
CERIAS Tech Report 2007-79
Key Management in Hierarchical Access Control Systems

 by Marina Blanton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

KEY MANAGEMENT IN HIERARCHICAL ACCESS CONTROL SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Marina V. Blanton

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2007

Purdue University

West Lafayette, Indiana

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

ABBREVIATIONS . vi

ABSTRACT . vii

1 INTRODUCTION . 1
1.1 Access Control for User Hierarchies 1
1.2 Deep Hierarchies . 4
1.3 Time-Based Access Control . 6
1.4 Geo-Spatial Access Control . 9
1.5 Organization . 10

2 RELATED WORK . 12
2.1 Key Assignment in Hierarchical Systems 12
2.2 Time-Based Key Assignment in Hierarchical Systems 17
2.3 Access Control in Geo-Spatial Systems 19

3 KEY ASSIGNMENT IN HIERARCHICAL SYSTEMS 20
3.1 Problem Definition . 20
3.2 Base Scheme . 24
3.3 The Extended Scheme . 29
3.4 Supporting Changes to the Access Hierarchy 36
3.5 Other Access Models . 38

3.5.1 Downward Inheritance . 39
3.5.2 Limited Depth Permission Inheritance 39

4 IMPROVING EFFICIENCY . 41
4.1 A Solution for Tree Hierarchies . 41

4.1.1 A Preliminary Scheme . 42
4.1.2 Improving the Time Complexity 43
4.1.3 Improving the Space Complexity 46
4.1.4 A Time/Space Tradeoff . 48
4.1.5 Extending the Techniques to Other Graphs 49

4.2 A Solution for More General Hierarchies 52
4.2.1 Background . 53
4.2.2 The One-Dimensional Case 54

iii

Page

4.2.3 Higher Dimensions . 63

5 TIME-BASED KEY ASSIGNMENT IN HIERARCHICAL SYSTEMS . . 72
5.1 Problem Description . 72
5.2 Building the Initial Scheme . 76
5.3 An Improved Scheme . 78

5.3.1 Lowering the Size of the Data Structure 79
5.3.2 Key Assignment . 81
5.3.3 Content Distribution . 82
5.3.4 Key Derivation . 83
5.3.5 Example . 84
5.3.6 Putting Everything Together 85

5.4 Temporal Access Control for a User Hierarchy 89
5.5 Practical Considerations . 96
5.6 Comparison with Existing Solutions 96
5.7 Extensions . 99

5.7.1 Extending the Lifetime of the System 99
5.7.2 Handling Changes to the Hierarchy 101
5.7.3 Faster Key Assignment . 103

6 KEY ASSIGNMENT IN GEO-SPATIAL SYSTEMS 104
6.1 Problem Description . 104
6.2 A Preliminary Scheme . 106
6.3 Special Cases . 108

6.3.1 Rectangles that Span the Grid 108
6.3.2 Rectangles that Share a Grid Boundary 110

6.4 The General Case: The Initial Solution 112
6.4.1 The Data Structure . 112
6.4.2 Key Assignment . 116
6.4.3 Constant-Time Key Derivation 119

6.5 Improving the Space Complexity . 120
6.6 Handling Updates . 121
6.7 Extensions . 122

7 CONCLUSIONS . 123

LIST OF REFERENCES . 125

VITA . 132

iv

LIST OF TABLES

Table Page

2.1 Comparison of our hierarchical scheme with previous work. 14

4.1 Performance of shortcut schemes for one-dimensional graphs. 61

4.2 The number of edges in one-dimensional h-hop solutions. 62

4.3 Performance of the d-dimensional scheme using various one-dimensional
schemes. 69

5.1 Performance of the initial time-based scheme. 78

5.2 Performance of the improved time-based scheme. 85

5.3 Comparison of time-based hierarchical KA schemes. 97

v

LIST OF FIGURES

Figure Page

3.1 Key allocation in the base hierarchical scheme for an example access graph. 26

3.2 Key allocation in the extended hierarchical scheme for an example access
graph. 31

4.1 Addition of shortcut edges for the two-hop one-dimensional solution. . . 56

4.2 Addition of shortcut edges for the three-hop one-dimensional solution. . . 58

4.3 Example two-dimensional access hierarchy (original). 65

4.4 Example two-dimensional access hierarchy converted to tuple form. . . . 66

4.5 Example two-dimensional access hierarchy with shadow points. 66

5.1 Experiments in which a static adversary attacking a time-based scheme
participates. 75

5.2 Building the data structure for the initial time-based scheme. 77

5.3 Construction of the data structure for the improved time-based scheme
(first level of recursion). 80

5.4 Example illustration of the temporal data structure. 84

5.5 Description of proposed time-based key assignment scheme. 86

5.6 Experiments in which a static adversary attacking a hierarchical time-
based scheme participates. 91

5.7 Description of proposed time-based hierarchical key assignment scheme. . 93

5.8 Description of proposed time-based hierarchical key assignment scheme
(continued). 94

6.1 Illustration of regions on the spatial grid with n1 = 9 and n2 = 8. 107

6.2 Illustration of rectangles that span the grid vertically and horizontally. . 109

6.3 Illustration of rectangles that touch a grid’s boundary. 110

6.4 Illustration of building the data structure for a grid 16 × 9 (first level of
recursion). 114

6.5 Illustration of the spatial key assignment for various user rectangles. . . . 117

vi

ABBREVIATIONS

CA Central authority

DAG Directed acyclic graph

GIS Geographic information system

KA Key assignment

LBAC Location-based access control

MAC Message authentication code

NCA Nearest common ancestor

NCR US National Research Council

PPT Probabilistic polynomial-time

PRF Pseudo-random function

RBAC Role-based access control

SMC Secure multiparty computation

VLSI Very-large-scale integration

vii

ABSTRACT

Blanton, Marina V. Ph.D., Purdue University, August, 2007. Key Management in
Hierarchical Access Control Systems. Major Professor: Mikhail J. Atallah.

In a hierarchical access control system, users are partitioned into a number of

classes – called security classes – which are organized in a hierarchy. Hierarchies arise

in systems where some users have higher privileges than others and a security class

inherits the privileges of its descendant classes. The problem of key assignment in

such systems is how to assign cryptographic keys to users and resources to properly

enforce access rights. Its crucial goal is efficiency: the number of keys a user ob-

tains, computation a user performs, and amount of resources the server is required to

maintain should be minimized.

In this work, we present a fully-dynamic and very efficient solution to the key

assignment problem that is also provably secure for a strong notion of security. We

then show how the model can be extended to time-based policies where users obtain

access rights only for a specific duration of time, and subsequently present our time-

based key assignment solution. Finally, we explain how similar techniques can be

used to efficiently enforce access control policies in geo-spatial systems and describe

our construction for such systems as well.

1

1 INTRODUCTION

1.1 Access Control for User Hierarchies

The problem of key management in hierarchical access control is important for

many applications and has received significant attention in the research literature. In

this framework, all users are divided into disjoint access classes – so called security

classes – and each access class has a set of resources associated with it. Hierarchies of

classes arise when a class inherits the privileges of its subordinates, and thus a user

at a specific class obtain access to the resources at her own class and all descendant

classes in the hierarchy. The model is such that resources are kept encrypted under

certain keys, and access to a decryption key implies access to the resources secured

with that key.

In such systems, when a user joins a class, she is given secret information that will

permit her to access resources at her own and all descendant classes in the hierarchy.

For efficiency reasons, access is often based on key derivation: users receive one or

a small number of keys that allow them to obtain access to the authorized objects

without interacting with the server, through a key derivation process. It is clear that

low requirements allow a scheme to be used in a much wider spectrum of devices and

applications (e.g., inexpensive smartcards, small battery-operated sensors, embedded

processors, etc.) than costly schemes. Thus, the objective of key management in

hierarchical systems is to assign keys to users and resources such that access rights

are efficiently and correctly enforced.

Efficiency in key management schemes is usually measured by a number of criteria,

which are (in order of significance):

• The number of secret keys (or the size of private information) each user must

store;

2

• The amount of computation a user needs to perform to obtain access to the

desired resource;

• The work needed to perform when the hierarchy or the set of users change and

the degree to which users’ private keys are affected;

• The size of information the system must maintain.

Security of access control systems comes from their ability to deny access to unau-

thorized data. For example, in our model a user is not authorized to access resources

stored at classes other than its own class and its descendants. Furthermore, it is

normally necessary for a key assignment scheme to be collusion-resilient. This means

that even if a number of users with access to different classes conspire, they cannot

get access to more resources than what they can already legitimately access. Even

though some key assignment schemes might be intended to be used with tamper-

resistant hardware, a number of prior publications (e.g., [1, 2]) suggest that com-

promising cards is easier than is commonly believed. In addition, the property of

collusion-resilience allows us to use the schemes with other devices that do not have

tamper-resistance.

There is a wide range of applications where such access hierarchies find its use.

They include:

• Role-Based Access Control (RBAC) models, which are useful for many types of

organizations with various access constraints. In such systems users are natu-

rally organized in a hierarchy of classes, and a user higher up in the hierarchy

inherits privileges of its descendant classes.

• Subscription-based services such as newspapers and magazines, pay TV, etc.,

where subscription packages are organized in a hierarchy based on the resources

included in each package. For instance, a Gold package will include everything

available in a Silver package and additional premium services; a user with access

to the news and sports sections will be placed in a class which inherits privileges

of both news-only and sports-only classes; etc.

3

• Digital repositories such as music collections, digital libraries, etc., where users

are granted access at different levels.

• Project development, where users’ views are organized in a hierarchy and each

user obtains access to the resources determined by her role in the project. For

example, the managerial view will include the views of developers assigned to

the project and possibly other data.

• Defense in depth, where at each stage of intrusion defense there is a specific set

of resources that can be accessed.

• Cryptographic directories or file systems, where access is similarly based on a

hierarchical relationship between users.

and others. Even more broadly, hierarchical access control is used in operating sys-

tems (e.g., [3]), databases (e.g., [4]), and networking (e.g., [5, 6]).

Normally, an access hierarchy can be modeled as a directed access graph (DAG) G,

where each node corresponds to an access class and edges preserve relations between

the nodes (i.e., in many cases hierarchies are more general than trees). A naive but

simple solution to the key management problem in a hierarchy is then to assign a key

to every access class, and to give a user the keys to all access classes that the user

is entitled to access. Unfortunately, this solution might require each user to store

a prohibitively large set of keys. Thus, key derivation mechanisms are used in the

literature to address this issue.

Among the most efficient solutions in prior work are recent key management

schemes achieve the following properties:

• Each node in the access graph has a single secret key associated with it.

• The amount of public information for the key assignment scheme is asymptoti-

cally the same as that needed to represent the graph itself.

• Key derivation involves only the usage of efficient cryptographic primitives such

as one-way hash functions.

4

• Given a key for node v, the key derivation for its descendant node w takes `

steps, where ` is the length of the path between v and w.

In this work we present a solution that preserves all of the above characteristics and

is the first to additionally achieve the following properties:

• Provably secure even in the presence of collusion;

• Fully dynamic where no changes to the hierarchy affect secret keys of users;

• Simple and slightly more efficient that previous constructions.

In addition to showing security against key recovery, we define a stronger notion of

security – key indistinguishability. Under this stronger definition, all keys a user is

not authorized to have access to are pseudo-random and the user, even if she obtains

a key of its ancestor class, is unable to verify its correctness.

1.2 Deep Hierarchies

Whereas organizations’ role hierarchies tend to be shallow rather than deep, in a

number of contexts the access hierarchies have a large size and depth. These include:

• Hierarchically organized hardware, where the hierarchy is based on functional,

control, and trust considerations;

• Hierarchically organized distributed control structures such as physical plants

or power grids (involving thousands of possibly tiny networked devices such as

sensors, actuators, etc.);

• Hierarchical design structures of large complex systems such as aircraft, VLSI

circuits, etc.;

• Task graphs where descendant tasks are known only to their ancestor tasks.

5

Deep access hierarchies can also arise in simple databases where the hierarchical

complexity can come from super-imposed classifications on the database that are

based on functional or structural features of the database. See also [7, 8] for other

examples of deep hierarchies.

One of the key efficiency measures for hierarchical access control schemes is the

number of operations necessary to compute the key for an access class lower in the

hierarchy, because this operation must be performed in real-time by possibly very

weak clients. The best schemes require the number of operations linear in the depth

of the graph in the worst case, which for some graphs is O(n), where n is the number

of nodes in the access graph. Thus, a part of this work is concerned with reducing key

derivation time by decreasing the distance between any two nodes in the hierarchy.

This is achieved by inserting additional edges to the hierarchy. In addition to being

useful for reducing key derivation in deep hierarchies, these techniques find their uses

in other domains such as adding temporal capabilities to hierarchical systems, which

we introduce in the next section.

As was mentioned above, efficiency is achieved by adding additional, so-called

shortcut, edges to the hierarchy. Such shortcut edges preserve the partial order rela-

tionship between the nodes and are in the transitive closure of the graph. In other

words, a shortcut is inserted between nodes v and u only if there is already a (di-

rected) path between these nodes in the hierarchy. Carefully partitioning of the graph

and insertion of such edges into trees and total orders allows us to reduce key deriva-

tion to 3 operations with addition of only O(n log log n) extra edges. There is also a

tradeoff between the number of extra edges, distance between nodes in the resulting

graph, and complexity of the solution.

For more general graphs, efficient key derivation can be achieved by utilizing the

notion of the dimension of a DAG. The definition of dimension and the exact bounds

of our construction will be given later in this work.

6

1.3 Time-Based Access Control

Now consider the addition of time-based access control policies to hierarchical

systems. That is, as before all users are divided into a set of disjoint classes, but

now a user is granted access to a specific class for a period of time specified by its

beginning and end. When a user joins the system, she is given a key (or a set of

keys) which allows her to derive access keys for all resources she is entitled to have

access (i.e., at her own and descendant classes in the hierarchy) only during her time

interval. Note that the time interval is user-specific and might be different for each

user in the system.

There are many applications that follow this model and which would benefit from

automatic enforcement of access policies with temporal constraints through efficient

key management. Such applications, among others, include:

• RBAC models, where, in addition to having a hierarchy of user classes, users

are normally granted their privileges for a specific period of time depending on

their work schedule, which is well captured by our model.

• Subscription-based services such as digital libraries, music collections, digital

subscriptions to newspapers and magazines, etc. Here a user may be able to

join at any time and/or be able to specify the subscription duration, implying

that access only during a specific time interval is allowed. Also, subscription

packages are likely to be organized in a hierarchy.

• Content distribution, where users may join at any time and receive content of

varying quality or resolution.

• Cable TV where, similarly, users join at arbitrary times and receive different

programs based on what is included in their subscription package.

• Project development, where users’ views are organized in a hierarchy and users

can be assigned to a project only for a specific duration of time.

7

In all of the above examples, we use the current time to enforce time-based policies.

Additionally, instead of being based on the current time, access control policies can

be based on the time in the past and permit access to historical data. For example,

a user might buy access to data such as historical transactions, prices, legal records,

etc. for a specified time interval in the past, e.g., the year of 1920. These different

notions of time can be combined, e.g., a user buys access to 1920 data and is entitled

to access it for two weeks starting from today.

If we let the lifetime of a system be partitioned into m short time intervals, the

existence of time-based access control policies requires the access (or encryption) keys

to be changed at each time interval. In this work, we concentrate on applications

where the system is setup to support a large number of such time intervals. For

example, a video stream might be encrypted with a different key every day (thus,

permitting users to subscribe on any given day) or the keys might change even more

often. If the system is setup for a few years, this results in m being in thousands.

Likewise, if the application of interest is access to historical data, say, for the last

century, the number of time intervals will tend to be even higher. Thus, a small

number of keys per user and efficient access with large m’s is our goal.

The notion of security for time-based hierarchical key assignment (KA) schemes

was formalized only recently by Ateniese et al. [9]. Thus, in this work we use their

security definitions and provide a new efficient solution to the problem of key man-

agement in systems with time-based access control policies. Our solution does not

impose any requirements or constraints on the mechanisms used to enforce policies in

systems where access control is not time-based (e.g., for a hierarchy of user classes).

This means that our solution can be built on top of an existing scheme to make it ca-

pable of handling time (we refer to a scheme without the support for temporal access

control as a time-invariant scheme, and we refer to a scheme that supports temporal

access control policies as time-based). More precisely, we build a solution for a single

access class, and additional functional requirements such as key derivation between

8

hierarchically organized access classes can be performed through integration with a

time-invariant scheme.

In a setup with m time intervals, the server is likely to maintain information

which is linear in m. By building a novel data structure, we only slightly increase

the storage space at the server beyond the necessary O(m) and at the same time are

able to achieve other attractive characteristics. In more detail, our solution enjoys

the following properties:

• To be able to obtain access to an arbitrary contiguous set of time intervals, a

user is required to store at most 3 keys.

• Key derivation within the authorized time intervals involves a small constant

number of cryptographic operations and thus is independent of the number of

time intervals in the systems or the number of time intervals in the user’s access

rights.

• The increase of the public storage space at the server due to our solution is only

by a small asymptotic factor, e.g., O(log∗ m log log m) with a small constant.

• All operations are extremely efficient, and no expensive public-key cryptography

is used.

We provide several solutions with slightly different characteristics, where the differ-

ence is due to the building blocks used in our construction.

While the results given above correspond to a time-based key assignment scheme

with a single resource or user class, we can use them to construct a time-based key

assignment scheme for a user hierarchy. We show that our construction favorably

compares to existing schemes and provides an efficient solution to the problem. Ad-

ditionally, our scheme is balanced in the sense that all resource consumption such as

the client’s private storage, computation to derive keys, and the server public storage

are minimized with tradeoffs being possible. This allows the scheme to work even with

very weak clients and not to burden the server with excessive storage. Furthermore,

our scheme is provably secure under standard complexity assumptions.

9

1.4 Geo-Spatial Access Control

Finally, in this work we also address the problem of key assignment and derivation

techniques for geo-spatial access control systems. Consider a system where each user

is granted access rights to a specific area (or a set of areas). As this work is a first

solution in addressing this problem in the geo-spatial domain, we consider the case

where the user has access rights to a rectangular section of a larger grid. If a user’s

region is not rectangular, then it can be partitioned into a number of rectangles to

each of which our techniques are applicable.

We envision many applications of this work, including (but not limited to) the

following scenarios:

• Consider a physical facility that houses projects with different degrees of sen-

sitivity/confidentiality, with each project assigned its own area. A specific em-

ployee might have access to certain areas of the building, but not to others. In

this case, the users could be given a smartcard (or some other device) that can

derive the access keys for the areas to which the user has access.

• Consider a geographic information system (GIS) that contains information (e.g.,

demographic, marketing, etc.) about specific locations. This information may

be interesting to researchers, commercial firms, and other entities. Thus key

management could be used to provide a subscription-based service where users

purchase access rights to the information about a specific geographic area.

• There could be a hybrid access control system based on not only location in-

formation, but also on role hierarchies, temporal constraints, or both. As an

example, re-consider the first scenario above. It is a reasonable access control

policy that a senior researcher might be able to access a specific room all of

the time, but a consultant might be able to access the same room during her

work hours. As our scheme extends to higher dimensions, it can be used in such

hybrid frameworks (with time as an additional dimension).

10

The key derivation scheme we introduce in this work for geo-spatial grids uses a novel

data structure and achieves the following characteristics for a grid composed of n1×n2

cells (where n1 ≥ n2):

• To obtain access to an arbitrary rectangular subsection, a user is required to

store a constant number of keys.

• Key derivation within the authorized rectangle involves a constant number of

operations (including cryptographic operations).

• The public storage space at the server due to our solution is only O(n1n2 log∗ n1×
(log log n1)

2) with a small constant involved in the “O(·)” notation.

• All cryptographic operations are very efficient, and no expensive public-key

cryptography is required.

1.5 Organization

Chapter 2 describes literature related to all aspects of this work. In Chapter 3 we

formally define and present a key assignment scheme for user hierarchies. The solution

consists of a basic scheme, which is then extended to support a stronger notion of

security and full dynamism. In Chapter 4, we present techniques for lowering key

derivation time in deep hierarchies at the expense of increased public storage space

at the server. We also show possible space-time tradeoffs.

Chapter 5 extends the time-invariant solution to support temporal constraints.

We describe a scheme that can be used with a single access class and then combine

it with our time-invariant scheme. Next, Chapter 6 shows how enforcement of access

rights in the geo-spatial domain can be achieved. Finally, Chapter 7 summarizes our

results and concludes this work.

Most of the material presented here is a joint work with Mikhail Atallah and Keith

Frikken. The work presented in Chapter 3 is also a joint work with Nelly Fazio.

In particular, the key indistinguishability security model, the scheme modification

11

and the security proof in that model are due to Nelly. Parts of this work appeared

in [10–13], and are a copyrighted material under the ACM and Springer copyright

agreements.

12

2 RELATED WORK

2.1 Key Assignment in Hierarchical Systems

The first work that addressed the problem of key management in hierarchical

access control was by Akl and Taylor [14]. Since then a large number of publications

([15–43] and others) have improved existing key assignment schemes, especially in the

recent years. All of these approaches assume existences of a central authority (CA)

that maintains the keys and related information. Most of them (and our scheme as

well) are also based on the idea that a node in the hierarchy can derive keys for

its descendants. Due to the large number of previous publications, we only briefly

comment on their basic ideas and efficiency in comparison to our scheme. Also,

the work of Crampton at el. [44] provides a more formal categorization of existing

schemes.

A relatively large number of schemes on this topic have been shown to be either

insecure with respect to the security statements made in these works [45–49] or incor-

rect [50]. Therefore, we do not take these schemes into consideration in our further

discussion.

A significant number of schemes, e.g., [14,16,19,24,25,27,28,31–34,37], operate on

large numbers computed as a product of up to O(n) coprime numbers or, alternatively,

up to O(n) large numbers, where n is the number of nodes in the graph. Such numbers

can grow to n bits long and are prohibitively large for large hierarchies. While in

many of these approaches key derivation might seem to consist of one division and

one modular exponentiation operation, in practice, division of two numbers even

O(n) bits long involves O(n2) operations, in addition to the use of expensive public-

key crypto operations. More efficient solutions (including ours) have key derivation

13

bounded by the depth of the access hierarchy and can be implemented using O(n)

hash operations in the worst case (i.e., when the depth of the hierarchy is O(n)).

Work of [29,35,36] is limited to trees and thus is of limited use. Work of [15,38,40]

is concerned with a slightly different model having a hierarchy of users and a hierarchy

of resources. The scheme of [15], however, is not dynamic; and in [38,40] there are high

rekeying overheads for additions/deletions (particularly because of slightly different

requirements of the scheme) and the number of keys for a class is large for large

hierarchies.

The work of [23] gives an information-theoretic approach, in which each user

might have to store a large number of keys (up to O(n)), and insertions/deletions

result in many changes. The scheme of [51] uses modular exponentiation, and addi-

tions/deletions require rekeying of all descendants. A number of schemes [17, 22, 39]

are based on interpolating polynomials and give reasonable performance. In [22, 39],

however, private storage at a node is up to O(n) and additions/deletions require

rekeying of ancestors. As was already mentioned above, we avoid rekeying on addi-

tions/deletions and store only one key per node. In [17], key derivation is less efficient

than in our scheme, also public storage space is larger. Even though the authors spec-

ulate that schemes that perform the key derivation process iteratively are inefficient

(which is the case in our and similar schemes), their key derivation is less efficient

due to usage of expensive modular exponentiation operations and interpolating poly-

nomial evaluation.

Schemes that utilize sibling intractable function families (SIFF) [41, 42] are the

only efficient approaches among early schemes. In these schemes, there is only one

secret key per class, key derivation is a chain of SIFF function applications which can

be implemented using polynomials. However, additions and deletions in [41] require

rekeying of all descendants and in [42] all descendants should be rekeyed when a node

is deleted.

A number of recent schemes [18,20,21,30,43] use overall structure similar to ours

and have performance comparable to our base scheme. We briefly outline the dif-

14

Table 2.1
Comparison of our hierarchical scheme with previous work.

Private Public Changes Proof of
Scheme

storage storage
Key derivation

I/D/R security

Lin [30] k 2k|E| (3cH + 4cXOR)` L/NL/L No

Zhong [43] k (k + k1)|E| (cH + 2cXOR)` L/NL/L No

Chien and Jan [20] k k|E| (cH + cXOR)` L/NL/L No

Chen et al. [18] k k|E| (cD + cH + cXOR)` L/NL/L No

Ours k k|E| (cH + cXOR)` L/L/L Yes

ferences between these solutions and ours. The work of Chou et al. [21] does not

address dynamic changes, and the scheme additionally uses modular multiplication.

The scheme of Chen et al. [18] requires larger public storage, key derivation addi-

tionally uses encryption, and the ex-member problem is not addressed (which will

require to rekey all descendants on deletions). Compared to the schemes of Lin [30]

and Zhong [43], our approach is simpler than both of them. It is also more efficient

than the first scheme (by a constant factor), and uses less space than both of them

(by a constant factor). In addition, in both of these schemes, all descendants have

to be rekeyed when a class is being deleted to combat the ex-member problem. The

scheme of Chien and Jan [20] uses only hash functions and achieves performance

closest to our base scheme; deletions, however, require rekeying of all descendants.

In our scheme dynamic changes to the graph are handled locally (i.e., private infor-

mation at other nodes is not affected). Another very important distinction between

the present work and these publications is that our scheme is provably secure. In

addition, our extended scheme provides even stronger security guarantees (i.e., key

indistinguishability) that have not been shown before.

Table 2.1 gives a comparison of our basic scheme and other schemes in the litera-

ture. Private storage is measured per access class. Public storage is measured for the

entire access graph (overhead introduced by the scheme, without information needed

15

to represent the graph itself), and only the dominant term is given. The key deriva-

tion time shown reflects maximum computation needed to derive the key of node w

given the key of node v, assuming there is a path of length ` between v and w.

In the table, k is a security parameter that corresponds to the size of the secret key

(and in most cases is the size of the output produced by a cryptographic hash function

H); k1 is another security parameter (of comparable value); cH denotes computation

required by a single invocation of H1; cXOR corresponds to computation needed to

perform bitwise XOR of two strings; and cD is computation needed for symmetric key

decryption. In the table, changes to the hierarchy include insertion (I), deletion (D),

and re-keying (R); L stands for “local” and NL for “non-local.” In all of the schemes

that list “non-local” for deletions, such operations require re-keying of all descendant

classes in the hierarchy.

Note that in different schemes, the authors might make assumptions on what

information is public and what is stored with the client, which differs from what we

present here. For the sake of comparison, however, we unify the schemes and list

their capabilities, which may or may not be different from the results reported by the

authors. In addition, results of [20, 30] rely on tamper-resistance of the clients.

Most recent developments. As a followup on this work, De Santis et al. [52]

recently developed new solutions to the problem of key assignment in the hierarchy.

Their schemes achieve comparable performance, but rely on a single computational

assumption to achieve security with respect to key indistinguishability.

Among other results that appeared after publication of our initial work [10] are re-

sults of Zych et al. [53], Fuh-gwo and Chun-ming [54], and Vadnala and Mathuria [55].

Here we give a brief description of these schemes.

Construction of Zych et al. [53] involves transforming the hierarchy into a special

form where each node has two parents (called cover various V-posets), assigning

to each node a public-private key pair, and letting two parents to derive a child’s

1Our solution uses a family of pseudo-random functions (PRFs) F to achieve provable security
instead of using H directly. PRFs, however, can be implemented using solely a hash function, and
for the sake of uniformity we list cH for our scheme as well.

16

key using Diffie-Hellman key exchange protocol. The core difference of this scheme

from previous solutions is that there is no public information associated with edges,

but rather only public keys associated with nodes. The authors show that any n-

node hierarchy can be transformed into the desired form by using O(n2 log log n

log n
) extra

nodes in the worst case, and the average-case performance tends to result in addition

of O(n) nodes. Thus, the public storage is lower than schemes that associate a

public label with an edge resulting in O(n2) worst-case public storage. The scheme’s

disadvantage is in slower key derivation: now deriving a child’s key involves modulo

exponentiation and the distance between nodes increases due to insertion of additional

nodes. Changes to the hierarchy are not addressed.

Work of Fuh-gwo and Chung-ming [54] builds on Rabin public-key encryption

scheme [56], where each class has a different public-private key parameters. The solu-

tion, however, is unnecessarily complicated, requires each user to store O(n) private

keys (basically keys of all descendant classes in the hierarchy), giving no advantage

over the straightforward solution where each class maintains keys of its descendant

classes. Changes to the hierarchy require users to be re-keyed, plus the security

analysis stated in the paper is incorrect.2

Finally, work of Vadnala and Mathuria [55] gives a solution based on hash func-

tions. In their scheme the key of class j is computed from its parents’ keys as:

Kj = H(H(Ki1||i1||. . .||im||j)||H(Ki2||i1||. . .||im||j)||. . .||H(Kim||i1||. . .||im||j)||Rj)

where i1, . . ., im are j’s parents, Rj is a random number associated with class j,

and || denotes concatenation. Key derivation is thus O(n) cryptographic operations

regardless of the depth of the hierarchy. Furthermore, changes to the hierarchy require

user re-keying (while our solution does not). Finally, the authors state that their

2More precisely, a class’s access key is stored encrypted using Rabin encryption, and the authors
postulate that using 10-digit decimal numbers for prime factors p and q is sufficient to achieve
security. Decryption of a message in Rabin scheme, however, uses purely computation modulo p or
modulo q and thus simply trying all 1010 possibilities for p and q will give access to a class’s key.

17

scheme has lower public storage space requirements compared with our scheme when

the hierarchy is a tree, while the public storage of the schemes is equivalent.3

2.2 Time-Based Key Assignment in Hierarchical Systems

While the list of publications on time-invariant KA schemes is very large, the

number of publications that consider time-based policies and provide schemes for

them is rather modest. The time-based setting and the first scheme was introduced

by Tzeng [48]. The scheme, however, was later shown to be insecure against collusion

of multiple users [57]. Subsequent work of Huang and Chang [49], Chien [58], and

Yeh [59] was also shown to be insecure against collusion (in [60], [61, 62], and [9],

respectively).

Among very recent publications, Wang and Laih [63] present a time-based hi-

erarchical KA scheme. While their scheme is shown to be collusion-resilient, the

notion of security, however, is not formalized and no clear adversarial model is given

in that work. Tzeng [64] also describes a time-based hierarchical key assignment

scheme, which is used as a part of an anonymous subscription system. The scheme

is proven to resist collusion attacks; however, no formal model of adversarial behav-

ior is provided. The work of Ateniese at el. [9] is the first result that provides a

formal framework for time-based hierarchical KA schemes and gives provably secure

solutions, both secure against key recovery and achieving pseudo-random keys. Also,

concurrently with and independently from this work, De Santis et al. [65] provide

new solutions with pseudo-random keys that exhibit performance similar to that of

our scheme.

There is extensive literature on broadcast encryption and multicast security, which

might be considered applicable in this setting as well. There are, however, crucial

differences in the models, which prevent us from simply using existing solutions from

3Public storage associated with our scheme for an n-node tree is n node labels (one per node) and
n− 1 edge labels (one per edge). In the scheme of [55] there are n random numbers (one per node)
and n node idenitifiers. Since labels in our solution play the same role as node identifiers in scheme
of [55], there is no benefit in public storage in either scheme.

18

those domains. First of all, literature on broadcast encryption and multicast security

provides solutions that permits access to a single resource instead of a hierarchy and

they cannot be composed in an obvious way to provide a solution to our problem.

More importantly, they assume that each client obtains an updated key for each time

interval, which is impossible in our model: no private channels between the server

and a client after the initial issuance of the user keys is assumed, the client is allowed

to remain off-line, and can access the resources at its own discretion.

The only exception from the above online requirement that we are aware of is the

work of Briscoe on multicast key management [66]. That solution builds a binary

tree from the time intervals, thus achieving O(log n) secret keys and O(logn) key

derivation time. Our solution, on the other hand, provides a constant number of

secret keys and a constant derivation time, thus resulting in superior performance,

which additionally is independent of the number of time intervals in the system.

Time-based key assignment can also be considered related to time-evolving cryp-

tography such as forward-secure and backward-secure encryption and signature schemes.

In such schemes, access to a secret key allows the owner to decrypt (respectively, sign)

messages corresponding to all past or all future time intervals (i.e, access is unidirec-

tional in time). In our setting, however, unidirectional key derivation is not sufficient,

which significantly complicates the problem. Thus, the closest to our setting are the

schemes that combine forward and backward security, such as key-insulated cryp-

tography [67–69] and intrusion-resilient models [70, 71]. The mode of operation in

key-insulated and intrusion-resilient constructions, however, is such that at each time

interval a trusted device transmits a part of the key corresponding to the current time

interval, which allows the user to combine it with another part she has and derive the

current secret key. In our problem, on the other hand, an off-line mode of operation

is assumed, where no interaction with other parties can be used to derive the key for

the current time interval. In addition, we do not assume trusted devices or parties

once the keys are issued to the user.

19

Also, key updating schemes in cryptographic storage systems such as those in

[72,73] give various constructions for performing key updates and derivation. Similar

to forward-secure solutions, the current key allows users to derive keys for all past

time intervals with unidirectional key derivation, which is insufficient in our case.

2.3 Access Control in Geo-Spatial Systems

Using location information for access control, i.e., location-based access control

(LBAC), is not a new concept. The major challenges in geo-spatial computing were

covered in the summary of the recent NRC’s “IT Roadmap to a Geo-Spatial Fu-

ture” [74]. One of the issues mentioned as a future challenge are “fine-grained access

control mechanisms permitting the precise release of location information to just the

right parties under the right circumstances.” Atluri and Chun [75] propose a new

model that supports privilege modes specific to geo-spatial data and includes geo-

metric considerations (such at the region of overlap between an authorization and

an access request). Similarly Bertino et al. [76] extend the RBAC model to GEO-

RBAC, a model that can deal with geo-spatial information. Other previous work

includes efficiently tracking the location of a user [77], models for representing and

evaluating LBAC conditions [78], answering database queries based on location [79],

the introduction of architectures for supporting location-aware applications [80], and

many other important problems. However, we are not aware of any key management

schemes that implement geo-spatial access control policies.

20

3 KEY ASSIGNMENT IN HIERARCHICAL SYSTEMS

This chapter defines the problem of key assignment in hierarchical systems and then

presents our solutions.

3.1 Problem Definition

Suppose that a user hierarchy is modeled as a directed access graph G = (V, E, O),

where V is a set of vertices of size |V | = n, E is a set of edges, and O is a set of

objects associated with the hierarchy. Each vertex v ∈ V represents a class in the

access hierarchy and has a set of objects associated with it. Function O : V → 2O

maps a node to a unique set of objects such that |O(v)| ≥ 0 and ∀v ∈ V ∀w ∈
V, O(v) ∩ O(w) = ∅ iff v 6= w. (For brevity, we use notation Ov to mean O(v).)

When the set of edges E or the set of objects O is not essential to our current

discussion, we may omit it from the definition of the graph and instead use notation

G = (V, O) or G = (V, E), respectively.

In a directed graph G = (V, E), we define an ancestry function Anc(v, G) which is

a set such that w ∈ Anc(v, G) if there is a path from w to v in G. We also define the

set of descendants of node v as Desc(v, G), where w ∈ Desc(v, G) if there is a path

from v to w in G. For a directed graph G = (V, E), we use a function Pred(v, G)

to denote the set of immediate predecessors of v in G, i.e., if w ∈ Pred(v, G) then

there is a directed edge from w to v in G. Similarly, we define Succ(v, G) to be the

set of immediate successors of v in G. When it is clear what graph we are discussing,

we may omit G from the notation and instead use the shorthand notation Anc(v),

Desc(v), Succ(v), and Pred(v). We consider a node to be its own ancestor and

descendant, but we do not consider it to be a predecessor or successor of itself.

21

In the access hierarchy, a path from node v to node w (i.e., v is an ancestor of w)

means that any subject that can assume access rights at class v is also permitted to

access any object o ∈ Ow at class w. The function O∗ : V → 2O maps a node v ∈ V

to a set of objects accessible to a subject at class v (we use O∗
v as a shorthand for

O∗(v)). This function is defined as O∗
v =

⋃

w∈Desc(v)Ow.

Intuitively, a key allocation mechanism aims at implementing such form of access

control by assigning a cryptographic key kv to each class v. Such key kv is then used to

guard access to objects of class v (for example, by encrypting object o ∈ Ov under key

kv), and is made available to every user at class v (and at any of its ancestor classes).

It follows that each user ought to store (or be able to derive) the cryptographic key kv

associated with the class v to which he belongs, as well as the keys kw of all classes w

which are descendants of v. For the sake of generality, we do not impose any specific

structure on the secret information actually stored by users at class v; we denote such

information by Sv.

In summary, Sv denotes the secret information that each user at class v stores,

while kv (which is derivable from Sv) is the cryptographic key necessary to gain access

to objects at class v. We formalize this intuition with the following definition.

Definition 3.1.1 A Key Allocation (KA) scheme is a pair of polynomial-time algo-

rithms (Set, Derive), defined as follows:

• Set(1κ, G) is a randomized algorithm that on input a security parameter 1κ and

an access graph G, outputs two mappings: (i) a public mapping Pub : V ∪E →
{0, 1}∗, associating a public label `v to each node v and a public label yv,w to

each edge (v, w) in the graph; (ii) a secret mapping Sec : V → {0, 1}κ×{0, 1}κ,
associating a secret information Sv and a cryptographic key kv to each node v

in G. (No secret information is associated to edges in G.)

• Derive(G, Pub, v, w, Sv) is a deterministic algorithm taking as input the access

graph G, the public information Pub output by Set, a source node v, a target

node w and the secret information Sv of node v. It outputs the cryptographic

22

key kw associated to node w if w ∈ Desc(v), or a special rejection symbol ⊥
otherwise.

For correctness, the Set and Derive algorithms of a key allocation scheme should also

satisfy the following constraint: ∀v ∈ V , ∀w ∈ Desc(v),

Pr

kw = Derive(G, Pub, v, w, Sv)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(Pub, Sec)← Set(1κ, G),

(Sv, kv)← Sec(v),

(Sw, kw)← Sec(w)

= 1

where the probability is over the random choices of the Set algorithm.

We now formalize two levels of security: key recovery and key indistinguishability.

Definition 3.1.2 (Key Recovery) A key allocation scheme is secure w.r.t. key re-

covery if no polynomial time adversary A has a non-negligible advantage (in the

security parameter κ) against the challenger in the following game:

• Setup: The challenger runs Set(1κ, G), and gives the resulting public informa-

tion Pub to the adversary A.

• Attack: The adversary issues, in any adaptively chosen order, a polynomial

number of Corrupt(v) queries, which the challenger answers by retrieving (Sv, kv)

= Sec(v) and giving Sv to A.

• Break: The adversary outputs a node v∗, subject to v∗ 6∈ Desc(v) for any v

asked in Phase 1, along with her best guess k′
v∗ to the cryptographic key kv∗

associated with node v∗.

We define the adversary’s advantage in attacking the scheme to be Pr[k′
v∗ = kv∗].

Definition 3.1.3 (Key Indistinguishability) A key allocation scheme is key in-

distinguishable if no polynomial time adversary A has a non-negligible advantage (in

the security parameter κ) against the challenger in the following game:

23

• Setup: The challenger runs Set(1κ, G), and gives the resulting public informa-

tion Pub to the adversary A.

• Phase 1: The adversary issues, in any adaptively chosen order, a polyno-

mial number of Corrupt(v) queries, which the challenger answers by retrieving

(Sv, kv) = Sec(v) and giving Sv to A.

• Challenge: Once the adversary decides that Phase 1 is over, it specifies a

node v∗, subject to v∗ 6∈ Desc(v) for any v asked in Phase 1. The challenger

picks a random bit b∗ ∈ {0, 1}: if b∗ = 0, it returns to A the cryptographic key

kv∗ associated with node v∗; otherwise, it returns to A a random key k̄v∗ of the

same length κ.

• Phase 2: The adversary can issue more Corrupt(v) queries, obtaining back

the corresponding key Sv. Note that A cannot ask Corrupt(v) queries for v ∈
Anc(v∗).

• Guess: The adversary outputs a bit b ∈ {0, 1} as her best guess to whether she

was given the actual key kv∗ or a random key. A wins the game if b = b∗.

We define the adversary’s advantage in attacking the scheme to be |Pr[b = b∗]− 1
2
|.

Remark. In formalizing the security of a key allocation scheme, Corrupt queries are

answered with respect to the secret info Sv, whereas the Break/Challenge phases

relate to the cryptographic key kv∗ . This is because access to an object at class v∗

is granted by the cryptographic key kv∗ . Thus, to test the ability of the adversary

to break the access control mechanism, we challenge her to either recover the real

cryptographic key (for key recovery) or to tell the real cryptographic key apart from

some random string (for key indistinguishability).

24

3.2 Base Scheme

This section describes our scheme in which every node has one key associated with

it, the public information is linear in the size of the access graph G, and computation

by node v of a key that is ` levels below it can be done in ` evaluations of a pseudo-

random function. Note that pseudo-random functions can be efficiently implemented

as, e.g., HMAC [81] built using only a cryptographic hash function or CBCMAC that

utilizes symmetric key encryption. Here we focus on key allocations for a static access

hierarchy. An extension of this scheme is given in Section 3.3, and its support for

dynamic access hierarchies is discussed in Section 3.4.

Our construction is based on the use of pseudo-random functions, which we define

next.

Definition 3.2.1 (Pseudo-Random Function (PRF) Family) Let {F κ}κ∈N be

a family of functions where F κ : Kκ × Dκ → Rκ. For k ∈ Kκ, denote by F κ
k :

Dκ → Rκ the function defined by F κ
k (x) = F κ(k, x). Let Randκ denote the family of

all functions from Dκ to Rκ, i.e., Randκ = {g | g : Dκ → Rκ}.
Let A(1κ) be an algorithm that takes as oracle a function g : Dκ → Rκ and returns

a bit. Function g is either drawn at random from Randκ (i.e., g
R← Randκ) or set to

be F κ
k , for a random k

R← Kκ. Consider the two experiments:

Experiment ExpPRF−1
F,A (κ) Experiment ExpPRF−0

F,A (κ)

k
R← Kκ g

R← Randκ

d← AF κ
k (1κ) d← Ag(1κ)

Return d Return d

The PRF-advantage of A is then defined as:

AdvPRF
F,A (κ) =| Pr[ExpPRF−1

F,A (κ) = 1]− Pr[ExpPRF−0
F,A (κ) = 1] | .

{F κ}κ∈N is a PRF family if for every κ ∈ N, the function F κ is computable in

time polynomial in κ, and if the function AdvPRF
F,A (κ) is negligible (in κ) for every

polynomial-time distinguisher A(1κ) that halts in time poly(κ).

25

Assume that we are given a PRF family {F κ}κ∈N where F κ : {0, 1}κ × {0, 1}κ →
{0, 1}κ.1 Given an access graph G = (V, E) and a security parameter κ, the Set(1κ, G)

algorithm proceeds as follows:

• For each vertex v ∈ V , pick a unique label `v ∈ {0, 1}κ and a random value

Sv ∈ {0, 1}κ, then set kv = Sv.

• For each edge (v, w) ∈ E, compute yv,w = kw ⊕ F (kv, `w), where ⊕ denotes

bitwise XOR.

The output of Set(1κ, G) consists of the two mappings Pub : V ∪ E → {0, 1}∗ and

Sec : V → {0, 1}κ × {0, 1}κ, defined as:

Pub : v 7→ `v Pub : (v, w) 7→ yv,w

Sec : v 7→ (Sv, kv)

When a user joins an access class v, she is given secret value Sv for her class. If a user

is assigned access to several classes V ′ ⊆ V , she is given keys for each of her access

classes w ∈ V ′.

We now describe the Derive algorithm. Suppose a user has access to class v and

is in possession of the corresponding key kv. Then to obtain the cryptographic key

kw of a descendant node w, the user sequentially processes every edge (vi, vj) on the

path between v and w. Given an edge (vi, vj) for which both vi’s private key kvi
and

the stored public information `vi
and yvi,vj

are known, we can compute vj ’s private

information kvj
as kvj

= F (kvi
, `vj

)⊕yvi,vj
, using the fact that yvi,vj

= kvj
⊕F (kvi

, `vj
).

Due to the sequential nature of key generation on the path between v and w, the

user will be able to derive keys of all necessary nodes and produce key kw.

Example. Figure 3.1 shows key allocation for a graph more complicated than a tree.

First, it is possible for the node with key k1 to generate key k2, because that node

can compute F (k1, `2) and use it, along with the public edge information, to obtain

1To simplify the notation, we will omit the superscript κ from Fκ wherever the security parameter
is clear by the context.

26

`1;k1

`2;k2 `3;k3

`4;k4

�
�

�
��+

Q
Q

Q
QQs

Q
Q

Q
QQs

�
�

�
��+

y1,2 = k2 ⊕ F (k1, `2) y1,3 = k3 ⊕ F (k1, `3)

y2,4 = k4 ⊕ F (k2, `4) y3,4 = k4 ⊕ F (k3, `4)

Figure 3.1. Key allocation in the base hierarchical scheme for an
example access graph.

k2. The node with k3, on the other hand, cannot generate k2, since this would require

inversion of the F function.

Theorem 3.2.1 The above scheme is secure against key-recovery (per Definition 3.1.2)

for a DAG G, assuming the security of the pseudo-random function family {F κ}κ∈N

as given in Definition 3.2.1.

Proof In the security proof, we will follow the same structural approach used in

[82], first advocated in [83]. Starting from the actual attack scenario, we consider a

sequence of hypothetical games, all defined over the same probability space. In each

game, the adversary’s view is obtained in different ways, but its distribution is still

indistinguishable among the games.

Roughly speaking, proving the theorem amounts to showing that the only way

to break the key recovery security of the base scheme is by breaking the security of

the pseudo-random function F . To accomplish this, we need to show how to turn an

adversary A attacking the scheme into an adversary BF attacking F .

One difficulty with this approach is that whereas A can choose which part of the

public info to attack (via the challenge query), the adversaries BF does not have such

27

flexibility. The standard way to solve this technical problem is to “guess” the node

v∗ for which adversary A will ask the challenge query and construct adversaries BF

based on the assumption that this guess is correct. In the rest of the proof, we will

assume that we correctly guessed the challenge node v∗. Since such a priori guess is

correct with 1/n probability, this affects the exact security of the reduction proof by

a factor of n.

Let G′ = (V ′, E ′) be the subgraph of G induced by restricting the set of vertices

V to the set V ′ of the ancestors of v∗, including v∗ itself. Also, let v1, . . . , vh be any

topological ordering of the vertices in G′.

To prove the theorem, we define a sequence of “indistinguishable” games G0, G1,

. . ., Gh, all operating over the same underlying probability space. Starting from the

actual adversarial game G0 (as defined in Definition 3.1.2), we incrementally make

slight modifications to the behavior of the challenger, thus changing the way the

adversary’s view is computed, while maintaining the views’ distributions indistin-

guishable among the games. In the last game, it will be clear that the adversary has

(at most) a negligible advantage. By the indistinguishability of any two consecutive

games, it will then follow that in the original game the adversary’s advantage is also

negligible.

Recall that in each game Gj, the goal of adversary A is to guess the cryptographic

key kv∗ associated with node v∗. Let Tj be the event that k′
v∗ = kv∗ in game Gj. We

then define the games as follows:

Game G0. Define G0 to be the original game as described in Definition 3.1.2.

Game G1. This game is identical to game Game G0, except that in G1 the Set(1κ, G)

algorithm is modified in such a way that the secret key kv1
of node v1 is never used

in the creation of the public information. Instead, for each edge (v1, vj) in the graph

G coming out of node v1, the public information y1j associated with the edge (v1, vj)

is selected at random from {0, 1}κ, i.e., yv1,vj

R← {0, 1}κ.
Note that such modification essentially amounts to substituting any occurrences

of the pseudo-random function F (kv1
, ·) in G0 with a truly random function. Since kv1

28

does not occur anywhere else in the attack game, such modification is warranted by

the security of the PRF family {F κ}κ∈N. In other words, using a standard reduction

argument, any non-negligible difference in behavior between games G0 and G1 can

be used to construct a PPT algorithm BF that is able to break the pseudo-random

function F with non-negligible advantage. Hence,

∣

∣ Pr[T1]− Pr[T0]
∣

∣ ≤ εPRF (3.1)

where εPRF is the (negligible) advantage AdvPRF
F,BF

(κ) of any PPT adversary BF against

the security of the pseudo-random function F . We now generalize the description of

game G1 to any game in the sequence G1, . . ., Gh.

Game Gi (1 ≤ i ≤ h). This game is identical to game Gi−1, except that the

Set(1κ, G) algorithm is modified in such a way that the secret key kvi
of node vi is

never used in the creation of the public information. Observe that the cryptographic

key kvi
occurs in game Gi−1 only as the key to the pseudo-random function F (·, ·).

In particular, no information about kvi
is present in the public information associated

with the edges going into node vi due to the modifications carried out in games G0,

. . ., Gi−1 and to the fact that we are working through the ancestors of v∗ in the

topological ordering.

Thus, to change game Gi−1 into game Gi, for each edge (vi, vj) coming out of node

vi, we draw the public information yvi,vj
at random from {0, 1}κ (rather than com-

puting it as prescribed). Such modification amounts to substituting all occurrences

of F (kvi
, ·) in Gi−1 with a truly random function. Since kvi

does not occur anywhere

else in Gi−1, we can conclude (as above) that such modification is warranted by the

security of the PRF family {F κ}κ∈N, i.e.:

∣

∣ Pr[Ti]− Pr[Ti−1]
∣

∣ ≤ εPRF (3.2)

To conclude the proof, observe that no information about the secret key kv∗(= kvh
)

is present in the adversary’s view for game Gh. It follows that the probability of a

correct guess for kv∗ by the adversary in game Gh is just 1/2κ, i.e.:

29

Pr[Th] =
1

2κ
(3.3)

Combining Equation 3.3 with the intermediate results in Equation 3.2, we can con-

clude that:

Pr[T0] ≤
1

2κ
+ h · εPRF .

�

3.3 The Extended Scheme

We now present an extension of the scheme described in Section 3.2 and prove it

secure w.r.t. key indistinguishability (according to Definition 3.1.3), without random

oracles. An important feature of this extended scheme is that it permits arbitrary

changes to the hierarchy without affecting secret information stored by the users.

The scheme maintains essentially the same parameters as the one in Section 3.2:

every node has only one random κ-bit key associated with it; the public information

is linear in the size of the access graph G; to derive the key of a descendant node

located ` levels below, computation consists of ` efficient operations. In addition to

using PRFs, the extended scheme makes use of a secure2 encryption scheme E : we

denote with Enc and Dec the corresponding encryption and decryption algorithms.

In details, given an access graph G = (V, E) and a security parameter κ, the

Set(1κ, G) algorithm proceeds as follows:

• For each vertex v ∈ V , first pick a unique label `v ∈ {0, 1}κ and a random value

Sv ∈ {0, 1}κ; then compute tv = FSv
(0||`v) and kv = FSv

(1||`v).

• For each edge (v, w) ∈ E, compute rv,w = Ftv(`v) and yv,w = Encrv,w
(tw||kw).

2We require the encryption scheme to be chosen ciphertext secure; see the definition in [84].

30

The output of Set(1κ, G) consists of the two mappings Pub : V ∪ E → {0, 1}∗ and

Sec : V → {0, 1}κ × {0, 1}κ, defined as:

Pub : v 7→ `v Pub : (v, w) 7→ yv,w

Sec : v 7→ (Sv, kv)

When a user joins a class v, she is then given secret value Sv associated with that

class.

We now describe the Derive algorithm. Given G, the corresponding public infor-

mation Pub, a source node v, a target node w and the secret information Sv of node

v, the cryptographic key kw of node w is derived by considering each edge on the

path3 from v down to w in turn, and repeatedly decrypting the public info associated

to such edge. More precisely, Derive(G, Pub, v, w, Sv) proceeds as follows:

• If there is no path from v to w in G, return ⊥;

• If v = w, retrieve `v from Pub and return kw ← FSv
(1||`v);

• Else compute tv ← FSv
(0||`v) and let vi = v and tvi

= tv; then

repeat

let vj be the successor of vi in the path from v to w;

retrieve `vi
and yvi,vj

from Pub;

rvi,vj
← Ftvi

(`vj
);

tvj
||kvj

← Decrvi,vj
(yvi,vj

);

vi ← vj ; tvi
= tvj

;

until vj = w;

return kw.

Figure 3.2 shows how the key derivation mechanism works for the same toy example

given in Figure 3.1.

3If there is more than one path, pick one arbitrarily, e.g., the shortest path from v to w.

31

y3,4

`2; S2

y1,2

y1,3

y2,4

yi,j ← Encri,j
(tj||kj)

ri,j ← Fti(`j)

`3; S3

`1; S1

k2t2

t1 k1

t4 k4

`4; S4

t3 k3

Figure 3.2. Key allocation in the extended hierarchical scheme for an
example access graph.

Next, we prove that the extended scheme described above is key indistinguishable

(per Definition 3.1.3), following the same approach as in the proof of Theorem 3.2.1.

Theorem 3.3.1 The above extended scheme is key indistinguishable for any DAG G,

assuming the security of the pseudo-random function family {F κ}κ∈N and the security

of the encryption scheme E .

Proof Roughly speaking, proving the theorem amounts to showing that the only

way to break the key indistinguishability property of the extended scheme is by either

breaking the pseudo-random function F or the encryption scheme E . To accomplish

this, we need to show how to turn an adversary A attacking the scheme into either

an adversary BF attacking F or an adversary BE attacking E .
One difficulty with this approach is that whereas A can choose which part of the

public info to attack (via the challenge query), the adversaries BF and BE do not

have such flexibility. As noted in Theorem 3.2.1, the standard way to solve this is to

32

“guess” the node v∗ for which adversary A will ask the challenge query and construct

adversaries BF (or BE) based on the assumption that this guess is correct. Thus in

the rest of the proof, we will assume that we correctly guessed the challenge node v∗.

Since such a priori guess is correct with 1/n probability, this affects the exact security

of the reduction proof by a factor of n.

To prove the theorem, we again define a sequence of “indistinguishable” games

G0,G1, . . ., where G0 is the actual adversarial game (as defined in Definition 3.1.3),

and where the adversary’s advantage in the last game will only be negligible. Recall

that in each game Gj, the goal of adversary A is to output b ∈ {0, 1} which is her

best guess to the bit b∗ chosen by the challenger in the attack game described in

Definition 3.1.3. Let Tj be the event that b = b∗ in game Gj .

For clarity of exposition, we first discuss two special cases, which exemplify the

most technical aspects of the proof. Afterwards, we describe how the general case is

addressed.

First special case. v∗ is one of the roots4 in G.

Game G0. Define G0 to be the original game as described in Definition 3.1.3.

Game G1. This game is identical to game G0, except that in G1 the Set(1κ, G)

algorithm is modified in such a way that the cryptographic key kv∗ is information

theoretically hidden from the view of adversary A. To achieve this, we compute

tv∗ ← R1(0||`v∗), kv∗ ← R1(1||`v∗)

where R1 : {0, 1}∗ → {0, 1}∗ is a truly random function. Note that such modification

essentially amounts to substituting any occurrences of the pseudo-random function

FSv∗
(·) with a truly random function R1(·). Since Sv∗ does not occur anywhere else in

the attack game, such modification is warranted by the security of a pseudo-random

function. In other words, using a standard reduction argument, any non-negligible

difference in behavior between game G0 and G1 can be used to construct a PPT

4By root in a DAG we mean any minimal node in the topological order of G.

33

algorithm BF that is able to break the pseudo-random function F with non-negligible

advantage. Hence,
∣

∣ Pr[T1]− Pr[T0]
∣

∣ ≤ εPRF (3.4)

where εPRF is the (negligible) advantage AdvPRF
F,BF

of any PPT adversary BF attacking

the security of the pseudo-random function F .

It remains to notice that in game G1, the challenge no longer contains any infor-

mation about b∗. This is because kv∗ is now a random value, exactly as k̄v∗ . Moreover,

since v∗ is a root of G, it has no incoming edges and thus the public information Pub

does not contain any label yv,v∗ (which would be an encryption of tv∗ ||kv∗). Therefore,

kv∗ is independent of any other values in the adversary view, and thus it is indistin-

guishable from k̄v∗ . It follows that the adversary’s view is exactly the same regardless

of the value of b∗, and thus:

Pr[T1] = 1/2 (3.5)

Combining Equations 3.4 and 3.5, the thesis follows.

Second special case. v∗ has a single predecessor p which is one of G’s roots.

Game G0, Game G1. The first two games are defined as in the first special case.

Game G
(a)
2 . This game is identical to game G1, except that in Game G

(a)
2 we

further modify the Set(1κ, G) algorithm so that the secret information tp is information

theoretically hidden from the view of adversary A. To achieve this, we compute

tp ← R1(0||`p), kp ← R1(1||`p)

where R1 : {0, 1}∗ → {0, 1}∗ is a truly random function. Note that such modification

essentially amounts to substituting any occurrences of the pseudo-random function

FSp
(·) with a truly random function R1(·). Since Sp does not occur anywhere else in

the attack game, such modification is warranted by the security of a pseudo-random

function; hence,
∣

∣ Pr[T
(a)
2]− Pr[T1]

∣

∣ ≤ εPRF (3.6)

.

34

Game G
(b)
2 . To turn game G

(a)
2 into game G

(b)
2 , for any child s of p, we compute

rp,s ← R2(`s)

where R2 : {0, 1}∗ → {0, 1}∗ is a truly random function. Note that such modification

essentially amounts to substituting any occurrences of the pseudo-random function

Ftp(·) with a truly random function R2(·), which is safe since p is a root of G, and

thus tp does not occur anywhere else in the adversarial view (in particular, it is not

encrypted within any label in Pub). Therefore, using a standard reduction argument,

any non-negligible difference in behavior between game G1 and G
(b)
2 can be used to

construct a PPT algorithm BF that is able to break the pseudo-random function F

with non-negligible advantage. Hence,

∣

∣ Pr[T
(b)
2]− Pr[T

(a)
2]

∣

∣ ≤ εPRF (3.7)

Game G
(c)
2 . This game is exactly as G

(b)
2 except that the label yp,v∗ associated with

edge (p, v∗) ∈ E is now computed as

yp,v∗ ← Encrp,v∗
($||$)

where $ denotes a random value. Note that this modification amounts to changing the

plaintext within a ciphertext, which was encrypted under a key that is independent

from the adversary view (because of the changes in game G
(b)
2). Therefore, using

a standard reduction argument, any non-negligible difference in behavior between

games G
(b)
2 and G

(c)
2 can be used to construct a PPT algorithm BE that is able to

break the security of the encryption scheme E with non-negligible advantage. Hence,

∣

∣ Pr[T
(c)
2]− Pr[T

(b)
2]

∣

∣ ≤ εEnc (3.8)

where εEnc is the (negligible) advantage of any PPT adversary attacking the security

of the encryption scheme E .
It remains to notice that in game G

(c)
2 , the challenge no longer contains any

information about b∗. This is because the label yp,v∗ of the only incoming edge

35

(p, v∗) ∈ E no longer contains any information about kv∗ (after the modification in

this game), which is therefore independent from the adversary view. Thus,

Pr[T
(c)
2] = 1/2 (3.9)

Combining Equations 3.4, 3.6, 3.7, 3.8 and 3.9, the thesis follows.

The general case. There are no restrictions on the position of v∗ in G.

The second special case demonstrated how to remove from the adversary view’s the

information on kv∗ (which could be leaked by the label yp,v∗ in Pub associated with

the single edge (p, v∗) going into v∗). In the general case, there could be several edges

going into v∗, and, in particular, it is necessary to consider each path going from one

of the roots of G to v∗.

To accomplish this, we start the sequence of games with Game G0 and Game G1

defined as in the first special case. Then for each ancestor of v∗ (considered in

turn according to any topological sorting), we introduce three games mimicking the

structure of games G
(a)
2 , G

(b)
2 and G

(c)
2 as defined in the second special case.

At a high level, this can be thought of as a “pebbling argument,” by which we

successively pebble all of the ancestors of v∗, until we reach v∗ itself, according to the

following rules:

1. A node can be pebbled only after all its ancestors have already been pebbled.

2. To pebble a node u, we introduce the games G(a)
u , G(b)

u and G(c)
u in the sequence,

following the same approach employed in the second special case. In particular,

first we define a game G(a)
u in which the secret information tu is computed as:

tu ← R(a)
u (0||`u), ku ← R(a)

u (1||`u)

where R
(a)
u : {0, 1}∗ → {0, 1}∗ is a truly random function.

Second, we define a game G(b)
u in which, for every child s of u, we compute

ru,s ← R(b)
u (`s)

36

where R
(b)
u : {0, 1}∗ → {0, 1}∗ is a truly random function.

Third, we define a game G(c)
u in which we set

yu,s∗ ← Encru,s∗
($||$)

where s∗ is the successor of u in the path from u to v∗ and $ denotes a random

value.

Reasoning along the lines of the argument for the second special case, we can argue

that each tuple of games G(a)
u , G(b)

u , and G(c)
u negligibly alters the adversary’s view (by

a term 2εPRF +εEnc). Overall, once all of the ancestors of v∗ have been pebbled, we can

argue that no information about kv∗ is present in Pub, and hence kv∗ is independent

from the adversary’s view, and thus is indistinguishable from k̄v∗ . From this we can

derive that in the last game G
(c)
v∗ ,

Pr[T
(c)
v∗] = 1/2 (3.10)

Combining all of the intermediate equations, we can conclude that

Pr[T0] ≤ 1/2 + εPRF + nv∗(2εPRF + εEnc)

where nv∗ is the number of ancestors of v∗. This concludes the proof. �

3.4 Supporting Changes to the Access Hierarchy

In this section we show how dynamic changes to the access hierarchy, such as

addition and deletion of edges and nodes, as well as replacing a node’s key, are

handled in the scheme of Section 3.3.

Insertion of an edge. Suppose the edge (v, w) is to be inserted into G. First,

compute rv,w = Ftv(`w) and yv,w = Encrv,w
(tw||kw). Then, augment Pub to contain

the mapping (v, w) 7→ yv,w.

Deletion of an edge. In deleting an edge, the difficulty is in preventing access by

ex-members. Suppose the edge (v, w) is to be deleted from G. Then the following

updates are done: for each node u ∈ Desc(w, G), perform:

37

1. Change the label of u, call it `′u. Note that Su remains unchanged, but the keys

tu and ku need to be recomputed as t′u = FSu
(0||`′u) and k′

u

.
= FSu

(1||`′u).

2. For each edge (p, u) where p ∈ Pred(u), update the value of yp,u to be an

encryption of the newly compute keys, i.e., y′
p,u = Encrp,u

(t′u||k′
u), where r′p,u =

Ftp(`
′
u).

Insertion of a new node. If a new node v is being inserted, together with new

edges into and out of it, then we do the following:

1. Create the node v without any incoming or outgoing edges; this requires just

generating a unique public label `v ∈ {0, 1}κ and a random secret value Sv ∈
{0, 1}κ, computing kv = FSv

(1||`v) and augmenting Pub with the mapping v 7→
`v and Sec with the mapping v 7→ (Sv, kv).

2. Add the edges one by one, using each time the above procedure for edge inser-

tion.

Deletion of a node. Deletion of a node v amounts to the following two steps:

1. Deletion of all of the edges coming into and out of v, using the above procedure

for edge deletion.

2. Removal of the public and secret information associated with v from the maps

Pub and Sec.

Key replacement. Key replacement for a node v is performed as follows:

1. Update the secret information Sv with a new random value S ′
v

R← {0, 1}κ.

2. Update the vertex’s keys to t′v
.
= FS′

v
(0||`v) and k′

v

.
= FS′

v
(1||`v).

3. Update Sec to map v 7→ (S ′
v, k

′
v).

4. For each edge (w, v) (i.e., where w ∈ Pred(v)), compute y′
w,v according to the

new keys t′v and k′
v and updates Pub to map (w, v) 7→ y′

w,v.

38

5. For each edge (v, u) (i.e., where u ∈ Succ(v)), compute y′
v,u according to the

new key t′v and update Pub to map (v, u) 7→ y′
v,u.

No node other than v is affected.

User revocation. To the best of our knowledge, no prior work on hierarchical access

control considered key management at the level of access classes and at the same time

at the level of individual users. For instance, among the schemes closest to ours, [43]

considers only a hierarchy of security classes without mentioning individual users,

and [30] considers a hierarchy of users without grouping them into classes. However,

it is important to group users with the same privileges together and on the other

hand permit revocation of individual users. In our scheme, revoking a single user can

be done with two approaches:

1. Recard every user at that user’s access class(es), and for all descendants of this

access class(es) perform the operation described for edge deletion (i.e., change

all keys by changing the labels and then update the public information). Note

that the descendants do not have to be rekeyed.

2. Make the access graph such that each user is represented by a single node in

the graph with edges from this node to each of that user’s access classes. By

creating such a graph, removing a user is as easy as removing his node, and

thus does not require rekeying of any other user in the system.

3.5 Other Access Models

Traditionally, the standard notion of permission inheritance in access control is

that permissions are transfered “up” the access graph G. In other words, any vertex

in Anc(v, G) has a superset of the permissions held by v. Crampton [85] suggested

other access models, including:

1. Permissions that are transfered down the access graph. For these permissions,

any node in Desc(v, G) has a superset of the permissions held by v.

39

2. Permissions that are transfered either up or down the graph but only to a limited

depth.

In this section, we discuss how to extend our scheme to allow such permissions. We

can achieve upward and downward inheritance with only two keys per node. Also,

we can achieve all of these permissions with four keys at each node for a special class

of access graphs that are “layered” DAGs (defined later) when there is no collusion.

3.5.1 Downward Inheritance

To support such inheritance, we construct the reverse of the graph G = (V, E, O),

which is a graph GR = (V, E ′, O) where for each edge (v, w) ∈ E there is an edge

(w, v) ∈ E ′. Then we use our base scheme for both G and GR, which results in each

node having two keys, but the scheme now supports permissions that are inherited

upwards or downwards.

3.5.2 Limited Depth Permission Inheritance

We say that an access graph is layered if the nodes can be partitioned into sets,

denoted by S1, S2, . . . , Sr, where for all edges (v, w) in the access graph it holds that

if v ∈ Sm then w ∈ Sm+1. We claim that many interesting access graphs are already

layered, but in general any DAG can be made layered by adding enough virtual nodes.

Given such a layering, we can then support limited depth permissions. This is

done by creating another graph which is a linear list that has a node for each layer,

and there is an edge from each layer to the next layer. The reverse of this graph

is also constructed, and these graphs are assigned keys according to our scheme. A

node is given the keys corresponding to its layer. Clearly, with such a technique we

can support access rights that permit access to all nodes higher than some level and

to all nodes lower than some level.

40

We now show how to utilize these four key assignments to support permission

sets of the form “all ancestors of some node v that are lower than a specific layer L”

(an analogous technique can be used for permission sets of the form “all descendants

of v above some specific layer”). Suppose the key for the permission requirement to

access “all ancestors of node v” is kv and the key for permission requirement to access

“all nodes lower than layer L” is kL. Then we establish a key for both permission

requirements by setting the key to F (kv, kL). Clearly, only nodes that are an ancestor

of v can generate kv and only nodes lower than level L can generate kL, so the only

nodes that could generate both keys would be an ancestor of v AND below level L,

assuming that there is no collusion.

41

4 IMPROVING EFFICIENCY

The main focus of this chapter is to improve key derivation time in graphs where

the distance between two nodes can be large. Recall that the key derivation time in

the schemes of the previous chapter require the number of operations proportional

to the length of the paths between two nodes. Therefore, if the distance is large

(i.e., the graph is deep), we might want to reduce the distance in order to decrease

computation a user must perform to access resources at a descendant class. Also, the

techniques given in this chapter apply to any graphs not necessarily in the context

of access graphs. Thus, for instance, we are able to utilize these techniques in our

solution to time-based access control given in Chapter 5.

The main idea used here is to insert extra edges, so-called shortcut edges, to

the hierarchy to decrease the distance between nodes. Such edges do not affect the

relationship between the nodes, and thus are in the transitive closure of G. In other

words, we may insert a shortcut edge between nodes v and w only if there is already

a path between the nodes in the original graph G.

In this chapter, we first, in Section 4.1, present an efficient solution for hierarchies

that are trees (which also extends to more general graphs), and then, in Section 4.2,

provide another solution for more general graphs, which is based on the notion of

dimension of a graph (defined later). Note that for trees, the first construction results

in a more efficient solution, while the latter is designed to support graphs more general

than trees.

4.1 A Solution for Tree Hierarchies

Throughout this section we assume that the access structure is a tree with n

nodes, unless mentioned otherwise. We first describe a construction that reduces the

42

path between any two nodes (from the worst-case O(n)) to O(log log n) with O(n)

public space. This construction is given in Sections 4.1.1–4.1.3, where, for clarity of

presentation, with start with a simple construction and gradually improve to result

in the above performance. Then Section 4.1.4 describes an alternative construction

that allows us to achieve the distance of 3 edges between any two nodes with public

storage space (e.g., the number of edges) of O(n log log n). Finally, in Section 4.1.5

we show how the technique can be extended to more general hierarchies.

4.1.1 A Preliminary Scheme

Our solution uses the notion of a centroid of a tree: A centroid of an n-node tree

T is a node whose removal from T leaves no connected component of size greater than

n/2 [86]. The tree T does not need to be binary or even have constant-degree nodes.

It can be shown that in any tree there are at most two centroids, and if there are two

centroids, then they must be adjacent. If the tree is rooted and has two centroids, we

break the tie by arbitrarily selecting the parent among the two centroids. Thus, we

refer to “the” centroid of a rooted tree.

Our preliminary algorithm AddShortcuts0 for adding shortcuts edges to T is de-

scribed next. It outputs a set of O(n log log n) edges that reduce the distance between

any two nodes to less than log n edges.

AddShortcuts0(T): For every node v of T , do the following:

1. Let Tv be the subtree of T rooted at v. Compute the centroid of Tv (call it cv).

2. Add a shortcut edge from v to cv (unless such an edge already exists or v = cv).

3. Remove from Tv its subtree rooted at cv. Note that the new Tv is now at most

half its previous size (and could in fact be empty if v = cv).

4. Repeat the above process for the new Tv until the final Tv is empty.

43

The number of shortcut edges leaving each v in the above algorithm is no more than

log n because each addition of a shortcut edge results in at least halving the size of

Tv. Therefore the total number of shortcut edges is no more than n log n.

Now we show that the shortcut edges make it possible for every ancestor v to

reach any of its descendants w in a path of no more than log n edges. When we trace

the path from v to w, we distinguish two cases, depending on whether w is in the

subtree of the centroid cv of Tv. The tracing algorithm which we call FindPath0 is as

follows:

FindPath0(v, w, T):

Case 1: w is in the subtree of the centroid cv of Tv. If v 6= cv, we follow the edge

from v to cv and continue recursively from cv. If, on the other hand, v = cv,

then we follow the tree edge from v to the child of v whose subtree contains w

and continue recursively from that child node.

Case 2: w is not in the subtree of cv in Tv. We recursively continue with a Tv that

is “truncated” by the (implicit) removal of Tcv
from it (i.e., it is now half of its

previous size).

The fact that the path traced by the above algorithm consists of no more than log n

edges follows from the observation that every time we follow an edge (whether it is a

tree edge or a shortcut edge), we end up at a node whose subtree is at most half the

size of the subtree we started at.

4.1.2 Improving the Time Complexity

Before describing an improvement to the above scheme, we need to review the

concept of centroid decomposition of a tree. If we compute the centroid of a tree,

then remove it, and recursively repeat this process with the remaining trees (of size

no more than n/2 each), we obtain a decomposition of the tree into what is called

44

a “centroid decomposition.” Such a decomposition can be easily computed in linear

time (see, for example, [87]).

Our improved scheme is based on doing a pre-processing step of T that consists of

performing what we call a “prematurely terminated centroid decomposition.” This

is similar to standard centroid decomposition, except that we stop the recursion not

when the tree becomes a single node, but when the tree size becomes at most
√

n.

This means that there are at most
√

n successive centroids that are affected by this

prematurely terminated decomposition (as opposed to n of them for the standard

decomposition). We call these centroids, as well as the root of T , special nodes.

Note that by our construction removing the special nodes from T leaves no connected

components of size larger than
√

n each; let us call these connected components

(which are trees) the “residual” trees and denote them by T1, . . . , Tk.

We also use the notion of a “reduced tree.”. The reduced tree T̂ consists of the

special nodes and of edges (v, w) that satisfy the following conditions: (i) v is an

ancestor of w in T , and (ii) there is no other node of T̂ on the path from v to w in T .

Now we are ready to describe the overall recursive procedure for adding shortcut

edges. In what follows, |T | denotes the number of vertices in T .

AddShortcuts1(T):

1. If |T | ≤ 4, then return an empty set of shortcuts. Otherwise continue with the

next step.

2. Compute the special nodes of T . Initialize the set of shortcuts S to be empty.

3. Create from T the reduced tree T̂ , and add to S a shortcut edge between every

ancestor-descendant pair in T̂ (unless the ancestor is a parent of the descendant,

in which case there is already such an edge in T).

4. For every residual tree Ti in turn (i = 1, . . . , k), add to S a shortcut edge from

the root of Ti to every node in Ti that is not a child of that root.

45

5. For every residual tree Ti in turn (i = 1, . . . , k), recursively call AddShortcuts1(Ti).

If we let Si denote the set of shortcuts returned by that recursive call, then up-

date S by setting S = S ∪ Si. Return S.

The number of shortcut edges added in Steps 3 is O(|T |) (since there are O(
√

|T |)
special nodes) and in Step 4 is

∑k

i=1 |Ti|, which is ≤ |T |. The overall recursive

procedure then obeys the following recurrence, where f(|T |) is the number of shortcut

edges we are introducing:

f(|T |) =

0 if |T | ≤ 4

f(|T |) ≤ c1|T |+
k
∑

i=1

f(|Ti|) if |T | > 4

Here every Ti has size ≤ √n and c1 is a constant. A straightforward induction proves

that this recurrence implies that f(n) = O(n log log n), which is the size of the public

information due to the creation of shortcut edges.

Next, we show that for every ancestor-descendant pair (v, w) in T , there is now

a path of length O(log log n). Our algorithm for finding such a path mimics the

recursion of AddShortcuts1. In what follows, we use Dist(n) to denote the distance

between any ancestor and descendant in the graph after generating shortcuts using

AddShortcuts1(T).

FindPath1(v, w, T):

1. If |T | ≤ 4, then trace a path from v to w along T and return that path. If

|T | > 4, continue with the next step.

2. If v and w are both special in T , then return the edge (v, w). If v and/or w is

not special, then proceed to the next step.

3. Let Ti be the residual tree containing v, and let Tj be the residual tree containing

w. If i = j, then we recursively call FindPath1(v, w, Ti) and return the path the

call returns.If i 6= j, then we proceed as follows:

46

(a) We recursively call FindPath1(v, u, Ti), where u is the node of Ti nearest to

w in T (hence u is a leaf of Ti, and one of its children u′ in T is a special

node that is an ancestor of w in T). This path is the initial portion of

the path P from v to w that will be returned by this algorithm (P will be

further built in the steps that follow).

(b) Follow the edge in T from u to the special node u′ that is ancestor of w in

T , and append that edge (u, u′) to P.

(c) Follow (and append to P) the edge in T̂ from special node u′ to the special

node (call it x) that is the special ancestor of w nearest to it (i.e., x is

parent of the root of the residual tree Tj that contains w). (Note that such

an edge exists because of Step 3 of AddShortcuts1(T).) If x = w, then

return P, otherwise continue with the next step.

(d) Follow (and append to P) the edge in T from x to the root of Tj .

(e) Follow (and append to P) the edge from the root of Tj to w; such an edge

exists because of Step 4 of AddShortcuts1(T). Return P.

Note that in the above algorithm, the path returned in Step 3 when i = j has length

≤ Dist(|Ti|) ≤ Dist(
√

|T |) and, likewise, the path returned in Step 3(a) has length

≤ Dist(|Ti|). Then the recurrence for Dist implied by the above algorithm is:

Dist(|T |) =

Dist(|T |) ≤ c2 if |T | ≤ 4

Dist(|T |) ≤ c3 + Dist(
√

|T |) if |T | > 4

where ci’s are constants. A straightforward induction proves that this recurrence

implies that Dist(n) = O(log log n), which is the worst-case key derivation time.

4.1.3 Improving the Space Complexity

In this section we further lower performance of the key assignment scheme by

reducing the public information (i.e., the number of edges in the graph) to O(n).

47

Similar to the solution of the previous section, we begin with a pre-processing

step that consists of performing “prematurely terminated centroid decomposition” of

T , except that now we stop the recursion not when the tree becomes of size ≤ √n,

but when the tree size becomes ≤ log log n. This means that there are at most

O(n/ log log n) successive centroids that are affected by this new form of prematurely

terminated decomposition, which we call distinguished nodes altogether with the root

of T . Note that removing these distinguished nodes from T leaves no connected

components of size larger than log log n each; we call these connected components

(which are trees) “tiny trees.”

We also use the notion of a “reduced tree” T ′ that is conceptually similar to the

T̂ of the previous section: The nodes of T ′ are the distinguished nodes, hence there

are O(n/ log log n) of them. The edges of T ′ satisfy the following condition: there is

an edge from node v to node w in T ′ if and only if (i) v ∈ Anc(w, T), and (ii) there

is no other node of T ′ on the path from v to w in T .

Our final AddShortcuts algorithm is then as the following:

AddShortcuts(T):

1. Compute the distinguished nodes of T . Create T ′.

2. Use the method of Section 4.1.2 on the tree T ′. Any edge of T ′ that was not in

T must be considered a new (i.e., a shortcut) edge.

Note that this algorithm uses O(n) public storage, because |T ′| = O(n/ log log n).

To trace a path between any ancestor and descendant nodes, we use the following

algorithm:

FindPath(v, w, T):

1. If both v and w are distinguished nodes, call FindPath1(v, w, T ′). Otherwise,

proceed with the next step.

2. Trace a path in T from v to the nearest distinguished node (call it u) that is

ancestor of w (the length of this path is at most log log n because the tiny trees

48

have size ≤ log log n). If there does not exist such a distinguished node u that

is both a descendant of v and ancestor of w, then v and w must be in the same

tiny tree. In this case we can directly follow edges of T from v to w and stop.

3. Trace a path in T ′ from u to the nearest distinguished node (call it x) that is

an ancestor of w. If x = w then stop, otherwise continue with the next step.

4. Trace a path in T from x to w (within the same tiny tree).

Since the distance between any two distinguished nodes is at most log log n−log log log n,

and the size of each tiny tree is at most log log n, paths produced in each of the above

steps (and the total paths from v to w) have length O(log log n).

4.1.4 A Time/Space Tradeoff

In this section we introduce solutions with constant key derivation time. The

idea is that by increasing the space complexity to O(n log log n) we can reduce the

distance between any ancestor and descendant nodes to at most 3 edges. Like the

scheme described in Section 4.1.2, we start with prematurely terminated centroid

decomposition that stops when the tree size is ≤ √n. We also use the reduced tree

T̂ . The approach is as follows.

AddShortcuts(T):

1–4. The same as in the AddShortcuts1(T) algorithm of Section 4.1.2.

5. For every residual tree Ti in turn (i = 1, . . . , k), add to S a shortcut edge from

each node v in Ti (other than the root) to all nodes in T̂ that are both: (i)

descendants of v and (ii) children of the root of Ti in T̂ .

6. For every residual tree Ti in turn (i = 1, . . . , k), recursively call AddShortcuts(Ti)

and, if we let Si be the set of shortcuts returned by that call, update S by setting

S = S ∪ Si. Return S.

49

Step 5 of the above algorithm adds at most O(|T |) edges to the shortcut set: all new

edges that point to a single node w in T̂ come from at most one tree (as w has at

most one parent in T̂). And since each tree has at most O(
√

|T |) nodes, there are

at most O(
√

|T |) new edges pointing to w. Finally, the overall O(|T |) bound comes

from the fact that there are O(
√

|T |) nodes in T̂ .

The total number of edges added to the shortcut set in the above algorithm

follows a recurrence similar to the scheme in Section 4.1.2; thus, this scheme adds

O(n log log n) edges. Furthermore, the algorithm FindPath(v, w, T) is very similar

to the Section 4.1.2 algorithm. To avoid unnecessarily repeating the techniques, we

describe only the case of FindPath that differs from its previous version. It corresponds

to the situations where v and w are in different residual trees and neither of them is

a special node. In this case, it takes at most one hop to get to a special node (call it

u1) that is an ancestor of w (by Step 5 of AddShortcuts(T)). Then we can get to the

special node of the residual tree containing w following a single edge (call this node

u2) by Step 3. Finally, we can reach w from u2 following another edge by Step 4. The

path from v to w is thus v, u1, u2, w.

The above scheme requires three edges to reach a specific node. It is trivial to

show that a one-hop solution must add O(n2) edges, but a two-hop solution exists

with O(n log n) public space. Section 4.2 provides more details on shortcut schemes

for total orders with the distance between nodes being different small constants. Such

results apply to trees as well (due to the possibility of using centroid decomposition),

and we do not further describe them here.

4.1.5 Extending the Techniques to Other Graphs

In this section, we extend the shortcut techniques beyond tree hierarchies and

introduce an algorithm for adding shortcut edges to general access graphs. This

algorithm can be applied to any hierarchy and addition of shortcuts results in key

derivation being at most O(log log n) steps. The algorithm, however, guarantees

50

efficient storage only for certain hierarchies, specifically, if the number of nodes with

multiple parents is relatively small (for instance,
√

n). We believe that this limited

notion of an access graph captures many real life access hierarchies, and the results

of Section 4.2 can be applied to hierarchies where this is not the case.

Suppose we are given a transitively-reduced1 access graph G = (V, E). Let M

denote the set of nodes in G with multiple parents. Define the set of edges EM to be

the set of edges in E that are incident on one or more nodes in M . The AddShortcuts

algorithm then works as follows:

AddShortcuts(G):

1. Invoke the algorithm of Section 4.1.3 on the graph G′ = (V −M, E−EM). Note

that this graph is a forest of trees (since the nodes in M have been removed).

Let E1 denote the set of new edges returned by the algorithm.

2. Add a set of edges, call it E2, that form the transitive closure of M . That is, if

given two nodes v, w ∈ M , where v 6= w, v ∈ Anc(w, G), and (v, w) 6∈ E, then

add edge (v, w) to E2.

By the correctness of the AddShortcuts algorithm of Section 4.1.3, any ancestry rela-

tion in the graph formed in Step 1 is captured by a path of length O(log log n) and

|E1| = O(|E − EM |) = O(n). The shortcut edges added to G are E1 ∪ E2, and the

new graph is GS = (V, E ∪ E1 ∪ E2).

To show the correctness of this algorithm (i.e., to show that if there is path from

node v to node w in GS, then there is a path from v to w in G), we must illustrate

that every added edge is part of the transitive closure of G. Observe that by the

correctness of the previous scheme, this is true for every edge in E1. Furthermore, it

is clearly true for edges in E2, since the edges are added to E2 only when the source

is an ancestor of the destination.

1The transitive reduction of a graph G is the smallest graph R(G) such that C(G) = C(R(G)),
where C(G) is the transitive closure of G.

51

We also need analyze the space complexity of the algorithm. We have |E1| = O(n)

and |E2| = O(|M |2). Thus, there will be at most O(n + |M |2) new edges introduced.

And if |M | is relatively small, e.g., O(
√

n), then the space complexity is O(n).

Now we show how the FindPath algorithm works in this case, resulting in paths

of length O(log log n) between any pair of an ancestor and descendant in G.

FindPath(v, w, GS): There are 3 cases to consider:

1. There is no node from M on the path from v to w (including v and w them-

selves). Then there will be a path from v to w in G′ = (V −M, E − EM), and

we can use previous FindPath(v, w, G′
S) procedure to produce a path of length

O(log log n) from v to w.

2. All paths from v to w contain at least one node from M , but there is a path

from v to w with a single node from M on it. Let us for now assume that neither

v nor w is in M . Then there will be a path v, . . . , u1, m, u2, . . . , w such that

m ∈ M . In this case v can reach u1 with O(log log n) hops by executing the

previous FindPath(v, u1, G
′
S) algorithm, u1 can reach m following a single edge,

m can reach u2 following a single edge, and u2 can reach w with O(log log n)

hops by executing previous FindPath(u2, w, G′
S). The case where v or w is in M

easily follows from the above.

3. All paths from v to w contain at least two nodes in M . Similar the previ-

ous case, we describe what needs to be done when neither v nor w is in M ;

cases when v and/or w is in M directly follow from this description. Let

v, . . . , u1, m1, . . . , m2, u2, . . . , w be such a path where m1, m2 ∈M and no node

between (v and u1) and (u2 and w) is in M . Note that v can reach u1 by calling

previous FindPath procedure in O(log log n) hops, u1 is within one edge from

m1, m1 is within one edge from m2 (because of the edges in E2), m2 is within

one edge from u2, and u2 can reach w in O(log log n) hops by calling FindPath

of Section 5.3.

It is clear that this algorithm returns paths of length O(log log n).

52

4.2 A Solution for More General Hierarchies

Our construction for more general graphs is based on the notion of the dimension

of a graph, which we define shortly. For d-dimensional graphs, the basis of our solution

includes a reduction to the (d−1)-dimensional case. Thus, in this section we provide

solutions to one-dimensional case (Section 4.2.2) and then give a dimension reduction

technique (Section 4.2.3).

For the one-dimensional case, we describe solutions where any two nodes are at

most 2 edges away, 3 edges away, etc. For higher dimensions, the essence of our

technique consists of three main components:

1. The addition of new “dummy” vertices that make it possible to add a small num-

ber of shortcuts to achieve the desired fast-key-derivation performance. Note

that the dummy vertices and their associated keys are internal to the system

(used purely for performance reasons) and that no access classes correspond to

them. Unlike the previous section where shortcut edges were in addition to the

original edges of the hierarchy, here the only explicit edges that remain are the

shortcut edges (some of them may, of course, coincidentally correspond to edges

in the original graph, but this is not required). The addition of dummy vertices

and shortcut edges is a novel technique, and we believe it has much promise

beyond enabling the specific performance bounds that we achieve in this work.

2. As our techniques could be cumbersome to apply to (and later use on) the

original graph, we operate on a different representation of the graph. Namely,

we need to “transform” the graph into a d-tuple-representation of the vertices

where d is its dimension. Such transformation step is not needed if the graph is

already specified in the d-tuple form, e.g., policies of the form “node v is ancestor

of node w iff v has both a higher value than w and is also less vulnerable than

w.” We believe this representation of the access graph will have uses other than

the present framework of key assignment and derivation.

53

3. With the above representation, it becomes possible to carry out the desired

computation of dummy vertices and shortcut edges with very efficient perfor-

mance. We provide an algorithm for achieving this and prove precise bounds

for it, both in terms of its consumption of resources (time and space) and in

terms of the key-derivation performance made possible by the data structure

that it produces.

4.2.1 Background

An n-vertex access hierarchy G is a partial order; and any partial order can be

represented as the intersection of t total orders, with the smallest t for which this is

possible being the dimension of the partial order (see, e.g., [88, 89]). That is, it is

possible to associate with every vertex v of G a t-tuple (xv,1, . . . , xv,t) such that:

1. Every xv,j is an integer between 1 and n.

2. If v 6= w, then xv,j 6= xw,j, for every 1 ≤ j ≤ t.

3. Node v is ancestor of node w in G if and only if xv,j > xw,j for every 1 ≤ j ≤ t.

We denote the dimension of G by d(G), or by d when G is understood. While

computing the dimension of an arbitrary partial order is NP-complete [90], and even

approximating it to within a constant factor is not known to be in P, the dimension

of many access hierarchies is small. For instance, the dimension of a tree is 2. Also,

it was shown in [91] that a G whose transitive reduction is planar has dimension

at most 3 (and the 3-tuples representing it are computable in linear time). If the

transitive reduction of G is 4-colorable, then its dimension is at most 4 [91]. Many

access hierarchies are 4-colorable, especially those for organizational hierarchies.

There are, however, some hierarchies with higher dimension. For example, in the

Bell-LaPadula model with k categories (denoted by s1, . . . , sk) and ` classifications

(denoted by c1, . . . , c`), the dimension of the lattice is k + 1. Fortunately, computing

the tuple representation for this model is straightforward: The access level ci with

54

categories in the set S is converted into a tuple (i, x1, . . . , xk) where xi = 1 if and only

if si ∈ S, and is 0 otherwise. It is not difficult to verify that this conversion correctly

implements the access control policy.

We may actually not need to compute the dimension, but rather any d′-tuple

representation of the graph with a small enough d′. Moreover, some access graphs

can naturally be specified in such a tuple representation, when, for instance, the

“ancestor” relationship is the conjunction of a number of total-order conditions such

as “v has higher security clearance than w,” “v is a higher-priority asset than w,” “v

is more vulnerable than w,” “v is a higher-paying class of subscribers than w,” etc.

In summary, the techniques of this section generalize the shortcut technique to any

access hierarchy where a tuple-based representation (of reasonable dimension) can be

found. This significantly extends the results of the previous section that supports

trees.

4.2.2 The One-Dimensional Case

In this section we present our techniques for the one-dimensional case. In what

follows, let the nodes (i.e., access classes) form a one-dimensional graph (i.e., a total

order) and be numbered v1 through vn. Furthermore, the access rights of node vi are

a superset of the access rights of node vj if and only if i ≤ j. We may sometimes refer

to nodes with lower indices as nodes “on the left” and to nodes with higher indices

as nodes “on the right.”

Following the approach of the previous section, we add shortcut edges to the

graph corresponding to the user hierarchy to lower key derivation time. As before,

such shortcut edges should preserve the original relationship between the nodes in

the graph and thus must satisfy the constraint of (i) reachability : given two nodes vi

and vj where i < j, there is a path from vi to vj ; and (ii) security : there is a path

from vi to vj only if i < j.

55

Given a set of edges E that satisfy the above constraints, we denote the minimum

path length between two nodes vi and vj by dist(vi, vj); this distance is infinity if

i > j. Then for our graph, the distance between any pair of nodes is bounded by

maxvi,vj∈V,i<j dist(vi, vj). We say that a shortcut scheme is an h-hop solution if no

two nodes’ distance is more than h, i.e., maxvi,vj∈V,i<j dist(vi, vj) ≤ h. In other words,

an h-hop solution produces graphs of diameter h. Our goal is to determine a small

set of edges that results in an h-hop solution.

The transitive closure of the directed acyclic graph results in a one-hop solution

with O(n2) edges, and it can easily be shown that this solution is an optimal (in

terms of number of edges) one-hop solution. Thus in the remainder of this section we

concentrate on solutions with more than a single hop which use much less space.

Two-Hop Solutions

Here we present a shortcut scheme where the distance between any two nodes is

at most two edges. This solution requires addition of O(n logn) edges to the original

graph. This bound can also be proven to be optimal for any two-hop solution.

AddShortcuts2(G):

1. Let n denote the number of nodes in G. If n ≤ 3, then add edges between

consecutive nodes and quit. Otherwise, proceed with the next step.

2. Find the median node, i.e., the node that is dominated by about half of the

nodes and that dominates the other half; denote this median node by m. Place

the nodes that dominate m in a set L; and place the nodes dominated by m in

a set R.

3. For each node vi ∈ L, create a shortcut edge (vi, m).

4. For each node vi ∈ R, create a shortcut edge (m, vi).

5. Create a graph GL from the nodes in L and execute AddShortcuts2(GL).

56

graph node

median node

regular edge

shortcut edge

v1 v3 v4 v5 v6 v7v2

v1 v3 v4 v5 v6 v7v2

Figure 4.1. Addition of shortcut edges for the two-hop one-dimensional solution.

6. Similarly for R, create a graph GR and execute AddShortcuts2(GR).

Figure 4.1 depicts the first level of recursion for the above procedure.

It can easily be shown that, in the above-defined structure, the nodes in the graph

are at most two hops from each other. That is, suppose nodes v and w are separated

by some median m during the above protocol. Then clearly there is a path of length

two from v to w (specifically, v to m to w). On the other hand, if v and w are never

separated by a median, then from the base case (Step 1) the nodes will have a path

of length at most two.

The space required by the solution follows a simple recurrence f(n) = O(1) for

n ≤ 3, and f(n) = O(n) + 2f(n/2) otherwise. It is straightforward to show that

f(n) = O(n log n).

Creation of a data structure with two-hop paths implies that we also need a

constant-time algorithm for finding it. That is, we need a FindPath2(v, w, G) proce-

dure that, given two nodes v and w, finds a path consisting of two edges from point

v to point w. To achieve this, we store the recursion tree (call it RT) for the above

AddShortcuts2 algorithm, which takes no more space than storing the shortcut edges.

The two-hop path we seek would be easy to find if we could, in constant time, com-

pute the lowest node (call it u) of RT for which v and w are a part of that node’s

sub-problem: the shortcut edges (v, m) and (m, w) are available at the node u in RT ,

where m is the median of node u’s subproblem. Fortunately, computing u is easy to

57

do in constant time, by making use of the results of [92] that showed that in any tree

it is possible to answer nearest common ancestor (NCA) queries in constant time. In

more detail, given any two nodes of RT , their common ancestor in RT that is nearest

to them can be computed in constant time (in fact, doing so is rather straightforward

for our construction where RT is a complete binary tree). In our case, the two nodes

whose NCA we seek are the leaves of RT that contain v and w, and their NCA is the

node u that contains the two shortcut edges that we want.

Three-Hop Solutions

In this section, we describe a shortcut scheme where nodes are separated by

at most three hops. In Section 4.1 we gave a scheme for trees that introduced

O(n log log n) shortcut edges. While trees have dimension d = 2, we cannot use

these techniques for the case of d = 2, because not all graphs of dimension two are

trees. Thus, we adopt that solution to the one-dimensional case and, for complete-

ness, briefly describe the scheme next. We would like to note that this bound is

asymptotically optimal for any three-hop solution.

For ease of presentation, the procedure below is given for the case n = 22q

. This

allows us to avoid using floor/ceiling functions, but does not narrow the applicability

of the solution.

AddShortcuts3(G):

1. Let n denote the number of nodes in G. If n ≤ 4, then add edges between the

consecutive nodes. Otherwise, proceed with the next step.

2. Create a set of special nodes S that consists of every
√

nth node in the graph.

That is, initialize S with {vn} and then add nodes vn−j
√

n for all j such that

j
√

n < n (note that j <
√

n). Let us refer to this set as S = {vi1 , . . . , vim},
where i1 < i2 < · · · < im.

58

shortcut edge

graph node

special node

regular edge

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

Figure 4.2. Addition of shortcut edges for the three-hop one-dimensional solution.

3. Insert new edges between the nodes in S to form the transitive closure of the

set (i.e., now the nodes in S are one hop away from each other).

4. For each node vi 6∈ S, if a node vj ∈ S exists such that j < i and i < j +
√

n,

insert an edge (vj , vi) if it is not already present.

5. For each node vi 6∈ S, find vj ∈ S such that i < j and j < i +
√

n, insert an

edge (vi, vj) if it is not already present.

6. Form a subgraph Gj from the nodes between vij and vij+1
and the edges that

preserve their ordering. Also, construct a subgraph G0 from the nodes before vi1

and the edges connecting them. Execute AddShortcuts3 on graphs G0, . . . , Gm−1

to recursively add shortcut edges to them.

Figure 4.2 depicts different stages of the above algorithm for the first level of recursion.

The top figure gives the original hierarchy, the middle figure shows the hierarchy after

selection of special nodes and constructing their transitive closure, and the bottom

figure shows the hierarchy after adding shortcut edges to and from the special nodes.

59

To demonstrate that in the above data structure the nodes are at most three hops

from each other, we consider all cases. Clearly, in the base case (Step 1), nodes are

at most three hops from each other. Also, if nodes v and w (where v is left of w) are

separated by a special node, then v can reach its nearest special node u1 in at most

one hop (from Step 5), u1 can reach the special node u2 that is rightmost special node

before w in at most on hop (from Step 3), and u2 can reach w in at most one hop

(from Step 4). Finally, if v and w do not fall in the base case of Step 1, they will

always be separated by a special node due to the recursive nature of the algorithm.

The space required by the solution easily follows the recurrence f(n) = O(1) for

n ≤ 4, and f(n) = O(n) +
√

nf(
√

n) otherwise. It is straightforward to show using

induction that f(n) = O(n log log n).

Similar to the previous case of the two-hop solution, the existence of a three-

hop path is not enough: we also need a constant-time algorithm for finding it. The

FindPath3(v, w, G) procedure for doing this is very similar to the FindPath2(v, w, G)

that we gave for the two-hop case. In more detail, we find the NCA (call it u) of

the two leaves of RT that contain v and w and the nodes u1 and u2, such that edges

(v, u1), (u1, u2), (u2, w) are in G and are available at u (from the shortcut edges added

the AddShortcuts3(G) procedure).

Four or More Hop Solutions

The three-hop solution presented in the previous section gives us a template for

designing schemes with three or more hops. Suppose that an h-hop solution (h > 2)

is desired, then we can use the following algorithm for adding shortcuts to G:

AddShortcutsh(G):

1. Let n denote the number of nodes in G. If n ≤ h + 1, then add edges between

the consecutive nodes. Otherwise, proceed with the next step.

2. Partition the nodes into n
m

cells of size m each. Declare the last node in every

cell to be a special node, and add all of the special nodes to a set S.

60

3. Use the scheme that provides an (h − 2)-hop solution to connect the nodes in

S. That is, execute AddShortcutsh−2(GS), where GS consists of the nodes of S

and the edges that define the relationship between the nodes.

4. For each non-special node v 6∈ S, add an edge from it to its nearest special node

on the right.

5. For each non-special node v 6∈ S, add an edge from the nearest special node on

the left (if one exists) to it.

6. Recursively add shortcut edges to each cell (ignoring the special nodes) by

executing this algorithm on each of them.

The number of edges in the above scheme follows the recurrence f(n, h) = O(n) +

f(n/m, h − 2) + (n/m)f(m, h). For h = 4 and m = log n, this leads to f(n, 4) ≤
O(n) + (n/ log n)f(log n, 4) (recall that f(n, 2) = O(n log n)). Now, it can be shown

that f(n, 4) = O(nlog∗n).

The constant-time procedure for computing the four-hop path between any two

nodes is very similar to the one given for the two-hop case: The whole recursion tree

RT is stored, and a constant-time NCA computation is used to get to the node of RT

at which the nodes u1 and u2 of the four-hop path x, u1, m, u2, y can simply be read.

The node m is retrieved from the recursion tree of GS using NCA computation. For

any general h, FindPathh(v, w, G) will have O(h) complexity.

O(log∗ n)-Hop Solutions

We briefly point out here that any O(1)-hop scheme of edge complexity O(nlog∗n)

(such as the scheme given above) can be used to build an O(log∗n)-hop scheme of

O(n) edge complexity as follows. Let S consist of every (jlog∗n)th node of the input

total order, 1 ≤ j ≤ m = n/log∗n. This S induces a partition of the n-node chain

into (at most) m + 1 blocks G1, G2, . . . , Gm+1 of size ≤ log∗n each. We build a linear

chain of size m on S and use the constant-hop solution on that chain. This allows

61

Table 4.1
Performance of shortcut schemes for one-dimensional graphs.

Private Key Public
Scheme

storage derivation storage

2HS 1 2 op. O(n log n)

3HS 1 3 op. O(n log log n)

4HS 1 4 op. O(n log∗ n)

log∗HS 1 O(log∗n) op. O(n)

us to achieve the distance of 4 edges between nodes of S at an edge complexity of

O(mlog∗m), which is O(n). The key derivation between two nodes in the same block

is done in ≤ log∗ n hops by following each edge within that block. Given node v in

Gi, derivation of the key of node w in Gj , i < j, is done by first (i) following edges

in Gi from v to the vertex u1 ∈ S that is at the boundary of Gi and Gi+1; then (ii)

using a 4-hop derivation within S to go from u1 to the vertex u2 ∈ S that is at the

boundary of Gj−1 and Gj; and finally (iii) following edges in Gj from u2 to w. The

total number of hops in that case is therefore ≤ 2log∗n + 4.

Summary of One-Dimensional Solutions

Table 4.1 shows a summary of one-dimensional schemes described here. In the

table, we denote by sHS a solution where the distance between any two nodes (i.e.,

the diameter of the graph) is at most s, i.e., a so-called s-Hop Scheme.

Shortcut schemes have also been considered in prior literature ([93–97]), and the

following results (explored in a different domain) are available for trees which also

coincide with solutions for one-dimensional graphs. Lowering the diameter to 4 or 5

edges requires addition of Θ(n log∗ n) edges, lowering the diameter to 6 or 7 edges

requires addition of Θ(n log∗∗ n) edges, etc.

62

Table 4.2
The number of edges in one-dimensional h-hop solutions.

No. of Diameter of the graph

nodes 1 2 3 4 5 6 7 8 9

10 45 19 17 15 14 13 13 13 9

25 300 74 61 49 46 43 43 42 40

50 1225 193 146 119 110 98 95 92 92

100 4950 480 342 264 245 218 209 197 194

250 31125 1503 997 724 685 587 562 527 512

500 124750 3498 2173 1538 1427 1223 1184 1086 1061

750 280875 5737 3408 2375 2186 1870 1804 1651 1620

1000 499500 7987 4666 3241 2941 2537 2426 2222 2183

2500 3123750 23417 12912 8652 7542 6618 6198 5704 5556

5000 12497500 51822 27379 18144 15334 13651 12541 11617 11197

Throughout the rest of this work we may use S1(n) to denote any shortcut scheme

for graphs of dimension 1 applied to a total order of size n. We also use space(S1(n))

and time(S1(n)) to denote its public storage and key derivation complexity, respec-

tively.

To make the numbers more concrete, we performed simulation experiments to

determine the minimum number of shortcut edges that are required to reduce the

distance between nodes in an n-node one-dimensional graph to no more than h hops.

In such experiments, we used the transitive closure and the scheme of Section 4.2.2

to achieve 1-hop and 2-hop graphs, respectively. For the simulations of schemes with

more than two hops, we used the generic scheme of Section 4.2.2. In the case of the

generic scheme, to choose the number of groups to use, we performed an exhaustive

search to find the number that minimized the number of edges. Table 4.2 shows the

63

number of edges from our simulation results for schemes with the maximum of 1 to

9 hops.

4.2.3 Higher Dimensions

We give a solution for graphs of dimension d that achieves key derivation of no

more than (and typically less than) 2(d − 1) + h1(n) steps, where h1(n) denotes the

distance between two nodes in the underlying one-dimensional scheme for an n-node

graph. As before, each step in key derivation corresponds to following one shortcut

edge. The public space used in this scheme is O(f1(n)(log n)d−1), where f1(n) denotes

the space complexity (i.e., the number of edges) of the underlying one-dimensional

scheme.

Rather than immediately giving the solution for an arbitrary dimension d, for

clarity of exposition, we first present the solution for d = 2. Once the intuition and

the basic construction have been presented for d = 2, we give the general construction

for arbitrary d.

The Case of Dimension 2

The fact that the graph G has dimension 2 implies that every vertex v can be

replaced by a pair of numbers (x(v), y(v)), such that w is an ancestor of v in G if

and only if w dominates v, i.e., x(w) ≥ x(v) and y(w) ≥ y(v). From now on, for

convenience, we refer to “points” rather than “vertices.” A shortcut is then an ordered

pair of points w, v describing an extra “key-derivation edge” that will be added from

point w to point v.

The input is a set V of n points in 2-dimensional space, and the desired output

includes a set S of shortcuts between pairs of points (some of which may not belong

to V) such that (i) |S| = O(f1(n) log n), and (ii) given any pair of points v, w ∈ V

such that w dominates v, there is a path of at most h1(n) + 2 shortcut edges from

64

w to v. The output also includes the set P that contains V as well as the additional

dummy points (i.e., points not in V but that are touched by edges in S).

The solution steps are as follows:

AddShortcuts(G):

1. Initialize P = V and initialize S to be empty.

2. If |V | = 1, then return P and S; otherwise continue with the next steps.

3. If |V | > 1, then compute a median line M that is perpendicular to the y axis

and partitions V into two equal sets V1 and V2, where V1 (V2) is left (resp.,

right) of M . Let V ′
1 (V ′

2) be the projection of V1 (resp., V2) on line M .

4. Add to S the following shortcut edges:

– a shortcut edge from every point of V ′
1 to its corresponding point of V1;

– a shortcut edge from every point of V2 to its corresponding point of V ′
2 .

5. Recursively build the shortcut edges and dummy points for the set V1. Let that

recursive call return P1 as the set of points (including dummies) and S1 as the

set of shortcut edges within P1. Update S and P as follows: S = S ∪ S1 and

P = P ∪ P1.

6. Recursively build the shortcut edges and dummy points for the set V2. Let that

recursive call return P2 as the set of points (including dummies) and S2 as the

set of shortcut edges within P2. Update S and P as S = S∪S2 and P = P ∪P2.

7. Solve the one-dimensional problem consisting of V ′
1∪V ′

2 using one of the schemes

of Section 4.2.2. Let this return a set of edges S3 (note that it returns only a

set of edges, i.e., it does not add any dummy points). Update S as S = S ∪S3.

(P stays the same.)

The space complexity (i.e., the number of shortcut edges and dummy points) of the

above-described scheme obeys a recurrence of the form f(n) ≤ 2f(n/2) + cf1(n)

65

H

A

BC

DEFG

Figure 4.3. Example two-dimensional access hierarchy (original).

for some constant c if n > 1; and f(n) = O(1) if n = 1. The resulting solution is

O(f1(n) log n). Note that this recurrence follows from Step 4 (which recursively solves

the problem for (n/2) points), Step 5 (which recursively solves the problem for (n/2)

points), Step 7 which adds f1(n) edges, and Step 1 which uses O(n) points.

The length of the path between any w and v can be proved to be at most h1(n)+2

by induction on n (the base case is trivial). That is, if w ∈ V2 and v ∈ V1, then the

path of length at most h1(n) + 2 consists of one edge from w ∈ V2 to its projection

w′ ∈ V ′
2 , at most h1(n) edges from w′ to the point v′ ∈ V ′

1 that is the projection of v

on M , and one edge from v′ to v. When both points v and w are in V1 or both are

in V2, the claim follows from the induction hypothesis.

Example. To help clarify our technique, we give an example of the recursive step of

the above AddShortcuts algorithm. Figure 4.3 shows a tree access hierarchy that will

be used for this example.

Figure 4.4 contains a set of points in two dimensions that represents a tree’s

access structure. Note that if a point dominates another point in this figure, then the

dominating point must have a path to the dominated point in the final structure.

Figure 4.5 shows the shadow points (added in Step 3 of the algorithm and denoted

by open circles) for the previous figure. Note that the shadow points are on a one-

dimensional plane (i.e., a line). This figure also shows the transitions from normal

points to shadow points and vice versa (as described in Step 4). Also note that the

shadow points will be linked in Step 7.

66

F

H

G

E

D

C

B

A

Figure 4.4. Example two-dimensional access hierarchy converted to tuple form.

A

B

C

D

E

G

H

F

Figure 4.5. Example two-dimensional access hierarchy with shadow points.

The Case of Dimension 3 and Higher

The fact that the graph G has dimension d implies that every vertex v can be

replaced by a d-tuple of numbers (x1(v), . . . , xd(v)), such that w is an ancestor of v

in G if and only if w dominates v, i.e., xi(w) ≥ xi(v) for all i ∈ {1, . . . , d}.
The input is a set V of n d-dimensional points, and the desired output includes

a set S of shortcuts between pairs of points (some of which may not belong to V)

such that (i) |S| = O(f1(n)(log n)d−1), and (ii) given any pair of points v, w ∈ V

67

such that w dominates v, there is a path of O(d + h1(n)) shortcut edges from w to v.

The output also includes the set P that contains V as well as the additional dummy

points (i.e., points not in V but that are touched by edges in S).

As was the case with the 2-dimensional solution, we use a recursive construction.

Specifically, we inductively assume that the (d−1)-dimensional problem can be solved

with addition of O(f1(n)(log n)d−2) edges achieving the distance of 2(d − 1) + h1(n)

between the nodes (note that this holds for d = 1 and for d = 2 by the previous

subsections). The solution steps are as follows:

AddShortcuts(G):

1. Initialize P = V , and initialize S to be empty.

2. If |V | = 1, then return P and S; otherwise continue with the next step.

3. If d = 1, then solve using any of the one-dimensional schemes; otherwise con-

tinue with the next step.

4. If |V | > 1, then compute a (d − 1)-dimensional hyperplane M , perpendicular

to the dth dimension, that partitions V into two equal sets V1 and V2, where

V1 is the set of points that are on the smaller side of the hyperplane (according

to their dth coordinate). Let V ′
1 be the projection, along dimension d, of V1

on hyperplane M , and let V ′
2 be the projection of V2, along dimension d, on

hyperplane M .

5. Add to S the following shortcut edges:

– a shortcut edge from every point of V ′
1 to its corresponding point of V1;

– a shortcut edge from every point of V2 to its corresponding point of V ′
2 .

6. Recursively build the shortcut edges and dummy points for the set V1. Let that

recursive call return P1 as the set of points (including dummies) and S1 as the

set of shortcut edges within P1. Update S and P as S = S∪S1 and P = P ∪P1.

68

7. Recursively build the shortcut edges and dummy points for the set V2. Let that

recursive call return P2 as the set of points (including dummies) and S2 as the

set of shortcut edges within P2. Update S and P as S = S∪S2 and P = P ∪P2.

8. Solve the (d−1)-dimensional problem consisting of V ′
1∪V ′

2 using the solution for

dimension d− 1, then update P and S according to what this solution returns:

If it returns S3 and P3, then the updates are S = S ∪ S3 and P = P ∪ P3.

The space complexity (i.e., the number of shortcut edges and dummy points) obeys

the following recurrence. If n > 1, then f(n, 2) ≤ c1f1(n) log n; if d > 2, then:

f(n, d) ≤ 2f(n/2, d) + f(n, d− 1) + c2dn.

This recurrence follows from Steps 5 and 6 (which each recursively solve the problem

for n/2 points in d dimensions), Step 7 (which recursively solves a problem for n

points in d− 1 dimensions), and the other steps add at most O(n) points and edges.

Now if n = 1, then f(1, d) = c3d. Thus, the solution to the above recurrence is:

f(n, d) = O(df1(n)(log n)d−1).

The w-to-v number of edges obeys the following recurrence: If n > 1, then h(n, 2) ≤
h1(n) + 2; if d > 2, then

h(n, d) ≤ 2 + h(n, d− 1).

The above recurrence follows from the following number of edges: one edge from V2

to a shadow point, h(n, d − 1) edges on the (d − 1)-dimensional hyperplane in Step

7, and one edge from the shadow point to the destination point.

Now, if n = 1 then h(1, d) = 1. Thus, the solution to the above recurrence is:

h(n, d) ≤ 2(d− 1) + h1(n).

Table 4.3 summarizes performance of our solution when instantiated with different

one-dimensional schemes. In the table, h1(n) and hd(n) denote the distance between

two nodes for one-dimensional and d-dimensional n-node graphs, respectively; and

f1(n) and fd(n) denote the space complexity (i.e., the number of edges) for one-

dimensional and d-dimensional graphs, respectively.

69

Table 4.3
Performance of the d-dimensional scheme using various one-dimensional schemes.

One dimensional scheme d-dimensional scheme

h1(n) f1(n) hd(n) fd(n)

1 edge O(n2) 2d− 1 O(n2(log n)d−1)

2 edges O(n logn) 2d O(n(log n)d)

3 edges O(n log log n) 2d + 1 O(n(logn)d−1 log log n)

4 edges O(n log∗ n) 2d + 2 O(n(log n)d−1 log∗ n)

O(log∗ n) edges O(n) 2(d− 1) + O(log∗ n) O(n(log n)d−1)

Using the Data Structure

To permit efficient key derivation, we also need a corresponding FindPath(v, w, G)

procedure that, given two points v and w in V , finds a shortest path of shortcut

edges from v to w. Here we give such a procedure, which can be viewed as a simple

generalization of the path-finding procedures of the one-dimensional case.

As before, we use RT to denote the recursion tree corresponding to the algorithm

that adds shortcuts to the graph; that is, in RT , the root corresponds to V , and the

root’s children correspond to the respective sets V1 and V2 that are separated by the

hyperplane M . We henceforth use Vu to denote the set of points that correspond to

a node u of RT , and V ′
u to denote the projection of Vu on the hyperplane Mu that

was used in the recursive call for u (of course, |V ′
u| = |Vu|, but V ′

u has one dimension

less than Vu). The height of RT is h = log n and its leaves correspond to sets of size

1 (as they correspond to the “bottom of the recursion”).

We augment every node u in RT with an array Πu that, for every point v of Vu,

gives its projection Πu(x) on the hyperplane Mu that was used in the recursive call

for u. This takes the same space as the number of shortcut edges that were added

at that particular node of RT and provides a constant-time mechanism for following

each such edge.

70

Note that a point v ∈ V occurs in h sets like Vu once at each depth i in RT ,

1 ≤ i ≤ h (the root being at the depth of 1). In what follows, for every point v ∈ V

and 1 ≤ i ≤ h, we use N(v, i) to denote the node u of RT at depth i and whose Vu

contains v. Note that N(v, 1) is the root of RT , and that N(v, h) is the leaf of RT

that contains v.

Now we turn our attention to how RT is used to trace a short path between two

points. As we did for the one-dimensional case, here we make use of the fact that

in a tree it is easy to answer nearest common ancestor queries in constant time (i.e.,

given any two nodes of RT , their common ancestor in RT that is nearest to them,

can be computed in constant time).

The following procedure takes as inputs two d-dimensional points v, w ∈ V and, if

v dominates w, returns a shortest path from v to w. In what follows, G′
u denotes the

graph formed from the nodes of V ′
u (preserving the partial order relationship between

the nodes).

FindPath(x, y, G):

1. Check in constant time whether v dominates w. If not, then output “no path

exists” and stop; otherwise continue with the next step.

2. If the dimension of (v, w, G) is 1, then use a one-dimensional procedure for

finding the path. Otherwise, continue with the next step.

3. Let x = N(v, h) and y = N(w, h), i.e., x (resp., y) is the leaf of RT whose

corresponding set contains v (resp., w).

4. Compute in constant time the NCA in RT of x and y, call it u. Note that x

and y are both in Vu and they are on different sides of the hyperplane Mu. Let

v′ = Πu(v) and w′ = Πu(w). The first edge on the path we seek is (v, v′), the

last edge on it is (w′, w), and the portion of it from v′ to w′ is of dimension d−1

and can be computed as FindPath(v′, w′, G′
u).

71

The time taken by this procedure is h1(n) for the base case, and constant per

dimension-reduction round, hence a total of O(d + h1(n)). The technique we used

in this FindPath algorithm is widely applicable to other recursive solutions built by

addition of shortcut edges: Its essence is that a nearest common ancestor computa-

tion provides a constant-time “jump” to the relevant spot in the recursion tree, after

which the problem becomes easy (we thereby avoid paying a price proportional to the

height of the recursion tree).

72

5 TIME-BASED KEY ASSIGNMENT IN HIERARCHICAL SYSTEMS

5.1 Problem Description

While the motivation for this chapter comes from the need to support access con-

trol policies with temporal constraints in user hierarchies, the problem does not need

to be limited to this particular setting. That is, an efficient solution to the key man-

agement problem in temporal access control can find use in other domains. Therefore,

we provide a very general formulation of the problem, without any assumptions on

the environment in which it is used. Of course, access control in user hierarchies

remains the most immediate and important application of our techniques. Thus, in

Section 5.4 we will show how our solution can be used to realize temporal access

control for user hierarchies.

Now let us assume that we are given a resource, and the owner of this resource

would like to control user access to that resource using time-based policies. For that

purpose, the lifetime of the system is partitioned into short time intervals (normally,

of a length of a day or shorter), and the access key for that resource changes every time

interval. Let m denote the number of time intervals in the system, T = {t1, . . ., tm}
denote the intervals, and K = {kt1 , . . ., ktm} denote the corresponding access keys.

Now assume that a user U is authorized to access that resource during a contiguous

set of time intervals TU ⊆ T , where TU = {tstart, . . ., tend}. Following the notation

of [9], we use the interval-set over T , denoted by P, which is the set of all non-empty

contiguous subsequences of T , i.e., TU ∈ P for any TU . With such access rights,

U should receive or should be able to compute the keys KTU
⊆ K, where for each

t ∈ TU the key kt ∈ KTU
. We denote the private information that U receives by

STU
. Obviously, storing |TU | keys at the user end is not always practical (especially

if this number is large), and significantly more efficient solutions are possible. Then

73

a time-based key assignment scheme assigns keys to the time intervals and users, so

that time-based access control is enforced in a correct and efficient manner. Such

key generation is assumed to be performed by a central authority, but once a user is

issued the keys, there is no interaction with other entities. More formally, we define

a time-based KA scheme as follows:

Definition 5.1.1 Let T be a set of distinct time intervals and P be the interval-set

over T . A time-based key assignment scheme consists of algorithms (SetT , AssignT ,

DeriveT) such that:

SetT is a probabilistic algorithm, which, on input a security parameter 1κ and the set

of time intervals T , outputs (i) a key kt for any t ∈ T ; (ii) secret information Sec

associated with the system; and (iii) public information Pub. Let (K, Sec, Pub)

denote the output of this algorithm, where K is the set of all keys.

AssignT is a deterministic algorithm, which, on input a time sequence TU ∈ P and

secret information Sec, outputs private information STU
for TU .

DeriveT is a deterministic algorithm, which, on input a time sequence TU , time inter-

val t ∈ TU , private information STU
, and public information Pub, outputs the

key kt for time interval t.

The correctness requirement is such that, for each time sequence TU ∈ P, each

time interval t ∈ TU , each private information STU
, each key kt ∈ K, and

each public information Pub that SetT (1κ, T) and AssignT (TU , Sec) can output,

Pr[DeriveT (TU , t, STU
, Pub) = kt] = 1.

Note that in many cases the AssignT algorithm can be a part of the SetT algorithm,

i.e., private values STU
for every TU ∈ P are generated at the system initialization

time. We, however, separate these algorithms to account for cases where retrieving

STU
from Sec is not straightforward (which is the case in our scheme). In such cases,

merging these two algorithms together will needlessly complicate SetT resulting in

unnecessary overheads.

74

As in hierarchical access control, we distinguish between two different notions of

security for a time-based KA scheme: security against key recovery and security with

respect to key indistinguishability. A time-based KA scheme can also be secure against

static or adaptive adversaries. In [9], however, it was shown that the security of a time-

based hierarchical KA scheme against a static adversary is polynomial-time equivalent

to the security of that scheme against an adaptive adversary for both security goals

(key recovery and key indistinguishability). While in the current discussion we are

not concerned with hierarchical schemes, our setting can be considered to be a special

case of a hierarchy with a single class. Thus, in this work we only provide definitions

of a time-based KA scheme secure against a static adversary; and a proof of security

under such definitions will imply security against an adaptive adversary.

In our definition of a scheme secure against static adversary, let adversary Ast

attack the security of the scheme at time t ∈ T . Ast is then allowed to corrupt all

users who are not authorized to have access to kt and, when finished, is asked to guess

kt. We consider a scheme to be secure only if Ast has at most negligible probability in

outputting the correct key. More formally, we capture the adversary’s corrupt queries

using algorithm Corruptt(·) that takes the secret information Sec as input and outputs

a sequence of private information denoted by corr. The adversary then uses corr to

try to compute the key kt.

Definition 5.1.2 Let T be a set of distinct time intervals, P be the interval-set over

T , and KA = (SetT , AssignT , DeriveT) be a time-based KA scheme for P and a security

parameter κ. Then KA is secure against key recovery in the presence of a static

adversary if it satisfies the following properties:

• Completeness: A user, who is given private information STU
for a sequence of

time intervals TU ∈ P, is able to compute the access key kt for each t ∈ TU

using only her knowledge of STU
and public information Pub with probability 1.

75

Experiment Expkey−rec
KA,Ast

(1κ)

(K, Sec, Pub)← SetT (1κ, T)

corr ← Corruptt(Sec)

k ← Ast(1
κ, Pub, corr)

if k = kt then return 1

else return 0

Experiment Expkey−ind
KA,Ast

(1κ)

(K, Sec, Pub)← SetT (1κ, T)

corr ← Corruptt(Sec)

b
R← {0, 1}

if b = 0 then r
R← {0, 1}|kt|

b′ ← Ast(1
κ, Pub, corr, r)

else b′ ← Ast(1
κ, Pub, corr, kt)

if b = b′ then return 1

else return 0

Figure 5.1. Experiments in which a static adversary attacking a time-
based scheme participates.

• Soundness: Let Ast be a static adversary who attacks the scheme KA at time

interval t ∈ T . If we let the experiment Expkey−rec
KA,Ast

be specified as in Figure 5.1,

the advantage of Ast is defined as:

Adv
key−rec
KA,Ast

(1κ) = Pr[Expkey−rec
KA,Ast

(1κ) = 1]

We say that KA is sound with respect to key recovery if for each t ∈ T , for all

sufficiently large κ, and every positive polynomial p(·), Adv
key−rec
KA,Ast

(1κ) < 1/p(κ)

for each polynomial-time adversary Ast.

If now we consider schemes where keys are pseudo-random, the task of an adversary

is simply to distinguish between a real key and a random value instead of having

to recover the key. In this case, the definition of a secure time-based KA scheme is

similar to that of Definition 5.1.2, except the adversary is asked to participate in a

different experiment:

Definition 5.1.3 Let T be a set of distinct time intervals, P be the interval-set over

T , and KA = (SetT , AssignT , DeriveT) be a time-based KA scheme for P and a security

parameter κ. Then KA is secure with respect to key indistinguishability against a static

adversary if it satisfies the following properties:

76

• Completeness: A user, who is given private information STU
for a sequence of

time intervals TU ∈ P, is able to compute the access key kt for each t ∈ TU

using only her knowledge of STU
and public information Pub with probability 1.

• Soundness: Let Ast be a static adversary who attacks the scheme KA at a time

interval t ∈ T . If we let the experiment Expkey−ind
KA,Ast

be specified as in Figure 5.1,

then the advantage of Ast is defined as:

Adv
key−ind
KA,Ast

(1κ) = Pr[Expkey−ind
KA,Ast

(1κ) = 1]

We say that KA is sound with respect to key indistinguishability if for each t ∈ T ,

for all sufficiently large κ, and every positive polynomial p(·), Adv
key−ind
KA,Ast

(1κ) <

1/p(κ) for each adversary Ast that runs in polynomial time.

In addition to the security requirements, an efficient KA scheme is evaluated by the

following criteria:

• The size of the private information a user must store;

• The amount of computation necessary to generate an access key for the target

time interval;

• The amount of information the service provider must maintain for public access.

5.2 Building the Initial Scheme

All of our constructions are based on the notion of key derivation in a graph, and,

when we say that there is a directed edge from v to w in G, it implies that v is capable

of deriving w’s key using its own key. This means that, for the data structures that we

build (all of which are DAGs), there will be a public and secret information associated

with each node, and there will be public information corresponding to each edge.

Our preliminary data structure is rather simple and consists of two main steps:

building a grid of size m ×m (where m is the number of time intervals in the sys-

77

tm

...

v2,1

...

...

v1,1v1,2

t1

t2

tm−1

v1,2

...

v1,1...

...

v2,1
t2

tm−1

tm

t1

Figure 5.2. Building the data structure for the initial time-based scheme.

tem) and applying one-dimensional shortcut techniques to parts of the grid. A more

detailed description follows.

SetT (1κ, T):

1. Build half of a grid of dimension m×m as shown in the left diagram of Figure 5.2.

We denote by v1,1 the root node; node vi,j is located at the row i and column

j. There is a directed edge from each vi,j to vi+1,j , and from each vi,j to vi,j+1.

Call such data structure G. The time interval ti corresponds to the node vi,m−i

in G.

2. Apply the hierarchical solution to G by executing Set(1κ, G). It should be clear

that in G, given a key for vi,j, all keys for time intervals in the range ti, . . ., tm−j+1

can be derived from it (in the worst-case O(m) time).

3. Apply a one-dimensional shortcut scheme S1 to each row and column of the

grid (see the right diagram in Figure 5.2). In more detail, add shortcuts to the

data structure to permit fast derivation of vi,x’s key from vi,y’s key for any x > y

(and similarly vx,j’s key from vy,j’s key for any x > y).

The above algorithm generates a data structure with O(space(S1(m))) shortcuts per

row or column and therefore O(m · space(S1(m))) total space.

Having this, the key assignment algorithm for a user entitled to have access to the

resource at time intervals TU = {tx, . . ., ty} ∈ P is straightforward:

78

Table 5.1
Performance of the initial time-based scheme.

Underlying Private Key Public
scheme storage derivation storage

2HS 1 ≤ 4 op. O(m2 log m)

3HS 1 ≤ 6 op. O(m2 log log m)

4HS 1 ≤ 8 op. O(m2 log∗ m)

log∗HS 1 O(log∗m) op. O(m2)

AssignT (TU , Sec): Return Svx,n−y+1
.

Key derivation of the key corresponding to the current time interval ti ∈ TU now

consists of at most 2 · time(S1(m)) steps: at most time(S1(m)) steps are needed

to derive vi,m−y+1’s key from that of vx,m−y+1, and then at most time(S1(m)) steps

are needed to derive vi,m−i+1’s key (which corresponds to ti) from that of vi,m−y+1.

Table 5.1 summarizes the performance of this basic scheme, when used with various

one-dimensional solutions.

5.3 An Improved Scheme

Next, we describe a solution that exhibits improved performance compared to the

previous scheme. We start by presenting a new data structure and then provide other

algorithms and usage cases to result in a full-fledged time-based KA scheme.

At a high level, to build a new data structure, we partition all time intervals into

coarse blocks of
√

m time intervals each. We then apply the initial scheme to these

blocks treating each of them as a single unit. If user access is to be granted to a large

sequence of time intervals that spans across boundaries of these blocks, we can use

this level of granularity to assign keys. If, on the other hand, the user sequence of time

intervals is contained within a block, we recursively apply this procedure to the time

intervals within each block to support time-based access control of finer granularity.

79

If the user sequence spans across different blocks, but contains partial blocks at the

beginning and at the end of it, then we utilize the coarse blocks’ keys to cover the

whole blocks along with two new types of keys that will be introduced later.

5.3.1 Lowering the Size of the Data Structure

We now present our improved data structure. For the purposes of the current

presentation, we let m = 22q

for some integer q. This allows us to avoid using rounding

notation bxc and dxe throughout the algorithms and results in a cleaner presentation,

but does not limit the applicability of our result. Our procedure for building the data

structure takes as inputs a node u and the set T , and then recursively builds a

tree for the set rooted at u. Due to the recursive nature of this function, we use

Tw = {ta, . . . , tb} to denote the working set of the current function invocation and

|Tw| to denote the size of Tw. Then the data structure is constructed as follows:

DataStructBuild(u, T w):

1. If |Tw| = 2 (i.e., q = 0), then return. Otherwise, continue with the next step.

2. Partition Tw into
√

|Tw| sets of
√

|Tw| contiguous time intervals each and call

them Tw
1 , . . . , Tw√

|T w|
. That is, if Tw = {t1, . . . , t|T w|}, then Tw

i = {t
i
√

|T w|+1
,

. . . , t
i
√

|T w|+
√

|T w|}. Create a node ui for each Tw
i , and make ui a child of u.

3. Generate a problem Coarse(Tw), derived from Tw by treating each Tw
i as a

single unit (i.e., “merging” the internals of Tw
i into a single item). Note that

the size of set Coarse(Tw) is
√

|Tw|.

4. Store at node u an instance of the initial data structure for Coarse(Tw), denoted

by D(u). D(v) can process time sequences that are the union of a contiguous

subset of blocks in Coarse(Tw), but not time sequences with at least one end-

point inside the Tw
i ’s.

5. Build a one-dimensional structure by creating an edge from ti to ti+1 for i =

a, . . . , b− 1 and the reverse of this structure by creating an edge from ti+1 to ti.

80

(c) State after Step 3.

vv

v1 v√m

T√m

Coarse(T)
D(v)

R(v)

L(v)

(d) State after Step 5.(b) State after Step 2.(a) Initial state.

t1 tm T1tm

T1 T√m

t1

Figure 5.3. Construction of the data structure for the improved time-
based scheme (first level of recursion).

Apply the shortcutting technique to the first structure and the call the resulting

graph R(u). Similarly, apply the shortcutting technique to the second structure

and call the resulting graph L(u). The former will be used to support time

sequences that start at the right boundary of Tw and end inside it (we call

this the right-anchored problem); and the latter will be used to support time

sequences that start at the left boundary of Tw and end inside it (we call this

the left-anchored problem).

6. Recursively apply the algorithm to each child of Tw; i.e., call DataStructBuild(ui,

Tw
i) in turn for each i = 1, . . . ,

√

|Tw|. Return the data structure rooted at u.

Figure 5.3 gives an illustration of how the data structure is built. D(u) supports per-

formance of 1 key, O(time(S1(|Tw|))) key derivation, and O(space(S1(|Tw|))) space.

Performance of R(u) and L(u) is 1 key, O(time(S1(|Tw|))) steps per key derivation,

and O(space(S1(|Tw|))) total space. The total space S(m) of the above data struc-

ture satisfies the recurrence S(m) ≤ √mS(
√

m) + c1 · space(S1(m)) if m > 2 and

S(2) = c2, where c1 and c2 are constants. Thus, S(m) = O(space(S1(m)) log log m).

Now we can use the algorithm for building the data structure to setup a time-based

KA scheme:

SetT (1κ, T):

1. Execute DataStructBuild(root, T); call the data structure returned G.

2. Execute Set(1κ, G) using a hierarchical key assignment scheme.

81

5.3.2 Key Assignment

We now turn our attention to showing which keys are given to a user who has

access to an arbitrary sequence of time intervals TU ∈ P. In what follows, u is a node

of the above tree data structure and Tw is the set of time intervals associated with

u. The recursive procedure below, when invoked on any TU and our data structure,

returns a set of (at most 3) keys associated with TU .

AssignKeys(TU , G, u, T w):

1. If u is a leaf, then return a key for each of the (at most two) time intervals in

TU . Otherwise, continue with the next step.

2. Let u1, . . . , u√|T w| be the children of u, and let Tw
1 , . . . , Tw√

|T w|
be the respective

sets of times associated with these children. We distinguish two cases:

(a) TU overlaps with only one set Tw
i . Then we return the keys from the

recursive call AssignKeys(TU , G, ui, T
w
i).

(b) TU overlaps with all of Tw
k , . . . , Tw

k+`, where ` ≥ 1. These ` + 1 intervals

are handled in 3 different ways: Those completely contained in TU are

collectively processed using the D(u) structure, resulting in one key. If Tw
k

overlaps with TU , but is not contained in TU , then it is right-anchored and

is processed using R(uk), resulting in one key. If Tw
k+` overlaps with TU ,

but is not contained in TU , then it is left-anchored and is processed using

L(uk+`), resulting in one key. Those (at most) 3 keys are returned.

Then the overall procedure for assigning a key to user simply calls the above recursive

algorithm:

AssignT (TU): Return AssignKeys(TU , G, root, T).

All keys given to users must be labeled with the level at which they were retrieved

in the data structure, i.e., the distance from the root node in the tree T . This

is necessary for achieving constant-time computation of access keys, which will be

82

explained in the next section. To make key derivation simpler, we also label user keys

with their type; namely: D, R, or L. In addition, if a user receives more than a single

key for her time sequence TU , each key is labeled with a range of time intervals to

which it permits access.

To summarize, we assume that a key given to a user will be labeled with four

values (lev, type, ta, tb), where 0 ≤ lev ≤ log log n, type ∈ {R, L, D}, and ta, tb ∈ T

such that ta < tb. For example, if a user with access rights to TU = {tstart, . . ., tend}
is given private information consisting of three keys STU

= {k1, k2, k3}, then k1 could

be labeled with (l, R, tstart, ta), k2 with (l− 1, D, ta+1, tb), and k3 with (l, L, tb+1, tend).

5.3.3 Content Distribution

At time t ∈ T , the service provider wants to make certain content (possibly very

voluminous) available to the users with access rights to time interval t. To do so, the

content is encrypted with the access key kt using a symmetric encryption scheme and

is made available to all users in the encrypted form (by placing it in a public location,

broadcasting it to the users, or by other means). In our scheme the server also needs

to ensure that the keys that users derive for t allow them to obtain kt. There are

O(log log n) such keys for t in the data structure, access to which should allow access

to kt. Since the data structure has (log log n + 1) levels, such keys are:

• Keys from R(v), for some v in the data structure T , one from each level.

• Keys from L(v), similarly, for a single v per level.

• Keys corresponding to D(v), one from each level l, where 0 ≤ l ≤ log log n− 1.

We refer to these keys as enabling keys. The server places in the public domain

information that permits derivation of kt from any of the enabling keys above (by

computing a public information corresponding to an edge between an enabling key

and kt). Additionally, the server labels the public derivation information associated

with each of the enabling keys with the level and the type (i.e., R, L, or D) of the

83

corresponding enabling key. This is needed to permit fast constant-time derivation

of the access key kt.

5.3.4 Key Derivation

A user U with access to the sequence of time intervals TU = {tstart, . . ., tend} ∈ P
receives private information STU

consisting of 1, 2, or 3 keys that permit her to derive

enabling keys for each t ∈ TU . In the most general (and common) case, such private

information consists of 3 keys (denoted by k1, k2, and k3), which are labeled as

(l, R, tstart, ta), (l − 1, D, ta+1, tb), and (l, L, tb+1, tend), respectively, for some l, a, and

b. Let us assume, without loss of generality, that if the number of keys is less than 3,

then the missing keys are set to empty strings with key k1 remaining to be of type R,

key k2 of type D, and key k3 of type L. Then to obtain the enabling key for a time

interval ti ∈ TU , U executes a derivation algorithm which we sketch here:

DeriveKey(TU , ti, STU
, Pub):

1. Parse STU
as k1(l, R, tstart, ta), k2(l − 1, D, ta+1, tb), k3(l, L, tb+1, tend).

2. If ti ∈ {tstart, . . ., ta}, find the node v at level l such that R(v) permits access

to ti (note that such node v can be computed in constant time using index i of

the time interval ti). Use k1 and the public information from Pub to derive the

key corresponding to ti and return that enabling key.

3. Similarly, if ti ∈ {tb+1, . . ., tend}, locate the node v at level l such that L(v)

permits access to ti. Use k3 and Pub to derive an enabling key for ti and return

that key.

4. Finally, if ti ∈ {ta+1, tb}, locate v at level l − 1 such that D(v) permits access

to ti; use k2 and Pub to derive an enabling key for ti and return it.

Key derivation complexity in all of the above cases is O(time(S1(n))).

84

. . .

level 0

level 1

level 2
t14

v

v4v3v2v1

v11 v12 v41 v42

t13 t15

D(v42), R(v42), L(v42)

D(v), R(v), L(v)

t3

D(v4), R(v4), L(v4)

t1 t4t2 t16

Figure 5.4. Example illustration of the temporal data structure.

5.3.5 Example

To better illustrate how the above algorithms for building the data structure and

assigning and deriving keys work, we give a toy example. Let n = 16. Then the

DataStructBuild(root, T) procedure will result in a tree of depth three. Let us denote

the root of the tree by v, ith child of the root by vi, and jth child of node vi by vij .

Also, let Ti and Tij denote the set of time intervals that vi and vij cover, respectively.

For n = 16, such a tree is given in Figure 5.4. In the figure, each node w has data

structures D(w), R(w), and L(w) associated with it, which we omit for conciseness.

Now consider users U1, U2, and U3 with the following access rights: TU1
= {t1, . . . ,

t6}, TU2
= {t2, . . . , t4}, and TU3

= {t4, . . . , t14}. According to the key assignment

algorithm AssignKeys, they are assigned keys in the following way: Since U1’s sequence

of time intervals starts at the beginning of the system’s lifetime, U1’s credentials are

left-anchored at the level of v, and U1 obtains a single key from L(v) corresponding

to t6. Such a key permits derivation of the remaining enabling keys for t1 through t5.

User U2’s access rights are contained within the time interval covered by v1. Thus,

U2 obtains from D(v1) a key corresponding to T12 (covers t3 and t4). The remaining

part of TU2
is obtained from R(v11) (covers t2). Finally, for user U3, the access rights

cross the boundaries of nodes at the first level, so we start at v. U3 obtains from D(v)

a key that permits generation of keys for T2 and T3 (their parent) and thus covers t5

through t12. To cover the remaining intervals, U3 is given the key corresponding to

t4 from R(v1) and a key from L(v4) corresponding to t14 (which permits derivation of

the key for t13 as well).

85

Table 5.2
Performance of the improved time-based scheme.

Underlying Private Key Public
scheme storage derivation storage

2HS ≤ 3 ≤ 5 op. O(n logn log log n)

3HS ≤ 3 ≤ 7 op. O(n(log log n)2)

4HS ≤ 3 ≤ 9 op. O(n log∗ n log log n)

log∗HS ≤ 3 O(log∗ n) op. O(n log log n)

To illustrate content distribution and key derivation, let t4 be the current time

interval. Our data structure contains 8 enabling keys for t4 of level-type (0, R),

(1, R), (2, R), (0, L), (1, L), (2, L), (0, D), and (1, D). The service provider places in

the public domain derivation information that, given any of the keys above, permits

computation of the access key kt4 . U1 then uses its only key and L(v) to derive the

enabling key for t4 and derives kt4 by using public information marked with (0, L). U2

uses its key for T12 compute its enabling key and obtain kt4 using public information

marked with (1, D). Finally, U3 uses its key for t4 and public information with label

(1, R) to obtain kt4 .

5.3.6 Putting Everything Together

In this section we summarize our construction and show its performance. Fig-

ure 5.5 gives a complete description of our time-based KA scheme using the basic

scheme of Chapter 3 as the key derivation mechanism. Table 5.2 summarizes per-

formance of our solution. The security of our solution comes from the way key

assignment and derivation are performed in a DAG and is not due to the details of

the data structures built.

86

Algorithm SetT (1κ, T):

1. Create a root node root for the data structure and run DataStuctBuild(root, T).

Let G = (V , E) denote the tree structure returned.

2. For each v ∈ V , randomly choose a secret key kw ∈ {0, 1}κ and a unique public

label `w ∈ {0, 1}κ associated with each node w in D(v), R(v), and L(v).

3. For each v ∈ V , construct public information about each edge in D(v), R(v),

and L(v) using the key derivation method. That is, for each edge (w, u), its

public value is yw,u ∈ {0, 1}κ.
4. For each t ∈ T , randomly choose a secret key kt ∈ {0, 1}κ and a unique public

label `t ∈ {0, 1}κ.
5. For each t ∈ T , let Vt ⊂ V denote the set of nodes in G access to which implies

access to t. Then for each Vt, for each v ∈ Vt:

(a) find in D(v) the node corresponding to the time interval t; call it w.

(b) create an edge from w to t by computing public information using en-

abling key kw, t’s secret key kt, public label `t, and the key derivation

method. Mark such an edge with the level of v and type D.

(c) repeat (a) and (b) for R(v) and L(v), using types R and L, respectively.

6. Let K consist of the secret keys kt for each t ∈ T and Sec consist of the

remaining secret keys kw. Also let Pub consist of G, all public labels (of the

form `w and `t), and public information about all edges generated above.

Algorithm AssignT (TU , Sec):

1. Execute AssignKeys(TU , root, T), where root is the root node of G.

2. Set STU
to the keys computed and return STU

.

Algorithm DeriveT (TU , t, STU
, Pub):

1. If t 6∈ TU , return a special rejection symbol ⊥.

2. Execute DeriveKey(TU , t, STU
, Pub) to compute an enabling key for t; call it k′

t.

3. Use k′
t along with its (level-type) label and Pub to derive key kt.

Figure 5.5. Description of proposed time-based key assignment scheme.

87

Theorem 5.3.1 Assuming the security of the family of PRFs F κ, the time-based key

assignment scheme given in Figure 5.5 is both complete and sound with respect to key

recovery in the presence of a static adversary.

Proof Our proof uses a standard hybrid argument. Per Definition 5.1.2, we are

dealing with adversary Ast who participates in the experiment Expkey−rec
KA,Ast

for time

interval t ∈ T . We construct a sequence of experiments Exp0
KA,Ast

, . . .,Expq
KA,Ast

, in

which we modify the way the scheme is constructed while ensuring that the distribu-

tions of Ast’s views remain indistinguishable in any two consecutive experiments. Our

modification consists of replacing, in the public data structure corresponding to KA,

one (pseudo-random) output produced by the function F κ with a random sequence.

Formally, Expi
KA,Ast

for any i = 0, . . ., q is:

Experiment Expi
KA,Ast

(1κ)

(K, Sec, Pub′)← Seti
T (1κ, T)

corr ← Corruptt(Sec)

k ← Ast(1
κ, Pub′, corr)

if k = kt then return 1

else return 0

Here the algorithm Set0T corresponds to the original algorithm SetT , while Seti+1
T is

constructed from Seti
T by replacing one edge in the data structure with a random

string. The edges that we replace are those that were constructed using kt or any

other key material that can lead to derivation of kt. More precisely, for each level l

in the data structure G, there is a unique v ∈ G that covers t. For each such v, we

replace the edges:

1. In D(v), let w denote the leaf node that covers t. Then replace each edge on

the path between any two nodes in Anc(w, G) and replace each outgoing edge

from every node in Anc(w, G).

2. In R(v) and L(v), replace each edge on the path from the root to the node

corresponding to t (call it w) and the edge from w.

88

The edges are replaced in the top-down fashion to completely exclude from the data

structure information about each key on the way from the root to the node corre-

sponding to time interval t.

Additionally, we replace edges from each of the O(log log n) enabling keys, which

correspond to t in G, to kt. Thus, Exp0
KA,Ast

corresponds to the case where Ast

operates on the data structure of experiment Expkey−rec
KA,Ast

, while Expq
KA,Ast

corresponds

to the case where Ast operates on the data structure with no information related

to kt. Since all of the keys (including kt) are chosen at random, Ast has at most

negligible probability in succeeding in Expq
KA,Ast

. The total number of edges replaced

is O(space(S1(n) log log n)) and thus is polynomial in the security parameter κ.

Using a standard reduction argument, we can show that any non-negligible dif-

ference in behavior between experiments Expi
KA,Ast

and Expi+1
KA,Ast

can be used to

construct an algorithm that BF is able to break the pseudo-random function F with

non-negligible advantage. Thus, we conclude that Ast has at most negligible advan-

tage in breaking the security of the scheme. �

To achieve a stronger notion of key indistinguishability, all is needed is to use a

different key assignment and derivation method that achieves this property, i.e., the

extended scheme of Chapter 3. Then we use this enhanced key derivation mechanism

in Step 3 of the SetT algorithm of Figure 5.5 (i.e., in data structures D(v), R(v), and

L(v)). This means that now someone with access to a certain key in, for instance, R(v)

and who guesses an unauthorized key correctly, cannot use the public information for

that data structure to test the key. This change implies the corresponding change in

the Derive algorithm.

Theorem 5.3.2 Assuming the security of the family of PRFs F κ and the security of

the encryption scheme E , our time-based key assignment scheme that uses the extended

key assignment scheme of Section 3.3 is both complete and sound with respect to key

indistinguishability in the presence of a static adversary.

89

Proof The proof is straightforward using the hybrid argument and the proof tech-

niques of Theorems 3.3.1 and 5.3.1. �

In Section 5.7 we show how the lifetime of the system can be extended to new intervals

beyond the original m. Also, in the same section we show how one can further

decrease public storage space at a slight increase in the number of user keys (i.e., a

generalization in terms of keys/space tradeoff).

5.4 Temporal Access Control for a User Hierarchy

Recall that in systems with hierarchically organized access classes, such a hierarchy

is normally modeled as a directed acyclic access graph which we denote by GU . As

before, we assume that each node corresponds to an access class and the edges form a

partial order relationship between the classes, where an edge from node v to node w

means that the parent node v inherits privileges of the node w. Thus, we can assign

each class a single secret key and let users obtain keys of their descendant classes

through a key derivation process described in Chapter 3.

Now if we equip the model with time-based policies, in addition to computing

keys of descendant classes, a user should be able to compute keys based on time.

That is, a user U entitled to access class v ∈ VU during a sequence of time intervals

TU ∈ P obtains private information that permits her to compute keys kv,t for her

access class v and each t ∈ TU (time-based key derivation). In addition, the private

information allows U to compute, for each t ∈ TU , keys kw,t for each descendant

access class w in the user hierarchy (class-based key derivation). Thus, key derivation

now consists of two dimensions, which can potentially be performed using drastically

different techniques.

A definition of a hierarchical time-based KA scheme can be constructed by ex-

tending Definition 5.1.1 with user hierarchies.

Definition 5.4.1 Let T be a set of distinct time intervals, P be the interval-set over

T , and GU = (VU , EU) be a DAG corresponding to a hierarchy of classes. A hierarchi-

90

cal time-based key assignment scheme consists of algorithms (SetT , AssignT , DeriveT)

such that:

SetT is a probabilistic algorithm, which, on input a security parameter 1κ, the set of

time intervals T , and the hierarchy GU , outputs (i) a key kv,t for any v ∈ VU and

t ∈ T ; (ii) secret information Sec associated with the system; and (iii) public

information Pub. Let the output of this algorithm be denoted by (K, Sec, Pub),

where K is the set of all keys.

AssignT is a deterministic algorithm, which, on input a time sequence TU ∈ P, class

v ∈ VU , and secret information Sec, outputs private information Sv,TU
.

DeriveT is a deterministic algorithm, which, on input a time sequence TU , time inter-

val t ∈ TU , access class v ∈ VU , private information Sv,TU
, target class u ∈ VU ,

and public information Pub, outputs the key ku,t corresponding to class u at

time interval t.

The correctness requirement is such that, for each class v ∈ VU , each tar-

get class u ∈ Desc(v, GU), each time sequence TU ∈ P, each time interval

t ∈ TU , each private information Sv,TU
, each key ku,t ∈ K, and each pub-

lic information Pub that SetT (1κ, T, GU) and AssignT (TU , v, Sec) can output,

DeriveT (TU , t, v, Sv,TU
, u, Pub) = ku,t.

The definition of a secure time-based KA scheme must also be slightly modified for this

setting to take into account different access classes. Recall from Section 5.1 that we do

need to consider active adversaries, and now have a static adversary Ast who attacks a

class v ∈ VU at time t ∈ T . Ast is allowed to obtain access to the secret information of

all classes w ∈ VU at all times t′ ∈ T , except classes Anc(v) at time t. This is modeled

by an algorithm Corruptv,t, which now is class-based. We say that a hierarchical key

assignment scheme is secure if such Ast has at most negligible probability of guessing

kv,t correctly (distinguishing it from a random string) in case of security against key

recovery (resp, in case of security with respect to key indistinguishability). The rest

91

Experiment Expkey−rec−h
KA,Ast

(1κ)

(K, Sec, Pub)← SetT (1κ, GU , T)

corr← Corruptv,t(Sec)

k ← Ast(1
κ, Pub, corr)

if k = kv,t then return 1

else return 0

Experiment Expkey−ind−h
KA,Ast

(1κ)

(K, Sec, Pub)← SetT (1κ, GU , T)

corr← Corruptv,t(Sec)

b
R← {0, 1}

if b = 0 then r
R← {0, 1}|kv,t|

b′ ← Ast(1
κ, Pub, corr, r)

else b′ ← Ast(1
κ, Pub, corr, kv,t)

if b = b′ then return 1

else return 0

Figure 5.6. Experiments in which a static adversary attacking a hier-
archical time-based scheme participates.

of the security definitions for key recovery and key indistinguishability mimic our

previous definitions without a hierarchy of classes.

Definition 5.4.2 Let GU = (VU , EU) be a DAG corresponding to a hierarchy, T be a

set of distinct time intervals, P be the interval-set over T , and KA = (SetT , AssignT ,

DeriveT) be a time-based hierarchical KA scheme for GU , P, and a security parameter

κ. Then KA is secure against key recovery in the presence of a static adversary if it

satisfies the following properties:

• Completeness: A user, who is given private information Sv,TU
for a sequence of

time intervals TU ∈ P and a class v ∈ VU , is able to compute with probability

1 the access key kw,t for each t ∈ TU and w ∈ Desc(v, GU) using only her

knowledge of Sv,TU
and public information Pub.

• Soundness: Let Ast be a static adversary who attacks the class v at time interval

t ∈ T . If we let the experiment Expkey−rec−h
KA,Ast

be specified as in Figure 5.6, the

advantage of Ast is defined as:

Adv
key−rec−h
KA,Ast

(1κ) = Pr[Expkey−rec−h
KA,Ast

(1κ) = 1]

92

We say that KA is sound with respect to key recovery if for each t ∈ T , for

each v ∈ V , for all sufficiently large κ, and every positive polynomial p(·),
Adv

key−rec−h
KA,Ast

(1κ) < 1/p(κ) for each adversary Ast that runs in polynomial time.

The definition of a hierarchical time-based key assignment scheme secure with respect

to key indistinguishability is the same as the definition above with the exception that

the adversary now participates in the experiment Expkey−rec−h
KA,Ast

given in Figure 5.6.

We can create a hierarchical time-based KA scheme by applying our solution

independently to each access class in the user hierarchy. Then for each t ∈ T , the

nodes with keys kv,t for each v ∈ VU are connected with edges to form the original

hierarchy of classes. In more detail, for each v ∈ VU we use the improved scheme to

build the data structure for T and generate access keys kv,t for every t ∈ T . This

will result in |VU | instances of the time-based graph G, each of which permits key

derivation for a specific access class. Since the structure of such graphs is the same for

all of them, but the keys assigned to nodes and keys encoded in the public information

will differ, we denote the public information generated for access class v according to G

as PubG
v . Then for any t ∈ T , the public information for GU is constructed according

to the current keys for each access class using the key derivation method of the base

scheme in Chapter 3. We denote the public information at time interval t generated

according to GU by PubGU

t . For a user with access privileges for time interval TU ∈ P
at access level v ∈ VU consists of time-based key derivation (using PubG

v) of the key kv,t

followed by class-based key derivation of the key kw,t (using PubGU

t); this is assuming

that t ∈ TU and w ∈ Desc(v, GU). A more precise description of our scheme is given

in Figures 5.7 and 5.8.

In the SetT algorithm, we first build the data structure G and generate public

labels for the time intervals (Steps 1–3). Then for each class u in the user hierarchy,

we select secret keys for its copy of G and generate public information according to

those keys (Step 5). Next, we connect the data structures corresponding to different

user classes according to the partial order relationship between those classes (Step

6). That is, for each time interval t, if user class u1 is a parent of user class u2, we

93

Algorithm SetT (1κ, T, GU):

1. Create a root node root for the data structure and run DataStuctBuild(root, T).

Let G = (V, E) denote the tree structure returned.

2. For each v ∈ V , choose a unique public label `w ∈ {0, 1}κ for every node w in

D(v), R(v), and L(v).

3. For each t ∈ T , choose a unique public label `t ∈ {0, 1}κ.
4. For each u ∈ VU , choose a unique public label `u ∈ {0, 1}κ.
5. For each node u ∈ VU , perform the following:

(a) For each v ∈ V , randomly choose a secret key ku,w ∈ {0, 1}κ associated

with each node w in D(v), R(v), and L(v).

(b) For each v ∈ V , construct public information about each edge in D(v),

R(v), and L(v) using the key derivation method.

(c) For each t ∈ T , randomly choose a secret key ku,t ∈ {0, 1}κ.
6. For each t ∈ T , compute public information to permit key derivation between

classes: for each edge (u1, u2) ∈ EU compute public information by setting

Su1
= ku1,t and Su2

= ku2,t and using the key derivation method and public

labels `u1
and `u2

.

7. For each t ∈ T , let Vt ⊂ V denote the set of nodes in G access to which implies

access to t. Then for each Vt, for each v ∈ Vt:

(a) Find in D(v) the node corresponding to the time interval t; call it w.

(b) For each u ∈ VU , compute public information to permit derivation of t’s

access key from w’s enabling key ku,w using the key derivation method

and public label `t. Mark such an edge with the level of v and type D.

(c) repeat (a) and (b) for R(v) and L(v), using types R and L, respectively.

8. Let K consist of the secret keys ku,t for each t ∈ T and u ∈ VU , and let Sec

consist of the remaining secret keys ku,w. Let Pub consist of G, all public

labels, and public information about all edges generated above.

Figure 5.7. Description of proposed time-based hierarchical key assignment scheme.

94

Algorithm AssignT (u, TU , Sec):

1. Execute AssignKeys(TU , root, T) using the data structure stored in PubG
u , where

root is the root node of G.

2. Set Su,TU
to the keys computed and return Su,TU

.

Algorithm DeriveT (u1, u2, TU , t, Sv,TU
, Pub):

1. If t 6∈ TU or u2 6∈ Desc(u1, G), return ⊥.

2. Execute DeriveKey(TU , t, Su1,TU
, PubG

u1
) to compute an enabling key for t, k′

u1,t.

3. Use k′
u1,t along with its (level-type) label and PubG

u1
to derive key ku1,t.

4. Use ku1,t and PubGU

t to derive ku2,t using the key derivation method.

Figure 5.8. Description of proposed time-based hierarchical key as-
signment scheme (continued).

compute public information that permits derivation of ku2,t from ku1,t. Finally, Step

7 is similar to Step 5 in Figure 5.5 and allows computation of t’s access keys from an

enabling key corresponding to t at any level of granularity in the data structure G.

The fact that keys for an access class are assigned independently of the keys for

other access classes allows us to state the following result:

Theorem 5.4.1 Assuming the security of the family of pseudo-random functions F κ,

the time-based key assignment scheme for hierarchically organized access classes given

in Figure 5.7 is both complete and sound with respect to key recovery in the presence

of a static adversary.

Proof Similar to the proof of Theorem 5.3.1, in this case we also use a hybrid argu-

ment and construct a sequence of experiments Exp0
KA,Ast

, . . .,Expq
KA,Ast

for adversary

Ast who attacks the scheme at class v during time interval t, defined as follows:

95

Experiment Expi
KA,Ast

(1κ)

(K, Sec, Pub′)← Seti
T (1κ, GU , T)

corr ← Corruptv,t(Sec)

k ← Ast(1
κ, Pub′, corr)

if k = kv,t then return 1

else return 0

In the experiments, Set0 corresponds to the original algorithm Set, and Seti+1 is

constructed from Seti by replacing public information about a single edge in the data

structure by a random string. The edges replaced are:

1. For each access class u ∈ Anc(v, GU), replace in PubG
u all of the edges that were

replaced in Pub for a single resource in the proof of Theorem 5.3.1 (in D(w),

R(w), and L(w) for all w of interest and in the top-down fashion).

2. Replace in Pub
GU

t , starting at the root1, information about edges (u, w) ∈ EU

for each u ∈ Anc(v).

Thus, Exp0
KA,Ast

is the same as Expkey−rec−h
KA,Ast

, while Expq
KA,Ast

has no information

related to kv,t at the level of v or any of its ancestors. This means that Ast has at

most negligible probability in succeeding in Expq
KA,Ast

.

Since the number of edges replaced is clearly polynomial in the security parameter,

we can use a standard reduction argument to show that any non-negligible advantage

between any Expi
KA,Ast

and Expi+1
KA,Ast

can be used to break the security of pseudo-

random functions. Since by our assumptions the PRF is secure, the scheme is secure

as well. �

To achieve key indistinguishability in this scheme, as before, we need to utilize the

extended key derivation method that prevents key testing. In this case we need to

use this method within the data structure G itself (in Step 5b of SetT) to prevent a

member of class u from testing keys of unauthorized time intervals. We also need to

1If several roots exist in GU , sort the nodes using any topological ordering.

96

use this key derivation method between user classes (in Step 6 of SetT) to prevent a

member of class u from testing keys of its ancestor classes.

5.5 Practical Considerations

As was mentioned earlier, the goal of the solutions of this chapter is efficiency

under the assumption that the number of unit intervals m in the system is large. In

systems when this is not the case, other, simpler solutions will suffice (e.g., a simple

binary tree built on top of m intervals), and it is common sense to assume that a

suitable for the context solution will be chosen. We, however, believe that our solution

will find its uses in a number of domains such as, for instance, access to historical

data. And even in applications where access is based on the current time, the service

provider will be free to choose the level of granularity for time-based access rights.

For broadcast-based services, there is no overhead in changing keys often.

Another consideration is that, in subscription-based services where access is based

on current time, dues might be paid in installments. That is, a user subscribes only to

a rather short sequence of intervals and renews her subscription on a periodic basis.

But even such systems might be setup for a long time in the future, and the service

provider will choose a solution that minimizes system and user resources.

5.6 Comparison with Existing Solutions

Table 5.3 compares performance of our scheme with other existing solutions; only

security against recovery was considered. In the table, diam(GU) denotes the diameter

of the graph (i.e., maximum distance between nodes) that bounds the number of

operations which, given a class key, are necessary to derive the key of the target

descendant class within the user hierarchy. Also, |EU | denotes the number of edges

in a user hierarchy GU . The table does not list private storage at the server since it

is equivalent for all solutions. Before proceeding with comparing existing results, we

briefly explain what these parameters mean.

97

Table 5.3
Comparison of time-based hierarchical KA schemes.

Public Private Key Operation Complexity
Scheme information information derivation type assumption

Encryption- O(|VU |2|T |3) 1 1 decryption one-way

based [9] functions

Pairing-based [9] O(|VU |2) O(|T |) 1 pairing Bilinear Diffie-

evaluation Hellman

Binary tree O(|EU ||T |) O(log |T |) O(log |T |+ PRF one-way

diam(GU)) functions

ISPIT+(3,1)-CSBT O(|EU ||T |+ |VU ||T |× ≤ 3 O(diam(GU)) decryption IND-P1-CO

+EBC [65] log |T |(log log |T |)2) encryption [98]

Our 4HS-based O(|EU ||T |+ |VU ||T |× ≤ 3 O(diam(GU)) PRF one-way

log∗ n log log |T |) functions

ISPIT+(3,1)-CSBT O(|EU ||T |+ |VU ||T |× ≤ 3 O(log∗ |T |+ decryption IND-P1-CO

+EBC [65] log |T | log log |T |) diam(GU)) encryption [98]

Our log∗HS-based O(|EU ||T |+ |VU ||T |× ≤ 3 O(log∗ |T |+ PRF one-way

log log |T |) diam(GU)) functions

98

In the great majority of cases, the depth of user hierarchies is a small constant,

resulting in diam(GU) being a small constant as well. In cases where the depth of

the original graph GU is fairly large and it is unacceptable to have the user perform

diam(GU) operations, we can insert shortcut edges either at random (if diam(GU) =

O(VU)) or using the techniques of Chapter 4 that reduce the diameter of the hierarchy

to a small constant at the expense of small increase in the public storage.2 Thus, in

this case diam(GU) is also a small constant, and parameter |EU | will need to be

replaced with a slightly larger value.

We also would like to mention that the schemes of [63] and [64] are not listed in

the table. These solutions allow a user to obtain access to an arbitrary subsequence

of time intervals (i.e., not restricted to contiguous sequences considered in all other

schemes), but require far slower key derivation of O(|VU |·|T |) modulo exponentiations.

Considering that small private user storage and fast key derivation, followed by

reasonable server storage are the main evaluation criteria, we can analyze the solutions

as follows. The Pairing-based scheme of [9] will have the slowest key derivation time

among all of the schemes listed here, as it uses pairing evaluation rather than fast

encryption or PRF operations. Additionally, the number of secret keys a user has to

maintain is large.

Compared to the Encryption-based scheme of [9], our key derivation time is higher

by a constant factor, private storage is similar (i.e., three keys instead of one), but

the amount of public information the server must maintain is much lower than in that

scheme. That is, for modest values of |T | = 1000 and |VU | = 10, the encryption-based

schemes requires storing on the order of 1011 labels, while in our case it will be bound

by the order of 106 labels.

While the simple binary-tree approach has asymptotically higher performance,

for small values of |T | it will be preferred due to its simplicity. However, for the

2It should be noted that the shortcutting techniques of Chapter 4 may fail on hierarchies the dimen-
sion of which is hard to approximate, but we believe that such cases are very rare for the applications
we consider in this work.

99

applications we envision, other solutions exhibit better performance. Thus, our rec-

ommendation is to use the simplest approach suitable for a particular setup.

The work of De Santis et al. [65] lists solutions with different performance pa-

rameters, and we include in the table only selected two schemes. That is, we chose

two schemes that require a user to store 3 private keys (just like in our solutions)

and where time-based key derivation involves O(1) and O(log∗ n) decryptions, re-

spectively. This allows us to directly compare the schemes of [65] with our schemes.

As can be seen from the table, the solutions exhibit very similar performance, with

CSBT-based constructions having an additional factor of log |T | in the public storage

space.

To summarize, our solution offers very attractive characteristics and superior per-

formance compared to other existing solutions: each user in the system receives a

small (≤ 3) number of keys, (off-line) computation of any access key involves a small

number of very efficient operations, and the public storage required by our solution is

only slightly higher than the number of access keys that the system must maintain.

It is a very balanced solution in terms of its performance.

5.7 Extensions

5.7.1 Extending the Lifetime of the System

So far in all of our discussion we considered the lifetime of the system to consist of

a fixed set of time intervals {t1, . . . , tm}. In many applications, however, there might

eventually be a need to support time intervals beyond the original m intervals. In

this section, we describe techniques for extending the number of time intervals.

One simple approach is to apply the techniques of Section 5.3 to a second set of

intervals. The interesting case is when a user’s access rights span across the boundary

(i.e., tn and tn+1), and this case results in two sets of keys being issued to that user.

This is particular appealing in applications where users purchase a subscription for a

period of time (e.g., they can view a collection of media objects on a specific day or

100

month), after expiration of which there is no need to maintain keys for that period.

However, this approach is less desirable in applications where objects are assigned a

date (e.g., a user requests access to all movies released in 1977), because previous

intervals need to be maintained even after they have elapsed.

Suppose that the keys for previous time intervals need to be maintained. One

approach is to extend the time intervals, rebuild the data structure, and recompute

the public information. The downside of this approach is that all of the public in-

formation has to be recomputed (previous shortcuts may no longer be necessary and

other shortcuts may need to be added), but if extensions to the time intervals are

rare (which we assume is the case almost all of the time), then this may be accept-

able. If recomputing all of the public information is unacceptable, then in some cases

we can reuse the previous information. The simplest technique to achieve this is

to set the new number of time intervals to m2 (recall that building the tree data

structure involves partitioning the time intervals into chunks of size of square-root

of their number). Unfortunately, squaring the number of intervals is prohibitively

expensive, but if we assume that m is a power of 2 and is a perfect square, then we

can achieve full reuse of the previous information by doubling the length of a time

interval. The basic idea of this approach is that, in the data structure for m2 intervals,

the subset of the data structure that effects the first 2cm (c < log m) intervals has

size O(space(S1(2cm)) log log (2cm)). Thus, we can use this subset for the intervals,

and when we need to add more intervals we can simply add the new information from

the data structure for m2 intervals.

In more detail, the part of the data structure for m2 intervals that corresponds to

the first 2cm time intervals has the following characteristics. The depth of recursion is

log log m + 1, and at the first level of recursion the time intervals are partitioned into

blocks of size m. Since we already established bounds for systems with m intervals,

here we need to evaluate performance at the highest level of recursion. When we build

the data structure D(root) for 2c coarse units, it will result in O(2c · space(S1(2c)))

space. This space is dominated by the space required for data structures L(root)

101

and R(root), both of which introduce O(space(S1(2cm))) shortcut edges. The space

needed for the scheme at all other levels of recursion is the sum of space for each

m-interval block: O(2c · space(S1(m)) log log m). Thus, the total space for the data

structure does not exceed O(space(S1(2cm)) log log (2cm)).

The bounds of the key assignment and derivation algorithms are not affected by

this increase, because we are only adding one additional level of recursion to the data

structure, and time key derivation time at all levels of recursion is equivalent.

5.7.2 Handling Changes to the Hierarchy

In a number of applications, there might be situations where the user hierarchy

needs to be changed after the keys have been distributed to users. For example,

suppose that in a subscription-based service users are given privileges for one year

(and thus can compute keys for up to a year in the future). Now suppose that some

time later the service provider decides to add a new subscription class or to remove

a subscription class (and re-assign the clients to other classes). In this section, we

discuss techniques for making such changes to the hierarchy.

Before we proceed with outlining how such changes can be performed, recall from

Chapter 3 that removal of access rights (such as edge and node deletions, as well as

user revocation) will be transparent to the users only if the extended key assignment

scheme is used.

Adding nodes. To add a node v to the access graph for time intervals ti, . . . , tj ,

we choose keys kv,ti , . . ., kv,tj and compute the public information PubG
v for these time

intervals according to the keys. Then using the procedure for adding nodes from

Section 3.4, the access node v is added to the hierarchy at times ti, . . . , tj including

the necessary information to PubGU

ti
, . . . , PubGU

tj
.

Adding edges. To add an edge from v to w for time intervals ti, . . . , tj, the necessary

information is added to PubGU

ti
, . . . , PubGU

tj
as described in Section 3.4.

102

Changing an access class’s key. To change a specific access level v’s key at a

specific time ti, the procedure of Section 3.4 is used to change the hierarchy key at

time ti. Then we update PubGu

v and Pub
GU

ti
accordingly. Note that this can be done

without re-keying any users.

Removing an edge. To remove an edge (u, v) at a specific time, the edge is removed

and the keys of all descendants of u are changed according to the previous algorithm.

Note that no user needs to be re-keyed.

Removing a node. To remove a node u at a specific time, all edges that point to u or

originate from u are removed. Then u’s vertex information at that time is forgotten.

If u is removed for all time intervals, then its temporal keys can be forgotten as well.

So far this discussion has focused on changes to the access hierarchy. However, changes

to user permissions are more likely than changes to hierarchy. For example, the system

may want to add new users, or remove a user (e.g., that has stopped paying), or to

change a user’s access level. To avoid having to re-key users other than the specific

user, we use ideas from Section 3.4 for handling user-level changes. Specifically, users

are not given direct access to keys, but rather each user is given her own key. Such

key is then used to generate the system keys which is achieved by encrypting the

keys that the user should obtain with the user’s key or adding public information

that permits derivation of the appropriate key using user’s key. This increases the

required public storage by an additive factor linear in the number of users (which the

server provides already maintains), but this prevents unnecessary re-keying.

Adding a user. To add a user, the user’s keys are generated and then the temporal

keys that are to be given to the user are encrypted with that user’s keys and this

information is added to the public storage.

Removing a user. To remove a user, the system needs to remove access to previous

material (to prevent the ex-member problem). And thus every key that the user could

derive must be changed and the public information must be updated so that other

103

users can derive the updated information. This is a relatively expensive operation,

and thus should be done infrequently or in batches.

Changing a user. To change the access class of a user or the time at which a user

can access material, the system simply needs to remove the user and then add the

user with new rights. Note that in some special cases this can be done more efficiently.

For example, if the user’s rights are being escalated (i.e., the new rights of the user

are a superset of its current rights) then there is no need to remove the user or change

any system keys (as the ex-member problem is irrelevant).

5.7.3 Faster Key Assignment

In situations where very fast key assignment to users is important, we can modify

the AssignKeys algorithm of Section 5.3.2 to result in constant-time performance.

To be able to achieve this, we store the recursion tree (call it RT) of the AssignKeys

algorithm and use it to speed up the key assignment process. The time-consuming

part of this algorithm is the step-by-step descent from the root until the node u of RT

at which the desired keys reside. Thus, the keys we seek would be easy to assign in

constant time if we could go directly to that node u. This, however, is easy to do once

we observe that (i) the parent of u in RT is the lowest node whose interval contains

TU (i.e., u is the nearest common ancestor in RT of the two leaves that correspond

to the endpoints of I), and (ii) in any tree it is possible to answer nearest common

ancestor (NCA) queries in constant time (see [92] for details). Thus, we augment the

recursion tree with the information needed to answer such NCA queries in constant

time and during the key assignment process after finding the right node u in RT we

locally retrieve keys for the user time sequence TU .

104

6 KEY ASSIGNMENT IN GEO-SPATIAL SYSTEMS

The focus of this chapter is extending key management techniques to support user

access rights in the geo-spatial domain. In particular, we assume we are given a large

area which is partitioned into small cells, and a user obtains access to a sub-area

on that grid. As before, we attempt to minimize the resources used at both the

user and the server, and smart resource utilization becomes possible by appropriately

exploiting the grid-based structure of the space.

6.1 Problem Description

The space consists of N cells in an n1 × n2 grid, N = n1n2; let us refer to the

grid as S. Without loss of generality, we assume that n1 ≥ n2 and that the grid

has n1 rows and n2 columns. A user is permitted to obtain access to any specific

sub-area within the grid. In general, user rights might permit access to areas of

arbitrary shape (subject to the cell partitioning), which can be represented as a set

of rectangles. Since the number of such rectangles in user access rights will be small

in most applications, we will assume, for simplicity, that the user is given access to a

single rectangular area R.

Then a grid cell will have an access key that permits access to the resources

associated with that cell. This means that during the system initialization the grid

cells will be assigned certain keys. Note that it will not always be the case that each

cell has a unique key, because in some systems access to certain cells will always be

granted in an all or none fashion (i.e., if a user is allowed to access one cell in the

group, then that user can access all cells in the group), in which case such cells can

share the same key.

105

When a user joins the system and obtains access to an area R, she will be given a

key (or a set of keys) that permits access to every single cell within the area (through

a key derivation process). This means that, as before, we need algorithms to (i) setup

the system, (ii) assign keys to users, and (iii) perform key derivation. And, from a

user perspective, the interaction with the system consists of two phases:

(i) At the time of signing up, the user obtains secret keys that correspond to the

area R to which access is being granted.

(ii) When the user would like to obtain access to a certain cell within R, she will

use her secret keys (in combination with the public data made available by the

server) to independently derive the access key for that cell. It is assumed that

access to that key will permit her to either access the area or access information

about the area, based on the context.

The security of a geo-spatial key assignment scheme is defined in a standard way.

That is, we require the properties of completeness and soundness to hold, as defined

below:

Completeness A user with access privileges to a rectangular area R is able to com-

pute the access key for each cell within R.

Soundness Any coalition of users with access to rectangle areas R1, . . . , Rk is unable

to obtain access to any cell other than those contained in R1 ∪ · · · ∪Rk.

As was mentioned above, the key assignment can be such that each cell obtains a

unique key, but for efficiency reasons it might be advisable to assign the same key to

multiple cells (when access to a certain area is always granted as whole and not at the

level of individual cells). The fact that parts of the grid might have different access

granularity (i.e., the level of individual cells versus the level of blocks of cells) will

allow us to achieve significant savings in the data structure and key derivation time

in certain systems. However, we initially consider the case where the n1n2 cells have

106

distinct access rights (hence there needs to be a separate key for each cell). Later

we discuss the case when groups of grid cells share a key (i.e., there are disjoint,

arbitrarily shaped regions of the grid, and each region has its own key).

Our result. If 4HS one-dimensional scheme is used as the underlying scheme for

our construction, for an n1 × n2 grid of cells that have distinct keys, a user who is

entitled to access a rectangular sub-grid R of such cells is given a constant number

of private keys, from which the key of any cell in R can be derived in constant time.

Moreover, given any such R, it is possible to compute the private keys for it in

constant time as well. The public storage space that the server needs to maintain is

O(n1n2(log log n1)
2 log∗ n1). Throughout this chapter, we assume that 4HS is used in

the constructions and provide performance analysis according to the bounds of this

scheme. Similar analysis can be carried out with out underlying schemes as well.

6.2 A Preliminary Scheme

In this section we examine the solution that follows from the results of Chapter 4.

While the shortcut solution given in Chapter 4 performs well for general graphs, it

does not exploit the spatial structure. As a result, more efficient solutions are possible,

and we will use the scheme described in this section to build such a solution.

Chapter 4 provides a key derivation mechanism for a graph of dimension d. In

the geo-spatial domain, we can represent each rectangular area on the grid by the

coordinates of its four corners. For each corner, we can use its coordinates to form

a total order relationship, which for all of them results in four total orders. By

incorporating all possible rectangular sub-areas of the grid, we obtain a graph of

dimension d = 4 to which the techniques of Chapter 4 can be applied.

Let us denote a cell by its x and y coordinates. A rectangular region R within

the grid is described by two x coordinates a ≤ b and two y coordinates c ≤ d, i.e.,

by a 4-tuple representation (a, b, c, d), where (a, c) is R’s bottom-left corner and (b, d)

is R’s top-right corner. If R is a single cell, then a = b and c = d. For instance, in

107

9

4

5

6

2

3 � � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

II

IV

III

I

1 5 6 7 82 3 4

8

7

1

Figure 6.1. Illustration of regions on the spatial grid with n1 = 9 and n2 = 8.

Figure 6.1 Region I has coordinates (7, 7, 7, 7), Region II has coordinates (2, 6, 3,

6), Region III has coordinates (4, 6, 4, 5), etc.

Next, we create an N2 (= n2
1n

2
2) node graph G whose vertices correspond to all

possible rectangles of the grid. That is, each vertex v in G is associated with a

rectangle R(v) whose bottom-left corner is (a(v), c(v)) and whose top-right corner is

(b(v), d(v)). For reasons that will become apparent soon, we associate with such a

vertex v the 4-tuple:

τ(v) = (n2 − a(v), b(v), n1 − c(v), d(v)).

To illustrate this function on an example, we go back to Figure 6.1. Here if we

associate node v1 with Rectangle I, node v2 with Rectangle II, and node v3 with Rect-

angle III, then we have τ(v1) = (1, 7, 2, 7), τ(v2) = (6, 6, 6, 6) and τ(v3) = (4, 6, 5, 5).

Note that we have nodes in G and the corresponding values of the τ function for all

possible rectangles on the grid.

Now observe that rectangle R(v) contains rectangle R(w) if and only if all 4 of

the following inequalities hold:

a(v) ≤ a(w), b(w) ≤ b(v), c(v) ≤ c(w), d(w) ≤ d(v)

This is equivalent to:

108

n1 − a(v) ≥ n1 − a(w), b(v) ≥ b(w),

n2 − c(v) ≥ n2 − c(w), d(v) ≥ d(w)

which is the same as τ(v) ≥ τ(w). Hence rectangle R(v) contains rectangle R(w)

if and only if τ(v) ≥ τ(w). This is also true when R(w) is a single cell, i.e., when

a(w) = b(w) and c(w) = d(w).

We now describe the edge set of G: there is an edge in G from vertex v to vertex

w if and only if τ(v) ≥ τ(w), i.e., every one of the 4 components of the 4-tuple τ(v)

is greater than or equal to the corresponding component of τ(w). Using rectangles

from Figure 6.1, there will be an edge from R(v2) to R(v3), but no edges between any

other ordered pair of the four rectangles depicted in the figure.

Now we have a 4-dimensional partial order G in which it is desired that v can

derive the key of w if and only if v precedes w in G. Thus, we can use the solution

of Chapter 4 to solve the problem with performance of 1 key, constant key derivation

time, and O(N2(log N)3 log∗ N) space.

The following sections improve the performance of this data structure and result

in a scheme that does not require the quadratic space while maintaining the constant

number of keys and the constant key derivation computation.

6.3 Special Cases

Before presenting our scheme for the general case, we cover special cases. Solutions

to these special cases will be used in the overall construction for the general case. The

special cases considered in this section are rectangles that have less than 4 degrees of

freedom, i.e., each of them shares one or more of its 4 sides with the boundary of the

grid.

6.3.1 Rectangles that Span the Grid

Let us first consider rectangles that span the whole width or whole height of the

n1 × n2 grid. This happens in one of two ways:

109

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Figure 6.2. Illustration of rectangles that span the grid vertically and horizontally.

• Vertical spanning: The top and bottom boundaries of the rectangle are at rows

1 and (respectively) n1.

• Horizontal spanning: The left and right boundaries of the rectangle are at

columns 1 and (respectively) n2.

Figure 6.2 illustrates such rectangles.

Given that users can only obtain access to rectangles that span the grid, our goal

is to build a data structure that will permit a user to possess a small number of secret

keys and derive access key to each cell of her region R. Without loss of generality, we

give a solution for the case of horizontal spanning, and the case of vertical spanning

can be addressed analogously.

In this special case, we can treat every row as a single “super-cell,” ignoring the

fact that it consists of many cells. Thus, we assign a key to each row, and this turns

the problem into a problem with a single parameter. That is, now the only parameter

that can change is the number of rows in user rectangle R. This makes it possible

to apply the techniques of Chapter 5 for contiguous time sequences. In the current

context, we allow a user to obtain access to a contiguous set of rows with each row

having a different key. In other words, now the n1 rows play the role the m time

units played in Chapter 5. Then a user with access to a rectangle that spans the grid

obtains secret keys created according to the solution of Section 5.3.

The above solution allows us to obtain the data structure of size O(n1 log log n1×
log∗ n1) with the distance between any node and its descendant being at most a

110

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure 6.3. Illustration of rectangles that touch a grid’s boundary.

constant number of edges. Note that none of the above characteristics depend on n2,

even though the grid is n1 × n2.

The case of vertical (rather than horizontal) spanning is treated similarly to the

above, except that the roles of rows and columns are interchanged, as are the roles of

n1 and n2. Thus, the space complexity for vertical spanning is O(n2 log log n2 log∗ n2).

6.3.2 Rectangles that Share a Grid Boundary

Next, we consider rectangles that share at least one of their boundaries with a

grid’s boundary. This means that at least one of the bounding four coordinates of

each rectangle of this type is in the set {1, n1, n2}. Figure 6.3 shows examples of such

rectangles.

We use “row” as an abbreviation for “y coordinate” and “column” as an abbrevia-

tion for “x coordinate.” Without loss of generality, assume that the rectangle touches

the right boundary of the grid, i.e., its right side is at column n2 as in the second

grid from the left in Figure 6.3. We call such a problem right-anchored, and the other

three cases are analogously referred to as left-, top-, or bottom-anchored.

Our solution to the right-anchored case consists of applying a solution to one-

dimensional graphs from Chapter 4 to cells in each row (because key derivation is

unidirectional in this case, i.e., from a certain point to the boundary). And we also

apply the solution of Chapter 5 to each column (in this case, key derivation must

be bounded by two points and key derivation is permitted within that interval only,

111

just like in Chapter 5 for an interval of time). The algorithm for building the data

structure is then as follows:

1. For each individual row i of the grid, we create a one-dimensional structure Hi

that allows any position j in that row to have a short path to any other position

j′ of that same row iff j < j′.

2. For each individual column j of the grid, we use the single-parameter structure,

call it Vj, of Chapter 5 to permit key derivation between any two positions i

and i′ (i < i′) in that column.

User Key Assignment and Derivation

Let a user be given access rights to a right-anchored rectangle R, the leftmost

column of which is j. Then the user is given the keys that correspond to the set

of rows of R from Vj. Derivation of the key of the cell at location (i′, j′) within R

consists of using the user’s secret keys and the Vj structure to obtain the key for the

cell (i′, j) at the same column, and then Hi′ structure of that row to derive the target

key for cell (i′, j′).

Performance

The data structure built in Step 1 of the above algorithm for a single row has the

characteristics of one secret key per user, constant key derivation time, and the size of

the data structure (public storage) of O(n2 log∗ n2) space. The total space for all rows

is O(n1n2 log∗ n2). The data structure built in Step 2 of the algorithm achieves, for a

single column, a constant number of secret user keys, constant key derivation time,

and O(n1 log log n1 log∗ n1) storage space for the data structure. The total public

storage space for all columns is then O(n1n2 log log n1 log∗ n1) with constant-time key

derivation.

112

The case of left-anchored rectangles is handled very similar to the case of right-

anchored rectangles. The only difference is in Step 1 of the algorithm, where the

data structure built should permit key derivation from a cell at position j to a cell at

position j′ iff j > j′. For top-anchored and bottom-anchored rectangles, the solution

will consists of the roles of rows and columns reversed in the original algorithm. That

is, we apply the solution of Chapter 4 to each column, and the solution of Chapter 5

to each row.

6.4 The General Case: The Initial Solution

This section describes our initial scheme for the general case of rectangles R with

no assumptions other than that they must be contained within the n1 × n2 grid. In

Section 6.5 we show how to lower the space complexity associated with the storage

required for the data structure.

Here we first describe in Section 6.4.1 how to build the data structure that permits

efficient key derivation. This computation must be performed when the geo-spatial

system is being setup. Then we show in Section 6.4.2 how, given a rectangle area

R access to which is to be granted to a user, user secret keys are generated. This

procedure is performed at the time a user joins the system and grants access privileges

to access area R. Lastly, given access to R, we show in Section 6.4.3 how a user can

obtain keys for a cell contained in R. It is assumed that access to such a key enables

the user to obtain access to the area or information about the area, depending on the

context.

6.4.1 The Data Structure

Now we describe how, for a grid S, to build the public tree data structure, which

we will use for key management. Without loss of generality, we assume n1 = 22s

113

and n2 = 22q

, where s ≥ q.1 The algorithm for building the data structure takes, as

inputs, a node v and an n1 × n2 grid S. It builds a tree for S rooted at v, using a

recursive construction.

The idea behind it is to partition the grid into tiles of size
√

n1 ×
√

n2 each, and

apply the (preliminary) scheme of Section 6.2 on them treating each tile as a giant

cell. Such a data structure will be able to handle key assignment and derivation at

the granularity of tiles: now only rectangles that consist of a whole number of tiles are

supported. Then the algorithm builds support for the special cases of Section 6.3 on

the grid. In more detail, it builds data structures to support rectangles that border

the boundary of the grid or span (vertically or horizontally) across one or more tiles.

Finally, the algorithm is invoked recursively on each of the tiles to build the equivalent

data structures at finer levels of granularity.

DataStructBuild(v, S):

1. If n2 = 2 (i.e., q = 0), then S consists of two columns of length n1 each. For

each of these columns, create and store at node v the data structure for the n1

cells described in Chapter 5 (which will permit key assignment and derivation

for any contiguous set of cells within those n1 cells).

2. Partition S into a
√

n1×
√

n2 array of tiles Si,j, 1 ≤ i ≤ √n1 and 1 ≤ j ≤ √n2,

where each tile is itself a
√

n1×
√

n2 grid. That is, Si,j consists of the cells of S

whose row number is in the interval [(i − 1)
√

n1 + 1, i
√

n1] and whose column

number is in the interval [(j − 1)
√

n2 + 1, j
√

n2]. Create a node vi,j for each

Si,j, and make vi,j a child of v.

3. Generate a grid C(v), derived from S by treating each Si,j as a single cell (i.e.,

“merging” the cells of Si,j into a single unit). Note that C(v) is
√

n1 ×
√

n2.

1Note that these assumptions are for presentation purposes only, and our data structures can easily
be generalized to other grids that are not of this form. That is, it is not necessary to increase the
actual size of the grid to obtain n1 and n2 of the above form, but instead rounding can be used in
computing partitions of the grid.

114

. . .

D(v), H(v), V (v)

v4,1

v

S3,1

S2,1

S1,1

S4,2

S3,2

S2,2

S1,2 S1,3

S2,3

S3,3

S4,3 v4,2

v3,1 v3,2 v3,3

v4,3S4,1 AT (v), AB(v)
AR(v), AL(v)

C(v) 3,1,3
HS

2,2,2

4,2,3
HS

1,1,2
HS

VS

VS

1,4,3
VS

HS

2,4,1

1,2,2

Figure 6.4. Illustration of building the data structure for a grid 16×9
(first level of recursion).

4. Store at node v the scheme of Section 6.2 for C(v), which we denote by D(v).

D(v) will allow for user key assignment and derivation at the granularity of tiles,

i.e., it can process a rectangle only if that rectangle is the union of a subset of

the Si,j’s, but it cannot handle rectangles whose corners are inside the Si,j’s.

5. Also store at node v a solution for each of the 4 “anchored” special cases (rect-

angles that have at least 1 side along a boundary for S). Call these struc-

tures AL(v) for rectangles anchored at the left, AR(v), AT (v), and AB(v) for

rectangles anchored at the right, top, and bottom, respectively. Having these

structures enables the handling of anchored rectangles.

6. Let HSi,j′,j′′, where 1 ≤ i ≤ √n1 and 1 ≤ j′ ≤ j′′ ≤ √n2, be the horizontal slab

consisting of the union of all of the tiles Si,j′, Si,j′+1, . . . , Si,j′′. For every such

HSi,j′,j′′, we store at v a “horizontal spanning” structure of Section 6.3.1 for

115

processing rectangles that horizontally span it. Since there are
√

n1 choices for

i and
√

n2 choices for each of j′, j′′, the total number of such slabs is n2
√

n1. We

denote by H(v) the information stored at v for all of these O(n2
√

n1) horizontal

slabs. H(v) can handle any rectangle that horizontally spans any one of those

slabs.

7. Similarly, let VSi′,i′′,j, 1 ≤ i′ ≤ i′′ ≤ √n2, be the vertical slab consisting of the

union of all of the tiles Si′,j, Si′+1,j , . . . , Si′′,j. For every such VSi′,i′′,j, we store at

v a “vertical spanning” structure for processing rectangles that vertically span

it. The number of such slabs is n1
√

n2. We denote by V (v) the information

stored at v for all of these vertical slabs. V (v) can handle any rectangle that

vertically spans any one of those slabs.

8. Recursively apply the scheme to each child of v, i.e., call DataStructBuild(vi,j, Si,j)

for all 1 ≤ i ≤ √n1 and 1 ≤ j ≤ √n2.

Now we analyze the performance of the data structure built. In Step 1, we ob-

tain a construction of O(n1 log log n1 log∗ n1) space, a constant distance between

nodes, and a constant number of keys per user. In Step 4, the data structure

built has the space complexity of O(n1n2(log n1)
3 log∗ n1) with a constant distance

between nodes and one key per user. In Step 5, the construction gives us the

space complexity of O(n1n2 log log n1) with a constant distance between nodes and

a constant number of user secret keys. In Step 6, we have that each structure

HSi,j′,j′′ has space complexity of O(
√

n1 log log n1 log∗ n1), a constant number of keys

per user, and a constant distance between nodes. Since there are
√

n1 choices

for i and
√

n2 choices for each of j′, j′′, the total space for all such structures is

O(n1n2 log log n1 log∗ n1). Finally, in Step 7, each structure VSi′,i′′,j similarly has

space complexity of O(
√

n2 log log n2 log∗ n2), with the total space over all choices of

j, i′, and i′′ being O(n2n1 log log n2 log∗ n2).

116

Since Step 1 is at the bottom of the recursion, the total space satisfies the following

recurrence if n2 > 2:

f(n1, n2) ≤
√

n1n2f(
√

n1,
√

n2) + c1n1n2(log n1)
3 log∗ n1

and f(n1, 2) = c2n1 log log n1 log∗ n1, where c1 and c2 are constants. The solution to

it is f(n1, n2) = O(n1n2(log n1)
3 log log n1 log∗ n1).

The above “augmented tree” data structure (call it G) is used to set up the

system, i.e., we associate with each node of G a key, and we create public information

associated with each edge (v, w) in G that allows anyone with v’s key to derive w’s

key in one simple step.

In addition to the above data structure, the server will need to maintain public

information associated with another, simple graph that maps keys corresponding

to tiles to cell keys. A description of such an auxiliary data structure is given in

Section 6.4.3 where we explain how key derivation is performed.

6.4.2 Key Assignment

We now turn our attention to describing how keys are assigned to a user who is

being granted access to a rectangle area of cells R. In what follows, v is the root node

of the above tree data structure, S is the n1×n2 grid associated with v (with n1 ≥ n2),

and R is an arbitrary rectangle in S. Although we can ultimately achieve computing

the key assignment of any such R in constant time, we begin with describing a key

assignment algorithm that does so in O(log log n2) time.

Initial Key Assignment Mechanism

Given a user’s rectangle R, the recursive procedure below returns a constant-size

set of secret user keys that will permit access to R. The algorithm majorly follows

the data structure built using DataStructBuild to find the largest blocks of cells, keys

for which are encoded in the data structure.

117

R2

Step 2b

Step 2c

Step 2d

Step 2a

R1

R3

Figure 6.5. Illustration of the spatial key assignment procedure for
various user rectangles. The color of an area indicates where in the
AssignKeys algorithm the area is handled.

AssignKeys(R, v, S):

1. If v is not a leaf, continue with the next step. Otherwise, n2 = 2 with a small

n1, and the data structure at v stores two solutions to the single-parameter

problem of n1 cells (one for each column). If R consists of a single column,

we retrieve from the data structure corresponding to that column the keys that

permit access to the range of R’s rows. If R consists of two columns, we retrieve

such keys from both data structures. Return the keys computed.

2. Recall from the algorithm that builds the data structure that the vi,j’s are the

children of v, and that Si,j is the
√

n1 ×
√

n2 tile associated with node vi,j. We

distinguish different cases, based on how R overlaps with the Si,j’s:

(a) If R overlaps with only one Si,j, then we recursively call AssignKeys(R, vi,j,

Si,j) and return the keys returned by that recursive call. Otherwise, con-

tinue with the next steps.

(b) Let R1 be the maximal sub-rectangle of R that consists of the union of

one or more Si,j’s. If no such R1 exists, then continue to the next step.

118

Otherwise, obtain the key for R1 from the D(v) structure stored at v (by

indexing into it in constant time).

(c) Let R2 be any of the maximal sub-rectangles of R that (i) are disjoint

from R1, and (ii) horizontally or vertically span one of the slabs HSi,j′,j′′

or VSi′,i′′,j. There can be at most 2 such horizontally spanning R2’s (a top

and a bottom one), and at most 2 vertically spanning R2’s (a left and a

right one). For each of such R2’s we obtain, in constant time, O(1) keys

by using the H(v) or V (v) structure stored at v.

(d) The previous steps have considered all but the “corners” of R, each of

which could lie inside an Si,j. Then let R3 be any of the maximal sub-

rectangles of R that contain a corner of R and are disjoint from R1 and

R2’s of the previous steps. Note that there will be at most four but could

be fewer than four such R3’s, when, for instance, such an R3 contains 2

corners of R (when both corners lie within the same Si,j).

Each R3 is surely “anchored,” therefore the O(1) keys for it can be obtained

in constant time from one of the four structures AL(v), AR(v), AT (v), and

AB(v). That is, we first index to the appropriate Vj data structure for

left- and right-anchored rectangles (and Hj for top- and bottom-anchored

rectangles) and then retrieve the right keys from it in constant time (as in

Chapter 5).

(e) Return the keys computed in the previous three steps.

The different cases of Step 2 of this algorithm are depicted in Figure 6.5. The

above procedure assigns a constant number of keys per rectangle R and does so

in O(log log n2) time. In the next subsection we sketch a modification that brings the

time down to constant.

As can be seen from above, Step 2b of the AssignKeys procedure returns from

D(v) keys associated with tiles, but not with individual cells. When users, however,

want to obtain access to cells, they will need to have keys associated with those cells.

119

For that reason, the server must maintain a mapping from tile keys to the keys that

compose the corresponding tiles. The data structure that allows such mapping is

explained in Section 6.4.3 along with the key derivation process.

Constant-Time Key Assignment Mechanism

The above AssignKeys procedure takes longer than constant time because we are

going down the tree G (working with blocks of finer granularity) until we find the node

u at which R overlaps with more than one Si,j. To achieve O(1) time performance for

key assignment, we need to find this u is constant time. This can be done as follows:

1. Let cells c1, c2, c3, c4 be the four corners of R. For every ci, let `(ci) denote the

leaf of G that contains ci.

2. Use the constant-time algorithm for computing nearest common ancestors (NCA)

in a tree [92] to compute the lowest (i.e., farthest from the root) node of G which

is an ancestor of all of `(c1), `(c2), `(c3), and `(c4). That node is the u we seek.

6.4.3 Constant-Time Key Derivation

The above key assignment process could also be used to guide the processing of a

key derivation request. But before we proceed with giving it, we describe an auxiliary

data structure, G′, that will allow users to map keys associated with tiles to cell keys.

Given the augmented tree G, G′ is constructed as follows:

1. Starting with the root node v of G and going down the tree, add to the set of

nodes of G′ a node associated with each tile in C(v).

2. Add to the set of nodes of G′ a node for each cell of S.

3. For each node of G′ that corresponds to a tile, insert an edge from it to every

cell contained in that tile.

120

Given the above graph G′, we assign a fresh unique public label to every node of it as

in the key derivation mechanisms of Chapter 3. We then use the corresponding secret

keys from G to compute public information associated with G′. Now each user who

obtains a key for a tile in S will be able to use the public information for G′ to obtain

the key for any cell within that tile. The space complexity of G′ is O(n1n2 log log n1),

which is lower than that of G.

Going back to the user key derivation procedure, we have that a user with secret

keys for an area R should be able to obtain the key of a cell within R using the

public information associated with the augmented tree G and the additional graph

G′ above. To do so, the user locates (in constant time using the NCA algorithm, as

in the previous sub-section) the node u at which R overlaps with more than one Si,j.

Having u, the user derives the key depending on whether the target grid cell is in an

R1 (Step 2b), an R2 (Step 2c), or an R3 (Step 2d). All that is needed to carry out

the constant-time derivation of the target cell’s key is the local information stored at

node u, i.e., AL(u), AR(u), AT (u), AB(u), H(u), V (u), or data structures stored at

leaves. The only exception is the case when the key is returned from D(u) in Step

2b. In this case, such a key will correspond to a tile, but not to an individual cell.

This means that the user will need to refer to G′ to compute the cell’s key from the

tile key obtained above (by following one edge in G′).

An alternative way to the use of NCA computations in locating u would be to

provide the user who possesses access rights to R with a pointer to the node u, thereby

allowing constant access to that node whenever that user needs to do key derivation.

6.5 Improving the Space Complexity

We now give an improvement in the space complexity of the solution. The im-

proved scheme looks just like the initial scheme of Section 6.4, except that in Step 4 of

DataStructBuild(v, S), instead of using the preliminary scheme of Section 6.2 for C(v),

it uses the better scheme of Section 6.4. This implies that the space for Step 4 of

121

DataStructBuild reduces to
√

n1
√

n2(log n1)
3 log log n1 log∗ n1, which is dominated by

the O(n1n2 log log n1 log∗ n1) space for other structures AL(v), AR(v), AT (v), AB(v),

H(v), and V (v). The recurrence for the total space thus becomes for n > 2:

f(n1, n2) ≤
√

n1n2f(
√

n1,
√

n2) + c1n1n2 log log n1 log∗ n1

and f(n1, 2) = c2n1 log log n1 log∗ n1, where c1 and c2 are constants. The solution is

f(n1, n2) = O(n1n2(log log n1)
2 log∗ n1).

As was mentioned earlier, in practice it is quite likely that not every cell will have

its own distinct access key, and that groups of cells may have the same key. The

easiest way to exploit this structure is for the recursive construction of G to stop as

soon as its corresponding sub-grid consists of cells that all have the same key. That

is, Step 1 of DataStructBuild needs to contain a termination test for when all of the

n1n2 cells share the same key (in which case it stops even if n2 > 2). This is likely to

result in less space that the worst-case theoretical bound we showed, especially when

the cells that share a key tend to be contiguous (but not when they form a checkered

pattern). We can quantify the improvement if we make assumptions about the shapes

of those sub-regions of cells that share the same key (e.g., assume a rectangular shape),

which cannot be done without a specific application and setup parameters and usage

patterns in mind.

The security of our construction is due to the key derivation mechanism used,

which provides an appropriate protection mechanism for any DAG, and not due to

the details of the data structure we build.

6.6 Handling Updates

It was already described earlier how keys are issued to a new user, therefore this

section focuses on what happens when: (i) a cell’s key is modified or (ii) a user’s

access rights are revoked. These issues were treated in Chapter 3 (Section 3.4) for

hierarchical access control systems, and the same basic techniques work for the geo-

spatial problem considered here.

122

Recall from Chapter 3 that we can use the extended scheme to avoid re-keying

many users when a cell’s key changes, because the scheme separates user secret infor-

mation from the access keys. This approach avoids having to re-key every user who

shares access to a cell with the revoked user, but there is still a need to re-key users

who share the same key (from the data structures) with the user who is being revoked.

In some environments, however, re-keying even a single user is expensive (or simply

not possible). In such environments it is possible, using techniques of Section 3.4, to

not require rekeying of any user for revocation. In more detail, each user is now given

her own node in the public structure, and edges are added to the public structure

from the user’s node to the nodes containing keys for that user. Now one can change

the keys for the underlying structure and can update the user’s keys by modifying

only public information. An added benefit of this approach is that each user needs to

store only a single key. Note that this benefit comes as a cost: the public structure

now grows linearly as the number of users increases.

6.7 Extensions

The scheme we gave extends to higher dimensions: Every additional dimension

causes an additional log log N factor in the space complexity, an extra constant num-

ber steps in key derivation, and a multiplicative constant factor in the number of

keys. Therefore for a dimension d problem, we obtain:

(i) The number of keys is O(cd) for some constant c (and thus is only efficiently

applicable when the number of dimensions is small);

(ii) The key derivation time becomes O(d);

(iii) The space complexity becomes O(N(log log N)d log∗ N).

123

7 CONCLUSIONS

This work presents a comprehensive study of key management problem in systems

where user privileges are based on hierarchical relationship between different classes.

We addressed key management in the following contexts:

Hierarchies of user classes. Despite a large volume of work on hierarchical key

assignment schemes, our scheme is the first solution that achieves provable

security and supports arbitrary changes to the hierarchy without the need for

key re-distribution to the current users. Our solution is also one of the most

efficient and at the same time simple solutions to date.

In addition, our techniques for improving key derivation time by inserting of

additional, shortcut, edges resulted in the possibility of applying key assignment

solutions to a wider range of hierarchies and support for even very weak clients.

These techniques were also proven very useful in extending the key management

solutions to time- and space-based policies.

Time-based access control in hierarchical systems. In hierarchical systems, where

time is partitioned into short intervals and access keys and privileges change

during each time intervals, we present a solution that allows a user to join

the system for a (possibly unique) consecutive set of time intervals while pre-

serving user access privileges based on the hierarchical relationship between

classes. Our solution provides a balance between the number of user keys, key

derivation computation, and server requirements, resulting in very competitive

performance.

Geo-spatial access control. By extending the notion of one-dimensional time to

higher dimensions, we were able to construct key management solutions in the

124

geo-spatial context as well. That is, we are given space partitioned into cells, and

a user obtains access to a sub-area within the grid. Our solution heavily relies

on the structured nature of cells and user access rights allowing for solutions

with low overheads.

As a direction of future research, key management in file and storage systems appears

as a promising direction for pursuing work. In particular, the inherently hierarchi-

cal structure of user directories and files makes it a natural fit for hierarchical key

management solutions. As an evidence of potential in this research direction, the

work of Grolimund et al. on file systems [99] was inspired by our work on user hi-

erarchies [10]. Furthermore, users themselves are likely to be organized into groups

resulting in application of key management techniques at both the levels of users

and levels of resources. The drastic different in design principles, however, is that

in file and storage systems users control their own data (there is no a single central

authority anymore); they have read and write access to the data (instead of only read

privileges); and users may grant access to their data to other users. Such differences

are likely to require new key management techniques that are worth investigation.

LIST OF REFERENCES

125

LIST OF REFERENCES

[1] R. Anderson and M. Kuhn. Tamper resistance – A cautionary note. In USENIX
Workshop on Electronic Commerce, pages 1–11, November 1996.

[2] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. In
Security Protocols Workshop, volume 1361 of LNCS, pages 125–136, April 1997.

[3] L. Fraim. Scomp: A solution to multilevel security problem. IEEE Computer,
16(7):126–143, July 1983.

[4] D. Denning, S. Akl, M. Morgenstern, and P. Neumann. Views for multilevel
database security. In IEEE Symposium on Security and Privacy, pages 156–172,
April 1986.

[5] J. McHugh and A. Moore. A security policy and formal top level specification
for a multi-level secure local area network. In IEEE Symposium on Security and
Privacy, pages 34–49, 1986.

[6] W. Lu and M. Sundareshan. A moredle for multilevel security in computer
networks. In IEEE INFOCOM, pages 1095–1104, 1988.

[7] P. Maheshwari. Enterprise application integration using a component-based ar-
chitecture. In IEEE Annual International Computer Software and Applications
Conference (COMSAC’03), pages 557–563, 2003.

[8] J. Rose and J. Gasteiger. Hierarchical classification as an aid to database and hit-
list browsing. In ACM Conference on Information and Knowledge Management
(CIKM), pages 408–414, 1994.

[9] G. Ateniese, A. De Santis, A. Ferrara, and B. Masucci. Provably-secure time-
bound hierarchical key assignment schemes. In ACM Conference on Computer
and Communications Security (CCS’06), 2006. Full version is available as Cryp-
tology ePrint Archive Report 2006/255, http://eprint.iacr.org/2006/225.

[10] M. Atallah, M. Blanton, N. Fazio, and K. Frikken. Dynamic and efficient key
management for access hierarchies. Preliminary version appeared in ACM Con-
ference on Computer and Communications Security (CCS’05). Full version is
available as Technical Report TR 2006-09, CERIAS, Purdue University, 2006.

[11] M. Atallah, M. Blanton, and K. Frikken. Key management for non-tree access
hierarchies. In ACM Symposium on Access Control Models and Technologies
(SACMAT’06), pages 11–18, 2006. Full version is available as Cryptology ePrint
Archive Report 2007/245, http://eprint.iacr.org/2007/245.

[12] M. Atallah, M. Blanton, and K. Frikken. Efficient techniques for realizing geo-
spatial access control. In ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS’07), March 2007.

126

[13] M. Atallah, M. Blanton, and K. Frikken. Incorporating temporal capabilities
in existing key management schemes. In European Symposium on Research in
Computer Security (ESORICS’07), September 2007.

[14] S. Akl and P. Taylor. Cryptographic solution to a problem of access control in
a hierarchy. ACM Transactions on Computer Systems, 1(3):239–248, September
1983.

[15] J. Birget, X. Zou, G. Noubir, and B. Ramamurthy. Hierarchy-based access
control in distributed environments. In IEEE International Conference on Com-
munications (ICC’01), pages 229–233, June 2001.

[16] C. Chang and D. Buehrer. Access control in a hierarchy using a one-way trapdoor
function. Computers and Mathematics with Applications, 26(5):71–76, 1993.

[17] C. Chang, I. Lin, H. Tsai, H. Wang, and T. Taichung. A key assignment scheme
for controlling access in partially ordered user hierarchies. In International Con-
ference on Advanced Information Networking and Application (AINA’04), pages
376–379, March 2004.

[18] T. Chen, Y. Chung, and C. Tian. A novel key management scheme for dynamic
access control in a user hierarchy. In IEEE Annual International Computer Soft-
ware and Applications Conference (COMPSAC’04), pages 396–401, September
2004.

[19] G. Chick and S. Tavares. Flexible access control with master keys. In Advances
in Cryptology – CRYPTO’89, volume 435 of LNCS, pages 316–322, 1990.

[20] H. Chien and J. Jan. New hierarchical assignment without public key cryptog-
raphy. Computers & Security, 22(6):523–526, 2003.

[21] J. Chou, C. Lin, and T. Lee. A novel hierarchical key management scheme based
on quadratic residues. In Internation Symposium on Parallel and Distributed
Processing and Applications (ISPA’04), volume 3358, pages 858–865, December
2004.

[22] M. Das, A. Saxena, V. Gulati, and D. Phatak. Hierarchical key management
scheme using polynomial interpolation. ACM SIGOPS Operating Systems Re-
view, 39(1):40–47, January 2005.

[23] A. Ferrara and B. Masucci. An information-theoretic approach to the ac-
cess control problem. In Italian Conference on Theoretical Computer Science
(ICTCS’03), volume 2841, pages 342–354, October 2003.

[24] L. Harn and H. Lin. A cryptographic key generation scheme for multilevel data
security. Computers & Security, 9(6):539–546, October 1990.

[25] M. He, P. Fan, F. Kaderali, and D. Yuan. Access key distribution scheme for
level-based hierarchy. In International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT’03), pages 942–945, August
2003.

[26] M. Hwang. A new dynamic key generation scheme for access control in a hier-
archy. Nordic Journal of Computing, 6(4):363–371, Winter 1999.

127

[27] M. Hwang. An improvement of novel cryptographic key assignment scheme
for dynamic access control in a hierarchy. IEICE Trans. Fundamentals, E82–
A(2):548–550, March 1999.

[28] M. Hwang and W. Yang. Controlling access in large partially ordered hierarchies
using cryptographic keys. Journal of Systems and Software, 67(2):99–107, August
2003.

[29] H. Liaw, S. Wang, and C. Lei. A dynamic cryptographic key assignment scheme
in a tree structure. Computers and Mathematics with Applications, 25(6):109–
114, 1993.

[30] C. Lin. Hierarchical key assignment without public-key cryptography. Computers
& Security, 20(7):612–619, 2001.

[31] I. Lin, M. Hwang, and C. Chang. A new key assignment scheme for enforcing
complicated access control policies in hierarchy. Future Generation Computer
Systems, 19(4):457–462, 2003.

[32] S. MacKinnon, P. Taylor, H. Meijer, and S. Akl. An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Transactions
on Computers, 34(9):797–802, September 1985.

[33] K. Ohta, T. Okamoto, and K. Koyama. Membership authentication for hierar-
chical multigroups using the extended fiat-shamir scheme. In Workshop on the
Theory and Application of Cryptographic Techniques on Advances in Cryptology,
pages 446–457, February 1991.

[34] I. Ray, I. Ray, and N. Narasimhamurthi. A cryptographic solution to implement
access control in a hierarchy and more. In ACM Symposium on Access Control
Models and Technologies (SACMAT’02), pages 65–73, June 2002.

[35] R. Sandhu. On some cryptographic solutions for access control in a tree hier-
archy. In Fall Joint Computer Conference on Exploring Technology: Today and
Tomorrow, pages 405–410, December 1987.

[36] R.S. Sandhu. Cryptographic implementation of a tree hierarchy for access con-
trol. Information Processing Letters, 27(2):95–98, January 1988.

[37] A. De Santis, A. Ferrara, and B. Masucci. Cryptographic key assignment schemes
for any access control policy. Information Processing Letters (IPL), 92(4):199–
205, November 2004.

[38] Y. Sun and K. Liu. Scalable hierarchical access control in secure group commu-
nication. In IEEE INFOCOM, volume 2, pages 1296–1306, March 2004.

[39] H. Tsai and C. Chang. A cryptographic implementation for dynamic access
control in a user hierarchy. Computers & Security, 14(2):159–166, 1995.

[40] Q. Zhang and Y. Wang. A centralized key management scheme for hierarchical
access control. In IEEE Global Telecommunications Conference (Globecom’04),
volume 4, pages 2067–2071, 2004.

[41] Y. Zheng, T. Hardjono, and J. Pieprzyk. Sibling intractable function families
and their applications. In Advances in Cryptology – AsiaCrypt’91, volume 739
of LNCS, pages 124–138, 1992.

128

[42] Y. Zheng, T. Hardjono, and J. Seberry. New solutions to the problem of access
control in a hierarchy. Technical Report 93–02, Department of Computer Science,
University of Wollongong, January 1993.

[43] S. Zhong. A practical key management scheme for access control in a user
hierarchy. Computers & Security, 21(8):750–759, 2002.

[44] J. Crampton, K. Martin, and P. Wild. On key assignment for hierarchical access
control. In IEEE Computer Security Foundations Workshop (CSFW’06), pages
98–111, 2006.

[45] J. Yeh, R. Chow, and R. Newman. A key assignment for enforcing access control
policy exceptions. In International Symposium on Internet Technology, pages
54–59, 1998.

[46] T. Wu and C. Chang. Cryptograpic key assignment scheme for hierarchical access
control. International Journal of Computer Systems Science and Engineering,
1(1):25–28, 2001.

[47] V. Shen and T. Chen. A novel key management scheme based on discrete log-
arithms and polynomial interpolations. Computers & Security, 21(2):164–171,
2002.

[48] W. Tzeng. A time-bound cryptographic key assignment scheme for access control
in a hierarchy. IEEE Transactions on Knowledge and Data Engineering (TKDE),
14(1):182–188, 2002.

[49] H. Huang and C. Chang. A new cryptographic key assignment scheme with
time-constraint access control in a hierarchy. Computer Standards & Interfaces,
26:159–166, 2004.

[50] T.-S. Chen and Y.-F. Chung. Hierarchical access control based on Chinese re-
mainder theorem and symmetric algorithm. Computers & Security, pages 565–
570, 2002.

[51] J. Wu and R. Wei. An access control scheme for partially ordered set hierar-
chy with provable security. Cryptology ePrint Archive, Report 2004/295, 2004.
http://eprint.iacr.org/2004/295.

[52] A. De Santis, A. Ferrara, and B. Masucci. Efficient provably-secure hierarchical
key assignment schemes. In International Symposium on Mathematical Founda-
tions of Computer Science (MFCS’07), August 2007.

[53] A. Zych, J. Doumen, P. Hartel, and W. Jonker. A Diffie-Hellman based key
management scheme for hierarchical access control. Technical Report TR-CTIT-
05-57, Centre for Telematics and Information Technology, University of Twente,
Enschede, December 2005.

[54] J. Fuh-gwo and W. Chung-ming. A practical and dynamic key management
scheme for a user hierarchy. Journal of Zhejiang University – Science A, 7(3):296–
301, March 2006.

[55] P. Vadnala and A. Mathuria. An efficient key assignment scheme for access con-
trol in a hierarchy. In International Conference on Information Systems Security
(ICISS’06), volume 4332 of LNCS, pages 205–219, December 2006.

129

[56] M. Rabin. Digitalized signatures and public-key functions as intractable as fac-
torization. Technical Report MIT-LCS-TR-212, 1979.

[57] X. Yi and Y. Ye. Security of Tzeng’s time-bound key assignment scheme for
access control in a hierarchy. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 15(4):1054–1055, 2003.

[58] H. Chien. Efficient time-bound hierarchical key assignment scheme. IEEE Trans-
actions of Knowledge and Data Engineering (TKDE), 16(10):1301–1304, 2004.

[59] J. Yeh. An RSA-based time-bound hierarchical key assignment scheme for elec-
tronic article subscription. In ACM International Conference on Information
and Knowledge Management (CIKM’05), pages 285–286, 2005.

[60] Q. Tang and C. Mitchell. Comments on a cryptographic key assignment scheme
for access control in a hierarchy. Computer Standards & Interfaces, 27:323–326,
2005.

[61] X. Yi. Security of Chien’s efficient time-bound hierarchical key assignment
scheme. IEEE Transactions of Knowledge and Data Engineering (TKDE),
17(9):1298–1299, 2005.

[62] A. De Santis, A. Ferrara, and B. Masucci. Enforcing the security of a time-bound
hierarchical key assignment scheme. Information Sciences, 176(12):1684–1694,
2006.

[63] Shyh-Yih Wang and Chi-Sung Laih. Merging: An efficient solution for a time-
bound hierarchical key assignment scheme. IEEE Transactions on Dependable
and Secure Computing, 3(1):91–100, 2006.

[64] W. Tzeng. A secure system for data access based on anonymous authentica-
tion and time-dependent hierarchical keys. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS’06), pages 223–230, 2006.

[65] A. De Santis, A. Ferrara, and B. Masucci. New constructions for provably-secure
time-bound hierarchical key assignment schemes. In ACM Symposium on Access
Control Models and Technologies (SACMAT’07), June 2007.

[66] B. Briscoe. MARKS: Zero side effect multicast key management using arbitrarily
revealed key sequences. In First International Workshop on Networked Group
Communication (NGC’99), LNCS, pages 301–320, 1999.

[67] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems.
In Advances in Cryptology – EUROCRYPT’02, volume 2332 of LNCS, pages 65–
82, 2002.

[68] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature schemes.
In Workshop on Practice and Theory in Public Key Cryptography (PKC’03),
volume 2567 of LNCS, pages 130–144, 2003.

[69] M. Bellare and A. Palacio. Protecting against key-exposure: Strongly key-
insulated encryption with optimal threshold. Applicable Algebra in Engineering,
Communication and Computing, 16(6):379–396, January 2006.

130

[70] G. Itkis and L. Reyzin. Sibir: Signer-base intrusion-resilient signatures. In
Advances in Cryptology – CRYPTO’02, volume 2442 of LNCS, pages 499–514,
2002.

[71] Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung. Intrusion-resilient
public-key encryption. In CT-RSA’03, volume 2612 of LNCS, pages 19–32, 2003.

[72] K. Fu. Integrity and access control in untrusted content distribution networks.
Ph.D. Thesis, MIT, September 2005.

[73] M. Backes, C. Cachin, and A. Oprea. Secure key-updating for lazy revocation. In
European Symposium On Research In Computer Security (ESORICS’06), 2006.

[74] C. Patterson, R. Muntz, and C. Pancake. Challenges in location-aware comput-
ing. IEEE Pervasive Computing, 2(2):80–89, 2003.

[75] V. Atluri and S. Chun. An authorization model for geospatial data. IEEE
Transactions on Dependable and Secure Computing, 1(4):238–254, 2004.

[76] E. Bertino, B. Catania, M. Damiani, and P. Perlasca. GEO-RBAC: A spatially
aware RBAC. In ACM Symposium on Access Control Models and Technologies
(SACMAT’06), pages 29–37, 2005.

[77] H. Hu and D. Lee. Energy-efficient monitoring of spatial predicates over moving
objects. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 28(3):19–26, 2005.

[78] C. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, and
P. Samarati. Supporting location-based conditions in access control policies.
In ACM Symposium on Information, Computer and Communications Security
(ASIACCS’06), pages 212–222, 2006.

[79] M. Mokbel, W. Aref, S. Hambrusch, and S. Prabhakar. Towards scalable
location-aware services: Requirements and research issues. In ACM Interna-
tional Symposium on Advances in Geographic Information Systems (GIS’03),
pages 110–117, 2003.

[80] U. Varshney. Location management for mobile commerce applications in wire-
less internet environment. ACM Transactions on Internet Technology (TOIT),
3(3):236–255, 2003.

[81] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology – CRYPTO’96, volume 1109 of LNCS,
pages 1–15, 1996.

[82] Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable public-key tracing and
revoking. Journal of Distributed Computing, 17(4):323–347, 2005.

[83] R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion scheme secure against adaptive chosen ciphertext attack. SIAM Journal of
Computing, 33(1):167–226, 2003.

[84] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal
on Discrete Mathematics, 30(2):391l–437, 2000.

131

[85] J. Crampton. On permissions, inheritance and role hierarchies. In ACM Con-
ference on Computer and Communications Security (CCS’03), pages 85–92, Oc-
tober 2003.

[86] D. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, 1973.

[87] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time
algorithms for visibility and shortest path problems inside simple polygons. In
Annual ACM Symposium on Computational Geometry, pages 1–13, 1986.

[88] B. Dushnik and E. Miller. Partially ordered sets. American Journal of Mathe-
matics, 63:600–610, 1941.

[89] W. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
Johns Hopkins University Press, 1992.

[90] M. Yannakakis. The complexity of the partial order dimension problem. SIAM
Journal on Algebraic and Discrete Methods, 3:351–358, 1982.

[91] W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

[92] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal of Computing, 13(2):338–355, 1984.

[93] B. Chazelle. Computing on a free tree via complexity-preserving mappings.
Algorithmica, (2):337–361, 1987.

[94] N. Alon and B. Schieber. Optimal preprocessing for answering on-line product
queries. Technical Report TR 71/87, Institute of Computer Science, Tel-Aviv
University, 1987.

[95] H. Bodlaender, G. Tel, and N. Santoro. Trade-offs in non-reversing diameter.
Nordic Journal of Computing, (1):111–134, 1994.

[96] M. Thorup. On shortcutting digraphs. Combinatorics, Probability and Comput-
ing, (4):287–315, 1995.

[97] M. Thorup. Parallel shortcutting of rooted trees. Jounal of Algorithms, (23):139–
159, 1997.

[98] J. Katz and M. Yung. Characterization of security notions for probabilistic
private-key encryption. Journal of Cryptology, 19:67–95, 2006.

[99] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer. Cryptree: A folder
tree structure for cryptographic file systems. In IEEE Symposium on Reliable
Distributed Systems (SRDS’06), pages 189–198, 2006.

VITA

132

VITA

Contact Information

Marina Blanton (née Bykova)

Computer Science and Engineering Department

University of Notre Dame, Notre Dame, IN

Office: 356C Fitzpatrick Hall

Email: mblanton@cse.nd.edu

WWW: http://www.cse.nd.edu/~mblanton

Research Interests

My research interests lie in information security and, in particular, include anonymity

in access control systems, key management and authentication, privacy-preserving

computation, and applied cryptography.

Education

Aug. 2007 PhD in CS, Purdue University. Advisor: Mikhail Atallah

Dec. 2004 MS in CS, Purdue University. GPA: 4.00.

Mar. 2002 MS in EECS, Ohio University. GPA: 3.93. Advisor: Shawn Oster-

mann

Jun. 1999 BS in CS with Honors, Tyumen State Oil and Gas University, Russia.

GPA: 4.00. Advisor: Mikhail Karatun

133

Work Experience

Aug. 2002 – Jul. 2007 Teaching/Research Assistant, Department of Computer

Science, Purdue University, West Lafayette, Indiana

Sep. 2001 – Jun. 2002 Network Engineer, Communications Network Services,

Ohio University, Athens, Ohio

Sep. 1999 – Aug. 2001 Software Designer, Communications Network Services,

Ohio University, Athens, Ohio

Sep. 1999 – Jun. 2001 Graduate/Teaching Assistant, School of Electrical Engi-

neering and Computer Science, Ohio University, Athens,

Ohio

Aug. 1998 – Aug. 1999 Systems Engineer, Sibnefteprovod, JSC, Tyumen, Russia

Dec. 1997 – Jun. 1998 System Coordinator Helper, Facilities Management, Ohio

University, Athens, Ohio

Publications

In Refereed Journals

1. M. Blanton and M. Atallah, “Succinct Representation of Flexible Privacy-Preserv-

ing Access Rights,” Special Issue (Privacy-Preserving Data Management) of the

International Journal on Very Large Data Bases (VLDBJ), Vol. 15, No. 4, pp.

334–354, Nov. 2006.

2. R. Balupari, B. Tjaden, S. Ostermann, M. Bykova, and A. Mitchell, “Real-

Time Network-Based Anomaly Intrusion Detection,” Special Issue (Real Time

Security) of the Journal of Parallel and Distributed Computing Practices, Vol.

4, No. 2, Jun. 2001.

In Refereed Conference Proceedings

Acceptance rate included where known.

134

3. M. Atallah, M. Blanton, and K. Frikken, “Incorporating Temporal Capabilities

in Existing Key Management Schemes,” European Symposium on Research in

Computer Security (ESORICS’07), Sep. 2007.

4. M. Atallah, M. Blanton, M. Goodrich, and S. Polu, “Discrepancy-Sensitive Dy-

namic Fractional Cascading, Dominated Maxima Searching, and 2-d Nearest

Neighbors in Any Minkowski Metric,” Workshop on Algorithms and Data Struc-

tures (WADS’07), Aug. 2007. (accept. rate: 26.7%)

5. M. Atallah, M. Blanton, and K. Frikken, “Efficient Techniques for Realizing

Geo-Spatial Access Control,” ACM Symposium on Information, Computer and

Communications Security (ASIACCS’07), pp. 82–92, Mar. 2007. (accept. rate:

18.9%)

6. G. Ateniese, M. Blanton, and J. Kirsch, “Secret Handshakes with Dynamic

and Fuzzy Matching,” Network and Distributed System Security Symposium

(NDSS’07), pp. 159–177, Feb. 2007. (accept. rate: 15.3%)

7. M. Atallah, M. Blanton, V. Deshpande, K. Frikken, J. Li, and L. Schwarz,

“Secure Collaborative Planning, Forecasting, and Replenishment (SCPFR),”

Multi-Echelon/Public Applications of Supply Chain Management Conference,

Jun. 2006.

8. M. Atallah, M. Blanton, and K. Frikken, “Key Management for Non-Tree Ac-

cess Hierarchies,” ACM Symposium on Access Control Models and Technologies

(SACMAT’06), pp. 11–18, Jun. 2006. (accept. rate: 30.5%)

9. M. Atallah, M. Blanton, K. Frikken, and J. Li, “Efficient Correlated Action

Selection,” Financial Cryptography and Data Security (FC’06), LNCS 4107, pp.

296–310, Feb. 2006. (accept. rate: 19.8%)

10. M. Atallah, K. Frikken, and M. Blanton, “Dynamic and Efficient Key Manage-

ment for Access Hierarchies,” ACM Conference on Computer and Communica-

tions Security (CCS’05), pp. 190–201, Nov. 2005. (accept. rate: 15.3%)

135

11. M. Atallah, M. Blanton, V. Deshpande, K. Frikken, J. Li, and L. Schwarz, “Se-

cure Collaborative Planning, Forecasting, and Replenishment (SCPFR),” Man-

ufacturing and Service Operation Management (M&SOM), Jun. 2005.

12. M. Blanton and M. Atallah, “Provable Bounds for Portable and Flexible Privacy-

Preserving Access Rights,” ACM Symposium on Access Control Models and

Technologies (SACMAT’05), pp. 95–101, Jun. 2005. (accept. rate: 21.1%)

13. K. Frikken, M. Atallah, and M. Bykova, “Remote Revocation of Smart Cards in a

Private DRM System,” Australasian Information Security Workshop (AISW’05),

Digital Rights Management, pp. 169–177, Jan. 2005. (accept. rate: 37.1%)

14. M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, “Private Collabora-

tive Forecasting and Benchmarking,” ACM Workshop on Privacy in the Elec-

tronic Society (WPES’04), pp. 103–114, Oct. 2004. (accept. rate: 23.3%)

15. M. Atallah and M. Bykova, “Portable and Flexible Document Access Control

Mechanisms,” European Symposium on Research in Computer Security (ES-

ORICS’04), LNCS 3193, pp. 193–208, Sep. 2004. (accept. rate: 17.0%)

16. M. Bykova and M. Atallah, “Succinct Specifications of Portable Document Ac-

cess Policies,” ACM Symposium on Access Control Models and Technologies

(SACMAT’04), pp. 41–50, Jun. 2004. (accept. rate: 28.1%)

17. M. Bykova and S. Ostermann, “Statistical Analysis of Malformed Packets and

Their Origins in the Modern Internet,” ACM Internet Measurement Workshop

(IMW’02), pp. 83–88, Nov. 2002.

18. M. Bykova, S. Ostermann, and B. Tjaden, “Detecting Network Intrusions via

a Statistical Analysis of Network Packet Characteristics,” IEEE Southeastern

Symposium on System Theory (SSST’01), pp. 309–314, Mar. 2001.

136

Theses

19. M. Bykova, “Statistical Analysis of Malformed Packets and Their Origins in the

Modern Internet,” Master’s Thesis, Ohio University, Mar. 2002.

Selected Technical Reports

Only technical reports that correspond to unpublished work or work under submission

are listed.

20. M. Atallah, M. Blanton, and K. Frikken, “Incorporating Temporal Capabili-

ties in Existing Key Management Schemes,” Cryptology ePrint Archive Report

2007/245, IACR, Jun. 2007.

21. M. Atallah, M. Blanton, and K. Frikken, “Efficient Key Derivation for Access

Hierarchies,” CERIAS Technical Report TR 2007-30, Purdue University, Jun.

2007.

22. M. Blanton, “Online Subscriptions with Anonymous Access,” CERIAS Technical

Report TR 2007-29, Purdue University, Jun. 2007.

23. M. Atallah, M. Blanton, N. Fazio, and K. Frikken, “Dynamic and Efficient Key

Management for Access Hierarchies,” CERIAS Technical Report TR 2006-09,

Purdue University, Apr. 2006.

24. M. Blanton, “Empirical Evaluation of Secure Two-Party Computation Models,”

CERIAS Technical Report TR 2005–58, Purdue University, Aug. 2005.

25. M. Bykova, “What Should a Good Security Model Be?” CERIAS Technical

Report TR 2004–38, Purdue University, Sep. 2004.

Editorial Activities

May 2006 – present M. Atallah and M. Blanton (Ed.), “Handbook of Algorithms

and Theory of Computation. Volume I: Foundations.”

137

May 2006 – present M. Atallah and M. Blanton (Ed.), “Handbook of Algorithms

and Theory of Computation. Volume II: Applications.”

Refereeing for Conferences/Journals

ACM Conference on Computer and Communications Security (CCS)

ACM Symposium on Access Control Models and Technologies (SACMAT)

ACM Symposium on Principles of Database Systems (PODS)

ACM Transactions on Information and System Security (TISSEC)

ACM Transactions on Internet Technology (TOIT)

Annual Computer Security Applications Conference (ACSAC) (On the 2006 re-

viewer committee)

Applied Cryptography and Network Security (ACNS)

Elsevier Computer Standards & Interfaces (CSI)

Elsevier Computers & Security

IEEE/ACM International Conference on High Performance Computing (HiPC)

IEEE Conference on Electronic Commerce (CEC)

IEEE Network and Distributed System Security Symposium (NDSS)

IEEE Security and Privacy (S&P)

IEEE Transactions on Computers (TC)

IEEE Transactions on Knowledge and Data Engineering (TKDE)

IEEE Transactions on Software Engineering

Information and Software Technology, International Journal

Information Processing Letters (IPL)

International Conference on Distributed Computing Systems (ICDCS)

International Conference on Information and Communications Security (ICICS)

International Conference on Information Security and Cryptology (ICISC)

International Journal of Information Security (IJIS)

International Symposium on Algorithms and Computation (ISAAC)

Workshop on Privacy Enhancing Technologies (PET)

138

Invited Talks

Apr. 2007 CS Seminar, Texas A&M University, College Station, TX

Apr. 2007 EECS Seminar Series, Case Western Reserve University, Cleveland,

OH

Mar. 2007 ECE Seminar, Iowa State University, Ames, IA

Mar. 2007 CSE Seminar Series, University of Notre Dame, Notre Dame, IN

Mar. 2007 DCS Colloquium, Rutgers University, Piscataway, NJ

Mar. 2007 IBM T. J. Watson Research Center, Hawthorne, NY

Feb. 2007 CS Colloquium, Florida State University, Tallahassee, FL

Feb. 2007 Center for Applied Cybersecurity Research (CACR) Seminar, Indiana

University, Bloomington, IN

Jan. 2007 CS Seminar, California Institute of Technology, Pasadena, CA

Jan. 2007 Security Seminar, University of Illinois at Urbana-Champaign, Ur-

bana, IL

Oct. 2006 CSE Colloquium, the Pennsylvania State University, University Park,

PA

Mar. 2006 CERIAS Security Seminar, Purdue University, West Lafayette, IN

Oct. 2004 Guest lecture at Database Security CS 590S, Purdue University, West

Lafayette, IN

Sep. 2004 INRIA, the French National Institute for Research in Computer Sci-

ence and Control, Rocquencourt, France

Jul. 2001 NASA Glenn Research Center, Cleveland, OH

139

Conference Talks Given

Mar. 2007 ACM Symposium on Information, Computer and Communications Se-

curity (ASIACCS’07)

Mar. 2007 Network and Distributed System Security Symposium (NDSS’07)

Mar. 2006 Financial Cryptography and Data Security (FC’06)

Nov. 2005 ACM Conference on Computer and Communications Security (CCS’05)

Oct. 2004 ACM Workshop on Privacy in the Electronic Society (WPES’04)

Sep. 2004 European Symposium on Research in Computer Security (ES-

ORICS’04)

Jun. 2004 ACM Symposium on Access Control Models and Technologies (SAC-

MAT’04)

Nov. 2002 ACM Internet Measurements Workshop (IMW’02)

Mar. 2001 IEEE Southeastern Symposium on System Theory (SSST’01)

Teaching Experience

• Worked as a Teaching Assistant for the total of 4 years and 8 different CS

undergraduate and graduate courses (some with repetitions).

• Taught an undergraduate CS/COMT lab for 1 semester.

• Assisted in practice lab sessions for 2 years for an undergraduate CS course.

• Gave guest lectures in several courses.

Professional Service

Conferences

Publicity chair, International Conference on Information Systems Security (ICISS’07)

140

University

2004–2006 Graduate Student Board, Department of Computer Science, Purdue

University

2004–2005 Graduate Committee, Department of Computer Science, Purdue Uni-

versity

2004–2005 Grade Appeal Committee, School of Science, Purdue University

2000–2001 Electronic Theses and Dissertations Committee, Ohio University

Awards and Recognitions

May 2007 CRA Travel Grant for attending CRA-W Career Mentoring Workshop

Apr. 2007 Women in Science Program (WISP) Travel Grant, Purdue University

Apr. 2007 Siemens scholarship in recognition of research achievements

Mar. 2007 Diamond Award (annual award for outstanding academic achieve-

ment), Center for Education and Research in Information Assurance

and Security (CERIAS), Purdue University

May 2006 UCLA Institute for Pure and Applied Mathematics (IPAM) Award

for participation in the Securing Cyberspace (SC’06) Program (core

participant, fall 2006)

Apr. 2006 Intel Foundation Ph.D. Fellowship Award for 2006–2008 academic

years (second year declined)

Apr. 2004 Purdue Research Foundation (PRF) Summer Research Scholarship

(support for June–July 2006)

Mar. 2004 Women in Science Program (WISP) Travel Grant, Purdue University

Sep. 2002 ACM/USENIX Student Travel Grant

Mult. years Winner of university-wide and participant of regional programming

contests and olympiads in physics

141

Leadership

2006–2007 Member of Women in Science Program (WISP) leadership team

2006 Purdue Ballroom Competition Chair

2005–2006 Chair of the CS Graduate Student Board, Purdue University

1998–1999 Chair of the CS Undergraduate Student Board, Tyumen State Oil and

Gas University

Membership

Upsilon Pi Epsilon (UPE), International Honor Society for the Computing Sciences

Association for Computing Machinery (ACM)

Institute of Electrical and Electronics Engineers (IEEE)

