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ABSTRACT 

Modi, Shimon K. Ph.D., Purdue University, August, 2008.  Analysis of fingerprint 
sensor interoperability on system performance. Major Professor: Stephen Elliott. 
 
 
 
The increased use of fingerprint recognition systems has brought the issue of 

fingerprint sensor interoperability to the forefront. Fingerprint sensor 

interoperability refers to the process of matching fingerprints collected from 

different sensors. Variability in the fingerprint image is introduced due to the 

differences in acquisition technology and interaction with the sensor. The effect 

of sensor interoperability on performance of minutiae based matchers is 

examined in this dissertation. Fingerprints from 190 participants were collected 

on nine different fingerprint sensors which included optical, capacitive, and 

thermal acquisition technologies and touch, and swipe interaction types. The 

NBIS and VeriFinger 5.0 feature extractor and matcher were used. Along with 

fingerprints, characteristics like moisture content, oiliness, elasticity and 

temperature of the skin were also measured. A statistical analysis framework for 

testing interoperability was formulated for this dissertation, which included 

parametric and non-parametric tests. The statistical analysis framework tested 

similarity of minutiae count, image quality and similarity of performance between 

native and interoperable datasets. False non-match rate (FNMR) was used as 

the performance metric in this dissertation. Interoperability performance analysis 

was conducted on each sensor dataset and also by grouping datasets based on 

the acquisition technology and interaction type of the acquisition sensor. 

Similarity of minutiae count and image quality scores between two datasets was 

not an indicator of similarity of FNMR for their interoperable datasets. 



 

 

xii 

Interoperable FNMR of 1.47% at fixed FMR of 0.1% was observed for the optical 

touch and capacitive touch groupings. The impact of removing low quality 

fingerprint images on the effect of interoperable FNMR was also examined. 

Although the absolute value of FNMR reduced for all the datasets, fewer  

interoperable datasets were found to be statistically similar to the native datasets. 

An image transformation method was also proposed to compensate for the 

differences in the fingerprint images between two datasets, and experiments 

conducted using this method showed significant reduction in interoperable FNMR 

using the transformed dataset.  
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CHAPTER 1. INTRODUCTION 

1.1. Introduction 

 

Authentication of individuals is a process that has been performed in one form or 

another since the beginning of recorded history. Evidence of attempts to 

authenticate individuals has been found dating back to 500 B.C (Ashbourn, 

2000). The quest for improving authentication methodologies has intrigued 

humans since these early times. Establishing and maintaining the identity of 

individuals, and accurate automated recognition is becoming increasingly 

important in today’s networked world. As technology advances, the complexity of 

these tasks has also increased. There are three main methods of authenticating 

an individual: 1) using something that only the authorized individual has 

knowledge of e.g. passwords 2) using something that only the authorized 

individual has possession of e.g. physical tokens 3) using physiological or 

behavioral characteristics that only the authorized individual can reproduce i.e. 

biometrics. The increasing use of information technology systems has created 

the concept of digital identities which can be used in any of these authentication 

mechanisms. Digital identities and electronic credentialing have changed the way 

authentication architectures are designed. Instead of stand-alone and monolithic 

authentication architectures of the past, today’s networked world offers the 

advantage of distributed and federated authentication architectures. The 

development of distributed authentication architectures can be seen as an 

evolutionary step, but also raises the issue always accompanied by an attempt to 

mix disparate systems: Interoperability. What is the effect on performance of the 

authentication process if an individual establishes his/her credential on one 
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system, and then authenticates him/her-self on a different system? This issue is 

of relevance to all kinds of authentication mechanisms, and of particular 

relevance to biometric recognition systems. The last decade has witnessed a 

huge increase in deployment of biometric systems, and while most of these 

systems have been single vendor, monolithic architectures the issue of 

interoperability is bound to arise as distributed architectures become more 

pervasive.  

 

Fingerprint recognition systems are the most widely deployed biometric systems, 

and most commercially deployed fingerprint systems are single vendor systems.  

 A recent market report published by International Biometric Group (IBG) (2007) 

found that fingerprint  recognition systems account for approximately 68% of the 

biometric system deployments. The single point of interaction of a user with the 

fingerprint system is during the acquisition stage, which has the maximum 

probability of introducing inconsistencies in the biometric data. Fingerprint 

sensors are based on a variety of different technologies like electrical, optical, 

thermal etc. The physics behind these technologies introduces inconsistent 

distortions and variations in the feature set of the captured image, which makes 

the goal of interoperability even more challenging. There are obvious technical, 

commercial and operational advantages to understanding these issues more in-

depth, in addition to making the objective of creating a globally interoperable 

biometric system a more realistic one.  

 

This dissertation is organized into five chapters. The first chapter discusses the 

statement of the problem, the significance of the problem being addressed, and 

rationale behind this research. The second chapter covers background material 

and review of literature available in related areas. Selected works in the area of 

fingerprint recognition, which are relevant to this dissertation, are summarized. 

The third chapter outlines the methodology of research, the experimental setup 

and the analysis framework to be followed during this study. The fourth chapter 
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contains the results and analysis of the procedures described in the third chapter. 

The fifth chapter contains conclusions from the results analysis and 

recommendations for future work.  

1.2. Statement of Problem 

 

The distortions and variations introduced when acquiring fingerprint images 

propagate from the acquisition subsystem all the way to the matching subsystem. 

These variations ultimately affect performance rates of the overall fingerprint 

recognition system. Fingerprint images captured using the same sensor 

technology during enrollment and recognition phases will introduce similar 

distortions, thus making it easier to compensate for such distortions and reducing 

its effect on the performance of the overall fingerprint recognition system. 

However, when different fingerprint sensor technologies are used during 

enrollment and recognition phases, an impact on performance is expected, but is 

unpredictable.  

 

Financial institutions provide a relevant example of the requirement for 

interoperability of fingerprint sensors. Some institutions are starting to deploy 

Automated Teller Machines (ATM) which use fingerprint recognition for 

authenticating customers. Such a system can be designed to take advantage of 

distributed acquisition architecture and use a centralized storage and matching 

architecture as shown in Figure 1.1. Without proper understanding of how 

fingerprints captured from different sensors affect the overall recognition rates, a 

financial institution would be forced to deploy the same fingerprint sensor at all of 

their ATM’s. An extraordinary level of confidence and trust in the fingerprint 

sensor manufacturer would be required in order to choose just a single 

manufacturer. The lack of choice could also be a hurdle to mass adoption of this 

technology. If the sensor manufacturer was to stop supporting the particular 

fingerprint sensor, a financial institution would be forced to replace all the 
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sensors and re-enroll all its clients. A financial institution would incur massive 

capital and labor costs, which could be a deterrent to using this technology. 

There is need to understand the effect of different fingerprints on recognition 

rates not just from an algorithm advancement perspective, but also from a 

technology usage perspective. 

 

Figure 1.1 Example of an Interoperability Scenario. 

1.3. Significance of Problem 

One of the main components of minimizing error rates in a fingerprint recognition 

system is the acquisition subsystem since it is the first point of contact between 

the user and the system. Sensor variability results in moving the distribution of 

genuine scores away from the origin, thereby increasing error rates and 

negatively impacting the performance of the system (Wayman, 1997). Bolle and 

Ratha (1998) describe a list of challenges of matching two fingerprints. Existence 

of spurious features and missing features compared to the database template, 

transformation or rotation of features, and elastic deformation of features are 

several problems faced by fingerprint matchers. The acquisition subsystem is 

responsible for introducing part or all of the variability. This issue is amplified 
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when a fingerprint recognition system is deployed in a distributed architecture 

because of the use of different components during acquisition, signal processing, 

and matching operations. A fingerprint recognition system deployed in a 

distributed architecture can benefit from gaining a deeper insight into 

interoperability of sensors and its effect on error rates.  

 

Jain and Ross (2004) observed that Equal Error Rates (EER) for a fingerprint 

dataset consisting of images acquired from two different sensors was 23.10% 

whereas the EER for the two native datasets were 6.14% and 10.39%. In a 

report submitted to U.S. Department of Agriculture, Ford and Sticha (1999) 

outlined feasibility of biometric systems in reducing fraud in the food stamp 

program and other welfare programs, and paid particular attention to fingerprint 

recognition. In 2001 eight states in the U.S.A. required applicants for welfare in 

at-least some counties to submit to fingerprint recognition (Dean, Salstrom, & 

Wayman, 2001). These previously mentioned deployments are distributed 

architectures which acquire fingerprints from various locations and have a higher 

degree of centralization for its matching and storage functionalities. The ability of 

a recognition system to integrate different fingerprint acquisition technologies 

without a significant degradation of error rates has definite technological and 

financial advantages. It not only allows the owners of the deployment to pick and 

choose sensors that best fit its application, but also have the ability to switch a 

few of the sensors without overhauling the entire deployment, or re-enrolling its 

entire user-base. Campbell and Madden (2006) concluded that sensor effects on 

performance are not trivial, and need to be investigated independently. A deeper 

understanding of the effect of matching fingerprints acquired from different 

sensors is imperative for mass adoption of this technology.  

 

IBG (2007) has provided an analysis of adoption of biometric technologies and 

applications, and a forecast of global revenues from 2007-2012 in their report. 

They project annual revenues to grow from $3,012 million USD to approximately 
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$7,407 million USD.  Commercial fingerprint recognition systems currently make 

up approximately 25% of the entire biometrics market, and Automated 

Fingerprint Identification Systems (AFIS) and other civilian fingerprint systems 

make up approximately 33% of the entire biometrics market. Revenue generated 

from the biometric market is projected to double in the next five years, and 

fingerprint recognition systems are poised to generate a majority of it. Several 

industry support and government enforced initiatives are expected to be prime 

growth drivers for the biometrics industry but the issue of interoperability will have 

to be tackled for a realization of this growth potential. An ever increasing 

networked world is going to necessitate use of distributed architectures, and the 

ability to integrate different fingerprint sensors in a heterogeneous system without 

a significant impact on performance will be of critical importance.  

 

 

Figure 1.2 Annual Industry Revenue Projections 2007-2012 (IBG, 2007). 
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Figure 1.3 Biometric Market Share by Technology (IBG, 2007). 

1.4. Purpose of Study 

Fingerprint recognition systems are primarily based on two different types of 

matchers: minutiae based matchers, and pattern based matchers. The purpose 

of this study was to examine the effect of sensor dependent variations and 

distortions, and characteristics of the sensor on the interoperability matching 

error rates of minutiae based fingerprint recognition systems. This study 

achieved this aim by acquiring fingerprints from different acquisition technologies, 

and examining error rates for native and interoperable fingerprint datasets. This 

study did not attempt to isolate or examine specific variations and distortions in 

different fingerprint acquisition technologies. The ultimate effect on matching 

error rates of fingerprint datasets because of distortions introduced by different 

technologies was the focal point of analysis. The outcome of such a study will be 

useful in designing matching algorithms which are better at handling fingerprint 

images from various sensors. The problem space affecting error rates of 

fingerprint datasets is vast – every subsystem of a fingerprint recognition system 
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has an influence on performance of a fingerprint dataset. This study examined an 

exclusive aspect of the problem space - the acquisition subsystem. The end 

objective of this study was to provide greater insight into the effect of a fingerprint 

dataset acquired from various sensors on performance measured in terms of 

false non match rates (FNMR) and false match rates (FMR).  

 

 

Figure 1.4 Purpose of Study. 

1.5. Definitions 

Biometric Algorithm represents the finite number of steps used by a biometric 

engine to compute whether a biometric sample and template is a match (M1, 

2004). 
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Biometrics  is defined as automated recognition of individuals based on their 

behavioral and biological characteristics (ISO/IEC JTC1 SC37 SD2 - Harmonized 

Biometric Vocabulary, 2006). 

 

Biometric Sample is the raw data representing a biometric characteristic of an 

end-user as captured and processed by a biometric system (ISO/IEC JTC1 SC37 

SD2 - Harmonized Biometric Vocabulary, 2006). 

 

Biometric System is an automated system capable of the following  (ISO/IEC 

JTC1 SC37 SD2 - Harmonized Biometric Vocabulary, 2006): 

1. capturing a biometric sample from the end user 

2. extracting biometric data from the sample 

3. comparing the biometric data to one or more reference templates 

4. computing how well they match 

5. indicating based on decision policy if identification or verification has been 

achieved 

 

Core is the turning point on the inner most ridge of a fingerprint (Amin & Yager, 

2004). 

 

Delta is the point on a ridge at or nearest to the point of divergence of two ridge 

lines, and located at or directly in front of point of divergence (M1, 2004). 

 

Equal Error Rate (EER) is the operational point where FNMR=FMR 

 

Enrollment is the process of converting a captured biometric sample and the 

subsequent preparation and storage of the biometric template representing the 

individual’s identity (M1, 2004). 
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Environment  is defined as the physical surroundings and conditions where 

biometric capture occurs, and it also includes operational factors such as 

operator skill and enrollee cooperation level (Biometric Sample Quality Standard 

- Part 1: Framework, 2006).  

 

False Accept Rate (FAR) is the expected number of transactions with wrongful 

claims of identity that are incorrectly confirmed (Mansfield & Wayman, 2002). 

 

False Reject Rate (FRR) is the expected number of transactions with truthful 

claims of identity that are wrongly denied (Mansfield & Wayman, 2002). 

 

False Match Rate (FMR) is the expected probability that a sample will be falsely 

declared to match a single randomly selected non genuine template (Mansfield & 

Wayman, 2002). 

 
False Non Match Rate (FNMR) is the expected probability that a sample will be 

falsely declared not to match a template from the same user supplying the 

sample (Mansfield & Wayman, 2002). 

 

Failure to Acquire (FTA) Rate is the expected rate of sample acquisitions which 

cannot be processed.   

 

Failure to Enroll (FTE) Rate is the expected proportion of subjects who cannot be 

enrolled in the system. 

 

Friction Ridge is the ridges present on skin of the fingers which make contact 

with an incident surface under normal touch (M1, 2004). 

 

Hybrid testing describes a methodology in which samples are collected in real 

time and testing of the samples is performed in an off-line environment (Grother, 

2006). 
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Identification is the one-to-many process of comparing a submitted biometric 

sample against all of the biometric reference templates on file to determine 

whether it matches any of the templates (M1, 2004). 

 

Interoperable fingerprint dataset refers to the fingerprint dataset of 3 enrollment 

fingerprint images and 3 testing fingerprint images collected from two different 

sensors. 

 

Live capture is the process of capturing a biometric sample by an interaction 

between an end user and a biometric system  (ISO/IEC JTC1 SC37 SD2 - 

Harmonized Biometric Vocabulary, 2006). 

 

Native fingerprint dataset refers to the fingerprint dataset comprised of 3 

enrollment fingerprint images and 3 test fingerprint images collected from the 

same sensor. 

 

Performance is measured in terms of false non match rates and false match 

rates which are fundamental error rates in offline testing (Grother et al., 2006).   

 

Receiver Operating Characteristic (ROC) curves are a means of representing 

results of performance of diagnostic, detection and pattern matching systems 

(Mansfield & Wayman, 2002). 

 

Template is the data which represents the biometric measurement of an enrollee 

and is used by the biometric system for comparison against subsequently 

submitted samples  (ISO/IEC JTC1 SC37 SD2 - Harmonized Biometric 

Vocabulary, 2006). 

 

Valley is the area surrounding a friction ridge which does not make contact with 

incident surface under normal touch (M1, 2004). 
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Verification is the process of comparing a submitted biometric sample against the 

biometric reference template of a single enrollee whose identity is being claimed, 

to determine whether is matches the enrollee’s template (M1, 2004).  

1.5.1. Sensor Related Distortions and Variations 

Fingerprint sensors are responsible for capturing the unprocessed representation 

of ridge flow from the finger skin. Invariably, the capture process introduces 

undesirable changes which make it different from the source of the sample. 

These undesirable changes are called distortions. The causes of fingerprint 

image distortions and variations can be categorized into the following:  

1. Interaction type   

2. Acquisition technology type  

3. Sensor characteristics 

 

The two most popular modes of interacting with fingerprint sensors are touch and 

swipe. All sensors used in this study were one of these two types of interactions. 

Both of these interaction types have a distinct effect on the image. Swipe sensors 

utilize an image reconstruction technique which takes into account nonlinear 

distortions between two consecutive frames (Zhang, Yang, & Wu, 2006). Touch 

sensors are affected by elasticity of skin and amount of pressure placed on the 

finger when it is placed on the sensor. Swipe sensors are not affected by residue 

and latent prints, which can affect touch sensors. The artifacts introduced by 

latent prints can distort the image captured from a touch sensor.  

 

There are several different types of acquisition technologies used in fingerprint 

sensors: optical, capacitive, thermal, ultrasonic, piezoelectric etc. The acquisition 

technology introduces distortion because of the physics behind it. The three 

types of acquisition technologies used in this study were optical, capacitive, and 

thermal.  
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Most optical sensors are based on the phenomenon of frustrated total internal 

reflection (FTIR) (O'Gorman & Xia, 2001). This technology uses a glass platen, a 

light source and a Charged Coupled Device (CCD) or Complementary Metal 

Oxide Semiconductor (S3OS) camera for constructing fingerprint images 

(O'Gorman & Xia, 2001). Optical sensors introduce distortions which are 

characteristic of its technology. The edges of fingerprint images captured using 

optical sensors have a tendency of getting blurred due to the setup of the lenses. 

Optical physics could potentially cause out of focus images which can be 

attributed to the curvature of the lens. Sometimes residual incident light is 

reflected from the ridges which can lead to a low contrast image (Secugen). A 

phenomenon called Trapezoidal Distortion is also noticed in fingerprint images 

captured from optical sensors due to the unequal optical paths between each 

point of the fingerprint and the image focusing  lens (Igaki, Eguchi, Yamagishi, 

Ikeda, & Inagaki, 1992). The level of contrast in resulting fingerprint images is 

affected by the acquisition technology. Optical sensors tend to introduce grey 

areas in the image due to residual light getting scattered from the ridge and not 

reflecting completely.  

 

Capacitance sensors do not produce geometric distortions, but they are prone to 

introduce distortions due to the electrical nature of the capture technology. 

Electrostatic discharge can affect the resulting image since the conductive plates 

are sensitive to it. Capacitance sensors can also be affected from the 60Hz 

power line and electrical noise from within the sensor (2006). 

 

 Thermal sensors also do not introduce geometric distortions. They work on the 

principle of measuring difference in heat flux, which makes the sensor 

susceptible to humid and warm conditions. Since this type of technology 

measure the difference in heat flux, the finger surface has to be swiped across 

the sensor and introduces distortions typical of swipe technology.   
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Sensor characteristics like sensing surface and resolution are also responsible 

for introducing distortions. The horizontal and vertical resolutions are responsible 

for determining the distance observed between pairs of minutiae points. Sensors 

with different resolutions will provide images which show a different Euclidean 

distance for the same pair of minutiae points. The area of the sensing surface will 

determine the level of overlap in the same fingerprint image captured on a 

different sensor. It is more likely for two different sensors with a similar sensing 

areas to capture the same fingerprint image with a higher level of overlap 

compared to sensors with different sensing area. 

1.6. Assumptions 

! All participants were willing participants in the study, and thus were treated 

as cooperative participants and provided samples in genuine and good 

faith. 

! The integrity of fingerprint sensors was maintained throughout the study. 

! The fingerprint sensors, minutiae extractors and minutiae matchers were 

either open source or commercially available. Their integrity and 

performance were assumed to be consistent with their product 

specifications.  

1.7. Delimitations 

! The participants in the study were recruited from Purdue University. 

! All data collection was performed in a single visit.  

! The participants in the study were allowed to adjust the height of the chair 

and positioning of the fingerprint sensor to suit their comfort needs. 

! Mistakes in placement of finger on sensor invalidated the fingerprint 

sample provided by the participant.  
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! All fingerprint sensors were peripheral devices connected using USB port. 

! An ultrasonic fingerprint sensor was not used. 

! Environment conditions were controlled throughout the data collection 

process. 

! Not all participants were familiar with fingerprint recognition technology. All 

participants had to complete a practice session to familiarize themselves 

with the process of providing fingerprint images.  

! Two different fingerprint feature extractors and fingerprint feature 

matchers were used: VeriFinger 5.0 extractor and matcher, and MINDTCT 

and BOZORTH3. VeriFinger 5.0 extractor and matcher create one 

subsystem and MINDTCT and BOZORTH3 create another subsystem. 

This study did not compare interoperability of the different subsystems.  

1.8. Limitations 

! The experience of participants with fingerprint sensors participating in the 

study was different. Previous studies have observed that prior experience 

and habituation of users with fingerprint devices has an effect on 

performance rates (Thieme, 2003).  

1.9. Summary 

This chapter introduced the problem in global terms by giving a description of the 

problem space and its significance to overall advancement of fingerprint 

recognition. An overall frame of reference is created for the reader which will 

assist in highlighting the focus areas of this study. 
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CHAPTER 2. REVIEW OF LITERATURE 

2.1. Introduction 

This chapter outlined several studies and experiments related to the impact of 

sensor specific issues on fingerprint recognition systems. Previous studies were 

analyzed to identify and justify the design of experiment. The statistical analysis 

methodology used in this dissertation was formulated based on previous 

research analysis methodologies. This chapter also presented a historical and 

evolutionary view of fingerprint recognition systems. 

2.2. History of Biometrics 

Archaeological evidence has been found indicating fingerprints were used as a 

form of authentication dating back to the 7000 to 6000 B.C. (O'Gorman, 1999). 

Clay pottery from these times used a fingerprint impression to mark the identity of 

the potter who had made it. Bricks used in the ancient city of Jericho have been 

discovered with impression of fingerprints, and its most probable use was to 

recognize the mason. Likewise, in ancient Egypt allowance claimants were 

identified by checking against a record which contained the name, age, place of 

origin, and other relatively unique physical and behavioral characteristics 

(Ashbourn, 2000).   

2.2.1. Studies Related to Finger Anatomy and Ridge Structure 

The earliest scientific fingerprint studies aimed at studying the anatomy and 

function of papillary ridges on the surface of the finger. Two microscopists, 

Govard Bidloo and Macello Malphighi published their findings and conclusions on 
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papillary ridges in 1685 and 1687 respectively (Cole, 2001). The main point of 

discussion in those publications was if papillary ridges were organs of touch or if 

they facilitated sweating. Anatomist J.C. Mayer (1788) made a claim in his 

publication that the arrangement of skin ridges could never duplicated in two 

persons. This was among the first recorded claim about uniqueness of 

fingerprints. In 1823 Czech physician Jan Purkyne classified papillary ridges on 

human fingerprints into nine categories in an effort to establish a connection 

between vision and touch (Hutchings, 1997). This was the first attempt at 

classifying fingerprint patterns and laid the foundation for future fingerprint 

identification systems. Although Purkyne was a trained physician, he was also a 

student of philosophy and believed that every natural object is identical to itself 

and thus claimed that no two fingerprint patterns are identical. 

2.2.2. Early Experiments with Fingerprint Identification: Criminalistics  

William Herschel and Henry Faulds were the first to apply fingerprints for 

verifying the claim of an individual’s identity by checking it against a catalogue of 

recorded fingerprints. In 1858 Willliam Herschel asked a road contractor to 

impress his hanS4rint in ink on a deed with the intention of adding the element of 

non-repudiation to the contract. Upon further investigation of the details of the 

hanS4rint he believed that he had found a way of verifying the identity of every 

man, and tried to institute it as an identification method in a local prison to identify 

the inmates, but his ideas did not impress his superiors and his ideas were never 

tested. The impracticality of comparing a visual representation of a fingerprint 

with all the catalogued fingerprints was its primary drawback. In 1880 Henry 

Faulds observed that fingerprint patterns could be used to identify criminals. 

Faulds devised an alphabet classification scheme so that a person’s set of ten 

prints could be represented by a word. These words could be catalogued in a 

dictionary which would then be used to search for fingerprints. Faulds published 

his observations and methodology in a letter to Nature in 1880 and also 

approached Scotland Yard with his ideas. Although he provided an improvement 
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over previous methods with the use of a cataloguing system, Scotland Yard 

declined to follow up on his technique.  

2.2.3. Galton’s Fingerprint Experiments  

In 1880 Francis Galton followed up on Fauld’s experiment on using fingerprints to 

identify individuals. Galton started off by devising a classification system which 

built on Purkyne’s 9 pattern types, but he found that they were not discriminative 

enough. There were fingerprints with patterns which blurred the division between 

the 9 types. Eventually Galton came up with 60 different patterns which he 

believed to be discriminative and inclusive but then realized the impracticality of 

such a system. He reconsidered his efforts and reclassified all patterns into three 

categories: “arches”, “loops” and “whorls”. Galton recognized the key to 

fingerprint classification lay in grouping, not in differentiating. The empirical 

results from Galton’s experiments showed that the patterns were not uniformly 

distributed. The loop pattern was the most common pattern, so Galton divided it 

into inner loop pattern and outer loop pattern. According to Galton’s classification 

inner loops opened towards the thumb and outer loops opened towards the little 

finger. For purposes of classification Galton suggested classifying all ten fingers 

based on the four pattern types and using that combination of patterns to 

catalogue the individual. Galton demonstrated his classification scheme to the 

British Home Office in 1893 but non uniform distribution of fingerprint patterns 

posed a challenge of representing large collections, which dissuaded them from 

adopting Galton’s scheme.  

 

In the course of his experiments he noticed features of ridges where the papillary 

ridge ended, split into two, or rejoined from two ridges into one. He went on to 

propose that two fingerprints could be matched by comparing these features that 

he called “minutiae”. Although theoretically this method had merit, Galton 

believed this method to be infeasible in practical terms. The number of minutiae 

that needed to match correctly in order to make a confident claim of a match was 
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a stumbling block for Galton’s minutiae matching method. This discovery would 

not be used to its fullest strength until advent of automated minutiae matchers in 

1960’s.  

 

Figure 2.1 Examples of Galton features. 

2.2.4. Henry’s Fingerprint Experiments 

Edward Henry was a colonial police officer in India interested in using fingerprints 

to identify criminals since he believed the Bertillon system based on 

anthropometrics was inadequate (Cole, 2004). Henry and his assistants set 

about creating a feasible and practical fingerprint classification scheme and 

devised a solution using ridge counting and ridge tracing. They subdivided loops 

by counting the number of ridges between the delta and core. They subdivided 

whorls by tracing the ridge from the delta and determining whether it passed 

inside, outside or met the core. They also added a fourth group called 

composites to the original three classification groups. The concept of ridge 

tracing and ridge counting was crucial in making it workable. Henry and his 

assistants, Haque and Bose, built upon the concept of ridge tracing and ridge 

counting and created a heuristic based fingerprint classification methodology 

which was capable of accommodating up to 100,000 prints (Haylock, 1979). 
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Henry introduced this system in his jurisdiction in 1895 and by 1897 it was 

adopted all over India. Henry published his system in a publication called “The 

Classification and Uses of Finger Prints” in 1900 and by 1902 Scotland Yard had 

fully adopted fingerprinting for purposes of identification. 

2.2.5. Fingerprint Recognition in South America, Europe 

Parallel development of fingerprint identification and verification techniques was 

being pursued in Argentina and France in late 19th century and early 20th century. 

Juan Vucetich published “Dactiloscopia Comprada” in 1904 which is one of the 

earliest notable works on fingerprinting (Polson, 1951). Vucetich came across 

Galton’s lecture on “Patterns in Thumb and Finger Marks” which motivated him to 

apply fingerprinting to the problem of reliable identification. Vucetich developed a 

10 digit system based on Galton’s classification. He used the four basic pattern 

types of arch, left loop, right loop and whorl. In addition, he used a secondary 

classification of five sub-types: loop with plain pattern, loop with adhering ridges, 

internal loop approximating a central pocket, external loop approximating a 

central pocket, and irregular loops that did not include any of the previous types 

(Cole, 2004). In 1905 an autonomous finger print bureau was created in 

Argentina based on Vucetich’s fingerprint identification system. 

 

In 1891 in France, Forgeot described a technique of development of latent 

fingerprints based on previous work on micro-chemical tests for analysis of 

sweat. Locard of Lyons is credited with inventing poroscopy when he 

demonstrated that pores of skin are relatively unique in shape, size and position 

in each individual (Polson, 1951). Locard applied his method in the Boudet-

Simonin case which led to a conviction of burglary. Bertillon, who is considered 

widely to be the inventor of anthropometry, also used bloody fingerprints in case 

of Henri Scheffer to prove the identity of the murderer.  
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2.3. Automated Fingerprint Recognition  

Attempts to automate the process of identification can be found dating back to 

1920. IBM punch card sorters and other automated data processing technologies 

were employed to alleviate the problem of handling large number of cards. In 

1919 the California State Bureau of Identification introduced a mechanized punch 

card system called the Robinson F-index to assist in storing and retrieval of 

information. In 1934 the Federal Bureau of Investigation (FBI) began using an 

IBM card sorter to search coded fingerprint classifications, and in 1937 the New 

York State Division of Criminal Identification started using an IBM card sorter 

which could sort 420 cards per minute (Cole, 2001). These approaches solved 

part of the problem, but human examiners were still required to inspect 

fingerprints. The need to automate the entire matching process was widely 

acknowledged, but technology constraints remained a barrier to progress. The 

first experiments with optical recognition of fingerprint images began in the 

1960’s (Allen, Prabhakar, & Sankar, 2005). In 1963 Joseph Wegstein and 

Raymond Moore began work on an automated fingerprint identification system 

under the auspices of FBI and National Bureau of Standards (Reed, 1981). In 

1972 the FBI installed a system with a fingerprint scanner built by Cornell 

Aeronautical Laboratory and a prototype fingerprint reader system built by North 

American Aviation (Cole, 2001). With considerable progress achieved on 

digitizing and automating the matching process, the FBI started scanning all their 

fingerprint records for persons born after January 1, 1929 and by 1980 they had 

a databank of 14.3 million records. Throughout the 1980’s various city police 

departments and state criminal justice bureaus in the U.S.A. started deploying 

Automated Fingerprint Identification Systems (AFIS) confirming the maturity of 

the technology. 

2.4. General Biometric Recognition System  

A generic biometric authentication system can be divided into five subsystems 

based on its functionality: data collection, transmission, signal processing, 
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decision and data storage (A. Jain, Maltoni, Maio, & Wayman, 2005). Wayman 

(1997) described a  general biometric model in “A Generalized Biometric 

Identification System Model” The data collection subsystem samples the raw 

biometric representation and the sensor converts it into an electronic 

representation. The transmission subsystem is responsible for transportation of 

the electronic representation of the biometric to the signal processing subsystem. 

Data compression and adjustment for noise are the main tasks of this 

subsystem. The signal processing subsystem takes the biometric signal and 

converts it into a feature vector. The tasks of this subsystem differ according to 

the modality being processed, but quality assessment and feature extraction is 

performed by this subsystem. The storage subsystem is responsible for storing 

the enrolled templates, and depending on the policy governing a particular 

biometric system the raw signal might also be stored. Binning and classification 

of templates according to predefined criteria are also employed within this 

subsystem in order to increase efficiency of the matching process. Inputs to the 

decision subsystem are measures resulting from comparison between the 

feature vector of the input sample and the enrolled templates. Using the system 

decision policy, a match or a non-match is declared.  
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Figure 2.2 The General Biometric System (Wayman, 1997) 

R. M. Bolle, Connell, Pankanti, Ratha and Senior (2004b) described a biometric 

authentication system as a pattern recognition system comprised of biometric 

readers, feature extractors, and feature matchers. They categorized the 

authentication system based on the processes of enrollment and authentication. 

In their model, the enrollment subsystem captures the biometric measurements, 

extracts the relevant features and then stores them in a database. Depending on 

system policy, ancillary information like identification number can also be stored 

with the biometric template. The authentication subsystem is concerned with 

recognizing a individual once he/she has been enrolled in the biometric system.  
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Figure 2.3 Biometric Authentication System (R. M. Bolle, Connell, Pankanti, 
Ratha, & Senior, 2004b) 

Wayman et al. (2005) use the functionality of each subsystem, and process flow 

as a means of describing a general biometric model, and Bolle et al. (2004) use 

the different stages of the authentication process as a means of describing a 

general biometric model. The differences in description of the two models 

highlighted the possibilities for the underlying system architectures  for biometric 

systems. 

 

A detailed model was developed within ISO/IEC JTC1 SC37 which described the 

general biometric system in terms of the functional components of the system 

and process flow in the system. A notable deviation from the previously 

described biometric system model was removal of the transmission subsystem 

as a specific part of the biometric model. In a distributed and networked 

authentication system, transmission is a general function of the overall system 

instead of a function specific to the biometric system.  
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Figure 2.4 ISO/IEC JTC1 SC37 Conceptual Biometric Model (ISO) 

2.4.1. Fingerprint Recognition Model  

A distributed authentication architecture is an fundamental reason for focusing on 

the issues of interoperability. A distributed fingerprint recognition system can be 

designed in a multitude of ways, and a list of possible architectural configurations 

can be considered based on acquisition location of fingerprint sample, storage 

location of the fingerprint template, and matching location of input sample and 

fingerprint template. Table 2.1 shows the four possible processing locations. 

 

The server is defined as a centrally located computer which is at a different 

physical location than the requesting client. The local workstation is where a user 

initiates interaction with the fingerprint recognition system. The peripheral device 

can also be connected with the local workstation using input/output ports, or an 

embedded device. Physical token refers to smartcards, PS3CIA cards and other 
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small scale devices that could support any of the required processes. Figure 2.5 

shows a list of all possible architectural configurations. There are 43 = 64 

configurations possible, but not all of them are feasible in a practical 

implementation. The purpose of depicting these possible configurations is to give 

an idea about the complexity of designing a distributed architecture. 

Table 2.1 Possible Acquisition/Storage/Matching Location 

Server 
Local Workstation 
Peripheral Device 

Physical Token 
 

 

Figure 2.5 Possible Distributed Architectures 

Several live implementations use one of the possible configurations as their 

distributed architecture design. Digital Persona U.are.U Pro for Active Directory 

replaces passwords with fingerprint recognition for authentication used in 
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enterprise network applications (DigitalPersona, 2006). This product allows 

organizations to centralize the network authority processes and is an example of 

distributed acquisition and centralized storage/matching architecture. The Clear 

Registered Traveler program provides registered members with a smart card that 

stores fingerprint, face, and iris templates for card’s owner ("Clear Registered 

Traveler", 2006). For verification purposes the registered individual steps up to a 

kiosk, provides their fingerprint, face, and iris samples which are matched with 

the templates on the card. In this scenario, the matching happens on the 

machine in the kiosk, and this is an example of architecture that uses a physical 

token to store, and a local machine to perform the matching operation. In this 

architecture, the storage and matching operations are performed on separate 

devices. The increasing use of distributed architectures brings into focus the 

issues of interoperability. The following section describes the history and 

development of acquisition technologies used in fingerprint recognition systems. 

2.4.2. Fingerprint Acquisition Technologies 

The inked method of fingerprint acquisition was the preferred means of data 

capture from the 1870’s when fingerprints were first considered for law 

enforcement purposes until the 1960’s when the first generation AFIS was 

developed. Advances in storage of digital information and automated recognition 

of fingerprints led to innovations in fingerprint acquisition technologies. Rapid 

advances were made in this field and the following is a brief listing of the family of 

imaging technologies:  

! Optical 

! Electrical 

! Thermal 

! Ultrasonic 

! Piezoelectric 
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Optical, electrical and thermal are the most popular types of fingerprint 

acquisition and imaging technologies which will be discussed more in-depth in 

the following section. The proportion of ultrasonic and piezoelectric fingerprint 

acquisition devices is relatively small compared to the other three types of 

sensors and were not considered for this research, but it still does deserved 

mention because it is a feasible method of capturing fingerprints.  

2.4.2.1. Optical Sensors 

Optical fingerprint capture devices have the longest history of all automated 

fingerprint image acquisition devices (O'Gorman & Xia, 2001). The earliest 

methods of optical capture involved using a camera and taking direct images of 

fingerprints. This method had several issues - the most prominent one was that 

fingerprint ridges and valleys were not differentiated by color and a shadow 

needed to be introduced to differentiate between ridges and valleys (Setlak, 

2004). Using the principal of frustrated total internal reflection (FTIR) was a major 

step forward for optical sensors.  

When light is incident on the interface of two media, it is partly transmitted 
into the second medium and partly reflected into the first. If however, the 
index of refraction of medium 1 is greater than the index of medium 2 and 
the angle of incidence exceeds the critical angle, total internal reflection 
occurs. The incident light is reflected completely back into medium 1 
(Hawley, Roy, Yu, & Zhu, 1986).  
 

The refractive index is different for ridges and valleys when a finger touches the 

platen of the optical sensor. Due to this phenomenon, light incident on valleys 

gets totally reflected and the light incident on ridges is not reflected which results 

in the ridges appearing dark in the final image (O'Gorman & Xia, 2001).  
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Figure 2.6 Optical Fingerprint Sensor 

 

Figure 2.7 Fingerprint Image from Optical Fingerprint Sensor 

As shown in Figure 2.6 this technology focuses light incident on the ridges and 

valleys onto a CCD/S3OS camera which captures the image. Older generation 

optical sensors used CCD cameras, but newer generation optical sensors used 

S3OS cameras. CCD cameras are usually analog which requires additional 

hardware to convert the analog signal to digital signal. S3OS cameras 

incorporate an analog-digital conversion process thus simplifying the cost and 

complexity of the system (O'Gorman & Xia, 2001). 



 

 

30 

Along with S3OS cameras, multiple mirrors and sheet prisms are also used to 

reduce size of sensors. The reason for introducing reflective surfaces within the 

optical sensor is to reduce the total optical length between the finger surface and 

the camera. The optical length can be modified by changing the lens focus and 

width of the camera array. Using multiple mirrors and sheet prisms is a method 

used to reduce the optical length, thereby reducing the size of the sensor.  

 

Optical sensors are not susceptible to electrostatic discharge which can disrupt 

the image capture process in solid state capacitive sensors. If a direct light 

source is pointed at the sensor it could have an effect on the fingerprint image. 

Optical fingerprint sensors have a large platen area which allows it capture a 

large portion of the fingerprint thereby providing a larger area of the fingerprint in 

the image. The large size of optical fingerprint sensors is a disadvantage since it 

makes them impractical for use in small scale devices like cell phones. Optical 

fingerprint sensors are also affected by residue on the platen which could lead to 

an imperfect representation of the fingerprint. 

2.4.2.2. Solid State Capacitive Sensors 

Capacitive sensors work on premise that skin on finger surface is an equi-

potential surface – constancy of potential is a requirement to obtain 

representative fingerprint images (Lim & Moghavvemi, 2000). In the late 1960’s 

several inventors proposed methods of capturing fingerprint images using two 

dimensional conductive arrays. Rapid advances were made during the 1980’s 

that led to new approaches to capacitive sensing technologies. But these early 

concepts all had a common drawback; they did not use integrated circuits that 

could take advantage of signal amplification and scanning. In the late 1980’s 

researchers working with memory devices discovered that a finger place on a 

memory array caused data errors that resembled the spatial patterns of the 

fingerprint (Setlak, 2004). These memory chips used periodically refreshed 

charge stored on a capacitor in the memory cell and the difference in 
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capacitance between ridges and valleys on skin of the finger caused the bits to 

flip. This phenomenon was refined and has been present in commercially 

available capacitive sensors available since mid 1990’s.  

 

Capacitive sensors are constructed using a two-dimensional array of conductive 

plates. The finger is placed on a surface above the array so that the electrical 

capacitance of these plates is affected. The sensor plates under the ridge will 

have a larger capacitance than the sensor plates beneath the valley. This is 

because air has lower permittivity than skin, which leads to an increased 

capacitance in plates under the skin.   

 

 

Figure 2.8 Capacitive Fingerprint Sensor 

Capacitive fingerprint sensors can be classified into two classes: single plate 

capacitive sensors and double plate capacitive sensors. In a single plate 

capacitive sensor each pixel has at-least a capacitive sensor, a sensor circuit 

and additionally can have a logic circuit (Machida, Morimura, Okazaki, & 

Shigematsu, 2004). Each pixel is charged separately and measured separately in 

order to generate a complete fingerprint image. In double plate capacitive 

sensors two adjacent conductive plates correspond to one pixel. The capacitance 

differential between two adjacent plates is used to generate a pixel value.   
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Figure 2.9 Fingerprint Image from Capacitive Fingerprint Sensor 

Capacitive sensors have a relatively smaller sensing area, which makes them 

suitable for use in small scale devices. The smaller sensing area results in a 

smaller image of the fingerprint which can be a disadvantage if the users are not 

consistent with their finger placement. Capacitive sensors are susceptible to 

electrostatic discharge, and to moisture content of the finger. They are not 

affected by light reflecting on the sensor surface.  

2.4.2.3. Thermal Sensors 

Sensors were designed which use thermal energy flux to capture fingerprints. 

When a ridge is in contact with a sensor surface of different temperature, heat 

flows between the ridge and sensor surface. The sensor surface is made up of 

an array of micro-heater elements, and a cavity is formed under between the 

valley of the fingerprint surface and heater element (J. Han, Kadowaki, Sato, & 

Shikida, 1999). Since the valley is not in contact with the sensor surface there is 

no heat flow between the valley and sensor surface. The heat flux is measured 

and converted into a digital representation of the fingerprint surface.  
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Figure 2.10 Thermal Fingerprint Sensor 

When surfaces with different temperatures come in contact, they attempt to 

reach equilibrium as quickly as possible. Because of this phenomenon heat flux 

decays very rapidly when the finger is held is a static position. Thermal sensors 

are designed such that a finger has to be moved over the sensor surface in a 

constant motion in order to maintain an acceptable level of heat flux.  

 

Figure 2.11 Fingerprint Image from Thermal Fingerprint Sensor 
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The thermal nature of the sensing technology makes it sensitive to environmental 

temperature conditions which is one of its major drawbacks. Thermal sensors are 

less influenced by moisture content of the finger (Adhami & Meenen, 2001).  

Thermal sensors are also not affected by light reflecting on the sensor surface. 

The small size of thermal sensors makes it a suitable choice for small scale 

devices.  

2.4.3. Fingerprint Image Quality Assessment 

Automated and consistent quality assessment of input samples is an important 

component of any biometric system. The ability of a system to detect and handle 

samples of varied quality levels is a significant contributor to performance of a 

biometric recognition system. The same holds true for fingerprint recognition 

systems. Fingerprint sample quality assessment is a topic of great interest as it 

can be used to ensure samples of appropriate quality are used for the matching 

process. The term quality is used in three different contexts as it relates to 

biometric sample quality (ISO, 2006): 

1. Fidelity: reflects the accuracy of a sample’s representation of the original 

source.  

2. Character: reflects the expression of inherent features of the source. 

3. Utility: reflects the observed or predicted positive or negative contribution 

of the biometric sample to overall performance of a biometric system.  

 

Quality assessment algorithms use fidelity, character, utility or a combination of 

the three to compute a quality score. The following sections explain different 

types of fingerprint quality assessment algorithms and related research studies. 

2.4.3.1. Types of Fingerprint Image Quality Assessment Algorithms 

Aguilar, Fernandez and Garcia (2005) categorized  existing image quality 

assessment algorithms into four broad categories: 
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1. Based on local features. 

2. Based on global features. 

3. Based on classifiers. 

4. Hybrid algorithms based on local and global features. 

 

They categorized algorithms which subdivided the fingerprint image into blocks, 

and computed quality scores for each block as local feature quality algorithms. 

This type of analysis takes into account specific local features. They categorized 

algorithms which search for abrupt changes in ridge orientation as global feature 

quality assessment algorithms. These algorithms tend to use 2-D discrete Fourier 

transform and energy concentration analysis of global structure to assess image 

quality of fingerprints. They third category of quality assessment algorithms were 

based on the premise that a quality measure should define a degree of 

separation between match and non-match distributions of a fingerprint. Using a 

relatively large dataset, classifiers can be trained using degree of separation as a 

response variable based on a vector of predictors, and then map the degree of 

separation to a quality index. They categorized hybrid algorithms as the ones 

which used an aggregation of local and global feature analysis to compute a 

quality index. The next section describes research related to the four categories 

of image quality assessment algorithms. 

2.4.3.2. Experiments Related to Image Quality Assessment 

Jain, Chen and Dass (2005) proposed a fingerprint image quality score 

computation which used both global and local quality scores. Energy 

concentration in frequency domain was used as a global feature. Their analysis 

as based on the premise that good quality images had a more peaked energy 

distribution while poor ones had a more diffused distribution and this property 

was used to compute the global image quality score. The local image analysis 

was performed by dividing the image into sub-blocks and computing the clarity of 

local ridge-valley orientation in each sub-block. A single quality score was 
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computed as a weighted average of all the sub-blocks. These two methods were 

tested for improving fingerprint matcher performance. A decrease of 1.94% in 

EER was observed when images with the lowest 10% quality scores were 

pruned from the FVC 2002 DB3 database.  

 

Jian, Lim and Yau (2002) described an image quality assessment method which 

used three different local and global features of the fingerprint. The first factor 

was a local feature. The strength and direction of ridge orientation information 

was computed since it determined contrast of the image and clarity of ridges. The 

second factor was a global feature. A gray-level analysis was performed to 

determine clarity of ridge valley structure. The third factor was an assessment of 

continuity of ridges which was also a global feature. The local and global quality 

scores were used to compute a final quality score. They also defined a quality 

benchmark, which was a function of minimal area of the fingerprint image 

required for authentication, number of falsely detected minutiae, number of 

correctly detected minutiae, and number of undetected minutiae. Regression 

analysis was performed by plotting the image quality score against the quality 

benchmark score and the model had a R2 value of 0.76. The authors concluded 

their method could be used reliably for image quality assessment. 

 

Abdurrachim, Kuneida, Li and Qi (2005) described a hybrid method for fingerprint 

image quality calculation which used seven indices. These seven indices were 

computed from local and global feature analysis. A Gabor feature index, 

smudginess and dryness index, foreground area index, central position of 

foreground index, minutiae count index, and singular point index were used as 

input parameters for a quality function. The weighting for each index was 

computed using an overlapping area methodology and linear regression 

methodology. Their results showed that their hybrid quality measure decreased 

EER by 12% - 34% when 10% of the images with lowest quality score were 

pruned from the database.  
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Jiang (2005) described a computationally efficient method for computing image 

quality using local features. A two stage averaging framework was used to take 

advantage of linear and normalized vector averaging. In the first stage, 

orientation and anisotropy estimation was performed using principal component 

analysis in order to determine local dominant orientation of the fingerprint image. 

Anisotropy is defined as the property of being directionally dependent. The 

modulus of the orientation vector was set to be its anisotropy estimate, whereas 

previous methodologies had used unity to set the modulus of the orientation 

vector. An improvement in EER was observed when compared to other methods 

of averaging the gradient orientation vectors. 

 

Tabassi and Wilson (2005) proposed a novel methodology for assessing 

fingerprint image quality. They defined fingerprint image quality as a predictor of 

matcher performance before the matching operation is performed. They 

computed a normalized match score for every fingerprint in a database, and use 

quality scores of 11 different local features of a fingerprint as a non-linear 

combination to predict the normalized match score. They used a 3 layer feed-

forward artificial neural network as their non-linear classification method. 5,244 

images were used for training the network, and 234,700 images were used for 

testing the network. Their methodology divided quality into 5 levels, and matching 

performance of images at those 5 levels was compared. Their results showed 

that true accept rates (TAR) decreased and false accept rates (FAR) increased 

as quality of the fingerprints decreased. The [FAR,TAR] for images at quality 

level 1 (excellent quality) was [0.0096, 0.999] and for images at quality level 5 

(poor quality) was [0.075,0.889]. 

 

Bigun, Fronthaler and Kollreider (2006) proposed a method to assess quality of 

an image using local features. They used the orientation tensor to draw 

conclusions about the quality of the image. The orientation tensor holds edge 

information, and this idea was used to determine if information was structured. 
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Their method decomposed the orientation tensor into symmetry representations 

and the symmetries were related to particular definition of quality. In order to test 

their quality assessment algorithm they used the QMCYT fingerprint database 

comprised of 750 unique fingers. Their proposed quality assessment algorithm 

was applied to all the fingerprints, and the fingerprints were split into 5 equally 

sized partitions of increasing quality. Each partition was tested on two different 

fingerprint matching algorithms, and a decrease in equal error rate was observed 

for each increasing quality partition. A reduction in EER by approximately 3% 

was observed between the worst and best quality partitions.  

 

Alonso-Fernandez et al. (2006) performed a study to examine the performance of 

individual users under varying image quality conditions for a fingerprint database 

collected using three different fingerprint sensors. One of the main aims of their 

study was to investigate the effects of image quality in the performance of 

individual users. They proposed using a score normalization scheme adapted to 

the quality score of individual users. They collected 12 fingerprint images from 6 

fingers of 123 participants on 3 different fingerprint sensors, which gave them a 

total of 26,568 fingerprint images. Image quality scores and matching scores 

were computed using NFIQ and BOZORTH3 respectively, both available from 

NIST. On performing a correlation test for verification EER threshold and quality 

scores they noticed a strong positive correlation between the two variables. They 

formulated a score normalization technique which incorporated the quality score 

of the fingerprint image and the verification scores in order to compute a new 

normalized matching score. They observed an EER reduction of 17% for one of a 

dataset of fingerprints collected using an optical sensor. They also observed that 

the score normalization technique improved EER for datasets which contained 

low quality fingerprints.  
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2.4.4. Fingerprint Feature Extraction  

Most fingerprint matchers use minutiae details, ridge pattern details, or a 

combination of both to perform the matching operation. Minutiae based matchers 

extract minutiae details from the spatial domain fingerprint image and create a 

minutiae map of these features (Eshera & Shen, 2004). The transformation of 

spatial domain details to a minutiae map can be broken down into the following 

steps: pre-processing, direction calculation, image enhancement, singular point 

detection, and minutiae extraction(L. C. Jain, Erol, & Halici, 1999).  

 

Direction calculation involves creating a direction map of the spatial domain 

details. A true direction map will contain orientation of every pixel of the ridge 

line, but this is a computationally expensive operation. In order to capture the 

direction details in a manner that is efficient, the fingerprint image is divided into 

blocks, and orientation is assigned to each block. Various algorithms have been 

proposed which use either overlapping blocks or completely separate blocks. 

Enhancement of a fingerprint image can be performed using a low-pass filter to 

eliminate noise. Filters have been proposed that use average ridge width and 

valley width as parameters. Since enhancement can have a significant impact on 

performance of a fingerprint matcher, a lot of work has been done in this area to 

explore different methodologies for enhancement. Binarization and 

skeletonization of fingerprint images involves eroding the ridge lines until their 

width is just a single pixel. The process of binarization and skeletonization 

reduces the amount of information needed to process for minutiae extraction 

(Jain et al., 1999). The core and delta are categorized as singularity points. 

Calculation of the rate of change of orientation on a ridge line has been used to 

detect the singularity points, also known as Poincare index. Core and delta points 

on a fingerprint image will typically have a Poincare index between -1/2 and +1/2, 

whereas ordinary points will have a Poincare index of 0 (Muller, 2001). Any 

discontinuity in the ridgeline flow is categorized as a minutiae point, and different 

methodologies for extracting these minutiae points have been proposed. Most of 
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these algorithms will do some sort of ridgeline tracing and mark out all the 

discontinuities, and use the direction map to categorize their type. The next 

section discusses feature extraction methodologies in detail. The following 

section describes several experiments related to minutiae extraction. 

2.4.4.1. Experiments Related to Minutiae Extraction 

The FBI minutiae reader uses the binarization method as part of its minutiae 

extraction process. A composite approach based on local thresholding and a slit 

comparison formula was used to compare alignment of pixels along the dominant 

direction (Stock & Swonger, 1969). 

 

Boashash, Deriche and Kasaei (1997) described a feature enhancement and 

feature extraction algorithm that used foreground/background segmentation 

which leads to a more precise ridge extraction process. The segmentation was 

based on the premise that in a given block, noisy regions had no dominant 

direction, which lead to foreground regions exhibiting a high variance in direction 

orthogonal to the orientation of the pattern, and a low variance along its dominant 

ridge direction (Mehtre, 1993). The ridge extraction process looked at each pixel 

in each foreground block with a dominant direction and determined if the pixel 

was part of the ridge. The obtained ridge image was then thinned to width of one 

pixel. Boashash et. al (1997) designed a minutiae extraction process which 

calculated the Crossing Number (CN) at point a point P which was expressed as 

(pp.5): 
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Eq. 2.1 

 

where Pi was pixel value in 3 X 3 neighborhood of P as shown in Figure 2.12 
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Figure 2.12 3X3 matrix of P (Boashash et. al, 1997) 

Depending on the calculated CN for a point, it could be categorized as an 

isolated point, end point, continuing point, bifurcation point or a crossing point. 

The x-coordinate, y-coordinate, and local ridge direction !"were extracted for 

every end point and bifurcation point.  

 

Maio and Maltoni (1997) presented a direct gray scale minutiae detection 

approach without binarization and thinning. Their methodology followed ridge 

lines on a gray scale image according to the fingerprint directional image. A set 

of starting points was determined, and for each starting point the algorithm kept 

following the ridge lines until they intersected or terminated. They defined the 

ridge line as a set of points which were local maxima along one direction. The 

extraction algorithm located at each step a local maximum relative to a section 

orthogonal to the ridge direction. The consecutive local maxima points were 

connected to form an approximation of a ridge line. Once all ridge lines were 

detected, the minutiae points were detected by following the ridge lines along 

both directions of the ridge line. Their performance results showed a high 

proportion of errors caused by end point minutiae being detected as bifurcation 

minutiae points.  

 

Foo, Ngo and Sagar (1995) described a fuzzy logic minutiae extraction which 

used a set of small windows to scan over the entire fingerprint image. A set of 

fuzzy logic based rules based on pixel intensities were used to determine if the 
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window contains minutiae points. “Dark” and “bright” labels were used to 

describe gray pixel values. The membership functions mapped the gray pixel 

values against a degree of membership towards dark or bright categories. Their 

approach used a combination of six sub-windows to model the possible types 

and orientation of ridge endings and bifurcations.   

 

Chan, Huang, and Liu (2000) proposed a novel methodology for extracting 

minutiae from gray level fingerprint images. Their methodology used the 

relationship between ridges and valleys to determine minutiae locations in a 

fingerprint. The relationship between ridges and valleys are affected by minutiae 

due to the discontinuities that minutiae  introduce. A ridge and its two 

surrounding valleys ere traced, and if the two valleys met at a point then the 

heuristic decided a minutiae ending was detected. The heuristic decided a ridge 

bifurcation was detected if the distance and direction of the two valleys changed.  

 

Amengual, Pereze, Prat, Saez and Vilar (1997) described a three phase 

approach for minutiae extraction. The first phase involved the processes of 

segmentation, directional image computation, directional image smoothing and 

binarization of image. The second phase involved thinning of the ridge lines in 

order to reduce the number of undesirable structures such as spurs and holes in 

the ridge lines. The minutiae extraction algorithm was based on method 

proposed by Rafat and Xiao (1991).  They also used the concept of a CN. The 

CN for a pixel was computed using (Rafat et. al, 1991): 

 Eq. 2.2 
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They used the following heuristic to classify the type of minutiae point: 

if CN = 2 categorize as ridge ending 

else if CN = 6 categorize as ridge bifurcation 

 

The type of minutiae point, the x-coordinate, the y-coordinate, and the angle of 

orientation was also extracted for each minutiae point. 

 

Engler, Frank and Leung (1990) investigated a neural network classification 

approach for extracting minutiae from noisy, gray scale fingerprint images. In this 

approach gray scale fingerprint images were first passed through a rank of six 

Gabor filters where each filter corresponded to a specific orientation of the 

minutiae to be extracted. The outputs from the filters were fed into a 3 layered 

back propagation neural network where the final output of the network was the 

determination of presence of minutiae.  

 

The National Institute of Standards and Technology (NIST) designed a minutiae 

detection algorithm in the NIST Biometric Image Software (NBIS). Their minutiae 

detection algorithm, called MINDTCT, was designed to operate on a binary 

image where the black pixels represented ridges and white pixels represent 

valleys on surface of the finger. A pixel was assigned a binary value based on 

detection of ridge flow associated with the block. Detection of ridge flow in the 

block indicated the need to analyze the pixel intensities surrounding the pixel 

being examined, and a comparison with the grayscale intensities in the 

surrounding region indicated if the pixel was part of a ridge or valley. Once the 

binarization of the fingerprint image was complete, the binarized image was 

scanned to identify localized pixel patterns. Candidate ridge endings were 

detected in the binary image by scanning consecutive pairs of pixels in the 

fingerprint image looking for sequences which matched the pattern indicated in 

Figure 2.13. 
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Figure 2.13 Pixel pattern used to detect ridge endings (Garris et al., 2004) 

 

Figure 2.14 Pixel patterns for minutiae detection (Garris et al., 2004) 

Once a candidate minutiae point was detected, the type of minutiae point was 

determined by comparing the pixel pair patterns as shown in Figure 2.14. All 
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pixel pair sequences matching these patterns formed a list of candidate minutiae 

points. 

 

The algorithm then performed post processing on the list of candidate minutiae 

points to ascertain if they were spurious minutiae points and removed any 

unnecessary artifacts in ridge lines, like islands and lakes (Figure 2.15). 

 

 

Figure 2.15 Unnecessary features (Garris et al., 2004) 

2.4.5. Fingerprint Matching 

Fingerprint matching is the process of finding a degree of similarity between two 

fingerprints. There are different techniques of performing fingerprint matching, 

each of which examines different features of the fingerprint. Currently there are 

two primary methods used for fingerprint matching. The first method is a feature 

based approach that uses minutiae details for matching purposes. The second 

approach uses global ridge patterns of fingerprints for matching purposes. These 

matching algorithms will output a match score, i.e. the likelihood of a given 

fingerprint being the same as the one it is compared to. Fingerprint matching is a 

challenging process because of inconsistencies introduced during interaction of 

an individual with the sensor, temporary injuries to the surface of the finger, 

inconsistent contact, and a variety of other issues. The following section 

discusses research conducted previously in the field of minutiae based matching. 
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2.4.5.1. Experiments Related to Minutiae Based Matching 

Chen, Jain, Karu and Ratha (1996) described a minutiae based matching 

algorithm based on Hough Transform algorithm. The algorithm first estimated the 

transformation parameters dx, dy, !, and s between two fingerprint 

representations. dx and dy were translations along the x and y-axis, ! as the 

rotation angle, and s was the scaling factor. The second step involved aligning 

the two representations and counting the number of matched pairs within a 

margin of error. The matching scores for multiple transformations were collected 

in an array, and the transformation which maximized the number of matched 

pairs was considered to be the most accurate transformation. The final output of 

the matching algorithm was a set of top 10 fingerprints that matched the input 

fingerprint. They used a random sample of 100 fingerprints from the NIST-9 

database to test the algorithm, and they achieved 80% accuracy rate at FRR of 

10%. They also reported that their matching algorithm took about one second for 

each match, and would require parallel processing for large scale matching 

operations.  

 

Bolle et al. (1997) described a string distance minutiae matching algorithm which 

used polar coordinates of extracted minutiae features instead of their Cartesian 

coordinates. This reduced the 2-D features to 1-D string by concatenating points 

in an increasing order of radial angle in polar coordinates. Their algorithm 

associated a ridge segment with each minutia which was used for aligning the 

two fingerprints being compared. The rotation and translation which resulted in 

maximum number of matched minutiae pairs as considered the most accurate 

rotation. All minutiae points for the two fingerprints were converted into a 1-D 

string at the optimal rotation angle, and the distance between the two strings was 

computed. Tests of their algorithm on the NIST-9 database resulted in a FAR of 

0.073% and FRR of 12.4% at threshold of seven, and FAR of0 .003% and FRR 

of 19.5% at threshold level of 10.  
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A fingerprint matching algorithm is also included in NBIS. The matching algorithm 

is a modified a version of a fingerprint matcher developed by Allan S. Bozorth 

while at FBI. The matcher called BOZORTH3, uses only the x-coordinate, y-

coordinate, and the orientation of the minutiae point to match the fingerprints. 

The main advantage of this matcher is that it is rotation and translation invariant. 

The main steps of the algorithm are as follows: 

1. Minutiae features are extracted and an intra-fingerprint minutiae 

comparison table is created for the input fingerprint and the 

fingerprint to be matched against. 

2. Use the minutiae table for the input fingerprint to the minutiae table 

for the comparison fingerprint to create a new inter fingerprint 

minutiae compatibility table.  

3. Traverse the inter fingerprint minutiae compatibility table and 

calculate a matching score.  

Tests performed by NIST using the BOZORTH3 matcher showed a matching 

score of 40 or higher as an acceptable threshold to consider the two fingerprints 

to be from the same finger. Elliott & Modi (2006) performed a study using the 

BOZORTH3 matcher which resulted in 1% FNMR for fingerprint dataset 

comprised of individuals 18-25 years old.  

2.5. Large Scale Systems and Distributed Authentication Architectures 

Fingerprint systems vary in size depending on its application, and they are 

typically characterized by the number of individuals in its database. Large scale 

systems are characterized by high demand storage and performance 

requirements, and currently large scale fingerprint systems retain fingerprint 

templates for approximately 40 million people and process tens of thousands of 

search requests everyday (Khanna, 2004). 

 

The Registered Traveler (RT) program was authorized under the Aviation and 

Transportation Security Act (ATSA) as a means to establish requirements to 
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expedite security screening of passengers (TSA, 2006). The RT program 

biometric system architecture consists of a Central Information Management 

System (CIMS), Enrollment Provider (EP), Verification Provider (VP), and 

Verification Station. The EP collects biographic and biometric information from 

applicants and transmits it to the CIMS. The CIMS aggregates the information 

and returns the biometric and biographic information packaged so that it can be 

stored on a smart card for the applicant. The EP has to use fingerprint sensors 

approved by the FBI, but the VP is not constrained in their choice of fingerprint 

sensors creating the possibility of enrolling and verifying on different fingerprint 

sensors. Currently there are 5 airports participating in the pilot program with a 

potential of more airports joining the program. Although the verification process 

requires matching only against the template on the smart card, the issue of 

interoperability still exists.  

 

Large scale biometrics systems have to confront two different types of 

challenges: those common to large scale information management systems, and 

those specific to biometric implementations (Jarosz, Fondeur, & Dupre, 2005). 

The main considerations of a large scale system can be categorized into the 

following: architectural issues, administration issues, security issues, operational 

issues, and performance issues. For any biometric system transaction 

throughput and expected performance are of utmost importance, and the 

acquisition subsystem, feature extraction and template generation subsystem, 

storage subsystem, and matching subsystem contribute to those two factors. The 

acquisition subsystem is the first point of interaction between a individual and the 

system, and any inconsistencies introduced here will prorogate throughout the 

system. For a large scale system based on distributed architecture, the issues 

which arise at the first point of interaction become even more significant. The 

following section describes the experiments performed related to fingerprint 

sensor interoperability.  
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2.5.1. Fingerprint System Interoperability Experiments 

Ko and Krishnan (2004) presented a methodology for measuring and monitoring 

quality of fingerprint database and fingerprint match performance of the 

Department of Homeland Security’s Biometric Identification System. They 

proposed examining fingerprint image quality not only as a predictor of matcher 

performance but also at the different stages in the fingerprint recognition system 

which included: image quality by application, image quality by site/terminal, 

image quality by capture device, image quality by new participants or repeat 

visits, image quality by matcher enrollment, image quality by finger, and image 

quality trend analysis. They also pointed out the importance of understanding the 

impact on performance if fingerprints captured by a new fingerprint sensor were 

integrated into an existing identification application. Their observations and 

recommendations were primarily to facilitate maintenance and matcher accuracy 

of large scale applications.  

 

Marcialis and Roli (2004) described a study which utilized a multi-sensor system 

for fingerprint verification. Along with examining interoperability error rates for 

fingerprint datasets collected from optical and capacitive sensors, they proposed 

a score fusion rule to decrease error rates for interoperable datasets. They used 

Biometrika FX2000 optical fingerprint sensor and Precise Biometrics MC100 

capacitive sensor. Both sensors provided 500 S4i resolution fingerprint images. 

Using the FVC data collection process 10 fingerprint images were collected from 

6 fingers of each of the 20 participants, resulting in a total of 1200 fingerprint 

images on each sensor. The evaluation process consisted of four stages. In the 

first stage the participant enrolled their index finger, middle finger, and ring finger 

of both hands on a capacitive and optical fingerprint sensor using the same 

minutiae extraction and template creation algorithm. In the second stage the 

participants presented the same finger on both the sensors. In the third stage the 

fingerprint acquired from the optical sensor in Stage 2 was matched to the 

template created in Stage 1 from the optical sensor and the capacitive sensor. 
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This resulted in two sets of match scores for each participant. In the fourth stage 

these two sets of match scores were fused to make a decision based on an 

acceptance threshold. Their results showed a False Accept Rate (FAR) and 

False Reject Rate (FRR) of 3.2% and 3.6% respectively for fingerprints from the 

optical sensor, a FAR and FRR of 18.2% and 18.8% respectively for fingerprints 

from the capacitive sensor, and a FAR and FRR of 0.7% and 1.3% respectively 

for the fusion rule. 
 

Jain & Ross (2004) investigated the problem related to fingerprint sensor 

interoperability, and defined sensor interoperability as the ability of a biometric 

system to adapt raw data obtained from different sensors. They defined the 

problem of sensor interoperability as the variability introduced in the feature set 

by different sensors. They collected fingerprint images on an optical sensor 

manufactured by Digital Biometrics and a solid state capacitive sensor 

manufactured by Veridicom. The fingerprint images were collected on both 

sensors from 160 different individuals who provided four impressions each for 

right index, right middle, left index, and left middle finger. They used a minutiae 

based fingerprint matcher developed by Hong et al. (1997) to match images 

collected from the sensor, and then compared images collected from Digital 

Biometrics sensor to images collected from Veridicom sensor. Their results 

showed that EER of 6.14%for matching images collected from Digital Biometrics 

sensor and EER of 10.39% for matching images collected from Veridicom sensor 

.The EER for the matching images collected from Digital Biometrics sensor to 

Veridicom sensor was 23.13%. Their results demonstrated the impact of sensor 

interoperability on matching performance of a fingerprint system. Nagdir & Ross 

(2006) proposed a non-linear calibration scheme based on thin plate splines to 

facilitate sensor interoperability for fingerprints. Their calibration model was 

designed to be applied to the minutiae dataset and to the fingerprint image itself. 

They used the same fingerprint dataset used in the study conducted by Jain & 

Ross (2004), but used the VeriFinger minutiae based matcher and BOZORTH3 
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minutiae based matcher for the matching fingerprints. They applied the minutiae 

and image calibration schemes to fingerprints collected from Digital Biometrics 

sensor and Veridicom sensor and matched the calibrated images from the two 

sensors against each other. Their results showed an increase in Genuine Accept 

Rate (GAR) from approximately 30% to 70% for the VeriFinger matcher after 

applying the minutiae calibration model. For the BOZORTH3 matcher an 

increase in GAR from approximately 35% to 65% was observed.   

 Han et al (2006) examined the resolution different and image distortion due to 

differences in sensor technologies. They proposed a compensation algorithm 

which worked on raw images and templates. For raw images, all pixels of the 

image were offset along horizontal upper, horizontal center, horizontal down, 

vertical left, vertical center, and vertical right directions using the original 

resolution of the fingerprint sensor. This compensation lead to a transformation of 

location and angle of all minutiae points, along with a transformation of all pixels 

in the image. For templates transformation, only the positions and angles of the 

minutiae are transformed using the Unit Vector Method. Statistical analysis of 

their experimental results showed a reduction in the mean differences between 

non-compensated images and compensated images.  

The International Labor Organization (ILO) conducted a biometric evaluation in 

an attempt to understand the causes of the lack of interoperability (Campbell & 

Madden, 2006). 10 products were tested, where each product consisted of a 

sensor paired with an algorithm capable of enrollment and verification. Data was 

collected from 184 participants and a total of 67,902 fingerprint images were 

collected on all 10 products. The test was designed to be a multi visit study, 

where the participant enrolled their left and right index finger and verified each 

finger 6 times on each product during each visit. Native and interoperable FAR 

and FRR were computed. Mean genuine FRR of 0.92% was observed at genuine 

FAR of 1%. The objectives of this test were twofold: to test conformance of the 

products in producing biometric information records in conformance to ILO SID-
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0002, and to test which products could interoperate at levels of 1% FAR and 1% 

FRR. The results showed that out of the 10 products, only two products were 

able to interoperate at the mandated levels. The experimental design ensured 

extraneous factors like temperature and ordering of products would have a 

minimal effect on the results and outlined in detail in the report. This study was a 

pure assessment test, and no attempt was made to analyze the lack of 

interoperability.  

The National Institute of Standards and Technology (NIST) performed an 

evaluation test to assess the feasibility of interoperability of INCITS 378 

templates. The objectives of the test were three fold: 

1. To determine the level of interoperability in matching two INCITS 378 

templates generated by different vendors. 

2. To estimate the verification accuracy of INCITS 378 templates compared 

to proprietary templates. 

3. To compare the performance between the base INCTIS 378 template and 

enhanced INCITS template which includes ridge count information. 

The minutiae template interoperability test was called the MINEX 2004 test. Four 

different datasets were used which were referred to as the DOS, DHS, POE and 

POEBVA. The POE and POEBVA dataset were culled from the US-VISIT 

dataset. All datasets had left and right index fingers using live-scan impressions. 

All the datasets were operational datasets gathered in on-going US government 

deployments. All the datasets combined consisted of fingerprint images from a 

quarter of a million people were used, and approximately 4.4 billion comparisons 

were executed in order to generate the performance evaluation reports. The 

POEBVA dataset was collected in separate locations, in different environments 

and different sensors. Also the data capture process for the authentication 

images was unsupervised. Fourteen different fingerprint vendors participated in 

the MINEX test.  
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The testing protocol examined three different interoperable verification scenarios: 

1. The enrollment and verification templates were created using the same 

vendor’s generator and template matcher from a different vendor. 

2. The enrollment template generator and matcher were from the same 

vendor and the verification template generator was from a different 

vendor. 

3. The enrollment template generator, the verification template generator and 

template matcher were all from different vendors.  

The performance evaluation criteria was based on false non match rates (FNMR) 

and false match rates (FMR). FNMR was calculated at fixed FMR of 0.01% for all 

the matchers. Performance matrices were created which represented FNMR of 

native and interoperable datasets and provided a means for a quick comparison. 

The tests did not show a particular pattern of better performance for comparison 

of templates from the same generators compared to templates from different 

generators. 

The MINEX report identified quality of the datasets as a factor which affected 

level of interoperability. The DOS and DHS datasets were of lower quality and 

did not exhibit a level of interoperability as that of POEBVA and POE databases. 

The MINEX test acknowledged it did not use images from sensors of different 

technologies like capacitive and thermal. The test team also indicated that 

performance for datasets which used fingerprints from capacitive, thermal and 

optical sensors would be different than what was observed in the MINEX test.  

One of the main conclusions from the MINEX test was related to the quality of 

the datasets used in the test. Along with the quality metric, the environment 

conditions and the interaction characteristics of data collection was not constant 

for the fingerprint collection process. Environmental conditions and interaction 

factors like sensor placement have an impact on the quality of fingerprints (Elliott, 

Kukula, & Modi, 2007). The unknown nature of the data collection process was 

not a part of the evaluation of the MINEX test.  
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Bazin & Mansfield (2007) described a study which focused on ISO/IEC 19794-2 

standard for finger minutiae data exchange. The tests described in the paper 

encompassed the first phase of Minutiae Template Interoperability Testing 

(MTIT) evaluation with the aim of identifying key issues which contribute to 

increased error rates in interoperability scenarios. This study analyzed compact 

card templates along with data interchange record formats. The main difference 

between record and compact card templates is based on representation of ridge 

endings either by valley skeleton bifurcation points or by ridge skeleton end 

points. In record templates ridge endings can be represented only by valley 

skeleton bifurcation points. Four different vendors participated in this study and 

the three interoperability verification scenarios used in MINEX test were used for 

this study. Along with testing interoperability between vendors, this test also 

examined level of interoperability between proprietary, record and card formats. 

The two index fingers from 4,041 individuals were used in the final performance 

evaluation test. As with the MINEX test, only optical live-scan sensors were used. 

Also, fingerprints were also collected on 10-print scanners, and then segmented 

for use in the test. In order to evaluate performance, FNMR performance 

matrices were generated as several different fixed FMR. These matrices 

contained native and interoperable dataset performance rates. The results from 

this study showed lower FNMR for native matching comparisons compared to 

interoperable matching comparisons at all levels of FMR.  

 

As with the MINEX test, this test also examined the link between interoperability 

and amount of data included in the standardized templates. The source of 

fingerprints, characteristics of the fingerprint sensors, or characteristics of the 

finger skin was not part of their analysis. The fingerprints were collected from 

different environments which could potentially lead to extraneous variables 

confounding results of the test. Not considering the source of the fingerprints 

should not be seen as a failing of this test since it was not a part of their research 
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agenda, but the results point to the importance of studying fingerprint sensor 

related issues as a means of reducing interoperability error rates.  

Poh, Kettler and Bourlai (2007) attempted to solve the problem of acquisition 

mismatch using class conditional score distributions specific to biometric devices. 

Their problem formulation depended on class conditional score distributions, but 

these probabilities were not known a-priori. They devised an approach which 

used observed quality measures for estimating probabilities of matching using 

specific devices. Their device specific score normalization procedure reduced the 

probability of mismatch for samples collected from different devices. They 

applied their approach to fingerprint and face recognition systems. They used the 

BioSecure database for their study. They collected data from 333 participants, of 

which 206 participants were considered to be genuine users. The remaining 126 

participants were treated as zero-effort imposters. The fingerprint data was 

collected on an optical fingerprint sensor and a thermal fingerprint sensor. The 

BOZORTH3 matcher was used. They used the fingerprint quality indices 

described by Jain, Chen, & Dass  (2005). Using Expected Performance Curves 

(EPC), which provided unbiased estimates of performance at various operating 

points, their results showed better performance for matching fingerprints from 

different devices using their framework.  

2.6. Performance Metrics 

Error rates are the basic units of performance assessment for matching engines.  

These error rates not only reflect the strength of the matching algorithm, but also 

the probabilistic nature of the decision making part of the algorithm. Attempting to 

compare performance metrics for multiple matching engines has been a 

challenge that researchers have attempted to address. The following sections 

outline different performance metrics that map functional and operational 

relationships between different error rates.  
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2.6.1. Receiver Operating Characteristic Curves 

Receiver operating characteristic (ROC) curves are a means of representing 

results of performance of diagnostic, detection and pattern matching systems 

(Mansfield & Wayman, 2002). A ROC curve plots as a function of decision 

threshold the FMR on the x-axis and true positive rates on the y-axis.  

 

ROC (T) = (FMR (T),TAR (T)) where T is the threshold Eq. 2.3 

 

For performance comparison of biometric systems, a modified ROC curve called 

Detection Error Tradeoff (DET) curve is used (Doddington, Kamm, Martin, 

Ordowski, & Przybocki, 1997). A DET curve will plot FAR on the x-axis and FRR 

on the y-axis as function of decision threshold. A DET curve can also be created 

by plotting FMR on the x-axis and FNMR on the y-axis as function of decision 

threshold. Comparing DET curves for different systems allows comparison of the 

systems at a threshold that is deemed preferable for the application of the 

biometric system.  

 

DET (T) = (FMR (T), FNMR (T)) where T is the threshold Eq. 2.4 

2.6.2. Equal Error Rate 

Using multiple DET curves to compare matching performances of different 

matchers assumes having a known operational threshold. A more convenient 

comparison of multiple matchers would necessitate the reduction of the DET 

curve to a single number (R. M. Bolle, Connell, Pankanti, Ratha, & Senior, 

2004a). The EER operating point is a computation which is generally regarded as 

an obvious choice to judge quality of a matcher. The EER is the operational point 

where FNMR=FMR. This is a useful point of comparison only if the FNMR and 

FMR are supposed to be equal. For unequal FNMR and FMR, analysis at EER 

operational point will not provide any useful information. 
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2.6.3. Difference in Match and Non-Match Scores 

Measuring the difference in match score density and non-match score density 

has been used as a performance assessment criteria. Daugman and Williams 

(1996) define the measure of separation for a matcher as  

 

ores)nonmatchsc!2smatchscore(!2(1/2)

cores"#$#%&'()*es"%&'()*($+d'
$

%
#  

Eq. 2.5 

 

µmatchscore and "2
matchscore is mean and variance of match scores of genuine users, 

and µnon-matchscore and "2
non-matchscore is mean and variance of non-match scores of 

mismatch fingerprints, respectively. d’ can be used to compare multiple 

matchers, but it will be reliable only if there is a significant difference in 

performance. Matchers that might have similar genuine score distributions can 

be hard to compare, but using d’ measure is useful because it uses non-match 

score distributions as part of the computation. 

2.6.4. User Probabilities and Cost Functions 

The previous two methodologies assume that the probability of FMR and FNMR 

is the same. A particular biometric system might have to be analyzed keeping in 

mind the probability of a user being an imposter or a genuine user, and the 

consequences of a false match or a false non-match. There are methodologies 

which use security and convenience tradeoff to determine which system is better 

suited for particular requirements. 

 

In Equation 2.6 PG is the prior probability of a user being genuine, CFNM is the 

cost associated with a false non match, CFM is the cost associated with a false 

match (R. M. Bolle, Connell, Pankanti, Ratha, & Senior, 2004a). This is a useful 

method for quantifying the cost of the system in dollars, but it is only as accurate 

as the input parameters.  
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Cost = CFNM * FNMR * PG + CFM * FMR * (1-PG)  Eq. 2.6 

2.6.5. Cumulative Match Curve 

Cumulative Match Curve (S3C) is a statistic that measures capabilities of 

matching engine that returns a ranked list. The ranked list can be interpreted as a 

list of enrolled samples that are arranged according to the match scores against 

an input sample. A better matching engine will return a better ranked list. ROC 

curves and its derivatives are useful for analysis of matching engines that 

produce continuous random variables; a S3C is useful for analysis of matching 

engines that produce discrete random variables (R. M. Bolle, Connell, Pankanti, 

Ratha, & Senior, 2004b) 
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CHAPTER 3. METHODOLOGY 

3.1. Introduction 

The chapter outlines the data collection, data processing, and data analysis 

methodology utilized in this dissertation. The main purpose of this chapter is to 

ensure the experiment can be repeated in a reliable manner.  

3.1.1. Research Design 

This dissertation used the experimental research method. Experimental research 

methods require a highly controlled environment with a clear identification of 

independent variable/variables, dependent variables, and extraneous variables. 

In this study the fingerprint sensors were the independent variables and minutiae 

count, image quality scores, and match scores were the dependent variables. 

This study also required an experimental research method to ensure all subjects 

followed the same process of providing fingerprints on different sensors. The 

experimental research method is useful for controlling sources of error. For this 

experiment, the sources of error were controlled by randomizing assignment of 

sensors to subjects, maintaining repeatability of the process, and controlling the 

extraneous variables like room lighting, temperature, and humidity. The 

experimental research method also allowed for an experimental design which 

minimized internal and external validity issues. These are discussed in Section 

3.5. 
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3.2. Data Collection Methodology 

Each participant was required to follow the same data collection procedure. At 

the beginning of the experiment, the participant completed a questionnaire, the 

details of which are listed in Section 3.2.8. The responses were collected to 

provide further research opportunities of investigating their correlation with image 

quality and performance metrics. The detailed questionnaire can be found in 

Appendix B. 

 

After completing the questionnaire, the participant proceeded with the fingerprint 

data collection procedure. A test administrator supervised the data collection. 

There were nine fingerprint sensors used in this study, and their details can be 

found in Section 3.2.4. The participant interacted with each fingerprint sensor 

while sitting in a chair. The participant provided six fingerprint images from the 

index finger of his/her dominant hand for each sensor. Previous studies have 

showed that index fingers tend to provide higher quality images compared to 

other fingers (Elliott & Young, 2007). If a participant was ambidextrous, the index 

finger from the preferred writing hand was used. The participant was given a 

randomized list of fingerprint sensors and started the data collection with the first 

sensor on the randomized list. Before interacting with each fingerprint sensor, the 

participant’s moisture content, elasticity, oiliness and temperature was recorded 

from the surface of the finger skin. The fingerprint sensor was placed on a 

pressure measuring device. The peak pressure applied by the participant’s finger 

on the sensor while providing each fingerprint image was recorded. A detailed 

description of the hardware used in this study is given in Sections 3.2.3 and 

3.2.4. Data collection was complete only after the participant provided 

fingerprints on all sensors. A flowchart of the data collection protocol is given in 

Appendix  A. The physical layout of the data collection area is given in Appendix 

D. 
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3.2.1. Participant Selection 

Participants were selected from the population available at the West Lafayette 

campus of Purdue University. For the purpose of this study convenience 

sampling was performed to form the participant pool. 190 participants completed 

the study.  

3.2.2. Timeline 

Data collection for this study commenced on January 31st, 2008 and was 

completed on April 25th, 2008.  

3.2.3. Data Collection Hardware & Software 

Moisture content, oiliness, and elasticity finger skin were measured using 

Triplesense TR-3 manufactured by Moritex Corporation (Figure 3.1). This is a 

commercially available hand held device capable of providing all three 

measurements. Measurements are on a normalized scale of 1-100 based on 

testing performed by the manufacturer. This device came pre-calibrated from the 

manufacturer. No additional calibration was performed on the device. 

 

The temperature of finger skin was measured using Raytek MiniTempTM Infrared 

Thermometer (Figure 3.2). This is a commercially available device which 

provides readings on a Fahrenheit scale. This device came pre-calibrated from 

the manufacturer and no additional calibration was performed. 
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Figure 3.1 Triplesense TR-3 

 

Figure 3.2 Raytek MiniTempTM 

A Vernier Force Plate was used to measure the force applied on the fingerprint 

sensor. The device was calibrated to zero N before each interaction. 
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3.2.4. Fingerprint Sensors 

Fingerprints were collected using nine different sensors. There were three swipe 

and six touch interaction type sensors. There was one thermal sensor, four 

capacitive sensors and four optical sensors. All sensors were of approximately 

500 S4i resolution. All fingerprint sensors chosen were made by commercial 

sensor manufacturers and were commercially available. None of the fingerprint 

sensors were specifically built for this dissertation. The fingerprint sensors were 

also chosen on basis of availability and with the intent of including sensors that 

were of swipe and touch interaction type and optical, thermal, and capacitive 

acquisition technology. There are other types of acquisition technologies 

available which were not selected due to their limited use in the live deployments. 

The specifications for each sensor are listed in Table 3.1.  

Table 3.1 List of Fingerprint Sensors 

Fingerprint 
Sensor 

Type of 
Sensor 

Action Capture 
Area 
(mm) 

Resolution 
S4i 

(approximate) 
Sensor 1   14  X .4 500 
Sensor 2   13.8 X 5 500 
Sensor 3   30.5 X 30.5 500 
Sensor 4   14.6 X 18.1 500 
Sensor 5   12.8X15 500 
Sensor 6   16 X 24 500 
Sensor 7   15 X 15 500 
Sensor 8   12.8 X  18 508 
Sensor 9   12.4 X .2 500 

3.2.5. Fingerprint Sensor Maintenance 

The fingerprint sensors were calibrated the first time they were setup for the 

experiment. Calibration was performed using the software which accompanied 

each sensor. The fingerprint sensors were not recalibrated after the first setup. 
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At the beginning of each fingerprint collection session, every fingerprint sensor 

was cleaned by wiping it with a piece of cloth (Campbell & Madden, 2006). This 

action was performed to minimize any accumulation of residue. 

3.2.6. Software or Sensor Malfunction 

In case of hardware or software malfunctions, the following steps were taken: 

! Restart the data collection software. 

! Reconnect and reinitialize the fingerprint sensor. 

! Reboot the data collection computer. 

 

In case of a sensor failure, all fingerprints collected from that sensor were to be 

removed from the data analysis section. None of the fingerprint sensors used for 

data collection failed during the data collection period. 

3.2.7. Variables Measured during Data Collection 

Fingerprint images collected from all sensors were stored for the duration of the 

study. Information about the participant’s age, gender, ethnicity, occupation, 

missing fingers, temperature of finger surface, moisture content of finger surface, 

oiliness of skin, elasticity of skin and pressure applied on the sensor was 

collected as performed in a previous study by Kim et al. (2003). Failure to acquire 

(FTA) was recorded if Verifinger 5.0 extractor determined a fingerprint image to 

be of insufficient quality. If three consecutive failure to acquire attempts occurred, 

a failure to enroll (FTE) was recorded and the participant was asked to proceed 

with the next fingerprint sensor on the randomized list. For the purpose of this 

study gender, ethnicity, and occupation were treated as categorical variables;  

missing fingers, temperature, moisture content, oiliness and elasticity of finger 

skin, and pressure applied on fingerprint sensor were treated as interval 

variables;  age was treated as a ratio variable. This information was collected to 

report the demographic mix of the participants, but was not used for analysis. 
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3.2.8. Variables Controlled during Data Collection 

Each participant had the discretion of adjusting the height of the chair during the 

data collection session. The lighting level of the room, room temperature, relative 

humidity in the room was kept within the Knoy Hall, West Lafayette, building 

regulations during the experiment. The tilt angle of the fingerprint sensor was 

controlled by laying it flat on the pressure plate surface. The surface of the 

pressure plate and the back of each fingerprint sensor was covered with Velcro 

to minimize the movement of the sensor when the participant interacted with the 

sensor. The surfaces of all sensors were cleaned at the start of each data 

collection session.  

3.3. Data Processing Methodology 

3.3.1. Minutiae Count and Image Quality Processing 

The basic variables analyzed for this study were minutiae count, and image 

quality score of the fingerprint image. Minutiae count and image quality scores 

were generated using Aware Image Quality, and MINDTCT and NFIQ which are 

a part of NBIS. Minutiae count was also generated using VeriFinger 5.0 extractor. 

For Aware Image Quality Software, minutiae count and image quality scores 

were ratio variables. Minutiae count was always greater than 0, and image 

quality scores ranged from zero to 100. For MINDTCT, minutiae count was a 

ratio variable and was always greater than zero. NFIQ scores ranged from one to 

five and was treated as an interval variable. For VeriFinger 5.0 minutiae count 

was a ratio variable. The determination of the variable types was used to 

formulate the appropriate statistical tests. 
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3.3.2. Fingerprint Feature Extractor and Matcher 

Fingerprint feature extractors and fingerprint matchers provided with VeriFinger 

5.0 and NBIS were used. VeriFinger 5.0 is a commercially available fingerprint 

feature extractor and matcher. It has been a participant in Fingerprint Verification 

Competitions in 2000, 2002, 2004, and 2006, and in the INCITS 378 Fingerprint 

Template performance and interoperability test conducted by NIST. MINDTCT 

and BOZORTH3, which are a part of NBIS, were used for extraction and 

matching respectively. The genuine match scores and imposter non-match 

scores were also ratio variables and were always a non-negative number. 

3.4. Data Analysis Methodology 

Hybrid testing, which combined live acquisition and offline matching, was 

performed to analyze the data collected in this experiment  (Grother, 2006). 

Genuine match scores and imposter match scores were generated offline once 

all 190 participants had completed their data collection sessions. A hybrid testing 

scenario was necessary for an experiment which incorporated multiple sensors 

because live users would not want to sit through combinatorial use of multiple 

sensors. The scenario also provided an opportunity to use the entire dataset for 

testing purposes.  

3.4.1. Score Generation Methodology 

The process outlined in this section was performed using VeriFinger 5.0 and 

BOZORTH3. All participants provided six fingerprint images on each sensor from 

the index finger of their dominant hand, or their preferred writing hand if they 

were ambidextrous. The resulting six fingerprint images participant were split into 

two groups; the first three images were placed in an enrollment dataset and the 

last three images were placed in a test dataset. Enrollment template datasets 

were created for all nine sensors, and test template datasets were created for all 

nine sensors using feature extractors from VeriFinger 5.0 and BOZORTH3. This 
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methodology is graphically represented in Figure 3.3. Enrollment templates from 

each dataset were compared against templates from each test dataset resulting 

in a set of scores S, where  

 

S ={(Ei,Vj,scoreij)}  

i= 1,.. ,number of enrolled templates 

j = 1,.., number of test templates 

scoreij = match score between enrollment template and test template 

 

The set of scores, which consisted of genuine match scores and imposter match 

scores, were placed in a matrix form (Figure 3.4).  This matrix of scores had the 

following properties: 

1. The number of rows and columns were equal, and corresponded to the 

number of fingerprint sensors used. 

2. The diagonal represented the native datasets, and all the cells not in the 

diagonal represented interoperable datasets. 
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Figure 3.3 Generation of match scores 
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Figure 3.4 Scores of native and interoperable datasets 

3.4.2.  Analysis Techniques 

The steps outlined in this section were performed on data generated from Aware 

Image Quality Software, VeriFinger 5.0, MINDTCT and BOZORTH3. Based on 

previous research conducted in fingerprint sensor interoperability experiments, 

the analysis methodology was categorized into the following: 

1. Basic fingerprint feature analysis. 

2. Match scores analysis. 

3.4.2.1. Basic fingerprint feature analysis 

An important factor when considering interoperability is the ability of different 

sensors to capture similar fingerprint features from the same fingerprint. Although 

human interaction with the sensor introduces its own source of variability, it is 

nonetheless important to statistically analyze variability introduced from different 

sensors. The flowchart of the fingerprint feature statistical analysis methodology 

performed in this dissertation is shown in Appendix C. 
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The analysis described in this section was performed using all six fingerprints 

collected from the participant. The basic fingerprint feature analysis involved 

examination of minutiae count and image quality scores. Minutiae count and 

image quality scores were calculated for each fingerprint image using Aware 

Image Quality, MINDTCT and NFIQ. Statistical tests were performed to test 

similarities in minutiae count between all fingerprint datasets. This analysis was 

performed separately on minutiae count generated by Aware Image Quality and 

MINDTCT. Statistical tests were performed to test similarities in image quality 

between all fingerprint datasets. This analysis was performed separately on 

image quality scores generated by Aware Image Quality and NFIQ. A model 

adequacy check for a parametric F-test was performed which involved the 

following: 

1. Normality of residuals. 

2. Constancy of variance of error terms. 

3. Independence of observations. 

 

For a parametric F-test of a between groups effect, it is more appropriate to 

check normality of the residuals than the raw scores (Montgomery, 1997). A 

parametric F-test is a ratio test of between group variance and within group 

variance. The within groups variance is the average square of the residuals of 

the group mean. A test of normality of residuals will show if any particular 

observation has a very strong influence on the group mean compared to other 

observations. This ensures that scores which are used to calculate the within-

group variance are normally distributed. A violation of any of the assumptions 1) 

or 2) can be fixed by transformation of data (Montgomery, 1997).   

 

Two sets of hypotheses were formed to test for similarity of minutiae count and 

image quality. The first set of hypothesis was used for testing similarity of 

minutiae count.  
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H10: There is no statistically significant difference among the mean minutiae 

counts of all fingerprint datasets.  

H1A: There is a statistically significant difference among the mean minutiae 

counts of any fingerprint datasets. 

 

H10: µi minutiae_count = µ2 minutiae_count……..= µn minutiae_count 

H1A: µi minutiae_count ( µ2 minutiae_count……..( µn minutiae_count  

Eq. 3.1 

n = number of datasets 

 

The second set of hypothesis was used for testing similarity of image quality 

scores. 

H20: There is no statistically significant difference among the mean image quality 

scores of all fingerprint datasets. 

H2A: There is a statistically significant difference among the mean image quality 

scores of any of the fingerprint datasets. 

 

H20: µi qscore = µ2 qscore……= µn qscore 

H2 A: µi qscore ( µ2 qscore…..( µn qscore  

Eq. 3.2 

 

If a statistically significant difference was observed for the test, all possible pairs 

of means were compared. Tukey’s Honestly Significant Difference (HSD) was 

used to test all pairwise mean comparisons. Tukey’s HSD is effective at 

controlling the overall error rate at significance level #, and thus preferred over 

other pairwise comparison methods (Montgomery, 1997). Two sets of 

hypotheses were tested for pair-wise differences in means, one set of hypothesis 

corresponding to the similarity of minutiae counts, and one set corresponding to 

the similarity of image quality scores. 

 

H30: µi minutiae_count = µj minutiae_count for all i ( j 

H3 A: µi minutiae_count ( µj minutiae_count for all i ( j 

Eq. 3.3 
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H40: µi qscore = µj qscore for all i ( j 

H4 A: µi qscore ( µj qscore for all i ( j 

Eq. 3.4 

3.4.2.2. Match Scores Analysis 

The following analysis was performed separately for genuine match scores and 

imposter match scores generated by VeriFinger 5.0 and BOZORTH3. The set of 

genuine match scores and imposter match scores were analyzed with the data 

from the matrix of set of scores shown in Figure 3.5. The performance of 

interoperable datasets was analyzed using the following methods: 

 

1. Performance interoperability matrix consisted of FNMR for all datasets 

collected in the experiment (Campbell & Madden, 2006). The VeriFinger 

5.0 matcher was used to generate the set of raw scores and FNMR at 

fixed FMR of 0.01% and 0.1%. The VeriFinger 5.0 matcher deduces the 

decision threshold of FMR operational points based on internal tests of the 

matcher. For each fixed FMR a FNMR interoperability matrix was 

generated (Figure 3.5). These two matrices had exactly the same 

properties as the matrix of set of scores, as outlined in Section 3.4.1. For 

the BOZORTH3 matcher a single decision point was used to create the 

interoperability performance matrix. A match score of 40 or above 

indicated a true match as suggested by Garris et al. (2004). Since the 

score of 40 does not correspond to a particular FMR operational point, no 

operational point was assigned to performance interoperability matrix 

generate by NBIS matcher scores. 
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Figure 3.5 Performance interoperability matrix at different operational FMR 

For each interoperable dataset a simple placement consistency metric 

was formulated. If VeriFinger 5.0 extractor detected a core in the pair of 

fingerprints being matched by VeriFinger 5.0 matcher, the placement was 

considered to be consistent. Using this measure, a percentage of 

fingerprint matching pairs in which both had a core was calculated for all 

interoperable datasets. This analysis was performed to analyze the 

relation between consistency of placement and interoperable FNMR. 

 



 

 

74 

2. Test of FNMR homogeneity was performed on FNMR calculated in the 

previous section to test for equality using the chi-square distribution 

testing for homogeneity of proportions. The main objective of this test was 

to examine if the difference in FNMR among the datasets was statistically 

significant in their difference. This test aided in statistically testing equality 

of FNMR for native datasets and interoperable datasets. Since there were 

nine sensors, there were nine corresponding sets of hypothesis. Eq 3.5 

shows a sample of the null hypothesis and alternate hypotheses for 

dataset S1: 

 

H10: pi = p2 = ……..= pn  

H1A: pi ( p2 ( ……..(  pn  

 

Eq. 3.5 

n = total number of native and interoperable datasets for sensor 1. 

p= FNMR.  

 

The chi-square test statistic is calculated as follows: 

"
%

#
n fc

fcfo 2)(2'  
Eq. 3.6 

fo = observed frequency 

fc= theoretical frequency if no false non matches occurred 

 

The critical value of )2 was computed at a significance level of 0.05 and 

degrees of freedom (n-1), and then compared to the test statistic )2 from 

Eq. 3.6. If the test statistic exceeded the critical value, the null hypothesis 

was rejected. This same hypothesis test was repeated for the other eight 

fingerprint sensors. If the null hypothesis was rejected, further analysis 

was performed to examine which interoperable datasets caused the 

rejection. This was done using the Marascuillo procedure for a 

significance level of 0.05. The Marascuillo procedure simultaneously tests 
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the differences of all pairs of proportions for all groups under investigation. 

The critical range was calculated as shown in Eq. 3.7 and compared to the 

result of Eq. 3.8. If the result from Eq. 3.8 exceeded the critical range, the 

difference was statistically significant.  
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Eq. 3.7 

ni = sample size of group i 

pi = FNMR of group i 

k = total number of sensor groups 

  

|| ji pp %  Eq. 3.8 

 

3. Test of Match of Scores: In order to statistically analyze the differences in 

genuine match scores and imposter match scores between the native 

dataset and interoperability dataset, either the Dunnet’s comparison 

method (Montgomery, 1997) or the Kruskal Wallis test was used 

depending on model adequacy checks described in Section 3.4.2.1.  

Dunnet’s method is a modified form of a t-test. The mean genuine match 

score and the mean imposter match score for the native dataset would be 

considered as the control. The mean genuine match score and mean 

imposter match score for each interoperable dataset would be tested 

against the control (i.e. the native dataset scores). One measure of 

fingerprint sensor interoperability can be described as the consistency of 

match scores of the matcher for native fingerprint datasets and 

interoperable fingerprint datasets. In statistical terms, this would be 

examined by testing for a significant difference of the genuine match 

scores between native and interoperable fingerprint datasets. The same 
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test would be repeated to test for a significant difference of imposter 

match scores between native and interoperable fingerprint datasets. 

3.4.3. Impact of Image Quality on Interoperable Datasets 

The impact of image quality on interoperable datasets was examined by 

removing low quality images and recalculating the test of FNMR homogeneity. 

Only fingerprint images which had NFIQ quality scores of one, two or three were 

used for the matching operation. The NIST Minutiae Exchange Interoperability 

Test report indicated that a relative reduction in interoperable dataset FNMR 

would be observed since poorly performing images were not used (Grother et al., 

2006). This analysis was performed to examine if using higher quality images 

would lead to a higher degree of similarity in FNMR between native and 

interoperable datasets. After fingerprint images with NFIQ score of one, two or 

three were selected from the interoperable datasets and VeriFinger 5.0 template 

generator and matcher was used to perform the matching operations. 

 

The test of homogeneity of proportions was conducted on the FNMR of native 

and interoperable datasets comprised of fingerprint images with NFIQ score of 1, 

2 or 3. This was repeated for all possible interoperable datasets.  

3.4.4. Post Hoc Analysis 

The moisture content, oiliness, elasticity, and temperature of the finger skin were 

measured before an individual interacted with each new sensor. Basic 

descriptive analysis was performed on these variables to analyze their range, 

mean and variance. An exploratory analysis involving correlation matrices was 

performed on moisture content, oiliness, elasticity and temperature of the finger 

skin and its relation to image quality of the fingerprint provided. This analysis can 

be found in Appendix J. 
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An exploratory analysis using correlation matrices was also performed between 

all of the following relations: match scores of a pair of fingerprint images and the 

difference in quality of the pair of images, difference in ridge bifurcation count of 

the pair of images, difference in ridge ending count of the pair of images, and 

different types of acquisition technologies that were used to capture the pair of 

fingerprint images.  

3.5. Threats to Internal and External Validity 

3.5.1. Internal Validity 

For the purpose of this study internal validity was defined as the confidence 

placed in the cause and effect relationship between the independent variable and 

dependent variables without the relationship being influenced by extraneous 

variables (Sekran, 2003). The following seven internal validity issues are 

discussed: history, selection, maturation, instrumentation, mortality rate, repeated 

testing, and experimenter bias.  

 

History 

Outside events may influence participants during the experiment or between 

repeated measures of the dependent variable (“Psychology 404,” 1998). 

Biometrics is currently receiving a lot of media coverage because of privacy 

issues. These events could have influenced a participant’s willingness to 

participate or comply with the instructions. Although these events are beyond the 

control of the experimenter, the participants were given an opportunity to ask 

questions about the experiment before proceeding with it. History effects are a 

more relevant threat to experiments which require repeated measures spread 

over multiple sessions. Since this was a single session experiment history effects 

were deemed to be minimal.   
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Selection 

The threat of selection arises from selection of participants for multiple groups in 

an experiment. Experiments which employ a control group and different test 

groups are susceptible to this threat, as they utilize specific criteria for placing 

participants in certain groups. This experiment did not have multiple groups of 

participants -thus this threat was not a concern. 

 

Maturation 

For the purpose of this study, maturation was defined as the difference in 

measurements of the dependent variable due to passage of time (“Psychology 

404”, 1998). Participants becoming more skillful, observing new details of the 

experiment, and acclimatizing themselves to the experimental conditions can 

affect the variables of interest. Multiple visit studies or studies with a long gap 

between subsequent visits are vulnerable to this threat. In this case participants 

completed the study only once, which reduced the risk of maturation. Participants 

waiting to complete the study could observe the previous participant, potentially 

causing the participants to change their interactions with the fingerprint sensors. 

For this reason, the data collection room was kept separate from the waiting 

room, and this threat did not have an impact on data collection.  

 

Instrumentation 

The reliability of instruments used to capture, measure and gauge the variables 

of interest is of utmost importance to an experimental setup. In order to have 

confidence in the results, the instruments should provide consistent readings 

throughout the study. All instruments used in this study are commercially 

available products, and remained the same for all participants. The fingerprint 

collection software, fingerprint feature extraction software, and fingerprint 

matching software are all commercially available or open source. A PC with 

Windows XPTM operating system was used for this study, which was not changed 

for the duration of data collection.  
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Mortality Rate 

For the purpose of this study, mortality rate was defined as the dropout rate of 

participants from the experiment. Participants completed the study in a single 

session. The participants did not have to return for repeated sessions. This 

reduced the threat of mortality. Participants had the option of terminating the data 

collection session at any time during the study. Although this posed a constant 

threat to internal validity, the threat was mitigated by providing a positive and 

unambiguous experience to the participant. 

 

Repeated Testing 

Repeated testing can confound the measurement of dependent variables as the 

participants get repetitive in their experimental interaction and the variables of 

interest are not affected by manipulation of independent variables (Sekran, 

2003). The experimental setup of this study required each participant to 

participate in a single session which reduced the threat of repeated testing. 

During this session, the participants were asked to provide six fingerprint images 

from the index finger of their natural hand on all fingerprint sensors. It was 

infeasible to completely control for repeated testing in such a setup. In order to 

minimize the order effects introduced by repeated interaction, each participant 

was presented with a random ordering of fingerprint sensors. This reduced the 

chances of random error affecting only one participant. 

 

Experimenter bias 

Expectations of an outcome by persons running the experiment could 

significantly influence the outcome of the experiment (“Psychology 404”, 1998). 

The data recording in this study was automated except for one fingerprint sensor 

which required the administrator to click the capture button. The ability of the 

administrator to influence the fingerprint placement of a participant was a 

constant threat, but it existed equally for all participants thereby minimizing its 

ability to affect specific participants. The generation of results for analysis was 
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automated by the fingerprint feature extractor and matcher thereby reducing the 

threat of experimenter bias.  

3.5.2. External Validity 

For the purpose of this study, external validity was defined as the ability to 

generalize the results from a study across the majority of the experimental 

population (Sekaran, 2003). Threats to external validity can arise from population 

difference, experimental setup, and localization issues. These issues and their 

respective mitigation methods are discussed in detail in the following sections.  

 

Population Difference 

Population difference arises when samples selected for the experiment are not 

representative of the population to which the results are generalized. This threat 

can typically be mitigated by choosing a sample that is representative of the 

population. Data collection for this study was conducted at the West Lafayette 

campus of Purdue University. A majority of participants were students attending 

Purdue University, and although participants from a diverse age group were 

sought for this experiment in order to make the sample makeup more 

representative of the population, this external validity issue constrained 

generalizability of this study. Previous studies have shown that there is an age 

effect on fingerprint recognition performance, and therefore the generalizability of 

this study was restricted to a similar aged population (Elliott & Sickler, 2005). 

 

Experimental Setup 

Fingerprint recognition can be used for logical or physical access control. The 

deployment environments for these two types of access control can be vastly 

different. Physical access control systems are placed in a relatively uncontrolled 

environment and the interaction postures also differ vastly from logical access 

control. Logical access control systems are used with some kind of a computing 

resource, like a desktop, and are generally in a controlled environment. In order 
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to control the environmental threat, the experiment was designed for logical 

access control applications used for network or desktop login. Participants 

interacted with the fingerprint devices while seated in a chair, and were allowed 

to adjust the seat height as to their preference. This setup was representative of 

a real world scenario for logical access control in an office environment. The 

temperature and lighting in the experimental area were controlled so that their 

effects were representative of an office environment. 

 

Localization Issues 

Applying the results from an experiment conducted in a laboratory to a general 

operational scenario can lead to localization issues. This threat is more relevant 

to experiments which can be affected by a change in geographical locations. This 

experiment was conducted in a highly controlled environment which simulated an 

office environment. Office environments across different geographical regions 

tend to have similar conditions, so the results of this study are generarlizable 

across office environments irrespective of their locations. The skin on fingers is 

affected by outdoor environmental conditions, and this can affect fingerprint 

recognition systems. For the purpose of this experiment this was not expected to 

be severe due to the ability of the human body to acclimate itself to a controlled 

environment. Localization effects were not anticipated to be a major threat for 

this study. 

3.6. Evaluation Classification 

Table 3.2 partitions the test along seven categories and provides a summary of 

the experimental evaluation. 
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Table 3.2 Evaluation Classification (Mansfield & Wayman, 2002). 

Experimental Application Types Classification for this research 
Application Classification Technology 
Co-operative or Non Co-operative Co-operative Users 
Overt versus Covert Overt 
Habituated versus Non-Habituated Both 
Attended versus Non-Attended Attended 
Standard Environment Yes 
Public versus Private N/A 
Open versus Closed System Closed 

3.7. Summary 

This chapter has outlined the data collection, data processing and data analysis 

methodology that were used in this dissertation. Both the data collection 

procedures and test methodology for this study were based on prior research 

related to interoperability of fingerprint sensors and fingerprint recognition 

systems. This chapter also acknowledged the different extraneous variables that 

potentially affected the validity of the study, and explained how the study 

attempted to mitigate the effects of the variables to increase validity of the study. 
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CHAPTER 4. DATA ANALYSIS 

This chapter discusses results from surveys completed by the participants, 

followed by analysis of minutiae count, image quality scores and match scores of 

native and interoperable datasets. The data analysis methodologies and 

statistical tests described in Chapter 3 were performed on the datasets collected 

from the nine sensors. Each native dataset was named after the sensor that was 

used to collect it. Table 4.1 outlines the details of each sensor and the dataset 

name given to each sensor. 

Table 4.1 Coding of Fingerprint Sensors and Datasets 

Dataset Name Fingerprint 
Sensor 

Type of 
Sensor 

Action Capture 
Area 
(mm) 

S1   Swipe 14  X .4 
S2   Swipe 13.8 X 5 
S3   Touch 30.5 X 30.5 
S4   Touch 14.6 X 18.1 
S5   Touch 12.8X15 
S6   Touch 16 X 24 
S7   Touch 15 X 15 
S8   Swipe 12.4 X .2 
S9   Touch 12.8 X  18 

 

Throughout this chapter, interoperable datasets were named using the notation 

{ES,TS} where ES refers to the source of the enrollment images and TS refers to 

the source of the test images. For example, {S1, S2} refers to S1 Fingerchip 

being the source of enrollment images and S2 being the source of test images.  
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Results of the survey filled out participants at beginning of the data collection 

session can be found in Appendix I. 

4.1. Failure to Enroll (FTE) 

Data acquisition was performed using the native acquisition software provided by 

the sensor manufacturers. All capture software except for S3 LC 300 used an 

auto capture acquisition mode and had an inbuilt quality assessment algorithm 

which made a determination of the acceptability of the fingerprint image. Failure 

to Enroll (FTE) was not based on acceptability of the fingerprint image by the 

native software but instead by VeriFinger 5.0. FTE was recorded for an individual 

if three fingerprint images could not be processed using VeriFinger 5.0 extractor. 

Determination of FTE was conducted in offline processing mode. S3 LC 300 

could not to be used in auto capture acquisition mode. The determination of 

capturing the fingerprint image using S3 LC 300 was made by the test 

administrator based on subjective assessment of the clarity of the fingerprint 

image. Table 4.2 shows the number of FTE for each sensor. Fingerprints 

collected using the S5 sensor had the highest FTE out of all the sensors.  

Table 4.2 Number of participants that recorded Failure to Enroll (FTE) using 
VeriFinger 5.0 

Sensor N FTE Rate 
Sensor 1 0 0% 
Sensor 2 3 1.5% 
Sensor 3 0 0% 
Sensor 4 2 1.0% 
Sensor 5 5 2.6% 
Sensor 6 1 0.5% 
Sensor 7 1 0.5% 
Sensor 8 2 1.0% 
Sensor 9 3 1.5% 
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4.2. Basic Fingerprint Feature Analysis 

This section describes results of minutiae count analysis and image quality 

analysis performed on fingerprint images collected from all nine fingerprint 

sensors. The dataset effects were treated as the main effects for all statistical 

tests.  

4.2.1. Minutiae Count Analysis 

Three different software were used to extract the minutiae count: Aware Quality 

Software, MINDTCT, and VeriFinger 5.0 extractor. The results of these three 

different software were not compared to one another. 

 

The preliminary test of assumptions for a single factor parametric F- test was 

performed on minutiae count generated by Aware Quality Software. A model 

adequacy check was performed by examining the residual values. A visual 

analysis showed that the normal probability plot, independence of samples, and 

constancy of variance did not violate the assumptions for performing the 

parametric F-test. These graphs can be found in Appendix E. Table 4.4 shows 

the values of mean (M) and standard deviation (SD) for each of the fingerprint 

datasets. Figure 4.1 shows the boxplot of minutiae count for all datasets and 

Figure 4.2 shows the histogram of minutiae count. 

Table 4.3 Descriptive statistics for Aware software minutiae count analysis 

Dataset n M SD 
S1 1140 72.91 18.16 
S2 1122 31.72 11.61 
S3 1140 39.93 13.67 
S4 1128 39.48 10.57 
S5 1110 29.16 8.92 
S6 1134 46.50 10.83 
S7 1134 32.68 9.16 
S8 1128 35.39 10.39 
S9 1122 47.65 11.57 
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Figure 4.1 Boxplot of Aware software minutiae count  

 

 

Figure 4.2 Histogram of Aware software minutiae count  
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The omnibus test for main effect of the sensor was statistically significant, F(8, 

10149)  = 1403.79, p < 0.001 at * = 0.05. Tukey’s Honestly Significant Difference 

(HSD) test for pairwise sensor effects was performed to determine statistical 

significance of difference between each possible pair in the group of datasets. 

For pairwise comparisons described in this section, if the p value was greater 

than 0.05, the comparison was not statistically significant. Table 4.4 gives the p 

values of each pairwise comparison. Tukey’s Honestly Significant Difference 

(HSD) test of S2 and S7; S3 and S4; and S6 and S9 were found to be not 

statistically significant at * = 0.05. The pairwise comparison of S2 and S7 was 

interesting because S2 was collected from a capacitive sensor of swipe 

interaction type, while S7 was collected from an optical sensor of touch 

interaction type. S6 was collected using an optical touch sensor and S9 was 

collected using a capacitive touch sensor. The sensor acquisition technology or 

interaction type did not have an impact on similarity of minutiae count. S3 and S4 

were both collected using an optical touch sensor. Results of this test were 

symmetric due to the mechanics of the Tukey’s HSD test. 
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Table 4.4 p values for Tukey’s HSD test for pairwise dataset effects for Aware software minutiae count 

 S2 S3 S4 S5 S6 S7 S8 S9 
S1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
S2  <0.05 <0.05 <0.05 <0.05 >0.05 <0.05 <0.05 
S3   >0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
S4    <0.05 <0.05 <0.05 <0.05 <0.05 
S5     <0.05 <0.05 <0.05 <0.05 
S6      <0.05 <0.05 >0.05 
S7       <0.05 <0.05 
S8        <0.05 
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Model adequacy checking was performed by examining residual values for 

minutiae count generated by MINDTCT module in NBIS. A visual analysis of the 

normal probability plot, independence of samples, and constancy of variance did 

not violate the assumptions for performing single factor parametric F- test. These 

graphs can be found in Appendix E. Table 4.5 shows the values of M and SD for 

each of the datasets. Figure 4.3 shows the boxplot of the minutiae count for all 

datasets. 

Table 4.5 Descriptive Statistics for MINDTCT minutiae count  

Dataset N M SD 
S1 1140 78.62 19.58 
S2 1122 48.71 15.61 
S3 1140 57.40 14.48 
S4 1128 52.08 13.36 
S5 1110 47.52 11.02 
S6 1134 58.36 12.64 
S7 1134 35.32 9.08 
S8 1128 47.03 11.54 
S9 1122 49.46 12.01 

  

The omnibus test for main effect of sensor dataset was statistically significant, 

F(8, 10149)  = 851.0, p < 0.001 at * = 0.05. Tukey’s HSD test was performed to 

determine the statistical significance of difference between each possible pair in 

the group of datasets. For pairwise comparisons described in this section, if the p 

value was greater than 0.05, the comparison was not statistically significant. 

Table 4.6 gives the p values of each pairwise comparison. Tukey’s HSD test of 

S2 and S5; S2 and S8; S2 and S9; S3 and S6; and S5 and S8 were found to be 

not statistically significant at * = 0.05. The interesting results were of the pairwise 

comparison of S2 and S5 and S2 and S9 because S2 was collected from a 

capacitive swipe sensor which S5 and S9 were collected using capacitive touch 

sensors. S8 which was collected using a capacitive swipe sensor showed a 

statistical similar count to every capacitive sensor except for S9. Results of this 

test were symmetric. 
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Figure 4.3 Boxplot of Minutiae Count Extracted by MINDTCT 

 

Figure 4.4 Histogram of Minutiae Count Extracted by MINDTCT 
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Table 4.6 p values for Tukey’s HSD test for pairwise dataset effects for MINDTCT minutiae count 

 S2 S3 S4 S5 S6 S7 S8 S9 
S1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
S2  <0.05 <0.05 >0.05 <0.05 <0.05 >0.05 >0.05 
S3   <0.05 <0.05 >0.05 <0.05 <0.05 <0.05 
S4    <0.05 <0.05 <0.05 <0.05 <0.05 
S5     <0.05 <0.05 >0.05 <0.05 
S6      <0.05 <0.05 <0.05 
S7       <0.05 <0.05 
S8        <0.05 
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Model adequacy checking was performed by examining residual values for 

minutiae count generated by VeriFinger 5.0 extractor. A visual analysis of the 

normal probability plot, independence of samples, and constancy of variance did 

not violate the assumptions for performing single factor parametric F- test. Table 

4.7 shows the values of M and SD for each of the datasets. Figure 4.5 shows the 

boxplot of minutiae count extracted by VeriFinger 5.0. 

Table 4.7 Descriptive statistics for VeriFinger 5.0 minutiae count 

Dataset n M SD 
S1 1140 41.72 10.57 
S2 1122 28.32 10.73 
S3 1140 40.25 10.12 
S4 1128 30.74 8.06 
S5 1110 24.38 6.87 
S6 1134 38.62 9.18 
S7 1134 27.53 7.69 
S8 1128 26.11 6.69 
S9 1122 26.15 6.73 

  

The omnibus test for main effect of sensor dataset was statistically significant, 

F(8, 10149)  = 685.86, p < 0.001 at * = 0.05. Tukey’s HSD test was performed to 

determine the statistical significance of difference between each possible pair in 

the group of datasets. For pairwise comparisons described in this section, if the p 

value was greater than 0.05, the comparison was not statistically significant.  

 Table 4.8 gives the p values of each pairwise comparison. Tukey’s HSD test of 

S8 and S8 was found to be not statistically significant at * = 0.05. S8 was 

collected using a capacitive swipe sensor and S9 was collected using a 

capacitive touch sensor. Results of this test were symmetric. 
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Figure 4.5 Boxplot of Minutiae Count Extracted by VeriFinger 5.0 

 

Figure 4.6 Histogram of Minutiae Count Extracted by VeriFinger 5.0 
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Table 4.8 p values for Tukey’s HSD pairwise test for dataset effects 

 S2 S3 S4 S5 S6 S7 S8 S9 
S1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
S2  <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
S3   <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
S4    <0.05 <0.05 <0.05 <0.05 <0.05 
S5     <0.05 <0.05 <0.05 <0.05 
S6      <0.05 <0.05 <0.05 
S7       <0.05 <0.05 
S8        >.05 
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4.2.2. Image Quality Analysis 

Two different software were used to extract the image quality scores: Aware 

Quality Software, and NFIQ. The results of these two different software were not 

compared to one another. 

 

The descriptive statistics for image quality scores generated by Aware software 

are given in Table 4.9. Figure 4.7 shows the boxplot of quality scores generated 

by Aware software. 

Table 4.9 Descriptive statistics for Aware software quality scores 

Dataset N M Median 
S1 1140 44.49 45 
S2 1122 79.52 81 
S3 1140 68.76 75 
S4 1128 72.64 75 
S5 1110 79.92 82 
S6 1134 71.02 73 
S7 1134 75.88 80 
S8 1128 76.58 80 
S9 1122 68.43 70 

 

The image quality scores generated by Aware software did not satisfy the 

assumptions for performing the parametric F-test. The model adequacy check of 

normality of residuals did not hold. Figure 4.9 shows the normality plot of the 

residuals.  
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Figure 4.7 Boxplot of Image Quality Scores Computed by Aware 

 

Figure 4.8 Histogram of Image Quality Scores Computed by Aware 
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Figure 4.9 Normality plot of residuals 

Instead an analysis of variance on rank of the response variable was performed 

using the Kruskal Wallis test (Tolley, 2006). The test for main effect of the sensor 

dataset was statistically significant, H (8) = 3379.77, p < 0.001 at * = 0.05. 

 

Follow up tests were performed on pairwise comparisons of datasets to 

determine which pairs of sensors were statistically significant in their differences. 

Tukey’ HSD pairwise comparisons were performed on the ranks of observations 

for each dataset (Tolley, 2006). Table 4.11 gives the p values of each pairwise 

comparison. The test of pairwise comparison for S2 and S5; S3 and S4; S4 and 

S6; S6 and S9, and S7 and S8 were found to be not statistically significant at * = 

0.05. Table 4.10 shows the different acquisition technology and interaction types 

of the sensors used to collect the datasets in the pairwise comparisons. The 

notation in the acquisition technology and interaction type columns correspond to 

the respective elements in the pairwise dataset column 
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Table 4.10 Summary of Sensor Acquisition Technologies and Interaction Types 

Pairwise Dataset Acquisition 
Technology 

Interaction Type 

(S2/S5) (Capacitive/Capacitive) (Swipe/ Touch) 
(S3/S4) (Optical/Optical) (Touch/Touch) 
(S4/S6) (Optical/Optical) (Touch/Touch) 
(S6/S9) (Optical/Capacitive) (Touch/Touch) 
(S7/S8) (Optical/Capacitive) (Touch/Swipe) 

 

Each optical touch sensor dataset was found to have similar quality scores with 

dataset collected from another optical touch sensor or capacitive touch and 

capacitive swipe sensor, but none of the datasets showed similarity of scores 

with more than one other dataset. As a group, the optical touch sensors showed 

a higher level of similarity among their datasets compared to capacitive touch 

sensors. It should also be noted that the pairwise comparison results of minutiae 

count from Table 4.4 for S3 and S4, and S6 and S9 were found to be similar as 

well.  Results of this test are symmetric.  
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Table 4.11 p values for test for difference in quality scores in every possible pairwise comparison using Aware Quality 
scores 

 S2 S3 S4 S5 S6 S7 S8 S9 
S1 <0.05 <0.05 <0.05 <0.05 <0.05 <.001 <0.05 <0.05 
S2  <0.05 <0.05 >0.05 <0.05 <0.05 <0.05 <0.05 
S3   >0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
S4    <0.05 >0.05 <0.05 <0.05 <0.05 
S5     <0.05 <0.05 <0.05 <0.05 
S6      <0.05 <0.05 >0.05 
S7       >0.05 <0.05 
S8        <0.05 

100 
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Table 4.12 shows the descriptive statistics for image quality scores generated by 

NFIQ. A score of one indicates highest possible quality score and five indicates 

lowest possible quality score. 

Table 4.12 Descriptive Statistics for NFIQ Image Quality Analysis 

Dataset N M Median 
S1 1140 1.29 1 
S2 1122 1.91 2 
S3 1140 1.75 1 
S4 1128 2.00 2 
S5 1110 2.18 2 
S6 1134 1.77 2 
S7 1134 2.03 2 
S8 1128 2.14 2 
S9 1122 1.58 2 

 

 
Figure 4.10 Boxplot of Image Quality Scores Computed by NFIQ 



 

 

101 

 

Figure 4.11 Histogram of Image Quality Scores Computed by NFIQ 

NFIQ uses a 3-layer feed forward nonlinear perceptron model to predict the 

image quality values based on the input feature vector of the fingerprint image 

(Tabassi, Wilson, & Watson, 2004). Neural networks are non-parametric 

processors, which implies that the results produced have non-parametric 

characteristics (Shu-Long, Zhong-Kang, & Yan-Yan, 1991). This property of 

NFIQ values precludes the use of parametric based approach for detecting 

differences in quality scores between all fingerprint datasets. Instead an analysis 

of variance on rank of the response variable was performed using the Kruskal 

Wallis test. The test for main effect of the sensor was statistically significant,  

H (8) = 1646.07, p < 0.001 at * = 0.05. 

 

Follow up tests were performed on pairwise comparisons of sensor datasets to 

determine which pairs of sensors were statistically significant in the differences of 

NFIQ scores. Tukey’s HSD pairwise comparisons were performed on the ranks 

of the observations for each dataset. If the p value was greater than 0.05 for any 
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of the pairwise comparisons, the comparison was not statistically significant. 

Table 4.13 gives the p value of each pairwise comparison. The test of pairwise 

comparison for S4 and S7; S4 and S8; S5 and S9; and S7 and S9 was found to 

be not statistically significant at * = 0.05. S4 and S7 datasets were both collected 

from optical sensors and touch interaction type sensors. S7 dataset was 

collected from an optical touch sensor and S8 was collected from a capacitive 

swipe sensor. It should be noted that S5 and S8 also showed no statistically 

significant difference in minutiae count extracted by MINDTCT (Table 4.6). S8 

showed a similarity of quality scores with the most number of other datasets, and 

the other datasets were of both optical touch and capacitive touch types. As a 

group, neither optical touch sensors nor capacitive touch sensors showed a high 

level of similarity of quality scores. Results of this test are symmetric. 
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Table 4.13 p values for test for difference in quality scores in every possible pairwise comparison using NFIQ scores 

 S2 S3 S4 S5 S6 S7 S8 S9 
S1 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 
S2  <.001 <.001 <.001 <.001 <.001 <.001 <.001 
S3   <.001 <.001 <.001 <.001 <.001 <.001 
S4    <.001 <.001 >0.05 >0.05 <.001 
S5     <.001 <.001 >0.05 <.001 
S6      <.001 <.001 <.001 
S7       >0.05 <.001 
S8        <.001 
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4.3. Match Score Analysis 

This section contains the match score results obtained using VeriFinger 5.0 and 

BOZORTH3, and the subsequent analysis performed on the match score results.  

4.3.1. VeriFinger 5.0 Interoperability Error Rates 

The interoperability FNMR matrices are shown in Table 4.14, and Table 4.15. 

The cells along the diagonal indicate enrollment and test fingerprint images from 

the same fingerprint sensor. The cells off the diagonal indicate fingerprint images 

from different sensors. The error rates matrix generation methodology was 

described in Sections 3.10 and 3.12.2. The sensor dataset in the rows indicate 

the source of the enroll sensor and the sensor dataset in the columns indicate 

the source of the test sensor. All the native FNMR were found to be lower than 

interoperable datasets except for the interoperable dataset {S5,S9} where S5 

and S9 were both collected from a capacitive touch type sensor. The 

interoperable FNMR for {S5, S9} = 0.55% and native FNMR for S5 = 1.02% as 

shown in Table 4.14. The dataset for S9 had a mean minutiae count of 26.15 

while dataset for S5 had a mean minutiae count of 24.38 using VeriFinger 5.0 

extractor. This result indicated the interoperable dataset {S5, S9} had a larger 

number of minutiae  points to match compared to native dataset of S5. The 

capture area of the sensor used to for S9 dataset was larger compared to 

capture area used for S5 dataset. Also interesting was the extremely high FNMR 

for interoperable S8 datasets. S8 dataset was collected from a capacitive sensor 

of swipe interaction type and had an extremely high FNMR with datasets 

collected from all different types of sensors. A cross reference analysis of the 

FNMR matrix with similarity of minutiae count and quality scores from the 

previous section did not show any specific relations.  
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Table 4.14 FNMR at FMR 0.01% (in percentage values) 

 TEST 
  S1 S2 S3 S4 S5 S6 S7 S8 S9 
 

E 
N 
R 
O 
L 
L 

S1 0.64 8.70 7.63 6.15 7.72 44.42 15.07 100 5.19 
S2 10.61 5.58 8.43 9.30 13.81 20.62 13.42 100 7.44 
S3 11.61 6.18 0.30 1.46 1.95 4.56 2.44 100 0.90 
S4 7.29 5.40 1.31 0.23 1.70 2.13 1.95 100 1.26 
S5 9.32 9.67 1.16 1.03 1.02 6.54 3.02 100 0.55 
S6 46.14 17.92 5.33 1.54 6.89 0.17 2.18 100 2.18 
S7 18.99 11.63 2.50 2.42 3.68 3.54 1.29 100 2.56 
S8 100 99.69 100 100 100 100 100 1.30 100 
S9 4.90 3.39 0.24 1.38 0.73 2.57 1.19 100 0.11 

 

 

106 



 

 

106 

Table 4.15 FNMR at FMR 0.1% (in percentage values) 

 TEST 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 

 
E 
N 
R 
O 
L 
L 

S1 0.47 6.79 5.60 4.44 5.61 31.03 11.30 99.81 3.76 

S2 7.33 5.05 6.49 7.44 10.92 16.18 10.83 99.81 6.11 
S3 8.57 4.78 0.24 1.07 1.28 2.73 1.79 100 0.54 
S4 5.10 4.44 0.95 0 1.39 1.60 1.83 100 1.08 
S5 5.56 7.64 0.85 0.85 0.78 4.42 2.23 100 0.42 
S6 33.86 13.42 2.99 1.30 4.47 0.17 1.41 100 2.15 
S7 14.92 9.89 1.73 2.12 2.35 2.71 0.94 100 1.85 
S8 100 99.63 100 100 100 100 100 1.00 99.93 
S9 2.87 2.96 0.12 0.90 0.49 1.73 0.77 100 0.11 
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4.3.1.1. Core Overlap 

Table 4.16 summarizes the percentage of pairs used in genuine comparisons 

that had cores present in both images of the pair. A higher number indicated a 

larger number of pairs of images in which a core was detected.  

 

A scatter plot (Figure 4.12) was created where the x-axis represented the 

percentage of fingerprint image pairs with core overlap from each interoperable 

dataset and the y-axis represented its corresponding interoperable FNMR at 

fixed FMR of 0.1%. The scatter plot only contained interoperable FNMR and 

interoperable dataset core overlap percentage since interoperable FNMR were 

the data points of interest. An inverse relation between FNMR and percentage of 

pairs with core overlap was observed. There were two data points of interest 

which represent interoperable datasets {S1,S6} and {S6,S1}. The relation 

between percentage of images with cores and FNMR of these two interoperable 

datasets did not follow the trend observed in the other interoperable datasets, 

where a higher percentage of core overlap between images was related to a 

lower FNMR. S1 was collected using thermal swipe sensor and S6 was collected 

using optical touch sensor. These points indicate existence of other underlying 

factors which affected the interoperable FNMR, which are discussed in Section 

4.7. 
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Table 4.16 Percentage of fingerprint pairs with detected core 

 TEST 
  S1 S2 S3 S4 S5 S6 S7 S8 S9 
 

E 
N 
R 
O 
L 
L 

S1 75.32 68.93 77.16 76.02 71.15 77.75 74.08 70.69 77.43 
S2  65.53 68.80 72.79 71.95 67.34 73.74 71.62 70.69 72.35 
S3 78.79 77.15 88.77 86.41 81.51 88.84 85.06 84.07 87.68 
S4 78.23 77.29 86.89 86.99 81.11 89.18 84.69 82.91 86.12 
S5 72.27 71.59 80.82 80.83 77.03 81.93 79.37 76.91 79.79 
S6 78.65 77.27 87.23 86.86 80.45 90.03 84.63 82.32 86.29 
S7 75.57 75.29 84.05 83.33 78.68 85.34 82.71 80.92 83.63 
S8 75.31 74.00 82.60 81.38 76.12 82.88 79.22 81.96 82.09 
S9 78.39 76.42 86.58 84.86 79.88 86.81 83.63 82.99 86.42 
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Figure 4.12 Scatter plot of Consistency of Placement vs. FNMR (FMR=0.1%) 

4.3.2. NBIS Interoperability Error Rates 

The interoperable FNMR for match scores generated by the NBIS matcher is 

shown in Table 4.17. As described in Section 3.4.2.2, a single performance 

interoperability matrix was generated using a decision threshold of 40.  
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Table 4.17 FNMR (at threshold of score of 40)  

 TEST 
  S1 S2 S3 S4 S5 S6 S7 S8 S9 
 

E 
N 
R 
O 
L 
L 

S1 1.71 21.71 10.77 11.07 23.04 20.22 21.07 60.54 9.98 
S2 27.22 19.50 23.24 20.78 29.59 31.72 27.51 63.33 20.51 
S3 12.56 18.40 2.98 5.62 11.29 10.64 9.68 60.15 4.69 
S4 11.25 16.02 4.24 1.95 9.18 7.03 6.65 59.99 2.72 
S5 24.12 25.34 10.43 8.24 11.06 18.75 13.28 62.16 8.42 
S6 20.78 26.65 8.98 6.18 18.86 0.84 11.11 60.37 5.85 
S7 23.78 24.26 10.14 8.78 15.29 13.23 8.28 62.01 7.49 
S8 60.89 61.54 60.43 60.13 61.54 60.90 61.58 4.18 59.85 
S9 9.63 14.32 3.23 2.93 8.27 5.53 5.96 60.00 1.28 
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Native FNMR for S5 was higher compared to interoperable FNMR for datasets 

{S5,S3}, {S5,S4}, and {S5,S9} where S5 was collected from capacitive touch type 

sensor and S3 was also collected from an optical touch type sensor, S4 was 

collected from an optical touch sensor, and S9 was collected from a capacitive 

touch sensor. Native FNMR for S7 was also higher compared to interoperable 

FNMR for datasets {S7,S9}. S7 was collected using an optical touch sensor and 

S9 was collected using a capacitive touch sensor.  

 

Fingerprints from S8 showed a very high FNMR with interoperable datasets but 

its native dataset FNMR was not the highest native dataset FNMR in the matrix. 

A similar relation was observed in FNMR matrix generated using VeriFinger 5.0 

matcher (Table 4.14 and Table 4.15).  

4.3.3. Test of Proportions for VeriFinger 5.0 Match Scores 

The test of homogeneity of proportions using the )2 distribution was performed for 

comparing FNMR of the native dataset to FNMR of interoperable dataset. FNMR 

calculated at fixed FMR 0.1% was used for this test. Significance level of 0.05 

was used. This test was performed for the hypothesis stated in Eq. 3.5, which 

has been restated in Eq.4.1. For pairwise comparisons described in this section, 

if the p value was greater than 0.05, the comparison was not statistically 

significant.  

 

H10: pi = p2 = ……..= pn  

H1A: pi ( p2 ( ……..(  pn  

 

Eq. 4.1 

For S1 dataset the FNMR was compared to all other interoperable datasets of 

S1, and the test was significant at )2 (8, N =15182) = 8938.87, p < .001. Since 

the null hypothesis was rejected the Marascuillo procedure, described in Section 

3.4.2.2, was used to simultaneously test differences of all interoperable datasets 

with S1 native dataset. The results of the Marascuillo procedure can be 
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interpreted in the same way as Tukey’s HSD pairwise test, where the results of 

the test indicate which interoperable datasets within the group are statistically 

significant in their differences compared to the native dataset. The results for 

pairwise comparison with S1 are shown in Table 4.19. 

 

This overall test of homogeneity of proportions was performed one at a time for 

each native dataset S2, S3, S4, S5, S6, S7, S8 and S9 and their respective 

interoperable datasets. The results of the overall test are given in Table 4.18. 

Table 4.18 Results of Overall Test of Proportions 

Native Dataset  !2 Statistic p value 
S2 )2 (8, N =14595 ) = 8128.5 p < 0.001 
S3 )2 (8, N =14814 ) = 12101.87 p < 0.001 
S4 )2 (8, N =15075 ) = 12742 p < 0.001 
S5 )2 (8, N =14783 ) = 11880 p < 0.001 
S6 )2 (8, N =14985 ) = 9837 p < 0.001 
S7 )2 (8, N =15135 ) = 10919 p < 0.001 
S8 )2 (8, N =14987 ) = 14747 p < 0.001 
S9 )2 (8, N =14944 ) = 13486 p < 0.001 

 

Table 4.18 showed that all tests were statistically significant in their differences 

which indicated that the FNMR calculated for the interoperable matrix in Table 

4.15 were all different from their respective native dataset FNMR. Since the null 

hypothesis was rejected for all overall tests of proportions, the Marascuillo 

procedure was used to simultaneously test the differences of all pairs. The 

results for pairwise comparison for each native dataset are shown in Table 4.19. 

The first cell in the rows in Table 4.19 indicated the native dataset and the 

remaining cells in that row indicated its corresponding interoperable datasets. A p 

value of less than 0.05 indicated a statistically significant difference. All pairwise 

comparisons for the native S1 and S8 datasets were statistically different. S1 

was collected using a thermal swipe sensor and S8 was collected using a 

capacitive swipe sensor. S1 dataset showed a statistically significant difference 
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in all pairwise comparisons of minutiae count and image quality scores as well. 

The other pairwise comparisons test showed an even distribution of similarity of 

FNMR with interoperable datasets without any apparent trend among acquisition 

technologies and interaction types of the sensors that the datasets were 

collected from. The test of {S2, S1} was interesting since it did not show a 

difference in the pairwise test of proportions but showed a difference in minutiae 

count and image quality scores for all software used. S2 was collected a 

capacitive swipe sensor and S7 was collected using an optical touch sensor. The 

test of {S3,S4} was interesting since  it did not show a difference in pairwise test 

of proportions, and also did not show a difference in minutiae count and image 

quality scores. S3 and S4 were both collected using optical touch sensors. These 

two tests indicated that impact of minutiae count similarity and image quality 

score similarity was not consistent on the pairwise test of proportions. 

Interoperable datasets which contained S9 as its second dataset showed a high 

level of similarity to the native datasets which were used to create the 

interoperable dataset. This indicated that S9 did not degrade the performance of 

an interoperable dataset compared to the performance of native datasets. 
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Table 4.19 p values of pairwise test of proportions 

Native 
Dataset 

 Pairwise Dataset for Comparison 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 
S1  <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 
S2 >.05  >.05 >.05 <.001 <.001 <.001 <.001 >.05 
S3 <.001 <.001  >.05 >.05 <.001 <.001 <.001 >.05 
S4 <.001 <.001 >.05  >.05 <.001 <.001 <.001 >.05 

Fujtisu <.001 <.001 >.05 >.05  <.001 >.05 <.001 >.05 
S6 <.001 <.001 <.001 >.05 <.001  >.05 <.001 >.05 
S7 <.001 <.001 >.05 >.05 >.05 >.05  <.001 >.05 
S8 <.001 <.001 <.001 <.001 <.001 <.001 <.001  <.001 
S9 <.001 <.001 >.05 >.05 >.05 <.001 >.05 <.001  
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4.3.4. Test of Proportions for BOZORTH3 Match Scores 

The test of homogeneity of proportions using the )2 distribution was performed for 

FNMR generated using BOZORTH3. Significance level of 0.05 was used. This 

test was performed for the hypothesis stated in Eq. 3.5, which was restated in 

Eq. 4.2. For pairwise comparisons described in this section, if the p value was 

greater than 0.05, the comparison was not statistically significant.  

 

H10: pi = p2 = ……..= pn  

H1A: pi ( p2 ( ……..(  pn  

 

Eq. 4.2 

For S1 dataset, the test was significant at the )2 (8, N =15192) = 4874,  

p < .001. Since the null hypothesis was rejected, the Marascuillo procedure, 

described in Section 3.4.2.2, was used to simultaneously test differences of all 

interoperable datasets with S1. The results of the Marascuillo procedure can be 

interpreted in the same way as Tukey’s HSD pairwise test, where the results of 

the test indicate which specific pairs within the group are statistically significant in 

their differences. The results for pairwise comparison with S1 are shown in Table 

4.21. 

 

The overall test of homogeneity of proportions was performed one at a time for 

each native dataset S2, S3, S4, S5, S6, S7, S8 and S9 and their respective 

interoperable datasets. The results of the overall test are given in Table 4.20.  
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Table 4.20 Results of overall test of proportions 

Native Dataset  !2 Statistic p value 
S2 )2 (8, N =15021 ) =2921 p < 0.001 
S3 )2 (8, N =15237 ) = 6517 p < 0.001 
S4 )2 (8, N =15086 ) = 7742 p < 0.001 
S5 )2 (8, N =14886) = 5270 p < 0.001 
S6 )2 (8, N =15165 ) = 5941 p < 0.001 
S7 )2 (8, N =15174 ) = 5595 p < 0.001 
S8 )2 (8, N =15102 ) = 12755 p < 0.001 
S9 )2 (8, N =15008 ) = 8326 p < 0.001 

 

Table 4.21 showed that all tests were statistically significant in their differences 

which indicated that the FNMR calculated for the interoperability matrix in Table 

4.17 were all different from their respective native dataset FNMR. Since the null 

hypothesis was rejected for all overall tests of proportions, the Marascuillo 

procedure was used to simultaneously test the differences of all pairs. The 

results for pairwise comparison for each native dataset are shown in Table 4.21. 

 

The first cell in the rows in Table 4.21 indicated the native dataset and the 

remaining cells in that row indicated its corresponding interoperable datasets. S5 

and S7 exhibited the highest number of interoperable datasets with FNMR similar 

to their respective native datasets. S5 was collected using a capacitive touch 

sensor and S7 was collected using an optical touch sensor. The pairwise 

comparison of interoperable {S5,S3}, {S5,S4}, {S5, S9} with S5, and pairwise 

comparisons of interoperable {S7,S3}, {S7,S4}, {S7,S9} with S9 were not 

statistically different. The interoperable datasets created with S3, S4, and S9 

were common to both tests. S3 and S4 were both optical touch sensors and S9 

was a capacitive touch sensor.  
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Table 4.21 p values of pairwise test of proportions 

Native Sensor  Pairwise Sensor for Comparison 
  S1 S2 S3 S4 S5 S6 S7 S8 S9 

S1  <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 
S2 <.001  <.001 <.001 <.001 <.001 <.001 <.001 <.001 
S3 <.001 <.001  <.001 <.001 <.001 <.001 <.001 >.05 
S4 <.001 <.001 <.001  <.001 <.001 <.001 <.001 >.05 
S5 <.001 <.001 >.05 >.05  <.001 <.001 <.001 >.05 
S6 <.001 <.001 <.001 <.001 <.001  <.001 <.001 <.001 
S7 <.001 <.001 >.05 >.05 <.001 <.001  <.001 >.05 
S8 <.001 <.001 <.001 <.001 <.001 <.001 <.001  <.001 
S9 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001  
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4.3.5. Test of Similarity of VeriFinger 5.0 Match Scores 

This section contains results for test of similarity of the genuine and imposter 

match scores generated by VeriFinger 5.0 for native and interoperable datasets. 

These match scores were the raw scores computed by VeriFinger 5.0. The test 

was performed by running nine different similarity tests. For each test, one native 

dataset was chosen as the control dataset and the rest of its interoperable 

datasets were compared to the control dataset.  

 

The first test of similarity was performed by choosing S1 dataset as the native 

dataset and comparing its raw genuine match scores to the corresponding raw 

match scores from the other eight interoperable datasets. The residuals of 

genuine match scores generated for this test did not satisfy the model adequacy 

tests for performing a parametric F-test. Figure 4.13 shows the normality plot of 

residuals for S1 dataset genuine match scores and its corresponding 

interoperable dataset genuine match scores. 

 

 

Figure 4.13 Normality plot of residuals of S1 genuine match scores 

The Kruskal-Wallis test for main effect of the sensor was found to be statistically 

significant, H (8) = 4009, p < 0.001 at * = 0.05. Follow up tests performed on 
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pairwise comparison of every interoperable dataset with the native dataset 

showed that the test was significant with p < 0.001 at * = 0.05. The same tests 

were performed one at a time for remaining native datasets. The normality plots 

for other datasets can be found in Appendix H. Table 4.22 shows the results of 

all tests. The p value for each test showed that the differences were statistically 

significant and the null hypothesis was rejected. Follow up tests were performed 

by comparing each pair of interoperable dataset with its corresponding native 

dataset. All pairwise comparisons were found to be statistically significant in their 

differences.  

Table 4.22 Results of overall test of similarity of genuine match scores 

Native Dataset  Kruskal Wallis Test p value 
S2 H (8) = 2209 p < 0.001 
S3 H (8) = 9716 p < 0.001 
S4 H (8) = 9476 p < 0.001 
S5 H (8) = 4128 p < 0.001 
S6 H (8) = 4684 p < 0.001 
S7 H (8) = 4111 p < 0.001 
S8 H (8) = 2369 p < 0.001 
S9 H (8) = 4885 p < 0.001 

 

A test of similarity was performed on raw match scores of imposter comparisons 

for S1 dataset and its corresponding interoperable datasets. The raw match 

scores generated for this test did not satisfy the model adequacy tests for 

performing a parametric F-test. The normality plot is shown in Figure 4.14. The 

Kruskal-Wallis test for main effect of the sensor was found to be statistically 

significant, H (8) = 80685, p < 0.001 at * = 0.05. Follow up tests were performed 

on pairwise comparison of every S1 interoperable dataset with the S1 native 

dataset showed that the test was statistically significant with p < 0.001 at 

 * = 0.05. The tests did not show any similarity of raw match scores of genuine 

comparisons between native and interoperable datasets.  
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Figure 4.14 Normality plot of residuals of S1 imposter match scores 

The same tests were performed one at a time for remaining native datasets. The 

normality plots for other datasets can be found in Appendix G. Table 4.23 shows 

the results of the tests. The p value for each test showed that the differences 

were statistically significant and the null hypothesis was rejected for each test. 

The pairwise comparison for each native dataset was also found to be 

statistically significant. The tests did not show a similarity of raw match scores of 

imposter comparisons between native and interoperable datasets.  

Table 4.23 Results of overall test of similarity of imposter match scores 

Native Dataset  Kruskal Wallis Test p value 
S2 H (8) = 71246 p < 0.001 
S3  H (8) = 99085 p < 0.001 
S4 H (8) = 112211 p < 0.001 
S5 H (8) = 122373 p < 0.001 
S6 H (8) = 163290 p < 0.001 
S7 H (8) = 161126 p < 0.001 
S8 H (8) = 240592 p < 0.001 
S9 H (8) =129842 p < 0.001 
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4.4. Impact of Quality on Interoperability 

This section describes the impact of removing low quality fingerprint images and 

recalculating the interoperable FNMR. The fingerprint images which had NFIQ 

quality scores of four and five were not used for the matching operation. NFIQ 

provides five categories of quality scores and experiments have been performed 

by NIST to predict the impact of NFIQ quality scores on matching operations. 

Image quality scores from Aware Quality Software provided scores on a scale of 

1-100 and would have required an arbitrary decision threshold for removal of 

fingerprint images. The NIST MINEX test report indicated that a reduction in 

interoperability FNMR would be observed since poorly performing images were 

not used (Grother et al., 2006). The analysis performed in this section examined 

the impact of removing low quality images on variance of interoperability FNMR. 

VeriFinger 5.0 template generator and matcher were used to perform the 

matching operations. Note that dataset S8 was not included in this test since 

there was no impact of changing the fixed FMR operational points on the 

interoperable FNMR and the average quality of the fingerprint images from S8 

was not the worst of all the native datasets. Section 4.7 analyzes the potential 

factors which affected the interoperable FNMR for S8. Table 4.24 shows the 

number of genuine comparisons performed on full datasets and Table 4.25 

shows the number of genuine comparisons performed on datasets with 

fingerprint images of NFIQ scores of less than four.  
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Table 4.24 Number of comparisons in full datasets 

 TEST 
  S1 S2 S3 S4 S5 S6 S7 S9 
 

E 
N 
R 
O 
L 
L 

S1 1698 1677 1677 1689 1657 1695 1698 1675 
S2 1677 1683 1647 1665 1629 1668 1311 1653 
S3 1679 1650 1666 1671 1634 1533 1674 1649 
S4 1686 1665 1671 1692 1647 1683 1692 1665 
S5 1652 1623 1632 1644 1655 1650 1653 1628 
S6 1701 1668 1536 1683 1653 1701 1692 1671 
S7 1695 1668 1674 1692 1656 1692 1701 1674 
S9 1671 1650 1647 1665 1631 1668 1674 1680 
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Table 4.25 Number of comparisons for datasets with images of NFIQ < 4 

 TEST 
  S1 S2 S3 S4 S5 S6 S7 S9 
 

E 
N 
R 
O 
L 
L 

S1 1655 1636 1652 1659 1623 1668 1668 1647 
S2 1639 1660 1626 1635 1599 1644 1293 1635 
S3 1628 1595 1624 1620 1593 1500 1633 1611 
S4 1645 1616 1635 1650 1612 1653 1653 1632 
S5 1626 1590 1620 1617 1627 1635 1635 1614 
S6 1651 1618 1504 1647 1620 1648 1662 1641 
S7 1654 1621 1643 1651 1626 1666 1667 1644 
S9 1667 1644 1647 1662 1626 1665 1671 1660 
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Table 4.26 FNMR at FMR 0.1% (in percentage values) 

 TEST 
  S1 S2 S3 S4 S5 S6 S7 S9 
 

E 
N 
R 
O 
L 
L 

S1 0.001 0.050 0.038 0.033 0.038 0.267 0.097 0.028 
S2 0.055 0.046 0.057 0.060 0.098 0.150 0.098 0.051 
S3 0.065 0.033 0 0.008 0.006 0.022 0.007 0.002 
S4 0.037 0.036 0.007 0.001 0.01 0.014 0.011 0.007 
S5 0.046 0.066 0.005 0.006 0.004 0.040 0.015 0.003 
S6 0.306 0.116 0.019 0.011 0.032 0 0.012 0.012 
S7 0.119 0.084 0.007 0.007 0.012 0.019 0.004 0.007 
S9 0.025 0.026 0 0.007 0.004 0.013 0.007 0.001 

125 



 

 

125 

Table 4.26 shows the interoperability FNMR matrix for the reduced datasets at 

fixed FMR of 0.1%. Note that the interoperable FNMR for {S1,S6} increased to 

0.267% compared to the full dataset interoperability FNMR of 0.25%. S1 dataset 

was collected using a thermal swipe sensor and S6 dataset was collected using 

an optical touch sensor. This is interesting since all the other FNMR reduced 

compared to FNMR calculated for full datasets.  

 
The tests performed in Section 4.4.3 were repeated on interoperable fingerprint 

datasets which contained fingerprint images with NFIQ score of one, two or 

three. Table 4.27 shows the results for overall test of proportions performed on 

each native dataset. All the tests were found to be significant in their differences 

at * = 0.05.  

Table 4.27 Results of overall test of proportions 

Native Dataset  !2 Statistic p value 
S1 )2 (8, N =14793 ) = 9231.49 p < 0.001 
S2 )2 (8, N =14039 ) = 8233.23 p < 0.001 
S3 )2 (8, N =14356 ) = 12297.23 p < 0.001 
S4 )2 (8, N =14666 ) = 12755.65 p < 0.001 
S5 )2 (8, N =14543 ) = 11923.89 p < 0.001 
S6 )2 (8, N =14569 ) = 9819.06 p < 0.001 
S7 )2 (8, N =14753 ) = 11380.38 p < 0.001 
S9 )2 (8, N =14847 ) = 13461.69 p < 0.001 

 

The results from pairwise comparisons are shown in Table 4.28. The 

recalculated pairwise comparisons showed that the test of proportions for 

{S3,S7} dataset did not show any statistically significant difference while in 

Section 4.4.3 the test of proportion for the datasets showed a statistically 

significant difference. S3 and S7 both collected using optical touch sensors. This 

test indicated that removing the low quality images reduced the difference of 

variance of FNMR between these datasets.  
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The recalculated results for {S6,S4}, {S6,S7}, and {S6,S9} datasets showed a 

statistically significant difference. The results from Section 4.4.3 of the same test 

showed no statistically significant difference between the native and 

interoperable datasets. This result was interesting as it indicated that difference 

of variance of FNMR increased for these interoperable datasets when the lowest 

NFIQ score images were removed. It should also be noted that S6, S4, and S7 

were all optical touch sensors. Removal of low quality images did not have a 

consistent effect on FNMR of interoperable datasets which were all collected 

using optical touch sensors. 

 

The rows in Table 4.28 indicate the native sensor dataset and each row indicates 

the results of the pairwise comparison with remaining sensor datasets with the 

native dataset.  
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Table 4.28 Results of pairwise test of proportions 

Native 
Sensor 

 Pairwise Sensor for Comparison 

  S1 S2 S3 S4 S5 S6 S7 S9 
S1  <.001 <.001 <.001 <.001 <.001 <.001 <.001 
S2 >.05  >.05 >.05 <.001 <.001 <.001 >.05 
S3 <.001 <.001  >.05 >.05 <.001 >.05 >.05 
S4 <.001 <.001 >.05  >.05 <.001 >.05 >.05 

Fujtisu <.001 <.001 >.05 >.05  <.001 >.05 >.05 
S6 <.001 <.001 <.001 <.001 <.001  <.001 <.001 
S7 <.001 <.001 >.05 >.05 >.05 >.05  >.05 
S9 <.001 <.001 >.05 >.05 >.05 <.001 >.05  
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4.5. Acquisition and Interaction Level Interoperability  

A follow up evaluation of interoperability was performed by grouping the datasets 

into three categories: datasets collected using swipe interaction type sensors, 

datasets collected using optical touch type sensors, and datasets collected using 

capacitive touch type sensors. The evaluation of different groups allowed for 

examination of interoperability at the acquisition and interaction level, not the 

sensor level. S1 and S2 were placed in the Swipe group. S3, S4, S6 and S7 

were placed in the Optical Touch group. S5 and S9 were placed in the Capacitive 

Touch group. S8 dataset was excluded from this analysis as it showed an 

extremely high interoperability FNMR with the rest of the datasets (Table 4.15). 

VeriFinger 5.0 was used to generate the interoperability FNMR matrix at fixed 

FMR of 0.1%. 

Table 4.29 FNMR at FMR 0.1% (in percentage values) 

  TEST 
  Swipe Optical Touch Capacitive Touch 

E 
N 
R 
O 
L 
L 

Swipe 4.81 11.75 6.58 
 

Optical Touch 11.93 1.53 1.89 
 

Capacitive Touch 4.76 1.47 0.45 

 
The {Capacitive Touch, Optical Touch} interoperable dataset showed the lowest 

interoperable FNMR indicating a high level of interoperability between optical 

touch and capacitive touch technologies. The {Capacitive Touch, Swipe} 

interoperable dataset had a lower FNMR than the Swipe native dataset which 

indicated that the interoperable dataset performed better than the native dataset. 

The {Swipe, Optical Touch} dataset had the highest FNMR and indicated the 

lowest degree of interoperability. The results showed that Capacitive Touch 

dataset had the lowest interoperable FNMR compared to Optical Touch and 
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Swipe interoperable datasets. The interoperable datasets generated with S9 

dataset showed a high level of similarity of FNMR with the other native datasets. 

Since S9 was part of the Capacitive Touch group it showed a better interoperable 

FNMR with other groups. In combination with the sensor level interoperability 

analysis, these results show the effect of interoperability at the acquisition and 

interaction level.  

4.6. Investigative Analysis 

This section analyzed the impact of difference in quality scores, ridge bifurcation 

count and ridge ending count on the match scores, and the results were grouped 

by acquisition technology. The matching results of interoperable datasets with S8 

were not used for this analysis since previous analysis did not indicate quality or 

minutiae count being responsible for the extremely high FNMR. A correlation 

matrix was generated for examining the relation between match score of a pair of 

fingerprint images, the difference in quality scores for the pair of fingerprint 

images, the difference in ridge bifurcation count of the pair of images, and the 

difference in ridge ending count of the pair of images (Table 4.30). 

Table 4.30 Correlation matrix of match score, quality score difference, ridge 
bifurcation count difference, ridge ending count difference 

 Match 

Score 

Quality Score 

Difference 

Ridge Bifurcation 

Count Difference 

Quality Score 

Difference 

0.16   

Ridge Bifurcation 

Count Difference 

-0.15 0.40  

Ridge Ending 

Count Difference 

0.11 0.52 0.32 
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A scatter plot of difference in Aware quality scores between the pair of images 

and the match scores was generated. The match scores were the raw match 

scores generated by VeriFinger 5.0 for genuine comparisons of native and 

interoperable datasets. The scatter plot is grouped by the acquisition technology 

used to capture the two fingerprint images that were matched. A higher 

difference in quality scores was related to a lower match score. The Same Type 

and Optical-Capacitive groupings showed a relatively high match score with high 

difference in match scores. The grouping of data points showed that Thermal-

Capacitive had relatively lower match scores compared to Optical –Capacitive 

and Same Type groupings. The Thermal-Capacitive and Optical-Thermal 

groupings did not show any specific relation between difference in quality scores 

and match scores, which indicated that difference in quality scores and its 

relation to match scores was impacted by the acquisition technologies.  

 

 

Figure 4.15 Scatter plot of VeriFinger 5.0 Match Score vs. Difference in Quality 

Scores 
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A scatter plot of match score vs. difference in ridge bifurcation count was 

generated and grouped by acquisition technologies used to capture the pair of 

fingerprints that were matched. A lower difference in ridge bifurcation count 

indicated that a similar number of ridge bifurcation points were detected in the 

two fingerprints being compared. The scatter plot showed that difference 

between ridge bifurcation count and the match score showed a negative relation 

for Same Type and Optical-Capacitive groupings. The difference in ridge 

bifurcation count and match score did not show a specific relation for the Optical-

Thermal and Thermal-Capacitive groupings.  

 

 

Figure 4.16 Scatter plot of VeriFinger 5.0 Match Score vs. Difference in Ridge 

Bifurcation Count 

A scatter plot of match score vs. difference in ridge ending count was generated 

and grouped by acquisition technologies used to capture the pair of fingerprints 

that were matched.  A lower difference in ridge ending count indicated that a 

similar number of ridge ending points were detected in the two fingerprints being 
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compared. A similar relation to difference in ridge bifurcation count was observed 

in this scatter plot. The difference in ridge ending count and match score did not 

show a specific relation for Thermal –Capacitive and Optical-Thermal groupings. 

The Same Type and Optical –Capacitive groupings showed a stronger relation 

between the two variables.  

 

Figure 4.17 Scatter plot of VeriFinger 5.0 Match Score vs. Difference in Ridge 

Ending  

The three scatter plots showed that images from thermal sensor when compared 

to optical and capacitive sensors did not follow the relation observed for the 

fingerprint images from the other groups. This makes prediction of interoperability 

between thermal and other types of sensors harder compared to interoperability 

between capacitive and optical sensors. These results also indicated a need to 

perform further analysis on interoperability match scores for fingerprint images 

collected from thermal sensors.  
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4.7. Fingerprint Image Transformation 

 

It was observed that fingerprint images of native S8 dataset had FNMR very 

similar to other native datasets, but its interoperable dataset had lowest FNMR of 

99.63%. Fingerprint for S8 dataset were collected using a capacitive swipe 

sensor. The image quality scores for S8 dataset did not show an extreme 

deviation from image quality scores of other datasets and the same was 

observed for minutiae count. The consistency of placement measure in Section 

4.4.1.1 also did not show a deviation from other interoperable datasets. These 

factors indicated that the even though similar minutiae were being detected 

between images of S8 dataset and other datasets, the placement of minutiae in 

the fingerprint images were different enough for the matcher to incorrectly reject 

a genuine comparison. Further evaluation of the raw captured images showed 

that distance between ridge lines for S8 dataset images was shorter compared to 

all other fingerprint datasets. Figure 4.18 shows a skeletonized fingerprint image 

of the same finger from dataset S3 and S8. S3 was collected using an optical 

touch sensor. 
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Figure 4.18 Skeletonized fingerprint image from S8(left) and S3(right) 

A ridge spacing profile for each image was created using the IMPROFILE image 

processing method in MATLABTM. The ridge spacing profile was created by 

traversing a distance of 100 pixels starting from the core and moving along the y-

axis one pixel at a time. The IMPROFILE method computes the intensity values 

along a traversal line in an image. The 100 pixel distance was chosen as it would 

allow the IMPROFILE method to intersect sufficient ridge lines to get an 

understanding of the distance between successive ridge lines. Figure 4.19 shows 

the traversal path.  
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Figure 4.19 Traversal path for IMPROFILE 

Figure 4.20 shows output from the IMPROFILE procedure for a single image 

from S8 dataset, where a downward spike in the graph indicated the intersection 

of the traversal route with a ridge line. Figure 4.21 shows output from the 

IMPROFILE procedure for a single image from S3 dataset. Both images from S3 

and S8 dataset were of the same finger. Comparison of the two graphs indicated 

that distance between successive ridges for S3 image was significantly larger 

than distance between successive ridges for S8 image. In order to make the 

distance between successive ridges more consistent between the two images, all 

images for S8 dataset were transformed using 2-D affine spatial transformation 

process. The transformation parameters included scaling along the x-axis and y-

axis. Figure 4.22 shows the image after transformation. It should be noted that 

the scaling parameters were approximated using only one pair of image, and 

then applied to all the images of S8 dataset. 
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Figure 4.20 IMPROFILE output for S8 dataset image 

 

Figure 4.21 IMPROFILE output for S3 dataset image 
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Figure 4.22 Fingerprint image after transformation 

The transformed dataset was relabeled to S8’. Using images from S8’, native and 

interoperable FNMR were recalculated using VeriFinger 5.0. Table 4.31 shows 

the FNMR at fixed FMR of 0.1%. 
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Table 4.31 Recalculated FNMR (FMR = 0.1%) 

 S1 S2 S3 S4 S5 S6 S7 S8’ S9 

S8’ 11.81 8.84 6.43 6.70 12.16 21.68 9.94 0.65 6.57 

Table 4.32 FNMR for S3 dataset (FMR=0.1%)  

 S1 S2 S3 S4 S5 S6 S7 S9 

S3 8.57 4.78 0.24 1.07 1.28 2.73 1.79 0.54 
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The FNMR for interoperable S8’ datasets showed a significant reduction, and 

also a decrease in native dataset FNMR. It is worth noting that interoperable 

FNMR of datasets {S8’,S4} and {S8’,S9} were comparable with FNMR of 

{S8’,S3}.  Comparing these results with FNMR in Table 4.32, which were have 

been restated from Table 4.15, it was observed that interoperable FNMR for S8’ 

were lower for datasets which had a lower interoperable FNMR with S3, 

specifically {S3,S4} and {S3,S9}. This indicated that by transforming images of 

S8 dataset to be more similar to S3 dataset, there was an associated effect of 

reducing interoperable FNMR of {S8’,S4} and {S8’,S9}.    

 

The datasets {S1,S6} and {S6,S1} also exhibited relatively high interoperable 

FNMR of 31.03% and 33.86% respectively, using VeriFinger 5.0 matcher. The 

ridge spacing profile was computed for a single fingerprint image from S1 and S6 

dataset along the x-axis and the y-axis. Figure 4.23 shows the ridge spacing 

profile along the x-axis for S1 and S6, and Figure 4.24 shows the ridge spacing 

profile along the y-axis for S1 and S6.  

 

  

Figure 4.23 Ridge spacing profile along x-axis. S1 image on left and S6 image on 

right 
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Figure 4.24 Ridge spacing profile along y-axis. S1 mage on left and S6 image on 

right 

Figure 4.23 showed that S1 ridge spacing profile along the x-axis had a larger 

distance between successive ridges compared to ridge spacing profile for S6. An 

opposite effect was observed in the ridge spacing profile along the y-axis for the 

S1 and S6 dataset images. S1 was collected using a thermal swipe sensor and 

S6 was collected using an optical touch sensor. The difference in interaction 

between the two sensors was a potential factor in the difference in ridge spacing 

between the two images. The swipe action introduced an elastic deformation of 

the finger skin which lead to an increased space between ridges and contributed 

to a higher FNMR for {S1, S6} and {S6, S1} datasets.  

 

Reliability of the image transformation method was entirely dependent on the 

ability to detect a core in both the fingerprint images. This was necessary as a 

common anchor point for the two fingerprint images was required as the starting 

point of the IMPROFILE method. This method would be efficient only if used in a 

1:1 matching, or verification mode. The application of the transformation 

methodology described in this section was performed at a sensor level since only 

a pair of images was used to approximate the transformation scaling parameters 

for the entire dataset collected using the specific sensors. This method can be 
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modified where a ridge spacing profile is created every time a pair of images 

need to be matched, and then generate the scaling parameters based on the 

ridge spacing profile. Such a method would make it a sensor agnostic method of 

transforming images and would have wider applicability. The results in this 

section provided justification for further development and analysis of transforming 

images using the ridge spacing profile.  
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

This dissertation has described the design, formulation and application of a 

statistical analysis framework for testing interoperability of fingerprint sensors and 

its effect on system performance. This chapter reviews the work presented in this 

dissertation, highlights the contributions made by this work and provides 

recommendations for future work. 

5.1. Conclusions 

! Minutiae count similarity of fingerprint images collected from different 

sensors did not show a relation to a specific acquisition technology or 

interaction type. There were no common pairwise tests which were 

statistically similar for minutiae count datasets extracted using Aware, 

MINDTCT, and VeriFinger 5.0. 

! Fingerprint images collected from optical touch sensors showed a higher 

level of similarity in quality scores with fingerprints collected from other 

optical touch sensors. 

! Performance of minutiae based matchers was significantly affected if the 

pair of fingerprints being matched were captured from different sensors.  

! Similarity of minutiae count and image quality scores did not have an 

impact on similarity of FNMR for native and interoperable datasets.  

! Higher minutiae count for a particular dataset did not have an impact on 

FNMR of its corresponding interoperable datasets.  
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! Performance of interoperable datasets cannot be predicted by separately 

analyzing performance of native datasets.  

! Test of similarity of raw match scores between native and interoperable 

datasets did not provide remarkable results for the raw match scores 

provided by VeriFinger 5.0 and BOZORTH3 matchers. This is not a 

deficiency of the test, but indicated a need for transforming the scores 

over a range which provides  a normal distribution.  

! Interoperable datasets which had a higher percentage of pairs of 

fingerprint images in which a core was detected had a positive relation 

with a lower FNMR, with the only exception of {S1,S6} and {S6,S1} 

interoperable datasets. Consistent interaction of the finger with a sensor is 

an important factor in improving performance, and it becomes even more 

important when the fingerprints are captured from different sensors. A 

simple metric for consistent placement is required for collecting 

fingerprints from different sensors, and this dissertation showed that core 

overlap provides a metric which has an impact on FNMR of interoperable 

datasets. 

! Removing low quality images from interoperable datasets did not lead to a 

reduction in statistical variance of FNMR for interoperable datasets, 

although the absolute FNMR was reduced for all native and interoperable 

datasets.  

! Consistency of ridge spacing between interoperable datasets was a very 

important factor in reducing FNMR of interoperable datasets.  

! The Capacitive Touch sensor group showed the lowest interoperable 

FNMR with Swipe and Optical Touch sensor groups.  

! A negative relation between match scores and ridge ending count and 

ridge bifurcation count was observed for fingerprints collected from the 

same type of sensors and optical and capacitive sensors. Matching of 

fingerprints collected from thermal sensor and optical sensors, and 
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thermal sensor and capacitive sensors did not show a relation between 

those variables. 

5.2. Contributions 

! Dataset of fingerprints from 190 individuals on nine different fingerprint 

sensors in a controlled environment which can be used in testing 

interoperability of feature extractors and feature matchers. 

! Collection of finger skin characteristics and pressure placed on the sensor. 

! Formulation of a framework for statistically testing interoperability of 

fingerprint sensors in terms of FNMR.  

! Application of analysis framework to data collected in a controlled 

experiment.  

! Enhanced enrollment procedures for reducing FNMR of interoperable 

datasets. 

! Ability to statistically test similarity of FNMR of native dataset with 

interoperable dataset. 

! A sensor agnostic transformation process to reduce FNMR of 

interoperable datasets.  

5.3. Future Work 

Since this dissertation limited itself to a verification scenario, performance was 

solely measured in terms of FNMR. The dataset collected as part of this 

dissertation can be used to analyze False Match Rates (FMR) if an identification 

scenario is of interest. The statistical analysis framework can be modified to test 

for FMR of interoperable datasets, and it would be interesting to understand the 

impact of interoperability on FMR of fingerprint datasets collected from multiple 

sensors. 
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The impact of removing low quality images from interoperable datasets did not 

lead to a higher level of similarity in FNMR between interoperable datasets and 

native datasets. The level of similarity was used as a measure of variance 

between interoperable and native datasets FNMR. The results indicated that 

further work is required to investigate the impact of quality on the variance of 

interoperable datasets performance. The relation between impact of quality and 

the types of sensors which were used to create the interoperable datasets needs 

to be analyzed more closely. The FBI has created image quality specifications to 

measure the fidelity of the fingerprint sensor. The impact of the different 

components of the image quality specifications on the interoperable error rates 

would be a relevant research.  

 

The relationships between image quality, temperature, moisture content, oiliness 

and elasticity were too complex for fitting linear models. Although separate 

analysis of the relations between quality score and finger skin characteristics 

were performed, analysis which examines these interactions together would be 

interesting. Higher order models or neural networks would be more appropriate 

to understand the relation between skin characteristics and image quality. 

Understanding the impact of the physiological skin factors on quality is important 

since improving quality can reduce FNMR of interoperable datasets.  

 

The dataset collected for this dissertation can be used for evaluating 

interoperability of sensors, feature extractors, and feature matchers as part of the 

same experiment. This dissertation did not analyze interoperability of feature 

extractors and feature matchers, and previous studies related to interoperability 

did not analyze the effect of interoperability of sensors. A combined analysis of 

fingerprint sensors, feature extractors and feature matchers would be beneficial. 

 

The image transformation model described in Section 4.7 indicated the need to 

make the spacing between ridgelines in the pair of fingerprint images more 
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consistent in order to reduce FNMR of interoperable datasets. The method 

described in this dissertation used a linear transformation to make the spacing 

between ridges more uniform. This is a simple model which works if distortion 

between the two fingerprint images is relatively consistent, but only differing in 

scale. This model can be extended to non linear transformation models by 

creating a ridge spacing profile along eight quadrants as shown in Figure 5.1. A 

corresponding set of points extracted along different directions of the fingerprint 

images can be used to generate transformation models where the distortion 

varies only in certain parts of the fingerprint image.  

 

 

Figure 5.1 Eight quadrant ridge spacing profile 

The distortion of fingerprint images is heavily affected by the type of sensor and 

the habituation of users with the sensor. Further work into transforming the image 

so that the distortion of fingerprint images would be reduced without having any 

a-priori knowledge about the fingerprint sensors would be of immense interest to 

the field of fingerprint recognition. Sensor agnostic transformation methods, even 

if limited in its capabilities, would significantly augment the current methodologies 

being investigated. 
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Appendix A.  

 

Figure A.1 Data Collection Protocol  
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Appendix B.  

 

List of questions to be answered by each participant: 

1. Age. 

2. Gender. 

3. Handedness. 

4. Occupation. 

5. Ethnicity. 

 

Data Collected before first interaction with the fingerprint sensors: 

1. Temperature in the lab. 

2. Outdoor temperature. 

 

Data Collected before interaction with a new fingerprint sensor: 

1. Moisture content of skin on finger surface. 

2. Oiliness of skin on finger surface. 

3. Elasticity of skin on finger surface. 

4. Temperature of skin on finger surface. 

 

Data Collected during every interaction with the fingerprint sensors: 

1. Peak pressure applied on the fingerprint sensor. 

2. Failure to acquire. 
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Appendix C.  

 

 
 

Figure C.1 Flowchart of fingerprint feature statistical analysis 
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Appendix D.  

 

 
Figure D.1 Physical layout of data collection area 
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Appendix E.  

 

 
Figure E.1 Normality plot of residuals of Aware Minutiae Count 

 
Figure E.2 Residuals vs. Fitted values of Aware Minutiae Count 
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Figure E.3 Time series plot of observations 

 
Figure E.4 Normality plot of residuals of NBIS Minutiae Count 
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Figure E.5 Residuals vs. Fitted values of NBIS Minutiae Count 

 
Figure E.6 Time series plot of observations 
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Appendix F.  

 

 

Figure F.1 Normality plot of residuals of Aware Quality Scores 
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Appendix G.  

 
Figure G.1 Normality plot of residuals of match scores from imposter 

comparisons with S1 dataset 

 
Figure G.2 Normality plot of residuals of match scores from imposter 

comparisons with S2 dataset 

 
Figure G.3 Normality plot of residuals of match scores from imposter 

comparisons with S3 dataset 
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Figure G.4 Normality plot of residuals of match scores from imposter 

comparisons with S4 dataset 

 
Figure G.5 Normality plot of residuals of match scores from imposter 

comparisons with S5 dataset 

 
Figure G.6 Normality plot of residuals of match scores from imposter 

comparisons with S6 dataset 
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Figure G.7 Normality plot of residuals of match scores from imposter 

comparisons with S7 dataset 

 
Figure G.8 Normality plot of residuals of match scores from imposter 

comparisons with S8 dataset 

 
Figure G.9 Normality plot of residuals of match scores from imposter 

comparisons with S9 dataset 
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Appendix H.  

 

Figure H.1 Normality plot of residuals of match scores from genuine  

comparisons with S1 dataset 

 

Figure H.2 Normality plot of residuals of match scores from genuine  

comparisons with S2 dataset 

 

Figure H.3 Normality plot of residuals of match scores from genuine  

comparisons with S3 dataset 
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Figure H.4 Normality plot of residuals of match scores from genuine  

comparisons with S4 dataset 

 

Figure H.5 Normality plot of residuals of match scores from genuine  

comparisons with S5 dataset 

 

Figure H.6 Normality plot of residuals of match scores from genuine  

comparisons with S6 dataset 
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Figure H.7 Normality plot of residuals of match scores from genuine  

comparisons with S7 dataset 

 

Figure H.8 Normality plot of residuals of match scores from genuine  

comparisons with S8 dataset 

 

Figure H.9 Normality plot of residuals of match scores from genuine  

comparisons with S9 dataset 
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Appendix I.  

One hundred and ninety participants completed the survey and the fingerprint 

collection activity. Fifty nine participants were females and 131 participants were 

males. Two categories of labor distribution were created based on subjective 

assessment of the amount of wear and tear an individual puts on their finger skin. 

The two categories were manual laborer and office worker. Seventeen 

participants placed themselves in the manual laborer group and 173 participants 

placed themselves in the office worker group. Three age groups were created to 

categorize the participants: less than 30 years, between 30 to 50 years, and 50 

years and older. One hundred and fifty six participants were less than 30 years 

old, 23 participants were between 30 and 50 years old, and 11 participants were 

50 years and older. One hundred and sixty participants were right handed, 23 

participants were left handed, and three participants were ambidextrous. 

Ambidextrous participants were reassigned according to the dominant hand used 

for writing. Six categories for ethnicity were used. One hundred and thirty three 

participants identified themselves as Caucasian, eight as Black, one as American 

Indian, 34 as Asian, 11 as Hispanic, and three participants as the Other category. 

Table I.1 provides a summary of the results 
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Table I.1 Results of Survey 

Total 190 

Gender Male Female 

131 59 

Occupation Manual Laborer Office Worker 

17 173 

Age Groups < 30 
years 

30-50 years > 50 years 

156 23 11 

Handedness Right Left  Ambidextrous 

164 23 3 

Ethnicity Caucasian Black Hispanic American 
Indian 

Asian Other 

133 8 11 1 34 3 
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Appendix J.  

A correlation matrix was generated for examining the relation between quality 

score of the fingerprint image, temperature, moisture content, oiliness and 

elasticity of finger skin (Table J.1). The quality score was generated using Aware 

quality software. The cells with the Pearson correlation coefficient are related to 

the elements indicated in the corresponding row and column headers. 

Table J.1 Correlation matrix of Quality Score, Temperature, Moisture Content, 
Oiliness, Elasticity 

 Quality 

Score 

Temperature Moisture 

Content 

Oiliness 

Temperature  -0.006    

Moisture Content 0.006 0.009   

Oiliness 0.024 0.056 0.10  

Elasticity -0.20 0.051 0.09 -0.018 

 

A scatter plot of quality score vs. temperature, quality score vs. moisture content, 

quality score vs. oiliness and quality score vs. elasticity was generated. The data 

points were grouped according to the type of acquisition technology used to 

capture the fingerprint images. The scatter plot of quality score vs. moisture did 

not show a specific relation but the biggest cluster of data points with the higher 

quality scores was observed between 20 and 50 units on the moisture scale 

(Figure J.2). The scatter plot of quality score vs. oiliness showed a negative 

relation between quality score and oiliness units (Figure J.3). The scatter plot of 

quality score vs. elasticity showed a positive relation between the quality score 

and elasticity units (Figure J.4). These scatter plots indicated a difference in 

relation between the finger skin characteristics and the quality scores for images 

captured from different acquisition technologies. These scatter plots indicate that 
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a framework can be created to improve quality scores based on the finger skin 

characteristics. 

 

 Figure J.1  Scatter plot of Aware Quality Score vs. Temperature 

 

Figure J.2 Scatter plot of Aware Quality Score vs. Moisture 
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Figure J.3 Scatter plot of Aware Quality Score vs. Oiliness 

 

Figure J.4 Scatter plot of Aware Quality Score vs. Elasticity 

 

 



 

 

172 

VITA 

 
SHIMON K. MODI 

 
EDUCATION 
 
 Doctorate of Philosophy, Technology, Expected August 2008. 
 Specialization in Computational Sciences & Engineering 

Purdue University. 
Dissertation: Fingerprint Sensor Interoperability: Analysis of Fingerprint 
Sensor Interoperability on System Performance 

 Advisor: Dr. Stephen J. Elliott 
  
 Master of Science, Technology, May 2005. 
 Specialization in Information Security  

Purdue University. 
 Thesis: Keystroke Dynamics Verification Using Spontaneous Password 
 Advisor: Dr. Stephen J. Elliott 
 
 Bachelor of Science, Computer Science, May 2003. 
 Dual Minors Management and Economics. 
 Purdue University 
 
HONORS/AFFILIATIONS 
  
 Ross Fellowship for Doctoral Studies 2005-present 
 Semester Honors Spring ’02, Fall ’02, Spring ’03 
 
STANDARDS INVOLVEMENT 
 

! ISO/IEC JTC1 SC-37 WG3 Data Interchange Formats 
! INCITS M1: Biometrics 
! Technical Editor for INCITS 1829-D: BioAPI Java Interfaces 
! INCITS M1.4 Ad-Hoc Group on Biometrics & E-Authentication 

 
 
 



 

 

173 

RESEARCH INTERESTS 
 

! Statistical Analysis and Testing of Biometrics Systems 
! Biometric sample quality assessment 
! Electronic authentication using biometrics, management of 

federated identity systems, and integration of biometrics and 
cryptography 

 
 
INDUSTRY EXPERIENCE 
  

US Biometrics – Biometrics Researcher (May 2007 - August 2007) 
Designed and analyzed performance tests for biometric system 
interoperability. The tests focused on integrating a different accquisition 
subsytem into the existing security infrastructure. Also responsible for 
requirements analysis for creating standards compliant physical access 
and logical access biometrics system. Standards included FIPS-201, 
BioAPI, and INCITS 378-2004. 

 
RESEARCH EXEPERIENCE 

 
Testing of Fingerprint Recognition Systems 
Involved in diverse range of projects aimed at understanding impact of 
image quality, impact of age, impact of environmental conditions, and 
impact of finger preference on matching performance. 
 
Biometrics and Cryptography 
This is a collaborative research project with Center of Education and 
Research in Information Assurance and Security (CERIAS) to incorporate 
biometrics in cryptographic protocols like zero knowledge proofs.  
 
Keystroke Dynamics Verification Using Spontaneous Password  
Designed and tested multiple keystroke dynamics verification algorithms 
for an authentication mechanism that used a spontaneously generated 
password for verification instead of a pre-known, static password. 
 
Biometrics in Federated Architecture Systems  
Joint research with Center of Education and Research in Information 
Assurance and Security (CERIAS) examining methodologies to 
incorporate biometrics into federated architecture system, and other 
identity management system architectures.              
 
 
 
 



 

 

174 

Equine Iris Recognition – Iristrac™ 
This  research examined the feasibility of using equine eye features for 
recognition. Extracting equine eye features, development of pattern 
matching algorithms, and feasibility testing were the main research goals.  
 
Security Analysis of Different Biometrics Storage/Matching 
Architectures– NIST    
Created a technical report for National Institute of Standards in 
Technology (NIST) which examined architectures and interoperability of 
current biometric systems. This research also analyzed the current 
methodologies for revocation of a compromised biometric identifier. 

 
PUBLICATIONS 

 
Chapter Co-Author:  

! Elliott, S. J., Kukula, E., & Modi, S. (2007). Issues Involving the 
Human Biometric Sensor Interface. In S. Yanushkevich, P. Wang & 
S. Srihari (Eds.), Image Pattern Recognition Synthesis and 
Analysis in Biometrics (Vol. 67, pp. 400): World Scientific 
Publishers. 

 
Co-Author for the following locally published books: 

! Introduction to Biometric Technology. 
! Securing the Manufacturing Environment Using Biometric 
Technologies. 

 
Conference Proceedings 

! Modi, S. K., Elliott, S. J., Kim, H., & Kukula, E. P. (2008). Statistical 
Analysis Framework for Biometric System Interoperability Testing. 
Paper presented at the ICITA 2008, Cairns, Australia. 

! Frick, M. D., Modi, S. K., Elliott, S. J., & Kukula, E. P. (2008). 
Impact of Gender on Fingerprint Recognition Systems. Paper 
presented at the ICITA 2008, Cairns, Australia. 

! Bhargav-Spantzel, A., Modi, S., Bertino, E., Elliott, S. J., Young, M., 
& Squicciarini, A. C. (2007). Privacy Preserving Multi-Factor 
Authentication with Biometrics. Journal of Computer Science 

! Modi, S. K., Elliott, S. J., & Kim, H. (2007 ). Performance Analysis 
for Multi Sensor Fingerprint Recognition System. Paper presented 
at the ICISS 2007, New Delhi, India 

! Modi, S., Elliott, S. J., Kim, H., & Whetstone, J. (2007). Impact of 
Age Groups on Fingerprint Recognition Performance. Paper 
presented at the AutoID 2007, IEEE Workshop on Automatic 
Identification Advanced Technologies, Alghero, Italy. 



 

 

175 

! Modi, S. K., & Elliott, S. J. (2006). Impact of Image Quality on 
Performance: Comparison of Young and Elderly Fingerprints. 
Paper presented at the 6th International Conference on Recent 
Advances in Soft Computing (RASC), Canterbury, UK. 

! Modi, S. K., & Elliott, S. J. (2006). Graduate Course Development 
focusing on Security Issues for Professionals Working in the 
Manufacturing Industry. Paper presented at the World Congress on 
Computer Science, Engineering and Technology Education, 
Santos, Brazil. 

! Modi, S. K., & Elliott, S. J. (2006). Keystroke Dynamics Verification 
Using Spontaneously Generated Password. Paper presented at the 
40th IEEE International Carnahan Conferences Security 
Technology, Lexington, Kentucky. 

! Modi, S. K., & Elliott, S. J. (2005).  Securing the Manufacturing 
Environment using Biometrics.  Paper presented at the 39th Annual 
International Carnahan Conference on Security Technology 
(ICCST), Las Palmas de G. C., Spain 

 

 
 
 



 

 

 


	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Introduction
	Statement of Problem
	Significance of Problem
	Purpose of Study
	Definitions
	Sensor Related Distortions and Variations

	Assumptions
	Delimitations
	Limitations
	Summary

	REVIEW OF LITERATURE
	Introduction
	History of Biometrics
	Studies Related to Finger Anatomy and Ridge Structure
	Early Experiments with Fingerprint Identification: Criminalistics
	Galton’s Fingerprint Experiments
	Henry’s Fingerprint Experiments
	Fingerprint Recognition in South America, Europe

	Automated Fingerprint Recognition
	General Biometric Recognition System
	Fingerprint Recognition Model
	Fingerprint Acquisition Technologies
	Optical Sensors
	Solid State Capacitive Sensors
	Thermal Sensors

	Fingerprint Image Quality Assessment
	Types of Fingerprint Image Quality Assessment Algorithms
	Experiments Related to Image Quality Assessment

	Fingerprint Feature Extraction
	Experiments Related to Minutiae Extraction

	Fingerprint Matching
	Experiments Related to Minutiae Based Matching


	Large Scale Systems and Distributed Authentication Architectures
	Fingerprint System Interoperability Experiments

	Performance Metrics
	Receiver Operating Characteristic Curves
	Equal Error Rate
	Difference in Match and Non-Match Scores
	User Probabilities and Cost Functions
	Cumulative Match Curve


	METHODOLOGY
	Introduction
	Research Design

	Data Collection Methodology
	Participant Selection
	Timeline
	Data Collection Hardware & Software
	Fingerprint Sensors
	Fingerprint Sensor Maintenance
	Software or Sensor Malfunction
	Variables Measured during Data Collection
	Variables Controlled during Data Collection

	Data Processing Methodology
	Minutiae Count and Image Quality Processing
	Fingerprint Feature Extractor and Matcher

	Data Analysis Methodology
	Score Generation Methodology
	Analysis Techniques
	Basic fingerprint feature analysis
	Match Scores Analysis

	Impact of Image Quality on Interoperable Datasets
	Post Hoc Analysis

	Threats to Internal and External Validity
	Internal Validity
	External Validity

	Evaluation Classification
	Summary

	DATA ANALYSIS
	Failure to Enroll (FTE)
	Basic Fingerprint Feature Analysis
	Minutiae Count Analysis
	Image Quality Analysis

	Match Score Analysis
	VeriFinger 5.0 Interoperability Error Rates
	The interoperability FNMR matrices are shown in Table 4.14, and Table 4.15. The cells along the diagonal indicate enrollment and test fingerprint images from the same fingerprint sensor. The cells off the diagonal indicate fingerprint images from diff...
	Core Overlap

	NBIS Interoperability Error Rates
	Test of Proportions for VeriFinger 5.0 Match Scores
	Test of Proportions for BOZORTH3 Match Scores
	Test of Similarity of VeriFinger 5.0 Match Scores

	Impact of Quality on Interoperability
	Acquisition and Interaction Level Interoperability
	Investigative Analysis
	Fingerprint Image Transformation

	CONCLUSIONS AND RECOMMENDATIONS
	Conclusions
	Contributions
	Future Work

	LIST OF REFERENCES
	VITA

