
CERIAS Tech Report 2007-53

Mitigating Denial-of-Service Attacks in MANET by Incentive-based Packet Filtering: A Game-theoretic
Approach

by Xiaoxin Wu, David K. Y. Yau

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



Mitigating Denial-of-Service Attacks in MANET by

Incentive-based Packet Filtering:

A Game-theoretic Approach

Xiaoxin Wu

Intel Communication Beijing Lab

Beijing, China

Email: xiaoxin.wu@intel.com

David K. Y. Yau

Department of Computer Science

Purdue University

West Lafayette, IN 47907, USA

Email: yau@cs.purdue.edu

Abstract—Defending against denial-of-service attacks (DoS)
in a mobile ad hoc network (MANET) is challenging because
the network topology is dynamic and nodes are selfish. In this
paper, we propose a DoS mitigation technique that uses digital
signatures to verify legitimate packets, and drop packets that do
not pass the verification. Since nodes are selfish, they may not
perform the verification in order to avoid paying the overhead. A
bad packet that escapes verification along the whole network path
will bring a penalty to all its forwarders. A network game can be
formulated in which nodes along a network path, in optimizing
their own benefits, are encouraged to act collectively to filter out
bad packets. Analytical results show that Nash equilibrium can
be attained for players in the proposed game, and significant
benefits can be provided to forwarders such that many of the
bad packets will be eliminated by verification.

I. INTRODUCTION

The dependencies between dynamic, mutually untrusted

neighbors in a mobile ad hoc network (MANET) create

important security concerns in these networks. Among the

attacks documented in the literature, denial-of-service (DoS)

attacks are particularly damaging since both communication

bandwidth and node resources are scarce in MANETs. In

addition to their ability to take down a network quickly, DoS

attacks directed at bandwidth and end node resources are easy

to launch; e.g., by simply injecting useless traffic into the

network.

DoS mitigation techniques designed for wireline networks,

such as traceback by stamping [15], [16] or filtering [8], [2]

packets, and capability based network access [20], [19], will

not work well in an ad hoc environment where the routes and

the set of forwarders on a routing path are highly dynamic

and are selfish.

Secure routing protocols designed for ad hoc networks [7]

build secure routes to support end-to-end communication. If

link layer security is applied [10], these protocols can mitigate

DoS attacks. Illegitimate packets will be discovered as outside

attackers do not know the keys shared between the hops.

However, an inside attacker, i.e., an attacker who is a member

of the end-to-end path, can still launch an attack. Without

using signatures, it is difficult to identify the attacker even if

the attacker is known to be an insider. In addition, in networks

where packet delivery is route-based (e.g., GPSR [9]), these

secure routing protocols cannot be applied because the path

can change from packet to packet.

Motivating nodes to serve each other is another fundamental

issue in MANETs. Specifically, as communication endpoints

rely on intermediate nodes to forward their traffic, incentives

for the forwarders have to be provided. Traditional incentive

systems have used nuggets [4] and reputation credits [3] to

encourage nodes to function as forwarders. The incentive issue

becomes even more relevant in the security context, when

security measures may require certain nodes to expend more

resources to better defend other nodes. The incentive issue as

it relates to the security issue has been less addressed by the

research community.

Game theory has been applied in MANET for solving the

incentive problem in multi-hop forwarding [5] [21] [6] [17].

In [1], a game model of network attacks is developed for

the interactions between an intrusion detection system (IDS)

and an attacker with dynamic system information. Applying

game theory to induce collaboration between network nodes

for improved security has been less addressed in the literature.

In this work, we propose a DoS mitigating technique for

MANETs that jointly considers the security and incentive is-

sues. The technique is designed to work in a packet-switching

network environment. The idea is based on an attacker’s goal

to avoid detection and being identified. Hence, we protect

legitimate packets by requiring them to be signed by their

respective senders. A forwarder verifies a packet’s sender

signature when the packet is received. If the verification fails,

the packet is dropped. Otherwise, it is forwarded.

We assume that network nodes are selfish but rational.

Incentive for a node to forward packets is given by a reward

the node will obtain after the packets are successfully delivered

to their final destinations. A forwarder may also choose to for-

ward a packet without verification, since the operation carries

a cost. To motivate a forwarder to verify, a penalty is assessed

for a “lazy” node each time it forwards an attacker packet

that finally reaches the destination. We will investigate the

properties of the resulting game, as forwarders independently

attempt to play a best forwarding/verification strategy that will



maximize their own payoffs, while the network is subject to

given inputs of attacking and legitimate traffic.

Our main contributions in this paper are as follows:

• We propose a signature-based DoS mitigation technique

for packet-switching MANETs.

• We use game theory to study how a system of forwarders

can be motivated to forward good packets while filtering

out bad packets cooperatively by verification. We will

propose solutions that address jointly the security and

incentive issues. We will discuss how practical cost

functions can be assigned for sending, forwarding, re-

ceiving, and verifying packets. In addition, we address

implementation issues for an accounting system that will

support the proposed system.

• We present game-theoretic analysis results to investi-

gate the impact of system parameters on the game’s

performance and the resulting behaviors of individual

nodes. The results serve as useful guidelines for network

management.

The balance of the paper is organized as follows. In In

Section II, we introduce the use of distributed filtering for DoS

mitigation and discuss its game rationality. In Section III, we

present the detailed formulation of our game-theoretic DoS

mitigation system. In Section IV, we address implementation

issues for the proposed system. Simulation results are pre-

sented in Section V to illustrate the system’s performance.

Section VI concludes.

II. GAME THEORETIC DOS MITIGATION IN MANET

A. Assumptions and attack model

Network Assumptions. We assume that the network con-

sists of a number of ad hoc nodes. The network is loosely

synchronized, e.g, using the method in [14]. Nodes are selfish

but rational. A node can be a receiver (i.e., destination),

a sender (i.e., source), or an intermediate forwarder. Data

packets are delivered from a source towards their destinations

in a packet-switching manner. Connections are multi-hop.

Sessions are short, so no virtual route has to be built for data

delivery. Upon receiving a packet, a forwarder determines its

next hop based on the destination address, and forwards the

packet to the next hop. Determining the next hop is a function

of the routing algorithm, such as position-based routing. As

nodes are mobile, the path between a given source/destination

pair of nodes may change.

Security Assumptions. We assume that a PKI local to

the deployment network is in place when the network is

set up. For example, a trusted party, such as a Certification

Authority (CA), possesses a pair of public/private keys, where

the public key is configured with each ad hoc node. Each

ad hoc node also possesses a pair of public/private keys. The

public key is certified by the CA, and is paired with the node’s

identity. Although there may exist an end-to-end symmetric

key between a source and a destination, we do not assume link

layer symmetric keys between any two neighboring nodes; i.e.,

the link level information is transmitted in plain text. Lastly,

we assume that the network is aware of the severity of the

DoS attack; i.e., an approximate fraction of the total packets

that are attack packets.

Payment Model. We assume that there is an off-line

accounting system that handles the payment/penalty with

respect to data delivery. The payment is well defined for each

transaction conducted by ad hoc users. We assume that the

accounting system is strong enough to distinguish a legitimate

ad hoc user from a cheater who claims credits that it does not

deserve. Implementation issues for the accounting system are

discussed in Section IV.

Attack Model. We assume that a number of attackers,

which are otherwise ordinary ad hoc nodes1, may inject

traffic (i.e., bad packets) in the network to trigger a DoS

attack. The impact of the attack is two-fold: (1) it consumes

excessive receiver resources by, say, creating a large number

of computing processes at the receiver; and (2) it consumes

excessive network bandwidth to congest the target network. In

this paper, we focus on the case when an attacker randomly

selects victims. Unless otherwise specified, we assume that the

attackers do not collude. Other attacks such as packet dropping

and packet manipulation are orthogonal to the jamming attack,

and are not covered in this work.

B. Mitigating DoS in MANET

We require that packets from legitimate sources be digitally

signed by their respective senders. Other than the network level

routing information and the application level data payload,

each packet will carry a signature (SIG), which includes the

hash result of the packet signed by the private key of its source

and a certificate for the corresponding public key. The signed

SIG with the certificate is used to verify that the packet is from

the claimed legitimate source. If the SIG carried in the packet

does not match the SIG that a forwarder generates from the

received packet, the packet is classified as a bad packet and

therefore dropped.

1) Against Replay Attack: The signature-based defense is

prone to the replay attack. An attacker can replay a legitimate

packet a large number of times to generate a high load of

useless traffic. These packets will pass the verification step.

To deal with the replay attack, a packet should be stamped

with its generation time. In addition, each packet has a given

lifetime. A packet whose lifetime has expired will be dropped.

To prevent a malicious node from sending a legitimate packet

to different next hops during the packet’s lifetime, a neighbor

monitoring technique can be used.

In neighbor monitoring, a node reads the complete header,

including both the SIG and network level headers, of every

packet even if the node is not the packet’s next hop. The

node stores the header read until the corresponding packet’s

lifetime expires. Upon hearing a packet whose lifetime has

not expired, the node will compare the header read with the

headers currently in the node’s local store. By doing this, the

node can detect a replayed packet and drop it before further

1That is, the attackers are not superior to ordinary ad hoc nodes.



damage to the network happens. Since only the packet header,

but not the whole packet, has to be read, the cost of monitoring

can be kept low. If the packet lifetime is not too long, which is

normally the case in ad hoc networks, a node will not need to

store too many packet headers, which reduces the storage cost.

Note that the monitoring technique will not be effective in a

wireline network if attackers select different routes for sending

different replayed packets, since one forwarder will then be

unable to monitor packets destined for another forwarder.

As shown in Fig. 1 in a two-dimensional plane, we illus-

trate how neighbor monitoring mitigates non-collusive replay

attacks in a network with high node density. If position-based

routing is used for packet delivery, as the node density is

high, the path for any packet delivery can be approximated

as a straight line, and the geographical distance for each hop

is approximately the same as the maximum range of radio

transmission, denoted as R. For example, when a forwarder

F at (0, 0) wishes to send a packet to the destination D, it may

do so through a next hop N , where FN ≈ R. When neighbor

monitoring is applied, any node that is no more than distance

R from the path (i.e., ... → F → N... → D) will be aware of

the packet’s forwarding to N . In Fig. 1, any node located in

the shaded rectangular area knows about the forwarding.

F(0,0) DN

R

M’’

V’

M(x,y)

V

M’R

Y

X

Fig. 1. Mitigating replay attack using neighbor monitoring.

We assume that a malicious attacker at M(x, y) intercepts

the packet from the forwarder located at F . To avoid detection

of the replayed packet by any node located in the shaded area

in Fig. 1, the attacker would find a node that is the farthest

from the packet’s delivery path as the next hop. We assume that

this next hop is located at V . Consequently, MV ≈ R. Note

that MV is perpendicular to FD. As V is well behaving, it

will forward the packet towards D following the path FD. The

replayed packet will be discovered once it crosses the point

V ′ (i.e., on entering the shaded area in Fig. 1). Hence, how

successful the replay attack is depends on the ratio between

V V ′ and V D, which measures the fraction of the attacking

path completed before the packet is identified as a replayed

packet. When M is located at different locations within F ′s
transmission range, the average value of V V ′

V D indicates how

successfully the neighboring monitoring can defend against

the replay attack.

As nodes are uniformly distributed in the network, the

probability density function that the attacker receiving the data

packet from F is located in any area within F ′s transmission

range can be obtained as 1
πR2 . As V V ′

V D = V M ′

V M ′′
= y

1+R ,

denoting the average value of V V ′

V D as [V V ′

V D ]avg , we have

[
V V ′

V D
]avg = 2

∫ R

−R

∫ √
R2−x2

0

1

πR2

y

y + R
dydx. (1)

The fraction [V V ′

V D ]avg can then be calculated numerically,

and is equal to 0.273. This means that the replayed packet can

be discovered at a relatively early point of the attacking path.

In particular, if the path has a hop count of no more than 3,

the replayed packet can be discovered whenever the next hop

of the attacker, V , forwards it on.

Neighbor monitoring can also mitigate collusive attacks. An

attacker may send copies of a legitimate packet to collusive

partners at different locations. Still, the colluding partners can

only successfully send the replayed packet once.

Neighbor monitoring is not bullet proof. A highly mobile

attacker may be able to move to a new network area in a

short time, and successfully replay a packet within the packet’s

lifetime. A node may also use a smart antenna to prevent nodes

in the neighborhood from overhearing a transmitted packet.

Nevertheless, the cost and difficulty of successfully launching

an attack in these cases are significantly increased.

Fig. 2 shows the proposed packet format. In the figure, the

previous hop is the node forwarding the packet, and the next

hop is the node designated as the receiver of the forwarded

packet.

Previous
hop

Next
hop

Source
address

Destination
address

Sequence
number

Timestamp Data SIG

Hashed and signed

Fig. 2. packet format.

If every forwarder verifies packets before forwarding them,

any attack traffic will be discovered and dropped to limit its

damage to the network. In particular, end servers are expected

not to receive any attack packet. Network bandwidth will also

be largely protected. However, verifying every packet at every

forwarder causes unnecessarily high loads at the forwarders,

especially when a large fraction of the packets is legitimate.

To reduce the costs of verification, without severely com-

promising its effectiveness, a forwarder may decide to proba-

bilistically verify a packet. Since nodes are selfish, we need to

incentivize them to verify with sufficiently high probabilities.

C. Incentives and game rationality

We apply a reward system in which nodes are given credit

for acting as forwarders. Specifically, a forwarder is credited

for forwarding a packet if the packet successfully arrives at the

destination. We assume the existence of an accounting system,

similar to a “central bank”, for securely keeping track of the

rewards, and preventing false rewards from being claimed.

In our DoS mitigation approach, the SIG of each forwarded

packet is stored at the forwarder. The stored SIGs can be



presented to the accounting system as evidence for collecting

rewards.

In the DoS resilient forwarding game, a node’s payoff is the

reward for forwarding minus the forwarding costs. The costs

account for all expended resources in the forwarding, such as

the energy consumed for packet receive and transmission, and

for performing any required cryptographic operation.

In the DoS defense, forwarders verify the SIGs of received

packets. A selfish forwarder may try to maximize its payoff by

not verifying, but rely on another forwarder on the packet’s

route to verify and accomplish the job of filtering out any

attack packet. Clearly, if every forwarder reasons in the same

way and avoids all verification, then all attack packets will be

allowed to reach their destinations. To avoid the degeneration

of the DoS defense into a system in which no verification is

performed at all, a forwarder is punished for forwarding a bad

packet that successfully makes it to the destination. Hence,

if a forwarder presents the SIG of a bad packet in claiming

its reward, a penalty instead of a reward will be given. The

penalty subtracts from the node’s total credit for forwarding

other good packets.

We formulate the DoS resilient packet forwarding system

as a multiplayer game between forwarder nodes in a MANET.

Forwarder nodes take part in the same game if they are on the

same route between a sender and receiver. Since routes in

a MANET can be highly dynamic, the set of nodes playing

against each other can change often. As discussed, a player’s

payoff in the game is its reward for forwarding the good

packets, less its penalty for forwarding the bad packets and

its costs of forwarding and verification. A player’s strategy

is its probability of verifying a received packet. The player’s

strategy may be adaptive so that the probability of verification

may change over time.

III. GAME FORMULATION

We now formulate the formal game. We first define the

reward, cost, and penalty of the game. We will then discuss

a simple two-player extensive game, under both perfect and

imperfect information. We will further generalize the two-

player game into an n-player game in which there are n
forwarder nodes along a network path. Notice that in our

game formulation, we consider only the strategies of rational

forwarders and how they interact with each other; in particular,

an attacker is not considered a player in the game.

A. Reward, cost, and penalty

A forwarder may perform the following operations: (1)

forwarding a packet without verification, (2) verifying and

forwarding a legitimate packet, and (3) verifying and dropping

a bad packet. Let G be the reward for a forwarder if it has

forwarded a legitimate packet, and the packet is successfully

delivered to the destination. Let cp be the penalty for a

forwarder if it has forwarded a bad packet without verification,

and the packet reaches its destination. Let cr, ct, and cv be the

costs for packet receive, transmit, and signature verification,

respectively.

When a forwarder forwards a legitimate packet, its payoffs

are g1 = G− cr − ct and g2 = G− cr − ct − cv for the cases

of no verification and verification, respectively. If a forwarder

verifies a bad packet and then drops it, the forwarder has a

payoff of g3 = −(cr+cv). If a forwarder forwards a bad packet

without verification, its payoff is either (1) g4 = −(cr +ct), if

the packet is verified and dropped by a forwarder later in the

route, or (2) g5 = −cp − cr − ct, if the packet finally arrives

at the destination.

The different cases of payoffs for a forwarder are summa-

rized in Tabel I.

TABLE I
PAYOFFS FOR DIFFERENT CASES.

g1 = G − cr − ct a good packet without verification

g2 = G − cr − ct − cv a good packet with verification

g3 − cr − cv a bad packet with verification

g4 = −cr − ct a bad packet without verification yet
it is verified by following forwarders

g5 = −cp − cr − ct a bad packet without verification and
the packet reaches the destination

B. Two-player game

We now analyze a simple game scenario. The game involves

two players, which may be the last forwarder and the second

last forwarder on a route (see Fig. 3). In this game, we call the

second last forwarder the previous hop, and the last forwarder

the next hop.

Previous hop Next hop Destination

Fig. 3. A two-player game illustration.

1) Game with perfect information: We first consider the

case that the next hop is aware of the previous hop’s action.

This can be achieved by having the previous hop label the

packet, to indicate whether it has verified the packet’s signature

or not.

The game is an extensive game, and can be illustrated as in

Fig. 4. We denote by V the strategy of verification before

forwarding, and by F the strategy of forwarding without

verification. Let Gm−xy be the payoff for node m (m is either

the previous hop p or the next hop n), when the previous

hop uses strategy x and the next hop uses strategy y. For

example, Gp−vf is the payoff for the previous hop if it verifies

the packet and the next hop forwards the packet without

verification. Let patt be the probability that a packet is a

bad packet. The payoffs for the two players under different

combinations of strategies are summarized in Table II.

We use backward induction to solve the game. Consider the

subgame in which the previous hop verifies a received packet.

As for a forwarder, if the payoff without verification is always

higher than that with verification (i.e., Gn−vf > Gn−vv), then

the next hop will always select forwarding (F ). On the other

hand, in the subgame in which the previous hop forwards the



P

vv-nvv-p ,GG

vf-nvf-p ,GG

fv-nfv-p ,GG

ff-nff-p ,GG

V

F

F

V

F

V

N

N

Fig. 4. Extensive game with perfect information.

TABLE II
EXPECTED PAYOFFS FOR THE PREVIOUS AND NEXT HOPS.

Gp−vv (1 − patt)g2 + pattg3 Gn−vv (1 − patt)g2

Gp−vf (1 − patt)g2 + pattg3 Gn−vf (1 − patt)g1

Gp−fv (1 − patt)g1 + pattg4 Gn−fv (1 − patt)g2 + pattg3

Gp−ff (1 − patt)g1 + pattg5 Gn−ff (1 − patt)g1 + pattg5

packet without verification, if Gn−fv > Gn−ff , then the next

hop will select verification (V ). Otherwise, the next hop will

forward the packet. As shown in Tables I and Table II, the

condition for Gn−fv > Gn−ff is given as cv < patt(cP +cf ).
Now we determine what strategy the previous hop should

select. When cv < patt(cp + cf ), the action pair for the next

hop is FV . For the previous hop, its choice will depend on the

comparison between Gp−vf and Gp−fv . As Gp−fv > Gp−vf

is always true in this case, the previous hop should forward the

packet without verification. Hence, a Nash equilibrium strategy

pair for the two players is (F, V ).
When cv > patt(cp +cf ), the action pair for the next hop is

FF . As Gp−ff > Gp−vf , the previous hop will also select F .

A Nash equlibrium strategy pair for the two players is (F, F ).
Whether the next hop will verify the packet or not depends

on the comparison between cv and patt(cp+cf ). As cv and cf

are fixed values, the decision depends on patt and cp. When

patt becomes larger, it is more likely that the next hop will

verify the packet. On the other hand, if we want the next

hop to verify the packet with a higher probability (e.g., the

server requires that most bad packets should be discovered

and dropped in the network), then the value of cp should be

larger.

The game results show that the previous hop will always

forward the packet, and will leave the task of verification to the

next hop. This may not be fair. In addition, from the network

point of view, it is desirable for the previous hop to verify

the packet, because this will limit the bandwidth wasted in

transmitting the packet. To motivate the previous hop to verify,

the penalty cp can be adjusted. For any bad packet that reaches

the destination, we may charge an extra penalty cbandwidth

for the previous hop. The payoff Gp−ff in Tabel II is then

adjusted, and now becomes (1−patt)g1+patt(g5−cbandwidth).

The adjusted payoff will not change the strategies of the

players when cv < patt(cp + cf ). However, when cv >
patt(cp +cf ), the previous hop will select V if cv < patt(cp +
cf + cbandwidth), and F otherwise.

2) Game with imperfect information: The game with

perfect information leads to an “unfair” game at equilibrium

since most of the work will be forced upon the next hop.

In addition, a packet label of V or F by the previous hop

will have to be trusted, or be verified as well, which brings

additional cost.

In this subsection, we analyze the case when the next hop

does not know about the previous hop’s action. Without the

knowledge, the next hop will have to guess whether a packet

has been verified or not. For illustration, we will assume

that the guess is fifty-fifty; i.e., it will have a 0.5 probability

of being incorrect. The imperfect information game can be

analyzed as a strategy game with a chance play. The game is

illustrated in Fig. 5.

vv-nvv-p ,GG vf-nvf-p ,GG fv-nfv-p ,GG ff-nff-p ,GG

ff-nff-p ,GG

V F V F

V FV F

V F
V

F F

V

P

N

N

ChanceChance

0.5

0.5 0.5

0.5

vv-nvv-p ,GG vf-nvf-p ,GG fv-nfv-p ,GG

Fig. 5. Extensive game with imperfect information.

We denote by X/Y the case that the next hop selects

strategy X based on a discovered signal of Y , where Y is the

next hop’s guess for the previous hop’s action. For example,

V/F denotes the case that the next hop verifies the packet

based on its judgment that the previous hop has forwarded the

packet without verification.

Let (Gp(Z,X/Y ), Gn(Z,X/Y )) be the payoff pair for the

previous and next hops, when the next hop uses strategy X
based on signal Y , while the previous hop’s actual strategy is

Z (where Z can be either X or Y ). For example, Gp(V,F/V )

is the payoff for the previous hop when it uses strategy V ,

while the next hop uses strategy F upon the discovered signal

V .

According to Fig. 5, the expected payoff for each player

depends on their chosen strategies, and not on the signals

discovered by the next hop. For example,

Gp(V,V/F ) = Gp(V,V/V ) = 0.5 ∗ Gp−vv + 0.5 ∗ Gp−fv; (2)

Gn(V,V/F ) = Gn(V,V/V ) = 0.5 ∗ Gn−vv + 0.5 ∗ Gn−fv.

The strategy form for this game can thus be simplified as in

Table III. The first column shows the possible strategies for the



previous hop, and the first row shows the possible strategies

for the next hop.

TABLE III
STRATEGIC FORM OF THE EXTENSIVE GAME WITH IMPERFECT

INFORMATION.

V F

V Gp−vv , Gn−vv Gp−vf , Gn−pf

F Gp−fv , Gn−fv Gp−ff , Gn−ff

The extensive game is then exactly the same as a strategic

game in which the two players make their moves simultane-

ously. Let p∗ be the probability that the previous hop verifies

the packet, and q∗ be the probability that the next hop verifies

the packet, and the mixed strategies based on p∗ and q∗ will

lead to a Nash equilibrium of the game. Using the standard

procedure [13], we can obtain p∗ and q∗ as follows:

p∗ =
Gn−ff − Gn−fv

Gn−ff + Gn−vv − Gn−fv − Gn−vf
(3)

q∗ =
Gp−ff − Gp−vf

Gp−ff + Gp−vv − Gp−fv − Gp−vf

When p∗ < 0 or q∗ < 0, the respective best strategies of the

previous and next hops are the pure strategies of forwarding

without verification. Notice that in Eqn. (3), the denominators

of both fractions are the same. Therefore, when p∗ is 0, q∗ is

also 0. This means that when the network attack severity (i.e.,

patt) or penalty (i.e., cp) changes, both players will switch

from the pure strategy F to mixed strategies simultaneously.

Notice that p∗ = 0 or q∗ = 0 only when cv = patt(cp + ct).
Therefore, in the extensive game with imperfect information,

when cv ≥ patt(cp +ct), both players will use a pure strategy.

When cv < patt(cp + ct), a mixed strategy will be used; the

previous hop verifies a packet with probability p∗, and the next

hop verifies a packet with probability q∗.

We have solved the case in which the guess has a 0.5 chance

of being wrong. The approach in [13] can be used to solve

the game under a general chance value.

C. n-player game

In formulating the n player game, we assume that each

forwarder on a network path knows that the path has n hops.

However, a forwarder does not know its position on the path;

i.e., it does not know how many hops it is away from the

source or the destination. In the game, each forwarder plays

against the other n − 1 forwarders. Since all the forwarders

know the same information, they are treated as homogeneous

and hence will use the same strategy.

We assume that upon receiving a packet, a forwarder

verifies the packet with probability pv . Nash equilibrium will

be reached only if under pv , the expected payoff for the

forwarder remains the same whether it verifies the packet or

not. Mathematically, the relationship can be given as follows:

(1 − patt)g2 + pattg3 = (1 − patt)g1 + (4)

patt((1 − pv)n−1g5 + (1 − (1 − pv)n−1)g4).

The left hand side is the expected payoff when the forwarder

verifies the packet. The right hand side is the expected payoff

when it does not verify the packet, while the remaining

forwarders will verify with probability pv . The number of

forwarders on the path is n. Based on Eqn. (4), pv can be

calculated as

pv = 1 − (
(1 − patt)(g2 − g1) + patt(g3 − g4)

patt(g5 − g4)
)

1

n−1 (5)

The expected payoff of a player in this game can be

calculated as

G = (1 − patt)g2 + pattg3. (6)

Notice that the expected payoff of each forwarder is the

same as the expected payoff if the forwarder verifies every

packet. However, under the proposed game, a forwarder ob-

tains the same gain with less consumed resources because the

payoff deduction is partially caused by the penalty. This keeps

the forwarders operational in the network for a longer time,

by conserving nodal resources.

For comparison, we now calculate the optimum payoff

for a forwarder assuming that nodes are not selfish but will

collaborate for the common good. Suppose that each forwarder

verifies a packet with probability p. The expected payoff for

a forwarder is then

Gavg = (1 − patt)g2 + pattg3 (7)

+ (1 − patt)g1 + patt((1 − p)n−1g5 + (1 − (1 − p)n−1)g4).

By differentiating the right hand side of Eqn. 7 and setting

it equal to 0, we can solve the equation and obtain the

probability of verification that will maximize the forwarder’s

payoff. Denoting the optimal probability by poptimum, we have

poptimum = 1 − (
(1 − patt)(g2 − g1) + patt(g3 − g4)

npatt(g5 − g4)
)

1

n−1 .

(8)

IV. DISCUSSIONS

We now address implementation issues for realizing the

proposed signature-based DoS defense system. Our purpose

is to elucidate the technical issues involved, and to propose a

solution approach that is promising though preliminary. We

do not claim to have resolved all the issues in the most

effective/efficient manner, and further research is needed to

fully characterize the system implementation and evaluate the

systems tradeoffs.



A. Accounting system

An accounting system is essential for determining the

rewards of forwarders and the payments by destinations. The

system can operate off-line. In our system, a forwarder collects

the hash results2 of packets that it has forwarded, and present

them to the accounting system. After the accounting system

authenticates the claimer, it then verifies the hash results based

on delivery records (provided by the packet destinations) of

both the good and bad packets. Rewards or penalties are then

calculated for the forwarders.

How can we prevent cheating by a forwarder who claims

false credit? As it is difficult to establish secure link layer

communication between any two mobile ad hoc nodes, the

link layer encryption may not be used. In this case, a cheater

can generate hash results even without doing the forwarding

work because it can intercept packets transmitted within its

receiving range. The cheating discovery method in [11] then

will not work. An accounting system embedded in hardware

[4] will not work either, as a cheater may choose to receive

a packet and forward it, even though it is not on the network

path.

We propose a statistical method to discover conventional

cheaters. A conventional cheater is defined as an ad hoc

node that “lives on” cheating; i.e., it claims a large amount

of credits that are not deserved. In our method to prevent

cheating, a forwarder keeps not only a record of the packet

signatures forwarded, but also their path information including

the packet’s previous hop and next hop. A forwarder sends the

stored path information to the accounting system. In this case,

the accounting system can verify the paths of delivered data

based on the reports by all the forwarders. Note that the path

verification is only needed when there are conflict claims.

The basic method to prevent cheating is vulnerable to a

collusive attack as shown in Fig. 6. In the figure, Attacker

1 records its collusive partner, Attacker 2, as the next hop,

instead of recording the real next hop. If the partner is close

enough to the real next hop, it can identify the node to which

the next hop forwards the packet. The partner will then be

able to claim (false) credit for the forwarding.

Attacker2

Attacker1

Victim

Fig. 6. A collusive attack on the accounting system to claim false credits.

A defense against the collusion is as follows. Whenever

the accounting system has more than one node showing the

same path payment information, it will hold the payment

and, at the same time, keeps the nodes in a questionable

list. Statistically, attackers may cheat repeatedly. Therefore,

the frequency at which a cheater is added to the questionable

2A forwarder generates the hash results upon receiving a packet.

list will be significantly higher than that of a legitimate node.

The accounting system can then use the frequency information

to identify a cheater with high accuracy. After identifying the

attacker, the accounting system pays the legitimate forwarders.

B. Setting game parameters

The costs of packet send, receive, and signature verification

should be set based on the resources consumed. Among the

resources, energy is critical because unlike other resources

such as storage and CPU cycles, energy of mobile nodes

can be difficult or impossible to replenish. Therefore, energy

consumption can be a deciding factor for determining the costs

of network operations. Similarly, the relative costs of send,

receive, and signature verification can be compared based on

their energy consumption [12], [18].

The reward for each forwarder after the successful delivery

of a good packet should depend on the benefits the delivery

brings to the source or destination. It may also be determined

by the network’s desire to encourage a node to act as a

forwarder. In this paper, we set the reward for each forwarder

as a constant value, regardless of the number of forwarders on

the path. The decision is reasonable because more network

resources are consumed when there are more forwarders,

hence justifying a higher payment by the destination.

The value of penalty can be determined based on damage

to the server or network when a bad packet reaches the target.

The penalty can also be used by the accounting system to

affect the willingness of a forwarder to verify packets. To make

the game more efficient, we propose to set the penalty as a

function of patt, so that when patt is higher, the penalty value

is higher. This is because the more serious the attack, the more

we would like a forwarder to verify a packet. We study the

use of a linear and an exponential function, to express the

relationship between the penalty and the severity of attack.

When using a linear function, the penalty can be calculated

as:

cp = c1 + kpatt. (9)

When using an exponential function, the penalty can be

calculated as:

cp = c1e
kpatt . (10)

These two functions are applied by the system to control

the behaviors of individual nodes. The goal is to have a high

enough penalty to reduce the number of bad packets received

by a server to an acceptable level. However, the penalty value

should not be too high. Otherwise, network nodes will not

be motivated to act as forwarders, because they cannot obtain

a sufficient payoff for doing so. As a special case, when k
equals 0, the penalties computed by both of the equations are

constants.

V. NUMERICAL RESULTS

We quantify the costs of packet send, receive, and verifi-

cation as their amounts of energy consumption. We use the

experimental values reported in [12], [18]. We set the length

of a packet as 1000 bytes. We normalize the costs by the power



consumption of a packet receive (i.e., one packet receive has

cost one). The costs of send and verification (including hashing

and RSA verification) are then 1.5 and 10, respectively. For

illustration, we set the reward and penalty values to be 20
and 60, respectively. In future work, these costs will have to

be refined to model specific systems. Where applicable, the

extra penalty (see Section III-B1) for forwarding a bad packet,

cbandwidth, is set to be 3. The number of forwarders on a path,

n, is set to be 3. Unless otherwise specified, patt = 0.2.

The baseline values of the game parameters are summarized

in Table IV.

TABLE IV
GAME PARAMETER SETTINGS

cr ct cv G cp n patt cbandwidth

1 1.5 10 20 60 4 0.2 3

A. Two-player game

We first examine the game with perfect information. In

Fig. 7, we show the payoffs for the previous and next hops,

respectively, as the probability of a bad packet patt changes.

When patt is small, the payoffs for both players decrease

as patt increases. When patt reaches the threshold point of
cv

cp+cf
= 0.1639, the payoff for the previous hop will jump

to a high value because the second hop switches its strategy

from F to V . After the threshold point, both payoffs again

decrease as patt increases. In Fig. 8, we show the payoffs

when network loss is considered. There are two threshold

values: patt = 0.1639 and cv

cp+cf +cbandwidth
= 0.1550. When

patt = 0.1550, there is a large increase in the next hop’s payoff

because the previous hop changes its strategy from F to V .

At patt = 0.1639, the payoff for the previous hop has a large

increase while, at the same time, the payoff for the next hop

decreases significantly. The reason is that the previous hop

changes its strategy from V to F , while the next hop changes

its strategy from F to V . In both games, the probability that

a packet received by the destination is a bad packet is patt if

both hops use strategy F , and 0 if any of them uses strategy

V .

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

18

Probability of an Attacking Packet (p
att

)

G
ai

ns
 a

t P
re

vi
ou

s 
H

op

(a) Previous hop

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

18

Probability of an Attacking Packet (p
att

)

G
ai

ns
 a

t N
ex

t H
op

(b) Next hop

Fig. 7. Previous hop and next hop payoffs with perfect information.

In Fig. 9 we show, for a game with imperfect information

at Nash equilibrium, the probabilities that the previous hop

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

18

Probability of an Attacking Packet (p
att

)

G
ai

ns
 a

t P
re

vi
ou

s 
H

op

(a) Previous hop

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

18

Probability of an Attacking Packet (p
att

)

G
ai

ns
 a

t N
ex

t H
op

(b) Next hop

Fig. 8. Payoffs with perfect information: The case of extra penalty.

and next hop will verify a packet, respectively. When patt is

low, both of the players will use the pure strategy F because

it is dominant. When patt ≥ 0.1639, both players switch to a

mixed strategy. The probability that a player verifies the packet

increases when the attack becomes more severe. In Fig. 10, we

show the expected payoffs for the two players. Both payoffs

decrease as the attack gets more severe.

0.1 0.15 0.2 0.25 0.3
−0.1

0

0.1

0.2

0.3

0.4

0.5

Probability of an Attacking Packet (p
att

)

P
ro

ba
bi

lit
y 

of
 a

 p
ac

ke
t v

er
ifi

ca
tio

n

Previous
hop

Next hop

Fig. 9. Probabilities of verification under different percentages of bad packets.

0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

7

8

9

10

11

Probability of an Attacking Packet (p
att

)

G
ai

ns Next hop

Previous
hop

Fig. 10. Payoffs under different percentages of bad packets.



B. n-player game

Fig. 11 shows that when patt increases, a node has to verify

packets more often in order to reach Nash equilibrium. Note

that a player will use the mixed strategy when patt ≥ 0.1639,

and the probability of verification increases as the attack gets

more severe.

0.1 0.15 0.2 0.25 0.3
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Probability of an Attacking Packet (p
att

)

P
ro

ba
bi

lit
y 

of
 a

 p
ac

ke
t v

er
ifi

ca
tio

n

Fig. 11. Probabilities of verification at Nash equilibrium.

In Fig. 12, we show the payoff for a forwarder as patt

changes, and in Fig. 13, we show the probabilities that a

bad packet can reach the destination. For comparison, we also

show the cases (1) when the best strategies are used under

the assumption that the nodes are collaborative, and (2) when

the worst strategy is used so that all the nodes simply forward

packets without any verification.

0.1 0.15 0.2 0.25 0.3
−8

−6

−4

−2

0

2

4

6

8

10

12

Probability of an Attacking Packet (p
att

)

G
ai

ns

Gain at optimum strategy

Gain at Nash Equilbria

Gain when doing nothing

Fig. 12. Payoffs at Nash equilibrium.

Fig. 14 shows how a forwarder may change its strategy

as the penalty value changes. As the penalty becomes high, a

forwarder will more likely verify the packet to avoid a negative

payoff. Note that when the probability of receiving a bad

packet is the same, the expected payoff at Nash equilibrium

for any player remains the same even if the penalty value

changes. In Fig. 15, we show the probability that a bad packet

will successfully arrive at the destination. This probability

decreases as the penalty value increases.

0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Probability of an Attacking Packet (p
att

)

P
ro

ba
bi

lit
y 

of
 a

 s
uc

ce
ss

fu
l a

tta
ck Probability when doing nothing

Probability at Nash equilibria

Probability at optimum
strategy

Fig. 13. Probabilities that a bad packet will successful arrive at its destination.

0 0.5 1 1.5 2 2.5 3
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Penalty adjustment parameter (k)

P
ro

ba
bi

lit
y 

of
 v

er
ifi

ca
tio

n Exponential function

Linear function

Fig. 14. Impact of penalty on decision of a forwarder.

C. Summary of observations

Based on the numerical results, we summarize the important

observations as follows:

• In a two player game, the game with perfect information

to the numerical results. will generate higher payoffs

for both players. However, the perfect information will

cause the next hop to do all the verification work. In

contrast, the game with imperfect information can cause

the previous hop to share some of the verification work,

which is desirable for conservation of global network

bandwidth.

• Players (i.e., the forwarders) will change their strategies

when patt reaches certain threshold values. This is be-

cause when patt is low, the gain from verification is not

enough to compensate for its costs. It is interesting that

in all the games studied in this paper, the threshold value

of patt at which a player will change its strategy is the

same and is equal to cv

cp+cf
. The common threshold value

is a function of the forwarding cost, the verification cost,

and the penalty. The costs of forwarding and verification

should be determined by the resource consumption of the



0 0.5 1 1.5 2 2.5 3
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Penalty adjustment parameter (k)

P
ro

ba
bi

lit
y 

of
 a

 s
uc

ce
ss

fu
l a

tta
ck

Exponential function

Linear function

Fig. 15. Impact of penalty on DoS mitigation.

operations, instead of by policy. The tunable parameter

to obtain certain desired game results is therefore the

penalty value. For example, to motivate a forwarder to

verify more often, we can use a larger penalty value.

• In the n-player game, the payoff for a forwarder decreases

as the attack becomes more severe. The proposed game

helps mitigate DoS because the probability for a bad

packet to reach its destination decreases even as the attack

becomes worse. This indicates that the effectiveness of

the DoS mitigation game increases as the attack becomes

more severe.

• In the n-player game, the payoff for each forwarder is

fixed (see Eqn. (6)). When the penalty value is high

enough, the probability for a bad packet to reach the

destination can be reduced to a small value. However, the

resources (e.g., nodal energy) consumed at a forwarder

will be more, and hence the nodes will have a shorter

lifetime if the resources are not replenishable. Therefore,

the penalty value should be properly selected to keep the

rate of successful attack low and at the mean time, to

motivate forwarders.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a signature-based DoS mitigation system

for mobile ad hoc networks. The system defines a game in

which forwarders will probabilistically verify packets received

for forwarding, and hence will have a chance to drop bad

packets sent by attackers. We have formulated different forms

of the game for different network scenarios, and analyzed

the corresponding payoff, effectiveness, and Nash equilibrium

properties. Based on our analysis and numerical results, it can

be concluded that the games can induce useful DoS mitigation

effects. In addition, key game parameters, such as the penalty

for forwarding a bad packet without verification, can affect the

probability that a node will verify a received packet. Therefore,

determining the value for the penalty can be effective for game

control.

Future work includes experiments under more involved

operating scenarios, and the design of protocols to accurately

estimate the severity of attack. It would also be interesting to

investigate the existence and attainment of Nash equilibrium

when a forwarder does not know the length of the network

path. Finally, issues of determining realistic reward and penalty

values under specific deployment scenarios should be studied.

VII. ACKNOWLEDGEMENT

Research was supported in part by the U.S. National Science

Foundation under grant number CNS-0305496, and in part by

an Asian Initiative grant awarded by Purdue University.

REFERENCES

[1] T. Alpcan and T. Basar. A game theoretic approach to decision and
analysis in network intrusion detection. In Proceedings of the 42nd

IEEE Conference on Decision and Control, 2003.
[2] K. Argyraki and D. R. Cheriton. Active internet traffic filtering: Real-

time response to denial-of-service attacks. In In USENIX Annual

Technical Conference, 2005.
[3] S. Buchegger and J.-Y. L. Boudec. Performance analysis of the confidant

protocol. In MobiHoc ’02: Proceedings of the 3rd ACM international

symposium on Mobile ad hoc networking & computing, 2002.
[4] L. Buttyan and J. Hubaux. Nuglets: a virtual currency to stimulate

cooperation in self-organized ad hoc networks. In Technical report,

EPFL, 2001.
[5] M. Felegyhazi and J.-P. Hubaux. Game theory in wireless networks: A

tutorial. EPFL technical report, (LCA-REPORT-2006-002), 2006.
[6] M. Felegyhazi, J.-P. Hubaux, and L. Buttyan. Nash equilibria of packet

forwarding strategies in wireless ad hoc networks. IEEE Transactions

on Mobile Computing, 5, 2006.
[7] Y.-C. Hu, D. B. Johnson, and A. Perrig. Ariadne: A secure on-demand

routing protocol for ad hoc networks. In Proceedings of Mobicom, 2002.
[8] J. Ioannidis and S. M. Bellovin. Implementing pushback: Router-based

defense against ddos. In In Proceedings of Network and Distributed

System Security Symposium, 2002.
[9] B. Karp and H. T. Kung. Gpsr: Greedy perimeters stateless routing

for wireless network. In Proceedings of ACM/IEEE Mobicom, pages
243–254, 2000.

[10] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing robust and
ubiquitous security support for mobile ad-hoc networks. In Proceedings

of ICNP, 2001.
[11] H. Luo, R. Ramjee, P. Sinha, L. Li, and S. Lu. Ucan: a unified cellular

and ad-hoc network architecture. In Proceedings of the 9th Mobicom,
2003.

[12] L. M. Marie and M. Nilsson. Investigating the energy consumption of
a wireless network interface in an ad hoc networking environment. In
Proceedings of IEEE INFOCOM, 2001.

[13] M. J. Osborne. An Introduction to Game Theory. Oxford University
Press, Inc., 2004.

[14] K. Romer. Time synchronization in ad hoc networks. 2001.
[15] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network

support for ip traceback. In Proc. of 16th ACM SIGCOMM (SIG-

COMM’2000), 2000.
[16] A. Snoeren, C. Partridge, L. Sanchez, and C. Jones. Hash-based ip

traceback. 2001.
[17] V. Srinivasan, P. Nuggehalli, C. F. Chiarresini, and R. R. Rao. Coop-

eration in wireless ad hoc networks. In Proceedings of Infocom, pages
808–816, 2003.

[18] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz. Energy
analysis of public-key cryptography for wireless sensor networks. In
PERCOM ’05: Proceedings of the Third IEEE International Conference

on Pervasive Computing and Communications, 2005.
[19] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet flow filter to

mitigate ddos flooding attacks. In In Proceedings of the IEEE Security

and Privacy Symposium, 2004.
[20] D. W. X. Yang and T. Anderson. A dos-limiting network architecture.

In In Proc. ACM SIGCOMM, 2005.
[21] S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang. On designing

incentive-compatible routing and forwarding protocols in wireless ad-
hoc networks: an integrated approach using game theoretical and cryp-
tographic techniques. In MobiCom ’05: Proceedings of the 11th annual

international conference on Mobile computing and networking, 2005.


