
CERIAS Tech Report 2007-30

EFFICIENT KEY DERIVATION FOR ACCESS HIERARCHIES

by Mikhail Atallah, Marina Blanton, and Keith Frikken

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Efficient Key Derivation for Access Hierarchies∗

Mikhail J. Atallah†

Department of Computer Science
Purdue University
mja@cs.purdue.edu

Marina Blanton‡

Department of Computer Science
Purdue University

mbykova@cs.purdue.edu

Keith B. Frikken
Computer Science and Systems Analysis

Miami University
frikkekb@muohio.edu

Abstract

Access hierarchies are useful in many applications and are modeled as a set of access classes
organized by a partial order. A user who obtains access to a class in such a hierarchy is entitled
to access objects stored at that class, as well as objects stored at its descendant classes. Efficient
schemes for this framework assign only one key to a class and use key derivation to permit access
to descendant classes. Ideally, the key derivation uses simple primitives such as cryptographic
hash computations. A straightforward key derivation time is then linear in the length of the
path between the user’s class and the class of the object that the user wants to access.

Recently, work presented in [Atallah et al. 2005] has given a solution that significantly lowers
this key derivation time for deep hierarchies, by adding a modest number of extra edges to the
hierarchy. While such techniques were given for trees, this work presents efficient key derivation
techniques for hierarchies that are not trees using a different mechanism. The construction we
give in the present paper is recursive and makes a novel use of the notion of the dimension d
of an access graph. We provide a solution through which no key derivation requires more than
O(d) hash function computations, even for “unbalanced” hierarchies whose depth is linear in
their number of access classes n.

The significance of this result is strengthened by the fact that many access graphs have a low
d value (e.g., trees correspond to the case d = 2). Our scheme inherits the desirable property
of the work of [Atallah et al. 2005] that addition and deletion of edges and nodes in the access
hierarchy can be “contained” in the node and do not result in modification of keys at other
nodes.

1 Introduction

The problem of key management for hierarchical access control is important for many applications
and has received significant attention in the research literature. In this framework, all users are

∗This report is an extended and corrected version of the work that appeared in ACM SACMAT 2006.
†Supported in part by Grants IIS-0325345 and CNS-0627488 from the National Science Foundation, and by

sponsors of the Center for Education and Research in Information Assurance and Security.
‡Supported by Intel Ph.D. fellowship.

1

divided into disjoint access classes and each access class inherits the privileges of its descendants.
Access is based on key derivation where users receive keys that allow them to obtain access to the
authorized objects without interaction with the server, through a key derivation process. That is,
for any given user, the key issued to that user allows her to access objects stored at her access class
as well as objects stored at all descendant classes in the hierarchy.

Applications where such access hierarchies are useful include the Role-Based Access Control
(RBAC) models, which are naturally modeled as hierarchies; repositories such as digital libraries,
music collections, etc., where users are granted different access levels; subscription-based services,
where their subscription packages are organized in a hierarchy; and others. Whereas organizations’
role hierarchies tend to be shallow rather than deep, in a number of contexts the access hierarchies
have a large size and depth. These include hierarchically organized distributed control structures
such as physical plants or power grids (involving thousands of networked devices such as sensors,
actuators, etc.); hierarchically organized hardware where the hierarchy is based on functional,
control, and trust considerations; hierarchical design structures of large complex systems such as
aircrafts and VLSI circuits; subscription services where the set of included programs or media
depends on the subscription package type; and task graphs where descendant tasks are known
only to their ancestor tasks. Deep access hierarchies can also arise in simple databases where the
hierarchical complexity can come from super-imposed classifications on the database that are based
on functional or structural features of the database. See also [12, 15] for other examples of deep
hierarchies.

Normally, an access hierarchy can be modeled as a directed access graph G, where each node
corresponds to an access class and edges preserve relations between the nodes. Recent key man-
agement schemes achieve the following properties:

• Each node in the access graph has a single secret key associated with it;

• The amount of public information for the key assignment scheme is asymptotically the same
as that needed to represent the graph itself;

• Key derivation involves only the usage of efficient cryptographic primitives such as one-way
hash functions;

• Given a key for node v, the key derivation for its descendant node w takes ` steps, where ` is
the length of the path between v and w;

• It is impossible for dishonest colluding users to obtain access to more objects than what they
can already legitimately access, ensuring collusion resilience of the scheme.

While the above is computation- and space-efficient, for large and deep hierarchies the key derivation
process can require up to O(n) steps, where n is the number of nodes in the graph. This operation
must also be performed in real time. Thus, if such key derivation is performed by a device with
computation and space limitations (such as cheap and possibly disposable smartcards), this key
derivation computation will be larger than what the device can handle.

[2] recently provided techniques for reducing the key derivation time for tree hierarchies to
O(log log n) and O(1) steps using two different schemes. The present paper significantly extends
that work by showing how key derivation can be greatly reduced for more general access graphs,
and gives techniques for achieving O(d) key derivation steps, where d is the dimension of the graph
(and many practical access graphs are of low dimension, typically less than 4). This scheme for

2

higher dimensions is recursive and utilizes a key derivation scheme for a one-dimensional graph.
Specifically, our schemes adds a factor of O((log n)d−1) space complexity to that of the underlying
one-dimensional solution, where n is the size of the hierarchy. Furthermore, we also make several
contributions in the one-dimensional case providing new schemes and proving their bounds.

Our scheme inherits the desirable property of [2] that the addition and deletion of nodes in the
access hierarchy can be “contained” in the node and do not result in the modification of keys at
other nodes (similarly for edge additions and deletions); hence no wholesale re-keying is done as
changes are made to the access hierarchy.

The rest of this paper is organized as follows: Section 2 provides a review of related litera-
ture. Section 3 gives a brief overview of the new technique. In Section 4 we present background
information and definitions. Section 5 gives several solutions to the one-dimensional key deriva-
tion problem. Section 6 gives the details of how to build and use our approach, while Section 7
supplements it with comments on how dynamic changes to hierarchies can be addressed. Finally,
Section 8 concludes this work.

2 Related Work

Prior research literature on hierarchical access control is very extensive, and its overview is beyond
the scope of this paper (see, e.g., [2] and [8] for an overview). In this section, we thus focus on the
publications most closely related to this work.

A number of recent schemes [2, 6, 7, 11, 22] give efficient solutions to the key assignment and
management in access hierarchies. All of these schemes have similar overall structures with the
following properties: (i) each node in the access graph has a single secret key; (ii) public information
associated with the scheme is asymptotically the same as that needed to represent the access graph
itself; (iii) key derivation involves only efficient operations such as one-way hash functions and
bitwise XOR1; and (iv) the number of steps in key derivation is the same as the length of the
path between the user’s node and the target node (the node whose key is being derived). These
constructions differ, resulting in some of them being more efficient and simpler than others, but
the general structure remains the same2.

Dynamic changes to the hierarchy are handled differently in these schemes: in [6, 7, 11, 22]
insertions and re-keying are local, but deletions affect secret keys of all descendant nodes; in [2],
however, all changes to the graph are local. In addition, only the scheme of [2] has a formal proof
of security (in the presence of an active adversary who can adaptively corrupt nodes), while other
schemes provide only informal discussion of attacks. Results of [11, 7] also assume tamper-resistance
of clients.

Since the inspiration of the results reported in this work comes from the shortcut techniques
of [2] (which allow to reduce the key derivation time for trees), here we give a brief description
of the ideas underlying the shortcut techniques of [2]. In what follows, a shortcut edge is a new
edge, which is being added to the graph G for efficiency reasons; while a shortcut edge is not
in the original graph G, it is in the transitive closure of G. As was mentioned earlier, for trees
(whose dimension is d = 2), [2] reports two results: (i) addition of O(n) shortcut edges results in
key derivation time being no more than O(log log n) for n-node hierarchies, and (ii) addition of

1The scheme of [6] additionally utilizes symmetric key encryption.
2Not all properties of these approaches were stated in the above form, but for the sake of comparison, here we

unify the notation to describe their capabilities.

3

O(n log log n) shortcut edges results in key derivation time being no more than 3 steps. Here an
edge from node v to node w means that w’s key can be computed from v’s key (and thus anyone
with access to v can obtain access to w). We provide more details of the key derivation technique
in Section 4.3.

One idea in [2] is to use the notion of a centroid: a centroid of an n-node tree T is a node
whose removal from T leaves no connected component of size greater than n/2. In addition, a
modified variant of centroid decomposition is used: to compute a centroid decomposition, compute
the centroid of the tree, remove it, and then recursively repeat this process with the remaining
trees. The modified variant used in that paper is the so-called “prematurely terminated centroid
decomposition,” which is similar to the above centroid decomposition, except that the recursion
stops not when the tree becomes a single node, but rather when the tree size becomes ≤ √

n. The
centroids used in this type of tree decomposition and the root of the tree are called the “special
nodes.” These special nodes are caused to become “well connected” with the addition of shortcuts,
and the nodes of each small residual subtree of size

√
n are also caused to become well connected

with the addition of shortcuts. Then to reach any node from another node, we first need to reach
the special node of the current residual tree, then jump to the special node of the target residual
tree, and finally reach the target node within that small tree.

As non-tree hierarchies have no centroids, the above scheme does not readily extend to non-tree
access hierarchies. The extension turns out to require a new, different technique. We briefly sketch
it (at a high level) next.

3 Overview of the Techniques

The basis of our solution for the d-dimensional case is a reduction to the d − 1-dimensional case.
Thus, in this work we provide solutions to the one-dimensional case (Section 5) and then give a
dimension reduction technique (Section 6).

For the one-dimensional case, we describe solutions where any two nodes are at most 2 edges
away, 3 edges away, etc. For higher dimensions, the essence of our technique consists of three main
components:

1. The addition of new “dummy” vertices that make it possible to add a small number of short-
cuts to achieve the desired fast-key-derivation performance. Note that the dummy vertices
and their associated keys are internal to the system (used purely for performance reasons) and
that no access classes correspond to them. Unlike [2], where shortcut edges were in addition
to the original edges of the hierarchy, in this work the only explicit edges that remain are the
shortcut edges (some of them may of course coincidentally correspond to edges in the original
graph, but this is not required). The addition of dummy vertices and shortcut edges is a
novel technique in this area, and we believe it has much promise beyond enabling the specific
performance bounds that we achieve in this work.

2. As our technique could be cumbersome to apply to (and later use on) the original graph, we
operate on a different representation of the graph. Namely, we need to “transform” the graph
into a d-tuple-representation of the vertices where d is the dimension of the partial order
represented by the graph. Such transformation step is not needed if the graph is already
specified in the d-tuple form, e.g., policies of the form “node v is ancestor of node w iff v has
both a higher value than w and is also less vulnerable than w.” We believe this representation

4

of the access graph will have uses other than the present framework of key assignment and
derivation.

3. With the above representation, it becomes possible to carry out the desired computation of
dummy vertices and shortcut edges with very efficient performance. We provide an algorithm
for achieving this and prove precise bounds for it, both in terms of its consumption of resources
(time and space) and in terms of the key-derivation performance made possible by the data
structure that it produces.

4 Background

4.1 User hierarchy

In our model, each user belongs to one of n disjoint access classes. The classes are organized into a
hierarchy described by a directed acyclic graph G, i.e., by a partial order relationship. We denote
the vertices of this graph, each of which corresponds to a specific access class, as v1, . . ., vn. The
users at access class vi can access information at access class vj if and only if there is a path in G
from node vi to node vj .

The above-mentioned directed access graph G = (V, E, O) is such that V is a set of vertices
V = {v1, . . ., vn}, E is a set of edges, and O is a set of objects. Each class vi in the access hierarchy
has a set of objects O(vi) ⊂ O associated with it, and thus a user who has privileges to access vi

obtains access to
⋃

O(vj) for each class vj that is descendant of vi (including vi itself).

4.2 Dimension of an access hierarchy

An n-vertex access hierarchy G is a partial order, and it is well known that any partial order can
be represented as the intersection of t total orders, with the smallest t for which this is possible
being the dimension of the partial order (see, e.g., [9, 19]). That is, it is possible to associate with
every vertex v of G a t-tuple (xv,1, . . . , xv,t) such that:

1. Every xv,j is an integer between 1 and n.

2. If v 6= w, then xv,j 6= xw,j, for every 1 ≤ j ≤ t.

3. Node v is ancestor of node w in G if and only if xv,j > xw,j for every 1 ≤ j ≤ t.

We denote the dimension of G by d(G), or by d when G is understood. While computing the
dimension of an arbitrary partial order is NP-complete [21], and even approximating it to within
a constant factor is not known to be in P, the dimension of many access hierarchies is small. For
instance, the dimension of a tree is 2. Also, it was shown in [16] that a G whose transitive reduction
is planar has dimension at most 3 (and the 3-tuples representing it are computable in linear time).
If the transitive reduction of G is 4-colorable, then its dimension is at most 4 [16]. Many access
hierarchies are 4-colorable, especially those for organizational hierarchies.

There are, however, some hierarchies with higher dimension. For example, in the Bell-LaPadula
model with k categories (denoted by s1, . . . , sk) and ` classifications (denoted by c1, . . . , c`), the di-
mension of the lattice is k + 1. Fortunately, computing the tuple representation for this model
is straightforward: The access level ci with categories in the set S is converted into a tuple

5

(i, x1, . . . , xk) where xi = 1 if and only if si ∈ S, and is 0 otherwise. It is not difficult to ver-
ify that this conversion correctly implements the access control policy.

We may actually not need to compute the dimension, but rather any d′-tuple representation
of the graph with a small enough d′. Moreover, some access graphs can naturally be specified in
such a tuple representation, when, for instance, the “ancestor” relationship is the conjunction of a
number of total-order conditions such as “v has higher security clearance than w,” “v is a higher-
priority asset than w,” “v is more vulnerable than w,” “v is a higher-paying class of subscribers
than w,” etc. In summary, the techniques of this paper generalize the shortcut technique to any
access hierarchy where a tuple-based representation (of reasonable dimension) can be found. This
significantly extends the results of the previous work that supported only trees.

4.3 Key derivation

The key derivation technique given in [2] consists of two algorithms: an algorithm to setup the
system, Set, and an algorithm to derive a key, Derive. In what follows, F : {0, 1}κ×{0, 1}∗ → {0, 1}κ

denotes a family of pseudo-random functions (PRFs) that, on input a κ-bit key and a string,
outputs a κ-bit string that is indistinguishable from random. Note that a PRF can be efficiently
implemented using HMAC [3] or CBC MAC constructions.

The Set and Derive algorithms are then as follows:

Set(1κ, G): For each node v ∈ V , select a random secret key kv ∈ {0, 1}κ. For each node v ∈ V ,
select a unique label `v ∈ {0, 1}κ and make it publicly available. For each edge (v,w) ∈ E,
compute yv,w = kw ⊕Fkv

(`w), where ⊕ denotes bitwise XOR, and make it publicly available.

Derive(v,w, kv): Let (v,w) ∈ E. Then given kv and public information, derivation of the key kw

can be performed as kw = Fkv
(`w) ⊕ yv,w, where `w and yv,w are publicly available. More

generally, if there is a directed path between nodes v and u in G, then u’s key can be derived
from v’s key by considering each edge on the path.

In other words, there is a public labels associated with every node in the graph, and there is a
public information associated with every edge in the graph. This public information is what allows
users to derive appropriate keys.

To avoid changing user keys when the hierarchy needs to be changed or a user class needs to
be re-keyed, a slightly different version of the scheme should be used. We refer the reader to [2] for
more detail.

The above key derivation mechanism is provably secure against key recovery. Usage of a different
scheme with the same properties or a scheme with stronger security properties (e.g., security in the
key indistinguishability setting) will imply different, normally higher, computational requirements.

5 The One-Dimensional Case

In this section we present our techniques for the one-dimensional case. In what follows, let the
nodes (i.e., access classes) form a one-dimensional graph (i.e., a total order) and be numbered v1

through vn. Furthermore, the access rights of node vi are a superset of the access rights of node vj

if and only if i ≤ j. We sometimes refer to nodes with lower indices as nodes “on the left” and to
nodes with higher indices as nodes “on the right.”

6

Following the results of [2], we add extra, so-called shortcut, edges to the graph associated with
the user hierarchy to lower key derivation time. Our goal is to compute a small set of shortcut edges
such that the distance between any two nodes is minimized. Such shortcut edges should preserve the
original relationship between the nodes in the graph and thus must satisfy the following constraints:

Reachability Given nodes vi and vj where i < j, there is a path from vi to vj .

Security There is a path from vi to vj only if i < j.

Given a set of edges E that satisfy the above constraints, we denote the minimum path length
between two nodes vi and vj by dist(vi, vj); this distance is infinity if i > j. Then for our graph, the
distance between any pair of nodes is bounded by maxvi,vj∈V,i<j dist(vi, vj). We say that a shortcut
scheme is an h-hop solution if no two nodes’ distance is more than h, i.e., maxvi,vj∈V,i<j dist(vi, vj) ≤
h. Our goal is to determine a small set of edges that results in an h-hop solution.

The transitive closure of the directed acyclic graph results in a one-hop solution with O(n2)
edges, and it can easily be shown that this solution is an optimal (in terms of number of edges)
one-hop solution. Thus in the remainder of this section we concentrate on solutions with more than
a single hop which use much less space.

5.1 Two-hop solutions

Here we present a shortcut scheme where the distance between any two nodes is at most two edges.
This solution requires addition of O(n log n) edges to the original graph. This bound can be proven
to be optimal for any two-hop solution.

AddShortcuts2(G):

1. Let n denote the number of nodes in G. If n ≤ 3, then add edges between consecutive nodes
and quit. Otherwise, proceed with the next step.

2. Find the median node, i.e., the node that is dominated by about half of the nodes and that
dominates the other half; we denote this median by m. Place the nodes that dominate m in
a set L; and place the nodes dominated by m in a set R.

3. For each node vi ∈ L, create a shortcut edge (vi,m).

4. For each node vi ∈ R, create a shortcut edge (m, vi).

5. Create a graph GL from the nodes in L and execute AddShortcuts2(GL).

6. Similarly for R, create a graph GR and execute AddShortcuts2(GR).

Figure 1 depicts the first level of recursion for the above procedure.
It can be easily shown that, in the above-defined structure, the nodes in the graph are at most

two hops from each other. That is, suppose nodes x and y are separated by some median m during
the above protocol. Then clearly there is a path of length two from x to y (specifically, x to m to
y). On the other hand, suppose that x and y are never separated by a median, then from the base
case (Step 1) the nodes will have a path of length at most two.

The space required by the solution follows the recurrence f(n) = O(1) for n ≤ 3, and f(n) =
O(n) + 2f(n/2) otherwise. It is straightforward to show that f(n) = O(n log n).

7

graph node
median node

regular edge
shortcut edge

v1 v3 v4 v5 v6 v7v2

v1 v3 v4 v5 v6 v7v2

Figure 1: Addition of shortcut edges for the two-hop one-dimensional solution.

Creation of a data structure with two-hop paths implies that we also need a constant-time
algorithm for finding it. That is, we need a FindPath2(x, y,G) procedure that, given two nodes
x and y, finds a path consisting of two edges from point x to point y. To achieve this, we store
the recursion tree (call it RT) for the above AddShortcuts2 algorithm, which takes no more space
than storing the shortcut edges. The two-hop path we seek would be easy to find if we could, in
constant time, compute the lowest node (call it u) of RT for which x and y are a part of that node’s
sub-problem: the shortcut edges (x,m) and (m, y) are available at the node u in RT , where m is the
median of node u’s subproblem.Fortunately, computing u is easy to do in constant time, by making
use of [10] that showed that in any tree it is possible to answer nearest common ancestor (NCA)
queries in constant time. In more detail, given any two nodes of RT , their common ancestor in RT
that is nearest to them can be computed in constant time (in fact, doing so is rather straightforward
in our case where RT is a complete binary tree). In our case, the two nodes whose NCA we seek
are the leaves of RT that contain x and y, and their NCA is the node u that contains the two
shortcut edges that we want.

5.2 Three-hop solutions

In this section, we describe a shortcut scheme where nodes are separated by at most three hops.
[2] gave a scheme for trees that introduces O(n log log n) edges. While trees have dimension d = 2,
we cannot use these techniques for the case of d = 2, because not all graphs of dimension two
are trees. Thus, we adopt that solution to the one-dimensional case and, for completeness, briefly
describe the scheme next. We would like to note that this bound is asymptotically optimal for any
three-hop solution.

For ease of presentation, the procedure below is given for the case n = 22q

. This allows us to
avoid using floor/ceiling functions, but does not narrow the applicability of the solution.

AddShortcuts3(G):

1. Let n denote the number of nodes in G. If n ≤ 4, then add edges between the consecutive
nodes. Otherwise, proceed with the next step.

2. Create a set of special nodes S that consists of every
√

nth node in the graph. That is,
initialize S with {vn} and then add nodes vn−j

√
n for all j such that j

√
n < n (note that

j <
√

n). Let us refer to this set as S = {vi1 , . . . , vim}, where i1 < i2 < · · · < im.

8

shortcut edge
graph node
special node

regular edge

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

Figure 2: Addition of shortcut edges for the three-hop one-dimensional solution.

3. Insert new edges between the nodes in S to form the transitive closure of the set (i.e., now
the nodes in S are one hop away from each other).

4. For each node vi 6∈ S, if a node vj ∈ S exists such that j < i and i < j +
√

n, insert an edge
(vj , vi) if it is not already present.

5. For each node vi 6∈ S, find vj ∈ S such that i < j and j < i +
√

n, insert an edge (vi, vj) if it
is not already present.

6. Form a subgraph Gj from the nodes between vij and vij+1
and the edges that preserve their

ordering. Also, construct a subgraph G0 from the nodes before vi1 and the edges connecting
them. Execute AddShortcuts3 on graphs G0, . . . , Gm−1 to recursively add shortcut edges to
them.

Figure 2 depicts different stages of the above algorithm for the first level of recursion. The top
figure gives the original hierarchy, the middle figure shows the hierarchy after selection of special
nodes and constructing their transitive closure, and the bottom figures shows the hierarchy after
adding shortcut edges to and from the special nodes.

To demonstrate that in the above data structure the nodes are at most three hops from each
other, we consider all cases. Clearly, in the base case (Step 1), nodes are at most three hops from
each other. Also, if nodes x and y (where x is left of y) are separated by a special node, then x
can reach its nearest special node, x′, in at most one hop (from Step 5), x′ can reach the special
node, y′, that is rightmost special node before y in at most on hop (from Step 3), and y′ can reach
y in at most one hop (from Step 4). Finally, the case where x and y are not separated by a special
node is solved by the recursive step.

The space required by the solution easily follows the recurrence f(n) = O(1) for n ≤ 4, and
f(n) = O(n) +

√
nf(

√
n) otherwise. It is straightforward to show using induction that f(n) =

O(n log log n).

9

Similar to the case of two-hop solution, the existence of a three-hop path is not enough: we
also need a constant-time algorithm for finding it. The FindPath3(x, y,G) procedure for doing this
is very similar to the FindPath2(x, y,G) that we gave for the two-hop case. In more detail, we find
the NCA (call it u) of the two leaves of RT that contain x and y, and the nodes x′ and y′, such
that edges (x, x′), (x′, y′), (y′, y) are in G and are available at u (from the shortcut edges added in
each of the step 3 to 5 of the above AddShortcuts3(G) procedure).

5.3 Four or more hop solutions

The three-hop solution presented in the previous section gives us a template for designing schemes
with three or more hops. Suppose that an h-hop solution (h > 2) is desired, then we can use the
following algorithm for adding shortcuts to G:

AddShortcutsh(G):

1. Let n denote the number of nodes in G. If n ≤ h+1, then add edges between the consecutive
nodes. Otherwise, proceed with the next step.

2. Partition the nodes into n/m cells of size m each. Declare the last node in every cell to be a
special node, and add all of the special nodes to a set S.

3. Use the scheme that provides an (h − 2)-hop solution to connect the nodes in S. That is,
execute AddShortcutsh−2(GS), where GS consists of the nodes of S and the edges that define
the relationship between such nodes.

4. For each non-special node v 6∈ S, add an edge from it to its nearest special node after v.

5. For each non-special node v 6∈ S, add an edge from the nearest special node before v (if one
exists) to it.

6. Recursively add shortcut edges to each cell (ignoring the special nodes) by executing this
algorithm on each of them.

The number of edges in the above algorithm follows the recurrence f(n, h) = O(n) + f(n/m, h −
2) + (n/m)f(m,h). For h = 4 and m = log n, this leads to f(n, 4) ≤ O(n) + (n/ log n)f(log n, 4)
(recall that f(n, 2) = O(n log n)). Now, it is straightforward to show that f(n, 4) = O(nlog∗n).

The constant-time procedure for computing the four-hop path between any two nodes is very
similar to the one given for the two-hop case: The whole recursion tree RT is stored, and a constant-
time NCA computation is used to get to the node of RT at which the nodes x′ and y′ of the four-hop
path x, x′,m′, y′, y can simply be read. The node m is retrieved from the recursion tree of GS using
NCA computation. For any general h, FindPathh(x, y,G) will have O(h) complexity.

5.4 O(log∗ n)-hop solutions

We briefly point out here that any O(1)-hop scheme of edge complexity O(nlog∗n) (such as the
scheme given in the previous section) can be used to build an O(log∗n)-hop scheme of O(n) edge
complexity, as follows. Let S consist of every (jlog∗n)th node of the input total order, 1 ≤ j ≤
m = n/log∗n. This S induces a partition of the n-node chain into (at most) m + 1 chunks
C1, C2, . . . , Cm+1 of size ≤ log∗n each. We build a linear chain of size m on S and use the constant-
hop solution on that chain. This allows us to achieve the distance of 4 edges between nodes of S

10

Private Key Public
Scheme

storage derivation storage

2HS 1 2 op. O(n log n)

3HS 1 3 op. O(n log log n)

4HS 1 4 op. O(n log∗ n)

log∗HS 1 O(log∗n) op. O(n)

Table 1: Performance of shortcut schemes for one-dimensional graphs.

at an edge complexity of O(mlog∗m), which is O(n). The key derivation between two nodes in the
same chunk is done in ≤ log∗ n hops by marching along the edges within that chunk. A derivation
from a node x in chunk Ci to a node y in chunk Cj , i < j, is done by first (i) marching within
Ci from v to the vertex x′ ∈ S that is at the boundary between Ci and Ci + 1; then (ii) using a
4-hop derivation within S to go from x′ to the vertex y′ ∈ S that is at the boundary between Cj−1

and Cj; and finally (iii) marching within Cj from y′ to y. The total number of hops in that case is
therefore ≤ 2log∗n + 4.

5.5 Summary of one-dimensional solutions

Table 1 shows a summary of one-dimensional schemes described here. In the table, we denote
by sHS a solution where the distance between any two nodes is at most s, i.e., a so-called s-Hop
Scheme.

Shortcut schemes have also been considered in prior literature ([5, 1, 4, 17, 18]), and the following
results (explored in a different domain) are available for trees which also coincide with solutions
for one-dimensional graphs. Lowering the diameter to 4 or 5 edges requires addition of Θ(n log∗ n)
edges, lowering the diameter to 6 or 7 edges requires addition of Θ(n log∗∗ n) edges, etc.

To make the numbers more concrete, we performed simulation experiments to determine the
minimum number of shortcut edges that are required to reduce the distance between nodes in an
n-node one-dimensional graph to no more than h hops. In such experiments, we used the transitive
closure and the scheme of Section 5.1 to achieve 1-hop and 2-hop graphs, respectively. For the
simulations of schemes with more than two hops, we used the generic scheme of Section 5.3. In
the case of the generic scheme, to choose the number of groups to use, we performed an exhaustive
search to find the number that minimized the number of edges. Table 2 shows the number of edges
from our simulation results for schemes with 1 to 10 hops.

6 Higher Dimensions

We give a solution that achieves key derivation in no more than (and typically less than) 2(d−1)+
h1(n) steps (each of which corresponds to following one shortcut edge), where h1(n) denotes the
number of hops between any two nodes in the underlying one-dimensional scheme (i.e., any of the
above) for a graph with n nodes. The public space used in this scheme is O(f1(n)(log n)d−1), where
f1(n) denotes the space complexity (i.e., the number of edges) of the underlying one-dimensional
scheme.

Rather than immediately giving the solution for arbitrary d, for expository reasons we choose
to first present the solution for d = 2, because the two dimensional case is easier to grasp intuitively

11

No. of Number of hops
nodes 1 2 3 4 5 6 7 8 9 10

10 45 19 17 15 14 13 13 13 9 9

25 300 74 61 49 46 43 43 42 40 40

50 1225 193 146 119 110 98 95 92 92 91

100 4950 480 342 264 245 218 209 197 194 191

250 31125 1503 997 724 685 587 562 527 512 498

500 124750 3498 2173 1538 1427 1223 1184 1086 1061 1026

750 280875 5737 3408 2375 2186 1870 1804 1651 1620 1553

1000 499500 7987 4666 3241 2941 2537 2426 2222 2183 2085

2500 3123750 23417 12912 8652 7542 6618 6198 5704 5556 5298

5000 12497500 51822 27379 18144 15334 13651 12541 11617 11197 10703

10000 49995000 113631 57978 37950 31192 28143 25333 23650 22540 21616

Table 2: Number of edges for h-hop solutions.

than the higher-dimensional one. Once the basic idea has been presented (with good intuition) for
d = 2, we give the general construction for arbitrary d.

6.1 The case d = 2

The fact that the graph G has dimension 2 implies that every vertex v can be replaced by a pair
of numbers (x(v), y(v)), such that w is an ancestor of v in G if and only if w dominates v, i.e.,
x(w) ≥ x(v) and y(w) ≥ y(v). From now on, for convenience, we refer to “points” rather than
“vertices.” A shortcut is then an ordered pair of points w, v describing an extra “key-derivation
edge” that will be added from point w to point v.

The input is a set V of n points in 2-dimensional space, and the desired output includes a
set S of shortcuts between pairs of points (some of which may not belong to V) such that (i)
|S| = O(f1(n) log n), and (ii) given any pair of points v,w ∈ V such that w dominates v, there is
a path of at most h1(n) + 2 shortcut edges from w to v. The output also includes the set P that
contains V as well as the additional dummy points (i.e., points not in V but that are touched by
edges in S).

The solution steps are as follows.

1. Initialize P = V , and initialize S to be empty.

2. If |V | = 1, then return P and S; otherwise continue with the next steps.

3. If |V | > 1, then compute a median line M that is perpendicular to the y axis and partitions
V into two equal sets V1 and V2, where V1 (V2) is left (resp., right) of M . Let V ′

1 (V ′
2) be the

projection of V1 (resp., V2) on line M .

4. Add to S the following shortcut edges:

– a shortcut edge from every point of V ′
1 to its corresponding point of V1;

– a shortcut edge from every point of V2 to its corresponding point of V ′
2 .

12

5. Recursively build the shortcut edges and dummy points for the set V1. Let that recursive call
return P1 as the set of points (including dummies) and S1 as the set of shortcut edges within
P1. Update S and P as follows: S = S ∪ S1 and P = P ∪ P1.

6. Recursively build the shortcut edges and dummy points for the set V2. Let that recursive call
return P2 as the set of points (including dummies) and S2 as the set of shortcut edges within
P2. Update S and P as follows: S = S ∪ S2, and P = P ∪ P2.

7. Solve the one-dimensional problem consisting of V ′
1 ∪V ′

2 using one of the schemes of Section 5.
Let this return a set of edges S3 (note that it returns only a set of edges, i.e., it does not add
any dummy points). Update (i.e., augment) S as follows: S = S ∪ S3. (P stays the same.)

The space complexity (i.e., the number of shortcut edges and dummy points) of the above-described
scheme obeys a recurrence of the form f(n) ≤ 2f(n/2) + cf1(n) for some constant c if n > 1; and
f(n) = O(1) if n = 1. The resulting solution is O(f1(n) log n). Note that this recurrence follows
from step 4 (which recursively solves the problem for (n/2) points), step 5 (which recursively solves
the problem for (n/2) points), step 7 which adds f1(n) edges, and step 1 which uses O(n) points.

That any w-to-v number of shortcut edges is at most h1(n)+2 is proved by induction on n (the
base case being trivial): If w ∈ V2 and v ∈ V1, then the path of length at most h1(n)+2 consists of
following one edge from w ∈ V2 to its projection w′ ∈ V ′

2 , at most h1(n) edges from w′ to the point
v′ ∈ V ′

1 that is the projection of v on M , and one edge from v′ to v. When both points v and w
are in V1 or both are in V2, the claim follows from the induction hypothesis.

6.1.1 An example

To help clarify our shortcut technique, we give an example of the recursive step in the previous
section. Figure 3 shows a tree access hierarchy that will be used for this example.

H

EFG

BC

A

D

Figure 3: Two dimensional access hierarchy (original).

Figure 4 contains a set of points in two dimensions that represents a tree’s access structure.
Note that if a point dominates another point in this figure, then the dominating point must have
a path to the dominated point in the final structure.

Figure 5 shows the shadow points (added in step 3 and denoted by open circles) for the previous
figure. Note that the shadow points are on a one dimensional plane (i.e., a line). This figure also
shows the transitions from normal points to shadow points and vice versa (as described in step 4).
Also note that the shadow points will be linked in step 7.

13

F

H

G

E

D

C

B

A

Figure 4: Two dimensional access hierarchy (converted to tuple form).

A

B

C

D

E

G

H

F

Figure 5: Two dimensional hierarchy with shadow points.

6.2 The case d ≥ 3

The fact that the graph G has dimension d implies that every vertex v can be replaced by a d-tuple
of numbers (x1(v), . . . , xd(v)), such that w is an ancestor of v in G if and only if w dominates v,
i.e., xi(w) ≥ xi(v) for all i ∈ {1, . . . , d}.

The input is a set V of n d-dimensional points, and the desired output includes a set S of
shortcuts between pairs of points (some of which may not belong to V) such that (i) |S| =
O(f1(n)(log n)d−1), and (ii) given any pair of points v,w ∈ V such that w dominates v, there
is a path of O(d + h1(n)) shortcut edges from w to v. The output also includes the set P that
contains V as well as the additional dummy points (i.e., points not in V but that are touched by
edges in S).

As we did for the 2-dimensional case, the construction we use is recursive. Specifically, we
inductively assume that the d−1 dimensional problem can be solved with O(f1(n)(log n)d−2) edges
and with a key derivation path of 2(d− 1) + h1(n) (note that this holds for d = 1 and for d = 2 by
the previous subsections).

14

The solution steps are as follows:

1. Initialize P = V , and initialize S to be empty.

2. If |V | = 1, then return P and S, otherwise continue with the next steps.

3. If d = 1, then solve using one of the one-dimensional schemes of the previous section, otherwise
continue with the next steps.

4. If |V | > 1, then compute a d − 1 dimensional hyperplane M , perpendicular to the dth
dimension, that partitions V into two equal sets V1 and V2, where V1 is the set of points that
are on the smaller side of the hyperplane (according to their dth coordinate). Let V ′

1 be the
projection along dimension d of V1 on hyperplane M . Let V ′

2 be the projection of V2, along
dimension d, on hyperplane M .

5. Add to S the following shortcut edges:

– a shortcut edge from every point of V ′
1 to its corresponding point of V1;

– a shortcut edge from every point of V2 to its corresponding point of V ′
2 .

6. Recursively build the shortcut edges and dummy points for the set V1. Let that recursive call
return P1 as the set of points (including dummies) and S1 as the set of shortcut edges within
P1. Update S and P as follows: S = S ∪ S1 and P = P ∪ P1.

7. Recursively build the shortcut edges and dummy points for the set V2. Let that recursive call
return P2 as the set of points (including dummies) and S2 as the set of shortcut edges within
P2. Update S and P as follows: S = S ∪ S2 and P = P ∪ P2.

8. Solve the d − 1 dimensional problem consisting of V ′
1 ∪ V ′

2 , using the solution for dimension
d − 1, and update P and S according to what this solution returns: If it returns S3 and P3,
then the updates are S = S ∪ S3 and P = P ∪ P3.

The space complexity (i.e., the number of shortcut edges and dummy points) obeys the following
recurrence. If n > 1, then:

f(n, 2) ≤ c1f1(n) log n

and, if d > 2, then
f(n, d) ≤ 2f(n/2, d) + f(n, d − 1) + c2dn

Note that this recurrence follows from steps 5 and 6 (which each recursively solve the problem
for n/2 points in d dimensions), step 7 (which recursively solves a problem for n points in d − 1
dimension), and the other steps add at most O(n) points and edges.

Now, if n = 1, then f(1, d) = c3d. Thus, the solution to the above recurrence is:

f(n, d) = O(df1(n)(log n)d−1).

The w-to-v number of shortcut edges obeys the following recurrence. If n > 1, then:

h(n, 2) ≤ h1(n) + 2

15

One dimensional scheme d-dimensional scheme

h1(n) f1(n) hd(n) fd(n)

1 edge O(n2) 2d − 1 O(n2(log n)d−1)

2 edges O(n log n) 2d O(n(log n)d)

3 edges O(n log log n) 2d + 1 O(n(log n)d−1 log log n)

4 edges O(n log∗ n) 2d + 2 O(n(log n)d−1 log∗ n)

O(log∗ n) edges O(n) 2(d − 1) + O(log∗ n) O(n(log n)d−1)

Table 3: Performance of our solution with different one-dimensional schemes.

and, if d > 2, then
h(n, d) ≤ 2 + h(n, d − 1)

Note that the above recurrence follows from the following number of edges: one hop from V2 to a
shadow point, h(n, d − 1) hops on the d − 1 dimensional hyperplane in step 7, and one hop from
the shadow point to the destination point.

Now, if n = 1 then h(1, d) = 1. Thus, the solution to the above recurrence is:

h(n, d) ≤ 2(d − 1) + h1(n).

Table 3 summarized the performance of our solution, when instantiated with different one-dimensional
schemes. In the table, h1(n) and hd(n) denote the maximum distance between two nodes for one-
dimensional and d-dimensional n-node graphs, respectively; and f1(n) and fd(n) denote the space
complexity (i.e., the number of edges) for one-dimensional and d-dimensional graphs, respectively.

6.3 Using the data structure

We also need a corresponding FindPath(x, y,G) procedure that, given two points x and y in V , finds
a shortest path of shortcut edges from point x to point y. This sub-section gives such a procedure
(it is a simple generalization of the path-finding procedures we gave earlier for the one-dimensional
case).

As before, we use RT to denote the recursion tree corresponding to the recursive calls of
the procedure that adds shortcuts (given in the previous sub-section); that is, in RT , the root
corresponds to V , and the root’s children correspond to the respective sets V1 and V2 that are
separated by the hyperplane M . We henceforth use Vu to denote the set of points that correspond
to a node u of RT , and V ′

u to denote the projection of Vu on the hyperplane Mu that was used in
the recursive call for u (of course |V ′

u| = |Vu|, but V ′
u has one dimension less than Vu). The height

of RT is h = log n and its leaves correspond to sets of size 1 (as they correspond to the “bottom of
the recursion”). We shall augment every node u in RT with an array Πu that, for every point x of
Vu, gives its projection Πu(x) on the hyperplane Mu that was used in the recursive call for u; we
use V ′

u to denote the projection of V on Mu. This takes space similar to the number of shortcut
edges that were added at that particular node of RT , and provides a constant-time mechanism for
following each such edge.

Note that a point x ∈ V occurs in h sets like Vu, once at each depth i in RT , 1 ≤ i ≤ h (the
root being at a depth of 1). In what follows, for every point x ∈ V and 1 ≤ i ≤ h, we use N(x, i)
to denote the node u of RT at depth i and whose Vu contains p. Note that N(x, 1) is the root of
RT , and that N(x, h) is the leaf of RT that contains x.

16

The overall space complexity of RT is the same as the space complexity of the data structure
created in the previous sub-section (as the size of the array Πu is equal to the number of shortcut
edges that were added at node u of RT). We now turn our attention to how RT is used to trace a
path of shortcut edges between two points.

As we did for the one-dimensional case, we shall make use of the fact that in a tree it is easy
to answer nearest common ancestor (NCA) queries in constant time: Given any two nodes of RT ,
their common ancestor in RT that is nearest to them, can be computed in constant time.

The following procedure takes as inputs two d-dimensional points x, y ∈ V and, if x dominates
y, returns a shortest path from x to y. In what follows, G′

u denotes the graph formed from the
nodes of V ′

u (preserving the partial order relationship between the nodes).

FindPath(x, y,G):

1. Check in constant time whether x dominates y: If not then output “no path exists” and stop,
otherwise continue with the next steps.

2. If the dimension of (x, y,G) is 1, then use a one-dimensional path-finding procedure. Other-
wise continue with the next steps.

3. Let v = N(x, h) and w = N(y, h), i.e., v (resp., w) is the leaf of RT whose corresponding set
contains x (resp., y).

4. Compute in constant time the nearest common ancestor (NCA) in RT of v and w, call it
u. Note that p and q are both in Vu, and they are on different sides of the hyperplane Mu.
Let p′ = Πu(x), q′ = Πu(y). The first edge on the path we seek is (x, x′), the last edge on it
is (y′, y), and the portion of it from x′ to y′ is of dimension d − 1 and can be computed as
FindPath(x′, y′, G′

u).

The time taken by the above path-finding procedure is h1(n) for the base case, and constant per
dimension-reduction round, hence a total of O(d + h1(n)).

The FindPath technique we used in the above is widely applicable in other recursive solutions to
shortcut-edge-adding procedures: Its essence is that a nearest common ancestor computation [10]
provides a constant-time “jump” to the relevant spot in the recursion tree, after which the problem
becomes easy (we thereby avoid paying a price proportional to the height of the recursion tree).

7 Extensions: Dynamic Hierarchies

Dynamic changes to the hierarchy (such as addition and deletion of nodes and edges, as well as a
node’s key replacement) do not require wholesale re-keying, rather, only the nodes directly affected
by the change need re-keying. To achieve this, the ideas of [2] can be applied.

At a high level, we use two ideas from [2]. First, each subject is given their own key (and a
separate new node), and the public storage is modified to include an edge from that subject’s node
to its access class vi. The other idea is that the actual key of a node is computed as a function of
a label and a secret key. And it follows that, by changing the label, one can change a node’s key.
For more information, we refer the reader to [2].

However, while individual nodes do not need to be rekeyed using the above techniques, the
public information (dummy nodes and shortcut edges) does need recomputing after the access

17

graph is modified. Because of the divide and conquer recursive nature of the algorithm, this re-
computation looks amenable (at least for the case d = 2) to the techniques of dynamization of van
Leeuwen and Overmars (see, e.g., [20, 13, 14]). This looks like a promising direction for future
work.

8 Conclusions and Future Research

We gave the first scheme for key derivation in a non-tree hierarchy that performs any derivation in
a small number of efficient pseudo-random function computations. This performance bound holds
even for key derivations between nodes separated by a path of linear length and comes at the cost
of adding a modest number of extra edges to the hierarchy.

Promising directions for future work include reducing the space complexity and improving the
performance of dynamic changes to the graph.

References

[1] N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Tech-
nical Report TR 71/87, Institute of Computer Science, Tel-Aviv University, 1987.

[2] M. Atallah, K. Frikken, and M. Blanton. Dynamic and efficient key management for access
hierarchies. In ACM Conference on Computer and Communications Security (CCS’05), pages
190–201, 2005.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In Advances in Cryptology – CRYPTO’96, volume 1109, 1996.

[4] H. Bodlaender, G. Tel, and N. Santoro. Trade-offs in non-reversing diameter. Nordic Journal
of Computing, (1):111–134, 1994.

[5] B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica,
(2):337–361, 1987.

[6] T. Chen, Y. Chung, and C. Tian. A novel key management scheme for dynamic access con-
trol in a user hierarchy. In IEEE Annual International Computer Software and Applications
Conference (COMPSAC’04), pages 396–401, September 2004.

[7] H. Chien and J. Jan. New hierarchical assignment without public key cryptography. Computers
& Security, 22(6):523–526, 2003.

[8] J. Crampton, K. Martin, and P. Wild. On key assignment for hierarchical access control. In
IEEE Computer Security Foundations Workshop (CSFW’06), 2006.

[9] B. Dushnik and E.W. Miller. Partially ordered sets. American Journal of Mathematics,
63:600–610, 1941.

[10] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal
of Computing, 13(2):338–355, 1984.

18

[11] C. Lin. Hierarchical key assignment without public-key cryptography. Computers & Security,
20(7):612–619, 2001.

[12] P. Maheshwari. Enterprise application integration using a component-based architecture. In
IEEE Annual International Computer Software and Applications Conference (COMSAC’03),
pages 557–563, 2003.

[13] M.H. Overmars and J. van Leeuwen. Dynamization of order decomposable set problems.
Journal of Algorithms, 2(3):245–260, 1981.

[14] M.H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. Journal of
Computer and Systems Science, 23(2):166–204, 1981.

[15] J. Rose and J. Gasteiger. Hierarchical classification as an aid to database and hit-list browsing.
In International Conference on Information and Knowledge Management, pages 408–414, 1994.

[16] W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

[17] M. Thorup. On shortcutting digraphs. Combinatorics, Probability & Computing, (4):287–315,
1995.

[18] M. Thorup. Parallel shortcutting of rooted trees. Jounal of Algorithms, (23):139–159, 1997.

[19] W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins
University Press, Baltimore, MD, 1992.

[20] J. van Leeuwen and M.H. Overmars. The art of dynamizing. Mathematical Foundations of
Computer Science, pages 121–131, 1981.

[21] M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal on
Algebraic and Discrete Methods, 3:351–358, 1982.

[22] S. Zhong. A practical key management scheme for access control in a user hierarchy. Computers
& Security, 21(8):750–759, 2002.

19

