
CERIAS Tech Report 2007-29

ONLINE SUBSCRIPTIONS WITH ANONYMOUS ACCESS

by Marina Blanton

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Online Subscriptions with Anonymous Access

Marina Blanton
Department of Computer Science

Purdue University
mbykova@cs.purdue.edu

Abstract

Online privacy is an increasingly important problem, as many services are now offered in a digital
form. Privacy (or the lack thereof) is of a special concern in subscriptions to large data repositories
with heterogeneous information, where the service provider can easily profile its users and sell that
information to third parties. In this work we present the design and implementation of a system that
closely resembles the current practice of subscriptions to many services such as newspapers, digital
libraries, music collections, etc., but at the same time offers anonymous access to the service. As with
current practice, in our solution a user subscribes to the service obtaining access to it for a certain period
of time, at the end of which the subscription expires.

In our system user access is always anonymous and no two transactions by the same user can be
linked together. Moreover, the system assures a high level of protection to the service provider, as a user
cannot share her subscription credentials with others without denying herself access to the service. We
present experimental results showing that the design of our system results in only small computation
overheads, in addition to having very low communication requirements. The main objective of this work
is thus to illustrate the practically of integrating anonymity into today’s subscription-based services.

1 Introduction

This work focuses on practical aspects of realizing pre-paid subscriptions to digital services in a setting
where legitimate users can access such services anonymously. The services we consider include online
newspapers, databases, digital libraries, music collections, etc. Two important considerations that governed
the design of the system are: (i) anonymous access to the documents, objects, and files included in the
subscription; and (ii) the flexibility in subscription periods and types of access.

The model of operation considered here is rather simple and naturally resembles currently existing
services (not necessarily web-based or digital): a customer subscribes to an online or digital service for
a certain period of time by making a payment for the duration of the subscription. Her subscription takes
effect at end of the payment protocol and expires once the subscription interval is over, i.e., similar to
how most (non-anonymous) services work today. There is no limit on how many times the service can
be accessed during that time interval. Subscription lengths might vary depending on the application (e.g.,
subscription for a month, a year, promotional free subscription for a few days, etc.), and we would like to
support services where the time granularity for the system is small (e.g., a day or less) to allow for flexible
start and end times. If the service provider offers a number of subscription types (e.g., basic and premium
packages), each customer will be free to choose her subscription type.

In the world where a user’s online presence can be easily monitored, we seek user privacy, which is
particularly important in case of services that provide access to information on a broad range of topics.
If access is anonymous, the service provider has no information about the (legitimate) items a customer
is accessing and is unable to take advantage of customer access history (by building profiles, selling this

1

information to third parties, etc.). This also corresponds to the currently existing (non-digital) practices, as
no one monitors what articles an individual reads in a newspaper or what books he browses at a library. It
is obvious that an anonymous setting is not appropriate for access to restricted-use or potentially dangerous
material access to which might require auditing by law, but rather can be used with commercially valuable
but innocuous content such as databases of past events, historical trading transactions, music, etc.

There are a number of existing anonymity tools in the literature, but the straightforward use of any of
them has certain drawbacks. For example, the use of digital credentials requires tying user credentials to
some other information or infrastructure such as PKI to prevent system abuse, which might be difficult to
do for a stand-alone service. As another example, the use of group signatures also permits realization of
anonymous access, but requires user re-keying during each time slot and becomes unacceptable when such
time slots are short (e.g., a day or less).

In this work we adopt existing anonymity techniques to design a solution that is both convenient to the
user and safe for the service provider (even a stand-along service). We achieve a high level of security for
the service provider by ensuring that a user cannot misuse her access rights. Similar to digital credentials,
each user is issued an anonymous token that permits access to the service. The key difference in our mode
of operation, however, is that if a user duplicates her token and gives a copy to a friend, she will deny herself
access to the service.1 We achieve this by issuing single-use tokens to each user: on each access a user
spends her current (anonymous) token and is issued a new token.

Another important aspect in showing the practicality of our system is performance of the solution. Low
computation overheads will foster adoption of such tools and one of our goals here is to evaluate such
overheads. To implement anonymous tokens, we use an efficient signature scheme over elliptic curves of
compact size. According to our experiments, user computation per access can normally be under 1.5 second
on a commodity workstation with a server computation being under 1 second (using the same computational
power). To the best of our knowledge, this is the first work that reports on empirical performance results of
an anonymous authentication scheme.

To summarize, we present the design and performance analysis of the first system that simultaneously
achieves the following properties:
• access by a user to the data repository is provably anonymous;
• the size of authentication token is constant and does not depend on the number of users in the system;
• subscription dates are flexible, and each subscription is terminated at its expiration date;
• termination of a subscription does not affect other users in the system;
• strong protection for the service provider is guaranteed, as no user can share or duplicate her creden-

tials.

The rest of this paper is organized as follows: in Section 2 we give an overview of related work. The
problem setting and security requirements are presented in Section 3, then Section 4 provides a high-level
description of our solution. Section 5 describes building blocks, followed by a description of user-server
interaction in Section 6. Section 7 describes our experiments and reports on performance results. Finally,
Section 8 comments on extensions and concludes this work.

2 Related Work

This work is related to a number of research directions, and we discuss each such line of research separately.

Subscription-based services. Persiano and Visconti [26] address the problem of remote subscription-based
services, and it is the closest to our work. The authors modify the SSL/TLS protocol (used with X.509
certificates) to achieve privacy, but the solution requires authentication linear in the number of users in

1In some other solutions, duplicating the token and its usage by several people undetected is feasible.

2

the system (both computation and communication). Their solution can be integrated into existing infrastruc-
tures, but for popular services with a large number of users it becomes infeasible (e.g, for a system of 10,000
users, the authors report authentication of 40-50 seconds). Another work on anonymous authentication [28]
has similar properties, but its performance is also linear in the number of users in the system.

Another work on subscription-based services in the anonymous setting is due to Ramzan and Ruhl [27].
The model, however, is such that a user obtains a fixed number of accesses to the service with no expiration
date. This does not solve our problem where we permit an unlimited number of accesses, but enforce
expiration of user access rights.

Group signatures. Group signatures allow a member of a group to sign messages anonymously on behalf of
that group. A large drawback of using them to realize anonymous subscriptions is that there is no convenient
way to terminate group membership. That is, in group signature schemes that support revocation (e.g.,
[1, 3, 8, 12, 10, 30]), a member is revoked by (i) using a list of revoked users (every time a signature is
verified, it is checked against the list of revoked users); or (ii) updating the secret key every time a user is
revoked. Since in our model revocation is not a rear event, requiring each user to perform work linear in the
number of revocations is infeasible. Another work [21] allows for user revocation without affecting other
users in the system, but requires all users to authenticate by going through a third party (not affiliated with
the server provider), causing additional overhead and infrastructure costs.

Digital credentials. Digital credentials (see, e.g., [5, 13]) allow someone to authenticate or obtain access to
certain resources by providing credentials that are certified by a trusted authority and are tied to the user’s
public key. In the original scheme [5], multiple showings of the same digital credential were linkable, but
recent work [2, 15] allows digital credentials to be randomized and achieves unlinkability. The biggest
weakness with using them, however, is that such certificates can be shared or duplicated by dishonest users
(and even simultaneous uses of the same credential cannot be detected in an anonymous setting). To over-
come this limitation, [5] suggests encoding confidential data of the applicant into the digital credential. To
make users liable, however, a certificate that, for instance, encodes a user’s key to access a bank account as
a protective measure must be accepted at the bank, which makes it hard to bootstrap certificate applications
in practice [5]. [2] suggests binding a credential to the user by requiring the user to use an important secret
key she owns every time she uses the certificate. Similarly, tying a credential to the user’s important secret
implies existence of an underlying infrastructure, which might not be readily available and too costly for the
service provider to build and/or maintain.

Our solution, on the other hand, provides a stronger security guarantee: it is simply not possible to create
multiple valid copies of a user’s credential since every credential consists of a chain of single-use tokens. In
addition, any measures for protecting digital credentials from being shown to other individuals can be used
with our system as well.

Digital cash and k-times anonymous authentication. Digital cash could potentially be used for anony-
mous subscriptions if we use a coin to permit access to the subscription service during a single time interval.
There are schemes that permit a coin to be spend up to k times (such as in [6, 7] and k-times anonymous
authentication [32, 25, 11]), which would allow a user to access the service multiple times during each time
interval. The limitations of using these solutions in our setting, however, outweigh its advantages. That is,
we want to permit a user to access the service an unlimited number of times during each time interval, which
means that the threshold k will have to be set to a high value. This unnecessarily increases a coin size and
practically disables benefits of such schemes, since their goal is to prevent over-spending. Additionally, it
is unclear how to enforce a coin to be spent during the pre-defined time interval (or “expire” unspent coins)
and how to ensure that the number of issued coins is not linear in the subscription length.

Unlinkable serial transactions. Stubblebine, Syverson, and Goldschlag [31] gave an interesting approach
based on a single-use token: when a user subscribes, she receives an (anonymous) token. At the time of

3

access to the service, the token is spent and the user receives a different token (the server stores all tokens
used). By deviating from the protocol, not only a customer cannot gain anything, but also might lose his
access privileges. This scheme is very efficient and is well suited for, for instance, pay-per-view service, but
does not work in our setting because there is no way in this scheme to stop the chain and force subscription
termination. That is, in order for a single subscription to be terminated, the key must be changed and all
remaining users must obtain new certificates, which clearly is not suitable.

3 The Model

In this section we define the model of secure anonymous subscriptions. In what follows, we let the service
provider to specify different types of subscriptions for its users. Note that usage of subscription types greatly
increases the expressive power of the scheme, as it allows the service provider to specify what objects each
category of users is allowed to access and at what times (e.g., discontinuous time intervals such as evenings-
and-weekends subscriptions are now supported, as well as traditional varying grades of service packages).

Let us first define some notation. Let time be partitioned into time intervals ti (of possibly varying
lengths), with ti+1 following ti and and tcurr denoting the current time interval. Then an access function f ,
given a subscription type stype and a time interval tx, returns the set of objects (or data items) accessible
by a holder of stype at time tx. Note that f does not take into account subscription expiration or the current
time interval, but still might return an empty set depending on the subscription type (e.g., if the access is
based on the time of the day or day of the week). We assume that payment information (if applicable) is
available for all subscription types and durations and is implicit in the foregoing description. An anonymous
subscription scheme is then comprised of the following procedures:

• Setup: The server generates a public key/secret key pair and publishes its public key.
• Subscribe: During this protocol, a user who requests a subscription type stype for a duration d be-

comes a valid subscriber from time tstart until tend, where d = tend − tstart, and obtains from the
server her credential information cred.

• Access: It is a protocol between a subscriber and the server that, given customer credentials cred and
a requested object o, provides the customer with the contents of the object o if both tcurr ≤ tend and
o ∈ f(stype, tcurr) and then updates cred.

We assume that, given a subscription type stype, function f can be successfully computed and enforced and
concentrate on proper authentication and termination of customer access rights at the appropriate time. The
properties we seek from a secure anonymous subscription scheme are:

• Correctness: Any subscriber who joined and received credentials using Subscribe must be able to
access the prescribed resources using Access during her subscription period.

• Soundness: Only legitimate subscribers are able to authenticate and obtain access to the prescribed
resources during their subscription period. This applies to a coalition of users as well: any subset of
colluding users cannot obtain access to more resources than what they can already legitimately access.

• Anonymity: No one is able to identify an authenticated subscriber within her category or to decide
whether two different executions of the Access protocol were performed by the same subscriber.

Besides these properties, for efficiency and usability reasons we require the (non-security related) property
of Taking effect fast. This means that the time interval when the service was requested and the time interval
when the subscription takes effect are sought to be very close in time.

4

4 Overview of the Solution

Here we give an overview of interaction between a user U and the server S in our solution at two stages:
subscribing to the service and accessing the service.

At the subscription time: The protocol consists of the following steps:

1. A user U and the service provider S agree on the subscription type (call it t) and the subscription
duration (represented as the expiration date and time d). The user pays for her subscription.

2. To generate its first access token, U picks a random string m, sends a commitment com(m) to S , and
proves that she knows m.

3. S creates an authentication token σ (which is a signature on m, t, and d) by using t, d, and com(m)
and sends it to U .

4. U verifies the validity of the token, which will allow future access to the service.

At the time of access: Every time the user U would like to access the service, she will need to reveal the
access type t to the server, which will allow S to enforce proper access control. Note that revealing the
user’s subscription type does not compromise the anonymity of the access, as U remains anonymous within
her subscription type. The exact interaction between U and S is as follows:

1. U randomizes her token σ so that it cannot be recognized, and sends σ, t, and information about m to
S . U also proves to S that σ is a valid signature on m, t, and some date in the future (i.e., d is kept
secret).

2. S checks to make sure that m has not been used before and grants access to the service.
3. To generate a new authentication token, U picks a new random m̂, sends a commitment to it com(m̂)

to S , and proves the knowledge of m̂.
4. S creates a new token σ̂ using commitment com(m̂) and the previous token that contains information

about t and d and sends it to U . This new token will correspond to a signature on m + m̂, t, and d.
5. U verifies the validity of σ̂.

As can be seen from the above, the service provider must maintain a database of the previously used tokens
(i.e., store each used m). Here, however, we would like to point out that, unlike digital cash systems, the size
of the database will be limited because the authentication tokens have limited validity. If we let Tmax denote
the longest possible subscription, then S needs to store used tokens for at most 2Tmax time intervals in the
past, and all older tokens can be safely discarded. This prevents the database from growing indefinitely.

5 Building Blocks

5.1 Preliminaries

The signature scheme which the server uses to construct authentication tokens uses groups with bilinear
maps. Thus, we review the definition of groups with pairings next. In what follows, we use a

R
← G to mean

that a is chosen at random from all of the possible values that G can take.

Definition 1 (Bilinear map) A one-way function e : G × G → GT is a bilinear map if the following
conditions hold:
• (Efficient) G and GT are groups of the same prime order q, and there exists an efficient algorithm for

computing e.
• (Bilinear) For all g ∈ G and a, b ∈ Zq, e(ga, gb) = e(g, g)ab.
• (Non-degenerate) If g generates G, then e(g, g) generates GT .

5

5.2 The signature scheme

In this work we make use of Camenisch-Lysyanskaya (CL) signature scheme [13]. Thus, here we briefly
review this scheme that consists of the key generation, signing, and verification algorithms.

KeyGen: Generate (q, G, GT , g, e). Choose s
R
← Zq and u

R
← Zq. Set the secret key sk = (s, u) and the

public key pk = (q, G, GT , g, e, gs, gu).

Sign: To sign a message m ∈ Zq, first choose α
R
← Zq and set a = gα. The signature σ is computed as

σ = (a1, a2, a3) = (a, au, as+sum).

Verify: To verify a signature σ = (a1, a2, a3) on message m, check its every field by performing:

(1) e(a1, g
u) = e(a2, g) (2) e(a1, g

s)e(a2, g
s)m = e(a3, g).

The security of the signature scheme relies on the LRSW assumption (see, e.g., [23, 13]).
The above scheme does not unconditionally hide the message m, which is undesirable in cases when m

must be kept secret from the verifier (i.e., in the above, given a signature on an unknown message, one can
try different values for m in the second step of signature verification until a match is found; this attack can
be successful with high probability if the message domain is small). To address this, the above scheme can
be extended to support signatures on two messages (m, r) where r is chosen at random and unconditionally
hides m in the signature. This extension will allow the signer to produce a signature on committed value
without learning the value being signed and also prove the knowledge of a signature without disclosing the
message. Furthermore, if the message is completely hidden, one will be able to randomize the signature, so
that it is infeasible to tell whether the original signature and its randomized version correspond to the same
message or not. The next section shows how signatures on blocks of messages (two or more messages) can
be created and randomized.

5.3 Signatures on multiple messages

As given in [13], to extend the above scheme to support multiple messages (m0, . . .,mn), the secret and
public keys are expanded and the signature now has additional fields. For instance, to sign two messages
(m0,m1), the secret key will consists of (s, u, z1), and the public key will be pk = (q, G, GT , g, e, gs, gu, gz1).
To sign (m0,m1,m2), set sk = (s, u, z1, z2) and pk = (q, G, GT , g, e, gs, gu, gz1 , gz2), etc.

Our subscription scheme (given in Section 6) uses signatures on messages (m, r, t, d), where r is a ran-
dom number used to hide other values. A signature σ on (m, r, t, d) will then look like σ = (a1, a2, a3, a4, a5,
a6, a7, a8, a9) = (a, az1 , az2 , az3 , au, auz1 , auz2 , auz3, as+su(m+z1r+z2t+z3d)). To verify such a signature,
we need to verify all of the fields in it. For instance, for message (m, r, t, d), the verification procedure
consists of the following steps, in addition to (1) e(a1, g

u) = e(a5, g):

for z1 : (2) e(a1, g
z1) = e(a2, g); (3) e(a2, g

u) = e(a6, g);

for z2 : (4) e(a1, g
z2) = e(a3, g); (5) e(a3, g

u) = e(a7, g);

for z3 : (6) e(a1, g
z3) = e(a4, g); (7) e(a4, g

u) = e(a8, g);

for the message : (8) e(a9, g) = e(a1, g
s)e(a5, g

s)me(a6, g
s)re(a7, g

s)te(a8, g
s)d.

To randomize signature σ (issued on any number of messages), we need to randomly choose r1 and r2 from
Zq, raise all fields ai of σ to r1, and additionally raise the last field of the signature to r2.

To have the signer produce a signature on an unknown message, it is sufficient to send a commitment
to that message to the signer, from which it will be able to form the signature. The commitment scheme
used is Pedersen commitment, and a commitment to m will look like com(m) = gm(gz1)r, from which the
signer can form a signature on (m, r). Similarly, given a commitment to several messages, a signature on
all of them can be formed.

6

5.4 Zero-knowledge proofs of knowledge

Prior literature provides efficient zero-knowledge proofs of knowledge (ZKPK) for a variety of statements,
with many efficient proofs being based on the discrete logarithm problem (see, e.g., [18, 17, 14, 4, 9]).
Camenisch and Stadler [16] introduced notation for various proof of knowledge and we follow their notation
here. For example,

PK{(α, β, γ) : A = gαhβ ∧B = gαhγ ∧ (α ≥ a)}

denotes a ZKPK of integers α, β, and γ, where A = gαhβ , B = gαhγ , and α ≥ a.
One of the ZKPKs used in our protocols is the proof of knowledge of the discrete logarithm represen-

tation, a solution to which is well known. For the purpose of completeness of this work and to facilitate
deployment of these techniques, we describe its non-interactive version in Appendix A. More information
on other proofs of knowledge used in our scheme is given in Section 6.

6 The Scheme

6.1 The protocols

Setup: S generates (q, G, GT , g, e) and chooses s, u, z1, z2, z3
R
← Zq. The secret key is sk = (s, u, z1, z2, z3)

and the public key is pk = (q, G, GT , g, e, gs, gu, gz1 , gz2 , gz3).

Subscribe:
1. U and S negotiate U ’s subscription type t ∈ Zq and expiration date/time d ∈ Zq.

2. To create the first token, U picks at random m, r
R
← Zq, sends the commitment M = gm(gz1)r to S ,

and gives a non-interactive ZKPK (NIZKPK) of the opening of the commitment:

PK{(α, β) : M = gα(gz1)β}

3. S produces a signature σ on m, t, and d using M such that σ = (a1, a2, a3, a4, a5, a6, a7, a8, a9)
(as in Section 5.3). Since the only field that depends on the messages is a9, S computes it as a9 =
as+su(z2t+z3d)M suα, where a = gα = a1 for a randomly chosen α.

4. U checks the signature σ on (m, r, t, d) by checking all fields (see Section 5.3).

Access:
1. U chooses r1, r2

R
← Zq and randomizes σ (as in Section 5.3). U sends m, t, and (randomized) σ to

S . (Through the rest of this protocol we assume that σ’s fields a1 through a9 have been modified
according to the randomization procedure.)

2. U proves in zero knowledge that σ is a valid signature on m, t and some unknown d where d ≥ tcurr

using the following proof of knowledge:

(a) Both U and S locally compute vr = e(a6, g
s), vd = e(a8, g

s), vsig = e(a9, g) and V =
e(a1, g

s) · e(a5, g
s)m · e(a7, g

s)t.
(b) U and S execute a NIZKPK protocol for:

PK{(α, β, γ) : vγ
sig = V · vα

r · v
β
d ∧ β ≥ tcurr}

3. S checks to ensure that m has not been used before and, if true, access to the service can be granted.
4. To generate a new token, U picks new m̂, r̂

R
← Zq, computes commitment M̂ = (am̂

1 ar̂
2)

r2 =

(am̂
1 az1r̂

1)r2 , and sends M̂ to S . U and S execute a NIZKPK

PK{(α, β) : M̂ = aα
1 aβ

2}

7

5. S produces a signature on (m+m̂, r+ r̂, t, d) as follows: Choose β
R
← Zq and randomize all signature

fields that do not depend on m̂ or r̂ (i.e., all fields except a9) using β. S updates a9 using M̂ as in
σ̂ = (aβ

1 , aβ
2 , aβ

3 , aβ
4 , aβ

5 , aβ
6 , aβ

7 , aβ
8 , (a9M̂

su)β) and sends σ̂ to U .

6. U sets m = m + m̂ (mod q), r = r + r̂ (mod q), and a9 = a
r−1

2

9 and verifies that σ̂ is a valid
signature on (m, r, t, d).

6.2 Proving the validity of a subscription

The proof of knowledge given in step 2 of the Access protocol can be re-written as:

PK{(α, β, γ) : V = (v−1
r)α · (v−1

d)β · vγ
sig ∧ (β ≥ tcurr)}

Its first part can be executed using a proof of knowledge of the discrete logarithm representation (see Ap-
pendix A), and the second part requires a range proof for a hidden exponent β. The latter can normally be
accomplished by sending a commitment to the exponent and showing that the committed value lies within a
specific interval [a, b].

The most efficient range proof to date is due to Boudot [4], but it must be carried out using groups of
unknown order (i.e., arithmetic is modulo n = pq, where p and q are not known to either the prover or
verifier). Unfortunately, creating such a group during protocol execution and integrating the proof into our
setting makes this approach impractical. Thus, we employ a classical bitwise proof [24] showing that a
committed number is in the range [0, 2k − 1], which may be impractical in general, but works well in our
case. To show that d ≥ tcurr, it is sufficient to prove that d − tcurr is a positive number of at most k bits
long for some k of the service provider’s choice. Then if d is not in the near future, the user will not be able
to construct such a proof (i.e., d − tcurr mod q is then a large |q|-bit number). For this application, it is
sufficient to set k to a small value, as long as 2k exceeds the number of time slots in the largest subscription.
For instance, if each slot ti corresponds to a day, setting k to 9 will support yearly subscriptions.

Let x = x02
0+x12

1+. . .+xk−12
k−1 for xi ∈ {0, 1} and i = 0, . . ., k−1 be the binary representation of

x. Then the range proof for x is conducted by sending to the server com(x) = gxhy , and com(xi) = gxihyi

for i = 0, . . ., k−1, where com(x) =
∏k−1

i=0 com(xi) and each yi is chosen randomly from Zq, and showing
that each xi hidden in com(xi) is either 0 or 1. In other words, the exact statement that the user proves is of
the form:

PK{(α, β, γ, δ, δ0 , . . ., δk−1, τ, τ0, . . ., τk−1) :

V = v−α
r · v−β

d · vγ
sig ∧A = gδhτ ∧A =

k−1∏

i=0

gδihτi s.t. δi ∈ {0, 1} ∧ β − δ = tcurr}

We give more details on how exactly this proof is constructed in Appendix A.

6.3 Security analysis

The security of our solution heavily relies on the security of CL signature scheme and proofs of knowledge
used. In particular, unforgeability and anonymity requirements are fulfilled by the properties of the signature
scheme. Let us examine each of the required security properties in more detail.

The correctness property is straightforward and can be shown by examination. The Subscribe pro-
tocol consists of two main elements: issuing a signature on a committed message and a ZKPK, cor-
rectness of both of which has been previously demonstrated. Correctness of the Access protocol also
mostly due to the properties of the signature scheme, and the only part that we need to show is that
a newly formed token which the user obtains at the end of step 6 corresponds to a valid signature on
(m + m̂, r + r̂, t, d). The token U has at the end is: (aβ

1 , aβ
2 , aβ

3 , aβ
4 , aβ

5 , aβ
6 , aβ

7 , aβ
8 , (a9M̂

su)βr−1

2) =

8

(ar1β, az1r1β, az2r1β, az3r1β, aur1β, auz1r1β, auz2r1β, auz3r1β, (a(s+su(m+z1r+z2t+z3d))r1r2asu(m̂+z1r̂)r1r2)r
−1

2) =
(b, bz1 , bz2 , bz3 , bu, buz1 , buz2, buz3 , bs+su(m+m̂+z1(r+r̂)+z2t+z3d)), where a is the base of U ’s previous token
and b = ar1β is the base of the newly formed signature.

Next, we proceed with the soundness and anonymity properties of the solution. The Subscribe protocol
involves issuing a CL signature on a hidden value, the security of which has been shown in [13]. The random
value r perfectly hides the message m, and the server does not learn any information about the value the
user encodes in the signature. Then in the Access protocol, the user is required to prove the validity of its
token which is not possible without having a token issued by the server. Also, the user will not be able to
reuse one of the old token since the server records all previously used tokens. The anonymity property in the
Access protocol is fulfilled by (i) making sure that the previous token is randomized (i.e., the server cannot
link a token to one of its previously issued tokens) and (ii) the server does not learn any information about
the messages encoded in the new token it is creating.

7 Implementation and Performance Evaluation

The client and server side of the protocols were implemented as C++ programs, the source code of which is
available at http://anonymized. The server listens to incoming connections and accepts subscription
requests from new clients, as well as access requests from existing clients. A client can execute either the
subscribe protocol to obtain its first token or the access protocol using its current token. The experiments
were performed on a 2GHz Power Mac G5 running Mac OS X 10.4.9.

We use the Miracl [29] library to perform big number operations. Miracl provides efficient mecha-
nisms for computing elliptic curve and pairing operations required by our protocols. The protocols were
implemented using subgroups of elliptic curves with pairings where the decisional Diffie-Hellman (DDH)
problem is hard. According to [22], this is the most efficient and versatile type of pairings. Such groups
are asymmetric meaning that the pairing function is now of the form e : G1 × G2 → GT , where G2 is
an extension field of G1. For our protocols this implies that certain parameters will be elements of G1 and
others will be elements of G2. For efficiency reasons, we chose the signature elements to lie in G1 and most
values in the server’s public key (g, gs, gu, etc.) to be in G2.

The programs were built using DDH-hard subgroups of an MNT elliptic curve with pairings, and for
simplicity we used a pre-generated curve provided with the Miracl library. The groups have prime order q,
where q is 157 bits long, and the curve has an embedding degree of 6.

Basic protocol measurements. All of our protocols use a small number of point multiplications on elliptic
curves as well as pairing operations, with the latter being the most expensive computation. Miracl permits
us to use two types of coordinates: Affine and Projective. We first ran the protocols using both of these
coordinates to determine which type will result in faster performance. The computation times corresponding
to different parts of the Subscribe and Access protocols are shown in Table 1. The parts of the protocols that
we measured are:
Client subscribe: (i) construction of a commitment to a message and a ZKPK that the commitment is well

formed and (ii) verification of the validity of the authentication token received from the server.
Server subscribe: (i) verification of the client’s ZKPK and (ii) construction of an authentication token for

the client.
Client access: (i) construction of a complex ZKPK for the signature and the expiration date, (ii) construc-

tion of a commitment to a new message and a ZKPK that the commitment is well formed, and (iii)
verification of the validity of the new authentication token received from the server.

Server access: (i) verification of the client’s complex ZKPK, (ii) verification of the client’s ZKPK of the
commitment, and (iii) construction of a new authentication token.

The Access protocol was implemented using the range proof of 15 bits for the expiration date. These

9

New subscription Existing subscription

Client
construction signature

total
construction of construction signature

totalof ZKPK verification complex ZKPK of ZKPK verification
affine 11.43 ms 889.27 ms 900.70 ms 720.86 ms 28.24 ms 931.12 ms 1680.22 ms
projective 4.75 ms 897.24 ms 901.99 ms 505.48 ms 10.57 ms 912.91 ms 1428.96 ms

Server
verification signature

total
verification of verification signature

totalof ZKPK construction complex ZKPK of ZKPK construction
affine 16.33 ms 152.85 ms 169.18 ms 672.73 ms 15.99 ms 56.78 ms 745.50 ms
projective 7.02 ms 117.85 ms 124.87 ms 486.24 ms 6.89 ms 23.30 ms 516.43 ms

Table 1: Performance of cryptographic elements of the Subscribe and Access protocols using Affine and
Projective coordinates.

Server signature construction
Server ZKPK verification
Server complex ZKPK verification
Client signature verification

Client complex ZKPK construction
Client ZKPK construction

 1,000

 1,400

 1,600

 1,800

pr
oj

ec
tiv

e

af
fi

ne

pr
oj

ec
tiv

e

af
fi

ne

pr
oj

ec
tiv

e

af
fi

ne

pr
oj

ec
tiv

e

af
fi

ne

T
im

e
(m

s)

Subscribe Access Subscribe Access

 0

 200

 400

 600

 800

 1,200

Figure 1: Client (left) and server (right) performance using Affine and Projective coordinates.

performance results are also plotted in Figure 1 and demonstrate that the largest overhead is due to signature
verification (used in both Subscribe and Access) and complex ZKPK construction and verification (used in
Access) because of expensive pairing operations.

All numbers shown in this section correspond to the average time computed over 100 executions of the
protocols with varying values for subscription types and expiration dates. The times do not include delays
due to communication, as our goal is to show performance overheads associated with using cryptographic
anonymity techniques.

As Figure 1 illustrates, the use of Projective coordinates generally resulted in superior performance. It
appears that performance of signature verification that mostly consists of pairing computations was insignif-
icantly affected by the change, and the biggest difference is seen in performance of point multiplication
operations on the curve. Because of faster performance of Projective coordinates, all other experiments
were run using only this type.

Varying bitlengths in the range proof. The next experiment we performed was to see how changing the bit
length of the range proof in the Access protocol affects the performance of the protocol. Figure 2 shows the
computation required to construct and verify the complex ZKPK in the protocol as a function of the number
of bits in the range proof (left) and the overall computation of the protocol for the client and the server as a
function of the number of bits (right). Since the computation involved in a subscribe request is not affected,
its performance is not included in the figures and can be found in Table 1.

An interesting observation here is that increasing the bitlength of the range proof does not significantly

10

 420

 440

 460

 480

 500

 520

 540

 560

 580

 600

 21 18 15 12 9

T
im

e
(m

s)

Number of bits in the range proof

Complex ZKPK construction
Complex ZKPK verification

 400

 600

 800

 1000

 1200

 1400

 1600

 21 18 15 12 9
Number of bits in the range proof

Client total computation time
Server total computation time

Figure 2: Computation time for the complex ZKPK and the total computation time per access.

 5000

 2500

 1000

 500

 250

 100

 21 18 15 12 9

Si
ze

 o
f t

ra
ns

m
is

si
on

 (b
yt

es
)

Number of bits in the range proof

Client subscribe request
Client access request

Server response

Figure 3: Size of transmission by client and server for new and existing subscriptions.

affect the performance of the protocol, and the pairing evaluations used in verifying the validity of a signature
still outweigh the other parts of the protocol. Zero-knowledge proofs are traditionally considered to be
computationally expensive, but in our case they do not constitute the majority of the protocols’ overhead.

Communication requirements. Even though the signature scheme we utilize in the protocol results in
compact authentication tokens, we were interested in measuring the total communication requirements of
the protocols, especially with a varying number of elements in the range zero-knowledge proof. Thus, we
next report on communication requirements of the protocols.

Points on an elliptic curve in G1 are represented as two |q|-bit coordinates x and y. It is possible to
store just the first coordinate x and, given the curve parameters, compute the second one y. This, however,
increases the computation which is undesirable. Since in our case the messages transmitted are short and
we are interested in reducing computational load on both the client and the server, we store (and transmit)
both coordinates. Thus, the numbers we present can as high as twice that of the theoretical bounds, but our
goal here is to report the actual performance results. Similarly with the extension field G2, each point now
is represented as 2 coordinates of 6|q| bits each.

Figure 3 shows the amount of data that needs to be transmitted by a client and the server during execution
of the protocols. Since the bases in ZKPKs are known to both parties, they do not need to be transmitted and
are not accounted for in the plots. As the figure shows, the server’s response has identical size for new and

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 21 18 15 12 9

T
im

e
(m

s)

Number of bits in the range proof

Client access (w/ type)
Client access (no type)

Client subscribe (w/ type)
Client subscribe (no type)

Server access (w/ type)
Server access (no type)

Server subscribe (w/ type)
Server subscribe (no type)

Figure 4: Performance comparison of the original protocols and the protocols without subscription type.

existing subscriptions (a single signature is sent). The size of the client access request only slightly increases
with the increase in the number of bits in the range proof, and the largest transmission depicted on the graph
does not exceed 3KB. This means that all transmissions are very short and there is no need to worry about
reducing their size.

Protocols without specifying subscription type. Since some subscription services might provide only a
single type of access to all of the customers, there will be no need in including the type t in the authentication
protocols. This means that we will be able to shorten the signature and lower the computation associated
with the protocols. When the type is not used, this change might be particularly desirable because signature
verification constitutes a large part of the computation overhead.

To evaluate how significantly removal of the subscription type from the signature affects the perfor-
mance of the protocols, we excluded the type and re-ran the experiments. Comparison of the performance
of the protocols with and without subscription type is depicted in Figure 4. As expected, the change most
significantly influenced the signature verification time (in client Subscribe and Access protocols), and re-
sulted in lowering the computation overhead by 20–25%. It also had a noticeable impact on the server’s time
necessary to process client access requests. Processing of client subscribe requests, however, did not result
in significant lowering of the server’s computation time (the difference is about 6ms on average) because of
the efficiency of point multiplications in G1.

Practical considerations. The proper functioning of the system relies on the clients choosing their secret
values m at random. Should two clients use the same randomness while initializing the cryptographic
software, access to the service might be denied to one of them if the same message m is used by both of
them. Thus, in this application it is crucial for each client to use an adequate source of randomness to ensure
correct operation of the system.

8 Extensions and Conclusions

In our scheme, there were two parameters to each subscription: type t and expiration date d. At the sub-
scription time both of them were known to the service provider, while at the access time one was open while
the other remained hidden. In general, subscriptions might depend on a different number of parameters,
some of which are to be hidden from the service provider at subscription time, access time, or both. Thus,
by varying the number of hidden and open parameters (while enforcing required constraints on them using

12

ZKPKs), the approach could be used with a wider range of applications. Chaining of user tokens in our
case gives the service provider a higher level of protection than before since authentication tokens cannot be
shared or duplicated by dishonest users.

Since an extension to a varying number of parameters is rather straightforward, we do not list full details
of how this is accomplished, but only comment on certain aspects of it. As an example, consider a system
where a user is permitted to select a certain number of categories from the list of topical categories available,
without the server knowing which categories the user chose. Then at the time of subscribing, the user will
send a commitment to a number of hidden attributes p1, . . ., pk (protected by a random value r) and execute
a number of ZKPKs on these attributes. Similarly, at the time of access the user sends in clear attributes that
are to be opened (these are incorporated into the signature verification proof) and possibly proves statements
in ZK about other attributes that remain hidden. Thus, it is possible to accommodate a wide range of possible
subscription types and policies associated with such services using the approach offered in this work.

To summarize, this work gives the design and implementation of a system that allows users to anony-
mously access services included in their subscription. One of its compelling features is that, despite being
anonymous, users are unable to abuse the system. Additionally, our empirical results indicate that computa-
tional requirements due to the cryptographic protocols are low enough to be supported by today’s services.

9 Acknowledgments

The author is grateful to Giuseppe Ateniese for useful discussions at early stages of this work. The work is
supported by Intel Ph.D. fellowship.

References

[1] G. Ateniese, D. Song, and G. Tsudik. Quasi-efficient revocation of group signatures. In Financial
Cryptography (FC’02), pages 183–197, 2002.

[2] M. Backes, J. Camenisch, and D. Sommer. Anonymous yet accountable access control. In ACM
Workshop on Privacy in the Electronic Society (WPES’05), pages 40–46, 2005.

[3] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptol-
ogy – CRYPTO’04, volume 3152 of LNCS, pages 41–55, 2004. Full version availalbe at
http://crypto.stanford.edu/ dabo/abstracts/groupsigs.pdf.

[4] F. Boudot. Efficient proofs that a committed number lies in an interval. In Advances in Cryptology –
EUROCRYPT’00, volume 1807 of LNCS, pages 431–444, 2000.

[5] S. Brands. A technical overview of digital credentials. Unpublished manuscript. Available from
http://www.credentica.com/whitepapers.php.

[6] S. Brands. An efficient off-line electronic cash system based on the representation problem. Technical
Report CS-R9323, Centre for Mathematics and Computer Science (CWI), 1993.

[7] S. Brands. Untraceable off-line cash in wallets with observers. In Advances in Cryptology –
CRYPTO’93, volume 773 of LNCS, pages 344–359, 1993.

[8] E. Bresson and J. Stern. Efficient revocation in group signatures. In International Workshop on Practice
and Theory in Public Key Cryptography (PKC’01), volume 1992 of LNCS, pages 190–206, 2001.

13

[9] E. Bresson and J. Stern. Proofs of knowledge for non-monotone discrete-log formulae and applications.
In Information Security Conference (ISC’02), volume 2433 of LNCS, pages 272–288, 2002.

[10] J. Camenisch and J. Groth. Group signatures: Better efficiencey and new theoretical results. In Con-
ference on Security in Communication Networks (SCN’04), volume 3352 of LNCS, pages 120–133,
2005.

[11] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich. How to win the
clone wars: Efficient periodic n-times anonymous authentication. In ACM Conference on Computer
and Communications Security (CCS’06), pages 201–210, 2006.

[12] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of
anonymous credentials. In Advances in Cryptology – CRYPTO’02, volume 2442 of LNCS, pages 61–
76, 2002.

[13] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps.
In Advances in Cryptology – CRYPTO’04, pages 56–72, 2004.

[14] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two safe
primes. In Advances in Cryptology – EUROCRYPT’99, volume 1592 of LNCS, pages 107–122, 1999.

[15] J. Camenisch, D. Sommer, and R. Zimmermann. A general certification framework with applications
to privacy-enhancing certificate infrastructures. In IFIP International Information Security Conference
(SEC’06), May 2006.

[16] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In Advances in
Cryptology – CRYPTO’97, volume 1296 of LNCS, pages 410–424, 1997.

[17] J. Camenisch and M. Stadler. Proof systems for general statements about discrete logarithms. Technical
Report No. 260, ETH Zurich, 1997.

[18] D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demonstrating possession of
discrete logarithms and some generalizations. In Advances in Cryptology – EUROCRYPT’87, volume
304 of LNCS, pages 127–141, 1988.

[19] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Advances in Cryptology – CRYPTO’94, volume 839 of LNCS, pages
174–187, 1994.

[20] A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. On monotone formula closure in SZK. In
Symposium on Foundations of Computer Science (FOCS’94), pages 454–465, 1994.

[21] X. Ding, G. Tsudik, and S. Xu. Leak-free group signatures with immediate revocation. In International
Conference on Distributed Computing Systems (ICDCS’04), pages 608–615, 2004.

[22] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Cryptology ePrint Archive,
Report 2006/165, 2006. http://eprint.iacr.org/2006/165.

[23] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In Selected Areas in Cryptog-
raphy (SAC’99), pages 184–199, 1999.

[24] W. Mao. Guaranteed correct sharing of integer factorization with off-line shareholders. In Public Key
Cryptography, pages 27–42, 1998.

14

[25] L. Nguyen and R. Safani-Naini. Dynamic k-times anonymous authentication. In ACNS, volume 3531
of LNCS, pages 318–333, 2005.

[26] P. Persiano and I. Visconti. A secure and private system for subscription-based remote services. ACM
Transactions on Information and System Security (TISSEC), 6(4):472–500, November 2003.

[27] Z. Ramzan and M. Ruhl. Protocols for anonymous subscription services. Unpublished manuscript,
2000.

[28] S. Schechter, T. Pernell, and A. Hartemink. Anonymous authentication of membership in dynamic
groups. In International Conference on Financial Cryptography (FC’99), pages 184–195, 1999.

[29] M. Scott. MIRACL library. Indigo software, http://indigo.ie/ mscott.

[30] D. Song. Practical forward secure group signature schemes. In ACM Conference on Computer and
Communications Security (CCS’01), pages 225–234, November 2001.

[31] S. Stubblebine, P. Syverson, and D. Goldschlag. Unlinkable serial transactions: Protocols and appli-
cations. ACM Transactions on Information and System Security (TISSEC), 2(4):354–389, November
1999.

[32] I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication. In ASIACRYPT’04, volume
3329 of LNCS, pages 308–322, 2004.

A Zero-Knowledge Proofs of Knowledge

In what follows, H : {0, 1}∗ → {0, 1}κ is a collision resistant hash function that maps the binary represen-
tation of its argument to a string of a fixed length κ, and || denotes concatenation.

A NIZKPK of the discrete logarithm of M = gx to the base g is performed as follows:

1. U chooses v
R
← Zq and computes commitment t = gv .

2. U computes the challenge c = H(g||M ||t).
3. U computes the response r = v − cx (mod q) and sends (c, r) to S .

4. S computes T = M cgr and checks c
?
= H(g||M ||T).

This proof of knowledge (PK) above can be viewed as a special case of a PK of the discrete logarithm
representation. The knowledge of the discrete logarithm representation of M to the base (g1, . . ., gn) is
the knowledge of (a1, . . ., an) such that M = ga1

1 ga2

2 . . .gan
n holds. The NIZKPK of the discrete log

representation then proceeds similar to the above proof with the following differences: U first chooses
v1, . . ., vn

R
← Zq. U computes the commitment t = gv1

1 . . .gvn
n , the challenge c = H(g1||. . .||gn||M ||t), and

the response ri = vi − cai (mod q) for 1 ≤ i ≤ n, and sends (c, r1, . . ., rn) to S . To verify, S computes
T = M cgr1

1 . . .grn
n and checks whether c = H(g1||. . .||gn||M ||T).

Next, we describe a proof that a committed value is either 0 or 1 [19, 20] (used in the Access protocol to
show the validity of the expiration date). Recall that M = com(xi) is hyi if xi = 0, and it is ghyi otherwise.
The user proves that she knows either discrete log of M to base h or discrete log of M/g to the same base
h. If for concreteness we let xi = 1, then the proof proceeds as follows:

1. U chooses v1, v2, w
R
← Zq and computes commitments t1 = Mwhv1 and t2 = hv2 .

2. U computes the challenge c = H(g||h||M ||t1||t2).
3. U sets c1 = w and c2 = c − c1 (mod q) and then computes the response r1 = v1, r2 = c2 −

v2yi (mod q) and sends (c, r1, r2) to S .

15

4. S computes T1 = M c1hr1 , T2 = (M/g)c2hr2 and checks c1 + c2
?
= H(g||h||M ||T1 ||T2) (mod q).

Finally, the last condition that a user needs to prove is that the date in the bitwise range proof equals to the
expiration date built into her token minus the current date. This is accomplished by using a proof for linear
relationship between exponents in different commitments (see [17] for more information). More precisely,

given V = v−r
r v−d

d v
r−1

2

sig and A = gxhy where x = d− tcurr, it is conducted as follows:

1. U chooses wr, wd, wsig, wh
R
← Zq, sets wg = q − wd, and computes commitment t1 = vwr

r vwd

d v
wsig

sig

and t2 = gwghwh .
2. U computes the challenge c = H(vr||vd||vsig||V ||t1||g||h||A||t2).
3. U computes the response rr = wr − cr (mod q), rd = wd − cd (mod q), rsig = wsig − cr−1

2 (mod
q), rg = wg − cx (mod q), and rh = wh − cy (mod q); then sends (c, rr, rd, rsig, rg, rh) to S .

4. S computes T1 = V cvrr
r vrd

d v
rsig

sig , T2 = Acgrghrh and checks c
?
= H(vr||vd||vsig||V ||T1||g||h||A||T2)

and rd + rg
?
= ctcurr (mod q).

16

