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ABSTRACT

Shen, Shuo Ph.D., Purdue University, May, 2007. Finite Fields of Low Characteristic
in Elliptic Curve Cryptography. Major Professor: Samuel S. Wagstaff, Jr.

The use of finite fields of low characteristic can make the implementation of elliptic

curve cryptography more efficient. There are two approaches to lower the characteris-

tic of the finite field in ECC while maintaining the same security level: Elliptic curves

over a finite field extension and hyperelliptic curves over a finite field. This thesis

solves some problems in both approaches.

The group orders of elliptic curves over finite field extensions are described as

polynomials. The irreducibility of these polynomials is proved, and hence the pri-

mality of the group orders can be studied. Asymptotic formulas for the number of

traces of elliptic curves over field extensions with almost prime orders are given and a

proof based on Bateman-Horn’s conjecture is given. Hence the number of curves for

cryptographic use is known. Experimental data is given. The formulas fit the actual

data remarkably well.

Finally, the arithmetic of real hyperelliptic curves is studied. We study the algo-

rithm for divisor addition on the real hyperlliptic curves and give the explicit formulas.
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1. INTRODUCTION

1.1 Elliptic/Hyperelliptic Curve Cryptography

It is well known that the sets of rational points on elliptic curves over finite fields

form finite groups and the sizes of these finite groups are of the same magnitude as

the size of the base fields. Elliptic curve cryptosystems (ECC) were first proposed in

1985 independently by Neal Koblitz and Victor Miller based on the group structure

of elliptic curves over finite fields. ECC’s security depends on the computational

complexity of the discrete logarithm problem(DLP) over elliptic curve groups, i.e.,

looking for m given rational points P and mP in an elliptic curve group, where

m is a natural number less than the order of the elliptic curve group. Thus, large

elliptic curve groups or prime order subgroups of elliptic curve groups are needed to

guarantee that m can be large and the discrete logarithm problem hard. To reach the

same security level1 as 1024-bit RSA, the size of of the elliptic curve groups should

be over 163 bits according to NIST guidelines for public key sizes. For more details

about the ECC standard, see NIST FIPS 186-2.

The curves used in cryptography ares are those over F2m :

y2 + xy = x3 + ax2 + b with a, b ∈ F2m , (1.1)

and the elliptic curves over Fp, where p is an odd prime greater than 3, in short

Weierstrass form:

y2 = x3 + ax + b with a, b ∈ Fp. (1.2)

The use of hyperelliptic curves in cryptography was started in 1989 by Koblitz [18].

As with the elliptic curve cryptosystem, the discrete logarithm problem over the

1The security level usually refers to the size of key space, for example: one has to try 21024 keys to

launch a brute force attack on a 1024-bit security level cryptosystm.
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Jacobian of hyperelliptic curves of low genus is computationally infeasible when the

size of the Jacobians is large. See Müller et al. [26], Gaudry [13], Enge [10] and

Theriault [34].

Hyperelliptic curves have the form y2 + h(x)y = f(x), where h and f are polyno-

mials. The degree of f is 2g + 1 or 2g + 2 and the degree of h is no higher than g + 1,

where g is the genus of the curve; see Cohen et al. [7] for details. Formal definitions

will be given in Chapter 3.

1.2 Elliptic Curves over Finite Fields

Elliptic curves over finite fields of characteristic 2 are very efficient and widely used

because of their convenience in implementation, fast addition operation on binary

computer systems and the key-per-bit-strength is good. But the elliptic curves with

coefficients in F2 are very limited:

E(F2) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (1.3)

Of the 25 = 32 possible curves, most are singular, supersingular or anomalous, which

are either trivial or vulnerable curves in elliptic cryptography. E(F2p) (p is a prime)

are the most casually used elliptic curves.

The number of possible elliptic curves over a large prime order finite field Fp is

enormous because for each integer n ∈ (p+1−2
√

p, p+1+2
√

p), we can find an elliptic

curve with group order n (see Section 2.1.1). We want n to be a prime because we

need a large prime order elliptic curve group to make the discrete logarithm problem

hard. The number of group orders we could choose is the number of primes in

(p + 1− 2
√

p, p + 1 + 2
√

p) and the number of curves is even more than that.

Multiplications in extension fields of characteristic 2 are usually slower than in

prime fields, while the the inversion in prime fields can be very expensive. To overcome

these two difficulties, some optimal extension fields are explored, i.e., some special

chosen small prime p and extension degree l make the extension field Fql have optimal
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performance in both multiplications and inversions. See Cohen et al. [7] for details.

In this thesis, we generally study the amount of elliptic curves over extension fields

that are possible for cryptographic use, further studies particular for the choices of p

and l are expected to be done soon.

1.3 Contribution of This Thesis

Two approaches have been tried to make the algebraic operations fast while al-

lowing many choices of elliptic curves. The first approach is to use elliptic curves over

a finite field extension, with curve coefficients in a small finite field, i.e.:

E : y2 = x3 + Ax + B over Fqk (q and k are odd primes, A,B ∈ Fq). (1.4)

This type of curves over finite field extension and with coefficients in small finite

field are called Koblitz curves. Group orders of such type of elliptic curves are eas-

ier to calculate and use of Frobenius equation (Theorem 2.1.2) make make scalar

multiplication over such type of curves faster. See Section 2.1 for more details.

The implementation is faster than for elliptic curves over a huge prime order field

and there are many more choices than for curves with binary coefficients. It turns

out that the order of E in Formula (1.4) can not be prime when k > 1. However, the

order may be “almost prime,” that is, have one large prime factor near qk−1. This

size of order is good enough for use in cryptography.

In this thesis, we give and prove a condition for an elliptic curve over a finite field

extension to have almost prime order. We also give and prove an asymptotic formula

for the number of traces of elliptic curves with almost prime orders. Formulas and

experimental data show that there is a huge space of such elliptic curves for use in

ECC. The safety property of these curves under certain attacks is also studied.

The second approach is to use hyperelliptic curves. A hyperelliptic curve with

genus g over Fq has Jacobian of size about qg. To have the same size of Jacobian as

the size of elliptic curve groups, the base field of a hyperelliptic curve is smaller, thus

the parameters of the curve are smaller. Algorithms for imaginary hyperelliptic curves
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have been widely studied. In this thesis, the explicit formulas for for the addition

operation for a real hyperelliptic curve is given. More improvements for algorithms

for real hyperelliptic curves are being explored with other mathematicians.

1.4 Outline of the Thesis

Chapter 2 studies elliptic curves over finite field extensions. Necessary background

and related material will be introduced briefly. Proofs and experimental data are given

in detail. Chapter 3 focuses on the algorithms for real hyperelliptic curves. Further

work in both approaches is mentioned in both chapters.
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2. ELLIPTIC CURVES OVER FINITE FIELD

EXTENTIONS

2.1 Background

The work in this part of the thesis was started with the counting of elliptic curves

of “almost prime” order by MAGMA. It was found that the ratio |E(Fqk)|/|E(Fq)|
can be described by the value of an irreducible polynomial determined by q and k.

This fact is proved below along with other interesting results. This expression as an

irreducible polynomial makes it possible to find an asymptotic formula for the number

of elliptic curves of “almost prime” order if we assume Bateman-Horn’s conjecture.

2.1.1 Basic Definitions

The classical theory of elliptic curves over a finite field is the basis of the work of

this thesis. See Silverman [30] and Washington [36]. Some important related research

in ECC and number theory will be introduced first.

All elliptic curves over finite fields of characteristic greater than 3 can be written

in short Weierstrass normal form:

y2 = x3 + Ax + B (2.1)

with A and B constants in some base field and the discriminant ∆ = −4A3−27B2 6= 0.

Modifications to the Weierstrass form must be made in characteristics 2 and 3. See

Washington [36], page 11, for more details.

Let Fqk be a finite field, k ≥ 1 and k ∈ Z. For fixed A, B ∈ Fqk , the set

E(Fqk) = {∞} ∪ {(x, y) ∈ Fqk × Fqk | y2 = x3 + Ax + B} (2.2)
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Theorem 2.1.1 (Hasse) Let E be an elliptic curve over the finite field Fq. Then the

order of E(Fq) satisfies

|q + 1− |E(Fq)|| ≤ 2
√

q. (2.3)

See [36], Section 4.1, for a proof. This is called Hasse’s bound for the order of an

elliptic curve group. The trace of an elliptic curve E(Fq) is defined as:

t = q + 1− |E(Fq)|. (2.4)

Let

φq : Fq → Fq

x 7→ xq

be the Frobenius map for Fq. Then φq acts on the points in E(Fq):

φq(x, y) = (xq, yq), φq(∞) =∞.

It is easy to see that φq is an endomorphism of E(Fq); see Washington [36], page 48.

Here is an important property of φq:

Theorem 2.1.2 Let E be an elliptic curve defined over Fq. Let t be as in Formula

(2.3). Then

φ2
q − tφq + q = 0

as endomorphisms of E, and t is the unique integer s such that

φ2
q − sφq + q = 0.

In other words, if (x, y) ∈ E(Fq), then

(xq2

, yq2

)− t(xq, yq) + q(x, y) =∞

and t is the unique integer such that this relation holds for all (x, y) ∈ E(Fq). The

“−” and “+” signs denote the group operations on E(Fq) in the last formula.
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Moreover, t is the unique integer satisfying

t ≡ Trace((φq)m) mod m

for all m with gcd(m, q) = 1. Trace((φq)m) is the trace of (φq)m, which is the matrix

that describes the action of φq on E[m] = {P ∈ E(Fq) | mP =∞}.

See Washington [36] Section 4.2 for a proof.

It is known that given the base field Fq and a trace value t, an elliptic curve of

order q + 1− t can be found by the complex multiplication algorithm. For details see

Morain [25] Section 5.3, Lay and Zimmer [22] or Cohen et al. [7] Section 18.1.5.

If we have an elliptic curve E defined over a small finite field Fq, the order of

E(Fqk) can be determined from |E(Fq)| and k because of the following theorem:

Theorem 2.1.3 Let E(Fq) be the elliptic curve as defined by Formula (2.2), A, B ∈
Fq and |E(Fq)|=q +1− t. Write X2− tX +q = (X−α)(X−β), with α, β ∈ C. Then

|E(Fqk)| = qk + 1− (αk + βk) (2.5)

= qk + 1− tk, (2.6)

for all k ≥ 1, and tk = αk + βk is the trace of E(Fqk).

See Washington [36], Section 4.3, for a proof.

2.1.2 Almost Prime Order

Let E be an elliptic curve defined over the finite field Fq of q elements. Let Fqk

be an extension of Fq of degree k. We say that E has almost prime order over a

degree-k extension Fqk if

Mk := Mk(E/Fq) =
|E(Fqk)|
|E(Fq)|

(2.7)

is a prime; see Koblitz [19].

Note that E(Fqr) is a subgroup of E(Fqs) whenever r|s; this implies [19] that

|E(Fqk)| is divisible by |E(Fq)|, and that the ratio of these two numbers can be prime

only if k is prime, except for these two cases:
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Example 2.1.1 When, q = 2 and k = 4, define a curve as:

E : y2 + y = x3 + x.

Then |E(F2)| = 5 and |E(F24)| = 25, thus |E(F24)|/|E(F2)| = 5.

Example 2.1.2 When, q = 3 and k = 4, define a curve as:

E : y2 = x3 + 2x + 1.

Then |E(F3)| = 7 and |E(F34)| = 91, thus |E(F34)|/|E(F3)| = 13.

The reason for the above exceptions is that, generally, when k is a composite, the

ratio Mk can be written explicitly as a product of two factors as shown in Section

2.2.2. But when q and k are small numbers, one of the factors can degenerate to be

1; thus, it’s possible for Mk to be a prime in this case.

We will show, as long as k is a prime and q is large enough, there will be around

O(
√

q/((k − 1) log q) elliptic curves with almost prime order. We will do this by

expressing the ratio in Formula (2.7) as an evaluation of an irreducible polynomial.

Heuristic arguments in number theory (Bateman and Horn [4], [5]) suggest that there

are many values making the value of the irreducible polynomial a prime. Thus k being

a prime is almost a sufficient condition that we can find an elliptic curve E(Fqk) with

almost prime order.

Further properties of the ratio of these two numbers in Formula (2.7) will be shown

in next section.

2.1.3 The Bateman-Horn Conjecture

We will use a widely-accepted conjecture of Bateman and Horn to estimate the

number of prime values of a polynomial f(x) when 0 < x ≤ B is an integer. We

will apply this conjecture to f(t) = Mk of Formula (2.7) after we express Mk as a

polynomial in a variable t.
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Note: All the logarithmic functions in this thesis are natural logarithmic func-

tions. The equivalence relation “∼” has this meaning: We write f(n) ∼ g(n) to mean

limn→∞ f(n)/g(n) = 1.

Suppose f1, f2, . . ., fl ∈ Z[x] are polynomials in one variable with all coefficients

integral and leading coefficients positive. Suppose each of these polynomials is irre-

ducible over the field of rational numbers and no two of them differ by a constant

factor. Let Q(f1, f2, . . . , fl; B) denote the number of integers n between 1 and B,

inclusive, such that f1(n), f2(n), . . ., fl(n) are simultaneously prime. (Finitely many

values of n for which some fl(i) is negative are ignored as B → ∞. For our case,

the irreducible polynomial we use always has positive value in [1, B].) Bateman and

Horn conjectured [4], [5]:

Q(f1, f2, . . . , fl; B) ∼ CBH(f1, f2, . . . , fl)

∫ B

a

du

log f1(u) log f2(u) · · · log fl(u)
, (2.8)

where a is the first positive integer such that each of the polynomials f1, f2, . . ., fl

takes only values greater than 1 on the interval [a, +∞], and

CBH(f1, f2, . . . , fl) =
∏

p

{

(

1− 1

p

)−l(

1− ω(p)

p

)

}

, (2.9)

the product being taken over all primes and ω(p) being the number of solutions of

the congruence

f1f2 · · · fl ≡ 0 (mod p). (2.10)

If f1, . . ., fl are abelian polynomials, then CBH(f1, f2, . . . , fl) converges quickly

and can be calculated efficiently by direct application of Formula (2.9). By an abelian

polynomial we mean a polynomial such that any one of its zeros generates a normal

extension of the rational numbers with an abelian Galois group.

When l = 1, for an irreducible polynomial f , Formula (2.8) can also be expressed

as

Q(f ; B) ∼ CBH(f)

∫ B

a

du

log f(u)
. (2.11)
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Bateman-Horn’s conjecture is based on the fact that the chance that a large pos-

itive integer m is prime is around 1/ log m (Prime number theorem, see Apostol [1]

for a reference). Since f1(n), f2(n), . . ., fl(n) are not quite random integers, a correc-

tion factor needs to be applied and CBH(f1, f2, . . . , fl) is the correction factor. See

Bateman and Horn [4] for the details. We call CBH(f1, f2, . . . , fl) the Bateman-Horn

constant and denote it as CBH for simplicity in the experimental data later. It is

shown that CBH converges fast and can be easily computed when all fi’s are abelian

polynomials. See Bateman and Horn [4], [5] for details. Many verifications have

shown that the Formula (2.7) fits experimental data remarkably well.

Our experimental results show that the number of primes from our polynomial

also fits the Bateman-Horn estimate well.

2.2 Polynomials A and B

For brevity, we let q be a prime unless otherwise specified. Thus Fq is a finite field

with prime order. We will allow q to be a prime power in Section 2.5.

2.2.1 Irreducibility

In the following lemma we will see that q +1− t1|qk +1− tk, where tk is the trace

of E(Fqk) for k ≥ 1. We can express tk inductively. Since tk = αk +βk, we can rewrite

tk as

tk = αk + βk = (α + β)(αk−1 + βk−1)− αβ(αk−2 + βk−2).

Noticing the fact that α + β = t1 and αβ = q, we get:

t1 = t1, (2.12)

t2 = t21 − 2q, (2.13)

tk = t1 · tk−1 − q · tk−2. (2.14)

We will give an explicit formula for the ratio of the two numbers and study it as

a polynomial.
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Lemma 2.2.1 As polynomials in Z[q], q + 1− t1 divides qk + 1− tk, where tk is the

trace of E(Fqk) for k ≥ 1.

Proof Use mathematical induction. When k = 1 and 2 we have:

q + 1− t1 = q + 1− t1,

q2 + 1− t2 = q2 + 1− (t21 − 2q) = (q + 1− t1)(q + 1 + t1).

For k ≥ 3, assuming we already know:

qk−1 + 1− tk−1 = λk−1(q + 1− t1),

qk−2 + 1− tk−2 = λk−2(q + 1− t1),

where the λj are in Z[q], we derive the useful formulas:

qk−1 = λk−1(q + 1− t1) + tk−1 − 1,

qk = λk−1q(q + 1− t1) + qtk−1 − q,

qtk−2 = qk−1 + q − λk−2q(q + 1− t1).

Using the above formulas and Formula (2.14), we get:

|E(Fqk)| = qk + 1− tk

= λk−1q(q + 1− t1) + qtk−1 − q + 1− t1tk−1 + qtk−2

= λk−1q(q + 1− t1) + qtk−1 − q + 1− t1tk−1 + qk−1 + q − λk−2q(q + 1− t1)

= λk−1q(q + 1− t1) + qtk−1 − q + 1− t1tk−1 + λk−1(q + 1− t1)

+ tk−1 − 1 + q − λk−2q(q + 1− t1)

= (λk−1q + λk−1 − λk−2q)(q + 1− t1) + qtk−1 − q − t1tk−1 + q

= (λk−1q + λk−1 − λk−2q)(q + 1− t1) + tk−1(q + 1− t1)

= (λk−1q + λk−1 − λk−2q + tk−1)(q + 1− t1).

Thus,

λk = λk−1q + λk−1 − λk−2q + tk−1. (2.15)

This completes the proof of the lemma.
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To analyze the primality of the ratio in Formula (2.7), we need to express it as a

polynomial.

If we let x replace t1 and y replace q, then qk + 1− (αk + βk) becomes:

yk + 1− fk(x, y),

where from Formulas (2.12), (2.13), (2.14):

f1(x, y) = x, (2.16)

f2(x, y) = x2 − 2y, (2.17)

fk(x, y) = xfk−1(x, y)− yfk−2(x, y). (2.18)

In view of Lemma 2.2.1, we define:

Ak(x, y) := yk + 1− fk(x, y) = (y + 1− x)Bk(x, y), (2.19)

where Bk(x, y) :=
yk + 1− fk(x, y)

y + 1− x
(2.20)

for some polynomial Bk(x, y) ∈ Z[x, y]. Then Bk(t1, q) is the ratio in Formula (2.7).

If we let f0(x, y) = 2, the recurrence relation (2.18) holds for all k ≥ 2.

Formulas for these functions are given in this simple lemma.

Lemma 2.2.2 For any positive integer k, we have

fk(x, y) =

(

x +
√

x2 − 4y

2

)k

+

(

x−
√

x2 − 4y

2

)k

, (2.21)

Ak(x, y) =





(

x +
√

x2 − 4y

2

)k

− 1









(

x−
√

x2 − 4y

2

)k

− 1



 , (2.22)

Bk(x, y) =

(

x+
√

x2−4y

2

)k

− 1

x+
√

x2−4y

2
− 1

(

x−
√

x2−4y

2

)k

− 1

x−
√

x2−4y

2
− 1

. (2.23)

When k is a prime

Bk(x, y) = Φk

(

x +
√

x2 − 4y

2

)

Φk

(

x−
√

x2 − 4y

2

)

, (2.24)

where Φk is the kth cyclotomic polynomial.
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Proof Let

α =
x +

√

x2 − 4y

2
, (2.25)

β =
x−

√

x2 − 4y

2
. (2.26)

Notice that α + β = x and αβ = y. From the recursive relation formula (2.18), fk

is a Lucas function with variables α and β (see Williams [38], Section 4.1). Then by

properties of Lucas functions (see Williams [38], Section 4.1), we have:

fk(x, y) = fk(α, β) = αk + βk =

(

x +
√

x2 − 4y

2

)k

+

(

x−
√

x2 − 4y

2

)k

.

Then

Ak(x, y) = yk + 1− fk(x, y)

=

(

x +
√

x2 − 4y

2

x−
√

x2 − 4y

2

)k

+ 1

−





(

x +
√

x2 − 4y

2

)k

+

(

x−
√

x2 − 4y

2

)k




=





(

x +
√

x2 − 4y

2

)k

− 1









(

x +
√

x2 − 4y

2

)k

− 1



 ,

Bk(x, y) =
yk + 1− fk(x, y)

y + 1− x

=

(

(

x+
√

x2−4y

2

)k

− 1

)(

(

x+
√

x2−4y

2

)k

− 1

)

x+
√

x2−4y

2

x−
√

x2−4y

2
+ 1−

(

x+
√

x2−4y

2
+

x−
√

x2−4y

2

)

=

(

(

x+
√

x2−4y

2

)k

− 1

)(

(

x+
√

x2−4y

2

)k

− 1

)

(

x+
√

x2−4y

2
− 1

)(

x−
√

x2−4y

2
− 1

) .

When k is a prime, it’s easy to see

Bk(x, y) = Φk

(

x +
√

x2 − 4y

2

)

Φk

(

x−
√

x2 − 4y

2

)

.
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To analyze the primality of qk+1−tk
q+1−t1

=
|E(F

qk )|
|E(Fq)| = Mk, we focus on the polynomial

Bk(x, y). The following lemmas and theorems will show that Bk(x, y) is actually an

irreducible polynomial when k is an odd prime.

Lemma 2.2.3 We have fn(0, y) = 0 when n is an odd number. Also fn(x, 0) = xn

for any positive integer n.

Proof By plugging in x = 0 into formula (2.21) one gets

fk(0, y) =
(√−y

)k
+ (−1)k

(√−y
)k

.

When k is odd, (−1)k = −1 and the result follows.

Similarly, by plugging in y = 0 into Formula (2.21) one gets

fk(x, 0) = xk.

Note that Formula (2.19) and Lemma 2.2.3 tell us that

Ak(0, y) = yk + 1− 0 · fk−1(0, y)− y · fk−2(0, y) = yk + 1

for every odd positive integer k and that Ak(x, 0) = 1− xk for every positive integer

k.

Lemma 2.2.4 If k is an odd prime, then for any x and y

Bk(0, y) = Φ2k(y), (2.27)

Bk(x, 0) = Φk(x), (2.28)

where Φ2k(y) and Φk(x) are the 2kth and kth cyclotomic polynomials.
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Proof For any odd prime k, by the remark following Lemma 2.2.3, we have Ak(0, y) =

yk + 1 since k − 2 is odd.

Then by Lemma 2.2.1

Ak(0, y) = (1 + y)Bk(0, y).

So we get

Bk(0, y) =
yk + 1

y + 1
= Φ2k(y)

for the odd prime k.

Also, by Ak(x, 0) = 1− xk and Lemma 2.2.1,

Ak(x, 0) = (1− x)Bk(x, 0).

So we get

Bk(x, 0) =
xk − 1

x− 1
= Φk(x)

for the odd prime k.

Lemma 2.2.5 The total degree of the polynomial Ak(x, y) is k; the total degree of

the polynomial Bk(x, y) is k − 1 for each k. (k can be composite.)

Proof It’s easy to see from the definition of fk(x, y) (Formulas (2.16), (2.17) and (2.17))

that the total degree of fk(x, y) is k. Hence by the definitions of Ak(x, y) and Bk(x, y)

in formulas (2.19) and (2.20), the degrees of Ak(x, y) and Bk(x, y) are k and k− 1.

Now we show that Bk(x, y) is irreducible if k is an odd prime.

Theorem 2.2.1 When k is an odd prime, Bk(x, y) is irreducible in Z[x, y].

Proof If Bk(x, y) were not irreducible, then Bk(x, y) = g(x, y)h(x, y), where g(x, y)

and h(x, y) are both polynomials in Z[x, y] with degree at least 1. By Lemma 2.2.4,

Φ2k(y) = Bk(0, y) = g(0, y)h(0, y).
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Since Φ2k(y) is irreducible, without loss of generality, we have

g(0, y) = Φ2k(y), (2.29)

h(0, y) = 1, (2.30)

g(x, y) = x · g0(x, y) + Φ2k(y), (2.31)

h(x, y) = x · h0(x, y) + 1, (2.32)

where g0(x, y) and h0(x, y) are polynomials in x and y.

When we take y to be zero,

Φk(x) = Bk(x, 0) = (x · g0(x, 0) + Φ2k(0))(x · h0(x, 0) + 1)

= (x · g0(x, 0) + 1)(x · h0(x, 0) + 1).

Since Φk(x) is irreducible, either x · g0(x, 0) + 1 = 1 or x · h0(x, 0) + 1 = 1.

Case 1 x · g0(x, 0) + 1 = 1 and x · h0(x, 0) + 1 = Φk(x).

In this case we have

g0(x, 0) = 0,

h0(x, 0) = (Φk(x)− 1)/x.

The above equations imply

g0(x, y) = y · g1(x, y) + 0,

h0(x, y) = y · h1(x, y) + (Φk(x)− 1)/x,

and we have

Bk(x, y) = (xy · g1(x, y) + Φ2k(y))(xyh1(x, y) + Φk(x)). (2.33)

This is not possible because by Lemma 2.2.5 the total degree of Bk(x, y) should

be k − 1, while Equation (2.33) shows that its total degree is at least 2k − 2

(unless k = 1, but k is a prime here). Therefore, Bk(x, y) must be irreducible.
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Case 2 x · g0(x, 0) + 1 = Φk(x) and x · h0(x, 0) + 1 = 1.

Here we have

g0(x, 0) = (Φk(x)− 1) /x,

h0(x, 0) = 0.

Then

g0(x, y) = (Φk(x)− 1) /x + y · g1(x, y),

h0(x, y) = y · h1(x, y).

Therefore,

Bk(x, y) = (xy · g1(x, y) + Φk(x) + Φ2k(y)− 1) (xyh1(x, y) + 1) . (2.34)

By Lemma 2.2.5 the degree of Bk(x, y) is k − 1, so we must have h1(x, y) = 0.

Then h0(x, y) = 0, so we get h(x, y) = 1, a contradiction with h(x, y) having

degree at least 1.

Therefore, Bk(x, y) must be irreducible. This proves Theorem 2.2.1.

We now need Gauss’s Lemma. (See “Algebra”, by Hungerford, Lemma 6.13.)

Let D be a unique factorization domain with quotient field F and f a primitive

polynomial of positive degree in D[x]. Then f is irreducible in D[x] if and only if

f is irreducible in F [x]. For two variable polynomials, the same result holds. See

Appendix B for the proof.

Applying this to the U.F.D. Z with quotient field Q gives this theorem:

Theorem 2.2.2 When k is an odd prime, Bk(x, y) is an irreducible polynomial over

Q.

As a polynomial in two variables, Bk(x, y) is irreducible. But it is not true that

it would become an irreducible polynomial in one variable when the other is fixed

to be an arbitrary constant. For Bk(x, y), it is not true that Bk(x, c) would be an

irreducible polynomial of one variable for any integer c. For example:
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Example 2.2.1

If y = 1, then Bk(x, 1) is reducible for any prime k:

B3(x, 1) = x2 + 2x + 1

= (x + 1)2,

B5(x, 1) = x4 + 2x3 − x2 − 2x + 1

= (x2 + x− 1)2,

B7(x, 1) = x6 + 2x5 − 3x4 − 6x3 + 2x2 + 4x + 1

= (x3 + x2 − 2x− 1)2,

. . .

This result can be generalized to all Bk(x, 1) when k is a prime. See Theorem 2.2.5

for the proof.

By the Hilbert irreducibility theorem, if Bk(x, y) is an irreducible polynomial over

Q, there will be infinitely many choices of a rational number c, such that Bk(x, c)

is also irreducible. But no result tells us which rational numbers c make Bk(x, c)

irreducible.

Fortunately for our application in elliptic curve cryptography, y only needs to be

an odd prime number q. And we can show that Bk(x, q) is irreducible. Actually, as

long as c 6= 1, Bk(x, c) will be irreducible. As we show in Theorem 2.2.4.

By Section 2.1.3 we know that it will be efficient to calculate the Bateman-Horn

constant by using the definition provided the polynomials are abelian. The following

theorem shows that Bk(x, q) is an abelian polynomial.

Theorem 2.2.3 For q ∈ Z, q > 1, and an odd prime k, Bk(x, q) is an abelian

polynomial of x.

Proof Since Ak(x, q) = (q + 1 − x)Bk(x, q), the splitting field of Ak(x, q) over Q

equals the splitting field of Bk(x, q) over Q. To show Bk(x, q) is abelian, it is enough
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to show that the zeros of Ak(x, q) generate a normal extension of the rational numbers

with an abelian Galois group.

By plugging in y = q into Formula (2.22) in Lemma 2.2.2, we have

Ak(x, q) =





(

x +
√

x2 − 4q

2

)k

− 1









(

x−
√

x2 − 4q

2

)k

− 1



 . (2.35)

The roots of Ak(x, q) can be expressed in terms of ζk, a kth root of unity:

(

x±
√

x2 − 4q

2

)k

= 1,

x±
√

x2 − 4q

2
= ζ i

k,

x±
√

x2 − 4q = 2ζ i
k,

±
√

x2 − 4q = 2ζ i
k − x,

x2 − 4q = (2ζ i
k − x)2,

−4q = 4ζ2i
k − 4ζ i

kx.

Then we get:

x = qζ−i
k + ζ i

k, (2.36)

where i ∈ 0, 1, . . . , k − 1. Then the splitting field of Ak(x, q) is a subfield of Q(ζk),

the cyclotomic extension of Q, which is an abelian extension. Since all the subgroups

and quotient groups of abelian groups are abelian, by the fundamental theorem of

Galois theory [14], Section 5.8, we see that every subfield containing Q of an abelian

extension of Q is again an abelian extension of Q. So the splitting field of Bk(x, q) is

abelian and Bk(x, q) is an abelian polynomial.

Another important property for polynomial Bk(x, q) is irreducibility. Actually,

more is true.

Theorem 2.2.4 If k is an odd prime, then Bk(x, c) is irreducible over Q for any

integer c 6= 1.
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Proof Assuming we have already proved Q(cζ−1
k + ζk)=Q(ζk), the minimal polyno-

mial of cζ−1
k +ζk over Q should have degree [Q(ζk), Q]=k−1. Since Bk(cζ

−1
k +ζk, q) = 0

and Bk(x, q) is a monic polynomial with degree k − 1, Bk(x, q) must be the minimal

polynomial of (cζ−1
k + ζk). Hence it is irreducible.

Now we show Q(cζ−1
k + ζk)=Q(ζk). Suppose Q(cζ−1

k + ζk) ( Q(ζk), Then

Gal(Q(cζ−1
k +ζk)/Q) ( Gal(Q(ζk)/Q). Then there must be a nontrivial Q(cζ−1

k +ζk)-

automorphism of Q(ζk) in Gal(Q(ζk)/Q). Denote it as σ ∈ Gal(Q(ζk)/Q), so that

σ(cζ−1
k + ζk) = cζ−1

k + ζk. Then we have:

σ(cζ−1
k + ζk)− cζ−1

k − ζk = cσ(ζ−1
k ) + σ(ζk)− cζ−1

k − ζk = 0.

Since σ ∈ Gal(Q(ζk)/Q), σ(ζk) = ζ i
k for some integer i ∈ {2, . . . , k − 1}, we have:

cζ−i
k + ζ i

k − cζ−1
k − ζk = 0 for some i ∈ {2, . . . , k − 1}. (2.37)

If i = k − 1, we have:

cζ1
k + ζk−1

k − cζk−1
k − ζk = (1− c)ζk−1

k − (1− c)ζk

= (1− c)ζk(ζ
k−2
k − 1)

= 0.

This won’t happen. Because if c 6= 1, one has (1− c)ζk 6= 0. Thus ζk−2
k −1 = 0, which

contradicts the fact that ζk is a kth root of unity.

If i ∈ {2, . . . , k − 2}, we have:

−cζk−1
k + ζ i

k + cζk−i
k − ζk = 0. (2.38)

Add a c-multiple of the minimal polynomial of ζk to Equation (2.38), get:

cζk−2
k + . . . + (c + 1)ζ i

k + . . . + 2cζk−i
k + . . . + (c− 1)ζk + c = 0 (2.39)

or

cζk−2
k + . . . + 2cζk−i

k + . . . + (c + 1)ζ i
k + . . . + (c− 1)ζk + c = 0. (2.40)
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Hence ζk is a root of a nontrivial polynomial of degree at most k− 2, a contradiction

to the fact that the minimal polynomial of ζk is of degree k − 1. So we have proved

Q(cζ−1
k + ζk)=Q(ζk).

Since q > 1 in particular, we have:

Corollary 2.2.1 For odd primes k and q, Bk(x, q) is irreducible over Q.

Proof Again, since Z is a U.F.D., the irreducibility of a polynomial over Z and Q

are the same.

We recently learned that the irreducibility of polynomial Bk(x, y) and Bk(x, q) was

discussed by Qi Cheng and Ming-Deh Huang in [6]. It seems the proof of irreducibility

of Bk(x, y) in [6] is based on the irreducibility of Bk(x, c) for any integer c, which is

not always true, as we saw in Example 2.2.1.

Now we discuss Bk(x, c) when c = 1. As we saw in Example 2.2.1, Bk(x, 1) is a

square of a polynomial when k = 3, 5, 7. We can generalize this result to all prime k.

Theorem 2.2.5 If k is an odd prime, Bk(x, 1) is a square of an irreducible polyno-

mial. In fact,

Bk(x, 1) =



1 +

k−1

2
∑

i=1

fi(x, 1)





2

, (2.41)

where the fi(x, y) are the polynomials defined in Equations (2.16), (2.17) and (2.18).

Proof From Lemma 2.2.2, we can get the roots of Ak(x, 1):

Ak(x, 1) = 0,
(

x±
√

x2 − 4

2

)k

− 1 = 0,

(

x±
√

x2 − 4

2

)k

= 1,

x±
√

x2 − 4

2
= ζ i

k,

±
√

x2 − 4 = 2ζ i
k − x,

x = ζ−i
k + ζ i

k,
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where i ∈ 0, 1, · · · , k − 1. All ζ−i
k +ζ i

k can be expressed by ζ−1
k +ζk, just as in Equations

(2.16), (2.17) and (2.18), and we have ζ−i
k + ζ i

k = fk(ζ
−1
k + ζ1

k , 1). Thus the splitting

field of Bk(x, 1) over Q is Q(ζ−1
k + ζk). Notice that ζ−i

k = ζk−i
k for k = 0, 1, · · · , k− 1.

We have

1 +

k−1

2
∑

i=1

fi(ζ
−1
k + ζk, 1) = 1 +

k−1

2
∑

i=1

ζ−i
k + ζ i

k

=
k−1
∑

i=0

ζ i
k

= 0,

by definition of ζ i
k. Because fi(x, 1) is a monic polynomial of degree i, 1+

∑

k−1

2

i=1 fi(x, 1)

is a monic polynomial of degree k−1
2

. Denote

bk(x) = 1 +

k−1

2
∑

i=1

fi(x, 1). (2.42)

Thus the minimal polynomial of ζ−1
k + ζk is of degree at most k−1

2
. So

Q ( Q(ζ−1
k + ζk) ( Q(ζk). Notice that ζ2

k − (ζ−1
k + ζk)ζk + 1 = 0, so the minimal

polynomial of ζk over Q(ζ−1
k +ζk) is x2−(ζ−1

k +ζk)x+1. Thus [Q(ζk) : Q(ζ−1
k +ζk)] = 2.

Because [Q(ζk) : Q] = [Q(ζk) : Q(ζ−1
k + ζk)][Q(ζ−1

k + ζk) : Q], we have [Q(ζ−1
k + ζk) :

Q] = k−1
2

. Since we already proved bk(ζ
−1
k +ζk) = 0 and bk(x) is a monic polynomial of

degree k−1
2

, bk(x) is the minimal polynomial of ζ−1
k +ζk over Q. Hence it’s irreducible.

To show Bk(x, 1) = b2
k(x), it’s enough to show that

Bk(x, 1) =
k−1
∏

i=1

(

x− (ζ−i
k + ζ i

k)
)

, (2.43)

bk(x) =

k−1

2
∏

i=1

(

x− (ζ−i
k + ζ i

k)
)

. (2.44)
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Because ζ−i
k + ζ i

k = ζ
−(k−i)
k + ζk−i

k , we have

Bk(x, 1) =
k−1
∏

i=1

(

x− (ζ−i
k + ζ i

k)
)

=

k−1

2
∏

i=1

(

x− (ζ−i
k + ζ i

k)
)

k−1
∏

i= k−1

2
+1

(

x− (ζ−i
k + ζ i

k)
)

=

k−1

2
∏

i=1

(

x− (ζ−i
k + ζ i

k)
)

k−1

2
∏

i=1

(

x− (ζ−i
k + ζ i

k)
)

= bk(x)2.

To prove (2.38), we already know the roots of Ak(x, 1) are ζ−i
k + ζ i

k for i =

0, 1, · · · , k − 1. And we know that Ak(x, 1) = (2 − x)Bk(x, 1). Thus the roots of

Bk(x, 1) are ζ−i
k + ζ i

k for i = 1, · · · , k − 1. So (2.38) is proved.

To prove (2.39), for any i = 1, · · · , k−1
2

, consider

bk(ζ
−i
k + ζ i

k) = 1 +

k−1

2
∑

j=1

fj(ζ
−i
k + ζ i

k, 1)

= 1 +

k−1

2
∑

j=1

(

ζ−ij
k + ζ ij

k

)

.

We need to show that

{

ζ−ij
k + ζ ij

k | j = 1, · · · , k − 1

2

}

=

{

ζ−j
k + ζj

k | j = 1, · · · , k − 1

2

}

(2.45)

for all i = 1, · · · , k−1
2

. Actually, ∀a, b ∈ {1, · · · , k−1
2
}, ai 6≡ bi mod k, otherwise k|i or

k|a− b, which is impossible since i, a, b ∈ {1, · · · , k−1
2
}; ai + bi 6≡ 0 mod k, otherwise

k|a + b or k|i, which is impossible since i, a, b ∈ {1, · · · , k−1
2
}. Hence Equation (2.45)

is proved.

So

bk(ζ
−i
k + ζ i

k) = 1 +

k−1

2
∑

j=1

(

ζ−j
k + ζj

k

)

= 0

and Equation (2.44) is proved.
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2.2.2 Reducibility

As we mentioned in Section 2.1.2, when k is not a prime, Mk =
|E(F

qk )|
|E(Fq)| is usually

a composite number. We can also prove that the polynomial Bk(x, y) is reducible

when k is not a prime.

When k is not a prime, let k = rs, where r and s are integers greater than 1.

Notice that

|E(Fqk)| = qk + 1− (αk + βk)

= (αk − 1)(βk − 1)

= (αrs − 1)(βrs − 1)

= ((αr)s − 1)((βr)s − 1)

= (αr − 1)(βr − 1)
s−1
∑

i=0

(αr)i

s−1
∑

j=0

(βr)j

= (α− 1)(β − 1)
r−1
∑

i=0

αi

r−1
∑

j=0

βj

s−1
∑

i=0

(αr)i

s−1
∑

j=0

(βr)j.

When we let x = α + β and y = αβ, it’s easy to see (α − 1)(β − 1) = y + 1− x.

Also we can prove that

Lemma 2.2.6
∑n

i=0 αi
∑n

j=0 βj can be expressed as a polynomial in hn(x, y) for any

n ≥ 1.

Proof Use induction on n. When n = 1:

(α + 1)(β + 1) = (α + β) + αβ + 1 = y + x + 1.
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Suppose we have already proved that for m = 1, 2, . . . , n, there are polynomials

hm(x, y) such that
∑m

i=0 αi
∑m

j=0 βj = hm(x, y). Then

n+1
∑

i=0

αi

n+1
∑

j=0

βj =

(

αn+1 +
n
∑

i=0

αi

)(

βn+1 +
n
∑

j=0

βj

)

= αn+1βn+1 + αn+1

n
∑

j=0

βj + βn+1

n
∑

i=0

αi +
n
∑

i=0

αi

n
∑

j=0

βj

= αn+1βn+1 +
n
∑

i=0

(αiβn+1 + αn+1βi) +
n
∑

i=0

αi

n
∑

j=0

βj

= αn+1βn+1 +
n
∑

i=0

(αβ)i(αn+1−i + βn+1−i) +
n
∑

i=0

αi

n
∑

j=0

βj.

From Equations (2.16), (2.17) and (2.18) we know that αn + βn = fn(x, y) for any

integer n. Hence

n+1
∑

i=0

αi

n+1
∑

j=0

βj = yn+1 +
n
∑

i=0

yifn+1−i(x, y) + hn(x, y).

From the above lemma, we know
∑n

i=0 αi
∑n

j=0 βj = hn(α+β, αβ). Then it’s easy

to see that

s−1
∑

i=0

(αr)i

s−1
∑

j=0

(βr)j = hs−1(α
r + βr, αrβr).

Again if we let x = α + β and y = αβ, by Equations (2.16), (2.17) and (2.18), we

have

αr + βr = fr(x, y),

αrβr = yr.

Hence

s−1
∑

i=0

(αr)i

s−1
∑

j=0

(βr)j = hs−1(fr(x, y), yr).

Also, by switching r and s, we get symmetric results. Thus we have
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Theorem 2.2.6 When k = rs, where r and s are integers greater than 1,

Ak(x, y) = (y + 1− x) · hr−1(x, y) · hs−1(fr(x, y), yr) (2.46)

= (y + 1− x) · hs−1(x, y) · hr−1(fs(x, y), ys) (2.47)

and

Bk(x, y) = hr−1(x, y) · hs−1(fr(x, y), yr) (2.48)

= hs−1(x, y) · hr−1(fs(x, y), ys). (2.49)

2.3 Asymptotic Formula

2.3.1 Related works

The number of elliptic curves with large prime order subgroups is very important

in both theory and application of elliptic curve cryptography, since it is directly

related to the security of the cryptosystem. The larger the pool we can choose from,

the more secure the cryptosystem will be.

Some important research related to this has been done. Neal Koblitz [19] gener-

alized Wagstaff’s conjecture [35] for Mersenne numbers as follows:

Koblitz’s Conjecture: For fixed E over Fq, let:

Mk = Mk(E/Fq) =
|E(Fqk)|
|E(Fq)|

. (2.50)

The number M(x) of Mk < x that are prime is asymptotic to

eγ

log q
log log x. (2.51)

Qi Cheng and Ming-Deh Huang [6] gave a lower bound for the number of almost

prime group orders under certain assumptions (that Bateman-Horn’s conjecture is

true and that a Siegel zero [29] does not exist).

We will prove an asymptotic formula under only the assumption that Bateman-

Horn’s conjecture is true.
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2.3.2 A Formula Based on Bk(x, q)

From the previous section we know that the polynomial Bk(x, q) is irreducible.

We can estimate the probability that
|E(F

qk )|
|E(Fq)| is a prime number since

|E(Fqk)|
|E(Fq)|

= Bk(t1, q). (2.52)

Bateman-Horn’s conjecture tells us the asymptotic number of primes a one-variable

irreducible polynomial produces when taking integer values. In our case, the variable

x takes integer value t1, which is the Frobenius trace of E(Fq). From Hasse’s theo-

rem 2.1.1, t1 lies in (−2
√

q, 2
√

q).

Notice that in the Bateman-Horn’s conjecture, the irreducible polynomials only

take positive integer values. It would be straightforward to estimate the number of

primes when t1 takes values from 1 to ⌊2√q⌋. For the values from −⌊2√q⌋ to −1, we

consider another polynomial:

B′
k(x, q) = Bk(−x, q). (2.53)

Then the number of primes with t1 < 0 can be estimated by Bateman-Horn’s formula

applied to the polynomial B′
k(x, q), with the variable x taking values from 1 to ⌊2√q⌋.

This will give the number of primes when Bk(x, q) takes values from −⌊2√q⌋ to −1.

It is easy to show that the Bateman-Horn’s constants for B′
k(x, q) and Bk(x, q)

are the same:

Theorem 2.3.1 The Bateman-Horn’s constants for B′
k(x, q) and Bk(x, q) are the

same.

Proof From Formula (2.8), the Bateman-Horn’s constants for the two polynomials

are determined by ω(p), which is the number of solutions of the congruences

Bk(x, q) ≡ 0 (mod p), (2.54)

B′
k(x, q) ≡ 0 (mod p). (2.55)
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The congruences (2.54) and (2.55) have the same number of solutions. Actually, if

x0 is a solution of (2.54), B′
k(−x0, q) = Bk(−(−x0), q) = Bk(x0, q), so−x0 is a solution

of (2.55). Similarly, when −t0 is a solution of (2.55), t0 is a solution of (2.54). Thus

the Bateman-Horn’s constants of B′
k(x, q) and Bk(x, q) are the same.

When x takes value zero, i.e., the elliptic curve is supersingular, Lemma 2.2.4 tells

us

Bk(0, q) = Φ2k(q) =
qk + 1

q + 1
.

Generally, Φ2k(q) is not necessarily prime, even if both k and q are prime. For

example: Φ14(5) = 13021 = 29 · 449. Certainly the probability of polynomial Φ2k(x)

being prime can be estimated by the Bateman-Horn conjecture, but whether Bk(0, q)

is prime will not affect the estimate of the number of primes that Bk(x, q) produces

within the range [−⌊2√q⌋, ⌊2√q⌋] when q is large, i.e. q →∞.

Thus, Theorem 2.3.1 allows us to estimate the number of prime values of Bk(t1, q)

when t1 takes a value between −⌊2√q⌋ and ⌊2√q⌋.
Notice that in the Bateman-Horn conjectured Formula (2.11), log f(u) is needed.

The following examples and analysis will tell us the magnitude of log f(u).

Example 2.3.1

B5(x, q) =x4 + qx3 + x3 + (q2 − 3q + 1)x2 + (q3 − 2q2 − 2q + 1)x

+ (q4 − q3 + q2 − q + 1),

B7(x, q) =x6 + (q + 1)x5 + (q2 − 5q + 1)x4 + (q3 − 4q2 − 4q + 1)x3

+ (q4 − 3q3 + 6q2 − 3q + 1)x2 + (q5 − 2q4 + 3q3 + 3q2 − 2q + 1)x

+ (q6 − q5 + q4 − q3 + q2 − q + 1).

As we can see in the above examples, the constant terms are O(qk−1). The leading

terms of Bk(x, q) are xk−1. Since the largest values we will plug in for x are 2
√

q,

the value of the leading terms are O(q
k−1

2 ). Thus it’s not the leading term which

dominates Bk(x, q).
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If we look at the definitions for the polynomials Ak(x, q) and Bk(x, q), we will

determine the size of Bk(t1, q) easily. Ak(t1, q) is the order of the elliptic curve E(Fqk).

Thus from the Hasse’s bound we have:

qk + 1− 2qk/2 ≤ Ak(t1, q) ≤ qk + 1 + 2qk/2.

Since −2q1/2 ≤ t1 ≤ 2q1/2, we can also give upper and lower bounds for Bk(t1, q) =

Ak(t1,q)
q+1−t1

as follows:

qk + 1− 2qk/2 ≤ Ak(t1, q) ≤ qk + 1 + 2qk/2,

qk + 1− 2qk/2

q + 1− t1
≤ Bk(t1, q) ≤

qk + 1 + 2qk/2

q + 1− t1
,

qk + 1− 2qk/2

q + 1 + 2q1/2
≤ Bk(t1, q) ≤

qk + 1 + 2qk/2

q + 1− 2q1/2
,

qk − 2qk/2

q + 3q1/2
≤ Bk(t1, q) ≤

qk + 3qk/2

q − 2q1/2
,

qk−1 − 2qk/2−1

1 + 3q−1/2
≤ Bk(t1, q) ≤

qk−1 + 3qk/2−1

1− 2q−1/2
.

When 0 < δ < 1/2, we have 1− δ < 1
1+δ

and 1
1−δ

< 1 + 2δ, so we have

(

qk−1 − 2qk/2−1
) (

1− 3q−1/2
)

≤ Bk(t1, q) ≤
(

qk−1 + 3qk/2−1
) (

1 + 4q−1/2
)

,

qk−1 − 2q
k
2
−1 − 3qk− 3

2 + 6q
k
2
− 3

2 ≤ Bk(t1, q) ≤ qk−1 + 3q
k
2
−1 + 4qk− 3

2 + 12q
k
2
− 3

2 .

As q →∞, we have

Bk(t1, q) ∼ qk−1, (2.56)

where f(n) ∼ g(n) means limn→∞ f(n)/g(n) = 1.

This leads to the following estimation:

Proposition 2.3.1 Let q and k be odd primes and assume the Bateman-Horn con-

jecture. Then the number of traces of elliptic curves with almost prime order is

asymptotically

2CBH(Bk(x, q))
2
√

q

(k − 1) log q
, (2.57)

as q →∞.
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Proof As proved in the previous section,

|E(Fqk)|
|E(Fq)|

= Bk(t1, q).

Now Bk(x, q) is an irreducible polynomial by Theorem 2.2.2. Thus the number of the

traces t1 in [1, 2
√

q] can be estimated by the Bateman-Horn’s conjectured Formula

(2.11):

Q(Bk(x, q); 2
√

q) ∼ CBH(Bk(x, q))

∫ 2
√

q

1

du

log Bk(u, q)
.

By Formula (2.56) we have

Q(Bk(x, q); 2
√

q) ∼ CBH(Bk(x, q))

∫ 2
√

q

1

du

log qk−1

∼ CBH(Bk(x, q))

∫ 2
√

q

1

du

(k − 1) log q

∼ CBH(Bk(x, q))
2
√

q

(k − 1) log q
.

Similarly, the same estimate can be made for t1 ∈ [−2
√

q,−1] by considering

the irreducible polynomial B′
k(x, q). By Theorem 2.3.1, the Bateman-Horn constants

of B′
k(x, q) and Bk(x, q) are the same. Also the integral terms are the same, so the

estimations for the negative and positive halves of Hasse’s interval are same. Thus the

total number of feasible t1’s in Hasse’s interval is 2CBH
2
√

q

(k−1) log q
under the Bateman-

Horn’s conjecture.

2.4 Experimental Results

In this section, we give experimental results for some prime k’s and q’s of different

sizes.

Generally, the size of the elliptic curve subgroup of prime order is log qk−1 bits,

while the whole elliptic curve group has size log qk bits. The ratio of the bit sizes

of the prime order subgroup and the whole group is r = k−1
k

. We would like this

ratio r be close to one. So we start with k = 5 instead of k = 3 because the prime
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order subgroup of E(Fqk) has only 2
3

of the bit size of qk, not a efficient scheme for

an elliptic curve cryptosystem.

Because it’s easy to calculate the group order of E(Fq), and hence get t1, we can

easily get the group order of E(Fqk) and the prime subgroup order Bk(t1, q).

Examples of curves with almost prime order will be given in the next section. All

the curves in those examples have prime subgroup of order larger than 163.

2.4.1 Data for k = 5, 7, 11, 13, 17, 19, 23, 29.

The columns in the table are:

q PP (2i) is the largest prime number ≤ 2i

CBH Bateman-Horn’s constant

Countl The number of t1 such that Bk(t1, q) is a prime, t1 ∈ [−⌊2√q⌋,−1].

Countr The number of t1 such that Bk(t1, q) is a prime, t1 ∈ [1, ⌊2√q⌋].

Total Countl + Countr.

BH − estimate The estimate based on Proposition 2.3.1.

Ratio Total/(BH − estimate)
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Table 1. Experimental data for k = 5.

q CBH Countl Countr Total BH-estimate Ratio

PP(230) 2.9456 2362 2318 4680 4642 1.0082

PP(231) 4.2328 4574 4502 9076 9129 0.9942

PP(232) 2.6351 3853 3772 7625 7786 0.9793

PP(233) 2.9427 6139 5997 12136 11924 1.0178

PP(234) 2.8692 8035 7930 15965 15958 1.0004

PP(235) 4.1494 15647 15817 31464 31704 0.9924

PP(236) 3.3860 17869 17799 35668 35571 1.0027

PP(237) 3.3631 24374 24323 48697 48615 1.0017

PP(238) 2.9290 29050 29193 58243 58301 0.9990

PP(239) 2.5855 35222 35604 70826 70916 0.9987

PP(240) 3.0422 57583 57673 115256 115054 1.0018

PP(241) 3.3849 88758 88653 177411 176623 1.0045



34

Table 2. Experimental data for k = 7.

q CBH Countl Countr Total BH-estimate Ratio

PP(224) 4.4834 356 344 700 736 0.9511

PP(225) 5.0679 549 550 1099 1129 0.9734

PP(226) 4.4831 689 696 1385 1359 1.0191

PP(227) 4.4831 919 872 1791 1850 0.9681

PP(228) 4.5414 1347 1247 2594 2556 1.0149

PP(229) 4.4951 1713 1770 3483 3454 1.0084

PP(230) 4.4850 2307 2353 4660 4712 0.9890

PP(231) 4.8753 3360 3507 6867 7009 0.9797

PP(232) 4.7255 4625 4808 9433 9308 1.0134

PP(233) 4.8736 6565 6601 13166 13165 1.0001

PP(234) 4.9240 9033 9030 18063 18257 0.9894

PP(235) 4.7600 12271 11906 24177 24246 0.9972

PP(236) 4.4831 15488 15889 31377 31398 0.9993

Table 3. Experimental data for k = 11.

q CBH Countl Countr Total BH-estimate Ratio

PP(217) 3.6492 19 23 42 45 0.9333

PP(218) 4.7720 42 29 71 78 0.9103

PP(219) 4.8730 65 55 120 107 1.1215

PP(220) 5.0160 75 74 149 148 1.0068

PP(221) 4.7808 105 111 216 190 1.1368

PP(222) 3.7164 88 104 192 200 0.9600

PP(223) 3.9172 142 141 283 285 0.9930

PP(224) 5.4125 284 287 571 533 1.0713
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Table 4. Experimental data for k = 13.

q CBH Countl Countr Total BH-estimate Ratio

PP(213) 5.2410 5 8 13 18 0.7222

PP(214) 5.2151 11 12 23 23 1.0000

PP(215) 5.3830 15 15 30 31 0.9677

PP(216) 5.8510 23 17 40 45 0.8889

PP(217) 5.6373 29 34 63 58 1.0862

PP(218) 5.9782 46 41 87 82 1.0610

PP(219) 5.2638 42 52 94 96 0.9792

PP(220) 5.2376 54 58 112 129 0.8682
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Table 5. Experimental data for k = 17, 19, 23, 29.

k q CBH Countl Countr Total BH-estimate Ratio

17 PP(210) 6.4041 3 1 4 7 0.5714

PP(211) 6.5029 10 4 14 10 1.4000

PP(212) 7.1753 8 5 13 14 0.9286

PP(213) 6.4053 9 9 18 16 1.1250

PP(214) 6.4041 16 10 26 21 1.2381

PP(215) 6.6051 19 11 30 29 1.0345

PP(216) 6.9193 12 16 28 40 0.7000

19 PP(29) 8.4058 1 6 7 7 1.0000

PP(210) 8.4058 4 6 10 9 1.1111

PP(211) 8.4144 7 8 15 11 1.3636

PP(212) 8.4058 6 4 10 14 0.7143

PP(213) 8.4058 12 9 21 19 1.1053

PP(214) 8.4232 18 18 36 25 1.4400

PP(215) 8.4058 15 14 29 33 0.8788

PP(216) 8.7544 31 21 52 45 1.1556

23 PP(28) 6.2013 0 3 3 3 1.0000

PP(29) 4.0807 1 1 2 3 0.6667

PP(210) 5.7259 3 1 4 5 0.8000

PP(211) 5.7130 0 3 3 6 0.5000

PP(212) 5.7130 3 3 6 8 0.7500

29 PP(26) 4.6120 1 2 3 1 3.0000

PP(27) 6.5371 0 0 0 2 0.0000

PP(28) 6.5371 1 1 2 3 0.6667

PP(29) 4.6057 1 1 2 2 1.0000
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It is particularly interesting to have the bit sizes of q be multiples of 8, because in

this case, the values of the elliptic curve parameters can fit in bytes (a byte is a unit

with 8 bits) exactly. From the above tables we have:

Table 6. Experimental data for q whose bit size is a multiple of 8.

k q CBH Countl Countr Total BH-estimate Ratio

5 PP(232) 2.6351 3853 3772 7625 7786 0.9793

5 PP(240) 3.0422 57583 57673 115256 115054 1.0018

7 PP(224) 4.4834 356 344 700 736 0.9511

7 PP(232) 4.7255 4625 4808 9433 9308 1.0134

11 PP(224) 5.4125 284 287 571 533 1.0713

13 PP(216) 5.8510 23 17 40 45 0.8889

17 PP(216) 6.9193 12 16 28 40 0.7000

19 PP(216) 8.7544 31 21 52 45 1.1556

23 PP(28) 6.2013 0 3 3 3 1.0000

29 PP(28) 6.5371 1 1 2 3 0.6667

Since the density of primes of bit size b is about 1/(b log 2), there will be many

choices for q with a certain bit size b. For example, by the prime number theorem,

the number of q’s with bit size b is 2b−1/(b log 2). Hence the space of proper elliptic

curves is very large. Some example of curves with almost prime order will be given

in the following examples, and the programs in MAGMA are in the Appendix A.2.

Example 2.4.1

When k = 23, q = PP (28) = 251. From Table 6, there are 3 traces t1 which make

E(F25123) have almost prime order. They are t1 =13, 21, 25:

• t1 = 13:

E1 : y2 = x3 + 238x + 26 over GF (25123),

E2 : y2 = x3 + 235x + 32 over GF (25123),
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E3 : y2 = x3 + 72x + 107 over GF (25123),

E4 : y2 = x3 + 35x + 181 over GF (25123).

The orders of E1, E2, E3 and E4 are the same and they have a large prime

factor, which means they all have a big prime order subgroup.

|E1| = |E2| = |E3| = |E4|

=239 · 65177499221329399385150258169642530377888359601374371.

• t1 = 21:

E1 : y2 = x3 + 10x + 231 over GF (25123),

E2 : y2 = x3 + 77x + 97 over GF (25123),

E3 : y2 = x3 + 6x + 239 over GF (25123),

E4 : y2 = x3 + 102x + 47 over GF (25123),

E5 : y2 = x3 + 19x + 213 over GF (25123),

E6 : y2 = x3 + 176x + 150 over GF (25123).

The orders of E1, E2, E3, E4, E5 and E6 are the same and they have a large

prime factor, which means they all have a big prime order subgroup.

|E1| = |E2| = |E3| = |E4| = |E5| = |E6|

=231 · 67434728631591889407146803889272030271229106076460131.

• t1 = 25:

E1 : y2 = x3 + 150x + 202 over GF (25123),

E2 : y2 = x3 + 29x + 193 over GF (25123),

E3 : y2 = x3 + 101x + 49 over GF (25123).

The orders of E1, E2, and E3 are the same and they have a large prime factor,

which means they all have a big prime order subgroup.

|E1| = |E2| = |E3|

=227 · 68623005788095711246920315911144936702146215959138051.
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Note that in the factorization of the orders of the above curves, the first factors

are q + 1 − t1, which could be composite numbers, and the second large factors are

primes.

Example 2.4.2

When k = 17, q = PP (216) = 65521. From Table 6 we know that there are 28 t1’s

we can choose. We will just give one example when t1 = −477:

y2 = x3 + 16470x + 32581 over GF (6552117),

y2 = x3 + 60026x + 10990 over GF (6552117),

y2 = x3 + 51542x + 27958 over GF (6552117),

y2 = x3 + 1985x + 61551 over GF (6552117),

y2 = x3 + 30977x + 3567 over GF (6552117),

y2 = x3 + 54919x + 21204 over GF (6552117),

y2 = x3 + 41465x + 48112 over GF (6552117),

y2 = x3 + 29278x + 6965 over GF (6552117),

y2 = x3 + 33311x + 64420 over GF (6552117),

y2 = x3 + 31588x + 2345 over GF (6552117),

y2 = x3 + 21284x + 22953 over GF (6552117),

y2 = x3 + 40772x + 49498 over GF (6552117),

y2 = x3 + 1702x + 62117 over GF (6552117),

y2 = x3 + 63902x + 3238 over GF (6552117),

y2 = x3 + 8760x + 48001 over GF (6552117).

The order of all of these elliptic curves is:

|E| = 66999·1145332108243742991681899754426340066819676326930569115327140\

32776326282148921.

Again 66999 = q + 1− t1 and the second large factor is a prime.
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2.4.2 Comments on Experimental Results

It can be seen from the previous section that when q is large enough, for example,

when q is over 30 bits, the errors are within 3 percent. Usually, the errors are less

than 10 percent.

When q is small, the relative error could be big. There are two reasons for this.

First, the Bateman-Horn constant characterizes the polynomial Bk(x, q) over the

whole natural number domain and the larger the interval from which x may take

values, the closer the estimate given by the formula; secondly, relative errors can be

big when the experimental population counts are small.

Since we need this estimation only when the numbers are big (otherwise, we could

just calculate the exact amount), the estimation in Proposition 2.3.1 is very accurate.

2.5 Further Work

2.5.1 q is A Power of A Prime

So far we have assumed the order of the small field to be a prime q. It’s natural

to generalize to a power of a prime, q = pr, where p is a odd prime and r is a integer

greater than 1. Then we consider the elliptic curve:

E : y2 = x3 + Ax + B over F(pr)k (A, B ∈ Fpr). (2.58)

Also we hope the ratio:

Mk = Mk(E/Fq) =
|E(F(pr)k)|
|Fpr | (2.59)

will be a prime.

If we still let t1 denote the trace of E(Fpr), the ratio in Formula (2.59) can still

be expressed as Bk(t1, p
r), the evaluation of polynomial Bk(x, pr) at x = t1. From

Theorem 2.2.3 and Theorem 2.2.4, we know that Bk(x, pr) is also irreducible and

abelian. Thus we can again use the modified Bateman-Horn’s conjecture to estimate

the number of t1 which make Bk(t1, p
r) prime.
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Again, if we want the prime orders of the elliptic curve subgroups to have bit size

between 163 and 256, appropriate powers of primes should be chosen. For example,

when k = 7, appropriate q’s could be:

318, 319, . . . , 326;

513, 514, . . . , 518;

710, 711, . . . , 715;

119, 1110, . . . , 1112;

. . .

These numbers are chosen so that the prime orders of the elliptic curve subgroups

have between 163 and 256 bits.

Some experimental data shows that we can estimate the number of t1 which make

the order of E(F(pr)k) almost prime.

Table 9. Experimental data for random E(F(pr)k)

k q CBH Countl Countr Total BH-estimate Ratio

7 PP(218) 3.7452 1223 1208 2431 2485 0.9783

7 PP(219) 4.4999 2355 2406 4761 4900 0.9716

In the implementation of finite fields, calculation over a prime order field is much

slower than over an extension of a small field, assuming both have same sizes. This is

one advantage of E(F(pr)k). Plus, for each k, there will be a few more elliptic curves

for cryptographical application; most important, all the arithmetic is on the small

finite field Fp. Hence the speed of implementation will be faster.



42

2.5.2 Curves of “Almost” Almost Prime Order

To make the result even more general, we could also consider the case that the

ratio
|E(F

qk )|
|E(Fq)| is a prime times a small integer. For example:

|E(Fqk)|
|E(Fq)|

= 2 · a prime

= 3 · a prime

= 4 · a prime

. . .

These are also acceptable in cryptographical implementations. This case is more

complicated and will be explored in the future.

2.5.3 Some Possible Attacks

MOV Attack

In this section, we will show that our curves are safe under the MOV attack.

The MOV attack, named after Menezes, Okamoto, and Vanstone [23], uses the

Weil pairing to convert a discrete logarithm problem in E(Fq) to one in F∗
qm , where

m is called the the embedding degree of E(Fq). Since discrete logarithm problems in

finite fields can be attacked by index calculus methods, they can be solved faster than

elliptic curve discrete logarithm problems, as long as the field Fqm is not much larger

than Fq. See Washington [36] Chapter 5.3 or Menezes et al. [23] for more details

about the MOV attack.

To make sure an elliptic curve is safe under the MOV attack, the embedding

degree has to be large enough so that the discrete logarithm problem in F∗
qm is also

computationally infeasible; practically, the size of F∗
qm needs to be at least 21024.

Briefly, the embedding degree m is determined as follows. See Koblitz and Menezes

[20]: Let E be the elliptic curve y2 = x3 + Ax + b defined over a finite field Fq. Let

n be a large prime which divides |E(Fq)|. Assume the discrete logarithm problem is
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over an elliptic curve subgroup of order n. It is assumed that n does not divide q.

The embedding degree m is the multiplicative order of q modulo n; in another words,

it is the smallest positive k such that n | qk − 1.

Generally, the embedding degree m is large except for supersingular curves (See

Washington [36], Chapter 5.3) or specially constructed curves (See Freeman [12]).

Results of Balasubramanian and Koblitz [3] show that curves having a large prime

order subgroup usually have a large embedding degree, i.e., m has size comparable to

n.

In our case, the elliptic curve E(Fqk) has a large subgroup of prime order n =

Bk(t1, q) for some integer t1. From Formula (2.56) we know that

n = Bk(t1, q) ∼ qk−1. (2.60)

The curves we chose all have log2 qk−1 ≥ 163. As long as log2 qkm ≥ 1024, the

discrete logarithm problem over Fqkm is still computational infeasible. To simplify the

estimation we let log2 q(k−1)m ≥ 1024. We can see that when m = 6, log2 q(k−1)6 ≥ 978

and when m = 7, log2 q(k−1)6 ≥ 1141. So the embedding degree m ≥ 7 will make the

curve safe enough under MOV attack.

The condition m ≥ 7 will hold almost all the time by the result of Balasub-

ramanian and Koblitz [3]. As we can see from the randomly generated curves in

Example 2.4.1 and Example 2.4.2 in Section 2.4.1, the embedding degrees are large:

Example 2.5.1

We calculated all the embedding degrees for the curves in Example 2.4.1 and Exam-

ple 2.4.2 in Section 2.4.1:

• E(F25123), t1 = 13:

n = 65177499221329399385150258169642530377888359601374371,

m = 202414593855060246537733721023734566390957638513585.
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• E(F25123), t1 = 21:

n = 67434728631591889407146803889272030271229106076460131,

m = 586388944622538168757798294689322002358513965882262.

• E(F25123), t1 = 25:

n = 68623005788095711246920315911144936702146215959138051,

m = 2983608947308509184648709387441084204441139824310350.

• E(F6552117), t1 = −477:

n = 11453321082437429916818997544263400668196763269305691\

1532714032776326282148921,

m = 28633302706093574792047493860658501670491908173264227\

883178508194081570537230.

Weil Descent

Weil descent is an attack technique against ECC. One can map the discrete log-

arithm problem from the elliptic curve to a hyperelliptic curve with high genus. For

the background of hyperelliptic curves and reduced security of hyperelliptic curves,

see Chapter 3.

The curves we studied in this thesis are all over Fqk where both k and q are odd

primes and the coefficients of the curve equation are in Fq. The Weil descent attack

on this type of curve is not practical yet. When k ≥ 11, the attack is computa-

tional infeasible; when k = 3, 5, 7, only some specially constructed curves with curve

equation coefficients in Fqk can be attacked. See Diem [9] for more details.
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3. ARITHMETIC OF REAL HYPERELLIPTIC CURVES

3.1 Hyperelliptic Curves in Cryptography

Hyperelliptic curves have been considered for use in cryptography since 1989.

See Koblitz [18]. It appears only hyperelliptic curves of low genus are suitable for

cryptographic use. See Müller et al. [26], Gaudry [13], Enge [10] and Theriault [34].

In this part of the thesis, we focus on hyperelliptic curves of genus 2. (We define

genus in Section 3.2.)

Hyperelliptic curves can be distinguished into two scenarios: the imaginary model

and the real model. See the next subsection for details. Hyperelliptic curves of the

imaginary model have been widely studied for cryptographic use. See Cohen et al. [7].

Algorithms for them were studied by Lange [21], Wollinger et al. [39] and many other

researchers.

The use of real model hyperelliptic curves was started by Artin [2]. Recently,

works by Jacobson, Scheidler, Stein and Williams [32], [15] show that schemes based

on real hyperelliptic curves can be as efficient as those of the imaginary model.

In the summer school at the University of Wyoming in 2006, explicit formulas

for operations on real hyperelliptic curves were developed by Erickson, Shang and

the author under the supervision of Professors Stein, Jacobson and Scheidler. The

following part of the thesis will give the explicit formulas for the addition operation

of real hyperelliptic curves, which were developed during the summer school by the

author. Some improvement has been made since and further work continues.

For details on the arithmetic of hyperelliptic curves we refer to Cohen et al. [7],

Menezes et al. [24], Jacobson and Menezes [15] and Jacobson et al. [16]. For real

hyperelliptic curves we refer to Paulus and Ruck [27], Stein [31], Jacobson et al. [16]

and Jacobson et al. [17].
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3.2 Function Fields and Curves

The details related to function fields and hyperelliptic curves can be found in

the books of Cohen et al. [7], Stichtenoth [33] and Rosen [28]. We will just give

the minimum necessary background in this section; refereed papers and locations in

books will be specified when needed. Let K be a field and K be its algebraic closure.

Definition 3.2.1 An algebraic function field F/K of one variable over K is an ex-

tension field F ⊇ K such that F is a finite algebraic extension of K(x) for some

element x ∈ F which is transcendental over K and F/K(x) is separable. For brevity,

we shall simply refer to F/K as a function field.

The simplest example of an algebraic function field is the rational function field :

F/K is called rational if F = K(x) for some x ∈ F transcendental over K.

An arbitrary function field F/K(which is not necessarily rational) is represented

as a simple algebraic field extension of a rational function field K(x), i.e., F = K(x, y)

where ϕ(y) = 0 for some irreducible polynomial ϕ(T ) ∈ K(x)[T ]. See page 2 of [33].

For example, let F = K(x, y), where x and y satisfy the curve equation C : g(x, y) =

0 and g ∈ K[x, y]. When we say a function field F = K(x, y), where x and y satisfy

a curve equation C, we refer to F as K(C).

Definition 3.2.2 A valuation ring of the function field F/K is a ring O ⊆ F with

the following properties:

1. K ( O ( F , and

2. for any z ∈ F , either z ∈ O or z−1 ∈ O.

This definition is motivated by the following observation in the case of a rational

function field K(x): given an irreducible polynomial p(x) ∈ K[x], consider the set

Op(x) :=

{

f

g

∣

∣

∣

∣

f(x), g(x) ∈ K[x], p(x) ∤ g(x)

}

. (3.1)

Theorem 3.2.1 Let O be a valuation ring of the function field F/K. Then
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1. O is a local ring, i.e., O has a unique maximal ideal P = O/O∗, where O∗ =

{z ∈ O | there is a w ∈ O with zw = 1} is the group of units of O.

2. For 0 6= x ∈ F , x ∈ P ⇔ x−1 6∈ O.

3. For the field K̃ of constants of F/K we have K̃ ⊆ O and K̃ ∩ P = 0

See Stichtenoth [33] Section I.1 for a proof.

Definition 3.2.3 A place P of the function field F/K is the maximal ideal of some

valuation ring O of F/K. Any element t ∈ P such that P = tO is called a prime

element for P . Let PF := {P | P is a place of F/K}.

If O is a valuation ring of F/K and P its maximal ideal, then O is uniquely

determined by P , namely O = {z ∈ F | z−1 6∈ P}. Hence OP := O is called

the valuation ring of the place P . The place associated with Op(x) as defined in

Formula (3.1) is denoted as Pp(x). See Stichtenoth [33] Section I.1 for details.

There is a valuation ring of K(x)/K, namely

O∞ :=

{

f(x)

g(x)

∣

∣

∣

∣

f, g ∈ K[x], deg f(x) ≤ g(x)

}

, (3.2)

with maximal ideal

P∞ =

{

f(x)

g(x)

∣

∣

∣

∣

f, g ∈ K[x], deg f(x) < g(x)

}

. (3.3)

P∞ is called the place at infinity.

Theorem 3.2.2 There are no places of the rational function field K(x)/K other than

the places Pp(x) and P∞.

See Stichtenoth [33] Section I.2 for a proof.

Definition 3.2.4 A discrete valuation of F/K is a function v : F → Z ∪ {∞} with

the following properties:

1. v(x) =∞⇔ x = 0.
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2. v(x, y) = v(x) + v(y) for any x, y ∈ F .

3. v(x + y) ≥ min{v(x), v(y)} for any x, y ∈ F .

4. There exists an element z ∈ F with v(z) = 1.

5. v(a) = 0 for any 0 6= a ∈ K.

It’s easy to see that the image of vP is in Z. Two valuations of P are said to be

equivalent if they are positive multiples of each other. A valuation vP is said to be

normalized if its image covers the whole of Z. See Weiss [37] Chapter 2.

Theorem 3.2.3 To any place P ∈ PF we associate a function vP : F → Z ∪ {∞}
that is proved to be a discrete valuation of F/K: Choose a prime element t for P .

Then every 0 6= z ∈ F has a unique representation z = tnu with u ∈ O∗
P and n ∈ Z,

define vP (z) := n and vP (0) :=∞. Moreover, we have

OP = {z ∈ F | vP ≥ 0}, (3.4)

O∗
P = {z ∈ F | vP = 0}, (3.5)

P = {z ∈ F | vP > 0}. (3.6)

See Stichtenoth [33] Section I.1 for a proof.

According to Theorem 3.2.3, places, valuation rings and discrete valuations of a

function field refer to the same thing.

Definition 3.2.5 Let P ∈ PF . FP := OP /P is the residue class field of P . Define

x(P ) ∈ O/P to be the residue class of x modulo P ; for x ∈ F\OP we put x(P ) :=∞.

The map x 7→ x(P ) is called the residue class map with respect to P . We can also

use the notation x + P := x(P ) for x ∈ OP . deg P := [FP : K] is called the degree

of P .
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Definition 3.2.6 The (additively written) free abelian group generated by the places

of F/K is denoted by DF , the divisor group of FK. The elements of DF are called

divisors of F/K. In other words, a divisor is a formal sum

D =
∑

P∈PF

nP P with nP ∈ Z, and almost all nP = 0. (3.7)

The support of D is defined by

supp D := {P ∈ PF | nP 6= 0}. (3.8)

It will often be found convenient to write

D =
∑

P∈S

nP P, (3.9)

where S ⊆ PF is a finite set with S ⊇ supp D.

A divisor of the form D = P with P ∈ PF is called a prime divisor. Two divisors

D =
∑

nP P and D′ =
∑

n
′

P P are added coefficientwise:

D + D
′

=
∑

P∈PF

(nP + n
′

P )P. (3.10)

The zero element of the divisor group DF is the divisor

0 :=
∑

P∈PF

rP P, all rP = 0. (3.11)

For Q ∈ PF and D =
∑

nP P ∈ DF we define vQ(D) := nQ. Therefore

supp D = {P ∈ PF | vP (D) 6= 0} and D =
∑

P∈supp D

vP (D) · P. (3.12)

A partial ordering on DF is defined by

D1 ≤ D2 :⇔ vP (D1) ≤ vP (D2) for every P ∈ PF . (3.13)

A divisor D ≥ 0 is called positive (or effective). The degree of a divisor is defined

by

deg D :=
∑

P∈PF

vP (D) · deg P. (3.14)

Note that deg : DF → Z is a group homomorphism.
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See Stichtenoth [33] Section I.4 for details.

Definition 3.2.7 Let 0 6= x ∈ F and denote by Z (resp. N) the set of zeros (poles)

of x in PF . Then we define

(x)0 :=
∑

P∈Z

vP (x)P, the zero divisor of x, (3.15)

(x)∞ :=
∑

P∈N

(−vP (x))P, the pole divisor of x, (3.16)

(x) := (x)0 − (x)∞. (3.17)

Clearly (x)0 ≥ 0, (x)∞ ≥ 0 and

(x) =
∑

P∈PF

vP (x)P. (3.18)

The elements 0 6= x ∈ F which are constant are characterized by

x ∈ K ⇔ (x) = 0. (3.19)

Definition 3.2.8

PF := {(x) | 0 6= x ∈ F} (3.20)

is called the group of principal divisors of F/K. This is a subgroup of D0
F , since for

0 6= x, y ∈ F , (xy) = (x) + (y) by 3.18. The factor group

CF := DF /PF (3.21)

is called the divisor class group. For a divisor D ∈ DF , the corresponding element in

the factor group CF is denoted by [D], the divisor class of D. Two divisors D, D
′ ∈ DF

are said to be equivalent, written

D ∼ D
′

, (3.22)

if [D] = [D
′

], i.e., D = D
′

+ (x) for some x ∈ F\{0}. It is known that degree of a

principal divisor is zero, the degree function gives rise to a homomorphism from CF to

Z. The kernel of this map is denoted C0
F , the group of divisor classes of degree zero.
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See Rosen [28], Chapter 5, for details.

Definition 3.2.9 For a divisor A ∈ DF we set

L(A) := {x ∈ F | (x) ≥ −A} ∪ {0}. (3.23)

One can prove that L(A) is a finite-dimensional vector space over K for any A ∈ DF .

The integer dim A := dim L(A) is called the dimension of the divisor. The genus g

of F/K is defined by

g := max{ deg A− dim A + 1 | A ∈ DF}. (3.24)

For details about the definition of genus, see Stichtenoth [33], Section I.4.

Definition 3.2.10 Consider an algebraic extension F ′/K ′ of F/K. A place P ′ ∈ PF ′

is said to lie over P ∈ PF if P ⊆ P ′. We also say that P ′ is an extension of P or

that P lies under P ′, and we write P ′|P . Let P ′ ∈ PF ′ be a place of F ′/K ′ lying over

P ∈ PF . The integer e(P ′|P ) := e with

vP ′(x) = e · vP (x), for any x ∈ F, (3.25)

is called the ramification index of P ′ over P . We say that P ′|P is ramified if e(P ′|P ) >

1, and P ′|P is unramified if e(P ′|P ) = 1.

For a place P ∈
∑

F/K we define its conorm (with respect to F ′/F ) by

ConF ′/F (P ) :=
∑

P ′|P
e(P ′|P ) · P ′, (3.26)

where the sum runs over all places P ′ ∈ PF ′ lying over P.

We also need this definition.

Definition 3.2.11 A hyperelliptic function field over K is an algebraic function field

F/K of genus g ≥ 1 which contains a rational subfield K(x) ⊆ F with [F : K(x)] = 2.
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Note: Here we consider elliptic curves as hyperelliptic curves of genus 1.

Let F = K(C). The ring of integers of F is defined as K[C] = K[x, y]/(y2 +

h(x)y− f(x)). It can be proved that K[C] is a Dedekind domain. Then the notion of

fractional ideal is defined over K[C], and the ideal class group CL(K) of F in K[C]

is the abelian group of fractional ideals of K[C] modulo principal fractional ideals of

K[C]. See Cohn [8] for definitions of principal fractional ideal and ideal class group.

The relation between divisor classes and ideals will be given later in this section.

We will focus on hyperelliptic curves of genus 2 over a finite field. More particu-

larly, we will develop algorithms for hyperelliptic curves over odd characteristic finite

fields. We let Fq be a finite field with q = pl elements, where p is a odd prime and let

Fq be its algebraic closure.

We give the following definition for hyperelliptic curves over Fq with explicit equa-

tions. For a more general definition, we refer to Jacobson et al. [11].

Definition 3.2.12 Let Fq have odd characteristic. A hyperelliptic curve C of genus 2

defined over Fq is an absolutely irreducible1 nonsingular curve defined by an equation

of the form

C : y2 = f(x), (3.27)

where f ∈ Fq[x], y2− f(x) is absolutely irreducible, and deg f ≤ 6. Denote G(x, y) =

y2 − f(x). If G(a, b) = 0 for some (a, b) ∈ Fq × Fq, then either Gx(a, b) 6= 0 or

Gy(a, b) 6= 0. The hyperelliptic curve is called

1. an imaginary hyperelliptic curve if:

f(x) = x6 + f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0. (fi ∈ Fq) (3.28)

2. a real hyperelliptic curve if:

f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0. (fi ∈ Fq) (3.29)

1An absolutely irreducible polynomial is irreducible, even in any finite extension of the field of

coefficients.
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From now on, we only consider the real model hyperelliptic curves of genus 2.

For Fq(C), the pole divisor ∞ of x in Fq(x) decomposes into two different prime

divisors ∞1 and ∞2 for real model of hyperelliptic curve. Let v1 and v2 be the nor-

malized valuations of Fq(C) corresponding to ∞1 and ∞2. See Paulus and Ruck [27]

For a real hyperelliptic curve C, a divisor can be written in the form:

D = D0 − deg(D0)∞2 + v1(D)(∞1 −∞2), (3.30)

where D0 is a divisor not divisible by ∞1 or ∞2. D is called semi-reduced if D0 is

effective and not divisible by the conorm of any divisor in Fq(x); it’s called reduced

if it’s semi-reduced and deg(D0) ≤ 2.

For a real hyperelliptic curve C, Paulus and Ruck [27] showed that each divisor

class D ∈ C0
F can be uniquely represented by the reduced divisor

D =
r
∑

i=1

Pi − r′∞2 + v1(D)(∞1 −∞2) , (3.31)

where
∑r

i=1 Pi is effective and deg A ≤ 2;
∑r

i=1 Pi is not divisible by ∞1, ∞2 or the

conorm of a divisor of Fq(x). Also, 0 ≤ r + v1(D) ≤ 2 = g.

The order of the degree 0 divisor class containing ∞1−∞2 is called the regulator

R of Fq(C) in Fq[C]. The regulator plays an important role in real hyperelliptic curve

cryptography. In Stein et al. [32], a secure key-exchange protocol was developed by

making use of the arithmetic in real quadratic function fields. Computation of the

regulator is itself an instance of computing a discrete logarithm as defined in Stein

et al. [32]; furthermore, the size of the regulator also provides a measure for the key

space.

It is known that R = O(q(1/2) deg f ) (See Paulus and Ruck [27]), where f is as in

Definition 3.2.12.
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Example 3.2.1

E1 : y2 = f(x) over F10000000007,

f(x) = x4 + 557289x3 + 722527380x2 + 352336240x + 641315936,

R = 1000041901.

E2 : y2 = f(x) over F1073741741,

f(x) = x6 + 205912371x5 + 859304427x4 + 77543919x3 + 603307144x2

+ 131571390x + 807786564,

R = 288230461703812884.

A fractional ideal a ∈ Fq[C] can be represented as a = Fq[x][d(x)u(x), d(x)(v(x)+

y)] where, u, v ∈ Fq[x] and u | f − v2. a is primitive when d(x) = 1, and in that

case we can write a = [u(x), v(x) + y]. If a is primitive and deg u ≤ g, it is called

reduced. The degree of a is defined as deg(a) = deg(u). The basis {u(x), v(x) + y} of

a primitive ideal is called adapted or standard if deg(v) < deg(u) and u is monic; the

basis is called reduced if deg(v − y) < deg(u) < deg(v + y) and u is monic. Hence a

fractional ideal can be represented by a unique pair of polynomials [u, v]. Hence the

ideal (or equivalently the divisor class) in R can be represented by a unique pair of

polynomials.

Paulus and Ruck [27] showed that there is a one-to-one correspondence between C0
F

and the set of reduced ideals in Fq[C]. More specifically, there is a canonical bijection

between C0
F and the set of pairs {(a, n)}, where a is a reduced ideal of Fq[C] and n is an

integer with 0 ≤ deg(a)+n ≤ 2 = g. We will just focus on a group of principal reduced

ideals: R = {(a, 0) | a is reduced and principal}. Or we can abuse the notation and

let R = {D | D coresponds to (a, 0), where a is reduced and principal} because of

the one-to-one correspondence.

Now we introduce an ordering for R. Fix a1 = (1) = Fq[C] ∈ R. For any ideal

b ∈ R, since a1 and b in the same principal ideal class, ∃ α ∈ K∗ with b = (α)a1.

Let δ(b, a1) = −v1(α) (mod R). Note that the distance is defined modulo R, there

will be up to R many reduced ideals in each ideal class. Thus, we can write R =
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{a1, a2, . . . , am} where m ≤ R and δ(a1) = 0 < δ(a2) < . . . < δ(am). (Also we

can denote R = {D1, D2, . . . , Dm}, where δ(D1) = 0 < δ(D2) < . . . < δ(Dm)). R
is called the infrastructure of the principal ideal class. See Jacobson et al. [17] for

details.

As we said before, each ideal or divisor class in R can be represented by a pair

of polynomials. Hence for a hyperelliptic curve of real model as in 3.2.12, we may

denote D = div(u, v), where u and v satisfy:

(P1) u is monic,

(P2) deg u ≤ g,

(P3) u | v2 − f , and

(P4) one of the following degree conditions is satisfied, namely,

a. for the reduced basis: −v1(v − y) < −v1(u) = deg(u) < −v1(v + y), or

b. for the adapted (standard) basis: deg(v) < deg(u) .

See Jacobson et al. [17] or Erickson et al. [11] for details.

D ∈ R is uniquely determined by its distance δ(D). In practice, it is infeasible

to actually determine δ(D) from u and v; in fact, the security of the cryptographic

schemes (Stein et al. [32]) is based on the fact that computing δ(D) is infeasible.

Because the divisor class can be uniquely represented by a reduced divisor in it,

in practice, we really just deal with the reduced divisors. So we can write R =

{D1, D2, . . . , Dm}, where Di is the reduced divisor representing Di.

Two operations on the elements of R are defined and studied (see Jacobson et

al. [16], Stein [32], Paulus and Ruck [27]: baby step, Di → Di+1, and giant step,

D⊕D′. It is important to know the properties of distance of the elements of Ra and

also how distances behave under the operations on R:
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Distance Properties:

1. δ1 = 0, δ2 = g + 1, and 1 ≤ δi+1 − δi ≤ g for 2 ≤ i ≤ |R| − 1;

2. g + i + 1 ≤ δi ≤ (i− 1)g + 1 for 2 ≤ i ≤ |R|;

3. δ(D ⊕D′) = δ(D) + δ(D′)− d, where 0 ≤ d ≤ 2g, for D, D′ ∈ R.

Notice that δ is defined modulo R and the set R is closed under giant steps.

It can be seen from the above properties that the distance after a baby step and

after a giant step is not definitely determined by δ(D) and δ(D′), but some heuristics

are available to help to simplify the protocols:

Heuristics: (Jacobson et al. [16])

For sufficiently large q, the following properties hold with probability 1−O(q−1):

(H1) δ(Di+1)− δ(Di) = 1 for all D ∈ R \ {0}.

(H2) The quantity d in Property 3 is always equal to ⌈g/2⌉. That is, for all D, D′ ∈
R\{0}, we have δ(D ⊕D′) = δ(D) + δ(D′)− ⌈g/2⌉.

There is overwhelming numerical evidence as well as plausible theoretical considera-

tions to support the above heuristics, especially for large q. See Jacobson et al. [16].

Although R is closed under giant steps, it is not associative, i.e., it is not nec-

essarily the case that δ((D ⊕ D′) ⊕ D′′) = δ((D) ⊕ (D′ ⊕ D′′)) for D, D′, D′′ ∈ R.

However, R is “almost” associative in the sense that the operation ⊕ is almost dis-

tance preserving (Distance Property 3). d can be efficiently computed (see Paulus

and Ruck [27]). It follows that the distance of the divisor D⊕D′ is extremely close to,

and just below, the sum of the distances of the divisors D and D′, with a “shortfall” d

of at most 2g. Thus the use of the terms “baby step” and “giant step” is justified: the

former yields a very small advance in distance, namely at most linear in g, whereas

the latter generally results in a large jump.

In this thesis, we will focus on the explicit formulas for giant step: given two

divisor classes in R, D1 = [u1, v1], D2 = [u2, v2] ∈ R, find D
′
= [u′, v′] = D1 ⊕ D2

such that D′ is reduced.
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3.3 Algorithm

Algorithm 3.3.1 Basic Addition Algorithm.

Composition.

INPUT: D1 = [u1, v1], D2 = [u2, v2], C : y2 = f(x).

OUTPUT: D = [u, v], D semi-reduced and D = D1 ⊕D2.

1. Compute d1 = gcd(u1, u2) = e1u1 + e2u2;

2. Compute d = gcd(d1, v1 + v2 + h) = c1d1 + c2(v1 + v2 + h);

3. Let s1 = c1e1, s2 = c1e2, s3 = c2;

4. Let u = u1u2/d
2;

v = (s1u1v2 + s2u2v1 + s3(v1v2f))/d mod u.

Reduction.

INPUT: D = [u, v], D semi-reduced,

OUTPUT: D′ = [u′, v′], D′ reduced with D′ = D.

1. Compute u′ = (f − v2)/u, v′ = (−v) mod u′;

2. If deg u′ > g put u = u′, v = v′;

go to step 1;

3. Make u′ monic;

In most cases D = [u, v] has u of degree 2, i.e., u = x2 + u1x + u0, especially

when q is large. Thus, when we care about the speed of the giant step operation on

divisors, we just need to focus on the case when deg u = 2. Operations on divisors

with deg u ≤ 2 need less time, actually, they can be considered as a degenerate case

of the general case. We give the formulas only for deg u = 2.

Also, we assume that when we calculate [u1, v1]⊕ [u2, v2] with deg u1 = deg u2 = 2,

u1 and u2 do not have a common root. The special case when there does exist a

common root will cost less; see Cohen et al. [7] Section 14.3.1.
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To optimize the computations we do not follow Algorithm 3.3.1 literally. Instead,

we outline our algorithm as follows and prove that it produces the right solution:

Algorithm 3.3.2 Optimized Addition Algorithm.

INPUT: D1 = [u1, v1], D2 = [u2, v2], gcd(u1, u2) = 1. C : y2 = f(x).

OUTPUT: D = [u′, v′], D reduced with D = D1 ⊕D2.

s ← v1 − v2

u2

mod u1 (deg s = 1), (3.32)

k ← f − v2
2

u2

(deg k = 4), (3.33)

l ← su2 (deg l = 3), (3.34)

u ← k − s(l + 2v2)

u1

(deg u = 2), (3.35)

u′ ← u made monic (deg u′ = 2), (3.36)

v′ ← (−(l + v2)) mod u′ (deg v′ = 1). (3.37)

Proposition 3.3.1 Algorithm 3.3.2 produces the same result as Algorithm 3.3.1.

Proof Since gcd(u1, u2) = 1, we have d = 1 in Algorithm 3.3.1. We can choose e1

and e2 to have e1u1 +e2u2 = 1; choose c1 = 1 and c2 = 0 to make s1 = e1, s2 = e2 and

s3 = 0. Then u = u1u2 and v = s1u1v2 +s2u2v1 mod u1u2. By using s1u1 +s2u2 = 1,

one has

v ≡ v1 (mod u1), (3.38)

v ≡ v2 (mod u2). (3.39)

By the Chinese remainder theorem, one can obtain v by solving the above system

of equations (note that gcd(u1, u2) = 1). In other words, as long as a v satisfies

Equations (3.38) and (3.39), it is the result of the composition part of Algorithm 3.3.1.

Now we can verify that in Algorithm 3.3.2, v = l + v2 satisfies Equations (3.38) and

(3.39). Notice that

v =

(

v1 − v2

u2

mod u1

)

u2 + v2.
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Equation (3.39) can be verified by straightforward calculation. For Equation (3.38)

we can see

v ≡
(

v1 − v2

u2

)

u2 + v2 ≡
(

v1 − v2

u2

)

u2 + v2 ≡ u1 (mod u1).

Now we can see Equation (3.35) gives

u =
k − s(l + 2v2)

u1

=
(f − v2

2) /u2 − s(su2 + 2v2)

u1

=
f − v2

2 − s2u2
2 − 2su2v2

u1u2

=
f + (su2 + v2)

2

u1u2

=
f + v2

u1u2

,

the same as the composition part of Algorithm 3.3.1. After making u monic and let-

ting v′ = (−h−v) mod u′, we obtain the same result of u′ and v′ as Algorithm 3.3.1.

3.3.1 Formulas

In this section we give the explicit formulas in Table 10. It is a straightforward

algorithm with input of two divisors and output of the sum of the two divisors.

(Numerical results based on the improved version of this algorithm can be seen in

Erickson et al. [11]). Notes about some tricks in the algorithm and detailed derivation

of the formulas are given after the table.

Table 10 gives the formulas for curves on an odd characteristic field and the number

of operations on a finite field. The even characteristic case is very similar and costs the

same number of operations on a finite field. See Erickson et al. [11] for more details.

We count only inversions, squarings and multiplications, which constitute the main

part of the computation when compared with additions and subtractions. In the

tables below, we let I, S and M denote “inversion,” “squaring,” and “multiplication,”
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respectively. In finite field arithmetic, a squaring and a multiplication cost similar

time, while an inversion costs about 50 to 80 times that of a multiplication. In each

step of the following table, the underlined part summarizes what that particular step

calculates.

The property (P4) gives different forms for the pair [u, v]. (P4.a) gives

u = x2 + u1x + u0, (3.40)

v = x3 + v1x + v0. (3.41)

(P4.b) gives

u = x2 + u1x + u0, (3.42)

v = v1x + v0. (3.43)

To achieve algorithms with fewer operations, we find the (P4.a) form is slightly

better.

Here we only give the formulas for curves over Fq of odd characteristic. We also

assume that characteristic of the base field is not 3, such that we may assume f5 = 0

in Formula (3.29) (by applying x 7→ x−f5/6). The addition algorithm for curves with

even characteristic is slightly different but the number of the operations is similar to

that of curves over an odd characteristic Fq.
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Table 10. Formulas for Addition of Divisors

Addition, deg u1=deg u2 = 2

Input u1 = x2 + u11x + u10, v1 = x3 + v11x + v10

u2 = x2 + u21x + u20, v2 = x3 + v21x + v20

gcd(u1, u2) = 1, C : y2 = f(x).

Output [u′,v′]=[u1, v1]⊕ [u2, v2]

Step Expression Operations

1 k = k2x
2 + k1x + k0

k2 = f4 − 2v21

2 resultant r and (rs mod u1) = s′1x + s′0 8 M

z1 = u11 − u21, z2 = u20 − u10, z3 = u11 · z1 + z2;

w1 = v11 − v12, w0 = v10 − v20;

r = z1 · z1 · u10 + z2 · z3;

s′1 = w0 · z1 + w1 · (2z2 − z3), s′0 = w0 · z2 − w1 · z1u10

(denote s = s1x + s0)

3 s = x + s0

s1

, s0

s1

, 1
s1+2

, 1
s1(s1+2)

, s1, s0 I, 10 M, 2 S

I = (r · (s′1 +2r) ·s′1)−1, s0

s1

= r(s′1 +2r) ·s′0 · I, 1
s1+2

= s′1 · r2 · I
1

s1(s1+2)
= r · r2I, s1 = (s′1)

2 · (s′1 + 2r) · I, s0 = s1 · s0

s1

4 u′ = x2 + u′
1x + u′

0 5 M, 1 S

u′
1 = s0

s1

+ 1
s1+2
· (s0 − 2u21) + u21 − u11

u′
0 = 1

s1(s1+2)
· (s2

0− k2)+ 1
s1+2
· (2s0 ·u21− 2u20 +2v21)+u20−

u10 − u′
1 · u11

5 v′ = x3 + v′
1x + v′

0 7 M

λ3 = −s1 − 1, λ2 = −s0 − s1 · u21

λ1 = −s0u21 − s1 · u20 − v21, λ0 = −s0 · u20 − v20

v′
1 = [λ1 − u′

0 · (λ3 − 1)]− u′
1 · [λ2 − u′

1 · (λ3 − 1)]

v′
0 = λ0 − u′

0 · [λ3 − u′
1(λ3 − 1)]

Total I, 3 S, 30 M
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Notes:

1. Step 2 calculates the coefficients of s = s1x + s0 = (v1 − v2) · (u2)
−1 mod u1.

Instead of calculating s1 and s0, we calculate s′1 = r · s1 and s′0 = r · s0 so that

there is no inversion calculation until step 3. The details are: We know

s = (v1 − v2)u
−1
2 mod u1.

Instead of calculating u−1
2 mod u1, we calculate ru−1

2 mod u1 without an in-

verse operation on the base field, where r ∈ K∗. In more detail, denote

ax + b = u−1
2 mod u1 where a, b ∈ K∗.

Then

(ax + b)(x2 + u21x + u20) = 1 mod u1,

a(u21 − u11)x
2 + [a(u20 − u10) + b(u21 − u11)]x + b(u20 − u10) = 1 mod u1.

We will have

a(u21 − u11)x
2 + [a(u20 − u10) + b(u21 − u11)]− a(u21 − u11)u11 = 0,

b(u20 − u10)− a(u21 − u11)u10 = 1,

i.e.,





(u20 − u10)− (u21 − u11)u11 (u21 − u11)

−(u21 − u11)u10 (u20 − u10)









a

b



 =





0

1



 .

Denote

A =





(u20 − u10)− (u21 − u11)u11 (u21 − u11)

−(u21 − u11)u10 (u20 − u10)



 =





a1 a2

a3 a4



 . (3.44)

By linear algebra,





r 0

0 r



 =





a4 −a2

−a3 a1









a1 a2

a3 a4



 .
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Hence




r 0

0 r









a

b



 =





a4 −a2

−a3 a1









0

1



 ,





ra

rb



 =





−a2

a1



 .

Then we get

r = a1a4 − a2a3 (3.45)

= [(u20 − u10)− (u21 − u11)u11](u20 − u10) (3.46)

and

rs = (v1 − v2)(rax + rb) mod u1,

rs1x + rs0 = [(v11 − v21)x + (v10 − v20)](−a2x + a1) mod u1,

rs1x + rs0 = [a1(v11 − v21)− a2(v10 − v20)− u11(v11 − v21)(−a2)]x

+ a1(v10 − v20)− u10(v11 − v21)(−a2).

Hence

rs1 = a1(v11 − v21)− a2(v10 − v20)− u11(v11 − v21)(−a2), (3.47)

rs2 = a1(v10 − v20)− u10(v11 − v21)(−a2). (3.48)

2. In Step 3, we need to calculate m−1
4 to make m monic and r−1 to get s1 and s0.

The two inverses can be calculated by just one inversion operation plus several

multiplication operations in the finite field. Namely, calculate (m4 · r)−1 first,

let r−1 = (m4 · r)−1 ·m4 and m−1
4 = (m4 · r)−1 · r.
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3.3.2 Derivations of Formulas in the Previous Subsection

The details for deriving the operation counts in Table 10 and the whole process

are as follows:

Step 1. In this step, we calculate k = (f − v2
2)/u2. We have

f − v2
2

u2

=
x6 + f4x

4 + f3x
3 + f2x

2 + f1x + f0 − (x3 + v21x + v20)
2

x2 + u21x + u20

= k2x
2 + k1x + k0,

where

k2 = f4 − 2v21,

k1 = f3 − v20 − k2u21,

k0 = f2 − v2
21 − k2u20 − k1u21.

Since we only need k2 later, this step is free.

Step 2. In this step, we calculate r and ru−1
2 mod u1.

One inversion operation on the finite field is needed to obtain u−1
2 mod u1, but we

postpone inversion until the next step. Notice that

rs mod u1 = r
v1 − v2

u2

mod u1

= (v1 − v2)

(

r

u2

mod u1

)

.

No inversion is needed to obtain ru−1
2 mod u1. Given u1, u2, v1 and v2, let z1=u11−

u21, z2=u20 − u10, z3=u11z1 + z2. Then

r = z2
1u10 + z2z3,

r

u2

mod u1 = z1x + z2.

Next

rs mod u1 = (v1 − v2)

(

r

u2

mod u1

)

= [(v11 − v12)x + (v10 − v20)][z1x + z2] mod u1.
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Let w0=v10-v20, w1=v11-v21,

rs mod u1 = w1z1x
2 + (w0z1 + w1z2)x + w0z2 mod u1

= (w0z1 + w1z2 − u11w1z1)x + (w0z2 − u10w1z1)

= (w0z1 + w1(z2 − u11z1))x + (w0z2 − u10w1z1)

= (w0z1 + w1(2z2 − z3))x + (w0z2 − u10w1z1)

= s′1x + s′0,

where

s′1 = w0z1 + w1(2z2 − z3),

s′0 = w0z2 − u10w1z1.

(We denote s = s1x + x0.)

Step 3. In this step we calculate s0

s1

(

s = x + s0

s1

= x +
s′
0

s′
1

)

, s1 and s0.

We have r, s′1 = rs1 and s′0 = rs0, then

I =
1

r · (s′1 + 2r) · s′1
,

s0

s1

= r(s′1 + 2r) · s′0 · I,

1

s1 + 2
= s′1 · r2 · I,

1

s1(s1 + 2)
= r · r2I,

s1 = (s′1)
2 · (s′1 + 2r) · I,

s0 = s1 ·
s0

s1

.
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Step 4. In this step we calculate u′ = x2 + u′
1x + u′

0, where u′ is a monic version of

(s(l + 2v2)− k)/u1.

We can rewrite (s(l + 2v2)− k)/u1 as

s(l + 2v2)− k

u1

=
(s1x + s0) [(s1x + s0)(x

2 + u21x + u20) + 2(x3 + v21x + v20)]− k

x2 + u11x + u10

= {(s1x + s0)[(s1 + 2)x3 + (s0 + s1u21)x
2 + (s0u21 + s1u20+2v21

)x

+ (s0u20 + u20)]− (k2x
2 + k1x + k0)}

/

u1

=
{

s1(s1 + 2)x4 + [s0(s1 + 2) + s1(s0 + s1u21)]x
3

+ [s0(s0 + s1u21) + s1(s0u21 + s1u10 + 2v21 − k2)]x
2 + λ1x + λ0

}/

u1

= s1(s1 + 2)

{

x4 +

(

s0

s1

+
s0 + s1u21

s1 + 2

)

x3 +

(

s0(s0 + s1u21)

s1(s1 + 2)
+

s1(s0u21 + s1u20 + 2v21)

s1(s1 + 2)

− k2

s1(s1 + 2)

)

x2 + λ1x + λ0

}/

u1

= s1(s1 + 2)(x2 + u1′x + u0′),

where u′
1 and u′

0 are the coefficients of

x4 +
(

s0

s1

+ s0+s1u21

s1+2

)

x3 +
(

s0(s0+s1u21)
s1(s1+2)

+ s1(s0u21+s1u20+2v21)
s1(s1+2)

− k2

s1(s1+2)

)

x2 + λ1x + λ0

u1

.

We get:

u′
1 =

s0

s1

+
s0 + s1u21

s1 + 2
− u11,

u′
0 =

s0(s0 + s1u21)

s1(s1 + 2)
+

s1(s0u21 + s1u20 + 2v21)

s1(s1 + 2)
− k2

s1(s1 + 2)
− u10 − u′

1u11.

To simplify the calculation, we rewrite the formulas as

u′
1 =

s0

s1

+
1

s1 + 2
· (s0 − 2u21) + u21 − u11,

u′
0 =

1

s1(s1 + 2)
·
(

s2
0 − k2

)

+
1

s1 + 2
· (2s0 · u21 − 2u20 + 2v21) + u20 − u10 − u′

1 · u11.
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Step 5. In this step we calculate v′ = −(l + v2) mod u′.

By straightforward calculation,

−(l + v2) = −[(s1x + s0)u2 + v2]

= −[(s1 + 1)x3 + (s0 + s1u21)x
2 + (s0u21 + s1u20 + v21)x + (s0u20 + v20)]

= λ3x
3 + λ2x

2 + λ1x + λ0,

where

λ3 = −s1 − 1,

λ2 = −s0 − s1 · u21,

λ1 = −s0u21 − s1 · u20 − v21,

λ0 = −s0 · u20 − v20.

Note: s0u21 has been calculated in the previous step. To make v′ be in reduced basis

form, one uses the long division algorithm to get:

−(l + v2) = u′[(λ3 − 1)x + [λ2 − u′
1(λ3 − 1)]]

+ x3 + v′
1x + v′

0,

where

v′
1 = [λ1 − u′

0 · (λ3 − 1)]− u′
1 · [λ2 − u′

1 · (λ3 − 1)],

v′
0 = λ0 − u′

0 · [λ3 − u′
1(λ3 − 1)].

3.4 Comparison and Current Update

The best known arithmetic formulas for addition on imaginary hyperelliptic curves

are given by Lange [21]. The number of finite field operations in her formulas is {1
Inversion, 22 Multiplications, 3 Squarings}. Since the degree of f in real hyperelliptic

curves is higher than in the imaginary curves, we need several more multiplications.

However, more improvements were made in cooperation with colleagues Erickson

et al. [11], and the number of finite field operations for addition has been reduced to

{1 Inversion, 26 Multiplications, 3 Squarings}.
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A. Source Codes

The source codes in this part are all written in MAGMA.

A.1 Proposition 2.3.1 Verification

//*******************************************************

// This program calculates the Bateman-Horn’s constant and

// the number of t_1 such that B_k(t_1,q) is a prime.

//*******************************************************

NumOfK:=1; NumOfQ:=13; k:=5; //initial value of k

for i in [1..NumOfK] do

k:=NextPrime(k);

print "k=",k;

print "q C_BH Count_l Count_r Total BH_estimate Ratio";

for j in [1..NumOfQ] do

q_bitsize:=24+j-1;

q:=PreviousPrime(2^q_bitsize);

// Calculate Bateman-Horn’s constants;

loop:=10000;

C:=1;

p:=2;

for r in [1..loop] do

P<x>:=PolynomialRing(GF(p));



72

lambda:=q+1-x;

Bm2:=x;

Bm1:=x^2-2*q;

for i in [1..(k-2)] do

B:=x*Bm1-q*Bm2;

Bm2:=Bm1;

Bm1:=B;

end for;

A:=q^k+1-B;

B:=A div lambda;

X:=Roots(B);

NmbOfRt:=# X;

C:=C*Real((p-NmbOfRt)/(p-1));

p:=NextPrime(p);

end for;

C_BH:=C;

P<x,y>:=PolynomialRing(IntegerRing(),2);

lambda:=y+1-x;

Bm2:=x;

Bm1:=x^2-2*y;

for r in [1..(k-2)] do

B:=x*Bm1-y*Bm2;
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Bm2:=Bm1;

Bm1:=B;

end for;

A:=y^k+1-B;

B:=A div lambda;

countleft:=0;

for h in [-Floor(2*Sqrt(q))..0] do

if IsPrime(Evaluate(B,[h,q])) then

countleft:=countleft+1;

end if;

end for;

countright:=0;

for h in [1..Floor(2*Sqrt(q))] do

if IsPrime(Evaluate(B,[h,q])) then

countright:=countright+1;

end if;

end for;

total:=countleft+countright;

BH_estimate:=Round(Real(2*2*Sqrt(q)*C_BH/Log(q^(k-1))));

ratio:=Real(total/BH_estimate);

printf "PP(2^%o) %o %o %o %o %o %o \n",

q_bitsize, C_BH,countleft,countright,total,

BH_estimate,ratio;

end for;

end for;
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A.2 Curve Generation

//********************************************

// Complex Multiplication Algorithm:

// Given trace F_q and trace t_1, generate a

// curve over F_q with trace t_1.

//********************************************

q:=PreviousPrime($2^{16}$); t1:=-477; D:=$t1^2$-4*q; n:=q+1-t1;

print "Order of wanted curve is: ",n;

R:=Roots(HilbertClassPolynomial(D),FiniteField(q));

for i in [1..sizeof(R)] do

E:=WeierstrassModel(EllipticCurveFromjInvariant(R[i,1]));

if Order(E) eq n then

E;

end if;

end for;
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B. Gauss’s Lemma for Two Variable Polynomials

The results in this appendix are similar to those in Hungerford [14], page 162, which

gives the proof for one variable polynomials.

Definition B.0.1 A polynomial over a unique factorization domain (such as the

integers) is primitive if the greatest common divisor of its coefficients is 1.

Lemma B.0.1 If R is a U.F.D, and f(x, y) and g(x, y) are both primitive polyno-

mials in R[x, y], then so is f(x, y)g(x, y).

Proof Clearly the product f(x, y)g(x, y) of two primitive polynomials has integer

coefficients. Therefore, if it is not primitive, there must be a common divisor d of

all its coefficients, which can not divide all the coefficients of the either f(x, y) or

g(x, y) (otherwise they would not be primitive). We can order the terms of f(x, y)

and g(x, y) by degrees. We order the terms by total degree of x and y first. For

the terms with same total degree, we put the terms with higher degree in y in front.

Thus, we have

f(x, y) = · · ·+ (ar
ry

r + ar
r−1y

r−1x1 + · · ·+ ar
0x

r) + · · · , (B.1)

g(x, y) = · · ·+ (as
sy

s + as
s−1y

s−1x1 + · · ·+ as
0x

s) + · · · . (B.2)

Let ar
i be the first coefficient of f(x, y) not divisible by d and let bs

j be the first

coefficient of g(x, y) not divisible by d. Now consider the term yi+jxr+s−i−j in the

product. Its coefficients must take the following form, in which the indices in the

sums go downward,

0
∑

k=r+s

0
∑

l=min(i+j,k)

ak
l b

r+s−k
i+j−l . (B.3)
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In (B.3), if k > r, ak
l is divisible by d because it is before ar

i in (B.1); if k < r, br+s−k
i+j−l

is divisible by d because it is before bs
j in (B.2). If k = r and l > i, ak

l is divisible by d

because it is before ar
i in (B.1). If k = r and l < i, br+s−k

i+j−l is divisible by d because it

is before bs
j in (B.2). If k = r and l = i, ak

l b
r+s−k
i+j−l = ar

i b
s
j is not divisible by d. Hence

the entire sum can not be divisible by d. We assumed that all coefficients in the

product were divisible by d, leading to a contradiction. Therefore, the coefficients of

the product can have no common divisor and thus the polynomial is primitive. This

completes the proof.

Lemma B.0.2 If R is a U.F.D and F is its field of fractions, then if a polynomial

f(x, y) in R[x, y] is irreducible over R[x, y], then it is also irreducible over F[x, y].

Proof Without loss of generality we may assume f(x, y) is primitive. Assume f(x, y)

is reducible over F[x, y]. Then there exist f(x, y) and h(x, y) in F[x, y] such that

f(x, y) = g(x, y)h(x, y). There exist a, b in F such that both a·g(x, y) and b·h(x, y) are

in R[x, y] and are primitive. By the lemma B.0.1 (a·g(x, y)·(b·h(x, y))) = (ab)·f(x, y)

is also primitive, and hence ab = ±1. This implies f(x, y) is reducible over R[x, y].
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