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Abstract 

 
Providing automated responses to security incidents in a 

distributed computing environment has been an important 
area of research. This is due to the inherent complexity of 
such systems that makes it difficult to eliminate all 
vulnerabilities before deployment and costly to rely on 
humans for responding to incidents in real time. 

Here we formalize the process of providing automated 
responses in a distributed system and the criterion for 
asserting global optimality of the responses. We show that 
reaching the globally optimal solution is an NP-complete 
problem. Therefore we design a genetic algorithm 
framework for searching for good solutions. In the search 
for optimality, we exploit the similarities among attacks, and 
use the knowledge learnt from previous attacks to guide 
future search. The mechanism is demonstrated on a 
distributed e-commerce system called Pet Store with 
injection of real attacks and is shown to improve the 
survivability of the system over the previously reported 
ADEPTS system. 
Keywords: automated intrusion response, intrusion 
containment, optimal response, distributed e-commerce 
system, survivability. 

1 Introduction 
Distributed systems comprising multiple services 

interacting among themselves to provide end-user functions 
are becoming an increasingly important platform for 
business-to-business (B2B) and business-to-consumer (B2C) 
systems. An example is electronic commerce, or e-commerce 
systems. The huge financial stake involved in e-commerce 
makes the distributed system infrastructure supporting it a 
prime candidate for computer security attacks. 

This motivation has long led to interest in securing 
distributed systems through detection of intrusions and of 
late, through automated responses to intrusions. The 
rudimentary response mechanisms often bundled with anti-
virus or intrusion detection system (IDS) products 
overwhelmingly consider only immediate local responses 
that are directly suggested by the detected symptom. For 
example, a suspect packet being flagged by a network IDS 
may cause the specific network connection to be terminated. 
These are applicable in stand-alone systems and do not 
account for interaction effects among multiple components 

in a distributed system as a result of which the attack can 
spread from one service to another.  

Our model for the application or payload system being 
protected is that it comprises multiple services (web service, 
authentication service, admin service) running on separate 
hosts and communicating through standardized protocols, 
such as SOAP. An example is provided by a distributed e-
commerce system. Our model for the target attack is that it is 
an external multi-stage attack which first compromises the 
services that have external interfaces and using this “foot in 
the door” compromises internal services with the goal of 
disrupting some transactions supported in the system or 
violating some of the goals in the system. This is the model 
commonly used in the literature for distributed intrusion 
response systems (IRSs) [4][12].  

The few available dedicated IRSs for distributed systems 
[4]-[9] have one or more of the following characteristics—
they have a static mapping of symptoms from the detector to 
the response, do not take feedback into account for 
determining future responses, assume perfect detectors with 
no missed and no false alarms, or assume perfect success rate 
for a deployed response. The complex interactions among 
the complex software running the distributed applications, 
the non-determinism in the execution environment, and the 
reality of new forms of intrusions surfacing would make any 
one of the above characteristics undesirable. Importantly, the 
existing work does not present a method for reasoning about 
or evaluating the optimality of a chosen set of responses. The 
presented protocols, including our earlier work in a system 
called ADEPTS, take a greedy approach and do not give a 
globally optimal solution. How far each solution is from the 
optimal is also not clear. Optimality is an important metric 
because it allows a system designer to reason about how well 
a given set of responses with which the IRS is populated can 
work for the target attack scenarios. This may point to 
modification of the response repository in the IRS.  

In this paper, we present a framework to reason about the 
optimality of a chosen set of responses in a distributed 
system of interacting services. The optimality criterion takes 
into account the impact of a deployed response to the 
services in the system and the impact of not deploying a 
response to the services due to the further spread of the 
attack. Note that this framework has to be probabilistic since 
the future spread of the attack and the effectiveness of a 
response are unknowns and can only be estimated. The 
optimality of a response set is a global or system-wide 
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property and thus optimizing the response choice on each 
service may not be sufficient. The global optimal solution 
must account for the fact that there exist dependencies 
between responses available at the different services. For 
example, blocking all traffic from a specific subnet at the 
ingress point will make it redundant to impose restrictions at 
an internal service on traffic from a host within the subnet.  

We develop three kinds of response actions—recovery-
focused, reactive containment-focused, and proactive 
containment-focused. The first class is used to recover 
services that have already been impacted, to a more 
functional state. The second class deploys responses on the 
services that are currently at the “front” of the attack. 
Qualitatively, front of an attack is the set of services such 
that all its predecessor services (the services that are invoked 
before it in satisfying a user transaction) are estimated to be 
affected and none of its successor services is. The third class 
is comprised of responses that are deployed at services that 
have not yet been affected, but the system estimates will be, 
based on current knowledge. This is thus a proactive 
mechanism since alerts have not yet been seen for the 
services on which the responses are deployed. The 
techniques are incorporated in our existing IRS called 
ADEPTS1. ADEPTS takes alerts from detectors embedded in 
the payload system, executes its algorithms, and sends 
response actions back to the system. The detectors are 
imperfect and can generate false or missed alarms.  

We prove that solving the optimal response determination 
problem is NP-complete. This is fundamentally because of 
the dependencies that exist between responses and the 
universe of possible responses, taking into account the 
targets of each response, is very large. In our candidate 
applications subjected to automated multi-stage attacks, it is 
imperative to deploy prompt responses at runtime. Hence, we 
come up with an approximate solution to the problem.  

The approximate solution relies on history of the attacks 
seen in the system and the paths they have taken, and 
estimate of the effectiveness of responses deployed earlier. 
The former is stored in a structure called the attack phase 
cache which captures the evolution of previous attack 
instances using a graph representation. Each graph node 
represents one snapshot of the attack and the edges represent 
the evolution from one snapshot to the next. Each node itself 
is a graph where a node determines the attack goal that is 
achieved (such as, a root shell is spawned on the Apache 
web server machine) and the edges represent the causal 
relationships between the goals (such as, a buffer overflow 
must be performed before a root shell can be obtained). 

To solve the approximate problem, we use genetic 
algorithm (GA) based search through the universe of 
possible responses. A critical factor in the performance of a 
GA based solution is the quality of the initial gene pool used 
to initiate the search. The initial pool includes responses that 
are locally optimal for each service. Since GA guarantees 

                                                           
1 We use the name ADEPTS to denote the augmented system with 
the features that we are presenting here. The earlier version of the 
system is referred to as baseline ADEPTS.  

that the quality of the final solution is better than any 
element in the initial pool, we are guaranteed that ADEPTS 
will never choose a response that is worse (with respect to 
our optimality criterion) than baseline ADEPTS after incurring 
any initial loss of performance due to inaccuracy in initial 
parameter settings. As multiple attack instances of a given 
type are seen in ADEPTS, the effectiveness of the deployed 
responses are updated and the quality of the gene pool used 
to initiate the GA-based search is improved. Thus, ADEPTS 
adapts to provide better responses as history builds up in the 
system.  

It is widely observed that multi-stage attacks take 
polymorphic forms and detecting the different forms of a 
given attack poses a challenge for an IRS. In ADEPTS, we 
provide an algorithm for approximate matching of the 
current attack instance with previous instances. The 
approximate graph matching algorithm enables ADEPTS to 
“borrow” previously computed effective responses for 
mitigating the current attack instance. 

The ADEPTS system is demonstrated on a distributed three 
tier e-commerce system called Pet Store that uses the J2EE 
platform and is developed by Sun Microsystem’s Java 
BluePrints program. The testbed has the classic structure of 
the web server, the application server (implemented using 
communicating Enterprise Java Beans (EJBs)), and the 
database server. We create a library of multi-stage attack 
scenarios. A set of network-based and host-based detectors 
generates alarms. The output metric is survivability, a high-
level metric that is based on the transactions that are 
supported and the system goals that are maintained in the 
application once the attack is injected and the responses 
determined by ADEPTS are deployed. The relative importance 
of each is determined by the system owner as weights in the 
survivability computation. The experiments show the 
survivability with ADEPTS compared to baseline ADEPTS, the 
ability of ADEPTS to adapt its responses as increasing 
numbers of attack instances are seen, its ability to handle 
polymorphic forms of an attack, and the latency of response 
determination in the two systems. 

The rest of the paper is organized as follows. Section 2 
presents the design of the framework for reasoning about 
optimality. Section 3 describes the algorithms used to search 
for the optimal responses. Section 4 describes the e-
commerce testbed and the attack scenarios. Section 5 
presents the experiments and the results. Section 6 discusses 
some subtle aspects of the presented solution. Section 7 
surveys related work and Section 8 concludes the paper. 

2 Framework for Optimality 
2.1 Modeling Spread of an Attack: Background 

A representation called an Intrusion Graph (I-GRAPH) is 
used for modeling the spread of the attack. The final goal of 
the intrusion may be disrupting some high level system 
functionality, such as “Denial of service achieved against the 
online store”. This final goal is achieved through multiple 
intermediate intrusion goals and each is represented as an I-
GRAPH node. The node in the I-GRAPH may be a predicate 
corresponding to a low-level attack manifestation, or 
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propositional with parameterized variables, corresponding to 
a higher level manifestation. The intrusion goals have mutual 
dependency relationships which are modeled using the I-
GRAPH edges (such as, a buffer overflow must be performed 
before a root shell can be obtained). Thus, an edge may be 
OR/AND/Quorum indicating any, all, or a subset of the goals 
of the nodes at the head of the edge (parent nodes) need to be 
achieved before the goal at the tail (child node) can be 
achieved. An I-GRAPH node may have zero, one, or more 
detectors whose alerts map to it. The I-GRAPH representation 
is derived from the idea of attack graphs and fault trees. Our 
work can leverage efforts at building complete and succinct 
attack graphs, e.g., using model checking approaches. 
Automatic ways to build a graph based on specifications are 
shown in [8]. We do not focus on generation of the graph, 
rather on using the representation for automated response. 

When alerts are received at ADEPTS for a node in the I-
GRAPH, ADEPTS calculates a Compromised Confidence 
Index (CCI) value for all the nodes. CCI is a measure of the 
likelihood that the node has been achieved (“a node is 
achieved” implies the goal represented by the node has been 
achieved by the attack). For a leaf node, the CCI value 
comes from the alert confidence corresponding to the alert 
that is mapped to the node. Each detector has a confidence 
value for its alerts, termed alert confidence. This can be 
provided by the meta-detector which correlates alarms from 
multiple simple detectors [1] or can be a value calculated by 
ADEPTS through its missed and false alarm detection 
algorithms ([13] Sec. 4.1.1, 4.1.2). Through this paper, we 
use the term CCI of a node and the probability that a node 
has been achieved synonymously.  
2.2 Response Model 

The response mechanism incorporates three kinds of 
responses. The first two kinds are both containment-oriented 
responses which block the attack propagation from one node 
to the other node in I-GRAPH. In our response model, we use 
the failure probability of these responses to attenuate the CCI 
values on the child nodes from the parent nodes. Specifically, 
CCIchild = CCIparent * P(the response X on the edge from the 
parent node to the child node fails). The probability measure 
of the response is the complement of the Effectiveness Index 
of a response which is determined by ADEPTS through 
observation of alerts. This mechanism is the same as in 
baseline ADEPTS [12] and is thus not described here. In 
Figure 1, responses RP and RQ fall in this category, and CCIB 
= CCIA * P(RP fails). 
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Figure 1. Response model for fragment of I-GRAPH. Node 
A has been achieved, and containment responses are being 

evaluated to block nodes B and C from being reached. 

The second type of response is the recovery response. This 
kind of response is used to recover a compromised node 
back to a more functional state. In our model, these 
responses have the effect of resetting the CCI value on a 
node to a default value. We assume the effect from the 
recovery responses is not persistent. Thus if the node is 
compromised again right after some recovery response was 
deployed, the CCI value of that node will be increase to 
reflect the new attack effect. This is in contrast to the 
blocking response, which has a prolonged effect on deterring 
the attack propagation. Response RX in Figure 1 falls into the 
recovery response category. The effect from response RX 
would be CCIA ← CCIA_default. The default value of CCI is 
dependent on the response that is deployed.  

 

2.3 Response Mechanism for a Multi-Stage Attack 
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Figure 2. Three different snapshots for a given attack 

scenario. Three responses RX, RY, RZ are deployed between 
the snapshots.  

In general, a multi-stage attack consists of multiple 
snapshots. Each snapshot contains the detector alerts which 
have been generated thus far, and the fragment of the I-
GRAPH with nodes for which alerts have been received. This 
fragment of the I-GRAPH is called the Attack Sub-Graph 
(ASG). Figure 2 shows three snapshots X, Y, and Z of an 
attack scenario. Generally, for a multi-stage attack consisting 
of k snapshots {s1,s2,..sk}, the response mechanism is 
formally described by  

RCi = f (si, H) 
si is the ith snapshot, H generally speaking is the history 

information. With respect to our Genetic Algorithm 
framework, it corresponds to the EI of the responses and the 
snapshots in the ATL. 

RCi is the response combination decided by ADEPTS. 
Therefore, in Figure 2, we have RX=f(sX,H), RY=f(sY,H), 

and RZ=f(sZ,H). 
In general, there is more than one way to partition a multi-

stage attack into its snapshots. One extreme is to treat each 
incoming detector alert as creating a new snapshot, while the 
other extreme is to consider the whole attack as a single 
snapshot. Practically speaking, we can assume there are 
groups of alerts that arrive in a batch and ADEPTS cannot 
deploy a response within a batch of alerts. This batch creates 
a snapshot.  
2.4 Impact Vector Metric 

We come up with a metric called Impact Vector for 
evaluating the favorableness of a response set. Firstly, we 
assume that the protected target system has a set of 
transactions and security goals that would be desirable to 
meet during its operation. The impact vector Iv used in a 
system of n transactions and m security goals is an (n+m) 
element vector, with each element representing the impact 
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value on the corresponding transaction or security goal. The 
dimensions may not be independent, in which case assigning 
the Iv values has to be done carefully taking the dependence 
into account. The higher the value is, the more severe the 
impact is. The range of Iv values is arbitrary with 0 being the 
lower bound. The summation of two impact vectors is also 
an impact vector and is defined as follows: 

Iv = Iv1+Iv2 = [max(Iv1,1,Iv2,1), max(Iv1,2,Iv2,2), …., 
max(Iv1,n,Iv2,n)] 

For each response r, there is an associated impact vector 
Iv(r) which indicates the impact value on the system as a 
result of deploying the response. This may be specified by 
the system administrator or determined automatically by 
calculating the services affected by the response and 
computing which transactions and security goals are violated 
as a result. For each I-GRAPH node n, there is an associated 
impact vector Iv(n) which gives the impact value as a result 
of this node being achieved by an adversary. 
2.5 Optimality of a Response Combination 

Let us assume an attack has resulted in i snapshots s1,s2,..,si. 
Let us assume the I-GRAPH has m nodes n1,n2,..nm. Then we 
evaluate the cost of a response combination RCi = f(si,H), 
which consists of n responses {r1,r2,..,rn}. Assume the 
probability of each node being achieved in the attack 
considering the responses in RCi is Prob(n1), Prob(n2),…, 
Prob(nm). Then the cost of RCi is defined by Eqn. (1). 

1 1

( ) | ( ) | ( ) Pr ( ) ( )
m n

i i k k k
k k

Cost RC Iv RC Iv n ob n Iv r
= =

= = +∑ ∑  (1) 

 
 Under this metric, the optimal response combination to a 

given attack at a specific snapshot (corresponding to a 
specific point in time) is the one which yields the minimum 
value of |Iv|. 

 , arg min | ( ) |
i

i opt i
RC

RC Iv RC=                    (2) 

This optimization is under the constraint that RCp∩RCq, p≠q, 
only contains recovery responses. This is from the 
assumption that containment responses are permanently 
deployed. We have traded off the additional power of 
considering responses with fixed lifetimes for simplicity.   
2.6 Optimal Response Determination is NP-

Complete 
We prove that the problem of optimal response 

determination (ORD) for a given system is NP-hard while 
the decision version of the problem is NP-complete (NPC). 
The knowledge that can be assumed is the I-GRAPH and the 
probability of success of each response. We prove that ORD 
is NPC by showing first that it is NP and then reducing the 
set covering problem which is known to be NPC using a 
polynomial time transformation to ORD. 

Given a response set R and a cost number k, it is possible 
in polynomial time to determine if the cost of R is less than k 
(decision version of problem). This is essentially the 
calculation in Eqn. (1) which is linear in complexity. 

N1 Nt
…

N0

Edge e1 with possible 
set of responses R1

IV=∞ IV=∞

Node is already
compromised  

Figure 3. Transformation to map set covering problem to 
optimal response determination (ORD). In the simple I-

GRAPH here, solving ORD solves set covering. 
For the polynomial time reduction of set covering, consider 

the small I-GRAPH in Figure 3. Let E = {e1, …, et}. Each edge 
in E has a set of possibly overlapping responses. Each 
response has the same probability of success and identical 
IVs. The IV of each node N1, …, Nt is ∞. Thus ORD will 
deploy a response on each edge in E. By definition of ORD, 
it will generate a response set R such that the cost is 
minimized, which for the special settings implies that the 
number of responses is minimized. Thus the responses in R 
cover the set E. This is the solution to the set covering 
problem. The reduction is obviously polynomial. 
2.7 Domain Graph 

The domain graph D(s) ⊇ ASG and is a subgraph of I-
GRAPH, which provides an approximate and a conservative 
bound on the nodes that may be reached by an adversary 
from the snapshot s. In Eqn. (1), when we calculate the 
expected impact vectors due to the nodes in the I-GRAPH, we 
consider all the nodes in the I-GRAPH. Practically, this will 
adversely impact the performance since the I-GRAPH is likely 
a large structure for any large real-world distributed systems 
and many nodes in it will have vanishingly low probability 
of being achieved based on the observed alerts. The domain 
graph subsets the nodes to be considered so that a more 
timely reaction to the attack can be deployed. 
DEFINITION: DOMAIN GRAPH 

Given the I-GRAPH I and an snapshot s, the domain graph 
D(s) = (V, E) where V = {node n∈ I such that Prob(n) × 
|n.Iv| is greater than a given threshold T} and E={e|e∈I.E 
and (u, v) where u, v∈V} . 
Prob(n) is the probability of node n being achieved by the 
adversary based on snapshot s and is estimated by a call to 
GEN_PROB(n,s,I, rNULL). 
ALGORITHM: GEN_PROB(n,s,I,rc) 
/* Notation: n: node, s: the snapshot, I: I-GRAPH, rc: response 
combination deployed  
Resp(x,n)∈rc: the response on the edge from node x to node 
n, epp(x,n): the probability of a propagation on the edge from 
x to n. 
*/ 
{ 

for node n∈ASG 
Prob(n) = Alert confidence for alert for node n; 

for node n∉ASG 
if n has no parent nodes, 

Prob(n) = 0 
if n has OR-type parent nodes, 

Prob(n) = max { Prob(x) * (1- Resp(x,n).EI)*epp(x,n) 
| x∈parent(n) } 

if n has AND-type parent nodes, 
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Prob(n) = min { Prob(x) * (1-
Best_Resp(x,n).EI)*epp(x,n) | 
x∈parent(n)  

} 
This algorithm is based on the observation that for an AND 

node all parent nodes will have to be achieved and therefore 
a min operator is taken for probability of achieving the child 
node from all its parent nodes. For an OR node, since any 
path works, a max operator is used. The edge propagation 
probability calculation is discussed in Section 3.2. For 
generation of the Domain Graph, no response is taken into 
account so that the largest possible sub-graph of the I-GRAPH 
is used during the response determination process. This 
algorithm is approximate in that it does not take into account 
the possibility that two OR/AND edges leading to a child 
node may be dependent. Such information is not available in 
the I-GRAPH and therefore is not available to the GEN_PROB 
algorithm either.                                                                 

In view of the restriction on the search space to the Domain 
Graph, we restate the optimality criterion. Assuming an 
attack snapshot P, an attack domain D, the response 
repository R, and the set of deployed response RCdeployed, an 
optimal assignment of responses is a selection RCopt∈ (R-
RCdeployed) = 
arg

iRC
min |Iv(RCi∪RCdeployed)| + E[|Iv(nodes in (D-P) that will 

be achieved by the adversary with RCi∪RCdeployed in place)|] 
+ E[|Iv(nodes in P that will be recovered by the responses 
RCi |]             (3) 
2.8 Attack Template Library (ATL) 

ADEPTS seeks to adapt its responses based on previous 
attack scenarios. Thus it is important to store the history of 
attack snapshots and prior responses. This is maintained in 
the Attack Template Library (ATL). The ATL is a directed 
graph where each node corresponds to an attack snapshot of 
an attack scenario. An edge, say from X to Y, represents the 
evolution of the attack scenario from snapshot X to snapshot 
Y. Responses, if any, that were deployed between the two 
snapshots are associated with the ATL edge. Figure 4 shows 
an example ATL. 

Rx

Ry

Rz

Rw

 
Figure 4. Example of Attack Template Library (ATL). 
Here two different attack scenarios are shown with 5 and 4 

attack snapshots. 4 responses have been deployed. 

3 Design of Search Algorithms 
3.1 Maintenance of Attack Template Library 

The ATL houses snapshots of attacks seen so far. Each 
snapshot entry s in the template library contains the 
following information: s.g: the sub-graph of the I-GRAPH 
with nodes that have been achieved at snapshot s and the 

corresponding edges; s.predict: the path prediction table used 
to predict the propagation trend in the I-GRAPH from the 
snapshot s (more detailed information in Section 3.2); 
s.best_genes: the previous responses used by ADEPTS for 
snapshot s. 
Matching and Creation of a New Snapshot 

Without loss of generality, let us assume that the current 
snapshot in the attack is s0. The detection framework 
observes activity in the ongoing attack, which translates into 
a subgraph gnew in the I-GRAPH being flagged with respect to 
the new changes. A new snapshot s1 is created with s1.g = 
s0.g ∪ gnew. 

Now, ADEPTS checks in the ATL if there is an existing sx 
such that sx.g = s1.g. If there is, s1 is discarded and sx is made 
the current snapshot for the attack. A directed edge from s0 
to sx is added if it did not exist in the ATL. Otherwise, if 
such a sx does not exist, the new node s1 is added to the ATL 
with s1.best_genes = NULL and s1.predict = 0. A edge from 
s0 to s1 is added. 
Deletion of Attack Snapshot 

If space is a constraint, ADEPTS deletes snapshots from the 
ATL by various criteria-by time of creation or time of last 
access (the oldest is deleted), frequency of access, or the 
snapshot with the lowest cumulative Iv of its nodes. 
3.2 Attack Snapshot Prediction Table 

Given an attack snapshot s, while there are an 
exponentially many possible next snapshot for the attack, in 
practice, some are much more likely. It would be useful to 
estimate the possible next snapshots for deploying the 
proactive containment responses. For tracking this likelihood, 
ADEPTS maintains a prediction table s.predict for each 
snapshot. The table entry s.predict[e] tracks the number of 
traversals of the edge e in the I-GRAPH following the 
snapshot s.  

Now we wish to calculate the edge propagation probability 
for two edges in the I-GRAPH. 

For an edge e which connects node a to node b in the I-
GRAPH, the edge propagation probability epp(a,b) (as used 
in GEN_PROB(n,s,I,r)), can be calculated from s.predict as 
follows: 

epp(a,b) = epp(e) = 

-1 Bias
Scale

Max Bias

s.predict[e] dtan d
d d

π/2

⎛ ⎞+
×⎜ ⎟+⎝ ⎠  

 
dMax = ][.max

].[
epredicts

gsedgese∈
   

dScale and dBias are tunable values. Till dMax becomes 
comparable to dBias, the epp value is relatively insensitive in 
discriminating between the edges. If the predict values are 
small, then dScale is used to scale the epp value to close to 1 
so that the range of the function becomes (0, 1). ADEPTS uses 
values 9 and 10 respectively for dScale and dBias.  

The reason for the above function for epp is that it converts 
large values (s.predict[e]) to a small range and using the 
factor in the denominator epp is constrained to be ∈ (0, 1). 
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3.3 Genetic Algorithm Framework 
As the problem of deciding the optimal responses for an 

attack snapshot s has been proved to be a NP-Complete 
problem, we focus on an approximation solution using a GA 
framework. In this framework, we have an instantiation of 
the general function f(sk,H) as Respond(sk-1, ASG). Assume 
the attack has undergone k snapshots together with k 
responses from the system as 
{s1→f(s1,H1)→s2→f(s2,H2) …sk→f(sk,Hk)}.  

Within this framework, we map each response combination 
onto a gene, and the problem of searching for the best 
response for an attack snapshot is then translated into 
looking for the best gene from the gene pool over multiple 
evolutions. Often using genetic algorithm to perform 
optimization is an expensive process [23] due to search 
through a huge gene pool over many evolution cycles to get 
a good solution. Our framework reduces the execution time 
in two ways. First, ADEPTS relies on the history information 
from the snapshot, namely sk.best_genes. Second, ADEPTS 
relies on the information from similar attacks, namely 
sx.best_genes for sx.g ≈ sk.g. These are added to the initial 
gene pool to speed the convergence of the GA. The basic 
execution flow of the GA framework is shown below. Here 
ADEPTS is trying to determine the optimal response 
combination at snapshot sk. 
/* 
R: response repository; Rdeployed: deployed responses; ATL: 
attack template library; gene_pool_size: a constant on the 
gene pool size; v% : the percentage of top genes to be kept in 
the history; max_evolutions: maximum number of evolutions 
per iteration for the GA 
*/ 
Respond(sk, Rdeployed) 
{ 

Create domain graph D=D(sk); 
pool = GA_PopulateGenePool (ATL, sk, D, gene_pool_size); 

/* defined in 3.3.3 */ 
 
for i=1 to max_evolutions  

pool = GA_NextGeneration(pool); /* through operations 
defined in 3.3.4 */ 

best_genes∈ {the top v% of genes in pool (with respect 
to the fitness metric on gene)}; 

sk.best_genes = the top x% of genes from 
(sk.best_genes∪ best_genes); // 
updating history and x% keeps size of 
sk.best_genes constant 

     
Find gene c∈best_genes with the highest fitness; 
Return(response combination RC corresponding to gene c); 

} 
 
3.3.1 Relation of gene to response combination 

Here we describe how to create the genes prior to calling 
Respond(sk, Rdeployed). We only consider responses within the 
domain graph which are not deployed yet. This set of 
applicable responses  is given by 
                  ( ) ( ){ }( ).A deployed kR r r R R D s resp= ∈ − ∩         (4) 

Here D(sk).resp is the set of responses on the nodes or 
edges of domain graph D(sk). The gene with respect to the 

this run of Respond(.) uses the encoding scheme such that 
each gene c is an RA-bit vector, with each bit uniquely 
mapped to a response r∈RA.  
3.3.2 Definitions: Fitness and Similarity 

The fitness of a gene c, is determined by the response 
combination RC for c. The fitness of gene c is defined as  

fitness(c) = exp(exp(1/exp(Cost(RC)/S)))         (5) 
where S is a scaling factor. The curious function satisfies 
some desirable properties – high cost translates to low fitness, 
cost of zero or infinity are handled, and the outermost 
exponentiation has the desired effect of spreading out the 
range of fitness which is needed for the GA to discriminate 
between good and bad responses.  

Given two attack snapshot sa and sb, the similarity metric to 
compare the two is defined as in  
Similarity(sa,sb) =   

a b a b

a b

(#common nodes in s .g and s .g) (#common edges in s .g and s .g)
# nodes and edges in s .g s .g

+

∪
 (6) 

The range of Similarity(sa,sb) is between 0 and 1. 
3.3.3 Populating the Gene Pool 

The gene pool is populated through the following 
algorithm. As mentioned earlier, we use both the history 
information corresponding to the attack snapshot sk and the 
history information from similar snapshots to increase the 
convergence speed of the GA algorithm. Note that the initial 
pool includes the greedy responses that would have been 
chosen by baseline ADEPTS. Choosing genes from a similar 
snapshot enables ADEPTS to respond to attack variants. 
GA_PopulateGenePool (ATL, sk, D, gene_pool_size) { 

pool_sec1 = {genes with the corresponding binary 
encodings filled with random bit stream}; 

pool_sec2    =    sk.best_genes; 
pool_sec3 = ∪ sx.best_genes for sx ∈ ATL with 

Similarity(sx,sk) ≥ 0.7; 
pool_sec4  = Genes corresponding to selection of 

responses by baseline ADEPTS; 
return the top gene_pool_size genes from 
{pool_sec1∪ pool_sec2∪ pool_sec3 ∪ pool_sec4}; 

} 
3.3.4 Evolution from One Generation to the Next 

We employ the standard GA algorithm here for generating 
the next generation gene pool from the current one. The 
standard procedures include three steps:  
(i) c = crossover(pool), which is to generate a new child 

from two parents randomly picked from current gene 
pool with probability of each parent being chosen 
proportional to the fitness values. 

(ii) Mutate(c), which is to incur mutation onto the child 
gene c by flipping bits in the bit vector with a given 
probability which is typically kept very low. 

(iii) Elitism, which is to keep the top x% of genes from the 
previous generation in the pool for the new generation.  

4 Experimental Testbed 
The experimental testbed deployed for evaluating ADEPTS 

is an e-commerce system, where users interact through a web 
browser with a three-tier server structure. First, a load 
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balancer distributes the incoming traffic to a pair of Apache 
Tomcat web servers. Two JBoss application servers hold the 
J2EE application, one running as the application controller 
and the other as the component repository. The application is 
Sun Microsystem’s Java Pet Store (version 1.4). In the 
backend, a MySQL database server runs as a repository of 
information, including customer accounts, product catalog 
and inventory, and order history. Figure 5 shows the testbed 
used for the experiments.  

 

Figure 5. Layout of three-tier e-commerce testbed for 
ADEPTS.  Each box runs on a separate host. (AS: Application 

Server, Tomcat: Web Server)  
The testbed emulates the common features of many 

service-oriented e-commerce systems. The Pet Store 
application provides a separate web interface for 
administrators, regular users and suppliers. We deployed 
many common TCP/IP services, such as FTP, SNMP, SSH 
and VNC, on these boxes so that they contribute 
vulnerabilities and therefore enable attack scenarios. Also, 
common configuration errors were induced, such as sharing 
of user accounts and passwords among many hosts or using 
weaker security policies on the internal network, as 
compared to access from external network. The objective 
was to replicate the complexity and lack of strong security 
policies often found in real e-commerce systems. 

0.C Ping or traceroute to 
web servers

1.C Run portscanner on 
web servers

2.A Exploit ssldump
vuln. on web server

2.B.1 Access web 
server admin site

2.B.2 Brute force admin 
password

3.A Copy hacker tool to 
web svr using tftp

3.B Install vuln. scanner 
on web svr

4.C Run port scanner 
on internal network

5.A Exploit rpc.statd
service on app controller

6.A Brute force root pwd
on app controller

7.C Run MySQL
modification queries on 

database tables

6.B Exploit remote vuln. 
on MySQL

 
Figure 6. Attack scenarios 3 and 4, used for experimental 

evaluation. Boxes with A and B denote the stages for 

scenario 3 and 4 respectively, while C denotes stages 
common to both. 

The ADEPTS implementation is tested against a set of attack 
scenarios based on popular vulnerabilities published by the 
electronic payment industry [24], the web security 
community [25], and in the CVE dictionary [26]. Six attack 
scenarios were developed to extensively test ADEPTS. Each 
attack scenario is made up a set of individual stages that 
could be run independently or mixed to form dynamic attack 
scenarios. Dynamic attack scenarios mimic the real-world 
attacks where an attacker might have several options to 
continue the intrusion after reaching a certain intermediate 
goal, or has to choose alternate stages since a previous one 
failed. For each service there are multiple detectors, but these 
are imperfect. This is simulated by artificially generating 
false alarms or suppressing alerts according to a given rate. 

Figure 6 shows attack scenarios 3 and 4 both of which 
have the end goal of corrupting or leaking information from 
the database. These scenarios share several stages in 
common and can thus be merged to form a dynamic attack 
scenario.  
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CK 

M
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Figure 7. A drone-based implementation for attack 

scenarios in the e-commerce testbed. A drone allows for 
the manifestation of an attack stage without needing to 

exploit the vulnerability. 
To implement the attack scenarios, a java-based drone was 

implemented on each host (Figure 7). A drone shows the 
manifestation of a successful attack stage without having to 
go through the exploit to achieve this. It thus provides an 
easy tool for creating different attack scenarios. A drone 
control center was also developed to centrally control each 
drone and launch an attack scenario by sending commands to 
drones on individual hosts. It can vary parameters like time 
between attack stages and probability of success between 
stages. Each attack stage could trigger an alarm on the 
corresponding drone, depending on the false alarm/missed 
alarm rates defined for the detector. On receiving an alert 
from a drone, ADEPTS calculates a set of responses according 
to the algorithms described in Section 3. The resulting set of 
responses is sent to the control center.  

The I-GRAPH is generated manually based on the attack 
scenarios covering all the attack goals. A subset of the nodes 
have associated detectors. The detectors used are (i) Snort: 
detects attack patterns in network traffic; (ii) Libsafe: detects 
buffer overflow attacks of protected C library functions; (iii) 
Process monitor: monitors unauthorized process invocation 
and execution based on a specified white-list; (iv) File access 
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monitor: monitors and compares file access attempts of 
selected processes against preset rules; (v) Password brute-
force detector: detects failed authentication attempts; (vi) 
EJB monitor: separate EJB that monitors other running EJBs 
in the same process space and flags alerts when unexpected 
behavior is observed (e.g. termination of an essential EJB). 
The responses specified for each node or edge in the I-
GRAPH are manually selected from the response repository in 
[13]. The impact vectors for these responses are created 
based on the effect the responses have on the e-commerce 
testbed. The I-GRAPH has 55 nodes, 96 edges, 5 nodes with 
no detectors, and 72 responses. The max, min, and average 
in-degree and out-degree are (7, 0, 1.7) and (5, 0, 1.7).  

It may be argued that a more realistic experiment would be 
to actually exploit the vulnerabilities, and deploy the 
detectors and the responses on the hosts. However, this 
would restrict the universe of attack scenarios we can try 
since vulnerabilities are often quite quickly patched in 
production systems such as ours. Also it would make it 
exceedingly difficult to vary experimental parameters such 
as missed and false alarm rates from the detectors and 
success rate of the responses. Ultimately this would not bring 
out the strengths and weaknesses of the proposed algorithms 
in an experimentally rigorous manner. The presentation of 
overall ADEPTS capabilities with real vulnerabilities being 

exploited and actual detectors put in place is left for a 
follow-on paper.  

5 Results 
The output metric used in the experiments is survivability. 

It is qualitatively meant to capture the value of the system to 
the owner in terms of the transactions that can be supported 
and the system goals that are met when the attack and the 
responses have occurred. Quantitatively, it is given by: 

1

[ ]
m n

i

C Iv i
+

=

−∑  (7) 

Where C is a scaling constant representing the perfect 
survivability and Iv=∑Iv(deployed responses)+∑Iv(achieved 
I-GRAPH nodes). The dimension of Iv for PetStore is 24, 
divided equally between transactions and system goals. Iv[i] 
denotes the ith dimension. The other relevant metric is 
latency, which is measured from the time an alert arrives at 
ADEPTS to when the response is communicated to the drone 
control center. Thus, it does not include the time to actually 
deploy the response, which is justified since that is a 
characteristic of the response and not ADEPTS’ algorithm.  
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Figure 8. Results from attack injection (a)-(c) show the performance of ADEPTS relative to baseline ADEPTS for three 
different attack scenarios (Experiment 1). (a) has perfect choice of initial responses, (c) mimics inaccurate initial settings by 
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the sysadmin. In all the survivability of ADEPTS outperforms that of baseline ADEPTS. (d) shows the increased latency in 
ADEPTS due mainly to the multiple generations of the genetic algorithm (Experiment 2) 

In the interest of space, here we provide the results of 
injecting two attack scenarios—scenarios 2, 3, and 4 (Figure 
6). These scenarios are complex, multi-stage, and touch all 
three tiers of the e-commerce system. Additionally they share 
some stages and therefore can be used to test the ability of 
ADEPTS to learn from attack variants. The perfect 
survivability value (constant C in Eqn. (7)) is 10. 

For experiment 1 (Figure 8(a)-(c)) we compared 
survivability between ADEPTS and baseline ADEPTS, by 
running them against attack scenarios 2, 3, and 4. Each 
attack scenario was executed multiple times (# iterations on 
the plots) and history was cleared for each attack scenario at 
the start of the experiment. Thus the performance of ADEPTS 
at the beginning is dependent on default EI values for the 
responses. The GA runs two evolutions per iteration. For 
attack scenario 3 (AS3), ADEPTS consistently performed 
better than baseline ADEPTS, except for the very first 
iteration. ADEPTS is more pessimistic at the beginning, by 
considering the possibility of responses failing and therefore 
deploying proactive responses. However, later ADEPTS 
updates the EI values based on observed performance of the 
responses and therefore outperforms baseline ADEPTS. For 
AS2, both ADEPTS and baseline ADEPTS provided a set of 
responses that do not change over the iterations. This is due 
to the fact that the responses chosen at the outset were close 
to perfect. Still ADEPTS came up with a better set of 
responses due to its ability to consider the implication of the 
response over the entire domain graph rather than the greedy 
approach of baseline ADEPTS. This allows further 
propagation of the attack since it is determined that the cost 
of preventing is higher than the cost incurred if the node is 
achieved. As opposed to this, the limited responses provided 
by baseline ADEPTS cannot make this decision. 

 For AS4, ADEPTS evolves over time from a bad starting 
point. Baseline ADEPTS performs better over several 
iterations until ADEPTS gains enough history (iteration 16). 
The case here is of poor assignment of initial EI values, say 
by an inexperienced sysadmin. The experiment demonstrates 
that ADEPTS is robust to such errors since with growing 
history it relies less and less on the default initial 
assignments.  

Experiment 2 (Figure 8(d)) is a comparison of the latency 
of response determination between ADEPTS and baseline 
ADEPTS. For this experiment, AS3 is run for different 
number of evolutions per iteration and for each run the 
history is cleared. The primary contributor to the latency is 
the processing of the GA as it processes through multiple 
generations. Therefore, the number of generations is kept as 
the control parameter. Results shows a higher latency for 
ADEPTS, as compared to that from baseline ADEPTS by as 
much as a factor of 67 at 16 evolutions per iteration. 
However, the absolute value for ADEPTS is less than 3.2 
seconds for the highest value of 16 evolutions per iteration.  
The latency can be partially hidden by performing the 
calculation of gene pool generations offline, when no attack 
is occurring. There is a tradeoff between the number of 

iterations and the number of evolutions per iteration that the 
GA may run. With more iterations, the EI values will be 
updated more accurately, while more evolutions per iteration 
will make the GA perform better but take more time per 
iteration. The optimal value depends on the particular attack 
scenario and further exploration of this tradeoff is needed. 

Experiment 3 (Figure 9) explores the ability of ADEPTS to 
learn from attack scenario variants. This experiment is run 
with AS4. For the first case, AS4 is run without having run 
its variant AS3 before. For the second case, AS3 is run for 
20 iterations. Then, the algorithms can use the previous ATL 
containing the snapshots of the attack stages and the best 
genes for AS3, and the EI values for responses. We observe 
that AS4 with history outperforms AS4 without history until 
about the 8th iteration where their performances converge. 
This implies that the 8th iteration of AS4 with history 
corresponds to the 20th iteration of its variant, namely AS3. 
If the variants are closer (in terms of the similarity metric, 
say), then the point at which the two cases will converge will 
be higher. 
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Figure 9. Experiment for evaluating adaptation 

capability of ADEPTS to learn from attack variant. For 
one case, AS4 is run after running its variant AS3 and 

generating history. For the other, AS4 is run without such 
history. 

6 Discussions 
This paper has presented the algorithm in ADEPTS to decide 

on optimal responses. Several other aspects of an IRS are 
needed to support the presented algorithm, but they cannot 
all be described in the confines of this paper. Some of these 
aspects have been described in other publications, such as, 
diagnosis of the node(s) likely to have been achieved, 
creation of I-GRAPH, populating the response repository, and 
updating the effectiveness of responses in [12], and 
tolerating imperfect detectors and handling unknown alerts 
in [13]. Some other aspects are under investigation, such as 
handling unanticipated attacks and concurrent attacks.  

Several design decisions described here lend themselves to 
further experimentation and refinement. For the recovery 
oriented responses, ADEPTS resets the CCI of the node at 
which the response is deployed. However, some attacks rely 
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on a sequence of nodes being achieved, e.g., a Trojan which 
relies on a continuous network connection to leak 
information, and thus a response on one node may reset the 
CCI  of a chain of nodes. The I-GRAPH structure used here is 
static and is implicitly assumed to be complete. However, in 
the face of unanticipated attacks it would be imperative to 
grow the I-GRAPH. A candidate approach would be using 
machine learning mechanisms that create nodes for alerts and 
edges between correlated alerts. A challenging issue with 
observing events in any distributed system is that the order in 
which they are observed may not be the order in which they 
have occurred. This is due to the asynchronous nature of the 
communication medium and uncertain delays at the 
computational nodes. Thus, corresponding to a given attack 
scenario, alerts may be observed in different orders. The 
ability of ADEPTS to respond to attack variants can handle 
the reordering to some extent depending on the similarity 
value of the match. However, it may be required to reorder 
alerts based on alert-specific attributes and domain 
knowledge of causality to effectively respond to the attack. 
Here we have seen a level of dependency between responses. 
Yet another level of non-determinism is introduced by 
concurrent attacks since the response to one attack may 
suffice to contain both attacks. The presented framework can 
be extended to discriminate between distinct attacks as in [11] 
and handle them at the expense of expanding the GA search 
space. The expansion factor will be the number of concurrent 
attacks. A common drawback for a solution that relies on 
history of attacks is that it is unable to handle a hitherto 
unseen attack of devastating impact. For ADEPTS, history 
helps the GA to converge faster but is not strictly necessary. 
The EI values will be less calibrated and the GA has to run 
longer to arrive at an acceptable solution. By setting the Iv of 
a node to a suitably high value, ADEPTS will deploy a 
response, even if drastic, to prevent the node from being 
achieved. 

7 Related Research 
With increasing complexity and ubiquity of distributed 

systems, IRSs for such systems have been gaining interest. 
The general principles followed in the development of the 
IRS naturally classify them into four categories. 
1. Static decision making. This class of IRS provides a 
static mapping of the alert from the detector to the response 
that is to be deployed. The IRS includes basically a look-up 
table where the administrator has anticipated all alerts 
possible in the system and an expert indicated responses to 
take for each. The systems in [14]-[16] fall in this category. 
2. Dynamic decision making. This class of IRS reasons 
about an ongoing attack based on the observed alerts and 
determines an appropriate response to take. The first step in 
the reasoning process is to determine which services in the 
system are likely affected, taking into account the 
characteristics of the detector, the network topology, etc. The 
actual choice of the response is then taken dependent on a 
host of factors, such as, the amount of evidence about the 
attack, the severity of the response, etc. The third step is to 
determine the effectiveness of the deployed response to 

decide if further responses are required for the current attack 
or to modify the measure of effectiveness of the deployed 
response to guide future choices. A wide variety is 
discernible in this class based on the sophistication of the 
algorithms. The systems in [4]-[9], including ADEPTS, fall in 
this category.  
3. Intrusion tolerance through diverse replicas. This class 
of IRS implicitly provides the response to an attack by 
masking the effect of the response. The basic approach is to 
employ a diverse set of replicas to implement any given 
service. The fault model is that the replicas are unlikely to 
share the same vulnerabilities and therefore not all will be 
compromised by any given attack. An advantage of this 
approach is the system can continue operation without a 
disruption as in the active replication technique. The systems 
in [17]-[19] fall in this category. 
4. Responses to specific kinds of attacks. This class of IRS 
is customized to respond to specific kinds of attacks, most 
commonly, distributed denial of service (DDoS) attacks. The 
approach is to trace back as close to the source of the attack 
as possible and then limit the amount of resources available 
to the potentially adversarial network flows. The system 
reported in [10] fall in this category.  

The concept of survivability was pioneered by SEI at CMU. 
It is loosely defined as the capability of a system to fulfill its 
mission, in a timely manner, in the presence of attacks, 
failures, or accidents ([2],[3]). The researchers identify the 
four key properties of survivable systems, namely, resistance 
to attacks, recognition of attacks and damage, recovery of 
essential and full services after attack, and adaptation and 
evolution to reduce effectiveness of future attacks. The part 
of the ADEPTS system presented in this paper provides the 
second and the fourth properties.  

The work presented here differs from previous IRS work in 
that it lays down a framework to reason about the optimality 
of the response choices made by these systems. The 
approach here can be applied to evaluate any available IRS. 
Our previous work with the ADEPTS system also did not have 
any design to choose globally optimal responses.  

There have been some efforts at using genetic algorithms 
for intrusion detection [21]-[23] and search for 
vulnerabilities [20]. The results have been promising, but 
only after careful definition of the syntax of the 
chromosomes and tuning of the fitness measure of the 
chromosomes. We have not found any prior application of 
GA to intrusion response systems.  

8 Conclusion 
In this paper, we introduced the notion of optimality of 

responses deployed by an intrusion response system. We 
developed a framework for reasoning about optimality of 
responses deployed on a growing set of attack snapshots for 
a multi-stage attack. A genetic algorithm based search was 
proposed to search for the optimal response set. The 
chromosomes for the initial gene pool and the carry over 
from one generation to the next are designed to guarantee the 
solution is better than the locally optimal response selection 
done by the baseline ADEPTS IRS. The claims were 
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experimentally validated on a three tier e-commerce system 
through injection of multi-stage attacks.  
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