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Abstract— Sensor based surveillance of geographical regions changes in the deployment network. This is not unlike how
is interesting for applications such as military reconnaisance, home robots are designed to move to navigate around fuenitur
environment tracking, and habitat monitoring. For interesting and vacuum clean whole floor areas, or how robotic mowers

targets to be detected, they must fall within the sensing rage . .
of sensors. Static sensors can be used to ensure coverage &FY to cover entire lawns despite the unexpected presence of

whole areas, provided that they have sufficient density andra  trees, rocks, fences, and other objects.
corr_ectly placed With_respect to each other and to the deplaylfent In this paper, we develop concepts of network coverage
environment. Operating conditions may change, however, whh by a set of mobile wireless sensors for given AOIs, possibly

may render the original placement results invalid. To grealy . . . -
reduce the number of sensors required, and to be robust under given deadline constraints. We present analyticailie

against dynamic network conditions, mobile sensors can besed {0 characterize various fundamental statistical properof
to cover given areas of interest (AOI) over time. Moreover, AOI coverage, when sensors move according to an enhanced

stochastic movement will be effective in overcoming probabstic  random waypoint model — either by design or when carried
and unforeseen changes. In this paper, we develop concepté Ohy mobile hosts engaging in random movement — within a

network coverage by a set of mobile sensors for given areas . . .
of interest, possibly under deadline constraints. Our anajtical closed network area with boundaries. In particular, we make

results characterize the fundamental statistical properies of A0l the following contributions:
coverage when sensors move according to an enhanced random « We characterize the spatial distribution of a set of in-

waypoint model. Extensive experimental results are repogd to .
verify and illustrate the analytical results. dependent Sensors_ 'n_ steady Sta_te' We Show that al-
though sensors are initially placed in any cell with equal

- Introduction babilit d lly likely to pick Il
. . . probability and are equally likely to pick any cell as
Surveillance of geographical areas by wireless sensors has the endpoint of each trip, they are likely to concentrate

many inter.e§t.ing .appli.c.ations. For e?(ample, the detecr!ibn around the middle of the network region in steady state.
enemy activities in military reconnaissance, the trackaig We calculate the expected time until an AOI is first
su_spects n a nelg_hporh(_)od, the Qetectmn of plumes (e_.g., covered or until the AOI is covered entirely, and the
p]?'soﬂ galls and rad|att|(_)n) lnhthg_ter:wlronmf\zt, ind the _“@Ck' expected time a sensor will stay within a cell after entry.
of ahimal movement In a nhabriat. In NEWOTK SUVEIANCe, = \ya 4150 derive the number of sensors required to cover an

thbe covedrage problem_etrr\]_surte;]s that Interesting ta;rgets in the AOI with expected time not exceeding a given deadline.
observed area are Within Ih€ Sensing range of one or More -, present extensive experimental results to verify and
deployed sensors. Static sensors can be used to provide cov- . .

. . . g illustrate the analytical results.
erage, provided that they have sufficient density, theisisgn
range can be accurately characterized (commonly accotding
a perfect disk assumption), and they are strategicallyeplacA. Paper organization

with respect to each other and to the deployment environment

Once the coverage and placement problems have be_eﬂ_he balance of the paper is organized as follows. In Sec-
solved, however, operating conditions may change to renci'é)ln Il, we Eregen: ot_urt_ne'ltwork ar:_d mofvementmodels, alnd de-
the original results invalid. For example, sensors may dail rivé Some basic stalistical properties of sensor move u

their sensing range may weaken, and obstacles may apptggrmOd.els' In Sectl_on lll, we analyze the coverage prob_teml
that affect a sensor’s ability to cover its local area. Mitigg a sur\_/elllance mobile sensor netwqu. In Sectlon v, .dleers
the effects of these unforeseen situations will require yg)[<per|r_nental results verifying and '"‘43”‘?‘““9 the _tl“amal_
more sensors (beyond the covering of entire areas) to Eov al)_/S|s are presented. Related work is discussed in 8éttio
significant redundancy of coverage and hence a safety mar fretion VI concludes.
against possible changes.

To greatly reduce the number of sensors required, and to be II. System Model
robust against underspecified or dynamic network condition
mobile sensors can be used to cover giageas of interest In this section, we define our system model for a mobile
(AOI) over time. Moreoverstochastianovement will be effec- sensor network, and state our assumptions. After that, some
tive in managing situation uncertainties and non-deteistim fundamental characteristics of our model are presented.



A. Network structure 1) Expected distance and time of a single trip: Intu-

itively, the larger the size of the network, the more the expe

We model our network as a two-dimensiodalby Y rect- j distanceE[L)]. This relationship can be captured formally
angular area, wher& andY (in distance units) are the width in the following theorem

and the height of the network, respectively. (Generalirato ) .
3D space is straightforward.) The whole network is divided Theorem 1 Let X and Y denote the width and height of
e network. The expected distance for a single trip is

into fixed sizes by s square regions. Each square region wi

be called acell hereafter. Cells form a virtual grid over the L = X—Q(ln l1+sina | sino )+ X? (1- 1 )
network area, and each cell has a unique integer cell ID. To 6Y cos o cos?a’  15Y2 cos® a
simplify boundary conditions, we assume that bafhand Y’ i Y_2( cosa . 1— cosay . v? (1- 1
are integral multiples of. Thus the whole network has x n 6X "sin® o sina 15X2 sin® a”’

cells, wherem = X/s andn = Y/s. wherea = arctan(Y/X).

Proof: Let (z1,y1) and (z2,y2) denote the starting and
ending points of a trip, respectively. Note that both thetistg

. _ and ending points are uniformly chosen from within the
For sensor movement in the network, we consider tl?]

. ) ; fetwork. LetZ = |1 — z2] and W = |y1 — yo|, SO that the
widely used random waypoint model [5] enhanced to include tance of the tripZ, is v/Z2 + 2. To obtain the expected
minimum speed specification [10], which ensures meaning '

distanceE[L], we first compute the distributions &f and
steady state nodal speeds. Under the model, a node moves‘l/(f%; foIIows[ ], we fi pu ISHIbUt

sequence dffips. The destination of a trip is chosen uniformly  The pdf ofz1, or that ofz,, is given by f(z) = 1/X. The
from the network area, and the nodal speeds chosen cdf of Z can then be calculated by:

uniformly between a minimum spedd,,;, and a maximum P
speedV,,..- In a trip, the node moves at constant speed P
v directly towards destinatiop. After the mobile node has = / / f(@1) f(z2)dzidas
reached, it will repeat its decision for the next trip (possibly 0 Jag—z
. . . X+z X

after a pause time) starting from We further assume that (i) _ / f(mg)/ F(@y)dzds
the starting point of the first trip is randomly chosen based o X—2 wo—2

X—z zTo+2

+/ f($2)/ f(x1)dz1dzs
z To—2

B. Movement model

Fz(z) = P(Z=l|a1—a| <2)

uniform distribution and (ii) there is no pause time between
the end of a trip and the start of the next tkip.

To characterize the stochastic movement, we use the nota- = z2+z dord
tions defined in Table I. +/O f(”)/o fla1)dwdee
22X — 22
— 27227 0<z2<X.
TABLE | X
STOCHASTIC MOVEMENT VARIABLE DEFINITIONS. By differentiating Fz (=), we obtain the pdf ofZ as follows:
Variable Definition Type 2 2%
Vinaz maximum nodal speed | input parameter fz(z) = Fz(2) = X X%
Vinin minimum nodal speed input parameter
vV nodal speed random variable Similarly, the pdf ofi¥ is given by:
T trip time random variable 5 5
L trip distance random variable —F _ s _ v
E[V] expected speed statistical property fw(w) w(w) Y Y2’
E[T] expected trip time statistical property . T
E[L] expected Tip distance Stafistical property Now, E[L] can be calculated through the joint distribution of

C. Statistical properties of nodal movement

This section derives some fundamental statistical prageert

Z andW. Let a = arctan(Y/X). We have

E[L)

of our stochastic movement model. They include: (1) the

/Y /X V22 +wlfzw(z,w)dzdw
o Jo
/Y /X V22 + w2 fz(2) fw (w)dzdw
o Jo
Yorx 2 22,2 2w
/0 /O \/z2+w2(———)(?—ﬁ)dzdw

X X2

expected distance covered in a trip and the expected tinte tha _ X—Q(ln l+sina | sina )+ X° (1- 1 )
a trip takes, (2) the distribution of the movement direction 612’ Ccos o cos? o 151;2 cos® a
taken by the sensor, and (3) the expeaepburn timefor the Y® cosa  1—-cosa Y 1
. + (== In — )+ (1 — —5—).
sensor to stay in a cell. 6X “sin® « sin o 15X sin® a
This completes the proof of Theorem 1. O

1The latter assumption is not required in most of our resalts] it can be

removed in a straightforward manner.

For the expected timé&[T] of a single trip, it should be
related to (i) the size of the network and (ii) the input speed



constraints. One might think thab[T] = E[L]/E[V] = (0.v)
E[L)/(Vinaz + Vimin)/2). However, this is not correct as
there is correlation between the random variatfieand V.
Theorem 2 gives the correct expression fif'] based on the
input parameters.

. . . (x,y)
Theorem 2 The expected time of a single trip can be “
expressed as 5
E[T] = E[LIEV ]
In(Vinaz/Vinin) [ X%, 14sina  sina 09 (X0 x
= Ve — Vo o7 " T oosta)
maw min cos o cos” a Fig. 1. The definition of in a X x Y area.
n X3 (1- 1 ) Y_2(coso¢_ln1—cosa)
15Y2 cos3 o 6X “sin® o sin o
Y3 1
+ Ex? 1- m)] , Wherea = arctan(Y/X).
2 2
Lot 0<6 <
Proof: Since (i) E[T] = E[LV~!] and (ii) the random Xz sec(@tn) o 55
variablesZ and V" are independent of each other, we have (50, )y = 2XY -
E[T] = E[L|E[V~1]. The value ofE[V~1] can be calculated ’ Yoyl esc2(04m) s s 5.
by 2XY ’ 2 > > 03,
x? sec?(5+n)
1 Vmaz 1 Vmaz 1 2XY ! 53 S 6 S 2m.
Vimin Vimin maz = Vmin i e
I (Venas /Vinin) Then the corresponding cdf d&fis:
= - 2 —
Vimaz — Vmin y~(cot 772;10)(6-’_”)) s 0<06<6s;
L . i (X_l’)Q(tan(5+n)_tan(51+n)) 51 <8< 80t
Theorem 2 follows by combining the above equation WIthF(6|(:c )= 2XY PO =0 =0
Theorem 1. O TN (Y =) (cot(B2+n) —cot (5+1)) 50 < 5 < 6u
2XY ’ 2 > > 03,
2) Expected trip direction: Although the destination of 2 (tan(5+n)—tan(53+n)) 5a <5< o
each trip is uniformly distributed within the network area, 2XY ' 8=0=a

Theorem 3 shows that the distribution of the movement _ _
direction is not uniform, and gives an explicit formula for Given the pdf ofé at location(z, y), the desired expected

the distribution. movement direction is equal to
Theorem 3 The expected movement direction at a given 2n
position (x, ) can be expressed as Eb|(z,y)] = of(0|(z,y))do
0
1,2 2 o2 2 2
, . :/ Y~ csc (5+n)5d6+/ (X —x)“sec (6+n)5d6
Y sin(d1 + n) o1 0 2XY s 2XY
E|(z,y)] = In ; - + 5 2 .2 ' 2 2 .2
2XY sinn tan(d1 4 n) + 3 (Y —y)“csc (6+n)5d5+ Tz sec ((5—&—77)5(1(S
(X —x)? [, cos(62+7) s 2XY s 2XY
In + 02 tan(d2 + 1) — o1 tan(dr + n) 2 3
2XY COS(61 + 77) . y2 In Sin(51 + 7]) _ 01 I
+ Y —y)* {ln sin(d3 + 1) 92 _ d3 T 2XY sinn tan(d1 + 1)
2XY sin(d2 +n)  tan(d2 +n) tan(ds +n) X — )2 5
22 cosn ( QX;/'C) {ln COS(; 1) + 02 tan(d2 + 1) — d1 tan(d1 + n)}
+ {ln + 2w tann — 5 tan(ds + 77)] , cos(d1 + 1)
2XY cos(ds + 1) n (Y —9)? { N sin(ds + n) 02 B 03 }
Wheres = arctan(y/z), 1 = 7 — 1 — arctan(y/(X — 1)), 62 = 22XY sin(d2 +n)  tan(d2+7n)  tan(dsz +1n)
m — arctan((X — x)/y) — arctan((X — x)/(Y — y)) + 61, and +2;C(Y {ln Et((;si ) + 2 tann — 6 tan(ds +77)] ‘
83 = m — arctan((Y — y) /(X — 2)) — arctan((Y — y)/z) + 6. cos\03 1
Proof: The distribution of the movement direction in aThis completes the proof of Theorem 3. O

2a by 2a square area is given in [3]. We extend this result
to a network area with dimension¥ by Y. Let 6 be the
the movement angle at the given poipat,y) as defined in
Figure 1. The pdf ob is given by:

In the next section, we will further show how the distributio
of the movement direction affects the coverage by a mobile
Sensor.



3) Expected cell sojourn time: Once a mobile sensor 2V, SR_V mE Then, we have
enters a cell, it may stay in the covered cell for an amount of  \Vmaz™ Ymin
time called thesojourn timebefore leaving. The sojourn time

) = - v(t,v)dv = d
depends on both the cell size and the movement model. V(;g*( ) /,w Jrv (b, v)dv /,oo olfz.v (2 v)dv

now derl\{e th_e expected ce_II sojourn time. . c ‘Efm.am o B2 — (%})Qd% 0<t< 2R
To begin with, we approximate the network cell by a circle e e
that has the same area (see Figure 2). The radius of the,circle_ ) ¢, 3R/t o/ R2 — (%})2@7 V2R‘ <t< ‘/2_1?;
denoted byR, is therefore e e e
2R
s 07 t 2 %nin '
R=— ~0.56s.
tVinin g tVinaz :
NG Ca(t) ([0 = (Pgp)22 = 1 — (Bggen)2/2),
0<t< 2
B = tvmin c .
Calt) 1= (=T P <t< g
2R
07 t 2 %nin :

Then, the expected sojourn time in Case (i) becomes

E[T)] = /oo tfr(t)dt

B SR y
N 377(‘/77“11' - Vrnin)
2R
Fig. 2. Approximation of cell as a circle. Vmaz 1 tVinin \23/2 tVinax \2\3/2
Zo(1 = (2 _ _(maz
{/ - e - - ] a
To calculate the expected sojourn time for a cell, we /—Vfﬁn 1(1_(thin)2)3/2dt
consider two movement scenarios of a sensor in a single trip: 2n i 2R
(1) The sensor starts or finishes the trip inside the cell;(@hd SR Vinas

The sensor passes through the cell during the trip. Theorem2 37V, .. —V,...) In Vinin
gives the expected sojourn time in each of the two cases.

Theorem 4 Assume that each network cell is a circle with, 10 calculate the expected sojourn time in Case (i), Zlet
. . . . . . denote the sojourn time when the sensor is in a cell other
radius R2. Within a single trip, the expected sojourn ime  than the starting and the ending cells (i.e., when the sensor
(i) when the sensor is inside the starting cell (or inside th§ crossing a cell in the trip). LeZ. be the length of chord

ending cell) is where the path of the sensor intersects the cell. The pdf.of
is
37 (Va — Vinin) Vi 2= ey 05

- . L . Then, the expected chord length is
(i) when the sensor is not inside the starting cell or the XP gint

ending cell (i.e., when the sensor passes through a cell 2R AR
in the trip) is E[Z] :/0 2fz(z)dz = —.
AR In Vinaz Also, in the proof of Theorem 2, we know that

F(Vrnaw - szn) Vmin E[Vfl] _ ln(vmaw/vmin)
Proof: We first calculate the expected sojourn time of Vmaz — Vimin

Case (i). LetT; denote the sojourn time that a mobile sensorrhen, the expected sojourn time in Case (ii) becomes
is inside the starting cell, and l&8f denote the nodal speed.

The joint pdf of 7; andV is given by _ 1 4R Vinas
E[TC] N E[ZC]E[V ] N 71'(‘/maav - Vrnin) n szn ’
friv(to) = [lfzviz0). This completes the proof of Theorem 4. O

whereZ is the distance from the sensor to the cell boundary. To compute the overall expected cell sojourn time, we need
The bdf of 7. can be calculated using the above 'oing) consider both the “inside a cell” and “crossing a cell’&as
P ’ 9 J enoting the probabilities for each case to happerPhy;q.

pdf as follows: LetC; = TR2(Vias—Viin) and C2(t) = gngd P.ossing, T€Spectively, we have the following corollary.




Corollary 1 The expected cell sojourn tin¥g[T] is Coverage in the refined caseln Theorem 5, we assume
that each cell is equally likely to be the next cell covered.
This assumption seems reasonable at first glance, since the
As an example, for a network divided into 5 by 5 cell3, whole network is partitioned into cells of equal size, and th
and P, are 0.454 and 0.546, respectively. Further discussiopbability for any cell to be chosen as a trip’s destination

E[Ts] = PinsideE[Ti] + PcrossingE[Tc]-

on the cell sojourn time will appear in Section V. according to the random waypoint model, is the same for all
. . . the cells.
I1l. Coverage in Surveillance Mobile Sensor Network However, apart from the two end points of a trip, a mobile

When a surveillance sensor moves in a network, it monitogsgnsor covers also the intermediate cells along the path.
an area within its sensing range. In this section, we giveesonmtuitively, cells near the center of the network are codere
interesting results on the sensor coverage. They include: tore frequently, although the destination of a trip is equall
How long does it take before a sensor will cover a target celiRely to be any cell. The intuition is supported by Theorem 3
(2) How long does it take before a sensor will cover any cellvhich states that the sensor is most likely to move to theezent
or all the cells, in ararea of interestAOI)? (3) Given the goal of the network.
to cover a target cell or an AOI within an expected deadline
constraint, how many sensors are required?

In the following, we say that a sensooverssome celli
whenever the sensor enters céllfrom another cell. This
happens when a trip passes through éelor cell i is the
trip’s destination. Hence, if a sensor enters a cell, leayes
and enters it again, we say that the cell is covered twice
the sensor.

Based on the above observation, we make precise our
calculation of a sensor's coverage. We first calculate the
probability P; that celli is the next cell covered when the
sensor leaves a cell. To simplify the analysis, we represent
each cell by its center. Then, for each cglive enumerate all
he possible routes to other cells in the network, where terou
tween two cells is defined as the line segment between the
centers of the cells. Each time a cell is intersected by aerout
A. Coverage of a cell the cell is given a credit of one. Lef denote the total credits

We are interested in how long it takes before a given cell Egcelved by celi, and Ctora; be the total number of credits

covered. We first consider the case in which we naively (afd'c" to all the cells. We have; = c;/Crotal. Based onf,

incorrectly) assume that any cell in the network is equal&{e can apply Theorem 6 to find the expected number of cells

likely to be the next cell covered, whenever the sensor heave's'ted before a given cell is covered.

a current cell. After that, we correct the naive case by nefini  Theorem 6 Let P; denote the probability that cell is the
the probability distribution of the cells that will be coeer next cell covered when the sensor leaves a current cell. The
next, thus obtaining the desired time of coverage. expected number of cells visited by the sensor beforei ¢&ll

Coverage in the naive caseln this case, when a mob"ecovered, denoted aBl[ki], is 1/ .

sensor leaves a cell, the probability that a gitarget cell ~ Proof: Let P;{k} denote the probability that the mobile
is the next cell covered i$/(mn), wherem andn are the sensor first covers cell after visiting & other cells. Then, we

number of rows and columns in the grid of cells, respectively

Let k& denote the number of cells visited by the sensor before P{k}=(1-P)'P, k>1
the sensor covers the target cell. Theorem 5 gives the eegbect
value of Ek]. The expected value df; for cell i is then given by

Theorem 5 Assume that each cell is equally likely to be oo o0 B 1

the next one covered when a sensor leaves a current cell. Elkil =Y kP{k} =) k(1-P)"'P = B

The expected number of cells visited by the sensor before k=1 k=1

covering a target cell is equal to the total number of cellsThis completes the proof of Theorem 6. O

in the network; i.e. E[k] = mn. Notice that the expected number of cells visited by the senso

Proof: Let P{k} be the probability that the sensfirst before covering a given target célbecomesl/P; instead of
covers the target cell after visiting other cells. Then we 1/(mn).

have
Let E'[k] denote the expected number of cells visited before
P{k} =(1— L)k%L’ E> 1. the target cell is covered. Suppose that all the cells have
mn mn - equal probability to be the target cell. TheR;[k] is equal
Then, the expected number of cells visited by the sender(1/(mn)) > (1/F;). In general, if we letP,,,4ci—i be
before covering the target cell can be calculated by the probability that cell is the target cell, the®’[k] becomes:
= = 1 k—1 1 / - - Pta'r‘get:i
E[k] = kP{k} = k1 — —)""1'— =mn. E'k] = Piarget=iElki] = —
; k2:1 mn mn ; g ; P;
This completes the proof of Theorem 5. 0 We now discuss another interesting question: How long does

it take before a sensor will cover the target cell? First, let



Tiarger be the time for a sensor to first cover the target ceBy substituting E[kao1,.,] for E’[k] in Equation 1 in Sec-
Since it may take several trips before the sensor enters thon 1lI-A, we have the expected travel time before covering
target cell, we letP(V,;,) be the probability that the sensora cell in the AOI as:

takes exactlyNV,,;, trips before entering the target cell, and

let E[T,,,,] be the expected time of the$é,., trips. Then, E[Taon.,] = E[Ts|Elkaor,.,],

we have: ‘ ‘

and similarly, we may approximate the expected number of

E|Tiarget] = P(Nirip)E|Tn,,., . .
(Tiarged = D P(Norin) BT trips before the mobile enters the AOI by:

N=1
In practice, it is difficult to obtain precise values for both E[T:)Elkaor,.,]
P(Nyrip) and E[Ty,,,,]. We now give an approximation of E[Nerip] ~ ET]

E[Turget] based on the expected cell sojourn tiigl;]. As
the cell sojourn time is the time that a sensor will stay in

a cell, the expected travel time before the sensor covers théVe proceed to answer the second question, namely how
target is about: long does it take for the mobile sensor to cover all the cells
in an AOI?
ETiareet] = E[T,E'[K]. 1 -
[Tiarge (T 1A @) Theorem 8Let P; be the probability for the target cellto
Also, we may approximate the expected number of trips befd?€ covered by the sensor at any instance of time. The expected
the sensor covers the target cell, based on the expected fgnber of cells visited by the sensor

time E[T], as follows: (i) before covering all the cells in an AOI is
E[T5|E' K] 0
ElNerip) ~ E[T] @ Elkaor] <> kY (1-P)F'P;
k=1 i€AOI

B. Coverage of an area of interest (AOI)

We extend the coverage results of single cells to thé") before covering all the cells in the network is

coverage of ararea of interest(AOI) by a mobile sensor. In co  mn
general, an AOI consists of one or more cells in the network Elka] < Z kZ(1 —P)*1p,.
area that form a target of surveillance. We are interestédan k=1 i=1
questions: (1) How long will it take before a mobile sensor
enters an AOI? (2) How long will it take before the sensor proof: To prove (i), we observe that the term
visits all the cells in the AOI. S kY ieaor(l — P)*'P; is the sum of E[k;], for

We answer the first question as follows. As defined igll ; € AOI, where k; is the number of cells visited
Section llI-A, P; is the probability that celt is the next cell by the sensor before covering cell On the other hand,
covered. Then, the probability that the sensor will nextezay > icaor ki represents the number of cells in the sequence
cell in the AOl is equal tdPao; = 3, 4o; Pi- ONcePaoris  of cells visited before every cell in the AOI is covered.
obtained, we can make use of the following theorem to answgbte that by the time we have visited the last cell in the
the first question. above sequence, each cell in the AOI has been covered at

Theorem 7 Given Paos, the expected number of cellsIeaSt once. Thuskaor < 3 ;c40s ki Which implies that

visited by a mobile sensor before it enters any cell in an AOF (K401l < EX i aor kil = Xic aor Elki], where the latter
denoted asE[kaor,., ], is 1/Paor. equality follows from the linearity of expectat_|on. Cominig
these results, we complete the proof for (i). The result of
Proof: Let Paor{k} be the probability that the mobile (ii) follows as a special case of (i), in which the AOI is the
sensor may move to any cell in an AOI after visitihgeells.  whole network area. 0

The expected value of is: .
P Let T4o; and T,; denote the times to cover all the cells

in the AOI and the time to cover all the cells in the network,
respectively. Based on the expected cell sojourn tif{&;],

Elkaor,..] = Zk(l — Paor)* ' Paor we can approximat&[T4o;] by

k=1
E[Taor1] = E[T]E[kao1],

Pyor - k k
= k(l1—- P —k(1-P —
1— Pyor ;:% ( A01) ( 401)"lk=0 and we can approximatg[T,;] by
1
= E[Ta”] ~ E[TS]E[k}a”].
Paor



C. Number of sensors for coverage within a deadline A. Expected trip distance

In some applications, we need to cover a target cell or AOI The expected trip distandg[L] is calculated by Theorem 1.
within a deadline constrairi®. If D is small (i.e.,E[T;4rge] >  TO Verify our calculations, we perform a simulation expegirh
D), one sensor is not sufficient, and multiple sensors,$af Wwith 10,000,000 trips and measure the average trip distance
them, must be used to reduce the expected coverage time.afhese trips. Our simulation is run on networks with vasou
assume that the movements of tNesensors are independenctell sizes. In Table I, we show the calculated results ard th
and follow the same distribution. Then, we have the follayvinmeasured results. Notice that our calculation&'0f] are close

theorem. to the measured average trip distances.

Theorem 9 Suppose that we are given the deadlingthe TABLE I
expected cell sojourn tim&|T;], and the probabilityP; for COMPARISON BETWEEN CALCULATED AND MEASUREDE[L] (IN M).
the target celli to be covered at any instance of time (if there [ rectangle | calculation | measuremeni
is only one sensor). Then, to cover the target ceWithin 100x100 52.14 52.14
expected timeD, the minimum number of sensors required is éggxégg 22%% 223%%

X . .

about [ E[L]/(DFy)]. T000X1000 52141 520.40

Proof: If N > 1/P;, the target cell is expected to be covered 1500x1500 782.11 782.24

by at least one sensor at any time. Therefore, we consider the
case of N < 1/P;. To obtain the desired approximation in istributi f direct
this case, we assume that the sensors move in a coordindted'stribution of movement direction

manner, such that they spedd7;] time in a cell, and then |5 Theorem 3, we show that the distribution of the move-

they visit a new cell at the same time. Under this assumpti : L :
the probability for any of theV sensors to cover the targe(ﬂ)ﬂt:"nt angley varies by location in the network. In Figure 3(a),

cell after visitingk cells is we illustrate the cdf of in a given area of50 m x 150 m, for
different network locations [e.g(30, 30) refers to the location
Py A{k} =1 —-NP)"'NP, k>1 where ther andy-coordinates are both 30 m]. From the figure,

notice thaty shows an approximate uniform distribution at the
and the expected number of cells visited by a sensor befe@nter of the network but is less uniform when approaching
one of theN sensors covers the target cell, denotedchy, the network boundary.
is Applying the distribution of the movement direction, we can
deduce the probability for a mobile sensor to move towards
o the target cell, from different current positions. In Figug(b)
Elkn,] = Zk(l ~ NP)*'NP;, = NP and Figure 3(c), we illustrate an example scenario in which
k=1 ’ the target cell to be covered is located at the center cell of a
150 m by 150 m network area, where the area is divided into
5)f>< 5 cells. The figures show the probabilities for the mobile
sensor to move towards the target (center cell) from differe
E[Trargetn] = Elkn,|E[T:] = EIT] current cell positions. _We find that the_ _closer the sensor is
NP from the center, the higher the probability that it will move
towards the center cell.

Hence, the expected time to cover the target cell by any
the N sensors is

where E[T] is the expected cell sojourn time for a sensor.

By setting E[Ttarge:] < D, we have: C. Expected cell sojourn time

N & [E[Ts]" In calculating the expected cell sojourn time in Theorem 4,
DPp; we have derived the pdf df; (whereT; is the sojourn time
which gives the minimum number of sensors for covering t hen the sensor is at the end pomts_of a trip) as a function
of three system parameters: the cell size, the maximum nodal

target cell within expected tim®. - :
- - speed, and the minimum nodal speed. Here, we illustrate the
We can similarly compute the expected minimum numbé

of sensors for covering an AOI by a deadliibe We omit the eﬁ_?ﬁt off:het"se fparﬁmgter§ or;]the p.df.F. 4 The th
details due to space constraints. e effect of cell size is shown in Figure 4(a). The three

curves in the figure are the corresponding cdf§ pfvhen the

cell size is 30 m, 50 m, and 100 m, respectively. From the

figure, we find that at any fixed probability, when the cell size
We first present simulation results on the basic statistical the network is smaller, the sojourn time is smaller. This

properties of our stochastic movement model. We then ptesanplies that E[T;] is smaller when the cell size is smaller,

results on the sensor coverage problem. Results are rdpowtdich agrees with our calculation.

as averages over a large number of experimental runs. Errofhe effect of maximum nodal speed is shown in Figure 4(b).

bars are omitted because the standard deviations of thiésrestihe three curves in the figure are the corresponding cdfs of

are small. T; when the maximum speed is 5 m/s, 10 m/s, and 15 m/s,

IV. Simulation Results
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. o . TABLE Il
respectively. The result implies th&iT;] is smaller when the
CALCULATED AND MEASURED EXPECTED SOJOURN TIMES(IN S).

maximum speed is higher, which agrees with our calculation.
.. . . . s Vrmzac Vmin E[Tl] E[Tc] Tmaac E[T.s} Tmeasu're
The effect of minimum nodal speed is shown in Figure 4(c){ m) | (m/s) | (m/s)

The three curves in the figure are the corresponding cdfs ¢f 30 10 270 | 407| 846 3.44 3.05
T; when the minimum speed is 1 m/s, 3 m/s, and 5 m/s 15000 18 ‘;-éz 1615-32 ;gég lg-?ﬁ lg-(ﬁ
respectively. The result implies thalT;] is smaller when the - : : : :
minimum speed is higher, which agrees with our calculation|—2 > 85| 8771 14101 7.65 7.65
P gher, g 50 | 10 417| 625] 1410 531 507

3.39 5.09 | 14.10| 4.32 3.96
4.63 6.95| 18.81 | 5.89 5.81
4.17 6.25| 14.10 | 5.31 5.07
3.83 575 | 11.28 | 4.87 4.56

In Theorem 4, we illustrate how to calculate the expected >0 | 15
cell sojourn time. Next, we compare the expected sojourn 20 | 10
times E[T;] and E[T.] calculated in Theorem 4 with the gg 18
measured times obtained from simulations. For each setting
of (s, Vinaz, Vinin) Shown in Table Il (recall that denotes
the cell dimension), we perform an experiment consisting of
100 independent 200,000-second runs to obtain the aver&yeCovering a target cell
sojourn timeT},eqsure-

g B W[ Bl BB BB

In this section, we show the results for a mobile sensor
In the table, we present the calculated tinfeld;], E[T.] to cover a target cell. In the experiments, a 150 m by 150
and E[T], the measured tim&,,c,sure, and the maximum m network is divided into 25 cells of size 30 m 30 m.
possible sojourn tim&,,,... = 2 x R/V,,;, for each setting. We report average measurement results over five independent
Note thatE[Ts] and Thcqsure are always bounded b¥[T;] 2,000,000-second simulation runs. First, in Figure 5(ag, t
and E[T.], which agrees with the fact thd[T;] is bounded probability of the mobile sensor covering each cell is shbwn
by E[T;] and E[T.] (see Corollary 1). a vertical bar. The corresponding probability obtainedtigh
simulation is shown in Figure 6(a). Observe that the catedla



results closely match the measurement results. Also, in balifferent conclusions (e.g., the non-uniform steadyessgiatial
figures, notice that the sensor is more likely to visit cefis idistribution of sensors in our case).
the center of the network, which implies that the sensorgsass The distribution of movement direction in Section II-C.2
through the center area more frequently than the bounddas been studied in [3]. Their focus is to solve the handoff
area, as discussed in Section IlI-A. problem, and they consider the network area to be a square.
We now illustrate the expected number of trips taken b®ur analysis applies to arbitrary rectangular areas, anécts
a mobile sensor before it covers a target cell. Figure 5(a)minor (but quantitatively significant) mistake in the @orr
and Figure 6(b) show the calculated and measured resu#gonding formula in [3]. By analyzing the expected movement
respectively. Observe the close similarity between the tweirection of mobile sensors, we find that a mobile sensor is
figures. Also, both sets of results show that the sensor spenbst likely to move towards the central area of the network.
fewer trips before covering a cell in the network center thdh is possible to draw a similar conclusion that the mobile
covering a cell in the network boundary. nodes will concentrate at the network center by considering
The calculated and measured results for the expectethé intersection of each infinitesimally small cell with agle
average time to cover a target cell are given in Figure 5(t)p of the random waypoint model [1]. Our work uses the
and Figure 6(c), respectively. These figures are similahéo tnon-uniform distribution property to derive other statiat
corresponding figures for the expected number of trips.  properties of the mobility (e.g., the expected trip timejan
Lastly, we present results for coverage of the whole netwoskeveral important coverage results of general AOIs, whieh a
area. In Theorem 8, we derive the formula for the expectedt the focus in [1].
number of cells visited before the whole network area is cov-
ered. To verify the formula, we measure the average numbers
of cells visited over five 2,000,000-second simulation runs We have presented fundamental analytical results about
for different cell sizes. The results are reported in Tabe | S€nsor movement according to an enhanced form of the widely
which suggest that the derived formula closely matches tHged random waypoint model. We have demonstrated the

VI. Conclusion

actual average values. relevance of our results by relating them to the problem of
TABLE IV area coverage in surveillance mobile sensor networks. We ha
CALCULATED AND MEASURED EXPECTED NUMBER OF CELLS VISITED  answered several important performance questions regardi
BEFORE THE WHOLE NETWORK AREA IS COVERED the coverage of an area of interest (AOI) by a set of mobile
[ grid | calculation | measurement sensors. Extensive experimental results reported venfy a
3x3 45 63 illustrate the accuracy of the analytical results.
5x5 325 349
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(a) Probability of sensor covering different
cells (average = 0.04, maximum = 0.0788)

(b) Expected number of trips before cover-
ing a cell (average = 11.431, maximum =
18.667)

Fig. 5. Calculated coverage results.

(c) Expected time before covering a cell
(average = 59.604 s, maximum = 97.353 s)
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Fig. 6. Measured coverage results.
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(c) Average time before covering a cell (av-
erage = 52.721 s, maximum = 105.169 s)



