
CERIAS Tech Report 2007-66

An Exploration of Highly Focused, Coprocessor-based Information System Protection

by Paul Williams and Eugene H. Spafford

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



CuPIDS: An exploration of highly focused, co-processor-based
information system protection q

Paul D. Williams *, Eugene H. Spafford

Air Force Institute of Technology, Wright-Patterson Air Force Base, Department of Electrical and Computer Engineering, OH, United States

CERIAS, Purdue University, West Lafayette, IN, United States

Available online 23 October 2006

Abstract

The Co-Processing Intrusion Detection System (CuPIDS) project explores improving information system security
through dedicating computational resources to system security tasks in a shared resource, multi-processor (MP) architec-
ture. Our research explores ways in which this architecture offers improvements over the traditional uni-processor (UP)
model of security. One approach we examined has a protected application running on one processor in a symmetric
multi-processing (SMP) system while a shadow process specific to that application runs on a different processor. The
shadow process monitors the application process’ activity, ready to respond immediately if the application violates policy.
Experiments with a prototype CuPIDS system demonstrate the feasibility of this approach in the context of a self-protect-
ing and self-healing system. An untuned prototype supporting fine-grained protection of the real-world application WU-
FTP resulted in less than a 15% slowdown while demonstrating CuPIDS’ ability to quickly detect illegitimate behavior,
raise an alarm, automatically repair the damage done by the fault or attack, allow the application to resume execution,
and export a signature for the activity leading up to the error.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Intrusion detection; Information system security; Co-processor; Multi-processor; Security policy compliance monitoring

1. Introduction

This paper describes research into the Co-Pro-
cessing Intrusion Detection System (CuPIDS)—an
exploration into increasing information system
security by dedicating computational resources to
system security tasks in a shared resource, multi-
processor (MP) architecture. We demonstrate that

this architecture allows the use of higher fidelity
monitoring models, particularly with regard to
the timeliness of detection, but also in terms of
finer-grained visibility into the execution of a pro-
tected application than is reasonably feasible using
current monitoring paradigms (e.g., internal func-
tion call pattern monitoring versus system call pat-
tern monitoring). The resultant decrease in
detection time coupled with highly focused security
policy compliance monitoring enables quicker
response to erroneous activity then was previously
possible. We demonstrate responses that prevent
further damage to a compromised system as well
as responses focused on self-healing—returning a

1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2006.09.011

q The opinions expressed in this paper are those of the authors,

and do not necessarily reflect the views of the US Air Force, or

the US Government.
* Corresponding author.
E-mail address: pdwillia@woh.rr.com (P.D. Williams).

Computer Networks 51 (2007) 1284–1298

www.elsevier.com/locate/comnet

mailto:pdwillia@woh.rr.com


compromised system to a secure state automati-
cally and before the compromise is able to effect
system operation.

Our philosophical foundations are fourfold: high
assurance is important, a great deal of information
about how systems are supposed to operate is often
available but rarely used, MP computer systems are
becoming commonplace, and finally that informa-
tion systems will be vulnerable to attack or errone-
ous behavior for the foreseeable future. A body of
research into co-processing techniques for tasks
such as secure booting and digital rights manage-
ment exists, much of which centers around the use
of specialized hardware such as cryptographic
co-processors [1,2]. More recent work has investi-
gated possible security enhanced, multi-core chip
architectures [3]. However, not nearly as much work
has been done in investigating how generalized secu-
rity tasks can benefit from dedicated co-processing.
Most past and present Intrusion Detection System
(IDS) architectures assume a uni-processor environ-
ment, or do not explicitly make use of multiple pro-
cessors when they exist. The advent of multicore
processors from the mainstream processor manufac-
turers such as Sun, Intel and AMD will result in MP
systems becoming more common outside the server
farm. We believe this affords us novel opportunities
to be creative with how system resources are allo-
cated. In addition to the use of dedicated co-pro-
cessing, our research differs from existing work in
our use of highly focused monitoring techniques.

We are concerned with a very general threat
model that assumes:

• Processes running at any privilege level in the
production parts of the system may be compro-
mised at any time after boot is complete.

• Attacks or faults may be caused by the activities
of local or external users or a combination of
both.

• Attacks or faults may result in a system compro-
mise without ever causing a context switching
event.

We believe that under some circumstances
CuPIDS can be more effective than Standard Uni-
processor-based Intrusion Detection/Intrusion Pre-
vention Systems (StUPIDS).1

For our purposes more effective is shown by dem-
onstrating that:

1. Running concurrently with attack code affords
CuPIDS opportunities to detect and respond to
attacks that are not available to StUPIDS.

2. Because the opportunity exists to detect attacks
while they occur without waiting for a context-
switching event (either between user processes
or between user and kernel mode) CuPIDS may
be able to respond more quickly and attacks
may be detected with higher fidelity.

These are advantages that are difficult or impos-
sible to achieve on a uni-processor system—no mat-
ter how powerful.

2. Background

This section describes the time and intrusion
detection domain with which we are concerned
and briefly references related research.

2.1. Time domain

Because some of the primary gains we anticipate
from CuPIDS are time-related, we need to clarify
what time domain we are working in. To do so
we draw from a recent categorization of computer
security systems. Kuperman’s Ph.D. dissertation
[5] describes four major timeliness categories in
which detection can be accomplished: real-time,
near real-time, periodic and retrospective. It is in
the categories of real-time and near real-time that
CuPIDS offers significant gains over StUPIDS.

To specify what we mean by real-time and near
real-time we borrow Kuperman’s notation. We rep-
resent the set of events taking place in a computer
system by the set E. This set contains suspect events
B such that B � E and there exist events a, b, and c

such that a, b, c 2 E and b 2 B The notation tx rep-
resents the time of occurrence of event x. Finally, we
need a detection function D(x) that determines the
truth of the statement x 2 B.

Real-time: Detection of a bad event b takes place
while the system is operating and is further
restricted to mean that detection of b occurs
before an event, c, dependant upon b takes place.
Given E, real-time detection requires the ordering

tb < tDðbÞ < tc

1 The name StUPIDS is in tribute to the work done in Purdue’s

Coast Laboratory on the IDIOT intrusion detection system [4].

P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298 1285



Near real-time: Detection of a bad event b

occurs within some, typically small, finite time d

after the occurrence of b. This requires the
ordering

jtb � tDðbÞj 6 d

While no complete detection function D(x) exists,
there are a great number of bad events, BD = {b0,
b1, . . . ,bn} 2 B for which we do have effective detec-
tion functions. Assuming the existence of identical
CuPIDS and StUPIDS detection functions, DCuPIDS

(BD) and DStUPIDS (BD) CuPIDS offers improve-
ments in guaranteed detection time. On a uni-pro-
cessor system in which the StUPIDS runs as a
normal task the soonest it can possibly detect a
bad event, bi, is when a context switching event
occurs after tbi but before tci and the scheduler
chooses the StUPIDS to run. In the best case bi
involves the execution of a system call or some other
blocking event, the scheduler picks the appropriate
StUPIDS process to run next, and bi is detected
before ci can occur. In the worst case the system is
compromised before the StUPIDS has an opportu-
nity to run and detect bi.

Other complications include the relative priority
of StUPIDS processes to other processes in the sys-
tem, and even if a StUPIDS process is chosen to
run, its portion of DStUPIDS (BD) may not include
bi. Therefore even though the StUPIDS is capable
of detecting bi it may not do so before the produc-
tion process is made active again and tci occurs. This
means that even though DStUPIDS(bi) exists a
StUPIDS can at best claim near-realtime detection
with d = CPUQuantum, where CPUQuantum repre-
sents the average amount of time each process is
allocated by the system scheduler. In the case of a
StUPIDS running on a MP machine, the appropri-
ate monitoring process may be executing at the right
time; however, there is no guarantee that this is the
case. CuPIDS reduces the uncertainties described
above by ensuring, whenever possible, the appropri-
ate monitor is executing, thus offering real-time
detection capability.

2.2. Detection domain

Among the factors that make intrusion detection
in generalized computing environments difficult is
the wide range of capabilities that must be pro-
tected. By forcing the security system designer to
cover a wider range of resources, the defensive

assets are, in a sense, ‘‘stretched thinner’’ than they
will be in the highly focused CuPIDS environment.
CuPIDS’ ability to concentrate the right defenses at
the right time on critical tasks coupled with the abil-
ity to use well-defined security boundaries as defined
by the program designer and system security policy
allows the exploration of highly effective intrusion
detection functions. These benefits are not without
cost, however. The combination of parallel-based
monitoring and tightly focused detectors is primar-
ily effective when the detection algorithm can keep
up with the monitored process. In the notation from
Section 2.1, CuPIDS’ benefits reside mostly in the
domain where tD(b) is small enough that tD(b) < tc
can be guaranteed. This means CuPIDS’ detectors
are mostly limited to O(1) algorithms with small
constants. This restriction is significant; however,
there exist many attacks or errors which can be
detected by short, fast algorithms—data structure
invariant violations such as buffer overflows or call
stack violations are two examples. Furthermore,
even in the cases where real-time detection is not
possible, CuPIDS can claim improvements in near
real-time detection times over traditional architec-
tures. These improvements stem from CuPIDS
application of the appropriate monitoring function
at the appropriate points in monitored application
execution.

While our research is generally applicable to any
computing environment in which multiple proces-
sors are available, we anticipate that it will be most
useful in the dedicated server environment. Ideally,
these machines are not used for general purpose
computing and run only a streamlined set of appli-
cations dedicated to the service the system provides.
These simplified configurations are not only simpler
to maintain, but their smaller attack surfaces [6] are
simpler to defend as well.

2.3. Prior research

There exists an enormous body of work on tech-
niques for detecting and preventing violations of
security policy. Axelsson’s in-depth taxonomy and
survey of the field of intrusion detection in 2000 is
a good starting point for those unfamiliar with the
field [7]. We draw from those techniques and aug-
ment them in ways that make use of the MP para-
digm. Many of the specific intrusion detection
techniques a CuPIDS will use differ from their
StUPIDS counterparts only in the real-time, simul-
taneous monitoring nature of their use. Of particu-

1286 P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298



lar interest to us are those efforts that separate run-
time error checking from runtime execution, those
modeling the state of the production process exter-
nally, and those making use of coprocessors or vir-
tual machine architectures in performing
monitoring tasks. This section presents only a sam-
pling of the relevant literature given in [8].

2.3.1. Debugging

An example from the separate runtime error
checking body of research is that done by Patil
and Fischer [9] on detecting runtime errors in array
and pointer accesses. They point out that including
runtime error checking may slow applications by as
much as a factor of 10, which is an enormous price
to pay given that most runs of a well-tested program
are error-free. Therefore once debugging and testing
is complete, runtime error checks are disabled
before the code is placed into production use. While
this makes sense from a performance perspective, it
is dangerous because errors that may have been
caught by those runtime checks go undetected,
potentially causing severe damage. The authors
responded by creating guard programs that model
the execution of the production program, but only
at the pointer and array access level. The guards
include all runtime checks on pointer and array
bounds and were capable of detecting many runtime
errors that evaded the software testers during devel-
opment. These guards were run as batch processes
using trace information stored by the production
process. The paper also discussed having the guard
run on a separate processor or as a normal process,
interleaving execution with the production process.
The runtime penalty perceived by the user was typ-
ically less than 10%. We use the idea of exporting
runtime checks to a shadow process; however, our
work differs from theirs in that we focus on real-
time monitoring of the actual memory locations in
use by the production process as well as a much lar-
ger set of monitoring capabilities.

2.3.2. External modeling

Research into performing intrusion detection via
external modeling of application behavior such as
the work done by Haizhi Xu et al. [10] in using con-
text-sensitive monitoring of process control flows to
detect errors is a good example of external model-
ing. They define a series of ‘‘waypoints’’ as points
along a normal flow of execution that a process
must take. They focused their efforts on the system
call interface and demonstrated good results in

detecting attempts to access system resources by a
subverted process. CuPIDS makes use of a similar
idea to their waypoints in its checkpoints, those
points in both the interactive and passive systems
where CuPIDS is notified of events in which it is
interested; however, CuPIDS checkpoints are much
finer-grained and are generated within the produc-
tion process as well as its interaction with the exter-
nal environment. As an example, CuPIDS uses
function call entry and exit information to perform
rough granularity program counter tracking and
validation as well as model a program stack for
use in detecting illegitimate control flows within a
process code segment.

Related work by Feng et al. [11] describes novel
work in extracting return addresses from the call
stack and using abstract execution path checking
between pairs of points to detect attacks. Finally,
Gopalakrishna et al. [12] present good results in per-
forming online flow- and context-sensitive modeling
of program behavior. Gopalakrishna’s Inlined
Automaton Model (IAM) addresses inefficiencies
in earlier context-sensitive models [13,14] by using
inlined function call nodes to dramatically reduce
the non-determinism in their model while applying
compaction techniques to reduce the model’s
memory usage. Using an event stream generated
by library call interpositioning, IAM is shown
to be efficient and scalable even in a StUPIDS
architecture. The techniques used by IAM fit
naturally into the CuPIDS architecture. The model
simulation can be run as a shadow process in
CuPIDS, getting its inputs from the CuPIDS event
streams.

2.3.3. Virtualization and co-processors

ID has been performed using both machine virtu-
alization and the use of dedicated co-processors
[1,2,15–18]. An example of the latter category
includes the work done by Zhang et al. [16] in
describing how a crypto co-processor is used to per-
form some host-based intrusion detection tasks. In
their research they examine the possible effectiveness
of using hardware designed for securely booting the
system to run an intrusion detection system. The
benefits from doing so include protecting the IDS
processor from the production processor, and off-
loading IDS work from the main processor onto
one dedicated for that task. Strengths of this
approach include high attack resistance for code
running in the co-processor system. Drawbacks of
the approach include the lack of ready visibility into

P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298 1287



the actions of the main processor and operating
system.

These strengths and drawbacks also exist in the
use of virtual machine architectures. Garfinkel and
Rosenblum discuss a novel approach to protecting
IDS components [18]. They pull the IDS out of
the host and place it in the virtual machine monitor
(VMM) with the primary goal of enhancing attack
resistance. This approach has the benefit of largely
isolating the IDS from code running in the virtual
host. The VMM approach has much in common
with the reference monitor work discussed by
Anderson [19] and Lipton [20] in that it provides a
means by which the IDS can mediate access between
software running in the virtual host and the hard-
ware. It can also interpose at the architecture inter-
face, which yields a better view into system
operation by providing visibility into both software
and hardware events. A traditional software-only
IDS does not have this advantage. Of course, the

IDS running in the VMM has visibility only of the
hardware-level state. This means that the IDS can
see physical pages and hardware registers, but must
be able to determine what meaning the host O/S is
placing on those hardware items. By running as part
of the host O/S, CuPIDS maintains complete visibil-
ity of the software state of the entire system, but
currently lacks the protection afforded to VMs
and secure co-processor architectures. Future work
on CuPIDS will use hardware protection mecha-
nisms such as those in the Intel IA32 [21] processor
line to provide protection of security specific
components as well as critical operating system
components.

3. CuPIDS architecture

The CuPIDS architecture is fully described in [8],
and is summarized here.

User Mode Process Memory

Production

CPU

Shadow

CPU

Production

Process

Memory

Control Stream

Event Stream

Kernel

Process

Shadow

Fig. 1. High level overview of the CuPIDS architecture.

1288 P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298



3.1. High level design

The basis of the CuPIDS architecture is parallel
monitoring of the activities of a process by another
process as the first process executes. Fig. 1
graphically depicts a high-level overview of the
architecture. CuPIDS is designed around a shared-
resource, symmetrical multi-processing (SMP)
hardware foundation. As seen in the figure, pro-
grams using the architecture are divided into two
components, the protected application and a shad-
owing application. The CuPIDS architecture is
event-driven. As the protected process executes it
generates a stream of events based upon its activi-
ties. These events are used by the shadowing process
to choose specific monitoring actions. The overlap-
ping use of memory depicted in the figure is used
to illustrate that nearly all the protected process
state is available to the shadow process (only the
internal state of the CPP’s CPU is currently not vis-
ible to the CSP). This enables non-intrusive security
monitoring while the protected process executes.
Finally, the shadowing process is able to control
the activities of the monitored application. This
control capability allows CuPIDS to protect the
process and system when illegitimate behavior is
detected by preventing the illegitimate execution of
a compromised process (e.g., halting a process in
which a buffer overflow has occurred before any
injected code can be executed).

CuPIDS operates using the facilities and capabil-
ities afforded by a general purpose symmetrical

multi-processing (SMP) computer architecture.
Common operating systems such as Windows,
Linux, and FreeBSD running on SMP architectures
use the CPUs symmetrically, attempting to allocate
tasks equally across the CPUs based upon system
load [22]. CuPIDS differs from these architectures
in that at any point in time one or more of the CPUs
in a system are used exclusively for security related
tasks. This asymmetrical use of processors in a
SMP architecture is a significant departure from
normal computing models, and represents a shift
in priority from performance, where as many CPU
cycles as possible are used for production tasks, to
security where a significant portion of the CPU
cycles available in a system are dedicated solely to
protective work. One possible CuPIDS software
architecture is depicted in Fig. 2. The dark compo-
nents represent production tasks and services and
run on one CPU while the light components repre-
sent the CuPIDS monitors and run on a separate
CPU. The regions of overlap depict CuPIDS ability
to monitor the resource usage of production
components.

The operating system as well as user processes
are divided into components that are intended to
run on separate CPUs. The intent behind this sepa-
ration is twofold: performance, where we seek to
minimize the runtime penalty imposed by the secu-
rity system, and protection, where we are concerned
with the completeness of detection. By ensuring the
processes responsible for detecting bad events are
actively monitoring the system during periods in

Scheduler

Other O/S Services

Support

Production

CuPIDS CuPIDS

Thread

Production

Production Production

Process/

Process Process

Process Process

CuPIDS System Call Wrapper

Scheduler

Process/

Thread

Support

Virtual

Memory

Virtual

Memory

System Call API

Fig. 2. Basic software architecture.

P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298 1289



which bad events can occur—the CuPIDS architec-
ture requires that when a CPP is executing its
associated CSP is also on a CPU—we provide a
real-time detection capability (using Kuperman’s
notation as defined in Section 2.1). The system pro-
tection derives in part from the ability to detect bad
events as they occur but before the results of these
events can cause a system compromise.

A program intended to operate in CuPIDS is
divided into two components, a CuPIDS monitored
production process (CPP) and a shadowing
CuPIDS process (CSP) as depicted in Fig. 3.

As the figure shows, CuPIDS processes differ
from the traditional process paradigm in the asym-
metric sharing of memory between the CSP and
CPP. The CPP is a normal process and contains
the code and data structures that are used to accom-
plish the tasks for which the program is designed. It
may also contain code and data structures with
which information about the state of the running
process is communicated to the security component.
In addition to the normal process code and data
structures, the CSP’s virtual memory is modified
to contain portions of the CPP’s virtual memory
space (depicted in the figure as Shadow Memory).
This allows the CSP to directly monitor the activi-
ties of the production component as it executes.

Our initial work assumes the CPP developer is
aware of CuPIDS and the CPP communicates its
state to the CSP by sending a stream of messages
about events of interest to CuPIDS. Later work will
investigate what types of real-time monitoring are
possible for uninstrumented applications.

3.2. Protective activities

The CuPIDS architecture currently supports
three types of protective activities: Applica-
tion startup/shutdown validation, state moni-
toring, including invariant testing, and execution
monitoring.

Application startup/shutdown: Startup tasks
include verifying the authenticity of both the
CSP and CPP as well as any supporting configu-
ration files. The CSP is loaded and started exe-
cuting. It then loads the CPP into memory,
establishes any needed hooks into the CPP’s
VM space, initializes the various event communi-
cation systems, and finally starts the CPP run-
ning. Shutdown tasks include verifying that the
CPP shutdown path followed a legitimate code
path. Additionally, any runtime history data is
saved to disk.

Fig. 3. CSP and CPP details.

1290 P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298



State monitoring/Assertion verification: By creat-
ing appropriate hooks into the kernel, CSP is
able to monitor nearly all aspects of the CPP’s
operating environment and state. This includes
the CPP’s entire VM space and any related kernel
data structures and excluding only the internal
processor state while the CPP is on a CPU.
One use of this capability is invariant testing.
Invariant testing is a two stage process involving
pre-compilation work and runtime invariant
checking. The pre-compilation task involves
determining which variables need monitoring,
defining invariants for those variables and
exporting that information in a form that can
be used by the CSP. The compiler is also used
to automatically instrument the CPP by adding
event generation hooks into each function pro-
logue and epilogue. Invariants are currently snip-
pets of code that could be directly included in the
CPP’s code (similar to the run-time debugging
tests discussed earlier). They are compiled into
the CSP’s code, and when one is used, it is given
appropriate pointers to the CPP’s virtual mem-
ory space and executed. Currently these are man-
ually written; however, work is underway to
allow a programmer to indicate, to the compiler
via pragmas, that a particular variable needs
protection and the compiler will automatically
generate the invariant testing code in the CSP.
Runtime execution monitoring: Runtime monitor-
ing includes a number of activities and capabili-
ties that give the CSP visibility into the
operation of the CPP. An example includes gen-
erating events so the CSP is made aware of the
creation, accesses to, and deletion of a protected
variable’s lifespan. Other events export an execu-
tion trace to CuPIDS via function call monitor-
ing, and interactions between the CPP and
external environmental entities such as calls to
runtime libraries and the operating system. Call
monitoring consists of the CPP sending a stream
of function/library/system call entry and exit
events to the CSP. The CSP then uses a model
based upon how the CPP is supposed to operate
to verify if that stream is legitimate.

In addition to the direct monitoring of the CPP
performed by the CSP, CuPIDS has a number of
background capabilities that augment the CSP’s
capabilities. These include the ability to intercept
and direct low-level system activities such as inter-
rupts and signals, controlling the system scheduler

to enforce the segregation of the CuPIDS and sys-
tem CPUs and ensuring that whenever a CPP is
chosen to run, its associated CSP is also placed on
the CuPIDS’ CPU. Additionally, CuPIDS provides
a streamlined, interrupt-based communication
interface for moving event records from the CPP
to the CSP running on a different CPU.

3.3. Self-healing/self-protection

There are a number of well-known-to-be-danger-
ous library functions (such as those associated with
string handling) and syscalls (such as those associ-
ated with invoking a system shell) [23]. Among the
most common exploits publicly available are buffer
overflows that use unsafe string handling library
functions to overflow vulnerable buffers. Using a
combination of stack modeling, library call event
monitoring and virtual memory mapping capability
it is possible for CuPIDS to automatically detect
and generate detection signatures for certain com-
mon classes of vulnerabilities such as stack-based
overflows. In many cases buffer overflows use
known library function such as strcopy(3). When
CuPIDS is notified of a call to strcopy it can create
a copy on write (COW) mapping of the page(s) con-
taining the buffer and surrounding memory region.
If information about buffer sizes is available to the
CSP, either automatically generated or inserted by
the programmer in the form of CuPIDS memory
operation events, it becomes possible for CuPIDS
to not only detect and generate signatures for anom-
alous events, but also to recover from them auto-
matically. It does so by using the saved copy of
stack (or heap) pages to recreate the process’ mem-
ory state as it was before the overflow, and copying
only the correct amount of data into the buffer from
the corrupted pages. While in the case of an exploit
attempt, the data ending up in the buffer may not be
what the CPP programmer intended, the overall
effect to the program is the same as if a safe string
copy function such as strncopy(3) had been used.
In addition, error variables or signals may be set
to indicate that something unexpected occurred.

Many of the shadowing ideas CuPIDS uses can
be implemented without requiring the use of
multi-processing. CuPIDS makes use of the data
available to the shadow in a parallel environment
to repair corrupted data structures without having
to pause the CPP; however, these capabilities can
also be effectively used in a non-CuPIDS architec-
ture if detection is timely enough and the monitored

P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298 1291



process can be paused. An example might be an IDS
which interposes itself in the system call interface—
a commonly used monitoring paradigm [24,25].
Upon an invocation of a dangerous system call
the monitor could make a memory snapshot before
passing the call to the operating system. If the call
damages the data structure in use, the interposing
IDS can use the snapshot to repair the damage in
a manner akin to CuPIDS. The benefits offered by
CuPIDS in this domain are the inverse of the inter-
posing system call IDS’ weaknesses. Wagner and
Soto [26] discusses ways in which the pattern match-
ing behavior of many system call interpositioning
IDS can be evaded by mimicking legitimate patterns
of system calls. CuPIDS’ low-level visibility of the
state of the CPP negates this type of attack by
ensuring not only legitimacy of system call patterns
for a particular CPP, but also by ensuring the call
originated from a valid location in the CPP’s
address space and that the execution sequence prior
to the call was correct. Garfinkel [27] discusses how
difficult it is to get the monitoring interface right
across the entire range of possible system call usage
by user applications. CuPIDS’ tight coupling of
monitor with application, at the individual function
call level allows, in many cases, precise validation of
inputs too, and expected outputs from dangerous
system calls. This precision can reduce or eliminate
the need for expensive general-case anomaly detec-
tion algorithms. Finally, [28] highlights the (often
prohibitively expensive) runtime cost overhead
incurred in passing control to the monitors as well
as the general-case anomaly detection which must
be done every time the monitor is invoked. CuPIDS’
ability to model the behavior of an interposing IDS
without the context-switching overhead is a signifi-
cant improvement.

4. Implementation

We have implemented a prototype CuPIDS. This
section briefly describes the current state of that
prototype. For a more in-depth discussion of the
implementation see [8]. Our experimentation uses
FreeBSD, currently 5.3-RELEASE [29]. We have
added to the operating system API a set of CuPIDS
specific system calls that give CuPIDS processes vis-
ibility into and control over the execution of a CPP.
Examples of the new functionality include the abil-
ity to map an arbitrary portion of the CPP’s address
space into the address space of a CSP, a means by
which signals destined for—and some interrupts

caused by—the CPP are routed to the monitoring
CSP, etc. The operating system kernel has been
modified to perform the simultaneous task switch-
ing of CPPs and CSPs, a CSP protected loading
capability as discussed above in Section 3.2, and
hooks into various kernel data structures have been
added to allow the CSP better visibility into CPP
operation and for runtime history data gathering.

Our experimentation to date has focused on
protecting specific applications.2 We perform inter-
active monitoring based upon automatically gener-
ated instrumentation from the compiler as well as
CPP programmer defined invariants for key vari-
ables. CuPIDS has the capability to automatically
examine program binaries and extract explicit
white-lists about which system resources are used
by the CPP, and then save this information in a
form usable by the CSP. As the CPP executes, the
CuPIDS instrumentation compiled into it sends
messages to the CSP notifying it about program-
mer-defined operational activities such as protected
variable lifetime events (creation, accesses and dele-
tion). The automatically generated control flow
events (currently all function call entry and exits,
to include library and syscall invocations) are
passed to the CSP as well. In the case of execution
flow events such as function or system calls, the
event generation mechanism makes use of low-level
system primitives3 to include in the event a non-user
spoofable source and return address for the flow
changing call. The CSP receives these messages
and uses them to ensure the CPP is operating cor-
rectly. In the case of variables the CSP performs
pre- and post-condition invariant checking, and in
the case of flow control, it verifies that all function
calls are to and from legitimate locations within
the CPP text segment. It also maintains a model
of the CPP call stack and verifies all function returns
are to the correct locations, etc.

5. Results

Upon completing the initial CuPIDS implemen-
tation, a series of tests were performed to explore
its behavior. The experiments as described in [8]
and summarized here were designed to determine

2 The techniques involved are largely applicable to operating

system protection as well.
3 The last three branch records stack available in Intel IA32

processors as described in Section 15.5 of [30].

1292 P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298



if the CuPIDS architecture, as embodied in the pro-
totype, supported or refuted our research hypothe-
sis. The prototype allowed us to verify basic
CuPIDS functionality. The system is able to cor-
rectly load and execute CPP and CSP components,
and the CSP is able to detect invariant and security
policy violations as well as illegitimate control flow
changes. Upon detecting a fault or attack, the CSP
is able to halt the CPP, raise an alarm and save the
state of the CPP’s memory and execution trace his-
tory. In some cases automatic repair is possible. An
example of such a case is where real-time detection
has occurred (e.g., tD(b) < tc, where b is the corrup-
tion of the stack by a buffer overflow and c is the
execution of that injected code), and sufficient infor-
mation exists that repair of corrupted process state
is possible (e.g., CuPIDS made a memory snapshot
of the stack region immediately prior to the over-
flow). In these cases CuPIDS can repair the damage
from the attack or error. This repair may necessitate
pausing the errant process, but our experimentation
demonstrated that in some simple cases such as
stack repair, CuPIDS was able to repair the cor-
rupted CPP stack before the return into the injected
code occurred, thus allowing the CPP to continue
execution without interference. Additionally, the
experiments demonstrate it is possible for one pro-
cess to efficiently perform realtime runtime error
checking on variables in another process as well as
perform simple flow control validation. To demon-
strate the validity of our research hypothesis we
demonstrate that CuPIDS can provide guaranteed
detection of certain attacks before a context switch-
ing event occurs. This claim cannot be matched by a
StUPIDS, even one equipped with a comparable
detector set.

5.1. Test design and methodology

In our experimentation we used a combination of
widely-used, open source applications and servers as
well as applications created specifically to test cer-
tain aspects of CuPIDS’ functionality. The com-
monly used applications were WU-FTP version
2.6.2 and gnats version 3.113.12. These programs
were chosen because they represent server-class soft-
ware typical of that used in our target environment
(an organization’s public-facing demilitarized zone);
their source code is available so that we could exam-
ine and instrument them; and because they contain
exploitable vulnerabilities as demonstrated by pub-
licly available exploits.

5.1.1. Test platform

The experiments described below were run on a
SMP platform with dual Xeon 2.2GHz processors,
1G RAM and a single 120GB ATA100 drive.
Hyperthreading (HTT) was enabled so the operating
system had 4 CPUs available. CuPIDS only con-
trolled the scheduling of tasks on CPU1; the system
scheduler was responsible for scheduling CPU0,
CPU2 and CPU3. In a representative example exper-
iment involving CuPIDS, the CSP was the only user
of CPU1, the instrumented ftpd daemon used all of
CPU0’s cycles, the ftp client used all of CPU2’s
cycles, and the operating system, including the test
drivers, ran mostly on CPU3. The test drivers ensure
that all file I/O is done on local drives so that net-
work overhead does not become a factor. We
observed that the loading on the operating system
CPU (CPU3 in the above example) was typically
low, on the order of 5–10%, and that releasing
CPU1 from CuPIDS control did not significantly
impact system performance (CPU1 and CPU3
would both be mostly idle while CPU0 and CPU2
were saturated by the demands of fptd and the test
client, respectively). During the non-instrumented
experiments CPU1 is held idle to provide ftpd the
same operating environment as it had in the instru-
mented runs. ftpd was run as root in standalone
mode (command line ftpd -s which causes it to
stay in the foreground and fork processes as needed).

5.2. Runtime efficiency tests using WU-FTP

The initial experiments connect to the ftp
daemon (the CPP), log in, change local and remote
directories, and perform a series of 300 ftp file trans-
fers and one ls (directory listing) for a total of 301
transfers. The intent of this workload was to stress
ftpd, both internally and externally through file
I/O system calls for long enough that meaningful
time measurements could be made. The file transfer
workload is 1,881,832,400 bytes and the overall
workload per experiment is 1,881,904,317 bytes.
Three sets of 50 experimental runs were made, one
using the CuPIDS interrupt-based IPC, one using
SysV IPC, and one baseline test was run against a
non-instrumented version of WU-FTP. The results
are summarized in Table 1.

The initial tests are intended to measure the over-
head involved in getting CuPIDS events out of the
CPP and into the CSP, therefore we constructed
a worst-case event load based on program flow
control monitoring. In the instrumented tests, all

P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298 1293



function calls generate entry and exit events. This
includes internal functions, libc and intra-libc calls
as well as system calls. Each event includes caller
address and callee address information. These
events are validated against a whitelist of calls stat-
ically extracted from the ftpd binary. The initial
whitelist contained all the legitimate non-function-
pointer-based function and shared library calls as
well as a list of all function pointer uses. An initial
experimental run identical to the timing runs was
made to train the CSP on the actual function poin-
ter usage. The CSP received each function/library/
system call event, verified it against the whitelist,
and used it to model the CSP’s program stack.
The timing related tests did not include embedded
invariant tests.

Each experimental run took between two and
four minutes and generated approximately 1.4 mil-
lion events corresponding to WU-FTP’s activities.
As shown in Table 1 the overhead of generating
and using those events was around 15% for the
CuPIDS IPC as opposed to approximately 100%
for the SysV-based IPC. Note that this overhead
should be balanced against the removal of an inline
IDS doing the same tasks. Even a standalone IDS
with a similar detector set would be competing for
CPU cycles with the CPP, likely degrading applica-
tion performance.

5.3. Control flow change results

A number of experiments were run to validate
CuPIDS’ ability to detect illegitimate control flows
in the CPP.

1. Illegitimate system call invocation detection: Both
gnats and WU-FTP were used in these tests. In
both applications a buffer was overflowed in such
a way that bytecode contained in the overflow
string was executed. The injected code made a
number of system calls from the stack. CuPIDS
was able to detect all of the illegitimate system
call invocations.

2. Illegitimate internal function call invocation detec-

tion: Both gnats and WU-FTP were used in these
tests. In both applications CuPIDS was able to
detect an internal function call that had been
removed from the whitelist (simulating the activ-
ity of injected code that makes calls to function-
ality embedded in the vulnerable application).
CuPIDS was also able to detect calls to functions
that bypassed the prologue event generator. It
did so by detecting illegitimate program stack
activity in the stack model.

3. Illegitimate library call invocation detection: Both
gnats and WU-FTP were used in these tests. In
both applications CuPIDS was able to catch a
call to a library function that was removed from
the whitelist.

4. Spoofing/masquerading detection: CuPIDS de-
tected attempts to make library or system calls
from locations other than those specified in the
whitelists. This prevents attackers from perform-
ing masquerading attacks such as those described
in [31]. The CuPIDS IPC mechanism guards
against spoofed event generation by including
in each event the return address for the generat-
ing function as taken from the stack. As the
address is placed on the stack by the processor

Table 1

WU-FTP runtime performance measurements (50 samples)

Event comm. method Clock time (s) User time (s) Sys. time (s) Throughput (MB/s)

Interrupt-based mean 139.42 0.44 1.27 14.53

stdev 1.43 0.05 0.09 0.17

stderr 0.20 0.01 0.01 0.02

min 133.55 0.34 1.08 13.87

max 141.44 0.53 1.42 14.99

SysV IPC-based mean 166.67 0.41 1.62 15.61

stdev 0.37 0.05 0.07 0.30

stderr 0.05 0.01 0.01 0.04

min 166.04 0.28 1.51 15.32

max 168.12 0.52 1.84 16.08

Non-instrumented mean 117.74 0.41 1.34 15.94

stdev 0.24 0.04 0.08 0.07

stderr 0.03 0.01 0.01 0.01

min 117.47 0.29 1.16 15.76

max 119.13 0.50 1.53 16.04

1294 P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298



and reading it occurs in kernel space there is
no way for a user program to spoof this
information.

5. Direct variable protection: WU-FTP was used for
these experiments, which involved performing
invariant testing on simple variables (int, char,
simple structs) and a string buffer. As discussed
earlier, CuPIDS was able to detect illegitimate
changes to both classes of variables. In the case
of a stack-based buffer overflow it was able to
detect the overflow, save the overflowing data,
repair the corruption to memory following the
buffer, terminate the string in the buffer appropri-
ately (by writing a zero into the end of the buffer),
allow the CPP to continue running, and write the
overflow string and information about the over-
flow out to disk. In these experiments the detec-
tion took place as the overflow occurred, so
CuPIDS was able to halt the CPP before it could
return to the corrupted instruction pointer on the
stack. Therefore the attack was stopped before
any control flow change took place—a capability
unique to a parallel monitoring architecture such
as CuPIDS. Even had the buffer overflow not
been directly detected, CuPIDS would have
detected the control flow change to the stack
and might have been able to make the same
repair.

5.4. Time to detect

We ran a number of experiments to determine
how quickly CuPIDS detected illegitimate events.
Two types of tests were run: one that performed
an invariant test upon notification that a variable
access was complete, and one in which real-time
monitoring was used. Measuring the detect times
for these tests without a hardware-based in-circuit
emulator (ICE) proved challenging. Our theory
stated that CuPIDS’ ability to perform simulta-
neous monitoring of memory shared using the vir-
tual memory mapping capability would result in
detection at the point the invariant was violated.4

Using the O/S clocks to mark violation and detec-
tion times was not feasible because of the over-
whelmingly large overhead imposed by system
calls. To quantify how quickly the CSP detects a

problem we instrumented the CPP by adding a
counter that starts incrementing immediately fol-
lowing the completion of a monitored variable
access. When the CSP detects a violation it imme-
diately takes a snapshot of this counter. A buffer
overflow in WU-FTP was used as the invariant
violation. Each set of tests was run in both
CuPIDS multi-processor (MP) mode and StUPIDS
uni-processor (UP) mode, and the postcondition
invariant tests were also run in blocking mode,
where the CPP waited until the CSP signaled it
was done with the invariant test, and non-blocking
mode where the CPP notified the CSP that it was
done with the variable modification and continued
execution without waiting. 40 experiments were
run for each of these eight configurations. The
results of these experiments, summarized in Table
2 are as follows:

1. Simultaneous monitoring: In these tests a moni-
toring task is started upon notification that a
protected variable is to be accessed. In the
CuPIDS case this monitor is placed on the
CuPIDS CPU and runs parallel with the CPP.
In the StUPIDS case the monitor is scheduled
as is any other task and its execution is inter-
leaved with the execution of the CPP. The aver-
age of 8.2 million instructions executed by the
UP CPP before overflow detection takes place
compared to the immediate detection of the over-
flow in the CuPIDS CPP, validates our research
theory—that architectures such as CuPIDS can
detect illegitimate events faster than can UP
architectures.

2. Blocking invariant checking: In these tests,
the CPP sends a blocking checkpoint event to
the CSP immediately following the variable
access. Because the CPP is not allowed to con-
tinue execution until the invariant test is com-
plete, it is not surprising that both MP and
UP mechanisms immediately caught the
overflow.

3. Non-blocking invariant checking: In these tests,
the CPP sends a non-blocking checkpoint event
to the CSP immediately following the variable
access and continues execution. The consistent
results from the CuPIDS CSP are expected, and
reflect the amount of time it takes to perform
the invariant test. The much higher and inconsis-
tent results from the UP CSP reflect the sched-
uler-based non-determinism faced by all
StUPIDS architectures.

4 Actually, at the point the cache snooping mechanism detected

the shared usage of the memory location and propagated the

change from the CPP’s CPU into main memory and the CSP’s

CPU’s cache.

P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298 1295



6. Future work

6.1. Desired supportive capabilities

While the results presented above show promise,
we believe that a paradigm shift towards multi-pro-
cessor security may lead to changes in the basic plat-
form upon which architectures such as CuPIDS are
built. Some areas we anticipate exploring include:

Compiler support: The compiler can automati-
cally generate events for variable lifecycle opera-
tions. As an example, as buffers are allocated and
used appropriate events can be generated and
dispatched. Another alternative is to allow the
programmer to direct the compiler to do this
work using a mechanism such as pragma, or
assertions.
Hardware support: Better support for moving
blocks of information between specific CPUs will
be useful. As an example, the shared registers on
the Xeon HTT processors provide a convenient
scratchpad for small amounts of information.
Additionally, better debugging capabilities can
be designed. A capability similar to the debug
registers but that can operate on shared memory,
and possibly on larger data areas would be use-
ful. The ability to set a memory write breakpoint
on a CSP CPU and have it detect writes to that
memory location by other CPUs would reduce
the number of messages needed to keep track of
CPP activity. It may be more practical to do this
type of operation on multicore processors.
Operating system support: More efficient means
of IPC designed specifically around an asymmet-
rical MP design such as CuPIDS are possible.
CuPIDS’ extensions to the FreeBSD API are a
start in this direction, and the extended inter-pro-

cessor-interrupt (IPI) message passing system
from the DragonFly BSD variant [32] would
probably be useful.

6.2. Self-protection

Mandatory access control (MAC) models such as
Biba’s integrity-based model [33], and Bell and LaP-
adula’s multi-level security [34] models might be used
to provide a first-line defense against user application
compromise. While MAC protection systems are not
novel, the CuPIDS architecture uses hardware pro-
tection mechanisms in commodity CPUs to define
and protect theMACmechanism andCuPIDS them-
selves against direct attacks that attempt to bypass its
controls. We are currently investigating the use of
hardware primitives such as Intel’s virtualization
technology [35] to protect the portions of CuPIDS
which reside in the operating system from compro-
mises of kernel-level processes.

7. Conclusion

For many information systems, high assurance,
in terms of keeping an application running in spite
of faults or attacks, is more important than raw per-
formance. This is particularly true for an organiza-
tion’s mission critical applications and servers. We
believe and demonstrate that dedicating one or
more processors in a MP system specifically to secu-
rity tasks can increase system robustness in the face
of faults and attacks. We further believe offloading
the security work from the production parts of the
system will allow the use of security techniques
which may be too computationally expensive when
performed inline.

Examples of such techniques include the runtime
debugging checks and assertions employed during

Table 2

Buffer overflow time-to-detect measurements (Pin means that the CSP was pinned to the CuPIDS CPU and synchronized with the CPP;

non-pin means the CSP was scheduled like any other process. Blk indicates the detector function was run inline with CPP execution; non-

blk means the detector function was not inline.) (40 samples)

Monitor type (results based on 40 samples) Mean (# instr) Stdev (# instr) Max (# instr) Min (# instr)

MP, Pin, Parallel 0 0 0 0

MP, Pin, Blk, Postcond 0 0 0 0

MP, Non-pin, Blk, Postcond 0 0 0 0

MP, Pin, Non-blk, Postcond 32,142 15,000 73,134 5,481

MP, Non-pin, Non-blk, Postcond 258,207 547,000 2,478,906 18,081

UP, Blk, Postcond 0 0 0 0

UP, Non-blk, Postcond 33,807,836 23,676,701 85,376,601 0

UP, Parallel 8,250,607 3,710,207 12,687,579 1,518,471

1296 P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298



the software development process. Checks such as
these are commonly placed in vulnerable or critical
code during the debugging and testing phases of the
software lifecycle but are removed from shipping
code because of the runtime performance degrada-
tion they impose [9]. A great deal of specifically
focused information about how an application is
intended to behave is available to system architects
and developers; however, we do not believe this
wealth of information is commonly used in runtime
security monitoring of production systems. The
CuPIDS architecture is specifically designed to
make use of such information in a reasonably effi-
cient manner.

While trading performance for security is not a
new idea, we believe our combination of dedicating
computational resources to running highly focused
monitoring functions in parallel with protected pro-
duction code is both novel and worthwhile. We
believe the CuPIDS architecture to be more effective
than StUPIDS architectures in terms of real-time
detection of bad events as well as offering some
novel detection techniques based upon the low-level
and parallel nature of the monitoring. By dedicating
computational resources explicitly to security tasks
we are trading performance for security; however,
by offloading some security tasks from the produc-
tion process to the security process and running
them in parallel we are decreasing the workload of
the system production components. We have con-
structed a prototype of this architecture and used
it to verify CuPIDS basic functionality.

The CuPIDS architecture is novel in that we
explicitly divide the system into production and
security components, embed explicit knowledge of
how the production components are intended to
operate into specialized security monitors and
ensure the appropriate security component is run-
ning on a processor whenever a particular produc-
tion component is running on a different processor.
The architecture allows fine-grained visibility into
the operation of a protected process. We intend the
CuPIDS architecture to be detection model agnos-
tic—capable of supporting many different IDS.

The detection capability of CuPIDS is currently
all specification or white-list-based. Therefore it
has a zero false positive error rate; thus the alarms
output from CuPIDS are suitable for use by auto-
mated response systems. In fact, much of CuPIDS
strength derives from its automated response capa-
bilities. Its tightly focused, parallel monitoring capa-
bility allows for rapid detection of and response to

illegitimate behavior. The combination of real-time
detection (discussed in Section 2.1) allowed by par-
allel processing and an ability to automatically
repair some damage afforded by CuPIDS’ low-level
interface into the host operating system let CuPIDS
not only stop the attacks, but help maintain opera-
tion of critical components of systems.

References

[1] J.D. Tygar, B. Yee, Dyad: A system for using physically

secure coprocessors, in: IP Workshop Proceedings, 1994.

URL: http://www.citeseer.nj.nec.com/tygar91dyad.html.

[2] W.A. Arbaugh, D.J. Farber, J.M. Smith, A secure and

reliable bootstrap architecture, in: Proceedings 1997 IEEE

Symposium on Security and Privacy,May 1997, 1997, pp. 65–

71. URL: http://www.citeseer.nj.nec.com/arbaugh97secure.

html.

[3] W. Shi, H.-H.S. Lee, G. Gu, L. Falk, T.N. Mudge, M.

Ghosh, An intrusion-tolerant and self-recoverable network

service system using a security enhanced chip multiprocessor,

in: ICAC, IEEE Computer Society, 2005, pp. 263–273.

[4] M. Crosbie et al., IDIOT Users Guide, Tech. Rep. COAST

TR 96-04, Department of Computer Sciences, cSD-TR-96-

050, 1996. URL: http://www.cerias.purdue.edu/techreports-

ssl/public/96%-04.ps.

[5] B.A. Kuperman, A categorization of computer security

monitoring systems and the impact on the design of audit

sources, Ph.D. thesis, Purdue University, West Lafayette,

IN, CERIAS TR 2004-26 (08 2004).

[6] P. Manadhata, J.M. Wing, Measuring a system’s attack

surface, Tech. Rep. CMU-CS-04-102, Carnegie Mellon

University, Pittsburgh, PA (January 2004).

[7] S. Axelsson, Intrusion detection systems: A survey and

taxonomy, Tech. Rep. 99-15, Chalmers University

(March 2000). URL: http://www.citeseer.nj.nec.com/

axelsson00intrusion.html.

[8] P.D. Williams, CuPIDS: Increasing information system

security through the use of dedicated co-processing, Ph.D.

thesis, Purdue University, West Lafayette, IN, CERIAS TR

2005-50 (08 2005). URL: http://www.cerias.purdue.edu.

[9] H. Patil, C. Fischer, Low-cost, concurrent checking of

pointer and array accesses in C programs, Software Practice

& Experience 27 (1) (1997) 87–110.

[10] H. Xu, W. Du, S.J. Chapin, Context Sensitive Anomaly

Monitoring of Process Control Flow to Detect Mimicry

Attacks and Impossible Paths, in: Proceedings of the Seventh

International Symposium on Recent Advances in Intrusion

Detection, 2004.

[11] H.H. Feng, O.M. Kolesnikov, P. Fogla, W. Lee, W. Gong,

Anomaly detection using call stack information, in: SP’03:

Proceedings of the 2003 IEEE Symposium on Security and

Privacy, IEEE Computer Society, 2003, p. 62.

[12] R. Gopalakrishna, E.H. Spafford, J. Vitek, Efficient intru-

sion detection using automaton inlining, in: Proceedings of

the 2005 IEEE Symposium on Security and Privacy, IEEE

Computer Society, 2005.

[13] D. Wagner, D. Dean, Intrusion detection via static analysis,

in: SP’01: Proceedings of the IEEE Symposium on Security

and Privacy, IEEE Computer Society, 2001, p. 156.

P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298 1297

http://www.citeseer.nj.nec.com/tygar91dyad.html
http://www.citeseer.nj.nec.com/arbaugh97secure.html
http://www.citeseer.nj.nec.com/arbaugh97secure.html
http://www.cerias.purdue.edu
http://www.citeseer.nj.nec.com/axelsson00intrusion.html
http://www.citeseer.nj.nec.com/axelsson00intrusion.html
http://www.cerias.purdue.edu


[14] H.H. Feng, J.T. Giffin, Y. Huang, S. Jha,W. Lee, B.P.Miller,

Formalizing sensitivity in static analysis for intrusion detec-

tion, in: IEEE Symposium on Security and Privacy, 2004.

[15] O.S. Saydjari, LOCK: An Historical Perspective, in: Pro-

ceedings of the 18th Annual Computer Security Applications

Conference, 2000, ACSAC, http://www.acsac.org, 2000, pp.

Online, http://www.acsac.org.

[16] X. Zhang, L. van Doom, T. Jaeger, R. Perez, R. Sailer,

Secure coprocessor-based intrusion detection, in: ACM

European SIGOPS 2002, 2002. URL: http://www.research.

ibm.com/vali/sigops2002_monitor.ps.

[17] J. Molina, W.A. Arbaugh, Using independent auditors as

intrusion detection systems, in: S. Qing, F. Bao, J. Zhou,

(Eds.), Proceedings of the Fourth International Conference

on Information and Communications Security, vol. 2513 of

LNCS, 2002, pp. 291–302.

[18] T. Garfinkel, M. Rosenblum, A virtual machine introspec-

tion based architecture for intrusion detection, in: Proceed-

ings of the Network and Distributed Systems Security

Symposium, 2003. URL: http://www.citeseer.nj.nec.com/

garfinkel03virtual.html.

[19] J.P. Anderson, Computer security technology planning

study, Tech. Rep. ESD-TR-73-51, Vol. II, HQ Electronic

Systems Division (AFSC), Hanscom Field, Bedford, MA,

01730, 1972.

[20] R. Lipton, S. Rajagopalan, D. Serpanos, Spy: A method to

secure clients for network services, in: Proceedings of the

22nd International Conference on Distributed Computing

Systems Workshops, 2002.

[21] Intel Corporation, IA-32 Intel Architecture Software Devel-

oper’s Manual Volume 1: Basic Architecture. URL: http://

www.developer.intel.com/design/pentium4/manuals/245472.

htm.

[22] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System

Concepts, John Wiley & Sons, Inc., 2001.

[23] G. Hoglund, G. McGraw, Exploiting Software: How to

Break Code, Pearson Higher Education, 2004.

[24] S. Forrest, S.A. Hofmeyr, A. Somayaji, T.A. Longstaff, A

sense of self for UNIX processes, in: Proceedings of the 1996

IEEE Symposium on Security and Privacy, IEEE Computer

Society, 1996, p. 120.

[25] S.A. Hofmeyr, S. Forrest, A. Somayaji, Intrusion detection

using sequences of system calls, Journal of Computer

Security 6 (3) (1998) 151–180, URL: http://www.cite-

seer.ist.psu.edu/article/hofmeyr98intrusion.html.

[26] D. Wagner, P. Soto, Mimicry attacks on host based

intrusion detection systems (2002). URL: http://www.cite-

seer.ist.psu.edu/wagner02mimicry.html.

[27] T. Garfinkel, Traps and pitfalls: Practical problems in in

system call interposition based security tools, in: Proceedings

of the Network and Distributed Systems Security Sympo-

sium, 2003. URL: http://www.citeseer.ist.psu.edu/garfin-

kel03traps. html.

[28] R. Sekar, M. Bendre, D. Dhurjati, P. Bollineni, A fast

automaton-based method for detecting anomalous program

behaviors, in: SP’01: Proceedings of the IEEE 2001 Sympo-

sium on Security and Privacy, IEEE Computer Society,

Washington, DC, USA, 2001, p. 144.

[29] TrustedBSD, TrustedBSD. http://www.freebsd.org.

[30] Intel Corporation, IA-32 Intel Architecture Software Devel-

oper’s Manual Volume 3: System Programming Guide

(2005). URL: http://www.developer.intel.com/design/pen-

tium4/manuals/245472.htm.

[31] T.H. Ptacek, T.N. Newsham, Insertion, evasion, and denial

of service: Eluding network intrusion detection, Technical

report, Secure Networks, Inc. (January 1998).

[32] DragonFlyBSD, DragonFlyBSD. http://www.dragonflybsd.

org.

[33] K. Biba, Integrity considerations for secure computer

systems, Tech. Rep. TR-3153, Mitre, Bedford, MA (April

1977).

[34] D.E. Bell, L.J. LaPadula, Secure computer systems: Math-

ematical foundations and model, Tech. Rep. M74-244, The

MITRE Corp., Bedford MA (May 1973).

[35] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M.

Martins, A.V. Anderson, S.M. Bennett, A. Kagi, F.H.

Leung, L. Smith, Intel virtualization technology, Computer

38 (5) (2005) 48–56.

Paul D. Williams, Major, USAF, Ph.D.,

is an Assistant Professor of Computer

Science and Cyber Operations in the

Department of Engineering at the Air

Force Institute of Technology, Wright-

Patterson AFB, Ohio. He has served in

many information operations roles, both

operational and supporting, for seven-

teen years. His research interests center

on cyber operations, and include algo-

rithms, artificial intelligence, and com-

puter architecture.

Eugene H. Spafford is one of the most

senior and recognized leaders in the field

of computing. He has an on-going record

of accomplishment as a senior advisor

and consultant on issues of security,

cybercrime and policy to a number of

major companies, law enforcement

organizations, and government agencies,

including Microsoft, Intel, Unisys, the

US Air Force, the National Security

Agency, the GAO, the Federal Bureau of

Investigation, the National Science Foundation, the Department

of Energy, and two Presidents of the United States.

He is a professor with a joint appointment in Computer Sci-

ences and Electrical and Computer Engineering at Purdue Uni-

versity, where he has served on the faculty since 1987. He is also a

professor of Philosophy (courtesy) and a professor of Commu-

nication (courtesy). He is the Executive Director of the Purdue

University Center for Education and Research in Information

Assurance and Security (CERIAS). He serves on a number of

advisory and editorial boards, and has been honored several

times for his writing, research, and teaching on issues of security

and ethics.

1298 P.D. Williams, E.H. Spafford / Computer Networks 51 (2007) 1284–1298

http://www.acsac.org
http://www.acsac.org
http://www.research.ibm.com/vali/sigops2002_monitor.ps
http://www.research.ibm.com/vali/sigops2002_monitor.ps
http://www.citeseer.nj.nec.com/garfinkel03virtual.html
http://www.citeseer.nj.nec.com/garfinkel03virtual.html
http://www.developer.intel.com/design/pentium4/manuals/245472.htm
http://www.developer.intel.com/design/pentium4/manuals/245472.htm
http://www.developer.intel.com/design/pentium4/manuals/245472.htm
http://www.citeseer.ist.psu.edu/article/hofmeyr98intrusion.html
http://www.citeseer.ist.psu.edu/article/hofmeyr98intrusion.html
http://www.citeseer.ist.psu.edu/wagner02mimicry.html
http://www.citeseer.ist.psu.edu/wagner02mimicry.html
http://www.citeseer.ist.psu.edu/garfinkel03traps.html
http://www.citeseer.ist.psu.edu/garfinkel03traps.html
http://www.freebsd.org
http://www.developer.intel.com/design/pentium4/manuals/245472.htm
http://www.developer.intel.com/design/pentium4/manuals/245472.htm
http://www.dragonflybsd.org
http://www.dragonflybsd.org

	CuPIDS: An exploration of highly focused, co-processor-based information system protection
	Introduction
	Background
	Time domain
	Detection domain
	Prior research
	Debugging
	External modeling
	Virtualization and co-processors


	CuPIDS architecture
	High level design
	Protective activities
	Self-healing/self-protection

	Implementation
	Results
	Test design and methodology
	Test platform

	Runtime efficiency tests using WU-FTP
	Control flow change results
	Time to detect

	Future work
	Desired supportive capabilities
	Self-protection

	Conclusion
	References


