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Recent work on graphical models for relational data has demonstrated significant
improvements in classification and inference when models represent the dependen-
cies among instances. Despite its use in conventional statistical models, the as-
sumption of instance independence is contradicted by most relational datasets. For
example, in citation data there are dependencies among the topics of a paper’s
references, and in genomic data there are dependencies among the functions of
interacting proteins. In this chapter we present relational dependency networks
(RDNs), a graphical model that is capable of expressing and reasoning with such
dependencies in a relational setting. We discuss RDNs in the context of relational
Bayes networks and relational Markov networks and outline the relative strengths
of RDNs—namely, the ability to represent cyclic dependencies, simple methods for
parameter estimation, and efficient structure learning techniques. The strengths of
RDNs are due to the use of pseudolikelihood learning techniques, which estimate an
efficient approximation of the full joint distribution. We present learned RDNs for
a number of real-world datasets and evaluate the models in a prediction context,
showing that RDNs identify and exploit cyclic relational dependencies to achieve
significant performance gains over conventional conditional models.

1.1 Introduction

Many datasets routinely captured by businesses and organizations are relational in
nature, yet until recently most machine learning research has focused on “flattened”
propositional data. Instances in propositional data record the characteristics of
homogeneous and statistically independent objects; instances in relational data
record the characteristics of heterogeneous objects and the relations among those
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objects. Examples of relational data include citation graphs, the World Wide
Web, genomic structures, fraud detection data, epidemiology data, and data on
interrelated people, places, and events extracted from text documents.

The presence of autocorrelation provides a strong motivation for using relational
techniques for learning and inference. Autocorrelation is a statistical dependency
between the values of the same variable on related entities and is a nearly ubiquitous
characteristic of relational datasets [Jensen and Neville, 2002]. More formally,
autocorrelation is defined with respect to a set of related instance pairs PR =
{(oi, oj) : oi, oj ∈ O}; it is the correlation between the values of a variable X on
the instance pairs (oi.x, oj .x) such that (oi, oj) ∈ PR. Recent analyses of relational
datasets have reported autocorrelation in the following variables:

• Topics of hyperlinked web pages [Chakrabarti et al., 1998, Taskar et al., 2002]

• Industry categorization of corporations that share boards members [Neville and
Jensen, 2000]

• Fraud status of cellular customers who call common numbers [Cortes et al.,
2001]

• Topics of coreferent scientific papers [Taskar et al., 2001, Neville and Jensen,
2003]

• Functions of proteins located together in a cell [Neville and Jensen, 2002]

• Box-office receipts of movies made by the same studio [Jensen and Neville, 2002]

• Industry categorization of corporations that co-occur in new stories [Bernstein
et al., 2003]

• Tuberculosis infection among people in close contact [Getoor et al., 2001]

When relational data exhibit autocorrelation there is a unique opportunity to im-
prove model performance because inferences about one object can inform inferences
about related objects. Indeed, recent work in relational domains has shown that col-
lective inference over an entire dataset results in more accurate predictions than
conditional inference for each instance independently [e.g., Chakrabarti et al., 1998,
Neville and Jensen, 2000, Lu and Getoor, 2003], and that the gains over conditional
models increase as autocorrelation increases [Jensen et al., 2004].

Joint relational models are able to exploit autocorrelation by estimating a joint
probability distribution over an entire relational dataset and collectively inferring
the labels of related instances. Recent research has produced several novel types of
graphical models for estimating joint probability distributions for relational data
that consist of non-independent and heterogeneous instances [e.g., Getoor et al.,
2001, Taskar et al., 2002]. We will refer to these models as probabilistic relational
models (PRMs).1 PRMs extend traditional graphical models such as Bayesian

1. Several previous papers [e.g., Friedman et al., 1999, Getoor et al., 2001] use the term
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networks to relational domains, removing the assumption of independent and
identically distributed instances that underlies conventional learning techniques.
PRMs have been successfully evaluated in several domains, including the World
Wide Web, genomic data, and scientific literature.

Directed PRMs, such as relational Bayes networks2 (RBNs) [Getoor et al., 2001],
can model autocorrelation dependencies if they are structured in a manner that
respects the acyclicity constraint of the model. While domain knowledge can some-
times be used to structure the autocorrelation in an acyclic manner, often an acyclic
ordering is unknown or does not exist. For example, in genetic pedigree analysis
there is autocorrelation among the genes of relatives [Lauritzen and Sheehan, 2003].
In this domain, the casual relationship is from ancestor to descendent so we can use
the temporal parent-child relationship to structure the dependencies in an acyclic
manner (i.e., parents’ genes will never be influenced by the genes of their children).
However, given a set of hyperlinked web pages, there is little information to use to
determine the causal direction of the dependency between their topics. In this case,
we can only represent an (undirected) correlation between the topics of two pages,
not a (directed) causal relationship. The acyclicity constraint of directed PRMs
precludes the learning of arbitrary autocorrelation dependencies and thus severely
limits the applicability of these models in relational domains.

Undirected PRMs, such as relational Markov networks (RMNs) [Taskar et al., 2002],
can represent and reason with arbitrary forms of autocorrelation. However, research
for these models has focused primarily on parameter estimation and inference
procedures. The current RMN learning algorithm does not select features—model
structure must be pre-specified by the user. While in principle it is possible for
RMN techniques to learn cyclic autocorrelation dependencies, inefficient parameter
estimation makes this difficult in practice. Because parameter estimation requires
multiple rounds of inference over the entire dataset, it is impractical to incorporate
it as a subcomponent of feature selection. Recent work on conditional random
fields for sequence analysis includes a feature selection algorithm [McCallum, 2003]
that could be extended for RMNs. However, the algorithm abandons estimation of
the full joint distribution and uses pseudolikelihood estimation, which makes the
approach tractable but removes some of the advantages of reasoning with the full
joint distribution.

In this chapter, we outline relational dependency networks (RDNs), an extension
of dependency networks [Heckerman et al., 2000] for relational data. RDNs can

probabilistic relational model to refer to a specific model that is now often called a relational
Bayesian network [Koller, personal communication]. In this paper, we use PRM in its more
recent and general sense.
2. We use the term relational Bayesian network to refer to Bayesian networks that have
been upgraded to model relational databases. The term has also been used by Jaeger
[1997] to refer to Bayesian networks where the nodes correspond to relations and their
values represent possible interpretations of those relations in a specific domain.
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represent and reason with the cyclic dependencies required to express and exploit
autocorrelation during collective inference. In this regard, they share certain ad-
vantages of RMNs and other undirected models of relational data [Chakrabarti
et al., 1998, Domingos and Richardson, 2001]. Also, to our knowledge, RDNs are
the first PRM capable of learning cyclic autocorrelation dependencies. RDNs offer
a relatively simple method for structure learning and parameter estimation, which
results in models that are easier to understand and interpret. In this regard they
share certain advantages of RBNs and other directed models [Sanghai et al., 2003,
Heckerman et al., 2004]. The primary distinction between RDNs and other existing
PRMs is that RDNs are an approximate model. RDN models approximate the full
joint distribution and thus are not guaranteed to specify a coherent probability
distribution. However, the quality of the approximation will be determined by the
data available for learning—if the models are learned from large datasets, and com-
bined with Monte Carlo inference techniques, the approximation should not be a
disadvantage.

We start by reviewing the details of dependency networks for propositional data.
Then we describe the general characteristics of PRM models and outline the
specifics of RDN learning and inference procedures. We evaluate RDN learning and
inference algorithms on both synthetic and real-world datasets, presenting learned
RDNs for subjective evaluation and evaluating the models in a prediction context.
Of particular note, all the real-world datasets exhibit multiple autocorrelation
dependencies that were automatically discovered by the RDN learning algorithm.
Finally, we review related work and conclude with a discussion of future directions.

1.2 Dependency Networks

Graphical models represent a joint distribution over a set of variables. The pri-
mary distinction between Bayesian networks, Markov networks, and dependency
networks (DNs) is that dependency networks are an approximate representation.
DNs approximate the joint distribution with a set of conditional probability distri-
butions (CPDs) that are learned independently. This approach to learning results
in significant efficiency gains over exact models. However, because the CPDs are
learned independently, DN models are not guaranteed to specify a consistent joint
distribution. This precludes DNs from being used to infer causal relationships and
limits the applicability of exact inference techniques. Nevertheless, DNs can encode
predictive relationships (i.e., dependence and independence) and Gibbs sampling
inference techniques [e.g., Neal, 1993] can be used to recover a full joint distribution,
regardless of the consistency of the local CPDs.

1.2.1 DN Representation

Dependency networks are an alternative form of graphical model that approximate
the full joint distribution with a set of conditional probability distributions that are
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each learned independently. A DN encodes probabilistic relationships among a set
of variables X in a manner that combines characteristics of both undirected and
directed graphical models. Dependencies among variables are represented with a
bidirected graph G = (V,E), where conditional independence is interpreted using
graph separation, as with undirected models. However, as with directed models,
dependencies are quantified with a set of conditional probability distributions P .
Each node vi ∈ V corresponds to an Xi ∈ X and is associated with a probability
distribution conditioned on the other variables, P (vi) = p(xi|x−{xi}). The parents
of node i are the set of variables that render Xi conditionally independent of the
other variables (p(xi|pai) = p(xi|x − {xi})), and G contains a directed edge from
each parent node vj to each child node vi (e(vj , vi) ∈ E iff Xj ∈ pai). The CPDs
in P do not necessarily factor the joint distribution so we cannot compute the
joint probability for a set of values x directly. However, given G and P , a joint
distribution can be recovered through Gibbs sampling (see below for details). From
the joint distribution, we can extract any probabilities of interest.

1.2.2 DN Learning

Both the structure and parameters of DN models are determined through learning
the local CPDs. The DN learning algorithm learns a separate distribution for each
variable Xi, conditioned on the other variables in the data (i.e., X − {Xi}). Any
conditional learner can be used for this task (e.g., logistic regression, decision trees).
The CPD is included in the model as P (vi) and the variables selected by the
conditional learner form the parents of Xi (e.g., if p(xi|{x−xi}) = αxj +βxk then
pai = {xj , xk}). The parents are then reflected in the edges of G appropriately. If
the conditional learner is not selective (i.e., the algorithm does not select a subset
of the features), the DN model will be fully connected (i.e., pai = x − {xi}). In
order to build understandable DNs, it is desirable to use a selective learner that
will learn CPDs that use a subset of the variables.

1.2.3 DN Inference

Although the DN approach to structure learning is simple and efficient, it can
result in an inconsistent network, both structurally and numerically. In other words,
there may be no joint distribution from which each of the CPDs can be obtained
using the rules of probability. Learning the CPDs independently with a selective
conditional learner can result in a network that contains a directed edge from Xi

to Xj , but not from Xj to Xi. This is a structural inconsistency—Xi and Xj are
dependent but Xj is not represented in the CPD for Xi. In addition, learning the
CPDs independently from finite samples may result in numerical inconsistencies
in parameter estimates, where the derived joint distribution does not sum to
one. In practice, Heckerman et al. [2000] show that DNs are nearly consistent
if learned from large datasets because the data serve a coordinating function to
ensure some degree of consistency among the CPDs. However, even when a DN is
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inconsistent, approximate inference techniques can still be used to estimate a full
joint distribution and extract probabilities of interest. Gibbs sampling can be used
to recover a full joint distribution, regardless of the consistency of the local CPDs,
provided that each Xi is discrete and its CPD is positive [Heckerman et al., 2000].

1.3 Relational Dependency Networks

Several characteristics of DNs are particularly desirable for modeling relational
data. First, learning a collection of conditional models offers significant efficiency
gains over learning a full joint model. This is generally true, but is even more
pertinent to relational settings where the feature space is very large. Second,
networks that are easy to interpret and understand aid analysts’ assessment of
the utility of the relational information. Third, the ability to represent cycles
in a network facilitates reasoning with autocorrelation, a common characteristic
of relational data. In addition, whereas the need for approximate inference is a
disadvantage of DNs for propositional data, due to the complexity of relational
model graphs in practice, all PRMs use approximate inference.

Relational dependency networks extend DNs to work with relational data in much
the same way that RBNs extend Bayesian networks and RMNs extend Markov
networks. These extensions take a graphical model formalism and upgrade [Kersting,
2003] it to a first-order logic representation with an entity-relationship model. We
start by describing the general characteristics of probabilistic relational models and
then discuss the details of RDNs in this context.

1.3.1 Probabilistic Relational Models

PRMs represent a joint probability distribution over the attributes of a relational
dataset. When modeling propositional data with a graphical model, there is a
single graph G that that comprises the model. In contrast, there are three graphs
associated with models of relational data: the data graph GD, the model graph GM ,
and the inference graph GI . These correspond to the skeleton, model, and ground
graph as outlined in Heckerman et al. [2004].

First, the relational dataset is represented as a typed, attributed data graph
GD = (VD, ED). For example, consider the data graph in Figure 1.1a. The nodes
VD represent objects in the data (e.g., authors, papers) and the edges ED represent
relations among the objects (e.g., author-of, cites).3 Each node vi ∈ VD and edge
ej ∈ ED is associated with a type T (vi) = tvi

(e.g., paper, cited-by). Each item4

type t ∈ T has a number of associated attributes Xt = (Xt
1, ..., X

t
m) (e.g., topic,

3. We use rectangles to represent objects, circles to represent random variables, dashed
lines to represent relations, and solid lines to represent probabilistic dependencies.
4. We use the generic term “item” to refer to objects or links.
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year). Consequently, each object vi and link ej is associated with a set of attribute
values determined by their type X

tvi
vi = (Xtvi

vi1
, ..., X

tvi
vim), X

tej
ej = (X

tej

ej1
, ..., X

tej

ejm′).
A PRM model represents a joint distribution over the values of the attributes in
the data graph, x = {xtvi

vi : vi ∈ V, tvi
= T (vi)} ∪ {x

tej
ej : ej ∈ E, tej

= T (ej)}.

(a) (b)

Paper

Author

Paper

Paper

Author

Author

Author Paper

Paper

MonthType

Topic Year
Author

Avg 
Rank

Topic
Type
Year
Month

Avg Rank

Figure 1.1 Example (a) data graph and (b) model graph.

Next, the dependencies among attributes are represented in the model graph
GM = (VM , EM ). Attributes of an item can depend probabilistically on other
attributes of the same item, as well as on attributes of other related objects or
links in GD. For example, the topic of a paper may be influenced by attributes of
the authors that wrote the paper. Instead of defining the dependency structure over
attributes of specific objects, PRMs define a generic dependency structure at the
level of item types. Each node v ∈ VM corresponds to an Xt

k, where t ∈ T∧Xt
k ∈ Xt.

The set of attributes Xt
k = (Xt

ik : (vi ∈ V ∨ ei ∈ E)∧T (i) = t) is tied together and
modeled as a single variable. This approach of typing items and tying parameters
across items of the same type is an essential component of PRM learning. It enables
generalization from a single instance (i.e., one data graph) by decomposing the data
graph into multiple examples of each item type (e.g., all paper objects), and building
a joint model of dependencies between and among attributes of each type.

As in conventional graphical models, each node is associated with a probability
distribution conditioned on the other variables. Parents of Xt

k are either: (1) other
attributes associated with type tk (e.g., paper topic depends on paper type), or (2)
attributes associated with items of type tj where items tj are related to items tk in
GD (e.g., paper topic depends on author rank). For the latter type of dependency, if
the relation between tk and tj is one-to-many, the parent consists of a set of attribute
values (e.g., author ranks). In this situation, current PRM models use aggregation
functions to generalize across heterogeneous items (e.g., one paper may have two
authors while another may have five). Aggregation functions are used to either map
sets of values into single values, or to combine a set of probability distributions into
a single distribution.
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Consider the RDN model graph GM in Figure 1.1b. It models the data in Figure
1.1a, which has two object types: paper and author. In GM , each item type is
represented by a plate, and each attribute of each item type is represented as a node.
Edges characterize the dependencies among the attributes at the type level. The
representation uses a modified plate notation—dependencies among attributes of
the same object are contained inside the rectangle and arcs that cross the boundary
of the rectangle represent dependencies among attributes of related objects. For
example, monthi depends on typei, while avgrank j depends on the typek and topick

for all papers k related to author j in GD.

There is a nearly limitless range of dependencies that could be considered by
algorithms learning PRM models. In propositional data, learners model a fixed
set of attributes intrinsic to each object. In contrast, in relational data, learners
must decide how much to model (i.e., how much of the relational neighborhood
around an item can influence the probability distribution of a item’s attributes).
For example, a paper’s topic may depend of the topics of other papers written by its
authors—but what about the topics of the references in those papers or the topics
of other papers written by coauthors of those papers? Two common approaches to
limiting search in the space of relational dependencies are: (1) exhaustive search of
all dependencies within a fixed-distance neighborhood (e.g., attributes of items up
to k links away), or (2) greedy iterative-deepening search, expanding the search in
the neighborhood in directions where the dependencies improve the likelihood.

Finally, during inference, a PRM uses a model graph GM and a data graph GD

to instantiate an inference graph GI = (VI , VE) in a process sometimes called
“rollout.” The rollout procedure used by PRMs to produce GI is nearly identical
to the process used to instantiate sequence models such as hidden Markov models.
GI represents the probabilistic dependencies among all the variables in a single test
set (here GD is usually different from G ′

D used for training). The structure of GI is
determined by both GD and GM—each item-attribute pair in GD gets a separate,
local copy of the appropriate CPD from GM . The relations in GD constrain the way
that GM is rolled out to form GI . PRMs can produce inference graphs with wide
variation in overall and local structure because the structure of GI is determined by
the specific data graph, which typically has non-uniform structure. For example,
Figure 1.2 shows the RDN from Figure 1.1b rolled out over a dataset of three
authors and three papers, where P1 is authored by A1 and A2, P2 is authored by
A2 and A3, and P3 is authored by A3. Notice that there are a variable number
of authors per paper. This illustrates why current PRMs use aggregation in their
CPDs—for example, the CPD for paper-type must be able to deal with a variable
number of author ranks.

1.3.2 RDN Representation

Relational dependency networks encode probabilistic relationships in a similar
manner to DNs, extending the representation to a relational setting. RDNs use
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Figure 1.2 Example PRM inference graph.

a bidirected model graph GM with a set of conditional probability distributions P .
Each node vi ∈ VM corresponds to an Xt

k ∈ Xt, t ∈ T and is associated with a
conditional distribution p(xt

k |paxt
k
). Figure 1.1b illustrates an example RDN model

graph for the data graph in Figure 1.1a. The graphical representation illustrates
the qualitative component (GD) of the RDN—it does not depict the quantitative
component (P ) of the model, which consists of CPDs that use aggregation functions.
Although conditional independence is infered using an undirected view of the graph,
bidirected edges are useful for representing the set of variables in each CPD. For
example, in Figure 1.1b the CPD for year contains topic but the CPD for topic
does not contain type. This depicts any inconsistencies that result from the RDN
learning technique.

1.3.3 RDN Learning

Learning a PRM model consists of two tasks: learning the dependency structure
among the attributes of each object type, and estimating the parameters of the local
probability models for an attribute given its parents. Relatively efficient techniques
exist for learning both the structure and parameters of RBN models. However, these
techniques exploit the requirement that the CPDs factor the full distribution—a
requirement that imposes acyclicity constraints on the model and precludes the
learning of arbitrary autocorrelation dependencies. On the other hand, although in
principle it is possible for RMN techniques to learn cyclic autocorrelation depen-
dencies, inefficiencies due to calculating the normalizing constant Z in undirected
models make this difficult in practice. Calculation of Z requires a summation over
all possible states X. When modeling the joint distribution of propositional data,
the number of states is exponential in the number of attributes (i.e., O(2m)). When
modeling the joint distribution of relational data, the number of states is expo-
nential in the number of attributes and the number of instances. If there are N

objects, each with m attributes, then the total number of states is O(2Nm). For
any reasonable-size dataset, a single calculation of Z is an enormous computational
burden. Feature selection generally requires repeated parameter estimation while
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measuring the change in likelihood affected by each attribute, which would require
recalculation of Z on each iteration.

The RDN learning algorithm uses a more efficient alternative—estimating the set
of conditional distributions independently rather than jointly. This approach is
based on pseudolikehood techniques [Besag, 1975], which were developed for mod-
eling spatial datasets with similar autocorrelation dependencies. Pseudolikelihood
estimation avoids the complexities of estimating Z and the requirement of acyclic-
ity. In addition, this approach can utilize existing techniques for learning condi-
tional probability distributions of relational data such as first-order Bayesian clas-
sifiers [Flach and Lachiche, 1999], structural logistic regression [Popescul et al.,
2003], or ACORA [Perlich and Provost, 2003].

Instead of optimizing the log-likelihood of the full joint distribution, we optimize
the pseudo-loglikelihood for each variable independently, conditioned on all other
attribute values in the data:

PL(GD; θ) =
∑
t∈T

∑
Xt

i∈Xt

∑
v∈T (v)

p(xt
vi|paxt

vi
) (1.1)

With this approach we give up the asymptotic efficiency guarantees of maximum
likelihood estimators. However, under some general conditions the consistency of
maximum pseudolikelihood estimators can be established [Geman and Graffine,
1987], which implies that, as sample size → ∞, pseudolikelihood estimators will
produce unbiased estimates of the true parameters.

On the surface 1.1 may appear similar to the joint distribution specified by an
RBN. However, the CPDs in the pseudolikelihood are not required to factor the
joint distribution of GD. More specifically, when we consider the variable Xt

vi, we
condition on the values of the parents paXt

vi
regardless of whether the estimation of

paXt
vi

was conditioned on Xt
vi. The parents of Xt

vi may include the values of other
attributes (e.g., Xt′

vi′ such that t′ 6= t or i′ 6= i) or the values of the same variable
on related items (e.g., Xt

v′i such that v′ 6= v).

The RDN learning algorithm is similar to the DN learning algorithm, except we use
a relational probability estimation algorithm to learn a set of conditional models,
maximizing the pseudolikelihood for each variable separately. The algorithm input
consists of:

GD: a relational data graph

R: a conditional relational learner

Qt: a set of queries that specify the types T and limits the relational neighborhood
that is considered in R for each T

Xt: a set of attributes for each item type

Table 1.1 outlines the learning algorithm in pseudocode. It cycles over each attribute
of each item type and learns a separate CPD, conditioned on the other values in
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Table 1.1 RDN Learning Algorithm

Learn RDN (GD, R,Qt,Xt):

P ← ∅
For each t ∈ T :

For each Xt
k ∈ Xt:

Use R to learn a CPD for Xt
k given the attributes {Xt

k′ 6=k} ∪Xt′ 6=t

in the relational neighborhood defined by Qt.

P ← P ∪ CPDXt
k

Use P to form GM .

the training data. We discuss details of the subcomponents (querying and relational
learners) next.

1.3.3.1 Queries

The queries specify the relational neighborhoods that will be considered by the
conditional learner R, and their structure defines a typing over instances in the
database. Subgraphs are extracted from a larger graph database using the visual
query language QGraph [Blau et al., 2001]. Queries allow for variation in the number
and types of objects and links that form the subgraphs and return collections of all
matching subgraphs from the database.

For example, consider the query in Figure 1.3a.5 The query specifies match criteria
for a target item (paper) and its local relational neighborhood (authors and
references). The example query matches all research papers that were published in
1995 and returns for each paper a subgraph that includes all authors and references
associated with the paper. Figure 1.3b shows a hypothetical match to this query:
a paper with two authors and seven references.

The query defines a typing over the objects of the database (e.g., people that have
authored a paper are categorized as authors) and specifies the relevant relational
context for the target item type in the model. For example, given this query the
model R would model the distribution of a paper’s attributes given the attributes
of the paper itself and the attributes of its related authors and references. The
queries are a means of restricting model search. Instead of setting a depth limit on
the extent of the search, the analyst has a more flexible means with which to limit
the search (e.g., we can consider other papers written by the paper’s authors but
not other authors of the paper’s references).

5. We have modified the QGraph representation to conform to our convention of using
rectangles to represent objects and dashed lines to represent relations.
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Figure 1.3 (a) Example QGraph query: Textual annotations specify match con-
ditions on attribute values; numerical annotations (e.g., [0..]) specify constraints on
the cardinality of matched objects (e.g., zero or more authors), and (b) matching
subgraph.

1.3.3.2 Conditional Relational Learners

The conditional relational learner R is used for both parameter estimation and
structure learning in RDNs. The variables selected by R are reflected in the edges
of G appropriately. If R selects all of the available attributes, the RDN model will
be fully connected.

In principle, any conditional relational learner can be used as a subcomponent
to learn the individual CPDs. In this paper, we discuss the use of two different
conditional models—relational Bayesian classifiers (RBCs) [Neville et al., 2003b]
and relational probability trees (RPTs) [Neville et al., 2003a].

Relational Bayesian Classifiers
RBCs extend Bayesian classifiers to a relational setting. RBC models treat het-
erogeneous relational subgraphs as a homogenous set of attribute multisets. For
example, when considering the references of a single paper the publication dates of
those references form multisets of varying size (e.g., {1995, 1995, 1996}, {1975, 1986,
1998, 1998}). The RBC assumes each value of a multiset is independently drawn
from the same multinomial distribution.6 This approach is designed to mirror the
independence assumption of the naive Bayesian classifier. In addition to the con-
ventional assumption of attribute independence, the RBC also assumes attribute
value independence within each multiset.

For a given item type T , the query scope specifies the set of item types TR that form
the relevant relational neighborhood for T . For example, in Figure 1.3a T = paper

and TR = {paper, author, reference, authorof, cites}. To estimate the CPD for

6. Alternative constructions are possible but prior work [Neville et al., 2003b] has shown
this approach achieves superior performance over a wide range of conditions.
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attribute X on items T (e.g., paper topic), the model considers all the attributes
associated with the types in TR. RBCs are non-selective models so all the attributes
are included as parents:

p(x|pax) ∝
∏

t∈TR

∏
Xt

i∈Xt

∏
v∈TR(x)

p(xt
vi|x) p(x)

Relational Probability Trees
RPTs are selective models that extend classification trees to a relational setting.
RPT models also treat heterogeneous relational subgraphs as a set of attribute
multisets, but instead of modeling the multisets as independent values drawn from
a multinomial, the RPT algorithm uses aggregation functions to map a set of values
into a single feature value. For example, when considering the publication dates on
references of a research paper the RPT could construct a feature that tests whether
the average publication date was after 1995. Figure 1.4 provides an example RPT
learned on citation data.

Reference
Mode(Topic=

NeuralNetworks)

AuthorPaper
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NeuralNetworks)>20%

Reference
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AuthorPaper
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AuthorPaper
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Figure 1.4 Example RPT to predict machine-learning paper topic.

The RPT algorithm automatically constructs and searches over aggregated rela-
tional features to model the distribution of the target variable X. The algorithm
constructs features from the attributes associated with the types specified in the
query. The algorithm considers four classes of aggregation functions to group multi-
set values: Mode, Count, Proportion, Degree. For discrete attributes, the algorithm
constructs features for all unique values of an attribute. For continuous attributes,
the algorithm constructs features for a number of different discretizations, bin-
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ning the values by frequency (e.g., year > 1992). Count, proportion, and degree
features consider a number of different thresholds (e.g., proportion(A) > 10%).
Feature scores are calculated using chi-square to measure correlation between the
feature and the class. The algorithm uses pre-pruning in the form of a p-value
cutoff and a depth cutoff to limit tree size. All experiments reported herein used
α = 0.05/|attributes|, depth cutoff=7, and considered 10 thresholds and discretiza-
tions per feature.

The RPT learning algorithm adjusts for biases towards particular features due
to degree disparity and autocorrelation in relational data [Jensen and Neville,
2002, 2003]. We have shown that RPTs build significantly smaller trees than other
conditional models and achieve equivalent, or better, performance [Neville et al.,
2003a]. These characteristics of RPTs are crucial for learning understandable RDN
models and have a direct impact on inference efficiency because smaller trees limit
the size of the final inference graph.

1.3.4 RDN Inference

The RDN inference graph GI is potentially much larger than the original data
graph. To model the full joint distribution there must be a separate node (and CPD)
for each attribute value in GD. To construct GI , the set of template CPDs in P

is rolled out over the test-set data graph. Each item-attribute pair gets a separate,
local copy of the appropriate CPD. Consequently, the total number of nodes in
the inference graph will be

∑
v∈VD

|XT(v)| +
∑

e∈ED
|XT(e)|. Rollout facilitates

generalization across data graphs of varying size—we can learn the CPD templates
from one data graph and apply the model to a second data graph with a different
number of objects by rolling out more CPD copies. This approach is analogous to
other graphical models that tie distributions across the network and rollout copies
of model templates (e.g., hidden Markov models).

We use Gibbs sampling for inference in RDN models. Gibbs sampling can be
used to extract a unique joint distribution, regardless of the consistency of the
model [Heckerman et al., 2000].

Table 1.2 outlines the inference algorithm. To estimate a joint distribution, we
start by rolling out the model GM onto the target dataset GD, forming the inference
graph GI . The values of all unobserved variables are initialized to values drawn from
their prior distributions. Gibbs sampling then iteratively relabels each unobserved
variable by drawing from its local conditional distribution, given the current state
of the rest of the graph. After a sufficient number of iterations (burn in), the values
will be drawn from a stationary distribution and we can use the samples to estimate
probabilities of interest.

For prediction tasks we are often interested in the marginal probabilities associated
with a single variable X (e.g., paper topic). Although Gibbs sampling may be a
relatively inefficient approach to estimating the probability associated with a joint
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Table 1.2 RDN Inference Algorithm

Infer RDN (GD, GM , P, iter, burnin):

GI(VI , EI)← (∅, ∅) \\ form GI from GD and GM

For each t ∈ T in GM :

For each Xt
k ∈ Xt in GM :

For each vi ∈ VD s.t. T (vi) = t:

VI ← VI ∪ {Xt
vik}

For each vj ∈ VD s.t. Xvj ∈ paXt
vik

:

EI ← EI ∪ {eij}
For each v ∈ VI : \\ initialize Gibbs sampling

Randomly initialize xv to an arbitrary value

S ← ∅ \\ Gibbs sampling procedure

For i ∈ iter:

For each v ∈ VI , in random order:

Resample x′
v from p(xv|x− {xv})

xv ← x′
v

If i > burnin:

S ← S ∪ {x}
Use samples S to estimate probabilities of interest

assignment of values of X (e.g., when |X| is large), it is often reasonably fast to
estimate the marginal probabilities for each X.

There are many implementation issues that can improve the estimates obtained
from a Gibbs sampling chain, such as length of burn-in and number of samples. For
the experiments reported in this paper we used fixed-length chains of 2000 samples
(each iteration re-labels every value sequentially) with burn-in set at 100. Empirical
inspection indicated that the majority of chains had converged by 500 samples.

1.4 Experiments

The experiments in this section demonstrate the utility of RDNs as a joint model of
relational data. First, we use synthetic data to assess the impact of training-set size
and autocorrelation on RDN learning and inference, showing that accurate models
can be learned at reasonable dataset sizes and that the model is robust to varying
levels of autocorrelation. Next, we learn RDN models of three real-world datasets
to illustrate the types of domain knowledge that the models discover automatically.
In addition, we evaluate RDN models in a prediction context, where only a single
attribute is unobserved in the test set, and report significant performance gains
compared to two conditional models.
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1.4.1 Synthetic Data Experiments

To explore the effects of training-set size and autocorrelation on RDN learning
and inference, we generated homogeneous data graphs with autocorrelation due to
an underlying (hidden) group structure. Each object has four boolean attributes:
X1, X2, X3 and X4. The data generation procedure uses a simple RDN where
X1 is autocorrelated (through objects one link away), X2 depends on X1, and the
other two attribute have no dependencies. To generate data with autocorrelated X1

values, we used manually specified conditional models for p(X1|X1R, X2).

We compare two different RDN models: RDNRBC uses RBCs for the component
model R; RDNRPT uses RPT for R. The RPT performs feature selection, which
may result in structural inconsistencies in the learned RDN. The RBC does not
use feature selection so any deviation from the true model is due to numerical
inconsistencies alone. Note that the two models do not consider identical feature
spaces so we can only roughly assess the impact of feature selection by comparing
RDNRBC and RDNRPT results.

1.4.1.1 RDN Learning

The first set of synthetic experiments examines the effectiveness of the RDN learn-
ing algorithm. Theoretical analysis indicates that, in the limit, the true parameters
will maximize the pseudolikelihood function. This indicates that the pseudolikeli-
hood function, evaluated at the learned parameters, will be no greater than the
pseudolikelihood of the true model (on average). To evaluate the quality of the
RDN parameter estimates, we calculated the pseudolikelihood of the test-set data
using both the true model (used to generate the data) and the learned models. If
the pseudolikelihood given the learned parameters approaches the pseudolikelihood
given the true parameters, then we can conclude that parameter estimation is suc-
cessful. We also measured the standard error of the pseudolikelihood estimate for a
single test-set using learned models from 10 different training sets. This illustrates
the amount of variance due to parameter estimation.

Figure 1.5 graphs the pseudo-loglikelihood of learned models as a function of
training-set size for three levels of autocorrelation. Training-set size was varied
at the levels {50, 100, 250, 500, 1000, 5000}. We varied p(X1|X1R, X2) to generate
data with approximate levels of autocorrelation corresponding to {0.25, 0.50, 0.75}.
At each training set size (and autocorrelation level), we generated 10 test sets. For
each test set, we generated 10 training sets and learned RDNs. Using each learned
model, we measured the pseudolikelihood of the test set (size 250) and averaged
the results over the 10 models.

Figure 1.5 plots the mean pseudolikelihood of the test sets for both the learned
models and the RDN used for data generation, which we refer to as True Model.
The top row reports experiments with data generated from an RDNRPT , where we
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Figure 1.5 Evaluation of RDN learning.

learned RDNRPT models. The bottom row reports experiments with data generated
from an RDNRBC , where we learned RDNRBC models.

These experiments show that the learned RDNRPT models are a good approxima-
tion to the true model by the time training-set size reaches 500, and that RDN
learning is robust with respect to varying levels of autocorrelation. As expected,
however, when training-set size is small, the RDNs are a better approximation for
datasets with low levels of autocorrelation (see Figure 1.5a).

There appears to be little difference between the RDNRPT and RDNRBC when
autocorrelation is low, but otherwise the RDNRBC needs significantly more data
to estimate the parameters accurately. This may be in part due to the model’s lack
of selectivity, which necessitates the estimation of a greater number of parameters.
However, there is little improvement even when we increase the size of the training
sets to 10,000 objects. Furthermore, the discrepancy between the estimated model
and the true model is greatest when autocorrelation is moderate. This indicates
that the inaccuracies may be due to the naive Bayes independence assumption and
its tendency to produce biased probability estimates [Zadrozny and Elkan, 2001].

1.4.1.2 RDN Inference

The second set of synthetic experiments evaluates the RDN inference procedure in
a prediction context, where only a single attribute is unobserved in the test set. We
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generated data in the manner described above and learned RDNs for X1. At each
autocorrelation level, we generated 10 training sets (size 500) and learned RDNs.
For each training set, we generated 10 test sets (size 250) and used the learned
models to infer marginal probabilities for the class labels of the test set instances.
To evaluate the predictions, we report area under the ROC curve (AUC).7 These
experiments used the same levels of autocorrelation outlined above.

We compare the performance of three types of models. First, we measure the per-
formance of RPT and RBC models. These are conditional models that reason
about each instance independently and do not use the class labels of related in-
stances. Next, we measure the performance of the two RDN models described above:
RDNRBC and RDNRPT . These are collective models that reason about instances
jointly, using the inferences about related instances to improve overall performance.
Lastly, we measure performance of the two RDN models while allowing the true
labels of related instances to be used during inference. This demonstrates the level
of performance possible if the RDNs could infer the true labels of related instances
with perfect accuracy. We refer to these as ceiling models: RDN ceil

RBC and RDN ceil
RPT .

Note that conditional models can reason about autocorrelation dependencies in a
limited manner by using the attributes of related instances. For example, if there
is a correlation between the words on a webpage and its topic, and the topics
of hyperlinked webpages are autocorrelated, then we can improve the inference
about a single page by modeling the contents of its neighboring pages. Recent work
has shown that collective models are a low-variance means of reducing bias that
work by modeling the autocorrelation dependencies directly [Jensen et al., 2004].
Conditional models are also able to exploit autocorrelation dependencies through
modeling the attributes of related instances, but variance increases dramatically as
the number of attributes increases.

During inference we varied the number of known class labels in the test set, mea-
suring performance on the remaining unlabeled instances. This serves to illustrate
model performance as the amount of information seeding the inference process in-
creases. We expect performance to be similar when other information seeds the
inference process—for example, when some labels can be inferred from intrinsic at-
tributes, or when weak predictions about many related instances serve to constrain
the system. Figure 1.6 graphs AUC results for each of the models as the level of
known class labels is varied.

In all configurations, RDNRPT performance is equivalent, or better than, RPT

performance. This indicates that even modest levels of autocorrelation can be ex-
ploited to improve predictions using RDNRPT models. RDNRPT performance is
indistinguishable from that of RDN ceil

RPT except when autocorrelation is high and
there are no labels to seed inference. In this situation, there is little information to

7. Squared-loss results are qualitatively similar to the AUC results reported in Figure 1.6.
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Figure 1.6 Evaluation of RDN inference.

constrain the system during inference so the model cannot fully exploit the auto-
correlation dependencies. When there is no information to anchor the predictions,
there will be an identifiability problem—symmetric labelings that are highly au-
tocorrelated, but with opposite values, will be equally likely. In situations where
there is little seed information, identifiability problems can bias RDN performance
towards random.

In contrast, RDNRBC performance is superior to RBC performance only when
there is moderate to high autocorrelation and sufficient seed information. When
autocorrelation is low, the RBC model is comparable to both the RDN ceil

RBC

and RDNRBC models. Even when autocorrelation is moderate or high, RBC
performance is still relatively high. Since the RBC model is low-variance and there
are only four attributes in our datasets, it is not surprising that the RBC model
is able to exploit autocorrelation to improve performance. What is more surprising
is that RDNRBC requires substantially more seed information than RDNRPT in
order to reach ceiling performance. This indicates that our choice of model should
take test-set characteristics (e.g., number of known labels) into consideration.

1.4.2 Empirical Data Experiments

We learned RDN models for three real-world relational datasets to illustrate the
types of domain knowledge that can be garnered, and evaluated the models in a
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prediction context, where the values of a single attribute are unobserved. Figure
1.7 depicts the objects and relations in each dataset.

The first dataset is drawn from the Internet Movie Database (IMDb: www.imdb.com).
We collected a sample of 1,382 movies released in the United States between 1996
and 2001, with their associated actors, directors, and studios. In total, this sample
contains approximately 42,000 objects and 61,000 links.

Author
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Figure 1.7 Data schemas for (a) IMDb, (b) Cora, (c) NASD.

The second dataset is drawn from Cora, a database of computer science research pa-
pers extracted automatically from the web using machine learning techniques [Mc-
Callum et al., 1999]. We selected the set of 4,330 machine-learning papers along
with associated authors, cited papers, and journals. The resulting collection con-
tains approximately 13,000 objects and 26,000 links. For classification, we sampled
the 1669 papers published between 1993 and 1998.

The third dataset is from the National Association of Securities Dealers (NASD)
[Neville et al., 2005]. It is drawn from NASD’s Central Registration Depository
(CRD c©) system, which contains data on approximately 3.4 million securities
brokers, 360,000 branches, 25,000 firms, and 550,000 disclosure events. Disclosures
record disciplinary information on brokers, including information on civil judicial
actions, customer complaints, and termination actions. Our analysis was restricted
to small and moderate-size firms with fewer than 15 brokers, each of whom has an
approved NASD registration. We selected a set of 10,000 brokers who were active in
the years 1997-2001, along with 12,000 associated branches, firms, and disclosures.

1.4.2.1 RDN Models

The RDN models in Figures 1.8-1.10 continue with the RDN representation in-
troduced in Figure 1.1b. Each item type is represented by a separate plate. Arcs
inside a plate represent dependencies among the attributes of a single object, and
arcs crossing the boundaries of plates represent dependencies among attributes of
related objects. An arc from x to y indicates the presence of one or more features
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Figure 1.8 Internet Movie database RDN.

of x in the conditional model learned for y. When the dependency is on attributes
of objects more than a single link away, the arc is labeled with a small rectangle
to indicate the intervening related-object type. For example, in Figure 1.8 movie
genre is influenced by the genres of other movies made by the movie’s director, so
the arc is labeled with a small D rectangle.

In addition to dependencies among attribute values, relational learners may also
learn dependencies between the structure of relations (edges in GD) and attribute
values. Degree relationships are represented by a small black circle in the corner
of each plate—arcs from this circle indicate a dependency between the number of
related objects and an attribute value of an object. For example, in Figure 1.8
movie receipts are influenced by the number of actors in the movie.

For each dataset, we learned RDNs using queries that include all neighbors up to
two links away in the data graph. For example in the IMDb, when learning a model
of movie attributes we considered the attributes of associated actors, directors,
producers and studios, as well as movies related to those objects.

On the IMDb data, we learned an RDN model for ten discrete attributes including
actor gender and movie opening weekend receipts (>$2million). Figure 1.8 shows
the resulting RDN model. Four of the attributes—movie receipts, movie genre,
actor birth year, and director first movie year—exhibit autocorrelation dependen-
cies. Exploiting this type of dependency has been shown to significantly improve
classification accuracy of RMNs compared to RBNs, which cannot model cyclic de-
pendencies [Taskar et al., 2002]. However, to exploit autocorrelation, RMNs must be
instantiated with the appropriate clique templates—to date there is no RMN algo-
rithm for learning autocorrelation dependencies. RDNs are the first PRM capable
of learning cyclic autocorrelation dependencies.

On the Cora data, we learned an RDN model for seven attributes including paper
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topic (e.g., neural networks) and journal name prefix (e.g., IEEE). Figure 1.9
shows the resulting RDN model. Again we see that four of the attributes exhibit
autocorrelation. Note that when a dependency is on attributes of objects a single
link away, the arc is unlabeled. For example, the unlabeled self-loops from paper
variables indicates dependencies on the same variables in cited papers. In particular,
the topic of a paper depends not only on the topics of other papers that it cites,
but also on the topics of other papers written by the authors. This model is a good
reflection of our domain knowledge about machine learning papers.

On the NASD data, we learned an RDN model for eleven attributes including
broker is-problem and disclosure type (e.g., customer complaint). Figure 1.10
shows the resulting RDN model. Again we see that four of the attributes exhibit
autocorrelation. Subjective inspection by NASD analysts indicates that the RDN
has automatically uncovered statistical relationships that confirm the intuition of
domain experts. These include temporal autocorrelation of risk (past problems are
indicators of future problems) and relational autocorrelation of risk among brokers
at the same branch—indeed, fraud and malfeasance are usually social phenomena,
communicated and encouraged by the presence of other individuals who also wish
to commit fraud [Cortes et al., 2001]. Importantly, this evaluation was facilitated
by the interpretability of the RDN model—experts are more likely to trust, and
make regular use of, models they can understand.

1.4.2.2 Prediction

We evaluated the learned models on prediction tasks in order to assess (1) whether
autocorrelation dependencies among instances can be used to improve model accu-
racy, and (2) whether the RDN models, using Gibbs sampling, can effectively infer
labels for a network of instances. To do this, we compared the same three classes
of models used in Section 1.4.1: RPTs and RBCs, RDNs, and ceiling RDNs.

Figure 1.11 shows AUC results for each of the models on the three prediction
tasks. Figure 1.11a graphs the results of the RDNRPT models, compared to the
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RPT conditional model. Figure 1.11b graphs the results of the RDNRBC models,
compared to the RBC conditional model. We used the following prediction tasks:
movie receipts for IMDb, paper topic for Cora, and broker is-problem for NASD.

The graphs show AUC for the most prevalent class, averaged over a number of
training/test splits. We used temporal samples where we learned models on one
year of data and applied the model to the subsequent year. We used two-tailed,
paired t-tests to assess the significance of the AUC results obtained from the trials.
The t-tests compare the RDN results to each of the other two models with a null
hypothesis of no difference in the AUC.

When using the RPT as the conditional learner (Figure 1.11a), RDN performance is
superior to RPT performance on all tasks. The difference is statistically significant
for two of the three tasks. This indicates that autocorrelation is both present
in the data and identified by the RDN models. The RPT can sometimes use

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

RPT
RDNRPT

RDNRPT
Ceil

 Cora                  IMDb                 NASD

(a)

*

*

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

RBC
RDNRBC

RDNRBC
Ceil

 Cora                  IMDb                 NASD

(b)

*

*
*

Figure 1.11 AUC results for (a) RDNRPT and RPT models, and (b) RDNRBC

and RBC models. Asterisks denote model performance that is significantly different
(p < 0.10) from RDNRPT and RDNRBC .
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attributes of related items to effectively represent and reason with autocorrelation
dependencies. However, in some cases the attributes other than the class label
contain little information about the class labels of related instances. This is the
case for Cora—RPT performance is close to random because no other attributes
influence paper topic (see Figure 1.9). On all tasks, the RDN models achieve
comparable performance to the ceiling models. This indicates that the RDN model
achieved the same level of performance as if it had access to the true labels of
related objects. On the NASD data, the RDN performance is slightly higher than
that of the ceiling model. We note, however, that the ceiling model only represents
a probabilistic ceiling—the RDN may perform better if an incorrect prediction for
one object improves inferences about related objects.

Similarly, when using the RBC as the conditional learner (Figure 1.11b), the perfor-
mance of RDN models is superior to the RBC models on all tasks and statistically
significant for two of the tasks. However, the RDN models achieve comparable
performance to the ceiling models on only one of the tasks. This may be another
indication that RDN models combined with a non-selective conditional learner (e.g.,
RBCs) will experience increased variance during the Gibbs sampling process, and
thus they may need more seed information during inference to achieve the near-
ceiling performance. We should note that although the RDNRBC models do not
significantly outperform the RDNRPT models on any of the tasks, the RDNCeil

RBC is
significantly higher than RDNCeil

RPT for Cora and IMDb. This indicates that, when
there is enough seed information, RDNRBC models may achieve significant perfor-
mance gains over RDNRPT models.

1.5 Related Work

1.5.1 Probabilistic Relational Models

Probabilistic relational models are one class of models for density estimation in
relational datasets. Examples of PRMs include relational Bayesian networks and
relational Markov networks.

As outlined in Section 1.3.1, learning and inference in PRMs involve a data graph
GD, a model graph GM , and an inference graph GI . All PRMs model data that can
be represented as a graph (i.e., GD). PRMs use different approximation techniques
for inference in GI (e.g., Gibbs sampling, loopy belief propagation [Murphy et al.,
1999]), but they all use a similar process for rolling out an inference graph GI .
Consequently, PRMs differ primarily with respect to the representation of the model
graph GM and how that model is learned.

The RBN learning algorithm [Getoor et al., 2001] for the most part uses standard
Bayesian network techniques for parameter estimation and structure learning. One
notable exception is that the learning algorithm must check for “legal” structures
that are guaranteed to be acyclic when rolled out for inference on arbitrary
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data graphs. In addition, instead of exhaustive search of the space of relational
dependencies, the structure learning algorithm uses greedy iterative-deepening,
expanding the search in directions where the dependencies improve the likelihood.

The strengths of RBNs include understandable knowledge representations and effi-
cient learning techniques. For relational tasks, with a huge space of possible depen-
dencies, selective models are easier to interpret and understand than non-selective
models. Closed-form parameter estimation techniques allow for efficient structure
learning (i.e., feature selection). Also because reasoning with relational models re-
quires more space and computational resources, efficient learning techniques make
relational modeling both practical and feasible.

The directed acyclic graph structure is the underlying reason for the efficiency of
RBN learning. As discussed in Section 1.1, the acyclicity requirement precludes
the learning of arbitrary autocorrelation dependencies and limits the applicability
of these models in relational domains. RDN models enjoy the strengths of RBNs
(namely, understandable knowledge representation and efficient learning) without
being constrained by an acyclicity requirement.

The RMN learning algorithm [Taskar et al., 2002] uses maximum-a-posteriori
parameter estimation with Gaussian priors, modifiying Markov network learning
techniques. The algorithm assumes that the clique templates are pre-specified and
thus does not search for the best structure. Because the user supplies a set of
relational dependencies to consider (i.e., clique templates)—it simply optimizes the
potential functions for the specified templates.

RMNs are not hampered by an acyclicity constraint, so they can represent and
reason with arbitrary forms of autocorrelation. This is particularly important for
reasoning in relational datasets where autocorrelation dependencies are nearly
ubiquitous and often cannot be structured in an acyclic manner. However, the
tradeoff for this increased representational capability is a decrease in learning
efficiency. Instead of closed-form parameter estimation, RMNs are trained with
conjugate gradient methods, where each iteration requires a round of inference.
In large cyclic relational inference graphs, the cost of inference is prohibitively
expensive—in particular, without approximations to increase efficiency, feature
selection is intractable.

Similar to the comparison with RBNs, RDN models enjoy the strengths of RMNs
but not their weaknesses. More specifically, RDNs are able to reason with arbi-
trary forms of autocorrelation without being limited by efficiency concerns during
learning. In fact, the pseudolikelihood estimation technique used by RDNs has been
used recently to make feature selection tractable for conditional random field mod-
els [McCallum, 2003].
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1.5.2 Probabilistic Logic Models

A second class of models for density estimation consists of extensions to conven-
tional logic programming that support probabilistic reasoning in first-order logic
environments. We will refer to this class of models as probabilistic logic models
(PLMs). Examples of PLMs include Bayesian logic programs [Kersting and Raedt,
2002] and Markov logic networks [Richardson and Domingos, 2005].

PLMs represent a joint probability distribution over the groundings of a first-
order knowledge base. The first-order knowledge base contains a set of first-order
formulae, and the PLM model associates a set of weights/probabilities with each of
the formulae. Combined with a set of constants representing objects in the domain,
PLM models specify a probability distribution over possible truth assignments
to groundings of the first-order formulae. Learning a PLM consists of two tasks:
generating the relevant first-order clauses, and estimating the weights/probabilities
associated with each clause.

Within this class of models, Markov logic networks (MLN) are most similar in
nature to RDNs. In MLNs, each node is a grounding of a predicate in a first-order
knowledge base, and features correspond to first-order formulae and their truth
values. Learning an MLN consists of estimating the feature weights and selecting
which features to include in the final structure. The input knowledge base defines the
relevant relational neighborhood, and the algorithm restricts the search by limiting
the number of distinct variables in a clause, using a weighted pseudolikelihood
scoring function for feature selection [Kok and Domingos, 2005].

MLNs ground out to undirected Markov networks. In this sense, they are quite
similar to RMNs, sharing the same strengths and weaknesses—they are capable of
representing cyclic autocorrelation relationships but suffer from the complexity of
full joint inference during learning, which decreases efficiency. Kok and Domingos
[2005] have recently demonstrated the promise of efficient pseudolikelihood struc-
ture learning techniques. Our future work will investigate the performance tradeoffs
between RDN and MLN approaches to pseudolikelihood estimation for learning.

1.5.3 Collective Inference

Collective inference models exploit autocorrelation dependencies in a network of
objects to improve predictions. Joint relational models, such as those discussed
above, are able to exploit autocorrelation to improve predictions by estimating
joint probability distributions over the entire graph and collectively inferring the
labels of related instances.

An alternative approach to collective inference combines local individual classifica-
tion models (e.g., RBCs) with a joint inference procedure (e.g., relaxation labeling).
Examples of this technique include iterative classification [Neville and Jensen, 2000],
link-based classification [Lu and Getoor, 2003], and probabilistic relational neigh-
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bor [Macskassy and Provost, 2003, 2004]. These approaches to collective inference
were developed in an adhoc procedural fashion, motivated by the observation that
they appear to work well in practice. RDN models formalize this approach in a
principled framework—learning models locally (maximizing psuedolikelihood) and
combining them with a global inference procedure (Gibbs sampling) to recover a
full joint distribution. In this work we have demonstrated that autocorrelation is
the reason behind improved performance in collective inference (see [Jensen et al.,
2004] for more detail) and explored the situations under which we can expect this
type of approximation to perform well.

1.6 Discussion and Future Work

In this paper we presented relational dependency networks, a new form of proba-
bilistic relational model. We showed the RDN learning algorithm to be a relatively
simple method for learning the structure and parameters of a probabilistic graph-
ical model. In addition, RDNs allow us to exploit existing techniques for learning
conditional probability distributions of relational datasets. Here we have chosen to
exploit our prior work on RPTs, which construct parsimonious models of relational
data, and RBCs, which are simple and surprisingly effective non-selective models.
We expect the general properties of RDNs to be retained if other approaches to
learning conditional probability distributions are used, given that those approaches
learn accurate local models.

The primary advantage of RDN models is the ability to efficiently learn and
reason with autocorrelation. Autocorrelation is a nearly ubiquitous phenomenon
in relational datasets and the dependencies are often cyclic in nature. If a dataset
exhibits autocorrelation, and a model can learn the resulting dependencies, then
we can exploit those dependencies to improve overall inferences by collectively
inferring values for the entire set of instances simultaneously. The real and synthetic
data experiments in this paper show that collective inference with RDNs can
offer significant improvement over conditional approaches when autocorrelation is
present in the data. Except in rare cases, the performance of RDNs approaches the
performance that would be possible if all the class labels of related instances were
known. Because our analysis indicates that the amount of seed information may
interact with the level of autocorrelation and local model characteristics to impact
performance, future work will attempt to quantify these effects more formally.

We also presented learned RDNs for a number of real-world relational domains,
demonstrating another strength of RDNs—their understandable and intuitive
knowledge representation. Comprehensible models are a cornerstone of the knowl-
edge discovery process, which seeks to identify novel and interesting patterns in
large datasets. Domain experts are more willing to trust, and make regular use of,
understandable models—particularly when the induced models are used to sup-
port additional reasoning. Understandable models also aid analysts’ assessment
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of the utility of the additional relational information, potentially reducing the
cost of information gathering and storage and the need for data transfer among
organizations—increasing the practicality and feasibility of relational modeling.

Future work will compare RDN models to relational Markov networks and Markov
logic networks in order to quantify the performance tradeoffs for using pseudolikeli-
hood functions rather than full likelihood functions for both parameter estimation
and structure learning, particularly over datasets with varying levels of autocorre-
lation. Based on theoretical analysis of pseudolikelihood estimation [e.g., Geman
and Graffine, 1987], we expect there to be little difference when autocorrelation is
low and increased variance when autocorrelation is high. If this is the case, there
will need to be enough training data to withstand the increase in variance. Al-
ternatively, bagging techniques may be a means of reducing variance with only a
moderate increase in computational cost. In either case, the simplicity and relative
efficiency of RDN methods are a clear win for learning models in relational domains.
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