20 stated the following about the shape of swipe fingerprint devices: 

I liked this one [round swipe] for the placement. I liked this one [long silver 

swipe] for the shaping of the finger, the concave feel. Like this one [round 

swipe] is pretty flat and that one [long silver swipe] one has, you know a 

little bit more. But of the three I probably would have used this one [round 

swipe], meaning easiest (Appendix R, 020 [8143-8496]). 
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Participant 30 stated the following about designing a form factor: 

Well design wise I prefer this one [long silver swipe]. I like how this one 

[round swipe] fits. If this part [round swipe finger guide] could be 

incorporated into this [long silver swipe] to cradle my finger I probably 

would like this one better than any of them. This one [round swipe] is kind 

of cold, but does fit my finger better. I suppose you have to look at this 

from a viewpoint that several people are using it so it doesn’t matter. You 

can’t just customize it to my hands (Appendix R, 030 [6071-6574]). 

4.1.3. Results for Design and Fabrication 

From the final data discussed in section 4.1.2.3, a frequency analysis 

(Table 29) was conducted to assess the coded responses of the interviewed 

individuals. From the qualitative interview results, the items with the highest 

frequency were considered in the design, but ergonomic, biometric, and 

manufacturing constraints were also taken into account. The frequency analysis 

reveals that the highest percentage of participant comments (17.5%) discussed 

the shape of the form factor and how the design should provide tactile assistance 

in performing the swipe. The second highest ranked component (13.1%) 

participants felt should be included in the design is the ability to feel where one 

should start and stop the swiping task. The next two highest ranked components 

dealt with visual feedback the form factor should provide. The remaining design 

components are shown in Table 29. 
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Table 29 Final qualitative data results used to create the form factor designs. 

Description Code Frequency Percentage
Shape Movement Visual GMV 15 5.6% 
  Tactile GMT 47 17.5% 
  Depth GMTD 14 5.2% 
 Start/Stop Visual GSV 22 8.2% 
  Tactile GST 35 13.1% 
 Smooth  GSm 2 0.7% 
 Raised Sensor  GR 6 2.2% 
 Roll Angle   AR 3 1.1% 
 Yaw Angle  AY 4 1.5% 
 Slope Flat SF 4 1.5% 

  
No 

Hump SFN 5 1.9% 
  Up SU 6 2.2% 
  Down SD 13 4.9% 
    Flatter SDF 9 3.4% 

Size Length Too Long SLS 7 2.6% 
  Fine as is SLF 2 0.7% 
  Too short SLL 12 4.5% 
 Width Variable  SWV 1 0.4% 
  Fine as is SWF 1 0.4% 

  
Too 
narrow SWN 6 2.2% 

  Too wide SWW 6 2.2% 
 Height Too low SHL 7 2.6% 
    Too high SHH 1 0.4% 
Manual Holding / Positioning MHP 6 2.2% 
Back Surface BS 10 3.7% 
Not 
Intuitive Shape  NIS 4 1.5% 

 
Swipe 
movement   NIM 4 1.5% 

  
Align Start-
Stop   NIA 11 4.1% 

Other   OT 5 1.9% 
Total count    268   
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4.2. Phase 2: Design and Fabrication 

The design of the two form factors was based upon the results of the 

qualitative analysis (Phase 1) and guided by concepts and constraints of 

ergonomics, usability, and biometrics. A large number of the responses 

(Appendix R) discussed the strengths of the long silver swipe sensor (UPEK) and 

the round swipe sensor, which are shown along with the square swipe sensor in 

Figure 55. A response by participant 14 regarding design concerns for the swipe 

fingerprint sensor form factor summarizes the statement perfectly.  

I would take this device [round swipe] here and superimpose it on top of 

this device [long silver swipe], so that there is a little bit of a angled sides 

in the beginning. There is a little bit but a little more upward channel to 

keep your finger in a straight path through the sensor. 

In addition, a number of participants also wanted more visual and tactile 

guidance on where to start and stop the swipe motion and in what direction. A 

response by participant 31 best summarizes the guidance design component: 

Yea, I think the design of this one [round swipe] it tells you and guides you 

with the two sides coming up. To me it tells me like “that is where you put 

your finger” [places finger down correctly on the round swipe]. It is telling 

you where to finger in that space. That is why this is my favorite it terms of 

design and being comfortable.  

Combining the frequency analysis and the participant responses in full context, 

the following list of criteria were used in the design: 

1. Start and stop cues: visual and tactile, 
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2. Movement and alignment cues: visual and tactile, and  

3. Ability to immobilize the device during interaction. 

Next, three-dimensional modeling software was used to create the form factor 

designs. In the next two sections each of the two form factors will be discussed, 

followed by more information regarding design and manufacturing steps and 

limitations that were encountered. 

4.2.1. Pull form factor design 

The pull form factor was designed to combine the acceptable features of 

the round swipe sensor and long silver swipe sensor that were discussed above 

by participant 14 during the interviews. Figure 78 shows three separate views of 

the pull form factor, whereas Figure 79 shows the final assembly of the two 

halves and a top view of the actual fabricated device.  

 

Figure 78 Top half (left), bottom half (middle), and reverse side of the top half 
(right) views of the CAD designed pull form factor.  



 

 

230

 
Figure 79 Final CAD model (left) and image (right) of the pull form factor. 

4.2.2. Push form factor design 

Many authors have suggested pushing and pulling as an occupational risk 

factor for musculoskeletal disorders (Badger, 1981; Clemmer, Mohr, & Mercer, 

1991; Damkot, Pope, Lord, & Frymoyer, 1984; Damlund, Goth, Hasle, & Munk, 

1986; Frymoyer et al., 1980; Garg & Moore, 1992; Kelsey, Golden, & Mundt, 

1990; Klein, Jensen, & Sanderson, 1984; Nadeau & Gagnon, 1996; Pope, 1989; 

Riihimäki, 1991; Snook, 1978). Hoozeman, van der Beek, Frings-Dresen, van 

Dijk, and van der Woude (1998) derived the definition of pushing and pulling from 

Martin and Chaffin (1972) and Baril-Gringas and Lortie (1995) as “the exertion of 

a (hand) force, of which the direction of the major component of the resultant 

force is horizontal, by someone on another object or person” (p. 758). Clarifying 

further a pushing task involves the (hand) force being directed away from the 

body, while the pulling force is directed toward the body. 

While much research has been performed on pushing and pulling with 

industrial workers and manual material handling tasks, the results have been 
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inconsistent and unclear (Todd, 2005). Yet for manual handling tasks the 

Australian Safety and Compensation Council’s National Code of Practice for the 

Prevention of Musculoskeletal Disorders from Performing Manual Tasks at Work 

(2007) states:  

Pushing loads is preferable to pulling because it involves less work 

by the muscles of the lower back, allows maximum use of body 

weight, less awkward postures and generally allows a forward 

facing posture to be adopted, providing better vision in the direction 

of travel (p. 78). 

In a separate study, Thatcher, James, and Todd (2005) conducted research 

which indicated participants preferred a push task over a pull task, as they found 

it most comfortable.  

With regards to swipe fingerprint devices, the task puts little stress on the 

body as opposed to a manual handling task. However, at the time of writing, all 

commercial swipe-based fingerprint sensors require a pulling or swiping motion. 

It is understood there are certain errors that are attributable to a swipe sensor, as 

the user is required to “sweep” their finger across it. This sweeping (pulling) 

motion requires smaller muscle groups and tendons to act to complete the task. 

However, is it possible to minimize these errors by introducing a push-based 

swipe sensor? This research question coupled with the ergonomics literature 

regarding pushing versus pulling led to the design of the push sensor.  

The push form factor was designed similarly to the pull sensor, by 

combining the acceptable features of the round and long silver swipe sensors. 
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Figure 80 shows three separate views of the push form factor, whereas Figure 81 

shows the final assembly of the two halves and a top view of the actual 

fabricated push device. 

 

Figure 80 Top half (left), bottom half (middle), and reverse side of the top half 
(right) views of the CAD designed push form factor. 

 
Figure 81 Final CAD model (left) and image (right) of the push form factor. 
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4.2.3. Manufacturing Process 

Upon completion of the three-dimensional solid modeling of the form 

factor devices, CNC code was created for the push and pull models, and the 

parts were manufactured.  

The manufacturing process brought about modifications that were 

unplanned between the modeling and manufacturing phases. First, the planned 

material for the form factor devices was a plastic composite material, similar to 

the commercial sensors used in this study. However, during machining a 

difference in the plastic composite material was evident, as one plastic block was 

“harder” than the others available. The hard plastic composite material worked 

well during machining but was too thin, and the black plastic composite blocks 

melted during the machine processes because the material was too soft (Figure 

82). Thus, alternative materials had to be considered. 

 
Figure 82 Plastic composite materials used for phase 1 machining. The white 

plastic composite was too thin (left) and the black plastic composite was too soft 
(right). 
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The next material of choice due to its smoothness and ability to be machined was 

the thermosetting plastic composed of acrylic polymer and alumina trihydrate, 

commonly known as Corian!. Slight modifications to the design had to be made 

due to the hardness of the material. First, the sensor had to be repositioned in 

the vice of the mill due to the material “flexing”, causing a widening of the finger 

channel (Figure 83 left). Modifications to sensor dimensions were also made due 

to material breakage (Figure 83 middle). Additionally, a relief point for the sensor 

circuit board had to be decreased due to the tooling breaking through the 

material towards the back end of the form factor (Figure 83 right). Third, and the 

most noticeable change in the design of the push and pull form factor was in the 

bottom half of the device.  

 
Figure 83 Phase 2 fabricated form factors using Corian! requiring adjustments 

to the positioning in the mill (left and middle) and in the CNC code (right). 
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The original design of the pull form factor (Figure 78 middle) was to have a 

3-5 degree incline from front to back and the push form factor (Figure 80 middle) 

was to have a 3-5 degree decline from back to front, which is similar to the 

commercial swipe fingerprint devices (Figure 55). However, the tolerance of the 

mill and tools could not handle such a tool path. Thus, the final bottom halves to 

the form factor designs were modified to be flat. The final fabricated form factor 

components are shown in Figure 84. Appendix S contains the two-dimensional 

engineering drawings for both the PUSH and PULL form factors, as well as 

images of the manufacturing process for the top half of the push and pull form 

factor. 

 
Figure 84 Final form factor components. From left to right: push top, pull top, 
reverse side of the top of both form factors, and the bottom half used for both 

form factors. 
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4.3. Phase 3: Quantitative Data 

The quantitative component of this study consisted of collecting fingerprint 

images from 85 individuals on three swipe-based sensors and one large area 

sensor over three visits. The purpose of the quantitative portion of this study was 

to evaluate one commercial swipe-based fingerprint sensor, the two swipe-based 

fingerprint sensors created in section 4.2, and one commercial large area 

fingerprint sensor in a comparative performance evaluation using the HBSI 

evaluation method. The quantitative data and analysis section consists of four 

parts: volunteer crew, ergonomics and image quality, usability, and biometric 

performance. 

4.3.1. Volunteer Crew in Phase 3 

4.3.1.1. Demographics 

The volunteer crew that participated in the quantitative study consisted of 

85 individuals. The dropout rate was 2.29%, where the failure to show up for the 

first appointment was 17.48%, or 18 individuals of 103. Of the 85, 48 were 

female, 59 were under the age of 30, 59 classified their ethnicity as white, and 71 

of the test participants self-reported their right hand as dominant (Figure 85). 
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Age Gender 

 

Ethnicity Handedness 

 

Figure 85 Participant age, gender, ethnicity, and handedness demographic 
information. 

To further understand the volunteer crew, the US Department of Labor 

Standard Occupational Classification (SOC) user guide (2004), which classifies 

occupations into 23 major groups, was referenced. The 23 groups were 

condensed into eight groups, with one added to include students who do not 

work. The nine occupation groups used were:  

" Administrative, business, legal, education, sales, and computer;  
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" Healthcare practitioners and technician; 

" Agriculture; 

" Construction, installation, maintenance, production, and transportation; 

" Art and design; 

" Food preparation and service; 

" Engineering, life, or physical sciences; 

" Military and protective services; and 

" Full or part time student and do not work. 

Over 80% of the participants were either full time or part time students who did 

not work or workers in administrative, business, educators, or computer related 

fields (Figure 86). The other category of Figure 86 includes one individual in each 

of the following categories: volunteer, military and protective services, art and 

design, healthcare practitioners and technician, and agriculture. 

 
Figure 86 Self-reported occupation classification of the volunteer crew. 
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4.3.1.2. Prior use of fingerprint recognition 

Prior usage of fingerprint recognition was self-reported to further 

understand participants and previous experience with the fingerprint sensors 

under study. Overall, 91.8% (78) of the participants reported using some form of 

fingerprint recognition prior to this study. From the 78 participants who had used 

fingerprint sensors prior to this study, over 25% of the participants self-reported 

having only used one sensor technology (Figure 87), 15% reported using two 

technologies (Figure 88), and almost 59% reported using three fingerprint 

recognition technologies (Figure 89). During the time of data collection, another 

fingerprint study involving a thermal sensor was used. Only one individual 

identified the thermal sensor, which is shown in Figure 89. 

 
Figure 87 Prior fingerprint usage for one sensor technology.  
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Figure 88 Prior fingerprint usage for two sensor technologies. 

 
Figure 89 Prior fingerprint usage for three sensor technologies. 

4.3.1.3. Anthropometric measurements 

Anthropometric measurements were recorded for each participant in order to 

better understand the human variability of the volunteer crew used in this study. 

The following anthropometric measurements were collected: 

" Hand length (LH and RH length); 

" Hand breadth (LH and RH breadth); 
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" Length of Index finger (LI and RI length); 

" Breadth of Index proximal interphalangeal joint (LI and RI PIPJ); 

" Breadth of Index distal interphalangeal joint (LI and RI DIPJ); and 

" Circumference of Index distal interphalangeal joint (DIPJ). 

The descriptive statistics for the anthropometric measurements are reported by 

male (Table 30) and female (Table 31). The percentiles listed in the tables were 

used to create the categorical variables of small, medium, and large for the 

anthropometric measurements used later in the analysis.  

Table 30 Anthropometric measurements for the males in the study. 

Variable N Mean Median StDev Min 
33rd 
%ile 

67th 
%ile Max 

LI DIPJ 37 17.93 18.28 1.12 15.85 17.26 18.60 19.97 
RI DIPJ 37 17.74 17.70 1.32 14.80 17.08 18.47 19.80 
LH breadth 37 90.77 90.84 4.43 81.62 88.94 92.58 99.83 
RH breadth 37 90.38 90.61 4.10 80.00 88.66 92.12 99.88 
LH length 37 192.22 193.40 8.20 172.00 189.62 196.76 207.94
RH length 37 192.07 192.67 7.92 174.22 190.34 194.68 212.47
LI length 37 77.08 77.86 4.31 67.52 75.15 79.12 89.75 
RI length 37 76.91 77.62 4.13 67.23 75.65 78.72 88.95 
LI PIPJ 37 20.29 20.20 1.17 18.12 19.75 20.86 22.70 
RI PIPJ 37 20.37 20.60 1.54 17.11 19.60 20.84 23.50 
LI Circum 37 4.79 4.90 0.30 4.10 4.69 5.00 5.20 
RI Circum 37 4.94 5.00 0.27 4.30 4.89 5.10 5.50 
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Table 31 Anthropometric measurements for the females in the study. 

Variable N Mean Median StDev Min 
33rd 
%ile 

67th 
%ile Max 

LI DIPJ 48 16.28 16.26 1.08 14.44 15.58 16.88 18.69 
RI DIPJ 48 16.29 16.34 1.42 12.93 15.70 17.01 18.75 
LH breadth 48 81.68 81.87 4.23 71.74 80.21 83.64 92.16 
RH breadth 48 81.61 81.60 4.58 72.03 79.53 83.42 89.62 
LH length 48 175.75 175.22 7.22 157.08 172.81 177.71 189.53
RH length 48 175.49 175.39 8.30 153.88 172.38 178.97 192.88
LI length 48 70.98 70.78 4.01 60.43 69.64 72.86 80.48 
RI length 48 71.06 71.05 4.26 59.19 69.06 72.63 80.76 
LI PIPJ 48 18.34 18.16 1.29 16.46 17.62 18.85 22.57 
RI PIPJ 48 18.53 18.40 1.56 14.88 17.79 19.34 21.85 
LI Circum 48 4.29 4.30 0.29 3.80 4.10 4.40 4.90 
RI Circum 48 4.50 4.50 0.29 3.80 4.30 4.60 5.20 

4.3.2. Data Analysis Methodology 

Section 3.3.8 outlines the data collection methodology and experimental 

design that were used in this study. Table 32 shows the how the five data 

collection components (DCC) were spaced over the three visits.  

Table 32 Data collection methodology. 

  Week 
 1 2 3 4 
 Visit 1 Visit 2 Visit 3 

Data Collection 
Component 

(DCC) 

Training 
Enrollment 
Matching 1 

Matching 
2 

 
Matching 

3 

 

Visit one consisted of training, enrollment, and matching 1. Since all the data 

were analyzed offline, the terms enrollment and matching do not refer to the 

actual process of the biometric sub-system enrolling or matching at the time of 

capture, rather served as instructions regarding the task that participants were to 



 

 

243

complete. Visit two consisted of matching 2 and visit three consisted of matching 

3. Each of the following sections of this chapter will report the results by the five 

data collection components according to the metrics contained in the HBSI 

evaluation method (Figure 90). 

 
Figure 90 The HBSI evaluation method (Kukula, 2007; Kukula, Elliott, & Duffy, 

2007).
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 The first area that will be discussed is image quality and ergonomics, 

which contain the following measurements: image quality, number of detected 

minutiae, fingerprint image area, and fingerprint image contrast. Three swipe-

based sensors: UPEK, PUSH, and PULL will be used in this analysis. While data 

were collected on the large area (LA) sensor as well, these data were not 

included in the statistical tests, as the hypotheses were developed to test for 

statistical differences in the swipe-based sensors. However, the large area 

results are included in the descriptive statistics for information and comparison. 

Next, usability will be discussed. The HBSI usability questionnaire analysis 

included the three swipe-based sensors, whereas the remaining measures of 

usability: efficiency, learnability, and effectiveness analyzed all four sensors 

comparatively. Lastly, biometric system performance will be discussed and will 

compare all four sensors. 

4.3.3. Image quality and ergonomics 

The first metric of the HBSI evaluation method that will be discussed is 

image quality. As discussed in section 2.8.4.2.1.2, image quality consists of two 

components: ergonomics and biometric system performance. Results in this 

section are reported by each of the 5 data collection components: training, 

enrollment, visit 1 matching, visit 2 matching, and visit 3 matching. Results from 

the following ergonomic data analysis sections are reported: Aware and NFIQ 

image quality, number of detected minutiae, fingerprint image size, and 

fingerprint image contrast, or variation in the gray levels. 
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4.3.3.1. Aware and NFIQ Image Quality Analysis 

Aware’s Wavelet Scalar Quantization (WSQ) VBQuality software v2.42E 

was used to measure image quality as a continuous variable (0-99). The 

software reported the number of detected minutiae, shown in Figure 91. The 

detection of minutiae will be discussed in section 4.3.3.2. Figure 92 shows 

fingerprint images for five different image quality scores that were in the dataset. 

 
Figure 91 Aware’s WSQ image quality software with an AIMQ score of 88 and 19 

detected minutiae. 
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Figure 92 Fingerprint images with the Aware IMQ score reported below.  

An alternate to the continuous image quality algorithm by Aware, is NFIQ, 

an image quality algorithm that is part of the NIST Biometric Image Software 

(NBIS) package. The NIST NFIQ algorithm reports quality scores on a nominal 

scale from one to five, with one being best quality and five an image of lowest 

quality. Figure 93 shows fingerprint images collected in this study at each NFIQ 

rank. For more information on the tools used to evaluate image quality, please 

refer to section 2.8.4.2.1.2. 

 
Figure 93 Fingerprint images and resultant NFIQ ranking.  
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The next five sections discuss the data and analysis involving fingerprint 

image quality. For the purpose of the statistical analyses and comparisons 

across the 3 swipe-based sensors, only the Aware Image Quality (AIMQ) 

algorithm was used. Note, the descriptive statistics for NFIQ are reported 

alongside AIMQ, but statistical analyses were not. 

4.3.3.1.1. Aware Image Quality (AIMQ) Score Analysis  

The hypothesis for image quality was stated as: 

The PUSH or PULL sensor will be significantly different in terms of the Aware 

Image Quality (AIMQ) score of a swipe-based fingerprint image collected in 

each data collection component for all hand and finger sizes compared to the 

commercial UPEK sensor. 

First, the assumptions of the Analysis of Variance (ANOVA) test with AIMQ were 

investigated. To test the assumptions of ANOVA, three model adequacy checks 

were conducted on the data to ensure the data was independent, normally 

distributed, and had equal variance.  

Previous research involving fingerprint image quality using the Aware 

image quality algorithm had shown results to be skewed and non-normal due to 

the heavy tails of images with excellent and poor quality (Kukula, Elliott, Kim, & 

San Martin, 2007; Modi & Elliott, 2006b). The AIMQ data in this study exhibited 

similar behaviors. Figure 94 shows the adequacy check for AIMQ matching 1, 

which the normality plot (upper left) shows the data is not normally distributed. 
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Figure 94 Example adequacy check of ANOVA model assumptions for AIMQ 

matching 1. 

All five ANOVA adequacy checks for AIMQ can be found in Appendix T, which 

show the AIMQ data is not normally distributed for each DCC. However, 

according to Schuckers (2008) “it is not necessary to assume normality if you are 

doing a test of equal means (ANOVA) and you have large sample sizes per each 

level that you are testing. The p values should be appropriate.” In the case of 

AIMQ, and all the following measures in this section, the sample sizes for training 

(N # 600), and enrollment, matching 1, 2, and 3 (N # 1,600) should be adequate 

for the Central Limit Theorem to hold. The second test that was conducted on the 

data was the Tukey pairwise comparison test, which was done to determine what 

sensor pairs were statistically different. Lastly, the descriptive statistics are 

included for each test to provide additional insight for the data under test, as well 

as compare to the baseline large area sensor. 
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4.3.3.1.1.1. AIMQ Results for Training 

The hypothesis for AIMQ score for training was stated as:  

The PUSH or PULL sensor will be significantly different in terms of 

the AIMQ score for the training images for all hand and finger sizes 

compared to the UPEK sensor. 

First, a visual inspection of the AIMQ scores was conducted in the form of a 

histogram (Figure 95). The individual histograms segmented by swipe sensor 

show the distribution and spread of the data for training. The histograms show 

that the data are skewed to the left, with the UPEK having a more concentrated 

distribution than the PUSH or PULL, indicating UPEK may have produced 

images of higher quality. To further examine if a statistically significant difference 

was present, an ANOVA test was conducted. 

  
Figure 95 Histogram of training AIMQ scores. 
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As discussed in section 4.3.3.1.1 and shown in Appendix T, the ANOVA 

assumptions held. A two-factor ANOVA was performed at $ of 0.05 with 

response AIMQ score and two factors: finger used and swipe sensor type. The 

results showed a significant main effect of finger used, F(1,2064) = 14.41, p = 

0.000, with the right index (RI) fingerprint images producing a higher mean 

quality score than the  left index (LI) images. The main effect of swipe sensor 

was also significant F(2,2064) = 14.30, p = 0.000. There was no significant 

interaction between finger and sensor, F(2,2064) = 0.32, p = 0.727. Results of 

the Tukey pairwise comparison test are presented in Table 33 and reveal 

statistically significant differences in AIMQ scores for the UPEK and PUSH, and 

PUSH and PULL, but reveal no difference in AIMQ scores of the UPEK and 

PULL sensors. AIMQ descriptive statistics are shown in Table 34 to provide 

additional insight on the training data.  

Concluding the analysis of AIMQ scores for training, there was a 

significant difference between the PUSH/PULL and PUSH/UPEK sensors, but no 

statistical differences were found between the PULL and UPEK.  

Table 33 Training Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0016 - 
UPEK p = 0.1681 p = 0.000  
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Table 34 IMQ score descriptive statistics for training by sensor. 

    Mean Median StDev Minimum Maximum 
Sensor N Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ
UPEK 696 70.97 2.57 77 2 19.03 1.07 0 5 91 1 
PUSH 682 65.42 2.82 71 3 19.07 1.01 0 5 93 1 
PULL 692 69.09 2.63 76 2 20.70 1.06 0 5 92 1 

LA 694 51.99 2.57 53 2 16.12 1.08 4 5 85 1 
 

4.3.3.1.1.2. AIMQ Results for Enrollment 

The hypothesis for AIMQ scores for enrollment was stated as:  

The PUSH or PULL sensor will be significantly different in terms of 

the AIMQ score for the enrollment images for all hand and finger 

sizes compared to the UPEK sensor. 

First, a visual inspection of the AIMQ scores was conducted in the form of a 

histogram (Figure 96). The individual histograms by swipe sensor show the 

distribution and spread of the data for enrollment, which show that the data is 

skewed to the left, with the UPEK and PULL having a more concentrated 

distribution than the PUSH, indicating PUSH image quality is more variable. To 

further examine if a statistically significant difference was present, an ANOVA 

test was conducted. 
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Figure 96 Histogram of enrollment AIMQ scores. 

As discussed in section 4.3.3.1.1 and shown in Appendix T, the ANOVA 

assumptions held. A two-factor ANOVA was performed at $ of 0.05 with 

response AIMQ score and two factors: finger used and swipe sensor type. The 

results showed a significant main effect of finger used, F(1,5164) = 29.23, p = 

0.000, with fingerprint images from the RI producing a higher mean quality score 

than the LI. The main effect of swipe sensor was also significant F(2,5164) = 

28.83, p = 0.000. There was no significant interaction between finger and sensor, 

F(2,5164) = 0.29, p = 0.751. Results of the Tukey pairwise comparison test are 

presented in Table 35 and reveal statistically significant differences in AIMQ 

scores for the UPEK and PUSH, PUSH and PULL, but reveal no difference in 

AIMQ scores of the UPEK and PULL sensors. AIMQ descriptive statistics are 

shown in Table 36 to provide additional insight on the enrollment data. 
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Concluding the analysis of AIMQ scores for enrollment, there was a 

significant difference between the PUSH/PULL and PUSH/UPEK sensors, but no 

statistical difference was found between the PULL and UPEK. 

Table 35 Enrollment Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.8684 p = 0.000 

Table 36 IMQ score descriptive statistics for enrollment by sensor. 

    Mean Median StDev Minimum Maximum 
Sensor N Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ
UPEK 1735 69.46 2.62 76 2 20.82 1.10 0 5 91 1 
PUSH 1695 65.14 2.84 71 3 19.11 1.00 0 5 92 1 
PULL 1740 69.80 2.67 76 2 20.28 1.14 0 5 92 1 

LA 1740 52.85 1.89 55 2 16.48 0.98 7 5 84 1 
 

4.3.3.1.1.3. AIMQ Results for Matching Visit 1 

The hypothesis for AIMQ scores for matching visit 1 was stated as:  

The PUSH or PULL sensor will be significantly different in terms of 

the AIMQ score for the matching visit 1 images for all hand and 

finger sizes compared to the UPEK sensor. 

First, a visual inspection of the AIMQ scores was conducted in the form of a 

histogram (Figure 97). The individual histograms by swipe sensor show the 

distribution and spread of the data for matching images collected in visit 1. The 

histograms show that the data are skewed to the left, with the UPEK having a 

more concentrated distribution than the PULL and PUSH sensors. The 
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descriptive statistics (Table 37) provide additional data about the matching visit 1 

AIMQ scores.  

 
Figure 97 Histogram of matching visit 1 AIMQ scores. 

Table 37 IMQ score descriptive statistics for matching visit 1 by sensor. 

    Mean Median StDev Minimum Maximum 
Sensor N Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ
UPEK 1730 70.65 2.64 76 2 17.76 1.12 0 5 92 1 
PUSH 1687 65.01 2.82 70 3 19.33 0.98 0 5 92 1 
PULL 1740 68.30 2.67 76 2 22.03 1.12 0 5 92 1 

LA 1740 51.69 1.90 53 2 16.39 0.97 0 5 84 1 
 

To further examine if a statistically significant difference was present, an 

ANOVA test was conducted. As discussed in section 4.3.3.1.1 and shown in 

Appendix T, the ANOVA assumptions held. A two-factor ANOVA was performed 

at $ of 0.05 with response AIMQ score and two factors: finger used and swipe 



 

 

255

sensor type. The results showed a significant main effect of finger used, 

F(1,5151) = 32.53, p = 0.000, with fingerprint images from the RI producing a 

higher mean quality score than the LI. The main effect of swipe sensor was also 

significant F(2,5151) = 35.42, p = 0.000. There was a significant interaction 

between finger and sensor, F(2,5151) = 6.13, p = 0.002, which is shown in Figure 

98. The interaction plot reveals that the RI AIMQ scores are of higher quality for 

all three swipe-based sensors, but the largest difference in means (5.3) for finger 

used and sensor type occurred with the PULL sensor. Interpreting the results of 

the plot for the matching visit 1 DCC, the UPEK sensor produced images of 

highest quality in terms of AIMQ and produced the most consistent quality 

images for both the RI and LI. 

 
Figure 98 Finger*Sensor interaction plot of mean AIMQ scores for matching visit 

1. 
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Results of the Tukey pairwise comparison test are presented in Table 38 and 

reveal statistically significant differences in AIMQ scores for all swipe sensor 

combinations. Examining all the data, it appears from the interaction plot that the 

UPEK sensor performed similarly in terms of AIMQ for both fingers, however 

large differences in the mean AIMQ score were seen between the right and left 

index fingers on the PULL sensor. 

Table 38 Matching visit 1 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.0013 p = 0.0000 

 

Concluding the analysis of AIMQ scores for matching visit 1, there was a 

significant difference between all three swipe sensor combinations. 

4.3.3.1.1.4. AIMQ Results for Matching Visit 2 

The hypothesis for AIMQ scores for matching visit 2 was stated as:  

The PUSH or PULL sensor will be significantly different in terms of 

the AIMQ score for the matching visit 2 images for all hand and 

finger sizes compared to the UPEK sensor. 

First, a visual inspection of the AIMQ scores was conducted in the form of a 

histogram (Figure 99). The individual histograms by swipe sensor show the 

distribution and spread of the data for matching images collected in visit 2. The 

histograms show that the data are skewed to the left, with the UPEK and PULL 

exhibiting a more concentrated distribution at the high quality end. The 
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descriptive statistics (Table 39) provide additional data about the matching visit 2 

AIMQ scores.  

 
Figure 99 Histogram of matching visit 2 AIMQ scores. 

Table 39 IMQ score descriptive statistics for matching visit 2 by sensor. 

    Mean Median StDev Minimum Maximum 
Sensor N Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ
UPEK 1677 69.72 2.56 77 2 20.69 1.08 0 5 91 1 
PUSH 1670 65.32 2.82 71 3 19.29 0.98 0 5 91 1 
PULL 1678 69.15 2.68 77 2 20.90 1.19 0 5 92 1 

LA 1700 52.29 1.94 55 2 16.97 1.01 0 5 86 1 
 

To further examine if a statistically significant difference was present, an 

ANOVA test was conducted. As discussed in section 4.3.3.1.1 and shown in 

Figure 128 of Appendix T, the ANOVA assumptions held. A two-factor ANOVA 

was performed at $ of 0.05 with response AIMQ score and two factors: finger 

used and swipe sensor type. The results showed a significant main effect of 
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finger used, F(1,5019) = 36.68, p = 0.000, with fingerprint images from the RI 

producing a higher mean quality score than the LI. The main effect of swipe 

sensor was also significant F(2, 5019) = 23.47, p = 0.000. There was no 

significant interaction between finger and sensor, F(2, 5019) = 2.97, p = 0.051, 

however as this is close to the significance level ($) of 0.05, the interaction plot is 

shown in Figure 100 to further investigate this analysis. The interaction plot 

reveals that the RI AIMQ scores are of higher quality for all three swipe-based 

sensors, but the largest difference in means for finger used and sensor type was 

again the PULL sensor, although the mean RI AIMQ was higher than the UPEK 

RI, which is an improvement over DCC matching visit 1. Interpreting the results 

of the plot for the matching visit 2 DCC, the UPEK sensor produced the most 

consistent quality images as it resulted in similar mean AIMQ scores for both the 

RI and LI. 

 
Figure 100 Finger*Sensor interaction plot of mean AIMQ scores for matching visit 

2. 
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Results of the Tukey pairwise comparison test are presented in Table 40 and 

reveal statistically significant differences in AIMQ scores for the all swipe sensor 

combinations except for UPEK and PULL. Examining all the data, it appears from 

the interaction plot that the left index AIMQ average score was lower for left index 

finger images for all three swipe sensors. Furthermore, the right index finger 

average AIMQ score for the PULL sensor was of highest quality.  

Table 40 Matching visit 2 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.6985 p = 0.0000 

 

Concluding the analysis of AIMQ scores for matching visit 2, there was a 

significant difference between the PUSH/PULL and PUSH/UPEK sensors, but no 

statistical differences were found between the PULL and UPEK. 

4.3.3.1.1.5. AIMQ Results for Matching Visit 3 

The hypothesis for AIMQ matching visit 3 was stated as:  

The PUSH or PULL sensor will be significantly different in terms of 

the AIMQ score for the images collected during matching visit 3 for 

all hand and finger sizes compared to the UPEK sensor. 

Visual inspection of the AIMQ scores was conducted and is shown in Figure 101. 

The individual histograms by swipe sensor show the distribution and spread of 

the data for matching visit 3. The histograms show that the data are skewed to 

the left, with the UPEK having a more concentrated distribution than the PUSH or 

PULL, indicating UPEK may have produced images of higher quality. The 
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descriptive statistics for the sensors used in the study can also be seen in Table 

41. 

  
Figure 101 Histogram of matching visit 3 AIMQ scores. 

Table 41 IMQ score descriptive statistics for matching visit 3 by sensor. 

    Mean Median StDev Minimum Maximum 
Sensor N Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ Aware NFIQ
UPEK 1691 70.31 2.63 77 2 19.10 1.09 0 5 92 1 
PUSH 1659 63.53 2.89 70 3 20.04 0.99 0 5 93 1 
PULL 1697 68.32 2.72 76 2 21.55 1.18 0 5 92 1 

LA 1700 53.04 1.92 55 2 16.17 0.95 0 5 84 1 
 

To further examine if a statistically significant difference was present, an ANOVA 

test was conducted. As discussed in section 4.3.3.1.1 and shown in Appendix T, 

the ANOVA assumptions held. A two-factor ANOVA was performed at $ of 0.05 

with response AIMQ score and two factors: finger used and swipe sensor type. 
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The results showed a significant main effect of finger used, F(1,5041) = 69.76, p 

= 0.000, with fingerprint images from the RI producing a higher mean quality 

score than the LI. The main effect of swipe sensor was also significant F(2,5041) 

= 50.34, p = 0.000. There was no significant interaction between finger and 

sensor, F(2,5041) = 2.70, p = 0.068. Results of the Tukey pairwise comparison 

test are presented in Table 42 and reveal statistically significant differences in 

AIMQ scores for all sensor combinations.  

Table 42 Matching visit 3 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.0102 p = 0.0000 

 

Concluding the analysis of AIMQ scores for matching visit 3, there was a 

significant difference between all three swipe sensor combinations. 

4.3.3.1.2. Hypothesis Testing Summary: Image Quality 

The hypothesis for image quality was stated as: 

The PUSH or PULL sensor will be significantly different in terms of 

the AIMQ score of a swipe-based fingerprint images collected 

during training, enrollment, matching visit 1, 2, and 3 for all hand 

and finger sizes compared to the commercially available sensor. 

Results for Aware image quality score statistical test revealed significant 

differences in both tested effects: finger and sensor type for all data collection 

components. The RI produced higher reported AIMQ scores than the LI for each 

data component tested. In addition, the interaction effect of finger*sensor was 
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significant for matching visit 1 only, but was close to the significance value for all 

three matching modes. The interaction plots show that the RI fingerprint images 

had higher AIMQ mean scores and that there was a smaller difference in mean 

AIMQ for the PUSH and UPEK sensor than the PULL sensor. Tukey post hoc 

tests revealed pairwise differences among the mean AIMQ score for all the 

sensors in all five data collection components except for the PULL and UPEK 

during training, enrollment, and matching visit 2. 

Investigating the UPEK and PULL swipe sensor AIMQ score mean, 

median, and standard deviation, the sensors appeared to capture fingerprints of 

similar quality compared to the PUSH sensor whose mean and median were 

continually lower than the UPEK and PULL, suggesting the design of the PUSH 

may assist in producing images of lower quality than the UPEK or PULL form 

factors. Table 43 summarizes the statistical testing for Aware image quality 

(AIMQ) scores. 

Table 43 Summary of statistical testing for AIMQ. 
 p-value Post Hoc Analysis Result  

Data Collection 
Component (DCC) Finger Sensor Finger*Sensor Tukey Pairwise 

Comparison 

Sensor 
Hypothesis 

Test ($ = 0.05)
Training 0.0000 0.0000 0.7270 UPEK = PULL Accept 

Enrollment 0.0000 0.0000 0.7510 UPEK = PULL Accept 
Matching V1 0.0000 0.0000 0.0020 All pairwise differences 

significant 
Accept 

Matching V2 0.0000 0.0000 0.0510 UPEK = PULL Accept 
Matching V3 0.0000 0.0000 0.0680 All pairwise differences 

significant 
Accept 
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4.3.3.2. Number of detected minutiae 

The second metric of the HBSI evaluation method that will be discussed is 

number of detected minutiae. This measure varies according to how the human 

interacts with the sensor and where the finger is placed, amongst other factors. 

The hypothesis for the number of detected minutiae that was evaluated for both 

index fingers and each of the five data collection components: training, 

enrollment, matching 1, matching 2, and matching 3 was stated as: 

The PUSH or PULL sensor will be significantly different in terms of the 

number of detected minutiae in a swipe-based fingerprint image collected in 

each data collection component for all hand and finger sizes compared to the 

commercial UPEK sensor. 

To investigate the hypothesis for the number of detected minutiae in each data 

collection component, the same statistical process that as discussed in the image 

quality section above (4.3.3.1). The assumptions of the Analysis of Variance 

(ANOVA) test was investigated, with the results satisfying the assumptions of 

ANOVA, which are shown in Appendix U for each data collection component. 

4.3.3.2.1. Results for the Number of Detected Minutiae for Training 

The hypothesis for the number of detected minutiae for training was stated 

as:  

The PUSH or PULL sensor will be significantly different in terms of the 

number of detected minutiae for the swipe fingerprint images collected 

during training for all hand and finger sizes compared to the UPEK sensor. 
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A two-factor ANOVA was performed at $ of 0.05 to determine whether the 

average minutiae count was different between the three swipe-based sensors 

and two fingers. The results showed a significant main effect of finger used, 

F(1,2756) = 8.60, p = 0.003, with fingerprint images from the LI detecting a 

higher mean number of minutiae than the RI. This difference could have been 

due to the experimental design. All participants started with their right index 

finger, and then used their left index finger. This will be of interest to observe 

over the remaining four data collection components, as the participants become 

more acclimated and habituated to the devices. The main effect of form factor 

type was significant F(2,2064) = 29.47, p = 0.000. There was no significant 

interaction between finger and sensor, F(2,2064) = 0.13, p = 0.876. Results of 

the Tukey pairwise comparison test are presented in Table 44 and reveal there 

was no statistically significant difference in number of detected minutiae between 

the UPEK and PULL sensors, but there are across the UPEK/PUSH and 

PUSH/PULL. Table 45 provides the descriptive statistics for all the tested 

sensors to provide additional insight on the training data. 

Table 44 Training Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.9967 p = 0.0000 

 
 
 
 
 
   



 

 

265

Table 45 Minutiae count descriptive statistics for training by sensor. 

Sensor N Mean Median StDev Min. Max. 
UPEK 696 32.685 33 9.953 1 66 
PUSH 682 29.109 29 9.859 0 63 
PULL 692 32.723 33 10.299 2 65 

LA 694 44.939 44 10.54 11 94 
 

Concluding the analysis for the number of detected minutiae for training, 

there was a significant difference between the PUSH/PULL and PUSH/UPEK 

sensors, but no statistical differences were found between the PULL and UPEK. 

4.3.3.2.2. Results for the Number of Detected Minutiae for Enrollment 

The hypothesis for the number of detected minutiae for enrollment was 

stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

number of detected minutiae for the swipe fingerprint images collected 

during enrollment for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the 

average minutiae count was different between the three swipe-based sensors 

and two fingers. The two-factor ANOVA results showed a significant main effect 

of finger used, F(1,5164) = 19.24, p = 0.000, with images from the LI having on 

average more minutiae than images from the RI. The main effect of form factor 

type was significant F(2,5164) = 66.22, p = 0.000. There was no significant 

interaction between finger and sensor, F(2,5164) = 0.36, p = 0.695. Results of 

the Tukey test for pairwise comparisons are presented in Table 47 that reveal 
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that there were no differences in the UPEK and PULL form factors, however 

there were across the UPEK-PUSH and PUSH-PULL sensors. To provide further 

insight regarding the minutiae data for enrollment, the descriptive statistics are 

listed in Table 47.  

Table 46 Enrollment Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.5231 p = 0.0000 

Table 47 Minutiae count enrollment descriptive statistics by sensor. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1735 32.189 33 10.785 0 67 
PUSH 1695 28.932 29 9.488 0 65 
PULL 1740 32.56 33 10.113 2 69 

LA 1740 44.358 44 10.145 16 83 
 

Concluding the analysis for the number of detected minutiae for 

enrollment, there was a significant difference between the PUSH/PULL and 

PUSH/UPEK sensors, but no statistical differences were found between the 

PULL and UPEK. 

4.3.3.2.3. Results for the Number of Detected Minutiae for Matching 1 

The hypothesis for the number of detected minutiae for images collected 

during visit 1 matching was stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

number of detected minutiae for the swipe fingerprint images collected 

during matching 1 for all hand and finger sizes compared to the UPEK 

sensor. 
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A two-factor ANOVA was performed at $ of 0.05 to determine whether the 

average minutiae count was different between the three swipe-based sensors 

and two fingers. The two-factor ANOVA results showed a significant main effect 

of finger used, F(1,5151) = 29.50, p = 0.000. The main effect of form factor type 

was significant F(2,5151) = 84.50, p = 0.000. There was a significant interaction 

between finger and sensor, F(2,5151) = 4.16, p = 0.016, which is shown in Figure 

102. Note that while the UPEK sensor detects more minutiae with the LI, the 

difference in means for the PULL RI and LI are negligible and are of similar 

values as the number of minutiae detected with the UPEK RI. 

 
Figure 102 Finger*Sensor interaction plot of mean number of detected minutiae 

for matching visit 1. 

Results of the Tukey test for pairwise comparisons are presented in Table 48 that 

reveal all sensor pairs were statistically different. To provide additional insight 
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about the number of detected minutiae for matching 1 the descriptive statistics 

are listed in Table 49. 

Table 48 Matching visit 1 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0058 - 
UPEK p = 0.0000 p = 0.0000 

Table 49 Minutiae count matching visit 1 descriptive statistics by sensor. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1730 33.149 33 9.912 1 68 
PUSH 1687 28.835 29 9.78 0 60 
PULL 1740 32.088 33 10.592 0 70 

LA 1740 44.036 43 10.176 13 93 
 

Concluding the analysis for the number of detected minutiae for visit 1 

matching, there was a significant difference between all pairwise comparisons. 

4.3.3.2.4. Results for the Number of Detected Minutiae for Matching 2 

The hypothesis for the number of detected minutiae for images collected 

during visit 2 matching was stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

number of detected minutiae for the swipe fingerprint images collected 

during matching 2 for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the 

average minutiae count was different between the three swipe-based sensors 

and two fingers. The two-factor ANOVA results for matching visit 2 showed a 

significant main effect of finger used, F(1,5019) = 8.96, p = 0.003. The main 
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effect of form factor type was significant F(2,5019) = 76.17, p = 0.000. There was 

no significant interaction between finger and sensor, F(2,5019) = 2.90, p = 0.055, 

but as the p-value was close to the tested significance value ($ = 0.05) the 

interaction plot is shown in Figure 103. Note that the difference in means for the 

PULL RI and LI is negligible and are higher than the UPEK RI and LI. Also of 

interest is the difference in means between the RI and LI of the UPEK sensor. 

 
Figure 103 Finger*Sensor interaction plot of mean number of detected minutiae 

for matching visit 2. 

Results of the Tukey test for pairwise comparisons are presented in Table 50 that 

reveals that all sensor pairs are different. Investigating the descriptive statistics 

(Table 51), the PULL sensor detected more minutiae on average than both the 

PUSH and PULL sensors. 
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Table 50 Matching visit 2 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.0114 p = 0.0000 

Table 51 Minutiae count matching visit 2 descriptive statistics by sensor. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1677 32.534 33 10.143 1 71 
PUSH 1670 29.341 29 9.853 1 67 
PULL 1678 33.557 34 10.908 1 73 

LA 1700 43.833 43 11.79 3 104 
 

Concluding the analysis for the number of detected minutiae for visit 2 

matching, there was a significant difference among all sensor pairs. Examining 

the descriptive statistics, the PULL sensor did detect more minutiae than the 

UPEK sensor, thus slight improvements to the detection of minutiae were 

realized. However, data from different populations are needed to determine the 

generalizability of this result. 

4.3.3.2.5. Results for the Number of Detected Minutiae for Matching 3 

The hypothesis for the number of detected minutiae for images collected 

during visit 3 matching was stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

number of detected minutiae for the swipe fingerprint images collected 

during matching 3 for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the 

average minutiae count was different between the three swipe-based sensors 
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and two fingers. The two-factor ANOVA results for matching visit 3 showed a 

significant main effect of finger used, F(1,5041) = 2.75, p = 0.168. The main 

effect of form factor type was significant F(2,5041) = 644.98, p = 0.000. There 

was a significant interaction between finger and sensor, F(2,5041) = 3.17, p = 

0.042, which is shown in Figure 104. Note that the difference in means for the 

PULL RI and LI is negligible and are higher than the UPEK RI, but similar to the 

LI. Comparing the UPEK RI and LI for visit 2 matching (Figure 103), there is a 

reduction in the mean difference between the RI and LI, and that difference is 

larger than the difference between RI and LI for the PULL sensor. 

 
Figure 104 Finger*Sensor interaction plot of mean number of detected minutiae 

for matching visit 3. 

Results of the Tukey test for pairwise comparisons are presented in Table 52, 

which reveal that there is no statistically significant difference in the mean 
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number of minutiae detected with the UPEK and PULL sensors. There was a 

reported difference between the PUSH/UPEK and PUSH/PULL sensor pairs. 

Investigating the descriptive statistics (Table 53) the PULL sensor detected more 

minutiae on average than both the PUSH and UPEK sensors, but was not 

significantly different with the UPEK sensor. 

Table 52 Matching visit 3 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.1861 p = 0.0000 

Table 53 Minutiae count matching visit 3 descriptive statistics by sensor. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1691 32.931 33 10.22 0 73 
PUSH 1659 28.07 28 9.573 0 60 
PULL 1697 33.549 34 11.09 2 70 

LA 1700 43.47 43 10.813 7 106 
 

Concluding the analysis for the number of detected minutiae for visit 2 

matching, there was a significant difference between the PUSH/PULL and 

PUSH/UPEK sensors, but no statistical differences were found between the 

PULL and UPEK, although the PULL sensor did detect a higher mean number of 

minutiae and have a smaller difference in mean detected minutiae between the 

RI and LI than the UPEK sensor. 

4.3.3.2.6. Hypothesis Testing Summary: Number of Detected Minutiae 

The hypothesis for the number of detected minutiae tested for each of the 

5 data collection component: training, enrollment, matching 1, 2, and 3 stated: 
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The PUSH or PULL sensor will be significantly different in terms of the 

number of detected minutiae in a swipe-based fingerprint image collected 

in each data collection component for all hand and finger sizes compared 

to the commercial UPEK sensor. 

Results for the number of detected minutiae statistical tests revealed statistical 

differences in both main effects: sensor type and finger used. The LI produced a 

larger mean number of detected minutiae than the RI for each data component 

tested. In addition, the interaction effect of finger*sensor was significant for 

matching visit 1 and 3 only. Tukey post hoc tests revealed differences in the 

mean number of detected minutiae for the PUSH/PULL and PUSH/UPEK sensor 

pairs in all five data collection components. However, the UPEK/PULL 

comparison revealed no statistical difference in the training, enrollment, or 

matching visit 3 data collection component. 

Investigating the UPEK and PULL swipe sensor mean, median, and 

standard deviation, the sensors appeared to detect a similar number of minutiae 

compared to the PUSH sensor whose mean and median were continually lower 

than the UPEK and PULL, suggesting the design of the PUSH may result in 

detecting fewer minutiae points than the UPEK or PULL form factors. Table 54 

summarizes the statistical testing for the number of detected minutiae. 
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Table 54 Summary of statistical testing for the number of detected minutiae. 

4.3.3.3. Matlab Tool for Fingerprint Image Size and Contrast 

The next two measures of ergonomics and image quality are fingerprint 

image area and fingerprint image contrast. These were analyzed in Matlab 

v7.0.1. Dr. Young-Chul Song, a visiting post-doctoral scholar, developed the 

code in the BSPA Laboratory, which was called f4pro (Figure 105). For this 

research, the block size was set to 16x16. The purpose of the block size was to 

separate the fingerprint image into a background and fingerprint area regions. 

 p-value Post Hoc Analysis Result  

Data Collection 
Component (DCC) Finger Sensor Finger*Sensor Tukey Pairwise 

Comparison 
Sensor Hypothesis 

Test ($ = 0.05) 

Training 0.003 0.000 0.876 UPEK = PULL Accept 
Enrollment 0.000 0.000 0.695 UPEK = PULL Accept 

Matching V1 0.000 0.000 0.016 All pairwise differences 
significant 

Accept 

Matching V2 0.003 0.000 0.055 All pairwise differences 
significant 

Accept 

Matching V3 0.003 0.000 0.042 UPEK = PULL Accept 



 

 

275

 
Figure 105 f4pro software for fingerprint image size and gray level contrast. 

4.3.3.3.1. Fingerprint image size/area 

The third metric of the HBSI evaluation method that is discussed is 

fingerprint image size. The fingerprint image size or area is defined as the portion 

of the image where details of the fingerprint ridges and valleys are. The 

measured size of the fingerprint images collected with the large area sensor and 

the three swiped-based sensors was expected to be significantly different, due to 

the differences in available pixels. The large area sensor has 92,160 available 

pixels whereas the swipe sensors have 50,220 available pixels (Figure 106). 

Therefore, like the other measures of image quality, only the three swipe-based 

sensors were compared during the statistical tests. 
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Figure 106 Example images from a swipe sensor and large area sensor used in 

this study showing the difference in available pixel sizes. 

This measure is of importance to the HBSI as the area of the fingerprint image 

compared to the available pixels measures inconsistent contact and how users 

interact with fingerprint sensors. For example, if a sensor continuously captures 

fingerprint images that only fill 30-60% of the available pixels, users may have a 

difficult time interacting with a particular sensor. Likewise, if the variability of 

fingerprint image size is large across a particular population, it may negatively 

impact the ability of the algorithm to match fingerprints due to feature variability. 

To better illustrate the fingerprint image area, Figure 107 shows three fingerprint 

images from the UPEK sensor to illustrate three different image areas observed 

in this study. 
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Figure 107 Example images from UPEK showing different image areas. 

The hypothesis for the fingerprint image size that was evaluated for both 

index fingers and each of the five data collection components: training, 

enrollment, matching 1, matching 2, and matching 3 was stated as: 

The PUSH or PULL sensor will be significantly different in terms of the size or 

area of the fingerprint in a swipe-based fingerprint image collected in each 

data collection component for all hand and finger sizes compared to the 

commercial UPEK sensor. 

To investigate the hypothesis for the fingerprint image size in each data 

collection component, the statistical process that was discussed in the image 

quality and number of detected minutiae sections was followed. The assumptions 

of the Analysis of Variance (ANOVA) test were first investigated, with the results 

satisfying the assumptions of ANOVA, which are shown in Appendix V for each 

data collection component. 
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4.3.3.3.1.1. Fingerprint Image Size Results for Training 

The hypothesis for fingerprint image size for the fingerprint images 

collected with the swipe sensors during training was stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

size or area of the fingerprint for the swipe fingerprint images collected 

during training for all hand and finger sizes compared to the UPEK sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 

two fingers. The results showed no main effect of finger used, F(1,2064) = 0.90, 

p = 0.344. The main effect of form factor type was significant F(2,2064) = 195.71, 

p = 0.000. There was no significant interaction between finger and sensor, 

F(2,2064) = 1.05, p = 0.349. Results of the Tukey pairwise comparison test are 

presented in Table 55 and reveal there was no statistically significant difference 

in the image area of the fingerprints collected with the UPEK and PULL sensors, 

but there were across the remaining sensors.  

 

Table 56 provides the descriptive statistics for all the tested sensors to provide 

additional insight on the training data.  

Table 55 Training Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.6677 p = 0.0000 

 

 



 

 

279

Table 56 Fingerprint area descriptive statistics by sensor for training. 

Sensor N Mean Median StDev Min. Max. 
UPEK 696 35046 35840 3799 20736 42496 
PUSH 682 31468 31744 4221 20992 41472 
PULL 692 35228 36096 3882 22528 42496 

LA 694 71116 71424 7982 38656 85504 
 

Concluding the analysis for fingerprint image area for training, there was a 

significant difference between the PUSH/PULL and PUSH/UPEK sensors, but no 

statistical differences were found between the PULL and UPEK, although the 

PULL sensor had a larger mean and median fingerprint image size than the 

UPEK sensor. However, the descriptive statistics pertain only to the data 

collected and is not generalizable. 

4.3.3.3.1.2. Fingerprint Image Size Results for Enrollment 

The hypothesis for fingerprint image size for the fingerprint images 

collected with the swipe sensors during enrollment was stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

size or area of the fingerprint for the swipe fingerprint images collected 

during enrollment for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 

two fingers. The results showed no main effect of finger used, F(1,5164) = 0.00, 

p = 0.991. The main effect of form factor type was significant F(2,5164) = 195.71, 

p = 0.000. There was a significant interaction between finger and sensor, 
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F(2,5164) = 7.88, p = 0.000, which is shown in Figure 108. The interaction plot 

shows similar mean fingerprint image areas for both RI and LI for the UPEK and 

PULL sensors, but a significantly lower mean for the PUSH sensor. The behavior 

of the RI and LI for the PUSH sensor is interesting compared to the other 

sensors, but cannot be explained at this time. This would be interesting to 

investigate further.  

 
Figure 108 Finger*Sensor interaction plot of mean fingerprint image size for 

enrollment. 

Results of the Tukey pairwise comparison test are presented in Table 57, 

which revealed that fingerprint image size was significantly different for each 

sensor type, except for those captured with the UPEK and PULL sensors. Table 

58 provides the descriptive statistics for all the tested sensors to provide 

additional insight on the enrollment data.  
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Table 57 Enrollment Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.8352 p = 0.0000 

Table 58 Fingerprint area descriptive statistics by sensor for enrollment. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1735 35098 35840 3455 21248 42752 
PUSH 1695 31243 31232 3931 21504 40192 
PULL 1740 35170 36096 3820 21504 41728 

LA 1740 71097 71680 8030 35328 86272 
 

Concluding the analysis for fingerprint image area for enrollment, there 

was a significant difference between the PUSH/PULL and PUSH/UPEK sensors, 

but no statistical differences were found between the PULL and UPEK, although 

the PULL sensor had a larger mean and median fingerprint image size than the 

UPEK sensor. However, like the training results the descriptive statistics for 

enrollment pertain only to the data collected and is not generalizable. 

4.3.3.3.1.3. Fingerprint Image Size Results for Matching visit 1 

The hypothesis for fingerprint image size for the fingerprint images 

collected with the swipe sensors during the matching visit 1 DCC was stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

size or area of the fingerprint for the swipe fingerprint images collected 

during matching visit 1 for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 
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two fingers. The two-factor ANOVA results showed no main effect of finger used, 

F(1,5151) = 0.05, p = 0.830. The main effect of form factor type was significant 

F(2,5151) = 690.88, p = 0.000. There was a significant interaction between finger 

and sensor, F(2,5151) = 11.63, p = 0.000, which is shown in Figure 109. The 

interaction plot shows similar mean fingerprint image areas for the PULL LI and 

UPEK RI and LI, but the PULL RI reported a larger mean image area. The PUSH 

sensor reported a significantly lower mean for both RI and LI. Like the enrollment 

data, the behavior of the interaction is interesting, but cannot be explained at this 

time. 

 
Figure 109 Finger*Sensor interaction plot of mean fingerprint image size for 

matching visit 1. 

Results of the Tukey pairwise comparison test are presented in Table 59, 

which revealed that fingerprint image size was significantly different for each 
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sensor type, except for those captured with the UPEK and PULL sensors. Note 

the reported p-value for the PULL-UPEK comparison is 0.0557, which was close 

to the significance level ($ = 0.05). Table 60 provides the descriptive statistics for 

all the tested sensors to provide additional insight on the matching visit 1 data. 

Table 59 Matching visit 1 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.0557 p = 0.0000 

Table 60 Fingerprint area descriptive statistics by sensor for matching visit 1. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1730 34854 35584 3533 21248 43520 
PUSH 1687 31013 30464 3729 22016 39680 
PULL 1740 35136 35840 3605 22016 41728 

LA 1740 70114 70912 8083 41472 84992 
 

Concluding the analysis for fingerprint image area for matching visit 1, 

there was a significant difference between the PUSH/PULL and PUSH/UPEK 

sensors, but no statistical differences were found between the PULL and UPEK, 

although the PULL sensor had a larger mean and median fingerprint image size 

than the UPEK sensor. However, the descriptive statistics pertain only to the data 

collected and is not generalizable. 
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4.3.3.3.1.4. Fingerprint Image Size Results for Matching visit 2 

The hypothesis for fingerprint image size for the fingerprint images 

collected with the swipe sensors during the matching visit 2 DCC was stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

size or area of the fingerprint for the swipe fingerprint images collected 

during matching visit 2 for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 

two fingers. The two-factor ANOVA results showed no main effect of finger used, 

F(1,5019) = 1.91, p = 0.167. The main effect of form factor type was significant 

F(2,5019) = 632.93, p = 0.000. There was a significant interaction between finger 

and sensor, F(2,5019) = 6.07, p = 0.002, which is shown in Figure 110. The 

interaction plot shows similar mean fingerprint image areas for the PULL RI and 

LI are both larger than the mean area for UPEK RI and LI. The PUSH sensor 

reported significantly lower mean fingerprint image areas for both RI and LI than 

the UPEK and PULL.  
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Figure 110 Finger*Sensor interaction plot of mean fingerprint image size for 

matching visit 2. 

Results of the Tukey pairwise comparison test are presented in Table 61, 

which revealed that fingerprint image size was significantly different for each 

sensor comparison. Examining the interaction plot (Figure 110) and descriptive 

statistics (Table 62), we see that that the PULL sensor captured fingerprint 

images with the largest mean and median image size compared to the other two 

swipe-based sensors for the matching visit 2 DCC.  

Table 61 Matching visit 2 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.0060 p = 0.0000 
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Table 62 Fingerprint area descriptive statistics by sensor for matching visit 2. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1677 34878 35584 3533 23296 41984 
PUSH 1670 31110 30720 3910 20736 40960 
PULL 1678 35274 36096 3762 22528 41984 

LA 1700 70533 71424 8222 36864 87296 
 

Concluding the analysis for fingerprint image area for matching visit 2, 

there was a significant difference between all sensor comparisons. In particular, 

the PULL sensor reported the largest improvement in mean image area from the 

DCCs thus far compared to the UPEK sensor. However these results are not 

generalizable and pertain to the population in this study only. 

4.3.3.3.1.5. Fingerprint Image Size Results for Matching visit 3 

The hypothesis for fingerprint image size for the fingerprint images 

collected with the swipe sensors during the matching visit 3 DCC was stated as:  

The PUSH or PULL sensor will be significantly different in terms of the 

size or area of the fingerprint for the swipe fingerprint images collected 

during matching visit 3 for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 

two fingers. The two-factor ANOVA results showed no main effect of finger used, 

F(1,5041) = 3.01, p = 0.083. The main effect of form factor type was significant 

F(2,5041) = 804.37, p = 0.000. There was a significant interaction between finger 

and sensor, F(2,5041) = 9.54, p = 0.000, which is shown in Figure 111. The 
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interaction plot shows similar mean fingerprint image areas for the PULL LI, and 

UPEK RI and LI. The PULL RI mean image area is the largest of all the swipe 

sensors for matching visit 3 DCC. Again, the PUSH sensor reported a 

significantly lower mean fingerprint image area for both RI and LI than the other 

two swipe-based sensors. It is interesting to note that in each interaction plot, the 

LI reported a larger mean image area than the RI for the PUSH in each DCC.  

 
Figure 111 Finger*Sensor interaction plot of mean fingerprint image size for 

matching visit 3. 

Results of the Tukey pairwise comparison test are presented in Table 63, 

which revealed that fingerprint image size was significantly different for each 

sensor comparison. Examining the interaction plot (Figure 111) and descriptive 

statistics (Table 62), we see that that the PULL sensor captured fingerprint 
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images with the largest mean and median image size compared to the other two 

swipe-based sensors for the matching visit 3 DCC.  

Table 63 Matching visit 3 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.0008 p = 0.0000 

Table 64 Fingerprint area descriptive statistics by sensor for matching visit 3. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1691 35016 35840 3456 17920 41216 
PUSH 1659 30964 30464 3789 20480 40192 
PULL 1697 35464 36096 3489 21760 43264 

LA 1700 70460 71936 8230 42752 87040 
 

Concluding the analysis for fingerprint image area for matching visit 3, 

there was a significant difference between all sensor comparisons. In particular, 

the PULL sensor reported the largest improvement in mean image area from the 

DCCs thus far compared to the UPEK sensor. Examining the size improvements, 

as participants increased their usage with the PULL sensor, the mean image size 

also continued to increase compared to the UPEK sensor. However, these 

results are not generalizable and pertain to the population in this study only.  

4.3.3.3.1.6. Hypothesis Testing Summary: Fingerprint Image Area 

The hypothesis for the fingerprint image size that was evaluated for both 

index fingers and each of the five data collection components: training, 

enrollment, matching 1, matching 2, and matching 3 was stated as: 
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The PUSH or PULL sensor will be significantly different in terms of the size or 

area of the fingerprint in a swipe-based fingerprint image collected in each 

data collection component for all hand and finger sizes compared to the 

commercial UPEK sensor. 

Results for the fingerprint image area statistical tests revealed there was 

no statistical difference in the main effect for the finger used in all DCC, however 

there was a significant main effect of sensor type. An interaction effect was also 

present in all DCC except for training. The interaction effect of finger*sensor 

revealed an interesting pattern across the swipe sensors; PULL and UPEK RI 

reported larger mean area sizes, whereas the LI of PUSH reported a larger mean 

image size. While the pattern of the interaction between the fingers and sensors 

was consistent, a cause cannot be determined at this time, but it would be 

interesting to further investigate. Tukey post hoc tests revealed differences in the 

mean fingerprint image size for the PUSH-PULL and PUSH-UPEK sensor pairs 

in all five data collection components. However, the UPEK-PULL comparison 

revealed no statistical difference for the training, enrollment, or matching visit 1 

data collection component, however the PULL sensor reported larger mean and 

median image sizes. The Tukey post hoc analysis did report a statistical 

difference during matching visit 2 and 3 DCC between the PULL and UPEK, with 

the descriptive statistics indicating the PULL sensor captured a larger mean 

image size. Conclusions from the data analysis of fingerprint image size suggest 

the design of the PULL sensor may aid in capturing the largest fingerprint image 

area, while the PUSH may assist in capturing a smaller fingerprint image area 
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than both the UPEK or PULL form factors. However, this conclusion only pertains 

to this study and is not generalizable. Table 43 summarizes the statistical testing 

for fingerprint image area. 

Table 65 Summary of statistical testing for fingerprint image size or area. 
 p-value Post Hoc Analysis Result  

Data Collection 
Component (DCC) Finger Sensor Finger*Sensor Tukey Pairwise 

Comparison 
Sensor Hypothesis 

Test ($ = 0.05) 

Training 0.344 0.000 0.349 UPEK = PULL Accept 
Enrollment 0.991 0.000 0.000 UPEK = PULL Accept 

Matching V1 0.830 0.000 0.000 UPEK = PULL Accept 
Matching V2 0.167 0.000 0.002 All pairwise differences 

significant 
Accept 

Matching V3 0.083 0.000 0.000 All pairwise differences 
significant 

Accept 

 

4.3.3.3.2. Fingerprint image contrast  

The fourth metric of the HBSI evaluation method that is discussed is 

fingerprint image contrast, which is the last measure of image quality and 

ergonomics. Fingerprint image contrast measures how much contrast variation 

exists within the fingerprint area of the image. The measurement compares the 

sigma of the gray levels in each fingerprint image that was collected on each 

sensor. This measurement, like the fingerprint image area, only measures the 

area containing the fingerprint ridges and valleys, not the background area. 

Figure 112 shows three fingerprint images from the UPEK sensor with different 

image contrast variations.  
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Figure 112 Example fingerprint images from the UPEK sensor showing variations 

in image contrast values. 

This measure is of importance to the HBSI as image contrast is a measure of 

within image variability directly resulting from how users interact with fingerprint 

sensors. One possible measure of this is inconsistent contact. For example, if a 

sensor design forces a user to lift their finger prematurely from the sensor, 

segments of the fingerprint area may be acceptable with other parts possibly 

being too light, which can cause problems for algorithms. Therefore, this 

measure investigates how users interact with sensors to evaluate if a particular 

fingerprint sensor design aids the collection of images with minimal variations in 

the gray levels (0-255). From a statistical standpoint, the test examined if the 

mean variability (sigma) was the same across the three swipe sensors. 

The hypothesis for the fingerprint image contrast that was evaluated for 

both index fingers and each of the five data collection components: training, 

enrollment, matching 1, matching 2, and matching 3 was stated as: 

The PUSH or PULL sensor will be significantly different in terms of image 

contrast (reported gray level) in a swipe-based fingerprint image collected in 
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each data collection component for all hand and finger sizes compared to the 

commercial UPEK sensor. 

To investigate the hypothesis for the fingerprint image contrast in each data 

collection component, the statistical process that was discussed in the previous 3 

sections was followed. The assumptions of the Analysis of Variance (ANOVA) 

test held and are shown in Appendix W for each data collection component. 

4.3.3.3.2.1. Fingerprint Image Contrast Results for Training 

The hypothesis for fingerprint image contrast for the fingerprint images 

collected with the swipe sensors during training was stated as:  

The PUSH or PULL sensor will be significantly different in terms of image 

contrast (reported gray level) for the swipe fingerprint images collected 

during training for all hand and finger sizes compared to the UPEK sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image contrast was different between the three swipe-based sensors 

and two fingers. The results showed a main effect of finger used, F(1,2064) = 

10.15, p = 0.001. The main effect of form factor type was significant F(2,2064) = 

21.70, p = 0.000. There was no significant interaction between finger and sensor, 

F(2,2064) = 0.58, p = 0.562. Results of the Tukey pairwise comparison test are 

presented in Table 66 and reveal that there were statistical differences across all 

swipe sensor comparisons. Table 67 provides the descriptive statistics for all the 

tested sensors to provide additional insight on the training data. While the post 

hoc analysis revealed that all sensor pairs were different, the descriptive 
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statistics show that the PUSH sensor had the lowest mean image contrast, 

followed by the PULL sensor, and finally the commercial UPEK sensor. 

Table 66 Training Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0007 - 
UPEK p = 0.0099 p = 0.0000 

Table 67 Fingerprint contrast descriptive statistics by sensor for training. 

Sensor N Mean Median StDev Min. Max. 
UPEK 696 44.421 48.267 11.897 12.227 60.963 
PUSH 682 40.723 43.095 10.093 14.528 65.688 
PULL 692 42.784 45.178 9.206 13.985 58.503 

LA 694 48.07 49.716 8.575 26.827 63.605 
 

Concluding the analysis for fingerprint image contrast for training, there 

was a significant difference between all sensor combinations. In particular, the 

PUSH and PULL sensors reported lower mean sigma values (image contrast) 

compared to the UPEK sensor. However, these results are not generalizable and 

pertain to the population in this study only. 

4.3.3.3.2.2. Fingerprint Image Contrast Results for Enrollment 

The hypothesis for fingerprint image contrast for the fingerprint images 

collected with the swipe sensors during enrollment was stated as:  

The PUSH or PULL sensor will be significantly different in terms of image 

contrast (reported gray level) for the swipe fingerprint images collected 

during enrollment for all hand and finger sizes compared to the UPEK 

sensor. 
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A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 

two fingers. The results showed a main effect of finger used, F(1,5164) = 0.00, p 

= 0.000. The main effect of form factor type was significant F(2,5164) = 37.04, p 

= 0.000. There was no significant interaction between finger and sensor, 

F(2,5164) = 1.82, p = 0.163. Results of the Tukey pairwise comparison test are 

presented in Table 68, which revealed that fingerprint image size was 

significantly different for each sensor type, except for those captured with the 

UPEK and PULL sensors. Table 69 provides the descriptive statistics for all the 

tested sensors to provide additional insight on the enrollment data. The 

enrollment descriptive statistics again reveal that the PUSH and PULL sensors 

have lower mean sigma values (image contrast) than the UPEK sensor. In 

addition, the standard deviation in the data collected is lower for both fabricated 

sensors compared to the UPEK, suggesting that the design of the sensor is 

aiding in the collection of fingerprint images of lower gray level variability. 

Table 68 Enrollment Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.0006 p = 0.0000 

   

Table 69 Fingerprint area descriptive statistics by sensor for enrollment. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1735 42.215 45.818 12.491 13.551 63.59 
PUSH 1695 38.976 40.61 10.308 12.16 66.815 
PULL 1740 40.824 43.767 10.176 12.243 60.171 

LA 1740 46.988 48.059 8.752 22.238 63.204 
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Concluding the analysis for fingerprint image contrast for enrollment, there 

was a significant difference between all sensor combinations. Of interest was the 

PUSH and PULL sensors, which reported lower mean sigma values (image 

contrast) compared to the UPEK sensor. However, these results are not 

generalizable and pertain to the population in this study only. 

4.3.3.3.2.3. Fingerprint Image Contrast Results for Matching visit 1 

The hypothesis for fingerprint image contrast for the fingerprint images 

collected with the swipe sensors during the matching visit 1 DCC was stated as:  

The PUSH or PULL sensor will be significantly different in terms of image 

contrast (reported gray level) for the swipe fingerprint images collected 

during matching visit 1 for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 

two fingers. The two-factor ANOVA results showed a main effect of finger used, 

F(1,5151) = 4.46, p = 0.035. The main effect of form factor type was significant 

F(2,5151) = 0.000, p = 0.000. There was no significant interaction between finger 

and sensor, F(2,5151) = 0.37, p = 0.689. Results of the Tukey pairwise 

comparison test are presented in Table 70, which revealed that the gray level 

variability (mean sigma value) of the fingerprint images was significantly different 

for each sensor type, except for those captured with the UPEK and PULL 

sensors. Note the reported p-value for the PULL-UPEK comparison is 0.0605, 
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which was close to the significance level ($ = 0.05). Table 71 provides the 

descriptive statistics for all the tested sensors to provide additional insight on the 

matching visit 1 data. Investigating the data the PUSH sensor reported the lowest 

mean image contrast variation. The standard deviation, or variability, of image 

contrast was 10.5 for both the PUSH and PULL sensors, but more spread for the 

commercial UPEK sensor, indicating the UPEK produced images of greater gray 

level variability. 

Table 70 Matching visit 1 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.0605 p = 0.0000 

Table 71 Fingerprint area descriptive statistics by sensor for matching visit 1. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1730 40.781 44.237 12.609 12.152 63.155 
PUSH 1687 37.524 38.602 10.516 13.299 62.697 
PULL 1740 39.912 42.86 10.526 12.622 59.393 

LA 1740 46.384 47.288 8.871 22.267 62.666 
 

Concluding the analysis for fingerprint image area for matching visit 1, 

there was a significant difference between the PUSH/PULL and PUSH/UPEK 

sensors, but no statistical differences were found between the PULL and UPEK. 

Moreover, examining the descriptive statistics, the PUSH sensor reported a lower 

within image variability in terms of image contrast than the UPEK for the data in 

this study, but is not generalizable to other populations. 
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4.3.3.3.2.4. Fingerprint Image Contrast Results for Matching visit 2 

The hypothesis for fingerprint image contrast for the fingerprint images 

collected with the swipe sensors during the matching visit 2 DCC was stated as:  

The PUSH or PULL sensor will be significantly different in terms of image 

contrast (reported gray level) for the swipe fingerprint images collected 

during matching visit 2 for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 

two fingers. The two-factor ANOVA results showed a main effect of finger used, 

F(1,5019) = 10.88, p = 0.001. The main effect of form factor type was significant 

F(2,5019) = 60.79, p = 0.000. There was no significant interaction between finger 

and sensor, F(2,5019) = 0.58, p = 0.561. Results of the Tukey pairwise 

comparison test are presented in Table 72, which revealed that fingerprint image 

size was significantly different for each sensor comparison, except PULL and 

UPEK. Examining the descriptive statistics (Table 73), we see that that the PULL 

sensor had the lowest variability (sigma), thus aided in the capturing of the most 

consistent images in terms of variability in gray levels compared to the other two 

swipe-based sensors for the matching visit 2 DCC.  

Table 72 Matching visit 2 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.4590 p = 0.0000 
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Table 73 Fingerprint area descriptive statistics by sensor for matching visit 2. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1677 41.646 44.32 11.798 12.913 63.139 
PUSH 1670 37.989 39.464 10.125 12.654 66.487 
PULL 1678 41.217 43.803 9.391 14.316 57.572 

LA 1700 46.117 47.319 9.052 22.531 63.604 
 

Concluding the analysis for fingerprint image area for matching visit 2, 

there was a significant difference between the PUSH/PULL and PUSH/UPEK 

sensors, but no statistical differences were found between the PULL and UPEK. 

Moreover, examining the descriptive statistics, the PUSH sensor reported a lower 

within image variability in terms of image contrast than the UPEK for the data in 

this study, which as reported before is not generalizable to other populations.  

4.3.3.3.2.5. Fingerprint Image Contrast Results for Matching visit 3 

The hypothesis for fingerprint image contrast for the fingerprint images 

collected with the swipe sensors during the matching visit 3 DCC was stated as:  

The PUSH or PULL sensor will be significantly different in terms of image 

contrast (reported gray level) for the swipe fingerprint images collected 

during matching visit 3 for all hand and finger sizes compared to the UPEK 

sensor. 

A two-factor ANOVA was performed at $ of 0.05 to determine whether the mean 

fingerprint image area was different between the three swipe-based sensors and 

two fingers. The two-factor ANOVA results showed no main effect of finger used, 

F(1,5041) = 0.02, p = 0.895. The main effect of form factor type was significant 

F(2,5041) = 40.80, p = 0.000. There was no significant interaction between finger 
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and sensor, F(2,5041) = 1.24, p = 0.289. Results of the Tukey pairwise 

comparison test are presented in Table 74, which revealed that fingerprint image 

size was significantly different for all sensor comparisons except UPEK and 

PULL. Examining the descriptive statistics (Table 75), we see that that the PULL 

and PUSH sensors had lower standard deviations or variability in terms of image 

contrast, yet the difference in means for the PULL and UPEK were not significant 

for the matching visit 3 DCC. 

Table 74 Matching visit 3 Tukey pairwise comparison results for form factor type. 

  PULL PUSH 
PUSH p = 0.0000 - 
UPEK p = 0.1704 p = 0.0000 

Table 75 Fingerprint area descriptive statistics by sensor for matching visit 3. 

Sensor N Mean Median StDev Min. Max. 
UPEK 1691 40.594 43.566 11.837 11.97 61.926 
PUSH 1659 37.487 38.867 9.736 13.5 57.063 
PULL 1697 39.946 42.343 9.723 12.739 58.625 

LA 1700 46.793 47.923 8.666 22.696 61.619 
 

Concluding the analysis for fingerprint image contrast for matching visit 3, 

there was a significant difference between the PUSH/PULL and PUSH/UPEK 

sensors, but no statistical differences were found between the PULL and UPEK. 

Moreover, examining the descriptive statistics, the PUSH sensor again reported 

a lower within image variability in terms of image contrast than the UPEK for the 

data in this study, but is not generalizable to other populations.  
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4.3.3.3.2.6. Hypothesis Testing Summary: Fingerprint Image Contrast 

The hypothesis for the fingerprint image contrast that was evaluated for 

both index fingers and each of the five data collection components: training, 

enrollment, matching 1, matching 2, and matching 3 was stated as: 

The PUSH or PULL sensor will be significantly different in terms of image 

contrast (reported gray level) in a swipe-based fingerprint image collected in 

each data collection component for all hand and finger sizes compared to the 

commercial UPEK sensor. 

Results for the fingerprint image contrast statistical tests revealed there 

was no statistical difference in the main effect for the finger used in all DCC, 

however there was a significant main effect of sensor type. An interaction effect 

was also not present in each DCC. Tukey post hoc tests revealed statistical 

differences in the mean fingerprint image contrast for the PUSH/PULL and 

PUSH/UPEK sensor pairs in all five data collection components. However, the 

UPEK/PULL comparison revealed statistical differences for the training and 

enrollment DCC, but did not for the three matching DCCs, with the PULL mean 

sigma value being lower than UPEK’s. The PUSH sensor resulted in the lowest 

mean image contrast score, as well as the lowest standard deviation in all DCCs, 

meaning the fingerprint images collected in each DCC had the lowest within 

image variability (measured gray levels). Conclusions from the data analysis of 

fingerprint image contrast suggest the design of the PUSH sensor may aid users 

in maintaining more consistent contact with the sensor resulting in fingerprint 

images which contain a more consistent mean gray level value (sigma). 
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According to the results, the PULL sensor was next best, followed by the UPEK 

sensor. Table 76 summarizes the statistical testing for fingerprint image contrast.  

Table 76 Summary of statistical testing for image contrast. 
 p-value Post Hoc Analysis Result  

Data Collection 
Component (DCC) Finger Sensor Finger*Sensor Tukey Pairwise 

Comparison 
Sensor Hypothesis 

Test ($ = 0.05) 

Training 0.001 0.000 0.562 All pairwise differences 
significant 

Accept 

Enrollment 0.000 0.000 0.163 All pairwise differences 
significant 

Accept 

Matching V1 0.035 0.000 0.689 UPEK = PULL Accept 
Matching V2 0.001 0.000 0.561 UPEK = PULL Accept 
Matching V3 0.895 0.000 0.289 UPEK = PULL Accept 

4.4. Usability 

The next component of the HBSI evaluation method (Figure 90) that will 

be discussed is usability. Both qualitative and quantitative data were collected to 

understand usability from two distinct perspectives. The qualitative measure for 

usability on the three swipe-based sensors was a user satisfaction survey, which 

was based on Lewis’s Post-Study System Usability Questionnaire (PSSUQ) 

(1993). The quantitative data for usability included measurements of efficiency, 

learnability, and effectiveness. Efficiency examined task time. Learnability 

examined if participants completed the task, the level of effort needed to 

complete it, and the amount of assistance they needed to complete the task. 

Effectiveness examined how well the participants interacted with the sensors, 

which in this document is discussed under biometric performance, specifically the 

Failure to Acquire section.   
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4.4.1. HBSI Post-Study System Usability Questionnaire (HBSI PSSUQ) 

As discussed in 2.8.4.1.1.1, a modified version of Lewis’s PSSUQ (1993) 

was administered electronically after the matching visit 3 DCC was complete to 

determine if participants found one of the swipe-based sensors more usable. The 

instructions, HBSI questionnaire, and the original questions found in Lewis 

(1993) can be found in Appendix A. From the 85 participants, only one participant 

did not complete the survey, resulting in a survey completion rate of 98.82%. The 

participant was emailed and asked to finish the survey, but no response was 

received. The PSSUQ scores for each scale and subscale were calculated by 

taking the average of the items listed in Table 77. If an item was listed as N/A, 

the average of the remaining scores was used. 

Table 77 PSSUQ score calculation rules (Lewis, 1993). 

Scale Average responses to: 
Overall Items 1 – 19 
SYSUSE Items 1 – 8 
INFOQUAL Items 9 – 15 
INTERQUAL Items 16 – 18 

 

An ANOVA test was used to evaluate each part of the HBSI survey 

because the participant response scores met the ANOVA model assumptions for 

the HBSI post-study usability questionnaire, which can be found in Appendix X. 

The results of the parts of the questionnaire: overall satisfaction, system 

usefulness (SYSUSE), information quality (INFOQUAL), and interface quality 

(INTERQUAL) are outlined in the following sections. The hypothesis under test 

for each part of the questionnaire was: The new form factor(s) will be significantly 
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different in terms of the scores for overall satisfaction, SYSUSE, INFOQUAL, and 

INTERQUAL than the commercially available form factor. 

4.4.1.1. HBSI PSSUQ Results for Overall User Satisfaction Score 

The first metric of the usability questionnaire was the overall user 

satisfaction score. This score was computed by taking the average of all 19 

items. The lower the score, the more satisfied users are with the system. Scores 

ranged from 1 to 7, which were based on the seven point Likert scale. The 

hypothesis evaluated the overall usability score for the three swipe-based 

sensors. The results revealed that there was a statistically significant difference 

in the overall usability score by form factor type, F(2,249) = 12.34, p = 0.000 at 

an $ of 0.05, thus rejecting the null hypothesis. In order to test for differences in 

usability scores for the three swipe sensors, the Tukey test for pairwise 

comparisons was conducted, which revealed differences in overall usability 

scores for UPEK and PUSH, as well as PULL and PUSH, but no differences in 

the overall usability scores for UPEK and PULL (Table 78). The descriptive 

statistics are listed in Table 79. Investigating the mean overall user satisfaction 

score, the PUSH reported the lowest mean score (2.49). While the PULL and 

UPEK reported no statistical difference in the post hoc analysis, the UPEK (1.76) 

had a lower mean score than the PULL (2.00) did. However as mentioned in 

previous sections, it was not possible to test the effects prior usage of the UPEK 

sensor had on the results of the questionnaire. 
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Table 78 HBSI PSSUQ overall Tukey pairwise comparison results for form factor 
type. 

 

 

Table 79 HBSI PSSUQ overall descriptive statistics. 

Sensor N Mean Median StDev Min Max 
UPEK 84 1.7596 1.5132 0.8058 1 4.3158 
PUSH 84 2.486 2.237 1.093 1 5.263 
PULL 84 1.995 1.737 0.981 1 5.579 

4.4.1.2. HBSI PSSUQ Results for System Usefulness (SYSUSE) 

The second metric of the usability questionnaire was the system 

usefulness score. This score was computed by taking the average of 

questionnaire items one through eight. Again, the lower the score, the more 

satisfied users are with the system, with scores ranging from 1 to 7. The 

hypothesis evaluated the system usefulness score for the three swipe-based 

sensors. The results revealed that there was a statistically significant difference 

in system usefulness for the different form factor type, F(2,249) = 22.61, p = 

0.000 at an $ of 0.05, thus rejecting the null hypothesis. In order to test for 

differences in system usefulness for the three form factors, the Tukey test for 

pairwise comparisons was conducted, which revealed differences for all the 

sensors (Table 80). The descriptive statistics are listed in Table 81. Investigating 

the mean SYSUSE scores, we see the UPEK (1.55) was most useful, followed 

by the PULL (2.07), and PUSH (2.73), respectively. Again, the impact of 

  PUSH PULL 
UPEK p < 0.05 n.s. 
PUSH -  p < 0.05 
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participant’s prior usage of the UPEK sensor on this questionnaire could not be 

quantified. 

Table 80 HBSI PSSUQ SYSUSE Tukey pairwise comparison results for form 
factor type. 

 

 

Table 81 HBSI PSSUQ SYSUSE descriptive statistics. 

Sensor N Mean Median StDev Min Max 
UPEK 84 1.5527 1.125 0.8405 1 5.25 
PUSH 84 2.731 2.625 1.381 1 6.5 
PULL 84 2.066 1.75 1.13 1 6.375 

4.4.1.3. HBSI PSSUQ Results for Information Quality (INFOQUAL) 

The third metric of the usability questionnaire was the information quality 

score. This score was computed by taking the average of questionnaire items 

nine through fifteen. Again, the lower the score, the more satisfied users are with 

the system, with scores ranging from 1 to 7. The hypothesis evaluated the 

information quality of each form factor type. The results showed no statistically 

significant difference in information quality for the different form factor type, 

F(2,249) = 1.89, p = 0.153 at an $ of 0.05, therefore we fail to reject the null 

hypothesis. The descriptive statistics are listed in Table 81. While the statistical 

test reported no differences in information quality scores by form factor type, the 

PULL (1.77) had the lowest mean score, followed by the PUSH (1.90), and 

UPEK (2.03). Furthermore, while the PUSH and PULL received a better mean 

score than the UPEK, no statistical difference was found, which as mentioned in 

  PUSH PULL 
UPEK p < 0.05 p < 0.05 
PUSH  - p < 0.05  
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earlier sections, may have been due to participants prior experiences and biases 

with the UPEK sensor. 

Table 82 HBSI PSSUQ INFOQUAL descriptive statistics. 

Sensor N Mean Median StDev Min Max 
UPEK 84 2.037 1.857 0.95 1 4.857 
PUSH 84 1.9075 1.8571 0.7866 1 4 
PULL 84 1.7742 1.4286 0.8801 1 5.7143 

4.4.1.4. Interface quality (INTERQUAL) 

The last metric of the usability questionnaire was the interface quality 

score. This score was computed by taking the average of questionnaire items 

sixteen through eighteen. Again, the lower the score, the more satisfied users are 

with the system, with scores ranging from 1 to 7. The hypothesis evaluated the 

interface quality score for the three swipe-based sensors. The results revealed 

that there was a statistically significant difference in interface quality for the 

different form factor type, F(2,249) = 22.35, p = 0.000 at an $ of 0.05, thus 

rejecting the null hypothesis. In order to test for differences in interface quality for 

the three form factors, the Tukey test for pairwise comparisons was conducted, 

which revealed differences for all the sensors (Table 83). The descriptive 

statistics are listed in Table 84. Analyzing the mean INTERQUAL scores, the 

data reveals the UPEK (1.70) was most efficient, followed by the PULL (2.25), 

and PUSH (3.00), respectively. 
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Table 83 PSSUQ INTERQUAL Tukey pairwise comparison results for form factor 
type. 

 

 

Table 84 PSSUQ INTERQUAL descriptive statistics. 

Sensor N Mean Median StDev Min Max 
UPEK 84 1.699 1.333 0.974 1 6 
PUSH 84 2.992 2.667 1.564 1 7 
PULL 84 2.245 2 1.162 1 6 

4.4.1.5. User comments during the HBSI post-study questionnaire 

After completing the 19 item questionnaire, participants were given an 

opportunity to type their comments, feedback, or thoughts regarding the study 

and the sensors used. Appendix Y contains all user feedback and comments. 

The following comments in Table 85 provide some insight to what the 

participants stated. 

 

 

 

 

 

 

 

 

 

  PUSH PULL 
UPEK p < 0.05 p < 0.05 
PUSH -  p < 0.05 
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Table 85 Participant feedback excerpts from the HBSI post-study questionnaire.  
Type Comment 
General 

" I liked the ramp effect of the UPEK.  I think if the PULL sensor was angled I would 
like it much better because the channel combined with the angle would be more 
effective and comfortable.  The PUSH sensor seemed to work pretty well.  I don’t 
think an angle on it would be effective, but, again, the channel was very helpful. 

UPEK Favorable 
" I felt like the UPEK had a clearer image, I did not have as many problems scanning 

with it, than with the others (Push and Pull).  
" I liked how the UPEK sensor was curved. It made it easier to swipe your finger. The 

PULL sensor was my least favorite because it was not curved so it was harder to pull 
my finger across it. The PULL sensor was a little uncomfortable. I liked the PUSH 
sensor because it was easy to understand, and it was comfortable to use.  

" UPEK and PULL were very similar, though I preferred [preferred] the slight curvature 
and smooth feel of the UPEK. 
 
The PUSH sensor felt odd when pushing my finger over the sensor. 

UPEK Unfavorable 
" For the UPEK, it is a little confusing, I can not [cannot] remember whether to swipe 

the finger or put the finger on the sensor for a while. 
The PUSH sensor, it is a little uncomfortable [uncomfortable]. 
PULL sensor is best! 

" Upek : It had an attractive design and also was very comfortable to use. I guess the 
only issue was if it had a visual sign to tell us which direction to swipe (like in the 
PUSH & PULL). Once I knew the direction, it was very easy to use.PUSH: was bulky 
and it felt very odd to push my finger away from me.PULL: was bulky but at least 
more comfortable since I was pulling my finger towards me. 

" The visual cues of the upek were not very clear though I found it to be the most 
pleasant to use. 

PUSH/PULL Favorable 
" UPEK didn’t always register the swipes as well as the PUSH or PULL, PUSH always 

felt comfortable to use even though I thought the PULL would be the easiest to use 
" The Push/Pull sensors are nice because they help channel your finger over the 

scanner. The Push doesn’t function like I would immediately expect a fingerprint 
scanner to, but I liked it best in the end. 

" The arrows on the PUSH and PULL are helpful if someone weren’t shown a 
demonstration on how to use them before trying it. The UPEK doesn’t have that 
feature and it could be confusing if a user didn’t know to start with their finger on the 
blue dots.  

PUSH/PULL Unfavorable 
" Sometimes I have to think a while to distinguish between the push and pull sensor. 

For some reason, I think the colored dots made it confusing. Maybe having just the 
arrows would be enough. 

" Pushing was awkward to do. The arrows are really helpful. The UPEK had a natural 
feel when you pull upwards and back.  
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4.4.1.6. Hypothesis Testing Summary: HBSI user satisfaction questionnaire 

The hypotheses under test for the user satisfaction questionnaire were: 

The new form factor(s) will be significantly different in terms of the scores for 

overall satisfaction, SYSUSE, INFOQUAL, and INTERQUAL than the 

commercially available form factor. 

The overall user satisfaction results revealed no statistical difference 

between the UPEK and PULL, with the PUSH receiving the worst mean score. 

This was interesting to analyze as the UPEK and PULL are both “pull”-type 

sensors, which many of the participants had used prior to this study, compared to 

the PUSH sensor design, which none of the participants had experienced prior to 

this study. 

Regarding the system usefulness and interface quality metrics, both 

statistical tests showed a difference amongst the three swipe-based sensors, 

with the UPEK receiving the lowest (best) score, compared to the PUSH and 

PULL designed sensors. It is interesting to note that these components of the 

HBSI PSSUQ may have been influenced by participants’ prior experience with 

the UPEK sensor, as the questions dealt with comfort, pleasantness, likeability, 

and functionality. 

Lastly, the INFOQUAL results revealed that there was no statistical 

difference across the three swipe-based sensors (p = 0.153) at a significance 

level ($) of 0.05. However, the PULL and PUSH sensors received lower (better) 

scores than the UPEK. Table 86 summarized the results of the HBSI PSSUQ. 
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 Table 86 Summary results of the HBSI PSSUQ. 

Mean HBSI PSSUQ 
Scale UPEK PUSH PULL 

Result of 
Hypothesis Test 

Post Hoc 
Analysis 

Overall  1.76 2.49 2 Accept UPEK = PULL 

SYSUSE 1.55 2.73 2.07 Accept 

All pairwise 
differences 
significant 

INFOQUAL 2.03 1.91 1.77 Reject - 

INTERQUAL 1.7 3 2.25 Accept 

All pairwise 
differences 
significant 

 

In summary, this questionnaire provided a valuable component to further 

understand the human component in biometric systems. However, as stated 

earlier in the demographics section, a majority of the participants had previously 

used the UPEK sensor, possibly compromising the validity of this survey 

instrument due to the experimental design that recruited participants who 

previously used the UPEK swipe-based fingerprint sensor. For more discussion 

on this, please see the recommendations for future research section. 

4.4.2. Efficiency 

The next measure of usability is the measure of efficiency, or how long did 

it take participants to complete each data collection component on each sensor 

for the left and right index finger, which was measured in seconds. This metric for 

efficiency examined whether the design of the form factor allowed the user to 

interact with a particular sensor design more efficiently in terms of time to 

complete the task than another. The hypothesis under test was stated as: 
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The PUSH or PULL sensor will be significantly different in terms of the 

amount of time a user requires to complete the task than with the 

commercial UPEK or Large Area (LA) sensor.  

The Kruskal-Wallis (KW) test for equality in medians was used due to the model 

assumptions of ANOVA not being met, as shown in Appendix Z. In addition, each 

data collection component only had an N % 85 (due to FTEs), therefore the 

Central Limit Theorem did not hold for this analysis either. Thus, the non-

parametric tests were conducted for each data collection component and are 

now discussed. 

First, a visual analysis of the data was conducted to see where participants with 

lengthy task times occurred (potential outliers), which are shown in Appendix AA 

for each DCC. The statistical software used was Minitab® 15, which classified 

observations as outliers on the boxplots that were at least 1.5 times the 

interquartile range (Q3 – Q1). Using this methodology, tasks that took longer 

than approximately 40 seconds to complete for training, approximately 60 

seconds for enrollment, and approximately 50 seconds to complete each of the 

three matching visits were classified as extreme observations.  

Second, the Kruskal-Wallis test was performed for each mode and the 

results are shown below in Table 87. All p values were compared to the 

significance value ($) of 0.05, thus we reject the null hypothesis for each DCC, as 

the medians are not all the same.  
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Table 87 Results of the Kruskal-Wallis tests for task time. 

DCC H statistic and p value 
Training H(7) = 106.69, p = 0.000 
Enrollment H(7) = 74.82, p = 0.000 
Matching V1 H(7) = 82.65, p = 0.000  
Matching V2 H(7) = 117.27, p = 0.000 
Matching V3 H(7) = 118.15, p = 0.000 

 

However, the Kruskal-Wallis test does not illustrate where the differences 

in medians were, thus an investigation into the descriptive statistics is warranted, 

which are shown in Table 88. Since the hypothesis under test stated the PUSH 

or PULL would significantly reduce the task time compared to the UPEK and LA, 

those descriptive statistics were analyzed. First, task times and standard 

deviation values were expected to be inflated during the training and enrollment 

DCC, due this being participants’ first experience interacting with a “push”-based 

swipe motion. However, comparing the mean task time across the four sensors, 

there was a small delta for mean task time, but the standard deviation was 

inflated by 1.5 to 2 times.  

Analyzing the data over enrollment and the 3 matching visits the mean 

task times stay consistent across all four sensors. More interesting was the 

change in standard deviation values. First, the PUSH sensor had significant 

improvements in matching visit 3 compared to the earlier DCCs. Secondly, the 

standard deviation values for the UPEK and LA sensors varied over the course of 

the test, which was interesting to note as many of the participants had used 

those two devices prior to this study. Lastly, the PULL sensor revealed the 
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smallest delta in standard deviation values over the five tested data collection 

components, indicating the participants’ task time was most consistent. 

In summary, while conclusions from the hypothesis could not formally be 

made, the PUSH and PULL sensors both showed interesting results that warrant 

further investigation. 
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4.4.3. Learnability 

The second quantitative metric in the HBSI evaluation method (Figure 90) 

for usability is learnability. Learnability consisted of three measurements: 

completeness, or task completion; maximum user effort (MUE); and the number 

of assists. The next three sections discuss the three measurements of 

learnability by the five data collection components: training, enrollment, matching 

visit 1, 2, and 3. 

4.4.3.1. Task Completion 

Completeness was defined for this study as the sequence of events 

required to complete the overall task from for each finger/sensor/visit 

combination. Task completion had two different metrics in this study, one for 

training, and the other for enrollment and the three matching visits. 

4.4.3.1.1. Training Task Completion 

Task completion for training was defined for a participant when four 

images were successfully acquired for a particular finger and sensor 

combination. Task completion for training resulted in 6 individuals that could not 

provide 4 images for the following sensor and finger: PUSH LI (2), PULL LI (1), 

PUSH RI (2), and UPEK LI (1).  
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4.4.3.1.2. Task Completion for Enrollment and Matching 

Task completion for the remaining four data collection components: 

enrollment and matching visit 1, 2, and 3 were defined the same. Completion 

consisted of a participant successfully acquiring 10 images for a particular finger 

and sensor combination. Table 89 shows the participants by sensor, DCC, and 

finger that did not complete the task. Also, for the matching completion 

calculation, participants who produced an FTE were included as part of this 

metric, even though they did not interact with the sensors. 

Table 89 Number of participants who did not complete the task for enrollment 
and matching by sensor and finger. 

  UPEK PUSH PULL LA 
Data collection component LI RI LI RI LI RI LI RI 
Enrollment 0 1 4 2 0 0 0 0 
Matching V1 0 1 3 4 1 0 0 0 
Matching V2 2 2 4 2 2 1 0 0 
Matching V3 0 1 4 2 1 0 0 0 

 

4.4.3.1.3. Task Completion Rate Summary 

Examining all five data collection components for the task completion rate, 

the large area sensor had the highest task completion rate (100%) when all data 

collection components and fingers were combined, followed by the PULL (99.6%) 

and UPEK (99.1%). The worst performing in terms of task completion rate was 

the PUSH, which had a rate of 96.6%. Although the PUSH sensor had the worst 

task completion rate, this was the participants’ first encounter with a “push”-type 

interaction, compared to the “pull”-based interaction the UPEK and PULL 

sensors required. Results show a delta of only 3% across the sensor, which 
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shows potential for the PUSH sensor and warrants further investigation. Table 90 

shows the task completion rates for the four sensors across the five data 

collection components, as well as the total average for each sensor. 

Table 90 Task completion rates for the 4 sensors over the data collection 
components. 

  UPEK PUSH PULL LA 
Sensor LI RI LI RI LI RI LI RI 
Training 98.8% 100.0% 97.6% 97.6% 98.8% 100.0% 100.0% 100.0%
Enrollment 100.0% 98.8% 95.3% 97.6% 100.0% 100.0% 100.0% 100.0%
Match V1 100.0% 98.8% 96.5% 95.3% 98.8% 100.0% 100.0% 100.0%
Match V2 97.6% 97.6% 95.3% 97.6% 97.6% 98.8% 100.0% 100.0%
Match V3 100.0% 98.8% 95.3% 97.6% 98.8% 100.0% 100.0% 100.0%
Total (Avg) 99.28% 98.80% 96.00% 97.14% 98.80% 99.76% 100% 100% 

4.4.3.2. Maximum User Effort 

Maximum user effort, or MUE, is a metric that compares the proportion of 

presentations needed to enroll/match on a particular sensor to the maximum 

number of interaction presentations allowed for that particular segment of the 

test. This was reported by sensor/visit/finger combination. MUE had two different 

metrics in this study, one for training, and the other for enrollment and the three 

matching visits. 

4.4.3.2.1. Training MUE 

MUE for training was defined for a participant as the amount of effort 

needed to acquire the four images for a particular finger and sensor combination. 

A maximum of 15 presentations were allowed during training for each 

finger/sensor. The data for training MUE (Figure 113) shows the breakdown of 

participants who required more effort to complete the task as outliers. 
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Figure 113 Box plot of MUE for training by sensor and finger. 

4.4.3.2.2. MUE for Enrollment and Matching 

MUE for the remaining four DCCs: enrollment and matching visit 1, 2, and 

3 were defined the same. MUE was defined here as the amount of effort needed 

to acquire the 10 images for a particular finger and sensor combination. A 

maximum of 30 presentations were allowed during these four data collection 

components for each finger/sensor. Figure 114 shows the data for each of the 

four data collection components. Also, for the matching MUE calculation, 

participants who produced an FTE were included as part of this metric, even 

though they did not interact with the sensors. Participants who recorded FTEs or 

an attempt level FTA during Matching visit 1, 2, or 3 are listed as outliers at the 

zero point for the particular sensor/finger combination. 
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Figure 114 Box plot of MUE for enrollment and all three matching visits by sensor 

and finger. 

4.4.3.2.3. MUE Summary 

Examining all five data collection components for MUE, the large area 

sensor required the least amount of effort by the user to complete the task. While 

the PUSH sensor required the most user effort to complete the task on average 

during training and enrollment, the mean MUE for the PUSH improved during the 

remaining DCCs. This indicates participants that never had used a “push”-type 

interaction device decreased their level of effort to be comparable or better than 
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with the UPEK or PULL sensor. However, certain individuals had problems with 

the PUSH sensor, resulting in a larger spread of the data, or standard deviation, 

during most of the DCCs. Further research is warranted to determine if the 

problematic users with the PUSH sensor were due to the design of the sensor or 

the acquisition algorithm, which was outside the scope of this study. Table 91 

outlines the MUE average and standard deviations for all data collection 

components, sensors, and fingers. 

Table 91 MUE mean and standard deviation by data collection component, 
sensor, and finger. 

  Left Index Right Index Combined Average 
DCC Sensor Mean StDev Mean StDev Mean StDev 

Training UPEK 4.929 2.755 5.141 2.527 5.035 2.641 
 PUSH 5.529 4.067 4.565 1.467 5.047 2.767 
 PULL 5.047 2.828 4.847 1.967 4.947 2.3975 
 LA 4 0 4 0 4 0 

Enrollment UPEK 11.353 1.913 11.824 3.285 11.5885 2.599 
 PUSH 12.412 4.779 12.624 4.693 12.518 4.736 
 PULL 11.635 2.483 11.094 1.968 11.3645 2.2255 
 LA 10.047 0.213 10.012 0.108 10.0295 0.1605 

UPEK 11.212 1.915 11.282 2.13 11.247 2.0225 Matching 
V1 PUSH 11.047 3.477 11.906 4.07 11.4765 3.7735 

 PULL 11.494 2.644 10.824 1.597 11.159 2.1205 
 LA 10.024 0.152 10.047 0.213 10.0355 0.1825 

UPEK 11.165 2.878 11.376 3.128 11.2705 3.003 Matching 
V2 PUSH 11.176 3.774 11.788 4.115 11.482 3.9445 

 PULL 11.318 3.274 10.965 2.27 11.1415 2.772 
 LA 10.082 0.468 10.224 0.564 10.153 0.516 

UPEK 11.341 2.543 10.906 1.968 11.1235 2.2555 Matching 
V3 PUSH 11.094 3.657 11.365 3.162 11.2295 3.4095 

 PULL 11.565 3.227 10.976 1.669 11.2705 2.448 
 LA 10.047 0.263 10.129 0.371 10.088 0.317 

4.4.3.3. Assists 

The last measure of learnability measured the number of assists the 

author gave to the participants if they could not complete the task without error or 

recall of proper interaction technique. Assists were defined as attempts, which 
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the author provided an audio, visual, or physical cue to the participant. Assists 

were given if prompted by participant question (Appendix B), as well as if four 

consecutive erroneous interaction attempts took place.  

Throughout the almost 34,000 interactions with the four sensors 197 

assists were documented, which are outlined by sensor type, finger, and data 

collection component in Table 92. This table shows the training required the most 

assistance, followed by matching visit 2, enrollment, matching visit 3, and 

matching visit 1. One might find the data for matching visit 2 interesting in that it 

is the second highest, but recall that training, enrollment, and matching visit 1 all 

occurred in the first session and matching visit 2 occurred in the following week. 

Table 92 Number and percentage of assists by sensor, finger, and DCC. 
Sensor     

UPEK PUSH PULL Large Area 
Data 

Collection 
Component RI LI RI LI RI LI RI LI Total 

% of 
Assists

Training 10 9 28 7 9 9 2 2 76 38.6% 
Enrollment 12 1 13 4 7 2 0 0 39 19.8% 
Matching V1 1 0 5 0 3 1 0 0 10 5.1% 
Matching V2 15 0 12 8 7 9 0 0 51 25.9% 
Matching V3 7 2 4 0 1 4 3 0 21 10.7% 
Total 45 12 62 19 27 25 5 2    
Percentage 22.8% 6.1% 31.5% 9.6% 13.7% 12.7% 2.5% 1.0%     

 

Therefore examining the number of assists by the three visits or sessions, the 

number significantly decreases from 63.5% in visit 1, 25.9% in visit 2, and 10.7% 

in visit 3, indicating familiarity and habituation to the devices was occurring. Also, 

analyzing Table 92, it reveals that the PUSH required the most assistance, which 

may have been due to it requiring a different motion (habituation) than the other 

sensors and the experimental design. As mentioned in the previous sections, a 
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number of participants had previously used a “pull”-based sensor similar to the 

UPEK and PULL sensors used in this study. Thus, participants had prior 

experience with the devices and should have known how to interact with the 

UPEK and PULL devices. On the contrary, none of the participants had 

previously used a “push’-based swipe sensor prior to this study. Therefore even 

though the experimental design was meant to be pseudo-random, the design 

was not balanced in terms of sensor type, as it included two “pull”-based 

sensors, 1 “push”-based sensor, and 1 placement sensor, potentially biasing 

results towards the “pull”-based sensors. In addition to the familiarity of the “pull”-

based sensor over the “push”-based, note the right index values are higher than 

the left, which may indicate a habituation effect, as all participants started with 

their right hand, and on completion moved on to the task with the left hand. In the 

following paragraphs and tables, each assist type will be analyzed by sensor and 

finger.  

The first assist category “flatten hand / open hand” was given almost 

exclusively to participants interacting with the PUSH sensor (Table 93). This was 

most likely to it requiring a different motion than the UPEK and PULL sensors. 

The main observation during this assistance was that participants that had the 

hand in a fist with the index finger extended could not keep the index in contact 

with the sensor during a “push” motion, but could with a “pull” as they could “flick” 

the fingertip, which was an undesired motion as well.  
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Table 93 “Flatten hand / open hand” assist analysis. 

  UPEK PUSH PULL LA 
DCC RI LI RI LI RI LI RI LI 
Training 1 1 3 1 0 1 0 0 
Enrollment 1 0 2 1 0 0 0 0 
Matching Visit 1 0 0 0 0 0 0 0 0 
Matching Visit 2 0 0 7 0 0 1 0 0 
Matching Visit 3 0 0 2 0 0 0 0 0 
Total 2 1 14 2 0 2 0 0 

 

The second assist category is “Keep fingers straight (no curl/flick)”. This 

assist was given to participants who kept their finger either too bent or curled and 

could not keep consistent contact with the sensor, or when swiping “flicked” their 

fingertip instead of moving the entire finger. Table 94 shows that this assist was 

spread evenly over the three swipe-based sensors and occurred mainly in the 

training and enrollment DCCs. 

Table 94 “Keep fingers straight (no curl/flick)” assist analysis. 

  UPEK PUSH PULL LA 
DCC RI LI RI LI RI LI RI LI 
Training 2 3 1 1 1 1 0 0 
Enrollment 1 0 2 0 0 0 0 0 
Matching Visit 1 0 0 1 0 0 0 0 0 
Matching Visit 2 0 0 0 1 0 3 0 0 
Matching Visit 3 0 0 0 0 0 1 0 0 
Total 3 3 4 2 1 5 0 0 

 

The next analysis combines two similar assist categories, which were 

“How to use – direction/placement” and “alignment – start position”. The results 

are shown in Table 95. The results show that the UPEK and PUSH sensor 

required a higher number of assists than the PULL and LA. However, a 
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continued level of assistance was needed with the UPEK to remind participants 

where to place their finger and what direction the swipe was to be performed 

over the DCC, whereas the PUSH and PULL sensors mainly required assistance 

during visit 1 (training, enrollment, and matching v1). Also, remember that 

participants had not used the PUSH sensor before this study, but many had used 

the UPEK. In conclusion, this assist type was likely due to the design of the 

sensor, as the PUSH and PULL contained visual and tactile cues participants 

found helpful, whereas the data indicate the UPEK cues may not be helpful. 

Table 95 “How to use – direction/placement” and “alignment – start position” 
combined assist analysis. 

  UPEK PUSH PULL LA 
DCC RI LI RI LI RI LI RI LI 
Training 4 1 4 1 2 0 1 1 
Enrollment 3 0 3 1 0 0 0 0 
Matching Visit 1 0 0 2 0 0 0 0 0 
Matching Visit 2 6 0 0 1 0 0 0 0 
Matching Visit 3 3 0 0 0 0 0 3 0 
Total 16 1 9 3 2 0 4 1 

 

 “Press harder” is the next category and the results are shown in Table 96. 

The results show that this assistance type was evenly spread across the swipe 

sensors and DCC. The results indicate that the acquisition problems causing the 

assist from the author may have been an issue with the acquisition algorithm, 

rather than the design of the sensor. This claim requires further investigation and 

data. 
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Table 96 “Press harder” assist analysis. 

  UPEK PUSH PULL LA 
DCC RI LI RI LI RI LI RI LI 
Training 0 1 2 2 1 2 1 1 
Enrollment 4 0 1 0 1 1 0 0 
Matching Visit 1 0 0 1 0 0 1 0 0 
Matching Visit 2 2 0 1 2 1 4 0 0 
Matching Visit 3 1 1 0 0 0 1 0 0 
Total 7 2 5 4 3 9 1 1 

 

 The next assist type is “Slow down”, which revealed an interesting pattern 

across the DCCs for the three swipe sensors. Table 97 shows the tabulated 

results and shows a fair distribution of total assists. However, if we examine the 

table more closely, the majority of the assists for the PUSH occur in training and 

enrollment, whereas for the UPEK and PULL they continue over the matching 

DCCs. This is an interesting and may be due to the different interaction of 

“pushing” instead of “pulling”. 

Table 97 “Slow down” assist analysis. 

  UPEK PUSH PULL LA 
DCC RI LI RI LI RI LI RI LI 
Training 2 2 6 1 4 2 0 0 
Enrollment 1 1 3 1 5 1 0 0 
Matching Visit 1 1 0 1 0 3 0 0 0 
Matching Visit 2 7 0 2 2 6 1 0 0 
Matching Visit 3 3 1 2 0 1 0 0 0 
Total 14 4 14 4 19 4 0 0 
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Opposite to slowing down, was the assistance category “faster”, which 

was only six times throughout the study. The results are shown in Table 98 and 

reveal the instruction was only given in training or enrollment and was evenly 

spread across the 3 swipe sensors. 

Table 98 “Faster” assist analysis. 

  UPEK PUSH PULL LA 
DCC RI LI RI LI RI LI RI LI 
Training 0 1 1 0 0 1 0 0 
Enrollment 1 0 1 0 1 0 0 0 
Matching Visit 1 0 0 0 0 0 0 0 0 
Matching Visit 2 0 0 0 0 0 0 0 0 
Matching Visit 3 0 0 0 0 0 0 0 0 
Total 1 1 2 0 1 1 0 0 

 

 The last assistance type was “Physical Intervention”, which was only given 

after the verbal instructions were exhausted. “Physical Intervention” was defined 

as anytime a participant could not complete the task on his or her own and the 

author physically intervened and assisted the participant with the presentation to 

the sensor. The results of this category are shown in Table 99 and reveal a large 

number occurred during the training DCC with the PUSH sensor. Analyzing the 

remaining DCC for the PUSH, the number was minimal like the other swipe 

sensors. The large number during training was likely due to individuals not being 

used to the motion of the PUSH sensor, as it was different than the UPEK sensor 

many were accustomed to. 
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Table 99 “Physical Intervention” assist analysis. 

  UPEK PUSH PULL LA 
DCC RI LI RI LI RI LI RI LI 
Training 1 0 11 1 1 2 0 0 
Enrollment 1 0 1 1 0 0 0 0 
Matching Visit 1 0 0 0 0 0 0 0 0 
Matching Visit 2 0 0 2 2 0 0 0 0 
Matching Visit 3 0 0 0 0 0 2 0 0 
Total 2 0 14 4 1 4 0 0 

4.4.4. Effectiveness 

The measurement for effectiveness in this study was the number of errors 

participants performed while interacting with the four sensors in this study. For 

biometrics, and especially in this study, the number of errors is directly linked to 

the Failure to Acquire (FTA) measurement, which will be discussed as a 

measurement of biometric performance in the next section. 

4.5. Biometric Performance 

The last component of the HBSI evaluation method (Figure 90) is 

biometric performance. Technical biometric performance testing seeks to 

determine error and throughput rates, with the goal of understanding and 

predicting the real-world error and throughput performance of biometric systems 

(International Standards Organization, 2006a, p. vi). The biometric system 

performance component of the evaluation method consisted of multiple metrics, 

which included Failure to Acquire (FTA), Failure to Enroll (FTE), and Detection 

Error Tradeoff (DET) curves, which have been broken down by data collection 

component, sensor, and finger and are discussed in the following sections. 
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Figure 115 below provides example images from all four sensors tested in this 

evaluation. Participant 66 did not have many interaction issues or FTAs and 

provided images of consistent quality, whereas participant 005 had many 

interaction issues, FTAs, and when acquisition did succeed, poor image quality 

resulted. 

 
Figure 115 Example fingerprint images from the four sensors used in this study. 
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4.5.1. Failure to Acquire 

The FTA rate was defined in this study as the proportion of verification or 

identification attempts for which the system failed to capture or locate an image 

or signal of sufficient quality; which may have included attempts where extracted 

features were substandard. Table 100 outlines the classification scheme that was 

used to determine the FTA rates in the categories outlined in NISTIR 7378 

(2006) and modified for use in this research. The following six sections discuss 

the overall FTA rate, and the FTA rates that occurred in each of the five data 

collection components. The hypothesis that investigates the FTA stated: There is 

a significant difference in the Failure to Acquire (FTA) rate between the new form 

factor(s) and the commercially available form factor. 

Table 100 HBSI interaction and FTA attempt classification taxonomy used based 
on NISTIR 7378 (2006).  

   Acceptability 

Acceptable Conformant 
Interaction/presentation that was 
performed correctly and 
produced an acceptable 
fingerprint image. 

Unacceptable Conformant 
Traditional FTA. An 
Interaction/presentation that was 
performed, but was unacceptable to 
the system, did not produce a 
fingerprint image, and provided 
system feedback. 

C
on

fo
rm
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ce

 

Acceptable Non-Conformant 
False Failure to Present (FFTP). 
Interaction/presentation that was 
performed incorrectly but 
produced an acceptable 
fingerprint image.  

Unacceptable Non-Conformant 
Failure to Present (FTP). No 
presentation and system timeout or 
an interaction/attempt that was 
performed but was unrecognizable or 
not detected by the system. 
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4.5.1.1. Overall  

The study consisted of 85 participants that interacted with the four sensors 

33,394 times, of which 29,626 (88.72%) were acceptable conformant and 3,768 

(11.28%) were classified as acquisition failures. Table 101 provides a breakdown 

of the overall FTA and acceptable attempts by sensor and finger. In order to 

compare the results against the commercial UPEK sensor, the Marascuillo 

procedure for comparing multiple proportions was used. The Marascuillo 

procedure was deigned to compare the PUSH, PULL, and Large Area sensors to 

the UPEK sensor. Therefore, all analyses will be reported in this way.  

Table 101 Breakdown of acceptable attempts versus combined FTA attempts. 

Acceptable Conformant   FTA Attempts Combined 
LI RI  LI RI 

Sensor N % N %   N % N % 
UPEK 3725 87.92% 3714 87.24%  512 12.08% 543 12.76% 
PUSH 3606 83.11% 3653 80.22%  733 16.89% 901 19.78% 
PULL 3720 85.71% 3730 90.10%  620 14.29% 410 9.90% 
LA 3740 99.52% 3738 99.18%   18 0.48% 31 0.82% 
Total 14791 89.06% 14835 89.18%   1883 10.94% 1885 10.82% 
 

Table 102 revealed the overall results of the acceptable conformant 

attempts versus FTA attempts, which used a significance level (%) of 0.05. 0 

extends the overall analysis of the FTA attempts by the HBSI interaction 

classification taxonomy (Table 100), as well as breaks down the acceptable non-

conformant and unacceptable non-conformant by data collection component, 

sensor, and finger. Interpreting Table 102, the PUSH sensor was significantly 

worse than the UPEK sensor for both the right and left index fingers. The large 

area sensor was significantly better than the UPEK sensor for both fingers, which 
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was expected due to the sensor type being a placement sensor. Lastly, the PULL 

sensor performed significantly better than the UPEK sensor for the right index 

finger, but exhibited no statistical difference for the interactions with the left index 

finger.  

Table 102 Marascuillo procedure for comparing multiple proportions of 
Acceptable Conformant and FTA attempts. 

  Acceptable Conformant   FTA Attempts Combined 
Sensor LI RI   LI RI 
PUSH p < .05 p < .05  p < .05 p < .05 
PULL n. s. p < .05  n. s. p < .05 
LA p < .05 p < .05   p < .05 p < .05 

 

As discussed above, the unacceptable conformant category was an 

interaction/presentation that was performed, but was unacceptable to the system, 

did not produce a fingerprint image, and provided system feedback. This 

definition aligns well with the traditional FTA metric. In this study, the software 

provided three system feedback messages: “too fast”, “center and press harder”, 

and “captured and failed”. Before continuing with the FTA analysis, these three 

feedback messages will be discussed. 

 The results for “too fast” for the three swipe sensors and five DCCs are 

shown in Table 103 that reveal the “pull”-based sensors have a significantly 

larger issue with speed than the “push”-based sensor. The motion the PUSH 

sensor required for interacting with the sensor was the only difference as the 

software was the same, indicating the PUSH sensor design may be able to 

reduce acquisition errors. This will be interesting to investigate in future research. 
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Table 103 FTA system feedback analysis for “too fast”. 

  UPEK PUSH PULL 
DCC RI LI RI LI RI LI 
Training 14 19 8 2 24 20 
Enrollment 46 64 6 9 56 62 
Matching Visit 1 50 43 18 21 42 52 
Matching Visit 2 46 49 15 8 55 43 
Matching Visit 3 43 42 6 15 57 58 
Total 199 217 53 55 234 235 

 

 “Center & press harder” is the next system feedback the software 

provided. The results are shown in Table 104. As discussed in previous sections 

and shown in the fingerprint images, the acquisition algorithm was problematic 

with the PUSH sensor. The acquisition failures were due this sensor being a 

prototype device with the algorithm being modified by UPEK for in the research. 

Thus, the acquisition algorithm was not adjusted to receiving the signal the 

“push” motion produced, which can be seen with the inflated numbers the PUSH 

sensor produced. Further FTA analyses will be interesting to study in the future, 

especially with an acquisition algorithm that is tuned for a “push” motion. In 

addition, participants had issues with the UPEK and PULL sensors, with the 

UPEK producing 62 more FTAs than the PULL. In addition to the future work with 

the PUSH, it would be interesting to further understand why the algorithm is 

rejecting these presentations. 
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Table 104 FTA system feedback analysis for “center & press harder”. 

  UPEK PUSH PULL 
DCC RI LI RI LI RI LI 
Training 20 15 102 69 20 42 
Enrollment 63 20 145 153 17 29 
Matching Visit 1 33 25 111 58 19 31 
Matching Visit 2 63 20 97 81 22 28 
Matching Visit 3 25 33 67 58 14 33 
Total 204 113 522 419 92 163 

 

The last type of feedback the system provided was where the system captured 

the fingerprint image and displayed a failed message. The results of this FTA 

feedback type are shown in Table 105. Like the “center & press harder” the 

“capture and failed“ category is more of an algorithm issue than an interaction 

issue. Again, the algorithm was adjusted and expecting fingerprint images from a 

“pull” swipe, therefore negatively weighting the PUSH sensor. However, 

participants produced a similar number of FTAs with the PUSH sensor outside of 

the training data collection component. Again it will be interesting in future work 

to assess system feedback with the PUSH sensor with an algorithm that is 

adjusted to receive images from a “push”-based sensor. 

Table 105 FTA system feedback analysis for “captured and failed”. 

  UPEK PUSH PULL 
DCC RI LI RI LI RI LI 
Training 2 1 10 6 0 1 
Enrollment 3 2 3 3 1 5 
Matching Visit 1 1 0 4 0 0 3 
Matching Visit 2 1 1 3 1 1 3 
Matching Visit 3 0 5 1 1 0 2 
Total 7 9 21 11 2 14 
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The next 5 sections investigate the four categories discussed in the HBSI 

interaction and FTA taxonomy (Table 100) by data collection component. 

4.5.1.2. Training 

Table 106 provides a breakdown of the results for the training interactions. 

In order to compare the results against the commercial UPEK sensor, the 

Marascuillo procedure for comparing multiple proportions was used. Table 107 

shows the results of the procedure, which used a significance level (%) of 0.05. 

Interpreting the table, there were no differences between the UPEK and PULL, 

meaning statistically they performed similarly, whereas the PUSH performed 

worse, and the LA performed better than the UPEK for both right and left index 

fingers.  

Table 106 FTA breakdown for training interactions by sensor and finger.  

Acceptable Conformant  Unacceptable Conformant 
LI RI  LI RI 

Sensor N % N %  N % N % 
UPEK 340 83.33% 340 84.79%  35 8.58% 36 8.98% 
PUSH 330 73.01% 331 66.33%  78 17.26% 120 24.05% 
PULL 336 78.32% 340 82.52%  63 14.69% 45 10.92% 
LA 340 99.71% 338 97.69%  0 0.00% 0 0.00% 
          
 Acceptable Non-Conformant  Unacceptable Non-Conformant
 LI RI  LI RI 
Sensor N % N %  N % N % 
UPEK 0 0.00% 0 0.00%  33 8.09% 25 6.23% 
PUSH 0 0.00% 4 0.80%  44 9.73% 44 8.82% 
PULL 0 0.00% 2 0.49%  30 6.99% 25 6.07% 
LA 1 0.29% 2 0.58%  0 0.00% 6 1.73% 
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Table 107 Marascuillo procedure for comparing multiple proportions for the 
training interactions. 

  Acceptable Conformant  Unacceptable Conformant 
Sensor LI RI  LI RI 
PUSH p < .05 p < .05  p < .05 p < .05 
PULL n. s. n. s.  n. s. n. s. 
LA p < .05 p < .05  p < .05 p < .05 
      
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
Sensor LI RI  LI RI 
PUSH n. s. n. s.  n. s. n. s. 
PULL n. s. n. s.  n. s. n. s. 
LA n. s. n. s.  p < .05 p < .05 

4.5.1.3. Enrollment 

Table 108 provides a breakdown of the results for the enrollment 

interactions. In order to compare the results against the commercial UPEK 

sensor, the Marascuillo procedure for comparing multiple proportions was used. 

Table 109 shows the results of the procedure, which used a significance level (%) 

of 0.05. Interpreting the table, there were no differences between the UPEK and 

PULL for the left index finger, however the PULL sensor performed better for the 

right index. Like the training results, the PUSH performed worse, and the LA 

performed better than the UPEK for both right and left index fingers.  
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Table 108 FTA breakdown for enrollment interactions by sensor and finger. 

Acceptable Conformant  Unacceptable Conformant 
LI RI  LI RI 

Sensor N % N %  N % N % 
UPEK 850 88.08% 845 84.08%  86 8.91% 112 11.14% 
PUSH 827 78.39% 832 77.54%  165 15.64% 154 14.35% 
PULL 850 85.95% 850 90.14%  96 9.71% 74 7.85% 
LA 850 99.53% 850 99.88%  0 0.00% 0 0.00% 
          
 Acceptable Non-Conformant  Unacceptable Non-Conformant
 LI RI  LI RI 
Sensor N % N %  N % N % 
UPEK 0 0.00% 0 0.00%  29 3.01% 48 4.78% 
PUSH 0 0.00% 0 0.00%  63 5.97% 87 8.11% 
PULL 0 0.00% 0 0.00%  43 4.35% 19 2.01% 
LA 0 0.00% 0 0.00%  4 0.47% 1 0.12% 

Table 109 Marascuillo procedure for comparing multiple proportions for the 
enrollment interactions. 

  Acceptable Conformant  Unacceptable Conformant 
Sensor LI RI  LI RI 
PUSH p < .05 p < .05  p < .05 n. s. 
PULL n. s. p < .05  n. s. n. s. 
LA p < .05 p < .05  p < .05 p < .05 
      
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
Sensor LI RI  LI RI 
PUSH - -  p < .05 p < .05 
PULL - -  n. s. p < .05 
LA - -  p < .05 p < .05 

4.5.1.4. Matching Visit 1 

Table 110 provides a breakdown of the results for the matching visit 1 

interactions. In order to compare the results against the commercial UPEK 

sensor, the Marascuillo procedure for comparing multiple proportions was used. 

Table 111 shows the results of the procedure, which used a significance level (%) 
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of 0.05. Interpreting the table, there were no differences between both fingers of 

the UPEK and PULL, as well as the left index interactions on the PUSH. 

Investigating the results of the Marascuillo procedure further for the UPEK and 

PULL, a difference in p-values of 0.001 was the difference between detecting a 

statistical difference based on the critical value and significance level.  

Table 110 FTA breakdown for matching visit 1 interactions sensor and finger. 

Acceptable Conformant  Unacceptable Conformant 
LI RI  LI RI 

Sensor N % N %  N % N % 
UPEK 850 89.19% 850 88.82%  68 7.14% 80 8.36% 
PUSH 820 87.33% 829 81.76%  79 8.41% 133 13.12% 
PULL 849 86.90% 850 92.39%  86 8.80% 61 6.63% 
LA 850 99.77% 850 99.53%  0 0.00% 0 0.00% 
          
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
 LI RI  LI RI 
Sensor N % N %  N % N % 
UPEK 0 0.00% 0 0.00%  35 3.67% 27 2.82% 
PUSH 0 0.00% 2 0.20%  40 4.26% 50 4.93% 
PULL 0 0.00% 0 0.00%  42 4.30% 9 0.98% 
LA 1 0.12% 0 0.00%  1 0.12% 4 0.47% 

Table 111 Marascuillo procedure for comparing multiple proportions for the 
matching visit 1 interactions. 

  Acceptable Conformant  Unacceptable Conformant 
Sensor LI RI  LI RI 
PUSH n. s. p < .05  n. s. p < .05 
PULL n. s. n. s.  n. s. n. s. 
LA p < .05 p < .05  p < .05 p < .05 
      
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
Sensor LI RI  LI RI 
PUSH n. s. n. s.  n. s. n. s. 
PULL n. s. n. s.  n. s. n. s. 
LA n. s. n. s.  p < .05 p < .05 
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4.5.1.5. Matching Visit 2 

Table 112 provides a breakdown of the results for the matching visit 2 

interactions. In order to compare the results against the commercial UPEK 

sensor, the Marascuillo procedure for comparing multiple proportions was used. 

Table 113 shows the results of the procedure, which used a significance level (%) 

of 0.05. Interpreting the table, there were no differences between the UPEK, 

PUSH, and PULL, meaning statistically they performed similarly.  

Table 112 FTA breakdown for matching visit 2 interactions by sensor and finger. 

Acceptable Conformant  Unacceptable Conformant 
LI RI  LI RI 

Sensor N % N %  N % N % 
UPEK 836 88.19% 839 86.76%  70 7.38% 110 11.38% 
PUSH 810 85.26% 830 82.83%  90 9.47% 115 11.48% 
PULL 838 87.11% 840 90.13%  74 7.69% 78 8.37% 
LA 850 99.18% 850 99.18%  0 0.00% 0 0.00% 
          
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
 LI RI  LI RI 
Sensor N % N %  N % N % 
UPEK 0 0.00% 0 0.00%  42 4.43% 18 1.86% 
PUSH 1 0.11% 0 0.00%  49 5.16% 57 5.69% 
PULL 0 0.00% 0 0.00%  50 5.20% 14 1.50% 
LA 0 0.00% 0 0.00%  7 0.82% 7 0.82% 
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Table 113 Marascuillo procedure for comparing multiple proportions for the 
matching visit 2 interactions. 

  Acceptable Conformant  Unacceptable Conformant 
Sensor LI RI  LI RI 
PUSH n. s. n. s.  n. s. n. s. 
PULL n. s. n. s.  n. s. n. s. 
LA p < .05 p < .05  p < .05 p < .05 
           
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
Sensor LI RI  LI RI 
PUSH n. s. -  n. s. p < .05 
PULL n. s. -  n. s. n. s. 
LA n. s. -  p < .05 n. s. 

4.5.1.6. Matching Visit 3 

Table 114 provides a breakdown of the results for the matching visit 3 

interactions. In order to compare the results against the commercial UPEK 

sensor, the Marascuillo procedure for comparing multiple proportions was used. 

Table 115 shows the results of the procedure, which used a significance level (%) 

of 0.05. Interpreting the table, there were no differences between both fingers of 

the UPEK and PULL, as well as the left index interactions on the PUSH, meaning 

statistically they performed similarly. Table 114 provides additional details on the 

feedback the system delivered for the unacceptable conformant interaction 

attempts. 
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Table 114 FTA breakdown for matching visit 3 interactions by sensor and finger. 

Acceptable Conformant  Unacceptable Conformant 
LI RI  LI RI 

Sensor N % N %  N % N % 
UPEK 849 88.16% 840 90.61%  80 8.31% 68 7.34% 
PUSH 819 86.85% 831 86.02%  74 7.85% 74 7.66% 
PULL 847 86.16% 850 91.10%  93 9.46% 71 7.61% 
LA 850 99.53% 850 98.72%  0 0.00% 0 0.00% 
          
 Acceptable Non-Conformant  Unacceptable Non-Conformant
 LI RI  LI RI 
Sensor N % N %  N % N % 
UPEK 0 0.00% 0 0.00%  34 3.53% 19 2.05% 
PUSH 0 0.00% 0 0.00%  50 5.30% 61 6.31% 
PULL 0 0.00% 0 0.00%  43 4.37% 12 1.29% 
LA 0 0.00% 0 0.00%  4 0.47% 11 1.28% 

Table 115 Marascuillo procedure for comparing multiple proportions for the 
matching visit 3 interactions. 

  Acceptable Conformant  Unacceptable Conformant 
Sensor LI RI  LI RI 
PUSH n. s. p < .05  n. s. n. s. 
PULL n. s. n. s.  n. s. n. s. 
LA p < .05 p < .05  p < .05 p < .05 
           
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
Sensor LI RI  LI RI 
PUSH - -  n. s. p < .05 
PULL - -  n. s. n. s. 
LA - -  p < .05 n. s. 
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4.5.1.7. Hypothesis Testing Summary: Failure to Acquire 

The Failure to Acquire (FTA) was evaluated using the Chi-square (+2) test 

and Marascuillo procedure in order to compare the results of the different form 

factors with the hypothesis that there is a significant difference in the FTA rate of 

the new form factor(s) and the commercially available form factor. 

The results of the study revealed that there was a statistically significant 

difference between the large area and the UPEK sensor, indicating that swipe-

based sensors continue to need improvement. Table 116 shows a summary 

table of the FTA rates by sensor and finger. The results show that there is no 

difference between the PULL and UPEK with the left index finger, but the PULL 

sensor had a significantly lower FTA rate with the right index finger. While the 

PUSH sensor had a higher FTA rate than the UPEK sensor with both fingers, the 

FTA rate could have been due to the acquisition algorithm being tuned to “pull”-

based images and not solely the result of interaction issues. This will be of 

extreme interest to work with UPEK in developing a “push”-based acquisition 

algorithm to reappraise the performance and functionality of the PUSH sensor. 

Table 116 Summary FTA table with statistical results. 

Left Index Finger Right Index Finger 
Sensor Statistical test FTA % Statistical test FTA % 

UPEK - 12.08% - 12.76% 
PUSH p < .05 16.89% p < .05 19.78% 
PULL n. s. 14.29% p < .05 9.90% 
LA p < .05 0.48% p < .05 0.82% 
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4.5.2. Failure to Enroll 

The Failure to Enroll (FTE) rate was defined in this study as the proportion 

of the population that the biometric system fails to complete the enrollment 

process. The hypothesis that investigated the FTE rate was stated as: There is a 

significant difference in the Failure to Enroll (FTE) rate of the new form factor(s) 

and the commercially available form factor. The FTE in this study consisted of 

two measures: the acquisition level FTE and algorithm level extraction FTE. 

4.5.2.1. Acquisition level FTE 

The acquisition level FTE was defined as enrollment attempts that failed to 

produce 10 fingerprint images with the constraint of 30 consecutive 

presentations. Of the 85 participants, only 6 FTEs were registered in a possible 

680 enrollments (85 participants x 4 sensors x 2 fingers). The FTEs are classified 

by sensor and finger in Table 117. Since only 6 acquisition level FTEs occurred, 

the statistical test was unnecessary. It was interesting to note that the PULL 

sensor produced no acquisition level FTEs. 

Table 117 Acquisition level FTE by sensor and finger. 

Sensor Finger N Acquisition FTE rate 
UPEK RI 1 1.18% 
PUSH RI 2 2.35% 
PUSH LI 3 3.53% 
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4.5.2.2. Algorithm level extraction FTE 

An extraction level FTE was defined in this study as an image that failed to 

meet the criteria of the algorithm used for feature extraction. This rate was 

computed once all the fingerprint data were collected, during the offline analysis. 

Fingerprint feature extraction and matching was performed using the 

Neurotechnologija VeriFinger 5.0 algorithm. The enrollment parameters were set 

to default; a minimum of 10 minutiae had to be present, as well as the quality 

threshold exceeding the 39% value. Table 118 shows the overall extraction level 

FTE, which is further broken down by data collection component in Table 119. To 

test for differences in the extraction level FTE rates against the UPEK sensor, the 

Marascuillo procedure for comparing multiple proportions, using a significance 

level (%) of 0.05 was used. Overall, the PUSH and PULL sensors had higher 

extraction level FTE rates that were statistically significant, whereas there were 

no differences between the UPEK and LA (Table 120). The Marascuillo 

procedure was also used to investigate differences in the four sensors across the 

five data collection components, which only indicated differences in the PUSH 

training and matching visit 3 data collection components. 

Table 118 Overall extraction level FTE rate and number of images by sensor. 

Total Extraction FTE Rate 
Sensor N % 
UPEK 179 2.41% 
PUSH 295 4.09% 
PULL 248 3.32% 
LA 160 2.14% 
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Table 119 Extraction level FTE rate and number of images by sensor and data 
collection component. 

Data collection component 

Training Enrollment
Matching 

V1 
Matching 

V2 
Matching 

V3 
Sensor N % N % N % N % N % 
UPEK 10 1.47% 40 2.37% 50 2.96% 45 2.68% 34 2.01%
PUSH 35 5.15% 57 3.50% 80 4.89% 57 3.50% 66 4.03%
PULL 21 3.11% 60 3.51% 48 2.82% 57 3.40% 62 3.65%
LA 11 1.62% 24 1.41% 41 2.41% 52 3.06% 32 1.88%

Table 120 Marascuillo procedure for comparing multiple proportions for the 
extraction level FTE. 

Sensor compared to UPEK 
Data collection component PUSH PULL LA 

Training p < .05 n.s. n.s. 
Enrollment n.s. n.s. n.s. 
Matching V1 n.s. n.s. n.s. 
Matching V2 n.s. n.s. n.s. 
Matching V3 p < .05 n.s. n.s. 
OVERALL p < .05 p < .05 n.s. 

4.5.3. Matching Performance 

Fingerprint matching was performed offline using the Neurotechnologija 

VeriFinger 5.0 algorithm, which is a minutiae-based matcher. To analyze 

matching performance, Detection Error Trade-off (DET) curves were used, which 

plot the false acceptance rate versus the false rejection rate. According to Clark 

& Clark (2005), “DET curves usually utilize logarithmic scales on both axes”, 

which “tend to be more spread out than ROC curves, making it easier to 

distinguish individual algorithm’s results” (p. 8). Overlaid on each DET curve is 

the equal error rate (EER), which is the point where False Accept Rate (FAR) 

and False Reject Rate (FRR) intersect, making it easier to compare the results 
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for each sensor and finger. The lower the EER, the better the performance. DET 

curves were created for each sensor and finger dataset in each of the five data 

collection components. 

 For this document, DET curves for each data collection component, 

sensor, and finger were created, which can be found in Appendix CC. From 

these DETs Table 121 was populated, which shows the reported FRR at the 

operational point of 0.1 FAR, which was chosen arbitrarily for comparison 

purposes. In addition to the DETs by data collection component, Appendix DD 

contains the DETs by sensor, showing how performance changed over the DCCs 

by sensor. 

Table 121 Reported FRR at 0.1% FAR by sensor, index finger, and data 
collection component. 

  Left Index FRR at 0.1% FAR 
Sensor Training Enrollment Match V1 Match V2 Match V3 Mean FRR 
UPEK 0.00% 0.10% 0.35% 0.60% 0.50% 0.31% 
PUSH 0.20% 1.10% 0.80% 0.80% 0.60% 0.70% 
PULL 0.20% 0.20% 0.35% 0.10% 1.20% 0.41% 

LA 0.20% 0.10% 0.40% 0.35% 0.50% 0.31% 
       
  Right Index FRR at 0.1% FAR 

Sensor Training Enrollment Match V1 Match V2 Match V3 Mean FRR 
UPEK 0.00% 0.15% 0.10% 0.45% 0.10% 0.16% 
PUSH 2.00% 1.50% 1.00% 0.60% 1.20% 1.26% 
PULL 0.20% 0.00% 0.50% 0.60% 0.21% 0.30% 

LA 0.80% 0.30% 0.30% 0.35% 0.10% 0.37% 
 

Analyzing the table, the reported FRR did not vary significantly over the course of 

the study and did not surpass 2% for any of the sensors. Overall, the average 

FRR was 0.52% at 0.1% FAR for all sensors, fingers, and DCCs. Examining the 
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data by sensor, the PUSH performed the worst for both fingers, which as 

discussed in earlier sections, was likely due to the prototype device and 

acquisition algorithm being adjusted for “pull”-based fingerprint images. 

Moreover, the average FRR for the PUSH was less than 1.3% for both fingers at 

0.1% FAR. The best performing sensor in this study was the UPEK sensor for 

both fingers, although the LA left index finger tied at 0.31% FRR. It was 

interesting to observe the LA had slightly lower performance numbers than the 

swipe sensors, although recall the AIMQ scores were lower for the large area, 

which image quality is correlated with matching performance. Yet, both fingers 

had a FRR that was less than 0.37%. Lastly, the PULL sensor performed 

similarly to the UPEK and LA sensors, with left and right index finger FRRs of 

0.41% and 0.30%, respectively.  

4.6. Summary HBSI Evaluation Method Results 

The HBSI evaluation method (Figure 48) outlined six areas for evaluating 

the four fingerprint form factors, which statistical methods were outlined in Table 

13. The following 7 tables present the results from the study according to the 

HBSI evaluation method metrics. The summary reports the following results: 

1. Table 122 Statistical test results for the HBSI evaluation method metrics 

for ergonomics / image quality. 

2. Table 123 Test results for the HBSI evaluation method metrics for usability 

results for learnability. 

3. Efficiency can be found in Table 88. 
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4. Table 124 Statistical significance summary results for the HBSI evaluation 

method metrics for effectiveness/ overall FTA. 

5. Table 125 Statistical significance results for the HBSI evaluation method 

metrics for effectiveness/FTA by HBSI classification taxonomy. 

6. Table 126 Results of the HBSI evaluation method metrics for biometric 

performance: Acquisition level FTE. 

7. Table 127 Results of the HBSI evaluation method metrics for biometric 

performance: Extraction level FTE. 

8. Table 128 Results of the HBSI evaluation method metrics for biometric 

performance: Matching performance.
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Table 122 Statistical test results for the HBSI evaluation method metrics for 
ergonomics / image quality. 

  
p-value 

Post Hoc 
Analysis Result  

Sensor 
Hypothesis 

HBSI Evaluation 
Method Metrics 

for: 
 

Ergonomics / 
Image Quality 

Data Collection 
Component 

(DCC) Finger Sensor
Finger*
Sensor 

Tukey Pairwise 
Comparison Test ($ = 0.05)

Training 0.000 0.000 0.727 UPEK = PULL Accept Aware Image 
Quality (AIMQ) Enrollment 0.000 0.000 0.751 UPEK = PULL Accept 

 

Matching V1 0.000 0.000 0.002 All pairwise 
differences 
significant 

Accept 

 Matching V2 0.000 0.000 0.051 UPEK = PULL Accept 

  

Matching V3 0.000 0.000 0.068 All pairwise 
differences 
significant 

Accept 

Training 0.003 0.000 0.876 UPEK = PULL Accept Number of 
Detected Minutiae Enrollment 0.000 0.000 0.695 UPEK = PULL Accept 

 

Matching V1 0.000 0.000 0.016 All pairwise 
differences 
significant 

Accept 

 Accept 

 

Matching V2 0.003 0.000 0.055 All pairwise 
differences 
significant 

 

  Matching V3 0.003 0.000 0.042 UPEK = PULL Accept 
Image Size / Area Training 0.344 0.000 0.349 UPEK = PULL Accept 
 Enrollment 0.991 0.000 0.000 UPEK = PULL Accept 
 Matching V1 0.83 0.000 0.000 UPEK = PULL Accept 
 Accept 

 

Matching V2 0.167 0.000 0.002 All pairwise 
differences 
significant 

 

 

 Accept 

  

Matching V3 0.083 0.000 0.000 All pairwise 
differences 
significant 

 

Image Contrast Accept 

 

Training 0.001 0.000 0.562 All pairwise 
differences 
significant 

 

 Accept 

 

Enrollment 0.000 0.000 0.163 All pairwise 
differences 
significant 

 

 Accept 
 

Matching V1 0.035 0.000 0.689 UPEK = PULL 
 

 Accept 
 

Matching V2 0.001 0.000 0.561 UPEK = PULL 
 

 Accept 
  

Matching V3 0.895 0.000 0.289 UPEK = PULL 
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Table 123 Test results for the HBSI evaluation method metrics for usability 
results for learnability. 

HBSI Evaluation 
Method Metric for: 

 
Learnability Sensor Left Index Right Index 

Overall 
Rate, 

Average, 
(StDev) 

Task Completion UPEK 99.28% 98.80% 99.10% 
 PUSH 96.00% 97.14% 96.60% 
 PULL 98.80% 99.76% 99.30% 
  LA 100.00% 100.00% 100% 

UPEK 
11.26 
(2.31) 

11.35 
(2.63) 11.30 (2.47) 

PUSH 
11.43 
(3.92) 

11.92 
(4.01) 11.67 (3.95) 

Maximum User 
Effort* 

PULL 
11.50 
(2.91) 

10.96 
(1.88) 11.23 (2.39) 

  
LA 

10.05 
(0.27) 

10.10 
(0.31) 10.07 (0.29) 

Assists UPEK 6.10% 22.80% 28.90% 
 PUSH 9.60% 31.50% 41.10% 
 PULL 12.70% 13.70% 26.40% 
  LA 1.00% 2.50% 3.50% 
* Only includes mean of Enrollment, Matching Visit 1, 2, and 3.  

 

Table 124 Statistical significance summary results for the HBSI evaluation 
method metrics for effectiveness/ overall FTA. 

Left Index Finger Right Index Finger HBSI Evaluation Method 
Metric for: 

Effectiveness/ Biometric 
Performance Sensor Statistical test FTA % Statistical test FTA % 

UPEK - 12.08% - 12.76%
PUSH Yes 16.89% Yes 19.78%
PULL No 14.29% Yes 9.90% 

Overall FTA 

LA Yes 0.48% Yes 0.82% 
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Table 125 Statistical significance results for the HBSI evaluation method metrics 
for effectiveness/FTA by HBSI classification taxonomy. 

    Marascuillo Statistical Test 
  PUSH PULL  LA 

  
HBSI Evaluation 
Method Metric 

for: 
Effectiveness/ 

Biometric 
Performance 

Data collection 
component Class LI RI LI RI LI RI 
Training AC Yes Yes No No Yes Yes
 UC Yes Yes No No Yes Yes
 ANC No No No No No No 
  UNC No No No No Yes Yes
Enrollment AC Yes Yes No Yes Yes Yes
 UC Yes No No No Yes Yes
 ANC - - - - - - 
  UNC Yes Yes No Yes Yes Yes
Matching V1 AC No Yes No No Yes Yes
 UC No Yes No No Yes Yes
 ANC No No No No No No 
  UNC No No No No Yes Yes
Matching V2 AC No No No No Yes Yes
 UC No No No No Yes Yes
 ANC No - No - No - 
  UNC No Yes No No Yes No 
Matching V3 AC No Yes No No Yes Yes
 UC No No No No Yes Yes
 ANC - - - - - - 

FTA 

 UNC No Yes No No Yes No 
AC = Acceptable Conformant, UC = Unacceptable Conformant, 
ANC = Acceptable Non-Conformant, UNC = Unacceptable Non-Conformant 

Table 126 Results of the HBSI evaluation method metrics for biometric 
performance: Acquisition level FTE. 
HBSI 

Evaluation 
Method 

Metric for: 
 

Biometric 
Performance Sensor Finger N FTE 

UPEK RI 1 1.18% 
PUSH RI 2 2.35% 

Acquisition 
FTE 

PUSH LI 3 3.53% 
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Table 127 Results of the HBSI evaluation method metrics for biometric 
performance: Extraction level FTE. 

  UPEK PUSH PULL LA HBSI 
Evaluation 

Method 
Metric for: 

 
Biometric 

Performanc
e   

Test 
Statistic FTE 

Test 
Statistic FTE 

Test 
Statistic FTE 

Test 
Statistic FTE 

Training - 1.47% Yes 5.15% No 3.11% No 1.62%
Enrollmen
t - 2.37% No 3.50% No 3.51% No 1.41%
Matching 
V1 - 2.96% No 4.89% No 2.82% No 2.41%
Matching 
V2 - 2.68% No 3.50% No 3.40% No 3.06%

Extraction  
FTE 

 

Matching 
V3 - 2.01% Yes 4.03% No 3.65% No 1.88%

Table 128 Results of the HBSI evaluation method metrics for biometric 
performance: Matching performance. 

  Left Index FRR at 0.1% FAR 

HBSI 
Evaluation 

Method Metric 
for: 

 
Biometric 

Performance Sensor Training Enrollment
Matching 

V1 
Matching 

V2 
Matching 

V3 
Mean 
FRR 

UPEK 0.00% 0.10% 0.35% 0.60% 0.50% 0.31% Matching 
Performance PUSH 0.20% 1.10% 0.80% 0.80% 0.60% 0.70% 

 PULL 0.20% 0.20% 0.35% 0.10% 1.20% 0.41% 
 LA 0.20% 0.10% 0.40% 0.35% 0.50% 0.31% 
        
   Right Index FRR at 0.1% FAR 

 Sensor Training Enrollment
Matching 

V1 
Matching 

V2 
Matching 

V3 
Mean 
FRR 

 UPEK 0.00% 0.15% 0.10% 0.45% 0.10% 0.16% 
 PUSH 2.00% 1.50% 1.00% 0.60% 1.20% 1.26% 
 PULL 0.20% 0.00% 0.50% 0.60% 0.21% 0.30% 
  LA 0.80% 0.30% 0.30% 0.35% 0.10% 0.37% 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

 This research confronted two sizeable topics in biometrics that undermine 

the continued use and adoption of biometric technologies. This section  will first 

describe the two areas investigated, then will discuss the key findings. 

 The first topic this research examined was if traditional testing and 

performance evaluation metrics such as FTA, FTE, FAR, and FRR used in the 

three standardized evaluation methods (technology, scenario, and operational) 

were sufficient to fully test and understand biometric systems, or determine if 

important data were not being collected. To do this the Human-Biometric Sensor 

Interaction conceptual model (Figure 116) and evaluation method (Figure 117) 

were developed. 
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Figure 116 The Human-Biometric Sensor Interaction (HBSI) conceptual model 

(Elliott, Kukula, & Modi, 2007; Kukula, 2007; Kukula, Elliott, & Duffy, 2007). 

 
Figure 117 The HBSI evaluation method (Kukula, 2007; Kukula, Elliott, & Duffy, 

2007).
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The second topic investigated in this research used the HBSI evaluation 

method to assess swipe-based fingerprint sensors, which previous research by 

the author revealed acquisition and interaction inconsistencies that warranted 

further investigation (Kukula & Elliott, 2006; Kukula, Elliott, Wolleschensky, 

Parsons, & Whitaker, 2007). Therefore, to address this topic, data were collected 

from interviews, ergonomic literature was referenced, and two swipe-based 

fingerprint form factors were created and named the PUSH and PULL, originating 

from the motion required for interaction. The two form factors were then 

subjected to a comparative evaluation against a commercial swipe-based sensor. 

 Beginning with traditional biometric testing and reporting analyses, the 

results from this research revealed the matching performance reported for the 

UPEK, PUSH, PULL, and large area sensors was relatively acceptable at the 

0.1% FAR operational point. However, as the results of this research revealed, 

significant issues remain, particularly with the presentation and acquisition of the 

biometric characteristics to the sensor. Prior to this research, the FTA would only 

have been reported, which was 11.28% overall. However, through the FTA 

attempt classification taxonomy, two new metrics previously unaccounted for in 

the three standardized testing and performance evaluation methods, accounted 

for about 32% of the traditional FTA rate. The two new metrics developed out of 

the measures of effectiveness and biometric performance were the Failure to 

Present (FTP) and the False Failure to Present (FFTP) rates.  

 The FTP consisted of 1,187 of the 3,768 FTA presentations, which 

accounted for 31.5% of the overall FTA rate. The FTP rate should be of extreme 
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importance to correct and understand as biometric technologies become more 

pervasive and competing technologies develop. If for example, the FTP rate is 

not addressed, users may look to other emerging technologies. This illuminates a 

conundrum; users cannot successfully interact with a biometric device, yet 

algorithm developers believe there are few problems or issues with their device 

or algorithm, as biometric testing and evaluations following the technology, 

scenario, and operational testing standards have reported systems receiving 

acceptable performance rates. 

 In addition to the FTP, the False Failure to Present (FFTP) metric was 

also hidden within the traditional FTA rate. While the FFTP rate was only 0.35%, 

it is of interest to the biometric community, as it may help explain abnormal 

behaviors in matching rates or ROC and DET curves.  

 Removing the FTP and FFTP, the number of traditional FTA presentations 

was 2,568, which consisted of 68.15% of the original overall FTA rate of 11.28%, 

which is still significantly high. The HBSI evaluation method can further 

investigate the FTA and potentially understand these issues even more. This is 

possible because of the explanatory power of the data collection and analyses 

protocols, as the biometric system feedback of the FTA presentation was 

captured in streaming video along with video footage of the users interacting with 

the sensors that caused the acquisition failure. This linkage could enable 

algorithm developers and researchers the ability to re-examine the data to see if 

the FTA is in fact an algorithm issue, or an interaction issue that can be solved by 
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continued training, modifications to the design of the form factor, or some further 

adjustment. 

 The assessment of the HBSI evaluation method metrics for ergonomics 

and image quality revealed that the four metrics used: image quality, number of 

detected minutiae, fingerprint image area, and fingerprint image contrast 

provided additional explanatory power than previous biometric testing and 

evaluations had reported. Previous research used only image quality and number 

of detected minutiae metrics, whereas this research wanted to further understand 

how users interact with the sensors.  

 Examining the additional metrics of fingerprint image area and contrast for 

the swipe sensors created in this study revealed that the PULL sensor design 

allowed for images of a larger area to be acquired once individuals became 

acclimated and habituated to the device (matching visits 2 and 3). Furthermore, 

the PUSH sensor design allowed users to interact with the sensor to provide the 

most consistent images in terms of variability of gray levels (image contrast) for 

all visits in the study, outperforming both “pull”-based sensors. This is an 

extremely interesting finding given the challenge found during this study of the 

acquisition algorithm being tuned for images from “pull”-based sensors. The fact 

the PUSH sensor provided images of the most consistent image contrast 

provides merit to future work with “push”-type sensors, especially with an 

acquisition algorithm that is adjusted for acquiring images from a “push” type 

interaction.  
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 One can further see the acquisition algorithm issue through an 

investigation of the results for Aware Image Quality and the number of detected 

minutiae. Both metrics revealed that the PUSH sensor captured the worst quality 

images and least number of minutiae compared to the UPEK and PULL sensors. 

With regards to the PULL design, it captured images of relatively similar quality, 

reported no statistically significant differences in some DCCs, and slightly lower 

mean results for both quality and minutiae in others. 

 The usability component of the HBSI evaluation method also provided 

extremely important data for the biometric testing and evaluation community. 

First, it provided metrics for efficiency in terms of task time, which was the time 

for the participant to complete the defined number of presentations to the sensor. 

With regards to the comparative evaluation, this metric revealed that as 

participants became more familiar with the PUSH sensor, individuals became 

more efficient as task times varied widely. Specifically, the standard deviation for 

the PUSH task time reduced 50% between matching visit 1 and matching visit 3. 

The task time data provided one of the first biometric evaluations that reported 

the human-sensor interaction task time as opposed to a biometric sub-system 

generated timing metric. Therefore, the efficiency metric may lead to a better 

understanding of acclimation and habituation with biometric devices, although 

further research is needed to validate this claim. This research would provide the 

practitioner extremely valuable information regarding throughput times.  
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 Like the measure for efficiency, the metrics for learnability: task 

completion, assistance, and maximum user effort all provided useful data 

regarding how users learn to use biometric systems over time. 

 The number of assists metric was useful in diagnosing the interaction 

problems participants had, as well as potential issues in the design of the 

sensors that could be solved if iterative testing was chosen. The results from the 

comparative evaluation revealed that the PUSH sensor required the most 

assistance, followed by the UPEK, PULL, and Large Area sensors. The most 

surprising results from this research was the level of assistance the UPEK 

required, considering a large number of participants had used the sensor prior to 

this study.  

 The task completion and maximum user effort (MUE) metrics were useful 

in understanding how much effort it too individuals to complete the defined task 

in this study, and if they were able to complete it in general. Therefore, the task 

completion rate and MUE should be reported as a separate metric, as they have 

direct influence on training, throughput, and user acceptance. 

 In addition to the quantitative metrics of usability, the user satisfaction 

questionnaire provided a valuable source of information to further understand the 

HBSI. However, caution must be used when introducing survey instruments with 

populations that have previous exposure with the biometric devices being 

evaluated, as these participants could compromise the validity of the tool. Taking 

the demographics and prior usage of the UPEK sensor into account, the HBSI 

PSSUQ questionnaire provided data regarding system usefulness, information 



 

 

359

quality, and interface quality, as well as the overall satisfaction with each of the 

swipe-based sensors under test, which is the first evaluation of its kind with 

biometrics. 

In summary, this document proposed a new biometric testing and 

evaluation method that focused on the human interaction with biometric sensors. 

Additionally, the document discussed the design and comparative evaluation of 

the PUSH and PULL sensors, created by the author, to the commercial swipe-

based sensor. The goal of introducing the HBSI evaluation method was to 

illuminate problems and interaction issues that traditional biometric technology 

assessments have previously overlooked in order to assist in the development of 

improved biometric systems. After careful analysis of the data collected using the 

HBSI evaluation method proposed in this document, the author is convinced the 

Human-Biometric Sensor Interaction Evaluation Method provides useful 

information the biometrics community is in search of to continue improving 

biometric systems as a whole. With regards to the two sensors created, the 

visual and tactile cues of the PULL sensor showed improvements in a number of 

the HBSI evaluation metrics. Additionally, the PUSH sensor should be further 

investigated, as the data collected in this research reported improvements in key 

areas of the HBSI. 

5.2. Recommendations 

 Throughout the scope of work in the Design and Evaluation of the Human-

Biometric Sensor Interaction Method, future research possibilities emerged from 
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the literature and from the results of this study. The following recommendations 

for future work in the area of the HBSI are discussed in terms of scope: short 

term, medium term, and long term. 

5.2.1. Short Term 

1. Validation and revisions to the HBSI evaluation method. First and 

foremost, the HBSI evaluation method needs to be revised based upon 

the results of this study. First, the three quantitative usability silos: 

efficiency, effectiveness, and learnability should be grouped side by side 

with the appropriate metrics reported below each silo. Second, the FTA 

metric under biometric performance should be realigned under usability, 

specifically the effectiveness silo. This takes into account the HBSI 

interaction and FTA attempt classification and the two new metrics; FTP 

and FFTP. Lastly, the commercial image quality metric should be 

relocated to a new area as the algorithm is a “black box” and limited 

information is known as to what components of quality it is measuring. 

2. Examine the correlation of the image quality metrics proposed in the HBSI 

evaluation method with matching performance; specifically fingerprint 

image area and fingerprint image contrast. 

3. Work with UPEK, Inc on the acquisition algorithm for the “push”-based 

swipe device in order to be able to better understand the potential of using 

a “push” versus “pull” swipe fingerprint sensor using algorithms that are 

tuned for the appropriate interaction type. 
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4. Define Failure to Present (FTP) and False Failure to Present (FFTP) to the 

biometrics community. The results of this study based on the HBSI FTA 

analysis and the FTA attempt classification taxonomy produced two 

metrics that provide valuable information to the biometrics community in 

terms of a more formal method to evaluate the usability of biometric 

systems. This may include a submission to INCITS M1 and/or ISO/IEC 

JTC1 SC37 Testing and Reporting technical experts, as well as 

Vocabulary experts. 

5.2.2. Medium Term 

1. Replication of this study using the “push” and “pull” based swipe sensors 

with a more robust acquisition algorithm that is adjusted for the “push”-

based sensor. 

2. Perform a comparative evaluation of “pull” and “push” –based swipe 

sensors embedded in portable devices, such as laptops, PDAs, or cell 

phones to broaden the scope to devices that are not stand alone USB 

fingerprint sensors. 

3. Replication of NIST Research. While many of the research questions 

discussed in the various NISTIR documents are valid and important to the 

biometrics community, the conclusion validity for the studies may have 

been violated. Therefore, once the HBSI evaluation method has been 

revised and updated, an active agenda is needed to replicate each of the 

NIST studies. 
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4. As discussed in the User Satisfaction HBSI Post Study Usability 

Questionnaire results, prior usage of the sensors used in the test may 

have biased the results of the survey instrument. Therefore, it would be 

interesting to study biometric performance and usability with a two-group 

design: participants who previously used the biometric devices and 

participants who have never used the biometric devices. This would 

enable the results to be analyzed by experience with the devices and 

remove the threat to conclusion validity. 

5. Observations by the author made during the usability questionnaire raise 

the issue of what do participants include in their classification of “usability”. 

A study examining biometric usability should be performed to determine if 

it is based on experience with a sensor, based on visual aesthetics of a 

biometric sensor, or in the case of this research how the actual collected 

fingerprints appear to the participants. In addition, do users prefer to see 

an “output” such as a fingerprint image, or do they just want to see the 

binary result: accept or reject? 

6. A better understanding of task time, usability and the impact they have on 

habituation is needed. It would be interesting to collect a sample 

population of individuals who have never used the biometric sensor under 

test and have them perform a think aloud or cognitive walkthrough session 

to better understand how individuals who have never used such devices 

interact with the sensors and understand what is going through their mind 
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during such interactions with the device. This will impact the design of 

sensors and training protocols.  

7. Investigate other biometric modalities with the HBSI evaluation method. 

Once the HBSI method is revised and validated, the next question is – 

how generalizable is the HBSI evaluation method for other biometric 

modalities? Likely candidates include other biometric technologies that 

require physical contact with a sensor, such as vein or hand. However this 

maybe dictated by the industry, grants, or recommendations from the 

ongoing research. 

5.2.3. Long Term 

1. Expand the HBSI research area to Psychology. Cognitive ergonomics and 

psychology are completely different fields and requires a deep 

understanding of the literature as well as background in the area. 

Therefore, interdisciplinary researchers from Industrial Engineering and 

Psychology will be sought to continue investigating the HBSI from the 

cognitive perspective to see if further improvements can be made to 

biometric systems. 

2. Standardize the HBSI Evaluation Method. If after the program of work 

outlined in the short and medium term recommendations warrant it, a 

testing standard should be proposed to the biometrics community through 

the INCITS M1 Biometrics group. 
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Appendix A. HBSI Post-Study Usability Questionnaire and Instructions 

HBSI post study usability 
questionnaire adapted from Lewis 

(1993) 
Original items from the PSSUQ 

(Lewis, 1993) 
1. Overall, I am satisfied with how 
easy it is to use the _____ sensor. 

1. Overall, I am satisfied with how 
easy it is to use this system. 

2. It was simple to use the ____ 
sensor. 2. It was simple to use this system. 

3. I could effectively complete the task 
using the ____ sensor. 

3. I could effectively complete the 
tasks and scenarios using this system.

4. I was able to complete the task 
quickly using the ____ sensor. 

4. I was able to complete the tasks 
and scenarios quickly using this 
system. 

5. I was able to efficiently complete 
the task using the ____ sensor. 

5. I was able to efficiently complete 
the tasks and scenarios using this 
system. 

6. I felt comfortable using the ____ 
sensor. 6. I felt comfortable using this system. 
7. It was easy to learn to use the ____ 
sensor. 

7. It was easy to learn to use this 
system. 

8. I believe I could become productive 
quickly using the ____ sensor. 

8. I believe I could become productive 
quickly using this system. 

Note: Cues include visual or tactile 
reminders, prompts, or indicators that 
help you interact with a system or 
device. 
 
9. The ____ sensor clearly provided 
cues to remind me how to use it. 

9. The system gave error messages 
that clearly told me how to fix 
problems. 

10. Whenever I performed a swipe 
with my finger that did not capture 
using the ____ sensor, I could recover 
easily and quickly. 

10. Whenever I made a mistake using 
the system, I could recover easily and 
quickly. 

11. The ____ sensor design provided 
cues that were clear. 

11. The information (such as on-line 
help, on-screen messages and other 
documentation) provided with this 
system was clear. 

12. It was easy to find where I needed 
to place my finger on the ______ 
sensor. 

12. It was easy to find the information 
I needed. 
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13. The cues of the _____ sensor 
were easy to understand. 

13. The information provided for the 
system was easy to understand. 

14. The design of the _____ sensor 
was effective in helping me complete 
the task. 

14. The information was effective in 
helping me complete the tasks and 
scenarios. 

15. The organization of information on 
the ____ sensor was clear. 

15. The organization of information on 
the system screens was clear. 

  

Note: The interface includes those 
items that you use to interact with the 
system. For example, some 
components of the interface are the 
keyboard, the mouse, the screens 
(including their use of graphics and 
language). 

16. My interaction with the ____ 
sensor was pleasant. 

16. The interface of this system was 
pleasant. 

17. I liked using  the ____ sensor. 
17. I liked using the interface of this 
system. 

18. The ____ sensor has all the 
functions and capabilities I expect it to 
have. 

18. This system has all the functions 
and capabilities I expect it to have. 

19. Overall, I am satisfied with the 
____ sensor. 

19. Overall, I am satisfied with this 
system. 

 

Survey Instructions Provided to the Participant  

Thank you for completing all three visits of my study.  

This questionnaire, which starts on the computer in front of you, gives 
you an opportunity to tell us your reactions to each of the 3 swipe 
sensors you used: UPEK, PUSH, & PULL.  

Your responses will help us understand what aspects of the swipe 
sensors you are particularly concerned about and the aspects that 
satisfy you. 

Please read each statement and indicate how strongly you agree or 
disagree with the statement for each swipe sensor by selecting the 
number on the scale for each of the 19 questions, as shown below. If a 
statement does not apply to you, select  N/A.   
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If you have comments for a particular sensor, question, or about the 
study, the last question is an open space for you to type or elaborate on 
your choices. 

After you have completed this online questionnaire please notify me and 
we will finish filing the payment forms. 

Thank you! 

 
Figure 118 Image of 3 swipe sensors provided on the computer screen during 

the visit 3 usability questionnaire. 
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Appendix B. Questions and actions that may occur during the test session with a 
participant. Partially based upon Theofanos, Stanton, Orandi, et al. (2007). 

 Participant  Researcher response/action 

The participant asks “can I 
begin now” 

If you are ready, please continue 

General questions about the 
directions for swiping/placing 
their digits on the sensor 

You should perform as the instructions 
indicated. 

What does ______ do? 
The sensor, software, etc… 

Don’t explain 
 
I’d be happy to explain at the end of the 
test. 

Is the scanner clean? Only __ participants have used it so far. 
Explain research on cleanliness of 
devices.  

May I see the instructions 
again? 

You may see the instructions again after 
the last interaction with this sensor. 

Why is the scanner/ should 
the scanner be warm? 

This is normal system behavior. 

Can I move the sensor? Yes, you may position the sensor 
anywhere in the designated box. 

Q
ue

st
io

ns
 

Can I take a break? Would you mind completing the 
interactions for this sensor first? 
No. Pause on completion. 
Yes. Please click the pause button on the 
screen. 

Participant attempts wrong 
task, but does not notice. 

If the participant uses the incorrect 
hand/finger, but does not notice, make 
the correction after the participant 
completes 3-4 error producing 
interactions with that sensor.  

A
ct

io
ns

 

Participant notices they have 
attempted the wrong task 
and explicitly states the fact. 

Researcher should cancel/stop the step 
in process and state “Please wait while I 
make a correction”. 
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Participant thinks they have 
used the incorrect hand or 
made a mistake but has not. 

Tell the participant to continue with the 
rest of the tasks and that they can try 
again after completing the current tasks.  
 
If done correctly, inform they did not 
make a mistake and proceed to the next 
step. If they did make a mistake, 
document the error and have them 
restart the interaction for that particular 
sensor. 

Participant leaves their hand 
on too long. 

State the appropriate response: 
You may remove your hand now. 

Participant swipes too 
slow/fast, wrong part of their 
finger, etc… 

If the participant does not notice, make 
the correction after the participant 
completes that sensor, after it times out, 
or provide assistance after 3-4 incorrect 
interactions. Have them redo the 
interactions correctly before clicking the 
end session timer for that particular 
sensor. 

Participant lifts their 
hand/finger too soon and 
goes on to the next task. 

No verbal correction, but document 
interaction as such. 

Participant lifts their hand too 
soon then replaces it again. 

This will be marked as an interaction 
error. 

Participant assumes they are 
done 

If the participant thinks they completed a 
session/interaction and did not, mark as 
a failure to complete. Restart capture 
sequence and ask if they would mind 
interacting with the sensor again. 

Participant asks if they are 
done. 

Ask if they would please complete the 
current set of interactions and then 
discuss remaining items to complete. If 
they would like to discontinue use, state 
that they could withdraw at any time. 

Test Administrator error If the test administrator performed an 
error during data collection, it was noted 
by the hand appearing in the video area 
for 1-2 seconds. After such action 
occurred, the appropriate corrective 
action was taken. 
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Timeout If the system times out, record if it was 
due to error, software, or the user. 
 
Ask the user to try again (up to three 
times per sensor/finger) 
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Appendix C. Qualitative Data Collection Consent Form 

 



 

 

384

Appendix D. Interview Questionnaire Guide for Biometric Users 

Topic Area Question 
Usefulness / 
Failure to 
Use 

1. After your experience with the device (which is in front of 
you) would you want to use this for everyday use with your 
computer? Why or why not? 

Effectiveness

2. The goal of the prior studies were to collect fingerprint 
images in succession, meaning each time you swiped your 
finger across the sensor the sensor should have acquired an 
image.  
a. Think back to your visits… 

 i. Were you able to complete the task? 
 ii. Did you forget how to use the device? 
 iii. Did you forget where to place your finger? 
 iv. Did it take a while to finish your visit? (Accuracy -- FTA) 

Efficiency 

3. After you were instructed on how to use the devices (prior to 
swiping your finger), what did you think about the level of 
difficulty of the study (did you think it was going to be a piece 
of cake or wish you had time to study)? 

  4. After you started using it, did your opinion change about the 
easiness of the study? Why? 

 5. Did the devices get easier to use over time? 

 

6. Knowing that you had to swipe your finger across the sensor 
so that only the last segment of your finger creates the 
fingerprint image,  did the design of the sensor allow for you to 
interact with the sensor in an efficient manner? 

 a. Would you make any changes based on this? 

Satisfaction 

7. What did you think about the fingerprint sensor design 
knowing how you are supposed to use it after participating in a 
couple studies 

 8. So did this design aid or hinder you in any way with 
interacting with the device? 

 9. Given the swipe fingerprint sensor you used during your 
prior participation… and the multiple times you have used it… 

 a. What did you like about the design? 
 b. What did you not like about the design? 

Designing a 
Device 

10. If you were going to design a device or how would you 
design it, what would you change, and why? And to help you 
answer that, I am going to introduce some different designs 
that are also out there. 

Final 
Thoughts 

10.  Do you have any final questions, comments, thoughts, 
etc… 
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Appendix E. Interview Questionnaire Guide for Biometric Non-Users and 
Ergonomic Experts 

Topic Area Question 
Usefulness / 
Failure to 
Use 1. This is a fingerprint sensor (point to device). 
 a. What are your first thoughts regarding this device? 

Efficiency 

2. How would you interact with this fingerprint device given this 
design? Please step me through your thought process and 
explain to me what you are doing. 

 

b. Now to train you using the method that all users received 
during their interactions with the sensors in the lab. To use the 
device correctly you only use the last segment of your finger 
(point to it and demo on the device) and swipe it across. As you 
swipe across it collects the individual pieces of the fingerprint 
and reconstructs the image.   

Effectiveness

3. Now I am going to define the task. You need to swipe your 
finger across the sensor so that an image of the area of your 
last finger segment can be captured. So each time you swipe 
your finger an image is captured. You can use any of the 
fingers with it. Now take a few moments and swipe your finger a 
few more times on there if you would like. 

 
c. From your brief exposure to the sensor, does the design aid 
or hinder you in correctly swiping your finger? 

 
d. Are there any visual or tactile cues that you like, don’t like, or 
find missing? 

Satisfaction 4. What did you like about the fingerprint sensor design? 

 
5. What did you find about the sensor design that you did not 
care for? 

Designing a 
Device 

6. If you were going to design a device or how would you 
design it, what would you change, and why? 

Alternative 
Designs 7. Now here are two alternate designs. 
 a. What are your first thoughts regarding these devices? 

 b. How would you interact with these devices given the design? 

 
c. Do these sensor designs aid or hinder you in correctly 
swiping your finger? 
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d. Are there any visual or tactile cues that you like, don’t like, or 
find missing with these two designs?  

 e. What did you like about these fingerprint sensor designs? 
 f. What did you not like about these fingerprint sensor designs? 

 
9. Now if you were going to design a device, seeing a few 
different devices, how would you design it and why? 

Final 
Thoughts 

10.  Do you have any final questions, comments, thoughts, 
etc… 
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Appendix F. Qualitative Data Collection Interview/Observation Guide 

Guide 1: Fingerprint Users 
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389

Group 2: Ergonomic Experts 
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Group 3: Fingerprint Non-Users 
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Appendix G. Quantitative Data Collection Consent Form 
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Appendix H. Training and Acclimation Presentation 
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Appendix I. Data Collection Daily Startup Procedure 
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Appendix J. HBSI Data Collection Process 
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Appendix K. Daily/Weekly Backup and Shutdown Process 
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Appendix L. Example quantitative data collection participant observation 
document 
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Appendix M. Demographic and Pre-Visit Surveys 
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Appendix N. Quantitative Data Collection Equipment and Software 

Computer Equipment: 

 
Dell Optiplex GX620 with Dual 17” monitors (Research Administrator 
Computer) 

 Dell Optiplex 150, Single 17” monitor (DataCollection PC) 
 TRENDnet 2-port KVM Switch TK-206i 
Fingerprint Sensors: 

 
1. UPEK Commercial form factor: Eikon 3C/42 1-way swipe  
    SN -  GBGB 0001635651 

 2. Push Design: Eikon 3C/42 DualSwipe SN - GBGB 000857633 
 3. Pull Design: Eikon 3C/42 1-way swipe SN - GBGB 0001640651 

 
4. Large Area Commercial Sensor: UPEK TouchChip  
    SN - ABAB0001082651 

Sensors for Measuring Skin/Hand Characteristics: 
 RayTek MiniTemp Infrared sensor (107811 RAYMT4U mfg: 7/18/2003) 
 Moritex TripleSense (Model: K10229 SN:02618) 
 HP ScanJet 4600 
A/V Recording Equipment: 
 Logitech QuickCam Notebook Deluxe Camera 
Force Measurement Sensor: 
 Vernier Force Plate 
Software for Research Administrator PC 
 Microsoft Internet Explorer 7.05730.11 
 Microsoft Sharepoint / Constant Contact 
 Internal IRB Database 
 Flash Appointment 

 
RealVNC 4.1.2 (Build 5/12/2006 14:47:32) 
 

 MatchWare ScreenCorder 4.0 (Build 65) 
 Logitech QuickCam v11.5 
 Microsoft Excel 2007 

 
HP Director 
 

Software for Data Collection PC 

 
UPEK Internal DBCollection for format 381 native collection software 
4.5.0.19 

 UPEK TouchChip TPP DataBase Collection 1.1.0.0 
 Vernier Logger Lite 1.3.2 Mar 18 2005 09:55:05 ISBN 1-929075-35-9 
 RealVNC 4.1.2 (Build 5/12/2006 14:47:32) 
 Microsoft PowerPoint 2007 
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Appendix O. Initial Coding Scheme for Fingerprint Recognition Users 

1. Image Size 
2. Ease of use 
3. Form factor design 

a. Long Silver Swipe 
i. Likes 
ii. Dislikes 
iii. Swipe Problems 

1. Inconsistencies 
2. Software Usability 
3. Placement/Alignment 
4. Finger Support 
5. Physical Direction 
6. Sliding Surface 
7. Not Intuitive 
8. Form Factor 

a. Width 
b. Height off table 
c. Length 

9. Alignment 
b. Purple Round Swipe 

i. Likes 
ii. Dislikes 

c. Purple Square Swipe 
i. Likes 
ii. Dislikes 

4. Changes/Suggestions 
a. Form Factor Size 

i. Width 
ii. Length 
iii. Height 

b. Slope 
c. Visual 
d. Tactile 
e. Physical Direction/Rotation 
f. Guidance 
g. Sliding Surface 
h. Sensor Position!
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Appendix P. Initial Coding Scheme for Non-Users 

1. Image Size 
2. Ease of use 
3. Form factor design 

a. Long Silver Swipe 
i. Likes 
ii. Dislikes 
iii. No Instruction 

1. First Thoughts 
2. Process to Interact 

iv. Swipe Problems/Issues 
1. Inconsistencies 
2. Software Usability 
3. Placement/Alignment 
4. Finger Support 
5. Physical Direction 
6. Sliding Surface 
7. Not Intuitive 
8. Form Factor 

a. Width 
b. Height off table 
c. Length 
d. Hump 

9. Alignment 
b. Purple Round Swipe 

i. Likes 
ii. Dislikes 

c. Purple Square Swipe 
i. Likes 
ii. Dislikes 

d. Overall Preference 
4. Changes/Suggestions 

a. Form Factor Size 
i. Width 
ii. Length 
iii. Height 
iv. Hump 

b. Slope 
c. Visual 
d. Tactile 
e. Physical Direction/Rotation 
f. Guidance 
g. Sliding Surface 
h. Sensor Position 
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Appendix Q. Initial Coding Scheme for Ergonomic Experts 

1. Image Size 
2. Ease of use 
3. Form factor design 

a. Long Silver Swipe 
i. Likes 
ii. Dislikes 
iii. No Instruction 

1. First Thoughts 
2. Process to Interact 

iv. Swipe Problems/Issues 
1. Inconsistencies 
2. Software Usability 
3. Placement/Alignment 
4. Finger Support 
5. Physical Direction 
6. Sliding Surface 
7. Not Intuitive 
8. Form Factor 

a. Width 
b. Height off table 
c. Length 
d. Hump 

9. Alignment 
b. Purple Round Swipe 

i. Likes 
ii. Dislikes 

c. Purple Square Swipe 
i. Likes 
ii. Dislikes 

d. Overall Preference 
4. Changes/Suggestions 

a. Form Factor Size 
i. Width 
ii. Length 
iii. Height 
iv. Hump 

b. Slope 
c. Visual 
d. Tactile 
e. Physical Direction/Rotation 
f. Guidance 
g. Sliding Surface 
h. Sensor Position 
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Appendix R. Qualitative Data Analysis 

Table 129 Qualitative data results from interviews sorted by final design 
category. 

Design 
Category 

Subject 
[Line #] Text from interviews 

Sensor 
Design   
Shape   
Groove   
Movement   

Visual 

001 
[4927-
5075] 

Where as this one doesn't leave you much room for 
error. You really have to be looking at this one to use 
it. [in reference to purple square device] 

 

004 
[3774-
4062] 

Maybe a picture up here or something. Like saying put 
your finger here and then with and arrow down or 
something. This one doesn’t have the arrows like the 
other one[newer sensor] did. [She pointed to the area 
above the sensor, where she felt she should start her 
swipe.](video 5:05-5:25) 

 

021 
[11239-
11649] 

And so this definitely something like this [finger 
guide/impression] you are going to have to give some 
indication of once they are nicely positioned here they 
don't just stay there. Because I could see myself just 
leaving my finger there. And it almost reminds me of 
those medical devices, where they do the heart 
rhythm thing. It is almost like they are going to clamp it 
on and I'm just going to stay there. 

 

022 
[7550-
7616] 

Visual cues, yea the form might help [pointed to the 
round swipe]. 

 

020 
[4865-
5137] 

I would change the dotting structure or put an arrow or 
something. When I first looked at it, I was like ""what 
do the dots mean?"". To me that represents 
something. But that is the symbol, human factors side 
of it. So, other than that there isn't really anything 
special. 

 

030 
[5695-
5844] 

I've noticed this one [long silver swipe] has little dots, 
I'm not sure what the dots, if that's some aspect of it to 
help pick up the fingerprints." 
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020 
[3339-
3870] 

(video 5:36-6) So like the dots are close here and then 
they get wider. To me, it would be, I was just thinking 
it was like that as you move back.. You move towards 
the wider space. But it would seem like I don't know 
whether I should be going towards the dot, dots 
getting smaller or back away from the dots getting 
wider. Just because there is a difference. If all the 
dots were equally spaced, I would assume that it was 
just for aesthetically pleasing ideas. But the different 
spacing makes me believe there is a reason for it. 

 

021 
[9179-
9426] 

I would definitely still go with some visuals; some kind 
of arrows letting me know that there is going to be 
movement involved and what direction that movement 
needs to occur in. You know starting with the 
fingerprint at the top, but I don't know. 

 

021 
[6463-
7009] 

(video 10:00-11:03) Well when I sat down I thought it 
was going to be a press thing. Because I'm looking at 
the bulls eye [blue dots on the black tray] I know it's a 
fingerprint thing. So I thought I would be able to do 
this. Simple arrows showing the movement that is 
expected. You know on the sides or something would 
help because it shows what you are doing. Or even to 
put instead of having a design here, have a fake 
fingerprint so that you know that you are starting 
there, the arrows would indicate that you are then 
going to have movement. 

 

004 
[5559-
5710] 

{ADMIN: And that is why you said if you would maybe 
put a fingerprint and show which direction…} Yes, just 
to show on here what to do. Yea. (video 7:13-7:18) 

 

022 
[4536-
5265] 

I like the dots, because it kind of indicates the 
direction I want to go in. {ADMIN: From the dots, how 
do you know this?} The spacing between the dots 
indicates that you are going to start from here and go 
in that direction. So the spacing between the dots 
helps. The blue dots did not help me at all. They didn't 
really help tell me whether I need to start from there 
after that, before that, so its not really helping not that 
much. The blue dots definitely did help me align. 
{ADMIN: And can you explain that.} (video 8:09-8:18) 
Well the blue dot, helped me align because I needed 
to start from the center. So I knew that I was not way 
off. So if I could just start from there, somewhere 
around there. So kind of helped me align. 
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021 
[13666-
13988] 

(video 18:47-19:26) I like that I definitely I know where 
you want me to start here [with round swipe]. This one 
[round swipe] I think maybe even more than this [long 
silver swipe] one would need some arrows. This one 
[long silver swipe] I think at some point you would 
figure out that you are wanting some sort of swoop.  

 

002 
[766-
936] 

I think it was stripes, I think that was the easiest to 
use. [She is referring to the latest device that replaces 
the dots with the stripes indicating which way to 
swipe] 

  

020 
[2570-
3001] 

(video 4:49-5:22) I like the bump things right here 
[pointing to the colored dots on the black tray of the 
silver swipe sensor]. I guess they are not raised. But 
the look of it. Maybe if they were.. It seems like they 
are getting smaller and then wider [referencing the 
dots on the tray of the form factor] but maybe an 
arrow defined within the dots that likes the way you... 
rather than going forward going back [swipe direction].

Tactile 

033 
[4005-
4170] 

(video 7:32-7:52) This [round swipe] aids me in 
swiping my finger. Better sense of where to start and 
stop and even where to move because of the way it is 
designed.  

 

033 
[3567-
3788] 

(video 6:23-7:28) This [round swipe] it kind of gives 
you a sense where you start, which is nice. And again 
it guides your path by the indention. It gives you a bit 
of a limitation, so that is nice and it is more compact. 

 

011 
[4347-
4468] 

The more square one here I think it would be a little 
harder to figure where the sensor was unless you 
were looking at it 

 

022 
[7204-
7406] 

(video 11:43-11:53) This one [round swipe] would aid. 
This one [round swipe] and this [long silver swipe] 
seem to be good at aiding the swipe. This one [square 
swipe] doesn't seem to be very efficient. 

 

023 
[5939-
6142] 

(video 9:50-10:15) I think they [interacting with square 
swipe] would hinder it just because not being able to 
really put my finger down here without looking and 
being sure that I do it in the right way. 

 

006 
[6761-
6851] 

(video 10:45- ) I think this device (round swipe) is kind 
of helpful to align your finger. 

 

023 
[8389-
8475] 

(video 12:58-13:08) As in ridges on the side so I could 
use it without looking at it. 
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011 
[3334-
3458] 

I liked the tray feel. You didn't have to look and you 
knew where your hand was. You could feel the edges. 
(video 5:35-5:42) 

 

023 
[6143-
6219] 

This one [round swipe] I think aids a little bit more 
because of the sides.  

 

020 
[8213-
8299] 

I liked this one [long silver swipe] for the shaping of 
the finger, the concave feel.  

 

010 
[1547-
1660] 

I think it is very easy because it has like a cave here. 
You can just follow the ? tracks here. (video 2:45-
2:53) 

 

008 
[4027-
4297] 

I do like that it is like putting your finger down a 
groove. Since the way it works you can almost feel the 
sides. But that is one of the problems with making it 
wider. Is that you wouldn't feel the sides of it and 
know that you were directing your finger the right way. 

 

022 
[7204-
7406] 

(video 11:43-11:53) This one [round swipe] would aid. 
This one [round swipe] and this [long silver swipe] 
seem to be good at aiding the swipe. This one [square 
swipe] doesn't seem to be very efficient. 

 

009 
[5218-
5357] 

Personal preference I like this one  (round swipe) 
more because it gives me more of a guide as to where 
to place your finger for the swipe. 

 

020 
[4033-
4117] 

I liked the concave part here [pointing to grooves in 
the sensor] (video 6:22-6:26). 

 

001 
[4239-
4544] 

(video 2:40) For this part here to give more leeway to 
kind of swipe it a little bit to the side and still work fine. 
Where as if you did it a little bit off and not in the 
center of the picture and if you did it real quick over 
and over it is really hard to get it in the same spot 
every time [alignment] 

 

033 
[1941-
2296] 

(video 3:54-4:18) Well I like the design. It feels a little 
bit better because of the curvature, the use of it. 
Probably less likely to flick at the end as you 
described. It looks better, smaller, more compact. I 
also like that it gives you a better sense of where the 
path should be, specific with these lines [colored dots 
in lines on the channel] here. 

 

033 
[3567-
3788] 

(video 6:23-7:28) This [round swipe] it kind of gives 
you a sense where you start, which is nice. And again 
it guides your path by the indention. It gives you a bit 



 

 

413

of a limitation, so that is nice and it is more compact. 

 

030 
[4419-
4776] 

It [round swipe] does provide more of a cradle for the 
finger. And because my finger is shorter as I 
mentioned earlier it feels a bit more comfortable. I feel 
like I'm getting more of a... if i were to have to use this 
in a required setting I feel that it would take easier for 
me, because this [long silver swipe] one might be for 
more of a longer finger. 

 

032 
[3478-
3697] 

(video 7:22-8) This one [square swipe] is a little too 
wide. I might tend to slide to one side or another. 
Again trying to just put my fingers on there I have to 
spread my fingers apart too far. So this one is too 
wide. 

 

009 
[6214-
6571] 

(video 9:28-9:45) Again, its almost like you can pretty 
much [places finger and locks in round swipe]?. 
Where as with this being open yea you could, but you 
can still [rotates finger in square swipe] ? To me if I'm 
in a quick hurry and I'm just trying to swipe it I'd be 
more apt to have a rotation. Again depending on how 
sensitive the software would be." 

 

011 
[4522-
4663] 

(video 7:43-7:53) Um I think this one again could be 
another design that could be useful just because you 
are stuck in there and I like that. 

 

020 
[7989-
8077] 

I liked the finger thing there [the finger groove on the 
round swipe](video 12:30-12:33) 

 

006 
[6996-
7062] 

So maybe a guide to align your finger better would be 
a good idea. 

 

009 
[6888-
7390] 

(video 10:10-10:41) I do like that because it is much 
more at least the edges are much closer so I don't 
tend to have that. Where as here I am going to have a 
little more play. Again that though, qualify that I mean 
the software is fairly sensitive where you need to 
make sure the you have kind of is the same finger 
position for the most part then that to me would be an 
issue. And I guess from a security standpoint I'd hope 
it be fairly sensitive so Joe Schmo couldn't come up 
and get into my stuff. 
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021 
[12645-
12896] 

(video 17:13-17:26) With this one [square swipe], I 
think I might leave it as is, and just re-position my 
finger, which I think would cause you a problem. 
Because there are no guides at all for where to put the 
finger. Still the upward slope is good." 

 

006 
[6852-
6995] 

And this one (square swipe), ugh is not too helpful, its 
purpose of the depth is because its wants you to align 
but is not as good as this one. 

 

014 
[4707-
4887] 

[square swipe] (video 7:15-7:28) This there is so much 
surface area and there is not a.. I guess you could 
miss the target zone by a little bit and it would throw 
off your reading. 

 

002 
[6557-
7066] 

Here you have to take care if you were going on this 
surface and if your finger was smaller which mine is it 
was making problem with this one. I have to be really 
in the middle with this one I didn’t have any problem 
because its covered[swipe carefully to make sure it is 
centered][striped sensor has a smaller sensor]. I think 
when it was the smaller one I had problems. If I was 
going right to here or right to there. (video 7:08-7:38). 
{ADMIN: Okay, so if you were off-centered you had 
some problems?} Yes. 

 

030 
[5589-
5668] 

(video 10:37-10:57) Well what I like is the raised sides 
[on the round swipe].  

 

030 
[4419-
4776] 

It [round swipe] does provide more of a cradle for the 
finger. And because my finger is shorter as I 
mentioned earlier it feels a bit more comfortable. I feel 
like I'm getting more of a... if i were to have to use this 
in a required setting I feel that it would take easier for 
me, because this [long silver swipe] one might be for 
more of a longer finger. 

 

023 
[8180-
8354] 

Or like something that would be guided on either side 
of my fingers. For design purposes you couldn't make 
it too tight, but I would design this so it is more guided 
as well. 

 

004 
[7829-
7968] 

But I mean this one [round purple sensor] seems a bit 
easier because it has the impression of a finger. So 
this ones a little more clear . 

 

005 
[5185-
5481] 

(video 7:31-8:12) I guess to me it wouldn't really 
matter just because .. Well it [guide impression on 
round swipe] would keep your finger in there. I mean 
that is okay, but I would make this flat here. This one 
[square swipe] I don't know if I have a 
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recommendation just because I don't like it. 

 

011 
[4522-
4663] 

(video 7:43-7:53) Um I think this one again could be 
another design that could be useful just because you 
are stuck in there and I like that. 

 

011 
[4213-
4346] 

This one [round swipe] seems okay because again 
you have something to reference where you are 
without having to look at it and focus. 

 

014 
[4472-
4702] 

[round swipe] (video 7-7:15) I like this one really nicely 
because it's easy? It's easy you know exactly where 
your finger is going to go, and you can just guide it in 
there. From a tactile standpoint, it makes it very, very 
easy. 

 

009 
[3337-
3605] 

that's not concave, that is the other way, but anyway. 
But if it was just more of a shape to it as opposed to a 
.. that might make it person that might make it a little 
bit easier because it would be more consistent in 
placing the finger without the rolling of the hand 

 

009 
[5358-
5444] 

This (square swipe) seems to be more open so you 
could have more rotation in the hand. 

 

012 
[2966-
3035] 

Like this [round swipe] has the finger so I would think 
it goes out. 

  

030 
[4777-
4887] 

This one [square swipe] I don't know. It doesn't have 
anything to cradle the finger. I'm sure it's functional. 

Depth 

030 
[2989-
3077] 

Other than a deeper cradle would feel more 
comfortable I believe. I think it would aid. 

 

002 
[7753-
7887] 

I don't know, this is kind of weird, too much material 
for that (video 8:58-9:01) [pointing to the guidance on 
the round swipe sensor] 

 

032 
[4642-
4811] 

(video 9:07-9:38) The only thing I would probably do 
to this one [long silver swipe] is maybe raise the 
outside/exterior walls, the side walls, just a bit, not too 
much. 
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021 
[14827-
15192] 

As far as the design I actually think I would do 
something in between the two [round swipe and long 
silver swipe] as far as the sides go, the ridges here. 
This one [long silver swipe] doesn't quite keep me 
channeled enough. This one [round swipe] is almost 
too locked in and discourages me from movement. So 
actually I think I would do something in between the 
two. 

 

030 
[2607-
2738] 

I don't know if it would be beneficial to have the cradle 
your finger a little more so that it rests a little more into 
the device. 

 

009 
[3026-
3607] 

(video 5:10-5:43) Um, no I wouldn't necessarily say 
that it hindered. I think if and I realize people's fingers 
are a little bit different. But if it was.. It just seemed like 
there was a lot of room to kind of rotate the finger and 
instead. I don't know if that would create errors where 
as if it were more .. that's not concave, that is the 
other way, but anyway. But if it was just more of a 
shape to it as opposed to a .. that might make it 
person that might make it a little bit easier because it 
would be more consistent in placing the finger without 
the rolling of the hand. 

 

023 
[5092-
5849] 

There is room for error a little bit in this one [long 
silver swipe], but in this [touching square swipe] I have 
to be more precise in how I do it to cover the window. 
And this one [long silver swipe], I guess one thing I 
notice now that I see these [square swipe] is that it 
sort of has guards on the sides that keep you from 
going over and these [square swipe] there is not as 
much of like a set definition of okay your goes here so 
you cannot do it easily without looking. Where as this 
one [silver long swipe] without looking I can do it fairly 
easily. And this [round swipe] kind of can, but I don't 
know why it doesn't come down [referencing the guide 
impression and why it is missing on the sides next to 
the sensor] so my finger can go over it more. 

 

021 
[4904-
5011] 

But I would still say some ridges that hold my finger in 
a little bit more [guide to align tip of finger].  

 

020 
[8894-
9116] 

(video 13:41-14) If I was redesigning this one [long 
silver swipe] I would add something to this element. 
And maybe even up the sides a little more, but not too 
much to where people with wider fingers could not 
access it.  
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014 
[2649-
2907] 

(video 4:17-4:35) I guess the only change would be if 
you have to use your thumb print on an ongoing basis 
maybe a little bit more of an angled side [channel or 
tray for the finger]. But for just using either your index 
or middle finger it worked very well. 

  

030 
[3821-
3991] 

(video 8:07-8:15) I would probably just try to change 
the depth of the cradle like I said the curve of it, a little 
bit, just because it would be more comfortable to me.  

Start/Stop 
Position   

Visual 

001 
[5460-
5594] 

It looks like this is where you are supposed to put the 
tip of your finger right here [pointing to purple round 
""groove"" for finger] 

 

021 
[11684-
11739] The guiding the finger with the starting point is good. 

 

031 
[6752-
7264] 

(video 11-11:33) This one [square swipe] isn't bad. If 
this black would always be on there [informed 
participant, black tape is just covering device name 
and that it would not be on there]. Okay, that black 
tape kind of tells me to stop there. But in that case 
[knowing it shouldn't be there], it is okay, it is better 
than the first one [long silver swipe] I felt, but I would 
probably go to far with it too. But I feel like... It is at 
least more comfortable than the longer one. So the 
shorter size is better. 

 

021 
[6463-
7009] 

(video 10:00-11:03) Well when I sat down I thought it 
was going to be a press thing. Because I'm looking at 
the bulls eye [blue dots on the black tray] I know it's a 
fingerprint thing. So I thought I would be able to do 
this. Simple arrows showing the movement that is 
expected. You know on the sides or something would 
help because it shows what you are doing. Or even to 
put instead of having a design here, have a fake 
fingerprint so that you know that you are starting 
there, the arrows would indicate that you are then 
going to have movement. 

 

022 
[6674-
6792] 

(video 11:05-11:10) [round swipe] The one in the 
middle seems to have a good starting position. I knew 
where to start. 

 

022 
[8304-
8531] 

Assuming we are doing a swipe, I would suggest 
doing a rectangular shaped device [pointed to long 
silver swipe] would be definitely better, because it 
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generates the idea you have to do a swipe. A starting 
point is much helpful. 

 

033 
[1941-
2296] 

(video 3:54-4:18) Well I like the design. It feels a little 
bit better because of the curvature, the use of it. 
Probably less likely to flick at the end as you 
described. It looks better, smaller, more compact. I 
also like that it gives you a better sense of where the 
path should be, specific with these lines [colored dots 
in lines on the channel] here. 

 

001 
[5816-
6012] 

I guess the most convenient thing would be to have a 
design like this [pointed to round purple device] (video 
3:40) where it is very obvious where to put your finger 
and where to begin your swipe. 

 

004 
[5299-
5710] 

(video 6:54-7:07) Yea, You really don’t know what to 
do.. If you are supposed to go like this [swipes entire 
finger correctly, places finger on sensor], or you know 
.. If you don’t know what to do. If someone just walked 
up and said take your fingerprint.. {ADMIN: And that is 
why you said if you would maybe put a fingerprint and 
show which direction…} Yes, just to show on here 
what to do. Yea. (video 7:13-7:18) 

 

033 
[4005-
4170] 

(video 7:32-7:52) This [round swipe] aids me in 
swiping my finger. Better sense of where to start and 
stop and even where to move because of the way it is 
designed.  

 

021 
[9881-
10372] 

(video 14:09-14:37) Well and again with these kind of 
dots you will have a lot of people that don't even 
notice them. So if they are important they need to be 
more obvious. Because the lighting in here is very 
good, and I have good eyes. Other people would 
maybe not even see that. And especially a lot of guys 
do not differentiate between color as much. And 
definitely if you are color blind you are going to have a 
real problem with this, assuming the blue is trying to 
tell you something. 

 

003 
[1581-
1750] 

Yea I had to figure out where to place my finger like I 
have small hands so if I started at the very end it 
registered better than just a quick swipe. (video 2:39-
3:00) 

 

008 
[5828-
6085] 

(video 7:22-7:50)Actually I am assuming that well 
there is this blue part that I think is an indicator of 
where you are supposed to put your finger but it 
wasn't really clear which part of your finger starts 
there. But again that is something I think you would 
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read in the instructions then it would be obvious. 

 

031 
[5650-
5987] 

(video 9:36-10:03) This one [round swipe] I like best 
mainly because it gives you the end where your finger 
needs to be. So I kind of like the fact that is there, it 
lets you know not to go too far back with your finger. 
And even though it does sit up a little bit higher in the 
back, because it is shorter, it is more comfortable to 
me. 

 

033 
[2611-
2966] 

(video 4:49-5:30) One thing that I don't think most 
people would not know necessarily is to where to start 
and stop. You know, do you put your full finger on 
here? Or is the intention to get a swipe of the whole 
finger? There might be a way to put some kind of a 
visual aid to let people know where to start with the 
specific digit, location of the digit. 

 

020 
[7294-
7845] 

(video 11:41-12:22) But this one [round swipe] you 
have the finger shape even. It shows you what you 
need to do. However this one for people with larger 
fingers I just happen to have short fat fingers so it 
happens to work well for me. But someone with longer 
fingers or wide fingers, I mean that kind of constricts. 
But at least it tells you.... I mean if someone tells you 
""this is a fingerprint sensor"" I would at least be able 
to know my finger goes there [correctly places finger 
on round swipe]. I mean that kind of cue of the 
curviness helps. 

 

022 
[4536-
5265] 

I like the dots, because it kind of indicates the 
direction I want to go in. {ADMIN: From the dots, how 
do you know this?} The spacing between the dots 
indicates that you are going to start from here and go 
in that direction. So the spacing between the dots 
helps. The blue dots did not help me at all. They didn't 
really help tell me whether I need to start from there 
after that, before that, so its not really helping not that 
much. The blue dots definitely did help me align. 
{ADMIN: And can you explain that.} (video 8:09-8:18) 
Well the blue dot, helped me align because I needed 
to start from the center. So I knew that I was not way 
off. So if I could just start from there, somewhere 
around there. So kind of helped me align. 
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004 
[3774-
4062] 

Maybe a picture up here or something. Like saying put 
your finger here and then with and arrow down or 
something. This one doesn’t have the arrows like the 
other one[newer sensor] did. [She pointed to the area 
above the sensor, where she felt she should start her 
swipe.](video 5:05-5:25) 

 

021 
[13666-
13988] 

(video 18:47-19:26) I like that I definitely I know where 
you want me to start here [with round swipe]. This one 
[round swipe] I think maybe even more than this [long 
silver swipe] one would need some arrows. This one 
[long silver swipe] I think at some point you would 
figure out that you are wanting some sort of swoop.  

  

020 
[5645-
5920] 

(video 9:06-9:36) [discusses round swipe] This one I 
like though. This one is interesting because it targets 
you on where, how far you need to place your finger 
in. And it doesn't with that hump there, before I was 
feeling like I had to press down. That it is just a 
gradual. 

Tactile 

006 
[6761-
6851] 

(video 10:45- ) I think this device (round swipe) is kind 
of helpful to align your finger. 

 

020 
[5711-
5809] 

This one is interesting because it targets you on 
where, how far you need to place your finger in. 

 

032 
[4009-
4277] 

(video 8:13-8:55) This one [square swipe] I don't like 
at all. I don't know what it is about it this one, but I 
don't like it. This one [round swipe] the stopper up 
front is kind of nice and the walls to the side, so I am 
restricted to be in that zone. Those are okay. 

 

020 
[8143-
8212] 

(video 12:43-13:08) I liked this one [round swipe] for 
the placement. 

 

013 
[6946-
7401] 

(video 9:57-10:45) [referencing the round swipe] It is 
just easier. I think it gives you a better place to put the 
finger. It is easier to control factor for lack of better 
word. This one [long silver swipe] as I said but going 
across the sensor is a lot smoother. Maybe adjust it 
because I don't know as I said those are sticking up. 
But the design of it [round swipe], I like better, the 
going across the sensor I like better here [long silver 
swipe]." 

 

011 
[4128-
4347] 

(video 6:58-7:25)  I don't like the square one here, I 
assume this is another swipe. This one [round swipe] 
seems okay because again you have something to 
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reference where you are without having to look at it 
and focus.  

 

007 
[3232-
3320] 

(video 4:22 - 4:36) I like how this one [round swipe] 
kind of lines up your finger first 

 

033 
[3567-
3788] 

(video 6:23-7:28) This [round swipe] it kind of gives 
you a sense where you start, which is nice. And again 
it guides your path by the indention. It gives you a bit 
of a limitation, so that is nice and it is more compact. 

 

032 
[2781-
2938] 

Yea don't like that [square swipe]. Yea I don't like this 
one [square swipe]. It [square swipe] has too many 
variants, gradients. It is too wide for me.  

 

004 
[7427-
7968] 

(video 9:57-10:35) This one [points to long silver 
swipe] umm well I know I would imagine it is like this 
[places finger on round purple swipe correctly w/o 
training]. Umm this one you don’t really know if you 
just put your finger here or its not really clear if it’s a 
swipe [interacts with the long silver swipe sensor]. I 
mean I know it’s a swipe so its hard to say I don’t 
know what to do with it. But I mean this one [round 
purple sensor] seems a bit easier because it has the 
impression of a finger. So this ones a little more clear .

 

009 
[6214-
6571] 

(video 9:28-9:45) Again, its almost like you can pretty 
much [places finger and locks in round swipe]?. 
Where as with this being open yea you could, but you 
can still [rotates finger in square swipe] ? To me if I'm 
in a quick hurry and I'm just trying to swipe it I'd be 
more apt to have a rotation. Again depending on how 
sensitive the software would be." 

 

009 
[5192-
5358] 

(video 7:52-8:40) Likes?. Personal preference I like 
this one  (round swipe) more because it gives me 
more of a guide as to where to place your finger for 
the swipe.  

 

014 
[4472-
4702] 

[round swipe] (video 7-7:15) I like this one really nicely 
because it's easy? It's easy you know exactly where 
your finger is going to go, and you can just guide it in 
there. From a tactile standpoint, it makes it very, very 
easy. 

 

001 
[6068-
6159] 

most of my inconsistencies came from was where I 
was starting my swipe in a different place 
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021 
[11684-
11739] The guiding the finger with the starting point is good. 

 

020 
[8721-
8811] 

(video 13:30-13:34) I would put some sort of curved 
thing on this one [long silver swipe]. 

 

030 
[6187-
6356] 

If this part [round swipe finger guide] could be 
incorporated into this [long silver swipe] to cradle my 
finger I probably would like this one better than any of 
them.  

 

031 
[6194-
6694] 

(video 10:25-10:55) It aided [pointing to round swipe]. 
I liked it. I like the fact that it [round swipe] had the 
design to guide your finger right where to put it. 
Instead of having to kind of figure.. I think the very first 
one [long silver swipe] you would think especially with 
the little blue dots you would have to be getting in that 
area. That is longer. I like the shorter, if it is just for 
fingerprint, I like the shorter one. And I like the fact 
that it tells you where to put your finger. 

 

009 
[1984-
2307] 

(video 3:10-3:30) Initially, I would kind actually take 
and extend past that so I kind of put the sensor behind 
it and then I would swipe for my initial verification. 
When I went back to verify  it doing the same thing it 
wouldn't read it. But if I kind of aligned and just did the 
simple fingertip it seemed to accept it." 

 

007 
[3232-
3609] 

(video 4:22 - 4:36) I like how this one [round swipe] 
kind of lines up your finger first, and this one [square 
swipe] doesn’t do anything at all. So maybe you put 
this little thing right here [points to the alignment finger 
impression on the round swipe] to line it up, it is 
probably better than just that blue spot [points to the 
silver long swipe blue area above the chip]." 

 

022 
[3841-
4439] 

(video 6:42-7:10) But after I get this message I only 
know I need to use this device. That is the message 
alerting me that. However, once I put my finger here I 
wouldn't know when to start. Lets say using this 
function I could place my finger 1cm behind or ahead. 
Maybe that isn't the right way to go about it. So if 
there was some sort of depression or an endpoint that 
would indicate the user is in the right position and can 
start now, even though the data is actually been 
recording for the full time. I was thinking maybe a 
depression or a click, something of that, to let the 
person know. 
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022 
[2653-
3522] 

(video 4:42-5:56) I would say definitely aids, however I 
don't know when to start. Think of a mouse, I know 
when I click it, it is going to happen. As with here, I 
don't know where to start. So there has to be some 
impetus that the person. Okay, the person needs to 
know now that it is capturing. As a programmer you 
know that this is going to capture all the time and it is.. 
However the person needs to know I am in the right 
spot and it can start taking the fingerprint now. So if 
you can have some sort of click mechanism here 
saying that if you've pressed it. It may not actually do 
anything, but for the person to know that I am in the 
right position and it can start taking data now. There 
can probably be some sort of click function or some 
sort of depression that goes down. Now that you are 
here you can start doing. So the person themself 
knows its intuitive 

 

032 
[3015-
3268] 

This one [round swipe], it actually for the length of my 
fingers, the front little hump kind of stops you from 
going comfortably further along, you just kind of run 
into it. I guess that is supposed to be to show you 
where to stop. That would be enough. 

 

004 
[7829-
7965] 

But I mean this one [round purple sensor] seems a bit 
easier because it has the impression of a finger. So 
this ones a little more clear 

 

031 
[5650-
5987] 

(video 9:36-10:03) This one [round swipe] I like best 
mainly because it gives you the end where your finger 
needs to be. So I kind of like the fact that is there, it 
lets you know not to go too far back with your finger. 
And even though it does sit up a little bit higher in the 
back, because it is shorter, it is more comfortable to 
me. 

  

021 
[6072-
6300] 

I'm thinking some kind of tiny little ridge at the end [top 
of the sensor by the cable] might actually help me 
some so I don't overshoot, or does that even matter? 
If I start too high up as long as I make contact does it 
matter? 

Smooth 

010 
[3359-
3419] 

 This, I think this [long silver swipe] feels more 
smoothly. 

  

010 
[2301-
2379] 

Yea I like the shape. Its very smoothly to swipe your 
hand. (video 4:30-4:35) 
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Raised 
Sensor 

020 
[4118-
4306] 

I like how this is raised a little bit [the actual 
capacitance sensor], so you do feel as you are going 
over it the sensor aspect. I mean that is nice how that 
is raised. (video 6:37-6:53) 

 

022 
[6479-
6669] 

With respect to this one [square swipe], there might 
be a lost of contact because of the depression. So if I 
were to keep my finger just on top of this it maybe 
would not capture the data. " 

 

003 
[5707-
5778] 

 I like the swipe because you can feel where it is 
crossing your finger 

 

003 
[4539-
5082] 

 I think with this one, because you have the little bars 
there that you can actually know when you're done 
crossing it that it actually has read it. I am not sure if 
that part there is the reader or if it is the whole thing. 
{ADMIN: The actual sensor is just the middle part.} 
Yea that is what I thought. Because you can run your 
whole finger across and you it feels like you have the 
knowledge that it read it. (video 6:26-6:32) Where if 
there isn't anything on the others and you just have a 
space but you don’t know exactly where it is reading. 

  

002 
[8448-
8719] 

Yes, I was thinking like should it be this wide? Yea, 
those are smaller. (video 9:50-10:00) [silver is wide, 
purple sensors are smaller -- she pointed to them]This 
didn’t feel so comfortable because you have those 
two. And each time you go over it you have to go over 
it. 

Angle 
Position - Roll 

006 
[6161-
6550] 

(video 9:45-10:18) It would be hard to say. I think the 
way they designed it was because they can use two 
hands. Because if I design it sideways you would use 
it for one hand and you would have to turn it the other 
way to start the other. So, either they find a way to flip 
the sensor around depending on the sensor [rotate 
like a lever for both hands] or have a mirror for the 
other side. 

 

021 
[4212-
4474] 

(video 6:12-7:18) I still would want it off to the side, 
because I'm still coming at an angle [hand/arm angled 
- when shoulders are square with the desk she would 
prefer device angled - imagine right hand straight out, 
rotate hand to the left towards the thumb]. 
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021 
[7851-
8587] 

For right handedness I would actually say to some 
extent you are coming in at a slight angle because 
your pinky finger is going to lean downward as you 
work on this device. Makes me wonder if it [the swipe 
sensor] should be at a slight angle. So that you get full 
contact with the finger. I'm thinking the way I would 
actually use it, I'm coming off to the right, to a right 
angle. It almost seems like it needs to be ramped if I 
really need good coverage across that. I mean it could 
be that if I could drag it real quickly then it's not 
important. But if I am having a problem making 
enough contact, I think a slight ramping off to the right 
side would help. But of course that will totally screw 
up someone that is left handed.  

Angle 
Position - 
Yaw 

008 
[2874-
2973] 

if it was fastened to anything I would say maybe have 
it on a little post so it could be swiveled.  

 

006 
[3539-
3915] 

(video 6:03-6:16) It was more comfortable  and it was 
more precise in my opinion because I was noticing 
when I was swiping like this [as instructed] sometimes 
it didn’t get all my finger [illustrates to me the finger 
pad of the index finger] it had some spots that was 
missing. So, when I swipe it like this [sensor rotated 
about 90 degrees], it was grabbing all of my finger. 

 

021 
[12466-
12641] 

(video 17:03-17:12) For this one [round swipe] I would 
feel like I wanted to position it. I know I can tell which 
way my finger should be going so I would want it 
positioned. 

  

003 
[3486-
3866] 

(video 5:10-5:35) Probably more hindering, because if 
you had it stable you would have to constantly figure 
out how you are going .. Because if you don't have it 
straight it doesn't read it right. {ADMIN: Oh, your 
finger on the sensor?} So if it is this way [sensor 
perpendicular to your shoulders] (video 5:27-5:35) you 
really have to angle your body if you cannot move it 
around. 

Slope   

Flat 

031 
[3626-
3879] 

I'm thinking if you were swiping this way [turned 
device around](video 6:30-6:35) where you are 
coming up, you feel like you are having to position 
your wrist I don't know it just doesn't feel as 
comfortable to me as maybe if it were flat, totally flat. 
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031 
[7806-
8052] 

(video 12:28-13:01) The design I like about it [square 
swipe] is like the size, it is a little bit smaller. And even 
though the back of it is a little higher up, it is more 
even, than to go from a lower front to a higher back 
[long silver swipe]. 

  

031 
[4725-
5113] 

And so make it a little bit smaller and flat and not 
make it  come up in the end, even though that maybe 
makes it ""ergonomically correct"", I don't know. 
Because I think it makes you, it drags, I just don't like 
the way that does. I feel like I'm catching myself. I just 
think if it was flat [turns device around to utilize the flat 
part of the sensor], it seems like it be much [better] 

No Hump 

031 
[2550-
2900] 

I don't know if I like that part, the part that comes up at 
the end [the hump at the end opposite the cable]. It 
just feels like I'm up really high, because that is when I 
start to drag my nail, so if my nails were done or 
something, I think it would be an issue. I think I would 
pull up and do that, just because I have these short 
hands or fingers. 

 

031 
[4532-
4724] 

(video 7:35-8:20) In this is because of my size of hand 
and fingers I think it could be smaller and I think you 
could still get the same purpose out of it, if the whole 
back area wasn't there. 

 

020 
[2051-
2473] 

(video 3:38-4:40) I feel like with this hump here that it 
causes me to kind of want to do the "flicking" thing 
[shown in the training video]. I feel like it has lifted my 
finger too high. So I feel like I have to press and 
almost push this up in a sense to get it to where it 
would scan, mentally. I don't know if it would still 
capture just going across. I feel like I would need to 
press that part down to go across. 

 

031 
[3309-
3609] 

(video 6:07-6:45) I think once you got comfortable, 
maybe if this back part, I don't know maybe it doesn't 
need to be as long, the whole device. And I guess this 
whole back part, if this serves no purpose here but to 
sit it up, I guess it would be more comfortable to use, 
because you wouldn't have.  

 

031 
[4041-
4321] 

(video 7:04-7:29) One thing that I don't like. It seems 
fine and that it would work fine except for I think it is 
either too long or I don't think you need the back little 
bump on it that brings, it is almost like a rest. I don't 
think you need the rest part -the back rest on it. 

  

020 
[4307-
4525] 

I don't like how this [the end opposite to the cable] is 
such a big hump that it like kind of lifts your finger to 
the sense that when you are pulling across you feel 
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like you have to press the tip of your finger down. 

Down 

033 
[1941-
2296] 

(video 3:54-4:18) Well I like the design. It feels a little 
bit better because of the curvature, the use of it. 
Probably less likely to flick at the end as you 
described. It looks better, smaller, more compact. I 
also like that it gives you a better sense of where the 
path should be, specific with these lines [colored dots 
in lines on the channel] here. 

 

032 
[1893-
2067] 

(video 3:57-4:15) No, like I said I like the bulge or 
hump at the end because it does make your finger 
naturally go in the position that would cause it to 
swipe it correctly. 

 

005 
[2928-
3030] 

(video 4:30-4:45) I thought it was pretty good. It was 
comfortable. It was just about the right angle. 

 

021 
[11650-
11683] So the tilt going upward is good. 

 

032 
[1537-
1795] 

(video 3:22-3:45) No, actually it helps because it 
almost naturally makes your finger go about as far 
forward as it should because of the hump. I can't do 
that, but I can do this. And it has that nice little dip so 
it guides your finger where it needs to go. 

 

012 
[2167-
2260] 

I thought it aided because it has the slope raised up 
over here so that you can drag it off. 

 

021 
[5665-
5895] 

(video 8:53-9:47) I think it works well. The nice 
upward slope works because as you are pulling your 
hand back your finger kind of has to get higher and 
the way that it is sloped higher towards the end of the 
swipe is appropriate. 

 

014 
[2998-
3251] 

(video 4:48-5:18) I think it aided and I think especially 
the base of it and how it kind of rises up. It makes it 
easier to keep your finger level, on the sensor. It is 
more natural motion to kind of swipe up, as in when 
you are coming back towards you. 

 

009 
[3781-
4077] 

It was very simple. It allowed for the natural curvature 
of the hand especially when you are using your 
fingers with it raised on the end you are able to still 
get your hand in there and work it. Again, the difficulty 
with the thumbs. I think that is just normal with the 
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position. (video 6-6:10) 

 

020 
[5645-
5920] 

(video 9:06-9:36) [discusses round swipe] This one I 
like though. This one is interesting because it targets 
you on where, how far you need to place your finger 
in. And it doesn't with that hump there, before I was 
feeling like I had to press down. That it is just a 
gradual. 

 

023 
[7902-
7992] 

So I guess I would keep the sloping motion of that 
[hump on the back of long silver swipe] 

 

023 
[3595-
3708] 

(video 6:18-6:53) I think I like the size and because it 
slopes up it makes it easier as you are sort of leaving. 

  

032 
[2390-
2629] 

(video 4:35-5) No, I really wouldn't because it has that 
natural bend your finger would take anyway. As 
opposed to if it were just flat, you don't put your finger 
flat on anything. It is an awkward thing. But that it is 
really comfortable. 

Flatter 

020 
[4307-
4525] 

I don't like how this [the end opposite to the cable] is 
such a big hump that it like kind of lifts your finger to 
the sense that when you are pulling across you feel 
like you have to press the tip of your finger down. 

 

020 
[4659-
4864] 

(video 7:06-8:06) I think that if there was a little divot 
here [pointing to the area where the hump is] for the 
concaveness. I mean you can still have a little lift 
[hump] but it is just kind of dramatic. 

 

002 
[4763-
4859] 

Yea, I would make this lower. (video 4:40-5) 
[referencing the back of the sensor that slopes up] 

 

031 
[3309-
3609] 

(video 6:07-6:45) I think once you got comfortable, 
maybe if this back part, I don't know maybe it doesn't 
need to be as long, the whole device. And I guess this 
whole back part, if this serves no purpose here but to 
sit it up, I guess it would be more comfortable to use, 
because you wouldn't have.  

 

011 
[3510-
3555] Aside from the angle I guess really nothing. 
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011 
[3764-
3985] 

Like I said I guess a little flatter maybe something 
raised in the front, I don't know if that would be easier 
or not. Especially with the thumb it was kind of hard to 
pull up and get a decent reading. (video 6:15-6:25) 

 

031 
[3609-
3881] 

Because you have I'm thinking if you were swiping 
this way [turned device around](video 6:30-6:35) 
where you are coming up, you feel like you are having 
to position your wrist I don't know it just doesn't feel as 
comfortable to me as maybe if it were flat, totally flat." 

 

031 
[8053-
8146] 

I feel like the first one has too much of an incline [long 
silver swipe] from front to back.  

  

020 
[9116-
9197] 

And then I would flatten this [the hump at the end 
opposite the cable] out a bit. 

Up 

006 
[2942-
3098] 

{ADMIN: So you would rather have it on an incline?} 
(video 5:13-5:26) yea, so it feels more natural to place 
your hand like this. Well actually yea like that. 

 

001 
[3344-
3436] 

I mean like I would set it up like that [tilt upwards (1:54 
in the video)] …. Just slightly 

 

008 
[3094-
3277] 

Well pretty much how I held it was like this so we 
need to angle this way. So maybe if it was something 
if was on an angle so it could this way and go to the 
sides. (video 4:41-4:53) 

 

001 
[3207-
3299] 

I would maybe make it go on something that was 
elevated. I would add an angle or something. 

 

002 
[4685-
5422] 

Yea, I would make this lower. (video 4:40-5) 
[referencing the back of the sensor that slopes up]. 
{ADMIN: So, (pointing to the device), you would make 
this slope of the sensor lower?} Yes, lower because it 
is like this (video 4:50-5:03) [showing me that it forces 
her to lift up her finger before swipe is complete]. 
{ADMIN: So, it kind of makes you lift your finger up?} 
Yes. Like with this one it is not so comfortable (video 
4:55-5:03). (video 5:04- 5:15 ) This is more 
comfortable….. Reverse… {ADMIN: So a downward 
slope?} Yes, like reverse, because my finger is going 
up. And here its… I don't know what's better but I 
guess this [slope] should be smaller. Yea. 
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006 
[2406-
2756] 

(video 4:32-5:05) Um, yes but I would have preferred 
it if it would have been like this [tilted up the sensor so 
the end with the USB cable is elevated off the table 
and the side with the logo is touching the table]. A little 
bit higher so it is easier to swipe. Because like this 
sometimes you have to place your hand higher than 
the sensor to move it. 

Size   
Length   
Too Long 
(make 
shorter) 

031 
[7234-
7264] So the shorter size is better. 

 

031 
[4041-
4321] 

(video 7:04-7:29) One thing that I don't like. It seems 
fine and that it would work fine except for I think it is 
either too long or I don't think you need the back little 
bump on it that brings, it is almost like a rest. I don't 
think you need the rest part -the back rest on it. 

 

031 
[5317-
5644] 

(video 9-9:32) Maybe this being smaller, and being 
able to grab here, that is comfortable. Even though it 
sits higher because the whole thing really sits up well 
the backs a little bit higher, but it doesn't seem so bad 
maybe because of the length of it. [compares square 
swipe to long silver swipe to see difference in height] 

 

031 
[7806-
8052] 

(video 12:28-13:01) The design I like about it [square 
swipe] is like the size, it is a little bit smaller. And even 
though the back of it is a little higher up, it is more 
even, than to go from a lower front to a higher back 
[long silver swipe]. 

 

002 
[9133-
9359] 

Hmm, maybe this is too long really, probably. (video 
10:56 - 11:07)" 

 

031 
[8693-
8852] 

 if all you are needing is the tip of your finger, not the 
tip but the very first indent of the finger, it doesn't need 
to be a very long device I don't think. 

 

031 
[4532-
4724] 

(video 7:35-8:20) In this is because of my size of hand 
and fingers I think it could be smaller and I think you 
could still get the same purpose out of it, if the whole 
back area wasn't there. 

 

031 
[8146-
8206] 

So the size of the two purple ones are easier for me to 
use. 
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031 
[6752-
7264] 

(video 11-11:33) This one [square swipe] isn't bad. If 
this black would always be on there [informed 
participant, black tape is just covering device name 
and that it would not be on there]. Okay, that black 
tape kind of tells me to stop there. But in that case 
[knowing it shouldn't be there], it is okay, it is better 
than the first one [long silver swipe] I felt, but I would 
probably go to far with it too. But I feel like... It is at 
least more comfortable than the longer one. So the 
shorter size is better. 

Fine as is 

022 
[8304-
8531] 

Assuming we are doing a swipe, I would suggest 
doing a rectangular shaped device [pointed to long 
silver swipe] would be definitely better, because it 
generates the idea you have to do a swipe. A starting 
point is much helpful. 

 

009 
[4852-
5076] 

I really don't know. If I were to change something. 
Probably not too much. Because again working with 
the index fingers its just about right for the size of the 
fingers, so I probably wouldn't change that (video 
7:28-7:35).  

too short (no 
support) 

001 
[5345-
5457] 

Well there isn't enough space right if you are 
supposed to put it here [using round purple device] 
(video 3:17) 

 

032 
[3269-
3387] 

And there is no support back here, and I don't know 
why. It's just not as comfortable as this one [long 
silver swipe]. 

 

020 
[9202-
9425] 

(video 14-14:15) And then for this one [round swipe] I 
would probably add a little bit more so your finger as 
you are pulling across maintains the flatness [increase 
size --would add material to the end of the form factor] 

 

002 
[7526-
7608] 

But here your finger is not getting any support in this 
area. But here so I guess. 

 

020 
[5921-
6161] 

However there is no, I like the sensor --- there is a 
resting. Kind of so you can hold your finger a little bit 
steady as you go back [meaning the round swipe is 
too short and no material to support the hand/finger]. 
But I like that design. 

 

032 
[4278-
4440] 

I think it is too short. Again I don't have a ... I know 
you only swipe for a second, but it doesn't feel.. it is 
not comfortable. I don't like that one as much." 



 

 

432

  

005 
[4395-
4573] 

But this one [round swipe], some people have longer 
fingers than others and for me where I feel 
comfortable to start I am actually up on the bump. 
Because it is too short for me. 

Width   

Variable  

008 
[5203-
5386] 

Actually as far as the width, if it could be one of those 
things on a printer where they change the width for 
the paper, then you could set it to the right width for 
your own fingers. 

Fine as is 

032 
[4812-
5009] 

The beauty of this one is that it is kind of 
aerodynamic. This finger [using the index finger], the 
middle finger which is next to it, can kind of slide along 
and keep you on track [when swiping].  

too narrow 

008 
[703-
841] 

sometimes, it is just awkward because they are so 
narrow. That it feels like you have to be really precise 
with where you put your finger. 

 

008 
[2476-
2654] 

I think really it just needs to be about 1/2 inch wider. 
Men's fingers are bigger. So if I am having trouble, I 
don't know they would have. I'm not sure what else I 
would change. 

 

001 
[3866-
3896] could have been a little wider 

 

001 
[1983-
2078] 

Maybe this could be a bit wider. [pointed to the width 
of the groove where the sensor fits in.] 

 

023 
[8046-
8354] 

I would just try to make it more like a.. I don't want to 
say wider than this, but ... more like something I 
wouldn't want to pickup. Or like something that would 
be guided on either side of my fingers. For design 
purposes you couldn't make it too tight, but I would 
design this so it is more guided as well. 

  

008 
[1895-
2131] 

Again it's the narrowness issue that bothers me. Just 
because these ridges here that you have to get 
between and especially on the thumbs because they 
are so wide you are getting different parts of the 
thumb each time. (video 2:59-3:08) 

too wide (like 
more 
compact) 

032 
[3478-
3697] 

(video 7:22-8) This one [square swipe] is a little too 
wide. I might tend to slide to one side or another. 
Again trying to just put my fingers on there I have to 
spread my fingers apart too far. So this one is too 
wide. 
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009 
[5445-
5621] 

I like the mouse shaped one (round swipe), I like the 
computer mouse shaped one just for the size its much 
more compact. It doesn't have the size [points to long 
silver swipe]. 

 

033 
[168-
196] It looks easy to use, small. 

 

009 
[5747-
6106] 

(video 8:53-9:22) I guess I'm thinking in the practical 
situation if I am using this [long silver swipe] in a 
laptop or in a briefcase, to me that just seems large 
and bulky although fairly slender. This (round swipe) 
although it seems to have more thickness to it, being 
a little bit more compact to me makes it more 
conducive to smaller types of equipment." 

  

009 
[4130-
4227] 

(video 6:25-6:53) It is rather large to me if you are 
going to be using it in certain situations. 

Height   

too low 

010 
[3266-
3437] 

Shape? I think now the height is comfortable for me 
[in reference to round and square swipe]. This, I think 
this [long silver swipe] feels more smoothly. (video 
6:22-6:33) 

 

010 
[1722-
1921] 

(video 3:07-3:25) I think the height is not good 
enough. Because sometimes I just want to.. If you just 
want to make it .. Steady here .. And then you swipe 
this.. But the height is not good enough. 

 

010 
[3266-
3359] 

Shape? I think now the height is comfortable for me 
[in reference to round and square swipe]. 

  

010 
[2430-
2611] 

Maybe just the height. I need to hold it in my hand to 
swipe something. You cannot swipe like this. (video 
4:40-4:53). {Admin: Oh, because the rest of your hand 
gets in the way?} Yea. 

too high 

010 
[1722-
1993] 

(video 3:07-3:25) I think the height is not good 
enough. Because sometimes I just want to.. If you just 
want to make it .. Steady here .. And then you swipe 
this.. But the height is not good enough. {Admin: 
Okay, so you are talking about the height off the 
table?} Yea yea. 

Manual 
Holding / 
Positioning 

032 
[3698-
3888] 

This one [round swipe] is okay, it just doesn't feel as 
naturally comfortable as this one did. It is too bulky, it 
sits too high, and there is not a natural flow over the 
sensor part for me. 
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001 
[3031-
3122] 

If it was non-mobile, it would be much more difficult 
and would be less comfortable to use. 

 

001 
[3519-
3595] 

Besides being able to hold it, I don't know if I would 
want it any other way 

 

003 
[2251-
2700] 

Well I like the idea that I can pick it up and hold it 
because sometimes it reads it better. And versus to 
have to push down and there were a couple times I 
had to stand up just to get it to… being able to hold it 
makes it much easier. (video 3:30-3:50) [in video 
when she interacts with the device her index is 
extended and other 4 fingers are in a fist --- is this a 
training issue... Does opening your hand give you 
better performance? comfort?] 

  

001 
[2752-
2917] 

Well the fact that if I had to leave it on the table to use, 
it would have been a lot more difficult. So being able 
to pick it up and move it around was great for me 

Back Surface 

008 
[2200-
2367] 

Also, holding them I mean these are very light and 
easy to pickup. But I pretty much had to hold it in my 
hand in order to swipe otherwise I wouldn't get a good 
image. 

 

006 
[2760-
2941] 

At the same time the sensor is not too rigid with the 
surface so when I swipe it [the sensor] moves. 
Anyways I have to hold it with my other hand in order 
to swipe it correctly." 

 

020 
[1490-
1624] 

However, it is a little tricky. I feel like if I just set my 
hand down there and slid it moves, so I would 
probably hold it and do it. 

 

005 
[2617-
2808] 

{ADMIN: So if you are saying if it is going to be stable, 
to kind of stick it down?} (video 4:01-4:08) Yea, 
somehow where it could turn but yet once you put 
your hand on it would not slide. 

 

023 
[2206-
2361] 

(video 4:15-5:08) I think one thing about it is that it 
moves when I'm swiping. It just kind of bothers me, 
because I feel that I'm not doing it correctly. 

 

014 
[3475-
3711] 

(video 5:30-5:40) I guess dislikes, even though it has 
the rubber backing to it, it seems to move around a 
little bit. So if you are putting any sort of pressure to it 
you've got to kind of hold it with the other hand to kind 
of stable. 
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005 
[3873-
3912] it was light weight and it would move.  

 

013 
[4148-
4421] 

The only thing that I noticed when I was down there 
and I don't know if its about the actual shape, and it 
maybe the weight or whatever. But on here its not 
going to slide on here but on here it could [in 
reference to the device sliding on a desk surface] 
(video 6:22-6:30) 

 

005 
[2163-
2614] 

(video 3:34-3:56) When I was doing my normal finger, 
my index, it was fairly easy to swipe. When I did my 
thumb I had to reposition it and I had to hold it 
because I normally did a little more pressure so I had 
a tendency to move it. So it is the fact that it was 
stationary I could go like this but couldn't pull 
[dragging the sensor with his finger] like this, then it 
would be more easier because I have a tendency, I'm 
heavy handed to drag things. 

 

014 
[3475-
3711] 

(video 5:30-5:40) I guess dislikes, even though it has 
the rubber backing to it, it seems to move around a 
little bit. So if you are putting any sort of pressure to it 
you've got to kind of hold it with the other hand to kind 
of stable. 

 

023 
[4320-
4447] 

 definitely would design it didn't move so it somehow 
stuck to with air or something sticky so it didn't move 
[while swiping].  

  

014 
[4033-
4132] 

The only thing I'd put more of an abrasive backing on 
it or anchor it a little more to the surface. 

Not Intuitive   

Shape 

005 
[4578-
4823] 

(video 7:08-7:26) This one it is just … it dents down in 
the middle [square swipe].. I don’t really you know. Its 
like bending your finger the wrong way. I just. That 
one feels the most uncomfortable. That would be my 
last choice [square swipe]. 

 

022 
[5429-
5762] 

(video 9-9:28) I guess no. The shape threw me off a 
bit. Especially the curve on this side, this one. I mean 
it looks cool, but it kind of through me off in the sense 
the slide is down, so it is contrary to if you want to go 
down the slide, where as you want to come up in this 
case. So it is kind of counter-intuitive in that sense. 
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033 
[3789-
3915] 

This one [square swipe] doesn't give you much 
instruction. I realize it has this concave thing going on 
here. It is just okay. 

  

033 
[5195-
5456] 

This one [square swipe], if I just looked at it and didn't 
know, it isn't quite as intuitive, I'm repeating myself 
here. It's square and indented. At first glance in our 
high tech world that could be any number of things, 
but not sure it's a fingerprint sensor. 

Movement 
(swipe) 

020 
[6904-
7288] 

(video 11:09-11:40) I mean this one [square swipe] 
just has the look that you have to be holding it when 
you use it with the concaveness of the sides [pointing 
to exterior sides]. But again, I feel like I'm intelligent 
enough to figure it out, but had I just walked up to it 
and didn't know anything about it, I wouldn't or bought 
it even, I think it would be difficult to figure out. 

 

032 
[330-
701] 

(video 0:25-0:49) It is cute, I don't know. Knowing that 
it is a fingerprint sensor, I would just think that I would 
put my hand on, my middle finger on the thing. Like 
that. I think of it as being like a mouse maybe. Even 
though I don't know what its purpose is. At this point in 
time, I would just place my finger like that [place finger 
on black part of silver swipe]. 

 

012 
[3146-
3333] 

Well I kind of did, because it [square swipe] was 
skinny, so like you had to scan it to get the image. But 
when I first saw it [square swipe] it looks flat like you 
just press it on there 

 

012 
[2899-
2965] 

Well I wouldn't know if this [square swipe] is a swipe 
one or not. 

  

021 
[11740-
11817] 

The only concern I have this one is that you feel like 
you should stay there. 

Alignment / 
Start-Stop 

021 
[10798-
11239] 

(video 14:54-16:18) [round swipe] I love this color, so I 
am already persuaded that these should be the way to 
go [laughs]. Now this one [round swipe] took in some 
of the things I talked about, kind of guiding the finger a 
bit more, but without some kind of direction, I am 
almost feel like you want me to leave your finger there 
because that is a cozy little cradle for my finger. I'm 
not getting the idea here that you want me to move it.  

 

020 
[799-
930] 

(video 1:15-1:32) But I would guess you would drag 
your finger across it somehow. But, I'm not sure how 
fast or when it would read. 



 

 

437

 

004 
[3267-
3363] 

I think just the person has to be aware that they can't 
place their whole finger on it and swipe 

 

020 
[166-
205] I wouldn't know how to place my finger. 

 

023 
[166-
443] 

(video 0:27-0:40) I guess my first thought are I would 
wonder how something with a window that size would 
pickup your finger. I'm guessing you put your finger 
somehow like this. I guess that my first thought would 
be I wouldn't know how to use this unless someone 
told me how. 

 

008 
[3428-
3854] 

I think it aided once I got the hang of it. Its not intuitive 
from looking at it what you are trying to do. I think just 
because there so much area before the part that you 
are swiping. The fact that you are starting up here it 
just seems like you are trying to get more of an image 
than what is actually recorded. But I'm not really sure 
how to change that. It might just be an issue of 
instruction manuals. (video 5:39-5:55) 

 

004 
[4788-
5166] 

I just think I don’t know I just feel that one is a lot 
easier to use… just place your finger rather than 
swiping it. I don't know, you probably know more than 
me but I feel there is more chances of you not swiping 
right. You know its everyone knows just to place their 
finger and that's all. Not everyone knows here like to 
put just this part of your finger here and swipe down. 

 

023 
[3755-
3924] 

Probably like this. I think in   the beginning I would just 
think I really wouldn't know what to do with it. It's not 
very easy to tell how to interact with it right on. 

 

020 
[5339-
5639] 

(video 8:40-9:05) [discusses square swipe] This one 
complete chaos. I don't know what they want me to 
scan, what part of my finger, even where to begin. Or 
even had I not known from seeing this one [silver 
swipe sensor] the sensor going this way, I could have 
assumed that way. Just very oddly shaped 

 

023 
[851-
1208] 

(video 1:16-1:52) I would think assuming I would 
probably put it too my left. So assuming I would have 
to put my finger over it, not knowing how to use, there 
is a blue section up here so I'm assuming you have to 
start up here and put your finger over it like that or 
scan it over. The other option would be to hold a 
portion of your finger over the window. 
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033 
[4458-
4750] 

For this one [square swipe], it is just not visible to me 
that it is a fingerprint sensor and if I didn't know 
anything about them, I probably wouldn't know where 
to start and stop and what was expected in even the 
direction of the swipe. You could do different things 
with that potentially.  

Other 

030 
[3160-
3346] 

I like the color and the style of it. Its nice and 
comfortable enough for me. I don't know about other 
individuals who have bigger hands and longer fingers, 
how they would feel about it. 

 

023 
[2749-
3054] 

(video 5:15-5:40) Maybe if there was some sort of 
light or something to show you that you correctly, 
maybe not that you passed, but that you correctly 
swiped it - like a green light or something right here 
[on the hump of the sensor] to make sure I was doing 
it correctly would help. Some kind of feedback 

 

003 
[2976-
3151] 

Just push harder if you can't pick it up and on one of 
them over there I actually had to use my other hand to 
help. The harder I pushed, the better it read. (video 
4:22-4:25)" 

 

030 
[3430-
3686] 

(video 7:21-7:48) No, I think it is pretty much fine and 
functional as is. It pretty much fits my hand. I've 
noticed that I have a shorter at the end of the finger, 
and that might just be me because I'm short, small it 
feels like I'm not doing it correctly 

  

013 
[5259-
5751] 

(video 7:57-8:57) Yea, I guess the only thing I would 
do I know the sensor is here is put the sensor further 
down here [move sensor more towards the cable]. 
Does that make sense? Because a person 
automatically puts there hand here and now draws 
across as opposed to if you put it down there despite 
putting it there would the sensor still pick it up or 
would you have to draw it across for it to pick up? If I 
just put my finger there would the sensor pick it up? 
Or do I have to go across?" 

 



 

 

439

Appendix S. Push and Pull Design and Fabrication Images 

 
Figure 119 Top, front, right side, and isometric views of the pull form factor. 

 
Figure 120 Top, front, right side, and isometric views of the push form factor. 
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Figure 121 Step 1 of the manufacturing process that created the finger channel.  

 

 
Figure 122 Step 2 of the manufacturing process that finished the channel and 

created the tactile and visual start and stop cues. 
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Figure 123 Step 3 of the manufacturing process that created the arrows 

indicating direction of the swipe. 

 
Figure 124 Step 4 of the manufacturing process that created the area where the 

fingerprint sensor circuit board was housed. 
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Appendix T. Model adequacy checking for Aware and NFIQ image quality scores 

 
Figure 125 Diagnostic and residual analysis for Aware IMQ for training. 

 
Figure 126 Diagnostic and residual analysis for Aware IMQ for enrollment. 
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Figure 127 Diagnostic and residual analysis for Aware IMQ for matching visit 1. 

 
Figure 128 Diagnostic and residual analysis for Aware IMQ for matching visit 2. 
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Figure 129 Diagnostic and residual analysis for Aware IMQ for matching visit 3. 
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Appendix U. Model adequacy checking for the number of detected minutiae 

 
Figure 130 Diagnostic and residual analysis for the number of detected minutiae 

during training. 

 
Figure 131 Diagnostic and residual analysis for the number of detected minutiae 

during enrollment. 
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Figure 132 Diagnostic and residual analysis for the number of detected minutiae 

during matching visit 1. 

 
Figure 133 Diagnostic and residual analysis for the number of detected minutiae 

during matching visit 2. 
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Figure 134 Diagnostic and residual analysis for the number of detected minutiae 

during matching visit 3. 
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Appendix V. Model adequacy checking for fingerprint image area 

 
Figure 135 Diagnostic and residual analysis for fingerprint image area and 

training. 

 
Figure 136 Diagnostic and residual analysis for fingerprint image area and 

enrollment. 
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Figure 137 Diagnostic and residual analysis for fingerprint image area and 

matching visit 1. 

 
Figure 138 Diagnostic and residual analysis for fingerprint image area and 

matching visit 2. 
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Figure 139 Diagnostic and residual analysis for fingerprint image area and 

matching visit 3. 
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Appendix W. Model adequacy checking for the fingerprint image contrast 

 
Figure 140 Diagnostic and residual analysis for fingerprint image contrast and 

training. 

 
Figure 141 Diagnostic and residual analysis for fingerprint image contrast and 

enrollment. 
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Figure 142 Diagnostic and residual analysis for fingerprint image contrast and 

matching visit 1. 

 
Figure 143 Diagnostic and residual analysis for fingerprint image contrast and 

matching visit 2. 
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Figure 144 Diagnostic and residual analysis for fingerprint image contrast and 

matching visit 3. 
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Appendix X. Model adequacy checking for the user satisfaction survey 

 
Figure 145 Diagnostic and residual analysis for the overall scale. 

 
Figure 146 Diagnostic and residual analysis for system usefulness. 
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Figure 147 Diagnostic and residual analysis for information quality. 

 
Figure 148 Diagnostic and residual analysis for interface quality. 
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Appendix Y. HBSI User Satisfaction Comments 

The following participant comments were received during the post-study 

questionnaire. The comments appear as typed into the web application at the 

time of the survey. 

ID Open ended feedback or comments regarding any of the sensors used 
during this study.  

1 
The push sensor design was intuitive, but the images that came up on the 
screen did not seem to capture the entire fingerprint. 

2 

UPEK was much easier to use and seemed to be more consistent.  I had 
problems with the PUSH in the beginning and still had to think about it 
constantly to get it right.  The PULL is easier than the PUSH but I had the 
same problems. 

3 
I liked the large sensor better than all three of these push/pull sensors.    :-
) 

4 

I had a little trouble with PRESSURE since I have arthritis in my indexes.  
However, for the QUANTITY of swipes expected to be used in real life?  
This was a minor inconvenience. 
Thank you. 

11 

I liked the ramp effect of the UPEK.  I think if the PULL sensor was angled 
I would like it much better because the channel combined with the angle 
would be more effective and comfortable.  The PUSH sensor seemed to 
work pretty well.  I don't think an angle on it would be effective, but, again, 
the channel was very helpful. 

12 

I found it more difficult to use the push due to the motion required.  Not 
much difference between the UPEK and Pull other than the corridor of the 
pull was narrower. 

14 UPEK is better than Pull sensor. I don't feel good on the push sensor.  

17 
I am not sure about this but I have a feeling that in my last study my 
fingers were more wet so it was easier to use the sensors. 

19 

upeck was best 
pull was easier to use than push 
just did not like push and it didn't pick up fingerprint easily either 

20 
UPEK, and PULL are good 
PUSH is a little bit hard for me to use, esp. with my left hand 

21 

For the UPEK, it is a little confusing, I can not remember whether to swipe 
the finger or put the finger on the sensor for a while. 
The PUSH sensor, it is a little uncomfortable. 
PULL sensor is best! 
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22 
I felt like the UPEK had a clearer image, I did not have as many problems 
scanning with it, than with the others (Push and Pull).  

23 

Upek : It had an attractive design and also was very comfortable to use. I 
guess the only issue was if it had a visual sign to tell us which direction to 
swipe (like in the PUSH & PULL). Once I knew the direction, it was very 
easy to use. 
PUSH: was bulky and it felt very odd to push my finger away from me. 
PULL: was bulky but at least more comfortable since I was pulling my 
finger towards me. 

25 

I like the overall design of the UPEK Sensor because it was design with 
the curve of the finger. Both the push and pull sensors were flat and didn't 
work well with the overall curve of the finger.  

26 

I liked how the UPEK sensor was curved. It made it easier to swipe your 
finger. The PULL sensor was my least favorite because it was not curved 
so it was harder to pull my finger across it. The PULL sensor was a little 
uncomfortable. I liked the PUSH sensor because it was easy to 
understand, and it was comfortable to use.  

27 

UPEK sensor provide most user friendly when compare with PULL and 
PUSH. However, PULL sensor is a second preference as far as ease of 
use and effectiveness. The PUSH is the least prefer due to the pushing 
motion.  

31 I prefered the Push and Pull sensors over the Upek. 

33 
The visual cues of the upek were not very clear though i found it to be the 
most pleasant to use. 

34 
Upek is smooth and very comfortable. 
Both the Push and Pull feel more uncomfortable, more impersonal. 

35 
The push and pull sensors were the easiest to use and the upek was a 
little more difficult 

39 

Sometimes I have to think a while to distinguish between the push and pull 
sensor. For some reason, I think the colored dots made it confusing. 
Maybe having just the arrows would be enough. 

40 
Pushing was awkward to do. The arrows are really helpful. The UPEK had 
a natural feel when you pull upwards and back.  

43 
Large Area was best. UPEK also ergonomically-designed well. Pull was 
satisfactory. Disliked PUSH. 

44 
For both the PUSH and PULL sensors, they felt more awkward using with 
my non-dominant hand. 

47 

UPEK didn't always register the swipes as well as the PUSH or PULL, 
PUSH always felt comfortable to use even though I thought the PULL 
would be the easiest to use 
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48 

I felt the PUSH and PULL sensors were hard to accurately swipe my finger 
across at times.  I think it was due to the flat design on the top and if it 
were more curved like the UPEK it might be more natural feeling to use. 

49 The Upek seemed to me the most easiest and reliable to use. 

50 

I am not sure these sensors have any significant application in everyday 
life. I found them to be cumbersome and that could be due to the routine 
that I had to do in order for the study to be done.  
 
If I had to use them everyday I might have a different experience. 

54 

The arrows on the PUSH and PULL are helpful if someone weren't shown 
a demonstration on how to use them before trying it. The UPEK doesn't 
have that feature and it could be confusing if a user didn't know to start 
with their finger on the blue dots.  

55 

I preferred the push as it was the one I could get to work most of the time.  
Actually the large was the easiest. 
The upek was comfortable but hard to get to work and I don't think I ever 
was able to use the pull. 

57 

If it was my job to take finger prints, my choice instrument would be the 
upek. It is an attractive tool and the patient would be more comfortable 
with it. 

58 Using ensors that required a pulling motion is much more natural.  

61 

The curved surface on the UPEK made it easier to swipe because it's 
more typical of a finger bending.  I felt like I had to use a lot of force on the 
PUSH, possibly just because it was a different direction than the others. 

62 

I believe the angle of the sensor on the table makes a big difference in the 
accuracy of the print. For example, if the sensor was completely 90 
degrees verticle [vertical], it would be difficult for me to position my hands 
on the sensor, as opposed to a slightly rotated sensor, depending on 
which hand was tested. Overall it was great! Thanks 

63 

UPEK was definitely the most comfortable and easy to use.  With the 
PUSH and PULL, I would mess up more often and the fingerprint wouldn't 
capture. 

64 

I liked using the UPEK sensor the most. I never had a problem with it 
capturing any of my swipes, the same with the PULL sensor.  The PUSH 
sensor sometimes did not capture my fingerprint the first time and seemed 
to be very sensitive to how the finger was swiped across the sensor. 

66 

I liked the pull sensors better as I understood better that the scan was 
complete upon passing the scanner.  With the push sensor I was not sure 
when the scan was complete. (it would be hard to tell if the finger print 
image did not appear on the screen.) 

70 I think the UPEK was the best sensor to work with out of them all.  
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72 

I liked the pull censor best. It was the easiest to use and understand how 
to use. The pull censor took a little longer to obtain the print but it was still 
an easy censor to use. Upek was also a good censor, but it had less visual 
clues or cues on it to understand how to use it. 

73 

UPEK and PULL were very similar, though i prefered the slight curvature 
and smooth feel of the UPEK. 
 
The PUSH sensor felt odd when pushing my finger over the sensor. 

74 little cumbersome to use the push sensor. However overall easy to do.  

75 
The PUSH sensor, if any, was the most awkward to use since it was the 
only one that changed the motion of your hand. 

76 

I think that my response regarding the PUSH sensor is directly related to 
my prior experience with fingerprint sensors.  It felt odd to move my finger 
in the opposite direction than all other sensors I have worked with.  Also, I 
felt that the way the finger looks distorted on the captured images made an 
impression on me.  The tip of the finger looked 'squished', in comparison to 
images captured with either the UPEK or the PULL sensor. 
 
I did prefer the tactile feedback on both the PUSH and PULL sensors over 
the simple channel of the UPEK sensor.   

78 Upek was the easiest. 

79 

I liked the UPEC a lot. I hated the PUSH, it was hard and did not always 
capture my finger prints. The PULL was fine but not as nice to use as the 
UPEK. 

80 I didn't like the push sensor. 

81 
I liked the UPEK more because it was smoother to move my finger across 
it.  I thought that made it easier. 

83 

The Push/Pull sensors are nice because they help channel your finger 
over the scanner. The Push doesn't function like I would immediately 
expect a fingerprint scanner to, but I liked it best in the end. 

84 
All of the sensors were easy enough to learn how to use.  I would have no 
problem using one of these sensors at a later date. 

85 
UPEK- was easy to use and my finger slid over it easily.   The push and 
pull both "grabbed" my finger at times preventing a smooth swipe. 

87 

The only reason I did not like the UPEK as much is because it was harder 
to get it to register(could just be me) other than that they were all easy to 
follow and see the directions. 
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Appendix Z. Model adequacy checking for Efficiency 

 
Figure 149 ANOVA model adequacy analysis for training task time.  

 
Figure 150 ANOVA model adequacy analysis for enrollment task time. 
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Figure 151 ANOVA model adequacy analysis for matching visit 1 task time. 

 
Figure 152 ANOVA model adequacy analysis for matching visit 2 task time. 
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Figure 153 ANOVA model adequacy analysis for matching visit 3 task time. 
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Appendix AA. Box plots for Efficiency Measured by Task Time 

 
Figure 154 Box plot of training task time by sensor and finger. 

 
Figure 155 Box plot of enrollment task time by sensor and finger. 
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Figure 156 Box plot of matching visit 1 task time by sensor and finger. 

 
Figure 157 Box plot of matching visit 2 task time by sensor and finger. 



 

 

465

 
Figure 158 Box plot of matching visit 3 task time by sensor and finger. 
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Appendix BB. Overall FTA Additional Analyses and Results 

Table 130 FTA breakdown for all interactions by sensor and finger. 

Acceptable Conformant  Unacceptable Conformant 
LI RI  LI RI 

Sensor N % N %  N % N % 
UPEK 3725 87.92% 3714 87.24%  339 8.00% 406 9.54% 
PUSH 3606 83.11% 3653 80.22%  486 11.20% 596 13.09% 
PULL 3720 85.71% 3730 90.10%  412 9.49% 329 7.95% 
LA 3740 99.52% 3738 99.18%  0 0.00% 0 0.00% 
          
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
 LI RI  LI RI 
Sensor N % N %  N % N % 
UPEK 0 0.00% 0 0.00%  173 4.08% 137 3.22% 
PUSH 1 0.02% 6 0.13%  246 5.67% 299 6.57% 
PULL 0 0.00% 2 0.05%  208 4.79% 79 1.91% 
LA 2 0.05% 2 0.05%  16 0.43% 29 0.77% 

 

Table 131 Marascuillo procedure for comparing multiple proportions for all 
interactions. 

  Acceptable Conformant  Unacceptable Conformant 
Sensor LI RI  LI RI 
PUSH p < .05 p < .05  p < .05 p < .05 
PULL n. s. p < .05  n. s. n. s. 
LA p < .05 p < .05  p < .05 p < .05 
      
 Acceptable Non-Conformant  Unacceptable Non-Conformant 
Sensor LI RI  LI RI 
PUSH n. s. n. s.  p < .05 p < .05 
PULL n. s. n. s.  n. s. p < .05 
LA n. s. n. s.  p < .05 p < .05 

 

Table 132 Acceptable non-conformant FTA breakdown by data collection 
component, sensor, and finger. 
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Acceptable Non-Conformant Data 

collection 

component Sensor Finger Wrong 
Movement 

Wrong 
Direction 

Wrong 
Finger 

TR  PULL RI 1 2 0 
V1 PUSH RI 0 2 0 
V1 LA LI 0 0 1 
V2 LA RI 0 0 2 
V2 PUSH LI 0 1 0 

Table 133 Unacceptable non-conformant FTA breakdown for the large area 
sensor. 

Unacceptable Non-Conformant Data 

collection 

component Sensor Finger Swiped  

TR  LA RI 2 
V2 LA RI 5 
V3 LA RI 5 
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Appendix CC. Matching Performance DETs by Data Collection Component 

 

Figure 159 DET for training for each sensor and finger. 

 

Figure 160 DET for enrollment for each sensor and finger. 
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Figure 161 DET for matching visit 1 for each sensor and finger. 

 

Figure 162 DET for matching visit 2 for each sensor and finger. 
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Figure 163 DET for matching visit 3 for each sensor and finger. 
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Appendix DD. Matching Performance DETs by Sensor 

 

 

Figure 164 DET for the UPEK sensor by data collection component. 

 

Figure 165 DET for the PUSH sensor by data collection component. 
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Figure 166 DET for the PULL sensor by data collection component. 

 

Figure 167 DET for the Large Area sensor by data collection component. 
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Meeting, April 11, 2008, Purdue University, West Lafayette, IN 

2007 “How in the whorl-d can you identify me? A Lesson in Biometrics”, 
Windows of Opportunity for Women in Technology (WOW) 
Program., November 4, 2007, Purdue University, West Lafayette, 
IN 
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2007 “Biometrics & Homeland Security”, ASM 591B - Foundations in 
Homeland Security Studies II, April 3, 2007, Purdue University, 
West Lafayette, IN 

2007 “Biometrics and Issues Users Face”, IE 486 - Work Analysis & 
Design, March 30, 2007, Purdue University, West Lafayette, IN 

2007 “Biometrics - Those cool gadgets you see on TV...”, Vision 
Program, March 29, 2007, Purdue University, West Lafayette, IN 

2007 “Biometrics - Those cool gadgets you see on TV...,”, Discovering 
Opportunities in Technology Program (DO IT!), March 1, 2007, 
Purdue University, West Lafayette, IN 

2007 “Biometric Deployments and Observations”, IT 345 - Automatic 
Identification & Data Capture, February 7, 2007, Purdue University, 
West Lafayette, IN 

2007 “Hand Geometry”, IT 345 - Automatic Identification & Data Capture, 
January 26, 2007, Purdue University, West Lafayette, IN 

2007 “Face Recognition”, IT 345 - Automatic Identification & Data 
Capture, January 26, 2007, Purdue University, West Lafayette, IN’ 

2007 “Biometrics & Ergonomics”, IT 345 - Automatic Identification & Data 
Capture, January 24, 2007, Purdue University, West Lafayette, IN 

2007 “Physical Security and Authentication”, IT 560W – Manufacturing 
and Supply Chain Security, January 20, 2007, Purdue University, 
West Lafayette, IN 

2006 “Am I a Scientist?”, Presented to 8th Grade Science Students at 
Tecumseh Junior High School, August 29, 2006, Lafayette, IN 

2006 “Biometrics. What is it?”, Technology Advances Girl Scouts (TAGS) 
Camp, July 18, 2006, Purdue University, West Lafayette, IN 

2005 Biometrics…. Bio-what???, Turned on to Technology and 
Leadership (TOTAL) Summer Camp, June 13, 2005, Purdue 
University, West Lafayette, IN 

2005 “Biometrics…. Bio-what???”, Minority Technology Association 
(MTA) Vision Program, March 25, 2005, Purdue University, West 
Lafayette, IN 

2004 “Overview of Biometrics”, High School Seniors in Technology 
Camp, June 29, 2004, Purdue University, West Lafayette, IN 

2004 “An Overview of Biometrics,” for the Minority Engineering Program 
(MEP) Summer Engineering Workshop, June 10, 2004, Purdue 
University, West Lafayette, IN 
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Service and Engagement 
  a. University committee membership 

(1) 2003-04 Purdue University Grade Appeals Committee 
  b. Professional Organizations / Associations 

(1) 2003-08 InterNational Committee for Information Technology Standards 
(INCITS) 

(2) 2003-08 Institute of Electrical and Electronics Engineers (IEEE) 
(3) 2003-08 Human Factors and Ergonomic Society (HFES) 
(4) 2001-07 National Association of Industrial Technology (NAIT) 


