Emulation versus Simulation: A Case Study of TCP-Targeted Denial of Service Attacks
by R. Chertov, S. Fahmy, N. B. Shroff
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086
Emulation vs. Simulation: A Case Study with DoS Attacks

Pls: Sonia Fahmy, Ness B. Shroff, Eugene H. Spafford
Student: Roman Chertov

http://www.cs.purdue.edu/~fahmy/software/emist/

A lot of research is done on simulators such as ns-2 and SSFNet. Simulators, however, cannot execute real applications, and only approximate various appliances. Emulation provides a way to use real appliances and applications, but is constrained by the number of nodes, types of appliances, and difficulty in configuration. Therefore, it is imperative to accurately compare the two, so that the strengths of both approaches can be harnessed.

The goal of the EMIST project is to develop rigorous testing methodologies, tools, and benchmarks for important classes of Internet attacks and defenses. It is crucial to understand the effectiveness of defense mechanisms on real networks. Results obtained on an emulation testbed can be used to develop more accurate simulation models.

Our results indicate that an attack pulse length of one RTT is the most effective, and our analytical and simulation results match.

Large queue sizes can effectively dampen the attack when the TCP flow has not reached its full transfer rate.

Discrepancies between DETER and Emulab testbed results are attributed to differences in the underlying hardware and system software.

Click experiments demonstrate the importance of device driver settings.

A simple topology for simulating and emulating a TCP-targeted low-rate attack. The attacker sends short pulses at a fixed frequency to exploit the TCP congestion control mechanism.

Model Overview

\[W_t = \lim_{t \to \infty} (2^{-t} W_N + \alpha(\sum_{j=0}^{t-1} 2^{-j})) = \alpha(\sum_{j=0}^{t-1} 2^{-j}) = 2\alpha \]

\[W_{avg} = \frac{3\alpha}{4RTT} \]