

CERIAS Tech Report 2008-23

A DEVICE INDEPENDENT ROUTER MODEL: FROM MEASUREMENTS TO

SIMULATIONS

by Roman Chertov

Center for Education and Research in

Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

A DEVICE INDEPENDENT ROUTER MODEL: FROM MEASUREMENTS TO

SIMULATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Roman Chertov

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2008

Purdue University

West Lafayette, Indiana

ii

To my parents and my loving wife.

iii

ACKNOWLEDGMENTS

This dissertation would not have been possible without the tremendous support of

my primary adviser Sonia Fahmy and my co–adviser Ness B. Shroff. Their constant

encouragement and unwavering support resulted in our publications and ultimately

this thesis. During my work, I had to rely on the staff of DETER, Emulab, and WAIL

testbeds for my experiments. I am very grateful for their support and patience, in

helping me resolve experimental problems.

The second half of this dissertation would not have been possible without the

help of Michael Blodgett, Prof. Paul Barford, Ron Ostrenga, Terry Benzel, and Prof.

Ray Hansen. With the help of these individuals, I was able to obtain access to four

commercial routers necessary for the experiments in this thesis. I want to additionally

thank Michael Blodgett and Prof. Ray Hansen for their help in configuring the

routers.

Last but not least, I want to thank my family for their constant support and

reassurance. I am indebted to my wife, Anastasiya, without her companionship and

support, I would have taken much longer to finish this dissertation.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . x

1 Introduction . 1
1.1 Network Research Tools and Analytical Models 2

1.1.1 Simulation . 2
1.1.2 Emulation . 4

1.2 A High–Fidelity Router Model . 4
1.3 A Device Independent Router Model 5
1.4 Contribution . 6
1.5 Thesis Organization . 7

2 Comparative Study of Network Simulation and Emulation Fidelity 9
2.1 Introduction . 9
2.2 TCP-Targeted Attacks . 11
2.3 Simple Analytical Model . 13
2.4 Emulation Environment and Tools 15
2.5 Experimental Setup . 18

2.5.1 Testbed Setup . 19
2.5.2 Attack Generation . 20
2.5.3 Traffic Generation and Measurement 21
2.5.4 Experimental Design . 23

2.6 Emulab and DETER Testbed Results 24
2.7 Using the Click Modular Router . 28
2.8 WAIL Testbed Results . 30

2.8.1 Cisco 3640 Routers . 31
2.8.2 Cisco 7000 Series Routers 36

2.9 Summary . 39

3 Related Work . 41
3.1 Network Simulation and Emulation 41

3.1.1 Network Simulators . 41
3.1.2 Network Emulation Tools and Emulators 42
3.1.3 Device Fidelity . 44

3.2 Router Modeling . 44

v

Page
3.2.1 Black-box Testing and Traffic Generation 45
3.2.2 Empirical Router Modeling 46

3.3 Summary . 47

4 Benchmarking and Modeling Routers . 49
4.1 Commercial Router Overview . 49
4.2 Router Software Overview . 52
4.3 Modeling a Forwarding Device . 54

4.3.1 General Multi-Server/Multi-Queue Model 55
4.3.2 Parameter Inference . 57

4.4 Summary . 60

5 Profiler Architecture and Performance 61
5.1 Profiler Overview . 61

5.1.1 Device Driver . 63
5.1.2 Click Modular Router . 64
5.1.3 ns-2 Modifications . 67

5.2 Profiler Configuration . 71
5.3 Profiler Calibration . 72
5.4 Summary . 74

6 Router Profiling and Validation Results 77
6.1 Experimental Setup . 77
6.2 Model Parameters . 79
6.3 Model Fidelity . 83

6.3.1 CBR Flows . 83
6.3.2 Low-load TCP . 83
6.3.3 High-load TCP . 86
6.3.4 High-load TCP and HTTP 90

6.4 Summary . 96

7 Conclusions and Future Work . 99
7.1 Simulation Versus Emulation . 99
7.2 Router Modeling . 100
7.3 Future Work . 101

LIST OF REFERENCES . 103

VITA . 109

vi

LIST OF TABLES

Table Page

2.1 Average bandwidth of a TCP-targeted attack 13

4.1 Notation used in parameter inference 59

5.1 100 Mbps NIC–to–NIC packet delays for 64-, 800- and 1500-byte Ethernet
frames . 74

5.2 1 Gbps NIC–to–NIC packet delays for 64-, 800- and 1500-byte Ethernet
frames . 74

6.1 Queue sizes for different packet sizes 82

6.2 Number of servers for different packet sizes 82

6.3 Low-load TCP: Mean and COV of packet delays for Cisco 12410, Juniper
M7i, Cisco 3660, and Cisco 7206VXR 85

6.4 Low-load TCP: Kolmogorov-Smirnov statistic 85

6.5 High-load TCP: Average loss ratios . 88

6.6 High-load TCP: Mean and COV packet delays for Cisco 12410, Juniper
M7i, Cisco 3660, and Cisco 7206VXR for three destination (Dst) nodes 89

6.7 High-load TCP Kolmogorov-Smirnov statistic 89

6.8 High-load TCP and HTTP: Mean and COV of packet delays for Cisco
12410, Juniper M7i, Cisco 3660, and Cisco 7206VXR for four destination
(Dst) nodes . 92

6.9 High-load TCP and HTTP: Average loss ratios 93

6.10 High-load TCP and HTTP Kolmogorov-Smirnov statistic 94

vii

LIST OF FIGURES

Figure Page

2.1 Saw-tooth pattern of congestion window evolution because of periodic loss
every 4 seconds. 14

2.2 Master/Zombie control network. 17

2.3 Simple dumb-bell topology with 160 ms round-trip-time and 100 Mbps
links. 18

2.4 Comparison of the average goodput from analysis, simulations, DETER
and Emulab for different sleep time periods, and an attack pulse of length
160 ms. RTT is 160 ms. Attack packets are 64 bytes. ns-2 results are not
plotted in the reverse case because the attack has little impact. 25

2.5 Impact of varying the Click router queue and the transmit buffer ring of
the network device driver on DETER. Attack packets are 64 bytes. The
attack pulse length and RTT are set to 160 ms. 30

2.6 Comparison of the average goodput from analysis, simulation, and Click
(on DETER) for long sleep periods. Attack packets are 64 bytes. Queue
size in ns-2 and output device buffer ring in Click is 256. The attack pulse
length and RTT are set to 160 ms. 30

2.7 Comparison of the average goodput from analysis, simulation, and Cisco
3640s when long sleep periods are used. The IP filters on the Cisco routers
are disabled. Attack packets are 64 bytes. The attack pulse length and
RTT are set to 160 ms. 33

2.8 Effect of varying packet size and packet rate – while maintaining the same
bit rate of 98 Mbps – with and without IP filters on Cisco 3640s. The
attack is sent at 8.5 Kpackets/s with 1400 byte payload, or at 10 Kpack-
ets/s with 1184 byte payload. The attack pulse length and RTT are set
to 160 ms. 34

2.9 Impact of 140 Kpackets/s (64-byte packet size) versus 8.5 Kpackets/s
(1400 byte payload) attack flows on Cisco 3640s with and without IP
filters. The attack pulse length and RTT are set to 160 ms. 34

viii

Figure Page

2.10 Comparison of the average goodput from analysis, simulations, and WAIL
Cisco 3640s for different sleep periods, attack rates, and a pulse length of
160 ms. RTT is 160ms. Attack packets are 64 bytes. The reported results
for the Cisco routers are with and without IP filters. ns-2 results are not
plotted in the reverse case because the attack has little impact. 35

2.11 Comparison of the average goodput from analysis, simulation, and Cisco
7000s when long sleep periods are used. The IP filters on the Cisco routers
are disabled. Attack packets are 64 bytes. The attack pulse length and
RTT are set to 160 ms. 37

2.12 Effect of varying packet size and packet rate while maintaining the same
bit rate of 98 Mbps with and without IP filters on Cisco 7000s. The attack
is sent at 8.5 Kpackets/s (1400 byte payload) or 10 Kpackets/s (1184 byte
payload). The attack pulse length and RTT are set to 160 ms. 38

2.13 Comparison of the average goodput from analysis, simulations and WAIL
Cisco 7000s for different sleep periods, attack rates, and a pulse length of
160 ms. RTT is 160 ms. Attack packets are 64 bytes. bytes. The reported
results for the Cisco routers are with and without IP filters. ns-2 results
are not plotted in the reverse case because the attack has little impact. 38

3.1 Minimum delay queuing model with an unbounded queue per output port.
The service time is based on the packet transmission (TX) time. 46

4.1 Basic layout of an interrupt driven router. 50

4.2 Multi-bus router layout block diagram. 51

4.3 High speed modular router layout diagram. 52

4.4 VOQ Crossbar layout. Incoming packets get classified in the line card into
separate VOQ queues to avoid head of line blocking. 53

4.5 N inputs are served by M servers. There is one queue of size Q slots per
port. Packets exit the forwarding device through one of the N output
ports. 56

4.6 Three packets destined to the same output are concurrently served by
three servers. A packet is not transmitted on the output link until the
previous packet is sent out. 57

4.7 Parameter inference algorithm . 58

5.1 Logical view of the profiler’s components. 62

5.2 Example of a single TCP flow from the simulator into the network and
vice versa. 63

ix

Figure Page

5.3 Measured packet delay consists of NIC send overhead, NIC receive over-
head, router overhead, and two transmit delays. 63

5.4 Timestamping in the device driver when sending a packet. 64

5.5 Sample Click configuration . 66

5.6 Relationship between I/O operations and threads in the simulator. . . 69

5.7 Concurrent threads of execution . 72

5.8 NIC–to–NIC (mean, 5 and 95 percentiles) vs. pure 100 Mbps TX delay. 73

5.9 NIC–to–NIC (mean, 5 and 95 percentiles) vs. pure 1 Gbps TX delay. . 73

6.1 Test topology with four subnets . 79

6.2 Observed minimum delays for different packet sizes at 100 Mbps 80

6.3 Observed minimum delays for different packet sizes at 1 Gbps 81

6.4 Low-load TCP: Delays on port2 . 84

6.5 Low-load TCP: CDF plots for port2 86

6.6 High-load TCP topology . 87

6.7 High-load TCP: Delays on port2 . 90

6.8 High-load TCP: Delays on port2 . 91

6.9 High-load TCP and HTTP topology 91

6.10 High-load TCP and HTTP: Delays on port2 94

6.11 High-load TCP and HTTP: Delays on port2 95

6.12 Effects of backplane contention on non-congested port0 95

6.13 Cisco 3660 on port0: Separate ports case 96

x

ABSTRACT

Chertov, Roman Ph.D., Purdue University, May, 2008. A Device Independent
Router Model: From Measurements to Simulations. Major Professors: Sonia Fahmy
and Ness B. Shroff.

Simulation, emulation, and wide-area testbeds exhibit different tradeoffs with re-

spect to fidelity, scalability, and manageability. Network security and network plan-

ning/dimensioning experiments introduce additional requirements compared to tra-

ditional networking and distributed system experiments. For example, high capacity

attack or multimedia flows can push packet forwarding devices to the limit and expose

unexpected behaviors. Many popular simulation and emulation tools use high-level

models of forwarding behavior in switches and routers, and give little guidance on

setting model parameters such as buffer sizes. Thus, a myriad of papers report results

that are highly sensitive to the forwarding model or buffer size used.

In this work, we first motivate the need for better models by performing an ex-

tensive comparison between simulation and emulation environments for the same

Denial of Service (DoS) attack experiment. Our results reveal that there are dras-

tic differences between emulated and simulated results and between various emula-

tion testbeds. We then argue that measurement-based models for routers and other

forwarding devices are crucial. We devise such a model and validate it with mea-

surements from three types of Cisco routers and one Juniper router, under varying

traffic conditions. The structure of our model is device-independent, but requires

device-specific parameters. The compactness of the parameter tables and simplicity

of the model make it versatile for high-fidelity simulations that preserve simulation

scalability. We construct a black box profiler to infer parameter tables within a few

hours. Our results indicate that our model can approximate different types of routers.

xi

Additionally, the results indicate that queue characteristics vary dramatically among

the devices we measure, and that backplane contention must be modeled.

xii

1

1 INTRODUCTION

Over the past several years, there has been a substantial increase in malicious traffic in

the Internet. Denial of Service (DoS) attacks have become increasingly prevalent [1,2].

The DoS attacks in February 2000 brought down Yahoo! and eBay; a more massive

attack in October 2002 brought down eight of the thirteen root Domain Name System

(DNS) servers. A three-week backscatter analysis observed 12,000 attacks against

more than 5,000 distinct targets [2]. More recently, several e-Businesses have been

extorted under the threat of prolonged DoS attacks. Significant damage, such as

network partitioning, can potentially be caused by attacks that target the Internet

infrastructure, such as inter-domain routing protocols, key backbones, and Domain

Name System (DNS) servers (which were attacked in 2002 and again in 2007).

Besides malicious traffic, there is a growing need to accommodate extremely high

bandwidth user traffic, as a result of e-commerce and entertainment industries growth.

Such traffic includes large media files, voice over IP, multiplayer games, streaming

video, and emerging IPTV. High–speed connections are required to accommodate

these industries. For example, an IPTV broadcast of cable TV quality requires 1 to

1.5 Mbps, while a high definition broadcast requires 6 to 8.5 Mbps, using a H.264/AVC

codec [3]. In Asian countries where 10 Mbps and higher broadband access is wide

spread, IPTV is already in use. In Hong Kong alone, there are over 500,000 sub-

scribers with neighboring regions adopting the technology at a rapid pace [4]. The

computer gaming market is also rapidly expanding; in 2001 alone, it claimed over $9

billion in the US market [5]. The ever improving graphics result in higher quality

interactive worlds and expanded features; in multiplayer games this directly trans-

lates to higher bandwidth usage to synchronize a multidute of game objects. The

combined aggregate of these bandwidth hungry services for many thousands of users

2

can strain even the best networks. Hence, the success of these industries heavily relies

on sufficient network infrastructure to provide ample bandwidth.

Clearly, the substantial increase in malicious and multimedia traffic demands in-

novative software and hardware solutions. Research of these new technologies faces

difficult challenges because of the scale and the sheer amount of traffic involved. For

instance, 10,000 viewers of high definition IPTV would require more than 60 Gbps of

network bandwidth. Before being released into production, new technologies must be

tested on a large scale to make sure that they work as intended, without undesirable

side effects that might impede other services. Network providers must also ensure

that their networks can manage present and near future loads. To do so, they must

perform network planning/dimensioning experiments to decide if network upgrades

are required. An incorrect decision can result in poor service and ultimately loss of

customers and revenue.

1.1 Network Research Tools and Analytical Models

Currently, testing and research is carried out on simulators, emulators, and testbeds.

The considerably aggressive nature of the high–capacity flows requires high–fidelity

experimentation as these flows can stress these limits of the software/hardware and

knowledge of the limits is critical before deployment on the Internet can proceed.

1.1.1 Simulation

Network simulators must balance a fidelity versus scalability tradeoff [6, 7]. At

one end of the spectrum, simulators can choose to sacrifice fidelity, especially at the

lower layers of the protocol stack, for scalability. For this reason, Internet forwarding

devices, such as switches and routers, are only modeled at a high–level in popular

packet–level simulators such as ns-2 [8]. The wide ranges of intra–device latencies and

maximum packet forwarding rates in commercial forwarding devices are not incorpo-

rated. Networking researchers often find it difficult to set node parameters such as

3

router buffer size in their experiments with these simulators. Hence, many research

papers, e.g., in the congestion control literature, may report results that are highly

sensitive to the default forwarding model or the buffer size they selected, which may

or may not be representative of today’s switches and routers.

The high–level models used to represent routers in simulators such as ns-2 are

typically designed to mimic forwarding in core routers, and hence use a default sim-

ple output queuing model, abstracting away any processing delay or backplane con-

tention. Compared to these core routers, low–to–mid level routers have switching

fabrics with lower performance. Yet, because of cost considerations, they constitute

the majority of the forwarding devices in Internet edges and enterprise networks,

which is where most packet losses in the Internet of 2008 occur. Accurately modeling

a range of devices is especially important in experiments with high resource utiliza-

tion, as resource consumption models commonly used in simulators and emulators

may not be representative of today’s commercial routers. Discrepancies between the

simulated and deployment behaviors can be large in experiments with denial of ser-

vice attacks or high bandwidth traffic, and in network dimensioning experiments. For

example, results in the motivational chapter 2 with a low-rate TCP targeted denial

of service attack demonstrate that seemingly identical tests on various testbeds and

on the ns-2 simulator produce dramatically different results. The discrepancies in the

results arise because routers and other forwarding devices have complex architectures

with multiple queues and multiple bottlenecks (e.g., buses, CPUs) [9] that change in

complex ways according to the characteristics of the workload they are subjected to.

Near the other end of the spectrum from highly-scalable simulators lie simulators

such as OPNET [10] and OMNeT++ [11]. In OPNET, detailed models of routers,

switches, servers, protocols, links, and mainframes are given, solely based on vendor

specifications [12]. Using complex models significantly increases computational cost,

hindering scalability. Further, the model base needs to be constantly updated. Val-

idation attempts reveal that even these accurate models are sensitive to parameters

4

such as buffer size and forwarding rate that are difficult to tune to mimic router

behavior [12].

1.1.2 Emulation

To conduct experiments with real hardware and software, testbeds are used in-

stead of simulators. Emulation testbeds can range from small-scale lab networks to

massive multi–node facilities such as Emulab at http://www.emulab.net/, DETER

at http://www.isi.deterlab.net/, Wisconsin Advanced Internet Laboratory (WAIL)

at http://www.schooner.wail.wisc.edu, and Open Network Laboratory (ONL) at

http://onl.arl.wustl.edu/. These testbeds are aimed at achieving higher experimen-

tal fidelity as a variety of physical hardware running real software is available. By

leveraging VLANs it is possible to dynamically create a large set of experimental

topologies; however, a few things have to be emulated still. Link propagation delays

need to be artificially induced as most of the testbed nodes are only a few milli-seconds

away from each other. PlanetLab (http://www.planet-lab.org/) solves this problem

by having a large number of sites (600+) scattered all over the globe such that propa-

gation delays are real; however, there is a large number of limitations of what research

can be carried out, as this testbed is part of the Internet. Few testbeds (e.g., WAIL,

DETER, and ONL) have real routers; although the number/type of routers and ports

is limited, thus imposing limitations on the experiment topology scale. Because of

these limitations, routers have to be emulated by PCs, hence sacrificing fidelity and

potentially inducing artifacts.

1.2 A High–Fidelity Router Model

A key component of any large or small network is a forwarding device, which

has complex hardware and software. As it has been discussed above, simulators and

emulation testbeds do not always faithfully represent router characteristics. As packet

loss and delay occurs mainly at the routers during high loads, it is crucial to have

5

a high–fidelity model when researching highly–loaded networks. Most real routers

are pipelined [13, 14] network devices, meaning the router has to decode a packet,

make a routing decision, switch the packet to the correct path and then output it on

the correct port. In the majority of cases, routers are modeled as output ports only,

disregarding any packet interactions that might occur on the path to the output queue.

However, the complexity of the packet path in the router coupled with high network

load can make the interactions non-negligible, prompting a need for a high–fidelity

router model. Developing such a model requires to overcome several challenges:

1. The sheer multitude of routers used commercially poses an arduous task of keep-

ing track of all of the available hardware such as: switching fabrics, memories,

CPUs, NICs, buses.

2. The software that runs on the routers similar to the Cisco IOS can have various

policies and caching schemes that change from to version to version, making it

exceedingly difficult to incorporate into the model.

3. The model would require extensive validation for each new device, even if all of

the required information is captured in the model. Validation might be required

even for an already modeled device, if the software is upgraded or changed.

4. The scalability of a simulator can be inhibited by a highly detailed model, even

if it is highly accurate, because of significant computational overhead. Decrease

in simulator scalability, results in a reduction of network topology size that a

simulator can handle.

1.3 A Device Independent Router Model

Above, we have demonstrated a need for a router model that is accurate yet

preserves scalability of network simulators. In this work, we argue that it is important

to devise a forwarding model that lies between these two extremes, and is well–

6

founded on extensive device measurements. Such a model must meet the following

requirements:

1. It is accurate, but is allowed to miss special cases for the sake of scalability.

2. It is not computationally expensive.

3. Its parameter inference process is the same regardless of the device being mod-

eled.

4. Its parameters are inferred without assuming any knowledge of device internals.

5. The model reflects behavior under changing workloads.

To our knowledge, the only recent study that has modeled a router based on

empirical observations was [15]. The authors created a Virtual Output Queuing

(VOQ)-based model that added delays to the packets prior to placing them into an

infinitely large FIFO output queue. The delays were based on empirical observations

of a production Tier-1 access router. However, the model ignores any backplane

interactions and uses infinite sized queues. We will show that this model is reasonably

accurate for lightly loaded core routers with a sophisticated switching fabric, but it

does not generalize to lower-end devices or heavy loads.

1.4 Contribution

The contribution of this work is fourfold:

1. We motivate this work by addressing the question of when simulation, and

emulation are inadequate for studying DoS attacks or high capacity flows. A

key component of the answer to this question is the sensitivity of simulation and

emulation results to parameter settings and testbed capabilities. Experimental

fidelity is crucial once the limits of the network are reached.

2. We propose a model that differs from the VOQ-based model [15] in several key

aspects – most importantly the queue size and number of servers. Our model

7

generalizes to different router and switch types, but the model parameters make

it unique for a specific type. Additionally, we design a parameter inference

procedure based on simple measurements.

3. We create a custom low-cost measurement and profiling system to eliminate

the need for expensive measurement specialty cards. The tool can also function

as a high speed traffic generator, while providing micro-second precision packet

delay measurements. We have successfully used the tool for profiling and traffic

generation at 100 Mbps and 1 Gbps speeds.

4. We leverage our measurements to model two low-to-mid end Cisco routers:

3660 and 7206VXR, a Cisco high end router, 12410, and a Juniper M7i router.

Our preliminary experiments with UDP, FTP and HTTP traffic reveal that our

model is capable of capturing different router behaviors.

The results indicate that queue and performance characteristics vary dramatically

among the devices we measure, and that backplane contention can be a significant

source of delay. When compared to the observed results, our model performs much

closer than ns-2 in output queue and backplane contention scenarios. We believe this

to be a significant step toward creating high-fidelity yet scalable simulations.

1.5 Thesis Organization

The remainder of this work is organized as follows. Chapter 2 provides a detailed

motivation for this work, by performing a detailed comparison between simulation

and emulation environments for the same DoS experiment. Readers who are not

interested in the detailed comparison can skip this chapter. Chapter 3 surveys the

related work on simulation/emulation tools and router modeling. Chapter 4 provides

an overview of commercial routers, gives a detailed overview of our device indepen-

dent model, and describes active probing methods necessary to derive the model

parameters. Chapter 5 describes in detail the architecture of our profiling tool, called

8

the Black Box Profiler (BBP), which is used in our router experiments and model

parameter inference. Chapter 6 discusses our results with four different commercial

routers which represent a wide cross-section of the router market. Finally, chapter 7

concludes this work and discusses possible future directions.

9

2 COMPARATIVE STUDY OF NETWORK SIMULATION AND EMULATION

FIDELITY

In this chapter, we will describe in detail the motivation behind the need for more

accurate simulator router models. The motivation is based on an extensive study of

a low–rate TCP Denial of Service (DoS) attack in simulation and emulation experi-

ments. The results of the study indicate that significant differences can occur between

simulation and emulation experiments with seemingly identical experimental setups.

2.1 Introduction

Denial of Service attacks have become increasingly prevalent [1, 2], prompting

a myriad of network security research papers. The DoS attacks in February 2000

brought down Yahoo! and eBay; a more massive attack in October 2002 brought

down eight of the thirteen root Domain Name System (DNS) servers. A three-week

backscatter analysis observed 12,000 attacks against more than 5,000 distinct tar-

gets [2]. More recently, e-Businesses have been extorted under the threat of prolonged

DoS attacks. Significant damage, such as network partitioning, can potentially be

caused by attacks that target the Internet infrastructure, such as inter-domain rout-

ing protocols, key backbones, and Domain Name System (DNS) servers (which were

attacked in 2007 and in 2002). In this work, we address the question of when simu-

lation and emulation are inadequate for studying DoS attacks. A key component of

the answer to this question is the sensitivity of simulation and emulation results to

parameter settings and testbed capabilities. As a case study, we take an in-depth look

at low-rate TCP-targeted attacks [16,17]. In particular, we consider a scenario where

an attacker transmits short pulses at an arbitrary frequency. This attack exploits

the TCP Additive Increase Multiplicative Decrease (AIMD) mechanism to cause per-

10

formance degradation to TCP flows traversing the same routers. We use a simple

analytical model for predicting the average size of the congestion window of a TCP

flow under attack, as a function of the attack frequency. This model gives a lower

bound on the window size (for the case with no timeouts) because each pulse causes

loss. We compare results from a simple analytical model of TCP goodput under this

attack scenario to results from the popular ns-2 simulator, and the DETER, Emulab,

and WAIL testbeds under the same scenario.

TCP-targeted attacks are an interesting case study because they are a major cause

for concern (they are easy to launch, stealthy, and may be extremely damaging). Fur-

ther, in a deterministic simulation environment, traffic oscillations induced by these

attacks can lead to phase synchronization effects with slight parameter changes [18].

Such effects might appear interesting, but they are not representative of real systems.

Additionally, experiments with this attack on testbeds may yield large variations in

the results depending on the parameter settings and testbed capabilities.

A number of recent studies [16, 19–21] have experimented with TCP-targeted at-

tacks as well as proposed defenses against them. Among these, only [16,19] conducted

testbed experiments, but these experiments were conducted with (tc, iproute2), NIST-

net, or DummyNet [22] for link shaping and queue management, without investigating

system parameters, or relating the results to simulations. In contrast, our work inves-

tigates emulation environments via a more careful sensitivity analysis, and highlights

the danger of default system parameter settings, especially in regards to router nodes.

The primary contribution of this work is a careful comparison of results from sim-

ulation and emulation experiments with different DoS attack and system parameters.

Additionally, we compare PC routers to commercial Cisco routers. We explore key

problems that arise because of differences in testbed capabilities and default param-

eter settings. We design constructs for the emulation testbeds to achieve a level of

control comparable to simulation tools. Our results reveal that significant differences

can exist between simulation and emulation experiments even if the experimental

setups are almost identical.

11

The remainder of this chapter is organized as follows. Section 2.2 provides back-

ground on the attack we use as our case study. Section 2.3 gives a simple analytical

model of the performance degradation caused by TCP-targeted attacks. Section 2.4

describes the emulation environment we use, and the tools that we have developed

for the DETER emulation testbed. Section 2.5 explains our experimental setup. Sec-

tion 2.6 discuss our results from ns-2, Emulab, and DETER experiments. Section 2.7

describes our experiences with the Click router. Section 2.8 discusses our experiments

with commercial Cisco routers on the WAIL testbed. Finally, Section 2.9 summarizes

our findings.

2.2 TCP-Targeted Attacks

TCP-targeted DoS attacks are an ideal case study for understanding the pros

and cons of different evaluation methods and testbeds. Most well-publicized DoS

attacks have utilized a large number of compromised nodes to create constant high-

rate flows towards the victims. Such “flooding attacks” are effective, but have major

shortcomings from the attacker’s perspective. First, the attacks are easy to detect

as a result of the high volume of uniform traffic, e.g., UDP or ICMP. Several defense

mechanisms against these (and more sophisticated) DoS attacks have been proposed

in the literature [23–27]. Second, the attacks can self-congest at some bottleneck

and not reach the intended destination. Finally, users of the compromised machines

typically notice a performance degradation, prompting these machines to be examined

by system administrators, who can then eliminate the vulnerabilities that caused the

machines to be compromised in the first place.

An attack that is less susceptible to these limitations is the low-rate TCP-targeted

attack, introduced in [17]1. This attack has generated significant interest because of

its potential to do great harm, go undetected, and the ease by which it can be gener-

1We do not consider other types of application-specific, protocol-specific, or implementation-specific
DoS attacks, such as SYN attacks, BGP attacks, LAND, or TEARDROP, in this work. We only
focus on attacks against TCP congestion control.

12

ated. The basic idea of low-rate TCP-targeted attacks is that an attacker transmits

short pulses, i.e., square waves, with periodicity close to the Retransmission-Timeout

(RTO) interval [28] of ongoing TCP connections. These short pulses induce sufficient

packet loss to force the TCP flows under attack to time out, and to continually in-

cur loss as they attempt to begin TCP slow start. Therefore, the goodput of these

TCP flows virtually goes to zero. Such an attack can be used to strategically target

key routers or servers in the network, thus causing wide-spread degradation of TCP

performance.

A key feature of this attack is that it is stealthy, i.e., it does not continuously gen-

erate significant traffic, and thus cannot be easily distinguished from other legitimate

flows (e.g., video and other bursty traffic). Moreover, an attacker does not have to

be highly sophisticated to generate these attacks. It is straightforward to generate

UDP pulses, or use raw sockets to bypass the TCP congestion avoidance mechanism

altogether.

A study in [16] has considered a more general class of low-rate TCP attacks, re-

ferred to as the Reduction of Quality (RoQ) class of attacks. In a RoQ (pronounced

“rock”) attack, the attacker sends pulses at arbitrary frequencies, rather than try-

ing to precisely match the RTO periodicity. The attack exploits the TCP Additive

Increase Multiplicative Decrease (AIMD) mechanism to cause TCP goodput degra-

dation, rather than focusing on timeouts. The premise is that during the congestion

avoidance phase, when packet losses occur because of attack pulses, TCP halves its

congestion window, but when a successful transmission occurs, it only linearly in-

creases its window size. The motivation behind RoQ attacks is that they need not be

precisely tuned to the RTO frequency, as RTO may be difficult to ascertain, and can

be changed for different TCP sessions. Moreover, these attacks may be even more

difficult to detect, as they do not operate at a known frequency. While RoQ attacks

may not cause TCP goodput to virtually go to zero, as in the case of [17], they can

still significantly degrade service quality. Table 2.1 demonstrates the bandwidth2 of

2The bandwidth calculation includes the Ethernet, IP, and UDP headers.

13

a TCP-targeted attack averaged over a one second interval. The table demonstrates

that the average bandwidth that the attack flow consumes is a small portion of a

100 Mbps Ethernet link. Therefore, we use these attacks as a case study in our work.

Table 2.1
Average bandwidth of a TCP-targeted attack

Packet rate Packet size Sleep (ms) Pulse (ms) Bandwidth (Mbps)

16 Kpackets/s 64 500 160 1.99

16 Kpackets/s 64 2000 160 0.61

85 Kpackets/s 64 500 160 10.55

85 Kpackets/s 64 2000 160 3.22

140 Kpackets/s 64 500 160 17.38

140 Kpackets/s 64 2000 160 5.31

2.3 Simple Analytical Model

In this section, we give a simple analytical model that we use in our comparisons

to gauge the effectiveness of an attack. The model can be considered as a special

case of the model given in [19]. The model characterizes TCP performance degra-

dation as a function of the TCP-targeted attack frequency. In prior work, e.g., [29],

models of TCP throughput as a function of the round-trip time and loss event rate

were developed. These models, however, did not consider the presence of periodic

attacks. In contrast, we compute the average TCP window size as a function of the

TCP-targeted attack parameters. The analysis assumes that TCP Reno [30] in the

congestion avoidance phase is being employed for a single flow under attack.3 As

discussed in Section 2.2, the objective of this attack is to exploit the TCP AIMD

3We have generalized our model to multiple flows under attack, but, for simplicity of illustration,
present only the single-flow case here.

14

mechanism and not to cause RTOs. As Reno can typically recover from a single

packet loss without an RTO, it is assumed that every attack pulse will induce a

packet loss, resulting in Cwnd being cut in half but not inducing an RTO. A loss of

a single data packet will cause a reduction of the congestion window by half in TCP

Reno, after which additive increase will be employed. For simplicity of the analysis,

the short fast recovery phase is ignored. The resulting TCP congestion window saw-

tooth pattern is depicted in Figure 2.1 for a fixed attack frequency. Observe that the

model also gives a close approximation of the behavior of TCP New Reno [31] and

TCP SACK [32] even with a few packet losses with every pulse, because these TCP

flavors can typically recover from multiple packet losses without RTOs.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

CW
nd

 (p
ac

ke
ts)

Time (sec)

Congestion Window Evolution

Figure 2.1. Saw-tooth pattern of congestion window evolution because
of periodic loss every 4 seconds.

Let Wi be the size of the congestion window (Cwnd) right before the reduction

caused by pulse i, i ≥ 0. Let rtt be the flow round trip time (RTT). Let α be the

growth in Cwnd size during the attack sleep time t between pulses i and i +1. Then,

Wi+1 = Wi

2 +α, where α (the growth of the window during t) is equal to t
2rtt

(assuming

the default TCP behavior where every other packet is acked [33]; t
rtt

if every packet

is acked).

Let WI be the initial Cwnd size before the attack starts. We need to compute

Wmax, the maximum congestion window size after the attack reaches steady state,

15

as well as the average window size Wavg . From the above equation, one can easily

compute W1, W2, · · · . For example, W3 can be expressed as:

W3 =

WI
2 +α

2 + α

2
+ α.

Therefore, Wmax (assuming the limit on the receiver window size is not reached) can

be expressed as:

Wmax = lim
i→∞

(2−iWI + α(
i−1∑

j=0

2−j)) = 2α.

The steady state minimum window size is simply Wmax/2 = α. Since α = t
2rtt

,

therefore, Wavg = α+2α
2 = 3t

4rtt
.

From the computed Wavg, we can approximate the average throughput as: Rate =

Wavg × MSS × 1/rtt [33], where MSS is the Maximum Segment Size and rtt is the

connection RTT.

2.4 Emulation Environment and Tools

To experiment with this DoS attack in a high–fidelity setting, we leverage the

following testbeds: DETER (www.isi.deterlab.net), Emulab (www.emulab.net), and

WAIL (www.schooner.wail.wisc.edu). Emulab is a time- and space-shared network

emulator located at the University of Utah [34]. The system comprises hundreds of

linked PCs that can be connected in any specified topology, and a suite of software

tools that manage them. When an experiment gets allocated, the management system

allocates PCs and then connects them via VLANs, creating a desired topology. A

key advantage of such emulation testbeds is that results are reproducible, allowing

for detailed comparisons and careful sensitivity analysis.

The Cyber Defense Technology Experimental Research Network (DETER) is an

emulation testbed – based on Emulab – that allows researchers to evaluate Internet

security technologies [35]. DETER can be accessed remotely, but is quarantined from

the Internet. This allows for experimentation with live malware without infecting real

Internet hosts. The Evaluation Methods for Internet Security Technology (EMIST)

16

project, in which we have participated, is a companion project that designed testing

methodologies and benchmarks for the DETER testbed. The Wisconsin Advanced

Internet Laboratory (WAIL) is another testbed based on Emulab that has a variety

of commercial Cisco routers available to the researchers.

The primary advantage of using a network emulator – as opposed to a simulator

– for security experiments is that an emulation environment affords much higher fi-

delity, provided that it is correctly configured to avoid artifacts. Further, real security

appliances (e.g., off-the-shelf hardware) can be tested on it. This can expose unfore-

seen implementation vulnerabilities, protocol interactions, and resource constraints.

This is because an emulation testbed uses real devices with limited resources, and

real applications and operating systems running on them, to faithfully represent every

host in an experiment. Flaws and vulnerabilities are not abstracted by a simplified

or idealized simulation model.

In addition to emulating link delay and bandwidth, network emulation testbeds

may include one component that differs from real Internet components: router nodes.

In the current versions of Emulab and DETER, routers are represented by regular PCs

that act as forwarding gateways. We refer to these as PC routers. Our experiences

with WAIL have demonstrated that a regular commodity PC running Linux may

outperform low to mid-range Cisco routers. Specialty PC routers such as the ones

from ImageStream are usually created from high-end PCs that have SMP, multiple

buses, fast memory, and industrial network cards [36, 37]. The performance of spe-

cially configured PC routers can challenge that of Cisco 7000 series as well as Juniper

M-5/M-10 routers according to [38,39]. Therefore, it is important that we understand

the behavior of PC routers under attack. We also use Cisco 3600/7000-series routers

on WAIL to compare the results.

Developing efficient PC routers has been the subject of significant research, e.g., [40–

42]. In these studies, polling and/or Direct Memory Access (DMA) are used as an

alternative to packet receive interrupts to eliminate receive livelock at high packet

rates. This is because interrupts can consume much of the CPU and bus capacity

17

of mid-range machines (i.e., Pentium III and below) at 100 Mbps+ speeds. In this

work, we experiment with interrupt– and polling–based packet processing to increase

the breadth of the study.

Event control system In network simulators such as ns-2 [8] and iSSF/iSSFNet

[43], it is easy to create a topology, assign tasks to the nodes, and monitor every

single packet. A basic testbed – without any software support that mirrors some

of these capabilities – is limited in its usefulness, as it requires experimenters to be

experts in system-level programming. Achieving the same level of control provided by

a simulator on physical testbed machines is a significant undertaking. Basic topology

creation capabilities are provided by emulation testbeds, but an experimenter only

acquires bare machines that form the desired topology, without any tools running on

them.

Node B

Master Server

Node C
Test Network

Node A

Network
Control

Figure 2.2. Master/Zombie control network.

A natural approach to describe the tasks that must be performed on the testbed

nodes is to use event scripts, akin to events in an event-driven simulator. The Emu-

lab software implements a few event types such as link failures; however, most of the

interaction with the nodes must be performed via a secure shell (SSH) session. We

have designed a flexible mechanism to control all test machines from a central loca-

tion. We have developed a multi-threaded utility, which we refer to as a Scriptable

Event System, to parse a script of timed events and execute it on the test machines

(communicating with them on the control network). Our tool is capable of receiving

callbacks for event synchronization. Figure 2.2 depicts the architecture of our system.

18

Measurement tools Instrumentation and measurement on a testbed pose a sig-

nificant challenge. The capability to log and correlate different types of activities

and events in the test network is essential. Not only are packet traces important,

but also system statistics must be measured for DoS attacks. We log statistics such

as CPU utilization, packets per second, and memory utilization to the local disk for

later manipulation. Scripts for measuring, merging, and plotting system data are also

available for download.

2.5 Experimental Setup

The topology used for both simulation and testbed experiments is depicted in

Figure 2.3.4 This is a simple dumb-bell topology with four end-systems and two

routers. Unlike traditional dumb-bell topologies, the backbone link has no delay. The

reason for this is that the current setup on the WAIL testbed makes it impossible to

introduce any propagation delay on a router-to-router link. To make accurate testbed

comparisons, we have moved all delays to the access links. The links for the attack

nodes have no delays because the attack traffic is delay-agnostic. The attacker and

the attack sink are varied from one side of the topology to the other. The same basic

ns-2 script is used for both simulations and testbed experiments. All testbed nodes

run the zombie process that forms the basis of our Scriptable Event System.

Attacker/Sink

Node 3

Node 2

Node 1

Node 0

SenderR1 R2

100 Mbps

100 Mbps

100 Mbps

100 Mbps

100 Mbps

Receiver
0 msec

Attacker/Sink

0 msec

40 msec40 msec

0 msec

Figure 2.3. Simple dumb-bell topology with 160 ms round-trip-time
and 100 Mbps links.

4This simple topology is not representative of the Internet, but we have selected it to be able to
analyze the results in depth.

19

2.5.1 Testbed Setup

Machine specifics On the DETER testbed, we use dual Pentium III (P3) 733 MHz

with 1024 MB of RAM and dual P4 Xeon 2.8 GHz with 2048 MB of RAM. Both

machine types have Intel Pro/1000 cards. P3s are used for Node0, Node2, R1, and

R2, while P4s are used for Node1 and Node3. On Emulab, Node0 and Node2 are P3

600 MHz with 256 MB of RAM; Node1 and Node3 are P4 2.0 GHz with 512 MB of

RAM; and R1 and R2 are P3 850 MHz with 256 MB of RAM. The P3s have Intel

EtherExpress Pro 100 cards while the P4s have Intel Pros. On WAIL, all hosts are

P4 2.0 GHz with 1024 MB of RAM with Intel Pro cards, while R1 and R2 are varied

between Cisco 3640s and a 7206VXR-7500 pair. The choice of the specific machine

types on the testbeds was driven by the need to minimize cross-switch hops: as the

emulation testbeds contain a considerable number of machines, multiple switches are

used to connect them together, potentially leading to loss at cross-switch hops.

In our first set of experiments (Section 2.6), all nodes ran Linux 2.4.26 with IRQ-

driven packet processing, thus being susceptible to receive livelock [41]. The default

NIC driver is e1000-5.2.30.1-k1 on DETER, and eepro100.c:v1.09j-t9/29/99

on Emulab. We used TCP SACK [32] with delayed acknowledgments in ns-2, as

well as on the testbed machines. The ns-2 (drop tail) buffer sizes for routers were

set to 50 packets (except in experiments when we vary the queue size). The buffer

size of 50 was chosen because, according to DummyNet documentation [22], it is a

typical queue size for Ethernet devices. Also the buffer size of 50 is the default ns-2

queue size. We found that by default the receive and transmit device driver buffers

on DETER can hold 256 descriptors (64 on Emulab), according to ethtool.

Link delays Shaping methods such as DummyNet [22] or tc have been found to

induce artifacts, as a result of bursty behavior and not being always true to the

desired properties [44, 45]. These issues can be avoided, by emulating link delays on

the DETER/Emulab/WAIL testbeds with the Click router. Special care was taken

to manually select and configure the delay nodes to be at least as fast as the rest of

20

the test nodes, so that no packet loss occurs at the delay nodes. We accomplished

this task by selecting Dual Pentium 4 Xeon 2.8 GHz machines with PCI-X, running

SMP and polling-enabled Linux 2.4.26 to act as delay nodes on DETER, and 2.0 GHz

uniprocessor nodes on Emulab/WAIL. To avoid bursty behavior, we configured the

kernel clock to run at a higher frequency of 1000 Hz. Unlike the default Emulab-type

delay nodes, each of our delay nodes are assigned to shape a single link instead of

two.

2.5.2 Attack Generation

On the testbeds, the attack packet sizes (as well as all header fields and transmis-

sion rates) can be easily configured in our event script. As most queues are composed

of Maximum Transmission Unit (MTU)-sized slots, we use small UDP packets for

most of our DoS attacks (unless we are experimenting with the attack packet size).

Attacks with smaller packets (and hence higher packet rates) may be more damaging

because each packet requires a certain amount of header processing at routers and

packet processing at end systems. Although our attack generator is easily able to

use IP source and destination address spoofing, we do not employ spoofing in our

experiments, to avoid the additional Address Resolution Protocol (ARP) overhead,

and avoid backscatter [2] overhead on PC routers.

In our ns-2 experiments, the attack is created by a CBR agent that pulses at

regular intervals. To achieve the same behavior on the testbed nodes running Linux,

we use raw sockets for packet transmission. System timers are used to measure the

duration of the attack pulse, and the sleep time when no packets are sent by the

attacker. Using real clock timers is crucial when sub-second granularity is required.

We use the real clock to generate desired packet rates and space packets equally in

time as much as possible. However, the attack pulse on Linux is less precise than its

ns-2 counterpart, as CPU scheduling, etc., affect the pulse precision. This produces

small variations in the experimental data during identical runs on the testbeds. In

21

the case of ns-2, it has been observed that deterministic simulations can lead to

synchronization artifacts [18]. To break this synchronization, we have added random

jitter to the attack pulse and sleep periods that can extend them by U(0, 10) ms,

approximating the coarseness of a system clock. Thus, we repeat each simulation or

testbed experiment ten times and report mean values as well as 95-percent confidence

intervals.

Our attack generator, flood, is capable of generating packets at variable rates.

Additionally, the tool can rely on system timers to alternate between on/off periods.

To ensure that the desired rate is achieved, the packets are evenly spaced in time,

and a high-end machine is required to generate rates of over 140 Kpackets/s.5 The

flooding agent used in the experiments was compared with Click’s kernel element

udpgen to ensure that our generator is on par with that of Click. Attack packets take

64 bytes at the data link layer, as 64 bytes is the smallest possible Ethernet frame.

Since ns-2 does not explicitly increase packet size as the packet traverses the protocol

stack (i.e., packet size does not increase as headers are added), we have explicitly

fixed the size of ns-2 attack packets to 64 bytes.

2.5.3 Traffic Generation and Measurement

To gauge the impact of the attack on the three testbeds, we use iperf [46] to create

a single TCP flow for 250 seconds. We chose to have a single “good” flow as this

creates the worst case for the attacker, as the attacker must send enough traffic to fill

the queues and induce losses. Such a long-lived TCP flow is not unrealistic, because

several Internet sites offer large downloads, e.g., DVD-quality movies. In addition,

this scenario simplifies the comparison between simulation and testbed results. The

iperf tool reports statistics such as total time and transfer rate. In our case, the

transfer rate is a good indicator of the attack potency. We have configured the

experimental nodes as suggested in [47], and used an 11 MB receive window in iperf to

5The limit of 140 Kpackets/s is because of the limitation of the hardware on the network card itself.

22

allow full link utilization. TCP traces collected by tcpdump are processed by tcptrace

to derive the following statistics: number of sent/received data packets, number of

sent/received ACKs, number of retransmits, and congestion window estimates. As

we are interested in the effects of the attack during the TCP congestion avoidance

phase, we have developed a tool cwnd track that records the window for a specific

connection from /proc/net/tcp several times per second (once per RTT).

On the testbeds, we first start the measurement tools as well as tcpdump. Then,

we trigger the attack agent and, later, the file transfer. The sending node, Node0, is

instructed to send a TCP stream to Node2 via iperf for 250 seconds. Upon successful

completion of the task, the attacker ceases the attack, and the measurement and

tcpdump files are transferred to the project account for analysis. The ns-2 simulations

and the testbed experiments use the same basic tcl topology script, and we log the

attributes of the ns-2 TCP agent directly. The simulation time is 250 seconds and

Cwnd values are collected 40 seconds after the simulation start to discount the effects

of slow start. We report Cwnd as the number of outstanding segments (instead

of bytes) to correspond to the analytical model. To conduct accurate transfer rate

comparisons between ns-2 and the testbeds, we set the ns-2 TCP packet size to 1505

bytes. The average payload size reported by tcptrace when it analyzes the tcpdump

files is 1447. This means that the average packet size is 1505 bytes if Ethernet (14+4

bytes), IP (20 bytes), and TCP (20 bytes) overhead is included.

We encountered two problems in our initial experiments. First, we noticed a

large number of hardware duplicates in the tcpdump files when we captured traces

at the sending node. We suspect the problem is because of libpcap as the duplicates

were never sent on the wire. To resolve this problem, we use the delay nodes on

the testbeds to collect TCP traces via tcpdump in a similar fashion as was described

in [48]. However, we have combined the tasks of delaying and monitoring into a single

node as the number of available testbed nodes is usually limited. As the delay/capture

nodes only deal with TCP traffic, they can easily capture 100 Mbps TCP traffic as

the packet rates are less than 9000 Kpackets/s [48].

23

Second, we experienced cases where the window results from tcptrace and cwnd track

appeared erroneous, and did not correspond to the observed goodput. To make com-

parisons among the analysis, simulations, and testbed experiments possible, we use

goodput instead, applying a simple transformation to the analytical model that gives

an approximate analytical goodput, as described in Section 2.3.

2.5.4 Experimental Design

We investigate the impact of varying the following parameters:

(i) The attack sleep time from 500 ms to 4000 ms in 500 ms increments, and from

2000 ms to 20000 ms in 2000 ms increments;

(ii) The attack pulse length to be 20, 40, 60, 80, 120, 160, or 200 ms;

(iii) The attack packet size to be 64, 1184, or 1400 bytes;

(iv) The attack packet rate to be 8.3, 16, 85, or 140 Kpackets/s;

(v) The round-trip time of the attack flow and the long-lived TCP flow to be 60,

80, 120, 160, 200 or 420 ms;

(vi) Router buffer sizes on ns-2 routers to be 25, 50, 100, 150 or 256 packets;

(vii) Router buffer sizes on Click to be 50 or 250 packets;

(viii) The transmission ring buffer size of the e1000 driver to be 80 or 256 packets;

and

(ix) The placement of the attacker to be either Node1 or Node3.

We compute the following metrics:

(i) Average goodput in Kbps (Kbits per second) or Mbps, as reported by iperf or

computed from ns-2 results;

24

(ii) Average congestion window size in packets, computed for testbed experiments

by taking an average of the congestion window values tracked by our cwnd track

utility;

(iii) CPU percentage utilization from /proc/uptime; and

(iv) Packets per second received and sent on the test network interfaces, computed

for testbed experiments by using Click’s udpcount utility.

System-level measurements, e.g., CPU utilization, cannot be collected in simulations,

because ns-2 does not model host CPUs.

2.6 Emulab and DETER Testbed Results

In this section, we undertake a task of comparing results from the analytical model

(Section 2.3) and ns-2 simulator to Emulab and DETER testbed results.

TCP without attack We first measure the performance of the TCP flow with-

out any attacks on Emulab and DETER. On Emulab, the average of ten runs was

83.86 Mbps with a standard deviation of 5.871 Mbps. On DETER, we have observed

an average transfer rate of 88.28 Mbps with a std. deviation of 0.082 Mbps. In both

cases, examining the tcpdump files via tcptrace revealed that the sender congestion

window was close to the bandwidth delay product of the path, and no loss occurred

at the delay nodes.

Emulab/DETER versus simulation We initially use the default system settings

for the Emulab and DETER nodes, meaning that we do not alter the default Linux

configurations. In this set of experiments, the attack packets are 64 bytes. The RTT

is set to 160 ms, as depicted in Figure 2.3. We conduct two series of experiments on

Emulab and DETER where we vary the attack packet rate from 85,000 to 140,000

packets/s, which is the maximum transmission rate of our attack nodes. Figure 2.4

gives the average goodput for an attacker at node Node1 (forward direction) or node

25

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Model
ns-2 with Linux TCP

DETER
Emulab

(a) Attack in forward direction at 140 Kpack-

ets/s.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

DETER
Emulab

(b) Attack in reverse direction at 140 Kpack-

ets/s.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Model
ns-2 with Linux TCP

DETER
Emulab

(c) Attack in forward direction at 85 Kpack-

ets/s.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

DETER
Emulab

(d) Attack in reverse direction at 85 Kpack-

ets/s.

Figure 2.4. Comparison of the average goodput from analysis, simu-
lations, DETER and Emulab for different sleep time periods, and an
attack pulse of length 160 ms. RTT is 160 ms. Attack packets are
64 bytes. ns-2 results are not plotted in the reverse case because the
attack has little impact.

Node3 (reverse direction). The figures show key discrepancies between the simulation,

Emulab, and DETER results.

From Figure 2.4(a), we find that for all values of sleep time, the goodput with

ns-2 is typically higher than in other scenarios. Results on the Emulab testbed when

the packet rate is at 140 Kpackets/s are mostly below the analysis and the DETER

26

results. This is because the attack creates significant overload on the Emulab PC

routers, causing significant packet loss. For the 500 ms sleep time, the goodput on

Emulab is almost zero. Examination of tcptrace and netstat output revealed that

only few packets were sent throughout the duration of the connection and there was

a considerable number of RTOs with large idle transmit periods. This indicates that

the attack behaved as in the original low-rate attack paper [17]. When the attack rate

is at 85 Kpackets/s, the results on Emulab are above the analytical results indicating

that the attack has lost some of its potency. The simulation results reveal that

synchronization effects appear even more pronounced as a result of non-monotonic

increases in throughput. Additionally, the simulation results reveal that the attack

with these packet rates and Linux TCP has a more significant impact on the testbed

nodes compared to the simulated nodes.

To understand the significant differences between Emulab and DETER results,

especially with 140 Kpackets/s attacks, we measure CPU utilization at the two PC

router nodes R1 and R2. The attackers on both testbeds are similar (2.0 GHz versus

2.8 GHz machines). We find that the load experienced on DETER PC routers is

much smaller. This is because DETER PC routers have dual CPUs and an SMP

configured OS, a PCI-X bus, and better NIC devices than the Emulab machines used

in our experiments. This causes the attack to be more effective on Emulab than on

DETER.6 Therefore, we conclude that testbed measurements can significantly vary

based on hardware and system software attributes.

In addition, we observe that packet loss in router nodes on the testbed can occur

at a number of bottlenecks, as packets traverse multiple components and buffers, and

any of these buffers can overflow. In contrast, packet loss in ns-2 only occurs in case

of output buffer overflow. The ns-2 nodes themselves have “infinite CPU and bus

capacity,” and are capable of processing any flow without contention. This highly

6We have observed that the Emulab and DETER goodputs are similar over this range of sleep
times when we induce higher loss on DETER. For example, we used randomly-generated source and
destination addresses in attack packets. This results in significant ARP traffic, as well as load from
backscatter packets, which reduces goodput on DETER to the values we see on Emulab.

27

simplified and idealized router model yields a dramatically different behavior when

router components such as the CPU, buses, or routing fabric become bottlenecks as

in these experiments.

Impact of packet size Our experiments with different attack packet sizes (results

not shown here for brevity) have shown that, in case of packets with 1400 byte-

payload, there is a less significant goodput degradation, confirming that small packets

can cause more damage on PCs and PC routers because of higher packet rates, packet

processing overhead, and slot-based queues.

Impact of attacker location Another key observation is that the ns-2 attack flow

does not interfere with the TCP flow if it is flowing in the opposite direction (i.e.,

attacker at Node3), as links are full-duplex, port buffers are not shared, and there is

no CPU or IRQ (interrupt) overhead per packet in ns-2. As there is no interference

and one cumulative ACK loss does not typically cause a multiplicative reduction of

Cwnd (just a potentially slower Cwnd increase), ns-2 is unaffected when the attack

traffic flows in the opposite direction of the data traffic. We do not plot ns-2 results

on Figure 2.4(b) or (d) as the system is only bandwidth limited, and the average

goodput consumes the entire link.

Observations from Emulab and DETER experiments tell a different story: the

average goodput is clearly affected by an attack in the opposite direction (e.g., Emulab

goodput with a 140 Kpackets/s attack rate is almost the same as when the attack was

in the forward direction as shown in Figure 2.4(a)). The interference on Emulab and

DETER is because the Network Interface Card (NIC) on a PC router which receives

a high bandwidth packet flow will consume all available system resources, and other

NICs will starve. This results in interference among flows in opposing directions.

28

2.7 Using the Click Modular Router

In this section, nodes R1 and R2 in Figure 2.3 are configured to run the Click Linux

module post version 1.5.0. Because DETER machines have Intel Pro/1000 Ethernet

cards, it was possible to use Click’s e1000-5.7.6 NAPI polling driver to ensure that

receive livelock does not occur, and Click has the most direct access to the driver.

Additionally, we use dual 2.8 GHz P4 Xeon PC routers to leverage their faster CPUs

and buses. Using this more complex IP router configuration caused stability issues

with SMP. To overcome this problem, we had to compile the kernel and Click for a

single CPU. Further, we changed the kernel version to Linux-2.4.33 to take advantage

of patches that may increase stability under heavy load.

In Click, the entire packet path is easily described, and one can easily configure

a simple IP router that bypasses the OS IP stack. Simplification of the packet path

yields a performance boost, making the PC router less vulnerable to overload under

high packet loads. When the router is configured, each affected network device has

to be included into the configuration. It is easy to change the queuing discipline and

the queue depth for the queue at each output port. We will, however, show that it is

insufficient to change the Click Queue element depth. This is because Click (or any

software system for that matter) has to go through a device driver when it accepts or

outputs a packet. As with any Linux network device driver, the driver for the Intel

Pro/1000 card has internal transmit (TX) and receive (RX) buffers. The Click Queue

elements serve as intermediaries between these. We have created a simplified version

of an IP router as described in [42], where the input ports are connected to a routing

table. The routing table then sends the packets to the appropriate Queue element

from which the output port pulls the packets.

Forwarding performance We configure the Click routers with a queue size of 250

packets per output port. The transmit (TX) buffer on the device drivers was left

at the default value of 256 MTU-sized packets. Without any attacks, the TCP flow

achieved an average goodput of 90.83 Mbps with a std. deviation 0.054 Mbps. With

29

a non-stop flood of over 140 Kpackets/s at Node1, Click’s udpcount element at Node3

verified that the receiving rate was the same as the sending rate with minimal packet

loss. We confirmed the results with the Emulab’s portstats utility.

Impact of Click queue and device queue sizes To understand the effect of

varying Click (OS intermediates) and device driver buffer sizes, the Click Queue

element size was set to 50 or 250 slots, while the driver transmit (TX) buffer was

set to 80 (minimum setting) or 256 (default). We did not experiment with varying

receive (RX) buffer sizes because [49] demonstrated that receiving is much faster

than transmitting on PCs, and hence drops do not typically occur because of the

RX buffer overflow. The default drop-tail queuing discipline was used. Figure 2.5(a)

demonstrates that varying the TX buffer size produces significant variation in the

results. It is also important to note that the TX buffer size has a much more profound

impact than the Click queue size. Figure 2.5 clearly shows that a TX of 256 and a

Click Queue of 50 performs much better than a TX of 80 and a Click Queue of

250. This implies that it is crucial to be aware of the driver settings. We have also

experimented with an attack in the reverse direction as the TCP flow. Figure 2.5(b)

clearly indicates the advantage of polling versus interrupts in Click: there is little

interference between the opposing flows.

Click versus simulation As we know the exact size of the default TX output

queue (256 slots), we ran a set of ns-2 simulations with router output buffer sizes set

to 256 packets. We decided not to include the size of intermediate Click queue as

the previous experiments have shown that the TX buffer sizes are more significant.

In the simulations, we set the attack packet rate to 140 Kpackets/s (as it is on the

testbed). Figure 2.6 depicts the results. The simulation results follow Click’s results

after the 10 second mark for this case. The simulation and Click results indicate that

the attack is weaker than the analysis predicts.

30

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Model
Click Queue Size 50, TX 80

Click Queue Size 250, TX 80
Click Queue Size 50, TX 256

Click Queue Size 250, TX 256

(a) Attack in forward direction

 70000

 75000

 80000

 85000

 90000

 95000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Click Queue Size 50, TX 80
Click Queue Size 250, TX 256

(b) Attack in reverse direction

Figure 2.5. Impact of varying the Click router queue and the transmit
buffer ring of the network device driver on DETER. Attack packets
are 64 bytes. The attack pulse length and RTT are set to 160 ms.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 5000 10000 15000 20000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Model
ns-2 Linux TCP

Click Queue Size 250, TX 256

Figure 2.6. Comparison of the average goodput from analysis, simu-
lation, and Click (on DETER) for long sleep periods. Attack packets
are 64 bytes. Queue size in ns-2 and output device buffer ring in Click
is 256. The attack pulse length and RTT are set to 160 ms.

2.8 WAIL Testbed Results

In this section, we conduct experiments with commercial Cisco routers on the

WAIL testbed.

31

2.8.1 Cisco 3640 Routers

Cisco 3640 is a multi-service access platform for medium and large-sized enter-

prises and small Internet Service Providers [50]. The Cisco 3640 router is essentially

a PC that runs on a 100 MHz RISC-type CPU and uses DRAM and NVRAM for

buffer and OS storage. This router uses interrupts for packet processing, making it

susceptible to receive livelock. The routers used for our experiments have been con-

figured to use Cisco IOS Version 12.4(5). By default, the input queue size is 75 slots

and the output queue size is 40 slots.

Forwarding performance The router supports “Process Switching” mode [51]

and “Interrupt Context Switching” [51], as well as several caching options. In process

switching mode, the router uses IRQ handlers for receiving and sending packets.

Additionally, the router schedules an ip input process that performs the necessary

look-ups and makes switching decisions. As the router has to schedule the ip input

process for each packet and the CPU is quite underpowered, the router cannot forward

a full 100 Mbps flow composed of MTU-sized packets. In our tests, the router was

able to forward a maximum of 1248 64-byte packets per second.

The interrupt context switching mode is an optimized version of the process

switching mode. The optimization happens when all the switching work is performed

via the interrupt handlers and the ip input process does not get scheduled. In this

mode, there are three caching methods available for destination lookup. The methods

are fast, optimum, and Cisco Express Forwarding [51]. By default, fast switching is

used as the caching policy. This method relies on a binary tree for lookup. As this

is the simplest method, “Process Switching” has to occur if there is a cache miss.

Additionally, the cache has to get invalidated periodically as there is no correlation

between the ARP and routing table entries.

The drawback of the fast and optimum switching is in the fact that aging and

“Process Switching” occasionally has to happen. To remedy this situation, Cisco

IOS versions 12.0 and later support “Cisco Express Forwarding”, CEF [51]. Cisco

32

recommends this switching method and plans to make it the default on most of their

router series. CEF caching relies on a 256 way trie data structure with pointers to

MAC and outbound interface tables. This removes the need to invalidate the cache

as changes to the MAC and outbound interface tables do not require a change in the

routing cache. As in our experiments we do not use large routing tables, CEF and

default IP lookup tables yield similar performance.

In our experiments, the router was able to process 14.4 K 64-byte packets per

second in the interrupt context switching mode with “Cisco Express Forwarding”

(CEF) [51], which is a significant improvement over the process switching mode.

TCP without attack Cisco IOS offers the ability to install IP filters on the input

and output ports to provide egress/ingress filtering capability. Using IP filters is

advised to prevent IP spoofing, thus we ran our experiments with and without filters.

Figure 2.3 depicts the topology that we have used, but R1 and R2 are now Cisco

3640 routers. The experiment was run in exactly the same manner as was described

in Section 2.5. We first ran ten experiments without the attack to determine TCP

performance under normal conditions. The filters only allowed the packets with IPs

that were part of the test network to be forwarded. Without the filters, the TCP

flow was able to achieve an average transfer rate of 83.3 Mbps with a std. deviation

of 0.0213 Mbps; however, with the filters the goodput dramatically dropped to an

average of 7.3 Mbps with a std. deviation of 0.111 Mbps. This is not surprising, as

enabling IP filters forces the packets to be “process” instead of “fast path” switched.

The difference in switching paths can result in a performance of difference of an order

of magnitude [52].

3640 versus simulation As we know the exact size of the router output queues

(40 slots), we ran a set of simulations with this size. In the simulations, we set the

attack packet rate to 140 Kpackets/s exactly as on the testbed. We disabled the IP

filters on the routers and varied the sleep times from 2 seconds to 20 seconds in 2

second increments to capture a variety of attack scenarios. Figure 2.7 depicts the

33

 0

 5000

 10000

 15000

 20000

 25000

 30000

 5000 10000 15000 20000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Model
ns-2 Linux TCP

no filter rate 140K

Figure 2.7. Comparison of the average goodput from analysis, sim-
ulation, and Cisco 3640s when long sleep periods are used. The IP
filters on the Cisco routers are disabled. Attack packets are 64 bytes.
The attack pulse length and RTT are set to 160 ms.

results. The router results indicate that the attack is much less effective, compared

to the simulations and analysis. This is because most of the attack traffic is dropped

at the input queue of the interface that receives the attack traffic. If the attack traffic

is multiplexed with the TCP traffic on the same input port, then the attack potency

is significantly higher.7

Impact of packet size We now examine the effect of maintaining the same attack

bit rate while changing the packet rate, by varying the packet size. We observe that

achieving the same bit rate is not always possible by varying packet rates and sizes:

for instance, 8500 Kpackets/s with 1400-byte payload creates a 98 Mbps flow (includes

UDP/IP/Ethernet headers). The smallest packet size to use to achieve the same bit

rate is 1184 bytes. Any smaller size fails to meet the desired bit rate.

Figure 2.8 demonstrates TCP goodput when the attack rate is 8.5 Kpackets/s

with 1400-byte payload versus 10 Kpackets/s with 1184-byte payload packets. The

experiment was run with and without IP filters. The results surprisingly indicate

that slightly larger packets at a slightly lower packet rate cause more damage to

7We have also observed that if we use TCP packets instead of UDP packets for the attack, the
TCP goodput degradation is closer to the model. This is because a stream of unsolicited TCP data
packets causes the sink to respond with RST packets, causing significant congestion at the router.

34

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

8.5 KPackets/sec size 1400
10 KPackets/sec size 1184

(a) With IP filters

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

8.5 KPackets/sec size 1400
10 KPackets/sec size 1184

(b) Without IP filters

Figure 2.8. Effect of varying packet size and packet rate – while
maintaining the same bit rate of 98 Mbps – with and without IP
filters on Cisco 3640s. The attack is sent at 8.5 Kpackets/s with 1400
byte payload, or at 10 Kpackets/s with 1184 byte payload. The attack
pulse length and RTT are set to 160 ms.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

8.5 KPackets/sec size 1400
140 KPackets/sec size 10

(a) With IP filters

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

8.5 KPackets/sec size 1400
140 KPackets/sec size 10

(b) Without IP filters

Figure 2.9. Impact of 140 Kpackets/s (64-byte packet size) versus
8.5 Kpackets/s (1400 byte payload) attack flows on Cisco 3640s with
and without IP filters. The attack pulse length and RTT are set to
160 ms.

TCP. To investigate the impact of varying packet rates, we have conducted another

experiment where the packet rate was 140 Kpackets/s and the packets were 64 bytes

and compared it to the 8.5 Kpackets/s with 1400-byte payload results. Figure 2.9

35

demonstrates the results. It is interesting to note that when IP filters were present,

larger packets sometimes induced more damage than smaller packets; however, when

IP filters were removed, smaller packets at a higher rate clearly had a more profound

impact.

 0

 5000

 10000

 15000

 20000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Model
no filter rate 140K
no filter rate 16K

filter rate 140K
filter rate 16K

(a) Attack in forward direction

 0

 5000

 10000

 15000

 20000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

no filter rate 140K
no filter rate 16K

filter rate 140K
filter rate 16K

(b) Attack in reverse direction

Figure 2.10. Comparison of the average goodput from analysis, simu-
lations, and WAIL Cisco 3640s for different sleep periods, attack rates,
and a pulse length of 160 ms. RTT is 160ms. Attack packets are 64
bytes. The reported results for the Cisco routers are with and without
IP filters. ns-2 results are not plotted in the reverse case because the
attack has little impact.

Impact of IP filters Figure 2.10 illustrates the results with the TCP-targeted

attack in forward and reverse directions. As in Section 2.6, we use UDP packets that

create 64-byte frames at the data link (Ethernet) layer. The attack rate is either

140 Kpackets/s or 16 Kpackets/s (14 Kpackets/s is the measured maximum loss free

forwarding rate). The results confirm that the use of IP filters has a profound effect

on the impact of the attack. Figure 2.10(a) and (b) show that an attack with a

maximum pulse height is not meaningful if the device can be overloaded at lower

attack intensity levels. By observing this fact, an attacker can make the attack much

more stealthy and harder to detect. Finally, the results indicate that the attack has

an impact in the reverse direction, even when a commercial router is used.

36

2.8.2 Cisco 7000 Series Routers

A few rungs up the ladder from the 3600 series are the 7000 series routers. Such

routers are designed as aggregation points for large enterprises or Points of Presence

(POP) for small ISPs. The routers support a variety of network modules that include

Gigabit Ethernet, Fast Ethernet, SONET, and Serial. Router documentation [53]

reveals these routers to be similar to multi-bus interrupt-driven PCs. Similar routers

are advertised by ImageStream [38] based on commodity PCs with special network

cards running a modified version of the Linux operating system. Unfortunately, the

router layout on the WAIL testbed does not allow us to use the same topology as in

Section 2.5. The link connecting the two routers is a 155 Mbps POS-3 instead of a

100 Mbps Fast Ethernet. We used a Cisco 7206VXR with IOS Version 12.3(10) as

R2 and a Cisco 7500 with IOS Version 12.3(17b) as R1 in Figure 2.3.

Forwarding performance Unlike the case of the 3640s, the 7000 series routers

are capable of forwarding almost 140 Kpackets/s when IP filters are disabled.

TCP without attack Without the attack and with no filters, the TCP flow

achieved an average rate of 24.99 Mbps with 4.53 Mbps std. deviation. With the

filters, the average rate decreased to 6.37 Mbps with a std. deviation of 0.179 Mbps.

Note that the TCP flow did not achieve a full link utilization in the no-filter run;

this was because of occasional packet loss in the routers. However, with multiple

flows using the “-P” option in iperf, the aggregate of the flows did reach full link

utilization. We suspect that some hardware issue is causing occasional packet loss.

For high-speed TCP flows, even an occasional loss is detrimental as the congestion

window is significantly cut, requiring many consecutive round trips to reach full link

capacity.

7000s versus simulation As the link between the routers was a 155 Mbps SONET

link and the output queues were of size 40, we ran another set of simulations with these

37

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5000 10000 15000 20000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Model
ns-2 TCP Linux

no filter rate 140K

Figure 2.11. Comparison of the average goodput from analysis, sim-
ulation, and Cisco 7000s when long sleep periods are used. The IP
filters on the Cisco routers are disabled. Attack packets are 64 bytes.
The attack pulse length and RTT are set to 160 ms.

settings. In the simulations, the attack packet rate is set to 140 Kpackets/s as on the

testbed. Again, we ran the routers without IP filters and varied the sleep times from

2 seconds to 20 seconds in 2 second increments. Figure 2.11 illustrates the results.

In the simulation results for the 140 Kpackets/s attack, there is substantially more

damage initially, but then the attack impact is quickly reduced as the throughput

climbs to almost 80 Mbps in some cases. The reason for the discrepancy between

simulation and the analytical model is because the link speed difference invalidates

the assumption that each attack pulse will result in a Cwnd cut. The results on the

routers are appreciably close to the results when no attack was present, showing that

the attack is not very effective in this case.

Impact of packet size As with the 3640 routers, we compare the effect of main-

taining the same bit rate while changing the packet rate by varying the packet size.

Figure 2.12 demonstrates the results when the attack rate is 8.5 Kpackets/s with

1400-byte payload packets versus a 10 Kpackets/s rate with 1184-byte payload pack-

ets. As before, the experiment was run with and without IP filters. Unlike the 3640

results, the 7000 results clearly indicate that even slightly smaller packets at higher

packet rates produce more damage.

38

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

8.5 KPackets/sec size 1400
10 KPackets/sec size 1184

(a) With IP filters

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

8.5 KPackets/sec size 1400
10 KPackets/sec size 1184

(b) Without IP filters

Figure 2.12. Effect of varying packet size and packet rate while main-
taining the same bit rate of 98 Mbps with and without IP filters on
Cisco 7000s. The attack is sent at 8.5 Kpackets/s (1400 byte payload)
or 10 Kpackets/s (1184 byte payload). The attack pulse length and
RTT are set to 160 ms.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

Model
no filter rate 140K

no filter rate 85K
filter rate 140K
filter rate 85K

(a) Attack in forward direction

 0

 5000

 10000

 15000

 20000

 25000

 30000

 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (K
bp

s)

Sleep Period (ms)

no filter rate 140K
no filter rate 85K

filter rate 140K
filter rate 85K

(b) Attack in reverse direction

Figure 2.13. Comparison of the average goodput from analysis, simu-
lations and WAIL Cisco 7000s for different sleep periods, attack rates,
and a pulse length of 160 ms. RTT is 160 ms. Attack packets are
64 bytes. bytes. The reported results for the Cisco routers are with
and without IP filters. ns-2 results are not plotted in the reverse case
because the attack has little impact.

39

Impact of IP filters Figure 2.13 shows the results for forward and reverse direction

attacks with varying attack packet rates, with and without IP filters. It is interesting

to compare the results for forward and reverse directions when IP filters are used.

The first router to receive the attack flow drops some of the attack packets; hence,

the downstream router receives a reduced attack flow. By changing direction of the

attack, we change which router experiences the higher load. The large difference

between forward and reverse directions at 140 Kpackets/s when using IP filters is

because the Cisco 7206VXR merges the TCP and the attack flows in the forward

direction, while the Cisco 7500 merges the TCP ACK and the attack flows in the

reverse direction. The Cisco 7206VXR has a R7000 CPU at 350 MHz, while the

Cisco 7500 has a R5000 CPU at 200 MHz. It is not surprising that the slower CPU

on the 7500 led to higher packet loss when IP filtering was enabled. Additionally, it

is interesting to note that the impact of the attack on the TCP goodput is higher

when larger packets at low rates are used (Figure 2.12(b)) compared to the attack

with smaller packets but higher rates (Figure 2.13(a)) (e.g., 16 Mbps vs. 25 Mbps).

The results indicate that in this case, large attack packets cause more damage than

smaller ones.

The results imply two important conclusions. First, as in all previous experiments

except for Click, the attack has an impact in both the forward and reverse directions.

Second, IP filters dramatically increase the impact of the attack.

2.9 Summary

Our comparisons between simulation and emulation experiments with seemingly

identical configurations have revealed key differences in the results. Some of these

differences occur because simulators abstract a number of system attributes, and

make several assumptions about packet handling. For example, because PCs are used

on Emulab/DETER and routers on WAIL, their CPUs, buses, devices, and device

drivers may create a bottleneck that simulators do not model. Another important

40

observation from comparing data from the Emulab and DETER emulation testbeds is

that even though the hardware and software on both testbeds may appear similar, the

nodes on Emulab experience a much higher CPU load than the DETER nodes for the

same packet rate. This means that the same experimental setup (configuration files,

software, emulation platform) may produce widely different outcomes, as results are

highly dependent on the details of underlying hardware and software, and their default

settings. These different settings do not cause widely different outcomes in typical

networking and operating systems experiments, but cause dramatic differences under

DoS attacks that overload the system. This observation was once again confirmed

by running the experiments on Cisco routers at the WAIL testbed. There were

major differences between different Cisco routers. We have gone to great lengths to

investigate the reasons why PCs, Cisco routers and simulation models vary between

each other. Figuring out the minute details is a exceedingly long and time consuming

process, highlighting the need for automation and high–fidelity simulation models.

41

3 RELATED WORK

In the previous chapter, we have used an ns-2 simulator and several emulation testbeds

to reveal large discrepancies in the experimental results for the same experiment. The

study demonstrated the need for more accurate router models for simulation experi-

ments. In this chapter, we will describe the state of the art simulators and emulators,

and demonstrate that router fidelity is currently an unresolved issue. Finally, we

discuss the works in the area of router benchmarking and modeling.

3.1 Network Simulation and Emulation

Simulation and emulation are invaluable tools for a networking researcher as they

allow experiments to be carried out with much less overhead than with physical

networks. Simulators are typically more scalable [6] than emulation tools, allowing

for experimentation with considerably large networks and high data rates. However,

the scalability comes at the expense of fidelity, as model accuracy has to be sacrificed

to reduce computational overhead [7]. Accuracy can be improved by using emulation

tools to merge some aspects of the physical network with the simulator. Such an

arrangement improves the accuracy at the cost of scalability. In the following sections

we will describe the current simulation and emulation tools that are available today.

3.1.1 Network Simulators

One of the most well known simulators is ns-2 [8], maintained by ISI. This discrete

event simulator has extremely basic link models and is mainly used for queuing and

end-to-end protocol research. Routers are represented as collections of output link

queues ignoring any physical layer models. In ns-2, packets are treated as messages

42

and there is no notion of network layers. This shortcut obviously reduces the running

time and the memory requirements but takes away from realism. As ns-2 cannot

be run in a parallel or distributed fashion, a parallel/distributed versions PDNS [54]

was developed. GTNetS [55] addresses the layer problem of ns-2 by using real packet

formats and layers, it also allows distributed simulation just as pdns.

Near the other end of the spectrum, from highly-scalable simulators lie simulators

such as OPNET [10] and OMNeT++ [11]. In OPNET, detailed models of routers,

switches, servers, protocols, links, and mainframes are given, solely based on vendor

specifications [12]. Using complex models significantly increases computational cost,

hindering scalability. Further, the model base needs to be constantly updated. Val-

idation attempts reveal that even these accurate models are sensitive to parameters

such as buffer size and forwarding rate that are hard to tune to mimic real router

behavior [12].

Simulators such as ns-2, are frequently critiqued for lack of network layers. Ad-

ditionally, the simulator code is not interoperable with any operating system, thus

making it difficult to validate the results in a physical experiment. Even though OP-

NET has network layers, it has the majority of packet handling code written from

scratch, raising the issue of credibility as well. NCTUns [56] solves this problem by

making hooks into the Linux kernel to use as much of the OS code as possible to

make validation easier, as the operating system code is part of the simulator. Even

though NCTUns addresses the interoperability issues, it does not provide high-fidelity

hardware/software models for wired packet forwarding devices.

There are other simulators such as iSSF/iSSFNet [43], J-sim [57], but they are

not as popular as the simulators listed above.

3.1.2 Network Emulation Tools and Emulators

One of the earlier emulators is VINT [58]. VINT integrates the ns-2 [8] simulator

with the real world by a “bridge” that translates real packets into simulator represen-

43

tations and vice versa. This approach offers good scalability and flexibility properties

as the user can easily modify the simulator and simulate arbitrary topologies. On

the downside, the user has modify the “bridge” to translate new types of packets

correctly. The extra packet translation steps can result in sub-realtime performance,

hence creating a backlog of events. Additionally, the simulator can induce artifacts

into the results because of incomplete/incorrect models.

Modelnet [59] is an emulator capable of large scale topologies. It emulates the

network core leaving only the edge nodes to the user. The system has substantial

scaling properties because it can aggregate a large number of links on a single high–end

machine and be distributed over a set of machines. The system is good at producing

end-to-end delay, but is incapable of performing dynamic routing or allowing the user

to install his/her own applications at the core. An emulator called EMPOWER [60]

is similar to Modelnet but it also adds wireless capability. EMPOWER also suffers

from the problem that users cannot run routing software or request a high fidelity

router model.

Instead of creating network “clouds”, it is possible to use virtualization to achieve

a similar effect but with finer control of the “cloud”’s properties. An emulator

vBET [61] relies on User Mode Linux (UML) to create virtual machines that run

on the same physical machine. The added capability to create emulated switches and

hubs allows the virtual nodes to communicate with each other. A single PC can run

an experiment of a small-to-medium network with important details such as: routing

exchange, real protocols, and real software.

One of the largest emulation testbeds is Emulab. As discussed in Section 2.4 it

is a time- and space-shared network emulator located at the University of Utah [34].

There are currently several testbeds in various institutions and labs that are based

on Emulab software. The testbed is composed out of hundreds linked PCs that

can be connected in any specified topology. During an experiment allocation, the

management system reserves PCs and then connects them via VLANs, to form a

44

desired topology. Emulab [62] also supports virtualization of nodes as well as NICs,

allowing for similar capabilities as vBET.

Network emulation can range from emulating large segments of the network as was

discussed above, to just artificially shaping a single link. Tools such as tc, iproute2,

NIST-net, DummyNet [22], NetPath [45], Click modular router [42] allow to do just

that.

3.1.3 Device Fidelity

All of the work described above focuses on establishing connectivity and provid-

ing requested delays and link bandwidth. However, critical properties of real packet

forwarding devices such as: queuing delays, maximum packet forwarding rates, poli-

cies, and realistic queue sizes are not considered. Failing to consider these properties

reduces the fidelity of the simulation/emulation experiments especially in cases when

high traffic load is present.

3.2 Router Modeling

Packet forwarding of the router can be modeled in two ways. First, a highly

detailed model that captures the hardware and the software can be constructed.

Such a model would be extremely difficult to create and validate. Also, using such

a model can be a hindrance to scalability because of a large processing overhead.

The second approach relies on a less detailed approximation model. Such a model

can be constructed either with complete knowledge of the forwarding device, or the

router can be treated as a black–box. As it is appreciably difficult to acquire complete

knowledge of the system, we will look into the approach where the router is treated as

a black–box. In this section, we will cover the related work in the areas of black-box

testing, traffic generation, and modeling based on empirical data.

45

3.2.1 Black-box Testing and Traffic Generation

Black-box testing is an attractive approach to create approximate models. First,

no inside knowledge is needed of the device under the test. Second, the model is con-

structed from empirical observations, thus reducing the need for extensive validation.

To conduct black-box testing, it is crucial to generate traffic to act as measurement

probes, which are used to infer the router’s characteristics.

Black-box Testing Black-box router measurement is described in [63–65]. In [63],

a router is profiled with a focus on measuring its reaction times to OSPF routing

messages. The router is first configured with an initial OSPF routing table. Then the

router is injected with OSPF updates. The researches then measured the reaction

times to the updates to produce the results. RFCs 2544 [64] and 2889 [65] describe the

steps to determine the capabilities of a network device designed for packet forwarding.

The RFCs specify a series of tests where homogeneous traffic is injected into the device

under the test. However, there is no discussion regarding heterogeneous traffic tests.

Additionally, there is no discussion on how to create models based on the acquired

measurements.

Traffic Generation Generating homogeneous traffic is straight forward and does

not require sophisticated tools. It is also possible to generate heterogeneous traffic

without much effort by replaying tcpdump or DAG [66] traffic traces. Creating highly

configurable live (i.e., closed-loop) traffic is important for modeling purposes, as it

can expose the router to higher loads than homogeneous traffic can [67].

One of the earliest network simulation-emulation tools was VINT [58] – a part

of ns-2. As the ns-2 simulator has a variety of TCP stacks, it is straight forward to

configure it to generate live traffic via its emulation agents. The problem with ns-2

emulation code is that it does not support sending/receiving spoofed IPs (required for

subnet emulation on a single node), and it is considerably data-rate limited. A recent

effort to extend emulation in ns-2 was reported in [68]. However, the system was not

46

built to handle excessive data rates and extensive packet logging with micro-second

precision, which are important for high-speed router measurements. A commercial

alternative to generating live TCP traffic is the IXIA-400T traffic generator [69]. IXIA

devices use a proprietary OS and do not allow changing the types of the TCP stacks,

however.

Realism can be increased further, by creating live traffic from models derived from

traffic traces. For instance, Harpoon [67] traffic generator uses flow data collected by

Cisco routers to generate realistic traffic. Additionally, tools such as tmix [70] or

Swing [71] generate traffic based on previously measured realistic application work-

loads. Even though such tools offer accurate traffic generation, they rely on extensive

packet traces. Acquiring such traces can sometimes be problematic either as a result

of infrastructure or human subject research issues.

3.2.2 Empirical Router Modeling

+ ServerMin
Delay

Port1

PortN
Queue

Port K
Infinity

Service Time = TX
...

Figure 3.1. Minimum delay queuing model with an unbounded queue
per output port. The service time is based on the packet transmission
(TX) time.

Router modeling based on empirical observations is explored in [15], as discussed

in the introduction. The work resulted in a model based on a simple queuing model;

however, the model was not designed to handle loss events and ignored interactions

at the input ports. A production Tier-1 router was used in that work, as well as in

analysis of micro-congestion in [72]. While this ensures that the router configuration

and traffic are highly realistic, repeatability is not possible in a production setup.

47

Time-stamping was performed with GPS synchronized DAG cards. Such devices are

highly accurate, but increase the setup cost and complexity significantly. This is

because, per each input and output port a DAG card is required. Hence, for a four

port router eight DAG devices would be needed. Additionally, a DAG card needs to

be installed in a PC so that packet logging to disk can take place.

Fig. 3.1 depicts the Virtual Output Queue (VOQ)-based router model suggested

in [15]. The model is considerably similar to the classical output queue model, except

there is a constant delay added to each packet based on its packet size. The extra

delay signifies additional router overhead required for packet processing. This delay

is derived from experimental measurements by finding the lowest delay for a given

packet size. The authors choose this method to ensure that queue delay is not a

factor. Each output port is modeled in this fashion, ignoring any interactions at the

inputs and the backplane. We believe that this model is accurate for core routers

which have a sophisticated switching fabric, but it can be inaccurate for lower–end

devices. For example, there was no loss observed in the core router in [15], and hence

the queues have unlimited capacities. The VOQ model is quite attractive because of

its simplicity; however, it fails to account for details which can lead to large deviations

in the results with other types of forwarding devices as was discussed in chapter 2.

3.3 Summary

In this chapter, we have described the current state of the art in high-fidelity

simulation/emulation. As in chapter 2, we have shown that current simulators do

not model packet forwarding devices in an accurate fashion, hence reducing the ac-

curacy of the simulations, especially in high–load scenarios. Increasing simulation

accuracy can be done with better router models. Using a simple model that uses

empirically derived parameters has two primary advantages: model simplicity and

improved accuracy. In Section 3.2.2, we have examined the current viable approach

to model routers based on empirical measurements. However, the proposed method

48

ignores any possibility of backplane contention and packet losses. Additionally, the

proposed scheme uses DAG cards, which are costly and require extensive setup time,

for empirical measurements.

49

4 BENCHMARKING AND MODELING ROUTERS

As was discussed in Section 3.2.2, the empirical VOQ model has a number of short-

comings which limit its usefulness. To understand how to overcome those shortcom-

ings, we fist conduct an overview of what the commercial routers are composed off and

what features they offer. Second, we provide a brief overview of the router software.

Third, we describe our empirically based device independent model, its parameters,

and finally the parameter derivation steps.

4.1 Commercial Router Overview

Routers come in a multitude of types and configurations. Any device that can

execute a routing protocol (e.g., OSPF, BGP, RIP and ISIS) and forward packets is

considered a router. Routers made for household use are not technically routers, as

they do not run a routing protocol and only forward packets based on DHCP informa-

tion. However, we still consider such devices as they perform IP packet forwarding.

Between the extremely limited household devices and core–level routers, there is a

wide range of devices. In the overview, we will focus mainly on Cisco’s products, as

they are the industry leader and their competitors provide similar offerings.

The Cisco 1600 [73] series routers are full fledged routers designed for small offices

and medium enterprises. Routers of this series can be considered as PCs built out

of proprietary components. Fig. 4.1 shows the basic layout of such a router. The

block diagram except for the video and IDE/SCSI buses is considerably similar to a

PC layout. Even though this is a low–end router, it supports the majority of Cisco

IOS features. A few levels up the ladder, there are 3600 [52] series routers. These

devices are also similar to PCs but have much better hardware compared to the 1600

series. Because the 3600 series are tailored for medium enterprises, branch offices,

50

and small ISPs, the 3600 series are designed to be highly modular and operate with a

large variety of physical access mediums (e.g., SONET, Ethernet, Serial) and support

a rich feature set of the Cisco IOS.

Network Module

Network Module

...

PCI BusI/O Bus

NVRAM

DRAM

ROM

CPU Bus

CPU

Sys Controller

Figure 4.1. Basic layout of an interrupt driven router.

To fulfill the needs of medium enterprises, branch offices, and small and medium

ISPs the Cisco 7200 series routers [53] are a good fit. These modular routers support

a variety of network modules that include Gigabit Ethernet, Fast Ethernet, SONET,

and Serial. Fig. 4.2 demonstrates the layout of such a router. The documentation

and the block diagram reveal this router to be similar to a multi-bus PC. Similar

routers are built by ImageStream [38], based on commodity PCs with special network

cards [37] running a modified version of the Linux operating system. However, routers

of this class are inadequate to serve as backbone routers due to their limited capacity.

It is interesting to note that the 1600, 3600, 7200 series rely on CPU interrupts to

process and forward packets. This implies that the CPU can be a contention point,

and flows that do not share the same output queue can interfere with each other.

At the extreme side of the spectrum there are backbone and large data center

routers. Typically, such routers rely on highly dedicated and modular hardware to

handle OC-192 speeds across multiple ports. Commercial examples would be Cisco

12000 [74] series and Juniper M7 [75] and higher series. Fig. 4.3 demonstrates the

layout of a modular router. In contrast to the previously described routers, backbone

routers can have multiple switch fabric cards, and dedicated route processing cards.

51

ROM

CPU

CPU Bus

SRAM CACHE

DRAMSys Controller

...

Network Module

Network Module

...

I/O Bus

NVRAM

Network Module

Network Module

PCI Bus 0

PCI Bus 1 PCI Bus 2

Mid Plane

NPEI/O Board

Figure 4.2. Multi-bus router layout block diagram.

The modules typically are connected to the same supervisory module to create a

cohesive unit. Additionally, each line card can contain multiple ports as well as

its own dedicated switch fabric. This is necessary for cases when switching needs

to be performed only between the ports on the same line card. These systems are

geared towards massive parallelism to handle OC-192 line rates on multiple interfaces.

It is not uncommon for such routers to contain over a million IP addresses in the

routing table, requiring an exceedingly sophisticated distributed memory architecture.

Such speeds are achieved, by forwarding the majority of packets without the CPU’s

involvement. A dedicated route processing card runs a routing protocol and then

updates the forwarding tables on the switching cards. Only in rare circumstances

will the main CPU be involved to deal with a packet. Such cases involve cache

misses, IP options, and routing/switching related updates.

Backbone routers typically employ a Virtual Output Queue (VOQ) to eliminate

head of line blocking. Head of line blocking occurs when packets destined to one

congested port end up delaying packets, which are destined for non-congested ports.

Such a situation can result in additional delay or even input buffer overflow. Fig. 4.4

52

LineCard

LineCard

LineCard

Route
Processor

...

...

...

Switch Fabric Cards

Figure 4.3. High speed modular router layout diagram.

demonstrates how Cisco 12000 series routers solve this problem by implementing the

VOQ strategy. When a packet arrives at a line card, it gets classified by its destination

and then gets placed into an appropriate virtual output queue. The crossbar switching

scheduler examines which virtual output queues are non-empty and then constructs

a schedule [76–78] to move the packets from virtual queues to output queues. Once

a packet is moved over the crossbar into the output queue, it gets enqued or dropped,

if the queue becomes full. As each packet must traverse several modules on its way to

the output queue, a packet incurs multiple service delays. The aggregate sum of the

delays is non-negligible. In most network simulators such as ns-2, it is most common

to approximate routers as a VOQ model and discount any processing delays.

4.2 Router Software Overview

Router software can range from a limited feature sets, such as what is found on

tiny home “routers”, to considerably large feature sets as found in Cisco IOS, Juniper

OS (JUNOS), and Linux/BSD derivatives. The software needs to handle a variety of

tasks that include: configuration, hardware interaction, routing protocol exchange,

policy execution, packet forwarding, and cache/queue management.

53

...

Incoming
Packets

...

Incoming
Packets Output Queue

Line Card 1

Output Queue Outgoing
Packets

Outgoing
Packets

X−bar Switching Fabric with VOQ

Classifier VOQ 1

VOQ N
Input
Buffer

Line Card N

Classifier VOQ 1

VOQ N
Input
Buffer

Line Card 1

Line Card N

Figure 4.4. VOQ Crossbar layout. Incoming packets get classified in
the line card into separate VOQ queues to avoid head of line blocking.

To an outside observer, features such as routing protocol support are not too dif-

ficult to determine; however, traffic and queue policies features are much more prob-

lematic to deduce. Additionally, polices can describe preferences to VoIP, MPLS, and

flow control. The software also influences which traffic takes the “slow” path (involves

invoking the CPU and the IP routing process) or the “fast” path (minimal-to-none

CPU involvement). Usually the “slow” path is taken by control packets, packets

with IP options, and packets whose IP/MAC mapping is not cached. The difference

between a “slow” and a “fast” path can be as much as an order of magnitude.

Queue management includes configuration of the sizes and drop conditions for the

queues. All routers have a set of input and output queues. This is necessary because

the line cards need buffers where to store incoming/outgoing packets. Input queues

are drop tail only while the output queues can be configured to run various queuing

methods such as: FRED [79], RED-PD [80], SRED [81], Fair Queuing, and drop tail.

To complicate the matter further, the router can have intermediary buffers between

the line cards in main memory [9]. Even in a VOQ router as in Fig. 4.4, a packet

gets broken up into cells and then traverses several buffers before arriving at the final

queue destination.

54

4.3 Modeling a Forwarding Device

As was described previously, a multitude of router types with different archi-

tectures and performance exist today. Switching fabrics range from simple shared

memory or shared medium designs, to sophisticated highly interconnected designs

such as the Knockout switch. Most modern routers fall between these two extremes

and use a type of a Multistage Interconnection Network, such as the Banyan, Benes,

or Clos ([82] gives a quick overview). Despite these disparate designs, routers share

a few critical similarities:

1. Packets may get dropped or delayed within the router.

2. Routers have a number of input and output interfaces.

3. Routers can have intermediate buffers/queues.

4. Packet flow in a router is complex [9], and there can be several queues and

servers for each part of the path.

5. Packets can be split into fixed-size units while traveling between the input and

output ports (as in many devices that use fixed-size “cells”) [74].

6. Packet processing can be pipelined [13].

7. Shared components such as the backplane, caches, and possibly a central pro-

cessor can lead to interference among flows that do not share the same outputs.

The complexities of real router tasks introduce difficulties in developing an accurate

and comprehensive model of routers and other forwarding devices. A router must deal

with control packets such as ARP and ICMP, as well as routing packets such as BGP,

OSPF, and RIP. The control/routing packets can have a profound impact on the

forwarding of regular packets. For instance, ARP can lead to a significant delay until

mapping between a packet’s IP and MAC addresses is established. Routing packets

can lead to delays or losses of data packets as routes are removed or added. Routers

55

can have interfaces with different speeds and hardware (e.g., Ethernet, FastEthernet,

SONET). Hence, for simplicity, we make the following assumptions to create a general

packet forwarding model:

1. We do not model control traffic (e.g., OSPF, BGP, ARP, ICMP). We use static

and small forwarding (address lookup) tables when profiling a device.

2. We assume that all the interfaces have approximately the same performance.

3. We assume that data packets are treated equally (no Quality of Service (QoS)-

based packet scheduling, buffer allocation, or early packet discard).

4. We assume full-duplex operation.

5. We do not assume any knowledge of router internals or traffic statistics, however.

4.3.1 General Multi-Server/Multi-Queue Model

To model a range of forwarding devices, we must consider that traffic interactions

in forwarding devices can play a significant role in causing packet loss and delay. We

need a model that captures such interactions in a range of switching fabrics. Fig. 4.5

demonstrates a simple device-independent model that allows a range of contention

behaviors. The additional complexity over the VOQ-based model thus allows model-

ing devices with limited performance, in addition to the Tier-1 access router modeled

in [15].

As previously stated, routers may have multiple queues on the packet path from

the input to the output based on the router architecture and type of switching fabric.

Modeling the location of all the queues and their respective sizes would require de-

tailed knowledge of each router internals. As this is infeasible, we approximate all the

internal queues as a single aggregate queue of size Q slots per output port. However,

packets can occupy more than one slot in the case of byte-based queues, or queues

that use multiple slot sizes. Hence, a table QueueReq is used to specify how many

slots a given packet size occupies. We infer Q and QueueReq from our measurements.

56

Port1

PortN

... Robin
Round

Server1

ServerM

Q

Q
Classifier Classifier

Port1

PortN
...

...

Queue1

QueueN

...

Service Time = DelayTbl

TX

TX

Figure 4.5. N inputs are served by M servers. There is one queue of
size Q slots per port. Packets exit the forwarding device through one
of the N output ports.

As seen in Fig. 4.5, traffic from N inputs is classified and queued by output port,

served by M servers and proceeds to N outputs for transmission. In a forwarding

device, input/output queues are served by the processors on the network cards, while

intermediate queues might be served by a central processor(s) or specialized switching

fabric processors. As it is difficult to determine the exact number of servers in a

device, we infer the number of servers, M , based on measurements. Varying M from

one to infinity allows us to model the entire range of routers from those with severe

contention to those with none at all.

Servers process packets with the measured average processing delay. A table,

DelayTbl, represents observed intra-device delays (excluding transmission delay), as

described in chapter 5, for various packet sizes. This is similar to “Min Delay” in

Fig. 3.1.

Packets are selected for service in a round-robin fashion. This is a simple but not

uncommon switching fabric scheduling policy, e.g., it is used in iSLIP [76], and we plan

to explore alternative approaches in our future work. Packets can be served concur-

rently by different servers, but packet transmissions on the same output link cannot

overlap (TX times are serialized for each output port). This allows to approximate

packet pipelining [13]. Fig. 4.6 demonstrates this scenario.

57

TX1

TX0

TX2

T1 T2T0

RouterDelay0

RouterDelay1

RouterDelay2

Figure 4.6. Three packets destined to the same output are concur-
rently served by three servers. A packet is not transmitted on the
output link until the previous packet is sent out.

As packets are often split into smaller units (cells) internally within a router [74],

packets may need more than one server to process them. Hence, another table,

ServReq, gives the number of servers required to process packets of different sizes.

In cases when backplane contention results in the slow drain of the input queues in

a device, queues in our model overflow causing packet drops. If the contention occurs

at the output queues of a device, this contention also propagates from the servers to

the queues in our model causing packet drops.

4.3.2 Parameter Inference

The five key model parameters that vary from device to another (M , Q, DelayTbl,

QueueReq, ServReq) can be inferred experimentally by subjecting a router to a series

of simple tests. Constant Bit Rate (CBR) UDP flows are injected through the router

in all of the tests. Table 4.1 gives all the notation used in our parameter inference

process, and Fig. 4.7 gives the pseudo-code.

The algorithm consists of four phases. In the first phase, we take an average of

the packet delays across different ports when the sending rate is extremely low. This

is computed for a variety of packet sizes to construct a comprehensive table. If the

delay differences between the interfaces are large, the process terminates because of

our assumption that interfaces are approximately similar becomes invalid. Otherwise,

we record the minimum delay for each packet size.

58

EXIT

∀N , find max. rate s.t. no loss

NumServs = ds

ArriveGapr

ArriveGapr = 1
Nr

FOR each s ∈ S DO

END FOR

DelayTbl = set of ds, ∀s ∈ S

M = max(NumServ1, ..., NumServS)

ServReqs = M/NumServs, ∀s ∈ S

QueueReqs = Q/QSizes, ∀s ∈ S

Q = min(QSize1, ..., QSizeS)

find min. rate r s.t. when N − 1 ports send to one port
at rate r each, rs(N − 1) > TX Capacity

YES

IF Ds,r,p1 ≈ Ds,r,p2 ∀s ∈ S, and ∀p1, p2 ∈ P

Determine Ds,r,p for all packet size s and rate r = LowRate on path p

1: Compute Packet Delays

2: Compute Number of Servers

3: Compute Queue Sizes

4: Record Parameter Values

NO

FOR each s ∈ S DO

QSizes =
Ds,r(N−1),p

DepartGaps,r(N−1),p

END FOR

ds = avg(Ds,r,p1, ..., Ds,r,|P |)

Figure 4.7. Parameter inference algorithm

59

Table 4.1
Notation used in parameter inference

Symbol Meaning

N Total number of device interfaces

M Number of servers

Q Size of the aggregate queue per interface (we assume equivalent interfaces)

DelayTbl Minimum processing delays for various packet sizes

QueueReq Number of queue slots occupied by a given packet size

ServReq Number of required servers for a given packet size

TX Capacity Maximum transmission capacity of an interface, measured by sending MTU-sized packet

bursts

LowRate A rate at which queuing delay does not occur but that allows sufficient (say 1000–2000)

samples to be collected in a short time (e.g., 50 pps)

p A packet path between two interfaces

P Set of all the possible paths p; P = N(N − 1) is the number of all paths

S A set of packet sizes s = {64, . . . 1500} bytes

R A set of packet rates r (in packets per second), including rates that induce packet loss

Ds,r,p Measured average packet delay from input to output for packets of size s at rate r on the

path p

ds Minimum of Ds,r,p values for a specific packet size s

DepartGaps,r,p Measured average gap between the packets when leaving the router

ArriveGapr Gap between arriving packets for rate r

In the second phase, we compute the maximum number of concurrent servers

for each packet size just before loss starts occurring. This is done by utilizing all

ports to transmit packets, such that flows do not create conflicts on the output ports.

For example, suppose N is four, then flows port0-to-port1, port1-to-port0, port2-to-

port3, and port3-to-port2 are non-interfering on their output. The number of servers

is estimated by dividing the minimum delay observed by the gap between packets

arriving into the router.

The third phase considers queue size. To estimate Q and QueueReq, we must cre-

ate a high loss scenario to ensure queue build-up. We send flows from several ports

into the output queue of another port. Note that it is important to measure the trans-

mission capacity TX Capacity and not use the nominal capacity (e.g., 100 Mbps for a

FastEthernet interface) which can be higher than the actual capacity. The DepartGap

60

between the packets will indicate the maximum drain rate, meaning that the size of

the queue can be estimated as the observed delay divided by DepartGap. We use the

average observed delay here, as we noticed a few outliers that are considerably high,

which skew the maximum delay. We attribute these outliers to our custom profiler

which is based on commodity hardware, as discussed in chapter 5.

The fourth and final phase simply records our computed values. We record the

minimum delays in DelayTbl. M is set to the largest number of servers estimated for

all packet sizes. ServReq can also be constructed based on the resulting number of

server estimates. The observed queue size is recorded in Q (we record the minimum

size in units of maximum-sized packets) and QueueReq is computed for all packet

sizes.

4.4 Summary

In this chapter, we described a range of routers from low–end to high–end, which

are currently in use. We have then stated a set of similarities which are shared

between all routers, so that we can develop a device-independent model. We have

then proposed a device-independent model for forwarding devices, such as switches

and routers, and outlined a model parameter inference procedure. The proposed

model only requires a few parameter tables to mimic a specific packet forwarding

device. The tables are compact, which makes the model highly portable and easy

to compute. Our device–independent model attempts to replicate not only packet

delays due to router processing and switch fabric contention, but also packet losses.

61

5 PROFILER ARCHITECTURE AND PERFORMANCE

The parameter inference procedure outlined in Section 4.3.2 is based on packet delay

and loss data. Acquiring such data at sufficiently high precision requires a high-fidelity

measurement system. We have created a custom low–cost measurement and profiling

system called the Black Box Profiler (BBP), to eliminate the need for expensive

specialty cards. Of course, our system has lower precision than the DAG [66] cards

used in prior work, such as [15, 72]. As we will demonstrate later in this chapter, it

is adequate for our purpose. Also, we created additional modules for ns-2 which can

replay captured traffic data from the BBP, and can execute our device independent

model to approximate a profiled router. We give a detailed overview of the BBP and

additional ns-2 modules below.

5.1 Profiler Overview

Measuring packet delay through a router with micro-second precision requires

speciality equipment similar to a DAG card. This is because of the fact that synchro-

nizing clocks with micro-second precision between several measurement machines is

considerably difficult to achieve. DAG cards can be GPS pulse synchronized to avoid

this issue. Measurement machines add measurement noise, because some time must

pass from when the packet is received to when it can be timestamped. DAG cards

avoid this issue by using speciality hardware designed to reduce such overhead. How-

ever, installing a DAG card per router port is expensive and requires substantial setup

time. Our goal was to build a system out of commodity parts that would be highly

configurable, reasonably cheap, and offer a high degree of precision. We have created

such a system called the Black Box Profiler (BBP). Fig. 5.1 demonstrates the general

layout of our system. A Symmetric Multiprocessing (SMP) multi-NIC PC is used to

62

emulate subnets that multiple flows can traverse. The router that is being profiled is

configured to route between the subnets. We have minimized the measurement error,

by connecting the profiler directly connected to the router. As all packets originate

and terminate in the BBP there is no need for clock synchronization, as there is only

one clock in use.

real device

 Virtual
 10.x.x.x
 to

 mapping

Flow ID
Packet ID
Stat In

Flow ID
Packet ID
Stat Out

...

TG1

TG3

TG2
10.0.20.x

10.0.10.x

10.0.30.x

TX Packet

RX Packet

User Space Click Kernel Module Device Driver
SMP multi NIC PC

Router X

Port N

Port 1

Figure 5.1. Logical view of the profiler’s components.

We leverage the ns-2 simulator [8] (version 2.31) for traffic generation. We selected

ns-2 because it provides several TCP implementations and application traffic models

that have been validated by the research community. Further, ns-2 provides excellent

capabilities for logging and debugging.

We modify ns-2 to allow packets to be injected into the test network and vice

versa. As all packets originate and terminate on the BBP PC, we can embed ar-

rival/departure time-stamps into the packet payloads with micro-second precision.

The time-stamping of packets occurs in the network device driver to obtain an accu-

rate estimate of the delay. Additionally, we can provide highly accurate accounting

per-packet and per-flow to determine delay, loss, reordering, and corruption. Fig. 5.2

demonstrates an example of how a TCP flow traverses the key components of the

system.

Fig. 5.3 displays the components of a measured packet delay. The measured delay

is composed out of the NIC send/receive overheads, two packet transmissions, and

the router delay. A calibration phase is required to infer the NIC overheads and the

63

ns−2
to IP

IP to
ns−2ACK

DATA

FromUserDevice

ToUserDevice

ns−2 KernelNode1

Node0
Dev0

Dev1

Router

NetNode0

NetNode1

Tap0

Tap1

TCP

TCPSink

Figure 5.2. Example of a single TCP flow from the simulator into the
network and vice versa.

packet transmission delay. Knowing the NIC overheads allows the computation of

the router delay. During an initial calibration phase, our setup is similar to Fig. 5.3,

except that the NICs are directly connected with a cable and there is no router.

...

Router X

Port N

Port 1

TX Packet

RX Packet
NIC overhead + TX TX Router Delay

Figure 5.3. Measured packet delay consists of NIC send overhead,
NIC receive overhead, router overhead, and two transmit delays.

5.1.1 Device Driver

When a packet arrives, we time-stamp it just before it is sent to the device via a

bus transfer. Changing the packet payload will result in a corrupted TCP or UDP

checksum, hence we recompute a new checksum. We compute incremental checksums

to avoid computing an entire checksum from scratch. Fig. 5.4 demonstrates the

process. Packet reception is done in a similar fashion.

64

TS_out
TS_in
Ckhsum

PCI_DMA_Transfer

Network Device
TX Pkt

(sec, usec) = TimeOfDay

Data

CheckSumFix(...)Headers 3

5

4

1

6

2

Figure 5.4. Timestamping in the device driver when sending a packet.

As previously mentioned, we have added a capability to replay our captured packet

traces into ns-2. The simulator utilizes the time-stamps of when the packet departed

the profiler device driver for the first time, as the time when the packet is injected into

the simulation. As the packet time-stamp reflects the time when the packet entered

the device driver and not the router, we add a packet transmission time to the arrival

time. This re-creates the timing of when the packet entered the router or forwarding

device.

During initial validation runs, we noticed that loss adversely impacts the accuracy

of the trace replay. If the packet is lost, time-stamp accuracy is compromised, because

the device driver time-stamp is lost as well. The only available time-stamp is the one

from the ns-2 traffic generator which may be a few milliseconds behind. Hence,

the packet would appear in the simulation earlier than it would have in the original

experiment. This can lead to inaccuracies between the observed and predicted data,

as the events do not happen at exactly the same times in both cases.

5.1.2 Click Modular Router

The default Linux IP stack was unsuitable for our purposes for two reasons. First,

the default stack was not designed to efficiently handle sending/receiving non-existent

65

IPs to/from a user-level application. Second, the default stack has several features

that we do not need, which add overhead. Hence, we use the Click modular router [42]

kernel module.

In Click, packets are processed by various elements. The elements in turn can be

linked together to form packet paths. When a packet passes through an element it can

be modified, dropped, or the element can update its internal state. The elements pass

packets to each other through push and pull connections. On a push connection an

element will actively transmit a packet downstream. Conversely, on a pull connection

an element will actively request packets from upstream elements. The push tasks

are generated in elements when an unsolicited packet arrives. The pull requests are

generated by scheduling periodic tasks. As a task has to be scheduled per push

or pull request, it would be excessively inefficient to have all elements generate the

tasks themselves. Hence, most of the elements operate in a passive fashion, meaning

that they simply receive packets and then send them to the downstream element.

This means, that when a push or pull task is scheduled, a packet might traverse a

considerably long list of elements, thus increasing the computational overhead of the

task. The list traversal is terminated when the final element either stores the packet

(e.g., Queue) or destroys it (e.g., ToDevice, Discard). See [42] for more details.

Hence, it is crucial to be careful when writing a Click configuration, if high level of

performance is desired.

To attach virtual subnets of ns-2 to a particular network device, we use a Fro-

mUserDevice element per network card, and the user application writes IP packets

into the correct FromUserDevice element depending on the configuration. As a user

application is not aware of Click elements, FromUserDevice acts as a Linux character

device, which can be opened and then written to. In Fig. 5.5 you can see a sample

single network card Click configuration that we have used. We had two specific goals

when making the BBP configuration. First, FromUserDevice must act as a queue and

get only drained when ToDevice can transmit a packet. Second, the element paths

66

from ToDevice and PollDevice must be as short as possible to reduce the amount of

processing done per task, hence minimizing measurement noise.

Figure 5.5. Sample Click configuration

To achieve the first goal, we have modified Click’s ToDevice element to avoid

transmit buffer drops. The default Click ToDevice element can schedule packets faster

than the device can transmit. Instead, we hold the packets until the transmit buffer

starts draining. We had to connect ToDevice to FromUserDevice directly, such that if

ToDevice is unable to maintain a certain transmit rate, the buffer in FromUserDevice

will fill up and result in a block of a user-level application. However, we could not

directly connect both elements to each other. First, the packets have to have a correct

Ethernet header. Second, ToDevice also has to transmit ARP responses in case the

router being profiled generates ARP queries. Hence, we use a RoundRobinSched to

act as a multiplexing element for IP and ARP packets.

67

The second goal of minimizing the packet paths was achieved, by placing a

CPUQueue immediately after the PollDevice. This ensures that push tasks in PollDe-

vice only fetch the packets from the network card and place them into the upstream

queue. Unfortunately we could not reduce the element path to ToDevice any further,

without compromising our first goal. ARP responses are rare, thus in the majority of

cases the pull task from ToDevice gets forwarded from RoundRobinSched to EtherEn-

cap and then to FromUserDevice. This arrangement still produces a desirable level

of performance.

We use Click only in cases when extremely high packet rates are required. In

these cases, no packet logging is performed, as logging over 200+ Kpps to disk is

infeasible without creating a dedicated RAID disc array. To acquire statistics such as

arrival rates and packet delays, we use running window averages which are accessible

through Click’s proclikefs.

5.1.3 ns-2 Modifications

We use the ns-2 simulator [8] for traffic generation as it provides several TCP

implementations that have been validated by the community. Further, ns-2 provides

excellent capabilities for logging and debugging. Additionally, we have modified ns-2

to replay logged traffic traces from physical experiments and incorporated our device

independent model to approximate router behavior. To use ns-2, we had to make a

number of changes to the simulator as follows.

Emulation The latest version of ns-2.31 [8] has an emulation package which allows

outputting packets from the simulator into the network and vice versa. The default

emulation objects make extensive use of system calls as well as provide packet trans-

lation capabilities from ns-2 to IP and vice versa. The packets from the network are

injected into the simulator via reading sockets or by capturing packets with libpcap.

However, the existing objects introduce two challenges. First, the performance of

68

libpcap is limited at high packet rates [83]. Second, it is not possible to spoof IP

addresses to create an entire subnet with distinct flows on a single PC.

To tackle the performance limitations of libpcap, we have bypassed the Linux IP

stack completely and created two devices that we call FromUserDevice and ToUserDe-

vice. These devices serve as large circular buffers which allow user space applications

to write packets to the kernel-level Click module and to receive packets from Click.

Such direct access provides several benefits including low overhead and reception of

arbitrary IP packets. In a simple test, we have been able to read packets from ToU-

serDevice at over 800 KPackets/s (Kpps). Similarly, FromUserDevice can sustain

high rates, making the network card a potential bottleneck.

We have created our own set of emulated objects to allow IP spoofing. Fig. 5.2

shows the flow of TCP packets through our objects. As before, the ns-2 agents are

connected to tap agents; however, the tap agents do not perform any ns-2 to IP or IP

to ns-2 translation. Rather, these agents provide the necessary information such as IP

addresses and port numbers. The actual translation is performed by the two network

objects (raw-net and raw-pcap) to which all taps point. The outgoing network object

converts ns-2 packets to IP and then writes them to the FromUserDevice device. The

incoming network object reads from the ToUserDevice device, converts the IP packets

into ns-2 format and then, based on the destination IP to tap object hash, routes the

ns-2 packet to the appropriate tap object. This new arrangement makes it possible

to have many flows with distinct IPs enter and depart from the simulator.

We embed the measurement payload as a TCP option. This allows creating correct

TCP packets that do not have an extended payload when there should be none

(e.g., SYN, ACK, FIN). As there is limited space for TCP options, our measurement

payload option can only be combined with a time-stamp or a three-block SACK

option. For UDP and other IP packets, the measurement payload remains in the

data portion.

69

ASync
Writer Disk

thread
main ns−2

RealTime
Scheduler

Net
Reader

Logging

Pkts In

Pkts Out
FromUserDevice

ToUserDevice

Figure 5.6. Relationship between I/O operations and threads in the simulator.

Asynchronous I/O Currently in ns-2, packet transmission and reception is per-

formed in a synchronous fashion with the help of the TCL subsystem, resulting in

less than optimal performance. Further, any logging that results in disk writes is

problematic, as it can slow down the main simulation thread, thus reducing real time

performance [68].

Fig. 5.6 demonstrates the architecture of asynchronous I/O that we have added

to the simulator to boost real time performance. There are now three threads of

execution in ns-2: (1) the main simulation thread, (2) the packet reception thread,

and (3) the log writer thread. The main simulation thread is quite similar to ns-2.31

with one exception: it does not check if packets have arrived. Instead, there is a

separate thread that checks if any packets have arrived and if so, injects them into

the main thread. As the default ns-2 is single threaded, we took careful steps to avoid

race conditions, while minimizing the number of changes we had to make. First, we

modified the “Packet” class to be multi-thread (MT)-safe, as it maintains a global

packet free list. Second, we made the scheduler MT-safe. These two changes allow

the packet reception thread to simply schedule the newly arrived packets in the near

future. When the main simulation thread dispatches the newly arrived packets, these

packets are injected into the simulator.

Every tap object collects information about incoming and outgoing packets, thus

we collect information about all packets. Storing this information in memory can be

70

cost prohibitive for long simulation runs. Hence, logging to disk is required. To avoid

blocking the main simulation thread during disk writes, each tap object maintains

two lists of packet data (in and out). Once a list becomes sufficiently large, the tap

agent migrates the list to the disk writer thread and creates a new fresh list. The

disk writer thread processes the list writes in the order in which it has received them.

Real-Time Scheduler The default real-time scheduler was inadequate for our pur-

poses because it is based on a calendar structure and is not MT-safe. Our tests have

demonstrated that the Splay scheduler provided with ns-2.31 yields a much higher in-

sertion/deletion rate compared to the calendar or heap schedulers. High insert/delete

rate is critical for maintaining high packet rates as each packet has to eventually go

through the scheduler.

In addition, we have modified the real time aspect of the scheduler to remove any

sleep calls from the main processing loop. This results in a trade-off between CPU

utilization and scheduling accuracy. We have further increased the performance of

the scheduler by adding a “catch-up” mode. In the catch-up mode, the scheduler will

try to fulfill all the tasks that must occur “now” without invoking the gettimeofday

system call per event. In the case when the event rate is higher than the scheduler can

process, the simulation will become non-realtime as the scheduler tries to catch up.

Unlike [68], we did not use the RDTSC assembly instruction to reduce the overhead

of calling gettimeofday. As our machine running BBP has 8 CPUs, calling RDTSC

could have resulted in non-monotonically increasing time-stamps.

Traffic Generator Performance Our modified ns-2, although capable of rates

of more than 100 Kpps (in and out for a total of 200 Kpps), is still inadequate for

extremely high load experiments because the scheduler and the TCL subsystem are

limiting factors. To overcome this bottleneck, we have created a stand-alone tool

called udp gen which is a stripped down version of our modified ns-2. The new tool

allows sending/receiving around 200 Kpps, with disk logging now being the limiting

71

factor. The memory footprint of our modified ns-2 is similar to that of a non-modified

ns-2, according to the top utility.

Trace Replay and Router Model We have devised two simulation modules that

mimic a forwarding device, which we integrated into ns-2.31 [8]. The first module,

RouterState, executes the Multi-Server model, while the second module, RouterQ,

represents the Multi-Queue model. The RouterQ objects are connected to the Router-

State object as in Fig. 4.5. The RouterQ and RouterState objects initialize their capac-

ities to the configured Q and M respectively. When a packet arrives to RouterQ, it is

enqueued and QueueReqs is subtracted from the capacity. Conversely, when a packet

departs a queue, the capacity is incremented by QueueReqs. If QueueReqs is greater

than the capacity during an enqueue operation, the packet is dropped. RouterState

operates similarly. However, instead of dropping packets, it rejects them, preventing

the RouterQ from performing a dequeue operation. Once RouterState finishes serving

a packet, it pulls packets from one of the upstream queues until its capacity is filled.

As there is only one RouterState per node, it approximates backplane contention by

preventing queues from dequeuing packets, even when the output link is free.

We also create trace agents to replay captured packet traces and compare the

delays and losses with the simulator against the observed delays and losses. We

utilize the same traffic generation scripts when running simulations (utilizing our

model or the default ns-2 model) and physical experiments.

5.2 Profiler Configuration

The profiler must allow several tasks to execute concurrently to achieve the highest

precision. We use a PC with two quad 1.8 GHz Xeon CPUs and PCI-E Intel Pro

cards to run our profiling system. Fig. 5.7 demonstrates the main tasks that must

run concurrently for precise results.

The traffic generation component must have at least two threads of concurrent

execution to achieve high packet rates. The main ns-2 thread runs all of the simula-

72

ns−2 Traffic
Generation

CPU0

ns−2 Packet
Reception/
Logging

CPU1

Main Click
Thread

CPU2 CPU3

PollDevice0
2nd Click

TX Device0

CPU4 CPU5 CPU6

3rd Click 4th Click 5th Click
PollDevice1
TX Device1

PollDevice2
TX Device2

PollDevice3
TX Device3

Figure 5.7. Concurrent threads of execution

tion agents and writes packets to FromUserDevice elements. Auxiliary ns-2 threads

are required for reception of packets and logging data to disk; otherwise, the main

simulation thread becomes I/O blocked. It is possible to run several simulations at

once, by setting routing policies which forward packets into appropriate simulation

instances. We use this feature for scenarios when a single simulation instance cannot

generate sufficient load.

The Click modular router must also have at least two threads of concurrent ex-

ecution. The main Click thread is responsible for all the elements in the Click con-

figuration except for packet reception and transmission. If the elements in the main

thread are delayed in scheduling, no measurement error will occur. This is because

the main elements are not responsible for reading/writing packet timestamps. A

problem arises during packet reception and transmission. If there is delay in element

scheduling, then the packets will remain in the NIC’s send/receive buffer as time goes

on. The variance in delay would increase in proportion to the packet rate increase.

Hence, it is imperative to have a separate thread per PollDevice/ToDevice. As we

have four ports in our experiments, we need seven CPUs as depicted in Fig 5.7. We

will later demonstrate how the last CPU can be used to execute an additional ns-2

simulation to increase the aggregate load.

5.3 Profiler Calibration

Before proceeding with measurements, we must determine which network de-

vice configuration gives the best performance and induces the least amount of noise

73

into the measurements. This measurement noise results from the network card/bus

specifics of our measurement machine. Further, we must determine how fast our log-

ging system performs, as this is crucial for Gigabit speeds. We produced the best

results with polling and 64-slot receive and transmit buffers. Figs. 5.8 and 5.9 demon-

strate the measured delay between the two NICs compared to pure transmission delay

using a transmit speed of 100 Mbps and 1 Gbps. We used a constant low-rate flow

of UDP packets to generate the results. In both the 100 Mbps and 1 Gbps scenarios,

the difference between the measured delay and a pure packet transmission delay is

never more than 14 micro-seconds.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

Pa
ck

et
 D

ela
y T

im
e

(m
icr

o-
se

co
nd

s)

Packet Size (bytes)

Pkt TX
Measured Delay

Figure 5.8. NIC–to–NIC (mean, 5 and 95 percentiles) vs. pure 100 Mbps TX delay.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600

Pa
ck

et
 D

ela
y T

im
e

(m
icr

o-
se

co
nd

s)

Packet Size (bytes)

Pkt TX
Measured Delay

Figure 5.9. NIC–to–NIC (mean, 5 and 95 percentiles) vs. pure 1 Gbps TX delay.

74

Tables 5.1 and 5.2 demonstrate the mean, 5th, and 95th percentiles for Ethernet

frames of sizes of 64, 800, and 1500 at various rates for 100 Mbps and 1 Gbps speeds.

We have used our udp gen tool to conduct these measurements over a period of one

minute per experiment. The percentiles indicate that variance is relatively small and

that our logging system is adequate.

Table 5.1
100 Mbps NIC–to–NIC packet delays for 64-, 800- and 1500-byte Ethernet frames

64 bytes 800 bytes 1500 bytes

4 Kpps 140 Kpps 4 Kpps 14 Kpps 4 Kpps 8 Kpps

mean 13.05 20.42 74.74 77.44 133.13 133.33

5th 13.00 12.00 74.00 74.00 133.00 133.00

95th 14.00 16.00 75.00 76.00 134.00 134.00

Table 5.2
1 Gbps NIC–to–NIC packet delays for 64-, 800- and 1500-byte Ethernet frames

64 bytes 800 bytes 1500 bytes

4 Kpps 200 Kpps 4 Kpps 140 Kpps 4 Kpps 80 Kpps

mean 6.05 7.87 14.94 16.37 22.34 24.73

5th 6.00 6.00 14.00 15.00 22.00 22.00

95th 7.00 16.00 16.00 18.00 23.00 24.00

5.4 Summary

In this chapter, we have described the architecture of our profiling and traffic

generation tool, called the Black Box Profiler (BBP). We have leveraged the advances

in commodity technology to build a tool that does not rely on specialty hardware,

yet offers micro-second level precision. The tool was created by bridging ns-2 with

the Click modular router to create a highly configurable traffic generator and logger.

We have created agents for ns-2 that can replay previous physical experiments, and

can use the model and router specific parameters to approximate a profiled router.

The calibration steps that we have undertaken revealed that the system offers an

75

acceptable level of performance for our purpose with a minimum level of measurement

noise. Also, the calibration revealed that BBP is capable of generating high–speed

traffic at 100 Mbps and 1 Gbps speeds.

76

77

6 ROUTER PROFILING AND VALIDATION RESULTS

This chapter uses the BBP tool developed in chapter 5 and the model from Section 4.3

to obtain model parameters for four routers. We have selected Cisco 3660, Cisco

7206VXR, Cisco 12410, and Juniper M7i routers to represent a variety of routers

that are currently found on the Internet. We then compare the observed delays to

the delays predicted by our model and the default ns-2 queueing model for a variety

of complex traffic scenarios.

6.1 Experimental Setup

We select four router types for a representative cross-section of performance, and

a wide range of switching fabrics. The routers range from those for a medium office

to Internet carrier grade. The router specifications are as follows:

1. Cisco 3660 with 100 Mbps FastEthernet modules: Multi-service platform for

large branch-office multi-service networking; Interrupt-based packet switching

on a 225 MHz RISC QED RM5271 CPU, capable of 140-Kpps fast switching;

Supports an extensive variety of modules for various media (e.g., Ethernet,

FastEthernet, ISDN, T1) [52].

2. Cisco 7206VXR with 100 Mbps FastEthernet modules: Edge device used by en-

terprises and service providers for services aggregation WAN/MAN; Interrupt-

based packet switching on a 262 MHz NPE-300 processor; Supports an extensive

variety of high-speed modules for various media (e.g., Ethernet, FastEthernet,

ATM) [53].

3. Cisco 12410 chassis with a 4 port 4GE-SFP-LC line card: This router is geared

towards carrier IP/MPLS core and edge networks with 23000 units sold; The

78

router is equipped with multi-gigabit cross-bar switch fabric and each line card

runs IOS and uses CEF [51]; The 4GE-SFP-LC card is limited to 4 Mpps

and runs Engine 3 (Internet Services Engine); The card has 512 MB of packet

memory and splits it in two for TX and RX buffers.

4. Juniper M7i with four SFP Gigabit modules: A multi-service edge device that

can be used as an Internet gateway, WAN, campus core, regional backbone,

and data center router; Forwarding engine of 4.2 Gbps at full duplex; Internet

processor II-based Application-Specific Integrated Circuit (ASIC) for 16-Mbps

packet lookup [75].

The lower-end routers (Cisco 3600 and Cisco 7206VXR) we use have four Fast

Ethernet ports. The Cisco 3660 has two identical cards on the main data plane and

a dual port swappable module, while the Cisco 7206VXR has one main card and

three swappable modules. On the Juniper, three cards are swappable and the fourth

is integrated into the chassis. For the higher-end routers (Cisco 12410 and Juniper

M7i) we configured our profiler to use our network cards for Gigabit speed.

Fig. 6.1 demonstrates our test setup. In the experiments, Node0, Node1, Node2,

and Node3 are logical nodes on the same PC, while the “Router” node is either a pair

of cross-over cables that connect four cards on our profiling system, a Cisco router, or

the Juniper router. The cross-over cable configuration is used solely for calibration,

to determine the latencies as a result of the network cards. Each logical node has its

own dedicated subnet as shown in Fig. 6.1. In the remainder of this paper, we adopt

the following naming convention: portX on the router, denotes the port connected to

NodeX.

All routers are configured with minimal settings to ensure that forwarding between

the ports occurs on a fast path without special processing. Further, we enable the

Cisco Express Forwarding (CEF) option [51] on the Cisco 3660 and Cisco 7206VXR

as it was not enabled by default. The queue size for all the links in the traffic

79

Router

Node2

Node3

Node1

Node0

20.0.1.0/24

20.0.2.0/24 20.0.3.0/24

20.0.4.0/24

Figure 6.1. Test topology with four subnets

generator was set to 100 slots. The queue sizes on the physical link are dictated by

the particulars of the hardware.

6.2 Model Parameters

As discussed in Section 4.3.2, we first compute delay tables. We vary the packet

size from 64 to 1500 bytes, and keep the rate at a low 50 packets/s. The packet

size includes Ethernet/IP/UDP headers. Fig. 6.2 and 6.3 compare the results for a

100 Mbps perfect router, Cisco 3660, Cisco 7206VXR, 1 Gbps perfect router, Cisco

12410, and Juniper M7i. The results show the mean, 5, and 95 percentiles. The

perfect router is a hypothetical router that has zero processing and queuing latency,

with packet transmission time being the only delay. We use the data from Fig. 5.8 and

Fig. 5.9 to obtain the results for the perfect routers: we add the NIC overhead to one

additional packet transmit time. The results indicate that the Cisco 3660 and Cisco

7206VXR routers have significantly higher delays and variance than the 100 Mbps

perfect router. The Cisco 12410 showed little variance in delay but added per packet

delay over the 1 Gbps perfect router. In contrast, the Juniper M7i exhibited a high

degree of variance in measured delays. This can be attributed to the fact that the

4th port of that router was integrated into the chassis and had different delay values

than the other ports.

80

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200 1400 1600

Pa
ck

et
 D

el
ay

 T
im

e
(m

icr
o-

se
co

nd
s)

Packet Size (bytes)

(a) Perfect 100 Mbps Router

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200 1400 1600

Pa
ck

et
 D

el
ay

 T
im

e
(m

icr
o-

se
co

nd
s)

Packet Size (bytes)

(b) Cisco 3660

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200 1400 1600

Pa
ck

et
 D

el
ay

 T
im

e
(m

icr
o-

se
co

nd
s)

Packet Size (bytes)

(c) Cisco 7206VXR

Figure 6.2. Observed minimum delays for different packet sizes at 100 Mbps

We now use Click to generate the traffic (as discussed in Section 5) to infer the

number of servers and queue sizes. It was necessary during this phase to generate

rates of 700+ Kpps per interface, to stress the Gigabit routers. For the Cisco 12410

and Juniper M7i, the maximum achievable transmission rate was 986.82 Mbps; hence

we set their TX Capacity in algorithm in Fig. 4.7 to 986.82 Mbps. Similarly, the

TX Capacity was set to 98.718 Mbps for the Cisco 3660 and 7206VXR. We use these

same values as link capacities in all our simulations (with our new modules and with

the default ns-2) for a fair comparison.

81

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

Pa
ck

et
 D

el
ay

 T
im

e
(m

icr
o-

se
co

nd
s)

Packet Size (bytes)

(a) Perfect 1 Gbps Router

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

Pa
ck

et
 D

el
ay

 T
im

e
(m

icr
o-

se
co

nd
s)

Packet Size (bytes)

(b) Cisco 3660

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

Pa
ck

et
 D

el
ay

 T
im

e
(m

icr
o-

se
co

nd
s)

Packet Size (bytes)

(c) Cisco 7206VXR

Figure 6.3. Observed minimum delays for different packet sizes at 1 Gbps

Table 6.1 and Table 6.2 demonstrate the measured values for QSize and Num-

Serv respectively. The values of M , Q, ServReq, and QueueReq for the routers are

computed from these tables, as given in Phase 4 of algorithm in Fig. 4.7.

Analysis of Table 6.1 reveals that there are three different queue sizing strategies:

1. The Cisco 3660 and Cisco 7206VXR have 3 queue sizes (in terms of number of

packets) for this set of packet sizes. This is consistent with the documentation

in [84].

82

Table 6.1
Queue sizes for different packet sizes

Router 64 200 600 800 1000 1400 1500

12410 33654 32891 32712 32706 32647 32159 31583

M7i 249875 72488 27815 21129 16930 14001 9473

3660 1909 674 167 167 167 167 167

7206VXR 272 294 167 167 167 125 125

Table 6.2
Number of servers for different packet sizes

Router 64 200 600 800 1000 1400 1500

12410 36.379 29.115 11.843 10.171 9.006 8.243 7.265

M7i 37.145 39.382 23.866 23.176 22.584 22.101 21.455

3660 6.027 6.080 4.653 3.969 3.389 3.126 2.786

7206VXR 15.489 11.648 5.464 4.318 3.463 2.969 2.439

2. The Cisco 12410 appears to have a slot-based queue which is approximately

32 K packet slots in size. As the router has 4 ports, 4×32 K ×1500 ≈ 200 MB

which is close the line card’s 256 MB TX buffer size.

3. The Juniper M7i has a byte-based queue of approximately 16 MB ((packet

size−18) ×QSize ≈ 16MB, as the 18-byte Ethernet header/footer is not queued).

This is consistent with its specification, which states that the router is capable

of 200 ms buffering [75].

Table 6.2 shows that for most packet sizes, the Juniper router has the highest

number of servers, followed by the Cisco 12410, the Cisco 7206VXR, and finally the

Cisco 3660. However, the Juniper and Cisco 12410 support comparable rates as a

result of differences in DelayTbls. As expected, the number of servers monotonically

decreases as packet size increases for each router.

83

6.3 Model Fidelity

In this section, we compare the performance of our model, the default ns-2, and

the observed data under a variety of experimental scenarios. We first conduct the

experiment with the physical router and capture packet traces. The packet traces are

then fed into the simulator to analyze the accuracy of the two simulation models.

6.3.1 CBR Flows

In our first series of experiments, we replay the simple CBR traces used in the

model inference experiments. We use our new ns-2 modules to model the Cisco 3660,

Cisco 7206VXR, Cisco 12410, and Juniper M7i routers, and compare packet delay

and loss values.

The results indicate that the model can account for backplane contention: the

model correctly predicts that the Juniper M7i cannot have all four interfaces for-

warding 64–byte frames at more than 715000 pps1. We verified the router statistics

to ensure that our network cards were not dropping packets upon receiving. Addi-

tionally, when multiplexing two flows into a single output port, the model correctly

predicts the packet delays because of queue build-ups. The data also confirmed the

need for QueueReq, as fixed-size slot-based queues are insufficient for correctly mod-

eling the routers, because the two routers had different sized buffer pools depending

on packet size and one router used a byte–based queue.

6.3.2 Low-load TCP

In the next series of experiments, we create a medium level of load that does not

result in any packet loss, so that queue sizing would not be a factor when replaying

the packet traces.

1 ds

NumServs

× N = 12.997µs
37.145

× 4 = 1.397µs
1

1.397µs
× 1e6µs

s
= 714490 pps

84

We use FullTCP SACK agents in ns-2. FullTCP agents in ns-2 mimic the Reno

TCP implementation in BSD 4.4. The links from Node0, Node1, Node2, and Node3 in

Fig. 6.1 were configured to have delays of 20 ms, 30 ms, 40 ms, and 90 ms respectively.

For the two Gigabit routers, the speed is 1 Gbps, while for the Cisco 3660 and

7206VXR we set the speed to 100 Mbps. We also limit the bandwidth of TCP to

70 Mbps on each port in the 3660 and 7206VXR experiments. This avoids packet

losses.

20.8495 20.85 20.8505 20.851 20.8515 20.852
0

20

40

60

80

100

120

140

160

180

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2

(a) Cisco 12410

11.12 11.121 11.122 11.123 11.124 11.125 11.126 11.127 11.128 11.129 11.13

50

100

150

200

250

300

D
el

ay
 (m

ic
ro
−s

ec
on

ds
)

Time (seconds)

Observed
Model
ns−2

(b) Cisco 3660

Figure 6.4. Low-load TCP: Delays on port2

We create long-lived FTP TCP connection pairs, such that each node has 7 TCP

flows to three other nodes for a total of 84 TCP flows. TCP agents are configured to

use up to 3 SACK blocks, 1420-byte2 payloads, and delayed ACKs. Additionally, in

the case of Gigabit routers, each node sends two 1 Kpps 1500-byte UDP flows to the

other nodes for a total of 24 UDP flows. This was done to inflate bandwidth usage,

as our single simulation cannot generate more than 90 TCP flows over Gigabit links

in real-time. Certainly, this traffic is not representative of real workloads, but it is

capable of generating low-to-medium load and can reveal backplane packet interac-

2The 1420-byte payload was chosen so that packets with 3 SACK blocks would not exceed 1518
bytes when all the headers/footers are included.

85

tions if they exist. The experiment duration was 180 seconds, during which we inject

traffic into the router and log all transmitted and received packets.

Table 6.3
Low-load TCP: Mean and COV of packet delays for Cisco 12410,
Juniper M7i, Cisco 3660, and Cisco 7206VXR

12410 M7i 3660 7206VXR

Destination Node Type Mean COV Mean COV Mean COV mean COV

Node0 Model 29.641 0.398 59.371 0.389 535.367 1.209 1070.216 1.231

Observed 33.038 0.416 67.512 0.393 586.792 1.012 705.387 1.013

Node1 Model 28.115 0.387 57.274 0.393 436.450 1.178 596.630 1.272

Observed 31.841 0.519 66.045 0.401 362.597 1.123 409.618 1.264

Node2 Model 27.205 0.356 57.738 0.358 234.572 1.066 255.061 1.139

Observed 30.949 0.354 67.356 0.366 233.135 0.866 193.782 0.958

Node3 Model 28.574 0.433 59.375 0.397 166.958 0.791 183.325 1.023

Observed 32.264 0.413 52.297 0.394 194.975 0.652 169.927 0.914

Table 6.4
Low-load TCP: Kolmogorov-Smirnov statistic

Destination Node 12410 M7i 3660 7206VXR

Node0 0.365 0.482 0.254 0.150

Node1 0.431 0.520 0.072 0.106

Node2 0.518 0.517 0.133 0.125

Node3 0.453 0.599 0.211 0.136

After completing the experiments, we replayed the traces through our router mod-

ule and through ns-2 with a large queue of size 200 packets, as we wanted to exclude

queue size as a factor in this experiment. Fig. 6.4 demonstrates the detailed results

on the Cisco 12410 and 3660 routers over a period of 3.3 ms and 10 ms respectively.

We can make two interesting observations. First, adding packet minimum delays

improves the predictions over the default ns-2 model which does not consider any

processing delay. Second, backplane contention on the 3660 results in a significant

level of additional delay. This is also evident in the 7206VXR results in Table 6.3.

86

Our model attempts to mimic this by relying on the Multi-Server model, but, as the

figure shows, it is not always accurate at this high precision (micro-second level),

possibly because of our commodity-hardware profiler.

0 100 200 300 400 500 600 7000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (micro−seconds)

F(
x)

Empirical CDF

Observed
Model

(a) Cisco 12410

0 1000 2000 3000 4000 5000 6000 7000 8000 90000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (micro−seconds)

F(
x)

Empirical CDF

Observed
Model

(b) Cisco 3660

Figure 6.5. Low-load TCP: CDF plots for port2

Table 6.3 gives the mean (in µs) and Coefficient of Variation (COV) per output

port for our model and actual measurements. The COV is a normalized measure of

variance in packet delays. For the Cisco 3660 and 7206VXR, the COV values are

quite high compared to the Gigabit routers. Overall, the means and the COVs in

the table show a satisfactory correspondence. For further analysis of the the model

accuracy, we use the Kolmogorov-Smirnov (K-S) statistical test (maximum deviation

of CDFs). Table 6.4 demonstrates the results. Although some of the values are greater

than 0.5, the CDFs appear to be comparable as Fig. 6.5 demonstrates. Overall, the

Multi-Server/Multi-Queue Model shows higher accuracy than the single output queue

model.

6.3.3 High-load TCP

In the next set of experiments, we increase the load to induce losses, so that

knowledge of queue sizes would be imperative for accurate predictions.

87

1 ms Router

1 ms

Node2

1 ms
Node0

5 ms

AuxNode0

AuxNode1

AuxNode2

10 ms

20 ms

Node1 AuxNode4

AuxNode3

AuxNode5

10 ms

5 ms

20 ms

Sim 1 Sim 2
20.0.1.0/24 20.0.3.0/25 20.0.2.0/24 20.0.3.128/25

Figure 6.6. High-load TCP topology

Fig. 6.6 demonstrates the topology that we use. We create auxiliary nodes and

links to avoid TCP synchronization using three different RTTs of 14 ms, 24 ms, and

44 ms. We induce sufficient load on the Gigabit routers, by executing two separate

simulation instances with 28 TCP agents per auxiliary node, for a total of 84 TCP

agents per simulation, hence producing 168 TCP in total. As BBP has 8 CPUs and

running at least one simulation requires 7 (recall Fig. 5.7), executing two simulation

at once can be done in real time.

The TCP agents were driven by infinite source FTP agents. This setup may

appear unusual because there are two links to Node2 (one per simulator). However,

as all of the packets will pass through the router, no more than TX Capacity can

traverse the links.

This arrangement is achieved, by splitting the address space of Node2 into two 128

CIDR address blocks. Fig. 6.6 demonstrates that agents from AuxNode0, AuxNode1,

and AuxNode2 use the lower 128 addresses on Node2 and that agents from AuxNode3,

AuxNode4, and AuxNode5 use the upper 128 addresses on Node2. Each auxiliary node

has 5 UDP flows sending 1500-byte packet at 1500 pps to Node2. Finally, to create

reverse traffic, we configure 6 UDP flows to send 1500-byte packets at 1500 pps each

from Node2 to Node0 (to Node1 in “Sim 2”). For the Cisco 3660 and 7206VXR, we

scale down the link speed to 100 Mbps (as before) and also reduce the rate of all

88

the UDP flows by 10. The experiment duration was 180 seconds as in the previous

experiment.

With the unmodified ns-2 forwarding model, we use the default 50-slot-sized ns-2

queue, as well as a larger 20000-slot-sized ns-2 queue in the case of Gigabit routers.

Table 6.5 demonstrates the loss ratios for the congested output port2. The data

indicates that our model provided an accurate approximation of the loss ratios. The

default ns-2 queue results for the Gigabit routers are inaccurate for both queue sizes;

ns-2 gives accurate loss estimates for the two lower-end routers.

Table 6.5
High-load TCP: Average loss ratios

Router Observed Model ns-2 50 ns-2 20000

Cisco 12410 0.0077 0.0078 0.0342 0.0099

Juniper M7i 0.0175 0.0161 0.0353 0.0125

Cisco 3660 0.1031 0.1028 0.1031 N/A

Cisco 7206VXR 0.0960 0.0953 0.0954 N/A

Table 6.6 compares the means (in µs) and the COV values for the routers for

all ports used in the experiment. The results indicate that our model performs well

in this high-load scenario. The results further show that our profiling system can

successfully scale to Gigabit speeds. It is interesting to note that the COV values for

the congested port become considerably small on the Cisco 3660 and Cisco 7206VXR.

This is because traffic starts to resemble a single CBR flow, and most packets expe-

rience maximum queuing delay, resulting in a decrease of delay variation.

The results from Table 6.7 also confirm that the model performs well especially

for the congested ports. The K-S value of 0.292 for Juniper M7i at the Node2 output

is caused by failing to capture the router behavior in the parameter table. Fig. 6.7

demonstrates the cause of the problem.

In Fig. 6.7(a), our model for Cisco 12410 is accurate, and the average absolute

difference is 1492 µs. The plot in Fig. 6.7(b) indicates that our profiling method

89

Table 6.6
High-load TCP: Mean and COV packet delays for Cisco 12410, Ju-
niper M7i, Cisco 3660, and Cisco 7206VXR for three destination (Dst)
nodes

12410 M7i 3660 7206VXR

Dst Node Type Mean COV Mean COV Mean COV mean COV

Node0 Model 30.784 0.470 55.368 0.539 159.044 0.535 132.895 0.559

Observed 47.279 0.349 74.259 0.470 305.318 0.856 186.287 0.513

Node1 Model 28.153 0.474 59.312 0.515 162.830 0.432 131.163 0.575

Observed 32.067 0.406 62.524 0.823 243.743 0.547 123.390 0.662

Node2 Model 221454.186 0.387 90374.424 0.402 19823.226 0.043 14609.008 0.047

Observed 219962.721 0.389 86022.799 0.507 19435.527 0.044 14427.739 0.048

failed to reveal that the M7i router can sometimes delay packets longer than our

CBR parameter inference test indicated. The model delays do not exceed 140 K (µs),

whereas the delays on the router continue to increase. At first, it may appear that we

have simply underestimated the router queue size. However, simulations with larger

queues do not resolve the problem, as then the queues do not drain as fast as they

do in our observations. This implies that the extra delay is router-induced and not

because of additional queuing delay. For both Gigabit routers, the ns-2 predictions

with a queue of 50 slots are exceedingly close to the x-axis as the queue cannot have

substantial queuing delay. Results with 20000-slot queues are closer. However, the

ns-2 results are not entirely correct as they underestimate the delay for the Cisco

12410 and overestimate the delay for the Juniper M7i.

Table 6.7
High-load TCP Kolmogorov-Smirnov statistic

Dst Node 12410 M7i 3660 7206VXR

Node0 0.569 0.519 0.388 0.342

Node1 0.294 0.241 0.496 0.226

Node2 0.019 0.292 0.397 0.268

90

0 20 40 60 80 100 1200

0.5

1

1.5

2

2.5

3

3.5

4x 105

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 20000

(a) Cisco 12410

0 20 40 60 80 100 1200

0.5

1

1.5

2

2.5x 105

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 20000

(b) Juniper M7i

Figure 6.7. High-load TCP: Delays on port2

The Cisco 3660 and 7206VXR models match the observations well. Interestingly,

the data in Table 6.6 for non-congested ports indicates an increase in variance com-

pared to what our model predicts. This is not surprising as both routers reported

non-negligible CPU usage. Cisco 3660 reported a 41% CPU utilization while the

7206VXR reported a 30% CPU utilization averaged over a one minute period. As

these routers use interrupt driven packet processing (see Section 6.1), they are prone

to backplane contention and interference even at moderate loads. Fig. 6.8(a) and

Fig. 6.8(b) provide a snapshot of 500 ms and reveal that our model follows the ac-

tual data quite closely. The ns-2 model with a 50-slot queue underestimates the

delay, but the shapes of the curves are not appreciably different from our model and

measurements.

6.3.4 High-load TCP and HTTP

In our previous experiments, we have used purely synthetic traffic and did not

induce extremely heavy loads on all router ports. Sommers et al. [67] suggest that

routers experience higher loads under realistic traffic, compared to synthetic traf-

fic. Hence, we now use the PackMIME HTTP ns-2 module [85]. We made a few

91

84 84.05 84.1 84.15 84.2 84.25 84.3 84.35 84.4 84.45 84.50.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2x 104

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 50

(a) Cisco 3660

100.8 100.85 100.9 100.95 101 101.05 101.1 101.15 101.2 101.25 101.30

2000

4000

6000

8000

10000

12000

14000

16000

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 50

(b) Cisco 7206VXR

Figure 6.8. High-load TCP: Delays on port2

modifications to the code to interface the TCP agents with our tap objects (recall

Fig 5.2).

1 ms Router

1 ms

Node2

Node1

Node3

Node0
5 ms

AuxNode0

AuxNode1

AuxNode2

10 ms

20 ms

Sim 1

20 ms

20 ms

Sim 2

20.0.1.0/24 20.0.3.0/25
20.0.2.0/24 20.0.3.128/25
20.0.4.0/24 20.0.3.128/25

Figure 6.9. High-load TCP and HTTP topology

As in the previous experiment, we ran two simulator instances to create sufficient

load for the Gigabit routers. “Sim 2” in Fig. 6.9 is configured to run server and

client HTTP PackMIME clouds. The two client clouds are positioned at Node2

to force server responses to multiplex on the router port2. Each client-to-server

cloud pair is configured to generate 60 new connections per second for a total of 120

connections per second. Additionally, we scale up the server response sizes by a factor

of 10. This is necessary to create congestion. This scenario can be representative

92

Table 6.8
High-load TCP and HTTP: Mean and COV of packet delays for Cisco
12410, Juniper M7i, Cisco 3660, and Cisco 7206VXR for four desti-
nation (Dst) nodes

12410 M7i 3660 7206VXR

Dst Node Type Mean COV Mean COV Mean COV mean COV

Node0 Model 14.166 0.561 17.808 0.269 199.422 0.734 151.114 0.929

Observed 27.662 0.584 22.226 0.099 431.822 1.517 181.312 0.651

Node1 Model 15.525 0.371 19.295 0.448 133.492 0.588 122.855 0.624

Observed 18.906 0.248 16.683 0.384 152.611 1.247 185.624 0.816

Node2 Model 287511.650 0.317 106642.239 0.213 19613.124 0.100 14333.229 0.121

Observed 295902.674 0.298 113576.314 0.268 21682.739 0.167 19540.178 0.183

Node3 Model 15.801 0.394 19.228 0.451 137.552 0.675 128.885 0.737

Observed 18.617 0.255 12.217 0.391 186.934 1.236 190.487 0.779

of a large campus population downloading considerably image-intensive web pages.

Unfortunately, we were unable to use delay-boxes [85] to model the RTTs of the

flows because of performance reasons. Hence, we only set the delays on the links.

To add load, we create another simulator instance that runs 84 TCP flows driven by

FTP agents from auxiliary nodes to Node2. Additionally, the auxiliary nodes send

26 UDP flows to Node2. The UDP flows amount to 0.5 Gbps to induce heavy load

on the congested port. These TCP and UDP flows represent large file downloads and

streaming services. For instance, 4300 people listening to 128 Kbps radio broadcasts

can use up 0.5 Gbps.

In the case of the Cisco 3660 and Cisco 7260VXR, we use different parameters, as

otherwise, the load would be excessive for 100 Mbps. First, as before, we scale down

the link speeds to 100 Mbps. Second, we configure the HTTP traffic simulation to

use 30 connections per second per client-server cloud, for a total of 60 connections per

second. We also remove the server response scaling factor. We remove UDP traffic

from the auxiliary nodes to Node2, but we create 9 UDP flows of 1500-byte packets

at 150 pps from Node2 to Node1.

93

We set the random seeds in experiments with all routers to the same values. The

seeds are required by the random streams when creating request/response sizes as

well as server and client “thinking” delays. The experiment duration is set to 180

seconds.

Table 6.9
High-load TCP and HTTP: Average loss ratios

Router Observed Model ns-2 50 ns-2 20000

Cisco 12410 0.0033 0.0021 0.0388 0.0028

Juniper M7i 0.0188 0.0183 0.0402 0.0178

Cisco 3660 0.0528 0.0456 0.0591 N/A

Cisco 7206VXR 0.0615 0.0523 0.0617 N/A

Table 6.9 gives the loss ratios. Our model performs well across all scenarios,

especially for the Gigabit routers where it is significantly more accurate than ns-2

with a 50 slot queue. Results of ns-2 with a 20000-slot queue are accurate. Although

not shown in the paper, almost half of the packets from Node1 and Node3 were lost on

the Cisco 3660 and 7206VXR. We suspect this was the result of highly bursty traffic

from these nodes, which is consistent with the analysis in [72]. Table 6.8 indicates

that our model gives a reasonable match for the mean and COV values; however, the

results are not as accurate as in the high-load TCP scenario. This is attributed to

backplane interactions which affected the results, except on the Cisco 12410. As in

the previous experiment, the COV values for the Cisco 3660 and 7206VXR on the

heavily congested port are considerably low.

Table 6.10 summarizes the K-S statistics for the routers. Even though, some of

the K-S values are as big as 0.909, the CDF in general appear appreciably similar to

each other. The CDF plots appear similar to plots in Fig. 6.5 where there is a narrow

range of x–values where the discrepancy between the CDFs is large.

Fig. 6.10 depicts the delay data for Cisco 12410 and Juniper M7i for the congested

port. Our model follows the observed data quite well. On the Juniper, the model

94

Table 6.10
High-load TCP and HTTP Kolmogorov-Smirnov statistic

Destination Node 12410 M7i 3660 7206VXR

Node0 0.909 0.702 0.274 0.251

Node1 0.526 0.375 0.214 0.242

Node2 0.145 0.292 0.500 0.830

Node3 0.474 0.852 0.128 0.261

predictions are not as not as precise because some packets experience a much higher

delay than the model predicts. This is because our parameter estimates are not

entirely accurate, and the router experiences additional delay as a result of heavy

load. For both routers, the ns-2 predictions with a 50-slot default queue are close to

the x-axis as the queue cannot introduce substantial queuing delay. Although loss

ratios for ns-2 with a 20000-slot queue are similar to the observations (Table 6.9),

packet delays for ns-2 are quite different.

0 10 20 30 40 50 60 70 80 900

0.5

1

1.5

2

2.5

3

3.5

4x 105

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 20000

(a) Cisco 12410

0 10 20 30 40 50 60 70 80 900

0.5

1

1.5

2

2.5x 105

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 20000

(b) Juniper M7i

Figure 6.10. High-load TCP and HTTP: Delays on port2

Fig. 6.11 gives the results on the congested port2 for 500 ms, while Fig. 6.12 gives

the results on the non-congested port0 for 30 ms for the Cisco 3660 and 7206VXR. For

the Cisco 7206VXR, we also execute ns-2 simulations with a 125-slot queue. This is

95

57 57.05 57.1 57.15 57.2 57.25 57.3 57.35 57.4 57.45 57.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 50

(a) Cisco 3660

152.6 152.65 152.7 152.75 152.8 152.85 152.9 152.95 153 153.05 153.11

1.1

1.2

1.3

1.4

1.5

1.6x 104

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 125

(b) Cisco 7206VXR

Figure 6.11. High-load TCP and HTTP: Delays on port2

53.52 53.525 53.53 53.535 53.54 53.545 53.550

200

400

600

800

1000

1200

1400

1600

1800

2000

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 50

(a) Cisco 3660

88.75 88.755 88.76 88.765 88.77 88.775 88.780

200

400

600

800

1000

1200

1400

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Observed
Model
ns−2 50

(b) Cisco 7206VXR

Figure 6.12. Effects of backplane contention on non-congested port0

the number of MTU-sized packets that the 7206VXR can support (see Table 6.1). Our

model predictions are close to the observed data. The results on the non-congested

ports appear further apart because the scale on the y-axis is fine-grained. Both routers

report moderate levels of average CPU usage: 40% for the Cisco 3660 and 33% for

the 7206VXR. As these routers use interrupt–driven packet processing (Section 6.1),

it is not surprising that packets experience backplane contention. The default ns-2

model does not consider backplane contention, and hence the predicted delays are

96

lower. Setting the ns-2 queue size to 125 for the 7206VXR increased accuracy over

a queue size of 50; however, the results still underestimated the actual delays. This

is because there is a wide range of different sized HTTP packets in the experiment,

and our results show that the router has separate buffers for different sized packets,

meaning that a single 125-slot queue will not suffice.

53.52 53.525 53.53 53.535 53.54 53.545 53.550

200

400

600

800

1000

1200

1400

1600

1800

2000

De
la

y
(m

icr
o−

se
co

nd
s)

Time (seconds)

Data
Model
Separate ports

Figure 6.13. Cisco 3660 on port0: Separate ports case

Finally, to demonstrate the effects of backplane contention, we simulate a modified

version of our model which decouples the ports from each other, hence removing cross-

traffic interactions. Fig. 6.13 presents the result for the same data as in Fig. 6.12(a).

The data indicates that significant delay can be caused by cross-traffic, even if the

output links are not shared. Failure to capture such behavior can have implications on

experiments which rely on RTT estimation, as additional jitter can cause significant

deviation between simulation and real life data.

6.4 Summary

In this chapter, we have used the BBP to infer model parameters for three Cisco

routers: 3660, 7206VXR, and 12410, and a Juniper router: M7i. We then compared

real observations to the model predictions, as well as to the default ns-2 queuing

model. The comparisons revealed that the model is able to capture backplane con-

tention, as well as the three queuing strategies we observed in the routers: slot based,

97

byte based, and separate buffers for differently sized packets. The model was inte-

grated into ns-2 and it has preserved the scalability properties of ns-2, as it did not

add significant extra computational overhead. We have also observed cases, when

the model failed to completely capture the router behavior, because the complex

traffic scenarios have created levels of load not observed in the parameter inference

steps. This indicates that more research needs to be carried out to improve the infer-

ence steps. We believe that incorporating even the current version of the model into

simulators can significantly increase fidelity of network simulations, while preserving

scalability. Our inference steps can also be used to only derive queue type and size for

use in simpler models such as the VOQ. Knowing only the correct queue type and size

can improve simulation results dramatically, and remove the guess work when select-

ing queue parameters. The inferred parameters can also be used to configure router

emulators and software routers, by setting up appropriate rate limits and queueing

properties.

98

99

7 CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the main components of this thesis and finish with

examination of future research.

7.1 Simulation Versus Emulation

To motivate this thesis, we compared simulation and emulation experiments with

seemingly identical parameters and have revealed key differences in the results. The

majority of differences occur because simulators rely on abstract models, which do not

take into account all of the processing required when forwarding packets. PCs used

on Emulab/DETER and commercial routers on WAIL can have multiple bottlenecks

because of their CPUs, buses, and devices. These bottlenecks are not modeled by sim-

ulators. When we compared data from the Emulab and DETER emulation testbeds,

the nodes on Emulab experience a much higher CPU load than the DETER nodes for

the same packet rate, even though the hardware and software on both testbeds may

appear similar. This means the results are highly dependent on the details of under-

lying hardware and software, and their settings. These different settings are typically

irrelevant for typical networking and operating systems experiments, but cause dra-

matic differences under DoS attacks that overload the system. We have confirmed

this observation once again by running the experiments on Cisco routers at the WAIL

testbed. There were also major differences between different Cisco routers. It took us

great effort to investigate the reasons why PCs, Cisco routers and simulation models

vary between each other. This made us consider the feasibility of creating a model

that in autonomous fashion can incorporate device specifics to increase the accuracy

of network simulations.

100

7.2 Router Modeling

Motivated by our simulation versus emulation comparison, we have created a

device–independent model for forwarding devices, such as switches and routers, and

outlined an autonomous model parameter inference procedure. The model was de-

signed with the following specifications in mind: (1) it is accurate, but is allowed to

miss special cases for the sake of scalability; (2) it is not computationally expensive;

(3) its parameter inference process is the same regardless of the device being modeled;

(4) its parameters are inferred without assuming any knowledge of device internals;

(5) the model reflects behavior under changing workloads. The model is designed

to use only a few parameter tables to mimic a specific router. Since the tables are

compact, that makes the model highly portable and easy to compute. The model at-

tempts to replicate not only packet delays as a result of router processing and output

queuing but also switching fabric contention.

To derive the device–independent model parameters, we have created a high-

performance profiler/traffic generator called the Black Box Profiler (BBP). The pur-

pose of the system was to run on commodity hardware yet provide micro-second level

precision measurements. For the hardware to run BBP on, we used an 8 CPU SMP

PC with multiple network cards. Having multiple CPUs allows us to run dedicated

measurement processes to reduce measurement noise. On the software side, we use

Click modular router, a modified network device driver, and a modified ns-2 simu-

lator. Besides acting as a router profiler, BBP was also designed to generate large

volumes of closed-loop traffic at 100 Mbps and 1 Gbps speeds. This feature allowed

us to perform validation of the model in complex traffic scenarios, by comparing the

model predictions to the actual empirical observations.

We have created ns-2 modules that incorporate our model into ns-2 simulator,

giving us an option to use our device independent model or the default queuing

model. Using BBP, we have inferred model parameters for three Cisco routers: 3660,

7206VXR, and 12410, and a Juniper router: M7i. Then we compared model pre-

101

dictions to the real observations, as well as to the regular ns-2 queuing model. The

comparisons revealed that the model is able to approximate backplane contention, as

well as the three queue sizing strategies we observed in the routers. When running our

model versus the default queuing model, there was no noticeable overhead, meaning

that the scalability property of the simulation was not compromised.

7.3 Future Work

We have presented only one version of a device independent model. The current

model is based on a Multi–Queue/Multi–Server model; however, a model might be

created based on purely statistical methods. One such method is to use regression

analysis to model packet loss and delay. Loss and delay can be modeled as depen-

dent variables, which depend on packet arrivals which can be treated as independent

variables. Hence, it might be possible to create a model for delay and loss based on

packet inter–arrival times. Besides using statistical methods, a model can be con-

structed that uses a notion of “cells” when treating packets to closer approximate the

behavior of the switch fabric. A model based on “cells” can have a structure similar

to our Multi-Queue/Multi-Server model, although it can conceivably be based on

statistical methods as well.

We have investigated the applicability of the model and model parameters in

pure simulations. Emulation testbeds are also a critical tool for networking research

and can benefit from our efforts. General purpose emulation testbeds similar to

Emulab typically rely on large numbers of exactly the same machines; as otherwise,

it becomes considerably problematic to support a vast variety of devices. Because of

this, researchers are limited in the hardware choices available to them on the testbed.

It is possible to add custom devices, but it is time consuming and requires a significant

effort from the testbed staff. Ideally, it would be of great use to configure a testbed

node to emulate any given device. Realistically, a node cannot emulate a device

which is faster than it is. Also, it might not be possible to create the same inter–

102

device latencies as the target device. This is because the node itself has inter–device

latencies which cannot be removed, and achieving micro–second level timer precision

to create appropriate delays is extremely difficult. However, despite these limitations

it is still possible to use some parameters of our model. First, a testbed node can be

configured to maintain the same rate limits as the target device. This applies per port

and also for the aggregate forwarding rate. Second, custom queues can be created to

mimic the queuing behavior on the target device. Even with a smaller subset of the

model features, the experiment accuracy will improve.

LIST OF REFERENCES

103

LIST OF REFERENCES

[1] J. Mirkovic and P. Reiher. A taxonomy of DDoS attacks and DDoS defense
mechanisms. ACM Computer Communications Review, 34(2):39–54, April 2004.

[2] D. Moore, G. Voelker, and S. Savage. Inferring Internet denial-of-service activity.
In Proceedings of USENIX, 2001.

[3] Micronas Inc. Preparing for the IPTV future. http://www.gnbm.org/uploads/
IPTV the future.pdf, 2006.

[4] J. Barrett. The IPTV conundrum in Asia. http://www.parksassociates.com/
free data/downloads/parks-IPTV in Asia.pdf, 2006.

[5] Alcatel Lucent. Broadband applications fueling consumer demand.
http://www1.alcatel-lucent.com/doctypes/articlepaperlibrary/pdf/
Broadband Apps swp.pdf, 2004.

[6] D. M. Nicol. Scalability of network simulators revisited. In Proceedings of the
Communications Networking and Distributed Systems Modeling and Simulation
Conference, February 2003.

[7] D. M. Nicol. Utility analysis of network simulators. International journal of
simulation: Systems, Science, and Technology, 2003.

[8] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in network simulation.
IEEE Computer, 33(5):59–67, May 2000.

[9] F. Baker. Re: [e2e] extracting no. of packets or bytes in a router buffer. Message
to ”end2end” mailing list, December 2006.

[10] The worlds leading network modeling and simulation environment. http://www.
opnet.com/products/modeler/home.html, 2005.

[11] OMNeT++. http://www.omnetpp.org/.

[12] B. Van den Broeck, P. Leys, J. Potemans, J. Theunis, E. Van Lil, and A. Van
de Capelle. Validation of router models in OPNET. In Proceedings of OPNET-
WORK, 2002.

[13] Peh Li-Shiuan and W. J. Dally. A delay model for router microarchitectures. In
IEEE Micro, volume 21, pages 26–34, Jan 2001.

[14] K. Yum, E. Kim, and C.R. Das. QoS provisioning in clusters: an investigation
of router and NIC design. In Proceedings. 28th Annual International Symposium
on Computer Architecture, 2001, pages 120–129, June–July 2001.

104

[15] N. Hohn, D. Veitch, K. Papagiannaki, and C. Diot. Bridging router performance
and queuing theory. In Proceedings of SIGMETRICS, 2004.

[16] M. Guirguis, A. Bestavros, and I. Matta. Exploiting the transients of adaptation
for RoQ attacks on internet resources. In Proceedings of IEEE International
Conference on Network Protocols (ICNP), Oct 2004.

[17] A. Kuzmanovic and E. W. Knightly. Low-rate TCP-targeted denial of service at-
tacks (the shrew vs. the mice and elephants). In Proceedings of ACM SIGCOMM,
August 2003.

[18] S. Floyd and E. Kohler. Internet research needs better models. SIGCOMM
Computer Communications Review, 33(1):29–34, 2003.

[19] X. Luo and R. K.-C. Chang. On a new class of pulsing denial-of-service attacks
and the defense. In Procceedings of Network and Distributed System Security
Symposium (NDSS), February 2005.

[20] H. Sun, J. Lui, and D. Yau. Defending against low-rate TCP attacks: Dynamic
detection and protection. In Proceedings of IEEE International Conference on
Network Protocols (ICNP), Oct 2004.

[21] Y. Chen, K. Hwang, and Y.-K. Kwok. Collaborative defense against peri-
odic shrew DDoS attacks in frequency domain. Submitted, 2005. Available at:
http://gridsec.usc.edu/files/TR/ACMTISSEC-LowRateAttack-May3-05.pdf.

[22] L. Rizzo. DummyNet. http://info.iet.unipi.it/∼luigi/ip dummynet/.

[23] K. Park and H. Lee. On the effectiveness of route-based packet filtering for
distributed DoS attack prevention in power-law internets. In Proceedings of
ACM SIGCOMM, August 2001.

[24] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless internet flow filter to mitigate
DDoS flooding attacks. In IEEE Symposium on Security and Privacy, May 2004.

[25] J. Ioannidis and S. M. Bellovin. Implementing pushback: Router-based defense
against DDoS attacks. In Proceedings of Network and Distributed System Security
Symposium (NDSS), Feb 2002.

[26] D. G. Andersen. Mayday: Distributed filtering for internet services. In Proceed-
ings of USENIX Symposium on Internet Technologies and Systems (USITS),
2003.

[27] C. Jin, H. Wang, and K. G. Shin. Hop-count filtering: An effective defense against
spoofed DoS traffic. In Proceedings of ACM Computer and Communications
Security (CCS), pages 30–41, Oct 2003.

[28] V. Jacobson. Congestion avoidance and control. In Proceedings of the ACM
SIGCOMM, volume 18, pages 314–329, August 1988.

[29] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput:
A simple model and its empirical validation. In Proceedings of the ACM SIG-
COMM, volume 28, pages 303–314, September 1998.

[30] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC 2581,
April 1999.

105

[31] S. Floyd and T. Henderson. The NewReno modification to TCP’s fast recovery
algorithm. RFC 2582, April 1999.

[32] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledge-
ment options. RFC 2018, October 1996.

[33] J. F. Kurose and K. W. Ross. Computer Networking – A top-down approach
featuring the Internet. Addison Wesley, 2001.

[34] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar. An integrated experimental environment for
distributed systems and networks. In Proceedings of Operating Systems Design
and Implementation (OSDI), pages 255–270, December 2002.

[35] R. Bajcsy and et al. Cyber defense technology networking and evaluation. Com-
munications of the ACM, 47(3):58–61, March 2004.

[36] PC300 – The Router Killer. http://www.cyclades.com/resources/?wp=6.

[37] http://www.sangoma.com.

[38] ImageStream and Cicso Comparison. http://www.imagestream.com/Cisco
Comparison.html.

[39] OSS network routers. http://www.siriusit.co.uk/docs/doc.php?pageID=
8&typeID=3, December 2004.

[40] P. Druschel, L. Peterson, and B. Davie. Experiences with a high-speed net-
work adaptor: A software perspective. In Proceedings of the ACM SIGCOMM
Conference, pages 2–13, August 1994.

[41] J. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-
driven kernel. ACM Transactions on Computer Systems, 15(3):217–252, August
1997.

[42] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click mod-
ular router. ACM Transactions on Computer Systems, 18(3):263–297, August
2000.

[43] MOSES Project. iSSF and iSSFNet network simulators. http://www.
linklings.net/MOSES/?page=software, 2005.

[44] Classful Queueing Disciplines. http://www.tldp.org/HOWTO/
Adv-Routing-HOWTO/lartc.qdisc.classful.html.

[45] S. Agarwal, J. Sommers, and P. Barford. Scalable network path emulation. In
Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), September 2005.

[46] A. Tirumala and et al. Iperf - the TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects/Iperf/, May 2005.

[47] M. Mathis and R. Reddy. Enabling high performance data transfers. http:
//www.psc.edu/networking/projects/tcptune/, July 2006.

106

[48] R. Chertov. Performance of a software link monitor. http://www.cs.purdue.
edu/homes/rchertov/reports/click.pdf, August 2005.

[49] A. Bianco, R. Birke, D. Bolognesi, J. Finochietto, G. Galante, M. Mellia,
M. Prashant, and F. Neri. Click vs. Linux: Two efficient open-source IP network
stacks for software routers. In IEEE Workshop on High Performance Switching
and Routing, May 2005.

[50] Cisco. Cisco routers. http://www.cisco.com/warp/public/cc/pd/rt/index.
shtml.

[51] Cisco. How to choose the best router switching path for your
network. http://www.cisco.com/en/US/tech/tk827/tk831/technologies
white paper09186a00800a62d9.shtml, August 2005.

[52] Cisco Systems. Cisco 3600 series router architecture.
http://www.cisco.com/en/US/products/hw/routers/ps274/products
tech note09186a00801e1155.shtml, 2006.

[53] Cisco Systems. Cisco 7200 series router architecture.
http://www.cisco.com/en/US/products/hw/routers/ps341/products
tech note09186a0080094ea3.shtml, 2007.

[54] PDNS – Parallel/Distributed NS.
http://www-static.cc.gatech.edu/computing/compass/pdns/.

[55] GTNetS. http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/.

[56] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and
C.C. Lin. The design and implementation of the NCTUns 1.0 network simulator.
In Computer Networks 2003, volume 42, pages 175–197, June 2003.

[57] J-Sim. http://www.j-sim.org.

[58] K. Fall. Network emulation in the Vint/NS simulator. In Proceedings. IEEE
International Symposium on Computers and Communications, 1999., pages 244–
250, July 1999.

[59] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and
D. Becker. Scalability and accuracy in a large-scale network emulator. In Pro-
ceedings of 5th Symposium on Operating Systems Design and Implementation
(OSDI), Dec 2002.

[60] P. Zheng and L.M. Ni. EMPOWER: A network emulator for wireline and wire-
less networks. In Proceedings of IEEE INFOCOM, volume 3, pages 1933–1942,
March–April 2003.

[61] D. Xu J. Xuxian. vBET: a VM-Based emulation testbed. In Proceedings of ACM
Workshop on Models, Methods and Tools for Reproducible Network Research,
Aug 2003.

[62] Emulab. Emulab - network emulation testbed. http://www.emulab.net.

[63] A. Shaikh and A. Greenberg. Experience in black-box OSPF measurement.
In IMW ’01: Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, pages 113–125, New York, NY, USA, 2001. ACM Press.

107

[64] S. Bradner and J. McQuaid. Benchmarking methodology for network inter-
connect devices. Request for Comments 2544, http://www.rfc-archive.org/
getrfc.php?rfc=2544, march 1999.

[65] R. Mandeville and J. Perser. Benchmarking methodology for LAN switching
devices. Request for Comments 2889, http://www.faqs.org/rfcs/rfc2889.
html, august 2000.

[66] Endace. http://www.endace.com/.

[67] J. Sommers and P. Barford. Self-configuring network traffic generation. In IMC
’04: Proceedings of the 4th ACM SIGCOMM conference on Internet measure-
ment, pages 68–81, New York, NY, USA, 2004. ACM Press.

[68] D. Mahrenholz and S. Ivanov. Real-time network emulation with ns-2. In Pro-
ceedings of DS-RT, pages 29–36, October 2004.

[69] IXIA. http://www.ixiacom.com.

[70] M. C. Weigle, P. Adurthi, F. Hernandez-Campos, K. Jeffay, and F. D. Smith.
Tmix: A tool for generating realistic application workloads in ns-2. ACM Com-
puter Communication Review, 36:67–76, July 2006.

[71] K. V. Vishwanath and A. Vahdat. Realistic and responsive network traffic gen-
eration. In Proceedings of ACM SIGCOMM, 2006.

[72] K. Papagiannaki, D. Veitch, and N. Hohn. Origins of microcongestion in an
access router. In Proceedings of Passive and Active Measurement (PAM), 2004.

[73] Cisco. Cisco 1600 series router architecture. http://www.cisco.com/en/US/
products/hw/routers/ps214/products tech note09186a0080094eb4.shtml.

[74] Cisco Systems. Cisco 12000 series internet router architecture: Packet switch-
ing. http://www.cisco.com/en/US/products/hw/routers/ps167/products
tech note09186a00801e1dc1.shtml.

[75] Juniper Networks. Juniper networks m-series multiservice edge routing port-
folio. http://www.juniper.net/products and services/m series routing
portfolio/.

[76] N. McKeown. The iSLIP scheduling algorithm for input-queued switches.
IEEE/ACM Transactions on Networking, 7(2):188–201, April 1999.

[77] T.P. Troudet and S. M. Walters. Hopfield neural network architecture for cross-
bar switch control. IEEE Transactions on Circuit Systems, 38:42–57, January
1991.

[78] T. Anderson, S. Owicki, J. Saxe, and C. Thacker. High speed switch scheduling
for local area networks. ACM Transactions on Computer Systems, 11(4):319–352,
November 1993.

[79] D. Lin and R. Morris. Dynamics of random early dectection. In Proceedings of
the ACM SIGCOMM, volume 27, pages 127–136, September 1997.

108

[80] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth flows at the
congested router. In Proceedings of IEEE International Conference on Network
Protocols (ICNP), November 2001.

[81] T. J. Ott, T. V. Lakshman, and L. H. Wong. SRED: Stabilized RED. In
Proceedings of IEEE INFOCOM, volume 3, pages 1346–1355, March 1999.

[82] G. Varghese. Network Algorithmics. Morgan-Kaufmann, 2005.

[83] L. Deri. Improving passive packet capture: Beyond device polling. In Proceedings
of System Administration and Network Engineering (SANE), June 2004.

[84] Cisco Systems. Basic system management. http://www.cisco.com/
en/US/products/sw/iosswrel/ps1835/products configuration guide
chapter09186a008030c799.html#wp1009032.

[85] J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith, and M. Weigle. Stochas-
tic models for generating synthetic HTTP source traffic. In Proceedings IEEE
INFOCOM, pages 1547–1558, March 2004.

VITA

109

VITA

Education

Purdue University

• Ph.D. in Computer Science, Spring 2008.

• Master of Science in Computer Science, Spring 2004.

University of Maryland at College Park

• Bachelor of Science in Computer Science, Spring 2002

• Bachelor of Arts in Economics, Spring 2002

Research interests

High fidelity emulation and simulation, network security/planning, networking, sta-

tistical router modeling, traffic generation, distributed systems

Publications

Refereed Conferences and Workshops

• Roman Chertov, Sonia Fahmy, and Ness B. Shroff, “A Device-Independent

Router Model,” In Proceedings of IEEE INFOCOM (the conference on com-

puter communications), (to appear in April 2008).

• Roman Chertov, Sonia Fahmy, and Ness B. Shroff, “A Black-box Router

Profiler,” In Proceedings of the IEEE Global Internet Symposium (GI), May

2007.

• J. Mirkovic, S. Wei, A. Hussain, B. Wilson, R. Thomas, S. Schwab, S. Fahmy,

R. Chertov, P. Reiher, “DDoS Benchmarks and Experimenter’s Workbench

for the DETER testbed,” In Proceedings of 3rd International IEEE/CreateNet

Conference on Testbeds and Research Infrastructures for the Development of

Networks and Communities (TridentCom), May 2007.

110

• Roman Chertov and Sonia Fahmy, “Optimistic Load Balancing in a Dis-

tributed Virtual Environment,” In Proceedings of the 16th ACM International

Workshop on Network and Operating Systems Support for Digital Audio and

Video (NOSSDAV), pp. 74-79, May 2006.

• Roman Chertov, Sonia Fahmy, and Ness B. Shroff, “Emulation versus Simula-

tion: A Case Study of TCP-Targeted Denial of Service Attacks,” In Proceedings

of 2nd International IEEE/CreateNet Conference on Testbeds and Research In-

frastructures for the Development of Networks and Communities (TridentCom),

March 2006.

Refereed Journals

• Roman Chertov, Sonia Fahmy, and Ness B. Shroff, “Fidelity of Network Sim-

ulation and Emulation: A Case Study of TCP-Targeted Denial of Service At-

tacks”, Transactions on Modeling and Computer Simulation (TOMACS) (to

appear in 2008)

Technical Reports

• Roman Chertov, “Performance of a Software Link Monitor”, Information Sci-

ence Institute, 2006

• Roman Chertov and Sonia Fahmy, “Design and Validation of a Software Link

Monitor”, Purdue University, 2006

Conference Workshop Presentations

• IEEE GI, Anchorage, May 2007

• DETER Workshop, Arlington, June 2006

• ACM NOSSDAV, New Port, May 2006

• IEEE TridentCom, Barcelona, March 2006

Software

Black Box Profiler, a traffic generation/measurement system based on ns-2 sim-

ulator, modified Linux network driver, and Click modular router. The system is

111

capable of creating arbitrary traffic flow scenarios with multiple unique IPs, as well

as measuring packet loss, corruption, and delay with microsecond precision. The tool

is planned to be released in early 2008.

EMIST Tool Suite, a collection of tools designed to control, measure, and ana-

lyze experiments on testbeds. The tools can be downloaded at

http://www.cs.purdue.edu/homes/fahmy/software/emist/

