
CERIAS Tech Report 2007-32

RECEIPT MANAGEMENT- TRANSACTION HISTORY BASED TRUST ESTABLISHMENT

by Abhilasha Bhargav-Spantzel, Jungha Woo, Elisa Bertino

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Receipt Management Transaction History based Trust
Establishment

Abhilasha
BhargavSpantzel

Purdue University
West Lafayette, IN

bhargav@cs.purdue.edu

Jungha Woo
Purdue University
West Lafayette, IN

wooj@cs.purdue.edu

Elisa Bertino
Purdue University
West Lafayette, IN

bertino@cs.purdue.edu

ABSTRACT

In a history-based trust-management system, users and service providers
use information about past transactions to make trust-based deci-
sions concerning current transactions. One category of such sys-
tems is represented by the reputation systems. However, despite
the growing body of experience in building reputation systems,
there are several limitations on how they are typically implemented.
They often rely on scores that are evaluated by service providers
and are often not reliable or well understood. We believe that repu-
tation has to be based on objective and reliable information. In such
context, transaction histories play an important role. In this paper,
we present the VeryIDX system that implements an electronic re-
ceipt infrastructure and supports protocols to build and manage on-
line transaction history of users. The receipt protocols are shown to
have several essential security and privacy properties. We present
a basic yet reasonably expressive language which provides service
providers with a new way to establish trust based on users’ trans-
action history. We also describe the architecture and prototype im-
plementation of VeryIDX, based on several important design con-
siderations of a real-world e-commerce system infrastructure.

1. INTRODUCTION
With the advent of e-commerce applications, there are increas-

ing requirements of establishing mutual trust between users and
end service providers (SP’s for brevity). SP’s rely extensively on
authentication to attain trust, such as Single Sign-On (SSO) ser-
vices. More recently, transaction histories have gained importance
for implementing advanced services such as reputation systems [13,
10]. Several e-commerce SP’s have built reputation systems so as
to give a better idea of how trustworthy both the buyers and the
sellers are. This is because the sellers are typically SP’s but could
also be users in a peer to peer (P2P) environment. Sellers bene-
fit from the use of such systems because good reputation score is
likely to attract more customers. Similarly buyers may qualify for
better deals and services if they have good reputation. However,
most reputation systems have a major limitation in that the only
information they maintain are scores and they do not typically pro-
vide information about the actual transactions a seller or buyer has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM XXXXXXXXX/XX/XX ...$5.00.

made. We believe that it is important that trust be established also in
the basis of the transaction history. Information about the history
can be consulted to evaluate and manage the potential risks in a
given transaction. Capturing and using transaction history for trust
establishment entail addressing several challenges. In e-commerce
applications, transaction history should include a customer’s profile
of transactions with several SP’s and a SP’s profile of transactions
with several customers. Such transaction history needs to be ac-
cessed by various SP’s, which may use heterogenous transaction
history formats. In some existing real world scenarios the SP’s
store transaction history in such a way that makes impossible for
other SP’s to use it. Therefore the user cannot benefit from its past
transactions. Moreover, there is a lack of user control on his/her
transaction history. The transaction history is generally stored at
the SP end, and the user may not be able to control who accesses
this information. One solution is to introduce a third party receipt
management server. To this extent, we propose the VeryIDX elec-
tronic receipt infrastructure and protocols to build and manage on-
line transaction history of users. With such system, SP’s can have
access to the user’s transaction history according to the users’ per-
missions.

There are several desired properties for such a transaction history
management system. First is the sharing prevention for receipts.
If a receipt RUA

is issued to a user UA, then UA should not be able
to provide it to another user UB who could then present RUA

as its
own receipt. Second is the availability of receipts. If the transac-
tion history is saved as cookies locally at the client machine, porta-
bility and hence the availability of such receipts is hard to achieve.
The VeryIDX infrastucture is therefore based on an identity man-
agement system which makes the receipt information available to
the online users. Third is the minimal disclosure of the informa-
tion stored in the receipts, to minimize the information revealed
about the users transactions at the various SP’s. Fourth is the user

choice; the user should be able to select parts of a receipt based on
the information needed to carry on the current transactions. Fifth
is integrity of user’s history data. Integrity should be maintained
to enable high assurance trust establishment and reputation evalu-
ation. From the architectural perspective, a sixth desired property
is that the system should be easy to deploy in current e-commerce
systems with minimal extensions to the existing systems. The man-
agement overhead imposed on human users should be as low as
possible so to assure usability. The final property is that the sys-
tem should support interoperability, in that it should be possible
to use the transaction history from one SP at another SP.
The goal of our work is to develop protocols for managing transac-
tion histories that verify the above properties.

Among our key innovations is a series of protocols for the es-
tablishment and management of users’ transaction history. These

receipt protocols satisfy strong security requirements namely 1)
correctness, 2) integrity, 3) single submission, 4) fairness and 5)
non-repudiation. To achieve such properties several cryptographic
tools like zero-knowledge proofs, identity-based signatures, con-
tract signing and certified email protocols are used in the receipt
protocols. All receipt protocols are privacy-preserving with respect
to user consent and minimal disclosure. We provide a standard yet
extensible format of e-receipts which are used in these protocols.

We also define a simple policy language to allow SP’s to specify
what kind of information is needed from the receipts. We present
the architecture and design of the VeryIDX system taking into ac-
count several important considerations of a real-world e-commerce
system infrastructure. We also describe a prototype implementa-
tion of the VeryIDX system with detailed performance analysis.

The rest of the paper is organized as follows. Section 2 provides
an overview of the approach and the key functionalities of the sys-
tem with security and privacy criteria that the receipt protocols need
to satisfy. Section 3 introduces the proposed protocols followed by
a protocol analysis in Section 4. Section 5 describes the VeryIDX
system implementation and presents the system analysis. Section 6
discusses related work. Section 7 concludes the paper and high-
lights future work directions. The paper includes some appendices
giving additional details about the protocols and implementation.

2. OVERVIEW OF THE APPROACH
Our approach is based on an extended notion of federation [2].

The federation is composed of the following entities: identity providers
(IdP’s), service providers (SP’s), registrars and users. SP’s provide
services to users as in conventional e-commerce and other feder-
ated environments. IdP’s issue certified attributes to users and con-
trol the sharing of such information. The registrars store and man-
age information related to users’ strong attributes. Strong iden-
tity attributes uniquely identify a user, as opposed to weak iden-
tity attributes which may be common to a group of users. The in-
formation recorded at the registrar is used to perform multi-factor
identity verification of users. Note that, unlike the IdP’s, the in-
formation stored at the registrar does not disclose the values of the
strong user attributes in clear. Instead, this information contains the
cryptographic semantically secure commitments [5] of the strong
attributes which are then used by the users to construct zero knowl-
edge proofs of knowledge (ZKPK) [9] of those attributes.

In our approach to transaction history management, the registrar
manages user’s receipts and provide them to SP’s when needed. All
receipts are stored in the user Receipt Record (RREC for brevity)
which is created for each registered user. An e-receipt has 9 key
elements, namely– TRANSACTION ID, SELLER, BUYER, ITEM,
ITEM DESCRIPTION, PRICE, USER INFO, ASSURANCE LEVEL

and TIME. The TRANSACTION ID and SELLER form a key to
uniquely identify the receipt. Most of the items in the receipt cor-
respond to those of traditional receipts except USER INFO and AS-
SURANCE. USER INFO captures only the weak attributes collected
about the user during the e-transaction. This information is used
to assess the ASSURANCE LEVEL that the given receipt belongs to
the user claiming a given RREC. If the combination of the weak at-
tributes uniquely identifies the user, then the assurance level of the
receipt is set to ’A’. Depending on the amount of information avail-
able about the user, the assurance level could be set to ’B’ or ’U’ for
unknown. Assurance level will be lower if conflicts are identified.
For example, if the citizenship of the user in two different receipts
is different, then there is the possibility that the two different e-
transactions have been executed by different users. We ensure, by
using digital signatures, that the receipts cannot be tampered with
once they are issued, even by the registrar storing them.

Function Purpose

Add Receipt. Once a user has completed a transaction, it ex-
ecutes the ‘add receipt’ protocol to retrieve the
receipt from the SP and store it at the registrar.

Extend Receipt. For a receipt that is already stored at the reg-
istrar the user can create x-receipts by adding
the cryptographic commitment to the original
e-receipt.

Use Receipt. When the user interact with a SP, it can use the
receipts to prove properties about its past trans-
actions. Properties required about past trans-
actions are specified by the trust establishment

policies.
Remove Receipt. If a receipt is unusable, expired or revoked, then

the user, registrar or SP can delete it. Once this
receipt is removed from the registrar, no other
copy of this receipt stored at any other can be
successfully used.

Table 1: Functions Summary

EXAMPLE 1. An example of a receipt R of user Alice is 〈 401,E-
BOOK STORE, ALICESSO, BOOK, Quantum Mechanics,$103.27,
“AMERICAN, LAFAYETTE-IN, JUGGLER”, ’A’, 14:34 03/12/2007〉
where 401 is the transaction ID, E-BOOK STORE is the name of the

SP and ALICESSO is the Alice’s single sign-on (SSO) ID with the

registrar where this e-receipt is stored. In this receipt the ASSUR-
ANCE LEVEL of the USER INFO is ’A’.

To ensure minimal disclosure of the receipt attributes, in that the
user can create ZKPK’s [9] of its receipt attribute properties, we al-
low the user to extend the original receipts with Pedersen’s commit-
ments [5]. Once the commitments are enrolled at the registrar, they
can then be used to create proofs regarding properties of those at-
tributes as elaborated in Section 3. The receipt extension (x-receipt

for brevity) has the ‘Transaction ID’ and ‘Seller’ to uniquely iden-
tify the receipt, followed by the element tag, such as ‘Price’, and
the corresponding cryptographic commitment. In Example 1 if Al-
ice enrolls a commitment corresponding to the price, then she can
prove that the price is greater than $1001 without having to reveal
the exact price.

Our system provides the functions listed in Table 1 supporting
the creation, use and deletion of the receipts. The protocols im-
plementing the functions are described in detail in Section 3. It is
important to mention that there are specific security and privacy

requirements for all these protocols. We briefly discuss such re-
quirements in what follows.
Security requirement. Security of the receipt protocols includes

five main properties.
1. Correctness. It means that if two honest parties successfully
complete an e-commerce transaction, then the final receipt is con-
structed with the correct receipt attributes and is included in the
right users’ RREC.
2. Integrity. It refers to the tamperproofness of the constructed re-
ceipt. If any receipt attribute is modified, then it should be possible
to detect the change.
3. Single Submission. It requires that the same receipt be not sub-
mitted more than once as two different receipts.
4. Fairness. It requires that the proof-of-delivery from the buyer
and the proof-of-origin from the seller are available to the seller
and buyer, respectively. Moreover, the protocol must be fail-safe,

1There are ZKP’s that allow to prove that a committed integer sat-
isfies an inequality, such as a given committed value x is greater
than a constant A. A possible approach to accomplish this is using
interval proofs [3].

in that the incomplete execution of the protocol must not result in
a situation in which the proof-of-delivery is available to the seller
but the proof-of-origin is not available to the buyer, or vice versa.
5. Non-repudiation. For two-party protocols the non-repudiation
property is two-fold [21]: a) non-repudiation of origin, that is, pro-
viding the buyer with irrefutable proof that the content received
was the same as the one sent by the seller; b) non-repudiation of
delivery, that is, providing the seller with irrevocable proof that the
content of item or token received by the buyer was the same as the
one sent by the seller.
Privacy requirement. The privacy requirement for the receipt pro-
tocols consists of two main properties.
1. User Consent. It requires that the users be able to consent or
agree to terms or conditions that may be associated with the disclo-
sure and use of its receipt attributes. It is important that the user
has an opportunity to reject any disclosure of receipt information if
required by the SP [14].
2. Minimal Disclosure. It requires that only the minimal piece of
receipt information, as needed by the SP, is revealed.

3. PROTOCOLS
In this section we present receipt based protocols which enable

users to enroll their receipts with registrars, and use them with
SP’s. More specifically, we provide detailed protocols based on
two-party message exchange and cryptographic primitives like iden-
tity based signature (IBS) and zero knowledge proof of knowledge
(ZKPK). The protocols are summarized in Table 2.

3.1 Preliminary Concepts
Following are the preliminary concepts regarding identity based

signatures, commitments and ZKPK, and the corresponding proto-
col notation.

Pedersen commitments: Let g and h be generators of group G

of prime order q. A value m is committed by choosing r randomly
from Zq and giving commitment C = gmhr [5]. Commitment C

is opened (or revealed) by disclosing m and r, and the opening is
verified by checking that C is indeed equal to gmhr . A prover can
prove by using a zero-knowledge proof that it knows how to open
such commitment without revealing either m or r.

ZKPK: In our approach we use the techniques by Camenisch
and Stadler [4] for the various ZKPK of discrete logarithms and
proofs of the validity of statements about discrete logarithms. We
also conform to the same notation [4]. For instance to denote the
ZKPK of values α and β such that y = gαhβ holds, and u ≤ α ≤
v, we use the following notation:

PK{(α, β) : y = g
α
h

β ∧ (u ≤ α ≤ v)}

The convention is that Greek letters denote quantities the knowl-
edge of which is being proved, whereas all the other parameters are
sent to the verifier. Using this notation, we will simply describe
each protocol’s purpose without elaboration.

Identity Based Signature Scheme: We use the ID-based sig-
nature scheme derived from the Schnorr’s signature scheme given
in [18]. ID-based signature scheme consists of four main protocols,
namely Setup, Extract, Sign and V erify.

Public Key Encryption: We assume a public key infrastructure
for the registrars and the SP’s. Public key encryption (PKE) is used
while encrypting the data for a particular SP or registrar, and also
when data is signed by these entities.

3.2 Adding Receipts at the Registrar
We define two protocols for adding receipts to a registrar which

varies according to the parties involved. The first protocol is appli-

cable when a user has conducted an e-commerce transaction with
a SP and wants a receipt. The second one applies when two users
want to conduct peer to peer e-commerse transaction without in-
volving an external SP.

Protocol 1: Adding Receipts generated by User-to-SP Trans-

actions.
Steps 1–12 illustrated in Figure 1 are followed by the user to add

a receipt, generated by a SP, to its RREC at the registrar. In steps
1–4 the user obtains a random session handle generated by the SP.
In step 5 the user conducts strong authentication as follows.
Strong Authentication. The user first logs into the registrar using
its user ID and password. To perform strong authentication during
login, we require that users provide ZKPK of the secrets corre-
sponding to multiple, say t, strong attribute commitments stored at
the registrar. Only after a user successfully provides a proof, then
it is allowed to perform management tasks. The registrar and user
then perform the following steps to execute the strong authentica-
tion.
First the registrar retrieves this user’s t strong identifier commit-
ments of the form Mi = gmihri where mi ∈ Zq , 1 ≤ i ≤ t, is
a user’s strong identifier and ri ∈ Zq is the secret random value
the user had chosen at the time of enrollment [1]; (g, h, q) are the
public parameters of the registrar2.
Second the user aggregates its secrets. The registrar challenges the
user to prove knowledge of t commitments {Mi}, 1 ≤ i ≤ t.
The user computes M =

∏t

i=1 Mi = gm1+···+mthr1+···+rt and
sends M, and Mi, 1 ≤ i ≤ t, back to the verifier. Finally a ZKPK
of aggregate commitment is performed. The user and the regis-
trar carry out the following aggregated ZKPK (AgZKP for brevity)
protocol:

PK
{

(α, β) : M = g
α
h

β
, α, β ∈ Zq

}

where α = {m1+· · ·+mt} and β = {r1+· · ·+rt}. If the AgZKP
is successful then the user is considered strongly authenticated.

Steps 6–11 in Figure 1 illustrate the messages exchanged among
the registrar, user and SP to retrieve the receipt. In the final step,
before storing the new receipt in the RREC, the registrar calculates
the assurance using the procedure described below.
Assurance Assessment. To assess the assurance, the registrar ver-
ifies receipt R and compares the USER INFO (W for brevity) in
the receipt, with the weak attributes (Wuser) stored at the regis-
trar which have a high assurance level. These weak attributes can
be stored as a part of other receipts in RREC and user information
available to the registrar. Based on the overlap of this information
the registrar computes the assurance that the user who is registered
is the same user who performed the e-commerce transaction. For
example if W

⋂

Wuser = W then there is a complete overlap. If
W uniquely identifies the individual, the assurance level would be
as high as the lower bound of the assurances of all wuser ∈ Wuser .
Note that the higher the number of overlapped attributes, the higher
is the assurance level. Once the assurance level is assessed the reg-
istrar adds the receipt to the user’s RREC.

Protocol 2: Adding Receipts generated by User-to-User Trans-

actions.
Consider a case of two users that carry out an e-commerce trans-

action directly with each other. A user UA is selling item I for price
P to user UB . Both users are interested in submitting a receipt of
this transaction to the registrar in order to extend their transaction

2In [1] it is assumed that the registrar runs generation algorithm

GenKey on input 1k to generate the public parameters: a prime q
of length k, three groups G1, G2, GT of order q. Two generators
g, h in G1 are specified such that logg h is unknown.

Title Parties Protocol Goal Key Challenges [Techniques used]

1 Adding receipt
(SP-user)

U, SP,
REG

User adds the receipt provided by a SP after
an e-transaction to its RREC at the registrar.

(a) The user is authenticated correctly [AgZKP],
(b) Integrity of the receipt [PKE],
(c) Single submission of receipt [Session handles]

2 Adding receipt
(user-user)

U,
REG

Both buyer and seller are users who perform
e-transaction and add their receipts to their
RREC’s.

(a),(b),(c), (d) Both parties should get their receipts simultaneously
[Contract Signing Protocol],
(e) Non-repudiation [IBS]

3 Extending re-
ceipt

U,
REG

The user creates cryptographic commitments
for selected receipt attributes.

(a), (f) The extension is done correctly and on the claimed attribute
[ZKPK]

4 Providing re-
ceipt attributes

U, SP,
REG

User provides selected receipt attributes to
SP.

(a), (g) Availability of the users’ receipts [online Registrar]
(h) User consent on the released attributes [Registrar portal UI],
(i) Integrity of the released attributes [PKE]

5 Providing re-
ceipt attribute
proofs

U, SP,
REG

User provides proof of knowledge of se-
lected receipt attributes.

(a),(g), (j) minimal disclosure of attribute information [ZKPK],
(k) Non-repudiation of proof [IBS and ZKPK]

6 Revoking a re-
ceipt

U, SP,
REG

SP invalidates the users’ receipt due to the
refund of the e-transaction.

(a), (l) The refund of the item and receipt revocation happens simulta-
neously [Contract Signing Protocol],
(e) Receipt is removed from RREC [Semi-trusted registrar]

Table 2: Receipt Protocols Summary

Figure 1: Message flow of receipt Protocol 1 and Protocol 4

history as a seller and a buyer respectively. This receipt would have
to be constructed with the consent and verification of both UA and
UB . We assume that users have pre-established accounts at the
registrar, in that they have a user name and password correspond-
ing to a RREC. Since UA and UB do not trust each other, if such
purchase/selling transaction were unsupervised, then it would be
difficult to settle any dispute. Therefore the following protocol is
carried out to make the purchase, followed by the generation and
submission of the receipt.

1. ID-Based Signature Setup. Users UA and UB execute the
IBS Scheme introduced in Section 3.1. Here the public ID’s
are the SSO ID’s of UA and UB at the registrar. Note that the
key used to sign is only known to the user owning that ID.

2. Receipt and Context Agreement. Users UA and UB first sign
their user ID at the registrar with their private key, using the
IBS Sign protocol. Once each signature is verified, by using
the V erify protocol, the seller and buyer names at the reg-
istrar are known. Then they need to agree on the details of
the purchase involving details of price, item and other such
information to construct the potential receipt. They also need

to agree to provide a valid signed receipt when the transac-
tion is complete. These terms of agreement are formalized
in a contract C. To achieve fairness, such contract should be
signed simultaneously. Therefore, a contract signing proto-

col [20] is used so that each party has a signed copy of this
contract simultaneously.

3. Purchase. To make the purchase, user UB needs to provide
its strong attributes like Credit Card Number and weak at-
tributes like Name with Address (UBAttr for brevity). To
do this the following steps are taken [15]

(a) UB generates a random key K and sends UA the en-
crypted message EK(UBAttr||C||RUB

) where C is
the contract they agreed upon and RUB

is a receipt
signed by UB detailing the purchase.

(b) UA publishes a signed message requesting UB to pub-
lish the key for EK–encrypted message whose digest is
H(EK(UBAttr||C||RUB

)) by date T at location X .

(c) UB publishes the pair H(EK(UBAttr||C||RUB
)), K

in X on or before date T .

The above is a certified email protocol which prevents UA

from denying the fact that UB provided required information
for the purchase. At this point UB’s side of the purchase is
made. In a similar fashion, UA provides the resource, con-
tract C, and a signed receipt of purchase RUA

to UB .

4. Receipt Addition. In this step both UA and UB have signed
receipts. They both log onto the registrar using strong au-
thentication to add their respective receipts as described in
Protocol 1.

Protocol 3: Receipt Extension with Commitments. A user
can extend receipts stored at its RREC by creating cryptographic
commitments of receipt attributes. This is to allow the users to
create ZKPK’s, in future transactions, based on the commitments.
The following protocol is carried out to make such extension.

1. Login and receipt attribute identification. The user logs at the
registrar to access its RREC. The user identifies a particular
receipt using a TRANSACTION ID and name of SELLER pair.
Then the user chooses which attribute aRRECi

in this receipt
it wishes to commit.

2. Commitment creation. Referring to the public parameters de-
scribed in the strong authentication step of Protocol 1, the
user first uses a public function f such that f(aRRECi

) =
mi with mi ∈ Zq . Then the user chooses a value ri ∈ Zq ,
and computes the final commitment Ci = gmihri . The user
also signs this commitment using the Sign protocol of the
ID-based signature scheme and provides this to the registrar.

3. Commitment verification. The registrar first verifies the sig-
nature using the V erify protocol of the ID-based signature
scheme [18]. Next the user gives a ZKPK of opening the
commitment M to the registrar.

PK{(β) : C = g
mih

β
, β ∈ Zq}

where mi = f(aRRECi
) and β is a random secret chosen

by the user. The above ZKPK proves to the registrar that
the user has constructed a commitment corresponding to the
receipt attribute aRRECi

.

4. Commitment addition. If the verification was successful, the
registrar adds the signed commitment for the specified at-
tribute to the RREC.

Protocol 4: Trust establishment with a SP using e-receipt. Steps
13–20 in Figure 1 show how the user can provide its receipt at-
tributes to the SP to establish trust or a reputation level based on
the criteria specified by that SP. This criteria may be specified as
policies at the SP.

Trust establishment policies on e-receipts. The policies are spec-
ified as conditions on the receipts. We use first order logic for-
mula (FOLF) to reason about the policies. The vocabulary Ψopen

contains binary predicates corresponding to receipts and receipt at-
tributes. A complete list of these predicates is provided in Table 3.
The SP trust establishment policy Π is a FOLF expressed in terms
of Ψopen.

EXAMPLE 2. A policy of the online-book store ’e-book’ could

be as follows – ‘if a user has bought a book for more than $80 from

’e-book’, then it is a trusted customer.’ The trust establishment pol-

icy can be encoded in the logic as:

TrustedCustomer(U) := ∃RU (Receipt(RU)∧Buyer(RU , U)∧
Seller(RU ,′ e − book′) ∧ Price(RU , RU .P rice, >, 80))

The SP provides the user with the trust establishment policy Π
as illustrated in step 13 of Figure 1, along with the random ses-
sion handle which is needed to ensure freshness of the transaction.
The user then logs on to the registrar and provides this informa-
tion. The registrar evaluates the policy Π to identify a list of re-
ceipts R1, . . . , Rk which would satisfy the trust establishment cri-
teria3. Once the receipts are identified the registrar provides a way
for the user to select the attributes [aRRECi

]Rt
from receipt Rt,

where 1 ≤ t ≤ k, 1 ≤ i ≤ n, and n is the total number of
attributes needed to satisfy Π. The user is also given an option
to add more receipts from its RREC if it desires to do so. The
user also provides the random handle rSP to the registrar. Given
this information, the registrar constructs the signed attribute token
ρattr = 〈{[aRRECi

]Rt
}, rSP , t〉REG where t is the current times-

tamp. The registrar sends ρattr to the user. Finally the user pro-
vides ρattr to the SP. The SP verifies the attributes and provides the
service accordingly.
Protocol 5: Trust establishment with a SP using x-receipt. If
a user does not want to provide clear attributes from the receipts
and instead wants to prove properties of the receipt attributes, it
can use the enrolled cryptographic commitments of the x-receipts
to create proofs of such properties. The policies for such kind of
trust establishment can be expressed as follows.

Trust establishment policies on x-receipts. For the cases in which
the trust establishment criteria are related to cryptographic proofs

of receipt attributes belonging to the user, the SP uses an exten-
sion of policy vocabulary Ψopen denoted as Ψproof . Ψproof also
has binary predicates but unlike Ψopen the attributes specified do
not have to be revealed in clear. Instead ZKPK of those receipt at-
tributes need to be provided by the user. For each of the predicates
listed in Table 3, there is an equivalent predicate for the Ψproof vo-
cabulary, pre-pended by the letter ‘x’. For example xSeller, xItem,

and xPrice. If in Example 2 the clear attributes are not required,
instead the cryptographic proofs of those attributes are sufficient,
and then the same trust establishment policy can be written as:
TrustedCustomer(U) := ∃RxU (xReceipt(RxU) ∧
xBuyer(RxU , U) ∧ xSeller(RxU ,′ e − book′) ∧
xPrice(RxU , RxU .P rice, >, 80))
Using such policies, the precise steps of the protocol are described
as follows.

Step 1. SP Policy. The SP provides the trust establishment policy
requiring ZKPK Πx together with a random handle rSP and
sends it to the user.

Step 2. User retrieves receipt commitments. It is required that
the user has created a commitment for each of the receipt at-
tributes for which it has to construct a ZKPK. Assuming that
these commitments are created for each such attribute using
Protocol 3, the next step is to retrieve these commitments.

The user logs at the registrar to access its RREC. The regis-
trar then evaluates the policy Πx to identify a list of receipts
which would satisfy the trust establishment criteria based on
the attribute information available in clear. Once the receipts
are identified the registrar provides a user-interface for the
user to add additional receipts if needed. Let the resulting
list of selected receipts be R1, . . . , Rk. The user then se-
lects the attributes [aRRECi

]Rt
with the corresponding com-

mitments [CRRECi
]Rt

from receipt Rt where 1 ≤ t ≤ k,
1 ≤ i ≤ w and w is the number of commitments needed.
We simplify the notation of the commitment and represent it

3The evaluation is possible only if the RREC has the value of the
attributes needed to satisfy Π in clear.

Predicate Arity Arguments Meaning
Receipt 1 receipt R If Receipt(R) is true, then R is a valid receipt belonging to the user who

is claiming this receipt.
ReceiptKey 3 receipt R, transaction ID R.TID

and seller R.SELLER

If ReceiptKey (R, R.T,R.S) is true, then R receipt can be uniquely
identified using its transaction ID R.T and seller name R.S.

Seller 2 receipt R and seller information
R.SELLER

If Seller(R,R.S) is true, then R has the seller name R.S.

Buyer 2 receipt R and buyer information
R.BUYER

If Buyer(R,R.B) is true, then R has the buyer pseudonym R.B.

Item 2 receipt R and item tag R.ITEM If Item(R,R.I) is true, then R has the item tag R.I.
Price 4 receipt R, price number value

R.PRICE, numeric operator,
number constant

If Price(R,R.P,o,C) is true, then R has the price value R.P which has a
relation denoted by operator o (e.g. =, >, <) with numeric constant C.

Assurance 2 receipt R and assurance tag
R.ASSURANCE

If Assurance(R,R.A) is true, then R has the assurance level R.A.

Time 2 receipt R and time R.TIME If Time(R,R.T) is true, then R was issued at time R.T.

Table 3: Predicates for Service Providers Trust Establishment Policies

as C1, . . . , Cw. The user is also given an option to add more
receipts from its RREC if the user desires to do so. The user
also provides the random handle rSP to the registrar.
Given this information the registrar constructs the signed com-
mitment token ρcommit = 〈{([CRRECi

]Rt
)}, rSP , t〉REG

where t is the current time stamp. The registrar sends ρcommit

to the user.

Step 3. Proof submission of user’s x-receipt attributes. The user
performs an AgZKP with the SP in order to provide proof of
knowledge of the required attributes. Note that only the user
knows the random secrets and the actual attribute values cor-
responding to each of the committed receipt attributes. The
proof consists of the following two key steps.
(a) Users’ aggregation. Consider that the SP has challenged
the user to prove knowledge of commitments {Ci} where
1 ≤ i ≤ w. The user computes
C =

∏w

i=1 Ci = ga1+···+athr1+···+rt , where ai and ri are
the attribute and secret random corresponding to the com-
mitment ci respectively. The user sends C, ρcommit to the
verifier.
(b) Zero-knowledge proof of aggregate commitment. The
user and the registrar carry out the following AgZKP pro-
tocol:

PK
{

(α, β) : C = g
α
1 h

β
1 , α, β ∈ Zq

}

where α = {a1 + · · ·+ at} and β = {r1 + · · ·+ rt}. If the
ρcommit is constructed correctly to satisfy Πx and AgZKP
in step 3.2 is successful, then the user proof is considered
correct and the trust is established.

Protocol 6: Revoking a receipt

By revocation of a receipt we mean the removal of the receipt
from the users’ RREC. We consider three cases for the revocation
of a receipt depending on the party revoking the receipt, namely the
user, the registrar and the SP.
The first two cases are trivial. For the user case, the user is re-
quired to log onto its account using strong authentication to access
its RREC. Once logged in, our system provides a way for the user
to remove any of the receipts from its RREC. For the registrar case,
the registrar may define the criteria for removing receipts. For ex-
ample, the registrar may revoke receipts that are more than 100
days old. The registrar periodically checks the RREC to see if the
receipts are compliant to its criteria to retain the receipts. If not, the
registrar asks the user to remove the specific receipts within a given

time period, after which the receipt is removed by the registrar it-
self.

For the SP revocation case we consider an interesting scenario
where the user needs to return the purchased item from an SP and
the SP may provide a refund. More importantly this SP needs to en-
sure that the receipt stored from the previous transaction gets void
and the user needs to ensure that it gets the refund. The following
steps are needed to do this revocation.

1. User retrieves receipt from its registrar. The user logs on
to access its RREC. It identifies the receipt R which is to be
revoked once it returns the item relevant to the purchase iden-
tified in the receipt. The registrar then constructs the signed
token ρrevoke = 〈R, U, t〉REG. It sends ρrevoke to the user
where U is the SSO ID of the user, and t is a timestamp to
ensure freshness.

2. User requests revocation from SP. The user then signs the
〈ρrevoke〉U using IBS Sign protocol and provides this token
to the SP. The SP verifies the signature using the public key
of U and the IBS V erify protocol. Only if the verification
is successful, the revocation protocol proceeds.

3. Users’ refund and SP’s revocation. The user and SP agree on
a contract C using simultaneous contract signing protocol,
which would state that for the transaction identified by the
receipt R in ρrevoke the user will provide the SP the identifier
i of the purchased item, and the SP will provide the refund
f applicable to that purchase. Note that the item identifier
should not be a sensitive value, but instead a public service
number for the item purchased. For example i could be a pin.
Once the pin is revoked, no other user can use it to access
the same resource. Once this contract is agreed upon, the
three steps as in Protocol 5 Step 3 are executed with message
EK(i||C) where C is the refund contract they agreed upon.
Using these steps the user can request revocation and the SP
cannot deny the user did revoke its purchase. Then the SP
sends the user a token α = [f, ρrevoke]REG encrypted with
the registrar’s public key. The user sends α to registrar. The
registrar removes the receipt identified in ρrevoke and sends
the refund f to the user.

4. PROTOCOL ANALYSIS
In this section we present an analysis of the receipt protocols

based on the security and privacy requirements introduced in Sec-
tion 2. For ease of understanding, a summary of the cryptographic

techniques used in the various protocols which provide the various
security and privacy properties are given in Table 4, Appendix B.

THEOREM 4.1. (Security of Receipt protocols) All receipt pro-

tocols satisfy the security criteria namely 1)Correctness, 2)Integrity,

3) Single Submission, 4) Fairness and 5) Non-repudiation proper-

ties

For all the protocols, the strong authentication at the registrar us-
ing AgZKP prevents impersonation attacks [1, 2]. As such, if an
adversary is able to impersonate a given user U and authenticate
using k random commitments, then that would imply that this ad-
versary was able to steal the corresponding 2k secrets of U to con-
struct a valid proof. Such compromise can occur with a very low
probability and hence the login at the registrar is reliable. In addi-
tion the evaluation of the ASSURANCE LEVEL based on the users’
weak identifiers stored at the RREC’s, also mitigates the risk of
the adding and using incorrect receipts. For each of the detailed
protocols, the security criteria are discussed below.

In Protocol 2, correctness of the buyer and seller information is
achieved by strong authentication and use of IBS. The IBS scheme
is provably secure based on the Schnorr’s signature scheme [16]
in a random oracle model. If the signatures are correct, it would
imply that the buyer and seller information provided for the receipt
is correct. For the correctness of the receipt attributes, the con-
tract signing protocol [20] is used. The users agree on a set of
attributes relevant to the e-transaction and use it to carry out the
protocol. Integrity of the e-receipts is achieved by IBS signatures
[18] on the final receipts RUA

and RUB
provided by each user.

The single submission is ensured based on the session handles in-
cluded in ρsubmit token used during the final addition of the receipt
at the registrar. The fairness is proven and achieved because of
the use of the simultaneous contract signing protocol [20]. Finally
non-repudiation is achieved because of the use of the IBS. This is
because the IBS scheme used achieves the Girault’s trusted level
3 [17] which implies the that private key generator (i.e. the reg-
istrar) does not know, or cannot easily compute, the users’ private
keys. Moreover, the certified email protocol given at step 3 requires
that the requests and keys shared in step 3, be published, therefore
the parties cannot deny carrying out the transaction.

In Protocol 3, the correctness is ensured because of the use of the
ZKPK at step 3. Here the attribute being committed mi is fixed and
the ZKPK would not be correct if the Pedersen commitment was
not formed correctly. Moreover, for the same reason, the user can-
not create two commitments for a certain attribute mi , thus achiev-
ing single submission property. The integrity and non-repudiation

properties are achieved because of the use of the IBS signature and
AgZKP at the time of strong authentication.

In Protocol 5, the correctness is achieved using strong authenti-
cation, followed by the AgZKP on the commitments identified in
token ρcommit. For the integrity of ρcommit, the public key sig-
nature of the registrar on this token is used. The tamperproofness
of ρcommit prevents adding any additional commitment of an at-
tribute which may not belong to a valid receipt. Thus the single

submission of the attribute commitment is achieved.
In Protocol 6, ρrevoke is first signed by the registrar using PKE,

and eventually by the user using IBS. These signatures ensure in-

tegrity of the receipt which needs to be revoked. The signed to-
ken 〈ρrevoke〉U and the timestamp t prevent receipt from being re-
submitted by an adversary. Using ρrevoke also helps in the single

submission of receipt revocation requests. Finally the fairness and
non-repudiation properties are achieved as in Protocol 2.

THEOREM 4.2. (Privacy of receipt protocols) All receipt pro-

tocols preserve the privacy criteria, namely 1) user consent and 2)

minimal disclosure of user receipt attributes and other user infor-

mation, as described in Section 2.

In Protocol 2 the user consent is captured using the IBS signa-
tures, and the contract signing protocol. This is because only the
user is assumed to have the secret key for executing the Sign pro-
tocol. Moreover the terms and conditions of the e-transaction are
encoded in the contract that is signed by each participant user. The
protocol also ensures minimal disclosure which is achieved by the
use of random session handles. Even if both users are strongly au-
thenticated using AgZKP at the registrar, the users do not learn any
other information besides the SSO ID of each other, and the infor-
mation required for the e-transaction to occur.

In Protocol 3 the user consent is ensured when the user creates
the cryptographic commitment followed by the IBS signature and
the ZKPK on the committed value. Subsequently in Protocol 5,
user consent is captured based on the ZKPK which can only be
performed if the user provides its secrets associated with the receipt
attributes on which the proofs are formed. The ZKPK also helps in
the minimal disclosure because of the security of Pedersen commit-
ment [5] which relies on the hardness of the discrete log problem.
Finally in Protocol 6, the IBS and the certified email protocol en-
sures that the user participates in the revocation procedure and that
there is user consent. During this protocol no other information
other than the users’ SSO ID is revealed to the SP conducting the
revocation, thus ensuring minimal disclosure of user attributes.

5. VERYIDX IMPLEMENTATION
In this section we provide the architectural design and proto-

type implementation details of VeryIDX. We also perform a per-
formance, usability and storage analysis of the prototype system.

5.1 System Architecture
To implement the VeryIDX system we developed components

for three main entities of this system, namely registrar, SP and user.
Several main considerations were taken into account in the design
of VeryIDX.

1. The requirement to minimally extend the existing compo-
nents used for e-commerce transactions.
First, since users and SP should have easy access to the reg-
istrar we made our system web-based. Thus, no client side
software installation is needed. Second, requiring modifi-
cation to the current payment process of SP would not be
desirable because of backward compatibility and scalability
issues. Therefore we provide add-on modules for SP to join
the VeryIDX system. Furthermore our system does not affect
the legacy interactions between SP and users.

2. Providing de facto interoperation. VeryIDX achieves inter-
operation using a few registrar components. Different SP can
specify their requirements according to their service policies
and subsequently use the registrar to obtain relevant and reli-
able information when they have to make decisions for trust
establishment.

3. Providing scalable and interchangeable building blocks. A
modular application is composed of smaller, separated mod-
ules that are well isolated. Thus, it makes easier to develop
and manage than tightly coupled application. We adopt mod-
ularization so it is easy to update component and simple to
add new functionality.

Figure 2: System architecture of VeryIDX

Figure 2 shows the general architecture of the current VeryIDX
system. In the following we describe system architecture, imple-
mentation details and subcomponents of the three entities, namely
registrar, user and SP.

5.1.1 Registrar Side

Registrar handles users’ request to add or extend receipts and
other user identity information. Registrar comprises four key mod-
ules which are described as follows.

1. Webserver module. This module comprises servlet container
and the implementation of registrar. The servlet4container
accepts users’ connection and relay it to the registrar com-
ponents, which is in charge of processing the users’ request,
e.g, showing dynamic receipts, allow users to add new re-
ceipt and so on. We used Gridsphere Portal Framework to
create dynamic web pages because of its extensive built-in
servlets, user management portlet capabilities and reliability.
As a servlet container, Jakarta Tomcat has been selected for
its popularity and robustness.

2. Record storage. To store the user records, namely RREC, we
use Oracle 10g database. Identity related information like
registrar’s public key and some public parameters for exam-
ple, p, q, g and h required for ZKPK protocols are also stored
in the database.

3. Identity verification module. The identity verification mod-
ule checks the correctness of the claimed identity. It performs
ZKPK with the user to strongly authenticate this user to ac-
cess its RREC. It is also used to assess the assurance level of
a given receipt. This module checks whether a user logged in
at the registrar is the same as the one indicated in the receipt
obtained from SP. This is done using the assurance assess-
ment steps defined in Protocol 1.
We have deployed Secure Socket Layer (SSL) for the secure
traffic using the Java Secure Socket Extension (JSSE) pack-
age.

4. SP policy evaluator. This module receives as input the trust
establishment policies of the SP and a given RREC of the

4A servlet as traditional CGI but it’s more efficient and convenient.

user and then uses this information to identify the potential
receipts of the user that can satisfy the policy requirements.
Thereafter the result is presented to the user, so it can con-
struct the selective receipt based token like ρattr in Protocol
4 of Section 3.

5.1.2 User Side

The key module used at the user end is the User Crypto Module.
This module consists of two components namely ZKP commitment

Calculator and ZKP Proof Calculator. The ZKP commitment cal-
culator computes commitment of any given attribute related to ei-
ther identity or receipt information. A critical requirement is that
the secrets involved in creating the commitment should not leak
outside the users’ machine. Only the final commitment is revealed
once the computation is complete and the user’s secrets are stored
at the user’s local machine. The ZKP Proof Calculator creates a
proof object which can be submitted to the SP or registrar. Using
this object, the SP can carry out the ZKPK proof verification.

Java Applets are used to implement both components. Java ap-
plets can communicate not only with the servlet in the registrar but
also with the users’ local file system. In addition, some parameters
about users can be passed to the applets from JSP. Applets have
some access limitations to the user file system because they are not
part of the local system. In our system, we use signed applets which
can be allowed to access local filesystem. In addition, users are re-
quired to put a policy file to enable an applet to access local file
having users’ secret.

We devised a logical structure named ‘wallet’ where the user
securely stores its personal information and secrets. When users
create commitments, the secret information is stored at the wallet
to be used later in ZKPK. The secret information in the wallet is
never revealed to the Registrar nor the SP. We use Java Serializa-
tion technique5 for applet to servlet communication. This approach
makes implementation easy because it does not require the system
to deploy additional protocols for the data transmission. The re-
ceiver simply needs to get serialized stream and recover the same
objects Sender transmitted.

5Serialization saves the current state of objects to a stream and re-
stores an equivalent object from the stream. Stream can hold data
in a persistent container (disk) or transient container (RAM).

5.1.3 Service Provider Side

The Trust Management Module is the main extension required to
the SP. Such module has four main components. The first is the SP
policy database; such database is accessed by the proof requester

component which is responsible for creating the conditional state-
ments required to establish trust. Once the proof is provided, the
proof verifier takes the proof object which may consist of clear at-
tribute values or cryptographic proofs. The proofs are verified to
get a boolean value, which determines the trust establishment deci-
sions. The last component is the receipt provider which issues the
receipts when the e-commerce transaction is completed.

5.2 Implementation Analysis
Our system is web oriented. Therefore the response time mainly

depends from the network speed. The computation time and the
storage requirements of our protocols are minimal as detailed be-
low. We have carried out our experiments under following envi-
ronments. The client computer had Intel Core duo 2GHz and 2G
RAM, and server had 2.8GHz Pentium D CPU with 1G RAM.

Average time to execute ZKP using applets. From our experi-
ments, the average time to log onto the registrar over 100 iterations
takes less than 1 sec. Likewise, the time to download an applet
takes around one second under a network whose average data re-
ceive rate is 928 Bytes per second (relatively slow connection). To
extend a receipt, the applet running on client receives a tag and a
value pair from the registrar which are then used to calculate the
commitment. Excluding the user interaction time, to calculate a
single commitment it takes an average of 0.011 sec.

Summing up the total time including commitment computation,
transmission to the server and receipt of the reply, the average time
to extend a receipt, takes 1.03 seconds. At the registrar side, one of
the major functions is to store user’s record into the database. Every
time a user’s commitment arrives to the server, the registrar makes
a connection to the Oracle 10g database by issuing one INSERT
statement. Finally the average insertion time was measured 0.5 sec.

Average storage needed at the user and the registrar. Our
implementation requires less than 6M bytes of disk space for the
portal codes under the tomcat directory at server side. At the client
side, 5KB of user’s local disk space is required for each x-receipt
operation. Users’ secret needed for extending receipts are recorded
at the VeryIDX.wallet and its size increases around 5KB for each
extension of a receipt. Storage efficiency can be improved by sav-
ing only the most essential data. If a user does online shopping 4
times a month, a local wallet requires only 240KB hard disk space
per year.

The registrar stores users’ record into Oracle database. For the
other registrar components, the minimum space required is about
50MB for tomcat excluding disk space for the Operating System.
The RREC of a user is on an average 67M bytes for 106 receipts
with one cryptographic commitment. Each commitment value takes
31 digit characters on an average.

5.3 Usability
Usability is crucial to an e-commerce environment. As men-

tioned earlier, since most interactions and tasks can be carried out
on the web, the users do not have to manage many applications
in their local machine. The key component at the user side is the
wallet where user’s secret information is serialized into a local file.
Therefore, if a user changes machines, it is not able to generate
the required proof. One approach to address such issue is to use
portable memory devices which can be secured by means of strong
authentication mechanisms. Here we could use a simple utility that
extracts the data from the wallet and generates an XML [8] docu-

ment encoding all the data. We plan to explore this option as a part
of our future work.

A key usability issue is the GUI of the applet itself. From the
snapshots of the “adding identity” Applet (Figure 4) and “creating
proofs” Applet (Figure 3), we observe that there are buttons like
create random, calculate commitment which may not be intuitive
to the user who is not aware of the protocol steps. These buttons
are created at this stage of development to verify the correctness of
the protocols, but can be automated in the actual deployment of the
system. Potentially, we can merge all needed user interaction into
just one button to provide a user-friendly interface.

6. RELATED WORK
Transaction history-based trust establishment has been explored

from different perspectives. We elaborate on three different per-
spectives; the reputation systems which rely on the history of e-
commerce activities of the users; the transaction protocols that en-
sure fair and safe transactions; the cryptographic protocols which
ensure unforgeable receipts. Related work in each such area is de-
tailed in the following.

Reputation systems have been investigated extensively. One ap-
proach to build a reputation system is to have a distributed trust
management systems [13]. The basic idea of this work is to con-
struct hierarchical reputation systems. Users who want to know
reputation for a specific server (seller), query a local broker. Such
reputation is calculated from users’ evaluation after the completion
of a transaction with the server. This score is merged throughout
several brokers. Note that in this framework only servers’ rating
of the users is stored and not the attributes on which the score is
calculated. In our system it is possible for SP to draw reputation
score from users’ transaction history given users’ consent to view
the receipts. Another key difference is with respect to the subject
who uses reputation scores. In [13], users, as buyers, take advan-
tage of SP’s reputation score to choose trustworthy sellers whereas
in our approach, the sellers utilize users’ past transaction history to
determine users’ reputation.

Another approach to reputation systems has been developed in
the context of P2P networks [10]. Such an approach does not de-
pend on the customers’ evaluation of the seller. Instead it suggests
new credit computation schemes of a reputation system for de-
centralized unstructured P2P networks such as Gnutella [12]. The
proposed system has two computation schemes, namely the debit-
credit reputation computation (DCRC) and the credit-only reputa-
tion computation (CORC). In P2P system, every user shares files
with other users and get files from them. Each user as a peer is
both a client and a server in these networks. So when a user joins
the system, its machine becomes a peer (server) to others. The
reputation score of a user, as a server, is an important factor for
decision-making- who to download content from. This score is
raised as peers download more files from it. One novel contribu-
tion of this paper is to enable a peer to keep its reputation locally for
the fast reputation retrieval. Reputation computation agent (RCA)
prevents malicious reputation modification by use of a public key
based mechanism. Unlike real world transactions, a sender (who
shares files with others) is the one who gets receipts from receivers.
Senders report those receipts to the RCA and receive the updated
reputation score about themselves in return. In our approach we
provide a way for both the buyer and the seller to create and submit
receipts of their past transactions. In [10], the use of receipts is re-
stricted to acquire credit from the server. By contrast, our receipts
can be used as a proof of purchase for other types of transactions
as well.

In the AttentionTrust [11] approach, users install Firefox exten-

sion to share their website access log with the SP’s. This system
supposes that users are willing to share their privacy without gain-
ing any financial benefit. The Information sent to central server and
SP’s may be used for customized advertisement to the users. The
extension sends web page URL, title, HTTP response code and so
on to the server. This is similar to ours in that users are allowed
to choose SP to share privacy information. However the users of
AttentionTrust don’t have much freedom about which information
will be shared, though the users can specify the list of websites that
should not receive its data. In our case, the users of Registrar are
free to choose which information will be revealed to which SP, at
what time and for what purpose.

Transaction protocols provide mechanisms to execute price ne-
gotiation, ordering and payment procedures. For example, a trans-
action server named NetBill for information goods was suggested
in early 90s [7]. It takes part in payment procedure so as to allow a
buyer to hide its identity from the seller and give certified receipts to
the buyer. The main goal of this system is to assure a fair exchange
between two parties i.e customers can read or use electronic goods
only after they receive a decryption key from a merchant. The mer-
chant sends decryption key to the buyer only if he got payment
from the user and then reports an endorsed payment order to the
server. Customers receive receipts consisting of transaction result,
identity, price, product ID and so on. The server signs such receipt
and then transmits it to the merchant. However, it is the responsi-
bility of buyers to manage these receipts. We also investigate fair
exchange in Protocol 2. In addition, we allow users to utilize this
receipt for different purposes. Furthermore, our registrar helps the
buyer to manage receipts systematically.

Finally, cryptography-oriented approaches have been proposed
which deal with history-based trust establishment. For example,
Simmons and Purdy proposed ZKP of identity attributes in trans-
action receipts [19]. They focus on the unforgeable transaction
receipts using ZKP. They use a public authentication channel to
create trusted credentials. These credentials can then be used for
constructing proofs. Even though receipts in their scheme can be
extended for use in two-way protocol between a seller and a buyer,
using this receipt for other purposes does not seem trivial. This is
because each user’s credentials are highly specialized for the given
scheme.

Another related research deals with non-repudiation in trans-
actions is Coffey and Saidha [6]. They propose an approach to
achieve mandatory mutual non-repudiation including both manda-
tory proof of origin and mandatory proof of receipt. As a result,
their approach ensures that neither party can gain from the ex-
change not until the non-repudiation protocol is completed. This
research is more focused on the transaction itself rather than on the
receipt management. Since our system is not affected by the pay-
ment process, those techniques could be used together with ours.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented an infrastructure and protocols

to build and manage online transaction histories of users. Our ar-
chitecture and prototype implementation is shown to be effective
for history based trust establishment. As a part of future work, we
plan to extend this work in several directions. The first is related to
extend the protocols in order to use cached receipts so that the user
does not have to construct new receipt tokens each time it accesses
a service requiring similar receipt attributes. The second deals with
extending the receipt addition protocols in order to acquire multi-
ple receipts from various SP’s in batches. The third deals with the
extension of the trust establishment policies with respect to current
e-commerce reputation establishment use cases. The fourth is re-

lated to an extension to the architecture and implementation of the
system in order to support identity based signatures and contract
signing. Currently the system performs the AgZKP as elaborated
in Section 5. Finally we plan to investigate the human factor as-
pects of using and managing receipts in VeryIDX.

8. ACKNOWLEDGEMENT
The work reported in this paper has been sponsored by NSF un-

der the ITR Project 0428554 “The Design and Use of Digital Iden-
tities”.

9. REFERENCES
[1] A. Bhargav-Spantzel, A. Squicciarini, R. Xue, and

E. Bertino. Practical identity theft prevention using
aggregated proof of knowledge. Technical report, CS
Department. CERIAS TR 2006-26.

[2] A. Bhargav-Spantzel, A. C. Squicciarini, and E. Bertino.
Establishing and protecting digital identity in federation
systems. Journal of Computer Security, 14(3):269–300,
2006.

[3] E. F. Brickell, D. Chaum, I. B. Damgård, and J. van de Graaf.
Gradual and verifiable release of a secret. In C. Pomerance,
editor, Proc. CRYPTO 87, pages 156–166. Springer-Verlag,
1988. Lecture Notes in Computer Science No. 293.

[4] J. Camenisch and M. Stadler. Efficient group signature
schemes for large groups. In B. S. K. Jr., editor, Advances in

Cryptology – Crypto ’97, pages 410–424, Berlin, 1997.
Springer. Lecture Notes in Computer Science 1294.

[5] D. Chaum and T. P. Pedersen. Wallet databases with
observers. In E. F. Brickell, editor, Proc. CRYPTO 92, pages
89–105. Springer-Verlag, 1992. Lecture Notes in Computer
Science No. 740.

[6] T. Coffey and P. Saidha. Non-repudiation with mandatory
proof of receipt. SIGCOMM Comput. Commun. Rev.,
26(1):6–17, 1996.

[7] B. Cox, J. D. Tygar, and M. Sirbu. NetBill security and
Transaction Protocol. pages 77–88, July 1995.

[8] v. . Extensible Markup Language (XML). W3c
recommendation, 2006. http://www.w3.org/XML/.

[9] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of
identity. In Proc. 19th ACM Symp. on Theory of Computing,
pages 210–217, May 1987.

[10] M. Gupta, P. Judge, and M. Ammar. A reputation system for
peer-to-peer networks. In NOSSDAV ’03: Proceedings of the

13th international workshop on Network and operating

systems support for digital audio and video, pages 144–152,
New York, NY, USA, 2003. ACM Press.

[11] http://www.attentiontrust.org. Attentiontrust.org.

[12] http://www.gnutella.com. Gnutella.

[13] K.-J. Lin, H. Lu, T. Yu, and C. en Tai. A reputation and trust
management broker framework for web applications. In EEE

’05: Proceedings of the 2005 IEEE International Conference

on e-Technology, e-Commerce and e-Service, pages 262–269,
Washington, DC, USA, 2005. IEEE Computer Society.

[14] A. S. Patrick and S. Kenny. From privacy legislation to
interface design: Implementing information privacy in
human-computer interfaces. In Proceedings of Privacy

Enhancing Technologies Workshop (PET2003), LNCS 2760,
2003.

[15] B. Schneier and J. Riordan. A certified e-mail protocol. In
ACSAC, pages 347–352, 1998.

[16] C. P. Schnorr. Efficient signature generation by smart cards.
Journal of Cryptology, 4(3):161–174, 1991.

[17] A. Shamir. Identity-based cryptosystems and signature
schemes. In Proceedings of CRYPTO 84 on Advances in

cryptology, pages 47–53, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[18] J. Shao, Z. Cao, and L. Wang. Efficient id-based threshold
signature schemes without pairings. Cryptology ePrint

Archive, 2006. http://eprint.iacr.org/2006/308.pdf.

[19] G. J. Simmons and G. B. Purdy”. ”zero-knowledge proofs of
identity and veracity of transaction receipts”. EUROCRYPT

’88: Workshop on the Theory and Application of

Cryptographic Techniques, Davos, Switzerland, May 1988.

Proceedings, 330:35, 1998.

[20] C.-H. Wang and Y.-S. Kuo. An efficient contract signing
protocol using the aggregate signature scheme to protect
signers’ privacy and promote reliability. SIGOPS Oper. Syst.

Rev., 39(4):66–79, 2005.

[21] G. Wang. Generic non-repudiation protocols supporting
transparent off-line ttp. J. Comput. Secur., 14(5):441–467,
2006.

APPENDIX

A. IDENTITY BASED SIGNATURE SCHEME
The Identity Based Signature Scheme introduced in [18] is de-

scribed as follows. The Setup algorithm consists of the follows
steps. Given security parameters k1, k2 ∈ Z+

Step 1: Choose a k1-bit prime p and a k2-bit prime q, such that
q|p − 1.

Step 2: Choose generator g of order q in Zp.

Step 3: Choose a random x ∈ Z∗
q , and compute y = gx mod p.

Step 4: Choose two cryptographic hash functions H1(·) and H2(·),
such that H1 : {0, 1}∗ → Z∗

q , H2 : {0, 1}∗ → Z∗
q .

The Extract algorithm is an interactive protocol between the user
and the Private Key Generator (PKG).

1. The user chooses a random rID ∈ Z∗
q , and computes RID =

grID . It sends (ID, RID) to the PKG.

2. Upon receiving (ID, RID), the PKG does the following: 1)
Chooses a random rPKG ∈ Z∗

q , 2) computes RPKG =
grP KG mod p, and 3) computes
dID = rPKG +xH1(ID||RID||RPKG) mod q. The PKG
sends (RPKG, dID) to user.

3. User checks gdID =? RPKGyH1(ID||RID||RP KG) mod p.
If this check holds then the private key of the user is skID =
rID + dID mod q.

To Sign a message m, under the public key ID, the user 1)
chooses a random r ∈ Z∗

q , 2) computes R = gr mod p and
β = H2(ID||RID||RPKG||R||m), and 3) set the signature to be
RID, RPKG, R, σ where σ = r + (rID + dID)β mod q.

To Verify a signature RID, RPKG, R, σ for message m, the veri-
fier checks gσ =? R(RIDRPKGyH1(ID||RID||RP KG))β mod p

Note that in this scheme, non-repudiation is achieved by step 3
of the Extract protocol. This is because, the private key used to sign
is never revealed even to the PKG involved.

B. PROTOCOL ANALYSIS SUMMARY
A summary of the cryptographic techniques used in the various

protocols which provide the various security and privacy properties
is provided in Table 4.

Figure 3: Applet for creating ZKPK for Identity Attributes

Figure 4: Applet for creating commitments for x-receipts

C. ILLUSTRATIVE EXAMPLE OF THE VERYIDX

RECEIPT BASED SYSTEM
Consider a scenario when a user “Alice” has bought a book from

VeryIDX enabled Amazon and now wants to opt-in to add the re-
ceipt of this transaction to her RREC at the registrar. She uses Pro-
tocol 1 to do so. Once she has sent her intention to get the receipt to
SP (Step 1) then she logs on to the registrar using the user SSO ID
and password. Her registrar requires strong authentication (Step 2)
so it requires Alice to prove she knows the secrets corresponding to
her Credit Card number commitment. She runs the proof calculator
applet (See Figure 3) where she can automatically retrieve the re-
quired secrets by clicking the “Retrieve Secrets” button. Once the
secrets are retrieved she clicks on “Calculate Proof” to calculate
the proof object. Finally she sends the proof object to the registrar
which is in turn used to verify its the correctness of the proof. If
the proof is verified correctly, the reply of the registrar appears on
the user applet. As a next step the registrar generates the ρsubmit

used eventually by the SP to give Alice the correct receipt. Note

PROTO# SECURITY PRIVACY

Correctness Integrity Single Submit Fairness Non-repudiation User Consent Min. Disclosure

2 IBS, AgZKP,
Contract Signing

IBS Session han-
dles

Contract
Signing

IBS, Certified
Email Protocol

IBS, Contract
Signing

AgZKP, SSO ID

3 ZKPK IBS ZKPK N/A IBS Commitment,
ZKPK, IBS

N/A

5 AgZKP PKE Commitments N/A ZKPK transcript ZKPK ZKPK

6 PKE PKE PKE Contract
Signing

IBS, Certified
Email Protocol

IBS, Certified
Email

SSO ID

Table 4: Analysis of the security and privacy requirements of the receipt protocols based on cryptographic building blocks.

Figure 5: Registrar portal view of Receipts in RREC

here that SP creates a TRANSACTION ID that is unique to this SP.
Subsequently Alice can add this receipt using Step 5 of Protocol 1.
At any point Alice can view her RREC at registrar by logging on to
her registrar using step 2 of Protocol 1 (See Figure 5).

Once the e-receipt is submitted, Alice wants to extend this re-
ceipt using Protocol 3. More specifically she wants to create a
cryptographic commitment corresponding to PRICE attribute of her
receipt. She logs on to her account at the registrar and this time she
runs the commitment creation applet (See Figure 4). Here the main
requirement is that the user should have unique tag values corre-
sponding to each commitment. The TAG is the combination of the
TRANSACTION ID, SENDER and the type of attribute being com-
mitted (on this case the price). The random needed at Step 2 of
Protocol 3 is computed when she clicks the “calculate Random”
button. She can then send this commitment to the server.

