CERIAS Tech Report 2007-55

A Sensor-cyber Network Testbed for Plume Detection, Identification, and Tracking

by Jren-Chit Chin, I-Hong Hou, Chris Ma, Mohit Saxena, Yong Yang

Center for Education and Research in
Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086
A Sensor-cyber Network Testbed for Plume Detection, Identification, and Tracking

Jren-Chit Chin*, I-Hong Hou†, Jennifer C. Hou*, Chris Ma†, Nageswara S. Rao‡,
Mohit Saxena*, Mallikarjun Shankar†, Yong Yang†, David K. Y. Yau*

*Purdue Univ., †Univ. of Illinois at Urbana-Champaign and ‡Oak-Ridge National Lab

Introduction

- Under the national SensorNet initiative, Oak Ridge National Lab, in conjunction with its University collaborators, has carried out the initial deployment of a detection, identification, and tracking sensor-cyber network (DITSCN) in the Washington D.C. and Memphis Port areas, against radiational, biological and chemical attacks.

- DITSCN combines various modalities of sensors and cyber networks
 - Sensors network provides information about the physical space
 - Cyber network provides storage and computational resources to predict plume propagation based on realistic dispersion models
 - Decisions regarding future sensing and communications are made in cyber network and carried out in the physical space

DITSCN Architecture

- Sensor data communicated through RS-485 or 802.11x interfaces to the Sensor-Net Node
- IEEE 1451 interface to configure sensors at runtime.
- Sensor data communicated over 802.11x wireless network
- AODV routing

Research Tasks

1. Convergence between physical and cyber spaces
 - Effectively gather information about the physical space
 - Communicate most useful data to the cyber space given bandwidth, delay and signal attenuation constraints
 - Enable the cyber space to task and activate sensors to collect high-quality data

2. Acknowledge the existence of uncertainty and enable decision making processes to deal with uncertainty in a robust fashion
 - Corporate physical environment: terrain elevation, land cover, and meteorological conditions
 - Adequate modeling of physical phenomena (e.g., plumes with respect to the absorption, propagation, and dispersion coefficients).

3. Support for deeply embedded operations
 - Ability to integrate system components in an open, plug-and-play manner, through the use of open data, control and communication interfaces

Cyber Space

- Realistic SCIPUFF plume dispersion model support for analysis and rendering of plume propagation in a real terrain
- Dynamically update plume propagation with variations in wind speed or direction
- Dynamically update the topology and routes in the multi-hop wireless sensor network
- Tasking mobile sensors (ER-1 robots) to collect high-quality and relevant data
- Dynamically update the positions of ER-1 robots

ER-1 Robots supporting autonomous and programmable movement are guided by the cyber space, using commands sent over 802.11x wireless network.

Tasking enables sensor mobility to increase the coverage of a high-risk location.

ER-1 Robots

Cyber Space

SensorNet Node

Physical Space

WMS Wind Sensor to monitor the wind speed and direction

RFTrax RAD Sensor to detect the presence and intensity of the plume source