Trust Evaluation of Data Provenance

Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

Abstract With the increased need of data sharing among multiple organizations
like government organizations, financial corporations, medical hospitals and aca-
demic institutions, it is critical to ensure data integrity so that effective decisions
can be made based on these data. An important component of any solution for as-
sessing data integrity is represented by techniques and tools to evaluate the trustwor-
thiness of data provenance. However, few efforts have been devoted to investigate
approaches for assessing how trusted the data are, based in turn on an assessment
of the data sources and intermediaries. To bridge this gap, we propose a data prove-
nance trust model. Our trust model takes into account various factors that may affect
the trustworthiness and, based on these factors, assigns trust scores to both data and
data providers. Such trust scores represent key information based on which data
users may decide whether to use the data and for which purposes.

1 Introduction

Today the need of sharing data within and across the organizations is more critical
than ever. The availability of comprehensive data makes it possible to extract more
accurate and complete knowledge and thus supports more informed decision mak-
ing. However reliance on data for decision making processes requires data to be of
good quality and trusted. We refer to such requirements as high-assurance data in-
tegrity. Without high-assurance integrity, information extracted from available data
cannot be trusted. While there has been some efforts to ensure confidentiality when

Chenyun Dai, Dan Lin, Elisa Bertino

Department of Computer Science, Purdue University

e-mail: {daic, lindan, bertino} @cs.purdue.edu

Murat Kantarcioglu

Department of Computer Science, The University of Texas at Dallas
e-mail: muratk@utdallas.edu

2 Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

sharing data, the problem of high-assurance data integrity has not been widely in-
vestigated. Previous approaches have either addressed the problem of protection
from data tampering, through the use of digital signature techniques, or the problem
of semantic integrity, that is, making sure that the data is consistent with respect
to some semantic assertions. However even though these techniques are important
components of any comprehensive solution to high-assurance data integrity, they
do not address the question on whether one can actually trust certain data. Those
techniques, for example, do not protect against data deception, according to which
a malicious party may provide on purpose some false data, or against the fact that a
party is unable, for various reasons, to provide good data. Techniques, like those de-
veloped in the area of data quality (e.g. [1]), may help; however they often require
the availability of good quality data sources against which one can compare the data
at hand and correct them.

It is clear that in order to address the problem of high-assurance data integrity
we need comprehensive solutions combining several different techniques. In partic-
ular, one important issue in determining data integrity is the trustworthiness of data
provenance. For example, a malicious source provider may announce that a small
company has successfully signed a big contract which is not true in reality. This
information is then passed to a stock analysis agent, based on which the agent in-
fers that the stock prize of that company will go up with high probability and send
this information to end users. If the data users, based on this information, decide
to acquire stocks of such company, they may end up with severe financial losses.
In contrast, the data users will have a big chance to avoid such a loss if they know
that the source provider is not very trustworthy. Though a lot of research has been
carried out for data provenance, they mainly focus on the collection and semantic
analysis of provenance information [2, 5, 4]. Little has been done with respect to the
trustworthiness of data provenance.

To evaluate the trustworthiness of data provenance, we need to answer questions
like “Where did the data come from? How trustworthy is the original data source?
Who handled the data? Are the data managers trustworthy?”” More specifically, for
example, if data X is from source A, how do we determine the trustworthiness of
source A. If X arrives at D via B and C, how to tell if X is accurate at D? Also if data
X now from D and data Y coming from E are merged by intermediate agent F', then
how do we determine the trustworthiness of the resulting data? To address these
challenges, we propose a data provenance trust model which estimates the level of
trustworthiness of both data and data providers by assigning trust scores to them.
Based on the trust scores, users can make their more informed decisions whether or
not to use the data.

To build such trust model, we take into account various aspects that may affect
the trustworthiness of the data. In particular, these aspects are data similarity, data
conflict, path similarity and data deduction. Similar data items are considered as
supports to one another, while conflicting data items compromise trustworthiness
of one another. Besides data similarity and data conflict, the way that the data was
collected is also an important factor when determining the trustworthiness of the
data. For example, if several independent sources provide the same data, such data

Trust Evaluation of Data Provenance 3

is most likely to be true. Data deduction measures the effect of the process (e.g. data
mining) on the data. Usually, the trustworthiness of the resulting data depends on
the trustworthiness of input data and the on the parties that process the data.

We also observe that a data is likely to be true if it is provided by trustworthy data
providers, and a data provider is trustworthy if most data it provides are true. Due
to such inter-dependency between data and data providers, we develop an iterative
procedure to compute the trust scores. To start the computation, each data provider
is first assigned an initial trust score which can be obtained by querying available
information about data providers. At each iteration, we compute the trustworthiness
of the data based on the combined effects of the aforementioned four aspects, and
recompute the trustworthiness of the data provider by using the trust scores of the
data it provides. When a stable stage is reached, that is, when the changes of trust
scores are negligible, the trust computation process stops.

In summary, this paper makes the following major contributions.

e We formulate the problem of evaluating data provenance in order to determine
the trustworthiness of data and data providers.

e We propose a data provenance trust model which defines the trustworthiness
of data and data providers. We models four key factors that influence the trust
scores.

e We develop algorithms to compute trust scores and our experimental results
demonstrate its efficiency.

The rest of the paper is organized as follows. Section 2 introduces some pre-
liminary definitions. Section 3 presents the proposed data provenance trust model
including the algorithms for trust score computation. Section 4 reports the exper-
imental results. Section 5 reviews related work. Finally, Section 6 concludes the
paper and outlines future research directions.

2 Preliminary Definitions

In this section, we first describe a scenario illustrating the problem of data prove-
nance, and then introduce several definitions used in our trust model.

Data provenance includes information about the process thr-ough which data
have been generated and the input and output data of these processes. In this paper,
we consider a common scenario (see Figure 1) in which there are multiple parties
characterized as data source providers, intermediate agents and data users. Each
party is identified by a unique identifier. Data source providers could be sensor nodes
or agents that continuously produce large volumes of data items. Those data items
describe the properties of certain entities or events. Intermediate agents could simply
pass the data items obtained from data source providers to data users, or make use
of the data items to generate knowledge items consumed by data users or other
intermediate agents. Data users are the final information consumers who expect to

4 Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

R B @ % &S &) s
QOO®OOE O

Intermediate
Nodes

End User

Fig.1 Example scenario

receive trustworthy data. For representation simplicity, we will refer to a data item
or a knowledge item as an item when the context is clear.

In this paper, we model an item (denoted as) as a row in a relational table and
each item has k attributes Ay, ..., A;. For an item r, its value of attribute A; (1 <i <k)
is denoted as r(A;). Table 1 gives an example of location reports that will be used
throughout the paper. As shown in the table, there are five items, each of which
has seven attributes (RID, SSN, Name, Gender, Age, Location, Date). RID is the
identifier of each item.

RID SSN Name |Gender|Age Location Date
1 | 479065188 |Chris| Male | 45 | West Lafayette |4pm 08/18/2007
2 | 47906518 |Chris| Male | 45 | West Lafayette |4pm 08/18/2007
3 | 479065188 | John | Male | 45 Los Angels |7pm 08/18/2007
4 |4790651887| Chris | Male | 45 Chicago 4pm 08/18/2007
5 479065188 |Chris| Male | 45 |Purdue University |[4pm 08/18/2007

Table 1 Data Representation

Due to the possible presence of malicious source providers and inaccurate knowl-
edge generated by intermediate agents, the information provided to the data users
could be wrong or misleading. Therefore, it would be very helpful that each piece of
information received by data users is rated by a trust score indicating the trustwor-
thiness level of the information. By using the trust score, data users can determine
whether they want to directly use the received information or need to further verify
the information. Moreover, each data source provider (intermediate agent) is also
assigned a trust score based on the amount of correct information it has provided. In

Trust Evaluation of Data Provenance 5

the following, we present formal definitions of the level of trustworthiness for data
items, knowledge items, data source providers and intermediate agents.

Definition 1. Trust of data items and knowledge items. The trustworthiness of a
data items f (or a knowledge item k), denoted as #(f) (or ¢(k)), is the probability of
f (or k) being correct.

Definition 2. Trust of source providers and intermediate agents. The trustwor-
thiness of a source provider s (or an intermediate agent a), denoted as ¢(s) (or ¢(a)),
is the expected trustworthiness of the data items provided by s (or a).

Different items about the same entity or event may be either supportive or con-
flicting. For example, one item in Table 1 claims that a person named “Chris” was in
Lafayette at 4pm on 08/18/2007, while another item claims that he was in Chicago
at that time. Obviously, at least one of the items is false. In another case, there is
another item claiming that “Chris” was at Purdue University at 4pm on 08/18/2007,
this item is more likely to report some true information provided that the first item
is true. This is because Purdue University is located at West Lafayette, and the two
items support each other. In order to represent such relationships, we introduce the
notions of data similarity and data conflict. Specifically, data similarity models how
the trust scores of similar items affect each other, while data conflict models how
the trust scores of conflicting items affect each other.

In addition to data similarity and conflict, the source providers and routing paths
also affect the trustworthiness of data items or knowledge items. Suppose each
source provider (or intermediate agent) has associated with a probability quanti-
fying the likelihood of reporting wrong information. The probability of multiple
source providers (or intermediate agent) reporting the same wrong information is
lower than that of a single source provider. Therefore, the less correlation among
source providers and routing paths of the same information, the more can to trust
this information. For example, the first two items in Table 1 reports the location in-
formation about the same person “Chris”, both of which claimed that “Chris” was
in West Lafayette at 4:00pm on 08/18/2007. If these two items came from different
source providers and were routed to the data user through different paths, they can
be considered as valuable supports to each other. If the two reports came from same
source providers or shared very similar routing paths, the importance of considering
these two reports as supportive of each other is reduced. Based on these observa-
tions, we introduce the notion of path similarity, which is the similarity between
two item generation paths as defined below.

Definition 3. Item Generation Path. For an item r, let S be its source provider, and
let Iy, ...,I, be m intermediate agents that processed r. The item generation path of
risasequence of “S— 1) — ... — I,,”.

In a network system, an item generation path (path for short) is corresponding
to a sequence of IP addresses of source providers and intermediate agents. In in-
formation processing organizations, a path is corresponding to a sequence of de-
partment names. Consider the first item in Table 1. Suppose the item was gen-
erated by a source provider named “airport” and passed by intermediate agents

6 Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

o A7

[ee
) =)
Chris is in \ /7 Chris is in
West Lafayette N Los Angeles

0

Chris is on an airplane from
West Lafayette to Los Angeles

Fig.2 An Example of Data Deduction

“police — station1” and “policestation2”, the path of this item is represented as
“airport — policestationl — policestation2”. In this paper, we assume that every
source provider and intermediate agent has a unique identifier.

Items can be merged or processed by intermediate agents. As an example, con-
sider the first and fourth items in Table 1. The first item states that “Chris” was in
West Lafayette at 4:00pm 08/18/2007 and the fourth one states that “Chris” was in
Los Angeles at 7:00pm 08/18/2007. Given these two inputs, an intermediate agent
produces the knowledge (see Figure 2) that from 4:00pm to 7:00pm 08/18/2007
“Chris” was on an airplane from West Lafayette to Los Angeles. The trustworthi-
ness of such generate knowledge items largely depends on the trustworthiness of
input data and the agent. To model this scenario, we introduce another concept,
namely data deduction.

3 A Trust Model for Data Provenance

In this section, we present our data provenance trust model, that we use for assigning
trust scores to items (i.e., data items or knowledge items), source providers and
intermediate agents. Trust scores range from O to 1; higher scores indicate higher
trust levels.

The trust score of an item is computed by taking into account four factors: (i)
data similarity; (ii) path similarity; (iii) data conflict; and (iv) data deduction. In
what follows, we present the details on the evaluation of these factors.

3.1 Data Similarity

Data similarity refers to the likeness of different items. Similar items are considered
as supportive to each other.

The challenge here is how to determine whether two items are similar. Consider
the example in table 1. We can observe that the first two items are very similar since
they both report the same locations of Chris at the same date. The only difference
between these two items is a possible typo error in the person’s SSN. In contrast,
the third item is different from the first two because the third one reports a totally
different location. Based on these observations, we propose to employ a clustering

Trust Evaluation of Data Provenance 7

algorithm to group items describing the same event. The purpose of the clustering
is to eliminate minor errors like typos in the example and hence we adopt a strict
threshold o. After clustering, we obtain sets of items and each set represents a single
event.

For each item r, the effect of data similarity on its trust score, denoted as sim(r),
is determined by the number of items in the same cluster and the size of the cluster.
We introduce the formal definition of sim(r) as follows.

sim(r) = e N (1)

In equation 1, N¢ is the number of records in cluster C and ¢c is the diameter of
cluster C. Here we define ¢c as the maximum distance between two records in the
cluster. It is worth noting that items in the same cluster have same data similarity
score.

We now proceed to elaborate the clustering procedure. The key of a clustering
algorithm is the distance function that measures the dissimilarities among data items
and the cost function which the clustering algorithm tries to minimize. The distance
functions are usually determined by the type of data being clustered, while the cost
function is defined by the specific objective of the clustering problem.

The data we consider in our problem contains different types of attributes. In
this paper, we focus on three commonly used types of attributes, namely numerical,
categorical and string. Note that it is very easy to extend our clustering method to
all kinds of attributes.

e Distance between two numerical values.
The numerical attribute values belong to integer, real, or date/time data types.
The distance between two numerical values v; and v, is defined based on their
difference as shown in equation 2, where v,v, € D . |D | is the domain size,
which is measured by the difference between the maximum and minimum values
in D defined by the system.

Oy(vi,v2) = [vi —2|/|D | (2)

e Distance between two categorical values.
For the categorical values, we not only consider the exact match of two values,
but also consider their semantics similarity. Let D be a categorical domain and
T be a taxonomy tree defined for D . Then distance between two categorical
values v; and v, (vi, v, € D)[3] is defined as follows.

Oc(vi,v2) =H(R(vi,v))/H(Tp) 3)

where R(v1,v;) is the subtree rooted at the lowest common ancestor of v; and v,
and H(Tp) represents the height of tree Ty, .

e Distance between two string values.
The distance between two string values is defined based on edit distance [6]. The
edit distance between two strings of characters is the number of operations (i.e.,

8 Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

change, insert, delete) required to transform one of them into the other. Given
two string values v and v,, their distance is defined as follows.

ds(vi,v2) = E(vi,n2)/|L | “4)

where |v;| and |v;]| is the number of characters in v; and v, respectively, L is
max{|vi],|v2|}, and E(v1,v7) is the edit distance between v; and v;.

Edit distance between two string values can be computed in O(|vy] - |v2|) time
using a dynamic programming algorithm. If v; and v, have a ’similar’ length,
about *n’, this complexity is O(n?).

Combining the distance functions of numerical, categorical and string values, we

are now able to define the distance between two items. Let A+ = {Ay,,...,An,,
Ac, s Ac,, Asys - Agj} be the attributes of table 7', where Ay, (i =1,...,m) is a
numerical attribute, Ac, (i = 1,...,n) is a categorical attribute and Ag, (i =1,...,) is

a string attribute. The distance between two items rq,r, € T (denoted as A(r,r2))
is defined as follows.

Alrr) = Y ov(nlAxlnlAv))+ Y dc(rilAc] r2(Ac))

i=1,...m i=1,...n

+) Os(nfAs]r[As]) S)

i=1.j

Thus, the diameter of a cluster ¢¢ is computed as follows.

be = maxy ec ryecN(r1,12) ©)

Next, we present how to cluster items by using our defined distance functions.
Our clustering algorithm cluster the items incrementally. First, we make the first
item a cluster and the representative of that cluster. Second, for each unvisited item,
we compare it with representatives of existed clusters; if we find a representative that
the distance between the item and this representative is within the threshold o and
also the lest, we add this item to the cluster the representative belongs to; if it cannot
find such a representative, we make this item a new cluster and the representative of
this cluster.

This procedure continues until all the items have been visited. Finally, we obtain
a set of clusters that the distance between the representative and the members of the
cluster is within threshold o.

Note that the value of o is very small as the goal of the clustering process is to
find most similar items. This makes it possible to randomly select an item as the
representative of each cluster.

3.2 Path Similarity

As we already mentioned, we know that a larger number of similar data cannot
guarantee a higher trust level of this set of data since path similarity affects the
importance of supports obtained from similar data. In what follows, we show how

Trust Evaluation of Data Provenance 9

to compute path similarity and how to integrate the impact of path similarity to the
computation of the overall trust score.

Given two items r; and rp, suppose their paths are P; and P, respectively. The
path similarity between P; and P; is defined as follows.

max{|Py|,|P>|} — Idist
max{|Pi|,|P>|}

pathsim(ry,ry) =

(7

where max{|Py|,|P|} is the maximum number of identifiers in the two sequences,
and Idist is the edit distance between two sequences. Note that unlike edit distance
of two strings which is based on the difference of characters, Idist is based on the
difference of identifiers. An example of path similarity computation is given below.

Example 1. Suppose P; =“purdueairport — policestationl — policestation2”
and P,="LosAngelsairport — policestationl — policestation2”. max{|P|,|P,|} =
max{3,3} = 3. Idist is 1, since only one difference exists between P; and P, which
is the first identifier, the airport name. Finally, pathsim is (3-1)/3=0.67.

Next, we modify equation (1) by taking into account the effect of path similar-
ity. The new sim(r) denoted as sim*(r) is defined as follows, where is the path
similarity factor ranging from O to 1.

sim*(r) = o Mot (8)

In particular, @, is computed as follows. First, we randomly select an item from
cluster C, denoted as r. We mark r and assign it a weighted value 1. Second, we
randomly select an unmarked item from C, denoted as '. We compute pathsim be-
tween r’ and all marked items, among which we keep the maximum pathsim(r’,r;).
Then we mark r’ and assign it a weighted value 1 — pathsim(r',r;). This procedure
is continued until all items are marked. Finally, we take the average of the weighted
values of all items in cluster C as w,.

3.3 Data Conflicts

Data conflict refers to inconsistent descriptions or information about the same entity
or event. A simple example of a data conflict is that the same person appears at
different locations during the same time period. It is obvious that data conflict has
a negative impact on the trustworthiness of items, and hence in the following we
discuss how to quantify its effect on the trust score computation.

There are various reasons for data conflicts, such as typos, false data items gen-
erated by malicious source providers, or misleading knowledge items generated by
intermediate agents. Data conflict largely depends on the knowledge domain of the
specific application. Therefore, our trust model allows users to define their own data
conflict functions according to their application-dependent requirements.

To determine if two items conflict with each other, data users first need to define
the exact meaning of conflict, which we call prior knowledge. Consider the example

10 Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

in Table 1 again. The attribute value of “SSN” in the first item is the same as that in
the third item, but the attribute value of “Name” in the first item is different from that
in the third one. This implies a data conflict, since we know that each single SSN
should correspond to only one individual. We can further infer that there should
be something wrong with either source providers (airports) or intermediate agents
(police stations) whichever handled these two items. The prior knowledge we use
here is that if | (“SSN”) = r(“SSN”) then ri(“Name”) = ry(“Name”). If any two
items cannot satisfy the condition stated by such prior knowledge, these two items
are considered conflicting with each other.

To facilitate automatic conflict detection, we propose a simple language for data
users to define prior knowledge. Prior knowledge with respect to a set of items
contains a set of prior knowledge items which are defined as follows.

Definition 4. Prior Knowledge Item. Let r; be any item that has a set of at-
tributes A, , and r, be any item that has a set of attributes A ,. Let A 1, A2C A, U
A,,, and let condition; and condition, be Boolean expressions on A and A,
respectively. A prior knowledge item with respect to r; and r, has the form of:
condition) = condition,. We say that r| and r; satisfy this prior knowledge item
iff when condition; is evaluated true on the attribute values of r and r,, condition,
are also evaluated true on the attribute values of | and 5.

Based on prior knowledge, we define the data conflict between two items.

Definition 5. Conflicting Items. Let r| and r, be two items, and PK|, ..., PK,, be
prior knowledge items. We say that r; conflicts with r; iff IPK;(1 <i <m), r; and
o cannot satisfy PK;.

We proceed now to discuss how to automatically detect data conflicts according
to the above definitions. Recall that items are clustered by using a strict threshold
and hence items in the same cluster are very similar to one another. By leverag-
ing this property, we do not need to compare all items to find out the conflicting
pairs. Instead, we only check the representative of each cluster. Suppose that the
representatives of two clusters C; and C; conflict with each other. The data conflict
score of one cluster against another cluster is determined by the distance between
two clusters and the number of items in the second cluster taking into account path
similarity. In particular, we have the following equation of data conflict.

N N
cong, (C,C) = e MC1CINey o

where N, is the number of items in cluster C», d(Cy,C») is the distance between
two clusters and w,, is the path similarity factor.

3.4 Data Deduction

The trustworthiness of a knowledge item also depends on the trustworthiness of in-
formation used to generate it and the trustworthiness of parties that handle it. Gener-
ally speaking, if the source information or the responsible party is highly trusted, the

Trust Evaluation of Data Provenance 11

resulting data will also be highly trusted. We define the function of data deduction
as follows.

Definition 6. Data Deduction. Let a be an intermediate agent, and let k be a knowl-
edge item generated by a based on items ry, ..., r,. The data deduction of k, repre-
sented as a function Dedy (t(a),(r1),t(ry)), indicates the impact of the trustwor-
thiness of rq,..., r,,, and a on the trustworthiness of k.

We compute the effect of trustworthiness of a source provider or an agent on
its resulting data by taking into account the actions it took on this data. Types of
actions may differ in different applications. In this paper, we consider two typical
actions, “PASS” and “INFER”. “PASS” means merely passing data to another agent
or data user, and “INFER” means that the agent produces a knowledge item based
on the input information and possibly some local knowledge. Different actions may
have different impact on the trustworthiness of the output information. For example,
“PASS” operation simply passes the input items to successive parties. Since such
operation does not change the content of the information, the trustworthiness of the
output should be the same as that of the input if no error is introduced during the
transmission. By contrast, “INFER” generates new knowledge based on the input
information.

Given a set of items and an intermediate agent, we employ a weighted function
to compute the trust score of the output information.
Yy t(r))

n

t(k) = Wi.t(aw;

(10)

Here, w; is a parameter based on the operation the intermediate agent takes and its
impact on the trustworthiness of knowledge k.

3.5 Computing Trust Scores

So far, we are clear how the four aspects influence the trustworthiness of items. In
this subsection, we will present how to combine the effects of these four aspects to
obtain an overall trust score for data items, knowledge items, source providers and
intermediate agents.

The computation of the overall trust scores is an iterative procedure. Initially, we
assign each source provider and intermediate agent an initial trust score by query-
ing the information that the end users already knew. The initial trustworthiness of
each data item and knowledge item is then set to the trustworthiness of its source
providers and intermediate agent, denoted as 7(f) and #(k) respectively. Then, we
start the iteration. At each iteration, there are four main steps.

First, we update current trust score of each data item and knowledge item by
using the sim"(r) function. For a data item f in cluster C with sim*(f), its updated
trustworthiness is defined as:

12 Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

1(f) = 1—]1(1—t(r)-sim*(f)) (11)
re
The above equation can be rewritten as follows.
L=1(f) = [| (1 =2(r) - sim™(f)) (12)
1l
After taking logarithm on both sides, we have
In(1—¢(f)) = Eln(l—t(r)xsim*(f)) (13)
reC

Let ©(f) = —In(1 —¢(f)), and ¢(r) = —In(1 —2(r) x sim*(f). Equation 13 is re-
vised as follows.
©(f) =Y o) (14)
reC
Second, we integrate the effect of data conflict into the current trust score. For a
f in cluster Cy, if C; conflicts with C,, we update T(f) to T*(f) as follows.

T (f) =(f) +t(re,) x cone, (C1,C) (15)

where 7., is the representor of C» and t(r,) is its trust score. Then, we revise #(f)
as follows.
1(f)=1—e " (16)

Similarly, we can compute #(k) for each knowledge item.
Third, we consider the data deduction for the knowledge item and update (k).
Finally, we compute the trust scores for source providers S and intermediate
agents I, denoted as ¢(S) and #(I) respectively. 7(S) is computed as the average trust-
worthiness of data items provided by S. (1)) is computed as the average trustwor-
thiness of data items and knowledge items provided by /.

~ Drerstf)

AN o
_ Drer () + Skek (k)

0= =K {19

where F(S) (F(I)) is the set of data items provided by S (), and K(I) is the set
of knowledge items generated by /. The iteration stops when the changes on trust
scores becomes negligible. An overview of the algorithm is shown in Figure 3.

4 Performance Study

Our experiments are conducted on a 2.6-GHz Pentium 4 machine with 1 Gbyte of
main memory.

Due to the lack of appropriate real datasets, we generate synthetic datasets ac-
cording to the scenario given in Table 1. We first generate a set of seeds which

Trust Evaluation of Data Provenance 13

Procedure Turst_Score_Computation

—

. cluster data facts and knowledge items

2. for each cluster

3. compute data similarity

4. compute path similarity

5. compute data conflict

6. assign initial trust scores to all the source providers

intermediate agents

7. repeat

8. for each data fact and knowledge item

9. compute its trust score

10. for each knowledge item

11. compute data deduction

12. recompute trust score of the knowledge item

by combining the effect of data deduction

13. compute trust scores for all the source providers
and intermediate agents

14. until the change of trust scores is ignorable

Fig.3 Trust Score Computation

are tuples with seven attributes as shown in Table 1. Each seed represents a unique
event. To generate items in the dataset, we randomly select a seed and slightly mod-
ify a randomly chosen attribute of this seed. In order to simulate data conflict, we
use a prior knowledge item stating that items with same SSN and similar name must
be in the same location at the same time. Then we modify the location information
in the same set of seeds to generate conflicting items. The percentage of conflicting
items is set to 10%. In this way, we ensure that a dataset contains both similar items
and conflicting items.

To generate the item generation path, we constructs a network containing 100
source providers and 1000 intermediate agents. For each item, its generation path
is then generated by randomly selecting a source provider and multiple agents. We
have tested the cases when the average length of item generation path varies from 5
to 10. Table 2 offers an overview of the parameters used in the ensuing experiments,
where values in bold are default values.

At current stage we mainly focus on evaluating efficiency of our approach, i.e.,
running time. We plan to carry out human studies in the future to evaluate the effec-
tiveness of our approach.

4.1 Effect of Varying Data Sizes

We first study the efficiency of our approach when varying the size of datasets from
10K to 50K. The trust score computation consists of two main phases: initialization
phase (steps 1-6 in the algorithm in Figure 3) and iteration phase (steps 7-14 in
Figure 3). We plot running time of the two phases in Figure 4(a) and (d) respectively.

Running Time (s)

Running Time (s)

14 Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

[Parameter | Setting |
Number of source providers 100

Number of intermediate agents 1000

Number of seeds 100, 500, 1000, 5000, 10000
Percentage of conflicting items 10%

Average length of path 5,6,7,8,9,10
Dataset Size 10k, 20k, 30k, 40k, 50k

Table 2 Parameters and Their Settings

350
o @ Initialization 300 @ Initialization @ Initialization
120 0 O
100 > 250 Y
E 200 E
80 5 =
60 £ 150 g
€ €
40 E 10 £
20 T 50 4
0 0
10 20K 30K 40K 50K 100 500 1000 5000 10000 5 6 9 10
Number of ltems Number of Seeds Length of ltem Generation Path
(a) Varying Data Size (b) Varying Seeds (c) Varying Path Length
06 06 06
0.5 | Olteration . 05 | Olteration _. 05 | Olteration
e)
04 E 0.4 .E 04 -
03 K o8 :, 03 >
£ £ -
0.2 £ oz £ o2 -
0.1 / I—I 2 o1 2 o1 |—|
=t NN . .
10K 20K 30K 40K 50K 100 500 1000 5000 10000 5 6 7 8 9 10
Number of Items Number of Seeds Length of Item Generation Path
(d) Varying Data Size (e) Varying Seeds (f) Varying Path Length

Fig.4 Experimental Results

As shown in Figure 4(a), the running time of initialization phase increases
quickly when the dataset size becomes large. This is because in the worst case the
complexity of the clustering algorithm, the computation of data similarity, path sim-
ilarity and data conflict are O(n?). Although the initialization phase looks costly,
it takes less than two minutes for a datast of 50K items, which is still practical for
off-line applications. Also, we need to note that this phase needs to be executed only
once as long as the items remain the same. That is, the results obtained from this
phase can be reused when trust scores of source providers or agents are changed.
Further, an insertion or a deletion of an item only affects several clusters containing
or close to this item, which means a large portion of previously computed results
are still valid.

Compared to the initialization phase, the iteration phase is much faster (see Fig-
ure 4(d)). It needs less than one second to compute trust scores for 50K items. This
is because the iteration phase simply computes score functions based on the results
obtained from initialization phase and trust scores converge to stable values in a
short time using our algorithm.

Trust Evaluation of Data Provenance 15

4.2 Effect of Varying the Number of Seeds

Next, we study the performance when varying the number of seeds to generate a
dataset of 30K items. As shown in Figure 4(b), the running time of the initialization
phase first decreases and then increases as the number of seeds increases. The reason
of such behavior is the following. The number of seeds corresponds to the number
of clusters. When there are few clusters, the computation of data conflict among
clusters is very fast and most time is spent on computing data similarity and path
similarity within the same cluster. In contrast, when the number of clusters is large,
most time is spent on computing data conflict among clusters.

As for the iteration phase shown in Figure 4(e), the running time is not affected
by the change of the number of seeds. This is because the performance of iteration
phase is determined by the number of items and the network structure that affects
data deduction computation. As long as these two factors remain unchanged, the
performance is constant.

4.3 Effect of Varying the Length of Item Generation Path

In this experiment, we examine the effect of varying the average length of item
generation path. As shown in Figure 4(c) and (f), the running time of both phases
increases with the length of item generation path. This is because the longer the
path is, the more time is needed to compare the similarity between two paths in
initialization phase and the more time to compute the data deduction in the iteration
phase.

5 Related Work

Whereas there has been a lot of work dealing with provenance [2, 4, 5], no work
deals with evaluating trust of data sources and provenance paths. The most relevant
work is by Yin et al. [7], which mainly deals conflicting information provided by
different websites and aims at discovering true facts. Compared to our trust model,
their approach has several drawbacks. First, they do not show how to compute im-
plication between two items, whereas we introduce the notions of data similarity
and data conflicts and propose an approach to quantify them. Second, their model
contains a large number of of parameters which are hard to determine. Third, they
assume that an identifier exists able to link different items corresponding to the
same object. Without a correct identifier, their approach does not work. Such an as-
sumption is strong and seems unrealistic in many real applications. In contrast, our
approach can deal with more general situations.

6 Conclusions

In this paper we introduce and formulate the problem of determining the trustwor-
thiness of data and data providers in the context of a data provenance framework. To

16 Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu

address this problem, we propose a trust model which assigns trust scores to both
data and data providers. We have considered four important factors that influence
trustworthiness, and our trust model effectively combines these factors during the
trust score computation. We have evaluated the efficiency of our approach and the
experimental results indicate the feasibility of our approach. In the near future we
plan to evaluate the effectiveness of our system. We will also investigate how to
dynamically adjust our trust model when new information keeps streaming into the
system.

References

1. C. Batini and M. Scannapieco. Data quality: Concepts, methodologies and techniques.
Springer,2006.

2. P.Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data provenance.
In ICDT, pages 316-330, 2001.

3. J.-W. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k -anonymization using clustering
techniques. In /2th International Conference on Database Systems for Advanced Applications,
(DASFAA’07), pages 188-200, 2007.

4. M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis, D. Marvin, L. Moreau, and T. Oinn.
Provenance of e-science experiments - experience from bioinformatics. In UK OST e-Science
second All Hands Meeting,2003.

5. D. P. Lanter. Design of a lineage-based meta-data base for gis. Cartography and Geographic
Information Systems, 18:255-261, 1991.

6. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168—
173, 1974.

7. X.Yin,J. Han, and P. S. Yu. Truth discovery with multiple conflicting information providers
on the web. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, (KDD’07), pages 1048—1052, 2007.

