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ABSTRACT

Role engineering is the process of designing an RBAC system. A
promising approach to role engineering is role mining, which uses
data mining techniques to find an RBAC system from existing per-
mission assignment data. Role mining techniques are also useful
for optimizing and refactoring an existing RBAC system, which
can become increasingly chaotic over time. In this paper we study
the problem of mining an RBAC system that optimizes some objec-
tive measure of “goodness” for RBAC systems. We introduce the
weighted structural complexity measure, which sums up the sizes
of different RBAC system components (e.g., the number of roles,
the number of user-role assignments, etc.), possibly with different
weights for each component. Different optimization objectives can
be achieved by choosing different weight combinations. We show
that the optimization problem is NP-complete. We then develop
heuristic techniques for mining RBAC systems with low weighted
structural complexity. We show that the problem of mining a hier-
archical RBAC system is closely related to formal concept analy-
sis, and develop an algorithm using the notion of a concept lattice.
We also introduce new approaches to generating synthetic data for
evaluating role mining techniques. Our experiments show that our
algorithms outperform existing approaches.

1. INTRODUCTION

Role-based access control (RBAC) has established itself as a
well-accepted model for access control in many organizations and
enterprises. The notion of roles adds a level of indirection to sim-
plify the management of the many-to-many relation between users
and permissions. Many enterprises with a large number of users
and high security demands, e.g., those in the financial industry, are
considering migrating to RBAC systems. The process of building
an RBAC system is referred to as role engineering [2]. According
to a study by NIST [4], role engineering is the costliest part of mi-
grating to an RBAC implementation. Earlier work [10, 13, 14] on
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role engineering focused on the top-down approach, which starts
with an analysis of business processes and derives roles from them.
This approach is human-intensive and expensive.

Recent work [8, 12, 16, 15] on role engineering focused on the
bottom-up approach, which makes use of existing assignment data
and uses data mining techniques to derive roles. This process is
called role mining. The rationale for the bottom-up approach is
that in most role engineering scenarios, enterprises already have
systems managing permissions and the existing user-permission
assignment relation reflects functional and security requirements.
Thus, roles should manifest themselves as patterns in the existing
user-permission relation and can be discovered.

Role mining techniques are also useful for systems that already
use an RBAC system. In deployed corporate access control envi-
ronments, there may be thousands of users having access to hun-
dreds of enterprise applications. Each application (general ledger,
inventory, fulfillment, IT management, customer relationship man-
agement, etc.) may determine its access control rules in terms of
what groups of individuals can take what actions against each of the
resources that it manages. Given that the applications, the groups
of individuals, and the resources change over time, the creation
and management of roles is a continuing process. This can lead
to a proliferation of roles, and the existence of roles that are no
longer useful. The situation can be exacerbated by major struc-
tural changes like reorganizations and mergers. These could lead
to the co-existence of previous role hierarchies, transition role hi-
erarchies, and converged role hierarchies at the same point in time.
There is a great need for mechanisms and tools for cleaning up and
managing complex collections of roles. Role mining techniques
can be used to identify the role hierarchies that are truly needed,
and to find a simpler and better RBAC system.

Existing work on role mining [8, 12, 16, 15] has made important
progress. This paper improves the current state of the art on role
mining in the following ways.

First, existing work on role mining does not generate a complete
RBAC system that includes both a role hierarchy and a user-role
assignment relation. Most existing work outputs a set of candidate
roles as the final result. How to generate a role hierarchy and how
to assign roles to users have not been carefully studied. Generating
a complete RBAC system is particularly relevant for the scenario
of optimizing an existing RBAC system. In this paper we introduce
techniques and algorithms that generate complete RBAC systems.

Second, existing work lacks a convincing measure for the “good-
ness” of the resulting RBAC system (or set of roles). From the same
user-permission relation, many different RBAC systems could be



mined. It is thus desirable to have an objective and precise measure
for the “goodness” of an RBAC system. This is especially impor-
tant for the setting of optimizing an RBAC system. Such a measure
is also critical for evaluating and comparing the effectiveness of
different role mining approaches. In [16], the evaluation approach
is to first randomly generate a set of roles and an RBAC state based
on these roles, then compute the user-permission relation from the
state and apply the role mining algorithm on the relation, and finally
compare the set of roles selected by the role mining algorithm with
the initial set of roles. The result is considered good if the role
mining algorithm selects mostly the same set of roles as the ini-
tial set. Given that the initial set of roles are randomly generated,
it is unclear why one would expect the same set to be mined, as
it is possible that the role mining algorithm finds a “better” set of
roles. Vaidya et al. [15] studies the problem of finding a minimal
set of roles that can describe all existing user-permission relation-
ships. This can be viewed as implicitly using the number of roles
as a measure of goodness. This is a first step in a “goodness” mea-
sure; however, the number of roles is not the only parameter one
wants to optimize. For example, one may prefer a slightly larger
set of roles if it can greatly reduce the number of user-role assign-
ments and role-permission assignments. In this paper, we introduce
the notion of weighted structural complexity for an RBAC system,
which sums up the size of the different components of an RBAC
system, possibly with different weights for different components.
Different optimization objectives can be achieved by choosing dif-
ferent weights. We discuss the justification of the weighted struc-
tural complexity and the choices of weights, and study the problem
of mining RBAC systems with minimal weighted structural com-
plexity. We develop several techniques for mining RBAC systems
with low complexity and show that they are effective for designing
and optimizing RBAC systems.

Third, existing work on role mining studies the problem mostly
in isolation and lacks a theoretical foundation, especially for min-
ing role hierarchies. Because of this, existing approaches to mining
role hierarchies are very primitive and limited. We show that the
theory of formal concept analysis [5] provides an ideal theoretical
foundation for role mining, especially for the case of mining RBAC
systems with a role hierarchy. Formal concept analysis has been
applied extensively in software engineering, for example, on the
problem of generating class hierarchies from non object-oriented
code, which is closely related to the problem of mining role hier-
archies. We show how existing work on role mining can be under-
stood in the framework of concept analysis and develop a technique
for mining hierarchical RBAC systems using concepts.

Fourth, while synthesizing data has been used in the literature
on role mining, how to synthesize such data has not been explored.
Existing techniques are very primitive. We propose two new ap-
proaches to synthesize data and use them for evaluation.

The rest of this paper is organized as follows. We discuss related
work in Section 2 and define the weighted structural complexity
for RBAC systems in Section 3. Sections 4 and 5 present new role
mining techniques we have developed. Experimental results are
presented in Section 6. We discuss future work in Section 7 and
conclude in Section 8.

2. RELATED WORK

Coyne [2] was the first to propose the role engineering problem
and the top-down approach to role engineering. Several subsequent
works [10, 13] focused on the top-down approach. Top-down ap-
proaches start with an analysis of business processes or scenarios
and derive roles from them. The top-down approach is generally
very expensive as it is human-intensive and requires the collabora-

tion of security experts and domain experts to extract the knowl-
edge of business process descriptions.

Kuhlmann et al. [8] proposed to use data mining techniques for
finding roles from existing permission assignment data and coined
the term “role mining”. Rather than developing new algorithms
for the role mining problem, an existing data mining tool, IBM’s
Intelligent Miner for Data, is used in role mining. Kuhlmann et
al. [8] divides the role mining process into seven steps, but did not
describe the details of the steps.

Schlegelmilch and Steffens [12] proposed the ORCA role min-
ing tool. In the ORCA approach, one starts with the set S =
{{p1},{p2}, -+, {pn}}, where {p1,p2,- - ,pn} is the set of all
permissions. Iteratively, one finds a pair s;,s; € S such that the
number of users having both s; and s; is the largest among all such
pairs, and update S by merging s; and s;. This approach constructs
arole hierarchy, but limits the role hierarchy such that each permis-
sion and each user can be assigned to only one role.

Vaidya et al. [16] proposed the Role Miner approach which al-
lows permission sets of roles to overlap. The Role Miner approach
consists of two phases: role identification which generates a set of
candidate roles and role prioritization which ranks the candidate
roles based on some simple criteria. They give two algorithms for
role identification: CompleteMiner and FastMiner. CompleteM-
iner starts with an initial set of roles each of which is associated
with the exact permissions of a user. The algorithm computes the
set of candidate roles as all possible intersections of initial roles.
To reduce the running time of CompleteMiner, they then propose
FastMiner which computes the set of candidate roles as all possible
intersections of at most two initial roles.

More recently Vaidya et al. [15] studied the problem of finding
a minimal number of descriptive roles, which they refer to as the
RMP problem. They proposed two variants of the RMP problem
to allow approximate matching and better deal with noises in the
data and show that the RMP problem is NP-complete. They also
showed that the RMP is closely related with several existing data
mining problems such as the minimal titling problem and the dis-
crete basis problem and argue that the techniques and solutions for
these known problems may be used for the role mining problem.

3. MINING “GOOD” RBAC SYSTEMS:
PROBLEM FORMULATION

In this section, we formally define the weighted structural com-
plexity for RBAC systems and study the computational complexi-
ties of the problem of finding an RBAC system that minimizes the
complexity.

3.1 Basic Definitions

The input to the role mining problem is modeled as a configura-
tion.

DEFINITION 1. A configuration is given by p = (U, P, UP),
where U is the set of all users, P is the set of all permissions and
UP C U x P is the user-permission relation.

Without loss of generality, we assume that in a configuration
(U, P, UP), every user in U has at least one permission and ev-
ery permission in P is assigned to at least one user. The output of
the role mining problem is an RBAC system defined as follows.

DEFINITION 2. An  RBAC  system is  given  as
(U,R, P, UA, PA, RH, DUPA), where

e U, R and P are the set of users, roles, and permissions in the
system, respectively.



e UA C U x R is the user-role assignment relation.

e PA C R X P is the role-permission assignment relation.

e RH C Rx Risapartial order over R, which is called a role
hierarchy. When (r1,72) € RH, we say that the role r1 is
senior to ro.

e DUPA C U x P is the direct user-permission assignment
relation.

Given an RBAC system v = (U, R, P, UA, PA, RH, DUPA),
let o(P) denote the powerset of P, we define the function Auth., :
U — p(P) as follows:

Auth(u) = {p € P | (u,p) € DUPA} U
{p e P|3[(u,r) € UAA (r,p) € PA]} U
{peP |3 r[(u,r1)EUAN (r1,72) €ERH A (r2,p) € PA] }

Auth~ (u) gives the set of all permissions that u is authorized for.
It includes both the permissions u acquired from u’s role member-
ships and the permissions that are directly assigned to u.

DEFINITION 3. We say that an RBAC system v =
(U,R, P, UA, PA, RH, DUPA) is consistent with a configuration
p = (U, P, UP) if and only if

Vuev Auth(u) ={pe€ P | (u,p) € UP}

Note that in Definition 2, we allow permissions to be directly
assigned to users (through the DUPA relation); this differs from
existing well-known RBAC models [11, 3], where permissions can
be assigned only to roles. Our approach is more general. One ad-
vantage of our approach is that some widely deployed practical sys-
tems (such as the Oracle DBMS) support direct user-permission as-
signments. This allows us to mine RBAC systems that utilize this
feature. More importantly, our approach can better handle noise in
data. One motivation for using an RBAC system is to reduce errors
in permission management. By allowing one to generate an RBAC
state that includes direct user-permission assignment, anomalous
relationships in UP can be handled by DUPA, because it is not
cost-effective to generate roles for them.

3.2 Weighted Structural Complexity

A major advantage of using RBAC is to simplify management.
Given m permissions and n users, if we directly assign the permis-
sions to users, and the number of permissions assigned to each user
is large, then we need to maintain on the order of mn relationships.
However, using RBAC, the number of relationships that we need to
maintain could be reduced to the order of (m+n). From such a per-
spective, we propose the notion of weighted structural complexity
for RBAC systems. This complexity sums up the number of rela-
tionships in an RBAC system, with possibly different weights for
different kinds of relationships.

DEFINITION 4. Given W = (W, Wy, Wp, W, wq), Where
Wy Wy, wp € N, wp, € NU {0}, and wqg € N* U {oo}!, the
Weighted Structural Complexity (WSC) of an RBAC system -,
which is denoted as wsc(vy, W), is computed as follow.

wse(y, W) = wy * |R| + wy * |UA| + wp * | PA|+
wp, * |t_reduce(RH)| + wq * | DUPA|

where |.| denotes the size of the set or relation, and ¢t_reduce( RH )
denotes the transitive reduction of role-hierarchy. Arithmetics in-
volving oo is defined as follows: 0 x co = 0, ¥V, cn+ & * 00 = 00,
VeeNU{oo} T + 00 = 00,

'N is the set of all natural numbers, while N™ = N/{0} is the set
of all positive natural numbers.

The transitive reduction is the minimal set of relation-
ships that encodes the same hierarchy. For example,
t_reduce ({(7‘1,7‘2)7(7‘2,?"3),(7"1,7’3)}) = {(1"1,1"2),(7’2,7‘3)},
since (71, 73) can be inferred.

In Definition 4, we require the weights w;., w,,, wp to be natu-
ral numbers. Note that w, is the weight for the number of roles,
wy, for the number of user-role assignments, and w,, for the num-
ber of role-permission assignment. They are not allowed to be co
because otherwise any RBAC state using roles would have a com-
plexity of co. We also require that wq (weight for the number of di-
rect user-permission assignment) to be non-zero. When wy is zero,
given any configuration (U, P, UP), one can construct a consis-
tent RBAC system with complexity O by using no roles and setting
DUPA = UP.

Definition 4 uses integers as the values for weights. This is gen-
eral in the sense that one can simulate any weight scheme that uses
rational numbers. For example, suppose that one wants the weight
for a role to be 1.5 of the weight of assigning a role to a user, then
one can set w, = 3 and w,, = 2.

Intuitively, in role mining, we would like to find an RBAC sys-
tem that is consistent with the input configuration while having the
smallest weighted structural complexity.

The weights wy, and wq can be set to limit the kinds of RBAC
systems to be considered. More specifically, by setting one or both
of wy, and wg to 0o, we can rule out certain RBAC systems.

e No direct user-permission assignment: If one wants to con-
struct an RBAC system that does not have any direct user-
permission assignments, which is compatible with common
RBAC models such as RBAC96 [11] and the NIST stan-
dard [3], one sets wqg = oo. In that case, no permission
will be directly assigned to users as doing so makes the com-
plexity of the system infinitely large.

e No role hierarchy: Many existing RBAC systems do not sup-
port role hierarchy. We call such systems the flat RBAC sys-
tems. If one wants to construct a flat RBAC system, one sets
Wh = OQ.

Also, one can adjust the weights to meet different optimization
objectives. We list some of the most natural cases as follows.

e Minimizing the number of roles: Let w, = 1, w, = wp =0,
and wp, = wg = oo. In this case, one forbids role hierar-
chy and direct user-role assignment and considers only the
number of roles as the cost. This setting is the problem of
finding a minimal descriptive set of roles studied by Vaidya
et al. [15].

Setting wy, to values other than oo would result in the same
optimization problem, because any role hierarchy can be
simulated by more user-role assignment, which costs noth-
ing in this setting as w,, = 0.

e Minimizing the total number of relationships: Let w,, = 0
and w, = wp = wp = wqg = 1. In this case, the value
of WSC is equivalent to the total number of binary relation-
ships in an RBAC system, including user-role assignment,
role-permission assignment, role-role assignment, and direct
user-permission assignment.

e Minimizing the total cost of creating the RBAC system -y
from an empty state: Suppose that creating a role costs w.,
assigning a user to a role costs w,, creating a role domi-
nance relationship costs wy,, assigning a permission to a role
costs wq, and assigning a permission to a user directly costs
wq, then wsc(y, W) measures exactly the cost to create the
RBAC state 7.



[ Wy [ Wa, [ wp [ wp, [ wq “ Optimal RBAC System

0 Cu 0 Ch 00 Create a role for each user

0 0 cp | ¢ | oo || Create arole for each permission
Create a role for each user
and for each permission;

0 Cu | ©p 0 || Simulate user-role assi t

ssignments

using role-role assignments

T T 0 Ch 00 Create a role for each user

T 0 T ¢y, | oo || Create arole for each permission

Table 1: Table showing the cases where trivial optimal RBAC
systems exist. In the table, ¢; (i € [1, 5]) denotes arbitrary non-
zero integer value. In a row, two cells having value x indicates
that the two cells take the same non-zero integer value.

3.3 The Weighted Structural Complexity
Optimization Problem

We have introduced the notion of weighted structural complex-
ity (WSC) as a complexity measure of RBAC systems. Given an
access control configuration p and W, a natural question that arises
is to determine the WSC value of an optimized RBAC system. In
this section, we formally define the Weighted Structural Complex-
ity Decision Problem and study the computational complexity of
the problem.

DEFINITION 5. Given an access control configuration p =
(U,P,UP), W = (wy, Wy, wp, wn,wq) and an integer k, the
Weighted Structural Complexity Decision Problem (denoted as
WDP(p, W, k)) asks whether there exists an RBAC system ~y that
is consistent with p and wsc(y, W) < k.

It is clear that we can determine the WSC value of an optimized
RBAC system in polynomial-time if and only if WDP is solvable
in polynomial-time.

The WDP problem is in NP, as one can present an RBAC sys-
tem to a deterministic Turing machine and the Turing machine can
verify the consistency of the system and compute its WSC value in
polynomial-time.

Vaidya et al. [15] showed that the problem of finding a minimal
set of roles that can describe all existing user-permission relation-
ships is NP-complete. Thus, we know that the WDP problem
when considering the weights as an input is NP-complete. How-
ever, since one may be facing an optimization problem with a par-
ticular set of weights, we would like to know the computational
complexities when the weights are fixed.

We first observe that the WDP problem can be trivially solved
for certain combinations of weights. For example, assume that both
w; and w, are 0 and wg = oo, which indicates that it costs noth-
ing to create a role or assign a role to a user. In this case, given
(U, P, UP), an RBAC system ~y that minimizes the value of WSC
is the one that creates a role r; for every permission p; € P,
and (uj,7;) € UA if and only if (uj,p;) € UP. We have
wsc(y, W) = wy, * | P|, which is minimum as every permission in
P must be assigned to at least one role so as to make the RBAC sys-
tem effective. Similarly, when both w, and w,, are 0 and wq = oo,
an RBAC system that trivially minimizes WSC is the one that cre-
ates a role r; for every user u; such that (p;,r;) € PA if and only
if (ui, p;) € UP. In Table 1, we summarize certain cases in which
trivial optimal RBAC systems exist. Due to page limit, proofs are
omitted from this paper.

Below we show that the WDP problem is NP-complete when
the weights satisfy certain conditions.

THEOREM 1. WDP(p, W, k) is NP-complete, for any W =
(Wry Wy, Wy, Wh, W) satisfying the following conditions: w, > 0,
Wh > Wy, and wyp > 0.

We have argued that WDP is in NP. What remains to show
is that the problem stated in the theorem is NP-hard. The proof
is given in the appendix, where we reduce the NP-complete Set
Covering problem to this problem.

Also, we argue that most interesting combinations of weights
will satisfy the conditions in the Theorem 1 (i.e. w, > 0, wp >
Wy, and wp, > 0). Intuitively, the user-role assignment and the
role-permission assignment should have non-zero cost, and a role
hierarchy relationship should cost at least as much as a user-role
assignment.

3.4 Heuristic Mining Techniques

As the WDP problem is intractable for most interesting com-
binations of weights, we will study heuristic techniques for min-
ing RBAC systems in the rest of this paper. While these algo-
rithms will not generate guaranteed optimal RBAC states, our eval-
uation shows that they perform significantly better than existing
techniques.

We will first consider creating flat RBAC systems (i.e. no role
hierarchy or w, = o0) in Section 4 and then study construct-
ing RBAC systems with no direct user-permission assignment (i.e.
wq = o0) in Section 5. The techniques we use to construct the
two types of systems complement each other. The techniques for
flat RBAC systems are more efficient, while the techniques intro-
duced in Section 5 generate a role hierarchy. When it is desirable to
generate RBAC systems with both role hierarchy and direct user-
permission assignment from a configuration (U, P, UP), one can
first apply the techniques introduced in Section 4 to generate a flat
RBAC system with a DUPA component. This will identify the
user-permission relationships that are not cost effective to use roles
to capture. One then apply the hierarchical role mining techniques
in Section 5 to (U, P, UP\ DUPAY), this will generate the desirable
role hierarchy.

4. MINING FLAT RBAC SYSTEMS

In this section, we propose an algorithm called DynamicMiner
that generates a flat RBAC system. The algorithm consists of three
phases: candidate role generation, role selection, and flat RBAC
system generation. The candidate role generation phase identifies
a set of candidate roles from the user-permission assignment data.
This phase usually finds a large number of candidate roles and a
subset of roles from this set would be sufficient to describe the user-
permission assignment data. We propose a Dynamic Prioritization
method for role selection. Finally, using the set of selected roles,
the flat RBAC system generation phase assigns roles to users or
permissions to users directly. This will give a complete flat RBAC
system. We describe the three phases in detail below.

4.1 Candidate Role Generation

There are two approaches to find a set of candidate roles. One
approach is based on calculating the sets of permissions that are
shared by a subset of all users. One example is CompleteM-
iner [16], which first groups users with exactly the same per-
mission set and each permission set is identified as an initial
role. The set of initial roles is {r1,72,...,7m}. CompleteM-
iner then computes all possible intersections of the initial roles
PERMS (rs;) N PERMS (r;,) N...N PERMS (1, ) as candidate
roles where 1 < 77 < is... < 7 < mand 1 < k < m. The run-
ning time of CompleteMiner is exponential in the worst case, which



makes it infeasible when the data size is very large. To reduce the
running time, the FastMiner is proposed in [16]. It computes the
set of candidate roles as all possible intersections of at most two
initial roles. Although FastMiner runs more efficiently, it is limited
in that many possible roles are not enumerated.

The second approach to generate candidate roles is to use the
frequent itemset mining techniques developed in the data mining
community. The basic idea is to find all sets of permissions that
are frequent and identify each such set as a candidate role. We im-
plemented such an algorithm using the FP-Tree approach [6]. Not
every frequent permission set should be viewed as a candidate role,
however. For example, if many users have Pi = {p1, p2, p3,pa},
then P; will be identified as frequent. At the same time, all sub-
sets of P, will also be identified as frequent. Suppose that all users
who have permissions in P> = {p1, p2, p3} also have permissions
in P, then P> should not be a candidate role. In data mining ter-
minology, P> is said to be not closed, as it has a superset that has
the same user count. Our algorithm filters the frequent permission
sets to output only closed sets as candidate roles. CompleteMiner
outputs only closed permission sets.

4.2 Role Selection

The set of candidate roles generated in the previous phase is of-
ten large and only a subset of the candidate roles are needed. The
role selection phase selects a subset R of roles from the candidate
set for the RBAC system. It takes the set of candidate roles CRS
as the input and outputs a set of roles R as the roles of the RBAC
system. This is the critical step in mining a flat RBAC system.

We define the size of a role v (denoted as m(r)) as the number
of permissions the role has and the support (denoted as n(r)) of a
role as the number of users that have all permissions of the role.

Vaidya et al. [16] proposed a static prioritization method for role
selection. The priority of each candidate role r is (on(r) * p +
n(r)), where on(r) denotes the number of users who have exactly
the permissions associated with R, and p is a tunable parameter to
favor roles found in the initial set of roles. We refer this approach as
Static Prioritization. The static prioritization method is limited in
the following aspects. First, the priority is static in that it does not
consider the choice of other roles. The user set of a role 7 inherits
all users of its parent roles. Once a parent role is created, a subset
of users in USERS(r) can be explained by the newly-created role
and should be removed from the user set of r.

Second, this approach does not consider the size of the role.
When optimizing for the weighted structural complexity, creating
arole with a large support but a small size may not be as beneficial
as creating a role with slightly smaller support but a larger size.

I.LR=0

2. for each r € CRS, set an(r) = n(r)

2. find r € CRS s.t. value = |m(r)| * |n(r)| — |m(r)| — |n(r)|
3 = maxpeons{m(r)] £ ()| — m()| - In(r)[}

4. if value < 1 then return R

5. R=RU{r}

6. for each v’ € CRS

7. n(r') = n(r") —n(r') N an(r)

8. CRS = CRS — {r}

9. go back to step 2

Figure 1: Algorithm for role selection

We propose a Dynamic Prioritization method for role selec-
tion. The algorithm is given in Figure 1. Dynamic Prioritization
starts from an empty set of roles R, sequentially adds the cur-

rent best role to R, and updates the user set of other roles. For
simplicity of presentation, the algorithm in Figure 1 assumes that
We = Wy = wp = wg = 1. Ituses the v(r) = |m(r)| * |n(r)| —
|m(r)| — |n(r)| to prioritize the candidate roles and will choose a
role only if v(r) > 1. In terms of the structural complexity defined
in Section 3, by creating and using role r, we reduce | DUPA| by
|m(r)|*|n(r)| but incur the cost of m(r)+n(r)+1. The “benefit”
of creating role r is thus |m(r)| * [n(r)| — |m(r)| — |n(r)| — 1.

This approach can be generalized if different values for
Wy, Wy, Wp, Wq are chosen. In general, the “benefit” of creating
role r is wq * |m(r)| * |n(r)| — wp * |m(r)| — wy * |n(r)| — wy.
(When wg = o0, one can use a suitably large value for wg in the
calculation.)

Each time we pick the current best role r that maximizes the
above criteria and add it to R, we update the user set of other roles
r’ since the permissions of a user can be explained by r and may
not support v’ any more. To do this, we keep track of two user
sets for each role 7: the actual user set an(r) and the current user
set n(r). The current user count |n(r)| is used in evaluating the
goodness of creating the role r while the actual user set an(r) is
used in updating the user set of other roles in CRS. This process
stops when we cannot find a role with non-negative benefit, i.e.,
when |m(r)| % [n(r)| — |m(r)| — |n(r)| < 1forallr € CRS.

4.3 Flat RBAC System Generation

Having chosen a set of roles, we need to generate user-role as-
signments and direct user-permission assignments. We describe
two algorithms for doing so: optimal assignment and sequential
assignment.

The optimal assignment algorithm first identifies, for each user
u, asetof roles OR(u) = {r|PERMS(r) C PERMS (u)}. Roles
that are not in OR(u) contain permissions that user u does not
have. Then, the algorithm finds the optimal assignment that min-
imizes the complexity associated with user w (i.e., costs for roles
assigned to v and permissions directly assigned to u). In our ex-
periments (will be discussed in Section 6), OR(u) typically con-
tains a small number of roles, and the running time for the optimal
assignment is acceptable.

The sequential assignment algorithm utilizes the order in which
roles are selected in the role selection phase. Each time a new role
is selected, the algorithm assigns it to a user if PERMS(r) C
PERMS (u) and there is at least one permission in r that is cur-
rently not assigned to u.

4.4 Summary

Vaidya et al. [16] proposed CompleteMiner for phase 1 (can-
didate role generation) and static prioritization for phase 2 (role
selection). We introduced FP-Tree based approach for phase 1
and dynamic prioritization for phase 2. There are thus four com-
binations. Our experiments show that CompleteMiner combined
with dynamic prioritization generally find RBAC systems with the
best complexity; however, FP-Tree based approach is more scal-
able than CompleteMiner. We thus choose to present in Section 6
the evaluation results of the algorithm that combines the FP-Tree
based approach with dynamic prioritization, which we call Dynam-
icMiner.

S. MINING HIERARCHICAL RBAC
SYSTEMS

In this section we present techniques for mining RBAC systems
that include a hierarchy, that is, w, # co. We also assume that
wq = o0o. As discussed in Section 3.4, techniques in Sections 4



and 5 can be combined to handle the general case.

Generating a role hierarchy is probably the least understood part
in role mining. There lacks a theoretical tool to develop a prin-
cipled approach to the problem. In this section, we first establish
the connection between mining role hierarchies and formal concept
analysis [5] and then develop an algorithm exploiting the connec-
tion. We will use the following running example in this section.

EXAMPLE 1. The original RBAC state is given in Figure 2(a).
There are 10 users, 8 permissions, and 5 roles in the original state.
The user-permission relation resulted from the state is given in Fig-
ure 2(b).

5.1 Formal Concept Analysis

Formal concept analysis is a method for data analysis that was
originally developed in lattice theory and has been widely applied
in software engineering. The input to formal concept analysis is
modeled as a formal context.

DEFINITION 6. A formal context is atriple (G, M, I) where G
and M are sets and I C G x M is a binary relation between GG and
M. We call the elements of GG objects, the elements of M attributes.
For g € G and m € M, we write gI'm when (g, m) € I.

In role mining, the user-permission relation is a formal context,
where G is the set of all users, and M is the set of all permissions,
and (g,m) € I if and only if the user corresponding to g has the
permission corresponding to m.

DEFINITION 7. For X C G and Y C M, define the mappings

s:p(G) = p(M), s(X)={me M| (Vg€ X)glm}
t:p(M)—p(G), tY)={geG|[(VmeY)glm}

where p(G) and (M) denote the power sets of G and M, respec-
tively.

The set s(X) is the largest set of attributes common to all ob-
jects in X, and the set t(Y") is the largest set of objects hav-
ing all attributes in Y. For instance, consider X = {Uy, Ui}
in the running example, we have s(X) = {Po, P1, Ps, P+}, and
t(S(X)) = {U07 U17 U27 U37 U4}

We note that, for all X7, X, C X, X; C X, implies that
$(X1) 2 s(X2). Similarly, for all Y1,Y2 C Y, Y1 C Y> implies
that ¢(Y1) 2 t(Ya2).

DEFINITION 8. A concept of the context (G, M, I) is a pair
(X,Y),where X CG, Y C M,s(X)=Y,and t(Y) = X. X is
also called the extent and Y the intent of the concept (X, Y"). The
set of all concepts of the context is denoted by B(G, M, I). A con-
cept (X1,Y7) is a subconcept of (X2, Y2), denoted as (X1, Y1) <
(X2,Y3) if and only if X1 C X> (or, equivalently, Y1 DO Y3).

Given a concept (X,Y), we have X = t(s(X))
and Y = s(¢(Y)). For instance, in the running ex-
ample, ({Uo,U1},{Po, P1,Ps,Ps}) is not a concept, but
({Uo,U1,U2,Us,Us},{Po, P1, Ps, P1}) is. The concept lattice
for the running example is given in 2(c).

Concept lattices are closely related with role mining, in that the
concept lattice defines a complete RBAC state with DUPA = (). In
particular, each concept is a role and the lattice can be viewed as the
role hierarchy. Using this hierarchy, each user is assigned exactly
one role. The subconcept properties in definition 8 are the same as
those for role inheritance in the role hierarchy. Furthermore, the
set of concepts are exactly those candidate roles computed by the

CompleteMiner algorithm. This is because each concept contains
exactly the largest set of permissions shared by a set of users, and
each such set is a concept. In fact, the same algorithm is often
given for computing all concepts. The drawback of using the con-
cept lattice as the role hierarchy is that the role hierarchy may be
excessively large, as this means choosing all candidate roles gener-
ated by CompleteMiner. In Section 5.2, we present techniques to
prune the concept lattice into a better RBAC system with respect to
the weighted structured complexity measure.

One natural question that arises is that suppose we generated a
configuration from an RBAC state that contains a role hierarchy
RH, and then generated the concept lattice from the configuration,
how does the concept lattice relate to RH?

Observe that in the running example (Figure 2(a) and (c)),
Ry, R1, R2 correspond to concepts 0, 2, 7, respectively. The roles
R3, R4, Rs do not have corresponding concepts that have exactly
the same set of permissions, but they correspond to concepts 8, 6, 1
in that they have the same set of users as members. For example, in
the original state R3 is assigned to Up and Uy, which are also mem-
bers of Raz; thus the concept corresponding to R3 (namely concept
8) has permissions from both R2 and R3.

In the following we state some facts about the relationship be-
tween the original role hierarchy and the concept lattice.

1. For any role r in RH, let P, be the set of permissions r is
authorized for, and U, be the set of users who are authorized
for 7, then there is a concept (X, Y") such that X O U, and
Y D P,.

2. Given an RBAC state, if a role r has at least one unique user
and one unique permission, i.e, there is a user who is as-
signed to r and no other role and there is a permission that
is assigned to only r and no other role, then (U, P,) is a
concept.

The second fact above shows that if a role is truly “unique”, then
it will manifest itself in the concept lattice, and one can find them
by pruning the concept lattice.

5.2 The HierarchicalMiner

Our algorithm for generating a hierarchical RBAC system, which
we refer to as HierarchicalMiner, is based on pruning the concept
lattice. We view the concept lattice as the initial role hierarchy and
optimizes it based on the weighted structural complexity. Hierar-
chicalMiner is a greedy algorithm; it iterates over all of the roles
and performs local pruning or restructuring operations if the change
will decrease the cost of the RBAC state at the role. The algorithm
stops when no more operations can be performed.

Figure 2(d-g) illustrates the pruning process. Figure 2(c) in-
cludes all permissions in each node. As each node inherits all
permissions from the nodes below, we can remove redundant as-
signments and obtain the reduced lattice. Figure 2(d) shows the
factored lattice. Figure 2(g) shows the role hierarchy generated by
HierarchicalMiner.

Before we can describe the pruning rules, we need the following
definitions.

o Users(r) = {u € U | (u,r) € UA} is the set of users
directly assigned to 7.

e Perms(r) ={p € P | (r,p) € PA} is the set of permission
directly assigned to a role 7.

o Sen(r) ={r" € R| (v',r) € t_reduce(RH)} is the set of
roles that are the immediate senior to 7.

o Jun(r)={r' € R| (r,7") € t_reduce(RH)} is the set of
roles that are the immediate junior to 7.
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Figure 2: Running Example.

e t_closure(RH) is the transitive closure of a set of role rela- e Case 3. |Users(r)] = 0 A |Perms(r)] = m # 0: If r is
tions. i e. t_closure(t_-reduce(RH)) = RH. removed, we need to assign each permission in {p | (p,7) €
o Thr(r) ={(ri,7;) € RH | 7; € Sen(r) Ar; € Jun(r) A PA} to each role in Sen(r), and add Thr(r) to RH. Thus
(r4, 1"]) & t_closure (t_reduce (RH) — {(rs,7), (r,7;)})} role r is removed when
is the set of pairs of roles.(m7 r;) such that, without role r, Wy + wp * M+ wp * (|Sen(r)] + |Jun(r)])
r; would no longer be senior to r;. > w, * m * | Sen(r)| + wp * | Thr(r)|
o Assigned(r) = {u € U | Jcr(u,r’) € UAA(r',r) €
RHY} is the set of users that may activate the role 7. Figure 2(g) illustrates the result of applying this pruning to

the lattice in Figure 2(f).

There are three pruning rules where we may be able to prune a
node, and there is also one pruning rule where we may be able to
prune an edge. We now look at the three role-pruning cases. In
each case, a node r is pruned if this reduces the overall complexity.

In the case that | Users(r)| = n # 0 A |Perms(r)| = m # 0,
the role r cannot be pruned.

Finally, we describe the rule for removing edges from the role
hierarchy. This rule is applicable only when a role hierarchy rela-

o Case 1. |Users(r)| = 0 A |Perms(r)| = 0: tionship is more expensive than a user-role assignment or a role-
If role r is removed, Thr(r) needs to be added to RH to permission assignment. In this case, we can remove certain role
maintain the relationships among other roles. Thus role 7 is hierarchy and add the users or permissions accordingly. When re-
removed when moving a role hierarchy edge, we can either move the permissions

up or the users down, and we will choose the cheapest of the two
wp * (|Sen(r)| + |Jun(r)|) + wr > wp x| Thr(r)] strategies. Details are omitted from this paper because of space

limit. When wy, is large enough, applying this rule will flatten the
role hierarchy.

Comparison with ORCA Since ORCA is the only other algo-

Figure 2(e) illustrates the result of applying this pruning to
the lattice in Figure 2(d).

o Case 2. |Users(r)| = n # 0 A |Perms(r)| = 0: rithm in the literature that generates a role hierarchy, it is natu-
If role r is removed, we need to assign each user in {u | ral to compare our concept analysis based approach with theirs.
(u,7) € UA} to each role in Jun(r), and add Thr(r) to Recall that in the ORCA approach, one starts with the set S =
RH to maintain the relationships among other roles. Thus {{p1},{p2}, -+, {pn}}, where {p1,p2,---,pn} is the set of all
role r is removed when permissions. Iteratively, one finds a pair s;,s; € S such that the

Wy + wy * 1+ wp * (|Sen(r)] + [Jun(r)]) number of users having both Si and s; is the largest among all such

> wy 1k | Jun(r)] + wp * | Th(r)| pairs, and updates S by merging s .and Sj. ORCA w.111 always.gen-

erate a tree based structure, assigning each permission to a single

Figure 2(f) illustrates the result of applying this pruning rule role. A role hierarchy generated by ORCA for the running exam-
to the lattice in Figure 2(e). ple is given in Figure 2(h). Clearly, ORCA generates a much more



complicated role hierarchy.

When taking w, = w, = wp, = wp = 1, the original RBAC
system (Figure 2(a)) has wsc = 45, the one found by Hierarchi-
calMiner (Figure 2(g)) has wsc = 30, and the one finds by ORCA
(Figure 2(h)) has wsc = 54.

5.3 Implementation

We have implemented the HierarchicalMiner. We use the C
program concepts [9] by Christian Lindig for generating concepts.
The pruning code was written in C++ and uses the Boost C++ Li-
braries [1] for parsing, graph data structures, and algorithms. Eval-
uation is discussed in Section 6.

6. EVALUATION

In this section, we describe three test data generation methods
and evaluate the effectiveness of DynamicMiner and Hierarchi-
calMiner using data generated by them.

6.1 Synthetic Data Generation

Role mining is a practical problem and thus it is desirable to test
role mining approaches on real-world data. However, real-world
data is hard to acquire. Hence, generating testing data is inevitable
at this stage for the research community. We describe three test
data generation methods: (1) random data generator, (2) tree-based
data generator, and (3) ERBAC data generator.

Random Data Generator The random data generator is used in
[16]. It takes five parameters: (1) the number of users nUsers,
(2) the number of roles nRoles, (3) the number of permissions
nPerms, (4) the maximal number of roles mRoles a user can have,
and (5) the maximal number of permissions mPerms a role can
have. The algorithm consists of three steps:

1. Generate role-permission assignment. For each role r, we
randomly choose the number of permissions m(r) the role
r has from {1, 2, ..., mPerms}. Then, we randomly choose
m(r) permissions from P and assign them to 7;

2. Generate user-role assignment. For each user u, we ran-
domly choose the number of roles m(u) the user u has from
{1,2,...,mRoles}. Then, we randomly choose m(u) roles
from R and assign them to u;

3. Compute user-permission assignment. For each user u, we
compute PERMS (u) as the union of the permissions of all
roles in ROLES (u).

The data generated by the random data generator does not con-
tain any structure. Such data does not model real-world situations
satisfactorily, because organizations such as companies, schools,
and government agencies are structured.

Tree-Based Data Generator In order to generate testing data
that better models practical situations, we propose a tree-based data
generator. Imagine that a company consists of a number of depart-
ments and each department has several offices. There are company-
wide permissions that are shared by all employees. Different de-
partments have their own department-wide permissions, which are
assigned only to employees within the department. Also, different
offices in a department have different job functions and thus each
office has certain permissions that are assigned only to employees
in that office. For example, an employee working in the Business
Office of Department A may have certain company-wide permis-
sions, some permissions associated to Department A, and a number
of permissions specific to the office she is working in. In general,
department-wide permissions are never shared by users from differ-
ent departments, while permissions specific to an office are never
shared by users from different offices.

The tree-based data generator takes five parameters
{Nu,np, h,bo,b1}, where ny,n, are the number of users
and permissions respectively, A is the height of the tree, and by and
b1 are the lower-bound and upper-bound of the number of children
for each internal node of the tree respectively. The data generation
algorithm consists of three steps:

1. Randomly generate a tree " of height h, where the number of
children of each internal node of T falls in the range [bo, b1].

2. Let m be the number of nodes in 7'. Divide the set of per-
missions {p1,- - -, Pn, } into m disjoint sets Pr, - - , Pr,.

For every node n; (i € [1,m]) in T', associate P; with n;.

Let {n;, - ,nm} be the set of leaf-nodes in 7. For every
i € [, m], compute P such that P; contains all permissions
associated with n; or n;’s ancestors in 7.
3. Divide the set of users {ui, - ,un,} into (m + 1 — j)
disjoint sets Uy, - - - , Un,.

For every ¢ € [j,m], use the random data generator to gen-
erate user-permission assignment UP; between U, and P

Return UP = {J;Z; UP.

ERBAC Data Generator Experiences from deploying RBAC
systems in the real world suggested the Enterprise RBAC model,
which uses a two-level layered role hierarchy [7]. In such a role hi-
erarchy, there are two types of roles: functional roles and business
roles. Permissions are only assigned to functional roles. Business
roles are connected to functional roles and inherit all permissions
from the connected functional roles. Finally, users are only as-
signed business roles and inherit all permissions from the assigned
business roles.

The data generator for ERBAC takes five parameters: (1)
nFRoles is the number of functional roles, (2) nBRoles is the
number of business roles, (3) mPerms is the maximum number
of permissions a functional role can have, (4) mFRoles is the max-
imum number of functional roles a business role can connect to,
and (5) mBRoles is the number of business roles a user can have.
The algorithm consists of four steps:

1. Generate functional roles F'R. For each functional roles r,
we randomly choose the number of permission m(r) from
{1,2,..., mPerms}. Then, we randomly choose m(r) per-
missions from P and assign them to r;

2. Generate business roles BR. For each business role r, we
randomly choose the number of functional roles m(r) the
role 7 has from {1,2,..., mFRoles}. Then, we randomly
choose m(r) roles from FR and assign them to r;

3. Assign business roles to users. For each user u, we ran-
domly choose the number of roles m(u) the user u has from
{1,2,..., mBRoles}. Then, we randomly choose m(u) roles
from BR and assign them to u;

4. Compute user-permission assignment. For each business role
r € BR, we compute PERMS (r) as the union of the per-
missions of all functional roles that are assigned to r. For
each user u € U, we compute PERMS (u) as the union of
the permission of all business roles that are assigned to u.

Experimental Settings We will evaluate the performances of Dy-
namicMiner and HierarchicalMiner on these three types of test
data. Since the data generator is randomized, we run it 5 times
for each set of parameters and the average result is reported.

For random data generation, we fix mRoles = 3 and
mPerms = 5. For the tree-based data generation, we fix h = 4,



Random Data || Tree-Based || ERBAC
NUsers NRoles | CM | DM CM | DM || CM | DM
500 100 52 72 45 | 74 60 | 82
1000 100 60 92 50 | 82 62 | 87
2000 100 67 98 54 | 89 58 | 95
3000 100 73 100 59 | 98 71 | 99
(a) Varying the number of users, NPerms fixed at 100

Random Data || Tree-Based || ERBAC

NPerms NRoles | CM DM CM | DM || CM | DM
100 100 60 90 40 80 48 | 75
200 100 67 90 44 84 52 | 84
500 100 75 90 54 86 52 | 91
1000 100 80 90 58 92 58 | 94

(b) Varying the number of permissions, NUsers fixed at 1000

Random Data || Tree-Based || ERBAC
NRoles NUsers [ CM | DM CM | DM ||CM | DM
50 100 23 50 35 | 49 33 | 49
100 200 51 93 59 | 73 55 | 82
200 500 118 167 112 | 129 || 107 | 148
500 1000 || 280 | 359 233 | 243 || 225 | 268
(c) Varying the number of users/roles, NPerms fixed at 100

Table 2: Number of original roles identified by (CM) Com-
pleteMiner and (DM) DynamicMiner.

bo = 3, and by = 4. For ERBAC data generation, we fix
mEFRoles = mBRoles = 3, mPerms = 6, nFRoles = 30,
and nBRoles = 70. For all three data, the default values are
nUsers = 1000, nRoles = 100, and nPerms = 100.

6.2 Identifying Original Roles

In [16], the evaluation approach is to see how many roles that are
used in generating the data are identified. We now use the same ap-
proach to compare our algorithms with CompleteMiner. For Com-
pleteMiner, we fix priority = 10. Note that Static Prioritization
ranks the candidate roles based on some static prioritization method
and does not actually select a set of roles for the RBAC system. To
allow comparison with our approaches, we choose the top nRoles
roles as the set of identified roles.

The HierarchicalMiner typically outputs more roles than the
number of roles used to generate the data. We thus compare only
DynamicMiner with CompleteMiner. We fix the minimum support
for the FP-Tree algorithm to be 5. This essentially compares the
effectiveness of Static Prioritization with Dynamic Prioritization.

We performed three sets of experiments. The results are shown
in Table 2. The first set (Table 2(a)) varies the number of users
while keeping the number of permissions and the number of roles
constant. The second set (Table 2(b)) varies the number of permis-
sions (and correspondingly, the maximum number of permissions a
role can have). The third set (Table 2(c)) varies the number of users
as well as the number of roles.

As we can see from the table, DynamicMiner performs consis-
tently better than CompleteMiner. Recall that for CompleteMiner,
nRoles roles are chosen. DynamicMiner outputs a few (typically
2 to 3) roles other than the original roles. The largest number of
non-original roles is 7.

From Table 2(a), we observe that the number of original roles
identified increases as the number of users increases. The added
users increase the support for the roles in the original RBAC sys-

tem, allowing them to be more easily discovered.

From Table 2(b), we observe that as the number of permissions
increases, the number of original roles identified by the algorithms
increases, though as dramatic as the effect by increasing the number
of users. This can be explained by the fact that original roles have
few intersections when the number of permissions is large and they
can thus be identified more effectively.

From Table 2(c), we observe that as the number of users and the
number of roles increase, the percentage of original roles identified
by DynamicMiner decreases. We are unsure about the underlying
reason of this phenomenon.

6.3 Structural Complexity

We now evaluate the effectiveness of DynamicMiner and Hier-
archicalMiner in terms of structural complexities. We have exper-
imented with CompleteMiner by choosing the nRoles top-ranked
roles and then using the optimal assignment algorithm to assign
them to users. This method yields RBAC systems of signifi-
cantly higher complexities than those generated by DynamicMiner
and HierarchicalMiner. We omit the data about CompleteMiner
from this paper since CompleteMiner does not generate a com-
plete RBAC system and the method we choose to derive a complete
RBAC state may not be a fair comparison. We also omit data about
ORCA since we have already seen that it does not produce efficient
RBAC states.

We performed three sets of experiments. The results are shown
in Table 3. For DynamicMiner, we have data both for using se-
quential assignment to generate user-role assignment (under col-
umn with heading DM) and for using optimal assignment (under
column DM-OA).

We evaluate the effect of varying the number of users, the num-
ber of permissions, and both the number of users and the number
of roles, on the complexity for the three type of test data described
in the section above. The minimum support for DynamicMiner is
fixed to be 5 as the previous experiment. For all test cases, we use
the set of weights W = (1,1,1,1,1).

Let us first look at results for random data. We observe
that HierarchicalMiner performs poorly on random data and pro-
duces RBAC states at least the original complexity while Dynam-
icMiner consistently produces states of less complexity. Hierarchi-
calMiner’s poor performance is likely due to the random nature of
the data. Since there is no semantical meaning and no relationship
between any of the permissions, formal concept analysis is unable
to produce meaningful output.

Next we consider data from our tree based generator. While Dy-
namicMiner consistently produces less complex RBAC states than
the original, it is clear that HierarchicalMiner is better suited to this
more structured data. It produced consistently and significantly less
expensive RBAC states in all tests.

For enterprise RBAC test data, both algorithms produced less
costly RBAC states than the original and HierarchicalMiner has a
slight advantage over DynamicMiner.

In all test cases, optimal assignment for DynamicMiner performs
only slightly better than sequential assignment, which shows that
sequential assignment is quite effective. This is especially true
when the data is not large, in which case, only a small number
of roles can be assigned to each user. When the data is large, the
difference becomes more obvious but still not very significant.

In conclusion, HierarchicalMiner performs better than Dynam-
icMiner when the data is generated in a somewhat structured fash-
ion. Thus we expect HierarchicalMiner to perform better in real
world scenarios. Also, both HierarchicalMiner and DynamicMiner
can often output RBAC systems with significantly less complexity



Random Data Tree-Based Data ERBAC
NUsers || Orig | HM | DM | DM-OA || Orig | HM | DM | DM-OA | Orig | HM | DM | DM-OA
500 1433 | 1621 | 1422 1375 1403 | 944 | 1211 1194 1595 | 1153 | 1265 1208
1000 2394 | 2456 | 2376 2307 2641 | 1806 | 2296 2248 2556 | 2042 | 2392 2274
2000 4394 | 4401 | 4240 4155 3843 | 2461 | 2850 2746 4556 | 3779 | 4052 3841
3000 6423 | 6466 | 6257 6145 6385 | 3477 | 4436 4212 6585 | 5439 | 6204 6075
(a) Varying the number of users, NPerms=NRoles=100
Random Data Tree-Based Data ERBAC
NPerms mPerms || Orig | HM | DM | DM-OA || Orig | HM | DM | DM-OA || Orig | HM | DM | DM-OA
100 5 2397 | 2456 | 2376 | 2308 2552 | 1460 | 1618 | 1503 2519 | 2017 | 2406 | 2316
200 6 2454 | 2519 | 2401 | 2321 2467 | 1698 | 1993 | 1817 2556 | 2036 | 2489 | 2334
500 7 2508 | 2507 | 3285 | 2843 2844 | 2202 | 3011 | 2834 || 2650 | 2055 | 2565 | 2337
1000 10 2674 | 2674 | 2576 | 2291 2844 | 2202 | 3478 | 3095 2886 | 2093 | 2671 | 2486
(b) Varying the number of permissions and the maximal number of permissions assigned to each role, NUsers=1000, NRoles=100
Random Data Tree-Based Data ERBAC
NRoles NUsers || Orig | HM | DM | DM-OA || Orig | HM | DM | DM-OA | Orig | HM | DM | DM-OA
50 100 415 | 488 | 435 426 458 | 432 | 446 439 436 | 228 | 304 297
100 200 817 | 989 | 791 725 1058 | 994 | 1035 975 951 | 534 | 645 612
200 500 1820 | 2257 | 1873 | 1804 || 2242|2178 | 1987 | 1845 2038 | 1274 | 1674 | 1562
500 1000 || 3941 | 4365 | 3898 | 3754 || 5213 | 5645 | 5376 | 5298 || 4411 | 2555|2945 | 2799

(c) Varying the number of users/roles, NPerms=100

Table 3: Weighted structural complexity: (Orig) The original complexity, (HM) HierarchicalMiner, (DM) DynamicMiner using
Sequential Assignment, (DM-OA) DynamicMiner using Optimal Assignment.

than the original ones. This provides evidences that they can be
used to optimize existing RBAC systems.

7. DISCUSSIONS

We now discuss limitation of the techniques developed in this
paper and some future research directions.

A Unified and Scalable Algorithm The HierarchicalMiner al-
gorithm requires first the construction of the whole concept lattice
and thus its scalability is limited by the scalability of the lattice
construction. It may be possible to design an algorithm that does
not construct the full lattice and dynamically prunes part of the lat-
tice. Hopefully this will lead to an effective algorithm for mining
hierarchical RBAC systems with very large datasets.

Mining roles with semantic meanings In this paper, we consider
user-permission assignment data where no semantics are associ-
ated with users or permissions. However, both users and permis-
sions may have semantics. Users can have attributes that reflect
their positions or responsibilities. With user attributes (i.e., we have
attribute-permission assignment data), we are able to discover roles
with semantics. Also, user attribute values can have relationship
among them which can be useful in role hierarchy construction.
Permissions can also have semantics, e.g., categories that describe
their types). Permission types could be used to guide the role min-
ing process, e.g., Permissions semantically belong to different cat-
egories should be associated with different roles.

Role mining with multiple states One of the main motivations for
RBAC is to simplify administration. The weighted structure com-
plexity measure proposed in this paper captures this to a certain
extent. A more direct measure is possible when one has multiple
configurations as input, with each configuration corresponding to
the situation at a different time. Then one can pose the problem of
discover a RBAC system for the initial configuration together with
state changes that move from one configuration to the next. The
idea here is to generate RBAC system that minimizes the adminis-

tration costs for these state changes.

8. CONCLUSIONS

In this paper, we have proposed a structural complexity measure
for an RBAC system which enables us to compare different RBAC
systems and study the RBAC system optimization problem. While
the optimization problem is in general NP-complete, we designed
several algorithms for generating RBAC systems. Also, we have
shown that the theory of formal concept analysis provides an ideal
foundation for the role mining problem. We empirically evaluated
the effectiveness of the algorithms on three types of test data and
showed that our approach outperforms existing approaches.
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Appendix

Proof to Theorem 1
First, we need the following lemma.

LEMMA 2. Given weights (Wy, Wy, Wp, Wh,wq) such that
wy > 0 and wp, > 0, a configuration p = (U, P, UP), and
Py C P where |P1\ > 2 and Uy is the set of users whose set
of permissions is exactly Py. If

wr + | P1| % wp
[

then any optimal RBAC system for p must include a role that is
assigned exactly permissions in P;.

min(wu,wd, |P1| * Wqg — wu) >

PROOF. Let c; be the smallest cost of creating a role 1 whose
set of permissions is P;. If there exist other roles in the system
whose set of permissions is a strict subset of P;, then we may as-
sign some of these roles to 1. Otherwise, we have to directly as-
sign all permissions in P; to r1. In the former case, the cost of
creating r1 depends on wy,; in the latter case, the cost of creating
r1is wr + |P1| * wp. Hence, we have ¢1 < w, + |P1| * wyp.
Assigning 71 to users in Uy costs |U1| * w,. Hence, the total
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cost of creating r1 and assigning it to users in U; is no more than
wy + Ut * wy + |Py| * wp.

If such a role r is not created, then for every user u € U, one
of the following cases applies:

e u is assigned at least two roles. The cost is no less than 2wy,.

e 1 is assigned one role plus at least one permission. The cost
is no less than w,, + wq.

e  is directly assigned all permissions in P;. The cost is | P | *

wq.

Hence, the minimum cost of settling all users in U; without cre-
ating 71 is no less than min (2w, wy + wa, |P1| * wq) * |U1].

P
wrtlPrlwp (e have
Ut |

When min(w., wq, |P1| * wg — wy,) >
min 2wy, Wy +wa, | P1|*wa) *|U1| > wy+ Ut |*wy, + | P | xwp,
which indicates that it costs less to create r; to settle users in Uy .

The lemma holds. [

Lemma 2 essentially states a situation where certain roles must
be created so as to minimize WSC. Using this lemma, we prove
that the problem stated in Theorem 1 is NP-hard.

LEMMA 3. WDP(p, W, k) is NP-hard, for any W =
(Wry Wu, Wp, Wh, Wa) satisfying the following conditions: w, > 0,
Wp, 2> Wy, and wy > 0.

PROOF. We reduce the NP-complete SET COVERING to
WDP.

In SET COVERING, we are given a set S = {e1, - ,em}, a
family ' = {S1,---,Sn} where S; C S, and an integer k, and
need to determine whether there exists F' C F such that |F'| <
k and the union of the elements in F” equals to S. Without loss
of generality, we assume that |S;| > 2 for every ¢ € [1,n] and
UL, S = 5.

Let W = {wy, Wy, Wh, Wp, wq} such that wy, > 0, wp > Wa,
wp > 0 and wgq # 0. We construct an access control configuration
p = (U, PUP) as follows.

e P ={p1,- - ,pm}. Foreveryi € [1,m], make w, copies
of p; and acquire p; 1, , Pi,w,. For simplicity, we use p;
to refer to its set of copies {pi,1, - , Di,wy }-

e Create a user u, such that for every ¢ € [1,m], (us,p;) €
UP.

e For every ¢ € [1,n], create a user u; such that, for every
j € [1,m], (us,p;) € UP if and only if e; € S;. In this
case, the number of permissions u; has is n; = |Si| * wy
(each permission has w,, copies).

[1,n], make d; copies of u; so that

wr+n; *Wp

e For every i €
MAN(Wy, Wa, N * Wq — Wy ) > ;
Intuitively, us corresponds to S and u; corresponds to .S; in the

SET COVERING instance.

Let ¢ = i (wr + ns * wy + d; * wp). We construct a WDP
instance that asks whether wsc(y, W) < ¢ + k * |w., |, where ~ is
an optimized RBAC system with respect to p and W.

First of all, since min(wy, wa, ni * wq — wy,) > Lrmi=le,
according to Lemma 2, an optimized RBAC system 'ly =
(U,R, P, UA, PA, RH, DUPA) must contain a role r; such that
Perms(r;) = {p; | (ui,p;) € UP}. ¢ = Ei_; (wr + ns % wy +
d; * wy) is the total cost of creating such r; for every ¢ € [1,n] and
assigning r; to the d; copies of u;.

With the above argument, the problem boils down to whether we
can assign roles/permissions to us with cost no more than k * |wy|.

Next, we show that the answer to the WDP instance is “yes” if
and only if the answer to the SET COVERING instance is “yes”.



We assume that 71, - - - , 7, have been created and assigned to the
corresponding users in 7.

On the one hand, assume that the answer to the SET COVERING
instance is “yes”. We assign 7; to us if and only if S; € F’. And
the cost of doing so is |F/\ * Wy, Which is no larger than k * w,,
as |F'| < k. Hence, wsc(y,W) < ¢+ k * w,. Furthermore,
since |J S,eF S; = S, the roles assigned to us together have all
permissions in P. Therefore, v is consistent with p. The answer to
the WDP instance is “yes”.

On the other hand, assume that the answer to the WDP instance
is “yes”. In this case, there is a way to assign roles/permissions to
us with cost no more than & * w,,. Clearly, if the assignment for u
only makes use of k roles in {r1,--- ,7»}, then we can create the
corresponding F’ with size k and we are done. However, if this is
not the case, then we can always adjust the assignment to make it
use roles in {71, -+ , 7 }. We discuss three cases as follows.

e Arole 7’ is assigned to u, and there exists 7; (i € [1,n]) such
that Perms(r’) C Perms(r;): Such an v’ may be generated

as a junior role during the generation of {ry,--- ,r,}. We
can assign r; instead of r’ to us and the total cost remains
unchanged.

e A new role 7’ has been created and assigned to us: First of
all, if a role r” is assigned to 7, then since wp, > Wy, it does
not cost more to assign r” to us instead. Second, let P’ be
the set of permissions whose copies are directly assigned to
r’. The cost of assigning copies of P’ to 1’ is | P’| * wy, * wp.
Instead of doing this, for every p; whose copies are in P’, we
find a role r; that has p; and assign ; to us. Note that such
an r; always exists as we have assumed that |J_, S; = S.
The cost of doing this for every permission in P’ is no more
than |P’| % w,, which is no larger than | P’| % w,, * wp.

e The copies p; are directly assigned to us: The cost of such an
assignment is w,, * wq. Instead of doing this, we can find a
role r; that has p; and assign r; to us. The cost is w,,, which
is no larger than w,, * wq.

From the above, we can see that after applying the adjustment re-
cursively, us is assigned no more than k roles in {ry,--- ,rp}.
Thus, the answer to the SET COVERING instance is “yes”.

It is obvious that our reduction can be done in polynomial-time.
Therefore, the lemma holds. []
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