
CERIAS Tech Report 2007-98
Passwords Decay, Words Endure: Secure and Re-usable Multiple Password Mnemonics

 by Mikhail J. Atallah
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Passwords Decay, Words Endure: Secure and Re-usable
Multiple Password Mnemonics

Umut Topkara Mikhail J. Atallah
∗

Mercan Topkara
Department of Computer Sciences

Purdue University
West Lafayette, IN, 47906, USA

utopkara,mkarahan,mja@cs.purdue.edu

ABSTRACT
Research on password authentication systems has repeat-
edly shown that people choose weak passwords because of
the difficulty of remembering random passwords. Moreover,
users with multiple passwords for unrelated activities tend to
choose almost similar passwords for all of them. Many pass-
word schemes have been proposed to alleviate this problem,
but they either require modification to the password entry
and processing infrastructure (e.g., graphical passwords) or
they require the user to have some trusted computing power
(e.g., smartcard-like portable devices, browser plugins, etc).
We propose a scheme that is applicable to any existing sys-
tem without any modification, as it does not require any
form of involvement from the service provider (e.g., bank,
brokerage). Nor does it require the user to have any com-
puting device at hand (not even a calculator). Our approach
consists of generating a mnemonic sentence that helps the
users remember a multiplicity of truly random passwords,
which are independently selected. The scheme is such that
changes to passwords do not necessitate a change in the
mnemonic sentence that the user memorizes. Hence, pass-
words can be changed without any additional burden on the
memory of the user, thereby increasing the system’s secu-
rity. An adversary who breaks one of the passwords encoded
in the mnemonic sentence does not gain information about
the other passwords. A key idea is to split a password in
two parts: One part is written down on a paper (helper
card), another part is encoded in the mnemonic sentence.
Both of these two parts are required for successfully repro-
ducing the password, and the password reconstruction from
these two parts is done using only simple table lookups.
Passwords’ renewal requires only the re-generation of the

∗Portions of this work were supported by Grants IIS-
0325345, IIS-0219560, IIS-0312357, and IIS-0242421 from
the National Science Foundation, and by sponsors of the
Center for Education and Research in Information Assur-
ance and Security.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07 March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

helper card. Our scheme resolves the apparent contradic-
tory requirements from most password policies: That the
password should be random, and that it should be mem-
orized and never written down. This makes possible pass-
words that are more secure against an adversary who illicitly
gains access to the password file, as a dictionary attack is
now unlikely to succeed (the attacker now needs to carry
out a more daunting brute force enumerative attack). Even
if the adversary somehow obtains the helper card, it gets
quantifiably limited information about the passwords of the
user (so the helper card may be lost or stolen without dis-
aster immediately striking the user). We quantify the time
period required for this adversary to successfully crack the
password.

Categories and Subject Descriptors
H [Information Systems]: Models and Principles—Secu-
rity

General Terms
Security, Design

Keywords
Authentication, Passwords, Mnemonic Sentence, Usability,
Natural Language Processing

1. INTRODUCTION
Speaking at the opening of the 2005 AusCERT conference,

Microsoft’s Jesper Johansson said that “companies should
not ban employees from writing down their passwords, be-
cause such bans force people to use the same weak password
on many systems.” In [14] Schneier provocatively suggests
to users, “write down your passwords”, in agreement with
Johansson, and adds that people “are much more secure if
they choose a password too complicated to remember and
then write it down” , since “we are all good at securing a
small piece of paper”. This is because the probability of the
above mentioned sheet of paper compromising the password
is much lower than the probability that a weak password
will be exploited by an adversary.

In the present paper we show that one can actually write
something that is (to the user) a complete description of
the password, yet is of little value if the sheet of paper is
lost or stolen or otherwise compromised. Our approach is

292

The birth of ice-cream….

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 d ! # S u S # d d d > , , 4 ^ ^ S ! > 4 u , u S , >

4 2 h ; \ 9 ? { 2 h ; o ? 5 o \ ? { { ; 5 o ; 2 h ? o

-3) w w $ 7 ~ & F ~ $ 7 m 7 & w m ~ F $ 3 $ F 3 m m &

-1 / 0 / = i 6 = v x 6 = 6 6 v ? 0 v 0 0 & ? = / = = = am
azo

n
T

-?
4

eba
y

$
f&

8

T_?4 !5Fv

5

F
v

!

1 8 o “ = b = “ 8 8 8 n $ $ P : : = o n P b $ b = $ n

4 T 3] z # x _ T 3] q x 7 q z x _ _] 7 q] T 3 x q

-3 - n n G) 5 ! 4 5 G) @) ! n ‘ @ 4 G r G 4 r ‘ ‘ !

-1 j 8 j z ! ; z 2 L ; z ; ; 2 \ 8 2 8 8 < \ z j z z z

yah
oo

l(
5

~

1 K + g ` b ` g K K K (@ @ & 5 5 ` + (& % @ % ` $ (

4 & C 1 ? j | 0 & C 1 * | d * ? | 0 0 1 d * 1 & C | *

-3 ? ^ ^ 0 < l # e l 0 < h < # ^ 3 h e 0 ; 0 e ; 3 3 #

-1 + 8 + * A g * u = g * g g u “ t u t t < “ * + * * *

Figure 1: Helper card and a password lookup: The user reconstructs the desired password (e.g., for “amazon”)
in two steps: i) copying part of the password written in clear text (e.g., “T-?4”) ii) looking up the rest of
the password from the table by using the letters of the mnemonic word (e.g., “birth” in this case) which
are indexed by the letter positions given in the first column (e.g., the first, the fourth, the third from last
and the last letters of the mnemonic word). Note that the helper card does not have any markings, the
highlights in the figure are inserted for the sake of narrative clarity. Every word that is longer than 4 letters
are mnemonic words, and are used in the same order to decode passwords (e.g. “birth” encodes the first
password, “ice-cream” encodes the second password on the card)

to complement the written sheet of paper (henceforth re-
ferred to as the helper card) with an unwritten mnemonic
sentence, thereby making what is written on the helper card
more cryptic in case it is lost or stolen. In other words, both
card and mnemonic sentence are needed for reproducing the
passwords; as the mnemonic lies between the user’s ears, it
provides the security commonly categorized as “something
you know”, whereas the helper card provides the security
categorized as “something you have”. We also describe a
mnemonic sentence generation mechanism such that an ad-
versary who breaks one of the passwords does not gain ad-
ditional information about the other passwords even with
access to the helper card. Overall our approach does not
reduce the security of the existing password authentication
infrastructure, it provides a more secure alternative for the
users who write down their random passwords.

Before plunging into the details, we briefly mention the
challenges we had to overcome, and give a glimpse of our
approach to them.

• Using the same mnemonic for multiple passwords, in
such a way that one password’s compromise does not
translate into another password’s compromise. The
highly structured nature of natural language text, and
its known statistical properties, stood in the way of
achieving this goal. In a nutshell, we “decoupled” pass-
words from each other by using only a subset of En-
glish: Rich enough to prevent an adversary’s enumer-
ation of all possible mnemonics, yet restricted enough
that it does not have the above-mentioned drawbacks.

For example, the existence of a password that can be
encoded with the word “ink” does not imply a more
likely existence of another password that can be en-
coded with the words “paper” or “pen”. This require-
ment turns out to be surprisingly easy to implement,
by independently selecting the mnemonic words from
each other and later using these words to construct the
mnemonic sentence.

• Achieving easy user reconstruction of a password from
the helper card and the mnemonic, without any access
to a portable computing device (not even a simple cal-
culator). In our system the user makes one simple
table lookup per encoded password letter while recon-
structing the password. Refer to Figure 1 for an exam-
ple of the helper card table used in this kind of lookup.

• Generating mnemonic sentences that have both de-
sired properties (of being memorable and having the
required encoding capacity). Here is an example: “The
birth of ice-cream: Why and how we sneeze at mid-
night.” We achieved this by carrying out judicious
word-substitutions on a sentence drawn from the news
headlines. We used newspaper headlines since they
summarize a story, thus form a connected discourse,
which was experimentally shown [8] to be much easier
to learn than same amount of nonsense. We will ex-
plain how later, for now we merely mention that we do
this, guided by the distance between words as reported
in WordNet [4].

293

Mnemonic Generation W
(mnemonic
sentence)

New Password Set

C
(helper card)

Helper Card
Construction

P
(passwords)

Reset Password

Figure 2: Mnemonic System: The computational
parts.

We will first give a usage scenario in Section 2 leaving
out the discussion of the details that are transparent to the
user. Then in Section 3 we will discuss the details that
pertain to the construction of the helper card, the encoding
of random strings using a limited vocabulary of words and
the generation of natural language sentences. Finally, in
Section 4, we include a survey of related work in password
authentication and with analysis of their impact on our work
as well as their similarities, and differences from our work.

2. MNEMONIC USAGE
In this section we describe a typical scenario of mnemonic

password usage.
The life cycle of a mnemonic password (Figure 2) starts

with selection of a mnemonic sentence by the user. The
system generates a set of mnemonic sentences, from which
the user picks one sentence that is easier to remember and
memorizes this sentence. A mnemonic sentence W contains
k mnemonic words W1, . . . , Wk, each of which are of length
≥ m.

Later, the user is assigned a set of l random passwords,
P = {P1, . . . , Pl}, by third parties (e.g., banks, brokerages,
online shops, school or work accounts, etc.) or the user picks
some or all of the passwords. Each of these passwords are
composed of ≤ n password symbols, Pi = (pi,1, . . . , pi,n).

The system then constructs a lookup table by using P and
W, and this table is printed on a card (the size of a credit
card for convenience) as in Figure 1. We refer to this lookup
table as helper card. The user keeps the helper card secure,
preferably along with credit cards in the user’s wallet.

When the user wants to remember Pi = (pi,1, . . . , pi,n),
the user does the following:

1. finds the ith table in the helper card. This table has
two parts, a string Gi and a table Ti (e.g., G1 is T-?4

in Figure 1).

2. types Gi, which is the first n−m symbols of the pass-
word (pi,1, . . . , pi,n−m) printed in clear on the helper
(possibly Gi = ∅, if desired).

3. retrieves Wi from memory (e.g., W1 is the word “birth”
in Figure 1).

4. derives the remaining symbols of the password pi,n−m+j

by i) finds wi,j by retrieving the mnemonic letter pointed
by the index value stored in the first column of jth row
ii)looking up wi,j in the jth row of Ti (e.g., the first
encoded symbol of the “amazon” password is decoded
using “b”, the 1st letter of the word “birth”).

Password Changes: The passwords that are assigned
to the user can change, and the user need not change the
mnemonic; only the table of the helper card that corre-
sponds to the changed password needs to be reconstructed.

Lost Helper: As we noted earlier, the user needs to keep
the helper card secure. However, the helper card may be lost
or stolen - without disaster immediately striking the user:
the user has a limited but known amount of time before
a password in the helper card can be compromised. This
secure time period is ensured by the encoding of the pass-
word on the helper card; the adversary will likely have to
perform a known, large number of brute force login trials
before successfully compromising the system. As soon as it
is known that the helper card is lost or has been copied by
an adversary, the user needs to change all the passwords and
generate a new helper card to remember them, however the
user does not need to change the mnemonic.

Compromised Password: A very important property
of password mnemonic sentences are their resilience against
an adversary that has compromised one of the passwords.
It is possible that one of the passwords is compromised by
an adversary without the information of the helper, e.g., by
catching user’s keystrokes. Since the passwords are indepen-
dently generated from each other the rest of the passwords
cannot be compromised. However, in the case which the
adversary also has access to the helper, the compromise of
Pi will leak information about Wi. In a normal English sen-
tence, such knowledge would reveal other words, e.g., the
word “ink” is usually used in the same sentence with words
“paper” or “pen”. This would have disastrous consequences
since the adversary would learn the passwords encoded by
those words for free. In order to rule out such situations, the
mnemonic is constructed in a way that Wi will not leak in-
formation about any other part of the mnemonic; hence the
adversary gains no additional information about the rest of
the mnemonic or the rest of the passwords by compromising
Pi (more on this in Section 3).

3. BEHIND THE SCENES
This section discusses details of the system that pertain to

the parts that do not involve user interaction: The compu-
tation of helper cards’ content, the generation of candidate
mnemonics.

3.1 Passwords and Helpers
We first discuss the relationship between the input (i.e.,

the password) and the outputs (i.e., the mnemonic and the
helper card) in the computational parts of the mnemonic
system. As noted earlier, the requirements of our multi-
password mnemonic system for helper card and mnemonic
sentence are: i) both the mnemonic sentence and the helper
card are needed to reconstruct the password, ii) this recon-
struction of the password can be performed by the user with-
out computational aids, using table lookups.

We now make a brief digression to discuss why the simple
“secret splitting” idea from cryptography is not suitable for
our purpose. Recall from [13] that to split a secret password
P , into two you (i)pick a random Rs , (ii)create the two parts
as Rs (a random seed), and E(P ,Rs). There are several
problems with this approach in our application:

1. The Rs (the mnemonic sentence) can not be a random
string as it has to be memorable to the user.

294

2. The decryption of P is not possible for a human to
perform without a computational aid.

Replacing in the above E(P , Rs) by P ⊕Rs, where ⊕ is the
bitwise exclusive-or operator, makes it moderately doable by
a computer-less human, but has the severe drawback that
compromise of one password automatically reveals Rs as
well as all the other passwords. Our system uses a different
Rs for each password to alleviate this problem.

Note that, P ⊕ Rs would not leak any information about
either of Rs or P without the knowledge of the other, hence
P⊕Rs can be made public. However, Rs, which needs to be
kept secret, is still a random string, and is not easier to mem-
orize than the password P itself. We achieve memorability
of Rs by a process called “mnemonic generation”, which
is the conversion of Rs into an easy to remember human
language sentence (e.g., English). The details of mnemonic
generation is given in Section 3.3; in summary, our system
first finds a set of words that encode each Rs (every P will
have a different one), then generates sentences by picking
one word from each of these sets with the help of natural
language generation techniques.

Mnemonic generation (see Figure 3) is the task of creat-
ing a candidate set of easy to remember sentences that can
encode a given random seed string. Mnemonic generation
concludes with the user’s selection of one of the candidate
mnemonic sentences for remembering as a mnemonic.

Let Rs be the random seed that generated the candidate
mnemonic set and let the mnemonic chosen by the user be
W.

The computation of the mnemonic sentence from the Rs

uses an encoding of the Rs as words in a vocabulary; the
details of this encoding will be discussed in Section 3.3. Let
us refer to d() as the corresponding decoding function that
can derive Rs from W, such that d(W) = Rs, and refer
to e() = d−1() as the encoding function. Note that Rs is
different from a password, it is a seed that is used internally
by the mnemonic system to produce the candidate set of
mnemonic sentences that encode Rs, and is also transparent
to the user.

After the mnemonic generation and selection of W as the
mnemonic, a password P is needed to proceed to the helper
construction task. Since the mnemonic is selected without
the knowledge of password, an adversary who learns the
password at this step will not have any information about
the mnemonic. Also if an adversary learns the mnemonic,
this information will not reveal the password.

Let Rh be the result of Rs ⊕P . Since both Rs and P are
random strings Rh will also be random. One can compute P
using Rs and Rh from P = Rs ⊕Rh, or P = d(W)⊕Rh. In
order to be able to perform this operation by hand we choose
our decoding function such that pi = d(wi)⊕ rh,i as well as
rs,i = d(wi) hold: P can be reconstructed by decoding it
symbol by symbol.

Helper construction is the task of building a lookup ta-
ble that can perform lookup(i, wi) = d(wi)⊕ rh,i by looking
the ith mnemonic letter, wi, in the ith row of the table.
The password is the concatenation of the successive table
lookups for the mnemonic letters in the mnemonic, P =
(lookup(1, w1), . . . , lookup(n, wn)). An example of helper
card lookup was given in Section 2. We will discuss the
details of the encoding function in Section 3.2.

3.2 Encoding with Word Sets
Mnemonic generation (see Figure 3) is the task of creating

sentences that encode a set of random seed strings. In this
subsection we will discuss how to find an encoding function
and in the next subsection we will describe the generation
of mnemonic sentences from word sets.

Let V be the vocabulary of words that our mnemonic
sentences will use, Wi ∈ V , and let Q = {0, 1, . . . , |Q| − 1}
be an alphabet, let S be the i.i.d. set of all strings of length
m defined on Q, S = {x : x ∈ Qm}, and Rs ∈ S.

In order to efficiently use the memory of users, we should
find an onto decoding function that maps V to the largest
possible random string set (i.e., maximize the size of S, |S|)
in a given number of lookup operations, m.

Let N be a sequence of letter indices, such that length(N) =
m. Let dN : V → S be a desired decoding function. dN can
be computed from individual letters of its input as indexed
by N using m mapping functions dN,i : {a, . . . , z} → Q,
such that :

∀v ∈ V, dN(v) = (dN,1(vN[1]), . . . , dN,m(vN[m])).
In our implementation we performed a heuristic search to

obtain a decoding function that maximizes |S| for a given
|Q|. See Table 1 for statistics of the results of our implemen-
tation for different |Q| values when N is a subsequence of
(1, 2, 3, 4,−4,−3,−2,−1). Note that negative values in ele-
ments of N refer to positions counting from the last letter
backwards. The resulting |S| is very small compared to the
size of the dict file, this is because we have limited our Rs

to be i.i.d. in Qm. It is possible to achieve |S| closer to 26m,
which is the maximum number of strings of length m that
can be constructed using English alphabet, if we allowed
Prob(Rs) = 0 for some Rs ∈ Qm. We have excluded this
case from the scope of this paper, for the sake of simplicity.

We then used lookup(i, v) = (dN,i(vN[i])+zN,i) mod |Q′|,
where (zN,i + wi) mod |Q′| = pi and Q′ is the alphabet
from which P is derived (e.g., Q′ is the set of printable
ASCII characters in most UNIX systems). A helper card
constructed this way decodes the ith mnemonic letter, wi

(which is the N [i]th letter of the mnemonic word), into the
ith password letter, pi. Note that, the same dN,i is used
for every mnemonic word in Figure 1, only zN,i values are
different, therefore corresponding rows of different helper
tables share the same mapping pattern. For instance the
mnemonic letters “h,i,j” always map to the same password
letter in the 1st row.

The time required to break a password when the helper
card is lost, depends on the size of domain of the encoding
function we use, |S| = |Qm|. If t is the time that it will take
the adversary to try 1 password for login, on the average it

will take |Qm|×t
2

units of time to break one password using
the helper card.

3.3 Mnemonic Generation
Recall that our system starts with generating a set of ran-

dom seeds which will be used to conceal passwords in helper
cards. Let Rs = (Rs,1, . . . , Rs,k) be the list of k random
seeds that were generated for the user, which can be en-
coded in a mnemonic sentence that has the capacity to re-
mind up to k passwords. In Section 3.2 we have described
an encoding function that maps random strings into sets of
vocabulary words, Wi = e(Rs,i) .

In this section we will describe how our system generates
sentences by picking one word from each word set Wi with

295

Random Number
 Generator R S

(random seed)

Mnemonic
Search

1. The birth of ice-cream: Why do we ….
2. Piranhas are occasionally friendly …
….
….

Mnemonic Set

W
(mnemonic)

Figure 3: Mnemonic Generation and Selection: Initial selection of the mnemonic sentence involves the users,
since memorability of a sentence depends on individual experiences and tastes.

Size of Number of Number of Mnemonic Letter
Alphabet Lookups Passwords Positions

|Q| m |Qm| N
3 7 2187 1,2,3,4,-4,-3,-1
4 6 4096 1,3,4,-4,-3,-1
5 5 3125 1,3,-4,-3,-1
6 4 1296 2,4,-3,-1
7 4 2401 2,4,-3,-1
8 4 4096 1,4,-3,-1
9 4 6561 1,4,-3,-1
10 3 1000 1,3,-3

Table 1: Decoding function: The results of our
heuristic search algorithm to find decoding func-
tions. The input vocabulary was 353056 alphabetic
strings from the Linux dict file that are longer than
3 letters. The index sequence from which N is com-
puted was (1, 2, 3, 4,−4,−3,−2,−1), and the program
was run for alphabet sizes ranging from 3 to 10. The
program found an encoding that can map elements
from a domain set of 6561 random strings to strings
in dict file, and has a decoding table that requires 4
lookups.

the help of natural language generation techniques.
In order to achieve memorability of the generated sen-

tences we use a large corpus of newspaper headlines as tem-
plate sentences: while doing the best effort to maintain the
original meaning of them, we modify them through word
substitutions to contain a subsequence (W1, . . . , Wk) where
Wi ∈ Wi. Sentences that our system generates are usually
easy to memorize, since the templates that we use have been
curated by newspaper editors to summarize stories thus form
a connected discourse, which was experimentally shown [8]
to be much easier to learn than same amount of nonsense.

Let L be a template sentence from our corpus, where
Ls = (l1, . . . , lk) are the words that our system uses for word
substitutions. In order to preserve the attractiveness of the
original sentences, we employ a heuristic search for substi-
tutions which minimizes the maximum value of δ(li, Wi),
where δ is a function that quantifies the similarity of the
input words.

In our implementation we used the path function that is
part of the WordNet::Similarity [10] library as our similar-
ity function δ. path returns the length of the shortest path
of “is-a” relationships between two concepts in WordNet [4].

Let us use an example to demonstrate the search for a
good substitution word, where l1 is the template word “news-
paper” and W1 = {mirror, letter} are the words that en-
code our desired random string. The word “letter” would be
preferred by our system to substitute the word “newspaper”,
because δ(newspaper,mirror) is 8 and δ(newspaper, letter)
is 6 (“newspaper#n#1” denotes the 1st noun sense of the

word “newspaper”):

• Shortest path between “newspaper” and “mirror”:
“newspaper#n#1 press#n#3 print media#n#1
medium#n#1 instrumentality#n#3 device#n#1
reflector#n#1 mirror#n#1”

• Shortest path between “newspaper” and “letter”:
“newspaper#n#3 product#n#2 creation#n#2
representation#n#2 document#n#2 letter#n#1”

As we have noted before, if the adversary compromises the
helper card as well as the password Pi, the set of mnemonic
words from which Wi is picked can be easily revealed. This
would have disastrous consequences about the security of the
rest of the words in the mnemonic sentence, since natural
languages have a regular structure. In our approach, W is
derived from Rs which is randomly generated. Even if the
adversary learns one of the sets Wi used in the mnemonic
sentence, this will not leak information about the rest of the
mnemonic words.

Our approach resembles synonym substitution based sen-
tence generation used by several security applications [17, 2,
6, 15]; we include a review of these applications in Section 4.
In these applications a given sentence is converted to a new
sentence by changing its words with one of their synonyms.

4. RELATED WORK
Morris and Thompson have studied the vulnerabilities of

the initial UNIX password scheme in 1979, and found out
that 86% of the passwords they have collected were easily
cracked in a day during an exhaustive but intelligent search
of the password space [9]. They identified several improve-
ments to UNIX password system, including the use of DES
encryption and the enforcement of longer password, so that
an automated attack would suffer from a longer running
time.

In 1989, Feldmeier and Karn revisit the password authen-
tication problem in UNIX [3]. This time they are armed with
faster crypt function implementation that is used is encrypt-
ing passwords in password files, as well as faster and cheaper
computers. They suggest facilitating of shadow password
file as opposed to public password file, as a first measure to
defend the passwords. However they point out that the ulti-
mate password protection is picking passwords that are hard
to guess by an automated brute-force attacker. They recog-
nize that the usability is a barrier against forcing users to
remember long random passwords. Giving Shannon’s results
for per-character entropy of English, they suggest that a 5-
10 word English sentence will embody an entropy required
in an 8 character password. The users of these passphrases
will XOR each 8 character block of their passphrase and use
the result as their random password.

The passphrase system suggested by Feldmeier and Karn
could be implemented easily. However the number of key

296

strokes required at every authentication would render this
passphrase hard to use for frequent authentication. For
this reason they suggest distributed authentication systems
such as Kerberos tickets to be used in conjunction with
the passphrase system for decreasing the overall number of
keystrokes and the additional burden of remembering multi-
ple password phrases as a usability fix. Moreover the authors
suggest frequent changes of passwords to increase the diffi-
culty of cracking passwords. They identify the complexity
of the users’ password as the major security requirement.

In 2004, Yan et al. conducted a controlled experiment to
compare the effects of giving three alternative forms of ad-
vice about password selection [18]. This trial involved 400
first-year students at Cambridge University. 100 of these
students were given the classical instructions on how to pick
a password: “ Your password should be at least seven char-
acters long and contain at least one non-letter.” 100 of them
were given a paper that has the letters A-Z and integers 1-9
repeatedly on it, and they were asked to close their eyes and
randomly pick symbols from this letter to generate a random
password, later they were asked to write it down and carry
that paper with them until they memorize the password.
The other 100 students were given an instruction sheet that
explains how to generate mnemonic passwords. The last 100
were not given any instructions at all. Yan et al. performed
several well-known attacks on these passwords, as well as
analyzing the statistical properties of these passwords (e.g.
length) and the frequency of the users’ need for a password
reset.

This study challenged several widely accepted beliefs about
security and memorability of passwords:

1. It is confirmed that users have difficulty remembering
random passwords (Many students continued to carry
the written copy of their password for a long time, 4.8
weeks on the average.).

2. The results also confirmed that mnemonic passwords
are indeed harder for an adversary to guess than naively
selected passwords.

3. Contrary to the popular belief that random passwords
are better than mnemonic passwords, this experiment
showed that mnemonic passwords are just as strong as
the random passwords.

4. This study also showed that it is not harder to remem-
ber mnemonic passwords, which are just as memorable
as naively selected passwords.

5. Another interesting result of this study is that it is not
possible to gain a significant improvement in security
by just educating users to use random or mnemonic
passwords; both random passwords and mnemonic pass-
words suffered from a non-compliance rate of about
10% (including both too-short passwords and pass-
words not chosen according to the instructions).

The lack of compliance of users can also be explained with
the lack of incentive. User incentive can be created by re-
fusing non-compliant passwords or by providing an easy to
use authentication scheme, or by bundling small incentives
from several systems into a large incentive. In our system,
we provide encouraging incentives to the users for complying
with our instructions (e.g., keeping the helper card secure).
Some of the user incentives we provide are as follows:

• providing the users with a facility that they can also
use secure passwords for their personal (non-work) on-
line accounts, since one mnemonic can encode multiple
passwords. This way the users will have a good reason
to keep the helper cards secure.

• allowing the users to pick the mnemonic sentences that
fit to their taste, hence are memorable to them, from
a set of mnemonic sentences generated by the system.

• providing a password reset mechanism that does not
require the reseting of the mnemonic.

The reward is high in a system that is usable for multiple
passwords. A uniform interface (e.g. helper card) will at-
tract users, because repetition across different systems will
bring ease of use, and familiarity.

Kuo et al. performed another user study to check whether
mnemonic passwords are vulnerable to dictionary attacks
when the dictionary is specifically generated using the pop-
ular phrases available on the Internet such as advertising
slogans, children’s nursery rhymes and songs, movie quotes,
song lyrics, etc. [7]. Even though 65% of the mnemonic
phrases picked by the users can be found by a Google search,
only 4% of the mnemonic passwords, that the users gener-
ated, was cracked by a brute force attack using a special
dictionary generated by deriving mnemonic passwords from
phrases grabbed from popular Internet sites.

A user study by Gaw and Felten showed that users have
a tendency to “re-use” their passwords across multiple ac-
counts [5]. They have interviewed with 49 users. The ma-
jority of these users had three or fewer passwords and pass-
words were re-used twice. The top reason mentioned for
reusing a password was “easier to remember”. Results of
this study agrees with our motivation to design a system
that encodes multiple passwords with one mnemonic phrase.

In 2005, Jeyaraman and Topkara proposed a system that
automatically generates memorable mnemonics for a given
random password [6]. This system is based on searching
for a mnemonic that encodes the given password in a pre-
computed database of mnemonics, which is generated by
taking sentences from a text-corpus and producing syntac-
tic and semantic variations of these sentences. In order to
produce the variants of corpus sentences, they used linguistic
transformations (e.g., synonym substitutions). This system
was able to generate mnemonics for 80.5% of 6-character
passwords and 62.7% of 7-character passwords containing
lower-case characters (a-z), even when the text-corpus size is
extremely small (1000 sentences). Even though this is a very
important first step in developing secure mnemonic pass-
word systems, it was limited in providing following items:

• Generating mnemonics that can encode symbols that
are not lower-case characters

• Encoding multiple passwords with one mnemonic sen-
tence

• Encoding long passwords

There are several other studies that use synonym substi-
tution as a technique for information hiding into natural lan-
guage text. Natural language information hiding systems,
that are based on modifying a cover document, mainly re-
write the document using linguistic transformations. T-Lex

297

is one of the first implemented systems that embed hid-
den information by synonym substitution on a cover doc-
ument [17]. A given message is embedded into the cover
text using a pre-generated synonym set database as follows.
First, the letters of the message text are Huffman coded ac-
cording to English letter frequencies. The Huffman coded
message is embedded into message carrying words in the
cover text by replacing them with their synonyms in the syn-
onym database of T-Lex. The synonym sets in this database
are interpreted as a mixed-radix digit encoding according to
the set elements’ alphabetical order.

In [15], Topkara et al. introduced a natural language wa-
termarking system that embeds the watermark message (e.g,
copyright notice) into a given document using robust syn-
onym substitution. Compared to naive synonym substitu-
tion, robust synonym substitution introduces ambiguities in
order to make it harder for the watermark embedding mod-
ifications to be undone. This scheme first selects a subset
of words from a given dictionary, and later assigns colors to
these words, where the colors are used to represent the role
of the word in embedding the watermark, such as “carries 0”,
“carries 1” or “non-encoding”. A secret key, shared between
watermark embedder and watermark reader, is used for both
the subset selection and the color assignment of the words.
When there are many alternatives to carry out a substitution
on a word (i.e. more than one synonym carries the required
embedding bit), they prioritize these alternatives according
to a quantitative resilience criterion and favor more ambigu-
ous alternatives. For example, if the original sentence is “he
survived without water and food for 3 days”, this water-
marking system rewrites it as “he went without water and
food for 3 days”, since the word “go” is more ambiguous (i.e.
has many different meanings). The approximately meaning-
preserving changes, that are done in the direction of more
ambiguity, are harder for the adversary to resolve with auto-
mated disambiguation, however, a human reader can quickly
disambiguate the meaning when reading the marked text.
This system exploits the well-established fact in the natu-
ral language processing community, that humans are much
better than computers at disambiguation [12].

The study of Reverse Turing Tests in [11] suggests a method
to ensure that it will take a pre-determined time to break
a password with an automated attack if the adversary has
to use the login system. This is achieved by judicious use
of challenges by the system that require computational ca-
pabilities of a human (e.g., CAPTCHAs [16]). Our system
can be complemented with a similar system such that the
adversary is even further limited in the time that it is re-
quired to break a password in the helper card. Moreover,
if such a system is in use, the number of table lookups can
be adjusted to fit the time that the users need to before the
adversary can break the password.

In another work, Bergmair et al. proposes a Human In-
teractive Proof system which exploits the fact that even
though machines can not disambiguate senses (i.e. mean-
ings) of words, humans can do disambiguation highly ac-
curately [2]. In this system, the users are shown several
“challenges”, where each challenge is composed of several
sentences generated by synonym substitution of a word in
the template sentence. The word that is substituted is re-
placed with its synonyms from the same sense in some of the
challenge sentences and its synonyms from other senses in
the remaining sentences. The user is asked to mark the sen-

tences that carry the same meaning. It is expected that they
will not pick the sentences that have the substitutions from
mis-matching senses. The system keeps the dictionary, that
is used to find the synonyms, secret. This dictionary is aug-
mented with new synonyms by asking the user about ran-
domly replaced words: if the users frequently mark the sen-
tence that has the random replacement as an equal meaning
sentence, then this random word is added to the synonym
set of the word that it replaced in the original sentence. An
example of a challenge is as follows, the user is asked to mark
the sentences that are meaningful replacement of others in
the following set:

• The speech has to move through several more drafts.

• The speech has to run through several more drafts.

• The speech has to go through several more drafts.

• The speech has to impress through several more drafts.

• The speech has to strike through several more drafts.

To the best of authors’ knowledge the only password scheme
that uses a table lookup technique was employed by a bank
in 1992. The customers of this bank were suggested to con-
ceal their PIN by writing it down on a special piece of square
cardboard that is designed to be kept along with the ATM
card. The cardboard presented a table of 4 rows and 10
columns, each column corresponding to a digit (0-9). The
customer was asked to pick a four-letter word and write the
letters of the word, in consecutive order, to the columns that
correspond to digits of their PIN (i.e. first letter goes to the
first row and the column of first digit of the PIN). After this
step, the empty table cells should be filled with random let-
ters. Anderson described this scheme in [1], where he also
mentioned that this cardboard was increasing vulnerability
of the system, since the adversary’s job is now reduced to
finding the four-letter English words (which are not many)
in the consecutive rows of the table and trying the corre-
sponding PIN numbers.

5. CONCLUDING REMARKS
We believe that natural language processing is a good

technology to use in password mnemonics, as it offers the
multiple advantages that were mentioned over other ap-
proaches. This work is an important first step in the di-
rection of a single-mnemonic for multiple passwords with
both good security and good usability properties.

The “best use” we recommend for a deployment of our
scheme, would include a policy that sets the passwords’ ex-
piration period (i.e., requiring renewal) to roughly coincide
with the time period required by an adversary, who has mis-
appropriated the helper card, to carry out an attack using
that card: This will ensure that even users who do not realize
that their helper card was stolen, are not unduly exposed to
password compromise. We also note that, in addition to the
password renewal not requiring a change of mnemonic, the
renewal process does not burden the users with the task of
choosing a random new password (users are notoriously poor
judges of the quality of randomness): A quality random-
password generator can be used instead. The users do have
a say, but where it really matters to them: At the initial
mnemonic-creation time, for the choice of which candidate
mnemonic they will have to memorize (this has to involve

298

the user, as what is memorable for a person is highly sub-
jective).

While it is clear that a password that is compromised has
to be changed, and that it requires no change of mnemonic,
we stress that it is imperative that the mnemonic be changed
if both helper card and password(s) are compromised (the
latter possibly through shoulder-surfing, spyware, phishing,
etc).

As a future work we would like to perform a user study
to adjust the parameters of our system to fit the comfort of
users. The current mnemonic generation system involves the
user only after a candidate set of mnemonics are found. It is
also possible to improve the user experience by incorporating
the user’s preferences and interests to the topic of mnemonic
sentences that are generated.

6. ACKNOWLEDGMENT
Authors would like to thank four anonymous referees for

their helpful comments and suggestions.

7. REFERENCES
[1] R. Anderson. Why cryptosystems fail. In CCS ’93:

Proceedings of the 1st ACM Conference on Computer
and communications Security, pages 215–227, New
York, NY, USA, 1993. ACM Press.

[2] R. Bergmair and S. Katzenbeisser. Towards human
interactive proofs in the text-domain. In Proceedings of
the 7th Information Security Conference, volume 3225,
pages 257–267. Springer Verlag, September, 2004.

[3] D. C. Feldmeier and P. R. Karp. Unix password
security - ten years later. In CRYPTO, pages 44–63,
1989.

[4] C. Fellbaum. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[5] S. Gaw and E. W. Felten. Password management
strategies for online accounts. In SOUPS ’06:
Proceedings of the Second Symposium on Usable
Privacy and Security, pages 44–55, New York, NY,
USA, 2006. ACM Press.

[6] S. Jeyaraman and U. Topkara. Have the cake and eat
it too – infusing usability into text-password based
authentication systems. In ACSAC ’05: Proceedings of
the 21st Annual Computer Security Applications
Conference, pages 473–482, Washington, DC, USA,
2005. IEEE Computer Society.

[7] C. Kuo, S. Romanosky, and L. F. Cranor. Human
selection of mnemonic phrase-based passwords. In
SOUPS ’06: Proceedings of the Second Symposium on
Usable Privacy and Security, pages 67–78, New York,
NY, USA, 2006. ACM Press.

[8] G. Miller. Human Memory and the Storage of
Information. Information Theory, IEEE Transactions
on, 2(3):129–137, 1956.

[9] R. Morris and K. Thompson. Password security: A
case history. ACM Communcations, 22(11):594–597,
1979.

[10] T. Pedersen, S. Patwardhan, and J. Michelizzi.
Wordnet::Similarity – Measuring the Relatedness of
Concepts. In Proceedings of Fifth Annual Meeting of
the NAACL, Boston, MA, May 2004.

[11] B. Pinkas and T. Sander. Securing passwords against
dictionary attacks. In Proceedings of the ACM

Computer and Security Conference, pages 161–170,
November, 2002.

[12] P. Resnik. Selectional preference and sense
disambiguation. In The ACL SIGLEX Workshop on
Tagging Text with Lexical Semantics: Why, What, and
How?, Washington D.C., USA, April 1997.

[13] B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley &
Sons, Inc., New York, NY, USA, 1993.

[14] B. Schneier. Write down your password.
http://www.schneier.com/blog/archives/2005/06/
write down your.html, June 2005.

[15] U. Topkara, M. Topkara, and M. J. Atallah. The
hiding virtues of ambiguity: Quantifiably resilient
watermarking of natural language text through
synonym substitutions. In Proceedings of ACM
Multimedia and Security Workshop, Geneva,
Switzerland, September 26-27, 2006.

[16] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
Captcha: Using hard ai problems for security. In
Proceedings of Eurocrypt, pages 294–311, 2003.

[17] K. Winstein. Lexical steganography through adaptive
modulation of the word choice hash. In
http://www.imsa.edu/ keithw/tlex/, 1998.

[18] J. Yan, A. Blackwell, R. Anderson, and A. Grant.
Password memorability and security: Empirical
results. IEEE Security and Privacy, 2:25–31, 2004.

299

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

