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Abstract. A virtual networked environment (VNE) consists of multi-
ple virtual machines (VMs) connected by a virtual network. It has been
adopted to create private “workspaces” for individual users or communi-
ties on a shared physical infrastructure. The ability to take a distributed
snapshot of the whole virtual environment — including images of the
VMs with their execution, communication and storage states — yields
a unique, practical approach to VNE reliability. The snapshot can then
be used to bring the entire VNE back up in the event of a failure or
outage. In this paper, we present VNsnap, a middleware system that
takes distributed snapshots of VNEs. Unlike existing distributed snap-
shot/checkpointing solutions, VNsnap does not require any modifications
to the applications, libraries, and (guest) operating systems running in
the VNE. Furthermore, VNsnap incurs only seconds of downtime as much
of the snapshot operation takes place concurrently with the normal op-
eration of the VNE. We have implemented VNsnap on top of the Xen
virtual machine monitor. Our experiments with real-world parallel and
distributed applications demonstrate the effectiveness and efficiency of
VNsnap.
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1 Introduction

A virtual networked environment (VNE) consists of multiple virtual machines
(VMs) connected by a virtual network. In a shared physical infrastructure, VNEs
can be created as private, isolated “workspaces” serving individual users or
communities. For example, a virtual cluster can be created to execute paral-
lel/distributed jobs with its own root privilege and customized runtime library;
a virtual data network can be set up across organizational firewalls to support
seamless file sharing; and a virtual “playground” can be established to emulate
computer virus infection and propagation.

To bring reliability and resume-ability to VNEs, it is highly desirable that the
underlying infrastructure provide the capability of taking a distributed snapshot
of the entire virtual environment, including images of the execution, commu-
nication, and storage states of all the VMs. The snapshot can later be used to
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restore the entire VNE, thus supporting fault/outage recovery, system pause and
resume, as well as troubleshooting and forensics.

In this paper, we present VNsnap, a middleware system capable of taking
distributed snapshots of VNEs. Based on the virtual machine monitor (VMM),
VNsnap runs outside of the target VNE. Unlike existing distributed snapshot
(checkpointing) techniques at application, library, and OS levels [15–17, 19], VN-
snap does not require any modifications to software running inside the VNE and
thus works with unmodified applications and (guest) OSes that do not have built-
in snapshot/checkpointing support. As such, VNsnap fills a void in the spectrum
of snapshot/checkpointing techniques and complements (instead of replaces) the
existing solutions.

There are two main challenges to taking VNE snapshots. First, the snapshot
operation may incur significant system downtime, during which the VMs freeze
all computation and communication while their memory images are being written
to disks. As shown in our previous work [1], such downtime can be tens of seconds
long, which disrupts both human users and applications in the VNE. Second,
the snapshots of individual VMs have to be coordinated to create a globally

consistent distributed snapshot of the entire VNE. Such coordination is essential
to preserving the consistency of the VM execution and communication states
when the VNE snapshot is restored in the future.

To address the first challenge, VNsnap involves an optimized technique for
taking individual VM snapshots where much of the VM snapshot operation takes
place concurrently with the VM’s normal operation thus effectively “hiding” the
snapshot latency from users and applications. To address the second challenge,
VNsnap modifies and instantiates a classic global snapshot algorithm so that it
can handle the complexities arising from both the virtual network design and
the optimized VM snapshot technique. As such, VNsnap is capable of taking
snapshots of a VNE with only minor downtime.

We have implemented a Xen [3] based VNsnap prototype for our virtual
networked environment VIOLIN [2]. To evaluate the VIOLIN downtime in-
curred by VNsnap and its impact on applications, we use two real-world par-
allel/distributed applications – one is an MPI-based parallel nanotechnology
simulation without built-in checkpointing capability while the other is the peer-
to-peer file sharing application BitTorrent. Our experiments show that VNsnap
is able to generate semantically correct snapshots of VIOLINs running these ap-
plications, incurring about 1 second (or less) of VM downtime in all experiments.

2 VIOLIN Background

In this section, we give a brief introduction to the VIOLIN virtual networked
environment and a previous distributed VIOLIN snapshot system we presented
in [1]. VIOLIN is our instantiation of the VNE concept described in Section 1.
Based on Xen, a VIOLIN virtual networked environment (or “VIOLIN” in short)
provides the same “look and feel” of its physical counterpart, with its own IP ad-
dress space, administrative privileges, runtime services and libraries, and network
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Fig. 1. A 4-VM VIOLIN based on Xen, running on two physical hosts

configuration. VIOLIN has been deployed in a number of real-world systems: In
the nanoHUB cyberinfrastructure (http://www.nanoHUB.org, with more than
20,000 users worldwide), VIOLINs run as virtual Linux clusters for the execu-
tion of a variety of nanotechnology simulation programs; In the vBET/vGround
emulation testbed [4, 5], VIOLINs run as virtual internetworking environments
for the emulation of distributed systems and malware attacks.

As shown in Figure 1, a VIOLIN consists of multiple VMs connected by a
virtual network. In our implementation, VMs (i.e. guest domains) are connected
by VIOLIN switches that run in domain 0 of their respective physical hosts.
Each VIOLIN switch intercepts link-level traffic generated by the VMs – in the
form of layer-2 network frames – and tunnels them to their destination hosts
using the UDP transport protocol. VIOLIN snapshots are taken at the VIOLIN
switch level from outside of the VMs. As such, there is no need for modifying the
application, library, or OS that runs inside the VMs. Another benefit of VIOLIN
snapshots is that such a snapshot can be restored on any physical machine and
network without requiring reconfiguration of the VIOLIN’s IP address space.
This is due to the fact that VIOLIN performs layer-2 network virtualization,
and as such any set of network addresses can be used in a VIOLIN without any
conflict with the underlying physical infrastructure.

In our previous work [1], we presented the first prototype for taking VIOLIN
snapshots. Unfortunately, that prototype has a serious limitation: By simply
leveraging Xen’s live VM checkpointing capability, the system has to freeze each
VM for a non-trivial period of time during which the entire memory image of the
VM is written to the disk. As a result, taking a VIOLIN snapshot causes con-
siderable downtime to the VIOLIN (in the magnitude of ten or tens of seconds).
Moreover, due to TCP backoff incurred by the VM’s long freeze, it will take
extra amount of time for an application to fully resume its operation following
a VIOLIN snapshot.
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3 VNsnap Design and Implementation

In this section, we present the design and implementation of VNsnap. More
specifically, we first describe our solution to minimizing VM downtime during the
VIOLIN snapshot operation. We then describe our solution to taking distributed
snapshot of a VIOLIN with multiple communicating VMs.

3.1 Optimizing Live VM Snapshots

3.1.1 Overview of Approach Our solution in VNsnap aims at minimizing
the Xen live VM checkpointing downtime thus making the process of taking a
VM snapshot truly live. Interestingly, the solution is inspired by Xen’s live VM
migration function [6]: Instead of freezing a VM throughout the snapshot, we
take a VM snapshot much the same way as Xen performs a live VM migration.
As such we hide most of the snapshot latency in the VM’s normal execution
time leading to a negligible (usually less than a second) VM downtime.

Xen’s live migration operates by incrementally copying pages from a source
host to a destination host in multiple iterations while a VM is running. In every
iteration, only the pages that have been modified since the previous iteration
get resent to the destination. Once the last iteration is determined (e.g., when
a small enough number of pages are left to be sent, the maximum number of
iterations are completed, or the maximum number of pages are sent), the VM
is paused and only the few remaining dirty pages are resent to the destination
host. Once this “stop-and-copy” phase is completed, the VM on the source host
is terminated and its copy on the destination host is activated. As a result,
during live migration a VM is operational for all but a few tens/hundreds of
milliseconds.

Following the same principle, our optimized live VM checkpointing technique
effectively migrates a running VM’s memory state to a local or remote snapshot
file but without a switch of control (namely the same VM will keep running). To
facilitate such migration, we create the snapshot daemon that “impersonates”
the destination host during a live snapshot. The snapshot daemon interacts with
the source host in obtaining the VM’s memory pages, which is, to the source
host, just like a live migration. However, the snapshot daemon does not create an
active copy of the VM. Instead, the original VM resumes execution the snapshot
has been taken.

3.1.2 Detailed Design and Implementation We have implemented two
versions of the snapshot daemon, each with different advantages. Both versions
can run either locally on the same host where the VM is running or remotely
on a different host. For the rest of the paper we will refer to these two versions
as the “VNsnap-disk” and “VNsnap-memory” daemons. We next describe their
implementations and compare their performance and effectiveness.

VMsnap-disk Daemon: The VNsnap-disk daemon operates by recording the
stream of VM memory image data generated by the source host VMM during a
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Fig. 2. Designs of VNsnap-disk and VNsnap-memory for optimized live VM snapshot.
VNsnap-disk may result in larger snapshot files; whereas VNsnap-memory generates
snapshots of the same size as the VMs at the cost of memory reservation.

live migration. In this simple design, bytes received by the VNsnap-disk daemon
are grouped into chunks (32KB in our implementation) and as soon as a chunk
is full it is immediately written to the disk (Figure 2(a)). As such the daemon is
oblivious to the nature of data it receives and is only concerned with recording
the data stream as is. When the snapshot file is restored on a host in the future,
the stream is played back and the host perceives the operation as receiving a
VM memory image during live migration.

The VNsnap-disk daemon has two main advantages. First, it does not require
a large amount of memory as the daemon writes small chunks of VM memory
image data directly to the disk (Figure 2(a)). Second, by the time the (fake)
VM migration is completed, the snapshot file is readily available on the disk.
However, the VNsnap-disk daemon does have a number of weaknesses. First,
the snapshot file it generates can potentially be much larger than the actual
VM memory image as multiple copies of the same memory page may have been
received and recorded during migration. The larger snapshot size translates into
more writes to the disk and consequently a lengthier duration of the snapshot
operation. Second, during a future snapshot restoration, a host will have to go
through multiple iterations to obtain the final image of a memory page. As a
result, the restoration will take longer when compared with restoring a snapshot
file generated by Xen’s original live checkpointing function.

VNsnap-memory Daemon: The VNsnap-memory daemon overcomes the weak-
nesses of the VNsnap-disk daemon, at the cost of reserving a memory area equal
to the size of the memory image of the VM it checkpoints (Figure 2(b)). The
VNsnap-memory daemon is “conscious” of the nature of data it receives from
the source host and only keeps the most recent image of a page – in the reserved
memory area. As a result, the final snapshot it generates is the same size as
the VM’s memory image. The snapshot will not be written to disk until the
VM snapshot operation is complete and the VM has resumed normal execution.
Compared with VNsnap-disk, this design better hides the snapshot operation
duration by postponing disk writes until the VM snapshot is completed. It also
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leads to shorter VM downtime with only memory writes. Moreover, VNsnap-
memory causes much less TCP backoff than VNsnap-disk, as to be demonstrated
and explained in Section 4. On the other hand, the postponed snapshot dump
in VNsnap-memory does lead to the disadvantage that the snapshot file is not
immediately available after the snapshot operation.

Although the operation of the VNsnap-memory daemon resembles that of a
live VM migration, the implementation of the VNsnap-memory daemon involves
modifications to Xen’s live VM migration function. It might seem that a VM
snapshot can simply be done by performing a live migration followed by (1) the
restart of the original VM and (2) the freeze and dump of the new copy on
the destination host using Xen’s live VM checkpointing function. However, our
experience indicates that this is not as simple as it sounds. First, Xen by design
does not allow checkpointing a VM that has not started or resumed execution
(which is the case for the new VM). Second, Xen live migration involves trans-
lating the VM’s memory page addresses that are specific to the source host (i.e.
page tables that reference machine frame numbers) into some host-independent
representation (i.e. pseudo-physical frame numbers) through what is known as
canonicalization. Upon receipt of such pages on the destination host, these pages
have to be mapped to the machine frame numbers specific to the destination
host (or get un-canonicalized). However, for VM snapshots we only need the
canonicalized pages so that the snapshot can be restored on any host. In our im-
plementation, the VNsnap-memory daemon intercepts and maintains the most
recent image of any canonicalized page. Once the VM memory image transfer is
complete, the daemon writes all memory pages in batches to a snapshot file as
if the snapshot file were generated by Xen’s live checkpointing function.

The implementation of VNsnap-disk and VNsnap-memory daemons involved
making modifications to the xend component of Xen that handles VM live mi-
gration. Our implementation is based on a recent unstable release of Xen (May
2007). We point out that both daemons can run locally or remotely. For the
local run it is desirable to reserve a certain amount of CPU capacity for the
daemon in order to prevent a snapshot from affecting the VMs’ execution. In a
uni-core machine this can be done by enforcing CPU capacity allocations to dif-
ferent domains, while in a multi-core machine this can be done by assigning the
daemon and the VMs to different cores. For a remote run, the daemons consume
much less resources of the source host but will depend on a high speed network
between the source and destination hosts for VM image transport.

3.2 Taking Distributed VIOLIN Snapshot

With the individual VM snapshots achieving minimal downtime, we now present
our approach to the coordination of these snapshots in creating a distributed
consistent snapshot for a VIOLIN. Our distributed snapshot algorithm is based
on Mattern’s global snapshot algorithm [7] for non-FIFO communication chan-
nels. This algorithm was also adopted in our earlier work [1]. However, we will
show that the algorithm is particularly suited to the optimized live VM snapshot
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technique (Section 3.1) and not so much to the “freeze and dump” VM snapshot
technique used in [1].

3.2.1 Overview of Snapshot Algorithm In the context of VIOLIN, the
main motivation behind the use of Mattern’s algorithm is to prevent a post-
snapshot network frame (i.e. a layer-2 frame generated by a VM whose snapshot
has been taken) from affecting the state of a pre-snapshot VM (i.e. a VM whose
snapshot has not been completed). Therefore, the VMs’ snapshots will form
a consistent cut [7] which are guaranteed to be causally consistent and safely
restore-able. To ensure causal consistency, we use Mattern’s message coloring

technique to distinguish between pre-snapshot and post-snapshot frames. The
VNsnap distributed snapshot algorithm works as follows:

1. One of the VIOLIN switches initiates the distributed snapshot by send-
ing a TAKE SNAPSHOT message to all other switches. It then starts the
snapshot-taking operations for the local VMs that belong to the same VIO-
LIN. Once these VM snapshots are completed, the switch starts tainting all
outgoing frames with the post-snapshot color.

2. Upon receiving the TAKE SNAPSHOT message or a frame with the post-
snapshot color, a VIOLIN switch starts the VM snapshot-taking operations
as done by the initiator switch. When the VM snapshots are completed,
the switch notifies the initiator via a SNAPSHOT SUCCESS message and
colors all outgoing frames with the post-snapshot color.

3. While a VM snapshot is in progress, the underlying VIOLIN switch colors
frames originating from that VM with the pre-snapshot color and prevents
the delivery of frames bearing the post-snapshot color to that VM.

4. The distributed snapshot operation is complete when the initiator receives
the SNAPSHOT SUCCESS messages from all other VIOLIN switches.

Figure 3 shows an example of the above algorithm for a VIOLIN consist-
ing of four VMs. Frames exchanged between VMs are denoted by arrows going
from the sender to the receiver where pre-snapshot frames are colored red and
post-snapshot frames are colored blue. The VIOLIN switch for V Ma initiates
the snapshot at time S1a and the snapshot is completed at S2a. At S2d, the
distributed snapshot operation is completed.

It is important to note the difference between Mattern’s algorithm and the
VNsnap algorithm: Mattern’s snapshot algorithm was proposed for distributed
systems connected by non-FIFO, reliable communication channels (i.e. no mes-
sage loss thus no message retransmissions); whereas the VNsnap algorithm in-
volves VIOLIN switches that forward VM-generated layer-2 network frames via
UDP tunneling. As such there may be message losses – namely losses of UDP
packets carrying the layer-2 frames (though no message retransmissions). More-
over, the VNsnap algorithm may induce additional message drops, as just ex-
plained, to maintain causal consistency across VM snapshots. Despite the differ-
ences, we point out that the VNsnap algorithm is able to guarantee the correct
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Fig. 3. An illustration of the VNsnap distributed snapshot algorithm: For each VM,
S1 is the point when the VM starts the snapshot operation and S2 is when the VM
finishes the snapshot and resumes normal execution. This figure also demonstrates the
frame-coloring scheme and the three categories of frames. In particular, Category 3
frames are dropped to preserve a consistent cut.

operation of transport protocols in the VIOLIN. For best-effort transport pro-
tocols such as UDP, packet losses are expected and if needed should be handled
by the application. For reliable transport protocols such as TCP, the VNsnap
algorithm enforces causal consistency of layer-2 frame delivery so that the trans-
port protocol state – in the face of frame losses – remains correct in the VIOLIN
snapshot.

We use the example in Figure 3 for further explanation. Given the asyn-
chronous nature of VM snapshot operations, messages (i.e. layer-2 frames) in
Figure 3 fall into the following three categories:

1. Frames where the source and destination VMs are both in the pre-snapshot
state or both are in the post-snapshot state (e.g. the frames labeled 1 in
Figure 3). Such frames can be safely delivered to the destination VMs.

2. Frames where the source VM is in the pre-snapshot state and the destination
VM is in the post-snapshot state (e.g. the frame labeled 2 from V M b to
V M c). Such frames can also be safely delivered.

3. Frames where the source VM is in the post-snapshot state and the destina-
tion VM is in the pre-snapshot state (e.g. the frame labeled 3 from V M c to
V Md). Such frames are dropped by the VIOLIN switches.

Suppose a TCP packet is encapsulated in the Category 2 frame from V M b

to V Mc. Although the packet is delivered to V M c, its acknowledgement, encap-
sulated in a frame from V Mc to V M b, will not be delivered to V M b as long as
V M b is still in the pre-snapshot state. As a result, V M b does not advance its
TCP window and keeps retransmitting the packet until it completes its snapshot
and can receive the acknowledgement from V Mc. Thus, VNsnap’s handling of
Category 3 messages guarantees the correct TCP state across VM snapshots.
This prevents incorrect transport states from being exhibited when the snap-
shot is restored. For example, it will never be the case that V M b thinks that it
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has successfully sent the TCP packet to V Mb prior to its snapshot while V M c,
whose snapshot was taken before the TCP packet arrival, has no indication of
having received this packet.

3.2.2 Detailed Design and Implementation In our implementation, a VI-
OLIN switch (or switch for short) enters SNAPSHOT mode when it starts the
snapshot-taking operations for the the local VMs that are connected to it. It
exits SNAPSHOT mode when all these VM snapshots are completed. When the
switch is not in SNAPSHOT mode, it taints all outgoing frames with the same
color. However, when the switch is in SNAPSHOT mode, it may taint a frame
with either the pre-snapshot or post-snapshot color depending on the status of
the VM generating the frame. This is due to the fact that the various VMs on
the same host may not complete their live snapshot operations at exactly the
same time.
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Fig. 4. An illustration of asynchronous VM snapshot progress in a machine hosting
three VMs of the same VIOLIN. Red is the pre-snapshot color and blue is the post-
snapshot color. In the middle figure, Domains 2 and 3 have transitioned to the post-
snapshot state while Domain 1 is still in the pre-snapshot state.

Figure 4 illustrates such a situation. To handle the asynchronous completion
of VM snapshots on the same host, VNsnap uses two pairs of bridges and tap
devices: one pair for the pre-snapshot VMs and the other pair for the post-
snapshot VMs. As a result, it is guaranteed that no post-snapshot frames can
reach a pre-snapshot VM on the same host. Furthermore, the underlying VIOLIN
switch is able to determine if a frame comes from a pre-snapshot or post-snapshot
tap device and color the frame accordingly before sending it to another host. We
modify Xen’s xend to transition a VM from the pre-snapshot bridge to the post-
snapshot bridge at the end of the stop-and-copy phase and right before the VM
resumes normal execution.
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For a VIOLIN switch to exit SNAPSHOT mode, we have to extend xend such
that it will notify the switch whenever a VM finishes its snapshot operation.
Specifically, we define a signal handler inside the VIOLIN switch which will
receive a user-defined signal from xend when a VM completes its stop-and-
copy phase. Once the VIOLIN switch has received the signals for all local VMs
belonging to the same VIOLIN, the switch will exit SNAPSHOT mode and taint
all outgoing frames with the post-snapshot color.

To mitigate the frame drops by the VNsnap algorithm, we have also im-
plemented a frame buffering scheme that preserves the frames dropped by the
algorithm. In this scheme, a VIOLIN switch will buffer (instead of drop) post-
snapshot frames that are destined for a pre-snapshot VM. These buffered frames
will later be delivered when the receiver VM finishes its snapshot or when the
VIOLIN snapshot is restored in the future. This scheme proves useful for applica-
tions using UDP transport in a VIOLIN. However, it turns out that the scheme
does not fare well with applications using TCP transport. There are three main
reasons for this. First, the delivery of buffered TCP packets requires stringent
timing: To be of use, these packets need to be injected within the narrow win-
dow when the receiver VM has resumed normal execution after the snapshot
but before the sender VM resends the buffered packets. In the case of VIOLIN
snapshot restoration, the sender VM also needs to be fully operational first so
that it can receive the ACKs that indicate the successful delivery of these pack-
ets. Otherwise, these packets will still be retransmitted. Second, many of the
buffered packets are retransmitted packets to begin with. As a result, only a
small percentage of the buffered packets are of real “help” to the progress of a
TCP connection and their repeated delivery should be avoided. Third, Given
that these buffered packets have been time-stamped at the time of snapshot, the
TSval and TSecr fields (used for Round-Trip Time Measurement (RTTM) and
Protect Against Wrapped Sequence numbers (PAWS) mechanisms) in the TCP
headers would most likely not match the TCP clock time when a VM finishes a
snapshot or when the VIOLIN snapshot is restored. As a result, these packets
are likely to get discarded by TCP [8].

So far we have only discussed the different ways VNsnap captures the VM state
and maintains causal consistency. For a VIOLIN snapshot to be useful, it should
also include the file system state. To meet this goal, we store a VM’s file system
on an LVM [9] logical volume and use the LVM snapshot capability to capture
the state of the file system at the time of snapshot. The main advantages behind
LVM snapshots are availability and speed. LVM snapshots do not require a
system using the logical volume to be halted during the snapshot. It also does
not work by mirroring a logical volume to some other partition. Instead, it only
records changes made to a logical volume after the snapshot and as a result is
very fast. In VNsnap, LVM snapshots are taken during the (very short) stop-and-
copy phase when a VM is suspended. The snapshot partitions can be processed
after the VM resumes normal execution.
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4 Evaluation

In this section, we evaluate the effectiveness and efficiency of VNsnap. First,
we focus on testing the optimized live VM snapshot technique. Then, we evalu-
ate the impact of VNsnap on VIOLINs running real-world parallel/distributed
applications – NEMO3D [10] and BitTorrent [11]. Throughout this section, we
compare VNsnap with our previous work [1]. All physical hosts involved in our
experiments are Sunfire V20Z servers with a single 2.6GHz AMD Opteron pro-
cessor and 4GB of RAM.

4.1 Downtime Minimization for Live VM Snapshots

We first evaluate the optimized live VM snapshot technique (Section 3.1) for
individual VMs in a VIOLIN. The evaluation metrics include the total duration

and VM downtime of an individual VM snapshot operation as well as the size

of the VM snapshot generated. For comparison, we experiment with all of the
following VM snapshot implementations: (1) Xen’s live VM checkpointing func-
tion (used in [1]), (2) the VNsnap-disk daemon, and (3) the VNsnap-memory
daemon. For each of the implementations we measure the metrics from the same
VM (in a VIOLIN) with 600MB of RAM. The tests are run both when the VM
is idle and when it is executing the parallel application NEMO3D.

Table 1 shows the results. Since both VNsnap-disk and VNsnap-memory
daemons are based on Xen’s live migration function, they both involve multiple
iterations of memory page transfer during the snapshot (the “iteration” column)
while the VM is running. It is during the very last iteration that the VM freezes
and causes the downtime (the “pages in last iteration” column). The number of
iterations is proportional to the application’s Writable Working Set (WWS) [6]
or the rate at which the application is dirtying its memory pages. For instance,
we observe that during the NEMO3D execution memory pages get dirtied at a
rate above 125MB/s.

The most important metric in Table 1 is the VM downtime. Three main ob-
servations can be made from these results. First, both VNsnap-disk and VNsnap-
memory incur significantly shorter downtime (ranging from tens of milliseconds
to just above one second) than Xen’s checkpointing function (around 8.6 sec-
onds). Second, for Xen’s live checkpointing function, the downtime remains al-
most the same for both the “idle” and “NEMO3D” runs. VNsnap-disk and
VNsnap-memory, on the other hand, exhibit shorter downtime for the “idle”
runs than the “NEMO3D” runs. This is because for VNsnap-disk and VNsnap-
memory, the downtime is determined by the number of dirty pages transferred
in the last iteration – about 100 pages in the “idle” run and 11,000 pages in
the “NEMO3D” run – out of the total 153,600 pages of the VM. This differs
from Xen’s VM checkpointing, where there is only one iteration during which
the VM freezes and all 153,600 pages are written to disk. Finally, we observe
that VNsnap-memory achieves a much lower downtime for the “NEMO3D” run
than VNsnap-disk. This is because the VNsnap-disk daemon directly writes the
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Xen Live Checkpointing

Application Duration(s) Iterations Downtime(ms) Pages in Last Iteration Size

Idle 9 1 8583 153600 1.00
NEMO3D 12 1 8626 153600 1.00

VNsnap-disk Daemon

Application Duration(s) Iterations Downtime(ms) Pages in Last Iteration Size

Idle 12 4 65 104 1.00
NEMO3D 72 30 1025 11102 1.55

VNsnap-memory Daemon

Application Duration(s) Iterations Downtime(ms) Pages in Last Iteration Size

Idle 8 4 68 104 1.00
NEMO3D 18 30 258 11094 1.00

Table 1. Measurement results comparing three VM snapshot implementations for
VNsnap.

page images to the disk (which is slow) while the VNsnap-memory daemon keeps
them in the RAM during the snapshot operation (which is fast).

Another important metric from Table 1 is the total snapshot duration. For
both Xen checkpointing and VNsnap-disk, the duration represents the amount
of time it takes for the snapshot image to be fully committed to disk. For
VNsnap-memory, the duration represents the amount of time it takes for the
daemon to construct a VM’s full image in memory and consequently does not
include the hidden disk write latency after the snapshot. We observe that for the
“NEMO3D” run, both VNsnap-disk and VNsnap-memory incur longer duration
than Xen checkpointing because of their multi-iteration memory page transfer.
The duration for VNsnap-disk is particularly long compared to the other two im-
plementations (72 seconds vs. 12 seconds for Xen checkpointing and 18 seconds
for VNsnap-memory) as the daemon competes with the local VM for both disk
bandwidth and CPU cycles. Such a contention can be mitigated by running the
VNsnap-disk daemon in a remote host, which will reduce the snapshot duration
to 33 seconds as our experiment shows.

Table 1 also shows the size of the VM snapshot relative to the amount of
memory allocated to the VM. As discussed in Section 3.1, the VM snapshot
generated by the VNsnap-disk daemon can be larger than the VM’s memory
size. In fact, the VM snapshot file is 1.55 times the size of the VM’s memory
image for the “NEMO3D” run. Both Xen checkpointing and VNsnap-memory,
by their respective design, generate VM snapshots of the same size as the VM’s
memory image. A larger VM snapshot file consequently results in longer time in
restoring the VM. Our experiments confirm that it takes 20 seconds to restore a
snapshot generated by VNsnap-disk whereas it takes 8 seconds to restore a VM
snapshot file generated by VNsnap-memory or Xen checkpointing.

Impact of VM Snapshot on TCP Throughput As discussed in Section 3.2,
the individual VM snapshot operations for the same VIOLIN may have different
completion times. Specifically, not all VMs transition from the pre-snapshot
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(a) No snapshot (b) Xen live checkpointing

(c) VNsnap-disk (d) VNsnap-memory

Fig. 5. The impact of different VM snapshot techniques on TCP throughput in a
VIOLIN running NEMO3D. Traces are obtained from tcpdump.

to post-snapshot state at exactly the same time and the VNsnap distributed
algorithm may have to drop certain frames to enforce causal consistency between
the VM snapshots. Such frame drop results in temporary backoff for the TCP
connections during and after snapshots. As one would expect, the duration of
TCP backoff is directly related to the degree of discrepancy in individual VM
snapshot completion times.

Figure 5 shows such impact on a 2-VM VIOLIN executing NEMO3D, under
no snapshot (Figure 5(a)), Xen live checkpointing (Figure 5(b)), VNsnap-disk
(Figure 5(c)), and VNsnap-memory (Figure 5(d)). We focus on one TCP con-
nection between the two VMs. The flat, “no progress” periods shown in Figures
5(b) and 5(c) each consist of two parts: (1) the downtime of the sender VM
during snapshot and (2) the TCP backoff period due to the varying snapshot
completion times of the sender and receiver VMs. We observe that both Xen
live checkpointing (Figure 5(b)) and VNsnap-disk (Figure 5(c)) incur 2-3 sec-
onds of TCP backoff, whereas VNsnap-memory (Figure 5(d)) does not incur
noticeable TCP backoff. More results and analysis will be presented in the next
two subsections.
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Fig. 6. The breakdown of snapshot timing under different VM snapshot implementa-
tions for 2, 4, 8 and 16-node VIOLINs running NEMO3D.

4.2 Snapshot of VIOLIN Running NEMO3D

NEMO3D is a long-running (tens of minutes to hours), MPI-based parallel sim-
ulation program without any built-in checkpointing support. It is widely used by
the nanotechnology community for nano-electric modeling of quantum dots. To
execute NEMO3D, we create VIOLINs as virtual Linux clusters of varying size
(with 2, 4, 8, and 16 VMs). The underlying physical infrastructure is a cluster
of 8 Sunfire V20Z servers connected by Gigabit Ethernet. For the 2, 4, or 8-VM
VIOLIN, each VM runs in a distinct physical host and is allocated 650MB of
memory. For the 16-VM VIOLIN, there are two VMs per host each with 650MB
of memory (due to the limited availability of 8 hosts). For each VIOLIN, we run
NEMO3D with the same input parameters and trigger the snapshot algorithm
at exactly the same stage of NEMO3D execution for the Xen checkpointing,
VNsnap-disk, and VNsnap-memory implementations. For each implementation,
we measure, on a per VM basis, the VM uptime and VM downtime during the
snapshot operation as well as the TCP backoff experienced by the VM due to
snapshot completion time discrepancy. We note that the VM downtime plus the
TCP backoff constitute the actual period of disruption to application execution
inside the VM.

Figure 6 shows the results. The times shown are averages of all VMs in a
given VIOLIN from a given experiment. We observe that VNsnap-memory al-
ways incurs the least disruption (VM downtime+TCP backoff) to a VIOLIN
– more specifically 0.0, 0.8, and 1.4 seconds to the 2, 4, and 8-node VIOLINs,
respectively1. VNsnap-disk also incurs minimal VM downtime but incurs higher
TCP backoff than VNsnap-memory (to be explained shortly). Still, it performs
much better than Xen checkpointing, which incurs significantly higher VM down-

1 We were not able to evaluate VNsnap-memory for the 16-node VIOLIN as there was
not enough memory in each physical host to keep the snapshots of two local VMs.
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time as well as overall disruption period (from 10 to 15 seconds). The 16-node
experiment further indicates that Xen live checkpointing not only suffers from
longer downtime (about 20 seconds vs. less than 1 second in VNsnap-disk), but
the downtime also scales with the number of VMs that are simultaneously being
checkpointed on the same host (about 20 seconds with two VMs per host vs.
about 10 seconds with one VM per host as in the 2, 4, and 8-node cases).

To explain why VNsnap-memory leads to a smaller TCP backoff than VNsnap-
disk, we present the detailed results from the 8-VM VIOLIN experiment. Figure
7 shows the individual result for each of the 8 VMs in the VIOLIN. As discussed
in Section 4.1, differences in VM snapshot completion times (shown by the up-
per edges of the “VM downtime” bars) lead to TCP backoff. As can be seen in
Figure 7, the discrepancy among the 8 VMs is more significant for VNsnap-disk
(up to 4 seconds – Figure 7(b)) than for VNsnap-memory (less than 1 second
– Figure 7(c)). Our investigation reveals that some of the hosts (e.g. the ones
hosting VMs 3, 6, and 7) have longer disk write latency than the others, leading
to a noticeable difference in VM snapshot completion times for VNsnap-disk.
On the other hand, VNsnap-memory does not involve disk writes (only memory
writes) during snapshot and thus results in much less discrepancy.V M u p t i m e V M d o w n t i m e T C P b a c k o f f2 5( sec) V M u p t i m e V M d o w n t i m e T C P b a c k o f f1 52 0kd own( 51 0h otB reak 05 1 2 3 4 5 6 7 8S napsh 1 2 3 4 5 6 7 8

(a) Xen Live CheckpointingV M u p t i m e T C P b a c k o f f p r e s s n a p s h o t2 5sec) u p t e C b a c o p e s a p s o tV M d o w n t i m e T C P b a c k o f f p o s t s s n a p s h o t1 52 0kd own( s 51 0otB reak 05 1 2 3 4 5 6 7 8S napsh o 1 2 3 4 5 6 7 8
(b) VNsnap-disk

V M u p t i m e T C P b a c k o f f p r e ¥ s n a p s h o t2 5sec) u p t e C b a c o p e s a p s o tV M d o w n t i m e T C P b a c k o f f p o s t ¥ s n a p s h o t1 52 0kd own( s 51 0otB reak 05 1 2 3 4 5 6 7 8S napsh o 1 2 3 4 5 6 7 8
(c) VNsnap-memory

Fig. 7. Per-VM breakdowns of snapshot timing for the 8-node VIOLIN running
NEMO3D.

In all experiments, we verify the semantic correctness of NEMO3D execu-
tion by comparing the outputs of the following: (1) an uninterrupted NEMO3D
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Fig. 8. The setup of the BitTorrent experiment

execution, (2) a NEMO3D execution during which a VIOLIN snapshot is taken,
and (3) a NEMO3D execution restored from the VIOLIN snapshot. We confirm
that all executions generate the same program output.

4.3 Snapshot of VIOLIN Running BitTorrent

In this section we study the impact of VNsnap on a VIOLIN running the peer-
to-peer BitTorrent application [11]. The reason for choosing this application is to
demonstrate the effectiveness of VNsnap for a VIOLIN running a communication
and disk I/O-intensive application that spans multiple network domains. Figure
8 shows the experiment setup, where the VIOLIN spans two different subnets
at Purdue University. Our testbed consists of 3 Sunfire servers in our lab at
the Computer Science (CS) Department and 8 servers at the Center for Edu-
cation and Research in Information Assurance and Security (CERIAS). In the
CS subnet, we dedicate one host to run a remote VNsnap-memory daemon. Of
the remaining two hosts, we use one to run a VIOLIN relay daemon (explained
shortly) and the other one to host two VMs: VM 1 (with 700MB of memory)
runs as a BitTorrent seed while VM 2 (with 350 MB of memory) runs an Apache
webserver and a BitTorrent tracker. In the CERIAS subnet, we use four hosts
each hosting a VM with 1GB of memory that runs as a BitTorrent client or seed.
The remaining four hosts each run a VNsnap-memory daemon. The 6 VMs –
two in CS and four in CERIAS – form the BitTorrent network. To overcome the
NAT barrier between the two subnets, we deploy two software-based VIOLIN
relays operating at the same level as the VIOLIN switches. The VIOLIN relays
run in hosts with both public and private network interfaces so that they can
tunnel VIOLIN traffic across the NAT.

The goal of the BitTorrent network is to distribute a 650MB file from two
seeds (VMs 1 and 6) to all participating clients (VMs 3, 4, and 5). The experiment
starts with the two seeds, one in CS and one in CERIAS. We trigger the VIOLIN
snapshot when all clients have downloaded almost 50% of the file. At that time,
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the average upload and download rates for each client are about 1350KB/s and
3200KB/s, respectively.

Figure 9 compares the per-VM snapshot timing breakdown under Xen’s live
checkpointing and under VNsnap-memory. We observe that the total disruption
caused by the snapshot operation (i.e. VM downtime+TCP backoff) is consid-
erably less – and at times negligible – for VNsnap-memory (all below 2 seconds
except VM 3 – Figure 9(b)). The disruption periods under Xen live checkpoint-
ing range from 15 seconds to 25 seconds. Moreover, the slower disk bandwidth
on some hosts (i.e. those hosting VMs 3 and 6) causes large discrepancy (up to
10 seconds) among the VMs’ snapshot completion times, leading to non-trivial
TCP backoff (Figure 9(a)).V M u p t i m e V M d o w n t i m e T C P b a c k o f f2 53 0( sec) V M u p t i m e V M d o w n t i m e T C P b a c k o f f1 52 02 5akd own 51 01 5h otB rea 05 1 2 3 4 5 6S naps 1 2 3 4 5 6

(a) Xen Live Checkpointing
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(b) VNsnap-memory Remote

Fig. 9. Per-VM breakdowns of snapshot timing for the VIOLIN running BitTorrent.

When looking at the result for VNsnap-memory (Figure 9(b)), one notices
that the VM snapshot completion times are less uniform than those in the
NEMO3D experiments. There are three reasons behind this observation: First,
as described in the experiment setup, not all VMs are configured with the same
amount of memory. For instance, given that VM 2 has only 350MB of memory, it
completes snapshot before other VMs. Second, unlike the NEMO3D experiment
where all VMs are equally active, some VMs in the BitTorrent experiment are
more active than others (i.e. they have larger WWS). For example, at the time
of the snapshot, the three client VMs (VMs 3, 4, and 5) are mostly communi-
cating with VM 1, leaving the other seed (VM 6) mostly idle and thus a shorter
snapshot duration for VM 6. Third, the workloads of the hosts are not uniform,
which can have an impact on the VM snapshot times. For example, due to re-
source constraints of our testbed, we have to run the CERIAS VIOLIN relay in
the same server that runs a VNsnap-memory daemon. As a result, it takes VM
3, which is served by that daemon, longer time to finish its snapshot despite
the fact that VM 3 is just as busy as other clients (VMs 4 and 5). The longer
duration of VM 3 snapshot manifests itself as the TCP backoff during which VM
3 becomes the only pre-snapshot VM in the VIOLIN. Overall, the BitTorrent
results demonstrate the effectiveness of VNsnap even under less than favorable
conditions and a non-uniform configuration. Finally, we verify the correctness of
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VNsnap by comparing the checksum of the original file with the checksums of
the files downloaded during the run when the snapshot is taken and during a
run restored from the snapshot.

5 Discussion

In this section, we discuss some issues with VNsnap and propose future en-
hancements. The first issue is the negative impact of VM snapshot completion
time discrepancy on TCP throughput – especially for VNsnap-disk. This prob-
lem can be substantially alleviated if we further modify the VM live migration
implementation in xend. As part of our future work, we plan to do so such that
xend spends a constant amount of time transferring VM memory pages to the
VNsnap daemons. As such, all VMs in a VIOLIN will start their “stop and
copy” phase at about the same time. Considering the very short duration of this
phase (i.e. the VM downtime), their completion times for the VMs will be of low
discrepancy.

The second issue is the size of VIOLIN snapshots. We note that, through
efficient hash-based mass storage techniques (e.g. [12, 13]), similarities between
different yet similar VM snapshots can be exploited. For instance, in a VIOLIN
running NEMO3D, the VMs share many pages for the OS, library, and appli-
cation code. Meanwhile, the similarity between consecutive snapshot images of
the same VM can also be exploited for improved storage efficiency.

Finally, for a VIOLIN snapshot to be restorable, the VIOLIN has to be
self-contained. This means that any application inside the VIOLIN should not
depend on any connections to outside of the VIOLIN. In addition, VNsnap re-
quires that applications running inside a VIOLIN be able to tolerate the short
period of disruption incurred by VNsnap. We believe that many – though not
all – applications meet such requirements.

6 Related Work

Many techniques have been proposed to checkpoint distributed applications, but
very few have addressed the need for checkpointing an entire execution environ-
ment, including the applications, OS and file system. These techniques can be
loosely categorized into application-level, library-level (e.g. [15–17]), and OS-
level (e.g. [14, 18]) checkpointing. Although these techniques are beneficial in
their own rights and work best in specific scenarios, each comes with limita-
tions: Application-level checkpointing requires access to application source code
and is highly semantics-specific. Similarly, only a certain type of applications can
benefit from linking to a specific checkpointing library. This is because the check-
pointing library is usually implemented as part of the message passing library
(such as MPI) that not all applications use. OS-level checkpointing techniques
often require modifications to the OS kernel or require new kernel modules.
Moreover, many of these techniques fail to maintain open connections and ac-
commodate application dependencies on local resources such as IP addresses,



VNsnap: Taking Snapshots of VNEs with Minimal Downtime 19

process identifiers (PIDs), and file descriptors. Such dependencies may prevent
a checkpoint from being restorable on a new set of physical hosts. VNsnap com-
plements the existing techniques yet is not without its own limitations (Section
5).

Virtualization has emerged as a solution to decouple application execution,
checkpointing and restoration from the underlying physical infrastructure. ZapC
[19] is a thin virtualization layer that provides checkpoint/restart functionality
for a self-contained virtual machine abstraction, namely a pod (PrOcess Do-
main), that contains a group of processes. Due to the smaller checkpointing
granularity (a pod vs. a VM), ZapC is more efficient than VNsnap in checkpoint-
ing a group of processes. However, ZapC does not capture the entire execution
environment which includes the OS itself. Xen on InfiniBand [20] is a Xen-based
solution with a goal similar to VNsnap. But it is designed exclusively for the
Partitioned Global Address Space programming models and the InfiniBand net-
work. Hence, unlike VNsnap, it does not work with legacy applications running
on generic IP networks.

Recently, two solutions have been proposed based on Xen migration. [21]
advocates using migration as a proactive method to move processes from “un-
healthy” nodes to healthy ones in a high performance computing environment.
Though this method can be used for planned outages or predictable failure sce-
narios, it does not provide protection against unexpected failures nor restore
distributed execution states in the event of such failures. Remus [22] is a practi-
cal, guest transparent high-availability service that protects unmodified software
against physical host failures. The focus of Remus is individual VMs whereas
VNsnap focuses on distributed VNEs. Remus leverages an enhanced version of
Xen migration to efficiently transfer a VM state to a backup site at high fre-
quency (i.e. 40 times per second); whereas VNsnap is triggered at a much lower
frequency, which can be determined by existing solutions (e.g. [23]) based on
mean-time to failure prediction.

7 Conclusion

We have presented VNsnap as a middleware system to take snapshots of an
entire VNE, which include images of the VMs with their execution, communica-
tion, and storage states. To minimize system downtime incurred by VNsnap, we
develop optimized live VM snapshot techniques inspired by Xen’s live VM mi-
gration function. We also implement a distributed snapshot algorithm to enforce
causal consistency among the communicating VMs. Our experiments with VI-
OLINs running unmodified OS and real-world parallel/distributed applications
demonstrate the unique usability of VNsnap in achieving reliability for an entire
VNE.
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