CERIAS Tech Report 2008-13
EXAM - a Comprehensive Environment for the Analysis of Access Control Policies
by Dan Lin, Prathima Rao, Elisa Bertino, Ninghui Li, Jorge Lobo
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

EXAM — a Comprehensive Environment for
the Analysis of Access Control Policies

Dan Lin and Prathima Rao and Elisa Bertino and Ninghui Li
Department of Computer Science, Purdue University, USA
{lindan,prao,bertino,ninghui}@cs.purdue.edu

and

Jorge Lobo

IBM T.J. Watson Research Center

jlobo@us.ibm.com

Policy integration and inter-operation is often a crucejuirement when parties with different access control
policies need to participate in collaborative applicasi@md coalitions. Such requirement is even more difficult
to address for dynamic large-scale collaborations, in wiiehnumber of access control policies to analyze
and compare can be quite large. An important step in policygiat®n and inter-operation is to analyze the
similarity of policies. Policy similarity can sometimes alsodpre-condition for establishing a collaboration, in
that a party may enter a collaboration with another party driye policies enforced by the other party match
or are very close to its own policies. Existing approachethéoproblem of analyzing and comparing access
control policies are very limited, in that they only deal withme special cases. By recognizing that a suitable
approach to the policy analysis and comparison requires congpdifferent approaches, we propose in this
paper a comprehensive environment — EXAM. The environmentastgpparious types of analysis query, that
we categorize in the paper. A key component of such environmenwhich we focus in the paper, is the policy
analyzer able to perform several types of analysis. Spatlifiour policy analyzer combines the advantages of
existing MTBDD-based and SAT-solver-based techniques. é2perimental results, also reported in the paper,
demonstrate the efficiency of our analyzer.

Categories and Subject Descriptors: D.4 OPERATING SYSTHMS.6 Security and Protectior): Access
controls

1. INTRODUCTION

With the widespread deployment of XML-based Web applicetiand Web services, var-
ious types of access control models and mechanisms havgemeuch as PolicyMaker
[Blaze et al. 1998], KeyNote [Blaze et al. 1999], the ISO 1DB3model [ISO] and
the eXtensible Access Control Mark-up Language (XACML) [@R005]. The use of a
policy-based approach enhances flexibility, and redueeapbplication development costs.
Changes to the application access control requiremenfd\ysientail modifying the poli-
cies, without requiring changes to the applications andtioess control mechanism. Re-
cent trends in service oriented architectures (SOA) [Bertind Martino 2007] are also
emphasizing the role of policy languages in the developraedtdeployment of access
control services.

A key requirement for the successful large scale deploymémiolicy-based access
control services is the availability of tools for managingdaanalyzing policies. Such
a requirement is particularly crucial when dealing withtidigited collaborative applica-
tions. In such a context, parties may need to compare the@saaontrol policies in order

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages R0

to decide which resources to share. For example, a questaratparty” may need
to answer when deciding whether to share a resource withr ptiréies in a coalition is
whether these parties guarantee the same level of secarity @his is a complex ques-
tion and approaches to answer this question require dengl@aequate methodologies
and processes, and addressing several issues. A releMamisdo compare access control
policies. A partyP may decide to release some data to a p&ftgnly if the access control
policies of P’ are very much the same as its own access control policies. sige poli-
cies are deployed in many places within a distributed systeaiwork devices, firewalls,
servers, applications - an important issue is to determhmethrer all the variously deployed
policies authorize the same set of requests.

Another interesting scenario that needs policy analysis ike domain of Information
Technology (IT)-supported healthcare (eHealth). Nowadayany hospitals and health
plan providers start using Electronic Medical Record systéo manage patient health
care data and enable communication of patient data betwesaedy of healthcare profes-
sionals. When sharing sensitive patient data, it is requisedegislative acts, like Health
Insurance Portability and Accountability Act (HIPAA) [Ued State Department of Health
], that the privacy of patients should be protected. Sinfferéint organizations may have
different privacy policies, policy analysis becomes calievthen multiple organizations
want to share same patients’ information. They need to findheudifference among their
policies and then decide how to achieve an agreement.

An important issue in the development of an analysis enwiremt is devising techniques
and tools for assessimgplicy similarity, that we define as the characterization of the re-
lationships among the sets of requests respectively dmtfibby a set of policies. An
important example of such relationship is represented tgysection, according to which
one characterizes the set of common requests authorizeddiyoh given policies.

To date, however, no comprehensive environments existostipg a large variety of
guery analysis and related management functions. Spesdlaiechniques and tools have
been proposed, addressing only limited forms of analys{d discussion will be pre-
sented in Section 11.B). Common limitations concern: pplionditions, in that only poli-
cies with simple conditions can be analyzed [Fisler et ab5}0and relationship charac-
terization, in that for example one can only determine wéetivo policies authorize some
common request, but no characterization of such requesbvsded.

The goal of our work is to address such limitations by devieigm comprehensive
environment supporting a variety of analysis. We anchonverk around XACML poli-
cies. XACML is a rich language able to represent many pdicikinterest to real world
applications. In addition, because of the expressive pof®ACML, many notions un-
derlying our approach apply to policies expressed in otfuegliages directly or indirectly
by transforming those policies into XACML policies.

The main contributions of the work reported in this paperlmasummarized as follows:

¢ We have developed EXAM (Environment for Xacml policy Anasyand Management),
a comprehensive environment for the analysis of accessatguilicies expressed in
XACML.

e We have identified different types of policy analysis. Pplanalysis in EXAM is
achieved through the use ahalysis querieg¢query for short). These queries are func-
tions that allow the subject designing, deploying or irdperating a policy (set of poli-
cies) to verify various properties of the policy (set of p@s). We provide a large va-

ACM Journal Name, Vol. V, No. N, Month 20YY.

riety of such queries, such as queries concerning singlei@sland queries concerning
multiple policies. Analysis queries can be combined to supmore complex analysis.

¢ Inthe context of EXAM, we have developed a powerful polieyigrity analyzer, which
is the core component for query processing. It combinessiffean the Multi-Terminal
Binary Decision Diagram (MTBDD) and SAT-solver techniguésis combining their
advantages (see Section Il for a detailed discussion).

o Finally, we have carried out an experimental evaluatiomefgolicy similarity analyzer.
Our experimental results demonstrate the efficiency of pstesn.

The rest of the paper is organized as follows. Section 2 gar¥&CML and reviews
existing policy analysis techniques and tools. Sectione3@nts the EXAM environment
and Section 4 provides a comprehensive taxonomy and forefigitibns of the analysis
queries supported by EXAM. Section 5 introduces the detditee policy similarity ana-
lyzer. Section 6 reports experimental results. Finallgti®a 7 outlines some conclusions
and future work.

2. BACKGROUND AND RELATED WORK
In this section, we review basic XACML concepts and relatedkwon policy analysis.

2.1 XACML Policies

XACML [XAC 2005] is the OASIS standard language for the sfieation of access con-
trol policies. It is an XML language able to express a largeetq of policies, taking into
account properties of subjects and protected objects assvebntext information. In gen-
eral, a subject can request an action to be executed on acesand the policy decides
whether to deny or allow the execution of that action. Sdyanafiles, such as a role pro-
file, a privacy profile etc. have been defined for XACML. Comai@rimplementations of
XACML are also available [PCX ;]. XACML policies include the main components: a
Target aRuleset and &Rule combining algorithm

e The Targetidentifies the set of requests that the policy is applicable It contains
attribute constraints characterizing subjects, res@@eions, and environments.

e EachRulein turn consists of another optioridrget aConditionand arEffectelement.
The ruleTargethas the same structure as the polieyget It specifies the set of requests
that the rule is applicable to. Th&onditionspecifies restrictions on the attribute values
in a request that must hold in order for the request to be rndr denied as specified
by the Effect The Effect specifies whether the requested actions should be allowed
(Permi) or denied Deny).

The restrictions specified by the target and condition efeémeorrespond to the notion
of attribute-based access control, under which accessotqulicies are expressed as
conditions against the properties of subjects and pralegbgects. In XACML such
restrictions are represented as Boolean functions takiegdaquest attribute values as
input, and returningrue or false depending on whether the request attributes satisfy
certain conditions. If a request satisfies the policy tartjetn the policy is applicable

to that request. Then, it is checked to see if the requestigstihe targets of any rules
in the policy. If the request satisfies a rule target, the iml@pplicable to that request
and will yield a decision as specified by tBéectelement if the request further satisfies

ACM Journal Name, Vol. V, No. N, Month 20YY.

the rule condition predicates. If the request does notfgdtie policy(rule) target, the
policy(rule) is “Not Applicable” and the effect will be igmed.

e TheRule combining algorithns used to resolve conflicts among applicable rules with
different effects. For example, if a request is permittedbg rule but denied by another
rule in a policy and the permit-overrides combining alduritis used, the request will be
permitted by the policy. If the deny-overrides combiningalthm is used, the request
will be denied by the policy.

An XACML policy may also contain one or mof@bligationswhich represent functions
to be executed in conjunction with the enforcement of anaightion decision. However,
obligations are outside the scope of this work and we do mthidu consider them in this

paper.
2.2 Related Work on Policy Analysis

In order to discuss related work, it is useful to distinguish types of policy analysis: pol-
icy property analysis and policy similarity analysRolicy property analysisefers to the
verification of a given property on a single policy, wherpalcy similarity analysigefers
to a comparison among two or more policies. More specificttly comparison among
policies may check different relationships among polisigsh as equivalence, refinement,
redundancy, and conflict.

We first review work dealing with property verification fomgie policies. Most such
approaches are based on model checking techniques [Ahnde@irigrathi 2003; Guelev
et al. 2004; Zhang et al. 2005]. Ahmed et al. [Ahmed and Thipa003] propose a
methodology for analyzing four different policy propestia1 the context of role-based
CSCW (Computer Supported Cooperative Work) systems; teithodology uses finite-
state based model checking. Since they do not present aryimxmtal results, it is not
clear if their state-exploration approach can scale wafidlicies with a very large set of
attributes and conditions. Guelev et al. propose a fornmgjuage for expressing access-
control policies and queries [Guelev et al. 2004]. Theirsaguent work [Zhang et al.
2005] proposes a model-checking algorithm which can be tesedaluate access control
policies written in their proposed formal language. Thdustion includes not only assess-
ing whether the policies give legitimate users enough pesimins to perform their tasks,
but also checking whether the policies prevent intrudessfachieving some malicious
goals. However, the tool can only check policies of limitexs.

Existing approaches to the policy similarity analysis axstlty based on graph, model
checking or SAT-solver techniques [Agrawal et al. 2005; kéacet al. 2004; Fisler et al.
2005; Koch et al. 2001; Lupu and Sloman 1999; Moffett and Slerh993]. Koch et
al. [Koch et al. 2001] use graph transformations to reprigselicy change and integration,
which may be used to detect differences among policies. Sadcipproach supports an
intuitive visual representation which can be useful duting design of a customized ac-
cess control policy. However, it can only be used as a spatidit method but not as an
execution method. Backes et al. [Backes et al. 2004] propnsagorithm for checking
refinement of enterprise privacy policies. But, their aitjon is limited to identify which
rule in one policy needs to be compared with the rules in thergpolicy. They do not
provide an approach for the evaluation of condition funtdio

A more practical approach is by Fisler et al. [Fisler et alD%0 who have developed
a software tool known as Margrave for the analysis of rolgeldaaccess-control policies

ACM Journal Name, Vol. V, No. N, Month 20YY.

written in XACML. Margrave represents policies using the IMilierminal Binary De-
cision Diagram (MTBDD), which can explicitly represent aliriable assignments that
satisfy a Boolean expression and hence provides a goodsespetion for the relation-
ships among policies. Policy property verification is themfulated as a query on the
corresponding MTBDD structures. For processing a sintjlajuery involving two poli-
cies, the approach proposed by Fisler et al. is based on ocamghthe MTBDDs of the
policies into a CMTBDD (change-analysis MTBDD) which exjitliy represents the vari-
ous requests that lead to different decisions in the twajgsli The MTBDD structure has
been credited with helping model checking scale to reelgststems in hardware verifica-
tion. The major shortcoming of Margrave is that it can onlndila simple conditions, like
string equality matching. A direct consequence of suchtéitinn is an explosion of the
MTBDD size when conditions on different data domains (ergquality functions) have
to be represented. For example, to represent the condttiae fs between 8am to 10pm”,
the MTBDD tool needs to enumerate all possible values bat#@am” to “10pm”(e.g.,
“time-is-8:00am”, “time-is-8:01am”, “time-is-8:02am’.,.).

Other relevant approaches are the ones based on SAT-setveriques. Most such ap-
proaches [Lupu and Sloman 1999; Moffett and Sloman 1993hewonly handle policy
conflict detection. A recent approach by Agrawal et al. [Agabet al. 2005] investi-
gates interactions among policies and proposes a ratificédiol by which a new policy
is checked before being added to a set of policies. In [Mc8amd Prakash 2006], Mc-
Daniel et al. carry out a theoretical study on automatedmeitiation of multiple policies
and then prove that this is an NP-complete problem. In [Kshkoet al. 2007], Kolovski
et al. formalize XACML policies by using description logiesmd then employ logic-
based analysis tools for policy analysis. These SAT-sdbesed approaches formulate
policy analysis as a Boolean satisfiability problem on Banlexpressions representing
the policies. Such approaches can handle various types @&&o expressions, includ-
ing equality functions, inequality functions, linear fdionis and their combinations. By
construction, the SAT algorithms look for one variable gssient that satisfies the given
Boolean expression, although they may be extended to firghtdifying variable assign-
ments. For each round of analysis or query, SAT algorithnexinie evaluate the corre-
sponding Boolean expression from scratch. A major shoritograf SAT algorithms is
that they cannot reuse previous results and are not ableeseptr an integrated view of
relationships among policies.

Most recently, Mazzoleni et al. [Mazzoleni et al. 2006] hameestigated the policy
similarity problem as part of their methodology for poliaytégration. However, their
method for computing policy similarity is limited to idefting policies referring the same
attribute.

Unlike aforementioned work that focuses on a special caseaartain type of policy
analysis, our approach aims at providing an environmenthithva variety of analysis
can be carried out. In particular, our environment is ableamby to handle conventional
policy property verification and policy comparison, butcatis support queries on common
portions and different portions of multiple policies.

The policy property analysis problem is a more general farth@compliance checking
problem investigated in the area of trust management [Bdaak 1998]. In the compliance
checking problem, one asks whether a single request is @zedoby a policy. In the
policy property analysis, one can check other properties pblicy, such as whether the

ACM Journal Name, Vol. V, No. N, Month 20YY.

policy authorizes any query at all. Moreover, the policyitnity problem has not been
investigated in the area of trust management.

3. EXAM ARCHITECTURE

The EXAM environment, an overview of which is shown in Figdrencludes three lev-
els. The first level is the user interface, which receivegjesf, requests and queries from
users, and returns request replies and query results. Tohaddevel is the request dis-
patcher, which handles various requests received fromgéeinterface, dispatches them
to proper analysis module and aggregates obtained reShkshird level is the core level
of EXAM and includes three modules supporting differenksas policy analysis, namely:
policy annotator policy filter, andpolicy similarity analyzer

User Interface)

!

Request Dispatcher

1

Policy Policy
Annotation Filter

Policy Policy Similarity
Repository Analyzer (PSA)

Fig. 1. EXAM Architecture

e Policy annotator [Rao et al. 2007]: it preprocesses eaclyraguired policy by adding
annotations to it. The annotations explicitly represeattibhavior or semantics of each
function referred in the policy. Such annotations help itoeatically translating poli-
cies into Boolean formulae that can then be evaluated by dhieypanalysis modules.
The annotated policies are stored in the policy repositogether with the policy meta-
data.

e Policy filter [Lin et al. 2007]: it is a lightweight approachhiech quickly evaluates sim-
ilarity between each pair of policies and assigns them alaiityi score ranging from 0
to 1. The higher the similarity score is, the more similartthie policies are. According
to the obtained similarity scores, policies with low simityascores may be pruned from
further analysis, whereas policies with high similaritpses will be further examined.
The main goal of the policy filter module is to reduce the nundfeolicies that need

LIn EXAM policies can also be acquired from files through a 8ing interface; we do not discuss the user
interface related aspects of the environment as they arelsvant to the discussion in the paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.

to be analyzed more in details, when dealing with large s@d&ysets. The filtering
approach we use is based on techniques from informatidevatand is extremely fast.
The use of filtering in the policy analysis process is howeygional. The policy man-
agement module can directly send analysis queries to theymimilarity analyzer, to
carry out a fine-grained policy analysis, without perforgiihe filtering.

e Policy similarity analyzer (PSA): it is the core componefitoar approach to policy
analysis. It basically implements the strategies for pgecgy the policy analysis queries
supported by EXAM, and thus in the subsequent sections weritlesn details its main
techniques and query processing strategies.

It is worth noting that our system is flexible and supports asyeintegration of new
functions. Even though its current version applies only #CXIL policies, it can be
easily adapted to deal with other policy languages.

4. ANALYSIS QUERIES ON POLICIES

In this section, we present formal definitions of policy & queries that are supported
by EXAM. Because one can analyze policies and sets of pslican different perspec-
tives, it is important to devise a comprehensive categboizaf such queries. In our work,
we have thus identified three main categories of analysigegjevhich differ with respect
to the information that they query. These categories podicy metadata queriepolicy
content queriesandpolicy effect queriesFigure 2 provides a taxonomy summarizing the
various query types.

Policy Analysis Query

/\\

Policy Metadata Query Policy Content Query Policy Effect Query
Single-Policy Query Multiple-Policy Query
Property Verification Query Common Property Query Discrimination Query
QP Qc Qd

Fig. 2. Query Categorization

Policy metadata queries analyze metadata associated @litieg, such as policy cre-
ation and revision dates, policy author, and policy logatié\ policy content query, by
contrast, extracts and analyzes the actual policy conseict)y as the number of rules in
the policy, the total number of attributes referenced inpgbkcy, the presence of certain
attribute values.

A policy effect query analyzes the requests allowed or dkhiepolicies and interac-
tions among policies. The category of the policy effect treeis the most interesting one
among the query categories we have identified. The progeséipolicy effect queries is
also far more complex than the processing of queries in ther divo categories, and thus
we address its processing in details (see next section)pdliey effect query category can
be further divided into two subcategories: (i) queries oyl policy; and (i) queries on

ACM Journal Name, Vol. V, No. N, Month 20YY.

multiple policies. The first subcategory contains one tyjpguery, referred to aproperty
verification query The second subcategory contains two main types of queraasely
common property quegnddiscrimination query

In the following, we first introduce some preliminary notgrand then present more
details for each type of policy effect query (query for shdricluding their definitions and
functionalities.

4.1 Preliminary Notions

In our work, we assume the existence of a finite 4aif names. Each attribute, charac-
terizing a subject or a resource or an action or the environhas a name in A, and a
domain, denoted byom(a), of possible values. The following two definitions introéuc
the notion of access request and policy semantics.

DEFINITION 1. Letay, as, ...,a; be attribute names in polick, and letv; € dom(a;)
(1 <i<k).r={(a1,v1), (az,v2), -, (ag, v)} is arequest, and” denotes the effect
of this request againg?t .

ExAaMPLE 1. Consider policyPoll in Example 1. An example of request to which
this policy applies is that of a user from domain “.edu” wiebito access the data at
9am. According to Definition 1, such request can be expreassed: {(domain, “.edu’),
(time, 9am)}.

DEFINITION 2. LetP be an access control policy. We define the semanti¢sas a 2-
tuple{Bpermit» Baeny }» WhereBy,e, ;i andBye,,, are Boolean expressions corresponding
to permit and deny rules respectively,c,,i: and Bg.,, are defined as follows.

{ Bpermit =Tp A ((Tpr, ANCpr,) V ...V (Tpr, ANCpr,))
Baeny =Tp A ((Tpr, ANCpr,) V...V (Tpr; N CpR;))

where, Tp denotes a Boolean expression on the attributes of the pwliget; 7»r, and
Cpg, (i =1, ..., k) denote the Boolean expressions on the attributes of thdardet and
rule condition of permit rule’R;; andTpr, andCpg, (i = 1, ..., j) denote the Boolean
expressions on the attributes of the rule target and ruldition of deny ruleD R;.

The Boolean expression8(1T andC) that frequently occur in policies can be broadly
classified into the following five categories, as identified/Agrawal et al. 2005] :

- Category 1: One variable equality constraints.
x = ¢, wherez is a variable and is a constant.

- Category 2: One variable inequality constraints.
x > ¢, wherex is a variablec is a constant, and € {<, <, >, >}.

- Category 3: Real valued linear constraints.
S, a;z; > ¢, wherez; is variablea;, ¢; are constants, and € {=, <, <,>,>}.

- Category 4: Regular expression constraints.
s € L(r) ors ¢ L(r), wheres is a string variable, and(r) is the language generated
by regular expression

- Category 5: Compound Boolean expression constraints.
This category includes constraints obtained by combiniogl&an constraints belonging
to the categories listed above. The combination operaters,a\ and—. By using—,
we can represent the inequality constrain¢ c as—(x = ¢).

ACM Journal Name, Vol. V, No. N, Month 20YY.

It is worth noting that Boolean expressions on the attribofepolicy targets or rule targets
(Tp, Tpr) usually belong to Category 1.

The domains of the attributes that appear in the above Bodagpressions belong to
one of the following categories :

- Integer domain : The attribute domains in Boolean expoessof categories 1,2 and 5
can belong to this domain.

- Real domain : The attribute domains in Boolean expressibategories 1,2,3 and 5
can belong to this domain.

- String domain : The attribute domains in Boolean expressif categories 1, 4 and 5
can belong to this domain.

- Tree domain : Each constant of a tree domain is a string, @rahfy constant in the tree
domain, its parent is its prefix (suffix). The X.500 direcés;i Internet domain names
and XML data are in the tree domain. For example, an Interoetain constant “.edu”
is the parent of an Internet domain constant “purdue.eduie attribute domains in
Boolean expression of categories 1 and 5 can belong to thisitho

4.2 Policy Effect Query

DEFINITION 3. Let Poly, Pols, ..., Pol, ben (n > 1) policies. A policy effect query
has the form:(B,, (eq,, €4y -+ €4..), fq), WhereB,, is a Boolean function on a subset of
attributes occurring in the: policies,e,, C {Permit, Deny, NotApplicabfé (1 < i < n),
and f, is a Boolean expression on the number of requests.

To evaluate a policy effect query, we first find the requesas siatisfyB,. For each
such request, we obtain the decisions froerfn. > 1) policies and compare the decisions
with eg,, ..., eq,. If everye, (1 < i < n)is matched, insert the request to a result set
R. The last step is to check,. Currently, our system supports two typesfgffunctions
and their combinations: (iyue, which means there is no constraint; |} < z (< € {<
, <,=,#,>,>1}), where|R| is the number of requests ands a constant. For example,
|R| > 0 is a query constraint which checks if the corresponding yjueturns at least
one request. It is worth noting thg} can be a more complicated function on a particular
set of attributes. Such flexibility in the definition ofy allows our query language to
cover various situations. The output of a policy effect gusra value “true” and a set of
requests wherf, is satisfied, otherwise the output is “false”. In what follpwve show
how to represent property verification query, common prgpguery and discrimination
query through examples.

Property verification query ((@),). It checks if a policy can yield specified decisions given
a set of attribute values and constraints.

ExampPLE 2. Consider a scenario from a content delivery network(CDNI ot P2P
network, e.g. Lockss [Baker et al. 2005] and LionShare [M2007], in which parties can
replicate their data in storage made available by third gamsource providers. There are
usually two types of parties: data owner and resource owhiee policies of a data owner
specify which users can access which data, among these dwrtbé data owner, under
which conditions. The access control policies of the respuwners specify conditions
for the use of the managed resources. For exampté] is a policy of a data owner who

2We do not distinguish “NotApplicable” and “Non-determinisim’this paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10

allows any user from domainédu” to access his data frorBam to 10pm everyday.Pol2

is a policy of a resource owner who allows any user from dorfiaédu” or affiliated with
“IBM” to access his machine froram to 8pm everyday, and allows his friend Bob to
access his machine anytime if the sum of uploading and dewdimg file sizes is smaller
than 1GB. According to Definition 2, polidyol1 and Pol2 are represented as function (1)
and (2) respectively.

Bpermit = (domain = “.edu”) A (8am < time < 10pm) (1)
Bgeny = NULL

Bpermit = ((domain = “.edu” V af filiation = “IBM”) A (6am < time < 8pm))
V (user = “Bob” A upload 4+ download < 1GB)
Bgeny = NULL
)

Suppose that the resource owner would like to carry out systaintenance in the
time interval [L0pm,12am], and hence he may want to chechli€yp Pol2 will deny any
external access to the resource between 10pm and 12am. Sparmacan be expressed
as follows:

Qp = (10pm < time < 12am, ({Permit}), |R| = 0).
The query first checks if any request with the time attriboté range of 10pm and 12pm
is permitted, and stores such requestginThen, the query verifies the constrajfjt In
this example, some requests from “Bob” during [10pm,12ariti]lve permitted and hence
R is not empty which violateg,. The property verification query will return “false” as an
answer.

Common property query (Q.). In large dynamic environments, we cannot expect poli-
cies to be integrated and harmonized beforehand, also egalicies may dynamically
change. Therefore, a subject wishing to run a query has t@lyowith both the access
control policy associated with the queried data and thessooentrol policy of the resource
to be used to process the query. Because such parties magveahie same access control
policies, in order to maximize the access to the data, it goirfant to store the data at the
resource owner having access control policies similareattcess control policies associ-
ated with the data. Common property query are used to find conmproperties shared by
multiple policies.

ExamMPLE 3. Consider Poll and Pol2 in Example 2, an example common prpper
query is to find all the requests permitted by both policidsctvis written as). = (true,
({Permit}, {Permit}), true). In this query,B, and f, are true, which means there is no
constraint on the attributes of a request{®Rermit}, {Permit})” indicate that any request
be permitted by both policies will be returned as an answer.

The following example shows a common property query withst@ints on the at-
tributes of a request.

ExXAMPLE 4. Determine when the requests of users from domain “.edu” arenitted
by policy Poll and Pol2. This query consists of two partsst-iwe need to find all requests
of users from domain “.edu” that can be permitted by both giek, which is a common
property query with the constraint on tltmmainattribute. It can be written ag). =
(domain = “.edu”, ({Permit;, {Permit}), true). After the result seR is obtained, the
second step is to post proceBsand extract the values of thigne attribute.

ACM Journal Name, Vol. V, No. N, Month 20YY.

11

Discrimination query (Q,). Besides determining the common parts of the access control
policies shared by multiple parties, one party may also terésted in checking if certain
key requests can be successfully handled by its potentil@booators. In other words,
one may want to know if the difference among the multiple asaontrol policies has a
negative effect on some important tasks. A discriminatioary is thus used to find the
difference between one policy and the others.

ExaMPLE 5. A patient needs to be transferred from a local hospital to eciistic
hospital. He is satisfied with the privacy policies in thedldgospital because, for example,
the local hospital protects patient data from being useddbrresearch without the patient
agreement. Before the transfer, he wants to make sure thapitcialistic hospital will also
well protect his medical data. He can then issue a discritmimequery likeQ, = (true,
({Denyt, {Permit}), true) to find out the requests denied by the local hospital’s pdiaty
permitted by the specialist hospital’s policy.

Both the common property query and the discrimination qdiecys on a partial view
of policies. The common property query only considers thergections of request sets
with the same effects, and the discrimination query onlysaers the mutually exclusive
request sets. To obtain an overview of relationships batvesicies, we combine the
common property queries and discrimination queries. Exanp shows how to check
policy equivalence.

ExamMPLE 6. To determine whethd?; is the same a#%, i.e. for any request, P, and
P, yield the same effect, we can use the following set of digtaiion queries.

a1 = (true, ({Permit},{Deny, Not Applicable}), |R| = 0)
Qa2 = (true, ({Deny},{ Permit, Not Applicable}), |R| = 0).
Qa3 = (true, ({NotApplicable},{ Permit, Deny}), |R| = 0).

Qa1 checks if there exists any request permitted?pyout not permitted by?. Q42 and
Q43 check the other two effects. When all queries return “trug;,equalsP,. Note that
though there are multiple queries, they can be executedtsinmaously (see Section 5.4).

Similarly, we can also use combinations of queries to represther relationships like
policy inclusion, policy incompatibility and policy condli. In particular, policy inclusion
means: for any requestthat is applicable td”, if P, and P, yield the same effect for,
we sayP; is included byP,. Policy incompatibility means: there exists a requestich
that P, and P, yield different effects; also there exists a requestich thatP; and P, yield
same effect. Policy conflict means: for every requetstat is applicable td?, and P, P;
and P, yield different effects.

From the previous discussion, we can observe that the émacnft each policy query
essentially corresponds to the evaluation of a set of regué®r clarity, we would like
to distinguish a policy query from general requests in twoeass. First, a policy query
usually specifies some constraints on some attributes. Aestghat only contains the
specified attributes is not sufficient for evaluating theiqgyoproperty, because the policy
will consider other attributes as “don’t care” and most flaysyields the effect “Not Ap-
plicable”. Therefore, for a policy query, we need to consi@épossible combinations of
value assignments for the attributes that are not specifi¢de query. Second, a policy
guery often needs to analyze a set of requests. It may noffioeeef to treat these re-
quests separately. Later on in the paper, we present ouy glgarithms which take the

ACM Journal Name, Vol. V, No. N, Month 20YY.

12

advantages of the common parts of these requests and evtilaat together.

5. POLICY SIMILARITY ANALYZER

PSA is the key component of EXAM in that it implements the gsigl queries. In what
follows, we describe its architecture, detailed constomcalgorithms and the query pro-
cessing strategies.

5.1 Architecture of PSA

As we mentioned in Section 2, policies can be representedoate&n formulae (also
called constraints). The problem of analyzing policiet&nttranslated into the problem of
analyzing Boolean formulae. The main task of the PSA moduie determine all variable
assignments that can satisfy the Boolean formulae cormeipg to one or more policies,
and also variable assignments that lead to different dewssior different policies. The
basic idea is to combine the functionalities of the polictfi@tion technique [Agrawal
et al. 2005] and MTBDD technique [Fisler et al. 2005] by usaglivide-and-conquer
strategy.

Figure 3 shows the architecture of PSA. Policies are firstgaito goreprocessowhich
identifies parts to be processed by thatification moduleand parts to be directly trans-
mitted to theMTBDD module The ratification module then generates unified nodes and
a set of auxiliary rules that are transmitted to the MTBDD nied The MTBDD module
then creates a combined MTBDD that includes policies andgtiadél rules. By using the
combined MTBDD, the PSA module can thus process the qudrasate introduced in
Section 4. Specifically, queries on a single policy are edraut on the MTBDD of the
policy being queried, whereas queries on multiple poliaiescarried out on the CMTBDD
of corresponding policies. Finally, the result analyzéommats the output of the MTBDD
module and reports it to the users.

P1 P2 Pn Q
Policy Preprocessor Query ‘
Preprocessor
Ratification ' PSA
Module ./ MTBDD 1
Module
Result Analyzer

e

Fig. 3. Architecture of the Policy Similarity Analyzer (PSA)

In the following sections, we first introduce how to reprasepolicy using a MTBDD

ACM Journal Name, Vol. V, No. N, Month 20YY.

13

and then present the details of policy analysis based onrm&pchsentation. Finally, we
discuss the policy query processing.

5.2 Policy Representation

Given an input policy, the policy preprocessor translatésto at most two compound
Boolean expressions (Boolean expressions of category hvelorrespond to the permit
and deny effects respectively. The compound Boolean esipresare composed of atomic
Boolean expressions which usually belong to the first fotegaries, i.e., one variable
equality, one variable inequality, real valued linear aegutar expression constraints as
presented in Section 4.1. Example 2 shows the Boolean esipnssof policy Pol1 and
Pol2.

The compound Boolean expressions of a policy are reprataste MTBDD. The struc-
ture of a MTBDD is a rooted acyclic directed graph. The in&modes represent atomic
Boolean expressions and the terminals represent poliegtsffi.e., Permit(P), Deny(D)
and NotApplicable (NA). Each non-terminal node has two edgéeled 0 and 1 which
means that the atomic Boolean expression associated vsthale is unsatisfied or sat-
isfied respectively. Nodes along the same path havéAND) relationship and nodes in
the different paths have/” (OR) relationship. Each path in the MTBDD represents a set
of requests that satisfy the atomic Boolean expressiorgimddes with 1-edge along the
path, and the terminal at the end of the path represents fénet ef the policy for the set
of requests. While in the worst case the number of nodes in aBDMTis exponential in
the number of variables, in practice the number of nodegéngfolynomial or even linear
[Fisler et al. 2005].

ExampPLE 7. Figure 7 shows the MTBDD for polickol2. The MTBDD has five nodes
and three terminals. Nodes a, t, u and f stand for atomic Boolean expressions (domain
= “.edu”), (affliation=“IBM"), (6am <t<8pm), (user="Bob”) and (upload + download
< 1GB), respectively. Terminals “N”, “CP” and “P” stand for “NotApplicable”, “Con-
ditional Permit” and “Permit” respectively.

Fig. 4. The MTBDD for policy Pol2

Take the right most path as an example. Such path indicassfta request satisfies
Boolean expressions in nodésindt, the request will be permitted by polidiol2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14

From Figure 7, we notice a new terminal “CP” which meaaaditional permit Such a
terminal indicates that there exist some requests satgtyie Boolean expressions along
the paths ending at this terminal but the variable assigtsmzannot be directly derived
from the internal nodes due to the existence of linear caims or regular expressions.
Checking whether the Boolean expressions along that pattisfiable is the task of the
ratification module which will be detailed in the next suldgat. Similarly, we can define
another terminal “CD” ¢onditional deny.

5.3 Policy Comparison

To compare policies, their MTBDDs are combined to form a comatd MTBDD (CMTBDD)
by a binary operation callefippl y [Fujita et al. 1997]. MTBDDs to be combined need to
follow the same variable ordering, i.e. the ordering thaedwaines which node precedes
another. We first consider the CMTBDD constructed from twhigies. TheAppl y oper-
ation is a recursive operation that traverses two MTBDDau#femeously starting from the
root node. If the currently retrieved nodes of the two MTBDdDs the same, the node will
be kept and théppl y operation is applied to the left children of both nodes, dedright
children of both nodes separately. If noie of MTBDD; precedesV, of MTBDD,, V;
will be keptin the CMTBDD and théppl y operation continues to compai& with both
left and right children ofV;. When the terminals of both MTBDDs are reached, the termi-
nal of the CMTBDD is obtained by combining the effects of tiwe terminals. Since each
MTBDD has five terminals: P(Permit), D(Deny), CP(CondiabRermit), CD(Conditional
Deny) and N(NotApplicable), a CMTBDD has twenty-five ter@ilisy one for each ordered
pair of results from the policies being compared (such asfP). A high level descrip-
tion of theAppl y operation is shown in Figure 5. For multiple policies, we canstruct
CMTBDD for each pair of policies to be compared and then agapeethe analysis results.

The construction of the CMTBDD is for the purpose of suppaytpolicy analysis
gueries. However, if we construct the CMTBDD without anatgzthe Boolean expres-
sions represented by nodes in MTBDDs, the resulting CMTBDDIa contain useless
information as shown in the following examples.

ExAMPLE 8. The left part of Figure 8 shows the MTBDDs of policies P3 ancaRd
their CMTBDD P34 constructed by thppl y operation. Policy P3 allows access during
time 6am to 8am while policy P4 allows access during time 2ZpApm. Since these two
time ranges are disjoint, the path shown as a dashed lineeir @MTBDD should not
exist, i.e., no request can satisfy this path.

The right part of Figure 8 shows the MTBDDs of policies P5 aBdRd their CMTBDD
P56. Policy P5 allows access when the conditian & 0 A x + y > 10" is satisfied.
Policy P6 allows access when the condition < 0” is satisfied. Without considering the
relationship between Boolean expressions of each node;ahstructed CMTBDD P56
contains one path (shown by the broken line) which can nexesakisfied.

The problem in the above examples is mainly due to the existehcomplex Boolean
expressions of category 2, 3 and 4. To solve the problem, wpose two important
operations termed awde unificatiorandauxiliary rule generationwhich are carried out
in the ratification module before the MTBDD construction. @eceed to present how to
apply the two operations to each type of Boolean expresdiwie that we do not need
to take special care of Boolean expressions of categoryce shey are just combinations
of previous types of Boolean expressions and such combireagre naturally reflected by

ACM Journal Name, Vol. V, No. N, Month 20YY.

15

Procedure Apply(V1, N2)
Input : Ny, N, are MTBDD nodes

1 initiate N // N, is the node in the CMTBDD

2 if N1 andN; are terminalshen

3 N; — (N1i.var + Na.war,null, null)

4 else

5. if N1.var = Na.var then

6 N..var < Ni.var

7 Nc.left «— Apply(NV1.left, Na.left, OP)
8 Ne.right — Apply(N1.right, Na.right, OP)
9 if N1i.var precedesVs.var then

10. N..var «<— Nj.var

11. Ne.left — Apply(Ni.left, N2, OP)

12. N..right «— Apply(N;.right, N2, OP)
13. if N2.var precedesV,.varthen

14. N..var < Ns.var

15. Nc.left < Apply(Na.left, N1, OP)

16. N..right < Apply(N2.right, N1, OP)
17. returniNV,

end Apply.

Fig. 5. Description of thé\ppl y operation

P3 P5 (X<

P34
.Oam<t<8a

\\1

o

\‘1

?E e

Fig. 6. Examples of CMTBDDs

the MTBDD structure.

Boolean expressions of category JFor one variable equality constraints, we need to be
careful about variables in the tree domain. For values atbegsame path in the tree,
an auxiliary rule is needed to guarantee that if a variablengtbe assigned a certain
value, then none of its children value can be satisfied. Famgke, suppose there are two
constraints, “domain = .edu” and “domain = purdue.edu”. @bgiliary rule will specify
that if the node of “domain=.edu” ifalse the node of “domain=purdue.edu” should also
befalse We will present how to generate such an auxiliary rule.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16

An auxiliary rule is represented as a Boolean expressiohz e a variable in a tree
domain andf, ..., fx be a set of equality constraints anoccurring in policies to be
compared. Suppose that, .., fi are in an ascending order of valuesigf.e., value inf;
is the ancestor of the value ji3 in the tree domain when< j. Then we have the following
auxiliary which specifies thaf; can be true only when everf; (i < j) is satisfied. The
effect of the rule is permit.

(fin=fo- - A=f) ViAo Afs o Aafi) Ve V(LA far oo A fom1 A fi)
Boolean expressions of category 2To generate unified nodes containing the Boolean
expressions of category 2, i.e. one variable inequalitystraints, we need to first find the
disjoint domain ranges of the same variable occurring iiecéht policies. Assume that the
original domains of a variable are[d; ,d], [dy ,d5], ...,[d;; , d;}], where the superscript
‘> and ‘+’ denote lower and upper bound respectively,can be—oo, andd;” can betoo
(1 <1i < n). We sort the domain bounds in an ascending order, and thelogmplane
sweeping technique which scans the sorted domain boundslé&f to right and keeps
the ranges of two neighbor bounds if the ranges are covertittinriginal domain. The
obtained disjoint rangesid,, d;"], [dy ,d5t], ..., [diy , dit], satisfy the following three

conditions. It is easy to prove that is at mostn — 2.

() d;,df €D,D=1{d;,df,..d; dt}.
1 1 n

i Y oy Umo

(i) U, [di,dt] = ur, [dy, df].

@iy Ny d,dt] =0.

1 7

After having obtained disjoint domain ranges, all relatesBan functions are rewritten
by using new domain ranges. Specifically, an original Baol&mction d;f <z dj
(1 <j<n,<e€{<,<})isreformatted as*_,(d,” <x < d;), whereut_,[d;”,d/T] =
[d;,dj]. Then, the ratification module generates unified nodes ofditme of N(f(z)),
wheref(z) is an inequality function in the form af,” <z < d;".

Next, we construct auxiliary rules to indicate that eachetiamly one node of can
be assigned the valueue. In other words, this rule tells the MTBDD module that each
variable can only have one value or belong to one disjoimgeaduring each round of the
assessment. In particular, given a set of constraints of, ..., fx, we have the following
auxiliary rule with the permit effect.

(fin=for Anfi)V(RfiAfa A fz o Anfi) VeV (mfi A fa s A fio1 A f)

An example of such auxiliary rule will be given in Example Qte¢ end of this section.
Boolean expressions of category 3This type of Boolean expressions is handled during
the combination of two MTBDDs. Given any one pathAl'BDD; and any one path
in MTBDD-, the path in the CMTBDD is obtained by merging the two pattingithe
Appl y operation. There are two cases where we need to invoke thes8l¥&r. In one
case, that is, when both paths contain nédddinear constraints, we need to use the SAT
solver to check the satisfiability of the merged path. In ttieeocase, that is, when only
one of the two paths contains nodes of linear constraintstendther path contains other
constraints (e.g. equality constraint) on the variablesioing in the linear constraints,
we also need to use the SAT solver to check the satisfiabilithemerged path. If the
Boolean expression corresponding to the merged path fiahte, the terminal in the
CMTBDD is the combination of the terminals 87 BD D, andMT BD D,. Otherwise,

3Here, we only need to consider nodes with 1-edge

ACM Journal Name, Vol. V, No. N, Month 20YY.

17

the terminal in the CMTBDD is “NA-NA” which means the varigshssignment along the
merged path does not satisfy policies correspondiny 6B DD, and MTBDD,. The
above steps are integrated into tyepl y operation, specifically line 3 in Figure 5 which
is revised to take into account the types of Boolean expmassisatisfiability check and
terminal changes.

To exemplify, consider policie®5 and P6 in Example 8. When the patlxr“< 0 A z +
y > 0" is merged with path{; < 0”, we need to check the satisfiability of “< 0Ax+y >
0 Ay < 0. Since it is unsatisfiable, the terminal of this path shdudd‘N-N" instead of
“CP-P” shown in Figure 8.
Boolean expressions of category 4or the Boolean functions of category 4, we use finite
automata techniques to determine satisfiability [Hopaft Ullman 1979]. In particular,
when combining two MTBDDs, we check whether the regular egpion constraints along
the same path in the CMTBDD can be satisfied simultaneoushyeXample, consider two
constraints t € L(“A*”)" and “z € L(“B x")” which requirex to be a string with
starting letterd and B respectively. Obviously, there is no assignment tiiat can satisfy
both constraints at the same time and we call these two eomistconflicting constraints
More generally, for all regular expression constraints fingt find all pairs ofconflicting
constraints Then for each paif; and f;, we construct an auxiliary rule with permit effect:
(fi N f) V(= fiN f;), which specifies that each time only one constraints cantixdisd.

The unified nodes and auxiliary rules are fed into the MTBDDdmle. The MTBDD
module constructs a MTBDD for each policy and each auxilraig. Then the MTBDDs
are combined and auxiliary rules are applied to the CMTBDD eWlhe effect of the
auxiliary rule isPermit, the terminal function follows the original CMTBDD. When the
effect of the rule idNotApplicable the corresponding terminal function changes to “NA-
NA”. Figure 7 summarizes the CMTBDD construction procediméowed by the PSA
module.

To illustrate the above steps, let us consider again polity 8nd Pol2 in Example 2.

ExampLE 9. Policy Poll and Pol2 are first translated into Boolean foraribs shown
in function (1) and (2) in Example 6. There are six variablesuwring in these policies,
namely “domain”, “time”, “affiliation”, “user”, “upload” a nd “download”.

For variables “domain”, “affiliation” and “user”, whose Bodean expressions belong to
the first category, the preprocessor generates nd@ésmnain = “.edu’”), a(af filiation =
“IBM") andu(user = “Bob”), and sends them to the MTBDD module. For the Boolean
formulae of variable “time” which are inequality constras) the preprocessor sends them
to the ratification module. The ratification module compukesdisjoint range of the vari-
ables and obtain three nodest (6 < time < 8), t2(8 < time < 20), t3(20 < time <
22). Correspondingly, Poll and Pol2 are rewritten as:

Poll Bypermit = (domain = “.edu”) A ((8 < time < 20) V (20 < time < 22))
© Bdeny = NULL
®3)

Bpermit = ((domain = “.edu” V af filiation = “IBM?”)
A (6 < time < 8V 8 < time < 20)))
V (user = “Bob” A upload + download < 1GB)

Bieny = NULL

An auxiliary is associated with the variable “time”, which expressed as follows.

Pol2

ACM Journal Name, Vol. V, No. N, Month 20YY.

18

Procedure CMTBDD_Construction(Pi, Ps, ..., P,)
Input: P; is a policy,1 <i<mn

/* Policy Preprocessor */

1. translate policies into Boolean formul&#; and BF;

2. for each variable in BFy and BF;

3. Cy — [f1(z), ..., fn(x)] Il & cluster of atomic Boolean expressions with
/* Ratification Module */

4. if C.. contains only Boolean expressions of category 1

5. construct node&V (f;(x)) for every fi(xz)(1 <i < n)

6. construct auxiliary rules for the domain constraint

7. if C.. contains Boolean expressions of category 2

8. compute disjoint domains af

9. convert every; () to f;(x) by using new domains

10. construct auxiliary rules for the domain constraint

11. construct nod& (f!(x)) for every f;(x)

12. if C, contains Boolean expressions of category 4

13. construct nod&/ (f; (x)) for every f; (z)

14. find conflicting constraints

15. construct auxiliary rules for each conflicting constraint

/* MTBDD Module */
16. construct an MTBDD for each policy
17. construct an MTBDD for each auxiliary rule
18. combine MTBDDs and create the CMTBDD,
invoke the ratification module when Boolean expressions of categomy &amountered
19. combine the CMTBDD with auxiliary rules
end CMTBDD.Construction.

Fig. 7. Procedure of CMTBDD Construction

(t1 A=t A —t3) V (=t Ata A —t3) V (=t A —ta Ats)

Variables “upload” and “download” appear in a linear funatin. The ratification mod-
ule checks its satisfiability and then inform the MTBDD medol construct the terminal
“CP” for it.

By taking the unified nodes and new Boolean formulae as intheésMTBDD module
first constructs the MTBDD for each policy and auxiliary rsilas shown in Figure 9.
Notice the difference between the MTBDDs of Pol2 in Figured Bigure 9 where node
t in Figure 7 is split into nodesl and¢2 in Figure 9. Then these MTBDDs are combined
into one CMTBDD. In the following subsection, we show howG@MTBDD is used to
execute policy analysis queries.

5.4 Query Processing Strategy

Policy analysis queries are carried out based on the MTBDidsGMTBDDs. For the
same set of policies, we only need to construct their MTBDBs$ @M TBDDs once and
store them in the policy repository for the query processingvhat follows, we propose
a generic query processing algorithm that applies to aégygf queries on both single and
multiple policies. Note that the technique used for quesies single policy is a special
case of the technique used for queries on multiple poli¢tess we only discuss queries
on multiple policies in the following.

ACM Journal Name, Vol. V, No. N, Month 20YY.

19

Fig. 8. MTBDD of policies Poll and Pol2 and the auxiliary rule

Recall that each query has three types of constralBjs.e, and f,, whereB, is a
Boolean expression oAttr,, e, is the desired effect ang, is a constraint on a set of
requests. The query algorithm consists of three steps. Tétestiep preprocesses the
guery, the second step constructs the query MTBDD and pesfanodel checking, and
the final step performs some post-processing.

In particular, for a given query, first we normalize If§, map the specified ranges of
attributes to the existing unified nodes, and representideified ranges as corresponding
unified nodes. Then, we construct the query MTBDD. Here, wetizat the normalized
B, and effect, in a query as a rule, and then construct the MTBDD for it. Wiiference
to Example 1, a query likéind the time interval when the user from domain “.edu” can
access the dataan be translated as “given Domain = “.edu”, Decisiopermit, find all
possible requests”. Figure 9 shows the corresponding qd&BDD.

Query

0 1

13
Fig. 9. Query MTBDD

After we obtain the query MTBDD, we combine it with the MTBDD @MTBDD of
the policies being queried, where we obtain a temporargstre called Query CMTBDD.
By using the model checking technique on the Query CMTBDD aveenow able to find
the requests satisfying thé, ande,. As for the example query, we just need to find
all paths in the Query CMTBDD which leads to the terminal ndrfie-P”. Note that for
conditional decisions, the nodes along the path may need é&xémined by plugging the
specific variable values.

As for the policy queries with an empty setBf, such as the policy relationship eval-
uation queries, the processing is even simpler. We only teeedeck the terminals of the
CMTBDD. For example, to check if two policies are equivalemé check whether there

ACM Journal Name, Vol. V, No. N, Month 20YY.

20

exist only three terminals containing “P-P”, “D-D” and “N*Nwhich means two policies
always yield same effects for incoming requests.

Finally, a post-processing may be required if there aretcaings specified byf,. This
step is straightforward since we only need to execute somplsiexaminations on the
requests obtained from the previous step. The resultsheili be collected and organized
by the result analyzer before being presented to the user.

6. EXPERIMENTAL EVALUATION

We have developed a prototype of PSA in Java. An implememtati the modified sim-
plex algorithm [Agrawal et al. 2005] has been used for prsicgsBoolean expressions
with real value linear constraints. The modified CUDD lilyrdeveloped in [Fisler et al.
2005] has been used for the MTBDD module. In order to test oynlémentation, we
generated XACML policies with a random number of rules. Faxtepolicy rule, we first
randomly generated atomic Boolean expressions of theliise ttypes introduced in Sec-
tion IV.B#, and then concatenated them with the operatator or. The atomic Boolean
expression (ABE for short) usually contains a pair of attitoname and value except for
the atomic linear inequality function which has multipl¢riautes. The attributes in each
atomic Boolean expression were randomly selected from defireed attribute set. We
performed policy similarity analysis between pairs of gated XACML policies with
varying number of rules and attributes. Each point in theréige the average number
of 10 experiments. The experiments were conducted on aPatelium4 CPU 3.00GHz
machine with 512 MB RAM.

The performance of our policy similarity analyzer is detered by two main modules:
the ratification module and MTBDD module. In what follows, ¥itst evaluate the pre-
processing time taken by ratification module and then reperbverall response time.

6.1 CMTBDD Construction

6.1.1 Preprocessing TimeCompared to Margrave [Fisler et al. 2005], our policy simi-
larity analyzer supports more rich classes of policies. gértormance difference between
the two approaches mainly lies in the preprocessing timentdly the ratification module
which analyzes the relationships between atomic Boolepresgions before sending them
to the MTBDD module. Therefore, in the first round of expenitse we examined the time
consumed by the ratification module.

We plotted the time taken by the ratification module in Figh@efor policy pairs. The
average number of atomic Boolean expressions was variegebrt50 and 150 for each
policy. The number of rules in each policy was varied betw@and 32. We can see that
the processing time is linear with the number of rules andnatdoolean expressions.
Specifically, in the case where each policy has 32 rules afdafidimic Boolean expres-
sions, the processing time is about 0.5% percent of the bvesponse time. We can
conclude that the overall response time is mainly dominhyeithe MTBDD module.

6.1.2 Total Response Timale now evaluate the total time taken to obtain the final
CMTBDDs for policies to be compared. Figure 11 shows theltesthen we increase the
number of atomic Boolean expressions associated withipsli€or visual clarity, we have
plotted the time in log scale. It is not surprising to see thateasing the number of atomic

4We have not fully tested the automata technique for procgssiular expression constraints.

ACM Journal Name, Vol. V, No. N, Month 20YY.

21

=
.

o B 8 Rules

E 03 | 016 Rules

£ | OD32Rules

=]

=

‘s 0.2 -

0

[

[

Q

5 0.1

|

o

0 b T T T T
50 75 100 125 150

Average Number of Atomic Boolean Expressions

Fig. 10. Response Time Taken for Preprocessing a Pair ofi€®lic

Boolean expressions results in an increase in the time ddedsimilarity analysis. We
also observe that the actual minimum and maximum respamsedtained were 0.1s and
50.4s respectively. Considering that the number of thébatr value pairs (i.e. atomic
Boolean expressions) in policies tend to lie in the range0aio2100 as reported in [Fisler
et al. 2005], our approach yields reasonable response tinbd general case in practice.

In another experiment, results of which are reported in fédL2, we fixed the number
of atomic Boolean expressions in each policy and varied timelxer of pairs of policies to
be analyzed for similarity. We examined policies with anrage of 100 atomic Boolean
expressions, and ran the experiments for policies with 8l&dules. We observe that
the time taken to construct CMTBDDs for a few hundred pofigeabout one minute. In
particular, the minimum and maximum response time obtafoedhese experiments is
0.44s and 63s respectively. The results again demonsthetdsasibility of our approach
to be adopted in real world applications.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of policyilanity analysis. We identified
and defined three types of basic policy analysis queries;iwten be combined to repre-
sent a variety of advanced analysis. We proposed a commighegnvironment EXAM
that takes advantage of different techniques and thus sskelsdhe limitations of previous

-
=
=

w m 8Rules

E 016 Rules

= 104 O32Rules

2

=

Q

j=1

E

Q

N

0.1 T . T T
50 75 100 125 150

Average Number of Atomic Boolean Expressions

Fig. 11. Total Response Time for Varying Number of Atomic Bool&xpressions

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 .

100

B 8 Rules
016 Rules

il

Number of Policy Pairs

10

Total Response Time (s)

0.

=

Fig. 12. Total Response Time for Varying Number of Policy Pairs

approaches. The key component of our environment is theypsilinilarity analyzer which
is able to perform various types of analysis. In particullais policy analyzer integrates
the SAT-solver-based and MTBDD-based techniques, thushitong their advantages.
We have implemented our proposed analyzer and the expadahmesults demonstrates its
efficiency.

Several promising directions exist for the future work. sEiwe plan to complete the
development of the other components of the environmentwaie still in a preliminary
development stage. The second direction is to examine mmatgsas techniques and tools
to determine whether they could extend the functionalitthefcurrent version of EXAM.
Also, we are interested in exploring new types of policy gsigl queries and the problem
of separation of duties. Finally, we plan to exploit ontaésgand ontological reasoning to
deal with cases in which policies use different name spaleasthus need to be reconciled.

REFERENCES

Iso 10181-3 access control framework.

Parthenon xacml evaluation engirretp://www.parthenoncomputing.com/xactoblkit.html

Sun’s xacml open source implementatidritp://sunxacml.sourceforge.net

2005. Extensible access control markup language (xacmiipve2s0. OASIS Standard

AGRAWAL, D., GILES, J., LEE, K. W., AND L0OBO, J. 2005. Policy ratification. IfProceedings of the IEEE
International Workshop on Policies for Distributed Sysseand Networks (POLICY223-232.

AHMED, T. AND TRIPATHI, A. R. 2003. Static verification of security requirementsaterbased cscw systems.
In Proceedings of the ACM Symposium on Access Control ModdISeahnologies (SACMAT)96-203.

BACKES, M., KARJOTH, G., BAGGA, W., AND SCHUNTER, M. 2004. Efficient comparison of enterprise
privacy policies. InProceedings of the 2004 ACM Symposium on Applied Comp8iaG) 375-382.

BAKER, M., KIMBERLY, K., AND SEAN, M. 2005. Why traditional storage systems do not help us saife st
forever.HPL-2005-120. HP Labs 2005 Technical Reports

BERTINO, E. AND MARTINO, L. 2007. A service-oriented approach to security - coregptd issues. In
Proceedings of the International Symposium on Autonomeggbtralized Systems (ISADS) and of the IEEE
International Workshop on Future Trends of Distributed @aoiting System21-23.

BLAZE, M., FEIGENBAUM, J., IDANNIDIS, J.,AND KEROMYTIS, A. D. 1999. The KeyNote trust-management
system, version 2. IETF RFC 2704.

BLAZE, M., FEIGENBAUM, J.,AND M.STRAUSS 1998. Compliance checking in the policymaker trust man-
agement system. IRroceedings of the International Conference on Financialpfography 254 — 274.

FISLER, K., KRISHNAMURTHI, S., MEYEROVICH, L. A., AND TSCHANTZ, M. C. 2005. Verification and
change-impact analysis of access-control policiesPrisceedings of International Conference on Software
Engineering (ICSE)196-205.

ACM Journal Name, Vol. V, No. N, Month 20YY.

23

FuJITA, M., MCGEER, P. C.,AND YANG, J. C.-Y. 1997. Multi-terminal binary decision diagrams: Aficgent
datastructure for matrix representatidtormal Methods in System Design 293, 149-169.

GUELEYV, D. P., R'AN, M., AND SCHOBBENS, P. 2004. Model-checking access control policie®loceedings
of the Information Security Conference (1S€19-230.

HopcROFT J. E.AND ULLMAN, J. D. 1979. Introduction to automata theory, languages antpatation.
Addison Wesley

KocH, M., MANCINI, L. V., AND P.-RREsICCE F. 2001. On the specification and evolution of access cbntro
policies. InProceedings of the ACM Symposium on Access Control ModelSechnologies (SACMAT)
121-130.

KoLovskil, V., HENDLER, J.,AND PARSIA, B. 2007. Analyzing web access control policies.Pimceedings
of the International World Wide Web Conferen6&7.

LiN, D., Rao, P., BERTINO, E.,AND LOBO, J. 2007. An approach to evaluate policy similarityPimceedings
of the ACM Symposium on Access Control Models and Techesl(§ACMAT)1 — 10.

Lupu, E. AND SLOMAN, M. 1999. Conflicts in policy-based distributed systems mansnt.|[EEE Transac-
tions on Software Engineering (TSE) 85 852—-869.

MAZZOLENI, P., BERTINO, E.,AND CRISPQ, B. 2006. Xacml policy integration algorithms. Broceedings of
the ACM Symposium on Access Control Models and Technol(@#&SMAT) 223-232.

MCDANIEL, P. AND PRAKASH, A. 2006. Methods and limitations of security policy recdiation. ACM
Transactions on Information and System Security (TISSE&)Z59 — 291.

MOFFETT, J. D.AND SLOMAN, M. S. 1993. Policy conflict analysis in distributed systennagementJournal
of Organizational Computing

MORR, D. 2007. Lionshare: A federated p2p app.iternet2 members meeting

RAO, P., LiN, D., AND BERTINO, E. 2007. Xacml function annotations. IEEE Workshop on Policies for
Distributed Systems and Networks

UNITED STATE DEPARTMENT OFHEALTH. Health insurance portability and accountability act d®@9Avail-
able at http://www.hhs.gov/ocr/hipaa/.

ZHANG, N., RvAN, M., AND GUELEYV, D. P. 2005. Evaluating access control policies through rndterking.
In Proceedings of the Information Security Conference (18€§—-460.

ACM Journal Name, Vol. V, No. N, Month 20YY.

