
CERIAS Tech Report 2007-56

On Area of Interest Coverage in Surveillance Mobile Sensor Networks

by Yu Dong, Wing-Kai Hon, and David K. Y. Yau

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



On Area of Interest Coverage in Surveillance
Mobile Sensor Networks

Yu Dong, Wing-Kai Hon, and David K. Y. Yau
Department of Computer Science, Purdue University, West Lafayette, IN 47907

{dong, wkhon, yau}@cs.purdue.edu

Abstract— Sensor based surveillance of geographical regions
is interesting for applications such as military reconnaissance,
environment tracking, and habitat monitoring. For interesting
targets to be detected, they must fall within the sensing range
of sensors. Static sensors can be used to ensure coverage of
whole areas, provided that they have sufficient density and are
correctly placed with respect to each other and to the deployment
environment. Operating conditions may change, however, which
may render the original placement results invalid. To greatly
reduce the number of sensors required, and to be robust
against dynamic network conditions, mobile sensors can be used
to cover given areas of interest (AOI) over time. Moreover,
stochastic movement will be effective in overcoming probabilistic
and unforeseen changes. In this paper, we develop concepts of
network coverage by a set of mobile sensors for given areas
of interest, possibly under deadline constraints. Our analytical
results characterize the fundamental statistical properties of AOI
coverage when sensors move according to an enhanced random
waypoint model. Extensive experimental results are reported to
verify and illustrate the analytical results.

I. Introduction

Surveillance of geographical areas by wireless sensors has
many interesting applications. For example, the detectionof
enemy activities in military reconnaissance, the trackingof
suspects in a neighborhood, the detection of plumes (e.g.,
poison gas and radiation) in the environment, and the tracking
of animal movement in a habitat. In network surveillance,
the coverage problemensures that interesting targets in the
observed area are within the sensing range of one or more
deployed sensors. Static sensors can be used to provide cov-
erage, provided that they have sufficient density, their sensing
range can be accurately characterized (commonly accordingto
a perfect disk assumption), and they are strategically placed
with respect to each other and to the deployment environment.

Once the coverage and placement problems have been
solved, however, operating conditions may change to render
the original results invalid. For example, sensors may failor
their sensing range may weaken, and obstacles may appear
that affect a sensor’s ability to cover its local area. Mitigating
the effects of these unforeseen situations will require yet
more sensors (beyond the covering of entire areas) to provide
significant redundancy of coverage and hence a safety margin
against possible changes.

To greatly reduce the number of sensors required, and to be
robust against underspecified or dynamic network conditions,
mobile sensors can be used to cover givenareas of interest
(AOI) over time. Moreover,stochasticmovement will be effec-
tive in managing situation uncertainties and non-deterministic

changes in the deployment network. This is not unlike how
home robots are designed to move to navigate around furniture
and vacuum clean whole floor areas, or how robotic mowers
try to cover entire lawns despite the unexpected presence of
trees, rocks, fences, and other objects.

In this paper, we develop concepts of network coverage
by a set of mobile wireless sensors for given AOIs, possibly
under given deadline constraints. We present analytical results
to characterize various fundamental statistical properties of
AOI coverage, when sensors move according to an enhanced
random waypoint model – either by design or when carried
by mobile hosts engaging in random movement – within a
closed network area with boundaries. In particular, we make
the following contributions:

• We characterize the spatial distribution of a set of in-
dependent sensors in steady state. We show that al-
though sensors are initially placed in any cell with equal
probability and are equally likely to pick any cell as
the endpoint of each trip, they are likely to concentrate
around the middle of the network region in steady state.

• We calculate the expected time until an AOI is first
covered or until the AOI is covered entirely, and the
expected time a sensor will stay within a cell after entry.
We also derive the number of sensors required to cover an
AOI with expected time not exceeding a given deadline.

• We present extensive experimental results to verify and
illustrate the analytical results.

A. Paper organization

The balance of the paper is organized as follows. In Sec-
tion II, we present our network and movement models, and de-
rive some basic statistical properties of sensor movement under
the models. In Section III, we analyze the coverage problem in
a surveillance mobile sensor network. In Section IV, diverse
experimental results verifying and illustrating the theoretical
analysis are presented. Related work is discussed in Section V.
Section VI concludes.

II. System Model

In this section, we define our system model for a mobile
sensor network, and state our assumptions. After that, some
fundamental characteristics of our model are presented.



A. Network structure

We model our network as a two-dimensionalX by Y rect-
angular area, whereX andY (in distance units) are the width
and the height of the network, respectively. (Generalization to
3D space is straightforward.) The whole network is divided
into fixed sizes by s square regions. Each square region will
be called acell hereafter. Cells form a virtual grid over the
network area, and each cell has a unique integer cell ID. To
simplify boundary conditions, we assume that bothX andY
are integral multiples ofs. Thus the whole network hasm×n
cells, wherem = X/s andn = Y/s.

B. Movement model

For sensor movement in the network, we consider the
widely used random waypoint model [5] enhanced to include a
minimum speed specification [10], which ensures meaningful
steady state nodal speeds. Under the model, a node moves in a
sequence oftrips. The destination of a trip is chosen uniformly
from the network area, and the nodal speedv is chosen
uniformly between a minimum speedVmin and a maximum
speedVmax. In a trip, the node moves at constant speed
v directly towards destinationp. After the mobile node has
reachedp, it will repeat its decision for the next trip (possibly
after a pause time) starting fromp. We further assume that (i)
the starting point of the first trip is randomly chosen based on
uniform distribution and (ii) there is no pause time between
the end of a trip and the start of the next trip.1

To characterize the stochastic movement, we use the nota-
tions defined in Table I.

TABLE I

STOCHASTIC MOVEMENT VARIABLE DEFINITIONS.

Variable Definition Type
Vmax maximum nodal speed input parameter
Vmin minimum nodal speed input parameter
V nodal speed random variable
T trip time random variable
L trip distance random variable
E[V ] expected speed statistical property
E[T ] expected trip time statistical property
E[L] expected trip distance statistical property

C. Statistical properties of nodal movement

This section derives some fundamental statistical properties
of our stochastic movement model. They include: (1) the
expected distance covered in a trip and the expected time that
a trip takes, (2) the distribution of the movement direction
taken by the sensor, and (3) the expectedsojourn timefor the
sensor to stay in a cell.

1The latter assumption is not required in most of our results,and it can be
removed in a straightforward manner.

1) Expected distance and time of a single trip: Intu-
itively, the larger the size of the network, the more the expected
trip distanceE[L]. This relationship can be captured formally
in the following theorem.

Theorem 1 Let X and Y denote the width and height of
the network. The expected distance for a single trip is
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whereα = arctan(Y/X).

Proof: Let (x1, y1) and (x2, y2) denote the starting and
ending points of a trip, respectively. Note that both the starting
and ending points are uniformly chosen from within the
network. LetZ = |x1 − x2| and W = |y1 − y2|, so that the
distance of the trip,L, is

√
Z2 + W 2. To obtain the expected

trip distanceE[L], we first compute the distributions ofZ and
W as follows.

The pdf ofx1, or that ofx2, is given byf(x) = 1/X . The
cdf of Z can then be calculated by:
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By differentiatingFZ(z), we obtain the pdf ofZ as follows:

fZ(z) = F ′
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.

Similarly, the pdf ofW is given by:
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.

Now, E[L] can be calculated through the joint distribution of
Z andW . Let α = arctan(Y/X). We have

E[L] =
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This completes the proof of Theorem 1. �

For the expected timeE[T ] of a single trip, it should be
related to (i) the size of the network and (ii) the input speed
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constraints. One might think thatE[T ] = E[L]/E[V ] =
E[L]/((Vmax + Vmin)/2). However, this is not correct as
there is correlation between the random variablesT and V .
Theorem 2 gives the correct expression forE[T ] based on the
input parameters.

Theorem 2 The expected time of a single trip can be
expressed as

E[T ] = E[L]E[V −1]

=
ln(Vmax/Vmin)

Vmax − Vmin

»
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–

, whereα = arctan(Y/X).

Proof: Since (i) E[T ] = E[LV −1] and (ii) the random
variablesL and V are independent of each other, we have
E[T ] = E[L]E[V −1]. The value ofE[V −1] can be calculated
by:

E[V −1] =

Z Vmax

Vmin

1

v
f(v)dv =

Z Vmax

Vmin

1

v(Vmax − Vmin)
dv

=
ln(Vmax/Vmin)

Vmax − Vmin
.

Theorem 2 follows by combining the above equation with
Theorem 1. �

2) Expected trip direction: Although the destination of
each trip is uniformly distributed within the network area,
Theorem 3 shows that the distribution of the movement
direction is not uniform, and gives an explicit formula for
the distribution.

Theorem 3 The expected movement direction at a given
position (x, y) can be expressed as

E[δ|(x, y)] =
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whereη = arctan(y/x), δ1 = π − η − arctan(y/(X − x)), δ2 =

π − arctan((X − x)/y) − arctan((X − x)/(Y − y)) + δ1, and
δ3 = π − arctan((Y − y)/(X − x)) − arctan((Y − y)/x) + δ2.

Proof: The distribution of the movement direction in a
2a by 2a square area is given in [3]. We extend this result
to a network area with dimensionsX by Y . Let δ be the
the movement angle at the given point(x, y) as defined in
Figure 1. The pdf ofδ is given by:
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(0,0)

(x,y)

Fig. 1. The definition ofδ in a X × Y area.
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Then the corresponding cdf ofδ is:
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Given the pdf ofδ at location(x, y), the desired expected
movement direction is equal to
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This completes the proof of Theorem 3. �

In the next section, we will further show how the distribution
of the movement direction affects the coverage by a mobile
sensor.
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3) Expected cell sojourn time: Once a mobile sensor
enters a cell, it may stay in the covered cell for an amount of
time called thesojourn timebefore leaving. The sojourn time
depends on both the cell size and the movement model. We
now derive the expected cell sojourn time.

To begin with, we approximate the network cell by a circle
that has the same area (see Figure 2). The radius of the circle,
denoted byR, is therefore

R =
s√
π
≈ 0.56s.

O

P

B

β

α

R

s/2

ρ

z

Fig. 2. Approximation of cell as a circle.

To calculate the expected sojourn time for a cell, we
consider two movement scenarios of a sensor in a single trip:
(1) The sensor starts or finishes the trip inside the cell; and(2)
The sensor passes through the cell during the trip. Theorem 4
gives the expected sojourn time in each of the two cases.

Theorem 4 Assume that each network cell is a circle with
radius R. Within a single trip, the expected sojourn time

(i) when the sensor is inside the starting cell (or inside the
ending cell) is

8R

3π(Vmax − Vmin)
ln
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;

(ii) when the sensor is not inside the starting cell or the
ending cell (i.e., when the sensor passes through a cell
in the trip) is

4R
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ln
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Vmin
.

Proof: We first calculate the expected sojourn time of
Case (i). LetTi denote the sojourn time that a mobile sensor
is inside the starting cell, and letV denote the nodal speed.
The joint pdf ofTi andV is given by

fTi,V (t, v) = |v|fZ,V (z, v).

whereZ is the distance from the sensor to the cell boundary.

The pdf of Ti can be calculated using the above joint

pdf as follows: LetC1 =
2
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3πt2(Vmax−Vmin) . Then, we have

fTi
(t) =

Z

∞

−∞

fTi,V (t, v)dv =

Z

∞

−∞

|v|fZ,V (z, v)dv

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

C1

∫ Vmax

Vmin
v

q

R2 − (
tv
2

)2dv, 0 ≤ t ≤ 2R
Vmax

;

C1

∫

2R/t

Vmin
v

q

R2 − (
tv
2

)2dv, 2R
Vmax

≤ t ≤ 2R
Vmin

;

0, t ≥ 2R
Vmin

.

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

C2(t)
“

[1 − (
tVmin

2R
)2]3/2 − [1 − (

tVmax

2R
)2]3/2

”

,

0 ≤ t ≤ 2R
Vmax

;

C2(t) [1 − (
tVmin

2R
)2]3/2, 2R

Vmax
≤ t ≤ 2R

Vmin
;

0, t ≥ 2R
Vmin

.

Then, the expected sojourn time in Case (i) becomes

E[Ti] =

Z

∞

−∞

tfT (t)dt

=
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×

(
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To calculate the expected sojourn time in Case (ii), letTc
denote the sojourn time when the sensor is in a cell other
than the starting and the ending cells (i.e., when the sensor
is crossing a cell in the trip). LetZc be the length of chord
where the path of the sensor intersects the cell. The pdf ofZc
is

fZc(z) =
2

π
p

(2R)2 + z2
, 0 ≤ z ≤ 2R.

Then, the expected chord length is

E[Zc] =

Z 2R

0

zfZ(z)dz =
4R

π
.

Also, in the proof of Theorem 2, we know that

E[V −1] =
ln(Vmax/Vmin)

Vmax − Vmin
.

Then, the expected sojourn time in Case (ii) becomes

E[Tc] = E[Zc]E[V −1] =
4R

π(Vmax − Vmin)
ln

Vmax

Vmin
.

This completes the proof of Theorem 4. �

To compute the overall expected cell sojourn time, we need
to consider both the “inside a cell” and “crossing a cell” cases.
Denoting the probabilities for each case to happen byPinside

andPcrossing, respectively, we have the following corollary.

4



Corollary 1 The expected cell sojourn timeE[Ts] is

E[Ts] = PinsideE[Ti] + PcrossingE[Tc].

As an example, for a network divided into 5 by 5 cells,Pi

andPc are 0.454 and 0.546, respectively. Further discussions
on the cell sojourn time will appear in Section IV.

III. Coverage in Surveillance Mobile Sensor Network

When a surveillance sensor moves in a network, it monitors
an area within its sensing range. In this section, we give some
interesting results on the sensor coverage. They include: (1)
How long does it take before a sensor will cover a target cell?
(2) How long does it take before a sensor will cover any cell,
or all the cells, in anarea of interest(AOI)? (3) Given the goal
to cover a target cell or an AOI within an expected deadline
constraint, how many sensors are required?

In the following, we say that a sensorcoverssome celli
whenever the sensor enters celli from another cell. This
happens when a trip passes through celli, or cell i is the
trip’s destination. Hence, if a sensor enters a cell, leavesit,
and enters it again, we say that the cell is covered twice by
the sensor.

A. Coverage of a cell

We are interested in how long it takes before a given cell is
covered. We first consider the case in which we naively (and
incorrectly) assume that any cell in the network is equally
likely to be the next cell covered, whenever the sensor leaves
a current cell. After that, we correct the naive case by refining
the probability distribution of the cells that will be covered
next, thus obtaining the desired time of coverage.

Coverage in the naive case:In this case, when a mobile
sensor leaves a cell, the probability that a giventarget cell
is the next cell covered is1/(mn), wherem and n are the
number of rows and columns in the grid of cells, respectively.
Let k denote the number of cells visited by the sensor before
the sensor covers the target cell. Theorem 5 gives the expected
value ofE[k].

Theorem 5 Assume that each cell is equally likely to be
the next one covered when a sensor leaves a current cell.
The expected number of cells visited by the sensor before
covering a target cell is equal to the total number of cells
in the network; i.e.,E[k] = mn.

Proof: Let P{k} be the probability that the sensorfirst
covers the target cell after visitingk other cells. Then we
have

P{k} = (1 −
1

mn
)k−1 1

mn
, k ≥ 1.

Then, the expected number of cells visited by the sensor
before covering the target cell can be calculated by

E[k] =

∞
X

k=1

kP{k} =

∞
X

k=1

k(1 −
1

mn
)k−1 1

mn
= mn.

This completes the proof of Theorem 5. �

Coverage in the refined case:In Theorem 5, we assume
that each cell is equally likely to be the next cell covered.
This assumption seems reasonable at first glance, since the
whole network is partitioned into cells of equal size, and the
probability for any cell to be chosen as a trip’s destination,
according to the random waypoint model, is the same for all
the cells.

However, apart from the two end points of a trip, a mobile
sensor covers also the intermediate cells along the path.
Intuitively, cells near the center of the network are covered
more frequently, although the destination of a trip is equally
likely to be any cell. The intuition is supported by Theorem 3,
which states that the sensor is most likely to move to the center
of the network.

Based on the above observation, we make precise our
calculation of a sensor’s coverage. We first calculate the
probability Pi that cell i is the next cell covered when the
sensor leaves a cell. To simplify the analysis, we represent
each cell by its center. Then, for each cellj, we enumerate all
the possible routes to other cells in the network, where a route
between two cells is defined as the line segment between the
centers of the cells. Each time a cell is intersected by a route,
the cell is given a credit of one. Letci denote the total credits
received by celli, andCtotal be the total number of credits
given to all the cells. We havePi = ci/Ctotal. Based onPi,
we can apply Theorem 6 to find the expected number of cells
visited before a given cell is covered.

Theorem 6 Let Pi denote the probability that celli is the
next cell covered when the sensor leaves a current cell. The
expected number of cells visited by the sensor before celli is
covered, denoted asE[ki], is 1/Pi.

Proof: Let Pi{k} denote the probability that the mobile
sensor first covers celli after visitingk other cells. Then, we
have

Pi{k} = (1 − Pi)
k−1Pi, k ≥ 1.

The expected value ofki for cell i is then given by

E[ki] =
∞

X

k=1

kPi{k} =
∞

X

k=1

k(1 − Pi)
k−1Pi =

1

Pi
.

This completes the proof of Theorem 6. �

Notice that the expected number of cells visited by the sensor
before covering a given target celli becomes1/Pi instead of
1/(mn).

Let E′[k] denote the expected number of cells visited before
the target cell is covered. Suppose that all the cells have
equal probability to be the target cell. Then,E′[k] is equal
to (1/(mn))

∑mn
i=1

(1/Pi). In general, if we letPtarget=i be
the probability that celli is the target cell, thenE′[k] becomes:

E′[k] =

mn
X

i=1

Ptarget=iE[ki] =

mn
X

i=1

Ptarget=i

Pi

We now discuss another interesting question: How long does
it take before a sensor will cover the target cell? First, let
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Ttarget be the time for a sensor to first cover the target cell.
Since it may take several trips before the sensor enters the
target cell, we letP (Ntrip) be the probability that the sensor
takes exactlyNtrip trips before entering the target cell, and
let E[TNtrip

] be the expected time of theseNtrip trips. Then,
we have:

E[Ttarget] =
∞

X

N=1

P (Ntrip)E[TNtrip
]

In practice, it is difficult to obtain precise values for both
P (Ntrip) and E[TNtrip

]. We now give an approximation of
E[Ttarget] based on the expected cell sojourn timeE[Ts]. As
the cell sojourn time is the time that a sensor will stay in
a cell, the expected travel time before the sensor covers the
target is about:

E[Ttarget] ≈ E[Ts]E
′[k]. (1)

Also, we may approximate the expected number of trips before
the sensor covers the target cell, based on the expected trip
time E[T ], as follows:

E[Ntrip] ≈
E[Ts]E

′[k]

E[T ]
. (2)

B. Coverage of an area of interest (AOI)

We extend the coverage results of single cells to the
coverage of anarea of interest(AOI) by a mobile sensor. In
general, an AOI consists of one or more cells in the network
area that form a target of surveillance. We are interested intwo
questions: (1) How long will it take before a mobile sensor
enters an AOI? (2) How long will it take before the sensor
visits all the cells in the AOI.

We answer the first question as follows. As defined in
Section III-A, Pi is the probability that celli is the next cell
covered. Then, the probability that the sensor will next cover a
cell in the AOI is equal toPAOI =

∑

i∈AOI Pi. OncePAOI is
obtained, we can make use of the following theorem to answer
the first question.

Theorem 7 Given PAOI , the expected number of cells
visited by a mobile sensor before it enters any cell in an AOI,
denoted asE[kAOI1st

], is 1/PAOI .

Proof: Let PAOI{k} be the probability that the mobile
sensor may move to any cell in an AOI after visitingk cells.
The expected value ofk is:

E[kAOI1st
] =

∞
∑

k=1

k(1 − PAOI)
k−1PAOI

=
PAOI

1 − PAOI

[

∞
∑

k=0

k(1 − PAOI)
k − k(1 − PAOI)

k|k=0

]

=
1

PAOI

�

By substitutingE[kAOI1st
] for E′[k] in Equation 1 in Sec-

tion III-A, we have the expected travel time before covering
a cell in the AOI as:

E[TAOI1st ] ≈ E[Ts]E[kAOI1st ],

and similarly, we may approximate the expected number of
trips before the mobile enters the AOI by:

E[Ntrip] ≈
E[Ts]E[kAOI1st ]

E[T ]
.

We proceed to answer the second question, namely how
long does it take for the mobile sensor to cover all the cells
in an AOI?

Theorem 8Let Pi be the probability for the target celli to
be covered by the sensor at any instance of time. The expected
number of cells visited by the sensor

(i) before covering all the cells in an AOI is

E[kAOI ] ≤
∞
∑

k=1

k
∑

i∈AOI

(1 − Pi)
k−1Pi;

(ii) before covering all the cells in the network is

E[kall] ≤
∞
∑

k=1

k

mn
∑

i=1

(1 − Pi)
k−1Pi.

Proof: To prove (i), we observe that the term
∑

∞

k=1
k

∑

i∈AOI(1 − Pi)
k−1Pi is the sum of E[ki], for

all i ∈ AOI, where ki is the number of cells visited
by the sensor before covering celli. On the other hand,
∑

i∈AOI ki represents the number of cells in the sequence
of cells visited before every cell in the AOI is covered.
Note that by the time we have visited the last cell in the
above sequence, each cell in the AOI has been covered at
least once. Thus,kAOI ≤

∑

i∈AOI ki, which implies that
E[kAOI ] ≤ E[

∑

i∈AOI ki] =
∑

i∈AOI E[ki], where the latter
equality follows from the linearity of expectation. Combining
these results, we complete the proof for (i). The result of
(ii) follows as a special case of (i), in which the AOI is the
whole network area. �

Let TAOI and Tall denote the times to cover all the cells
in the AOI and the time to cover all the cells in the network,
respectively. Based on the expected cell sojourn timeE[Ts],
we can approximateE[TAOI ] by

E[TAOI ] ≈ E[Ts]E[kAOI ],

and we can approximateE[Tall] by

E[Tall] ≈ E[Ts]E[kall].
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C. Number of sensors for coverage within a deadline

In some applications, we need to cover a target cell or AOI
within a deadline constraintD. If D is small (i.e.,E[Ttarget] ≥
D), one sensor is not sufficient, and multiple sensors, sayN of
them, must be used to reduce the expected coverage time. We
assume that the movements of theN sensors are independent
and follow the same distribution. Then, we have the following
theorem.

Theorem 9 Suppose that we are given the deadlineD, the
expected cell sojourn timeE[Ts], and the probabilityPi for
the target celli to be covered at any instance of time (if there
is only one sensor). Then, to cover the target celli within
expected timeD, the minimum number of sensors required is
about⌈E[Ts]/(DPi)⌉.

Proof: If N ≥ 1/Pi, the target cell is expected to be covered
by at least one sensor at any time. Therefore, we consider the
case ofN < 1/Pi. To obtain the desired approximation in
this case, we assume that the sensors move in a coordinated
manner, such that they spendE[Ts] time in a cell, and then
they visit a new cell at the same time. Under this assumption,
the probability for any of theN sensors to cover the target
cell after visitingk cells is

PNi
{k} = (1 − NPi)

k−1NPi, k ≥ 1

and the expected number of cells visited by a sensor before
one of theN sensors covers the target cell, denoted bykNi

,
is

E[kNi
] =

∞
X

k=1

k(1 − NPi)
k−1NPi =

1

NPi

Hence, the expected time to cover the target cell by any of
the N sensors is

E[TtargetN
] ≈ E[kNi

]E[Ts] =
E[Ts]

NPi

whereE[Ts] is the expected cell sojourn time for a sensor.
By settingE[Ttarget] ≤ D, we have:

Nmin ≈

‰

E[Ts]

DPi

ı

which gives the minimum number of sensors for covering the
target cell within expected timeD. �

We can similarly compute the expected minimum number
of sensors for covering an AOI by a deadlineD. We omit the
details due to space constraints.

IV. Simulation Results

We first present simulation results on the basic statistical
properties of our stochastic movement model. We then present
results on the sensor coverage problem. Results are reported
as averages over a large number of experimental runs. Error
bars are omitted because the standard deviations of the results
are small.

A. Expected trip distance

The expected trip distanceE[L] is calculated by Theorem 1.
To verify our calculations, we perform a simulation experiment
with 10,000,000 trips and measure the average trip distance
of these trips. Our simulation is run on networks with various
cell sizes. In Table II, we show the calculated results and the
measured results. Notice that our calculations ofE[L] are close
to the measured average trip distances.

TABLE II

COMPARISON BETWEEN CALCULATED AND MEASUREDE[L] (IN M ).

rectangle calculation measurement

100x100 52.14 52.14
150x150 78.21 78.21
500x500 260.70 260.63

1000x1000 521.41 520.40
1500x1500 782.11 782.24

B. Distribution of movement direction

In Theorem 3, we show that the distribution of the move-
ment angleδ varies by location in the network. In Figure 3(a),
we illustrate the cdf ofδ in a given area of150 m× 150 m, for
different network locations [e.g.,(30, 30) refers to the location
where thex andy-coordinates are both 30 m]. From the figure,
notice thatδ shows an approximate uniform distribution at the
center of the network but is less uniform when approaching
the network boundary.

Applying the distribution of the movement direction, we can
deduce the probability for a mobile sensor to move towards
the target cell, from different current positions. In Figure 3(b)
and Figure 3(c), we illustrate an example scenario in which
the target cell to be covered is located at the center cell of a
150 m by 150 m network area, where the area is divided into
5 × 5 cells. The figures show the probabilities for the mobile
sensor to move towards the target (center cell) from different
current cell positions. We find that the closer the sensor is
from the center, the higher the probability that it will move
towards the center cell.

C. Expected cell sojourn time

In calculating the expected cell sojourn time in Theorem 4,
we have derived the pdf ofTi (whereTi is the sojourn time
when the sensor is at the end points of a trip) as a function
of three system parameters: the cell size, the maximum nodal
speed, and the minimum nodal speed. Here, we illustrate the
effect of these parameters on the pdf.

The effect of cell size is shown in Figure 4(a). The three
curves in the figure are the corresponding cdfs ofTi when the
cell size is 30 m, 50 m, and 100 m, respectively. From the
figure, we find that at any fixed probability, when the cell size
of the network is smaller, the sojourn time is smaller. This
implies thatE[Ti] is smaller when the cell size is smaller,
which agrees with our calculation.

The effect of maximum nodal speed is shown in Figure 4(b).
The three curves in the figure are the corresponding cdfs of
Ti when the maximum speed is 5 m/s, 10 m/s, and 15 m/s,
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Fig. 3. Distribution of the movement direction in a 150 m by 150 m network area.
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Fig. 4. Comparison of the cumulated probabilities of the sojourn time as a function of different system parameters.

respectively. The result implies thatE[Ti] is smaller when the
maximum speed is higher, which agrees with our calculation.

The effect of minimum nodal speed is shown in Figure 4(c).
The three curves in the figure are the corresponding cdfs of
Ti when the minimum speed is 1 m/s, 3 m/s, and 5 m/s,
respectively. The result implies thatE[Ti] is smaller when the
minimum speed is higher, which agrees with our calculation.

In Theorem 4, we illustrate how to calculate the expected
cell sojourn time. Next, we compare the expected sojourn
times E[Ti] and E[Tc] calculated in Theorem 4 with the
measured times obtained from simulations. For each setting
of (s, Vmax, Vmin) shown in Table III (recall thats denotes
the cell dimension), we perform an experiment consisting of
100 independent 200,000-second runs to obtain the average
sojourn timeTmeasure.

In the table, we present the calculated timesE[Ti], E[Tc]
and E[Ts], the measured timeTmeasure, and the maximum
possible sojourn timeTmax = 2 ∗ R/Vmin for each setting.
Note thatE[Ts] and Tmeasure are always bounded byE[Ti]
andE[Tc], which agrees with the fact thatE[Ts] is bounded
by E[Ti] andE[Tc] (see Corollary 1).

TABLE III

CALCULATED AND MEASURED EXPECTED SOJOURN TIMES(IN S).

s Vmax Vmin E[Ti] E[Tc] Tmax E[Ts] Tmeasure

(m) (m/s) (m/s)

30 10 4 2.70 4.07 8.46 3.44 3.05
50 10 4 4.17 6.25 14.10 5.31 5.07
100 10 4 7.82 11.73 28.21 10.11 10.11

50 5 4 5.85 8.77 14.10 7.65 7.65
50 10 4 4.17 6.25 14.10 5.31 5.07
50 15 4 3.39 5.09 14.10 4.32 3.96

50 10 3 4.63 6.95 18.81 5.89 5.81
50 10 4 4.17 6.25 14.10 5.31 5.07
50 10 5 3.83 5.75 11.28 4.87 4.56

D. Covering a target cell

In this section, we show the results for a mobile sensor
to cover a target cell. In the experiments, a 150 m by 150
m network is divided into 25 cells of size 30 m× 30 m.
We report average measurement results over five independent
2,000,000-second simulation runs. First, in Figure 5(a), the
probability of the mobile sensor covering each cell is shownby
a vertical bar. The corresponding probability obtained through
simulation is shown in Figure 6(a). Observe that the calculated
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results closely match the measurement results. Also, in both
figures, notice that the sensor is more likely to visit cells in
the center of the network, which implies that the sensor passes
through the center area more frequently than the boundary
area, as discussed in Section III-A.

We now illustrate the expected number of trips taken by
a mobile sensor before it covers a target cell. Figure 5(b)
and Figure 6(b) show the calculated and measured results,
respectively. Observe the close similarity between the two
figures. Also, both sets of results show that the sensor spends
fewer trips before covering a cell in the network center than
covering a cell in the network boundary.

The calculated and measured results for the expected /
average time to cover a target cell are given in Figure 5(c)
and Figure 6(c), respectively. These figures are similar to the
corresponding figures for the expected number of trips.

Lastly, we present results for coverage of the whole network
area. In Theorem 8, we derive the formula for the expected
number of cells visited before the whole network area is cov-
ered. To verify the formula, we measure the average numbers
of cells visited over five 2,000,000-second simulation runs,
for different cell sizes. The results are reported in Table IV,
which suggest that the derived formula closely matches the
actual average values.

TABLE IV

CALCULATED AND MEASURED EXPECTED NUMBER OF CELLS VISITED

BEFORE THE WHOLE NETWORK AREA IS COVERED.

grid calculation measurement

3x3 45 63
5x5 325 349
7x7 1225 1073

V. Related Work

The sensor coverage problem has attracted much attention
recently. The minimum number of nodes to cover a network
area is studied in [3], [7], [8]. An important application
of the coverage problem is the tracking of moving objects,
where wireless sensors form a network and cooperatively
collect and exchange tracking information among themselves
(e.g., through a cluster-based scheme [2], [9] or a tree-based
scheme [11]). Also, a technique is proposed in [12] to dy-
namically optimize the usage of system resources in collecting
information by usingleadernodes in a sensor network.

The above body of work focuses on the use of static sensors
in a network area. Our work considers the coverage problem of
mobilesensors. Some interesting results on network coverage
by mobile sensors are presented in [6]. Compared with their
work, ours uses different network and movement models.
They consider the network to be an open and infinite space,
whereas we consider a closed network area with explicit
boundaries. They consider nodal movements in straight lines
(similar to a single trip in our case) and optimize the movement
angles, whereas we consider movement as a sequence of trips
defined by the random waypoint model. These differences
require new analysis techniques and can lead to significantly

different conclusions (e.g., the non-uniform steady-state spatial
distribution of sensors in our case).

The distribution of movement direction in Section II-C.2
has been studied in [3]. Their focus is to solve the handoff
problem, and they consider the network area to be a square.
Our analysis applies to arbitrary rectangular areas, and corrects
a minor (but quantitatively significant) mistake in the corre-
sponding formula in [3]. By analyzing the expected movement
direction of mobile sensors, we find that a mobile sensor is
most likely to move towards the central area of the network.
It is possible to draw a similar conclusion that the mobile
nodes will concentrate at the network center by considering
the intersection of each infinitesimally small cell with a single
trip of the random waypoint model [1]. Our work uses the
non-uniform distribution property to derive other statistical
properties of the mobility (e.g., the expected trip time) and
several important coverage results of general AOIs, which are
not the focus in [1].

VI. Conclusion

We have presented fundamental analytical results about
sensor movement according to an enhanced form of the widely
used random waypoint model. We have demonstrated the
relevance of our results by relating them to the problem of
area coverage in surveillance mobile sensor networks. We have
answered several important performance questions regarding
the coverage of an area of interest (AOI) by a set of mobile
sensors. Extensive experimental results reported verify and
illustrate the accuracy of the analytical results.

REFERENCES

[1] C. Bettstetter, G. Resta, and P. Santi, “The Node Distribution of the
Random Waypoint Mobility Model for Wireless Ad Hoc Networks,” in
IEEE Trans. on Mobile Computing,Vol. 2(3), 2003.

[2] W. Chen, J. C. Hou, and L. Sha, “Dynamic Clustering for Acoustic Target
Tracking in Wireless Sensor Networks,”IEEE Transactions on Mobile
Computing, special issue onMission-oriented sensor networks, 3(3), 2004.

[3] G. He and J. C. Hou, “Tracking Targets with Quality in Wireless Sensor
Networks,” in Proc. ICNP, 2005

[4] D. Hong and S. S. Rappaport, “Traffic Model and Performance Analysis
for Cellular Mobile Radio Telephone Systems with Prioritized and Nonpri-
oritized Handoff Procedures,”IEEE Transactions on Vehicular Technology,
35(3), 1986.

[5] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The DynamicSource
Routing Protocol for Multi-Hop Wireless Ad Hoc Networks,”Ad Hoc
Networks, chapter 5, 2001.

[6] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility Improves
Coverage of Sensor Networks,” inProc. MobiHoc, 2005

[7] S. Slijepcevic and M. Portkonjak, “Power Efficient Organization of
Wireless Sensor Networks,” inProc. IEEE International Conference on
Communications (ICC), 2001.

[8] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated
Coverage and Connectivity Configuration in Wireless SensorNetworks,”
in Proc. SenSys, 2003

[9] H. Yang and B. Sikdar, “A Protocol for Tracking Mobile Targets using
Sensor Networks,” inProc. IEEE International Workshop on Sensor Net-
works Protocols and Applications, 2003.

[10] J. Yoon, M. Liu, and B. Noble, “Random Waypoint Considered Harm-
ful,” in Proc. INFOCOM, 2003

[11] W. Zhang and G. Cao, “Optimizing Tree Reconfiguration for Mobile
Target Tracking in Sensor Networks,” inProc. INFOCOM, 2004

[12] F. Zhao, J. Shin, and J. Reich, “Information-driven Dynamic Sensor
Collaboration for Tracking Applications,” inIEEE Signal Processing Mag-
azine, 2002.

9



15
45

75
105

135

15

45

75

105

135

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P

X

Y

(a) Probability of sensor covering different
cells (average = 0.04, maximum = 0.0788)

15
45

75
105

135
15

45

75

105

135

0

2

4

6

8

10

12

14

16

18

20

N_trip

X

Y

(b) Expected number of trips before cover-
ing a cell (average = 11.431, maximum =
18.667)

15 45 75 105 135
15

75

135

0

10

20

30

40

50

60

70

80

90

100

Time (s)

X

Y

(c) Expected time before covering a cell
(average = 59.604 s, maximum = 97.353 s)

Fig. 5. Calculated coverage results.
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