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Abstract—Mobile sensors can be used to effect complete of failure” to detect a harmful agent and subsequently
coverage of a surveillance area for a given threat over evacuate the affected population. It states that densely
time, thereby reducing the number of sensors necessary. 4, |ated areas should receive priority attention regativ

The surveillance area may have a giverthreat profile as t lated | lated M
determined by the kind of threat, and accompanying mete- 0 unpopulated or sparsely populaied arcas. vioreover,

orological, environmental, and human factors. In planning historical meteorological information, suchwsd rose
the movement of sensors, areas that are deemed higherdata characterizing the predominant seasonal distributio
threat should receive proportionately higher coverage. We of wind speeds/directions, should be considered. This is
propose a coverage algorithm for mobile sensors to achieve hacayse the spread of a chemical/biological/radiational

a coverage that will match — over the long term and as | is affected b ind diti d .
quantified by an RMSE metric — a given threat profile. P/UME 1S allected by wind conditions, and Sensors in

Moreover, the algorithm has the following desirable prop- the wind’s direction will be able to monitor the most
erties: (1) stochastic, so that it is robust to contingencieand vulnerable areas and detect the plume with the smallest
makes it hard for an adversary to anticipate the sensor's delay.

movement; (2) efficient; and (3) practical, by avoiding g Memphis Port deployment exemplifies the need

movement over inaccessible areas. Further to matching, and benefits to provide differential sensor coverage of
we argue that a fairness measure of performance over P g

the shorter time scale is also important. We show that different geographical areas based on a concefitrefit

the RMSE and fairness are in general antagonistic, and level Intuitively, the threat level of an area quantifies the
argue for the need of a combined measure of performance, relative danger of exposing the area due to non- or under-
which we call power We show how apause timeparameter  yerage. An area may have a high threat level because

of the coverage algorithm can be used to control the . . . : - L
tradeoff between the RMSE and faimess, and present it is under high risk or because a realized risk in the

an efficient offline algorithm to determine the optimal area will produce severe consequences. In the Memphis
pause time maximizing the power. Lastly, we discuss the Port experiment, static sensors are used. Because of the
effects of multiple sensors, under both independent and |imited number of sensors, the Port area cannot be fully
coordinated operation. Analytical and extensive simulabn 4y ared [1]. In this paper, we consider the use of mobile
results — under realistic coverage scenarios — are preserte . .
for performance evaluation. sensors to cover a whole surveillance area over time.
Because the area coverage occurs over time, and does
I. INTRODUCTION not have to be complete all the time, a significantly
g[naller number of sensors can be used compared with

A network of sensors can be used to protect PeLtatic sensors. We assume that the movement of a sensor
ple, livestock, or the environment against harmful sub- n be under ’ roaram control. For example. the Sensor is
stances in a geographical region. For example, Offi& prog : pe,

of Naval Research (ONR) personnel have deployaf® e ™% 2 0ch 8 e e Bt o
a sensor network at the Port of Memphis to protect 9 y alg

the area’s population against the exposure to knovgy 0! the sensor's movement, such that it can effect a
coverage profile that matches a given threat profile.

chemical, biological, and radiological threats. A variety It is clear that the economical savings of using fewer

of sensor modalities is used to detect the PreSeneisors have to be balanced against the costs of sup-

of pollutants with sufficient accuracy and sensitivity, = *
. . . orting the movement. We do not attempt to answer the
The project report [1] states that in choosing where to~ . o
pstion of economic tradeoff definitively one way or the

place the sensors, a pragmatic consideration is to Selgﬁier, as it depends in part on the difficulty of the sensing

locations that are accessible. Besides accessibility, tﬁ;lsk relative to the movement task and in part on future

report concludes that the primary factor in deciding thte chnological developments. We do notice, however, that
placement of a limited quantity of sensing resources (':%mmodgigt robots [2]p for inétance are ava{ilable tha{ are
to assess its impact on the area’s population distributiofi arty . ' : . .
. . rather inexpensive, and believe that it is interesting to

since “human effects represent the true consequencés
éxplore such a tradeoff. Moreover, there may be other

Research was supported in part by the Office of Naval ReseartGasons to use mOb'“ty besides economics. For example,
under grant number DE-AC05-000R22725. robots may be used because they can carry sensors over



a deployment field that is hard to get to for installing Il. RELATED WORK

a static sensor (e.g., an undersea environment or Btic sensor coverageA significant amount of research
accessibility placement condition of the Memphis PoHas studied the placement problem of static sensors for
deployment). Also, mobility can be more robust againgjptimal area coverage [3], quality of surveillance [4],
an unplanned sensor failure (e.g., an area left uncovergdenergy efficiency [5]. The relationship between cov-
by a failed sensor can be covered later by another sengpsge and connectivity, given communication range
that moves into the area) or an unexpected contingengyq sensing range, has been studied for the cases of
(e.g., an obstacle unexpectedly appears that obstructs th¢ < 1 [6] and ¢/s < /3 [7]. The generalization
sensing path, and a mobile sensor is able to navig any ¢/s and to 2 k-connectivity is given in [8].
around the obstacle). The tracking of a moving target by a network of static
Our contributions in this paper are as follows: sensors has been studied in [9], [10]. In [9], a protocol
is presented to enable the sensors to transition to a low-
« To the best of our knowledge, this paper represenigwer state to conserve energy, without compromising
a first effort to investigate general threat-baseghe quality of surveillance. In [10], the number of sensors
coverage by sensors that move during deploymemjeeded to track a raditional source under uncertainty
« We identify matching and fairness as the major s analyzed. The strategy for a movitgrget to evade
performance criteria in evaluating the effectivenesg static network of sensors with minimum exposure is
of coverage. We show that the two performancgiscussed in [11].
measures are in general antagonistic, and discussn the area of static sensor placement, the work closest
their tradeoffs. We show how the two metrics cafo our problem is the Memphis Port sensor network
be unified to give a combined metric pbwer, by  deployment [1]. They present an iterative algorithm to
adopting a common view of utility. place a given number of, sensors around the Port
« We present the development of a coverage algef Memphis to maximize the protection of the area’s
rithm for sensors to achieve effective matching angopulation. At each step of the algorithm, they use a
fairness simultaneously under realistic deploymeggarch procedure to place the next sensor at a position
scenarios. The algorithm provides a tunable pghat will maximize the marginal gain in risk coverage.

rameter to control the tradeoff between matchingur work addresses similar threat-based coverage, but
and fairness. The optimal parameter maximizing i the context of mobile sensors.

given power metric can be computed by an efficient )
offline algorithm Mobile sensor coveragePrevious work on sensor mo-

. We present analytical and simulation results tgility has focused on moving the sensors to deployment

quantify the performance of our algorithms. ijocations that optimize the area of coverage [12], [13].
particular, our main results show that The sensors do not move during the sensing task. Other

hybrid mobile/static networks have used moving relay
A complement of techniques contribute to a@odes to collect data from static information sources [7].
coverage algorithm that can match the coveragehey show that using the mobile relay as the sink is
profile of a mobile sensor to a given threathe most efficient, and that, for a dense network, the

profile with excellent accuracy. _improvement in network lifetime of one relay is upper
— There is an inherent tradeoff between matchingounded by a factor of four over a static network.
and fairness. In [14], optimal algorithms are presented to move the

— Using more sensors can significantly improveink adaptively according to the flow of current events,
the fairness of coverage, although the marging minimze the communication energy or the maximum
improvement due to an additional sensor dgoad on a specific sensor.
creases slightly as the number of sensors in- Due to trends in robotics and embedded sensor tech-
creases. nologies in vehicles, there is a growing amount of

— Using more sensors — either independentlyork on sensors that move during deployment. The area
or under basic coordination — does not sigeoverage of mobile sensors is characterized in [15] under
nificantly improve the accuracy of matchingthe assumption of a uniform node density. They show
Rather, the matching deteriorates slightly dughat mobility can significantly reduce the number of
to possible redundancy of coverage by multipleensors needed to detect a randomly located stationary
Sensors. target in a given amount of time. If the target can also

— For multiple sensors, basic coordination apmove and is intelligent, it can plan its movement to avoid
proaches do not improve performance ovedetection. In that case, a pursuit-evasion game can be
independent operation. Rather, independent ogefined. A greedy policy for directing a group of moving
eration of the sensors in stochastic movemeagents to “swarm” locations with the highest probabilties
is viable, because it is simple, is shown to bef finding an evader is proposed [16], and is shown to
effective, and is robust to sensor failure. find an evader in finite time. The implementation of the



theoretical game on unmanned aerial/ground vehiclestige sensor. Moreover, the assumption is not needed in
discussed in [17], and the use of mobile sensors orbitiagtual operation, and is not used in the algorithm design
in space to help minimize the time-of-capture of thé Section IV. The fraction of time that a sensor, day
evaders is considered in [18]. spends in each cell up to timeis given by the sensor’s

In the area of mobile sensors during deployment, ttemverage profiledenoted byl.. Specifically,IT! (i) gives
work closest to our problem is [19]. In their work, theythe fraction of time that the sensbspends in the cell
study the capture dfansientevents by a mobile sensor.up to timet. Similar to®, II; is a probability distribution.
The events arrive/depart according to given stochastii¢hen the context of the sensor is clear, we drop the
processes at given points of interest (Pol) in a circulauperscript for simplicity.
space. They show how a sensor moving in a circle atFor simplicity, we assume that the threat profile is
variable speeds can optimize its movement to detect ttime invariant. In practice, it is clear that when the threat
largest fraction of events. Their Pols can be viewed @sofile changes, we can use the current profile as a
a specialized threat profile, since they are the positionew input to the mobility algorithm, and the sensor’s
where interesting targets are likely to appear comparetbbility will adapt accordingly. Threat profiles in real
with non-Pols. They use a variable speed but restrilife are likely to depend on factors that are close to static
the path to be circular around what is essentially a onbecause they change slowly — e.g., population, locations
dimensional space, whereas we use a fixed speed bfistrategic facilities, and seasonal changes of weather.

randomness in the path selection over a 2D space. .
Performance measures.For a mobile sensor, the

[1l. PROBLEM FORMULATION matching between the given threat profile and the
We consider the surveillance of a network area, whickchieved coverage profile at tinids quantified by the
we call themap for a given threat by one or morefollowing root mean square error (RMSE) measure:
mobile sensors. For simplicity, we assume that the map 5
is a two-dimensional rectangular space, of dimensions > (P(i) — I ()
S 2 . RMSE; = .
x x y, wherex andy are in distance units. The map m X n

is partitioned into anm x n array of cells, each of , _ . _
dimensionsS x S (in distance units), and divides If the sensor's movement is a stationary stochastic

bothm andn. The cells are enumerated by their uniquBrocess, the coverage profile will reach a steady state dis-
integer ids(, 1, . ., in top-to-bottom row order, and left- tribution, and the limitlim; .. I1(t) exists, which will
to-right column order within each row. in turn determlne the steady state matching performance
The distribution of threat in the map area is charactepf the algorithm.

ized by athreat profile denoted byd. The threat level  The matching measure alone does not fully evaluate
of a cell, sayi, is given by (i), and quantifies the the performance of a coverage algor|.thm. Consider the
risk of not covering the cell relative to the other cellsmonitoring of a cell whose threat level is 0.1. A coverage
As motivated in Section I, the threat profile should b@lgorithm may achieve a 10% coverage of the cell in the
determined according to the application, namely the kirtieéady state, but does so by spending one month in the
of threat, and any relevant meteorological, environmef€ll once every 10 months. The averagg@osure timef

tal, and human factor. In addition, we allow certain celle cell, i.e., the average duration of the continuous time
to be marked amaccessiblemeaning that a sensor carinterval over which the cell is not covered, is 9_mqnths_,
neither monitor nor travel over such a cell due to physic8Nd would be unacceptable if, say, the application is
limitations or policy decisions. An inaccessible cell, saf? monitor a residential area for flooding. In contrast,
i, has a threat level ob(i) = NaN. Mathematically® another algorithm that visits the cell (i.e., the residdntia

is a probability distribution0 < ®(i) < 1, {Vi : (i) # area) for one minute every 10 minutes achieves the
NaN} andS D(j) =1 same 10% coverage, but never leaves the cell uncovered
j:CPt(Iz’]);éNaN J .

In solving thé coverage problem, areas that af@f more time 9 minutes. Any flood event can then be

deemed higher threat should receive priority attention fgtected and reported in a timely manner. To further
the form of proportionately higher coverage. The goz_guantlfy the time sgale over_wh|ch a certain matching
is achieved by a mobility’ algorithm that controls thdS achieved, we define amfairness measure, denoted
movement of the sensors (see Section V). As a sensdt 7 of the algorithm, as follows:

moves, it will enter different cells. For the purpose of —= , ,

bookkeeping, we assume that a cellcisvered in the 7= Ze(z) x & (i),

sense that any threat event present in the cell is detected, !

whenever a sensor is inside the cell. By bookkeepimwgherec(i) is the average exposure time of celNotice

on a per-cell basis, the bookkeeping costs can be képat the unfairness is defined as the weighted average
low, although there may be some loss of precision iof the exposure time of each cell by the threat of that
the matching. However, the precision loss is small if theell, and is a time quantity. We therefore assess fairness
cell dimensionS is comparable to the sensing range dby its dual unfairness measure. A fair algorithm is then




one that achieves a low unfairness. For a persistent In standard random waypoint [20], the spegdis
threat event, i.e., an event that remains present onceédlected uniformly randomly from a ran@€,.., Vmaz |,
appears, the unfairness measures the weighted averageé each destinatiom;, also called awaypoint is

of the delay until the event is detected after occurrencgelected uniformly randomly from the whole map. In
For the transient events discussed in [19], both theur algorithm, we let the sensor move at a fixed speed
unfairness and the matching determine the weightegecified for that sensor. Moreover, to be threat-aware,
average fraction of the events that will be missed.  our algorithm will consider the given threat profile in

choosing a waypoint, and select a celis the waypoint
IV. MOBILITY ALGORITHMS with probability ®;, which is the threat level of.

In this section, we develop algorithms for a mobile The WRW algorithm is simple and probabilistic, thus
sensor to determine its movement and effect covera@eting the third and fourth design objectives. Moreover,
that matches a given threat profile with high accuraci. attempts to achieve a coverage that matches the

We target the following desirable properties of the algdhreat profile, by considering the profile in selecting the
rithm in our design: waypoints. The basic algorithm, however, fails to achieve

an accurate match because it fails to consider the effects
a trip on covering theintermediatecells between
e source and destination. For example, consider a
wnap with a few high threatotspots In attempting
to move between the hotspots to give them sufficient
goverage, the sensor will also visit frequently all the
lls between the hotspots, thereby overcovering the
thermediate cells. The analytical result in Section VII
lves a more complete characterization of the WRW
ilgorithm. To overcome the weaknesses of the basic
Igorithm, WRW can be used in conjunction with the
ollowing complementary techniques:

o Accurate. The algorithm should achieve a low
RMSE of coverage against the threat profile (se‘g
Section lI). t

« Fair. The algorithm should be fair (i.e., have a lo
unfairness value) in the sense of Section lIl.

« Stochastic.The random movement makes it har
for an adversary to anticpate the sensor’'s movem
and hence avoid detection. Also, random moveme
enablesn sensors to be deployed independentl
without advance schedule planning or runtime ¢
ordination, but still with good performance benefit
(as shown in Section VIII).

« Efficient. The algorithm should have low spaceviaximum trip length. In this variation, we do not allow
and time complexities, so that it can be efficientlyhe distance of a trip to exceed a given paramétgin
executed on the mobile sensor. distance units). Hence, in choosing the next waypoint

« Practical. The algorithm should admit and obeyg, ,, after thetth trip, we constrain the candidate cells to
givenaccessibility constraint®r the coverage area. be within the disc centered dt of radiusL. The choice
For example, a sensor carried on a terrestrial vehiclg the waypoint among the restricted set of candidate
will not be able to enter sea areas in a geographicgdlls occurs as in the basic algorithm. Limiting the trip
region. The algorithm should avoid movement ovelength helps to decouple the intermediate cells visited
the inaccessible areas. from a set of high threat cells that require frequent visits.

As a starting point of our design, we usenvaighted For example, consider two hotspots, saynd j, in

random waypoin{WRW) algorithm. The random way- & map. A suitable maximum trip length will force the
point formulation in [20] has been used widelyrtiodel sensor to consider more possible paths to move between
user/device movement in a mobile network, in which and j, thereby reducing the possibility of “warming
case there is a significant debate about whether the modp! the intermediate cells as a side effect.

is realistic or not. Notice that the concern of realism doe&daptivity to prior coverage. Because of the stochastic
hot apply in our problem context, since our ObJeCtIV?lature of the WRW algorithm, and the correlations

is not to model a mobile network, but to develop Between cells visited due to their physical positions, the

algor!thmfor determining thg sensor movement. In Ouélgorithm’s actual coverage at any point in time may
algorithm, a sensor moves in a sequencarips. The deviate from the given threat profile. To avoid such

tth _ttr_lp, t = ?I’ 1,.. .,dstargs atta (unlf]f)rmlly) ranciljom deviations from accumulating to an unacceptable level,
position in cell s, and ends at a (uniformly) ran oM\yve propose to use the sensor’s prior coverage as an input

position In celld;, the ( + 1)st trip starts at a rand.o_m in selecting the next waypoint. Specifically, we compute
position in cells;+; = d; and ends at a random pos't'oqheundercoverage)f each cell, say, as

in cell d;1, and so on. We pick a random position with
uniform probability inside a cell, because each cell is Cy(i) = max{0, ®(i) — I, (i)}

of non-negligible dimension§ x S. For simplicity, we

assume henceforth that when we say a trip starts/endderell, (i) is the fraction of time that ceflwas visited

at a cell, it is understood that the trip starts/ends atly the sensor up until the end of thh trip. Then, the

random position inside the cell. The movement frorprobability that a candidate cell, sayis chosen as the
s; to d; occurs in a direct, straightline path at speedext waypointd,,  is proportional ta”(i). Considering



undercoverage as a selection criterion has the obviosiSectwaypoint (L, P, Cy, z¢)
advantage of ramping up visits to cells that have beennitialize u ~ U (0,1), a:=0, b:= 0, ¢ := 0;

; ; For each celk within rangeL of x;
neglected relative to their threat level, at the expense of If (Accessible: 7))

cells that have received too much prior coverage. a:=a+Ci(i);
Random pause time.To raise the coverage of an i Z<%t(8)
= C(2);

undercovered cell, saj in order to improve matching Endif
with the threat profile, the most efficient approach is Endfor
for the sensor to stay im for long enough to correct For each celii within rangeL of
the undercoverage. The approach is extremely efficient ¢:=c+Ci(i)/a;

h ¢ If u<e
because it requires zero overhead of movement and there pick =411 as random point inside
is no possibility of inadvertently changing the coverage with uniform probability;
of other cells due to the (now avoided) movement. e Cr(i)/(a x b);

However, by staying at the current cell longer, clearly gngfor

the sensor will take longer before it can return to a return (z¢41,p);
previously visited cell. Hence, fairness suffers, showiqg/RW_aLP(q) L P)

that there is an inherent tradeoff between improving \whie(true) -

matching efficiently/accurately and being fair. The issue (zt+1,p) := SelectWaypoin(L, P, Cy, x¢);

is not unlike scheduling in traditional systems areas. move t0w¢41;

For example, in CPU scheduling, improving fairness O ot forp time;

requires increased context switching between processes,EndWﬁﬁe ateCe(D):

which reduces the efficiency of the global system. To Fig. 1. Specification of WRW-aLP algorithm.

enable a useful and controllable tradeoff between the

RMSE and unfairness metrics, the sensor, on reaching

the destination of a trip, will stay at the destinationhe matching respect. Additionally, the pause time pa-
for a pause timep (in time units) before selecting therameter in WRW-aLP enables a useful tradeoff between
next waypoint. The timep is drawn randomly from matching and fairness, an issue that we will address in
a distribution determined by a pause time paramet8ection IV-A.

denoted byP (in time units). Specifically, at the end The WRW-aLP algorithm is specified in Fig. 1. In

of the t¢th trip at destination celi, p ~ U(0,€%(i)), the specification, th&VRW-aLP program takes as input

where the threat profiled, and theL and P parameters of
(i) = P x ®(1) the WRW-aLP algorithm. The functidBelectWaypoint
Yicc®:(4) takes four input parameters, in which the parameter
] ) x; is the current position of the sensor, and returns
for the basic WRW algorithm, and the destination and pause time of the next trip. The

P xTi(i) Accessiblefunction (whose specification is not shown)
= -2\ checks if all the intermediate cells connecting a given
EjecCi(j) pair of cells are accessible, and can be precomputed
for each given pair. Either for-loop iBelectWaypoint
Has a complexity ofD(L?), where L, = L/s. Hence,
RW-aLP requires)(L?2) computation after every trip
of length O(L). The space costs of storing either the
Family of algorithms. Notice that the complement of map of cells or the precomputettcessiblefunction is
features augmenting the WRW algorithm can be ortho@(m x n). Hence, WRW-aLP can handle given inacces-
onally combined, thereby offeringfamily of algorithms sibility constraints and has an efficient implementation.
for threat-based mobile coverage. We will denote &he experimental results in Section VIII evaluate the
particular augmented algorithm by WRWat, where algorithm’s effectiveness in also matching the fairness
feat is a list of letters enumerating the augmentations @nd accuracy objectives.
alphabetical order, and the letters L, a, and P, are for the . ,
“maximum trip length”, “adaptivity to prior coverage”, A~ Matching, Fairness, and Power
and “random pause time” features, respectively. For The dual concerns of matching and fairness means
example, WRW-L denotes the WRW algorithm with thehat coverage algorithms must be compared in a two-
maximum trip length constraint, and WRW-aLP denotedimensional space. Moreover, the inherent tradeoff be-
the algorithm with all the three features enabled. Theveen the two concerns means that it will be impossible
experimental results in Section VIII show that eacko rank many interesting algorithms in a total order.
feature contributes positively to accurate matching, arRbather, in comparing two algorithms, sayand B, A
hence the WRW-aLP algorithm is the most powerful imay perform better in one respect, but less well in the

(i)

for the WRW variant that is adaptive to prior coverag
and( is the set of cells that are candidates as the n
waypoint.



other. Whetherd or B is preferred in a given situation we start with a zera® and magnify the bracket by the
should depend on the context of the situation, such gslden ratio until we overshoot the optimal input of the
the preferences of the user, or the characteristics of thewer function. During the magnification, we also shift
application. We seek an approach to rank algorithms ltiye bracket to eliminate intervals that are known not to
a single, unifying metric, after appropriately considgrincontain the optimal point. Given the two abscigsand
the specifics of the situation. b, we then compute the optimal poiatwithin a andb.

The major difficulty in unifying the two metrics is Two methods of searching for the optimal point are used:
that they are of completely different natures: Matchinfl) the inverse parabolic interpolation technique, and
is measured as an RMSE, which is a percentage qud®) the golden section search. The first method is more
tity, whereas unfairness is the threat-weighted averagficient and converges faster than the second method
exposure time, a time quantity, between successive visitsa linear interpolation technique. However, it may not
to the same cell. How do we combine a percentagéways succeed for certain types of function. Therefore,
value and a time quantity, while addressing the isswee fall back on the golden section search in the case
of user preferences? Our approach recognizes thathat the inverse parabolic interpolation fails to produce
user, in the context of a given application, derives a solution.
certain level of “satisfaction” from an achieved level of
performance, in either performance aspect. For example, VI. MULTIPLE SENSORS

in monitoring a residence for flooding, the user may be When the surveillance area is large, one sensor may

quite satisfied (i.e., have a 100% level of satisfactior?.)Ot be sufficient to cover the area with good perfor-
if each room is checked at least every o hours, Qi ,ee. Increasing the speed of the sensor may help to

average, bL.’t is gomp_letely dissatified (i.e., have a ze 8me extent, in that the sensor can move more quickly
level of satisfaction) if a room may be left unchecke tween cells that require attention and apportion its

for a whole day, on average. Between two hours and rvice more efficiently. A more effective approach is,

hours, the user’s level of satisfaction decreases lineagly,. o or to fundamentally increase the amount of sens-
from one to zero. The example can be expressed a‘T‘nB reso[Jrces available by deployingsensors.
utility fl_mction Uz (), similar to the one in Fig_. 6, yvhere The most simple strategy of deployingsensors is to
the u_t|I|ty, a number_between zero and One, 1S given asd%ploy them independently, each working according to
function of the unfairness of coverage. A similar ut|I|tythe WRW-aLP algorithm. The stochastic property of the
Iﬁgcltj'&ﬂ;(;rsrga]fﬁzg%ndgpfggdagﬁfi‘é‘\sga g‘ﬁ?genzes algprithm_makes it likely for these sensors to distribute
After mapping both RMSE and unfairnesé vaIuethe'r service well over the network area, even without
. |3 ' Zdvance schedule planning or close coordination at run
to ut!l|ty quantities, we can define thppwer_ of an time. There is a concern, however, if the number of
algorithm as a weighted sum of the utilities; i.e., sensors is large relative to the size of the surveillance
power(f,m) =a xUs(f) + (1 —a) x Up(m) area. As the area becomes relatively smaller, it is more
where f and m are, respectively, the unfairmess anl kely for the sensing ranges of the sensors to overlap.
RMSE achieved by’the algorithrr,1 < a < 1 he overlappe(_j coverage is wasteful because one sensor
' = = would be sufficient to detect a threat event by our

expresses the importance of faimess relative to matmjgﬂjblem formulation. As a result, we also investigate two

::ntgf g?ﬁ:&ywae;;cggtttﬁt' 232?@?&% vaet \;]vggsaa)r/]_thh Feliminary approaches of deploying multiple sensors in
gor P i '9"%" coordinated manner:

power than another algorithm. ) )
« Knowledge of global coverage profileln this ap-

V. FINDING OPTIMAL PAUSE TIME PARAMETER proach, we assume that each sensor knows, at time

Characterizing the power as a function of the pause t, the fraction of time that a cell is covered pny
time parametet” is extremely difficult and expensive, sensor up to time. In adapting to the effects of the
as it would require solving the steady-state RMSE and prior coverage, each sensor will then determine, in-
unfairness values over the whole range of interesPof dependently but based on the undercoverage of each
To efficiently compute the optimdP that maximizes the cell by all the sensors, the cells that should receive
power, without completely knowing the power function,  priority attention in the future coverage. Two obser-
we use Brent's method [21]. vations are in order. First, although the sensors use

Brent's method is a one dimensional optimization the global coverage history as information, they will
method that does not require the derivative of the ob- not communicate in order to avoid visiting the same
jective function. It is suitable for our problem because cell at the same time. Hence, redundant coverage is
(1) characterizing the power function is expensive, and not eliminated. Second, there is clearly a need to
(2) the derivative of the power function may not exist. disseminate the coverage information of individual

To apply Brent's method, we first need to find two  sensors to the global network in an implementation
abscissaz and b that bracket the optimaP. To do so, of this approach. The information exchange can be



readily supported if we assume, for example, thédence,
existence of a cellular phone infrastructure and the . . .
sensors are equipped with the necessary celluldr (7. ()] =E [Tsrﬁdo @)+ Lo (1)}
communication interfaces. Nevertheless, our goal in

this paper is not to consider how such information =E[Tgmdo ()] 4. +E [TSn—ﬁdn—l (i)]
exchange should occur nor its runtime overhead. _
Instead, we are interested in the benefits of having = 2 2 Vo)V (@) Tp—q (1) + -
. R . .. . pEM geM
the global information assuming that it is available.
« Static division of responsibilites. This approach N N T :
seeks to eliminate the redundancy of coverage by +p§\4 qez,:w n=1 (P)¥n (@) Tp—q (7)

partitioning the responsibilities for covering dif-

ferent cells between the sensors in a disjoint buBy the Markov property, we have

complete manner. In essence, each sensor;,say i

assigned gob as a connected set of cells, denoted N )
by J;, such thatJ;(\J; = ¢ for i # j, and E[Z. (0] = Z Z Z © (p)® (9) Tp—q (0)
U, Ji = {full set of accessible cels Each sensor SO peMaEM _
then uses the WRW-aLP algorithm to cover itsThe steady-state coverage profile of the WRW algorithm
set of cells in a threat-based manner. There akkis then

different ways to perform the partitioning into jobs. neE) = lim,, ., o E[T5(i)]

In particular, thedivision by equal aregroduces limp ooy E[T0(i)]

jobs that have an equal area of cells that are vem

accessible. Thelivision by equal threaproduces Y e(p) () Ty (i) @
jobs whose cells have the same aggregate threat _ __pEMaEM

level. In general, multiple actual divisions exist that T Y D (@) Tp—g(@)

can achieve either objective. VEMpEMaEM

VII. ANALYTICAL RESULT VIIl. SIMULATION RESULTS

We report simulation results to illustrate the perfor-
We present the analytical property of the basic WRWhance of our algorithms. We consider coverage of a
algorithm. number of metropolitan cities, including San Francisco,
Theorem 7.1:Let M denote a surveillance map. TheLos Angeles (LA), Atlanta, Paris, London, and Tokyo.
steady state coverage distribution of the WRW algorithifhe boundary longitudes/latitudes of the cities and the
is given by sizes of their populations are shown in Table I. The
_ maps of Atlanta and LA are also shown in Fig. 2. As
> > ()P (q) Tp—q (9) formulated in Section IlI, each city area is divided into a
peMaEM — two-dimensional grid of cells. The division is according
-,ZM ZM 2}\/[ @ (p) @ (q) Tp—q (i) to the LandScanTM 2004 database of global population
veMpeias data [22]. LandScanTM provides population data in a
where cellular grid format with each cell corresponding to
_ (p — q) Nl 1/120 degree of longitude in width and 1/120 degree of
Tpq (i) = ——— latitude in height. For ease of interpretation, we project
the LandScan data to cartesian coordinates, according to
is the expected sojourn time in cellduring a single World Geodetic System '84 (WGS84). The projection
trip from p to q. gives uss ~ 0.75 km, or a cell size of about 0.75 km
Proof: Let s, € M andd, € M denote the starting 0.75 km. Due to space constraints, we present selected
and ending cells of the trifp In the WRW algorithm, the experimental results in this section. The presented results
mobile sensor selects the next waypaint; according are representative.
to the threat profiled upon arriving atd;. It is clear ~ We assume that terrestrial mobile sensors are used
that the waypoint selection process is an order-0 Marka@ver the cities to monitor, say, air pollutants with health
process, with the waypoint distribution after ttth trip  impact on people. Hence, the threat level of a cell is
given by ¥, (i) = ® (3). defined as the size of the population inside that cell,
Let 7,, (i) denote the total sojourn time in cellafter because a more densely populated area will endanger
n trips. 7,, () can be written as the sum of sojourn timesnore people if left uncovered. Since we model terrestrial
in cell 7 for all the trips0,...,n — 1. We have sensors, water areas in a map (e.g., the Pacific Ocean
part of the LA map) are defined to be inaccessible. In
Tn (1) = Tsysdo (1) + Ty —ay, () +...+7Ts,_,—a,_, (1) the maps used in our experiments, the water areas do

I (i) =

v



Northeast Southwest Average Height

City Dimension  Population
Latitude Longitude Latitude Longitude Width (km) (km)
Atlanta 34.033333 -84.025000 33.700000 -84.616667 54.75 36.97 40 x 70 1982086
London 51.600000 0.100000 51.400000 -0.308333 28.35 22.25 24 x 48 4228314
Los Angeles 34.195833  -118.120833 33.895833  -118.570833 41.55 33.28 36 x 54 4599286
Paris 49.029167 2.687500 48.729167 2.012500 49.51 33.36 37 x 81 8449465
San Francisco 37.820833  -122.304167 37.687500  -122.545833 21.30 14.80 16 x 29 802056
Tokyo 35.812500 139.962500 35.545833 139.504167 41.49 29.59 32 x55 12072968
TABLE |

POSITION AND POPULATION DATA OF SIX CITIES

mmmmmmmm

Fig. 3(a) and Fig. 3(f) give the threat profiles of
_ Atlanta and LA, respectively. Figs 3(b)—(e) show the
& achieved steady-state coverage profiles of the WRW,
«] WRW-a, WRW-aL, and WRW-aLP algorithms, respec-
. tively, for Atlanta. Figs 3(g)—(j) show the corresponding
. achieved steady-state coverage profiles for LA. For the
cxmmanng s T WRW-aLP algorithm in this experiment, the pause time
(b) Los Angeles, CA parameter is set to be one time unit. Visually, the
Fig. 2. Maps of the cities under surveillance. matching with the threat profile improves as we progress

from Fig. 3(b) to Fig. 3(e), or from Fig. 3(g) to Fig. 3()).
The visual observation can be quantitatively confirmed

not partition the land areas. Hence, it is possible for ong referring to Fig. 4(a), in which we show the RMSE
sensor to cover all the land areas given enough time.achieved by each algorithm normalized to the RMSE

of the WRW algorithm (i.e., the RMSE of the WRW
orithm is shown as one, and the normalized RMSE

! : al
performance measures of matching and unfalrnesséﬁgeach algorithm shows the algorithm's percentage

defined in Section Ill. For matching, we scale thIm rovement over WRW.) For the five cities shown
RMSE by the population size of the city, which gives FI) di | d 'h lized )
a mismatch measured in number of people. For e uding Atlanta and LA, the normalized RMSE consis-

unfaimess, we report the weighted average expos&?@tly decreases from left to right. Additionally, Fig. (b

time in ime units where each time unit is 180 second shows the unfairness of each algorithm normalized to

Unless otherwise specified, the following parameters :tthe unfaimess of the WRW algorithm. Observe that

) ; i . ree unfairness numbers of WRW-a, -alL, and -aLP are
used in the experiments: (1) A mobile sensor moves g

a speed ofiS / time unit, or about 34.8 mph; and (2)W out the same, and are significantly smaller than the

. : X RW unfairnessWe conclude that the progression of
Where applicable, the maximum trip length parameter |s ;
eatures, namely, a, aL, and aLP, each contributes to
set to beL = 10 x S. Results are reported as averages . .
: , . increased matching accuracy, and WRW-aLP is the most
of 50 simulation runs. The 25- and 75-percentiles are ; . .
Rowerful algorithm in the matching respect. Moreover,

Pacific

Manhattan
Ocean Beach

Parameters and performance measuresWe use the

reported in certain experiments, in which case they aje L 7 X .
) 2 ~1he more accurate matching is achieved without hurting
shown to be close to the means, and are omitted in the . .
. . -~ e fairness.
other experiments because of their small deviations from

the means. B. Impact of pause time parameter

We illustrate the impact of the pause time parameter
P on the matching and unfairness measures, for the case
In this experiment, we use one sensor to cover a cibf one mobile sensor using the WRW-aLP algorithm. In
area, using various instances of the WRW family dahis set of experiments, we vary the pause time paramter

algorithms in Section IV. Because the cities are large,tid be P = 1, 2, 4, 8, 16, 32, and 64 time units. Fig. 5
takes one sensor a significant amount of time to covehow combined plots of the RMSE (left y-axis) and
an entire city area. In particular, the unfairness numbettge unfairness (right y-axis) as a function &f, for

are of the order of several hours, which represent @tlanta and LA. Notice that for both figures, as the
inherent limitation due to constrained physical resourcgsause time increases, (1) the unfairness increases, in a
and not due to the coverage algorithms. As the resultspartly constant, partly linear manner; and (2) the RMSE
Section VIII-D show, the unfairness can be significantidecreases likd /(P + ¢), wherec is a small constant.
decreased by using multiple sensors. Nevertheless, e also show the 25- and 75-percentiles of the RMSE
results in this section illustrate the major performanda Table Il for the set of runs for Atlanta. Notice that the
properties of the coverage algorithms. values deviate little from the averages. We will omit the

A. Matching by one sensor
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Fig. 3. Threat profiles and steady-state coverage profilenaifility algorithms for Atlanta (a)—(e) and LA (f)—(j).
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. o Fig. 5. RMSE/unfai tradeoff by of WRW-aLP.
25- and 75-percentiles of the data distributions for the 9 unfaimess tradeoff b o a

future sets of experiments, due to their closeness to the
means. From this set of experimenig conclude that . .

. ; . e use the utlitiy functionsl/y((-) andU#(-), shown
th_ere is an inherent tradeoff between the _matchmg ar{l Fig. 6 for the RMSE (scaled by the population size)
fairness of coverage, and that the pause time parameter

provides a means to control this tradeoff for the WR _nd unfair_ness, respectively. Because the citie_s are of
aLP algorithm different sizes, we use,, = 320 andt; = 3500 time

units for Atlanta, andt,, = 1100 and t; = 3700
time units for Los Angeles. Fig. 7 plots the power
measure achieved against the pause time paranitter
We evaluate the method in IV-A to compute the powdbr « = 0.5,0.7,0.9. Notice that in general, the power
of single sensor coverage for Atlanta and Los Angelesicreases initially ag® increases, because of improved

C. Power and Optimal Pause Time



[ P@meunn 1 [ 2 [ 4 [ 8 [ 16 [ 32 [ 64 ]
RMSE average]| 258.44 | 201.83 | 136.35] 76.98 | 37.69 | 17.30] 7.32
25-percentile|| 258.32 | 201,57 136.12 | 76.61 | 37.60| 17.28 7.28
75-percentile]| 258.76 | 201.89| 136.59| 77.21 | 37.75| 17.34| 7.35

TABLE Il
AVERAGE AND 25-/75PERCENTILES OFWRW-ALP RMSEOF POPULATION DISTRIBUTION FORATLANTA, AS A FUNCTION OF P.

Atlanta

matching. The power reaches a single peak and then os;
decreases afterwards, because a further increade in 07
causes the unfairness to become too high. 056
We apply Brent's method (see Section V) to find the
optimal P that maximizes the power. For each of the
power functions shown for each city, Brent's method
converges in less than 12 iterations. For LA ang- 0.7,
Fig. 8 shows the compute® and the corresponding
power achieved, after each iteration of the algorithm.
As shown in the figure, the first three iterations are used 0

—e—Alpha = 0.5 —#— Alpha = 0.7 —&— Alpha = 0.9

0.5 -

Power

0.4 -

0.3 -

0.2

0.1 -

0 10 20 30 40 50 60 70

to bracket the optimaP, and the next seven iterations Pause Time
identify that optimal. Table Ill summarizes the optinfal 0o - Los Angeles
computed for the two cities, far = 0.5,0.7,0.9. They 08 | —*—Alpha=05 —=—Alpha =07 —4—Apha =0.9

agree with the highest corresponding power shown in ;|
Fig. 7. We conclude that Brent's method can compute |

the optimal power parameter accurately and efficiently. 05 |

Power

0.4 4

1.0 1.0
0.3 1
0.8 08
0.2
:?o.s Eo.e o1
Sos o4 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.2 02 0 10 20 30 40 50 60 70
Pause Time
0.0~ 00+ i :
0 500 1000 1500 . 1000 2000 3000 4000 Fig. 7. Power functions.
RMSE of Population Unfairness (time unit)
(@) Unm (b) Ur

Fig. 6. Utility functionsi/aq andUr.

Pause time (time unit)

City Atlanta Los Angeles 15 | [ o4 E
o 05 07 09 05 07 09 ros3
Optima P (time unit| 10.00 650 258 1595 9.90 4.72 10 to2
Power 070 068 072 0.75 075 0.79 51 101
# iterations 12 9 17 9 10 13 0 . . - - - 0
0 2 4 6 8 10 12
O P B TABLE I” A |_A Iteration
PTIMAL P FOUND BY BRENT' S METHOD FORATLANTA AND LA, ) . .
_ Fig. 8. ComputedP and corresponding power achieved after each
a=0.50.7,0.9. F1g. € :
iteration of Brent's method for LAqx = 0.7.
D. Multiple sensors that increasing the sensing resources will reap roughly

This set of experiments illustrates the effects of muproportionate benefits, for up to 8 sensors and for a
tiple sensors. Figures 9(a) and 9(b) show the unfairndasge city like Atlanta. However, Fig. 9(b) shows that
and RMSE of the WRW-aLP algorithm, respectively, fom contrast to fairness, the steady-state matching does
Atlanta. The number of sensors, is varied to be 2, 4, not improve as we use more sensors. This is because,
and 8. We compare the cases when the sensors opefateboth nc and gk, the global coverage profile of all
independenty (the case labeled “nc”) or when they hatiee sensors will, over the long term, approach the global
access to the global coverage profile (the case labelsalerage profile of each individual sensor. Hence, the ad-
“gk™), as defined in Section VI. Notice from Fig. 9(a)ditional sensors do not fundamentally benefit a long-term
that for both nc and gk, the unfairness roughly halvgserformance measure such as matching. Conversely,
each time we double the number of sensors, showingultiple sensors actually introduce the possibility of



inefficieny when more than one sensor visit the samess of efficiency due to a non-optimal partitioning of the
cell at the same time, which may hurt the matchingoverage areas, which restricts the ability of one sensor
In the case of up to 8 sensors for Atlanta, the degree tof help monitor a cell assigned to another sensor. Notice
redundant coverage is small. Hence, the RMSE increagkat while we have studied only basic coordination

slowly. approaches, the almost best-case fairness gain with small
RMSE for independent operation suggests that, unless
g 268 the map is small relative to the number of sensors, it will

266 -
264 -
262 -

be difficult for any coordination approach to significantly
outperform no coordination.

H
&
=
-:5‘260, In summary,we conclude that (1) using more sen-
E 258 | sors can significantly improve the fairness of coverage
S 256 | (as quantified by a lower unfairness value), although
'2254— the marginal improvement due to an additional sen-
% 252 A sor decreases slightly as the number of sensors in-
1 2 4 8 creases; (2) using more sensors reduces the accuracy
Number of Sensors of matching slightly, under either independent operation
900 (2) RMSE or knowledge of the global coverage profile; and (3)
~ 800 +— Bnc_ Mgk for multiple sensors, basic coordination approaches —
E 700 +— based on either knowledge of the global coverage or
£ 6001 a static division of responsibilities — do not improve
§igg: performance over independent operation. The almost
£ 300 1 best-case performance nfsensors without coordination
£ 200 1 shows that the stochastic movement enables the bene-
= 108* fits of multiple sensors to be largely realized, without

additional schedule planning/runtime coordination over-
heads. Moreover, Fig. 10 shows that if some of the
sensors fail in a stochastic, uncoordinated deployment,
the system of sensors will achievegeaceful degrada-

1 2 4 8

Number of Sensors
(b) Unfairness

Fig. 9. Performance of WRW-aLP for varying number of sensors

Atlanta. tion in performance without explicit recovery/replanning
actions.
We further evaluate the impact of the pause time pa-
rameter on the RMSE and unfairness results for multiple IX. CONCLUSIONS

sensors. The results for Atlanta are shown in Fig 10, for We have formulated the problem of covering a surveil-
1, 2, and 4 sensors and both cases of nc and gk. Tlaace area by one or more mobile sensors based on a
results show that the nature of tradeoff remains the sameneral threat profile. We proposed matching and fair-
in the multiple sensor case as in the single sensor casess as basic though antagonistic performance measures
We evaluate the coordination strategies presenteddfithe problem. We showed how a complement of tech-
Section VI. We use four sensors for Atlanta. The caliques can be combined orthogonally to give a WRW-
ordination strategies are as presented in Section ®ILP algorithm that can achieve excellent matching and
and include: (1) independent operation (case “nc”), (Yood fairness at the same time. Moreover, a pause time
knowledge of global coverage profile (case “gk”), (3parameter in WRW-aLP enables a controlled tradeoff
static partitioning by equal accessible area, and (4) stabietween the fairness and matching, and the optimal
partitioning by equal total threat. For (3) and (4), wearameter that maximizes the combined power metric
implement two different actual partitions that satisfycan be efficiently computed.
each of the equal area (cases “ea-1" and “ea-2") andWe showed that the achievable fairness can be limited
equal threat (cases “et-1" and “et-2”) objectives. Thby the availability of too few sensors for too large an
achieved unfairness and RMSE of the different coordarea. In that case, the use of more sensors is effective.
nation approaches are shown in Fig. 11. First, notice th@ur multiple sensor results, while preliminary, suggest
for static partitioning, the performance can be dependehat a simple deployment strategy of independently
on the actual partition used. The largest differenceperating the sensors in stochastic movement, is vi-
though still small, is for the unfairness between ea-dble, because it is largely effective while requiring no
and ea-2 (134 vs 137 time units). Second, independenistomized planning based on the number of sensors.
operation has highly competitive performance against tidoreover, the independent operation approach degrades
coordinated approaches. In fact, it performs the best gnacefully when a subset of the sensors fail, even without
all the cases except for fairness under ea-1. This showsplicit recovery/replanning actions.
that while independent operation can cause redundanWhile we assume that the threat profile is static,
coverage, the performance penalty is not larger than thes clear that by changing the input of the mobility
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algorithm to a new profile, we can eventually adap{7] Y.-C. Wang, C.-C. Hu, and Y.-C. Tseng, “Efficient deplognt
to the new threat pattern. Hence, adapting to changes
in the threat because of slowly changing conditions
— e.g., the distribution of population, the locations ofjg
strategically important facilities, and seasonal vaiasi
in the weather — should not be a concern. Nevertheles
in the case that the threat profile changes quickly, suc
as the effects of a sudden storm on plume propagation,
the challenge is significantly harder and has not beé&]
solved.
We are building a campus-scale sensor testbed basgedg

on the proposed mobile coverage algorithms. In the
testbed, radiation/chemical sensors are carried by |
cost robots that support wireless communication a

programmable movement.
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